o0
! Hiby
HamAei
0= o .\ e
o

K

)

This is to certify that the

thesis entitled

A MODEL OF PROGRAM PERFORMANCE
IN MULTIPROGRAMMING SYSTEMS

presented by

Chester Terrance Trahan

has been accepted towards fulfillment
of the requirements for

Ph.D degree in _Management Science

Rt Co s -

ajor professor

Date //I/d /7;C5
Ve

0-7639

© 1978

CHESTER TERRANCE TRAHAN

ALL RIGHTS RESERVED

A MODEL OF PROGRAM PERFORMANCE

IN MULTIPROGRAMMING SYSTEMS

By

Chester Terrance Trahan

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Management

1978

\‘\

ABSTRACT

A MODEL OF PROGRAM PERFORMANCE
IN MULTIPROGRAMMING SYSTEMS

By

Chester Terrance Trahan

Good planning information is a continuing necessity
for Data Processing management. Along with the need for
good performance information in planning to meet demand for
computer services, there is a need for individual program

performance prediction in coamputer job scheduling.

Some of the information necessary for planning is
collected based on performance measurement (usually by
system softwvare). This must be augmented by benchemarks,
simulation or other techniques to predict system performance

under a specific set of circuamstances.

The use of an analytic model has been proposed as the
most flexible method of predicting computer performance for
medium scale, priority-interrupt drivem operating systess.
To this end an analytic model was developed with cyclic
queuing submodels for the Central Processing Unit and the
Input/Output units and a deterministic "independent
reference" submodel for program paging bebhavior. The model
vas programmed in APL [1] and Newton's Method and Aitken's
Delta Square [2] algorithm were used to achieve comnvergence

of the model to equilibrium solutions.

Chester Terrance Trahan

A set of parameterization rumns were pade on a
System/370 Model 148 and their measurements were then used
to estimate the system parameters: I/0 overhead, paging
overhead, Page-in/Page-out ratios, and page "weights" for
the paging submodel. A "synthetic" program was vwritten so
that computer usage and paging behavior could be controlled
internally and real storage, Input/Output behavior and
priority could be controlled externally ¢to the progras.
Several variations of the "synthetic" program were measured

and their characteristics estimated.

Following parameter estimation, the estimated values
vere used in the APL model to predict the performance of the
experimental programs in an experiment designed as a
2X2X2X2X2 half-replicate factorial. The actual experiments
vere then conducted and the experimental results compared to
the predictions. The results of the experiment showed good
prediction in the area of working set sizes and elapsed

times and aggregate I/O rates.

The results showed a sizable error in page rates,
channel utilization, overhead and CPU utilization. The
nature of these results was attributed to the inadequacy of
the independent reference =model in representing paging
behavior. These results reinforced Belady and Kuehner's
conclusions about the unsuitability of independent
references [3] as a model for program paging. Modifications

wvere then made to the model and the predictions of the

Chester Terrance Trahan

revised paging model showed good agreement with the
experimental data. The revised paging model as wvell as
several previously developed models showed good agreement
with paging behavior for programs executing with constrained
memory. However, all of the models examined showed a poor

fit under conditions of loose memory constraints.

BIBLIOGRAPHY

Iverson, K.E. A Programming Lanquage, New York, John
Wiley & Sons, Inc., 1962.

Isaacson, E., and Keller, H.B. Apnalysis of Nymerical
Methods, New York: John Wiley & Somns, Inc., 1966.

Belady, L.A., and Kuehner, C.J. "Dynamic Space-Sharing
in Computer Systems", Communications of the ACH,

To Thelma

iii

ACKNOWLEDGMENTS

I would like to thank the chairman of my guidance
committee, and present chairman of the Management Depart-
ment, Professor Phillip Carter for his encouragement. I
also wvant to thank the members of my dissertation committee,
Co-chairmen Professors Richard Henshaw and Herman Hughes,
and Professor Gerald Park. I also owe a debt of gratitude
to my manager, Paul Beukema, for his help in getting permis-
sion for me to perform my experimental work at IBM.

East Lansing,Michigan C.T.T.
1978

iv

TABLE OF CONTENTS

LIST OF TABLES . . « « « o o o o « o o o o
LIST OF FIGURES. . . ¢« ¢ ¢ ¢ « ¢ o« o« & o o &
LIST OF SYMBOLS. . ¢ ¢ « ¢ & s s s o o o o &
INTRODUCTION . &« ¢ «¢ ¢ o o o o o o o o o o
Performance Planning
Scheduling

Priorities and Interactions. .
Batch versus Timesharing . . .

I. BACKGROUND AND PREVIOUS WORK

CPU Models . « « o« « o« o « o &
Central Server Network Model
Simple Cyclic Queuing Model.
Simple Flow Model.
Cyclic Queuing with Paging and Over
Product of Stages Model.
Multiple Resource Allocation Model
"Straightfoward" Queuing Model .
Eclectic Model
Summary of Queuing Models. .
Synthetic Workload Benchmark

Models of Paging Behavior. . .
Working Set Model. . . .
The Lifetime Function. .
Markov Models.
A "Half-Life" Model. . .
The Simple Linear Model.
The Paging Index
The Page Survival Index.

I/OModels . « . « ¢« « « &
Disk Response Model. . .
Disk and Drum Scheduling
The Disk Seek Model.
Revised Disk Response Model.

8
fol)
o
0]

) . = o 3

® ¢ o o o o e e e o e o o o

® o o o o e s o o o e o o o

e 6 o o o o o o o ° o o o 9 o o o o o

viii

s e o o

e o o o o * e o o @ e o o o o o o o o o o & o+ o
N
w

II. MOLDEL DEVELOPMENT AND ANALYSIS. . « . .« &

Batch Model Requirements . .

CPU Submodel « . « « « « . .«
CPU Completion Time. . . .
CPU Waiting Time . « « . =
CPU Utilization and Elapsed T

o o o |0 o o o

]

Paging Submodel.
Page Exception Rate. . .
Memory Allocaton
"Near-Optimal" Memory Allocatio

I/0 Submodel . . .« ¢ ¢ ¢ o o o
I/0 Overview « « « « o «
I/0 Submodel Development
Disk I/0 Model

Direct Access Disk I/0
Indexed Disk I/C . . .
Sequential Access Disk
I/0 for Paging
Submodel Integration . . .
Model Convergence. . « « «

e o o

L]
e 8 0 o 0o o o o 0o 0 e o s D e & o

[] [] [] [. . [] . [] L[] [] [] [] [] [] . . . L[]
L[] [) [[] [[] [] [[] [[] [] . [[[] [] L[] L[]

¢ 8 o {0 o o o o
N
e o o O o

III. MODEL VALIDATION AND EXPERIMENTAL DESIGN

Experimental PlaN. . ¢« « « o « ¢ o o «
Programs for Measurement and Control
Experimental Variables
Instruments and Measures . « . « « .
Experimental Desidghe « ¢« ¢ ¢ o o o o,

Design for Parameter Estimation. .
Experimental Design for Validation.

vi

[] [] L] [) [] [] [] L) [[) [] [] L] [] [] . [] L[] .

.35

«35
.38
«39
U4
.46
- 47
U8
.49
«53
-S4
<54
«55
«57
.62
.68
.73
75
.76
.82

.89

-89
.91
«92
.93
.98
.98
101

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Parameter Estimation . . .
Normal I/0 overhead. . .
Paging I/O overhead. . .
Paging Ratio Estimation.
Page Allocation Weights.
Miscellaneous Parameters .

CPU Rate Estimation. . .

Virtual Storage Estimation

Storage and Paging Index
Experimental Manipulations .
CPU Variance Manipulation.
I/0 Variance Manipulation.
Model Predictiomns.
Model Validation

Results of Analysis of Variance

Esti

Confidence Interval Analysis .

Sources Of Error . « « « «
CPU Submodel . « « ¢« « ¢« =

e o 0 o o 0 o 0 0 o o 0

Potential Sources of Error-Paging.
Post-Experimental Paging Analysis.

Revised Paging Submodel. .

Comparison with Earlier Models .

V. CONCLUSIONS AND RECOMMENDATIONS.

Research Conclusions « . . .

Recommendations for Further Research

GLOSSARY OF TERMS. « ¢ ¢ ¢ = o o o &

APPENDIX A L] L] L) . L] L] L] L] . L] L] . .

SELECTED BIBLIOGRAPHY. . « « « « « o

vii

¢ o o 06 & 0 06 5 0 0o 0o 06 & OO o s 0 0 o 0o

=}

e & o o 0 o o o

112

112
112
113
115
117
120
121
122
122
127
129
130
130
131
135
137
138
138
139
141
141
142

143

143
145

148
156

171

1.
2.
3.
4.
5.
6.
7.

9.
10.
11.
12.
A1l.
A2.
A3.
A4,
AS.
A6.
A7.
A8.
a9.

A10.
Al1,
at2.

LIST OF TABLES

I/0 Overhead Regression Analysis. .
Paging Overhead Regression Analysis
Page I/0 Ratio Analysis . « « . .
System-wide Paging Ratio Analysis
Estimated Working Set Weights . .
Working Set Weight Analysis . . .
Paging Index Calculations
Experimental Program Estimates. .
Model Predictions . « « ¢ ¢ o o
Experimental Runs - Measured. . .
Experimental Runs - Calculated. .
ANOVA Table of Prediction Errors.
Non-paging Runs Repl I - Measured
Non-paging Runs Repl I - Calculated

Non-paging Runs Repl II - Measured.

Non~paging Runs Repl II - Calculated
Paging Runs Repl I - Measured . . .

Paging Runs Repl I - Calculated .
Paging Runs Repl II - Measured. .
Paging Runs Repl II - Calculated.
Page Allocation Runs - Measured .
Page Allocation Runs - Calculated .
Program Estimation Runs - Measured.
Program Estimation Runs - Calculated.

viii

e o & & 6 o &6 » 06 06 o 5 0o 8 06 0 6 o 06 o6 0o o o

113
115
118
119
120
121
124
128
131
133
134
136
156
158
160
161
162
163
164
165
166
167
168
169

LIST OF FIGURES

Central Server Model
Rational Laplace Transforas.
Elapsed Time "Cycle" (ET) . .
Disk Access Model Diagraam. .
Indexed Access Timing [Ciagranm.
Random Access Timing Diagranm .

Experimental Design for Estimation
Experimental Design for Validation
Levels for Independent Variables .
Multiprogramming Interaction Model

ix

() [] [] [[] [] [] . L[] []

.13
.16
. 40
.59
.60
.61
100
103
108
132

e (W)

f(.)

v (3)

A (3)

ALP

ARAT (1)

ARAT (i, j)

ARAT (i,3,k)

B(J)

BETA (§)

BETA

BS (i,k)

BSP

C(J)

LIST OF SYMBOLS

The average process time between page faults.

A function giving the difference between the
average instantaneous I/0 access rates on two
consecutive iterations of the model.

A real number between zero and one. A probabili-
ty.

The average working set size for prograam j
(pages).

The paging activity index for program j

(references/instruction).

CPU overhead for a non-paging I/O cycle (sec-
onds).

Total access rate for all programs to device i
(accesses/second).

The access rate for program j to device i
(accesses/second).

The access rate for program j to file k on
device i (accesses/second).

The length of a CPU service interval before an
I/0 or paging operation is generated (seconds).

The ratio of page-reads to page-writes for
program Jj.

The system ratio of page-reads to page-writes.

The average block size (physical record size)
for file k of device i (kytes).

The block size of a page in the virtual systen
under discussion (bytes).

The completion time for program j (seconds).

Ca

CER (3)

CI(i,k)

CK (J)

CL (i,k)

COH (3)

CP (3J)

CPP (3J)

Cs (3)

Cs

CTINE (5)

CYL (i,k)

CYT(J)

D (3)

DC

DEL

CI(i,3,k)

DI (i,k)

The coefficient of variation for the distribu-
tion of I/O requests for disk.

The instantaneous page exception rate for
program j (exceptions/second of process time).

The cylinder location of the mid-point of the
index area for indexed file k on device i.

A factor used in calculating the paging respoanse
time for program j.

The number of cylinders in the index portion of
file k on device i.

The CPU utilization for overhead due to program

5.

The CPU utilization due to program j not includ-
ing overhead (CCH(J))-.

The total CFU utilization due to program j
including both CP(j) and COH(J).

The coefficient of variation for the distribu-
tion of completion time for prograa j.

The coefficient of variation for the distribu-
tion of disk service time.

The total CPU time attributed to program j by
operating system job accounting routines. Total
problem-state time (seconds).

The size of file k on device i (cylinders).

The ratio of the apparent machine instruction
rate to the nominal machine instruction rate for
program j.

The amount of CFU processing time pre-empted by
the channel in performing an average I/0 opera-
tion for prograa j.

The amount of CPU time "stolen" by the channel
for each byte of data transferred (seconds).

The average CPU overhead for a paging cycle
(seconds) .

The probability of an access by program j to
file k on device i.

The probability of an access to file k on device

xi

DS

ET (J)

ETA (3)

EXP (N)

FAC (3)

FN

H(3)

I0 (3)

KS

LAN (5)

LC (i ,k)

L(J)

i by any program during a specified interval.

The amount of CPU time "stolen" by the channel
to initiate an I/0 operation (seconds).

The elapsed time per cycle for program j includ-
ing initial wait W(j), completion time C(3j), and
I/0 vait time IC(j) (seconds).

The average I/O0 wvait time during a paging cycle,
ETA(j) = (1 + Beta(j)) *PHI (j) (seconds).

The paging expansion factor. The tendency of
overall system paging rate to increase with an
increase in multiprogramming set due to page
frame contention.

The expected fraction of completion time which a
program must wait if completion of it's I/O
finds the CPU busy servicing program j. If
Cs(j) is the coefficient of variation for the
completion time for program j, FAC(J) =
(1+Cs(J)) /2.

The average system real-time paging rate. The
sum of the individual program real-time paging
rates (pages/seccnd).

A factor used in calculating the induced comple-
tion time due tc the completion of I/0 for a
higher priority program while a lower priority
program is in the interrupted state.

The average response or wait time for any type
of I/O operation by program j including paging
(seconds) .

The average CPU instruction execution rate
(instructions/second).

The slope of the expression for seek time. The
average seek time per cylinder
(seconds/cylinder).

The average instantaneous I/0 rate for progran
j. This means that while program j waits for
completion of paging or I/O the operation
completes with rate LAM(j) (completions/second).

The mid-point of the data area of file k cf
device i (cylinder).

The weighting factor for program j in a kiased
memory allocation schene.

xii

E(3)

MU (3)

N(i,3,Kk)

N(i,k)

N (3)

OHT (N)

PG (J)

PHI (3)

PI (3)

PO (J)

PR (3)

RC (i,k)

RCU (i, 3, k)

RCUO

RCU (3)

The "critical memory". The smallest value of
program j's working set such that program j's
paging rate is less than .5 pages per second.

The instantaneous CPU access rate for program j
in the absence cf paging. MU(Jj) =
CTIME(3)/ (N(J)+1).

The average numker of non-paging I/O operations
to file k of device i issued Ly program j during
it's execution.

The average number of non-paging I/O operations
issued by all programs in the multiprogramming
mix to file k of device i during some specified
interval.

The total number of non-paging I/O operations
generated by program j during it*s execution.

The total number of programs in the multifgro-
grameming mix.

The total system CPU overhead with N programs in
the multiprogramming set.

The total number of cycles in program j's
execution which terminate in paging exceptions.
The number of pages read for progranm j.

The average time it takes for program j to read
or write a page from virtual memory (seconds).

The average real-time page exception rate for
program j. PI(j) = CP (j)*CER (Jj)
(exceptions/second of real time).

The total number of page-write operations on
behalf of program j during it's execution.

The the sum of the page-read and page-write
rates for program j. The total paging rate for
program j.

The number of data records per cylinder for
indexed file k cn device i.

The average channel utilization caused by
program j accessing file k on device i.

The average tctal channel utilization for some
specified channel during a specified interval.

The average total channel utilization that is

xiii

RD

S (3)

SK(i,3,k)

SK(i,k)

SK2(i, J, k)

S1(i,3,k)

S2(i,Jj.,k)

T(J)

TAU (3)

TRD (i, 3, k)

TS (i,3,k)

apparent to program j. The expected channel
utilization on the condition that program j is
not using the channel.

The period of rotation of a disk device. The
length of time required for the platters or
disks to complete one revolution (seconds).

The total amount of pagable memory. The total
amount of real memory minus fixed memory (pag-
es) .

The total amount of virtual memory required by
program j for execution--program j's address
space (pages).

The average seek distance experienced by fprogranm
j vhen accessing file k of device i (cylinders).

The average seek distance for any progras in the
multiprogramming mix when accessing file k on
device i (cylinders).

The second moment of the seek distance for
program j when accessing file k on device i
(cylinders*x*2).

The average seek distance for program j when
accessing the index area of indexed file k on
device i (cylinders).

The average seek distance for program j when
accessing the data portion of indexed file k on
device i (cylinders).

The amount of time required to move a disk
access mechanism exactly one cylinder (seconds). .

The aggregate I/0 rate for all but prograa j.
This symbol is also used to represent a delay
tern in calculating initial wait.

The average amount of CPU usage due to prograsm j
per cycle, including the overhead for paging
and/or normal I/0 (seconds).

The average total response time for prograam j
accessing file k on device i, including wvait
time (seconds).

The average seek time for program j when access-
ing file k on device i (seconds).

The average seek time for program j when access-

xiv

TS2(i,J.,k)

TSC (i, k)

TSC1(i,3,k)

TSC2 (i,3,k)

TSD (i, o k)

TSD1 (i, j.k)

TSD2 (i, j,k)

TWC (i, J, k)

TWR (1,3, k)

¥ (3)

XI (3)

ing the index area of indexed file k on device i
(seconds) .

The average seek time for program j when access-
ing the data area of indexed file k on device i
(seconds) .

The average channel service time for any progranm
accessing file k on device i (seconds).

The average channel service time for program j's
access to the index area of indexed file k on
device i (seconds).

The average channel service time for program j's
access to the data area of indexed file k on
device i (seconds).

The average device service time for program j
when accessing file k on device i directly or
sequentially (seconds).

The average device service time for program j
when accessing the index area of indexed file k
on device i (seconds).

The average device service time for program j
wvhen accessing the data area of indexed file k
on device i (seccnds).

The average channel wait time due to blocking by
other programs experienced by program j when
accessing file k on device i (seconds).

The average channel wait time due to the channel
being busy when the record to be read or written
passes under the read/write heads. This is the
wait time experienced by program j when access-
ing file k on device i (seconds).

The initial wait time experienced by prograa j
between the comgletion of an I/0 or paging
operation and program j's next access to the CPU
(seconds).

The average I/0 response time experienced by

program j for non-paging I/0 to all of it's
files (seconds).

Xv

INTRODUCTION

Data Processing management has a ccntinuing need for
planning information. Long and short range planning is
necessary so that the data processing needs of the organiza-
tion can be met without undue disruption of service and

unnecessary expense.

Lead times for equipment delivery schedules require
that equipment be ordered several months to years before the
equipment is actually needed. To assess the impact on
customer service and installation stability, the data
processing management team must be able to estimate the

effect of changes in software or hardware.

Software changes can ke to application software or
systems software. Application software is the collection of
programs and procedures in an installation which are written

to support the business functions of the organization.

Programs which do payroll, schedule manufacturing opera-
tions, and maintain inventory accounts are examples cf
application programs. Programs which generally support the
functions of the data processing organization are called

system software. Program compilers, sort routines, and even

the collection of programs which control the elements of the
computer system--the operating system--are all examples of
systen software. Hardware changes may be made to the
central processor (CPU), or to the peripheral or
input/output (I/O) devices such as disk drives, tape drives,
printers, drums, card equipment and telegrocessing termi-
nals. The change may be either replacement, acceleration of
operating speed, or augmentation of the capacity of the

device(s) or unit(s) under consideration.

Part of the informaticn needed by data processing
management is provided by their data processing system in
the form of job accounting data collected during system
operation, while the systems requirements come from the
business plans developed by corporate planners. The remain-
der of the information required by data processing manage-
ment to fulfill their responsibilities is derived from
industry publications, vender literature and proposals,

staff research and intuition.

Information in the third category tends to be associ-
ated with performance, capacity and the capability of
computer systems. Typical gquestions that one hears in this
category might be: will the addition of that new disk drive
improve throughput by 10% or are other changes required?
how many programs should be running concurrently to optiamize
throughput? will the installation of the new CPU be

sufficient to handle a projected 15% increase in workload

during the next twelve months? will the proposed systen
meet the performance specifications? how will the schedule
be affected if the third shift update is moved to the first

shift?

The answers to such questions are not only of interest
to data processing management and systems analysts but they
are of key importance to vendors of hardware and software.
While system collected job accounting data can supply the
basis for an analysis which may yield the answers to the

above questions, it cannot grovide answvers.

The means of deriving answvwers to the above questions
range from intuitive guesses to in-depth analysis and
simulation. In some cases decisions are made to increase
computer capacity without in-depth analysis because of a
lack of analytical skills. 1In other instances benchmarks
are perforned as a means of alleviating this situation. 2
benchmark is the execution of an actual set of prograss
(currently implemented on an installed or "base" system) on
the proposed or "target" system. This aprroach is usually
impractical for the following reasons: (1) the amount of
time available on a target system is sometimes limited, (2)
the data files from the system being modeled cannot te
removed because they are needed for continuing processing,
(3) and the number of disk packs available for extended
periods of time is often inadequate for a complete bench-

mark. Even if the foregoing problems can be surmounted, the

logistics of duplication and transportation of card decks,

disk packs and tapes can create additional problens.

When one considers the conflicts involved in schedul-
ing computer operators for the benchmark as well as continu-
ing production work, it is easy to see why the approach
generally taken is the preparation of a "representative"
sample of job streams which are supposed to embody the
characteristics of the entire system and can be executed in
a limited time--usually a few hours--with limited data
files. This approach is still quite expensive and is
usually not used except in the case where very large compu-
ter systems are under consideration. The limited benchmark
approach still requires a great deal of preparation involv-

ing both computer time and analysts' tinme.

Another expensive approach to performance planning is
the use of simulation. This approach has several varia-
tions. In one variation, systems analysts build a mcdel of
the computer system from a Lkasic computer language such as
FORTRAN or PL/I. Another variation requires the analyst to
build the model using a generalized simulation language such
as GPSS, GASP, or SIMSCRIPT. The systems analyst sometinmes
chooses to use a basic system model supplied by a software
vendor or consulting firm. In this case, the I/0 configura-
tion, memory size, and CPU speed of the target system are
supplied as parameters to the basic system model. The major

processes of each program are then modelled as events,i.e.

CPUO access, I/0 access, and "interruption" or pre-emption of
the access to the CPU of a less important program (lcw
priority) by a more important program (high priority). This
method, vhile more practical than the first two approaches,
requires purchase of the vendor's softvare or his consulting

and educational services and can still be quite expensive.

In the real vorld, simulation has been used extemnsive-
ly to model large teleprocessing networks. Such netvorks
are not typical of most data processing organizations. Even
if the expense of the simulation approach were not prohibi-
tive, many users of small and medium sized computers do not
have employees with the skills necessary to do this kind of
study, nor do they think that the simulation packages

available are economically justified.

Scheduling

There is an urgent need need for easier or more convenient
performance prediction. Another important area for which a
predictive tool is required is computer scheduling. Coapu-
ter scheduling, as used here, has to do with the sequences
and combinations of programs which are determined externally
to the computer, and is to be differentiated from schedules
vhich are determined by the computer's operating systeam,
which will be referred to as "task scheduling" or
"dispatching". Scheduling, in the context used in this

thesis, is normally a clerical function. The scheduler

tries to arrange the sequence of executions so that systea
resources are balanced and deadlines are met [23]. To do
this, he must consider program memory size, peripheral
requirements, job dependencies, data availability and other
complex factors. The scheduler is really interested in

predicting the actual job run time under a specific set of

circumstances, but normally uses the average job rum time

that has been calculated over several executions of the job

being scheduled.

Presently, most batch job computer scheduling is done
using the average elapsed time for each job in the schedule
{5,21], even in cases vwhere the scheduling function is
computer assisted. That is to say each program or sequence
of logically related programs (job) is considered to execute
for a fixed amount of time on a given computer systea,
regardless of the charactersitics of all the other prcgraas
in the system at the same time. The inadequacy of the
deterainistic type of scheduling can ke okserved fros the
non-deterministic nature of interactions between the jobs in
a computer system at any given time and the effects of

priorities.

