
‘ b

.N‘EE‘"
I.I r - .

7‘ .I

I)I ’3'“,.I'I-xv,1, .1.

1‘4.€11,515. - . . ‘2‘. m 1' 1 1,: _ 11 . ‘W-Smu 2’.

. .’. V 1 L 1. §:.. . Au? "",‘4‘-‘
“‘6 .4 ”“1“" ‘ 1. \tI ’\ 'V' 5 . .5. 1 ' l 1 1" ‘J’A‘éI-l

I ‘ ‘
A

I..1

11M. 6-"
1;". *t" i":'gfi’i‘fi

$3TI ‘3'; .r1uurIL'.)-'P%\lifl.£1.:;¢

\‘V‘. “W”

' V h\:“1‘:."

KMA

\

:I'-.. .Q I 'I L I
If. ' 1 > n 1

"I ‘Sy‘végx'ggéqvvs.

:3 :I'W 1; $3».
1113' S,1‘3 I,. '

3“I- l' '

It} :Lg'ak,"l' 1

‘-I""‘-' I1
‘ II '1‘“.

“HINT' "

“14"..." _ 53$:

0“":ct"(1'11",‘\ _.

I’II:v

\

I‘M-"x:

‘1‘

1“

T“ 1\I

I“'1’JE.“"‘U'..L"NF".

5
"
.

w

1
.

4
a
-
.

.
m
i
l
k
?

.'
51
%.
..
.

'-
3

VJ, ' .1' n ‘I'l'v't
I I

lI"! 1‘

1'” l

'
1
;

t'
31

;.
m
m

11‘"”LI” . .
'11:12-15. .:..#\ I . .;‘."\ , . 1 . a . 1 -. a.dz‘r;My.

I t Q .I‘ tw‘ l1 . 0“ I II’ II‘ - . w ‘ '1 1.9“}- , \Ip A.

1 1 1 ‘. III Iv -. -< - . -. »
'1'! I ‘.I':..".' 7 m l"; n- I“ $i'11", '1 1 ’1‘? -. ":1 "“ .. -fl‘1?:1?“111“”l“h!

4“” 1' I 1 ,. ' I‘ '. I . ‘ .b.2191 '.. "I ‘1‘ U . I..I"'

I ’ ‘ ‘, 4, ' ' ’

W

I"

l

1

III A'.‘Q“ 'f;|.nl-r I- .

*2 '1.
"dul: I I

~Iy‘; H“

-‘I'I um“;

I “1"-

.' 1:1. 1.
"in

This is to certify that the

thesis entitled

A MODEL OF PROGRAM PERFORMANCE

IN MULTIPROGRAMMING SYSTEMS

presented by

Chester Terrance Trahan

has been accepted towards fulfillment

of the requirements for

Ph.D degree in Management Science

Mame/t
Major professor

Date ”/5/ 77
/ ,

0-7639

© 1978

CHESTE R TE RRAN CE TRAHAN

ALL RI GHTS RESERVED

A HODEL 0P PROGRAH PERPORHANCB

IN HULTIPROGRLHUING SYSTEMS

BY

Chester Terrance Trahan

A DISSERTATION

Submitted to

Bichigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Departlent of Management

1978

(
1
‘

ABSTRACT

A HODEL OF PROGRAH PERPORHANCE

IN HULTIPROGRAHHING SYSTEES

BY

Chester Terrance Trahan

Good planning information is a continuing necessity

for Data Processing management. Along with the need for

good performance information in planning to meet demand for

computer services, there is a need for individual program

performance prediction in computer job scheduling.

Some of the information necessary for planning is

collected based on performance measurement (usually by

system software). This must be augmented by benchmarks,

simulation or other techniques to predict system performance

under a specific set of circumstances.

The use of an analytic model has been proposed as the

most flexible method of predicting computer performance for

medium scale, priority-interrupt driven Operating systems.

To this end an analytic model was developed with cyclic

queuing submodels for the Central Processing Unit and the

Input/Output units and a deterministic "independent

reference" submodel for program paging behavior. The model

was programmed in APL [1] and Newton's method and Aitken's

pelt; §qgggg [2] algorithm were used to achieve convergence

of the model to equilibrium solutions.

Chester Terrance Trahan

A set of parameterization runs were made on a

System/370 nodel 1u8 and their measurements were then used

to estimate the system parameters: I/O overhead, paging

overhead, Page-in/Page-out ratios, and page "weights" for

the paging submodel. A "synthetic" program was written so

that computer usage and paging behavior could be controlled

internally and real storage, Input/Output behavior and

priority could be controlled externally to the program.

Several variations of the "synthetic" program were measured

and their characteristics estimated.

Following parameter estimation, the estimated values

were used in the APL model to predict the performance of the

experimental programs in an experiment designed as a

2X2X2X2X2 half-replicate factorial. The actual experiments

were then conducted and the experimental results compared to

the predictions. The results of the experiment showed good

prediction in the area of working set sizes and elapsed

times and aggregate I/O rates.

The results showed a sizable error in page rates,

channel utilization, overhead and CPU utilization. The

nature of these results was attributed to the inadequacy of

the independent reference model in representing paging

behavior. These results reinforced Belady and Kuehner's

conclusions about the unsuitability of independent

references [3] as a model for program paging. Hodifications

were then made to the model and the predictions of the

Chester Terrance Trahan

revised paging model showed good agreement with the

experimental data. The revised paging model as well as

several previously developed models showed good agreement

with paging behavior for programs executing with constrained

memory. However, all of the models examined showed a poor

fit under conditions of loose memory constraints.

BIBLIOGRAPHY

Iverson, K.B. A Programming Language, New York, John

Riley 8 Sons, Inc., 1962.

Isaacson, 2., and Keller, 8.8. Analys;_ g; ggmgrica;

methods, New York: John Wiley 8 Sons, Inc., 1966.

Belady, L.A., and Kuehner, C.J. "Dynamic Space-Sharing

in Computer Systems", Communications 9; the Agg,

To Thelma

iii

ACKNOWLEDGHENTS

I would like to thank the chairman of my guidance

committee, and present chairman of the Management Depart-

ment, Professor Phillip Carter for his encouragement. I

also want to thank the members of my dissertation committee,

Co-chairmen Professors Richard Henshaw and Herman Hughes,

and Professor Gerald Park. I also owe a debt of gratitude

to my manager, Paul Beukema, for his help in getting permis-

sion for me to perform my experimental work at IBh.

East Lansing,hichigan C.T.T.

1978

iv

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES.

LIST OF SYMBOLS.

INTRODUCTION

I.

Performance Planning

Scheduling

Priorities and Interactions.

Batch versus Timesharing . . .

BACKGROUND AND PREVIOUS WORK

CPU Models

Central Server Network Model .

Simple Cyclic Queuing Model. .

Simple Flow Model.

Cyclic Queuing with Paging and Overhead

Product of Stages Model.

Multiple Resource Allocation Model

"Straightfoward" Queuing Model .

Eclectic Model

Summary of Queuing Models. . . .

Synthetic Workload Benchmark .

Models of Paging Behavior.

WOrking Set Model.

The Lifetime Function.

Markov Models.

A "Half-Life" Model. . .

The Simple Linear Model.

The Paging Index

The Page Survival Index.

I/O Models

Disk Response Model.

Disk and Drum Scheduling Models. .

The Disk Seek Model.

Revised Disk Response Model.

. viii

H \
l

O
O

O
O

O
I

O
O

N o
n

II. MODEL DEVELOPMENT AND ANALYSIS.35

Batch Model Requirements35

CPU Submodel38

CPU Completion Time.39

CPU Waiting Timeua

CPU Utilization and Elapsed Time46

Paging Submodel.'.47

Page Exception Rate.48

Memory Allocatonu9

"Near-Optimal" Memory Allocation53

1/0 SubmodelSu

I/O Overviewsa

I/O Submodel Development55

Disk I/O Model57

Direct Access Disk I/O62

Indexed Disk I/C68

Sequential Access Disk I/O73

1/0 for Paging75

Submodel Integration76

Model Convergence.82

III. MODEL VALIDATION AND EXPERIMENTAL DESIGN89

Experimental Plan.89

Programs for Measurement and Control91

Experimental Variables92

Instruments and Measures93

Experimental Design.,.98

Design for Parameter Estimation.98

Experimental Design for Validation. 101

vi

IV. EXPERIMENTAL RESULTS AND ANALYSIS . . .

Parameter Estimation . . .

Normal I/O overhead. . .

Paging I/O overhead. . .

Paging Ratio Estimation.

Page Allocation Heights.

Miscellaneous Parameters . . .

CPU Rate Estimation.

Virtual Storage Estimation . . .

Storage and Paging Index Estimation.

Experimental Manipulations

CPU Variance Manipulation. . .

I/O Variance Manipulation. . .

Model Predictions.

Model Validation

Results of Analysis of Variance

Confidence Interval Analysis .

Sources of Error

CPU Submodel

Potential Sources of Error-Paging.

Post-Experimental Paging Analysis. .

Revised Paging Submodel.

Comparison with Earlier Models . .

V. CONCLUSIONS AND RECOMMENDATIONS.

Research Conclusions

Recommendations for Further Research

GLOSSARY OF TERMS.

APPENDIX A O O O C C O O O O O O O O O O O O

SELECTED BIBLIOGRAPHY.

vii

112

112

112

113

115

117

120

121

122

122

127

129

130

130

131

135

137

138

138

139

141

141

142

143

143

145

148

156

171

1.

2.

3.

4.

S.

6.

7.

8.

9.

10.

11.

12.

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

A10.

A11.

A12.

LIST OF TABLES

I/O Overhead Regression Analysis. .

Paging Overhead Regression Analysis

Page I/O Ratio Analysis

System-wide Paging Ratio Analysis

Estimated Working Set Heights . .

Working Set Weight Analysis . . .

Paging Index Calculations

Experimental Program Estimates. .

Model Predictions

Experimental Runs - Measured. . .

Experimental Runs - Calculated. .

ANOVA Table of Prediction Errors.

Non-paging Runs Repl I - Measured

Non-paging Runs Repl I - Calculated

Non-paging Runs Repl II - Measured.

Non-paging Runs Repl II - Calculated.

Paging Runs Repl I - Measured . . .

Paging Runs Repl I - Calculated . .

Paging Runs Repl II - Measured. . .

Paging Runs Repl II - Calculated.

Page Allocation Runs ~ Measured .

Page Allocation Runs - Calculated .

Program Estimation Runs - Measured.

Program Estimation Runs - Calculated.

viii

113

115

118

119

120

121

124

128

131

133

134

136

156

15 8

160

161

162

163

164

165

166

167

168

169

10.

LIST OF FIGURES

Central Server Model

Rational Laplace Transforms.

Elapsed Time "Cycle"(ET) . .

Disk Access Model Diagram. .

Indexed Access Timing Diagram.

Random Access Timing Diagram . . .

Experimental Design for Estimation

Experimental Design for Validation

Levels for Independent Variables .

Multiprogramming Interaction Model

ix

.13

.16

.40

.59

.60

.61

100

103

108

132

9(V)

f(.)

w(j)

A(j)

ALP

ARAT(i)

ARAT(i,j)

ARAT(i,j,k)

3(1)

BETA(j)

BETA

BS(i,k)

BSP

C(j)

LIST OF SYMBOLS

The average process time between page faults.

A function giving the difference between the

average instantaneous I/O access rates on two

consecutive iterations of the model.

A real number between zero and one. A probabili-

ty.

The average working set size for program j

(pages).

,The paging activity index for program j

(references/instruction).

CPU overhead for a non-paging I/O cycle (sec-

onds).

Total access rate for all programs to device 1

(accesses/second).

The access rate for program j to device 1

(accesses/second).

The access rate for program j to file k on

device 1 (accesses/second).

The length of a CPU service interval before an

I/O or paging operation is generated (seconds).

The ratio of page-reads to page-writes for

program j.

The system ratio of page-reads to page-writes.

The average block size (physical record size)

for file k of device i (bytes).

The block size of a page in the virtual system

under discussion (bytes).

The completion time for program j (seconds).

CA

CER (j)

CI(i,k)

CK (j)

CL(i,k)

COH(j)

CP(j)

CPPU)

CSU)

CS

CTIME(j)

CYL(i,k)

CYT (j)

DU)

DC

DEL

DI (ivjlk)

DI(i,k)

The coefficient of variation for the distribu-

tion of I/O requests for disk.

The instantaneous page exception rate for

program j (exceptions/second of process time).

The cylinder location of the mid-point of the

index area for indexed file k on device 1.

A factor used in calculating the paging response

time for program j.

The number of cylinders in the index portion of

file k on device 1.

The CPU utilization for overhead due to program

j.

The CPU utilization due to program j not includ-

ing overhead (COH(j)).

The total CPU utilization due to program j

including both CP(j) and COH(j).

The coefficient of variation for the distribu-

tion of completion time for program j.

The coefficient of variation for the distribu-

tion of disk service time.

The total CPU time attributed to program j by

operating system job accounting routines. Total

problem-state time (seconds).

The size of file k on device 1 (cylinders).

The ratio of the apparent machine instruction

rate to the nominal machine instruction rate for

program j.

The amount of CPU processing time preoempted by

the channel in performing an average I/O opera—

tion for program j.

The amount of CPU time "stolen" by the channel

for each byte of data transferred (seconds).

The average CPU overhead for a paging cycle

(seconds).

The probability of an access by program j to

file k on device i.

The probability of an access to file k on device

xi

DS

ETU)

ETA(j)

EXP(N)

FAC(j)

FN

H(j)

10(1)

KS

LAN(j)

LC(i,k)

L(i)

i by any program during a specified interval.

The amount of CPU time "stolen" by the channel

to initiate an I/O operation (seconds).

The elapsed time per cycle for program j includ-

ing initial wait H(j), completion time C(j), and

I/O wait time IC(j) (seconds).

The average I/o wait time during a paging cycle,

ETA(j) = (1 + Beta(j))*PHI(j) (seconds).

The paging expansion factor. The tendency of

overall system paging rate to increase with an

increase in multiprogramming set due to page

frame contention.

The expected fraction of completion time which a

program must wait if completion of it's I/O

finds the CPU busy servicing program j. If

Cs(j) is the coefficient of variation for the

completion time for program j, FAC(j) =

(1+C5(j))/2-

The average system real-time paging rate. The

sum of the individual program real-time paging

rates (pages/second).

A factor used in calculating the induced comple-

tion time due to the completion of I/O for a

higher priority program while a lower priority

program is in the interrupted state.

The average response or wait time for any type

of I/O operation by program j including paging

(seconds).

The average CPU instruction execution rate

(instructionS/second).

The slope of the expression for seek time. The

average seek time per cylinder

(seconds/cylinder).

The average instantaneous I/O rate for program

j. This means that while program j waits for

completion of paging or I/O the operation

completes with rate LAM(j) (completions/second).

The mid-point of the data area of file k of

device i (cylinder).

The weighting factor for program j in a biased

memory allocation scheme.

xii

M(j)

M0(3)

N(i,j,k)

N(i,k)

N(j)

OHT(N)

PG(Ii)

PHI(1)

91(3)

PDC”

93(1)

RC(i,k)

RCU(ivjnk)

RCU

RCU(j)

The "critical memory". The smallest value of

program j's working set such that program j's

paging rate is less than .5 pages per second.

The instantaneous CPU access rate for program j

in the absence of paging. MU(j) =

CTIHE(j)/(N(j)+1)-

The average number of non-paging I/O operations

to file k of device i issued by program j during

it's execution.

The average number of non-paging I/O operations

issued by all programs in the multiprogramming

mix to file k of device 1 during some specified

interval.

The total number of non-paging I/O operations

generated by program j during it's execution.

The total number of programs in the multipro-

grammming mix.

The total system CPU overhead with N programs in

the multiprogramming set.

The total number of cycles in program j's

execution which terminate in paging exceptions.

The number of pages read for program j.

The average time it takes for program j to read

or write a page from virtual memory (seconds).

The average real-time page exception rate for

program j. PI(j) = CP(j)*CER(j)

(exceptions/second of real time).

The total number of page-write operations on

behalf of program j during it's execution.

The the sum of the page-read and page-write

rates for program j. The total paging rate for

program j.

The number of data records per cylinder for

indexed file k cn device 1.

The average channel utilization caused by

program j accessing file k on device i.

The average total channel utilization for some

specified channel during a specified interval.

The average total channel utilization that is

xiii

RD

5(1)

5K(iujoki

SK(i,k)

5K2(i:j:k)

S1(i,j,k)

52(iojlk)

T(j)

TAU (j)

TRD(i:j:K)

TS(ic1ok)

TS1(i,j,k)

apparent to program j. The expected channel

utilization on the condition that program j is

not using the channel.

The period of rotation of a disk device. The

length of time required for the platters or

disks to complete one revolution (seconds).

The total amount of pagable memory. The total

amount of real memory minus fixed memory (pag-

es).

The total amount of virtual memory required by

program j for execution--program j's address

space (pages).

The average seek distance experienced by program

j when accessing file k of device i (cylinders).

The average seek distance for any program in the

multiprogramming mix when accessing file k on

device i (cylinders).

The second moment of the seek distance for

program j when accessing file k on device i

(cylinders**2).

The average seek distance for program j when

accessing the index area of indexed file k on

device i (cylinders).

The average seek distance for program j when

accessing the data portion of indexed file k on

device i (cylinders).

The amount of time required to move a disk

access mechanism exactly one cylinder (seconds).-

The aggregate I/O rate for all but program j.

This symbol is also used to represent a delay

term in calculating initial wait.

The average amount of CPU usage due to program j

per cycle, including the overhead for paging

and/or normal I/O (seconds).

The average total response time for program j

accessing file k on device i, including wait

time (seconds).

The average seek time for program j when access-

ing file k on device 1 (seconds).

The average seek time for program j when access-

xiv

T52(i:jok)

TSC(i,k)

TSC1(i,j,k)

TSC2(i,j,k)

TSD(iojok)

TSD1(i,j,k)

T"C(iojok)

THE (1, j, k)

V(j)

X1(1)

ing the index area of indexed file k on device 1

(seconds).

The average seek time for program j when access-

ing the data area of indexed file k on device i

(seconds).

The average channel service time for any program

accessing file k on device 1 (seconds).

The average channel service time for program j's

access to the index area of indexed file k on

device i (seconds).

The average channel service time for program j's

access to the data area of indexed file k on

device i (seconds).

The average device service time for program j

when accessing file k on device 1 directly or

sequentially (seconds).

The average device service time for program j

when accessing the index area of indexed file k

on device 1 (seconds).

The average device service time for program j

when accessing the data area of indexed file k

on device i (seconds).

The average channel wait time due to blocking by

other programs experienced by program j when

accessing file k on device i (seconds).

The average channel wait time due to the channel

being busy when the record to be read or written

passes under the read/write heads. This is the

wait time experienced by program j when access-

ing file k on device 1 (seconds).

The initial wait time experienced by program j

between the completion of an I/o or paging

operation and program j's next access to the CPU

(seconds).

The average I/o response time experienced by

program j for non-paging I/O to all of it's

files (seconds).

XV

INTRODUCTION

Data Processing management has a continuing need for

planning information. Long and short range planning is

necessary so that the data processing needs of the organiza-

tion can be met without undue disruption of service and

unnecessary expense.

Lead times for equipment delivery schedules require

that equipment be ordered several months to years before the

equipment is actually needed. To assess the impact on

customer service and installation stability, the data

processing management team must be able to estimate the

effect of changes in software or hardware.

Software changes can be to application software or

systems software. Application software is the collection of

programs and procedures in an installation which are written

to support the busine.§ fgpgtions of the organization.

Programs which do payroll, schedule manufacturing opera-

tions, and maintain inventory accounts are examples of

application programs. Programs which generally support the

functions of the data processing organization are called

system software. Program compilers, sort routines, and even

the collection of programs which control the elements of the

computer system-~the operating system--are all examples of

system software. Hardware changes may be made to the

central processor (CPU), or to the peripheral or

input/output (I/O) devices such as disk drives, tape drives,

printers, drums, card equipment and teleprocessing termi~

nals. The change may be either replacement, acceleration of

operating speed, or augmentation of the capacity of the

device(s) or unit(s) under consideration.

Part of the information needed by data processing

management is provided by their data processing system in

the form of job accounting data collected during system

operation, while the systems requirements come from the

business plans developed by corporate planners. The remain-

der of the information required by data processing manage-

ment to fulfill their responsibilities is derived from

industry publications, vender literature and proposals,

staff research and intuition.

Information in the third category tends to be associ'

ated with performance, capacity and the capability of

computer systems. Typical questions that one hears in this

category might be: will the addition of that new disk drive

improve throughput by 10% or are other changes required?

how many programs should be running concurrently to optimize

throughput? will the installation of the new CPU be

sufficient to handle a projected 15% increase in workload

l:h'

r

during the next twelve months? will the proposed system

meet the performance specifications? how will the schedule

be affected if the third shift update is moved to the first

shift?

The answers to such questions are not only of interest

to data processing management and systems analysts but they

are of key importance to vendors of hardware and software.

Vhile system collected job accounting data can supply the

basis for an analysis which may yield the answers to the

above questions, it cannot provide answers.

The means of deriving answers to the above questions

range from intuitive guesses to in-depth analysis and

simulation. In some cases decisions are made to increase

computer capacity without in-depth analysis because of a

lack of analytical skills. In other instances benchmarks

are performed as a means of alleviating this situation. A

benchmark is the execution of an actual set of programs

(currently implemented on an installed or "base" system) on

the proposed or "target" system. This approach is usually

impractical for the following reaSons: (1) the amount of

time available on a target system is sometimes limited, (2)

the data files from the system being modeled cannot be

removed because they are needed for continuing processing,

(3) and the number of disk packs available for extended

periods of time is often inadequate for a complete bench-

mark. Even if the foregoing problems can be surmounted, the

logistics of duplication and transportation of card decks,

disk packs and tapes can create additional problems.

When one considers the conflicts involved in schedul-

ing computer Operators for the benchmark as well as continu-

ing production work, it is easy to see why the approach

generally taken is the preparation of a ”representative"

sample of job streams which are supposed to embody the

characteristics of the entire system and can be executed in

a limited time-~usually a few hours-~with limited data

files. This approach is still quite expensive and is

usually not used except in the case where very large compu-

ter systems are under consideration. The limited benchmark

approach still requires a great deal of preparation involv-

ing both computer time and analysts' time.

Another expensive approach to performance planning is

the use of simulation. This approach has several varia-

tions. In one variation, systems analysts build a model of

the computer system from a basic computer language such as

FORTRAN or PL/I. Another variation requires the analyst to

build the model using a generalized simulation language such

as GPSS, GASP, or SIMSCRIPT. The systems analyst sometimes

chooses to use a basic system model supplied by a software

vendor or consulting firm. In this case, the I/O configura-

tion, memory size, and CPU speed of the target system are

supplied as parameters to the basic system model. The major

processes of each program are then modelled as events,i.e.

CPU access, I/O access, and "interruption" or pre-emption of

the access to the CPU of a less important program (low

priority) by a more important program (high priority). This

method, while more practical than the first two approaches,

requires purchase of the vendor's software or his consulting

and educational services and can still be quite expensive.

In the real world, simulation has been used extensive-

1y to model large teleprocessing networks. Such networks

are not typical of most data processing organizations. Even

if the expense of the simulation approach were not prohibi-

tive, many users of small and medium sized computers do not

have employees with the skills necessary to do this kind of

study, nor do they think that the simulation packages

available are economically justified.

Sgheduligg

There is an urgent need need for easier or more convenient

performance prediction. Another important area for which a

predictive tool is required is computer scheduling. Compu-

ter scheduling, as used here, has to do with the sequences

and combinations of programs which are determined ggggggglly

to the computer, and is to be differentiated from schedules

which are determined by the computer's operating system,

which will be referred to as "task scheduling" or

"dispatching". Scheduling, in the context used in this

thesis, is normally a clerical function. The scheduler

tries to arrange the sequence of executions so that system

resources are balanced and deadlines are met [23]. To do

this, he must consider program memory size, peripheral

requirements, job dependencies, data availability and other

complex factors. The scheduler is really interested in

predicting the actual job run time unde; g specifig se; 9;

gircumstanceg, but normally uses the average job run time

that has been calculated over several executions of the job

being scheduled.

Presently, most batch job computer scheduling is done

using the average elapsed time for each job in the schedule

[5,21], even in cases where the scheduling function is

computer assisted. That is to say each program or sequence

of logically related programs (job) is considered to execute

for a fixed amount of time on a given computer system,

regardless of the charactersitics of all the other programs

in the system at the same time. The inadequacy of the

deterministic type of scheduling can be observed from the

non-deterministic nature of interactions between the jobs in

a computer system at any given time and the effects of

priorities.

Consider two programs which are assigned priorities or

levels of importance such that the lower priority program

will be forced to relinquish the CPU whenever the higher

priority program is ready to access the CPU (usually at the

completion of I/O activity). The lower priority program

will have to wait for the higher priority program to relin-

quish the CPU and will only have potential access to the CPU

during the times that the higher priority program waits for

I/O operations. It is easy enough to visualize that if the

low priority program always has to wait for the high priori-

ty program, and the high priority program never has to wait

for the low priority program, the respective behaviors of

the two programs will surely be affected if their roles are

reversed.

Extending the example to the case of several programs

will exaggerate the effects of program interactions in the

processor. The actual run time for a particular execution

of a given job or program will deviate from the calculated

average elapsed time unless it is run with precisely the

same set of other programs and identical assignment of

priorities as when the average was calculated.

Interactions within the processor are further compli-

cated by contention for channels and I/O devices. Returning

to the two program example, suppose each program accesses a

unique disk device and has no other I/O. Further suppose

that each program has a nontrivial disk utilization, 20% for

'example. If the data which these two programs access are

consolidated on one disk drive, it is inconceiveable that

the execution or run times of each of the two programs would

be unaffected unless other (compensating) changes were also

made.

There is another type of variation in job durations in

a typical business oriented data processing system-~the

variation due to transaction volumes in transaction driven

applications. For such applications the elapsed job times

are proportional to the number of transactions processed if

gghgr phigqg 35g gqgal. Since techniques such as trend

analysis and exponential smoothing may be used for the

prediction of transaction volumes, the focus of this

research will be on the prediction of the more complex type

of variation in job execution duration-~the variation due to

interactions among several programs executing in a computing

system.

gapgh ygrsus Tipesharinq

Computer systems may be classified into two groups

according to whether or not the system is pgipagily dedicat-

ed to batch multiprogramming or teleprocessing (time-shar~

ing) multiprogramming. Within both groups, the dispatching

scheme or the method which is used to allocate the resources

of the computer system to competing programs or "tasks", may

be a priority system, a time-sharing system or a combination

of the two. The priority dispatching scheme has the primary

objective of optimizing the throughput (number of units of

work completed per unit time) of the mpg; importggt jghg g;

paskg. The time-sharing scheme, on the other hand, has the

primary objective of optimizing (minimizing) the "response"

time or the time it takes for each interaction of a terminal

with the CPU. The combination scheme of priority dispatch-

ing within time-sharing is an attempt to have it both ways.