Priorities and Interactions

Consider two programs which are assigned priorities or
levels of importance such that the lower priority program
will be forced to relinquish the CPU whenever the higher
priority program is ready to access the CEU (usually at the
completion of I/0 activity). The lowvwer priority progranm
will have to wait for the higher priority program to relin-
quish the CPU and will only have potential access to the CPU
during the times that the higher priority program waits for
I/0 operations. It is easy enough to visualize that if the
lovw priority program always has to wait for the high priori-
ty program, and the high priority program never has to wvait
for the low priority program, the respective behaviors of
the two programs will surely be affected if their roles are

reversed.

Extending the example to the case of several programs
vill exaggerate the effects of program interactiomns in the
processor. The actual run time for a particular execution
of a given job or program will deviate from the calculated
average elapsed time unless it is run with precisely the
same set of other programs and identical assignment of

priorities as when the average was calculated.

Interactions within the processor are further compli-
cated by contention for channels and I/0 devices. Returning
to the two program example, suppose each program accesses a

unique disk device and has no other I/0. Further sufgpose

that each program has a nontrivial disk utilization, 20% for
example. If the data which these two programs access are
consolidated on one disk drive, it is inconceiveable that
the execution or run times of each of the two programs would
be unaffected unless other (compensating) changes were also

made.

There is another type of variation in job durations in
a typical business oriented data processing systea--the
variation due to transaction volumes in transaction driven
applications. For such applications the elapsed job times
are proportional to the number of transactions processed if
other things are equal. Since techniques such as trend
analysis and exponential smoothing may be used for the
prediction of tramnsaction volumes, the focus of this
research will be on the prediction of the more complex tyge
of variation in job execution duration--the variation due to

interactions among several programs executing in a computing

systeam.

Batch versus Timesharing

Computer systems may ke classified into two grcups
according to whether or not the system is prjimarily dedicat-
ed to batch multiprogramming or teleprocessing (time-shar-
ing) multiprogramming. Within both groups, the dispatching
scheme or the method which is used to allocate the resources
of the computer system to competing programs or "tasks", may

be a priority system, a time-sharing system or a cosmbination

of the two. The priority dispatching scheme has the primary
objective of optimizing the throughput (number of units of
work completed per unit time) of the most important jobs or
tasks. The time-sharing scheme, on the other hand, has the
primary objective of optimizing (minimizing) the "resgponse"
time or the time it takes fcr each interaction of a terminal
with the CPU. The combination scheme of priority dispatch-
ing within time-sharing is an attempt to have it both ways.
Although either of the above dispatching strategies may be
found in batch multiprogramming systems or in teleprccessing
systems, the priority dispatching scheme tends to be associ-
ated with batch multiprogramming and time-shared dispatching
tends to be associated with teleprocessing systems because
this is consistent with the primary performance objectives
of these respective systems. For this reason teleprocessing
under the control of primarily batch multiprogramming
systems may use priority dispatching and batch-oriented
processing under the control of primarily time-sharing or
"interactive" systems will ke dispatched using the
time-sharing discipline. Because most of the work on
time-sharing systems is not under the control of the data
processing installation but is initiated ty the terminal
user, the prediction of system loads is a statistical
problem. It is useless to talk about scheduling a
time-sharing syster in the sense that "scheduling" is used
in this thesis, therefore this research emphasizes primarily

batch-oriented multiprogramaming systenms.

10

This investigation sets forth the development of an
analytic model which is readily usable by computer systenm
analysts, computer schedulers, and hardwvare and software
vendors to predict gross computer system performance charac-
teristics (CPU, channel, and device utilizations and
throughput) as well as elapsed times and CPU, channel and
device utilizations by program or job. A discussion of the
background relevant to computer system performance predic-
tion and related models is presented in chapter 1, and the
model used in this research is developed in chapter 2.
Chapter 3 consists of an exrlanation of the parameter
estimation and validation prccedures and the experimental
design. A presentation and discussion of the experiamental
results is given in chapter 4. The research results are
discussed and recommendations for future research are

presented in chapter S.

I. BACKGROUNL AND PREVIOUS WORK

CP

la
d
o
[N
1]
e}

i

Central Server Network Mode

-

Most of the models developed to predict the perfor-
mance of multiprogramaming systems are closed, cyclic queuing
network models (so-called "central server" models) based on
the early vork of J.R. Jackson [32] and later extensions by
Gordon and Newell [28]. These researchers determined the
conditions under which closed form solutions to network
queuing models vere known to exist. The types of networks
vhich met these conditions were called "separable® and the
solutions were said to be in "product-foras". The
product-form solution states that the equilibrium state
probability for the network is the product of the equilibri-
um state probabilities of the component service centers in

the network.

The central server model is based on the assumgtion
that the execution of programs in a multiprogramming system
consists of alternate periods during which each program is
either receiving or waiting for CPU service and pericds
during which each program is either receiving or waiting for

I/0 device service. Another general assumption in the

1

12

central server model is that at the completion of CPU
service, each program requests service from the i-th server
(I/0 device) with probability P(i). A schematic diagram of

the central server model is given in Figure 1.

Simple Cyclic Queuing Model

One of the better known computer performance models is
a model developed by D.P. Gaver, Jr. Gaver assumes an
identiqal probability distribution for the CPU demand of
each job and an identical exponentially distributed response
time for each I/O device in the system [26]. Parameters in
Gaver's model are the number of homogeneous jobs and their
CPU service time and the nuaber of homogeneous I/O units and
their I/O service time. This model is a specific implemen-
tation of the central server model which has two stationms,
the CPU and the parallel server I/0 station. The I/O
devices in the Gaver model are treated as a pool froa which
a request for I/O0 may be serviced by any device which is
idle. An arbitrary CPU service time may. ke modeled by
either an Erlang, Hypoexponential or Hyperexpomential
distribution. Paging behavior is not explicitely modeled
but may be considered to be included in the overall I/0

rate.

13

Central Server
(CPU)

Peripheral Servers
(Data Channels)

Figure 1. Central Server Model

14

Simple Flow Model

Fenichel and Grossman's Flow model [20] does not use
probability distributions and does not account for direct
program I/0 but rather assumes a fixed relationship between
average compute time and paging. For this model the only
I/0 considered is paging. The paging response is computed
from a response table. Simulation of the operation cf the
paging device is used to develop a table of response times
under different paging rates. The Flow model makes nc
assumptions about the form of the probability distrikution

of paging service tinme.

Cyclic Queuing with Paging and Overhead

Lewis and Schedler's Cylic Queuing model (34] returns to
some of the central server assumptions and accounts for I,/0
and idealized paging behavior using exponential distribu-
tions. This model assumes that program execution intervals
between page exceptions (requests for I/0) are identically
and independently distributed exponential variables. 1In
this way the dependence of paging rates on memory size is
avoided. Like other central server models, this model
considers the behavior of all programs in the system to be
statistically identical. This is equivalent to partitioning
the computer's main memory into egqual sized segments and
having the page replacement algorithm operate locally (each

program would only steal pages from itself). If this were

15

not the case, independent execution intervals would not
hold. This model differs from most of the central server
models in that it explicitely includes the CPU overhead for

task dispatching and paging I/O.

Product of Stages Model

Using some results by Cox on probability distributions
with rational Laplace transforms [15], Basket and Goamez [4],
and Muntz [15] extended the class of known closed queuing
networks with product form solutions to include certain
servers with general service time distributions by approxi-
mating the distribution with a combination of exponential
stages (see Figure 2). Using the method of stages, closed
form solutions are known to exist for: (1) exponential
servers with first-come-first-served (FIFS) service discig-
line, (2) general servers with processor-shared (PS) discip-
line, (3) general servers with
last-come~first-served-preemptive (LCFS) service discipline,
and (4) infinite servers (IS) with general service distribu-

tions.

16

Figure 2.

./- p2 pm-f
u -=° u
9, T-1

Rational Laplace Transforms

17

=
Ic
=
et
=
o
>
1o
7]
o]
<]
3]
1)
b
E

ocation Model

A Multiple Resource Allocation computer model has been
developed by Boyd [7]. This model handles the resource
requirements of the jobs in the multiprogramming mix in a
similar fashion to most central server models. However, it
goes much further in the sense that, given the level of
multiprogramming, the probabalistic aspects of job selection
for execution from the job queue are developed in great
detail. The selection criteria is based on the permanent
(execution) resource requirements of the jcbs that are
waiting to be added to the multiprogramming mix. Although
this model is referred to as a batch multiprogramming model
by the author, in reality it behaves very much like a
time-sharing model. 1In fact, the dispatching strategy for
this model is a time-sharing strategy. As a batch multipro-
gramming model, this model is representative of an installa-
tion where there are a very large number of small jobs, with
few if any data preparation constraints, and no precedence
constraints (by the assumption of independence). Futhermore
there can be little if any external control of the job
schedule since job selection and executicn are entirely

determined by statistical distributionms.

18

nStraightfoward" Queuing Model

Another recent computer performance model has been
developed by Boyse and Warn [8], and is a time-sharing
cyclic queuing model. The CPU intervals in this model may
be either constant or exponential and the only I/O modeled
is paging. The CPU modeled has parallel paths to the I/0
devices (drums) and, because the number of concurrently
executing programs is small (3), the I/0 response time may
be treated as independent of the number cf pending I/0
requests. The assumptions in this model agree very closely
with the features of the system for which it was developed,
a dedicated graphics terminal system, and was found tc have

a very satisfactory fit.

Eclectic Model

A model by Brandwajn [9] has incorpocrated several
recent developments into the central server model. PBrand-
wvajn includes paging in his model and uses Belady's "life-
time function"™ [6] to determine the effects of memory
allocation on paging rates. Brandwajn also uses the "prin-
ciple of decomposition™ [14] to simplify the calculation of
the equilibrium state probabkilities of his model. The
principle of decomposition states that if the elements of a
subnetwork of the overall system have rates of state transi-
tions much higher than the remainder of the systeam, this
portion of the overall netwcrk will reach equilibriue

sooner. This means that the subsystem composed of the CPU

19

and paging device may be separately analyzed under the
assumption that the rate of paging is much higher than the
rate of direct I/0. The total system is then modeled as a
two-server system where one server is the disk I/O0 device

and the other is the composite CPU-paging server.

Sunmary of Queuing Models

—— -

All of the above models are limited or inadequate for
the purposes of this research because they all use global
parameters to determine system behavior but say nothing
about individual programs that may be executing at a given
time. Futhermore they are really processor models that do
not give a very realistic treatment to the input/output
effects on the system. The assumption of homogeneity among
I/0 devices and channels is a serious weakness of these
models for configuration and scheduling studies. The
homogeneity assumption is tantamount to saying that differ-
ent types of I/0 devices aren't really very different
therefore they can be treated identically. It is known that
disk drives don't behave like tape drives, printers, or card
I/0 equipment. Since the latter devices are dedicated to a
particular program at any point in time, the variation in
their response times is usually due to the interference
caused by devices used by other programs on the same chan-
nel. On the other hand, disks are normally shared aamong
programs, thereby causing variation in response due to the

potentially random positioning of the disk access arm before

20

I/0 can take place as well as queuing time fcr both the
device and channel. The variation in response introduced by
shared disks is on the order of several times larger than
the time required for data transfer. This research consid-
ers another approach which overcomes many of the objections

to the central server models.

Synthetic Workload Benchmark

The Synthetic Workload method [42] of Sreenivasan and
Kleinman gives good results but requires the solution of two
or more simultaneous, non-linear equations in six unknowvwns
for each job (program) being modeled. Isplementation of the
Synthetic Workload proceeds as follows. Let X1 represent
CPU seconds and X2 the number of EXCP's (approximately equal
to the number of I/0 operatioms). Dividing each of these
dimensions into L parts over the range of the X1 and X2
values for the actual worklcad, the percentage of observa-
tions in each cell of the total number of jobs will ke the

joint probability density of the real workload.

The synthetic workload may consist of a smaller
collection of programs with the same joipt probability
function. If P(i,j) is the probability of the (i,j)-th cell
and NTOT' the total number of programs in the synthetic
workload, then the number of programs in the (i, j)-th cell

of the synthetic workload is given by

21

N*(i,J) = P(i,j) * NTOT® i,3 = 1,2,e0e,Le (1.1.1)

Then, if X1(i) corresponds to the mid-point of the i-th
partition of the X1 dimensicn, the constraint on total CPU

time for the synthetic workload is expressed as

sum{ X1(i)*N*(i,3j) : i,j = 1,2,..,L] = T. (1.1.2)

The joint probability distribution of the real worklcad is
duplicated by NTOT' executions of the same prograam, a
synthetic program [10]. The synthetic program used by
Sreenivasan and Kleinman simulates a file update process.
Its execution characteristics may be manipulated by varying
a set of six parameters supgplied to the program by Jcb

Control Language (JCL).

P1, P2, P3, P4, PS5 and P6, the parameters of the
synthetic program, correspond to the number of master
records created, the number of detail records created, the
number of executions of a "compute kernal" {33] per match of
the master and detail files, the number of times the file
update is repeated, I/O buffer blocksize, and record size
respectively. The functional dependence of X1 and X2 on the

six parameters can be expressed as

X1=K1+K2*PU+K3* (P1+4P2) +KU4*PU* (P1+P2) +K5*P2*P3*Py (1.1.3)

22

X2=2%PU+ (2*PU+1) *([P1*PE/PS]+ P2*P6/PS]). (1.1.4)

The constants K1, K2, K3, K4 and KS may be estimated
by regression experiments, Lut since there are more indepen-
dent variables than equations, there is no unique solution
to 1.1.2, 1.1.3 and 1.1.4. A solution is therefore achieved
by choosing integral values for P1, P2, P5 and P6 and
iterating on the values of P4 and P3 until the calculated
and the "given" values for X1 and X2 agree. This must be
done for each of the NTOT' programs in the synthetic work-

load.

A shortcoming of the synthetic workload is that it
requires the actual setup and execution of the synthetic
programs under the operating system being modeled. A
further complication is the requirement that the target
system be available for execution of the synthetic wcrkload.
Although the version of the synthetic workload model
discussed here can be extended to account for paging and I/O
response time, such an extension will increase the cosputa-
tional complexity many-fold. Compared to the representative
sampling approach, the synthetic workload does not require
as much planning and preparation since only one prograa is
involved and it generates its own data. For benchmarks in
which the primary objective is comparison among alterpnative
CPU's, the synthetic benchmark is superior since relative

performance is the basis for decision. For benchmarks in

23

which system alternatives are being considered, the specifi-
cations, allocation and distribution cf data for the I/0
subsystem becomes much more critical. 1In this case, exten-
sion of the synthetic model and more planning becomes
necessary, thus negating some of the advantages of the

synthetic workload model.

Both the representative sample benchmark and the
synthetic benchmark share the disadvantage of being unsuita-
ble for scheduling applications; the former because predic-
tion involves actually running the job streams, and the

latter because the synthetic jobs run aprroximately the same

=

leng f time as the real jobs.

Most models of paging behavior were developed as an
aid in evaluating paging algorithms for operating systeas.
Denning's "working set" model [18,19] is defined in teras of
the collection of pages of a program which have been refer-
enced during the process interval (t-TAU,t], where t is an
instant in time and TAU is an interval of time. TCenning
defines the working set size to be the number of distinct
pages in the working set. He proposed the use of TAU by the
operating systenm software (and hardware) as a parameter to

control page residency.

24

Denning showed the working set size to be an increas-
ing function of the parameter TAU and the page fault rate
(the rate at which a program tries to access pages which are
not present in main memory) to be equal to the negative
slope of the working set size. The working set size func-
tion depends on some knowledge of the underlying probability

distributions of the memory reference patternms.

The working set concept (as defined by Denning) has
proven useful in the amalysis of page management algcrithms
but does not serve well as a predictor of paging behavior
for systems which do not use the working set parameter TAU

to control page residency.

The Lifetime Function

A function proposed by Belady and Kuehner, the "life-
time function"™ [6], is based on a model of independent
references to the pages in a program. The independent
reference model assumes that each memory reference is an
independent Bernoulli trial relative to each page of the
program, wvhere the probability of a reference to page i is
given by q(i). Belady and Kuehner's independent reference
model is a special case where q(i) = 1/S for a program with
S pages. For this program, w pages in main memory results
in a probability of (S-w)/S that a page reference will

result in a page fault.

The lifetime function is defined to be the expected

25

nunber of consecutive references before a page will be
referenced which is not in main memory (thereby causing a
page fault). Using the geometric distribution, the lifetime

function is the found to have the following fornm:
e(w) = w/(S-w). (1. 2. 1)

Belady and Kuehner then proceed to approximate the indepen-

dent reference model by
e(w) = A*w*x*k, 1.5<k<2.5 (1.2.2)

on the basis that real programs do not obey the independent

reference model.

In this extension to the model, k is a function of the
program'’s page reference behavior and A is a function of
both the particular processor in which the progras is
executing and the program reference patterns. The factor 2
may be further deconéosed into the product of K, the average
instruction execution rate cf the processor, and A', the

average page reference per instruction.

26

Oden and Shedler developed a model of paging behavior
which is based on a Semi-Markov process [38]. They define
equivalence classes for the states of their model to reduce
the state space and present a solution for the steady state
probability distribution of the reduced state space. They
assume that the transition fprobabilities for each of the
reduced states is known and that the page frame (page of
real memory) to be "stolen" for a paging operation is
selected randomly. They alsc assume that the N programs in
the multiprogramming set are dispatched First-In-First-Out

(FIFO) and that they are statistically identical.

These last few assumptions make this model unsuitable
for use in modeling a priority dispatched operating systenm
vith a specific vorkload. The assumptions make this parti-
cular model more useful for a time-sharing system, and for
investigating paging behavicr with regard to the determina-

tion of the optimal value for N, the multiprogramming level.

The page fault rate, steady state page residency and
page fault probability have been modeled as a Markov fprocess
by Franklin and Gupta [284]. Using page tranmnsition diagraas,
FIFO and Least-Recently-Used (LRU) paging algorithas, they
developed a memory state transition matrix which could be

used to determine paging statistics.

While the foregoing agproach is an interesting tool in

27

the examination of paging behavior and page replacement and
selection algorithms, it is defined in terms of a single
program's behavior and requires exact kncwledge of the
transition probabilities for each page of a program. Direct
measurement of the variables necessary to compute the
transition probabilities of each program in an operating
system would impose too high a cost in system overhead. Of
course, it is possible for hardware to be designed to
achieve this function, but the economics of such hardware is
extremely doubtful. What can be easily measured by hardware
or software is gccupancy, the amount of time spent executing
the instructions of a given page. Such an approach amight be
used if one is willing to assume that the page occupancy
probability is a sufficient proxy for the actual tramsition
probability (this is equivalent to making the page tramsi-
tion probabilities for each page identical). Knowledge of
the occupancy probabilities does not yield enough equations
to estimate transition probabilities for each page of a
program. A final objection to this model is that the
computational complexity and system overhead associated with
it makes it impractical for all but very small, i.e. peda-

gogic examples.

28

A paging model that is based on fitting a lifetime
function to the shape hypothesized Lty Belady and Kuehner was
proposed by Chamberlain, Fuller and Liu [12]. This function

has the following form:

e(w) = 2*xB/(1+(C/w) *%*2), (1.2.3)

where w is the number of pages a program has in real memory
and B and C are its paging parameters. B is defined as
one-half the largest possible lifetime and C is the nuamber
of resident pages which provides the process with a lifetime

of B.

The Simpl

Linear Model

A simple linear model of demand paging performance
proposed by Salter [40] is based on the assumption that the
mean number of consecutive rage references before a fage
fault (exception) occurs is linearly propcrtional to the
size of main memory (Saltzer refers to this as "headwvay"
rather than lifetime). Saltzer's graphs for associative
memory headway show a significant deviation from linear at
small memory sizes and his graph of paging in the MUITICS
system has measurements at only two memory sizes, hardly
enough to determine curvature. He quotes three sources of
published measurements which report the lifetime (or

headway) increasing faster than linear.

29

Saltzer's model is stated in terms cf the entire main
memory of the computing system and he asserts that the model
does not represent the behavior of a single program and does
not even predict headway at extreme values where paging
approaches zero. He then gces on to present examples of
individual program paging prediction by assuming an identi-
cal distribution of main memory pages to all processes in

the systen.

Ih

1]

Paging Index

Another paging model which predicts system-wide paging
statictics is Bard's Paging Index model [3]. The Paging
Index (PI) is an emperically derived model that uses esti-
mates of working set sizes to predict system paging rates.
The vorking set size w is estimated externally to the model.
An estimate of working set size w, is made by software
monitors for each logged-on user of IBM's VM/370 time-shar-
ing system. Given a pageable main memory size of M, and the
average number of logged-on users N, the storage saturation

factor S is given by

S = N*w/M. (1.2.4)

The paging rate is then estimated by

30

P = I*(S**x2)/4 0< s <2

= I*(s-1), 2 £S5 (1.2.5)

where the single parameter I characterizes the entire P

versus S curve.

Bard's measurements of several systems supports the
apparent deviation from the linear model in some cf Salter's
diagrams of paging measurements. Like Salter's model, this
model is not very useful for predicting the behavior of a
specific program although it has proven useful in predicting
average behavior for a compcsite or "typical" program in a
time-sharing environment under the assumption that the
probability distributions of the tramnsactions (prograss)
arriving from the terminals in the system are statistically

identical.

The Page Survival Index

S P S S g

Bard's Page Survival Index [1,2] is typical of a class
of paging models that is based on dynamically coaputed
statistics. The Page Survival Index (PSI) is a measure of
the operating system without being selected for replacement.
Since a program is most likely to lose fpages while it is in
an interrupted state, Bard considers the FSI to be a very
good representation of an individual program's paging

behavior.

31

The definition of PSI requires the measurement of
several dynamic paging statistics for its estimation. The
PSI is used by Bard as a response variable in the control of
the page management system and scheduler Ly feedback. This
model does not lend itself to prediction since it requires

the continuous calculation of dynamic variables.

Of all the paging models presented, most do not serve
vell as models of paging behavior for performance prediction
since they vere developed for use in controlling the paging

process with feedback [19,1,2].

I/0 Models

As most models of I/O behavior were developed as a
part of multiprograming models, there are few general models
of I/0 behavior. Of the I/0 models that do exist, most are
simple exponential models of non-specific I/0 devices. The
closest thing to I/0 models are models for the investigation
of disk scheduling policies and the effects of various disk

organizations.

Disk Response Hodel

Seaman, Lind and Wilscn analyzed disk I/0 as an
integral part of overall teleprocessing system design [41].
They assumed Poisscn arrivals for all disk requests and they
also assumed equal traffic to each disk module in the

configuration. For the disk service times they assunme

32

identical but arbitrary prokability distributions. They do
make some suggestions as to modifications to their model in

order to account for unequal traffic to the disk modules.

Disk and Drum Scheduling Models

Denning developed models of both disk and drum file
systems to study the effects of different scheduling poli-
cies on the response times of direct access devices ([18].
Among the scheduling policies Denning investigated were: (1)
Shortest- Seek-Time-First (SSTF), (2) Shcrtest-Access-Time-
First (SATF) for drums, (3) First-Come-First-Served (FIFO),
and (4) SCAN, which involves sweeping the disk access arm
back and forth across the surface of the disk, stopping at
any cylinder for which there are requests. He concluded
that SATF was the optimal pclicy for drus scheduling, and
that the SCAN policy was superior to PCFS, which is in turn
superior to SSTF. Many of these ideas have been inccrporat-

ed in today's operating systeas.

Teory studied the same scheduling policies as Cenning,
but he added variatioms to the SCAN policy (43]. The
Circular Scan (C-SCAN) policy involves serving disk requests
only while the acccess mechanism moves in one direction
(usually from the cuter cylinders toward the inner cylin-
ders). The N-step Scan (N-SCAN) allows requests to be
serviced while the disk arm moves in both directions but all
requests which arrive while the arm is sweeping in any

direction is batched for service during the return swveep.

33

Assuming uniform I/O request distributions, Teory found the
C-SCAN policy to be superior at I/O rates greater than 40
requests per second and the SCAN policy to be superior at
rates less than 40 requests per second. The N-SCAN was

found to be worse than SCAN or C-SCAN at all rates of I/0O.

The Disk Seek Model

Waters (U4] derived fcrmulas for average seek distance
and average seek time for both sequentially and randoamly
accessed disk files (under the assumption of uniform distri-
bution of accesses). He also derived formulas for cosmputing
the average seek distance and time for files that do not
have uniformly distributed random accesses. Waters demons-
trated that the average seek distance between two files is
the difference between their mid-points and that the file
access time is minimized by placing the highest activity
records of a randomly accessed file at the center of the

file.

Wilhelm elaborated the model developed by Seamon, et
al. in a general disk performance model in which he assumes
neither a unifora distribution of workload over all disk
modules (spindles) nor a uniform distribution of accesses
over any disk module. Like most other models of I/0O behav-
ior, this one assumes that the requests for disk I/O are

generated by a Poisson process. Wilhelm places no

34

restrictions on the service time distributions other than

the requirement that their laplace transforms exist.

Of the models of disk I/O mentioned above, the Seaman,
et al. and Wilhelm models are perhaps the most useful for
the purposes of this research. Denning's model and Teorey's
model are of use in understanding disk scheduling but are
less helpful since the operating systeam used in this
research has not implemented SCAN disk scheduling. Although
Waters' article was written for the file designer and has a
practical orientation, some of his techniques were afpplied
in the elaboration of the I/C submodel presented in this

thesis.

II. MODEL DEVELOPMENT AND ANALYSIS

Batch Model Reguirements

For the purposes of this research, an analytical model
is required which, in some way, accounts for priorities,
system overhead and paging as well as a normal configuration
of I/0 devices. The analytical model is required because of
the necessity of having a performance predictor which can be
used for external scheduling. Simulation or synthetic
benchmark techniques are too time consuming for this purpose
although they are very well suited to performance analysis
in connection vwith a major equipment acquisition. Ancther
reason why there is a real need for the type of model
described in the remainder of this section, is that the
flexibility of data processing management should not be
limited by the necessity of authorizing a major stndy‘in
order to be able to ansver relatively simple "what if"™

questions from top management.

The model should be usable by typical data processing
systeas personnel without special training and should use
system captured data to generate the program related charac-
teristics used in prediction. In addition, computer opera-

tions management and systems programmers can benefit from a

35

36

straightforward tool for studying the effects of scheduling
changes and operating system parameter changes in their
efforts to run a "near optimum"™ operation. A necessary
requirement for scheduling is that the model predict the
performance of individual programs operating in a multipro-
gramming mix. PFurthermore, the predictor should operate
with a set of program characteristics which are very nearly
invariapt under different ofperating systess or hardware

configurations.

Such characteristics are known to exist within a
family of computers such as the IBM System/370 line using
either the Disk Operating System for Virtual Storage
(DOS/VS), or the Operating System for Virtual Storage I
(0S/VS1). This is true because these operating systeams are
enough alike that differences in execution characteristics
of a program compiled under these two systems would be
mainly reflected in CPU overhead, since the structure and
dispatching scheme of these two systems are very nearly the
same. In other words, the differences Letveen these two
systems can be reflected by differences in the parameter

values of the basic model.

Since the purpose of this model is the prediction of
the performance of an existing set of programs on a coamputer
system which may be different from the system on which the
programs are currently executing, or the prediction of the

performance of each program in a collecticn of prograss

37

under a specific set of conditions (scheduling), the
required characteristics can be estimated from the data that
job accounting routines noramally collect in most operating
systems. The data collected for each execution of a program
includes: (1) the number of I/0 operations per execution,

(2) the number of I/0 operations by device, (3) average
block sizes of data transferred by device or file identifi-
cation, (4) path length or the approximate nuamber of
instructions processed per program execution (see M. Reis-
er:39), (5) job elapsed time, (6) system wait time, (7)
number of page-in and page-out operations, and average
working set size. The data captured by the job accounting
routines may then be used to estimate the mean CPU service
time, the mean I/0O service time by device, and the probabil-
ity of I/0 to each file or device following a CPU service.
These statistics may be estimated for each program which is

executed on the base systen.

Program statistics as defined above can be used with
system parameters such as configuration, hardware sgeeds,
memory size and instruction execution rates to determine the
performance and duration of each job in a given amix.

Program parameters which are not invariant with respect to
the configuration, hardware speed or multiprogramming mix
may be expressed as functions of these factors. For exam-
ple, the paging rates for programs operating in virtual
systems depends upon the speed of the CPU, speed of the

paging device(s), and the memory reference patterns of all

38
the programs in the system [18,27].

The model consists of three submodels: (1) a CPU
submodel, (2) a Paging submodel, and (3) an I/O subamcdel.
The CPU and I/O submodels are cylic queuing models
(25,35,46] and the paging sukmodel is a theoretical model
based on independent references and observed program paging

behavior.

CPU Submodel

The CPU submodel used in this research is based on a priori-
ty interrupt driven dispatching scheme. Cne problem with
modeling this type of system is caused by the fact that
priorities are accounted for. Another difficulty is that a
finite number of sources in a queuing system is more diffi-
cult to model than an infinite source system. The classical
"machine repairman” model fails because the behavior of each
program in the system cannot be considered to be statisti-
‘cally identical. This is true because of the requirement of
predicting individual program behavior for a priority

dispatching operating systens.

Because of the intractibility of finite source models,
infinite source models were used to approximate the finite
source models. A program's execution interval or elagsed
time is divided into alternating periods of CPU and I/O

activity. Situations which violate this condition (such as

39

double buffering or overlapping CPU and I/O activity for the
same program) were excluded from the analysis. The CPU
phase may be thought of as keing broken up into two distinct
subintervals; the mean "initial wait"™ interval during which
the program is waiting for the CPU following I/O, and the
mean "completion" interval which is total elapsed time fronm
the instant at which the prcgram gains access to the CPU
until it relinquishes the CFU for an I/0 operatiom or
program termination (25]. These two intervals are designat-
ed W and C respectively. The mean interval during which the
program is waiting for I/O completion is designated as IO,
the inverse of the instantaneous access rate LAM, which is

assumed to be fixed in the CPU submodel. The mean CPU

"cycle", ET is the sum of W, C and IO (see Figure 3).
CPU Completion Time

The completion time C, consists of the CPU quantum
attributable to the program being considered B, plus the
system overhead involved in task switching, initiating and
terminating I/0 for this program. The coampletion time also
includes all the time which the program in question sgends
vaiting for the CPU after it has been pre-empted by a higher

priority progras.

We designate the priority level as well as the identi-
ty of each program by the index j, where lover values of j
represent higher priorities. The values for j are, cf

course, limited to positive integers.

40

Initial Completion I/O0 Response Time
Wait Time
17 C IO

Cycle Time

Figure 3. Elapsed Time "Cycle" (ET)

41

The average CPU time quantum may be estimated from the
quotient of program state time divided by 1 plus the number
of I/0 operations issued by a given program. This quantity
is represented by 1/MU(j) fcr program j. MU is the instan-
taneous CPU access rate in the absence of paging, and B(j)
is defined as the mean execution interval before any I/O

(including paging) therefore B(j) is less tham or equal to

1/M0 (3) .

The total CPU quantua attributable to task j for each
cycle is represented by TAU (j), where TAU is composed of
B(j) plus an expression for the CPU overhead due to task
switching, initiating and terminating I/O operatioms. It is

assumed that TAU(j) is exponentially distributed.

In deriving the CPU submodel program 1 will be
considered first. The completion time fcr program 1 is
unaffected by any other task since this task has the highest
priority. The exception where processing by a higher
priority task is interrupted to handle the completion of 1,/0
by a lower priority task is ignored. The completion time

for task 1 is given by

C(1)=TAU(1). (2.2.1)

Next, program 2 is considered. 1Its service time will
be TAU(2), but this may be spread over a longer interval if

program 2 is pre-empted by fprogram 1. While program 2 is

42

using the CPU, program 1 must be waiting for I/O comfpletion.
From the definition of the I/0 coampletion time, I/0 comple-

tions occur at the mean rate LAM(1).

On the average LAM (1) *TAU(2) I/O operations for
program 1 occur during one "completion" time for program 2,
assuming that the I/O completion time is exponential.
Service time for program 1 will then cause a delay of
LAM (1) *TAU (2) *C (1) in the service of program 2. The comple-

tion time for program 2 will be given by

C(2) =TAU (2) +LAM (1) *TAU (2) *C (1)
=TAU (2) * (1+LAN (1) *C (1)) (2.2.2)

=TAU (2)* (LAM (1) +1/TAU (1)) *C (1) .

At this point a new element is introduced. It is now
possible for program 2's I/0 to complete while program 3 is
interrupted by program 1. The maximum number of I/O comple-
tions by program 2 during this interval is the minimun of
LAM(2) *LAM (1) *TAU(3)*C (1) and LAM(1) *TAU(3) since there can
only be one I/O completion Lty program 2 during a completion
time for program 1. This quantity is represented by

H(2) *TAU(3). We then have for program 3

43

C(3)=TAU(3) +LAM (2) *TAU (3) *C (2)
+LAM(1) *TAU (3) *C (1) +TAU (3) *H (3) *C (2) (2.2.3)

=TAU(3) *(LAM (2) +1/TAU (2) +H(2)) *C (2) .

Proceeding by induction and using similar logic, it can be

shown that

C (J)=TAU (J) * (LAM (J—1) +1/TAU (3= 1) +H (J=1)) *C (3F-1)
H(J)=min{ LAM(J) *(C(J) /TAU(]j)-1),D(J)]
D (J)=D(j=1) +LAN (j=1) +H (§-1) (2.2.4)

for H(1)=D(1)=0 and j=2,3,...

Using the definition of completion time C, and
assuming exponential distrikutions for CPU service time TAU
and I/O0 response time IO, we approximate the expected value
for the completion time squared to compute the coefficient
of variation of coapletion time and thereby the follcwing
approximation for PFAC which will be needed to compute the

vaiting time W.

PAC (§) =FAC (3= 1) *[1+ (2* (LAM (j- 1) /TAD (-1)
*H(J-1) *(LAM (J-1)-1/TAU (3-1))) (2.2.5)
+H(J-17) **2) * (C(J-1) *TAU (J) /C(J)) **2]

with FAC(1)=1.

44

CPU Waiting Time

Derivation of the initial wait, W is not so easy since
we do not have a concept similar to completion time tc work
with in this finite source queuing process. We begin by
considering the two states, CPU busy and CPU idle with
respect to program j. Again we need not ke concerned about
programs with index greater thamn j since they can be
pre-empted by program j. With j=1 we immediately have

W(1)=0 since there are no higher priority prograss.

Next, we consider W(2). Here we assume that CPP (1),
the CPU utilization due to program 1, has been previously
computed. Since the only busy time that can affect program

2 is caused by program 1, we have

W (2) =CPP (1) *FAC (1) *C (1) . (2.2.6)

FAC (1) is a scale factor which represents the portion of
C(1) which is the expected wait time for program 2 when it
finds the CPU being used by program 1. FAC is related to
the coefficient of variation (Cs**2) for completion time by

the expression FAC (j)=(1+4Cs (]J) **2) /2.

Deriving the expression for the wait time for frogram
3, we must account for the expected wait time due to program
1, program 2, and the wait time incurred due to the ccmple-
tion of program 2's I/0 while waiting for program 1 tc

relinquish the CPU. We designate the latter quantity by

45

T (2) *C (2) /LAM (2) *ET (2) , where T(2) = CPP (1) =*

nin{ LAM(2)*C (1) ,1]. The rationale for this expression is
that if program 3 completes during an execution interval for
program 1 and program 2 is in the I/O stage, then a maxiaum
of one I/0 completion by program 2 can take place and
LAM(2)*C (1) will take place if this number is less than one.
Assuming that the cycle time for program 2 (ET(2)) has been
computed, the probability that program 2 is in the I/O stage

is approximately 1/LAM(2)*ET(2). Thus we have

W (3) =CPP (2) *FAC (2) *C (2) +CPP (1) *FAC (1) *C (1)
+T (2) *C (2) /JLAM (2) *ET (2) (2.2.7)

=W (2) + (CPP (2) *FAC (2) +T (2) /LAM (2) *ET (2)) *C (2)

For W(4) vwe have

W (4) =CPP (3) *FAC (3) *C (3) +CPP (2) *FAC (2) *C (2)
+CPP (1) *PAC (1) *C (1)
+T (2) *C (2) /LAM (2) *ET (2) (2.2.8)
+T (3) *C (3) /LAM(3) *ET (3)

where T(3)=CPP(1) * min[LAM(3)*C(1),1] + CPP(2) *
min{ LAM(3)*C(2),1]. By applying 2.2.6 and 2.2.7 and gather-

ing terms we have

46

W (4) =CPP (3) *FAC (3) *C (3) +W (3)
+T (3) *C (3) /LAM (3) *ET (3) (2.2.9)

=W (3) + (CPP (3) *FAC (3) #T (3) /LAM(3) *ET (3)) *C(3)) -

Applying an inductive argument, it can be shown that the
following expressions may be used to compute the mean

initial wait interval:

W(J)=W(3j-1) ¢+ (CPP (J—1) *FAC(j~1)
+T(j-1) /LAM (j=1) *ET (3-1)) *C (j-1) (2.2.10)
T (j) =sum[CPP (1) *ain[LAM (j)*C(1),1]:1=1,..3-1]

W(1)=T(1)=0 for j=2,3,...

CPU Utilization and Elapsed Time

With W (j) and C(j) determined and IC(j) considered
fixed in the CPU submodel we have but to determine the mean
elapsed time per cycle ET(j), and the CPU utilization

CPP(j). We have the following definitions:

ET(J) =C (J) +W (J) +I0(])., (2.2.11)
CPP (j) =TAU (J) /ET (3) » (2.2.12)
CP(J) =B (3) /ET (3) » (2.2.13)

and

COH (§) =CPP (J) =CP (J) - (2.2.14)

47

CP(j) and COH(Jj) represent program j's mean "problem state"
utilization and "system state" (overhead) utilization

respectively.

Paging Submodel

The paging model was developed by fitting a curve to
observed paging behavior of programs in virtual systeas, but
turns out to be identical in structure to Belady and
Kuehner's independent reference model. It may be observed
that the paging rate of a program in a virtual systes is
inversely proportional to the amount of memory allocated and
directly proportional to the difference tetween the size of
the program and the amount cf memory allocated (provided the
difference is not negative). Furthermore, the instantaneous
paging rate increases unboundedly as the amount of real
memory allocated to the program approaches zero, and
decreases to zero as the amount of memory allocated
approaches the actual size cf the program. Representating
the amount of memory required by the program to execute
without paging by S, and the mean amount cf memory allocated
by v, the paging rate is then proportional to the maximum of

zero and (S-w)/w.

48

Aside from the effect of a program's own working set
size on its paging rate, the working sets of all programs in
the system taken together have an effect on each prograa.
This effect is similar to Bard's Paging Index [3]. The
"critical memory" M(j) is defined as the size of prograa j's
working set below which the fprogram will begin to do
non-trivial paging (above .t pages per second) provided CEU
cycles are available. Defining constants of proportionality
K as a function of CPU instruction execution speed, A as a
function of the number of memory references per instruction,
and R as the total pageable memory, the instantaneous page

exception rate is estimated by

CER (J) =max[0,K*2a (J)*(S(J)-w(3))*EXP(N)/v (]) 1, (2.3.7)

EXP(N)=(sum[(M (1) :1=1,,N]/R]**q.
The real-time page exception rate PI is estimated as
PI (j) =CER (J) *CP (J), (2.3.2)
vhere CP(j) is the portion of CPU utilization attributable
to program j not including system overhead. The assumption

is that system overhead processing is performed using fixed,

non-pageable memory.

49

Memory Allocaton

The problem novw is to allocate the pageable memory R,
to the N programs considered to te in the multiprograsming
mix. Of the many possible ways to achieve this partition-
ing, the most reasonable appears to be to partition the
memory in a way that minimizes the total system paging rate.

The problem may be stated as follows:

minimize PFN=sum{PI(J) : j=1,2,..N] (2.3.3)
subject to sum{ w(j) : j=1,2,..N] < R (2.3.4)
and w(j) £ s(j) for 3J=1,2,..N. (2.3.5)

Except for not being differentiable at the comnstraints
v(j)=S(jJ), this problem satisfies the Kuhn-Tucker condi-
tions. Applying the knowledge which was developed about the

form of the expression for PI(j), a solution may be derived.

Ignoring the individual program size constraints

(2.3.5) for the moment, and applying the Kuhn-Tucker theo-

rem, wve have the following minimization conditions:

DFN/dw(J) =—K*A (3) *CP (J) *S (J) *EXP (N) /v (J) **2, (2.3.6)

DFN/dvw (Jj) =DFN/dw (i) for i,j=1,2,..N, (2.3.7)

where DFN/dvw is understood to represent partial

50

differentiation. These conditions reduce to the following

solutions
SUM=sum((A (i) *CP (i) *S (i)) **.5: i=1,2,...N], (2.3.8)

W (3)=B* (& (J) *CP (J) *S (J)) **.5/sUMN
for j=1,2,..N, (2.3.9)

w(i)=R*w(j)* (A (i) *CP (i) *S (i) /A (J) *CP (J)*S (J)) **.5
for i,j=1,2,..N. (2.3.10)

If all the constraints w(j)<S(Jj) are satisfied, wve
have the optimal solution since any deviation froa this
solution will cause an increase in FN. If wve suppoée
othervise, a rearrangement of the memory Lkalance between any
tvo programs would result in DFN/dwvw(j) <DFN/dw (i) and the
only change that would produce a decrease in FN would be to
subtract memory frcm program i and add it to prograsm j.

However, this would only yield the initial solution.

If the memory constraints are active for some of the
programs, i.e. w(i)=S(i), no reallocation that adds memory
to such a program could cause a decrease in FN since they
are already at the minimum page rate (zero). However
removing memory from a program that does not have the memory
c6nstraint active will result in an increase in the paging

rate.

Oon the other hand, if the initial solution to the

51

system results in the situation v(j)>S(j), for all prograss
j, ve are finished and we simply set w(j)=S(j) since the
composite constraint is not binding, i.e. sum(w(Jj) :

j=1,2,..Ni is less than available pageable memory R.

The fourth case is the most interesting (and praobably
the most common in practice). In this case at least cne of
the programs' memory constraint is violated and at least one
is not binding. Let Q=[3j : 1<j<N,w(3j)2S(Jj)] and let B=(J :
1€j<sN,w(J)<S(J)]} For every j in Q we set w' (J)=S(J).
compute R1=suma{w(j)-S(j) ¢ J in Q] and reallocate
R1+sum{w(j) : j in H] to all the programs whose indexes

belong to H.

Let us re-examine the set [w(j) : j in H]. We see

that minimization of the paging rates over the set [w' (j)

j in H] subject to sum{w'(j) : Jj in H]=sum{w(j) : J in H]
yields the same set of solutions as minimization over all N

of the program working sets.

We have the following solution

W' (j)=sum{w(i):i in H]* (A (J) *CP (J) *S(J)) **.5/SMH
for j in H, (2.3.11)

vhere SMH=sum[(A(i)*CP(i)*C(i))**.5 : i in H]. Applying the

equilibrium condition

52

W' (J)* (A (1) *CP (1) *S (1)) **.5=w (i) * (A (J) *CP (J) *S (J)) **.5

we have

w' (§)=sum{ v (j) * (A (i) *CP (i) *S(i)) **.5: i in H])/SMH

=w(J) j in H. (2.3.12)

It is clear that, if we add the amcunt R1 to sus{v(j)
: j in H], all of the w' (j) for j in H will increase and
thereby decrease the value cf the partial derivative DFN/dvw.

Thus we have w' (j)>w(j) for all i in H, isplying that

DFN(v* (j)) /4w (3) <DFN (w(3)) /dv (J) =DEN (v (i))/dw (i) (2.3.13)

DFN (w* (§)) /3w () <DPN (w (i)) /dw (i) <DEN (S (i)) /dw (i) (2.3.14)

for j in H and i in Q.

This reassignment cannot produce a situation where any
reallocation from the set [w' (i) : i in Q] to the set
(w'(J): J in H] can result in a reduction in FN. We can
drop the former set from further consideration and proceed
as we did initially. Applying the algorithm to the set
[w*(3J): J in H], ve must have either all constraints bina-
ing, no constraints binding, or a combination in which case
the foregoing logic is again applied. We eventually arrive
at a stage where either Q or H is empty and the algorithm is

terminated.

Because the paging mechanisms used bty most existing
operating systems are not optimal we may modify this proce-
dure to reflect more realistic operating system behavior.
For example, the paging algcrithm may be tiased toward the
higher priority programs in the type of operating systeam for
which this analysis is intended. We may wish to define a
scale factor, L (j)=(1/m)**j*a, vhere m is greater than or
equal to 1 and a is greater than or equal to zero. The

Kuhn-Tucker conditions then lead to the fcllowing:

A (J) *CP(J) *S (J) *L (J) *w (1) **2=A (1) *CP (i) *S (1) *L (1) *w (J) **2
for i, j=1,2,..N. (2.3.15)

An example of a biased paging model is one that yields
the constant ratio w(j+1)=p*vw(j) provided that p is greater
than zero and less than or equal tc 1, and that
A(j+1) *CP (j+ 1) *S(J+1) =2 (J) *CP(J) *S (j) - This leads to the

parameter L(j)=p**(j-1) and the solution is

W (1)=(1-p) *R/ (1-p**N), (2.3.16)

v (J) =w (1) *p**(j-1). (2.3.17)

In parameterizing the paging submodel L(j) is cne of
the values that vwe could estimate. The actual I/0 estimates
for the paging model will be calculated ty the I/O sutmodel

which will now te developed.

1/0 Overview

The I/0 model used in this research is the compcsition
of a number of simpler models of assumed independent compo-
nents. The I/0O response time of the composite model will be
computed as a sum of random variables with uniform, exponen-
tial and Erlang distributions. This model will be elaborat-
ed primarily as a disk I/O model since disk activity is the
predominant form of I/O activity in most modernm operating
systems and disk I/O is alsc that aspect c¢cf the system which
causes the most difficulty in modeling. [isk I/O0 is so
prevalent because disks are used for paging devices, data
staging devices (temporary storage), and permanent storage
devices. The Unit Record (card and print) activity is
generally "spooled"™ on disk. This means that card input and
output as well as print operations are actually disk cpera-
tions during user prodram execution, with the card input to
disk taking place prior to program initiation and card and
print output taking place after program termination. The
Unit Record (U/R) devices are driven by sgecial systesn

programs called "spoolers" cr "readers" and "writers".

55

1/0 Submodel Development

The operation of the I/0 submodel is related to the
CPU and Paging submodels as follows: The I/0O wait time in
the CPU submodel is actually the average wait time over all
the forms of I/0 in which the program engages, incluyding
paging. The I/O0 access rates generated by the CPU submodel
are composites of the rates for each program's files. The
device access rates are the aggregate of the access rates by
program. A program's access rate to a given device is the
product of the program's total number of accesses to that
device times the program's ccmposite access rate divided by

the program's total number cf I/0 accesses.

Let the number of accesses to file k on device i by
program j be given by N(i,j,k). Then the total number of

I/0 operations by program j is

N(j)=sum N(i,j,k): i=1,2,..ND3k=1,2,..NF]

j=1,2,..N, (2.4.1)

vhere ND is the total number of devices and NF is the number
of files on device i. Since the number of accesses by
program j to device i is N(i,j), the access rate to device i

by program j is then

56

ARAT (i, J)=N(i,3) /N (J) *ET (3)
i=1,2..ND and j=1,2,..N. (2.4.2)

The total access rate to device i is then

ARAT (i) =sum{ ARAT (i,3): j=1,2,.-N]. (2.4.3)

To simplify the computations, the arrival rate of I/O
requests at the I/0 device queues is assumed to have a
Poisson distribution. Even if it was assumed that both the
CPU and the I/O devices were exponential servers, there
would not be Poisson arrivals in general Lecause the CPU

uses a priority-resume service discipline [32].

For the case of card or print I/0 we will assume a
constant service time. The U/R service time vwill depend on
the number of cards or lines transferred (to disk) per I/C
operation and the speed of the I/0 devices. The only
variation in the response time for these devices will be
that due to channel contenticn. A program which issues an
I/0 operation to a U/R device will only have to wait on the
channel. Because these devices are dedicated, a prograa
accessing them will never find theam busy since we have

excluded the possikility of tuffered operations.

Another type of dedicated device is magnetic tape. In
this case the mean service time depends on the mean block-
size of the data transferred and on the tape transfer speeds

of the magnetic tape devices. In addition to channel delay,

57

we will also experience control unit delay. The latter form
of delay is included with channel delay or ignored as
negligible since the configurations to which this research
applies rarely have more than one tape ccntrol unit ger

channel.