Although either of the above dispatching strategies may be

found in batch multiprogramming systems or in teleprccessing

systems, the priority dispatching scheme tends to be associ-

ated with batch multiprogramming and time-shared dispatching

tends to be associated with teleprocessing systems because

this is consistent with the primary performance objectives

of these respective systems. For this reason teleprocessing

under the control of primarily batch multiprogramming

systems may use priority dispatching and batch-oriented

processing under the control of primarily time-sharing or

"interactive" systems will be dispatched using the

time-sharing discipline. Because most of the work on

time-sharing systems is not under the control of the data

processing installation but is initiated by the terminal

user, the prediction of system loads is a statistical

problem. It is useless to talk about scheduling a

time-sharing system in the sense that "scheduling" is used

in this thesis, therefore this research emphasizes primarily

batch-oriented multiprogramming systems.

10

This investigation sets forth the development of an

analytic model which is readily usable by computer system

analysts, computer schedulers, and hardware and software

vendors to predict gross computer system performance charac-

teristics (CPU, channel, and device utilizations and

throughput) as well as elapsed times and CPU, channel and

device utilizations by pggqrgg g; jgb. A discussion of the

background relevant to computer system performance predic-

tion and related models is presented in chapter 1, and the

model used in this research is developed in chapter 2.

Chapter 3 consists of an explanation of the parameter

estimation and validation procedures and the experimental

design. A presentation and discussion of the experimental

results is given in chapter 4. The research results are

discussed and recommendations for future research are

presented in chapter 5.

I. BACKGROUND AND PREVIOUS WORK

92 1
:
:

I
!

O a
;

(
D
H W
)

ggptral e ve Network Mode

1
H

Most of the models developed to predict the perfor-

mance of multiprogramming systems are closed, cyclic queuing

network models (so-called "central server" models) based on

the early work of J.R. Jackson [32] and later extensions by

Gordon and Newell [28]. These researchers determined the

conditions under which closed form solutions to network

queuing models were known to exist. The types of networks

which met these conditions were called "separable" and the

solutions were said to be in "product-form". The

product-form solution states that the equilibrium state

probability for the network is the product of the equilibri-

um state probabilities of the component service centers in

the network.

The central server model is based on the assumption

that the execution of programs in a multiprogramming system

consists of alternate periods during which each program is

either receiving or waiting for CPU service and periods

during which each program is either receiving or waiting for

I/O device service. Another general assumption in the

11

12

central server model is that at the completion of CPU

service, each program requests service from the i-th server

(I/O device) with probability P(i). A schematic diagram of

the central server model is given in Figure 1.

§immls Prelim assgiss Amie;

One of the better known computer performance models is

a model developed by D.P. Gaver, Jr. Gaver assumes an

identical probability distribution for the CPU demand of

each job and an identical exponentially distributed response

time for each I/O device in the system [26]. Parameters in

Gaver's model are the number of homogeneous jobs and their

CPU service time and the number of homogeneous I/O units and

their I/O service time. This model is a specific implemen-

tation of the central server model which has two stations,

the CPU and the parallel server I/O station. The I/O

devices in the Gaver model are treated as a pool from which

a request for I/O may be serviced by any device which is

idle. An arbitrary CPU service time may be modeled by

either an Erlang, Hypoexponential or Hyperexponential

distribution. Paging behavior is not explicitely modeled

but may be considered to be included in the overall I/O

rate.

13

W1

W2 .

I u ——)‘

“'1.

Central Server

Peripheral Servers

(Data Channels)

Figure 1. Central Server Model

14

§AEB.§ Flow Ages;

Fenichel and Grossman's Plow model [20] does not use

probability distributions and does not account for direct

program I/O but rather assumes a fixed relationship between

average compute time and paging. For this model the only

I/O considered is paging. The paging response is computed

from a response table. Simulation of the operation of the

paging device is used to develop a table of response times

under different paging rates. The Flow model makes no

assumptions about the form of the probability distribution

of paging service time.

gyglig Queuigg with Paging g_g Overhead

Lewis and Schedler's Cylic Queuing model [34] returns to

some of the central server assumptions and accounts for I/O

and idealized paging behavior using exponential distribu-

tions. This model assumes that program execution intervals

between page exceptions (requests for I/O) are identically

and independently distributed exponential variables. In

this way the dependence of paging rates on memory size is

avoided. Like other central server models, this model

considers the behavior of all programs in the system to be

statistically identical. This is equivalent to partitioning

the computer's main memory into equal sized segments and

having the page replacement algorithm operate lggglly (each

program would only steal pages from itself). If this were

15

not the case, independent execution intervals would not

hold. This model differs from most of the central server

models in that it explicitely includes the CPU overhead for

task dispatching and paging I/O.

ggod ct 9; Stage Model

Using some results by Cox on probability distributions

with rational Laplace transforms [15], Basket and Gomez [4],

and Muntz [15] extended the class of known closed queuing

networks with product form solutions to include certain

servers with general service time distributions by approxi-

mating the distribution with a combination of exponential

stages (see Figure 2). Using the method of stages, closed

form solutions are known to exist for: (1) exponential

servers with firstvcome-first-served (PIES) service discip-

line, (2) general servers with processor-shared (PS) discip-

line, (3) general servers with

last-comevfirst-served-preemptive (LCFS) service discipline,

and (4) infinite servers (IS) with general service distribu-

tions.

16

Figure 2. Rational Laplace Transforms

17

1
3

1
:
:

1
H

I
n

1
H

I
o

I
o

1
w

m o a n m 3
3
'

L: gearish node;

A Multiple Resource Allocation computer model has been

developed by Boyd [7]. This model handles the resource

requirements of the jobs in the multiprogramming mix in a

similar fashion to most central server models. However, it

goes much further in the sense that, given the level of

multiprogramming, the probabalistic aspects of job selection

for execution from the job queue are developed in great

detail. The selection criteria is based on the permanent

(execution) resource requirements of the jobs that are

waiting to be added to the multiprogramming mix. Although

this model is referred to as a batch multiprogramming model

by the author, in reality it behaves very much like a

time-sharing model. In fact, the dispatching strategy for

this model is a time-sharing strategy. As a batch multipro-

gramming model, this model is representative of an installa-

tion where there are a very large number of small jobs, with

few if any data preparation constraints, and no precedence

constraints (by the assumption of independence). Futhermore

there can be little if any external control of the job

schedule since job selection and execution are entirely

determined by statistical distributions.

18

Another recent computer performance model has been

developed by Boyse and Warn [8], and is a time-sharing

cyclic queuing model. The CPU intervals in this model may

be either constant or exponential and the only I/O modeled

is paging. The CPU modeled has parallel paths to the I/O

devices (drums) and, because the number of concurrently

executing programs is small (3), the I/O response time may

be treated as independent of the number of pending I/O

requests. The assumptions in this model agree very closely

with the features of the system for which it was developed,

a dedicated graphics terminal system, and was found to have

a very satisfactory fit.

Eclectic Model

A model by Brandwajn [9] has incorporated several

recent developments into the central server model. Brand-

wajn includes paging in his model and uses Belady's "life-

time function" [6] to determine the effects of memory

allocation on paging rates. Brandwajn also uses the "prin-

ciple of decomposition" [14] to simplify the calculation of

the equilibrium state probabilities of his model. The

principle of decomposition states that if the elements of a

subnetwork of the overall system have rates of state transi-

tions much higher than the remainder of the system, this

portion of the overall network will reach equilibrium

sooner. This means that the subsystem composed of the CPU

19

and paging device may be separately analyzed under the

assumption that the rate of paging is much higher than the

rate of direct I/O. The total system is then modeled as a

two-server system where one server is the disk I/O device

and the other is the composite CPU-paging server.

Sggg_gy f Queuing Mgdels

All of the above models are limited or inadequate for

the purposes of this research because they all use global

parameters to determine system behavior but say nothing

about individual programs that may be executing at a given

time. Futhermore they are really processor models that do

not give a very realistic treatment to the input/output

effects on the system. The assumption of homogeneity among

I/O devices and channels is a serious weakness of these

models for configuration and scheduling studies. The

homogeneity assumption is tantamount to saying that differ-

ent types of I/O devices aren't really very different

therefore they can be treated identically. It is known that

disk drives don't behave like tape drives, printers, or card

I/O equipment. Since the latter devices are dedicated to a

particular program at any point in time, the variation in

their response times is usually due to the interference

caused by devices used by other programs on the same chan-

nel. On the other hand, disks are normally shared among

programs, thereby causing variation in response due to the

potentially random positioning of the disk access arm before

20

I/O can take place as well as queuing time for both the

device and channel. The variation in response introduced by

shared disks is on the order of several times larger than

the time required for data transfer. This research consid-

ers another approach which overcomes many of the objections

to the central server models.

Syn het'g Work oa Benchmagk

The Synthetic Workload method [42] of Sreenivasan and

Kleinman gives good results but requires the solution of two

or more simultaneous, non-linear equations in six unknowns

for each job (program) being modeled. Implementation of the

Synthetic Workload proceeds as follows. Let x1 represent

CPU seconds and x2 the number of EXCP's (approximately equal

to the number of I/O operations). Dividing each of these

dimensions into L parts over the range of the x1 and 12

values for the actual workload, the percentage of observa-

tions in each cell of the total number of jobs will be the

joint probability density of the real workload.

The synthetic workload may consist of a smaller

collection of programs with ghg §_gg jgigp probability

funcgigg. If P(i,j) is the probability of the (i,j)-th cell

and MTOT' the total number of programs in the synthetic

workload, then the number of programs in the (i,j)-th cell

of the synthetic workload is given by

21

N'(i,j) = P(i,j) * NTOT' i,j = 1,2,...,L. (1.1.1)

Then, if X1(i) corresponds to the mid-point of-the ivth

partition of the X1 dimension, the constraint on total CPU

time for the synthetic workload is expressed as

sum[X1(i)*N'(i,j) : i,j = 1,2,..,L] = T. (1.1.2)

The joint probability distribution of the real workload is

duplicated by NTOT' executions of the same program, a

synthetic program [10]. The synthetic program used by

Sreenivasan and Kleinman simulates a file update process.

Its execution characteristics may be manipulated by varying

a set of six parameters supplied to the program by Job

Control Language (JCL).

P1, P2, P3, P4, P5 and P6, the parameters of the

synthetic program, correspond to the number of master

records created, the number of detail records created, the

number of executions of a "compute kernal" [33] per match of

the master and detail files, the number of times the file

update is repeated, I/O buffer blocksize, and record size

respectively. The functional dependence of x1 and X2 on the

six parameters can be expressed as

X1=K1+K2*P4+K3*(P1+P2)+K4*P4*(P1+P2)+K5*P2*P3*P4 (1.1.3)

22

X2=2*P4+(2*P4+1)*([P1*P6/P5]+[P2*P6/P5]). (1.1.4)

The constants K1, K2, 33, K4 and K5 may be estimated

by regression experiments, but since there are more indepenv

dent variables than equations, there is no unique solution

to 1.1.2, 1.1.3 and 1.1.4. A solution is therefore achieved

by choosing integral values for P1, P2, P5 and P6 and

iterating on the values of P4 and P3 until the calculated

and the "given" values for x1 and x2 agree. This must be

done for each of the UTOT' programs in the synthetic work-

load.

A shortcoming of the synthetic workload is that it

requires the actual setup and execution of the synthetic

programs under the operating system being modeled. A

further complication is the requirement that the target

system be available for execution of the synthetic workload.

Although the version of the synthetic workload model

discussed here can be extended to account for paging and I/O

response time, such an extension will increase the computa-

tional complexity many-fold. Compared to the representative

sampling approach, the synthetic workload does not require

as much planning and preparation since only one program is

involved and it generates its own data. For benchmarks in

which the primary objective is comparison among alternative

CPU's, the synthetic benchmark is superior since pglgtive

performance is the basis for decision. For benchmarks in

23

which gyghgh alternatives are being considered, the specifi-

cations, allocation and distribution cf data for the I/O

subsystem becomes much more critical. In this case, exten-

sion of the synthetic model and more planning becomes

necessary, thus negating some of the advantages of the

synthetic workload model.

Both the representative sample benchmark and the

synthetic benchmark share the disadvantage of being unsuita-

ble for scheduling applications; the former because predic-

tion involves hghhhhhy hhhhihg the job streams, and the

latter because the synthetic jobs run hpproximatghy hhg ghm

length 2: time a 211.2 £...eal fishe-

f Easing fisheries

Most models of paging behavior were developed as an

aid in evaluating paging algorithms for operating systems.

Denning's "working set" model [18,19] is defined in terms of

the collection of pages of a program which have been refer-

enced during the process interval [t-TAU,t], where t is an

instant in time and TAU is an interval of time. Denning

defines the working set size to be the number of distinct

pages in the working set. He proposed the use of TAU by the

operating system software (and hardware) as a parameter to

control page residency.

24

Denning showed the working set size to be an increas-

ing function of the parameter TAU and the page fault rate

(the rate at which a program tries to access pages which are

not present in main memory) to be equal to the negative

slope of the working set size. The working set size func-

tion depends on some knowledge of the underlying probability

distributions of the memory reference patterns.

The working set concept (as defined by Denning) has

proven useful in the analysis of page management algorithms

but does not serve well as a predictor of paging behavior

for systems which do not use the working set parameter TAU

to control page residency.

Thg ifetihg Punct oh

A function proposed by Belady and Kuehner, the "life-

time function" [6], is based on a model of independent

references to the pages in a program. The independent

reference model assumes that each memory reference is an

independent Bernoulli trial relative to each page of the

program, where the probability of a reference to page i is

given by q(i). Belady and Kuehner's independent reference

model is a special case where q(i) = 1/S for a program with

5 pages. For this program, w pages in main memory results

in a probability of (S-w)/S that a page reference will

result in a page fault.

The lifetime function is defined to be the expected

25

number of consecutive references before a page will be

referenced which is not in main memory (thereby causing a

page fault). Using the geometric distribution, the lifetime

function is the found to have the following form:

e(w) = w/(S-w). (1.2.1)

Belady and Kuehner then proceed to approximate the indepen-

dent reference model by

e(w) = A*w**k, 1.5<k<2.5 (1.2.2)

on the basis that real programs do not obey the independent

reference model.

In this extension to the model, k is a function of the

program's page reference behavior and A is a function of

both the particular processor in which the program is

executing and the program reference patterns. The factor A

may be further decomposed into the product of K, the average

instruction execution rate of the processor, and A', the

average page reference per instruction.

26

Oden and Shedler developed a model of paging behavior

which is based on a Semi-Markov process [38]. They define

equivalence classes for the states of their model to reduce

the state space and present a solution for the steady state

probability distribution of the reduced state space. They

assume that the transition probabilities for each of the

reduced states is known and that the page frame (page of

real memory) to be "stolen" for a paging operation is

selected randomly. They also assume that the N programs in

the multiprogramming set are dispatched First-In-Pirst-Out

(FIFO) and that they are statistically identical.

These last few assumptions make this model unsuitable

for use in modeling a priority dispatched operating system

with a specific workload. The assumptions make this parti-

cular model more useful for a time'sharing system, and for

investigating paging behavior with regard to the determina-

tion of the optimal value for N, the multiprogramming level.

The page fault rate, steady state page residency and

page fault probability have been modeled as a Markov process

by Franklin and Gupta [24]. Using page transition diagrams,

FIFO and Least-Recently—Used (LRU) paging algorithms, they

developed a memory state transition matrix which could be

used to determine paging statistics.

While the foregoing approach is an interesting tool in

27

the examination of paging behavior and page replacement and

selection algorithms, it is defined in terms of a single

program's behavior and requires exact knowledge of the

transition probabilities for each page of a program. Direct

measurement of the variables necessary to compute the

transition probabilities of each program in an operating

system would impose too high a cost in system overhead. Of

course, it is possible for hardware to be designed to

achieve this function, but the economics of such hardware is

extremely doubtful. What can be easily measured by hardware

or software is occupancy, the amount of time spent executing

the instructions of a given page. Such an approach might be

used if one is willing to assume that the page occupancy

probability is a sufficient proxy for the actual transition

probability (this is equivalent to making the page transi-

tion probabilities for each page identical). Knowledge of

the occupancy probabilities does not yield enough equations

to estimate transition probabilities for each page of a

program. A final objection to this model is that the

computational complexity and system overhead associated with

it makes it impractical for all but very small, i.e. peda-

gogic examples.

28

A paging model that is based on fitting a lifetime

function to the shape hypothesized by Belady and Kuehner was

proposed by Chamberlain, Fuller and Liu [12]. This function

has the following form:

e(w) = 2*5/(1+(C/V)**2)o (1-2-3)

where w is the number of pages a program has in real memory

and B and C are its paging parameters. 8 is defined as

one-half the largest possible lifetime and C is the number

of resident pages which provides the process with a lifetime

of B.

The Simmls Lines; aodel

A simple linear model of demand paging performance

proposed by Salter [40] is based on the assumption that the

mean number of consecutive page references before a page

fault (exception) occurs is linearly proportional to the

size of main memory (Saltzer refers to this as "headway"

rather than lifetime). Saltzer's graphs for associative

memory headway show a significant deviation from linear at

small memory sizes and his graph of paging in the MUITICS

system has measurements at only two memory sizes, hardly

enough to determine curvature. He quotes three sources of

published measurements which report the lifetime (or

headway) increasing faster than linear.

29

Saltzer's model is stated in terms of the SEEAES h_;h

hghghy of the computing system and he asserts that the model

does not represent the behavior of a single program and does

not even predict headway at extreme values where paging

approaches zero. He then goes on to present examples of

individual program paging prediction by assuming an identi-

cal distribution of main memory pages to all processes in

the system.

The Resins Ines;

Another paging model which predicts system-wide paging

statictics is Bard's Paging Index model [3]. The Paging

Index (PI) is an emperically derived model that uses esti-

mates of working set sizes to predict system paging rates.

The working set size w is estimated externally to the model.

An estimate of working set size w, is made by software

monitors for each logged-on user of IBM's VM/370 time-shar-

ing system. Given a pageable main memory size of M, and the

average number of logged—on users N, the storage saturation

factor S is given by

s = N*U/M. (1.2.4)

The paging rate is then estimated by

30

P = 1*(s**2)/4 05 s 52

= I*(S-1), 2 I
A

U
)

(1.2.5)

where the single parameter I characterizes the entire P

versus 5 curve.

Bard's measurements of several systems supports the

apparent deviation from the linear model in some of Salter's

diagrams of paging measurements. Like Salter's model, this

model is not very useful for predicting the behavior of a

specific program although it has proven useful in predicting

average behavior for a composite or "typical" program in a

time-sharing environment under the assumption that the

probability distributions of the transactions (programs)

arriving from the terminals in the system are statistically

identical.

Thg P gg §2£ViVél Ind x
.- m..."

Bard's Page Survival Index [1,2] is typical of a class

of paging models that is based on dynamically computed

statistics. The Page Survival Index (PSI) is a measure of

the operating system without being selected for replacement.

Since a program is most likely to lose pages while it is in

an interrupted state, Bard considers the PSI to be a very

good representation of an individual program's paging

behavior.

31

The definition of PSI requires the measurement of

several dynamic paging statistics for its estimation. The

PSI is used by Bard as a response variable in the control of

the page management system and scheduler by feedback. This

model does not lend itself to prediction since it requires

the continuous calculation of dynamic variables.

Of all the paging models presented, most do not serve

well as models of paging behavior for performance prediction

since they were developed for use in gghhrolling the paging

process with feedback [19,1,2].

£49 models

As most models of I/O behavior were developed as a

part of multiprograming models, there are few general models

of I/O behavior. Of the I/O models that do exist, most are

simple exponential models of non-specific I/O devices. The

closest thing to I/O models are models for the investigation

of disk scheduling policies and the effects of various disk

organizations.

Disk Assesses Amie;

Seaman, Lind and Wilson analyzed disk I/O as an

integral part of overall teleprocessing system design [41].

They assumed Poisson arrivals for all disk requests and they

also assumed equal traffic to each disk module in the

configuration. For the disk service times they assume

32

identical but arbitrary probability distributions. They do

make some suggestions as to modifications to their model in

order to account for unequal traffic to the disk modules.

Dist 2.9 Pram Schedu ins £296 s

Denning developed models of both disk and drum file

systems to study the effects of different scheduling poli-

cies on the response times of direct access devices [18].

Among the scheduling policies Denning investigated were: (1)

Shortest- Seek-Time-First (SSTF), (2) Shortest-Access—Time-

First (SATF) for drums, (3) First-Come-First-Served (FIFO),

and (4) SCAN, which involves sweeping the disk access arm

back and forth across the surface of the disk, stopping at

any cylinder for which there are requests. He concluded

that SATF was the optimal policy for drum scheduling, and

that the SCAN policy was superior to FCFS, which is in turn

superior to SSTF. Many of these ideas have been incorporat-

ed in today's operating systems.

Teory studied the same scheduling policies as Denning,

but he added variations to the SCAM policy [43]. The

Circular Scan (C-SCAN) policy involves serving disk requests

only while the acccess mechanism moves in one direction

(usually from the outer cylinders toward the inner cylin-

ders). The N-step Scan (N-SCAN) allows requests to be

serviced while the disk arm moves in both directions but all

requests which arrive while the arm is sweeping in any

direction is batched for service during the return sweep.

33

Assuming uniform I/O request distributions, Teory found the

C-SCAN policy to be superior at I/O rates greater than 40

requests per second and the SCAN policy to be superior at

rates less than 40 requests per second. The N-SCAM was

found to be worse than SCAN or C-SCAM at all rates of I/O.

The Dish eggs AL“;

Waters [44] derived formulas for average seek distance

and average seek time for both sequentially and randomly

accessed disk files (under the assumption of uniform distri-

bution of accesses). He also derived formulas for computing

the average seek distance and time for files that do not

have uniformly distributed random accesses. Waters demons-

trated that the average seek distance between two files is

the difference between their mid-points and that the file

access time is minimized by placing the highest activity

records of a randomly accessed file at the center of the

file.

Wilhelm elaborated the model developed by Seaman, et

al. in a general disk performance model in which he assumes

neither a uniform distribution of workload over all disk

modules (spindles) nor a uniform distribution of accesses

over any disk module. Like most other models of I/O behav-

ior, this one assumes that the requests for disk I/O are

generated by a Poisson process. Wilhelm places no

34

restrictions on the service time distributions other than

the requirement that their Laplace transforms exist.

Of the models of disk I/O mentioned above, the Seaman,

et al. and Wilhelm models are perhaps the most useful for

the purposes of this research. Denning's model and Teorey's

model are of use in understanding disk scheduling but are

less helpful since the operating system used in this

research has not implemented SCAN disk scheduling. Although

Waters' article was written for the file designer and has a

practical orientation, some of his techniques were applied

in the elaboration of the I/O submodel presented in this

thesis.

II. MODEL DEVELOPMENT AND ANALYSIS

‘
3
’

£35.. .stI Reggirsmsmts

For the purposes of this research, an analytical model

is required which, in some way, accounts for priorities,

system overhead and paging as well as a normal configuration

of I/O devices. The analytical model is required because of

the necessity of having a performance predictor which can be

used for external scheduling. Simulation or synthetic

benchmark techniques are too time consuming for this purpose

although they are very well suited to performance analysis

in connection with a major equipment acquisition. Another

reason why there is a real need for the type of model

described in the remainder of this section, is that the

flexibility of data processing management should not be

limited by the necessity of authorizing a major study in

order to be able to answer relatively simple "what if"

questions from tap management.

The model should be usable by typical data processing

systems personnel without special training and should use

§1§£.£ gaptured 9323 to generate the program related charac-

teristics used in prediction. In addition, computer Opera-

tions management and systems programmers can benefit from a

35

36

straightforward tool for studying the effects of scheduling

changes and operating system parameter changes in their

efforts to run a "near optimum" operation. A necessary

requirement for scheduling is that the model predict the

performance of individual programs operating in a multipro-

gramming mix. Furthermore, the predictor should operate

with a set of program characteristics which are very nearly

iAZQEAAAE under different operating systems or hardware

configurations.

Such characteristics are known to exist within a

family of computers such as the IBM System/370 line using

either the Disk Operating System for Virtual Storage

(DOS/VS), or the Operating System for Virtual Storage I

(OS/V51). This is true because these operating systems are

enough alike that differences in execution characteristics

of a program compiled under these two systems would be

mainly reflected in CPU overhead, since the structure and

dispatching scheme of these two systems are very nearly the

same. In other words, the differences between these two_

systems can be reflected by differences in the parameter

values of the basic model.

Since the purpose of this model is the prediction of

the performance of an existing set of programs on a computer

system which may be different from the system on which the

programs are currently executing, or the prediction of the

performance of each program in a collection of programs

37

under a specific set of conditions (scheduling), the

required characteristics can be estimated from the data that

job accounting routines normally collect in most operating

systems. The data collected for each execution of a program

includes: (1) the number of I/O operations per execution,

(2) the number of I/O operations by device, (3) average

block sizes of data transferred by device or file identifi-

cation, (4) path length or the approximate number of

instructions processed per program execution (see M. Reis-

er:39), (5) job elapsed time, (6) system wait time, (7)

number of page-in and page-out operations, and average

working set size. The data captured by the job accounting

routines may then be used to estimate the mean CPU service

time, the mean I/O service time by device, and the probabil-

ity of I/O to each file or device following a CPU service.

These statistics may be estimated for each program which is

executed on the base system.

Program statistics as defined above can be used with

system parameters such as configuration, hardware Speeds,

memory size and instruction execution rates to determine the

performance and duration of each job in a given mix.

Program parameters which are hgh invariant with respect to

the configuration, hardware speed or multiprogramming mix

may be expressed as functions of these factors. For exam-

ple, the paging rates for programs operating in virtual

systems depends upon the speed of the CPU, speed of the

paging device(s), and the memory reference patterns of all

38

the programs in the system [18,27].

The model consists of three submodels: (1) a CPU

submodel, (2) a Paging submodel, and (3) an I/O submodel.

The CPU and I/O submodels are cylic queuing models

[25,35,46] and the paging submodel is a theoretical model

based on independent references and observed program paging

behavior.

can Sshmsésl

The CPU submodel used in this research is based on a priori-

ty interrupt driven dispatching scheme. One problem with

modeling this type of system is caused by the fact that

priorities are accounted for. Another difficulty is that a

finite number of §ources in a queuing system is more diffi-

cult to model than an infinite source system. The classical

"machine repairman" model fails because the behavior of each

program in the system cannot be considered to be statisti-

ically identical. This is true because of the requirement of

predicting individual program behavior for a priority

dispatching operating system.