The channels to which U/R devices, tapes and disks are
attached are almost always unique so that these components
of the I/0 subsystem may be treated separately in cosmputing

the I/0 response.

The most complex portion of the I/0 subsystem is the
part which deals with magnetic disks. It is assumed that
the size, location and disk identificatiom for each logical
file accessed by the programs in the system are known

(either from job accounting data or otherwvise).
Disk I/O Model

Three basic patterns cf disk access are considered:
(1) uniformly distributed random access over the cylinders
of a file, (2) uniformly distributed indexed access over the
cylinders of a file (requiring prior access to an index
before accessing the data record), and (3) sequential
access. A disk access mode diagram appears in Figure 4.
This is only a partial diagram of the variations on the
three major modes of disk access. 1In what follows, fixed
record (block) sizes, "verify" option for all writes, a

uniform distribution for rotational delay, and a uniforam

58

distribution of accesses for random access to both randonm

and indexed files is assumed.

It should be noted that some of the equations devel-
oped in this section are hardware or implementation depen-
dent. 1In particular the access methods are IBM implementa-
tions and the disks are IBM 3330 disks. These hardware

dependencies will be pointed out where applicable.

A timing diagram for indexed access appears in Pigure
5, and one for random access in Figqure 6. The diagras for
sequential access difffers from the latter only by the
absence of a significant seek time component. In what
follows, the occurance of equations with indices i,j and k
can be assumed to imply that the equations will hold for the

entire range of each index unless stated ctherwise.

59

Sequential Indexed Direct

Access Access Access
Write Read Read Write Read Write
No Core. No Core- No

Verify Verify 1Index Index Rewrite Add Verify Verify

No No
Verify Verify Verify Verify

Figure 4. Disk Access Mode Diagram

Cylinder Index Read

60

Wait Seek Wait Wait Wait Search &
for Cyl. for for for Transfer
Device Index Channel Record RPS Index
TWD TS1 TWC RD/2 TWR TSCl
Track Index and Data Read
Wait Seek Wait Wait Wait Search &
for Track for for for Transfer
Device Index Channel Record RPS Index
TWD TS2 TWC RD/2 TWR TSCl
Wait Wait Wait Search &
for for for Transfer
Channel Record RPS Data
T™WC RD/2 TWR TSC2

Figure 5.

Indexed Access Timing Diagram

61

Direct and Sequential Read

Wait Seek Wait Wait Wait Read
for Cyl. for for for Key &
Device Channel Record RPS Data
TWD TSK TWC RD/2 TWR TSC

Direct and Sequential Write
Wait Seek Wait Wait Wait Write
for Cyl. for for for Key &
Device Channel Record RPS Data
TWD TSK TWC RD/2 TWR TSC
Wait Wait Read
for for Key &
Record Channel Data
RD/2 TWR TSC
Figure 6. Random Access Timing Diagram

62

Direct Access Disk I/0

In computing the disk file access time it will be
assumed that the disk hardware uses the rctational pgsition
sensing (RPS) technology. This means that the channel will
be allowed to disconnect frcm the disk device during both

seek and search operations. A geometric distribution is

assumed for the delay due to RPS.

Let BS(i,k) be the average block size for file k on
device i, which is accessed bty program j. Let CYL(i,k) be
the size of the file and LC(i,k) its mid-point. We define
the channel service time, TSC, due to access to file k on

device i as

TSC (i,k)=2*RD/128+BS (i,k) /TR, (2.4.4)

vhere RD is the revolution time, TR is the disk transfer
rate and the term 2*RD/128 is the time necessary to prepare
the Rotational Position Sensing (RPS) device for data
transfer. This term causes any expression in which it
appears to be hardware dependent. To apply these expres-
sions to disk devices other than IBM 3330's, this ternm

should be modified. The I/C access rates are expressed by

ARAT (i,3,k) =N(i,3.k) /N (J)*ET (J). (2.4.3)

Then the channel utilization by device, file and prograa is

63

RCU (i, j, k) =ARAT (i,7j,k) *TSC (i,k) (2.4.6)

and the total channel utilization RCU, is given by

RCU=sum{ RCU(i,j,k) : i=1,.NC;3=1,..N:;k=1,..NF]. (2.48.7)

The channel wait time due to RPS is

TWR=RCU*RD/ (1-RCU). (2.4.8)

To estimate the channel utilization as *"seen" by program j,

we have

RCU (j) =RCU-sum{ RCU (i, j,k): i=1,..ND;k=1,..NF], (2.4.9)

and therefore we have an exgpected channel wait time for RPS

of

TWR(Jj) =RCU (J) *RD/ (1-RCU (J)) . (2.4.10)

This is true because at the time that program j requests

I/0, no other operation by program j can ke in progress.

Next, the average seek time by program, file and by
device is computed. PFirst, the probability of access to

each file on each device DI (i, k), is derived as follows:

64

ARAT (i, k) =sum{ ARAT (i,j,k): j=1,..N], (2.4.11)

ARAT (i) =sum(ARAT (i, j,k) : j=1,..N;k=1,..NF], (2.4.12)
and

DI (i,k)=ARAT (i,k) /ARAT (i). (2.4.13)

Disk files are considered to ke organized by "cylin-
der", where a cylinder is the collection of all disk records
wvhich can be read or written at one physical positioning of
the access mechanism or "heads". A movement of the heads
from one location to another is called a "seek". Since ve
are accessing file k with a uniform distribution, the
expected value (in cylinders) of the seek distance SK(i,k),

is given by

E(SK (i,k))=sum{ DI (i,1)*|LC(i,k)-LC(i,1)|: 1l#k]

+DI (i, k) * ((CYL (i,k) **2-1) /3*cyl (i, k)). (2.4.14)

This expression is based on the fact that, on the average,
the seek distance between two files on the same disk will be
given by the distance between their mid-points [44]. For a
seek from some point within the same file the average
distance will be given by the second term in the above
expression. Similiary we may estimate the second mosment for

the seek time E(SK2(i,k)) as

65

E(SK2(i,k))=sum DI (i,1)* (LC (i,k)-LC(i,1))*2 : 1l#k]
+sum(DI (i,1)* ((CYL (i,k) **2+CYL (i, 1) **2) /12 : 1#k]
+DI(i, k) *(CYL (i,k)**2-1) /6. (2.4.15)

Using this expression and the previously derived mean seek
distance, the variance of seek distance may be calculated
using the well-known formula, V(SK(i,k)) = E(S2(i,k)) -

E (SK (i,k)) **2.

In calculating the seek time for the model, it will be
assumed that the seek time is a linear function of the
distance moved. This assumption is reasonable for most
seeks greater than a few cylinders in distance. We define

the seek time function as

TS=T*0U (SK) +KS*SK (2.4.16)

where SK is the number of cylinders seeked, KS is the slope,
T is a constant, and U(SK) = 1 for SK greater tham or equal
to 1 and U(SK) = 0 for SK equal to zero. Then the seek time

for an access to random file k on device i is

E(TS(i,k))=(CYL(i,k)-DI(i,k))*T/CYL (i, k)
+KS* (sum(DI(i,1) *{LC(i,1)-IC(i,k)I: 1#k] (2.4.17)

+KS*DI (i, k) * ((CYL (i,k) **2)=1) /CYL (i,k)).

Using Water's method [44], and the previous assumpticns

about the programs in the multiprogramming set and their

66

disk accesses, we calculate the variance of the seek times

to random file k on device i as

V(TS (i,k))=(1-DI(i, k) /CYL (i,k))*DI (i, k) *(T**2),/CYL (i, k)
+2*T*KS*DI(i,k) *E(SK(1,k))/CYL (i,k) (2.4.18)

+V(SK (i,k)) *KS*=*2,

The wait time due to channel tlocking caused by other

I/0 processes is given by Wilhelm's model [45] as

TWC (i, j, k) =sum(ARAT (m,1,k) *ISC(m, k) **2:1+#j;m#i]. (2.4.19)

The device service time for a random read operation will be

given by

TSD(1,j,k)=TS(i,k)+RD/2+TWR (j) +TSC(i,k)+INC(i,F. k),

(2.4.20)

and service time for a randcm write operation will be

TSD (i, j,k) =TS (i,k) +RD+2% (TWR (J) +TSC (i, k))+THC (i,3,k) .

(2.8.21)

The utilization of file (i,k) due to program j will ke

RDU (i, j, k) =ARAT (i,j, k) *TSD (i, ,k) . (2.4.22)

The respective variances for the read and write operations

67

are

V(TSD(i,3j,k))=V(TS(i,k)+ (RC**2) /2
+RCU (3) * (RD**2) / (1-RCU ()) **2 (2.4.23)

+sun{ ARAT(m, 1,k) *TSC(m, k) **3:1#§;m#i]/3+TRC**2,

and

V(TSD(i,j,k))=V (TS (i,k)) + (RC**2) /3
+4*ECU (j) * (RD**2) / (1-RCU (j)) #*2 (2.4.24)

+sum{ ARAT (m, 1,k) *TSC (m, k) **3:1#j;m#i]/3+TRC**2,

From the previous computaticn of the variance for disk
service time, we may now compute the coefficient of varia-

tion for the disk service time as

CS(i,Jj,k) =V (TSC(i,J,k)) /TISD (i, 3, k) **2. (2.4.25)

We finally get the disk response time by use of the queuing
formula TRD(i,j,k) = TSD(i, jok)*(1 + RHO* (CA**2 + CS**2)/2 *
(1 - RDU(i,j)) where RHO = 1 + 2 * (RDU(i,j) - 1)/(CA**2 +
1), and CA and CS are the coefficients of variation of the
arrival and service distributions. The term RDU (i, j) is the
sum of the utilization of device i by all programs other
than program j. A particular application of this forsula,

for Poisson arrivals (CA=1) is

68

TRD (i, j, k) =TSD (i, j,k) * (1+RDOU (i, j) *

(1+4CS**2) /2% (1-RDU (1, 3)) - (2.4.26)

To get the total response time, we must add the wait time

while the disk is available and the channel is busy,

TWD (i,3,k)=RCU () * (1-RDU (i,3)) *TWC (i, j, k) /2. (2.4.27)

We now look at a slightly mcre complex model, a model of

access for indexed data.

Indexed Disk I/O

For the indexed access method we will assume that the
index is located on the same device as the data portion of
the file and that a seek to this index is required. There
are several cases of indexed access: (1) initial load or
sequential retrieval, which can be treated using the sequen-
tial method to be given later, (2) indexed read-only, and
(3) indexed read-vwrite. We will limit the analysis cf the
indexed method to random reads without the index in memory
(core index). Analysis of the other cases may be achieved

by simple extensions of the methods used here.

We will first calculate the seek time. For a randonm
read there are actually two seeks to be calculated; (1) the
seek from the starting location of the access mechanisa to
the cylinder index, and (2) the seek from the cylinder index

to the indexed file's data area. The expected values of

69

these seeks are equal to the seek times from mid-point of
the file vhere the access arm is initially located to the
pmid-point of the index, and from there to the mid-point of
the data area. Designating these seeks as S1 and S2 respec-

tively, vwe have

E(S1(k,1i)) =

E(S2(k,1i)) =ICI(i,k)-LC (i k)|, (2.4.29)

where CI(i, k) is the mid-point of the index for file k.
Having computed the expected value of the seek distance, we
may compute the expected seek times for the index and the
data portions of the file as E(TS) = T + KS*E (SK) since the
access mechanism will always have to move at least one
cylinder. This is true because the index will always be
read first and the access mechanism will never be left in

the index area.

Since wve actually have two I/0 operations to transfer
a single data record, vwe will compute service times fcr the
two operations separately. First we have the channel busy

time for searching and transferring the index

TSC1 (i, k) =RD/2+2%RD/128+10/2*TR, (2. 4. 30)

and the channel busy time fcr searching and transferring the

70

data record is

TSC2 (i, k) =RD+2*RD/128+ES (i, k) /2*TR. (2.4.31)

Assumning independence for each segment of the timing

diagram, we calculate the channel utilization for indexed

reads as
RCO(i,Jj,k)=ARAT (i,j,k)*(TSC1(i k) +TSC2(i k))/2, (2.4.32)
RCU (j) =RCU-sum{ RCU (i, j,k) :i=1,..ND;k=1,..NF]. (2.4.33)

We then have the delay due to RPS

TWR (j) =RCU () *RD/ (1-RCU (F)) . (2.4.34)

and ve calculate the channel wvait time as before by

Filhelm's method:

TWC (i, jok) =sum ARAT(m,1,Kk) *ISC(m,k):m#i;1+j]. (2.4.395)

The service time for the indexed access will be

TSD1(i, j,k) =TSC1(i, k) +TWR (§) +THC (i,3,k)

+RD/2+TS(E(S1(i,k))). (2.4.36)

The device service time for the data access will be

71

TSD2(i,J,k)=TSC2(i,k) +2* (TWR () +TWC (i, j.k))

+RD/2+TS (E (S2 (i, k)))» (2.4.37)

and the rate of access to device i for all programs cther

than program j is

ARAT (i,3j)=sum{ ARAT (i,1,k) :1#3j:k=1,..NF]. (2.4.38)

The device utilization which program j finds at device

i will be

RDU (i, j) =sum(ARAT (i,1) *(TSD1(i,1)

+TSD2(i,1))/2 : 1+#3], (2.4.39)

and the vait time for program j then becomes

TWD (3) =RCU (J) * (1-RDU (j)) *TWC (3) /2. (2.4.40)

To complete the elaboration of the model we must find
the variance of the service times. It can be shown that the

variance of the distance for the initial seek, S1, is

V(S1(i,k))=sum[DI (i,1)* (CL(i,k)**2+CYL (i,1)**2)/12:1=1,..NF]
+sum{ DI (i,1) *(1-DI (i,1))*(CI(i,k)-LC(i,1))**2:1=1,..NF]
-2*sum[DI (i,1)*(CI (i,k)-LC(i,1) |*

sum{ DI (i, m) *|CI (i,k)-LC(i,m) {:m=1,..1-1]:1=1,..NF],

(2.4.41)

72

wvhere CL is the nuamber of cylinders in the index portion of

file k on device i. The seek time is then

V(T(S1(i,k)))=T**2+V (S1(i,k)) *KS**2. (2.4.42)

The variance of the second seek is then calculated as

V(S2(i,k))=(CL (i,k) **Z+CYL (i,k) **2) /12, (2.4.43)

and the seek time for the second seek is

V(T(S1(i,Kk)))=T**2+V (S2 (i, k))*KS**2 (2.4.44)

The variance for the channel service time is then (RC**2)/12
and 2* (RD**2) /12 for the index read and the data read

respectively. Since the variance of the rotational delay is
(RD**2) /12 we have the follcwing expression for the variance

of the device service time for the read cf the index:

V(TSD1 (i, 3,k))=V(T(S1(i,J,k))) +V(TWC(J))

+V(TWR(J)) + (RC**2) /12+V (TSC1(i,Jek)), (2.4.45)

wvhere V(TWC) and V(TWR) are calculated exactly as in the
case of the random access method. Similarly, we have the
variance of the disk service time for the data read cpera-

tion as

73

V(TSD2(i,j,k))=V(T(S1(i,J,k))) +(RD**2) /12

+2% (V(TWC(J)) +V (TWR(J))) ¢V (TSC2(i,J,k)) - (2.4.46)

At this point we form the ccefficient of variation exactly
as before and use this in the general queuing formsula to get
the expected response times TRD1(i,j,k) and TRD2(i,j,k) for

the indexed access method.

The extension of these methods to other foras of I/0
for indexed files is straightforward. For example, to extend
the previous analysis to the case where the index is in core
ve simply calculate the seek time component (S2) exactly as
we would for a randomly accessed file. Of course the use of
a core-index implies something about the memory requirements
and also the CPU usage of the program. The use of a

the CPU and Paging submodels are concerned.

Sequential Access Disk I/O

For a sequentially accessed disk file, we calculate
the timing diagram in a similar manner to calculation for
the direct access case. The difference is in the calcula-
tion of the seek time. First we determine the expected

value of the seek distance

74

E(SK(i,k))=sum{ DI (i,1)*|LC(i,k)-LC(i,1l):1#k]

+DI(i,k)/RC, (2.4.47)

where RC is the number of records to ke read froa each
cyclinder of file k. The variance of the seek distance we

calculate as

V (SK (i,k))=(1-DI (i,k)/RC)*DI (i, k)/RC
+sum[DI (I, 1) * ((CYL (i,1%**2+CYL(i,1)**2)/12
+ (1-DI(i,k))* (CYL (i,k)-CYL(i,1)) **2
-2*DI (i,k) *|LC(i,k)-LC (i,1) | : 1#k] (2.4.48)
-2* (sumf DI (i,1)*|LC (i,k)~-LC(i,1) |*

sun{ DI (i,m) *{LC(i,k)-LC(i,m) f:m=1,.1-1,m#¢k Js1l+k].

We then have the expressions for the expected seek tinme,

E(TS (i, k))=(1-DI (i, k) +DI (i, k)/RC) *T (2.4.49)

+K* (sun{ DI(i,1l) *|LC(i,1)-LC(i, k)| 1l#k])+DI(i,k)/RC),

and the variance of the seek tinme,

V(TS (i,k))=2*K*T*DI (i,k) *E(S (i,k))/CYL (i, k) +V (SK (i,k))*K**2

+(1-DI(i,k)/CYL (i, k))*DI (i, k)* (T**2)/CYL (i, k). (2.4.50)

With the expected value and variance of the seek time we
calculate the coefficient of variation, the disk resgomse

time, channel waiting time, and the I/0 response time as wve

75

did in the direct access case.

From the previously derived expressions for access
rate by file, device and program, we can calculate the

average I/0 response time fcr program j by

XI (j) =sum{ N(i,Jj,k) *TRD(i,j,k)/N(J) :i=1,..8D;k=1,..NF].

(2.4.51)

I/0 for Paging

The I/0 response times for paging ogerations are
computed as if the paging file were comprised of distinct
subfiles for each program in the multiprcgramming set. The
response for each program is computed as the I/0 time for
random access to its paging subfile with the added condition
that the paging I/O0 is priority scheduled using
Head-of-the-Line (HOL) policy. It should be noted that the
foregoing comments are specific to the implementation of the

particular operating system used in this research.

Using PHI (j) as the average time to read or write a
page on behalf of program j, TSD(l) as the mean service time
for all I/0 to the paging data set, and TSD(1l,j,Jj) as the
mean service time for access by program j to its portion of

the paging file we have the following:

76

PHI (j) =TSD (1, 3,3) +RDU (1,3) *TSD (1) *CK (J) ,
CK (j)=CK (j=1) +ARAT (1,3-1, J=1)*TSD(1,3-1,3-1), (2.4.52)

CEK(1)=(14CS (1) **2) /2 J=1e.eeN,

vhere ARAT and RDU have the same meanings as defined previ-
ously. All other values used in determining the response
time for paging is computed exactly the same as for a random

access data set.

This concludes the detailed discussion of the I/0
submodel. This discussion was not intended to be exhaustive
but does point out the kind of I/O models that can be used
to give a more realistic treatment to I/0 than is usually

found in computer performance models.

Submodel Integration

We complete the model by integrating the Paging, CPU, and
I/0 submodels. This is accomplished by calculating the
statistics for the CPU and Faging submodels, and then using
these statistics as input tc the I/0 submodel. The I/0
statistics are then used as input to the CPU and Paging
submodels. This process is repeated until the model state

variables converge to an equilibrium solution.

Since the model develcped herein is comprised of a

system of non-linear equaticns, the Requla Falsi, or the

als
Del

method of false position [(30], and Aitken's ta-Square

717

algorithm are used to accelerate convergence of the systen.
The ideas that enable the various parts of the model, the
submodels, to fit together will now be examined in some

detail.

The idea of a CPU cycle is extended to include fprogras
CPU execution intervals which terminate in paging operatioms
as vell as those terminating in normal (ncn-paging) I/0
operations. Representing the average page read or write
time as PHI(Jj) for program j, and defining the systeam ratio
of page reads to page writes as BETA, we have the exfpression

for the average page wait time during a paging cycle

ETA(Jj)=(1+BETA)*PHI. (2.5.1)

With N (j) the number of non-paging I/0 operaticns
during the execution of program j, and CTIIME(Jj) the total
problem state time during the execution of program j, ve

have

MU (J) = (N (J) +1) /CTINE (). (2.5.2)

The approximate number of page fault cycles is given by

PG(J)=N(J)* (1/B(J) *MU(J)-1). (2.3.3)

We then calculate the proportion of all I/O delays due to

paging as

78

PG (3)/ (PG(J) +N (J)) =N (J) * (1 /HU(J) *B (})-N)/
N(3) * (1/-HU(3) *B(3) =1) +N (J) (2.5.4)

=1-HU0 (J) *E(J) »

where B(j) is the average CFU execution time per cycle for
program j and PG(j) is the total number of cycles of grogras
j*s execution which terminate in page exceptions. Sisilar-
ly, the proportion of cycles due to non-paging I/O ofpera-

tions is

N(3)/ (PG (J) +N (3)) =HU (J) *B (J) - (2.5.5)

Using the instantaneous page exception rate CER (j)
defined previously, the numker of paging cycles PG(Jj) is
given by the product of the total number of cycles times the

rate of page exception generation per cycle

PG (J) = (N (J) +PG (J)) *CER (J) *B(J) «»
or equivalently,
CER (J)=PG (J) /B (J) * (N (J) +PG(J))=1/B (J)-MU(J) . (2.5.6)

This implies that the CPU time per cycle E(j) is

B (J) =1/ (80U (3) +CER (J)) (2.5.7)

and B(j) can be determined. Now that we have an estimate

for the average paging response time ETA(Jj) and the normal

79

I/0 response XI (j), we can calculate the average overall I/0

response as

I0 (J)=MU(3)*B(J) *XI(J)+(1-80(J)*B(J))*ETA(J). (2.5.8)

Turning now to a re-examination of the CPU overhead
due to I/0O and page management, let the normal I/O process-
ing cycle overhead be given by ALP (j) and the average paging
cycle overhead by DEL(j). The average CPU time consumed fer

cycle for program j will be

TAU (J) =B (J) +#0 (J) *B (J) *ALP (J)

+(1-80(J) *B (J)) *CEL (J) . (2.5.9)

For a given program j (remember this also means priority
level j), there is only one variable on the right hand side

of the above expression, the variable B(Jj).

In taking the output of the CPU and Paging submodels
as input to the I/O submodel, the device/file access rates
must be disaggregated so the appropriate rates are reflected
for non-paging and paging I/0 (the paging I/O response is
calculated by the I/0O submodel just like any other I/0).

The normal I/0O rates are computed as MU (j)*B(j)/ET(J) and
the paging rates are computed as (1-MU(J)*B(j))*(1 +
BETA)/ET (j). After computing these I/0 components separate-

ly, they are recombined as shown previously.

One other aspect of CEU service time to be introduced

80

at this point has to do with the elongation of service tinme
due to CPU cycles Lkeing "stolen" to accosmplish I/0. This
effect can become significant at high I/0 rates because the
amount of CPU time used by the channel is proportional to
the amount of data transferred and the number of I/0 opera-

tions started.

This effect will be gquantified by defining an "expan-
sion factor" CYT, as the ratio of available CPU time with
some level of I/0 to the maximum available CPU time without
I/0. This factor is expected to be different for different
programs in the multiprogramming mix. Defining the amount
of time stolen by the channel for an I/0 operation by

program j as D(j), we have

D (j)=DS+((1-B*MU) *BS (j) +B*MU*BSP]*DC, (2.5.10)

where DS is the amount of time used by the chanmnel tc
initiate and terminate an I/0, BS(Jj) is the average I,0
block size transferred for program j, BSP is the size of a
page in the system under discussion, and [CC is the asmount of
CPU time used by the channel per byte transferred. Fcr the
present research DS = 76 microseconds, DC = 0.15 microse-
conds, BS = 568 bytes and BSP = 2048 bytes. These factors

are all hardvare dependent.

Then the amount of CPU time stolen each second for I/0

on behalf of program j is given by D (J)/ET(J) so the

81

fraction of CPU cycles available for instruction execution
is 1-D(j)/ET(j) . A program of higher priority than progras
j must be in the I/0 stage if program j's instruction are
executing, so the fraction cf CPU time available due to the
higher priority program (k) is 1-LAM(k)*D (k). Combining
this with the results for a lower priority program, it can

be shown that

CYT (J) =prod([1-LAM (k) *C (k) :k=1,..3-1] (2.5.11)
*prod{ 1-D (k) /ET (k) : k=j+1,..,N].