Because of the intractibility of finite source models,

infinite source models were used to approximate the finite

source models. A program's execution interval or elapsed

time is divided into alternating periods of CPU and I/O

activity. Situations which violate this condition (such as

39

double buffering or overlapping CPU and I/O activity for the

same program) were excluded from the analysis. The CPU

phase may be thought of as being broken up into two distinct

subintervals; the mean "initial wait" interval during which

the program is waiting for the CPU following I/O, and the

mean "completion" interval which is total elapsed time from

the instant at which the program gains access to the CPU

until it relinquishes the CPU for an I49 gpghhhigh g;

ppgghhh ESEAABAEAQB [25]. These two intervals are designat-

ed W and C respectively. The mean interval during which the

program is waiting for I/O completion is designated as IO,

the inverse of the instantaneous access rate LAM, which is

assumed to be fixed in the CPU submodel. The mean CPU

"cycle", ET is the sum of W, C and I0 (see Figure 3).

SEE OEPAQIIQP TIPS

The completion time C, consists of the CPU quantum

attributable to the program being considered B, plus the

system overhead involved in task switching, initiating and

terminating I/O for this program. The completion time also

includes all the time which the program in question spends

waiting for the CPU after it has been phg;ghphgg hy h AASAEE

Brissifx 2229232-

We designate the priority level as well as the identi-

ty of each program by the index j, where lower values of j

represent higher priorities. The values for j are, of

course, limited to positive integers.

40

Initial Completion I/O Response Time

Wait Time

W C IO

Cycle Time

ET

Figure 3. Elapsed Time "Cycle" (ET)

41

The average CPU time quantum may be estimated from the

quotient of program state time divided by 1 plus the number

of I/O operations issued by a given program. This quantity

is represented by 1/HU(j) for program j. MU is the instan-

taneous CPU access rate in ghg absen e o paging, and B(j)

is defined as the mean execution interval before any I/O

(including paging) therefore B(j) is less than or equal to

1/HU (j) .

The total CPU quantum attributable to task j for each

cycle is represented by TAU(j), where TAU is composed of

B(j) plus an expression for the CPU overhead due to task

switching, initiating and terminating I/O operations. It is

assumed that TAU(j) is exponentially distributed.

In deriving the CPU submodel program 1 will be

considered first. The completion time for program 1 is

unaffected by any other task since this task has the highest

priority. The exception where processing by a higher

priority task is interrupted to handle the completion of 1/0

by a lower priority task is ignored. The completion time

for task 1 is given by

C(1)=TAU(1). (2.2.1)

Next, program 2 is considered. Its service time will

be TAU(2), but this may be spread over a longer interval if

program 2 is precempted by program 1. While program 2 is

42

using the CPU, program 1 must be waiting for I/O completion.

From the definition of the I/O completion time, I/O comple-

tions occur at the mean rate LAH(1).

0n the average LAH(1)*TAU(2) I/o operations for

program 1 occur during one "completion" time for program 2,

assuming that the I/O completion time is exponential.

Service time for program 1 will then cause a delay of

LAH(1)*TAU(2)*C(1) in the service of program 2. The comple-

tion time for program 2 will be given by

C(2)=TAU(2)+LAU(1)*TAU(2)*C(1)

=TAU(2)*(1+LAH(1)*C(1)) (2.2.2)

=TAU(2)*(LAH(1)+1/TAU(1))*C(1).

At this point a new element is introduced. It is now

possible for program 2's I/O to complete while program 3 is

interrupted by program 1. The maximum number of I/O comple-

tions by program 2 during this interval is the minimum of

LAH(2)*LAH(1)*TAU(3)*C(1) and LAH(1)*TAU(3) since there can

only be one I/o completion by program 2 during a completion

time for program 1. This quantity is represented by

H(2)*TAU(3). We then have for program 3

#3

C(3)=TAU(3)+LAH(2)*TAU(3)*C(2)

+LAH(1)*TAU(3)*C(1)+TAU(3)*H(3)*C(2) (2.2.3)

=TAU(3)*(LAH(2)+1/TAU(2)+H(2))*C(2).

Proceeding by induction and using similar logic, it can be

shown that

C(j)=TAU(j)*(LAU(j'1)+1/TAU(j'1)+H(j‘1))*C(j‘1)

H(j)=flin[LAU(j)*(C(j)/T30(j)'1)thj)1

D(j)=D(j’1)*LAH(j'1)+H(3’1) (2-2-“)

for H(1)=D(1)=0 and j=2,3,...

Using the definition of completion time C, and

assuming exponential distributions for CPU service time TAU

and I/O response time IO, we approximate the expected value

for the completion time squared to compute the coefficient

of variation of completion time and thereby the following

approximation for PAC which will be needed to compute the

waiting time W.

FAC(j)=FAC(j-1)*[1+(2*(LAH(j-1)/TAU(j-1)

+H(j'1)*(LAH(j-1)-1/TAU(3'1))) (2-2-5)

+H(j-1)**2)*(C(j-1)*TAU(j)/C(j))**2]

with PAC(1)=1.

44

ggg Waiti 3 Time

Derivation of the initial wait, W is not so easy since

we do not have a concept similar to completion time to work

with in this finite source queuing process. We begin by

considering the two states, CPU busy and CPU idle with

respect to program j. Again we need not be concerned about

programs with index greater than j since they can be

pre-empted by program j. With j=1 we immediately have

W(1)=0 since there are no higher priority programs.

Next, we consider W(2). Here we assume that CPP(1),

the CPU utilization due to program 1, has been previously

computed. Since the only busy time that can affect program

2 is caused by program 1, we have

3(2) =CPP(1)*FAC(1)*C(1). (2.2.6)

FAC(1) is a scale factor which represents the portion of

C(1) which is the expected wait time for program 2 when it

finds the CPU being used by program 1. PAC is related to

the coefficient of variation (Cs**2) for completion time by

the expression PAC(j)=(1+Cs(j)**2)/2.

Deriving the expression for the wait time for program

3, we must account for the expected wait time due to program

1, program 2, ggg the wait time incurred due to the comple-

tion of program 2's I/O while waiting for program 1 to

relinquish the CPU. We designate the latter quantity by

Q5

T(2)*C(2)/LAH(2)*ET(2), where T(2) = CPP(1) *

min[LAH(2)*C(1),1]. The rationale for this expression is

that if program 3 completes during an execution interval for

program 1 and program 2 is in the I/O stage, then a maximum

of one I/O completion by program 2 can take place and

LAH(2)*C(1) will take place if this number is less than one.

Assuming that the cycle time for program 2 (ET(2)) has been

computed, the probability that program 2 is in the I/O stage

is approximately 1/LAH(2)*ET(2). Thus we have

W(3)=CPP(2)*FAC(2)*C(2)+CPP(1)*FAC(1)*C(1)

+T(2)*C(2)/LAH(2)*ET(2) (2.2.7)

=H (2) 1’ (CPP (2) *FAC (2) +T (2) /I.AH (2) *ET (2)) *C (2)

For w(u) we have

W(4)=CPP(3)*FAC(3)*C(3)+CPP(2)*FAC(2)*C(2)

+CPP(1)*PAC(1)*C(1)

+T(2)*C(2)/LAH(2)*ET(2) (2.2.8)

+T(3)*C(3)/LAH(3)*ET(3)

where T(3)=CPP(1) * min[LAn(3)*C(1),1] + CPP(2) *

min[LAu(3)*C(2),1]. By applying 2.2.6 and 2.2.7 and gather-

ing terms we have

146

W(Q)=CPP(3)*FAC(3)*C(3)+W(3)

+T(3)*C(3)/LAH(3)*ET(3) (2.2.9)

=H (3) + (CPP (3) *FAC (3) +T (3) /LAM (3) *ET (3)) *C (3)) .

Applying an inductive argument, it can be shown that the

following expressions may be used to compute the mean

initial wait interval:

V (j) =9 0") 1' (CF? (1") *FACU‘U

+T(j"1)/LBH(J"1)*ET (3‘1))*C (3'1) (2-2-10)

T(j)=sum[CPP(l)*min[LAH(j)*C(l),1]:l=1,..j-1]

W(1)=T(1)=0 for j=2,3,...

922 2:iliz.si22 29g Eleeseé 2;.2

With W(j) and C(j) determined and IC(j) considered

fixed in the CPU submodel we have but to determine the mean

elapsed time per cycle ET(j), and the CPU utilization

CPP(j). We have the following definitions:

ET(3)=CU)*W(3)*IOUM (2-2-11)

CPP(3)=TAU(j)/ETU) : (2-2-12)

CP(3)=B (3)/ET (1i): (2-2-13)

and

coa(j)=CPP(j)-cp(j). (2.2.14)

Q7

CP(j) and COH(j) represent program j's mean "problem state"

utilization and "system state" (overhead) utilization

respectively.

2.29,.1119 Submeésl

The paging model was developed by fitting a curve to

observed paging behavior of programs in virtual systems, but

turns out to be identical in structure to Belady and

Kuehner's independent reference model. It may be observed

that the paging rate of a program in a virtual system is

inversely proportional to the amount of memory allocated and

directly proportional to the difference between the size of

the program and the amount of memory allocated (provided the

difference is not negative). Furthermore, the instantaneous

paging rate increases unboundedly as the amount of real

memory allocated to the program approaches zero, and

decreases to zero as the amount of memory allocated

approaches the actual size of the program. Representating

the amount of memory required by the program to execute

without paging by S, and the mean amount of memory allocated

by w, the paging rate is then proportional to the maximum of

zero and (S-w)/w.

“8

Aside from the effect of a program's own working set

size on its paging rate, the working sets of all programs in

the system taken together have an effect on each program.

This effect is similar to Bard's Paging Index [3]. The

"critical memory" H(j) is defined as the size of program j's

working set below which the program will begin to do

non-trivial paging (above .5 pages per second) provided CPU

cycles are available. Defining constants of proportionality

K as a function of CPU instruction execution speed, A as a

function of the number of memory references per instruction,

and R as the total pageable memory, the instantaneous page

exception rate is estimated by

CER(j)=max[O,K*A(j)*(S(j)-w(j))*EXP(N)/w(j)], (2-3-1)

EXP(N)=[sum[H(l):1=1,,N]/R]**q.

The real-time page exception rate PI is estimated as

PI(j)=CER(j)*CP(j)o (2-3-2)

where CP(j) is the portion of CPU utilization attributable

to program j not including system overhead. The assumption

is that system overhead processing is performed using fixed,

non-pageable memory.

49

mo Allssst.

The problem now is to allocate the pageable memory R,

to the N programs considered to be in the multiprogramming

mix. 0f the many possible ways to achieve this partition-

ing, the most reasonable appears to be to partition the

memory in a way that minimizes the total system paging rate.

The problem may be stated as follows:

minimize PN=sum[PI(j) : j=1,2,..N] (2.3.3)

subject to sum[w(j) : j=1,2,..N] < R (2.3.fl)

and w(j) S S(j) for j=1,2,..N. (2.3.5)

Except for not being differentiable at the constraints

w(j)=S(j), this problem satisfies the Kuhn-Tucker condi-

tions. Applying the knowledge which was developed about the

form of the expression for PI(j), a solution may be derived.

Ignoring the individual program size constraints

(2.3.5) for the moment, and applying the KuhneTucker theo-

rem, we have the following minimization conditions:

DPN/GVU) =‘K*A (3) *CP (3) *5 (3]) *EXP (N) l" (3) “2o (2. 3-6)

DPN/dw(j)=DPN/dw(i) for i,j=1,2,..N, (2.3.7)

where DFN/dw is understood to represent partial

SO

differentiation. These conditions reduce to the following

solutions

SUu=sum[(A(i)*CP(i)*S(i))**.5: i=1,2,...N], (2.3.8)

w(j)=R*(A(j)*CP(j)*S(j))**.5/SUH

for j=1,2,..N, (2.3.9)

"(i)=R*V(j)*(A(i)*CP(i)*5(i)/A(3)*CP(3)*5(3))**-5

for i'j=1'2'..No (203010)

If all the constraints w(j)<S(j) are satisfied, we

have the optimal solution since any deviation from this

solution will cause an increase in PR. If we suppose

otherwise, a rearrangement of the memory balance between any

two programs would result in DPN/dw(j)<DPN/dw(i) and the

only change that would produce a decrease in PR would be to

subtract memory from program i and add it to program j.

However, this would only yield the initial solution.

If the memory constraints are active for some of the

programs, i.e. w(i)=S(i), no reallocation that adds memory

to such a program could cause a decrease in PR since they

are already at the minimum page rate (zero). However

removing memory from a program that does not have the memory

constraint active will result in an increase in the paging

rate.

On the other hand, if the initial solution to the

51

system results in the situation w(j)>S(j), for all programs

j, we are finished and we simply set w(j)=S(j) since the

composite constraint is not binding, i.e. sum(w(j) :

j=1,2,..Ni is less than available pageable memory R.

The fourth case is the most interesting (and probably

the most common in practice). In this case at least one of

the programs' memory constraint is violated and at least one

is not binding. Let Q=[j : 1SjSN,w(j)ZS(j)] and let H:[j

1SjSN,w(j)<S(j)]. For every j in Q we set w'(j)=S(j),

compute R1=sum[w(j)-S(j) : j in Q] and reallocate

R1+sum[w(j) : j in H] to all the programs whose indexes

belong to B.

Let us re-examine the set [w(j) : j in H]. We see

that minimization of the paging rates over the set [w'(j)

j in 8] subject to sum[w'(j) : j in H]=sum[w(j) : j in H]

yields the same set of solutions as minimization over all g

of the program working sets.

We have the following solution

w'(1)=sun(w(i):i in H]*(A(j)*cp(j)*S(j))**.5/sua

for j in 8, (2.3.11)

where SHH=sum[(A(i)*CP(i)*C(i))**.5 : i in H]. Applying the

equilibrium condition

52

W'(j)*(A(i)*CP(i)*5(i))**-5='(i)*(A(j)*CP(j)*S(3))**-5

we have

w'(j)=sum[w(j)*(A(i)*CP(i)*S(i))**.5: i in Hj/sna

=w(j) j in H. (2.3.12)

It is clear that, if we add the amount R1 to sum[w(j)

: j in H], all of the w'(j) for j in B will increase and

thereby decrease the value of the partial derivative DFN/dw.

Thus we have w'(j)>w(j) for all i in H, implying that

DFN("(j))/d'(j)(DFN("(3))/d'(j)=DFN(V(i))/dfl(i) (2-3-13)

DFN (11' (j)) /dW (j) (DPN (W (i))/dW (i) (DPN (S (i))/dW (1) (2.3.14)

for j in H and i in Q.

This reassignment cannot produce a situation where any

reallocation from the set [w'(i) : i in Q] to the set

[w'(j): j in H] can result in a reduction in PR. We can

drop the former set from further consideration and proceed

as we did initially. Applying the algorithm to the set

[w'(j): j in B], we must have either all constraints bind-

ing, no constraints binding, or a combination in which case

the foregoing logic is again applied. We eventually arrive

at a stage where either Q or H is empty and the algorithm is

terminated.

53

Because the paging mechanisms used by most existing

operating systems are not optimal we may modify this proce-

dure to reflect more realistic operating system behavior.

For example, the paging algorithm may be biased toward the

higher priority programs in the type of operating system for

which this analysis is intended. We may wish to define a

scale factor, L(j)=(1/m)**j*a, where m is greater than or

equal to 1 and a is greater than or equal to zero. The

Kuhn-Tucker conditions then lead to the following:

A(j)"'CP(Ii)"‘5U)"‘1-(Zi)"W(i)"""2'-'A(i)"‘CP(i)'"S(i)”"1-(1)"“'(j)"""2

for i,j=1,2,..N. (2.3.15)

An example of a biased paging model is one that yields

the constant ratio w(j+1)=p*w(j) provided that p is greater

than zero and less than or equal to 1, and that

A(j+1)*CP(j+1)*S(j+1)=A(j)*CP(j)*S(j). This leads to the

parameter L(j)=p**(j-1) and the solution is

H1)=(1"P)*R/(1‘P**N)u (2-3-16)

W(j)=V(1)*P**(j’1)- (2-3-17)

In parameterizing the paging submodel L(j) is one of

the values that we could estimate. The actual I/O estimates

for the paging model will be calculated by the I/O submodel

which will now be developed.

I49 JEEViQY.

The I/O model used in this research is the composition

of a number of simpler models of assumed independent compo-

nents. The I/O response time of the composite model will be

computed as a sum of random variables with uniform, exponen-

tial and Erlang distributions. This model will be elaborat-

ed primarily as a disk I/O model since disk activity is the

predominant form of I/O activity in most modern operating

systems and disk I/O is also that aspect of the system which

causes the most difficulty in modeling. Disk I/O is so

prevalent because disks are used for paging devices, data

staging devices (temporary storage), and permanent storage

devices. The Unit Record (card and print) activity is

generally "spooled" on disk. This means that card input and

output as well as print operations are actually disk opera-

tions gggigq use; r ram ggecutiop, with the card input to

disk taking place prior to program initiation and card and

print output taking place after program termination. The

Unit Record (U/R) devices are driven by special system

programs called "spoolers" or "readers" and "writers".

55

The operation of the I/O submodel is related to the

CPU and Paging submodels as follows: The I/O wait time in

the CPU submodel is actually the aggggqg wait time over all

the forms of I/O in which the program engages, igglggigq

pgqigq. The I/o access rates generated by the CPU submodel

are gggpggiggg of the rates for each program's files. The

device access rates are the aggregate of the access rates by

program. A program's access rate to a given device is the

product of the program's total number of accesses to that

device times the program's composite access rate divided by

the program's total number of I/O accesses.

Let the number of accesses to file k on device 1 by

program j be given by N(i,j,k). Then the total number of

I/O operations by program j is

N‘j)=8um "(i,j'k’: i=1'2'ooND;k=1'2'ooNF]

j=102r00N: (2.“.1)

where ND is the total number of devices and RF is the number

of files on device 1. Since the number of accesses by

program j to device 1 is N(i,j), the access rate to device 1

by program j is then

56

ARAT(i,j)=N(i.j)/N(j)*BT(j)

i=1'200ND and j=1'2'ooNo (2.“.2,

The total access rate to device 1 is then

ARAT(i)=sum[ARAT(i,j): j=1,2,..N]. (2.“.3)

To simplify the computations, the arrival rate of I/O

requests at the I/O device queues is assumed to have a

Poisson distribution. Even if it was assumed that both the

CPU and the I/O devices were exponential servers, there

would not be Poisson arrivals in general because the CPU

uses a priority-resume service discipline [32].

For the case of card or print I/O we will assume a

constant service time. The U/R service time will depend on

the number of cards or lines transferred (to disk) per I/O

operation and the speed of the I/o devices. The only

variation in the response time for these devices will be

that due to channel contention. A program which issues an

I/O operation to a U/R device will only have to wait on the

channel. Because these devices are gggiggtgg, a program

accessing them will never find them busy since we have

excluded the possibility of buffered gpggations.

Another type of dedicated device is magnetic tape. In

this case the mean service time depends on the mean block-

size of the data transferred and on the tape transfer speeds

of the magnetic tape devices. In addition to channel delay,

57

we will also experience 993539; 33;; delay. The latter form

of delay is included with channel delay or ignored as

negligible since the configurations to which this research

applies rarely have more than one tape control unit per

channel.

The channels to which U/R devices, tapes and disks are

attached are almost always unique so that these components

of the I/O subsystem may be treated separately in computing

the I/O response.

The most complex portion of the I/O subsystem is the

part which deals with magnetic disks. It is assumed that

the size, location and disk identification for each logical

file accessed by the programs in the system are known

(either from job accounting data or otherwise).

Qisk I49 node;

Three basic patterns of disk access are considered:

(1) uniformly distributed random access over the cylinders

of a file, (2) uniformly distributed ipggggg access over the

cylinders of a file (requiring prior access to an index

before accessing the data record), and (3) sequential

access. A disk access mode diagram appears in Figure a.

This is only a partial diagram of the variations on the

three major modes of disk access. In what follows, fixed

record (block) sizes, "verify" option for all writes, a

uniform distribution for rotational delay, and a uniform

58

distribution of accesses for random access to both random

and indexed files is assumed.

It should be noted that some of the equations devel-

oped in this section are herdware or ipplementation depen-

dent. In particular the access methods are IBM implementa-

tions and the disks are IBu 3330 disks. These hardware

dependencies will be pointed out where applicable.

A timing diagram for indexed access appears in Figure

5, and one for random access in Figure 6. The diagram for

sequential access difffers from the latter only by the

absence of a significant seek time component. In what

follows, the occurance of equations with indices i,j and k

can be assumed to imply that the equations will hold for the

entire range of each index unless stated otherwise.

59

Sequential Indexed Direct

Access Access Access

Write Read Read Write Read Write

No Core. No Core. No

Verify Verify Index Index Rewrite Add Verify Verify

No No

Verify Verify Verify Verify

Figure 4. Disk Access Mode Diagram

60

Cylinder Index Read

Figure 5. Indexed Access Timing Diagram

wait Seek wait Wait Wait Search &

for Cyl. for for for Transfer

) Device Index Channel Record RPS Index

TWD TSl TWC RD/2 TWR TSCl

Track Index and Data Read

Wait Seek Wait Wait Wait Search &

for Track for for for Transfer

Device Index Channel Record RPS Index

TWD T82 TWC RD/2 TWR TSCl

wait Wait Wait SearCh &

for for for Transfer

Channel Record RPS Data

TWC RD/2 TWR TSC2

61

Direct and Sequential Read

wait Seek Wait wait Wait Read

for Cyl. for for for Key 8

Device Channel Record RPS Data

TWD TSK TWC RD/2 TWR TSC

Direct and Sequential write

Wait Seek Wait Wait Wait write

for Cyl. for for for Key &

Device Channel Record RPS Data

TWD TSK TWC RD/2 TWR TSC

wait Wait Read

for for Key &

Record Channel Data

RD/2 TWR TSC

Figure 6. Random Access Timing Diagram

62

Direct Access Disk I/O

In computing the disk file access time it will be

assumed that the disk hardware uses the £95g§ieeel peeigi.e

eeeeieg (RPS) technology. This means that the channel will

be allowed to disconnect from the disk device during both

seek egg search operations. A geometric distribution is

assumed for the delay due to RPS.

Let BS(i,k) be the average block size for file k on

device i, which is accessed by program j. Let CYL(i,k) be

the size of the file and LC(i,k) its mid-point. We define

the channel service time, TSC, due to access to file k on

device i as

TSC(i,k)=2*RD/128+BS(i,k)/TR, (2.u.a)

where RD is the revolution time, TR is the disk transfer

rate and the term 2*RD/128 is the time necessary to prepare

the Rotational Position Sensing (RPS) device for data

transfer. This term causes any expression in which it

appears to be hardware dependent. To apply these expres-

sions to disk devices other than 185 3330's, this term

should be modified. The I/C access rates are expressed by

ARAT(i,j,k)=N(i,j,k)/N(j)*ET(j). (2.14.5)

Then the channel utilization by device, file and program is

63

RCU(i,j,k)=ARAT(i,j,k)*TSC(i,k) (2.“.6)

and the total channel utilization RC0, is given by

RCU=sum[RCU(i,j,k): i=1,.ND;j=1,..N;k=1,..NF]. (2.0.7)

The channel wait time due to RPS is

TWR=RCU*RD/(1-RCU). (2.u.8)

To estimate the channel utilization as "seen" by program j,

we have

RCU(j)=RCU-sum[RCU(i,j,k): i=1,..ND;k=1,..NF], (2.u.9)

and therefore we have an expected channel wait time for RPS

of

TWR(j)=RCU(j)*RD/(1-RCU(j)). (2.u.10)

This is true because at the time that program j requests

I/O, no other operation by program j can be in progress.

Next, the average seek time by program, file and by

device is computed. First, the probability of access to

each file on each device DI(i,k), is derived as follows:

6Q

ARAT(i,k)=sum[ARAT(i,j,k): j=1...N]. (2.u.11)

ARAT(i)=sum[ARAT(i,j,k): j=1,..N;k=1,..NF], (2.“.12)

and

DI(i,k)=ARLT(i,k)/ARAT(1). (2.4.13)

Disk files are considered to be organized by "cylin-

der", where a cylinder is the collection of all disk records

which can be read or written at one physical positioning of

the access mechanism or "heads". A movement of the heads

from one location to another is called a "seek". Since we

are accessing file k with a uniform distribution, the

expected value (in cylinders) of the seek distance SK(i,k),

is given by

E(SK(i,k))=sum[DI(i,l)*lLC(i,k)-LC(i,1)I: l¢k]

+DI(i,k)*((CYL(i,k)**2-1)/3*cyl(i,k)). (2.a.1u)

This expression is based on the fact that, on the average,

the seek distance between two files on the same disk will be

given by the distance between their mid-points [an]. For a

seek from some point within the §é-§ file the average

distance will be given by the second term in the above

expression. Similiary we may estimate the second moment for

the seek time E(SK2(i,k)) as

65

E(SK2(i,k))=sum DI(i,l)*(LC(i,k)-LC(i,l))*2 : lsk]

+sum[DI(i,l)*((CYL(i,k)**2+CIL(i,l)**2)/12 : l¢k]

+DI(i,k)*(CYL(i,k)**2-1)/6. (2.“.15)

Using this expression and the previously derived mean seek

distance, the variance of seek distance may be calculated

using the well-known formula, V(SK(i,k)) = E(SZ(i,k)) -

E(SK(i,k))**2.

In calculating the seek time for the model, it will be

assumed that the seek time is a linear function of the

distance moved. This assumption is reasonable for most

seeks greater than a few cylinders in distance. We define

the seek time function as

TS=T*U(SK)+KS*SK (2.u.16)

where SK is the number of cylinders seeked, K5 is the slope,

T is a constant, and U(SK) = 1 for SR greater than or equal

to 1 and U(SK) = 0 for SK equal to zero. Then the seek time

for an access to random file k on device 1 is

E(TS(i,k))=(CYL(i,k)-DI(i,k))*T/CYL(i,k)

+KS*(sum[DI(i,l)*lLC(i,l)-IC(i,k)I: 1¢k1 (2.4.17)

+KS*DI(i,k)*((CYL(i,k)**2)-1)/CYL(i,k)).

Using Water's method [an], and the previous assumptions

about the programs in the multiprogramming set and their

66

disk accesses, we calculate the variance of the seek times

to random file k on device 1 as

V(TS(i,k))=(1-DI(i,k)/CYL(i,k))*DI(i,k)*(I**2)/CYL(i,k)

+2*T*KS*DI(i,k)*E(SK(i,k))/CYL(i,k) (2.“.18)

+V(SK(i,k))*KS**2.

The wait time due to channel blocking caused by other

I/O processes is given by Wilhelm's model [HS] as

TWC(i,j,k)=sum[ARAT(m,l,k)*TSC(m,k)**2:l#j;m#i]. (2.4.19)

The device service time for a random read Operation will be

given by

TSD(i,j,k)=TS(i,k)+RD/2+THR(j)+TSC(i,k)+TWC(i,j,k),

(2.u.20)

and service time for a random write operation will be

TSD(i,j,k)=TS(i,k)+RD+2*(TWR(j)+TSC(i,k))+TWC(i,j,k).

(2.“.21)

The utilization of file (i,k) due to program j will be

RDU(i,j,k)=ARAT(i,j,k)*TSD(i,j,k). (2.u.22)

The respective variances for the read and write operations

67

are

V(TSD(i,j,k))=V(TS(i,k)+(Rt**2)/2

+RCU(j)*(RD**2)/(1-RCU(j))**2 (2.u.23)

+sum[ARAT(m,l,k)*TSC(m,k)**3:l#j:m¢i]/3+TWC**2,

and

V (T513011 2).“))‘V (T5 (1.1!)) + (R13**2)/3

+u*RCU(j)*(RD**2)/(1-RCU(j))**2 (2.u.2u)

+sum[ARAT(m,l,k)*TSC(m,k)**3:l¢j;m#i]/3+TWC**2.

From the previous computation of the variance for disk

service time, we may now compute the coefficient of varia-

tion for the disk service time as

CS(i,j,k)=V(TSD(i,j,k))/TSD(i,j,k)**2. (2.0.25)

We finally get the disk response time by use of the queuing

formula TRD(i,j,k) = TSD(i,j,k)*(1 + 330*(oa**2 + os**2)/2 *

(1 - RDU(i,j)) where RHO = 1 + 2 * (RDU(i,j) - 1)/(ca**2 +

1), and CA and C5 are the coefficients of variation of the

arrival and service distributions. The term RDU(i,j) is the

sum of the utilization of device i by all programs other

than program j. A particular application of this formula,

for Poisson arrivals (CA=1) is

68

TRD(i,j,k)=TSD(i,j,k)*(1+RDU(ioj)*

(1+CS**2)/2*(1-RDU(i,j)). (2.“.26)

To get the total response time, we must add the wait time

while the disk is available and the channel is busy,

TWD(i,j,k)=RCU(j)*(1-RDU(i,j))*TWC(i,j,k)/2. (2.u.27)

We now look at a slightly more complex model, a model of

access for indexed data.

Indexed Disk I/O

For the indexed access method we will assume that the

index is located on the same device as the data portion of

the file and that a seek to this index is required. There

are several cases of indexed access: (1) initial load or

sequential retrieval, which can be treated using the sequen-

tial method to be given later, (2) indexed read-only, and

(3) indexed read-write. We will limit the analysis of the

indexed method to random reads without the index in memory

(core index). Analysis of the other cases may be achieved

by simple extensions of the methods used here.

We will first calculate the seek time. For a random

read there are actually two seeks to be calculated; (1) the

seek from the starting location of the access mechanism to

the cylinder index, and (2) the seek from the cylinder index

to the indexed file's data area. The expected values of

69

these seeks are equal to the seek times from mid-point of

the file where the access arm is initially located to the

mid-point of the index, and from there to the mid-point of

the data area. Designating these seeks as S1 and S2 respec-

tively, we have

E(S1(koi))=

sum[DI(i,1)*lCI(i,k)-LC(i,1)l:1=1,..NF], (2.4.28)

E(SZ(k,i))=|CI(i,k)-LC(i,k)I, (2.“.29)

where CI(i,k) is the mid-point of the index for file k.

Having computed the expected value of the seek distance, we

may compute the expected seek times for the index and the

data portions of the file as P(TS) = T + KS*E(SK) since the

access mechanism will always have to move at least one

cylinder. This is true because the index will always be

read first and the access mechanism will never be left in

the index area.

Since we actually have two I/O operations to transfer

a single data record, we will compute service times for the

two operations separately. First we have the channel busy

time for searching and transferring the index

TSC1(i,k)=RD/2+2*RD/128+10/2*TR, (2.u.30)

and the channel busy time for searching and transferring the

70

data record is

TSC2(i,k)=RD+2*RD/128+BS(i,k)/2*TR. (2.u.31)

Assuming independence for each segment of the timing

diagram, we calculate the channel utilization for indexed

reads as

RCU(i,j,k)=ARAT(i,j,k)*(TSC1(i,k)+TSC2(i,k))/2, (2.4.32)

We then have the delay due to RPS

TWR(j)=RCU(j)*RD/(1-RCU(j)), (2.4.3u)

and we calculate the channel wait time as before by

Wilhelm's method:

TWC(i,j,k)=sum ARAT(m,l,k)*TSC(m,k):m#i;l¢j]. (2.u.35)

The service time for the indexed access will be

TSD1(i,j,k)=TSC1(i,k)+TWR(j)+TWC(i,j,k)

+RD/2+TS(E(S1(i,k))). (2.0.36)

The device service time for the data access will be

71

TSD2(i,j,k)=TSC2(i,k)+2*(TWR(j)+TWC(i,j,k))

+RD/2+TS(E(52(i,k))), (2.u.37)

and the rate of access to device 1 for all programs other

than program j is

ARAT(i,j)=sum[ARAT(i,l,k):lsj;k=1,..NF]. (2.“.38)

The device utilization which program j finds at device

1 will be

RDU(i,j)=sum[ARAT(i,l)*(TSD1(1,1)

+TSD2(i,l))/2 : 1:3], (2.u.39)

and the wait time for program j then becomes

TWD(j)=RCU(j)*(1-RDU(j))*TWC(j)/2. (2.u.u0)

To complete the elaboration of the model we must find

the variance of the service times. It can be shown that the

variance of the distance for the initial seek, S1, is

V(S1(i,k))=sum[DI(i,1)*(CL(i,k)**2+CYL(i,l)**2)/12:1=1,..NP]

+sum[DI(i,l)*(1-DI(i,l))*(CI(i,k)-LC(i,l))**2:l=1,..NF]

-2*sum[DI (i, 1)*|CI(i, 1!) -LC (1,1) I*

sum[DI(i,m)*|CI(i,k)-LC(i,m)):m=1,..1-1]:l=1,..NF],

(2.u.u1)

72

where CL is the number of cylinders in the index portion of

file k on device i. The seek time is then

V(T(S1(i,k)))=T**2+V(S1(i,k))*KS**2. (2.u.a2)

The variance of the second seek is then calculated as

V(52(i,k))=(CL(i,k)**2+CYL(i,k)**2)/12, (2.u.u3)

and the seek time for the second seek is

V(T(S1(i,k)))=T**2+V(52(i,k))*KS**2 (2.“.04)

The variance for the channel service time is then (RD**2)/12

and 2*(RD**2)/12 for the index read and the data read

respectively. Since the variance of the rotational delay is

(RD**2)/12 we have the following expression for the variance

of the device service time for the read of the index:

V (T5131 (it jlk)) =V (T (31 (iljlk’)) +V (THC (j),

+V(TWR(j))+(RD**2)/12+V(TSC1(i,j,k)), (2.u.a5)

where W(TWC) and W(TWR) are calculated exactly as in the

case of the random access method. Similarly, we have the

variance of the disk service time for the data read opera-

tion as

73

v(TSD2(iojvk))=v(T(S1(iljvk)))+(RD**2)/12

+2*(V(TWC(3))+V(TWR(3)))*V(TSC2(i'j'k))- (Z-Q-“5)

At this point we form the coefficient of variation exactly

as before and use this in the general queuing formula to get

the expected response times TRD1(i,j,k) and TRD2(i,j,k) for

the indexed access method.

The extension of these methods to other forms of I/O

for indexed files is straightforward. For example, to extend

the previous analysis to the case where the index is in core

we simply calculate the seek time component (52) exactly as

we would for a randomly accessed file. Of course the use of

a core-index implies something about the memory requirements

and also the CPU usage of the program. The use of a

core-index makes the program a gifgegege pgeggeg as far as

the CPU and Paging submodels are concerned.

Sequential Access Disk I/O

For a sequentially accessed disk file, we calculate

the timing diagram in a similar manner to calculation for

the direct access case. The difference is in the calcula-

tion of the seek time. First we determine the expected

value of the seek distance

74

B(SK(i,k))=sum[DI(i,l)*|LC(i,k)-LC(i,l)l:l¢k]

+DI (i'k)/RCI (2.“.“7,

where RC is the number of records to be read from each

cyclinder of file k. The variance of the seek distance we

calculate as

V(SK(i,k))=(1-DI(i,k)/RC)*DI(i,k)/RC

+sum[DI(I,l)*((CYL(i,l**2+CYL(i,l)**2)/12

+(1-DI(i,k))*(CYL(i,k)-CYL(i,l))**2

-2*DI(i,k)*ILC(i,k)-LC(i,l)I : lik] (2.".48)

‘2*(Sum[DI(i,1)*ILC(i,k)-LC(i,1)l*

sum[DI(i,m)*|LC(i,k)-LC(i,m)l:m=1,.l-1,m¢k]:l#k].

We then have.the expressions for the expected seek time,

E(TS(i,k))=(1-DI(i,k)+DI(i,k)/RC)*T (2.u.u9)

+K*(sum[DI(i,l)*lLC(i,l)-LC(i,k)| lik]+DI(i,k)/RC),

and the variance of the seek time,

V(TS(i,k))=2*K*T*DI(i,k)*E(S(i,k))/CYL(i,k)+V(SK(i,k))*K**2

+ (1-DI (i,k)/CYL (i,k)) *DI (i,k) * (T**2)/CYL (i,k) . (2.4. 50)

With the expected value and variance of the seek time we

calculate the coefficient of variation, the disk response

time, channel waiting time, and the I/O response time as we

75

did in the direct access case.

From the previously derived expressions for access

rate by file, device and program, we can calculate the

average I/O response time for program j by

XI(j)=sum[N(i,j,k)*TRD(i,j,k)/N(j):i=1,..ND;k=1,..NF].

(2.4.51)

I/O for Paging

The I/O response times for paging operations are

computed as if the paging file were comprised of distinct

subfiles for each program in the multiprogramming set. The

response for each program is computed as the I/O time for

random access to its paging subfile with the added condition

that the paging I/O is priority scheduled using

Head-of-the-Line (HOL) policy. It should be noted that the

foregoing comments are specific to the implementation of the

particular operating system used in this research.

Using PHI(j) as the average time to read or write a

page on behalf of program j, TSD(l) as the mean service time

for all I/O to the paging data set, and TSD(l,j,j) as the

mean service time for access by program j to its portion of

the paging file we have the following:

76

PHI (1)) =TSD (1: j,j) +3130 (1:2)) *TSD (1) *CK (j) ,

CK(j)=CK(j-1)+ARAT(l,j-1,j-1)*TSD(1,j-1,j-1), (2.u.52)

CK(1)=(1+CS(1)**2)/2 j=1,..,N,

where ARAT and RDU have the same meanings as defined previ-

ously. All other values used in determining the response

time for paging is computed exactly the same as for a random

access data set.

This concludes the detailed discussion of the I/O

submodel. This discussion was not intended to be exhaustive

but does point out the kind of I/O models that can be used

to give a more realistic treatment to I/O than is usually

found in computer performance models.

§g§model Integ at'eg

We complete the model by integrating the Paging, CPU, and

I/O submodels. This is accomplished by calculating the

statistics for the CPU and Paging submodels, and then using

these statistics as input to the I/O submodel. The 1/0

statistics are then used as input to the CPU and Paging

submodels. This process is repeated until the model state

variables converge to an equilibrium solution.

Since the model developed herein is comprised of a

system of non-linear equations, the geggle Falei, or the

77

algorithm are used to accelerate convergence of the system.

The ideas that enable the various parts of the model, the

submodels, to fit together will now be examined in some

detail.

The idea of a CPU cycle is extended to include program

CPU execution intervals which terminate in paging operations

as well as those terminating in normal (non-paging) I/O

operations. Representing the average page read or write

time as PHI(j) for program j, and defining the system ratio

of page reads to page writes as BETA, we have the expression

for the average page wait time during a paging cycle

ETA(j)=(1+BETL)*PHI. (2.5.1)

With N(j) the number of non-paging I/O operations

during the execution of program j, and CTINE(j) the total

problem state time during the execution of program j, we

have

NU(j)=(N(j)+1)/CTINE(j). (2-5-2)

The approximate number of page fault cycles is given by

PG(j)=N(j)*(1/B(j)*UU(j)'1)- (2-5-3)

We then calculate the proportion of all I/O delays due to

paging as

78

PG (3)/(P30) +N(j))=N(j) *(1/HU(3)*B (3)‘1)/

N(j)*(1/’HU(j)*B(3)‘1)*N(j) (2-5-‘0

=1’HUU)*E(3) ,

where B(j) is the average CPU execution time per cycle for

program j and PG(j) is the total number of cycles of program

j's execution which terminate in page exceptions. Similar-

ly, the proportion of cycles due to non-paging I/O opera-

tions is

N(j)/(135(3)+N(j))=HU(j)*B(j)- (2.5-5)

Using the instantaneous page exception rate CER(j)

defined previously, the number of paging cycles PG(j) is

given by the product of the total number of cycles times the

rate of page exception generation per cycle

PG (:1) = (N (j) +PG (j)) *CER (j) *8 (j) .

or equivalently,

GER (31:9301/30) * (N (3) +PGU) 1:1/301‘5001 . (2.5.6)

This implies that the CPU time per cycle B(j) is

B(j)=1/ (30 (31*CERUH (2-5-7)

and B(j) can be determined. Now that we have an estimate

for the average paging response time ETA(j) and the normal

79

I/O response XI(j), we can calculate the average overall I/O

response as

10(3)=NU(31*B(3)*XI(3)*(1'UU(3)*B(3))*ETl(j)- (2-5-8)

Turning now to a re-examination of the CPU overhead

due to I/O and page management, let the normal I/O process-

ing cycle overhead be given by ALP(j) and the average paging

cycle overhead by DBL(j). The average CPU time consumed per

cycle for program j will be

TAU(3)=B(3)*HU(3)*B(3)*BLP(3)

+(1'HU(3)*B(3))*DEL(31- (2-5-9)

For a given program j (remember this also means priority

level j), there is only one variable on the right hand side

of the above expression, the variable B(j).

In taking the output of the CPU and Paging submodels

as input to the I/O submodel, the device/file access rates

must be disaggregated so the appropriate rates are reflected

for non-paging and paging I/O (the paging I/O response is

calculated by the I/O submodel just like any other I/O).

The normal I/O rates are computed as NU(j)*B(j)/ET(j) and

the paging rates are computed as (1-HU(j)*B(j))*(1 +

BETA)/ET(j). After computing these I/O components separate-

ly, they are recombined as shown previously.

One other aspect of CPU service time to be introduced

80

at this point has to do with the elongation of service time

due to CPU cycles being "stolen" to accomplish I/O. This

effect can become significant at high I/O rates because the

amount of CPU time used by the channel is proportional to

the amount of data transferred and the number of I/O opera-

tions started.

This effect will be quantified by defining an "expan-

sion factor" CYT, as the ratio of available CPU time with

some level of I/O to the maximum available CPU time without

I/O. This factor is expected to be different for different

programs in the multiprogramming mix. Defining the amount

of time stolen by the channel for an I/O operation by

program j as D(j), we have

D(j)=DS+[(1-B*HU)*BS(j)+B*NU*BSP]*DC, (2.5.10)

where DS is the amount of time used by the channel to

initiate and terminate an I/O, BS(j) is the average I/O

block size transferred for program j, BSP is the size of a

page in the system under discussion, and DC is the amount of

CPU time used by the channel per byte transferred. For the

present research DS = 76 microseconds, DC = 0.15 microse-

conds, BS = 568 bytes and BSP = 2048 bytes. These factors

are all hardware dependent.

Then the amount of CPU time stolen each second for I/O

on behalf of program j is given by D(j)/ET(j) so the

81

fraction of CPU cycles available for instruction execution

is 1-D(j)/ET(j). A program of higher priority than program

j must be in the I/O stage if program j's instruction are

executing, so the fraction of CPU time available due to the

higher priority program (k) is 1-LAN(k)*D(k). Combining

this with the results for a lower priority program, it can

be shown that

CYT(j)=prod[1-LAH(k)*D(k):k=1,..j-1] (2.5.11)

*prod[1-D(k)/ET(k):k=j+1,..,N].

CYT may be computed in sequential fashion in the CPU submo-

del by

CYT(3)=CYT(j‘1)*(1‘LA5U‘1)*DU‘1))/(1'D(j)/ET(3))o

CYT(1)=prod[1~D(k)/ET(k):k=2,..,N], (2.5.12)

for j=2,3,..,N.

The expected length of a CPU execution interval, whether it

is B, TAU, ALP or DEL may be elongated simply by dividing by

the corresponding CYT.

This completes the submodel integration. At this

point all of the essential elements of the model have been

put together. The conditions for convergence to an equili-

brium and the extent to which these conditions are met by

the present model will now be examined.

.edel £2mx.rgense

If we represent a cycle of iterations of the CPU,

Paging, and I/O submodels by the real valued functions f(.),

defined over Euclidean N-space, we have

f(j)=LAN(j)-LAH'(j) for j=1,..N, (2.6.1)

where LAN(j)=1/IO(j) and LAU'(j)=1/IO'(j) are the outputs of

the I/O submodel (and consequently input to the CPU and

Paging submodel) on successive iterations. LAN and LAN' are

interpreted as instantaneous I/O response rates. The

equilibrium condition requires that

f(j)=0 for j=1,..N. (2.6.2)

Since the model is a system of non-linear equations,

and the iterative method of alternating between CPU-Paging

submodel and I/O submodel calculations produces an oscillat-

ing series, we have employed a variation of Newton's Nethod,

the Reggie geiei [30], to accelerate convergence. The

algorithm is based on the general form

9(3)=X(j)’f(j)/f'(j) j=1u-N. (2-5-3)

where x(j)=LAu'(j) is a scalar and f'(.) is the derivative

of f(.) with respect to x(j). Representing the vector forms

for f, g, y, and x by the upper cases F, G, Y, and x we

83

have the vector condition for convergence of the algorithm:

IIG(X)‘G(Y)IISH*IIX‘YII. (2-5-“)

for l)X-Y||<RHO

where (|.|| is a norm, M is a scalar less than one, and the

vectors X and Y are in a sphere of diameter RHO about the

equilibrium point, EP, in NP-space [37].

We are assured of the existence of the point EP by the

Mean Value Theorem, since each f(j) is continuous in any

neighborhood of EP(j) and takes on both positive and nega-

tive values in this neighborhood. Because of the complexity

of the full expression for f(.), it is very difficult to

manipulate the derivative symbolically --although it is

possible to use the same algorithm which calculates f(.) to

calculate f'(.) numerically.

If we represent the k-th iteration of the vector X by

X(k), we can express equation 2.6.3 as

9(j:X(k))‘91j:X(k-1H='f(j:X(k))/f' (j:X(k)) (2-6-5)

for j=1,..N and k=1,2,...

With this expression in mind, we will take a closer look at

the function f(.). To reduce the complexity of the analy-

sis, we will simplify the model in a way which will not

interfere with the generality of the results.

84

First, we will assume that all block sizes are equal

and that all file accesses are to disk. Furthermore we will

limit the access method to direct (or random) accesses

uniformly distributed over a single disk module. This is

really not as great a simplification as it seems since it is

many times more complicated to calculate response times for

many programs accessing a single disk drive than it is to

compute the response time for each program accessing a

unique disk drive. The latter case involves no iteration

since each program's I/O response will be almost totally

independent of every other program's I/O response, and

therefore easier to compute (this is because there will be

no queuing for devices).

The foregoing assumptions will ensure that the eegyiee

pipe (TSD) for every program will be identical. Ignoring

the channel service time, and designating the disk service

time by TSD, we have some natural constraints to work with.

For example, the access rate for all programs must be less

than 1/TSD since a device cannot be utilized more than 100%.

Representing the instantaneous access rate for program j by

x(j), an analysis of a single iteration of the algorithm

(the function f), we have that f(j;x(j)=0) < 0 and

f(j;x(j)=1/TSD) > 0 for every program j. Furthermore, it

can be shown that f(j;x(j)) s f(j+1;x(j+1)).

We can guarantee that f(N x(N)=0) < 0 by the imposi-

tion of the requirement that the utilization of the disk be

85

less than or equal to 100%. Given the access rates ARAT(1),

and a single disk device, we have

f(j;x(j))=x(j)+sum[ARAT(l):l¢j]-1/TSD,

Sum[ARAT(l)*TSD:l=1,..N-1] < 1,

==> sum[ARAT(l):l=1,..N-1] < 1/TSD, (2.6.6)

==> f(j;x(j)=0)=sum[ARAT(l):l=1,..N-1]-1/TSD < 0.

For x(j) = 1/TSD we have

f(j;x(j)=1/TSD)=1/TSD

+sum[ARAT(l):l=2,..N]-1/TSD (2.6.7)

=sum[ARAT(l):1=2,..N] 2 0,

since each rate ARAT(l) is strictly positive and converges

to zero as x(j) becomes infinitely large.

To show that f(j x(j)) S f(j+1;x(j+1)) we have

f(j;x(j))=f(j+1:x(j+1))-(x(j)**21*(C(j)+x(j)*

(W(j)+IO(j))*ARAT(j)*ARAT(j+1). (2.6.8)

Since all of the variables following the negative sign in

the above expression are greater than or equal to zero, the

necessary condition prevails. Because the functions

involved are continuous in the domain of interest, we are

assured of a solution.

1/_ "

86

It can also be shown that the functions f(.) are

differentiable and that the partial derivatives of f(j) with

respect to x(j)--Df(j)/dx(j)--are ergereé

Df(1)/dx(1)SDf(2)/dx(2)S...SDf(N)/dx(N)=1, (2.6.9)

and the second partials DDf(j)/dx(j) are non-negative

everywhere,

DDf(1)/dx(1)ZDDf(2)/dx(2)2..ZDDf(N)/dx(N)=0. (2.6.10)

These conditions assure us of a unique solution and they

also assure us that the derivative of each function is

greater than zero and less than or equal to one (1) in the

neighborhood of the solution (the derivatives are very

nearly equal to one in this neighborhood). We have that

Df(1:EP(j))/dx(1)>TSD*(f(1:1/TSD)'f(1:0)) (2.6.11)

(g(j:x(j))-g(j:y(j))|=|x(j)-y(j)+f(j:x(j))/f'(j:x(j))

“f(3=Y(j))/f'(j=Y(3))l- (2-5-12)

By Taylor's Theorem,

f(j=2(j))=f(j=EP(j))+f'(j=EP(j))*(Z(j)'EP(j)): (2-6-13)

implying that

87

|g(j:x(j))-g(j:x(j))|=|x(j)-y(j)+CHI*(y(j)-x(j))I

=I1'CHII*IX(3)’Y(3)I: (2-6-1“)

where CHI is a non-negative scalar which is less than one.

Using ||X|| = max[x(j):j=1,..N] as the definition of the

norm, we chose RHO so that [IX-EPII < RHO implies by contin-

uity that

f'(j=EP(j))*“/5<f'(j=X(j))<f'(j=EP(j))*5/“.

implying that

4/5<f'(j:EP(j))/f'(j:x(j))<5/4. (2.6.15)

This means that 4/5 < CHI < 5/4 or -1/4 < 1-CBI < 1/5,

therefore

|1-CHI)< 1/u. (2.6.16)

Substituting this into the previously derived expression, we

have

IIG(X)‘G(Y)IISI1’CHII*|IX'YII<(1/“)*1IX'YII- (2-6-17)

With this we conclude the demonstration that the use

of Newton's method is warranted and that the algorithm

converges to a unique solution. To accelerate the rate of

convergence of this process, we apply Aitken's Delta Square

algorithm to estimate a new point from three previous

estimates by Newtons method. The task now is to develop the

88

experimental apparatus to validate the model and determine

its usability.

III. MODEL VALIDATION AND EXPERIMENTAL DESIGN

The computer runs for estimation and validation were

performed on an IBM System/370 Model 148 in the Detroit

Datacenter. The IBM 05/751 operating system and the IBM

software products, Systems Measurement Facility (SMF), and

05/751 Utilization Monitor were used to collect and manipu-

late performance data. Making the experimental runs on the

same computer as the base runs does not detract from the

results since the programs in the base runs and the experi-

mental runs were in totally gifgegeee eegbinatieee and with

different priorities. This is, after all what the model is

supposed to predict. The only additional information that

could have been gained by executing the experimental runs on

a different computer from the base runs is the extent to

which execution timings on different model computers are not

proportional. For example the ratio of execution timings

for scientific and commercial instruction mixes on two

different models of the same computer "family" will be

different. The model developed here does not attempt to

give an answer to this problem and a decision was made to

“SE? published instruction execution rates for an "average"

commercial job mix as is the common practice.

89

90

To a certain extent the proposed model is dependent

upon the particular implementation of the operating system

used. The implementation of the operating system used in

making the measurements is i_§eg;gp§ ggiye_ pgiegiey; esug_

dispatching for batch programs. This research was conducted

using only one operating system but this does not seriously

limit the generality of conclusions reached because differ-

ences within the class of operating systems defined above'

are differences in pegeeeee; yeleee and furthermore this

dispatcher is representative of the majority of operating

systems in current use. Examples of these parameters are

the quanta of CPU overhead for I/O interrupt, start I/O,

dispatch processing, and paging overhead.

Estimates were obtained for the paging submodel

coefficients which correspond to the page-out/page-in ratios

(BETA), working set allocation parameter (L), and the paging

indices (A). The estimation began with the execution of a

selected workload and the measurement of its performance.

The measurement data was then fitted to the model by use of

multivariate regression analysis. Finn's MULTIVARIANCE

program was used for estimation of the regression coeffi-

oients (22].

Performance measurement was achieved by means of

software monitors and job accounting data collection. The

response data collected included program CPU usage, total

CPU usage, channel busy counts, device busy counts, paging

f

91

and other I/O counts and working set sizes. These data were

manipulated to give the performance values of interest:

total CPU utilization, program CPU utilization, channel

utilization, average working set sizes, paging rates,

program I/O operations. Further transformations were made

to estimate each program's page index (A), mean CPU service

time (1/MU), and mean I/O response time (10).

To complete the experimental plan, the apparatus

employed, and the programs used in parameter estimation and

model validation are described. Next, a description is

given of the instruments or measurement software and data

reduction programs used, and the measures to which they

relate. The last section of the chapter provides descrip-

tions of the experimental design for estimation, the design

for validation, and the respective hypotheses tested.

ggeggee_ fee geasggement egg Contr l

The programs used in this research were of three types

(1) those written by the experimenter to predict program

behavior and estimate parameters, (2) those designed and

programmed by the experimenter so that the experimental

variables could be controlled in model validation, and (3)

statistical programs. The programs used for prediction are

basically the model developed in chapter two. This model

was programmed in APL [31] and executed on an IBM

System/370. The experimental programs were written in COBOL

and the statistical programs used in this research were

92

Finn's MULTIVARIANCE package [22].

The parameter estimation workload is composed of 8

programs randomly chosen from a population consisting of 8

"CPU bound" programs and 8 “I/O bound" programs. The

definition for "I/O bound" used here is that, for a program

run in isolation, greater than 75% of the elapsed time would

be spent waiting for I/O operations. Likewise "CPU bound",

as used here, means that the program would consume more than

50% of the available CPU cycles during its execution.

The programs used in the model validation were "syn-

thetic" programs [10,42] specially constructed to vary over

the cells of the experimental design. The synthetic

programs were written as extensions to the synthetic

programs mentioned earlier in this thesis but they were

modified to enable the paging index A(j) to be varied. More

will be said about this in the discussion of experimental

design.