CYT may be computed in sequential fashion in the CPU submo-

del by

CYT (J)=CYT (3-1) *(1-LAM(J-1)*D(j-1))/ (1-D(J)/ET(J)) .,
CYT (1) =prod(1-D (k) /ET (k) :k=2,..,N], (2.5.12)

for j=2,3,..,N.

The expected length of a CPU execution interval, whether it
is B, TAU, ALP or DEL may be elongated simply by dividing by

the corresponding CYT.

This completes the sukmodel integration. At this
point all of the essential e€lements of the model have been
put together. The conditions for convergence to an equili-
brium and the extent to which these conditions are met by

the present model will now Lle examined.

Model Cecnvergence

If we represent a cycle of iterations of the CEU,
Paging, and I/O sutmodels by the real valued functions f(.),

defined over Euclidean N-space, we have

£ () =LAM (§) -LAN"' (j) for j=1,..N, (2.6.1)

where LAM(J)=1/1I0(j) and LAB' (j)=1/I0'"(j) are the outputs of
the I/0 submodel (and consequently input to the CPU and
Paging submodel) on successive iterations. LAM and LAM' are
interpreted as instantaneous I/0 response rates. The

equilibrium condition requires that

£(4)=0 for j=1,..N. (2.6.2)

Since the model is a system of non-linear equations,
and the iterative method of alternating tetveen CPU-Faging
submodel and I/0 submodel calculations produces an oscillat-
ing series, we have employed a variation of Newton's Method,
the Regula Falsi [(30], to accelerate convergence. The

algorithe is based on the general form

g(IN=x(I-£)/£* (J) =1..%, (2.6.3)

wvhere x(j)=LAM' (j) is a scalar and f'(.) is the derivative
of f(.) with respect to x(j). Representing the vector forms

for £, 9, y, and x by the urper cases F, G, Y, and X we

83

Lave the vector condition for convergence of the algoritha:

HIG(X)-G(Y) IIsH*| |X-Y]I, (2.6.4)
for f 1X-Y| I<RHC
where {|.{| is a norm, M is a scalar less than one, and the

vectors X and Y are in a sphere of diameter RHO about the

equilibrium point, EP, in NE-space [37].

We are assured of the existence of the point EP by the
Mean Value Theorem, since each f(j) is continuous in any
neighborhood of EP(j) and takes on both positive and nega-
tive values in this neighborhood. Because of the complexity
of the full expression for f(.), it is very difficult to
manipulate the derivative symbolically --although it is
possible to use the same algorithm which calculates f(.) to

calculate f!' (.) numerically.

If we represent the k-th iteration cf the vectcr X Ly

X(k), vwe can express equaticm 2.6.3 as

g(3:X(k))-g(JFiX(k=1))=-£(J:X(k)) /£ (J:X (k)) (2.6.5)
for j=1,..N and k=1,2,...

With this expression in mind, we will take a closer look at
the function f(.). To reduce the complexity of the analy-
sis, we will simplify the mcdel in a way which will nct

interfere with the generality of the results.

84

First, we will assume that all block sizes are equal
and that all file accesses are to disk. Furthermore we will
limit the access method to direct (or random) accesses
uniformly distributed over a single disk module. This is
really not as great a simplification as it seems since it is
many times more complicated to calculate response times for
many programs accessing a single disk drive than it is to
compute the response time for each program accessing a
unique disk drive. The latter case involves no iteration
since each program's I/O response will be almost totally
independent of every other program's I/0 response, and
therefore easier to compute (this is because there will be

no queuing for devices).

The foregoing assumptions will ensure that the sgervjce
time (TSD) for every program will be identical. Ignoring
the channel service time, and designating the disk service
time by TSD, we have some natural constraints to work with.
For example, the access rate for all prograams must be less
than 1/TSD since a device cannot be utilized more than 100%.
Representing the instantaneous access rate for progras j by
x(j), an analysis of a single iteration of the algoritha
(the function f), we have that £(j;x(j)=0) < 0 and
f(j§;x(j)=1/TSD) > 0 for every program j. Furthermore, it

can be shown that f(j:x(j)) < £(j+1:x(j+1)).

We can guarantee that f(N x(N)=0) < O by the imposi-

tion of the requirement that the utilization of the disk be

85

less than or equal to 100%. Given the access rates ARAT(l),

and a single disk device, we have

£(3sx(3))=x(J) +sum{ ARAT (1) :1+#3]-1/TSD,
sum{ ARAT (1) *TSD:1=1,..N=-1] < 1,
==> sum{ ARAT (1) :1=1,..N-1] < 1/TSD, (2.6.6)

==> f(Jsx(Jj)=0)=sum{ ARAT (1) :1=1,..N-1]-1/TSD < 0.
For x(j) = 1/TSD ve have

£f(3j;x(j)=1/TSD)=1/TSD
+sunm(ARAT (1) :1=2,..N]-1/TSD (2.6.7)

=sum{ ARAT (1) : 1=2,..N] 2 O,

since each rate ARAT(l) is strictly positive and converges

to zero as x(j) becomes infinitely large.

To show that £(j x(j)) £ £(j+1:;x(j+1)) we have

f£(3sx(I))=£(F+15x(F+1)) - (x(J)**2)*(C(J) +x (J) *
(W (3) +I0(3)) *ARAT (j) *ARAT (§+1). (2.6.8)

Since all of the variables following the negative sign in
the above expression are greater than or equal to zero, the
necessary condition prevails. Because the functions
involved are continuous in the domain of interest, we are

assured of a solution.

+s/ . "N

86

It can also be shown that the functions f(.) are
differentiable and that the partial derivatives of f(j) with

respect to x(Jj)--Df (j)/dx(j)--are ordered

Df (1) /dx (1) £Df (2) /dx (2) <...<Df (N) /dx (N) =1, (2.6.9)

and the second partials DDf (j)/dx(j) are non-negative

everyvhere,

DDf (1) ydx (1) 2DDf (2) /dx (2) 2. . 2DDf (N) /dx (N) =0. (2.6.10)

These conditions assure us cf a unique solution and they
also assure us that the derivative of each functiom is
greater than zero and less than or equal to ome (1) in the
neighborhood of the solution (the derivatives are very

nearly equal to one in this neighborhood). We have that

Df (1:EP(J))/dx (1) >TSD* (£ (1: 1/TSD)-£ (1:0)) (2.6.11)

(g (3:x(3)) =g (F=23(3)) 1=1x(F)-y(IF) +£ (Fzx(F))/£* (J:x(F))
-£(3:5(3)) /£ (F:y () 1. (2.6.12)

By Taylor's Theores,

£(3:2(3))=£(J:EP(J))+£* (J:EP(J)) *(2(J)-EP(J)), (2.6.13)

implying that

87

19(3:x(3)) -9 (3=x(3)) I=1x(3) -y (J) +CHI*(y (I)-x(I)) |
=1 1-CHII*Ix () -y () I, (2.6.14)

where CHI is a non-negative scalar which is less than one.
Using ((XI| = max(x(j):j=1,..N] as the definition of the
norm, we chose RHO so that ||X-EP{| < RHO implies by contin-

uity that

£ (J:EP (J)) *U/5<£* (J:x(]J)) <£' (J:EP (J)) *5S/4,
implying that
4/5<f* (F:EP(J))/£f' (J:x(J)) <5/4. (2.6.195)

This means that 4/5 < CHI < 5/4 or -1/4 < 1-CHI < 1/%,

therefore

| 1-CHI|< 1/4. (2.6.16)

Substituting this into the previously derived expression, wve

have

HIG(X) =G (Y) 1 ISI1-CBI{*[| X-Y[I<(1/4)*|IX-YI]I. (2.6.17)

With this we conclude the demonstration that the use
of Newton's method is warranted and that the algorithm
converges to a unique solution. To accelerate the rate of
convergence of this process, we apply Aitken's Delta Square
algorithm to estimate a new fpoint froam three previous

estimates by Newtons method. The task now is to develop the

88

experimental apparatus to validate the model and determine

its usability.

III. MOLEL VALIDATION AND EXPERIMENTAL DESIGN

Experimental Plan

The computer runs for estimation and validation wvere
performed on an IBM System/370 Model 148 in the Detrcit
Datacenter. The IBM 0S/VS1 operating system and the IBM
software products, Systems Measurement Facility (SMF), and
0S/VS1 Utilization Monitor were used to collect and manipu-
late performance data. Making the experimental runs on the
same computer as the base runs does not detract from the
results since the prograas in the base runs and the experi-
mental runs were in totally different combinations and with
different priorities. This is, after all what the model is
supposed to predict. The only additional information that
could have been gained by executing the experimental runs on
a different computer from the base runs is the extent to
which execution timings on different model computers are not
proportional. For example the ratio of execution timings
for scientific and commercial instruction mixes on two
different models of the same computer "family" will Le
dif ferent. The model developed here does not attempt to

dgive an answer to this problem and a decision was made to
USe published instruction execution rates for an "average"

COmmercial job mix as is the common practice.

89

90

To a certain extent the proposed model is dependent
upon the particular implementation of the operating systen
used. The implementation of the operating system used in
making the measurements is interrupt driven priority-resume
dispatching for batch programs. This research was conducted
using only one operating system but this does not seriously
limit the generality of conclusions reached because differ-
ences within the class of operating systems defined above -
are differences in parameter values and furthermore this
dispatcher is representative of the majority of operating
systems in current use. Examples of these parameters are

the quanta of CPU overhead for I/O interrupt, start I1I/0,

dispatch processing, and paging overhead.

Estimates were obtained for the paging submodel
coefficients which correspond to the page-out/page-in ratios
(BETA), working set allocation parameter (L), and the paging
indices (A). The estimation began with the execution of a
selected workload and the measurement of its performance.
The measurement data was then fitted to the model by use cf
multivariate regression analysis. Finn's MULTIVARIANCE
program was used for estimation of the regression coeffi-

cients (22].

Performance measurement was achieved by means cf
software monitors and job accounting data collection. The
response data collected included program CPU usage, total

CPU usage, channel busy counts, device Lusy counts, fpaging

1

91

and other I/0 counts and working set sizes. These data vere
manipulated to give the performance values of interest:
total CPU utilization, program CPU utilization, channel
utilization, average working set sizes, paging rates,
program I/O operations. Further transformations were made
to estimate each program's page index (A), mean CPU service

time (1/MU), and mean I/O0 response time (I0).

To complete the experimental planm, the apparatus
employed, and the programs used in parameter estimation and
model validation are descriked. Next, a description is
given of the instruments or ameasurement software and data
reduction programs used, and the measures to which they
relate. The last section of the chapter provides descrip-
tions of the experimental design for estimation, the design

for validation, and the respective hypotheses tested.

Programs for Measurement and Control

The programs used in this research were of three tyges

(1) those written by the experimenter to predict progranm
behavior and estimate parameters, (2) those designed and
programmed by the experimenter so that the experimental
variables could be controlled in model validation, and (3)
statistical programs. The programs used for prediction are
basically the model developed in chapter two. This Ecdel
was programmed in APL [31] and executed on an IBM
Systen/370. The experimental programs were written in COROL

and the statistical programs used in this research were

92

Finn's MULTIVARIANCE package [22].

The parameter estimation workload is composed cf 8
programs randomly chosen frcm a population consisting of 8
"CPU bound" prograes and 8 "I/O bound" programs. The
definition for "I/O bound" used here is that, for a fprograa
run in isolation, greater than 75% of the elapsed time would
be spent waiting for I/O operations. Likewise “CPU bcund"®,
as used here, means that the program would consume acre than

50% of the available CPU cycles during its execution.

The programs used in the model validation were "syn-
thetic" programs [10,42]) specially constructed to vary over
the cells of the experimental design. The synthetic
programs were written as extensions to the synthetic
programs mentioned earlier in this thesis but they were
modified to enable the paging index A(j) to be varied. More
will be said about this in the discussion of experimental

design.

Experimental Variables

There are 5 independent variables and 7 dependent
variables in the experiment. The program related indepen-
dent variables are: (1) the page index, A(j), and (2) the
variance of CPU service time VS(j). Three other inderendent
variables are environment related and comnsist of: (1) The
variance of I/0O service time VI(Jj), (2) the priority of the

program being measured, j, and (3) the total number cf

93

programs in the wmultiprogramming mix, N. A decision was
rnade to eliminate the memory variable R, because its effect

is confounded with the factcr N, the number of prograss.

The dependent variables are: (1) problem progras CPOU
utilization CP(j), (2) program elapsed cycle time ET(J), (3)
total program paging rate PR(j), (4) program page-in rate
PI(j), (5) program channel utilization RCU(Jj), (6) total
system overhead OHT(N), and (7) average program working set

size v (j).

The system parameters are: (1) CPU cverhead for normal
I/0, ALP(j), (2) CPU overhead for Paging, DEL(j), (3) the
ratio of page-writes to page-reads, BETA(Jj), and (4) the

working set allocation weights, L(Jj).

Instruments and Measures

The instruments used in the collection of elapsed
times, problem state time, wait time, paging counts and
working set size samples by program were the job acccunting
facility of the IBM O0S/VS1 cperating sytesm, the Systess
Measurement Pacility (SMF), and the IBM proprietary frogranm,
0S/VS1 Utilization Monitor. The channel and device utiliza-
tions and working set sizes are based on sampling. Systen
paging and other I/O rates are based on ccunts and CFU times

are based on actual measurements.

In other cases the variables in this experiment vere

not directly observable, so indirect measures were

94

constructed. While it is fairly easy to estimate the
problem state CPU utilization CP(j) as the ratio of total
problem state time to elapsed time, the overhead due to a
specific program is not generally attributed to that fprogram
by job accounting routines c¢r program monitors. Because of
this, estimates of COH(j) must be achieved by a partition of
the total system overhead. The total system overhead is an
estimate based on the difference between the elapsed time
and the wait time and problem state time or it is based on

sampling by performance monitors.

In order to estimate the parameters ALP(j) and DEL(J).,
estimates must be obtained for COH(j), but it has already
been stated that COH(j) is not measurable. One way to
partition total system overhead for each program is tc
assume that the ratio of problem state CPO utilization to
overhead is the same for each program as new programs are
added to the multiprogramming mix. Suppose that we have L
programs in the mix and CP(j) and COH(Jj) for j=1,..,L. We
then add program K+1 and get CPT, the total CPU utilization,
and the program utilizations CP' (j) fecr j=1,..,K+1. The

above assumption implies that

COH' (j) =COH (j) *CP* (j) /CP (J)» for F=1,..,K (3.4.1)

95

COH(J) /CP (J)=CER (Jj) *DEL (J) +MU (J) *ALP (J) (3.4.2)

=CER"' (j) *DEL (j) +MU (j) *ALPE (j)

w(Jj)=v"'(3) for j=1,..,K. (3.4.3)

Thus the above assumptions imply that the working sets for
program j is identical in the runs with K and K+1 prograas .

This is only possible if memory is not a binding constraint.

Since we have neither a direct nor an indirect means
of estimating COH(j), and since COH(j) is a function of ALP
and DEL-- both of which must also be estimated--some other
means of partitioning the total system overhead had tc be
devised. It was then hypothesized that ALP and DEL increase
with increasing j (lower priority) since the dispatcher must
process nore‘dispatch queue entries before arriving at the
last queue entry. It is also likely that ALP and DEI both
increase with increasing N since more lists and tables must
be checked by the operating system at every interrupt.
Finally, it was hypothesized that the amcunt of processing
that must be accomplished by the operating system before an
I/0 or paging operatiom can be sucessfully initiated is
proportional to the depth of the I/0 queues, and the depth
of the I/0 queues is proportional to the the aggregate rate

of I/0 operations, T(j). For the overhead variables we have

96

ALP(J,N,T(J))=K1+#j*K2+¢N*K3+T (j) *K4, (3.4.4)
and

DEL(J, N, T(J))=L1+¢*L2+¢N*L3+T (§) *L4, (3.4.5)

vhere T (j)=sumaf 1/ET(1): 1=1,..N; 1l#j]. We then have for

program j's overhead

COH (J) /CP(3) = ((1-B (J) *MU (3)) *DEL (3,¥,T(J))
+B (J) *40U (J) *ALP (3,N,T(J))/B(J)« (3.4.6)
or
COH (J) =(1-B(3J) *MU(J)) *LEL (j, N, T (J)) /ET(])
+B (J) *MU (j) *ALF (J,N,T (J)) /ET (J) - (3.4.7)

We now assume that there is insignificant paging
(B(j)*MU(j)=1) and sum the individual program overhead teras

giving

OHT (N) =X (N) *K1+¢Y (N) *K2+¢N*X (N) *K3+ (X (N) **2-S (N)) *K4

for N=1,..,7, (3.4.8)

where X(N)=sum{ 1/ET(J):j=1,..N], Y (N)=sum{ j/ET (J) :j=1,.-N],
and S(N)=sum{ 1/BET(j)**2:j=1,..N]. We have a system cf 7
equations in 4 unknowns for which a solution exists if the
matrix of coefficients times its transpose is non-singular.
This will be the case if no column or row is equal tc a
combination of other columns or rows. The condition that
there be negligible paging can be guaranteed by manipulation

of the large real memory of the experimental systenm.

97

Executing the ALP estimation workload in a paging
environment provided the basis for computing the overhead
caused by paging as the residue of the CPU overhead due to
I/0 which was estimated with the ALP coefficients. For the

residue due to paging we have

OHT® (N) =X (N) *L1+Y (N) *L2+N*X (N) *L3+ (X (N) **2-S (N)) *L4

The first 3 runs were eliminated because there was no paging
for N<U4 since the size of each program was identical and the
size of main memory vas constrained to the size of three
copies of the program. From two replications of these 5
experiments, equations were derived to estimate the 4 paging
coefficients. The overhead expressions were then coabined

to get the overhead for the "mixed" model.

To estimate the ratio of page-writes (PO(j)) to
page-reads (PG(j)), consider the conditions which result in
a page-write operation. A rpage exception will result in a
page-vwrite operation if there are no page frames that are
unreferenced and there are no referenced pages that have not
been modified. The probability of this
event--BETA(j,N)-~times the number of trials (PG (j)) will
give the number of pages writtemn or PO(j) = BETA(j,N)*PG(J).
It was thought that BETA would be a function of the arount
of real memory in the system and the amount of memory

demanded by all the programs in the system and not depend on

98

program j alone, i.e. a system parameter.

The experiment was carried out with printer output
spooled but not printed until after program termination
because of the need to reduce the complexity introduced by
spooling and measuring additional programs. This does not
reduce the usefulness of the model because each execution of
a spool task can be considered to be the execution of a
separate program which requires a printer and "spooled"

print output from some other prograam.

A spool program is just like any other in the model
except that its priority will be set higher than that of a
normal program. In this sense the model would allow the
priority to "float® according to the numker of systea

programs (spool tasks) which are active.

Experimental Design

Design for Parameter Estimation

The design for parameter estimation consisted cf 16
runs of one to 8 programs for the estimation of coefficients
for ALP, and 10 runs for the estimation of coefficients for
DEL, L and BETA (see Figure 7). The hypotheses tested were
the following:

1. Larger values for the grogram I/0 overhead paraseter

(ALP) are expected for programs executing at lower

priority levels (larger values of j)

2. Larger values of the program I/O overhead parameter

10.

99

(ALP) are expected for programs executing in larger
multiprogramming sets (N)

Larger values of the program I/0 overhead parameter
(ALP) are expected with larger system I/0 access rates
(T(3))

Larger values of the paging overhead parameter (LCEL)
are expected for programs executing at lower priority
levels (larger j)

Larger values of the paging overhead parameter ([CEL)
are expected for programs executing in larger multipro-
gramming sets (N)

Larger values of the paging overhead parameter (LCEL)
are expected with larger system I/0 access rates (T (J))
The page-write to page-read ratios BETA are expected to
be identical for programs executing concurrently

The page-vwrite to page-read ratio BETA is expected to
be larger when a program is executed in a larger
multiprogramming set than it is when the progras is
executed in a smaller multiprogramming set at the same
priority

The overall system page-write to page-read ratio BETA
is expected to be larger for larger multiprogramming
sets

The page allocation weights (L(j)) for all prograss

executing concurrently are expected to be identical

Number of
Programs=---

Priority

100

(8]
w

1l PGM1 PGM1 PGM1l

Note: PGMx is the x-th program randomly chosen.

Figure 7.

PGM2 PGM2

PGM3

PGM1
PGM2
PGM3

PGM4

PGM1

PGM2

PGM3

PGM4

PGMS

PGM1

PGM2

PGM3

PGM4

PGMS

PGM6

Experimental Design for Estimation

PGM%
PGM2
PGM3
PGM4
PGM5S
PGM6

PGM7

101

This concludes the discussicn of experimental design for

estimation.
Experimental Design for Validationm.

The objective of the experiment was the determination
of the limits of the model and the extent of its validity.
The five independent variables were varied over high and low
values to form a fixed crossed factorial design with 32
cells. Defining a low number of tasks as 6 and a high
number of tasks as 7, the experiment was effected by 16
computer runs of 6 programs each and 16 computer runs of 7

programs each for a total of 32 computer runs.

The experiment used 4 disk drives in addition to the
"system" disks. The first disk was accessed by all prograams
for paging and the third disk was accessed by the experimen- "
tal program only. The second and fourth disks were only

accessed by the control programs (CNTL).

The criterion variables for this design were relative
errors consisting of the differences between the predicted
values of the variables and the experimental or measured
values divided by the experimental or measured values. Thus
a positive value of the transformed variable signifies
over-prediction (positive error) and a negative value
signifies under-prediction (negative error). Using a linear
model to test hypotheses by means of the analysis of vari-

ance, multivariate tests vwere performed for each of the

102

independent variables or effects.

To allow for sufficient degrees of freedom to estimate
the error term, at least twc replications were required in
each cell of the design. Since the number of computer runms
involved would have been quite large (64), a decision was
made to use a 1/2 or "fractional" replicate, allowing the
estimation of all main effects as well as two factor inter-
actions [16,37]. This design reduced the size of the
experiment to 2 replications of 16 runs (see Figure 8). The
experimental data was tested using the Analysis of Variance

routines of Finn's MULTIVARIANCE program [22].

1lcccec lcccecec ccclcce ccclccce
00000 o001 00010 00011
2CCcccC 2CCccce cccaccce cccacce
00100 Q0101 00110 00111
3ccccece 3cccece CcCc3cCcC Cccc3cce
01000 01001 01010 01011
4CCcCcCC 4Ccccccce CCc4cc Ccc4cce
01100 01101 01110 01111
S5Ccccec 5Cccccce CCC5CC CCC5CCC
10000 10001 10010 10011
6CCcCcCC 6CCcccc cccece ccceccce
10100 10101 10110 1011l
7Cccccee 7cccecc cccicce ccc7ccce
11000 11001 11010 11011
8CccccC 8Cccccce cccscc cccsccee
11100 11101 11110 11111

Note: Numbers 1-8 represent "Synthetic" programs, and "C"
represents the control program. The underlined
cell identifications are the cells which must be
included in a "half-replicate" fractional design.

Figure 8. Experimental Design for Validation

104

The five-way factorial design for the experiment was

chosen to permit testing of the following null hypotheses:

1.

The mean relative error in the prediction of the
experimental outcomes is less than or equal to .15
The mean relative error in the prediction of the
experimental outcomes due to variation in page index
(2) is less than or equal to .15

The mean relative error in the prediction of the
experimental outcomes due to variaticmn in CPU service
variance (VS) is less than or equal to .15

The mean relative error in the prediction of the
experimental ocutcomes due to variaticn in I/0 service
variance (VI) is less than or equal to .15

The mean relative error in the prediction of the
experimental outcomes due to variaticn in multifrogram-
ming level (N) is less than or equal to .15

The mean relative error in the prediction of the
experimental outcomes due to variaticn in priority

level (j) is less tham cr equal to .15

Before testing the above hypotheses, tests of all 10

two-factor interactions were planned.

One characteristic of the Analysis of Variance is that

tests of main and fixed effects are only meaningful in the

absence of significant interactions. The step-wise strategy

for significance testing is to test interactions first and

if the null hypothesis is maintained, to continue testing

105

the fixed effects in reverse order. If a significant
interaction is found, main and fixed effects cannot ke

tested because they are "confounded" with the interactionms.