Engineers; 12me68

There are 5 independent variables and 7 dependent

variables in the experiment. The program related indepen-

dent variables are: (1) the page index, A(j), and (2) the

variance of CPU service time WS(j). Three other independent

variables are environment related and consist of: (1) The

variance of I/O service time VI(j), (2) the priority of the

program being measured, j, and (3) the total number of

93

programs in the multiprogramming mix, N. A decision was

made to eliminate the memory variable R, because its effect

is confounded with the factor N, the number of programs.

The dependent variables are: (1) problem program CPU

utilization CP(j), (2) program elapsed cycle time ET(j), (3)

total program paging rate PR(j), (4) program page-in rate

PI(j), (5) program channel utilization RCU(j), (6) total

system overhead OHT(N), and (7) average program working set

size w(j).

The system parameters are: (1) CPU overhead for normal

I/O, ALP(j), (2) CPU overhead for Paging, DEL(j), (3) the

ratio of page-writes to page-reads, BETA(j), and (4) the

working set allocation weights, L(j).

ns rue_gts and Measu_ee

The instruments used in the collection of elapsed

times, problem state time, wait time, paging counts and

working set size samples by program were the job accounting

facility of the IBM OS/VS1 operating sytem, the Systems

Measurement Facility (SMF), and the IBM proprietary program,

OS/VS1 Utilization Monitor. The channel and device utiliza-

tions and working set sizes are based on sampling. System

paging and other I/O rates are based on counts and CPU times

are based on actual measurements.

In other cases the variables in this experiment were

not directly observable, so indirect measures were

94

constructed. While it is fairly easy to estimate the

problem state CPU utilization CP(j) as the ratio of total

problem state time to elapsed time, the overhead gee to a

specific program is not generally attributed to that program

by job accounting routines or program monitors. Because of

this, estimates of COH(j) must be achieved by a partition of

the total system overhead. The total system overhead is an

estimate based on the difference between the elapsed time

and the wait time and problem state time or it is based on

sampling by performance monitors.

In order to estimate the parameters ALP(j) and DEL(j),

estimates must be obtained for COH(j), but it has already

been stated that COH(j) is not measurable. One way to

partition total system overhead for each program is to

assume that the ratio of problem state CPU utilization to

overhead is the same for each program as new programs are

added to the multiprogramming mix. Suppose that we have L

programs in the mix and CP(j) and COH(j) for j=1,..,L. We

then add program K+1 and get CPT, the total CPU utilization,

and the program utilizations CP'(j) for j=1,..,K+1. The

above assumption implies that

COH'(j)=COH(j)*CP'(j)/CP(j). for j=1,..,K (3.4.1)

95

coa(j)/CP(11=CER(j1*DELtj)+uU(j)*ALP(j) (3.4-2)

=CER' (3') *DEI (j) +910 (j) *ALP (3')

w(j)=w'(j) for j=1,..,K. (3.4.3)

Thus the above assumptions imply that the working sets for

program j is identical in the runs with K and K+1 programs .

This is only possible if memory is not a binding constraint.

Since we have neither a direct nor an indirect means

of estimating COH(j), and since COH(j) is a function of ALP

and DEL-- both of which must also be estimated--some other

means of partitioning the total system overhead had to be

devised. It was then hypothesized that ALP and DEL increase

with increasing j (lower priority) since the dispatcher must

process more dispatch queue entries before arriving at the

last queue entry. It is also likely that ALP and DEL both

increase with increasing N since more lists and tables must

be checked by the operating system at every interrupt.

Finally, it was hypothesized that the amount of processing

that must be accomplished by the operating system before an

I/O or paging operation can be sucessfully initiated is

proportional to the depth of the I/O queues, and the depth

of the I/O queues is proportional to the the aggregate rate

of I/O operations, T(j). For the overhead variables we have

96

ALP(j,N,T(j))=K1+j*K2+N*K3+T(j)*K4, (3.4.4)

and

DEL(j,N,T(j))=L1+j*L2+N*L3+T(j)*L4, (3.4.5)

where T(j)=sum[1/ET(l): l=1,..N; l¢j]. We then have for

program j's overhead

C03 (3) /CP(j) =((143 U) *5“ (j)) *DEL (j,N,T (3))

+30) *HUU)*AI-PticNoTUH/BU): (3-‘1-5)

or

(303(3) =(1‘BU) *30 (I!)) *EEL(j:N.TU))IETU)

+B(j)*UU(3)*BLPU.N.T(SIM/BTU)- (3-“-7)

We now assume that there is insignificant paging

(B(j)*MU(j)=1) and sum the individual program overhead terms

giving

OHT(N)=X(N)*K1+Y(N)*K2+N*X(N)*K3+(X(N)**2-S(N))*K4

for “=1'oo’7' (30“.8’

where X(N)=sum[1/ET(j):j=1,..N], Y(N)=sum[j/ET(j):j=1,..N],

and S(N)=sum[1/ET(j)**2:j=1,..N]. We have a system of 7

equations in 4 unknowns for which a solution exists if the

matrix of coefficients times its transpose is non-singular.

This will be the case if no column or row is equal to a

combination of other columns or rows. The condition that

there be negligible paging can be guaranteed by manipulation

of the large real memory of the experimental system.

97

Executing the ALP estimation workload in a paging

environment provided the basis for computing the overhead

caused by paging as the residue of the CPU overhead due to

I/O which was estimated with the ALP coefficients. For the

residue due to paging we have

OHT'(N)=X(N)*L1+Y(N)*L2+N*X(N)*L3+(X(N)**2-S(N))*L4

for N=u'oc'80 (3.“.9)

The first 3 runs were eliminated because there was no paging

for N<4 since the size of each program was identical and the

size of main memory was constrained to the size of three

copies of the program. From two replications of these 5

experiments, equations were derived to estimate the 4 paging

coefficients. The overhead expressions were then combined

to get the overhead for the "mixed" model.

To estimate the ratio of page-writes (PO(j)) to

page-reads (PG(j)), consider the conditions which result in

a page-write operation. A page exception will result in a

page-write operation if there are no page frames that are

unreferenced and there are no referenced pages that have not

been modified. The probability of this

event--BETA(j,N)--times the number of trials (PO(j)) will

give the number of pages written or PO(j) = BETA(j,N)*PG(j).

It was thought that BETA would be a function of the amount

of real memory in the system and the amount of memory

demanded by all the programs in the system and not depend on

98

program j alone, i.e. a system parameter.

The experiment was carried out with printer output

spooled but not printed until after program termination

because of the need to reduce the complexity introduced by

spooling and measuring additional programs. This does not

reduce the usefulness of the model because each execution of

a spool task can be considered to be the execution of a

separate program which requires a printer and "spooled"

print output from some other program.

A spool program is just like any other in the model

except that its priority will be set higher than that of a

normal program. In this sense the model would allow the

priority to "float" according to the number of system

programs (spool tasks) which are active.

Esmeriment l Resign

Design for Parameter Estimation

The design for parameter estimation consisted of 16

runs of one to 8 programs for the estimation of coefficients

for ALP, and 10 runs for the estimation of coefficients for

DEL, L and BETA (see Figure 7). The hypotheses tested were

the following:

1. Larger values for the program I/O overhead parameter

(ALP) are expected for programs executing at lower

priority levels (larger values of j)

2. Larger values of the program I/O overhead parameter

10.

99

(ALP) are expected for programs executing in larger

multiprogramming sets (N)

Larger values of the program I/O overhead parameter

(ALP) are expected with larger system I/O access rates

(T(j))

Larger values of the paging overhead parameter (DEL)

are expected for programs executing at lower priority

levels (larger j)

Larger values of the paging overhead parameter (DEL)

are expected for programs executing in larger multipro-

gramming sets (N)

Larger values of the paging overhead parameter (DEL)

are expected with larger system I/O access rates (T(j))

The page-write to page-read ratios BETA are expected to

be identical for programs executing concurrently

The page-write to page-read ratio BETA is expected to

be larger when a program is executed in a larger

multiprogramming set than it is when the program is

executed in a smaller multiprogramming set at the same

priority

The overall system page-write to page-read ratio BETA

is expected to be larger for larger multiprogramming

sets

The page allocation weights (L(j)) for all programs

executing concurrently are expected to be identical

100

Number of

Programs--- 1 2 3 4 5 6 7

Priority

1 PGMl PGMl PGMl PGMl PGMl PGMl PGMI

2 PGMZ PGMZ PGMZ PGMZ PGMZ PGM2

3 PGM3 PGM3 PGM3 PGM3 PGMB

4 PGM‘) PGM4 PGM4 PGM4

5 PGMS PGMS PGMS

6 PGM6 PGM6

7 PGM7

Note: PGMx is the x-th program randomly chosen.

Figure 7. Experimental Design for Estimation

101

This concludes the discussion of experimental design for

estimation.

Experimental Design for Validation.

The objective of the experiment was the determination

of the limits of the model and the extent of its validity.

The five independent variables were varied over high and low

values to form a fixed crossed factorial design with 32

cells. Defining a low number of tasks as 6 and a high

number of tasks as 7, the experiment was effected by 16

computer runs of 6 programs each and 16 computer runs of 7

programs each for a total of 32 computer runs.

The experiment used 4 disk drives in addition to the

"system" disks. The first disk was accessed by all programs

for paging and the third disk was accessed by the experimen-'

tal program only. The second and fourth disks were only

accessed by the control programs (CNTL).

The criterion variables for this design were relative

errors consisting of the differences between the predicted

values of the variables and the experimental or measured

values divided by the experimental or measured values. Thus

a positive value of the transformed variable signifies

over-prediction (positive error) and a negative value

signifies under-prediction (negative error). Using a linear

model to test hypotheses by means of the analysis of vari-

ance, multivariate tests were performed for each of the

102

independent variables or effects.

To allow for sufficient degrees of freedom to estimate

the error term, at least two replications were required in

each cell of the design. Since the number of computer runs

involved would have been quite large (64), a decision was

made to use a 1/2 or "fractional" replicate, allowing the

estimation of all main effects as well as two factor inter-

actions [16,37]. This design reduced the size of the

experiment to 2 replications of 16 runs (see Figure 8). The

experimental data was tested using the Analysis of Variance

routines of Finn's MULTIVARIANCE program [22].

1CCCCC 1CCCCCC CCC1CC CCClCCC

00000 00001 00010 00011

2CCCCC 2CCCCCC CCCZCCC CCCZCCC

00100 00101 00110 00111

3CCCCC 3CCCCCC CCC3CC CCCBCCC

01000 01001 01010 01011

4CCCCC 4CCCCCC CCC4CC CCC4CCC

01100 01101 01110 01111

SCCCCC SCCCCCC CCCSCC CCCSCCC

10000 10001 10010 10011

6CCCCC GCCCCCC CCCGCC CCCGCCC

10100 10101 10110 10111

7CCCCC 7CCCCCC CCC7CC CCC7CCC

11000 11001 11010 11011

8CCCCC BCCCCCC CCC8CC CCC8CCC

11100 11101 11110 11111

Note: Numbers 1-8 represent "Synthetic" programs, and "C"

represents the control program. The underlined

cell identifications are the cells which must be

included in a "half-replicate" fractional design.-

Figure 8. Experimental Design for Validation

‘
I
’

I
4
.
_
_
-
_
_

104

The five-way factorial design for the experiment was

chosen to permit testing of the following null hypotheses:

1. The mean relative error in the prediction of the

experimental outcomes is less than or equal to .15

2. The mean relative error in the prediction of the

experimental outcomes due to variation in page index

(A) is less than or equal to .15

3. The mean relative error in the prediction of the

experimental outcomes due to variation in CPU service

variance (VS) is less than or equal to .15

4. The mean relative error in the prediction of the

experimental outcomes due to variation in I/O service

variance (VI) is less than or equal to .15

S. The mean relative error in the prediction of the

experimental outcomes due to variation in multiprogram-

ming level (N) is less than or equal to .15

6. The mean relative error in the prediction of the

experimental outcomes due to variation in priority

level (j) is less than or equal to .15

Before testing the above hypotheses, tests of all 10

two-factor interactions were planned.

One characteristic of the Analysis of Variance is that

tests of main and fixed effects are only meaningful in the

absence of significant interactions. The step-wise strategy

for significance testing is to test interactions first and

if the null hypothesis is maintained, to continue testing

.
A
L

.
‘
J
‘
A
p
_

105

the fixed effects in reverse order. If a significant

interaction is found, main and fixed effects cannot be

tested because they are "confounded" with the interactions.

A partial solution to this dilemma is to construct

confidence intervals about the means of the criterion

variables. This will give some information about errors but

will not answer any questions about sources of error. The

following null hypotheses were tested by means of 95%

confidence intervals:

7. I Relative error predicting CP I S 0.15

8. I Relative error predicting ET I S 0.15

9. I Relative error predicting PR I S 0.15

10. I Relative error predicting PI I S 0.15

11. I Relative error predicting RCUI s 0.15

12. I Relative error predicting OHTI S 0.15

13. I Relative error predicting w I S 0.15

For significance testing, the independent variables

were arranged in the order in which the largest errors could

he predicted based on taking "approximate" derivatives of

the dependent variables with respect to the independent

variables. The basis for this assertion is that an error in

measurement of an independent variable or in estimation of a

parameter may be considered to be a perturbation of the

variable or parameter. If it is assumed that the structure

of the model is an adequate representation of the phenomena

under investigation, the effect of the perturbation may be

106

viewed as a change in the dependent variable, i.e. a partial

derivative.

An example of this technique is the effect on working

set size of a change in the variance of the CPU service time

(for Erlang-1 service),

DI"(Ii)/<1V$(ID="(II)"'(1“‘II(2))/R)"‘ (3-5-1)

(1'C(j)/ET (j))/“*V5 (3) -

The effect on working set size of a change in real memory

when memory constraints are active (sum[S(j):j=1,..N] > R)

is given by

Dw(j)/dR=w(j)/R. (3.5.2)

This type of "approximate" derivative indicated that the

appropriate order of the variables for step-down and

step-wise testing was: w, PI, PR, ET, CP, C08, and RCU for

the dependent variables, and A, VS, VI, N, and j for the

independent variables.

A feature of the experimental design is that each run

was a measurement of only one program, with the other

programs in the multiprogramming set controlling the envi-

ronment. The program being measured ran in a "matrix" of

copies of a "control" program. The control program was

selected to exhibit "average" behavior compared to the

107

experimental programs. A table of level values for each

independent variable, and a table of levels for each of the

synthetic programs is given in Figure 9.

108

PROGRAM-RELATED'VARIABLES

Synthetic Paging CPU I/O

Program. Activity Service Response Expected

Number Code Index Variance Variance Error

1 000 low high high low

2 001 low high low

3 010 low low high

4 011 low low low

5 100 high high high

6 101 high high low

7 110 high low high

8 111 high low low high

ENVIRONMENTAL VARIABLES

Pageable Number of Expected

Code Memos! Priority Programs Error

000 fixed low low low

001 fixed low high

010 fixed high low

011 fixed high high

100 fixed low low

101 fixed low high

110 fixed high low

111 fixed high high high

Figure 9. Levels of Independent Variables

109

The Synthetic Program

At this point a discussion of the programs used in the

experimental manipulations is in order. The experimental

programs are COBOL programs which process a sequential file

of "transactions" from disk against a direct update file on

disk. The program is written so that it can be run any

number of times against the files. Control information is

provided by means of execution parameters on a control card.

These parameters tell the program how large the records on

the disk are, how many records there are in each file, how

many passes to make through the transaction file, the

average number of times to execute the "compute kernal"

between I/O's, the interval of variation to use in computing

a random number of kernal executions on each transaction

record and the amount of variation to use in accessing its

own instructions in memory for paging.

Variation of the I/O is provided by the placement of

the data sets, the size of the direct files, and the record

sizes that are built when the files are created. The files

are created by a separate program which creates the direct

file sequentially then creates the sequential file by

generating random relative record numbers of records in the

direct access file. In practice, the variation in I/O

response was controlled by data set placement and record

sizes were held constant.

The compute kernal of the program selected 10 numbers

110

from an array of 1000 numbers and performed non-trivial

arithmetic operations on them which were self-checking (they

had to match previously computed numbers in the transaction

file). This turned out to be so compute-bound that the

number of compute passes between I/O had to be held to 2.

The actual number of compute passes could be held to exactly

two by selecting a variation of 0 or the maximum variation

could by generated by selecting 2, causing the program to

randomly choose an equally likely integer in the interval

[0:4]-

The program's executable code (as well as the 1000

entry numeric array) was duplicated five times. Each

section of code was sufficiently different that a paging

parameter of 0 would result in sequential execution of each

block of code processing the data in corresponding data

blocks. A paging parameter of 1 caused the program to skip

one-half of the code and data in each block. A paging

parameter of 2 caused the program to skip one-fourth of the

code and data in each block. This particular scheme was

chosen because it was felt that sequential execution would

result in the lowest paging rates since fewer pages would be

referenced during a specific execution interval.

The parameter levels chosen for the control programs

were 1 for paging index, 1 for CPU variance, and 2 for

number of kernal passes. The I/O was determined by making

the files 7 and 2 cylinders in size and locating their

111

centers 4 cylinders apart on the same phsysical disk drives.

The I/O for the experimental programs was controlled by

making the files 9 and 3 cylinders in size and locating

their centers 3 and 15 cylinders apart for the high variance

and the low variance versions of the program respectively.

As in parameterization, the experimental data were

collected by SMF and OS/VS1 Utilization Monitor and reduced

for input (along with the predicted results) to the MULTI-

VARIANCE program.

IV. EXPERIHENTAL RESULTS AND ANALYSIS

Paramete; Estimatieg

EQEBQL £49 9122.229

Hypotheses 1, g, e_g 3, Two replications of these runs were

made and the measured and calculated results are listed in

appendix A, Tables A1oA4. The data were analyzed using

linear regression on the model equation 3.4.4. Initial

analysis yielded a significant contribution to variance for

all but the last factor. The aggregate file I/O access rate

contributed to an increase in ALP but the increase was not

significant. This term was subsequently dropped from the

model and the data re-analyzed. The statistics for the

revised regression analysis is given in Table 1. The

statistics in Table 1 supports hypotheses 1 at the .0001

level. The effect of multiprogramming set (N) is signifi-

cant at the .0001 level but its directiOn is contradictory

to hypothesis 3. Adjustment of the predicted mean so that

it is equal to the observed mean yields a positive inter-

cept. This reflects the fact that in a lightly loaded

system, the page management routines use idle CPU time to

search page tables and maintain page queues.

113

Table 1. I/O Overhead Regression Analysis

goungg RAH REGR ggsrrs s D §_§g_ 9. ES

CONSTANT 2.2733703-03 8.0777652-05

PRIORITY (j) 3.8395762-04 3.4289222-05

ups SET (N) -2.85u969E-05 n.8937953-06

STD DEV OP DEP VARIABLE (OH) = 0.0212

HULT-R-SQUARED=.999Q P(3,12)=6776.6“8 P<.0001

5.32.2121: §§§§§§§TQT

CONSTANT P(1,1u)= 753.360 98.18% ADDL VAR P<.0001

PRIORITY P(1,13)= 91.806 1.60% ABEL VAR P<.0001

MPG SET F(1,12)= 30.03“ 0.17% ABEL VAR P<.0001

ADJUSTBENT TO HEAR = 0.008075

229$.Q £19 QEEEQEEQ

The same programs that were run in a non-memory

constrained environment for ALP estimation were then run

with pageable memory constrained to 312K. This amount of

memory was deemed appropriate to run three of the programs

(each with total memory requirement of 162K) with negligible

paging. The paging experiments were started with u programs

in the mix and another program was added with each succeed-

ing run up to a final run with 8 programs. In the final run

the system was under such stress that the monitor data that

was being logged was incomplete and it was not possible to

get measurements on two of the programs in the mix. when

the sequence of runs was repeated, the replication with 8

programs was therefore omitted.

114

The data collected from these runs is reflected in

appendix A, Tables AS-AB. Equation 3.4.4 was then used with

the coefficients for ALP to predict the overhead due to

non-paging I/o. The resultant overhead was subtracted from

the measured overhead to form the residue. The data were

then analyzed using linear regression with the I/O rates in

equation 3.4.5 replaced by the 223129 rates. A surprising

aspect of this process was that the overhead with paging was

actually lggg; than it was without paging at smaller multi-

programming sets (N). Analysis of these runs (Table 2)

shows that the intercept for paging overhead is negative.

An interpretation for this anomaly is that the page

management routines use CPU idle time to perform housekeep-

ing functions and look for work to do even in the abggggg 9;

paging. When the CPU is highly utilized and no paging is

taking place this discretionary work is effectively

bypassed. However when paging is taking place this work

cannot be bypassed and much of it is performed as a part of

normal page I/O processing. Ideally the intercepts for ALP

and DEL should cancel each other since no overhead should be

expended when I/O is not being done.

fiypgthg§g_ 4, §, a.g g. Initial statistics for analysis of

the model equation 3.4.5 indicated that the independent

variables for priority level j, multiprogramming set N, and

the aggregate paging rate T(j). all had effects in the

hypothesized direction on the paging overhead parameter DEL.

115

Table 2. Paging Overhead Regression Analysis

§QQ§Q§ BA! BEEB §Q§§Z§ -§1. .3593 Q: .§I

CONSTANT 6.165776E-03 6.7830703-05

HULT-R-SQUARED=.9993 F(1,6) =8262.718 P<.0001

ADJUSTMENT FOR HEANS=-0.0129923

However the effects were not statistically significant since

the significance levels for these effects were .79, .99, and

.40 respectively.

The constant term was left as the only term in equa-

tion 3.4.5, making paging overhead directly proportional to

paging rate. The data were re-analyzed using only the

constant factor in equation 3.4.5, yielding the coefficients

in Table 2.

Eéfliflfl Befig §§_imation

Since paging was needed to perform this estimation the

same set of runs were used for both DEL estimation and

paging ratios (BETA) estimation. An immediate source of

difficulty is the fact that page-out counts recorded by most

operating systems are not the same as those used in this

formulation. The theory predicts the number of pages that

must be written out to accomodate pages that are read for a

specific program. The identification of the program which

is losing the page is of no concern. However job accounting

routines do not record the identification of the program

116

which caused the page to be written but only adds to a

counter of pages lost for the program losing the page.

There are two alternatives to this dilemma. Hypothesis

7 could be agggggg and hypothesis 9 tested, or it can be

agsu ed that the number of pages written on behalf of a

program is equivalent to the number of pages which that

program g_g§g§ to be written and proceed with the analysis.

Proceeding on the latter assumption, results of the hypothe-

sis tests must be interpreted in view of the above discus-

sion.

Hypgthgggs 1 and g. Hypotheses 7 and 8 were tested by

performing a 4X4 factorial analysis of variance on the PO/PI

ratios of the same 4 programs for multiprogramming sets N =

4, S, 6 and 7. The within-group sum of squares was used as

the error term. Results of this analysis are summarized in

Table 3. Since there are no significant interactions main

effects may be tested. Hypothesis 7 was not supported since

there was a priority effect at the .0009 significance level.

The multiprogramming effect was positive (consistent with

hypothesis 8) but the significance level was .124. The cell

means predicted from the coefficients in Table 3 were used

as the BETA(j,N) for the predictive model.

Hypothesis 2. Hypotheses 9 was tested by performing a

one-way analysis of variance on the system-wide paging

ratios computed from the paging estimation runs with 4, 5, 6

and 7 programs in the multiprogramming sets, yielding 8

117

samples. From observations of cell means it was decided to

test the hypothesis using orthoganal polynomial contrasts.

Hypothesis 9 was not supported at the higher multiprogram-

ming levels since a quadratic effect was found at the .0004

significance level. The Analysis of Variance table for this

analysis is given in Table 4.

Page Allocatiop w iqht

This factor tests the Paging submodel's accuracy in

predicting working set allocations. The measure for this

factor L, is derived from the Kuhn-Tucker conditions for

minimization of the total paging rate where program j's

paging rate is weighted by L(j). Summing the L(j)s to 1 and

assuming that paging indices A(j) are identical, we have the

following estimator for L(j):

L(ij)=('(j)**2)/CPPU)*S‘III ("(1)**2)/CPP(1131=1o- . J]-

(“o 1.1)

To make the L(j) comparable across multiprogramming

sets, The L(j) calculated by equation 4.1.1 will be multi-

plied by the number of programs in the multiprogramming set,

N. The page allocation weights can be used in this form

since it is the relative sizes of the weights that is

important.

.
J

118

Table 3. Page I/O Ratio Analysis

§QQ.§§ g.£ 3.93 .szzs §.2 T3393 9: .§T

GRAND HEAN .603356 .085417

HPG SET .329145 .241595

MPG SET .617560 .241595

HPG SET .239244 .241595

PRIORITY -1.104013 .241595

PRIORITY -1.083273 .241595

PRIORITY -.917266 .241595

INTERACTION -1.173274 .683333

INTERACTION -1.567103 .683333

INTERACTION -.423430 .683333

INTERACTION -1.337678 .683333

INTERACTION -1.306999 .683333

INTERACTION -1.669633 .683333

INTERACTION -.464727 .683333

INTERACTION -1.358317 .683333

INTERACTION -.564918 .683333

$3.23.; ALAN smug; 2.12 z 2

GRAND MEAN 11.649 1 49.896 .0001

HPG EFFECT 0.521 3 2.231 .1241

PRIORITY 2.198 3 9.413 .0009

INTERACTIONS 0.263 9 1.128 .3985

ERROR TERH 0.233 16

Both replications of Paging Estimation runs with 4, S,

6, and 7 programs were used giving 44 observations of L(j). i

The data for these runs is given in the Appendix, Tables A9

and A10. The equalized estimates for L are given in Table 5

and the ANOVA table for a 4X4 factorial design is given in

Table 6. Tests of hypothesis 10 use only the first four

programs in the analysis.

Examination of the ANOVA table reveals a significant

interaction at the .0001 level, hypothesis 10 is not

supported. Regression coefficients from this analysis

119

Table 4. System-wide Paging Ratio Analysis

SELL SELL !£.!§ £.LL §.2 2:1.

N = 4 0.257946 3.380890E-02

N = 5 0.477944 3.876854E-02

N = 6 0.563385 1.867964E-02

N = 7 0.354059 6.027378E-03

§QQE.§ 32.! §QEAE§ 22 z 2

LINEAR 0.014 1 18.436 .0128

QUADRIATIC 0.092 1 121.610 .0004

CUBIC 0.003 1 3.387 .1396

ERROR TERH 0.001 4

cannot be used since priority 5, 6, and 7 programs have not

been included. Regression analysis was therefore performed

using all 44 observations with covariates: multiprogramming

level (N), priority (j), priority squared (j**2), multipro-

gramming level squared (N**2), and the cross-product of

multiprogramming level and priority. The coefficients

resulting from this analysis are given in the bottom of

Table 6. These coefficients are used in computing the

weights used in the predictive model.

Since there are significant deviations from unity in

the ANOVA it can be concluded that the paging model is

deficient. At this point it will be assumed that the

working set weights that have been estimated are not specif-

ic to the programs used in the analysis but reflect error in

the paging submodel and continue with the analysis.