A partial solution to this dilemma is to construct
confidence intervals about the means of the criterion
variables. This will give some information about errcrs but
will not answer any questions about sources of error. The
follovwing null hypotheses were tested by means of 95%

confidence intervals:

7. | Relative error predicting CP | < 0.15
8. | Relative error predicting ET | < 0.15
9. | Relative error predicting PR | < 0.15
10. | Relative error predicting PI | < 0.15
11. | Relative error predicting RCO| < 0.15
12. | Relative error predicting OHT| < 0.15
13. | Relative error predicting w (< 0.15

Por significance testing, the independent variables
vere arranged in the order in which the largest errors could
be predicted based on taking "approximate" derivatives of
the dependent variables with respect to the independent
variables. The basis for this assertion is that an error in
measurement of an independent variable or in estimatiocn of a
parameter may be considered to be a perturbation of the
variable or parameter. If it is assumed that the structure
of the model is an adequate representation of the phenomena

under investigation, the effect of the perturbation may be

106

viewed as a change in the dependent variable, i.e. a partial

derivative.

An example of this technique is the effect on working
set size of a change in the variance of the CPU service time

(for Erlang-1 service),

Dw (J) 7dVS(3)=vw (J) * (1~w (J) /R) * (3.5.1)
(1-C(J)/ET (3)) /74*VS (J) -

The effect on vorking set size of a change in real memory
when memory constraints are active (sum(S(j):j=1,..N] > R)

is given by

Dv (J) /7dR=v (J) /R. (3.5.2)

This type of "approximate" derivative indicated that the
appropriate order of the variables for step-down and
step-wise testing was: v, PI, PR, ET, CP, COH, and RCU for
the dependent variables, and A, VS, VI, N, and j for the

independent variables.

A feature of the experimental design is that each run
was a measurement of only one program, with the other
programs in the multiprogramaming set controlling the envi-
ronment. The program being measured ran in a "matrix" of
copies of a "control"™ program. The contrcl program was

selected to exhibit "average" behavior ccampared to the

107

experimental programs. A takle of level values for each
independent variable, and a table of levels for each of the

synthetic programs is given in Figure 9.

108

PROGRAM-RELATED VARIABLES

Synthetic Paging CPU I/0
Program Activity Service Response Expected
Number Code Index Variance Variance Error
1 000 low high high low
2 001 low high low
3 010 low low high
4 01l low low low
5 100 high high high
6 101 high high low
7 110 high low high
8 111 high low low high
ENVIRONMENTAL VARIABLES
Pageable Number of Expected
Code Memory Priority Programs Error
000 fixed low low low
001 fixed low high
010 fixed high low
01l fixed high high
100 fixed low low
101 fixed low high
110 fixed high low
111 fixed high high high
Figure 9. Levels of Independent Variables

109
The Synthetic Program

At this point a discussion of the programs used in the
experimental manipulations is in order. The experimental
programs are COBOL programs which process a sequential file
of "transactions" from disk against a direct update file on
disk. The program is written so that it can be run any
number of times against the files. Control informatiom is
provided by means of execution parameters on a control card.
These parameters tell the program how large the records on
the disk are, how many records there are in each file, how
many passes to make through the transacticn file, the
average number of times to execute the "ccmpute kernal®
between I/0's, the interval of variation to use in computing
a random number of kernal executions on each transaction
record and the amount of variation to use in accessing its

own instructions in memory fcr paging.

Variation of the I/0 is provided by the placement of
the data sets, the size of the direct files, and the record
sizes that are built when the files are created. The files
are created by a separate program which creates the direct
file sequentially then creates the sequential file by
generating random relative record numbers of records in the
direct access file. 1In practice, the variatiom in I/O
response was controlled by data set placement and record

sizes were held constant.

The compute kernal of the program selected 10 numbers

110

from an array of 1000 numbers and performed non-trivial
arithmetic operations on them which were self-checking (they
had to match previously computed numbers in the transaction
file). This turned out to ke so compute-tound that the
number of compute passes between I/0O had to be held tc 2.
The actual number cf compute passes could ke held to exactly
two by selecting a variation of 0 or the maximum variation
could by generated by selecting 2, causing the progras to
randomly choose an equally 1likely integer in the interval

(0,4].

The program's executable code (as well as the 1000
entry numeric array) wvas duglicated five times. Fach
section of code was sufficiently different that a paging
parameter of 0 would result in sequential execution of each
block of code processing the data in corresponding data
blocks. A paging parameter of 1 caused the program to skip
one-half of the code and data in each block. A paging
parameter of 2 caused the program to skip one-fourth of the
code and data in each block. This particular scheme vas
chosen because it was felt that sequential execution would
result in the lowest paging rates since fewer pages would be

referenced during a specific execution interval.

The parameter levels chosen for the control prograas
were 1 for paging index, 1 for CPU variance, and 2 fcr
number of kernal passes. The I/0 was determined by making

the files 7 and 2 cylinders in size and locating their

11

centers 4 cylinders apart on the same phsysical disk drives.
The I/0O for the experimental programs was controlled by
making the files 9 and 3 cylinders in size and locating
their.centers 3 and 15 cylinders apart for the high variance

and the low variance versions of the program respectively.

As in parameterization, the experimental data were
collected by SMF and 0S/VS1 Utilization Mcnitor and reduced

for input (along with the predicted results) to the MNOULTI-

VARIANCE progran.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Parameter Estimation

Normal I/0 overhead

HBypotheses 1, 2, and 3. Tvo replications of these rums wvere
made and the measured and calculated results are listed in
appendix A, Tables A1-A4. The data were analyzed using
linear regression on the model equation 3.4.4. Initial
analysis yielded a significant contribution to variance for
all but the last factor. The aggregate file I/0 access rate
contributed to an increase in ALP but the increase was not
significant. This term was subsequently dropped from the
model and the data re-analyzed. The statistics for the
revised regression analysis is given in Table 1. The
statistics in Table 1 supports hypotheses 1 at the .0001
level. The effect of multiprogramming set (N) is signifi-
cant at the .0001 level but its direction is contradictory
to hypothesis 3. Adjustment of the predicted meanm sc that
it is equal to the observed mean yields a positive inter-
cept. This reflects the fact that in a lightly loaded
system, the page management routines use idle CPU time to

search page tables and maintain page queues.

113

Table 1. I/0 Overhead Regression Analysis

SOURCE RAW REGR COEFFS STD ERRQOR OF EST
CONSTANT 2.273370E-03 8.077765E-05
PRIORITY () 3.839576E-04 3.428922E-05
MPG SET (N) -2.854969E-05 4.893795E-06

STD DEV OF DEP VAKRIABLE (OH) = 0.0212
MULT-R-SQUARED=.9994 F(3,12)=6776.6u8 P<.0001
STEP-WISE BEGRESSION
CONSTANT P(1,14)= 753.360 98.18% ADLL VAR P<.0001

PRIORITY F(1,13)= 91.806 1.60% ADLL VAR P<.0001
MPG SET F(1,12)= 34.034 0.17% ADIL VAR P<.0001

ADJUSTMENT TO MEAN = 0.008475

Paging I/0 overhead

The same programs that were run in a non-memory
constrained environment for ALP estimation were then run
with pageable memory constrained to 312K. This amount of
memory was deemed appropriate to run three of the programs
(each with total memory requirement of 162K) with negligitkle
paging. The paging experiments were started with 4 prograas
in the mix and another program was added with each succeed-
ing run up to a final run with 8 programs. In the fipnal runm
the system Qas under such stress that the monitor data that
vas being logged was incomplete and it was not possikle to
get measurements on two of the programs in the aix. When
the sequence of runs was repeated, the replication with 8

programs was therefore omitted.

114

The data collected from these runs is reflected in
appendix A, Tables A5-A8. [Equation 3.4.4 was then used with
the coefficients for ALP to predict the overhead due to
non-paging I/0O. The resultant overhead was subtracted from
the measured overhead to form the residue. The data were
then analyzed using linear regression with the I/0 rates in
equation 3.4.5 replaced by the paging rates. A surprising
aspect of this process was that the overhead with paging was
actually lower than it was without paging at smaller sulti-
programming sets (N). Analysis of these runs (Table 2)

shows that the intercept for paging overhead is negative.

An interpretation for this anomaly is that the rpage
management routines use CPU idle time to perforam housekeep-

ing functions and look for work to do even in the absence of

paging. When the CPU is highly utilized and no paging is
taking place this discretionary work is effectively
bypassed. However when paging is taking place this work
cannot be bypassed and much of it is performed as a part of
normal page I/O processing. Ideally the intercepts for ALP
and DEL should cancel each cther since no overhead should be

expended when I/0 is not being done.

Hypotheses 4, S, apd 6. Initial statistics for analysis of
the model equation 3.4.5 indicated that the independent
variables for priority level j, multiprogramming set N, and
the aggregate paging rate T (j), all had effects in the

hypothesized direction on the paging overhead parameter DEL.

115

Table 2. Paging Overhead Regressicn Analysis

SQURCE BAW REGR COEFES -SID EREOR QF EST
CONSTANT 6.165776E-03 6.783070E-05
MULT-R-SQUARED=.9993 F(1,6) =8262.718 P<.0001

ADJUSTMENT FOR MEANS=-0.0129923

However the effects were not statistically significant since
the significance levels for these effects were .79, .99, and

.40 respectively.

The constant term was left as the only term in equa-
tion 3.4.5, making paging overhead directly proportional to
paging rate. The data were re-analyzed using only the
constant factor in equation 3.4.5, yielding the coefficients

in Table 2.

Since paging was needed to perform this estimation the
same set of runs were used for both DEL estimation and
paging ratios (BETA) estimation. An immediate source of
difficulty is the fact that page-out counts recorded Lty most
operating systems are not the same as those used in this
formulation. The theory predicts the numker of pages that
must be written out to accomodate pages that are read for a
specific program. The identification of the program which
is losing the page is of no concern. However job acccunting

routines do not record the identification of the progranm

116

vhich caused the page to be written but only adds to a

counter of pages lost for the program losing the page.

There are two alternatives to this dilemma. Hyfpothesis
7 could be assumed and hypothesis 9 tested, or it can be
assumed that the number of pages written on behalf of a
program is equivalent to the number of pages which that
Proceeding on the latter assumption, results of the hypothe-
sis tests must be interpreted in view of the above discus-

sion.

Hypotheses 7 and 8. Hypotheses 7 and 8 were tested Ly
performing a U4X4 factorial analysis of variance on the PO/PI
ratios of the same 4 programs for multiprcgramming sets N =
4, S, 6 and 7. The within-group sum of squares was used as
the error term. Results of this analysis are summarized in
Table 3. Since there are no significant interactions main
effects may be tested. Hypothesis 7 was not supported since
there was a priority effect at the .0009 significance level.
The multiprogramming effect was positive (consistent with
hypothesis 8) but the significance level was .124. The cell
means predicted from the coefficients in Table 3 were used

as the BETA(j,N) for the predictive model.

Hypothesi

9. Hypotheses 9 was tested by performing a
one-way analysis of variance on the system-wide paging
ratios computed from the paging estimation rumns with 4, 5, 6

and 7 programs in the multiprogramming sets, yielding 8

117

samples. From observations of cell means it was decided to
test the hypothesis using orthoganal polynomial contrasts.
Hypothesis 9 was nct supported at the higher multiprogram-
ming levels since a quadratic effect was found at the .0004
significance level. The Analysis of Variance table for this

analysis is given in Table 4.
Page Allocation Weights

This factor tests the Paging subamodel's accuracy in
predicting working set allocations. The measure for this
factor L, is derived froe the Kuhn-Tucker conditions for
minimization of the total paging rate where program j's
paging rate is weighted by 1L(j). Summing the L(j)s to 1 and
assuming that paging indices A (j) are identical, vwe have the

following estimator for L(j):

L (J,N)=(v (J) **2) /CPP (J) *sunm[(v (1) **2) /CPF(1) :1=1,..,N].
(4.1.1)

To make the L(j) comparable across multiprograsasing
sets, The L(Jj) calculated by equation 4.1.1 will be =sulti-
plied by the number of programs in the multiprogramaing set,
N. The page allocation weights can be used in this form
since it is the relative sizes of the weights that is

important.

A

118

Table 3. Page I/O0 Ratio Analysis

SOURCE RAW REGR COEFFS STD ERROR OF EST
GRAND MEAN .603356 .085417
MPG SET «329145 « 241595
MPG SET 617560 «241595
MPG SET 239244 « 241595
PRIORITY -1.104013 <« 241595
PRIORITY -1.083273 . 241595
PRIORITY -.917266 .201595
INTERACTION -1.173274 .683333
INTERACTION -1.5671C3 .683333
INTERACTION -.423430 .683333
INTERACTION -1.337678 .683333
INTERACTION -1.306999 .683333
INTERACTION -1.669633 .683333
INTERACTION -. 464727 .683333
INTERACTION -1.358317 .683333
INTERACTION -.564918 .683333
SQURCE MEAN SQUARE DF E P
GRAND MEAN 11. 649 1 49.896 .0001
MPG EFFECT 0.521 3 2.231 . 1241
PRIORITY 2. 198 3 9.413 .0009
INTERACTIONS 0.263 9 1.128 «398S
ERROR TERAM 0.233 16

Both replications of Paging Estimation runs with 4, 5,
6, and 7 prograams vere used giving 44 observations of L(Jj).
The data for these rumns is given in the Appendix, Tables A9
and A10. The equalized estimates for L are given in Table 5
and the ANOVA table for a 434 factorial design is given in
Table 6. Tests of hypothesis 10 use c¢cnly the first four

programs in the analysis.

Examination of the ANOVA table reveals a significant
interaction at the .0001 level, hypothesis 10 is not

supported. Regression coefficients from this analysis

119

Table 4. System-wide Paging Ratio Analysis

CELL CELL MEANS CELL SID LEVS
N =4 0.257946 3.380890E-02
N=25 0.477944 3.876854E-02
N =6 0.563385 1.867964E-02
N =7 0.354059 6.027378E-03
SOURCE MEAN SQUARE DF E P
LINEAR 0.01 1 18.436 .0128
QUADRIATIC 0.092 1 121.610 0004
CUBIC 0.003 1 3.387 . 1396
ERROR TERM 0.001 4

cannot be used since priority S5, 6, and 7 programs have not
been included. Regression analysis was therefore performed
using all 44 observations with covariates: multiprograaming
level (N), priority (j)., priority squared (j**2), multipro-
gramming level squared (N**Z), and the cross-product of
multiprogramming level and priority. The coefficients
resulting from this analysis are given in the bottom cf
Table 6. These coefficients are used in computing the

weights used in the predictive model.

Since there are significant deviations from unity in
the ANOVA it can be concluded that the paging aodel is
deficient. At this point it will be assumed that the
working set weights that have been estimated are not specif-
ic to the programs used in the analysis but reflect error in

the paging submodel and continue with the analysis.

120

Table 5. Estimated Working Set Weights
MULTIPROGRAMMING SET (N)
BRIORITY (§) 4 I 6 1
1 2.140348 0.699155 0.375096 0.355586
1 1.799340 0.862835 0.377862 0.368515
2 0.384188 0.323695 0.205488 0.162483
2 0.552756 0.363280 0.230628 0.175931
3 0.421240 0.418820 0.367578 0.2791S3
3 0.467356 0.360490 0.268770 0.273000
4 1.054224 0.708645 0.519882 0.411845
4 1.180548 0.675260 0.475926 0.426566
5 o o o 2.849685 1.347792 1.815296
5 o o o 3.098625 1.236636 2.007369
6 o o o o o 3.184158 1.917405
6 e o o « o o 3.410190 1.985942
7 L] L] L] L] L] L J o L] L] 2. 059225
7 L] L] - L] - L o L L] 1.762670

Miscellaneous Parameters

Prior to using the model to predict program perfor-

mance, the CPU rates (MU), rpaging indices (i), maximunm
storage (S) and critical measory point (M) must be estimated.
For this purpose the experimental programs vere executed in
8 rums of N=4, with each experinental.progral being executed
with 3 copies of the control program. The measured and
calculated results of these runs are given in appendix A,

Table A11 and A12.

121

Table 6. Working Set Weight Apalysis

SQURCE MEAN SQUARE DF E P

GRAND MEAN 9.774 1 1499.218 .0001

MPG EFFECT 0.802 3 122.997 .0001

PRIORITY 0.590 3 90.430 .0001

INTERACTIONS 0.196 9 29.991 .0001

ERROR TERN 0.007 16

SOURCE BRAW REGR COEFFS STD ERROR OF EST

PRIORITY (j) -0.286627 0.344902

§*5 .143958 0.035327 |
J*N -0.060599 0.065588 |
MPG EFFECT (N) . 180209 1.019103 =
N*N -0.025178 0.094479

CPU Rate Estimation

CPU rates for the control programs were estimated from
the 4 runs of the control program with N = 4, 5, 6 and 7.
The parameter MU wvas found to vary considerably, even within
a single run. This effect is thought to ke related tc the
method used to account for program time and the processing
which takes place following an interrupt and before the
value of the CPU clock is stcred. This has the effect of
making CPU service intervals for low pricrity prograas
appear larger and therefore the CPU rates (MU) would appear

smaller.

The rates cquputed from each of the runs in apgendix
A, Table A9 and A10 are weighted averages of the rates
computed from each program with I/0 access rates used as
weights. The expansion factors (CYT) were used to increase

these rates (decrease service times) by applying the

122

equations in section 2.5, approximating the instantaneous
I/0 rates by LAM = 1/ET* (1-CEF). The rates from the 4 runs
were then averaged together and used in subsequent calcula-

tions and in the predictive model.

The CPU rates for the experimental programs were then
estimated from the 8 runs in appendix A, Tables A11 and 412
The same procedures as before were used toc estimate CYT and
thereby remove some of the effects of "cycle stealing" due

to I/0.
Virtual Storage Estimation

This turned out to be trivial since the programs were
constructed to have the same maximum sizes (162K). This
number was taken from the jcb listings which gives a

measurement of the maximum virtual storage used.
Storage and Paging Index Estimation

These parameters were estimated in a sequential
fashion. First a "quasi" paging index A' was computed with
the ratio of the sum of critical storage to real storage

equal to 1. We have

A'=w (J) *PI(J) /CP (J) *E*(S(J)-vw(])) - (4.1.2)

A linear model was then fitted to this data using 1ln(A') as
the dependent variable and 1ln(N) as the independent varia-

ble. Symbolically we have A = A'* (N*M/R) **-q or A =

123

A'*((M/R) **~-q) *N**-q. The choice for M = 56 was justified
on the basis of what follows. If the paging rate fcr the
entire system is less than z pages a second it may be
concluded that memory constraints are not active. Depending
on the length of a program run, an apparent system paging
rate of 2 pages/second can ke caused by the initial flurry
of activity when the programs begin execution and open
files. The fact that the ccnstraint is not active at N = 4
may be inferred from the size of the working sets of the low
priority programs compared to the higher priority prograss.

The memory constraint appears to be just barely active at N

= 5 50 an appropriate value for M is M = R/S5 = 280/5 = S6K.

Using M = 56K and equation 4.1.2, A is estimated for 4
different priorities of the CNTL program. Froa Table 7 it
may be observed that the values of A vary froam a low of
0.000504336 to a high of 0.21720546. This wide variation in
the values of A are again indicative of the paging

submodel’'s failure to accurately predict paging rates.

To determine what is a reasonable value for A, dimen-
sional analysis is applied to the defining equation for
paging.

The dimensions of interest are those of K and A. In the
estimation process, a value cf K = 490 was used for the
S/370 model 148 (meaning that the 148's average speed is
490,000 instructions per second). This makes the units of K

instructions per thousanths of a second and therefore the

124

A' VALUES
PRIORI
2
0.000504
0.002228
0.029452
0.045349

0.977337
19.677474
8.672056
0.002735

1.000000

FOR M =
TY LEVELS
3
0.001292
0.002144
0.044289
0.070277

56K

0.942172
-18.106903
7.998743
0.004414

1.613795

NORMAIIZATION FACTORS
PRIORITIES ()

3

«£62 1
0.962
1. 50“
1.550

4 2
5.957 . . .
2.021 2.345
2.397 3.591
2.630 4.707

Paging Index Calculations

4

0.0080u8
0.004502
0.070589
0.119278

0.849545
-13.270179
5.655085
0.013748

5.026601

6 1
7.3715 . . .
4.556 4.425

A are in memory references per instruction divided

Table 7.
MPG LVL (1) 1
4 0.001343
5 0.002593
6 0.028177
7 0.051738
CORR 0.962743
b -16.743895 -~
k 7.110351
A 0.004301
NORMALIZE 1.572647
BPG SET (M) 1 2
u 2.663 1.000
5 1.164 1.000
6 0.957 1.000
7 1.141 1.000
units of
by 1000.

instruction for the A-values from Table 7, A = 4.3,

and 13.7

System /370 instructicns reference either 0,

locations in main memory.

Expressing A in terms of memory references fper

respectively.

Cf these instruction,

2.7, 4.4

1, 2 or 3

the ones

that reference 0 storage locations are: supervisory call

instructions, register instructions and those used fcr

integer and floating point arithmetic.

These are not

frequently used in commercial programs and, even when they

are used they must be used with instructions which reference

1 storage location to retrieve and store calculated data.

125

The instructions which reference 3 storage locations are
also infrequently used. These are instructions which
actually reference two starting addresses but involve
movement of enough data that ocassionally the data overlaps
multiple pages. An example of an instruction of this type

is the long move instruction.

There are a large numkter of instructions which refer-
ence a single location and they are very frequently used.
Instructions in this class include branching, register
loading and storing and immediate instructions which contain
a single byte of data in the instruction. Instructions
which reference 2 storage locations are also very frequently
used and these include storage to storage moves and
compares. These instructions are particularly frequent in
commericial applications where they are used extensively for

logic and data forsatting.

Based on the previous discussion and observaticns of
instruction profiles of many programs it is very likely that
the A value for most programs would be in the range of 1 to
2 storage references per instruction. The smallest cf the
estimates for A in Table 7 (and the only one in the reala of
possibility) indicates 2.73 storage references per instruc-
tion. Although this is possible it is not very likely.
However the above analysis does point out that the only
estimates for paging index in the practical range are those

developed from partition 2 cf Takle 7. 1In order to make A

126

values estimable using this format, it wvas decided to
normalize A' estimates by the corresponding factors from the
bottom of Table 7 by dividing by the appropriate factor.
These factors were derived Lty dividing the A' calculated in
each partition of the four runs of the CNIL program by the
corresponding estimate for A' from partition 2 (coluan 2 in

the table).

To estimate the page indices for the experimental
programs, 8 runs of 4 programs each were performed. These
runs consisted of a copy of the experimental program and 3
copies of the CNTL program. The measured and calculated
results of these runs (see appendix A Tables A11 and A12)
and the conversions in Table 7 were applied to compute the

estimates of A in Table 8.

From the page index estimates of Takle 8 it may be
observed that the paging manipulation was not successful
since the estimates for A are apparently correlated with low
I/0 variance rather than with the high paging indicatcrs
(1XX in the program identification). Proa the progras
estimation runs in the appendix, Table A10 it may also be
observed that higher CPU service times are apparently
correlated with high priority execution. Along with this
effect a slight increase in process time may be observed,
however the increase in process time is not proportional to
the increase in the number cf I/0 operations, yielding a

higher CPU rate. Fewer I/O's are reported at higher priori-

127

ties because the lower priority jobs were started first in
order to delay some of the effects of priority omn job
initiation.

At the same time the lower priority jobs are delayed in
starting to execute so it makes no sense to use observations
during this initiation stage. Thus only those measurements
which are taken while all programs are executing are includ-
ed. This procedure should yield results which are contrary
to the "expansion effect" and also contrary to the arguaent
that the lower priority programs should have smaller rates
(large average service times) because they include "start-
up" time and time for initially opening the files. While
this effect appears to be systematic the exact cause is

unknown at this time.

Experimental Manipulationms

To the extent that the paging manipulation does result

in higher paging rates the manipulation was successful.

However the previous discussion on page index estima-
tion points out that the attempt to manipulate page index
was not successful in terms of the estimates of A since this
index is correlated with the I/O variance manipulaticn and

not with the paging manipulation.

128

Table 8. Experimental Program Estimates

PROGRAM N j MU A LISK
000 6 1 126.584 0.002069 3 1
011 6 1 126.800 0.016921 3 2
101 6 1 125.073 0.020515 3 2
110 6 1 125.528 0.003124 3 1
001 6 4 128.534 0.002655 3 2
010 6 4 128.350 0.000941 3 1
100 6 4 128.764 0.001193 3 1
111 6 4 127.095 0.002889 3 2
001 7 1 128.534 0.002655 3 2
010 7 1 128.350 0.000941 3 1
100 7 1 128.764 0.001193 3 1
11 7 1 127.095 0.002889 3 2
000 7 4 126.584 0.002069 3 1
011 7 4 126.800 0.016921 3 2
101 7 4 125.073 0.020515 3 2
110 7 4 125.528 0.003124 3 1
CNTL 6 2 54.296 0.002735 2 3
CNTL 6 3 S4.296 0.002735 2 5
CNTL 6 4 54.296 0.002735 2 7
CNTL 6 5 S4.296 0.002735 4 1
CNTL 6 6 54.296 0.002735 4 3
CNTL 6 1 54.296 0.002735 2 1
CNTL 6 2 54.296 0.002735 2 3
CNTL 6 3 S54.296 0.002735 2 5
CNTL 6 5 54.296 0.002735 4 1
CNTL 6 6 54.296 0.002735 4 3
CNTL 7 2 54.296 0.002735 2 3
CNTL 7 -3 54.296 0.002735 2 5
CNTL 7 4 S4.296 0.002735 2 7
CNTL 7 5 S4.296 0.002735 4 1
CNTL 7 6 54.296 0.002735 4 3
CNTL 7 17 54.296 0.002735 4 5
CNTL 7 1 54.296 0.002735 2 1
CNTL 7 2 54.296 0.002735 2 3
CNTL 7 3 54.296 0.002735 2 5
CNTL 7 5 54.296 0.002735 4 1
CNTL 7 6 S54.296 0.002735 4 3
CNTL 7 7 54.296 0.002735 4 5
Note: Program definitions are given in Figure 9.

aEsEnpOEN AENNDOO & ENOEN SENVOOE sEWWeE weesw weEesw SsFwWwwe E

129

CPU Variance Manipulation

From the closeness of all estimates for CPU service
time (rate) it may be inferred that the manipulation for CPU
service variance vas successful although the measuresment
tools used in this research do not permit estimation of the
absolute magnitude. The following formulas were used to

construct the CPU variance sanipulations:

S=(1+X/K) /MU**2,
V (S) =v* (v+1) /3% (K*MU) *%x2, (4.2.1)

E (S) =1/M0,

where K is an integer representing the number of times the
compute "kernal" is to be executed and X is an integer in
(-v,v] chosen vwith probability 1/ (2*v+1), and v is an

integer less than or equal to K. 1In all cases K = 2 is

used. For the low variance programs (X1X), v = 0 is used
for zero variance. For the high variance programs, (X0X) v
= 2 was used for a variance of 1/2*MU or approximately
0.000032746 seconds squared compared to a mean service time
of 0.00784314 seconds. For the CNTL program v = 1 was
chosen. This yields a variance of 1/6*M0 or 0.00005653
seconds squared compared to a mean service time of approxi-

mately 0.0184176 seconds.

130

1/0 Variance Manjpulation

The I/0 variance was again manipulated by construc-
tion. The high I/0 variance program files were set up with
their ceﬁters 15 cylinders apart and file sizes of 9 cylin-
ders. The low I/0 variance fprograms were set up with their
centers 3 cylinders apart and with file sizes of 3 cylinders
each. The I/0 variance for the low and high varianmnce
programs are approximately 93 Ms squared and 123 Ms squared
respectively. However, the means are alsc different in this
case, approximately 28 Ms for the high variance programs and

18 Ms for the lowv variance fgrograms.

Model Eredictions

Sixteen runs of the AFL model were made to develop the
predictions to be used in the analysis of variance. The
results of these runs for the experimental programs is given
in Table 9. 1In making these predictions the APL model was
found to converge quite rapidly. Of the 16 rums, 13
converged in 6 iterations, 2 converged in 10 iteraticns and

one required 16 iteratioams.

The convergemnce criteria was to stop iterating when
the maximum absolute difference in I/0 rates from one
iteration to the next was less than 0.002. This results in
an difference of less than 0.002 seconds in I/0 service time
for the very lowest priority programs. A diagram of the

relationship between the various submodels and the

131

Table 9. Model Predictions

M P CPU CYCLE PAGE PAGEIN I/0O CHNL OVER WRKG
PROG L R UTIL TIME RATE BRATE BATE UTIL HEAL SET
000 6 1 0.21 0.034 3.5 2.9 26.65 0.033 0.23 53
000 74 .04 <114 5.6 4.1 4.60 0.004 .34 24
001 6 4 .05 .131 2.3 1.7 5.79 0.007 .21 30
001 71 .18 .032 9.6 8.3 22.90 0.018 .36 57
010 6 4 .05 .138 1.5 1.1 6.08 0.008 .20 19
010 71 .19 .034 6.5 5.5 23.47 0.019 .33 36
011 6 1 .22 «031 5.8 4.8 26.85 0.034 .26 111
011 74 .02 <097 10.4 7.6 2.65 0.002 .37 46
100 6 4 .05 <137 1.7 1.2 5.95 0.007 .20 22
100 71 .18 .034 7.3 6.3 22.65 0.018 .34 40
101 6 1 .22 .031 5.7 4.7 26.76 0.034 .27 119
101 74 .02 .096 10.9 8.0 2.40 0.002 .38 48
110 6 1 .21 .034 4.0 3.3 26.18 0.033 .24 60
110 74 .04 <111 6.3 4.6 4.30 0.003 .35 27
111 6 4 .05 .130 2.5 1.9 5.7 0.007 .21 32
111 7 10.18 0.032 10.1 8.7 22.50 0.017 0.36 60

Note: Program definitions are given in Figqure 9.

convergence algorithm is given in Figure 10.

Mode]l Validation

The experimental programs vere then run on the Systenm
/370 Model 148. Since each run wvas repeated there were a
total of 32 runs. The measured and the calculated perfor-~
mance variables from the experimental programs are given in

Tables 10 and 11.

132

Tda
dTI¥

19POW uof3joexajul buruwexboaxdfzTnw °QT ©anbTJd
Yrag‘1’s‘v’x‘y
>
13’do Topouqns Id
butbegq
d q
¢ dd‘m
AR ¥
daon IX |
Tepouqns HOD IHd Tepouqns
ndo IdD noxg o/1
9 gq’ ,01
a7 ,01 wy3lfIob1v T < gdo)

8 , UO3MBN

10
o |
TX0
sd

=01
ID

101
101
101
101

110
110
110
110

11
111
11
1

Note: Program definitions are given in Figure 9.

I~ =

NNdoon NNoo NN

~Ndoo NNoo SN0 Ndoon

NNoo

E B = E 8 ad - 5 £ & b o PR Y - - s E £ A -

- - 5

Table 10.

Experimental Runs - Measured

133

PAGES PAGES OTHER

U1

99

68
1,241
821

234
288
128
217

197
182
125
106

119
142
815
950

919
1,191
223
275

127
129
1,862
1,641

83

84
1,693
1,627

708
678
241
259

IN

303
203
7,413
5,409

1,277
1,423
1,009
1,462

1,172
1,048
1,574
1,479

426
419
5,086
5,700

4,413
5,808
3,537
4,008

578
525
7,220
6,061

492
409
6,133
6,206

3,477
3,482
2,618
2,468

1/0

8,720
8,720
8,720
8,u62

8,718
8,718
5,800
8,353

8,720
8,720
7,709
8,057

8,718
8,718
7,331
6,765

8,720
8,720
8,498
8,513

8,718
8,718
1,329
1,060

8,720
8,720

927
1,224

8,718
8,718
8,601
8,432

ELAPSED
TIME

342.09
330.70
1,859.87
1,511.70

833.5¢8
842.08
322.98
469.79

848.99
880.52
489.00
478.64

330.65
325.86
1,365.27
1,455.22

1,26€.70
1,463.46
743.75
819.89

337.04
330.45
1,460.52
1,244.75

367.05
358. 19
1,257.55
1,254.70

1,103.52
1,100. 18
620.79
593,80

PROC
TIME

69.75
69.56
72.39
69.30

69.23
69.31
47.06
67.93

69.32
69.18
63.11
65.76

70.36
70.55
60.97
56.81

70.30
70.93
69.70
70.10

70.57
70.49
13.25
10.70

70.33
70.47

9.47
11.85

71.18
70.92

71.15

69.73

OVER-
HEAD

69.62
65.29
442.99
362.51

176.30
182.45

75.22
110.99

182.52
181.84
115.97
114.60

65.86
67.47
325.92
344.14

296.02
347.36
178.52
196.13

70.14
69.06
346.28
292.30

78.89
74.85
295.34
296.95

255.99
254.93
147.87
141.51

WRKG
SET

50
52
42
42

52
50
54
48

54
46
48
54

48
52
46
44

58
56
Sy
62

58
60
38
36

58
58
40
42

56
56
56
sS4

134

Table 11. Experimental Runs - Calculated

M P CPU CYCLE PAGE PAGEIN I/C CHNL OVER WRKG
PROG L R UTIL TIME RATE BATE RATE UTIL HEAD SET
000 6 1 0.20 0.038 1.2 0.9 2S5.49 0.021 0.20 S0
000 6 1 .20 .037 0.8 0.6 26.37 0.021 .20 52
000 7 4 .04 115 4.7 4.0 4.69 0.015 .24 42
000 74 .05 109 4.1 3.6 5.60 0.014 .24 42
001 6 4 .08 .083 1. 8 1.5 10.46 0.012 .21 52
001 6 4 .08 .083 2.0 1.7 10.35 0.012 .22 50
001 71 .15 .047 3.5 3.1 17.96 0.022 .23 sy
001 71 .15 .0u8 3.6 3.1 17.78 0.022 .24 48
010 6 4 .08 .086 1.6 1.4 10.27 0.011 .22 S4
010 6 4 .08 .090 1.4 1.2 9.90 0.011 .21 46
010 71 .13 .053 3.5 3.2 15.77 0.020 .24 48
010 71 .14 .050 3.3 3.1 16.84 0.020 .24 54
011 6 1 .21 .036 1. € 1.3 26.37 0.023 .20 48
011 6 1 .22 .036 1.7 1.3 26.76 0.023 .21 52
011 74 .05 110 4.3 3.7 5.37 0.015 .24 46
011 7 4 .04 117 4.6 3.9 4.65 0.015 .24 44
100 6 4 .06 .096 4.2 3.5 6.89 0.016 .23 58
100 6 4 .05 .101 4.8 4.0 6.00 0.016 .24 S6
100 71 .09 .062 S. 1 4.8 11.43 0.020 .24 54
100 71 .09 .065 5.2 4.9 10.38 0.019 .24 62
101 6 1 .21 .036 2.1 1.7 25.87 0.024 .21 58
101 6 1 .21 .036 2.0 1.6 26.39 0.024 .21 60
101 74 .01 171 6.2 4.9 0.91 0.016 .24 48
101 74 .01 <175 6.0 4.9 0.85 0.016 .24 48
110 6 1 .19 .040 1.6 1.3 23.76 0.021 .22 60
110 6 1 .20 .039 1.4 1.1 24.35 0.021 .21 60
110 74 .01 .178 6.2 4.9 0.74 0.016 .24 27
110 74 .01 «169 6.2 4.9 0.98 0.017 .24 27
11 6 4 .07 .090 3.8 3.2 7.90 0.015 .23 32
111 6 4 .06 .090 3.8 3.2 7.93 0.015 .23 32
111 71 .12 .055 4.6 4.2 13.86 0.021 .24 60
111 7 1 0.12 0.054 4.6 4.2 14.20 0.022 0.24 60

Note: Program definitions are given in Figure 9.

135

The predictions and these results were then merged and
made inputs to an analysis c¢f variance using Finn's MOLTI-
VARIANCE (22]. The criterion variables were transformed
into a relative error by dividing the differences between

the predictions and the outcomes by the cutcomes.

Results of Analysis of Varianmce
Hypotheses 1-6. Examination of the Multivariate Analysis of

Variance results (Table 12) indicates significance for all
10 interactions. This prevents tests for main effects
because the main effects are confounded with the interac-
tions. Based on the analysis of variance it could well be
that there is not a fixed effect but this cannot be shown
using these tests. This effectly bars statements abcut the
fixed effects of the five factors other than to say that
there is apparently significant errors in the predictive
nodel. Thus these techniques are unaktle to help further in

analyzing the model. Univariate techniques will now ke

explored for some partial ansvers.

Table 12

24

PO

136

ANOVA Table

LEAST SQUARES ESTIMATES OF

« 3236 -.0636

9023

of Prediction Errors

R

[=]

cosB

¥

EFFECTS-GRAND MEAN

.3

149

-.0369

STD ERRORS OF LEAST SQUARE ESTIMATES - GRAND MEAN

.0181

.0044

GRAND MEAN

PAGE INDEX

CPU VARIANCE

I/0 VARIANCE

MPG LEVEL

PRIORITY

PGNDX

PGNDX

PGNDX

PGNDX

CPVAR

CPVAR

CPVAR

IOVAR

IOVAR

MPG X

X

X

X

CPVAR

IOVAR

MPG

PRIORITY

IOVAR

MPG

PRIORITY

MPG

PRIORITY

PRIORITY

.0436

.0u86

.0

020 .0

STEP-WISE REGRESSION ANALYSIS

F(7,10)= 2,268.646

F(7,10)=
F(7,10)=
F(7,10)=

154.835
4.626
128.399

F(7,10)= 3,296.047

F(7,10)= 6,596.086

F(7,10)=
F(7,10)=
F(7,10) =
F(7,10)=
F(7,10) =
F(7,10)=
F(7,10)=
P(7,10)=
F(7,10)=
F(7,10)=

32.045
17.399
41.494
56.054
23.016
27.486
6.103
32.918
36.309
376.800

372

.0091

P<.0001
P<.0001
P<.0150
P<.0001
P<.0001
P<.0001
P<.0001
P<.0001
P<.0001
P<.0001
P<.0001
P<.0001
P<.0057
P<.0001
P<.0001

P<.0001

137

Confidence Interval Analysis

Hypotheses 7-13. To help assess the effectiveness of the
model, confidence interval analysis will now be employed.
The null hypotheses will be supported if the confidence
intervals calculated from estimates of the of the grand
mean of the relative error lies in the interval [-.15,+.15].
The confidence intervals are of the foram utt*s/n**.5, where
u is the estimate of the mean, and t is the value with 16
degrees of freedom at the .025 probability level (2.12), n
is the number of observations (32), and s is the standard
error of the estimate [22]. The confidence intervals for
the dependent variables are as follows:
PROGRAM CPU UTILIZATION (CP): (0.282928,0.364252)
PROGRAM CYCLE TIME (ET): {--073485,-.053715]
TOTAL PAGING RATE (PR): [0.740463,0.958317]
PAGING INPUT RATE (PI): [0.804467,1.000070]
CHANNEL UTILIZATION (RCU): [-.226226,-.217274)
CPU OVERHEAD (CHT): [(0.231618,0.398242)
WORKING SET (w): (-.057384,0.016416]
From this it can observed that hypotheses 8 and 13 are
supported but hypotheses 7, 9, 10, 11, and 12 do not receive
support. Thus from a statistical point of view, the model

does not predict the performance variables of interest

within the desired error margin of 15%.

A possible scurce of error might have been the fact
that the CPU submodel does not explicitly account for
variance in I/0 service time. The I/O service time depends
on a random pattern of accesses by device, channel conten-
tion, rotational position sensing, and even device errors
and retry. Minor sources of variation in CPU service times
may be attributable to error routines and exception rcut-

ines.

A potential source of error in the CPU submodel is the
fact that the model does not address the portion of CPU
overhead which is not interruptible, nor does it handle the
portion of I/0 processing which can interrupt higher priori-

ty prograas.

A major source of error is the scaling effect due to
differences in small values of CPU utilization. For exam-
ple, the difference between a predicted CFU utilization of
'0.02 and an observed utilization of 0.01 is of little
practical importance but the relative error of 100X serious-

ly biases the CPU utilizaticn statistic.

139

Potential Sources ¢f Error-Faging

- aha ape < aves amaw e —

The major source of error in the model is the subsys-
tem which deals with paging. Most previous authors have
either considered the paging rate to be fixed or ignored it
altogether. Some authors have assumed the rate of paging
operations to be proportional to the instruction execution
rate for the task itself (this approach ignores data refer-
ences). Others predict paging rates but only for certain
"safe" values (where the paging "function" is more or less

linear).

The choice of two factors, critical storage size and
page index to represent a program's paging behavior is an
oversimplification. A program's address space may consist
of many distinct types of data, each of which may have a
different reference pattern. For example, the executable
instructions of a program may be composed of loops, jumps,
or straight-line code and the instructions may or may not
nodify themselves. The data portion may le scanned sequen-
tially or searched using a binary or indexed technique.

Data areas may be separate from instructions or the data may
be interspersed among the instructions, a situation referred

to as locality of reference.

The use of a program®'s full size as a parameter of
page demand is somewhat unrealistic in view of the fact that
a certain portion of many programs are composed of error

routines, initialization and termination routines which

140
execute an insignificant amcunt of time.

The proposed model includes some of the methods of
previous authors, and therefore includes some of the short-
comings. In particular the paging coefficients estierated
for the page-in and page-out operations may be more repre-
sentative of the characteristics of the programs run on the
system than they are of the operating system and memory size
of the system. If this is indeed the case, the error in
predicting the performance of a particular set of prcgrams
will vary according to their deviation from the "typical"

programs in an installation.

The assumption that CFU overhead processing is carried
out in non-pageable memory is contrary to the known opera-
tion of the operating system used in these experisments.

Some portions of the operating system used in this research
compete with the user programs for the available real

storage pages.

A final source of error in the paging submodel is that
the paging indices were estimated at a multiprogramming
level of N=4. From previous comments about the lack of a
real memory constraint at N=4, it is likely that more stable
estimates for this parameter could be obtained at higher

multiprogramming levels.

141

Post~-Experimental Paging Analysis

‘Revised Paging Submodel

The results of the prcgram rums with 4, 5, 6, and 7
copies of the control program were fitted to a model of the
form w(j) = Q*CP(j)**1/k. This model was found to account
for 6%, 69%, 99%, and 97% of the variation in w(j) fcr N =
4, 5, 6, and 7 respectively. The constant of proportionali-
ty (Q) vas found to fit the expression R/sum{CP(1l):1=1,..,N]
very closely. This suggests a general expression for

working set size of of the fornm

w(3)=Q* (A (J) *CP (J)) **1/k, (4.5.1)

where Q = R/sum((A (1) *CP (1)) **1/k:1=1,..,N]. Working
backward from this expressicmn, the followving expressions are

suggested for the real-time paging rate:

PI (J)=CP (j) *A (J) *K*EXP (N)/ (k=1) *w (J) **(k-1), (4.5.2)
EXP (N)=(sum{ M (1) :1=1,.., N]/R) **q.

The value of q was estimated to be 7.14 and the value
of k was estimated to be approximately 4. Subsequent runs
of the predictive model with the revised paging submodel and
new estimates of A for N=7 yielded the following mean

errors:

142

CE EI ER Bl RCU QHI L}
0.285 0.006 0.343 0.298 0.179 0.068 0.010

This significantly reduces the errors in paging and the size
of the relative errors in CEU utilization (CP) and channel
utilization (RCU) is believed to be due to the scaling

effect mentioned earlier.

Comparison with Earljer Models

Fitting the control prcgram runs to the Belady-Kuehner
"lifetime function"™ [6] acccunts for 47%, 47%, 98%, and 96%
of the variation in paging rates. Likewise the paging
expansion factor EXP(N) was found to account for 96% of the
variation in the system paging rate. The large exponent
value (7.14) was unexpected in view of quadratic and linear
segments in Bard's Paging Index [(3]. Chaamberlain, Fuller,
and Liu's Half-life function [12] was found to account for
49%, 39%, 99%, and 96% of the variation in paging rates when

fitted to the data from the control program runms.

V. CONCLUSIONS AND RECOMMENDATIONS

Research Conclusions

The knowledge gained ky study of the model discussed
herein is a step toward better predictive methods for
computer performance, I/0 configuration performance and

program performance.

The system overhead due to handling I/O requests was
found to be proportional to the I/O rates and there was a
small but significant positive effect due to program priori-
ty. There was a small but significant negative effect due
to multiprogramming level. The paging overhead was fcund be
proportional to paging rates but the small effects due to
priority and multiprogramming levels were not statistically

significant.

The increase in the ratio of page-writes to page-reads
vas not significant but there was a significant increase

wvith increasing priority.

The method of sucessive estimation and the convergence
techniques used in this model were found to ke very effec-
tive. Convergence was usually obtained in less than 6

iterations. Improvements in the algoriths made after the

143

44

experiments had been performed reduced the number of itera-
tions to the range of 4 to 5 iterations fcr about half of

the model executions.

While the original goals of this research have not
been achieved, positive benefits have been gained from this
effort. For one thing the least elaborate part of the
entire model, the paging suktmodel, has turned out to be the
source of much of the error. Part of the reason why this
part of the model is so simple is because this area is not
as well understood as the operation of the CPU and I/O
devices. PFailure of the model to accurately represent
paging behavior has a more serious effect on some of the
criterion variables than others. For example, the criterion
variables that seem to have the largest errors are paging
counts (as expected) but also CPU overhead. This is not so
hard to understand in view of the demonstrated effect of

paging rates on CPU overhead.

The techniques employed with the variable paging
manipulation of the synthetic programs can be used as a tool
in controlling loads on other systems during performance
measurement, systems tuning and benchmarks. The CPU and I/O
submodels are well elaborated and it is possible that they
can be of benefit to others who will study the kinds of
systems studied in this research. The reasons why these
models are so elaborate is that suitable models for this

research vere not generally availakle and the insights

145

gained from the model building process stimulated further

elaboration.

Failure to accurately gredict paging behavior does not
prevent the model in this thesis from explaining many other
events such as CPU and I/O service intervals, initial wait
and completion times since paging rates are a matter of
measurement in existing systems. It is possible that the
use of the revised paging sukmodel can make this methcd
worthwhile for practical applications. The inherent errors
in this submodel at unconstrained memory levels is not too
serious a defect since working set estimates are usually
unimportant at unconstrained memory levels and the paging
rates in these cases is usually neglible. Another benefit
of this effort is that it clearly points cut the direction

that further research in this area ought to take.

Recommendations for Further Research

Clearly the direction for future research in this area is
the development of better analytical models of paging
behavior. A likely candidate for this research would be
some variation of Belady and Kuehner's lifetime function
approximation [(6]. Another possibility is to validate the
analytic paging model based on the relationship between the
CPU utilization and working set size. Ecst-experimental
analysis of the data obtained in this research revealed

strong evidence for a relationship of the form w=Q*CP**1/k.

146

This could become the basis of more research into paging in

priority interrupt driven systesms.

The page-write/page-read ratios were not central to
this research, however questions posed here suggests further
study in this area. There is no reason why the data for
such a study cannot be drawn from the jok accounting data
collected from production systems rather thanm from experi-

ments.

Methods of analysis other than factcrial analysis of
variance is recommended since there is sose indication that
interactions will reduce the usefulness of this kind of
analysis. One way to overcome this problem is to perform
enough observations so that independent one-way analyses can
be performed. A larger numker of sample points can ke
obtained with fewer actual program runs by including all

programs from each run in the analysis.

The size of the relative errors in predicting the
cycle time (ET) and the system overhead (OHT) suggests that
the large relative errors in the program CPU utilization
(CP) and the channel utilization (RCU) are scaling effects.
It is therefore recommended that these variables should be
scaled so that the contribution to overall error of differ-

ences in small values is proportional to their importance.

It is also recommended that smaller compute kernals be

used for synthetic programs. This would allow a greater

147

range and control of the paging rates and the CPU variance.
For example compute kernals of about 20% the size of the
ones used in this research would have been more apprcrriate

and would have allcwed a greater range of CPU variance.

The needs expressed in the beginning of this thesis
will continue to inspire the investigation necessary to the
accomplishment of better ways to perform capacity manage-
ment, resource scheduling, and data processing systes

tuning.