120

Table 5. Estimated Working Set Heights

HULTIPROGRAHHING SET (N)
G

2.1325.le (.1) 2 .~ .5. 2

2.140348 0.699155 0.375096 0.355586

1.799340 0.862835 0.377862‘ 0.368515

0.384188 0.323695 0.205488 0.162483

0.552756 0.363280 0.230628 0.175931

0.421240 0.418820 0.367578 0.279153

0.467356 0.360490 0.268770 0.273000

1.054224 0.708645 0.519882 0.411845

1.180548 0.675260 0.475926 0.426566

. . . 2.849685 1.347792 1.815296

. . . 3.098625 1.236636 2.007369

6 3.184158 1.917405

6 3.410190 1.985942

7 O C C C O C C O 0 2.059225

7 C O O O O C O O 0 1.762670

Higggllaneg_§ Parameters

Prior to using the model to predict program perfor-

mance, the CPU rates (HU), paging indices (A), maximum

storage (5) and critical memory point (H) must be estimated.

For this purpose the experimental programs were executed in

8 runs of N=4, with each experimental program being executed

with 3 copies of the control program. The measured and

calculated results of these runs are given in appendix A,

Table A11 and A12.

121

Table 6. Working Set Weight Analysis

999399 92.3 99933; 92 I E

GRAND HEAN 9.77u 1 1499.218 .0001

NRC EFFECT 0.802 3 122.997 .0001

PRIORITY 0.590 3 90.430 .0001

INTERACTIONS 0.196 9 29.991 .0001

ERROR TERH 0.007 16

.993.3 333 3293 COEFF§ STE 3339. 9: §§.

PRIORITY (j) -0.286627 0.301902

j*j .143958 0.035327 .

j*N -0.060599 0.065588 .

HPG EFFECT (N) .180209 1.019103 ~4

N*N -0.025178 0.090079

CPU Rate Estimation

CPU rates for the control programs were estimated from

the 4 runs of the control program with N = 4, 5, 6 and 7.

The parameter MD was found to vary considerably, even within

a single run. This effect is thought to be related to the

method used to account for program time and the processing

which takes place following an interrupt and before the

value of the CPU clock is stored. This has the effect of

making CPU service intervals for low priority programs

appear larger and therefore the CPU rates (HU) would appear

smaller.

The rates computed from each of the runs in appendix

A, Table A9 and A10 are weighted averages of the rates

computed from each program with I/O access rates used as

weights. The expansion factors (CYT) were used to increase

these rates (decrease service times) by applying the

122

equations in section 2.5, approximating the instantaneous

I/O rates by LAH = 1/ET*(1-CP). The rates from the 4 runs

were then averaged together and used in subsequent calcula-

tions and in the predictive model.

The CPU rates for the experimental programs were then

estimated from the 8 runs in appendix A, Tables A11 and A12

The same procedures as before were used to estimate CYT and

thereby remove some of the effects of "cycle stealing" due

to I/O.

Virtual Storage Estimation

This turned out to be trivial since the programs were

constructed to have the same maximum sizes (162K). This

number was taken from the job listings which gives a

measurement of the maximum virtual storage used.

Storage and Paging Index Estimation

These parameters were estimated in a sequential

fashion. First a "quasi" paging index A' was computed with

the ratio of the sum of critical storage to real storage

equal to 1. We have

A'=V(3)*PI(j)/CP(j)*K*(5(j)‘9(j))- (9-1-2)

A linear model was then fitted to this data using ln(A') as

the dependent variable and ln(N) as the independent varia-

ble. Symbolically we have A = A'*(N*H/R)**-q or A =

123

A'*((H/R)**-q)*N**-q. The choice for H = 56 was justified

on the basis of what follows. If the paging rate for the

entire system is less than 2 pages a second it may be

concluded that memory constraints are 395 active. Depending

on the length of a program run, an apparent system paging

rate of 2 pages/second can be caused by the initial flurry

of activity when the programs begin execution and open

files. The fact that the constraint is not active at N = 4

may be inferred from the size of the working sets of the low

priority programs compared to the higher priority programs.

The memory constraint appears to be just barely active at N

= 5 so an appropriate value for H is H = R/S = 280/5 = 56K.

Using H = 56K and equation 4.1.2, A is estimated for 4

different priorities of the CNTL program. From Table 7 it

may be observed that the values of A vary from a low of

0.000504336 to a high of 0.21720546. This wide variation in

the values of A are again indicative of the paging

submodel's failure to accurately predict paging rates.

To determine what is a reasonable value for A, dimen-

sional analysis is applied to the defining equation for

paging.

The dimensions of interest are those of K and A. In the

estimation process, a value of K = 490 was used for the

8/370 model 148 (meaning that the 148's average speed is

490,000 instructions per second). This makes the units of K

instructions per thousanths of a second and therefore the

Table 7.

124

Paging Index Calculations

A' VALUES FOR H = 56K

PRIORITY LEVELS

399 LIL (3) 1 2 3 9

4 0.001343 0.000504 0.001292 0.008048

5 0.002593 0.002228 0.002144 0.004502

6 0.028177 0.029452 0.044289 0.070589

7 0.051738 0.045349 0.070277 0.119278

CORR 0.962743 0.977337 0.942172 0.849545

b -16.743895 T19.677474 -18.106903 -13.270179

k 7.110351 8.672056 7.998743 5.655085

A 0.004301 0.002735 0.004414 0.013748

NORHALIZE 1.572647 1.000000 1.613795 5.026601

NORHAIIZATION FACTORS

PRIORITIES (j)

929 §E111 (A) 1 2 .3. 9 2 .9 1

4 2.663 1.000 2.562 15.957

5 1.164 1.000 0.962 2.021 2.345

6 0.957 1.000 1.504 2.397 3.591 7.375 . . .

7 1.141 1.000 1.550 2.630 4.707 4.556 4.425

units of A are in memory references per instruction divided

by 1000. Expressing A in terms of memory references per

instruction for the A~values from Table 7, A = 4.3, 2.7, 4.4

and 13.7 respectively.

System /370 instructions reference either 0, 1, 2 or 3

locations in main memory. Of these instruction, the ones

that reference 0 storage locations are: supervisory call

instructions, register instructions and those used for

integer and floating point arithmetic. These are not

frequently used in commercial programs and, even when they

are used they must be used with instructions which reference

1 storage location to retrieve and store calculated data.

125

The instructions which reference 3 storage locations are

also infrequently used. These are instructions which

actually reference two starting addresses but involve

movement of enough data that ocassionally the data overlaps

multiple pages. An example of an instruction of this type

is the long move instruction.

There are a large number of instructions which refer-

ence a single location and they are very frequently used.

Instructions in this class include branching, register

loading and storing and immediate instructions which contain

a single byte of data in the instruction. Instructions

which reference 2 storage locations are also very frequently

used and these include storage to storage moves and

compares. These instructions are particularly frequent in

commericial applications where they are used extensively for

logic and data formatting.

Based on the previous discussion and observations of

instruction profiles of many programs it is very likely that

the A value for most programs would be in the rangeof 1 to

2 storage references per instruction. The smallest of the

estimates for A in Table 7 (and the only one in the realm of

possibility) indicates 2.73 storage references per instruc-

tion. Although this is possible it is not very likely.

However the above analysis does point out that the only

estimates for paging index in the practical range are those

developed from partition 2 of Table 7. In order to make A

126

values estimable using this format, it was decided to

normalize A' estimates by the corresponding factors from the

bottom of Table 7 by dividing by the appropriate factor.

These factors were derived by dividing the A' calculated in

each partition of the four runs of the CNTL program by the

corresponding estimate for A' from partition 2 (column 2 in

the table).

To estimate the page indices for the experimental

programs, 8 runs of 4 programs each were performed. These

runs consisted of a copy of the experimental program and 3

copies of the CNTL program. The measured and calculated

results of these runs (see appendix A Tables A11 and A12)

and the conversions in Table 7 were applied to compute the

estimates of A in Table 8.

From the page index estimates of Table 8 it may be

observed that the paging manipulation was not successful

since the estimates for A are apparently correlated with low

I/O variance rather than with the high paging indicators

(1X1 in the program identification). Prom the program

estimation runs in the appendix, Table A10 it may also be

observed that higher CPU service times are apparently

correlated with high priority execution. Along with this

effect a slight increase in process time may be observed,

however the increase in process time is not proportional to

the increase in the number of I/O operations, yielding a

higher CPU rate. Fewer I/O's are reported at higher priori-

127

ties because the lower priority jobs were started first in

order to delay some of the effects of priority on job

initiation.

At the same time the lower priority jobs are delayed in

starting to execute so it makes no sense to use observations

during this initiation stage. Thus only those measurements

which are taken while all programs are executing are includ~

ed. This procedure should yield results which are contrary

to the "expansion effect" and also contrary to the argument

that the lower priority programs should have smaller rates

(large average service times) because they include "start-

up" time and time for initially opening the files. Hhile

this effect appears to be systematic the exact cause is

unknown at this time.

33.2.19.2....r'481139; “.lfian' PHAAEAQAS

To the extent that the paging manipulation does result

in higher paging rates the manipulation was successful.

However the previous discussion on page index estima-

tion points out that the attempt to-manipulate page index

was not successful in terms of the estimates of A since this

index is correlated with the I/O variance manipulation and

not with the paging manipulation.

128

Table 8. Experimental Program Estimates

2399339 A 3 .99 A ELI 231.99

000 6 1 126.584 0.002069 3 1 4

011 6 1 126.800 0.016921 3 2 3

101 6 1 125.073 0.020515 3 2 3

110 6 1 125.528 0.003124 3 1 4

001 6 4 128.534 0.002655 3 2 3

010 6 4 128.350 0.000941 3 1 4

100 6 4 128.764 0.001193 3 1 4

111 6 4 127.095 0.002889 3 2 3

001 7 1 128.534 0.002655 3 2 3

010 7 1 128.350 0.000941 3 1 4

100 7 1 128.764 0.001193 3 1 4

111 7 1 127.095 0.002889 3 2 3

000 7 4 126.584 0.002069 3 1 4

011 7 4 126.800 0.016921 3 2 3

101 7 4 125.073 0.020515 3 2 3

110 7 4 125.528 0.003124 3 1 4

CNTL 6 2 54.296 0.002735 2 3 4

CNTL 6 3 54.296 0.002735 2 5 6

CNTL 6 4 54.296 0.002735 2 7 8

CNTL 6 5 54.296 0.002735 4 1 2

CNTL 6 6 54.296 0.002735 4 3 4

CNTL 6 1 54.296 0.002735 2 1 2

CNTL 6 2 54.296 0.002735 2 3 4

CNTL 6 3 54.296 0.002735 2 5 6

CNTL 6 5 54.296 0.002735 4 1 2

CNTL 6 6 54.296 0.002735 4 3 4

CNTL 7 2 54.296 0.002735 2 3 4

CNTL 7 -3 54.296 0.002735 2 5 6

CNTL 7 4 54.296 0.002735 2 7 8

CNTL 7 5 54.296 0.002735 4 1 2

CNTL 7 6 54.296 0.002735 4 3 4

CNTL 7 7 54.296 0.002735 4 5 6

CNTL 7 1 54.296 0.002735 2 1 2

CNTL 7 2 54.296 0.002735 2 3 4

CNTL 7 3 54.296 0.002735 2 5 6

CNTL 7 5 54.296 0.002735 4 1 2

CNTL 7 6 54.296 0.002735 4 3 4

CNTL 7 7 54.296 0.002735 4 5 6

Note: Program definitions are given in Figure 9.

129

£29 LLLaACG .49....2111“4163.15.22

From the closeness of all estimates for CPU service

time (rate) it may be inferred that the manipulation for CPU

service variance was successful although the measurement

tools used in this research do not permit estimation of the

absolute magnitude. The following formulas were used to

construct the CPU variance manipulations:

S=(1+X/K)/HU**2,

V(S)=v*(v+1)/3*(K*HU)**2, (4.2.1)

E(S)=1/HU,

where K is an integer representing the number of times the

compute "kernal" is to be executed and X is an integer in

[-v,v] chosen with probability 1/(2*v+1), and v is an

integer less than or equal to K. In all cases K = 2 is

used. For the low variance programs (11X), v = 0 is used

for zero variance. For the high variance programs, (XOX) v

= 2 was used for a variance of 1/2*HU or approximately

0.000032746 seconds squared compared to a mean service time

of 0.00784314 seconds. For the CNTL program v = 1 was

chosen. This yields a variance of 1/6*HU or 0.00005653

seconds squared compared to a mean service time of approxi-

mately 0.0184176 seconds.

130

H nipplation

The I/O variance was again manipulated by construc-

tion. The high I/o variance program files were set up with

their centers 15 cylinders apart and file sizes of 9 cylin-

ders. The low I/O variance programs were set up with their

centers 3 cylinders apart and with file sizes of 3 cylinders

each. The I/o variance for the low and high variance

programs are approximately 93 H5 squared and 123 Hs squared

respectively. However, the means are also different in this

case, approximately 28 H5 for the high variance programs and

18 Hs for the low variance programs.

:
3

o
.

m H

1
m

1
0

a
.

0 1
+

"
-
0

t
o

1
m

.1...‘ n...-

Sixteen runs of the APL model were made to develop the

predictions to be used in the analysis of variance. The

results of these runs for the experimental programs is given

in Table 9. In making these predictions the APL model was

found to converge quite rapidly. 0f the 16 runs, 13

converged in 6 iterations, 2 converged in 10 iterations and

one required 16 iterations.

The convergence criteria was to stop iterating when

the maximum absolute difference in I/O rates from one

iteration to the next was less than 0.002. This results in

an difference of less than 0.002 seconds in I/O service time

for the very lowest priority programs. A diagram of the

relationship between the various submodels and the

H P CPU CYCLE PAGE I/O CHNL OVER NRKG

2399 L 3 NEIL TIRE 3313 3313 BILL 9939 §§I

000 6 1 0.21 0.034 3.5 2.9 26.65 0.033 0.23 53

000 7 4 .04 .114 5.6 4.1 4.60 0.004 .34 24

001 6 4 .05 .131 2.3 1.7 5.79 0.007 .21 30

001 7 1 .18 .032 9.6 8.3 22.90 0.018 .36 57

010 6 4 .05 .138 1.5 1.1 6.08 0.008 .20 19

010 7 1 .19 .034 6.5 5.5 23.47 0.019 .33 36

011 6 1 .22 .031 5.8 4.8 26.85 0.034 .26 111

011 7 4 .02 .097 10.4 7.6 2.65 0.002 .37 46

100 6 4 .05 .137 1.7 1.2 5.95 0.007 .20 22

100 7 1 .18 .034 7.3 6.3 22.65 0.018 .34 40

101 6 1 .22 .031 5.7 4.7 26.76 0.034 .27 119

101 7 4 .02 .096 10.9 8.0 2.40 0.002 .38 48

110 6 1 .21 .034 4.0 3.3 26.18 0.033 .24 60

110 7 4 .04 .111 6.3 4.6 4.30 0.003 .35 27

111 6 4 .05 .130 2-5 1.9 5.75 0.007 .21 32

111 7 1 0.18 0.032 10.1 8.7 22.50 0.017 0.36 60

Table 9. Hodel Predictions

Note: Program definitions are given in Figure 9.

convergence algorithm is given in Figure 10.

Hgdel gglidatio

The experimental programs were then run on the System

/370 Hodel 148. Since each run was repeated there were a

total of 32 runs. The measured and the calculated perfor~

mance variables from the experimental programs are given in

Tables 10 and 11.

C
I

T
R

B
S

C
Y
L

L
C

C
L

I
Q
.
B

 "
—
T
—
K
—

I
/
O

R
C
U

S
u
b
m
o
d
e
l

P
H
I

X
I

E
T
A

N
e
w
t
o
n
'
s

A
l
g
o
r
i
t
h
m

I
O
'
.
B
'

|
T

I
O
'
,
B
'

¢
,

fi
v

C
P
T

’
C
P
U

C
O
H

S
u
b
m
o
d
e
l

C
P
P

W
,
P
R

A

P
I

S
u
b
m
o
d
e
l

C
P

,
E
T

F
i
g
u
r
e

1
0
.

4
p

R
,
K
,
A
,
S
,
L
,
B
E
T
A

M
u
l
t
i
p
r
o
g
r
a
m
m
i
n
g

I
n
t
e
r
a
c
t
i
o
n

M
o
d
e
l

 A
L
P

D
E
L

M
U

132

133

Table 10. Experimental Runs - Heasured

H P PAGES PAGES OTHER ELAPSED PROC OVER- HRKG

99.9 9 9 999 99 929 9999 9999 9999 999

000 6 1 99 303 8,720 342.09 69.75 69.62 50

000 6 1 68 203 8,720 330.70 69.56 65.29 52

000 7 4 1,241 7,413 8,720 1,859.87 72.39 442.99 42

000 7 4 821 5,409 8,462 1,511.70 69.30 362.51 42

001 6 4 234 1,277 8,718, 833.58 69.23 176.30 52

001 6 4 288 1,423 8,718 842.08 69.31 182.45 50

001 7 1 128 1,009 5,800 322.98 47.06 75.22 54

001 7 1 217 1,462 8,353 469.79 67.93 110.99 48

010 6 4 197 1,172 8,720 848.99 69.32 182.52 54

010 6 4 182 1,048 8,720 880.52 69.18 181.84 46

010 7 1 125 1,574 7,709 489.00 63.11 115.97 48

010 7 1 106 1,479 8,057 478.64 65.76 114.60 54

011 6 1 119 426 8,718 330.65 70.36 65.86 48

011 6 1 142 419 8,718 325.86 70.55 67.47 52

011 7 4 815 5,086 7,331 1,365.27 60.97 325.92 46

011 7 4 950 5,700 6,765 1,455.22 56.81 344.14 44

100 6 4 919 4,413 8,720 1,266.70 70.30 296.02 58

100 6 4 1,191 5,808 8,720 1,463.46 70.93 347.36 56

100 7 1 223 3,537 8,498 743.75 69.70 178.52 54

100 7 1 275 4,008 8,513 819.89 70.10 196.13 62

101 6 1 127 578 8,718 337.04 70.57 70.14 58

101 6 1 129 525 8,718 330.45 70.49 69.06 60

101 7 4 1,862 7,220 1,329 1,460.52 13.25 346.28 38

101 7 4 1,641 6,061 1,060 1,244.75 10.70 292.30 36

110 6 1 83 492 8,720 367.05 70.33 78.89 58

110 6 1 84 409 8,720 358.19 70.47 74.85 58

110 7 4 1,693 6,133 927 1,257.55 9.47 295.34 40

110 7 4 1,627 6,206 1,224 1,254.70 11.85 296.95 42

111 6 4 708 3,477 8,718 1,103.52 71.18 255.99 56

111 6 4 678 3,482 8,718 1,100.18 70.92_ 254.93 56

111 7 1 241 2,618 8,601 620.79 71.15 147.87 56

111 7 1 259 2,468 8,432 593.80 69.73 141.51 54

Note: Program definitions are given in Figure 9.

001

001

001

001

010

010

010

010

011

011

011

011

100

100

100

100

101

101

101

101

110

110

110

110

111

111

111

111

~
J
~
I
O
\
O
\

Q
Q
m
C
h

#
4
0
1
0
)

1
H
3

.
=
£
=
a
.
a

4
.
9
;
“
:

d
-
a
S
L
c

c
u
e
-
A
d

m
a
m

Q
Q
G
G

fi
k
—
I
—
I

d
-
‘
k
k

\
l
s
J
O
‘
O
‘

Q
Q
O
‘
O
‘

~
1
q
u

Q
Q
O
‘
G

C
C
-
I
—
I

4
.
1
9
:
4
:

Table 11.

CYCLE PAGECPU

HEEL 2295

0.20 0.038

.20 .037

.04 .115

.05 .109

.08 .083

.08 .083

.15 .047

.15 .048

.08 .086

.08 .090

.13 .053

.14 .050

.21 .036

.22 .036

.05 .110

.04 .117

.06 .096

.05 .101

.09 .062

.09 .065

.21 .036

.21 .036

.01 .171

.01 .175

.19 .040

.20 .039

.01 .178

.01 .169

.07 .090

.06 .090

.12 .055

0.12 0.054

O
O

I

a
d
m
h
)

o
o

o
6

£
8
0
.
;

0
3
3
0
0

d
-
I
Q
U
'
)

0
1
0
0
1
0

“
-
1
d
e

o
0

m

0
0
0
0
.
.
.
.

o
o

o
o

1
4
.
1
0
1
3
0

O
N
U
I
O
C
D

w
w
-
A
—
s

c
u
m
-
1
.
:

0 A
N
N
:

m
o

o

@
U
s
’
t
‘
h

S
C
-
I
-
i

1
0
1
0
.
1
0
0

N
O
A
D
O
N
Q

\
D
C
D
O
U
'
I
\
d
e
w

0
O 1
0
d
e

4
:
4
2
3
:
0
1

w
w
—
I
-
I

O
.
.
.

O
‘
O
‘
N
N

U
1
U
'
1
C
:

l
O

0
0

O
O

O O
N
O
.
)

k
t
—
I
—
I

c
a
-
-
-
:

0
0
0
0

0
0
0
0

s
a
u
n
a

0
0
1
—
5
.
4

m
m
m
m

M
M
‘
O
‘

k
c
w
w

m
o
n
o

N
N
N
N

I/O

99!!

25.49

26.37

4.69

5.60

10.46

10.35

17.96

17.78

10.27

9.90

15.77

16.84

26.37

26.76

5.37

4.65

6.89

6.00

11.43

10.38

25.87

26.39

0.91

0.85

23.76

24.35

0.74

0.98

7.90

7.93

13.86

14.20

CHNL

QTIL

0.021

0.021

0.015

0.014.

0.012

0.012

0.022

0.022

0.011

0.011

0.020

0.020

0.023

0.023

0.015

0.015

0.016

0.016

0.020

0.019

0.024

0.024

0.016

0.016

0.021

0.021

0.016

0.017

0.015

0.015

0.021

0.022

Experimental Runs - Calculated

Note: Program definitions are given in Figure 9.

OVER HRKG

9999 999

0.20 50

.20 52

.24 42

.24 42

.21 52

.22 50

.23 54

.24 48

.22 54

.21 46

.24 48

.20 48

.21 52

.24 46

.24 44

.24 56

.24 54

.24 62

.21 58

.21 60

.24 48

.24 48

.22 60

.21 60

.24 27

.24 27

.23 32

.23 32

.24 60

0.24 60

135

The predictions and these results were then merged and

made inputs to an analysis of variance using Finn's HULTI-

VARIANCE [22]. The criterion variables were transformed

into a relative error by dividing the differences between

the predictions and the outcomes by the outcomes.

Results 13
..

999.1..819 f V 999.99

Hypgghg§_§ 1:6. Examination of the Hultivariate Analysis of

Variance results (Table 12) indicates significance for all

10 interactions. This prevents tests for main effects

because the main effects are gggfgggggg with the interac-

tions. Based on the analysis of variance it could well be

that there is not a fixed effect but this cannot be shown

using these tests. This effectly bars statements about the

fixed effects of the five factors other than to say that

there is apparently significant errors in the predictive

model. Thus these techniques are unable to help further in

analyzing the model. Univariate techniques will now be

explored for some partial answers.

Table 12.

Pg

136

ANOVA Table

LEAST SQUARES ESTIMATES OF

.3236 -.0636 .9023

of Prediction Errors

QB .99

EFFECTS-GRAND MEAN

.8109“ -02218 .3 149 -.0369

STD ERRORS OF LEAST SQUARE ESTIMATES - GRAND MEAN

.0181 .0044 .0436

.1‘_E__P;_I E EGR

GRAND HEAN

PAGE INDEX

CPU VARIANCE

I/O VARIANCE

MPG LEVEL

PRIORITY

PGNDX

PGNDX

PGNDX

PGNDX

CPVAR

CPVAR

CPVAR

IOVAR

IOVAR

MPG X

X

X

X

CPVAR

IOVAR

MPG

PRIORITY

IOVAR

MPG

PRIORITY

MPG

PRIORITY

PRIORITY

.0486 .0020 .0

F(7,10)= 2,268.646

F(7,10)=

F(7,10)=

F(7,10)=

154.835

4.626

128.399

F(7,10)= 3,296.047

F(7,10)= 6,596.086

F(7,10)=

F(7,10)=

F (7,10) =

F (7,10) =

F(7,10)=

F(7,10)=

F(7,10)=

F(7,10)=

F(7,10)=

F(7,10)=

32.045

17.399

41.494

56.054

23.016

27.486

6.103

32.918

36.309

376.800

372 .0091

P<.0001

P<.0001

P<.0150

P<.0001

P<.0001

P<.0001

P<.0001

P<.0001

P<.0001

P<.0001

P<.0001

P<.0001

P<.0057

P<.0001

P<.0001

P<.0001

137

9999 99. 9 99999999 99.91999

Hypgthe s 1313. To help assess the effectiveness of the

model, confidence interval analysis will now be employed.

The null hypotheses will be supported if the confidence

intervals calculated from estimates of the of the grand

mean of the relative error lies in the interval [-.15,+.15].

The confidence intervals are of the form u1t*s/n**.5, where

u is the estimate of the mean, and t is the value with 16

degrees of freedom at the .025 probability level (2.12), n

is the number of observations (32), and s is the standard

error of the estimate [22]. The confidence intervals for

the dependent variables are as follows:

PROGRAH CPU UTILIZATION (CP): [0.282928,0.364252]

PROGRAM CYCLE TIHE (ET): [-.073485,-.053715]

TOTAL PAGING RATE (PR): [0.740463,0.958317]

PAGING INPUT RATE (PI): [0.804467,1.000070]

CHANNEL UTILIZATION (RCU): [-.226226,-.217274]

CPU OVERHEAD (CHT): [0.231618,0.398242]

HORKING SET (w): [-.057384,0.016416]

From this it can observed that hypotheses 8 and 13 are

supported but hypotheses 7, 9, 10, 11, and 12 do not receive

support. Thus from a statistical point of view, the model

does not predict the performance variables of interest

within the desired error margin of 15%.

A possible source of error might have been the fact

that the CPU submodel does not expligitly account for

variance in I/O service time. The I/O service time depends

on a random pattern of accesses by device, channel conten-

tion, rotational position sensing, and even device errors

and retry. Hinor sources of variation in CPU service times

may be attributable to error routines and exception rout—

ines.

A potential source of error in the CPU submodel is the

fact that the model does not address the portion of CPU

overhead which is not igtggpuptiblg, nor does it handle the

portion of I/O processing which g_p interrupt higher priori-

ty programs.

A major source of error is the scaling effect due to

differences in small values of CPU utilization. For exam-

ple, the difference between a predicted CPU utilization of

'0.02 and an observed utilization of 0.01 is of little

practical importance but the relative error of 100% serious-

1y biases the CPU utilization statistic.

The major source of error in the model is the subsys-

tem which deals with paging. Host previous authors have

either considered the paging rate to be fixed or ignored it

altogether. Some authors have assumed the rate of paging

operations to be proportional to the instruction execution

rate for the task itself (this approach ignores data refer-

ences). Others predict paging rates but only for certain

"safe" values (where the paging "function" is more or less

linear).

The choice of two factors, critical storage size and

page index to represent a program's paging behavior is an

oversimplification. A program's address space may consist

of many distinct types of data, each of which may have a

different reference pattern. For example, the executable

instructions of a program may be composed of loops, jumps,

or straight-line code and the instructions may or may not

modify themselves. The data portion may be scanned sequen-

tially or searched using a binary or indexed technique.

Data areas may be separate from instructions or the data may

be interspersed among the instructions, a situation referred

to as 99999991 99‘999999999-

The use of a program's full size as a parameter of

page demand is somewhat unrealistic in view of the fact that

a certain portion of many programs are composed of error

routines, initialization and termination routines which

140

execute an insignificant amount of time.

The proposed model includes some of the methods of

previous authors, and therefore includes some of the shortv

comings. In particular the paging coefficients estimated

for the page-in and page-out operations may be more repre-

sentative of the characteristics of the programs run on the

system than they are of the operating system and memory size

of the system. If this is indeed the case, the error in

predicting the performance of a particular set of programs

will vary according to their deviation from the "typical"

programs in an installation.

The assumption that CPU overhead processing is carried

out in non-pageable memory is contrary to the known opera-

tion of the Operating system used in these experiments.

Some portions of the operating system used in this research

compete with the user programs for the available real

storage pages.

A final source of error in the paging submodel is that

the paging indices were estimated at a multiprogramming

level of N=4. From previous comments about the lack of a

real memory constraint at N=4, it is likely that more stable

estimates for this parameter could be obtained at higher

multiprogramming levels.

141

gggtvExperimentg; Paging Agglysig

-9999999 999999 99940de1

The results of the program runs with 4, 5, 6, and 7

copies of the control program were fitted to a model of the

form w(j) = Q*CP(j)**1/k. This model was found to account

for 6%, 69%, 99%, and 97% of the variation in w(j) for N =

4, 5, 6, and 7 respectively. The constant of proportionali-

ty (Q) was found to fit the expression R/sum[CP(l):l=1,..,N]

very closely. This suggests a general expression for

working set size of of the form

"(3)=Q*(3(j)*CP(3))**1/ko (“-5-1)

where Q = R/sum[(A(l)*CP(l))**1/k:l=1,..,N]. Working

backward from this expression, the following expressions are

suggested for the real-time paging rate:

PI(j)=CP(j)*A(j)*K*EXP(N)/(k-1)*w(j)**(k-1), (“-5-2)

EXP(N)=(sum[H(l):1=1,..,N]/R)**q.

The value of g was estimated to be 7.14 and the value

of k was estimated to be approximately 4. Subsequent runs

of the predictive model with the revised paging submodel and

new estimates of A for N=7 yielded the following mean

errors:

142

SE 99 £11 2.1. 99.9 9.112 9'.

0.285 0.006 0.343 0.298 0.179 0.068 0.010

This significantly reduces the errors in paging and the size

of the relative errors in CPU utilization (CP) and channel

utilization (RCU) is believed to be due to the scaling

effect mentioned earlier.

9292..ar9929 9....ith 9999999 9..od999

Fitting the control program runs to the Belady-Kuehner

"lifetime function“ [6] accounts for 47S, 47S, 98%, and 96%

of the variation in paging rates. Likewise the paging

expansion factor EXP(N) was found to account for 96% of the

variation in the system paging rate. The large exponent

value (7.14) was unexpected in view of quadratic and linear

segments in Bard's Paging Index [3]. Chamberlain, Fuller,

and Liu's Half-life function [12] was found to account for

49%, 39%, 99%, and 96% of the variation in paging rates when

fitted to the data from the control program runs.

V. CONCLUSIONS AND RECOMMENDATIONS

Research gonglu519g§

The knowledge gained by study of the model discussed

herein is a step toward better predictive methods for

computer performance, I/O configuration performance and

program performance.

The system overhead due to handling I/O requests was

found to be proportional to the I/O rates and there was a

small but significant positive effect due to program priori-

ty. There was a small but significant negative effect due

to multiprogramming level. The paging overhead was found be

proportional to paging rates but the small effects due to

priority and multiprogramming levels were not statistically

significant.

The increase in the ratio of page-writes to page-reads

was not significant but there was a significant increase

with increasing priority.

The method of sucessive estimation and the convergence

techniques used in this model were found to be very effec-

tive. Convergence was usually obtained in less than 6

iterations. Improvements in the algorithm made after the

143

144

experiments had been performed reduced the number of itera-

tions to the range of 4 to 5 iterations for about half of

the model executions.

While the original goals of this research have not

been achieved, positive benefits have been gained from this

effort. For one thing the least elaborate part of the

entire model, the paging submodel, has turned out to be the

source of much of the error. Part of the reason why this

part of the model is so simple is because this area is not

as well understood as the operation of the CPU and I/O

devices. Failure of the model to accurately represent

paging behavior has a more serious effect on some of the

criterion variables than others. For example, the criterion

variables that seem to have the largest errors are paging

counts (as expected) but also CPU overhead. This is not so

hard to understand in view of the demonstrated effect of

paging rates on CPU overhead.

The techniques employed with the variable paging

manipulation of the synthetic programs can be used as a tool

in controlling loads on other systems during performance

measurement, systems tuning and benchmarks. The CPU and I/O

submodels are well elaborated and it is possible that they

can be of benefit to others who will study the kinds of

systems studied in this research. The reasons why these

models are so elaborate is that suitable models for this

research were not generally available and the insights

145

gained from the model building process stimulated further

elaboration.

Failure to accurately predict paging behavior does not

prevent the model in this thesis from explaining many other

events such as CPU and I/O service intervals, initial wait

and completion times since paging rates are a matter of

measurement in existing systems. It is possible that the

use of the revised paging submodel can make this method

worthwhile for practical applications. The inherent errors

in this submodel at unconstrained memory levels is not too

serious a defect since working set estimates are usually

unimportant at unconstrained memory levels and the paging

rates in these cases is usually neglible. Another benefit

of this effort is that it clearly points out the direction

that further research in this area ought to take.

gggommendatiggg g_£ Fgrthg; Research

Clearly the direction for future research in this area is

the development of better analytical models of paging

behavior. A likely candidate for this research would be

some variation of Belady and Kuehner's lifetime function

approximation [6]. Another possibility is to validate the

analytic paging model based on the relationship between the

CPU utilization and working set size. Post-experimental

analysis of the data obtained in this research revealed

strong evidence for a relationship of the form w=Q*CP**1/k.

146

This could become the basis of more research into paging in

priority interrupt driven systems.

The page-write/page-read ratios were not central to

this research, however questions posed here suggests further

study in this area. There is no reason why the data for

such a study cannot be drawn from the job accounting data

collected from production systems rather than from experi-

ments.

Methods of analysis other than factorial analysis of

variance is recommended since there is some indication that

interactions will reduce the usefulness of this kind of

analysis. One way to overcome this problem is to perform

enough observations so that independent one-way analyses can

be performed. A larger number of sample points can be

obtained with fewer actual program runs by including 2;;

programs from each run in the analysis.

The size of the relative errors in predicting the

cycle time (ET) and the system overhead (OHT) suggests that

the large relative errors in the program CPU utilization

(CP) and the channel utilization (RCU) are scaling effects.

It is therefore recommended that these variables should be

scaled so that the contribution to overall error of differ-

ences in small values is proportional to their importance.

It is also recommended that smaller compute kernals be

used for synthetic programs. This would allow a greater

147

range and control of the paging rates and the CPU variance.

For example compute kernals of about 20% the size of the

ones used in this research would have been more appropriate

and would have allowed a greater range of CPU variance.

The needs expressed in the beginning of this thesis

will continue to inspire the investigation necessary to the

accomplishment of better ways to perform capacity manage-

ment, resource scheduling, and data processing system

tuning.

GLOSSARY OF TERMS

g_g§§§ 25g: The mechanism which is used to physically

position the read/write heads of disk-type devices for

I/O operations.

gpplicaglgg pgggra : A program which serves an end-use

function in a computing system rather than a utility

function. Examples are: payroll, inventory, etc.

bggghgggk: Execution of a prescribed set of programs on

one or more different computer systems for the purpose

of performance measurement or comparison.

blgggg pggg allocatlon: A method of partitioning the

pageable real memory of a virtual computer system

which arbitrarily favors certain programs over others

with respect to minimization of the system paging

rate.

bgffering: A method of I/O data management which reads or

writes data from two or more areas of real memory,

allowing CPU and I/O operations of the same program to

be overlapped.

ggggggl servgg: The node of a queuing network which

represents the CPU in some program models. The other

nodes of the network represent the I/O devices.

ghgnnel: The data path between an I/O device or control

unit and the main memory of a computer system.

instant a program accesses the CPU until the program

generates an I/O or paging operation.

gggpute kggggl: A collection of machine (computer)

instructions which is artificially constructed to

represent a "typical" program or to serve as a basis

for comparisons in benchmarks.

92g 99399: A situation which prevails when the CPU is the

limiting resource in a computer system. In this

thesis a program is considered to be CPU bound if its

CPU utilization exceeds 50% when no other programs are

active on the system.

148

149

gggflgggatlgg: A particular combination of memory,

processors, I/O devices and channels in a computer

system.

gyllgggg: The collection of all records which can be read

or written with one physical positioning of a disk

access mechanism (arm).

glgggl gggggg gevlce: An I/O device with the ability to

read or write data at any location on the recording

medium without regard to sequence. Examples of direct

access devices are disks and drums.

glgggg gggggg gethod: The method of data access to disks

or drums which takes advantage of the direct access

characteristics of the device. This usually implies

that the data is organized for direct access and the

physical address of the data is generated by the

program based on a randomizing algorithm.

glgk §ghgduling: The queue management and service discip-

line for disk I/O requests. Examples of disk schedul-

ing strategies are First-Come-First-Served (FCES),

Priority, and SCAN.

glgk: A type of direct access device which uses iron

oxide coated platters or "disks" as a recording

medium. Data is recorded in concentric circles about

the axis of a shaft which rotates the surfaces under

read/write heads. A number of disk surfaces may be

mounted on a single shaft.

glgpgtchigg: The process of storing the status (or state)

of the program which has control of the CPU and

restoring the status of a suspended program. The

process of switching control of the CPU from one

program to another.

_l§§: Execute-Channel-Program. A request by an executing

program to the Operating System to commence a specific

I/O operation.

FC §: A queue service policy, First-Come-First-Served

(see FIFO).

9.1..- : A queue service policy, First-In-First-Out (see

5

The mean program execution interval between page

150

lLQ pagag: A situation which prevails when the I/O

devices are the limiting resources in a computer

system. A program is considered to be I/O bound if it

spends greater than 75% of its elapsed execution time

waiting for I/O when it is the only program active on

a computer system.

laaaagg aggagg: A method of disk access which requires

that the location of a particular disk record be

retrieved from an index before the data record itself

can be read. The index is a disk file but it may be

made core resident during program execution.

laltlal £2953 The elapsed time from the completion of a

program's I/O until the program has access to the CPU.

This implies that another program is using the CPU

when the program in question becomes ready to run.

lglgggapt: An event which triggers a change in the

program which is in control of the CPU. An interrupt

may be voluntary, as in a request for I/O, or it may

be involuntary, as is the case for a page exception or

the completion of another program's I/O. In the

latter case control will be ultimately given to the

highest priority program that is ready to run.

l§: A queue service discipline for a server with infinite

capacity, or an Infinite Server. This differs from

the PS server in that the arrival of new requests does

not diminish the rate at which previous arrivals are

served.

and recording I/O counts, paging counts, storage

allocations and elapsed time and cumulative CPU time

for the processes or programs in a computer system.

I
"

._§§: Last-Come-First-Served queue service discipline.

The most recently arrived request is served immediate-

ly and the earliest arriving requests that are still

unsatisfied are not served until all later arrivals

are served.

lifetiaa fgactiga: A relation between the amount of real

memory allocated to a process (program) in a virtual

system and the process time between page exceptions.

RU: A paging algorithm which attempts to select the

Least-Recently-Used page frame to satisfy a paging

exception. A stack procedure which is used to imple-

ment the LRU algorithm.

151

aaahgg a; falaa pgalplga: A method for accelerating

convergence of a sequence by approximating the deriva-

tive in Newton's Hethod with a divided difference of

previously computed sequence values.

agfigla: The collection of disk surfaces which rotate

about a common shaft in a disk I/O device. It is also

referred to as a spindle.

mul_lp_ggramming: The process of concurrent execution of

twwo or more programs in a single computer system.

mult£pgggaaming gap: The collection of all the programs

or tasks that are concurrently executing in a single

computer system during the interval under considera-

tion.

929229929299 agagay: The portion of high speed memory

which is fixed and not allowed to be paged in a

virtual system. Generally this portion of memory is

used by the operating system for critical system tasks

such as I/O or paging management.

gapancy: The probability of executing the instructions

in a particular page of a program's address space.

gyggheag: The portion of elapsed time during which the

operating system is performing functions on behalf of

problem (user) programs. This time is not attributed

to any specific program by job accounting.

pagg aagapglga: An interrupt which occurs whenever

reference is made to a page of virtual memory which is

not in real memory, is. page fault.

pagg faglt: A page exception.

paga: The smallest unit of virtual memory that is managed

by the paging mechanism of the virtual system. In

this thesis a page is fixed and either 2048 or 4096

bytes.

paglag: The process of selecting a page frame of real

memory, possibly writing its contents onto auxiliary

storage (disk or drum), and reading the missing

virtual page into the selected page frame in virtual

systems.

paglpheral: An I/O unit or piece of data processing

equipment which is locally attached to the central

processor (CPU) but is not a part of it.

152

pglgglly aghgggllag: The operating system policy of

giving control to the program which has the greatest

importance (possibly on an arbitrary scale) and is

ready to run.

pglgglay;£a§aag garvice: The queue service discipline

which services the highest priority arrival in the

queue and resumes service to any interrupted arrival

only after all higher priority arrivals have completed

service.

pggblaa 599553 The state of the CPU when user program

instructions are being executed. In this state,

certain CPU instructions which may compromise the

integrity of the entire system are prohibited. This

is in contradiction to system state, during which any

instruction may be executed.

pgggggnggra: The form of the solution for network

queuing problems which expresses the probabilities for

network and subnetwork states as the product of the

probibilities for the individual nodes of the

network. Such a problem is said to be separable.

g§: A queue service discipline for a server which has

Processor Sharing. In this case the server can

service all arrivals simultaneously, but with the

individual service rates identical and inversely

proportional to the number of arrivals being served.

This construct is the limiting case for round-robin

scheduling.

gaag_a aggaag: See direct access method.

aagponse: In the case of terminals, usually the elapsed

time from data input until the answer or acknowledge-

ment is received at the terminal. In the case of

program I/O, response time is the time from them

request to begin an I/O operation until the operation

is completed.

_§§: Rotational Position Sensing. The technology which

allows some disk or drum I/O units to disconnect from

the channel during rotational delay and to reconnect

to the channel when the desired records come under the

read/write heads. This greatly increases the data

carrying capacity of the channel.

§lT_: An I/O scheduling method for disks and drums which

services a queue of I/O requests so that requests with

the shortest access time (from the current angular

displacement of the recording medium or the current

sector) are serviced first,

Shortest-Access-Time-First.

153

§§_N: An I/O scheduling method for disks which moves the

access mechanism back and forth over the disk surfac-

es, stopping at cylinders which have outstanding

requests to be serviced.

agaedullag: In this thesis, scheduling is understood to

mean the arrangement and sequencing of programs or

jobs for production as performed by a person or a

program which is not a part of the operating system.

In other uses of the word "scheduling", the meaning is

made clear by the presence of another word such as

"disk", "I/O", etc.

seek: A physical movement of a disk access mechanism or

arm from one position or cylinder location to another.

§aal;ga;kg§§ paocess: A stochastic process characterized

by the fact that the probability distribution of the

time between changes in system states depends only on

the initial and terminal states and is otherwise

independent of the previous history of the system.

aapagable: A problem which can be formulated in such a

way that the solution is expressible as a product of

probabilities (see product form).

gaaggg aagggy: Portions of virtual memory having subrout-

ines which are executed by two or more independent

programs. Such subroutines may not modify instruc-

tions or data areas in the shared memory, and are said

to be gazaaarant.

spindla: See module or disk.

§pggllag: A method of increasing overall computer system

efficiency by freeing programs from direct interaction

with low speed I/O devices. The input is read from

data input devices by a "reader" program, blocked and

written to disk. When the actual processing program

is executed, its card and print output is blocked and

written to disk. Actual punching and printing are

accomplished asynchronously by "writer" programs.

_§l§: A disk scheduling method which services I/O

requests in the order of the shortest seek times from

the current location of the access arm,

Shortest-Seek-Time-First.

154

51555! 52595: The state of the CPU when operating system

instructions are being executed. In this state, all

instructions are allowed including special system

(privileged) instructions. Host of the time in this

state is not attributed to any specific program and

may be thought of as overhead.

alag;sharlag: The process of giving computer access to

terminal users so that the user can interact with the

computer with little regard to the absence or presence

of other users. Time-sharing systems generally use

the round-robin or time-slicing scheduling discipline.

The service discipline rotates access to the CPU among

the members of the queue in discrete increments of

time.

tgaaaactiga: A logical exchange of data between a custom-

er or user and the data processing system. Examples

of transactions are payments, orders, requests,

requisitions and inquiries.

algagal systaa: A computer system (including hardware and

software) which is capable of executing programs of

any size without regard to the size of the computer's

real memory.

aggklag gap: The collection of all pages of a program (or

system) which has been referenced during some arbi-

trary interval.

APPENDIX A

Table A1.
l
W
'
U

G
w
N
—
b

t
h
a
w
»
.
.
.

O
‘
U
’
I
S
U
J
N
.
‘

PAGES

OUT

APPENDIX A

Non-paging Runs Repl I - Heasured

PAGES OTHER

991 929

11,961

12,002

6,334

11,900

5,571

2,811

11,712

6,718

3,736

2,151

11,662

6,507

3,820

2,332

985

11,448

6,673

3,942

2,469

1,131

528

156

9999

301.01

301.01

342.50

342.50

342.50

357.18

357.18

355.12

355.12

431.66

431.66

431.66

429.59

429.59

437.97

437.97

437.97

437.97

431.77

431.77

452.48

452.48

452.48

452.48

452.48

435.96

435.96

ELAPSED PROCESS

9999

97.87

34.07

96.98

117.44

53.16

95.62

102.71

52.45

59.24

93.67

123.99

68.68

40.35

73.81

92.54

119.86

70.04

43.94

18.97

76.10

90.86

122.83

72.24

46.40

21.70

9.97

77.49

URKG

999

58

1136

60

56

1136

60

58

54

1136

62

56

56

56

113

60

58

58

58

56

1136

62

58

58

60

56

56

1136

157

Table A1(Cont.).

1
5
1
1
'
!
)

q
m
m
c
w
w
.
.
.

(
D
Q
O
N
U
'
I
S
W
N
.
.
.

PAGES PAGES OTHER ELAPSED PROCESS NRKG

999 99 929 9999 9999 999

. 10,600 429.87 83.78 62

. 6,343 429.87 116.74 60

. 3,766 431.93 68.97 56

. 2,370 431.93 44.36 58

. 1,149 431.93 21.88 58

. 547 431.93 10.11 58

. 177 411.27 3.90 56

411.27 73.09 1136

. 10,284 419.55 81.35 66

. 6,115 419.55 112.55 58

. 3,648 421.62 67.05 56

. 2,317 421.62 43.35 58

. 1,121 421.62 21.36 58

. 557 421.62 10.43 56

. 216 421.62 4.70 58

. 75 351.39 1.57 54

351.39 62.32 1138

29.9

01101

OVRHED

01101

02011

OVRHED

01101

02011

03001

OVRHED

01101

02011

03001

04000

OVRHED

01101

02011

03001

04000

05110

OVRHED

01101

02011

03001

04000

05110

06101

OVRHED

Table

CPU

9999

0.33

.11

.28

.34

.16

.27

.29

.15

.17

.22

.29

.16

.09

.17

.21

.27

.16

.10

.04

.18

.20

.27

.16

.10

.05

.02

.18

A2.

CYCLE

9999

0.025

.029

.054

.030

.064

.126

.037

.064

.116

.200

.038

.067

.115

.188

.438

.040

.068

.115

.183

.400

.824

TI/O

RATE

35.05

18.50

33.32

15.60

7.92

27.14

15.57

8.66

5.01

26.63

14.86

8.72

5.33

2.28

25.30

14.75

8.71

5.46

2.50

1.21

158

CPU CPU

3929 9999999

122.22 0.00818

123.76 .00808

53.94 .01854

124.46 .00804

54.25 .01843

53.61 .01865

125.05 .00800

54.19 .01845

54.42 .01838

53.33 .01875

126.03 .00794

54.30 .01842

54.56 .01833

53.09 .01884

51.97 .01924

126.00 .00794

54.33 .01841

54.58 .01832

53.23 .01879

52.17 .01917

53.05 .01885

PAGEIN

9999

Non-paging Runs Repl I - Calculated

I/O

9999

39.74

35.05

18.50

33.32

15.60

7.92

27.14

15.57

8.66

5.01

26.63

14.86

8.72

5.33

2.28

25.30

14.75

8.71

5.46

2.50

1.21

CYCLE

EACTQR

1.000

0.997

0.992

0.996

0.992

0.987

0.995

0.992

0.989

0.985

0.995

0.992

0.989

0.986

0.983

0.995

0.992

0.989

0.986

0.983

0.982

OVRHED

01101

02011

03001

04000

05110

06101

07100

08000

OVRHED

CPU

91999

.20

.27

.16

.10

.05

.02

.01

.18

.19

.27

.16

.10

.05

.03

.01

0.00

.18

CYCLE

29.3.1.9

.041

.068

.115

.182

.376

.788

2.311

.041

.069

.116

.182

.376

.756

1.943

4.624

159

Table A2(Cont.).

TI/O

3.5.2.3.

24.66

14.76

8.72

5.49

2.66

1.27

0.43

24.52

14.58

8.66

5.50

2.66

1.32

0.52

0.22

CPU CPU

9999 9999999

126.53 .00790

54.34 .01840

54.62 .01831

53.44 .01871

52.57 .01902

54.22 .01844

45.63 .02192

126.43 .00791

54.34 .01840

54.43 .01837

53.47 .01870

52.53 .01904

53.48 .01870

46.20 .02165

48.44 0.02065

PAGEIN

BATE

I/O CYCLE

BATE

24.66

14.76

8.72

5.49

2.66

1.27

0.43

24.52

14.58

8.66

5.50

2.66

1.32

0.52

0.22

999.999

0.995

0.992

0.989

0.987

0.985

0.983

0.982

0.995

0.992

0.989

0.986

0.984

0.982

0.981

0.981

Table A3.

(
1
1
3
d
e

S
C
U
M
—
I

(
”
N
-
d

N
-
b

.
a

0
1
4
1
1
4
:
d
e

g
o
n
n
a
w
m
-
n

G
J
Q
G
L
fl
fi
w
N
—
l

PAGES

929

PAGES

99

160

OTHER

949

11,977

11,982

6,388

11,965

5,606

2,856

11,838

6,810

3,736

2,151

11,724

6,571

3,858

2,391

1,042

11,582

6,751

4,075

2,523

1,183

544

11,159

6,607

3,948

2,441

1,169

585

198

10,327

6,182

3,785

2,380

1,161

596

228

81

ELAPSED

9999

301.03

301.03

342.51

344.58

344.51

359.20

361.27

357.14

357.14

431.71

431.71

433.77

431.71

431.79

444.15

444.15

444.15

444.15

435.89

435.89

460.81

460.81

460.81

460.81

460.81

448.41

448.41

450.57

450.57

450.57

450.57

450.57

450.57

429.92

429.92

427.90

427.90

427.90

427.90

427.90

427.90

425.83

354.72

354.72

Non-paging Runs Repl II - Heasured

PROCESS

TIRE

97.70

33.94

96.78

117.73

53.45

96.29

103.00

52.76

59.86

94.14

124.76

68.35

40.10

74.73

93.30

120.78

70.55

44.88

19.99

77.16

91.96

123.82

74.41

47.29

22.64

10.13

79.96

88.46

121.88

72.14

45.90

22.16.

10.86

4.21

76.83

82.02

113.20

69.14

44.21

21.99

11.09

4.92

1.59

63.14

2599

01101

OVRHED

01101

02011

OVRHED

01101

02011

03001

OVRHED

01101

02011

03001

04000

OVRHED

01101

02011

03001

04000

05110

OVRHED

01101

02011

03001

04000

05110

06101

OVRHED

01101

02011

03001

04000

05110

06101

07100

OVRHED

01101

02011

03001

04000

05110

06101

07100

08000

OVRHED

Table A4.

CPU CYCLE

92;; an;

0.33 0.025

.11

.28 .029

.34 .054

.16

.27 .030

.29 .064

.15 .125

.17

.22 .036

.29 .063

.16 .116

.09 .201

.17

.21 .038

.27 .068

.16 .115

.10 .186

.05 .418

.18

.20 .040

.27 .068

.16 .113

.10 .183

.05 .389

.02 .823

.18

.20 .040

.27 .068

.16 .114

.10 .185

.05 .385

.02 .769

.01 2.160

.18

.19 .041

.27 .069

.16 .113

.10 .180

.05 .368

.03 .717

.01 1.860

0.00 4.326

TI/O

3.42.1;

39.79

34.99

18.54

33.31

15.52

8.00

27.42

15.78

8.62

4.99

26.40

14.80

8.69

5.39

2.39

25.14

14.65

8.85

5.48

2.57

1.22

24.77

14.67

8.77

5.42

2.60

1.30

0.46

24.14

14.45

8.85

5.56

2.72

1.40

0.54

0.23

161

Non-paging Buns

CPU

3.9.23;

122.60

123.81

54.27

124.27

54.44

54.15

125.76

54.59

54.67

53.66

125.68

54.41

54.70

53.30

52.18

125.96

54.53

54.78

53.35

52.31

53.80

126.16

54.21

54.74

53.20

52.80

53.97

47.25

125.92

54.62

54.76

53.85

52.83

53.83

46.55

51.74

CPU

QLANIEQ

0.00816

.00808

.01843

.00805

.01837

.01847

.00795

.01832

.01829

.01864

.00796

.01838

.01828

.01876

.01916

.00794

.01834

.01826

.01874

.01912

.01859

.00793

.01845

.01827

.01880

.01894

.01853

.02117

.00794

.01831

.01826

.01857

.01893

.01858

.02149

0.01933

PAGEIN

£323

Repl II - Calculated

I/O

RAT§

39.79

34.99

18.54

33.31

15.52

8.00

27.42

15.78

8.62

4.99

26.40

14.80

8.69

5.39

2.39

25.14

14.65

8.85

5.48

2.57

1.22

24.77

14.67

8.77

5.42

2.60

1.30

0.46

24.14

14.45

8.85

5.56

2.72

1.40

0.54

0.23

CYCLE

FACTOR

1.000

0.997

0.992

0.996

0.992

0.987

0.995

0.992

0.988

0.985

0.995

0.992

0.989

0.986

0.983

0.995

0.992

0.989

0.986

0.983

0.982

0.995

0.992

0.989

0.986

0.983

0.982

0.981

0.995

0.992

0.989

0.986

0.984

0.982

0.981

0.981

Table A5.

m
o
r
e

4
:
d
e

O
‘
U
'
I
S
U
J
N
—
I

m
a
c
a
w
.
.
.

q
m
m
c
w
m
d

m
u
m
m
a
w
w
d

PAGES

992

41

14

2

2

10

95

39

28

34

73

26

150

132

66

141

448

569

97

197

253

347

458

826

732

590

237

1,392

2,187

3,225

2,930

2,691

3,206

922

162

Paging Runs Repl I - Measured

PAGES

~$E

160

68

3

(4

31

296

120

34

13

111

93

476

336

159

163

491

1,090

341

1,261

987

949

954

2,111

1,751

1,390

648

10,734

8,671

8,202

7,501

6,921

6,618

3,136

OTHER

£40.

12,002

7,015

3,909

2,331

12,002

6,830

2,593

1,081

12,002

6,983

4,348

2,763

1,149

261

12,002

7,288

4,062

2,581

429

178

100

11,921

10,564

525

460

367

866

ELAPSED PROCESS

gals.

441.10

445.16

447.19

447.19

441.10

461.23

467.54

467.54

467.54

467.54

461.23

500.05

508.69

517.17

517.17

517.17

517.17

500.05

597.96

609.39

584.91

611.67

611.67

611.67

611.67

584.91

2,183.56

2,183.56

2,185.5

2,185.59

2,185.59

2,185.59

2,183.56

22.14;:

95.26

129.29

71.72

43.69

72.11

95.29

125.87

75.22

48.51

20.71

78.74

95.63

128.51

79.51

51.76

21.97

5.32

94.21

96.44

135.87

75.56

49.02

9.05

3.67

2.38

127.99

99.97

201.39

12.55

10.64

8.97

19.84

506.51

HRKG

22.1

110

54

42

52

120

66

50

44

46

60

62

54

46

48

46

48

36

34

58

46

46

44

40

26

22

34

50

44

26

24

22

32

32

01101

02011

03001

04000

OVRHED

01101

02011

03001

04000

05110

OVRHED

01101

02011

03001

04000

05110

06101

OVRHED

01101

02011

03001

04000

05110

06101

07100

OVRHED

01101

02011

03001

04000

05110

06101

07100

08000

OVRHED

Table A6.

CPU CYCLE

9.1;; 1.1.1:

0.22 0.036

.29 .063

.16 .114

.10 .191

.16

.21 .038

.27 .067

.16 .113

.10 .179

.04 .392

.17

.19 .040

.25 .069

.15 .115

.10 .177

.04 .315

.01 .383

.19

.16 .045

.22 .074

.13 .117

.08 .173

.02 ..241

.01 .317

.00 .410

.22

.05 .096

.09 .114

.01 .250

.01 .275

.00 .300

.01 .292

163

Paging Buns Repl I - Calculated

TI/O

3323

27.58

15.91

8.75

5.22

26.67

14.87

8.89

5.58

2.552

24.96

14.39

8.72

5.66

3.17

2.61

22.18

13.58

8.57

5.78

4.15

3.16

2.44

10.38

8.81

4.00

3.64

3.34

3.43

CPU

3.3.2.}; 993329.}!

CPU

126.00 0.00783

54.26

54.52

53.37

125.97

54.27

54.78

53.47

52.25

125.52

54.35

54.70

53.40

52.35

49.26

124.46

53.65

53.77

52.68

47.50

48.80

42.44

119.26

52.46

41.93

43.32

41.01

43.69

.01825

.01833

.01871

.00775

.01811

.01811

.01861

.01736

.00766

.01756

.01764

.01769

.01339

.00393

.00727

.01642

.01508

.01386

.00356

.00190

.00160

.00441

.01047

.00144

.00134

.00123

0.00265

PAGEIN I/o CYCLE

gggg FACTOR13.422

0.4

.2

0

0
1

6

3

1

0

2

2

0
7

3

3

9

2.1

:
4
:

A
N
N
w
d
-
I
-
I
N

.
3
0
0
w
a

n
o
o
n
-
n
o

0
0
0
0
.
.
.
.

q

1
:
0
1
6
:
0
0

d
m
e
I
G
G
O
‘
d

\
I

O
K
D

27.21

15.76

8.74

5.22

26.02

14.61

8.81

5.55

2.31

24.00

13.73

8.41

5.35

2.22

0.51

20.07

11.96

6.95

4.22

0.70

0.29

0.17

4.92

4.84

0.24

0.21

0.17

OCuo

0.995‘

0.992

0.988

0.985

0.994

0.995

0.992

0.988

0.985

0.982

0.993

0.994

0.991

0.988

0.985

0.983

0.981

0.992

0.991

0.989

0.986

0.984

0.982

0.980

0.978

0.989

Table A7.

c
u
m
.
.
-

I
w
'
U

0
1
0
1
3
:
d
e

(
”
C
U
M
-
A

Q
O
N
U
'
l
-
F
L
U
N
A

-PAGES

OUT

45

16

0

21

18

116

63

24

37

81

36

150

97

31

112

388

531

74

234

298

402

521

951

807

629

255

PAGES

l!

166

85

3

7

52

302

170

34

20

86

95

459

252

86

88

378

1,067

282

1,556

1,212

1,156

1,151

2,336

1,954

1,556

755

164

OTHER

I‘O

12,002

6,919

3,916

2,295

12,002

6,859

4,160

2,610

1,110

12,002

6,953

4,242

2,838

1,173

249

12,002

7,uuu

4,180

2,770

537

183

91

2193

441.43

443.54

445.57

445.57

441.43

462.56

468.95

471.04

471.04

471.04

462.56

487.47

502.52

504.88

504.88

504.88

504.88

487.47

644.82

654.00

627.30

656.28

656.28

656.28

656.28

627.297

Paging Runs Repl II - Measured

ELAPSED PROCESS

QIHE

95.46

127.67

71.89

43.00

72.22

95.49

126.63

76.01

48.80

21.22

78.78

95.54

128.55

78.36

53.16

22.46

4.89

89.78

96.51

138.82

78.19

52.67

11.176

3.81

2.30

138.81

WRKG

.53.:

100

64

44

54

110

70

52

40

44

62

62

56

50

42

46

48

38

34

56

46

44

44

44

26

20

34

OVRHED

01101

02011

03001

04000

05110

OVRHED

01101

02011

03001

04000

05110

06101

OVRHED

01101

02011

03001

04000

05110

06101

07100

OVRHED

Table A8.

CPU CYCLE

9.2;; 125.2

0.22 0.036

.29 .063

.16 .114

.10 .193

.16

.21 .038

.27 .067

.16 .112

.10 .179

.05 .394

.17

.20 .039

.26 .070

.16 .117

.11 .172

.04 .325

.01 .383

.18

.15 .048

.21 .076

.13 .118

.08 .167

.02 .228

.01 .307

.00 .398

0.22

Paging

TI/O

BALE.

27.57

15.79

8.80

5.17

26.60

14.99

8.91

5.59

2.54

25.57

14.34

8.57

5.80

3.07

2.61

21.03

13.24

8.51

5.98

4.38

3.26

2.51

165

CPU

ELIE 92.3.1112!

CPU

125.74 0.00784

54.20

54.48

53.40

125.71

54.17

54.75

53.51

52.37

125.63

54.10

54.15

53.41

52.28

51.17

124.38

53.63

53.47

52.62

48.14

48.29

40.00

.01823

.01834

.01867

.00776

.01801

.01812

.01855

.01772

.00796

.01784

.01810

.01816

.01447

.00371

.00712

.01604

.01465

.01343

.00389

.00178

0.00140

PAGEIN

RATE

0.4

.2

.0

.0

.1

.7

.4

.1

.0

.2

.2

0.9

.5

.2

.2

.7

2.1

.6

d
N
U
U
-
l
-
A
-
L
N

I
.

O
O

0
l

O
O

N
c
o
a
x
o
o
m
m
c

Runs Repl II - Calculated

I/O CYCLE

882:3.- .L’A2198

27.19

15.60

8.79

5.15

25.95

14.63

8.83

5.54

2.36

24.62

13.84

8.40

5.62

2.33

0.50

18.61

11.38

6.67

4.22

0.82

0.28

0.14

0.995

0.992

0.988

0.985

0.994

0.995

0.992

0.988

0.985

0.982

0.993

0.994

0.991

0.988

0.985

0.983

0.981

0.992

0.991

0.989

0.987

0.984

0.983

0.981

0.979

0.989

"
R

_

23.9.

CNTL

CNTL

CNTL

CNTL

OVRHED

CNTL

CNTL

CNTL

CNTL

CNTL

OVRHED

CNTL

CNTL

CNTL

CNTL

CNTL

CNTL

OVRHED

CNTL

CNTL

CNTL

CNTL

CNTL

CNTL

CNTL

OVRHED

Table A9.

c
u
m
-
s

G
U
I
S
W
N
-
B

m
b
N
-
i

d
o
w
n
s
t
a
t
e
.
.
.

PAGES

921

28

23

33

57

70

90

83

143

184

312

312

419

600

685

575

579

793

915

970

901

805

166

PAGES OTHER

;3

143

73

110

275

263

269

210

326

381

1,534

1,502

1,554

1,746

1,854

3,306

2,787

2,682

2,500

2,411

2,192

1,095

.119

12,144

9,123

6,223

3,409

8,101

6,679

5,353

3,904

3,975

3,785

2,712

1,848

1,1uu

538

3,647

3,161

1,693

711

333

194

156

EIQE

761.46

761.46

762.73

762.73

761.46

655.25

655.25

655.25

649.05

636.48

636.48

393.59

393.59

393.59

393.58

391.53

391.53

609.72

609.72

609.72

609.72

606.47

606.47

584.38

584.38

Page Allocation Runs - Heasured

ELAPSED PROCESS

ELLE

222.39

164.80

113.59

64.75

110.71

142.30

116.44

94.19

70.22

74.19

95.19

68.75

49.12

33.66

21.24

10.87

91.72

68.90

60.90

32.77

14.02

6.82

4.33

3.54

138.5C

URKG

§§$

82

58

64

78

66

52

52

52

54

62

52

52

48

38

26

56

52

48

40

36

26

24

2399

CNTL 1

CNTL 2

CNTL 3

CNTL 4

OVRHED

CNTL 1

CNTL 2

CNTL 3

CNTL 4

CNTL 5

D

Table A10.

CPU CYCLE

HEEL 2393

0.29 0.062

.22 .083

.15 .120

.08 .207

.15

.22 .078

.18 .094

.14 .118

.11 .153

.12 .146

.15

.18 .074

.13 .093

.09 .116

.05 .136

.03 .164

.01 . . .

.23

.11 .088

.10 .103

.05 .139

.02 .190

.01 .221

.01 .254

.01 0.286

0.24

167

Page Allocation Runs - Calculated

TI/O

833.3:

16.17

12.08

8.30

4.83

12.77

10.60

8.49

6.52

6.85

13.52

10.71

8.65

7.35

6.11

4.20

11.40

9.76

7.18

5.27

4.52

3.93

3.50

CPU CPU

.832: QWUANTQ!

54.61 0.01801

55.37 .01792

54.78 .01794

52.66 .01757

56.94 .01701

57.37 .01677

56.85 .01693

55.60 .01660

53.59 .01703

55.07 .01292

55.23 .01165

54.93 .00989

53.90 .00735

49.49 .00455

52.95 .00990

51.92 .00964

51.69 .00749

50.77 .00437

48.95 .00249

45.01 .00181

44.40 0.00171

PAGEIN

BATE

0.2

.1

.1

.4

0
.
8
8
8
0

O
Q
S
O
Q
N
O

w
a
a
w
w
w

U
U
R
n
g
U
'
I

0
0
0
0
0
0
0

N
G
O
—
A
k
O
‘
b

I/O

RATE

15.95

11.98

8.16

4.47

12.37

10.20

8.17

6.02

6.25

9.62

6.89

4.70

2.91

1.37

0.31

5.98

5.19

2.78

1.17

0.55

0.32

0.26

CYCLE

Fncggg

0.996

.994

.993

.992

.994

.993

.993

.992

.992

.989

.988

.987

.987

.986

.985

.997

.996

.996

.995

.995

.995

0.995

25.9

000

CTL

CTL

CTL

OVRHED

011

CTL

CTL

CTL

OVRHED

101

CTL

CTL

CTL

OVRHED

110

CTL

CTL

CTL

OVRHED

CTL

CTL

CTL

001

OVRHED

CTL

CTL

CTL

010

OVRHED

CTL

CTL

CTL

100

OVRHED

CTL

CTL

CTL

111

OVRHED

Table A11.

l
w
'
U

S
W
N
-
fl

G
W
N
-
i

s
u
m
o
.
.
.

#
U
J
N
—
b

1
:
d
e

B
O
O
N
—
I

1
:
d
e

S
W
I
G
-
l

PAGES

991

1

9

23

51

12

23

0

28

57

5

22

0

6

59

15

5

11

25

6O

15

24

29

39

70

16

26

17

34

52

21

38

27

36

59

25

31

26

35

65

19

168

PAGES OTHER

2!

44

21

47

76

32

144

(4

47

101

14

165

4

8

112

49

44

23

43

97

29

117

78

97

239

60

143

57

117

115

53

167

68

128

125

72

166

81

116

240

65

149

8,462

4,302

2,467

1,293

8,409

4,015

2,230

1,114

8,313

3,777

2,129

1,050

8,440

4,415

2,575

1,359

11,915

8,961

6,044

8,718

12,395

9,330

6,418

8,720

12,075

9,174

6,255

8,720

11,941

9,025

6,148

8,718

IIAE

288.76

288.76

290.81

280.56

280.56

270.62

270.62

270.62

258.43

258.43

260.51

260.51

262.60

250.35

250.35

294.87

294.87

296.96

286.67

286.67

746.14

748.17

748.17

737.97

737.97

776.57

776.57

778.60

768.41

768.41

760.68

760.68

762.76

752.52

752.52

752.53

752.53

752.53

742.29

742.29

Program Estimation Runs - Measured

ELAPSED PROCESS

r;8§

67.18

79.81

46.37

24.54

45.27

67.66

74.35

42.04

21.15

42.63

66.82

69.83

39.77

19.99

41.53

67.58

81.51

48.29

25.81

46.35

218.38

161.44

110.52

68.36

108.75

227.01

168.15

117.22

68.48

219.93

164.09

113.55

68.26

110.79

219.04

162.67

112.41

69.14

109.74

wane

§§I

56

52

64

96

96

92

54

56

76

94

94

56

58

64

82

72

58

62

84

80

84

58

66

70

94

90

60

66

58

96

82

62

64

64

84

82

58

64

.74

88

169

Table A12. Program Estimation Runs - Calculated

CPU CYCLE TI/O CPU PAGE PAGEIN EXP ADJ-CPU

2595 31;; 2383 8323 3333 8323 8313 332193 EAT!

000 1 0.23 0.034 29.46 125.98 0.2 0.2 0.995 126.58

CNTL 2 .28 .067 14.93 54.92 0.1 0.1 0.991 54.38

CNTL 3 .16 .116 8.65 53.23 0.2 0.2 0.990 53.79

CNTL 4 .09 .205 4.88 52.73 0.5 0.3 0.989 53.32

OVRHED .16 0.2 0.1

011 1 .25 .032 31.08 126.20 0.6 0.5 0.995 126.80

CNTL 2 .28 .067 15.83 54.02 0.0 0.0 0.991 54.51

CNTL 3 .16 .119 8.42 53.07 0.3 0.2 0.989 53.65

CNTL 4 .08 .213 4.71 52.71 0.6 0.4 0.988 53.32

OVRHED .17 0.1 0.1

101 1 .26 .031 32.57 124.50 0.7 0.6 0.995 125.07

CNTL 2 .27 .069 14.52 54.10 0.0 0.0 0.993 54.48

CNTL 3 .15 .123 8.14 53.57 0.1 0.0 0.991 54.05

CNTL 4 .08 .215 4.65 52.58 0.7 0.4 0.990 53.09

OVRHED .17 ' 0.3 0.2

110 1 .23 .035 28.78 124.91 0.2 0.1 0.995 125.53

CNTL 2 .28 .066 15.05 54.18 0.1 0.1 0.992 54.64

CNTL 3 .16 .113 8.82 53.37 0.2 0.1 0.990 53.90

CNTL 4 .09 .197 5.08 52.55 0.5 0.3 0.989 53.14

OVRHED .16 0.2 0.1

CNTL 1 .29 .062 16.13 54.57 0.2 0.2 0.995 54.86

CNTL 2 .22 .083 12.08 55.52 0.1 0.1 0.993 55.91

CNTL 3 .15 .122 8.21 54.70 0.2 0.1 0.992 55.15

001 4 .09 .082 12.14 127.55 0.4 0.3 0.992 128.53

OVRHED .15 0.1 0.1

CNTL 1 .29 .062 16.15 54.61 0.2 0.2 0.995 54.90

CNTL 2 .22 .083 12.09 55.49 0.1 0.1 0.993 .55.88

CNTL 3 .15 .119 8.39 54.76 0.2 0.2 0.992 55.21

010 4 .09 .087 11.50 127.36 0.2 0.2 0.992 128.35

OVRHED .15 0.1 0.1

CNTL 1 .29 .062 16.09 54.91 0.3 0.2 0.995 55.20

CNTL 2 .22 .082 12.15 55.91 0.1 0.1 0.993 56.31

CNTL 3 .15 .119 8.37 55.10 0.2 0.2 0.992 55.55

100 4 .09 .085 11.76 127.77 0.2 0.2 0.992 128.76

OVRHED .15 0.1 0.1

CNTL 1 .29 .062 16.09 54.52 0.3 0.2 0.995 54.82

CNTL 2 .22 .083 12.10 55.49 0.1 0.1 0.993 55.88

CNTL 3 .15 .120 8.33 54.70 0.2 0.2 0.992 55.16

100 4 .09 0.083 12.07 126.12 0.4 0.3 0.992 127.10

OVRHED 0.15 0.1 0.1

SELECTED BIBLIOGRAPHY

1.

SELECTED BIBLIOGRAPHY

Bard, Y. "Characterization of Program Paging in a

Time-Sharing Environment", Inn gonnnel e; Reseanen

enn Develepmenn, Vol. 17, No. 5, (Sept 1973), pp.

387-393.

v. "Application of the Page Survival Index

(PSI) to Virtual-Eemory System Performance", IE!

Journal en Researen enn nevelopnenn, Vol. 19, (Hay

1973f? pp. 212-220.

_. "A Characterization of VH/370 Uorkloads",

Inn gembnigge Scientific Centen, Technical Report

Baskett, F., and Gomez, F.P. "Processor Sharing in a

Central Server Queuing Hodel of nultiprogramming

with Applications", girth nnnne; Princenen gengen-

enee en Infiormatnon Scieneee eng 5 stem , (1972),

pp. 598-603.

Bass, L.J. "0n Optimal Processor Scheduling for Hulti-

programming", SIAM g. QOHPUT., Vol. 2, No. 4,

(December 1973), pp. 273-80.

Belady, L.A., and Kuehner, C.J. "Dynamic Space-Sharing

in Computer Systems", Conmunicetions 92 ene neg,

Vol. 12, No. 5, (Bay 1969), pp. 282-288.

Boyd, D.L. "A Hultiple Resource Hodel for_A Batch-Pro-

cessing Hultiprogralming System", Natione; Technieel

Infonnenien Senviee, U.S. Department of Commerce,

Report an-722332, (narch 1971).

Boyse, J.i., and Warn, D.R. "A Straightforward Hodel

for Computer Performance Prediction", gelnuting

gnnnexs, Vol. 7, No. 2, (June 1975), pp. 73-93.

Brandwajn, A. "A Queuing Hodel of hultiprogrammed

Computer Systems Under Pull load Conditions",

Senagnisegiene 2: :92 ASE. (April 1977). pp-

222-240.

171

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

172

Buchholz, W. "A Synthetic Job for Heasuring System

Performance", 183 Syetems Jounnel, Vol. 8, No. 4,

Burge, 3.8., and Konheim, A.G. "An Accessing Hodel",

gennna; en nne ngn, Vol. 18, No. 3, (July 1971), pp.

Chamberlain, D.D., Fuller, 5.8., and Liu, L.Y. An

Analysis of Page Allocation Strategies for Hultipro-

gramming Systems with Virtual Hemory", IE! gennne;

2; Eeeearsh 229 93393222223. Vol- 17. NO- 5. (Sept

1973), pp. 404-412.

Chang, H. "Single-Server Queuing Processes in Computing

Systems", Inn Systems gournel, Vol. 9, No. 1,

Courtois, P.J. "Decomposibility, Instabilities, and

Saturation in multiprogramming Systems", genmuniee—

Siege 2; £22 42!. Vol. 18. No. 7. (July 1975). pp-

371-376.

Cox, D.R. "A Use of Complex Probabilities in the

Theory of Stochastic Processes", Proeeednnge en nne

generidge gnilosophice; §ogiet1, Vol. 51, (1955),

pp. 313-319.

..--....- Planning 9: Ezesrinenss. New York: John

Wiley and Sons,Inc., 1958.

Denning, P.J. "Effects of Scheduling on File Hemory

Operations", Spying Join; genputen gengerenee,

(1967), pp. 9-21.

=. "The Working Set Hodel for Prograh Behav-

ior", gommunicatione e; nne ngn, Vol. 11, No. 5,

(May 1968), pp. 323-33.

Denning, P.J., and Schwartz, S.C. "Properties of the

Working Set Hodel", Communicntiene en nne neg, Vol.

15, No. 1, (Harch 1972), pp. 191-198.

Fenichel, 8.8., and Grossman, A.J. "An Analytic Hodel

of Uultiprogrammed Computing", Pnoceedinge e; nne

Series .42...int 9222.....uter £22£2£e_nc_e. (1969). pp.

Fernandez, E.B., and Lang, T. "Computation of Lower

Bounds for Hultiprocessor Schedules", Inn gennne; en

Reseenen enn nenelepnenn, Vol. 19, No. 5, (September

1975), pp. 435-44.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

173

Finn. J.D. 3 982828; 5299; :2; PPIIIYQEIEEE £22l1§i§v
New York: Holt, Rinehart and Winston, Inc., 1974.

Forbes, K., and Goldsworthy, A.W. "A Prescheduling

Algorithm -- Scheduling a Suitable Mix Prior to

Processing", Eng 9922938; gennnel, Vol. 20, No. 1,

(1977), pp. 27-29.

Franklin, M.A., and Gupta, R.K. "Computation of Page

Fault Probability from Program Transition Diagrams",

Semmgniseriene 2E :29 89!. Vol- 17. No. 4. (April

1974), pp. 186-191.

Gaver, Jr., D.P. "A Waiting Line with Interrupted

Service Including Priorities", gennne; e; nne Regen

gnennenica; genieny, Series 13, No. 24, (1962), pp.

73-90.

_____. "Probability Models for 8u1tiprogramming

Computer Systems", neurne; 93 ene ACM, Vol. 14,No.

Ghanem, 8.2. "Dynamic Partitioning of Main Memory Using

the Working Set Concept", Inn gennne; en geeeenen

eng nenelepment, Vol. 19, No. 5, (September 1975),

pp. 445-50.

Gordon, W.J., and Newell, G.F. "Closed Queuing Systems

with Exponential Servers", Openenions Reseenen, Vol.

15, No. 2, (April 1967), pp. 254-265.

IBM Corporation "Analysis of Some Queuing Models in

Real-Time Systems",Form GF20-0007, Data Processing

Division, White Plains, N.Y. 10604.

Isaacson, E., and Keller, 8.8. nnelysis en figmeniee;

nennods, New York: John Wiley 8 Sons, Inc., 1966.

Iverson, K.E. n Pnognenning Lengnege, New York: John

Wiley 8 Sons, Inc., 1962.

Jackson, J.R. "Jobshop-Like Queuing Systems”, Manage-

ment §enence, Vol. 10, No. 1, (Oct 1963), pp.

131-142.

Kimbleton, S.R. "Batch Computer Scheduling: A Heuristi-

cally Motivated Approach", Offnee 9; gene; Reseanen,

Report AD-A007922 (September 1974).

Lewis, P.A.W., and Schedler, 6.5. “A Cyclic Queue Model

of Multiprogramming", Jounne; e; nne egg, Vol. 18,

No. 2, (April 1971), pp. 199—220.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

174

Miller, Jr., R.G. "Priority Queues", Tne nnnals en

82229233323; §£323§232§. Vol- 31. (1960). pp-

86-103.

Muntz, R.L. "Poisson Departure Processes and Queuing

Networks", Conferenee en Innennation Scieneee enn

gyenene, (March 1973), pp. 435-440.

National Bureau of Standards, gnaotionel geotorie;

2§§292§ £2; §é§£2£§ 23 2 L§!§l§v Washington: U- 5-

Department of Commerce, 1957.

Oden, P.8., and Schedler, G.S. "A Model of Memory

Contention in a Paging Machine", Communications 9;

nne ngn, Vol. 15, N0. 8, (August 1972), pp 761-771.

Reiser, M. "Interactive Modeling of Computer Systems",

IPA §1§£em§ 922222;. Vol. 15. so. a. (1976). pp-
308-27.

Saltzer, J.8. "A Simple Linear Model of Demand Paging

Performance", gemmunieatione en the ngn, Vol. 17,

No. 4, (April 1974), pp. 181-186.

Seaman, P.8., Lind, R.A., and Wilson, T.L. ”0n Telep-

rocessing System Design, Part IV: An Analysis of

Auxiliary Storage Activity", IE! Systene gournel,

Vol. 5, No. 3, (1968), pp. 158-170.

Sreenivasan, 8., and Kleinman, A.J. "0n the Construc-

tion of a Representative Synthetic Workload",

Communioenions e; nne ngn, Vol. 17, No. 3, (March

1974), pp. 127-33.

Teorey, T.J. "Properties of Disk Scheduling Policies on

Multiprogrammed Computer Systems", gel; geint

gemputen gonfenenee, (1972), pp. 1-11.

Waters, S.W. "Estimating Magnetic Disk Seeks", Ine

gempunen gennnel, Vol. 18, No. 1, (1975), pp. 12-17.

Wilhelm, N.C. "A General Model for the Performance of

Disk Systems", gourne; e; nne ngn, Vol. 24, No. 1,

(Jan 1977), pp. 14-31.

Welch, P.D. "0n Pre-Emptive Resume Priority Queues",

Tne Aflflélé en Mathemeniee; §§etistice, Vol. 35,

(1964), pp. 1340-48.

“'11’1111111augumfigmmnflmm“
3