GLOSSARY OF TERMS

access arm: The mechanism which is used to physically
position the read/write heads of disk-type devices for
I/0 operations.

application program: A program which serves an end-use
function in a computing system rather than a utility
function. Examples are; payroll, inventory, etc.

benchmark: Execution of a prescribed set of prograss on
one or more different computer systems for the furpose
of performance measurement or comparison.

biased page allocatjon: A method of partitioning the
pageable real memory of a virtual computer systenm
which arbitrarily favors certain programs over cthers
with respect to minimization of the systeam paging
rate.

buffering: A method of I/0 data management which reads or
writes data from two cr more areas of real memcry,
allowing CPU and I/O operations of the same program to
be overlapped.

central server: The node of a queuing network which
represents the CPU in some program models. The other
nodes of the network represent the I/0 devices.

channel: The data path between an I/0 device or control
unit and the main memocry of a computer systea.

instant a program accesses the CPU until the progran
generates an I/0O or paging operation.

compute kernal: A collection of machine (computer)
instructions which is artificially constructed to
represent a "typical" program or to serve as a basis
for comparisons in benchmarks.

limiting resource in a computer system. In this
thesis a program is considered to be CPU bound if its
CPU utilization exceeds 50% when no other programs are
active on the systen.

48

149

configuration: A particular coabinatiocn of memory,
processors, I/0 devices and channels in a computer
systea.

cylinder: The collection of all records which can be read
or written with one physical positioning of a disk
access mechanisam (arm).

direct access device: An I/0 device with the ability to
read or write data at any location on the recording
medium without regard to sequence. Examples of direct
access devices are disks and drunms.

direct access method: The method of data access to disks
or drums which takes advantage of the direct access
characteristics of the device. This usually implies
that the data is organized for direct access and the
physical address of the data is generated by the
program based on a randomizing algorithnm.

disk scheduling: The queue management and service discip-
line for disk I/O requests. Examples of disk schedul-
ing strategies are First-Come-First-Served (FCES),
Priority, and SCAN.

disk: A type of direct access device which uses iron
oxide coated platters or "disks" as a recording
medium. Data is recorded in concentric circles about
the axis of a shaft which rotates the surfaces under
read/vrite heads. A number of disk surfaces may be

mounted on a single shaft.

dispatching: The process of storing the status (or state)
of the program which has control of the CPU and
restoring the status of a suspended program. The
process of switching control of the CPU from one
program to another.

EXCP: Execute-Channel-Program. A request by an executing
program to the Operating System to commence a specific
I/0 operation.

FCFS
(

s A queue service policy, Pirst-Come-First-Served
see FIFO).

FIFO: A queue service policy, FPirst-In-First-Out (see
S

The mean program execution interval between page

150

I/Q bound: A situation which prevails when the I/O
devices are the limiting resources in a computer
system. A program is considered to be I/0O bound if it
spends greater than 75% of its elapsed execution time
waiting for I/0 when it is the only program active on
a computer systea.

indexed access: A method of disk access which requires
that the location of a particular disk record ke
retrieved from an index before the data record itself
can be read. The index is a disk file but it may be
made core resident during program execution.

initial wait: The elapsed time from the completion of a
program's I/0 until the program has access to the CPU.
This implies that another program is using the CPU
vhen the program in question kecomes ready to run.

interrupt: An event which triggers a change in the
program which is in control of the CPU. An interrupt
may be voluntary, as in a request for I/0, or it may
be involuntary, as is the case for a page exception or
the completion of another program's I/0. In the
latter case control will be ultimately given tc the
highest priority program that is ready to run.

IS: A queue service discipline for a server with infinite
capacity, or an Infinite Server. This differs from
the PS server in that the arrival of new requests does
not diminish the rate at which previous arrivals are
served.

job accounting: The process of system software collecting
and recording I/O counts, paging ccunts, storage
allocations and elapsed time and cumsulative CPU time
for the processes or programs in a computer systen.

LCFPS: Last-Come-First-Served queue service discipline.
The most recently arrived request is served immediate-
ly and the earliest arriving requests that are still
unsatisfied are not served until all later arrivals

are served.

lifetime functicn: A relation betveen the amount of real
memory allocated to a process (program) in a virtual
system and the process time between page exceptioms.

LRU: A paging algorithm which attempts to select the
Least-Recently-Used page frame to satisfy a paging
exception. A stack procedure which is used to imple-

ment the LRU algorithm.

151

method of false position: A method for accelerating
convergence of a sequence by approximating the deriva-
tive in Newvwton's Method with a divided difference of
previously computed sequence values.

module: The collection of disk surfaces which rotate

about a common shaft in a disk I/0 device. It is also
referred to as a spindle.

multiprogramming: The prccess of concurrent execution of
tvo or more programs in a single computer systes.

nultiprogramming set: The collection of all the prograas
or tasks that are concurrently executing in a single
computer system during the interval under considera-
tion.

non-pageable memory: The portion of high speed memcry
which is fixed and not allowed to ke paged in a
virtual system. Generally this portion of memory is
used by the operating system for critical system tasks
such as I/0 or paging management.

occupancy: The probability of executing the instructions

in a particular page of a prograam's address space.

overhead: The portion of elapsed time during which the
operating system is performing functions on behalf of
problem (user) programs. This time is not attributed
to any specific program by jok accounting.

page exception: An interrupt which occurs whenever
reference is made to a page of virtual memory which is
not in real memory, ie. page fault.

page fault: A page exception.

page: The smallest unit of virtual memory that is managed
by the paging mechanism of the virtual systea. 1In
this thesis a page is fixed and either 2048 or 4096
bytes.

paging: The process of selecting a page frame of real
memory, possibly writing its contents onto auxiliary
storage (disk or drum), and reading the missing
virtual page into the selected page frame in virtual
systeas.

peripheral: An I/O0 unit or piece of data processing
equipment which is locally attached to the central
processor (CPU) but is not a part of it.

152

priority scheduling: The operating system policy of
giving control to the program which has the greatest
importance (possibly cn an arbitrary scale) and is
ready to run.

priority-resume service: The queue service discipline
which services the highest priority arrival in the
queue and resumes service to any interrupted arrival
only after all higher priority arrivals have ccmpleted
service.

problem state: The state of the CPU when user progras
instructions are being executed. 1In this state,
certain CPU instructicns vhich may compromise the
integrity of the entire system are prohibited. This
is in contradiction to system state, during which any
instruction may be executed.

product-form: The form of the solution for network
queuing problems which expresses the probabilities for
network and subnetvork states as the product of the
probibilities for the individual nodes of the
network. Such a problem is said to be separable.

PS: A queue service discipline for a server which has
Processor Sharing. In this case the server can
service all arrivals simultaneously, but with the
individual service rates identical and inversely
proportional to the number of arrivals being served.
This construct is the limiting case for rouad-robin
scheduling.

random access: See direct access method.

response: In the case of terminals, usually the elapsed
time from data input until the answer or acknowledge-
ment is received at the terminal. In the case of
program I/0, response time is the time from the
request to begin an I/0 operation until the operation

is completed.

RPS: Rotational Position Sensing. The technology which
allows some disk or drum I/O units to disconnect from
the channel during rotational delay and to reccnnect
to the channel when the desired records come under the
read/vwrite heads. This greatly increases the data

carrying capacity of the channel.

SATF: An I/0 scheduling method for disks and drums which
services a queue of I/0 requests so that requests with
the shortest access time (from the current angular
displacement of the recording medium or the current
sector) are serviced first,

Shortest-Access-Time-First.

153

SCAN: An I/O scheduling method for disks which moves the
access mechanism back and forth over the disk surfac-
es, stopping at cylinders which have outstanding

requests to ke serviced.

scheduling: In this thesis, scheduling is understood to
mean the arrangement and sequencing of programs or
jobs for production as performed by a person or a
program which is not a part of the operating systea.
In other uses of the word "scheduling", the meaning is
nade clear by the presence of another word such as
"disk", "I/ 0", etc.

seek: A physical movement of a disk access mechanism or
arm from one position or cylinder location to another.

Semji-Markoff process: A stochastic process characterized
by the fact that the probability distribution of the
time between changes in system states depends cnly on
the initial and terminal states and is otherwise
independent of the previous history cf the systes.

separable: A prcblem which can be formulated in such a
way that the solution is expressible as a product of
probabilities (see prcduct form).

shared memory: Portions cf virtual memcry having subrout-
ines which are executed by two or more independent
programs. Such subroutines may not modify instruc-
tions or data areas in the shared memory, and are said
to be re-entrant.

ndle

See module or disk.

spooling: A method of increasing overall computer systen
efficiency by freeing programs from direct interaction
with low speed I/0 devices. The input is read fronm
data input devices by a "reader" prograam, blocked and
written to disk. When the actual processing prcgras
is executed, its card and print output is blocked and
written to disk. Actual punching and printing are
accomplished asynchronously by "writer" prograss.

SSTF: A disk scheduling method which services I/0
requests in the order of the shortest seek times from
the current location cf the access arm,

Shortest-Seek-Time-First.

154

system state: The state cf the CPU when operating systena
instructions are being executed. In this state, all
instructions are allowed including special systeam
(privileged) instructions. Most of the time in this
state is not attributed to any specific program and
may be thought of as cverhead.

time-sharing: The process of giving computer access to
terminal users so that the user can interact with the
computer with little regard to the absence or presence
of other users. Time-sharing systeams generally use
the round-robin or time-slicing scheduling discipline.
The service discipline rotates access to the CPU among
the members of the queue in discrete increments of
time.

transaction: A logical exchange of data between a custom-
er or user and the data processing system. Exagples
of transactions are payments, orders, requests,
requisitions and inquiries.

virtual system: A computer system (including hardware and
software) which is capable of executing prograams of
any size without regard to the size of the comfputer's
real memory.

working set: The collection of all pages of a program (or
system) which has been referenced during some arbi-
trary interval.

APEFENDIX A

Table

1o o

EWN = WK =

VWEWN -

oM EWN=

A1l.

PAGES
0uT

APEFENDIX A

PAGES OTHER
8.}

1/0
11,961

12,002
6,334

11,900
5,571
2,811

11,712
6,718
3,736
2,151

11,662
6,507
3,820
24332

985

11,448
6,673
3,942
2,469
1,131

528

156

ELAPSED
TINE

201.01
301.01

342.50
342.50
342.50

357.18
357.18
355.12
355.12

431.66
431.66
431.66
429.59
429.59

437.97
437.97
437.97
437.97
431.77
431.77

452.48
452.48
452.48
4c2.u48
452.48
435.96
435.96

Non-paging Runs Repl I - Measured

PROCESS
IIME

97.87
34.07

96.98
117.44
53. 16

95.62
102.71
52.45
59.24

93.67
123.99
68.68
40.35
73.81

92.54
119.86
70.04
43.94
18.97
76. 10

90.86
122.83
72.24
46.40
21.70
9.97
77.49

WRKG
SET

58
1136

60
56
1136

60
58
sS4
1136

62
56
56
S6é
113

60
58
58
58
56
1136

62
58
58
60
£6
56
1136

I o

NSonesEWwN =

ONOWULMEWND

PAGES

QuT

157

Table A1(Cont.).

PAGES OTHER

IN

¢ o o e o o o o

10

10,600
6,343
3,766
2,370
1,149

547
177

10,284
6,115
3,648
2,317
1,121

557
216
75

ELAFSED PROCESS

IIRE

429.87
429.87
431.93
431.93
421.93
431.93
411.27
411.27

419.55
419.55
421.62
421.62
421.62
421.62
421.62
351.39
351.39

IIME

83.78
116.74
68.97
44.36
21.88
10. 11

3.90
73.09

81.3¢
112.55
67.05
43.35
21.36
10.43
4.70
1.57
62.32

WEKG

SEI
62
60
56
58
58
58
56

1136

66
58
56
58
S8
56
58
Su
1138

PROG

01101
OVRHED

01101
02011
OVRHED

01101
02011
03001
OVRHED

01101
02011
03001
04000
OVRHED

01101
02011
03001
04000
05110
OVRHED

01101
02011
03001
04000
05110
06101
OVRHED

Table AZ2.

158

Non-paging Runs Repl I - Calculated

CP0 CYCLE TI/O

QIIL TINME
0.33 0.025
.11
.28 .029
.34 .054
.16
.27 .030
.29 .064
-15 .126
<17
.22 .037
.29 .064
«16 .116
.09 .200
<17
.21 .038
.27 .067
.16 .115
.10 .188
.04 .u38
.18
.20 .0u40
.27 .068
.16 .115
.10 .183
.05 .400
.02 .824
.18

RATE

39.74

35.05
18.50

33.32
15.60
7.92

27.14
15.57
8.66
5.01

26.63
14.86
8.72
5.33
2.28

25.30
14.75
8.71
5.46
2.50
1.21

CEU CPU

RATE QUANTUH
122.22 0.00818
123.76 .00808
53.94 .01854
124.46 .00804
54.25 .01843
53.61 .01865
125.05 .00800
54.19 .01845
S54.42 .01838
53.33 .01875
126.03 .00794
54.30 .01842
54.56 .01833
53.09 .01884
51.97 .01924
126.00 .00794
54.33 .01841
S4.58 .01832
53.23 .01879
52.17 .01917
53.05 .01885

EAGEIN
RATE

.

1/0
RATE

39.74

35.05
18.50

33.32
15.60
7.92

27. 14
15.57
8.66
5.01

26.63
14.86
8.72
5.33
2.28

25.30
14.75
8.71
5. 46
2.50
1. 21

CYCLE
FACTOR

1. 000

0.997
0.992

0.996
0.992
0.987

0.995
0.992
0.989
0.985

0.995
0.992
0.989
0.986
0.983

0.995
0.992
0.989
0.986
0.983
0.982

OVRHED

01101
02011
03001
04000
05110
06101
07100
08000
OVRHED

CPU
OIiL

.20
.21
.16
.10
.05
.02
.01
.18

19
.27
.16
.10
.05
.03
.01
0.00
.18

CYCLE
IIME

-041
.068
<115
. 182
376
.788
2.311

.041
.069
-.116
.182
«376
756
1.943
4.624

159

Table A2 (Cont.).

TI/0
RATE

24.66
14.76
8.72
5.49
2.66
1.27
0.43

24.52
14.58
8.66
5.50
2.66
1.32
0.52
0.22

CPU CPU

RATE QUANTUMN
126.53 .00790
54.34 .01840
S54.62 .01831
53.44 .01871
€2.57 .01902
54.22 .01844
45.63 .02192
126.43 .00791
S4.34 .01840
€4.43 .01837
53.47 .01870
52.53 .01904
53.48 .01870
46.20 .02165

48.44 0.02065

PAGEIN

RATIE

1/0
RATE

24.66
14.76
8.72
5.49
2.66
1.27
0.43

24.52
14.58
8.66
5.50
2.66
1.32
0.52
0.22

CYCLE
FACTOR

0.995
0.992
0.989
0.987
0.985
0.983
0.982

0.995
0.992
0.989
0.986
0.984
0.982
0.981
0.981

Table A3.

i o

NVEWN =2 EWN = WN - N - -t

AN EWN =

NSO EWN =

ONOOUNMEWN =

PAGES

e o 6 o & o o o

ouT

160

Non-paging Runs Repl II - Measured

PAGES
IN

e o o o e o 0 o

e 6 o & o o

OTHER
10

11,977

11,982
6,388

11,965
5,606
2,856

11,838
6,810
3,736
2,151

11,724
6,571
3,858
2,391
1,042

11,582
6,751
4,075
2,523
1,183

544

11,159
6,607
3,948
2,481
1,169

585
198

10,327
6,182
3,785
2,380
1,161

596
228
81

ELAESED
TINE

301.03
301.03
342.51
344.58
344.51
359.20
361.27
357.14
357.14
431.71
431.71
433.77
431.71
431.79
444.15
444.15
444.15
444.15
435.89
435.89
460.81
460.81
460.81
460.81
460.81
448.41
448.41
450.57
450.57
450.57
450.57
450.57
450.57
429.92
429.92
427.90
427.90
427.90
427.90
427.90
427.90
42<.83
354.72
354.72

PROCESS
TIME

97.70
33.94
96.78
117.73
53.45
96. 29
103.00
52.76
59.86
94. 14
124.76
68.3<
40.10
74.73
93.30
120.78
70.55
44.88
19.99
77.16
91.96
123.82
74.41
47.29
22.64
10. 13
79.96
88.46
121.88
72.14
45.90
22.16
10.86

4. 21
76.83
82.02
113.20
69. 14
“a‘21
21.99
11.09

4.92

1.59
63.14

BROG

01101
OVRHED
01101
02011
OVRHED
01101
02011
03001
OVRHED
01101
02011
03001
04000
OVRHED
01101
02011
03001
04000
05110
OVRHED
01101
02011
03001
04000
05110
06101
OVRHED
01101
02011
03001
04000
05110
06101
07100
OVRHED
01101
02011
03001
04000
05110
06101
07100
08000
OVRHED

Table

A4,

161

Non-paging Runs

CPU CYCLE TI/O

UTIL TINE
0.33 0.025
.11
.28 .029
<34 .054
«16
.27 .030
.29 .064
.15 .125
<17
.22 .036
«29 .063
.16 .116
.09 .201
«17
.21 .038
.27 .068
.16 .115
.10 .186
.05 .418
.18
.20 .040
.27 .068
.16 .113
.10 .183
.05 .389
.02 .823
.18
.20 .040
.27 .068
.16 .114
.10 .185
.05 .385
.02 .769
.01 2.160
.18
.19 .041
«27 .069
.16 .113
.10 .180
.05 .368
.03 .717
.01 1.860
0.00 4.326
.18

RATE
39.79

34.99
18.54

33.31
15.52
8.00

27.42
15.78
8.62
4.99

26.40
14.80
8.69
5.39
2.39

25.14
14.65
8.85
5.48
2.57
1.22

24.77
14.67
8.77
5.42
2.60
1.30
0.46

24.14
14.45
8.85
5.56
2.72
1.40
0.54
0.23

CBU
BATE

122.60

123.81
54.27

124.27
S54.44
Su4. 15

125.76
54.59
S4.67
53.66

125.68
S4.41
54.70
53.30
S2.18

125.96
54.53
€4.78
53.35
52.31
£3.80

126.16
54. 21
S4.74
£3.20
52.80
53.97
47.25

125.92
S4.62
Su4.76
53.85
52.83
53.83
46.55
51.74

Repl II - Calculated

CPU
QUANTUN

0.00816

.00808
.01843

.00805
.01837
.01847

.00795
.01832
.01829
.01864

.00796
.01838
.01828
.01876
.01916

.00794
.01834
.01826
.01874
.01912
.01859

.00793
.01845
.01827
.01880
.01894
.01853
.02117

«00794
.01831
.01826
01857
.01893
.01858
.02149
0.01933

PAGEIN

RATE

e o e o o o & ¢ o o ¢ o o o

1/0
BATE

39,79

34.99
18. 54

33.31
15.52
8.00

27.42
15.78
8.62
4.99

26.40
14.80
8.69
5.39
2.39

25. 14
14.65
8.85
5. “8
2.57
1.22

24.77
14.67
8.77
5.42
2.60
1.30
0.46

24.14
14.45
8.85
5.56
2.72
1.40
0.54
0.23

CYCLE
FACIOR

1.000

0.997
0.992

0.996
0.992
0.987

0.995
0.992
0.988
0.985

0.995
0.992
0.989
0.986
0.983

0.995
0.992
0.989
0.986
0.983
0.982

0.995
0.992
0.989
0.986
0.983
0.982
0.981

0.995
0.992
0.989
0.986
0.984
0.982
0.981
0.981

Table AS.

P PAGES
R QUT

41
14
2
2
10

EWN =

95
39
28
34
73
26

NEWN =

150
132

66
141
448
569

97

AN EWNa

197
253
347
458
826
732
590
237

NoOUMWEWND =

1,392
2,187

3,225
2,930
2,691
3,206

922

ONONEWN =

162

Paging Runs Repl I - Measured

PAGES
1N

160
68
3

(1}
31

296
120
34
13
1M
93

476
336
159
163
491
1,090
341

1,261
987
949
954

2,111

1,751

1,390
648

10,734
8,671

8,202
7,501
6,921

6,618
3,136

OTHER
140

12,
7,
3,

002
015
909

2,331

12,002

6,
4,
2,
1,

12,
6,
4,

830
119
593
081

002
983
348

2,763

1,

7,
4,
2,

11,
10,

149
261

002
288
062
581
429
178
100

921
564

525
460

367
866

ELAFSED PROCESS

TIME

441.10
445.16
447.19
447.19
441.10

461.23
467.54
467.54
467.54
467.54
461.23

500.05
508.69
517.17
517.17
517.17
517.17
€00.05

597.96
609.39
584.91
611.67
611.67
611.67
611.67
584.91

2,183.56
2,183.56

<,185.5

2,185.59
2,185.59
2,185.59
2,183.56

TIME

95.26
129. 29
71.72
43.69
72.11

95.29
125.87
75.22
48.51
20.71
78.74

95.63
128.51
79.51
51.76
21.97

5.32
94. 21

96. 44
135.87
75.56
49.02
9.0¢
3.67
2.38
127.99

99.97
201.39

12.55
10. 64
8.97

19.84
506.51

WRKG
SET

110
54
42
52

120

66
50
4y
46
60
62

54
46
48
46
48
36
34

58
46
46
44
40
26
22
34

50
44

26
24
22

32
32

OVRHED

01101
02011
03001
04000
05110
OVRHED

01101
02011
03001
04000
05110
06101
OVRHED

01101
02011
03001
0u000
05110
06101
07100
OVRHED

01101
02011
03001
04000
05110
06101
07100
08000
OVRHED

Table A6.
CPU CYCLE
UTIL TINE

0.22 0.036
<29 .063
.16 .114
.10 .191
.16
.21 .038
«27 .067
.16 .113
.10 .179
.04 .392
<17
.19 .040
«25 .069
.15 .115
.10 .177

.04 .315
.01 .383
.19
.16 .045
«22 .074
.13 117
.08 .173
.02 .241
.01 .317
.00 .410
«22
.05 .096
.09 .114
.01 .250
.01 .275
.00 .300
.01 .292

0.23

163

Paging Runs Repl I - Calculated

TI /0
BATE

27.58
15.91
8.75
5.22

26.67

14.87
8.89
5.58
2.552

24.96
14.39
8.72
5.66
3.17
2.61

22.18
13.58
8.57
5.78
4.15
3.16
2.““

10.38
8.81

4.00
3.64
3.34
3.43

CEU CPU
BATE QUANTUM
126.00 0.00783
54.26 .01825
S4.52 .01833
53.37 .01871
125.97 .00775
54.27 .01811
€4.78 .01811
53.47 .01861
52.25 .01736
125.52 .00766
£4.35 .01756
54.70 .01764
€3.40 .01769
52.35 .01339
49.26 .00393
124.46 .00727
53.65 .01642
53.77 .01508
52.68 .01386
47.50 .00356
48.80 .00190
42.44 .00160
119.26 .00441
52.46 .01047
41.93 .00144
43.32 .00134
41.01 .00123
43.69 0.00265

PAGEIN I/0 CYCLE
RATE FACTOR

RATE

0.4
‘2
.0
.o
.1

-6
<3
.1
.0
.2
2

1.0
7
.3
.3
.9

2.1
.’7

.
& & A NN W N

s o o o 0 o s 6 o 0 o o o
S WO =2

= WwWwww
.
SEONMNE®

oW

27.21
15.76
8.74
5.22

26.02
14.61
8.81
5.5¢
2.31

24.00
13.73
8.41
5.35
2.22
0.51

20.07
11.96
6.95
4.22
0.70
0.29
0.17

4.92
4.84

0.24
0.21
0.17
0.40

0.995
0.992
0.988
0.985
0.994

0.995
0.992
0.988
0.985
0.982
0.993

0.994
0.991
0.988
0.985
0.983
0.981
0.992

0.991
0.989
0.986
0.984
0.982
0.980
0.978
0.989

e o o [] [} [] e o
¢ o o e o [] e o
e o o s o [e o

Table A7.

1o o

EWN =

ANEWN = NEWN =

NOUMEWND =

- PAGES
oUT

45
16

0
21
18

116
63
24
37
81
36

150
97
31

112

388

531
74

234
298
402
521
951
807
629
255

164

Paging Runs Repl II - Measured

PAGES
IN

166
85
3

7
52

302
170
34
20
86
95

459
252
86

88
378
1,067
282

1,556
1,212
1,156
1,151
2,336
1,954
1,556

755

OTHER
I/0

12,002
6,919
3,916
2,295

12,002
6,859
4,160
2,610
1,110

12,002
6,953
4,242
2,838
1,173

249

12,002
7,444
4,180
2,770

537
183
91

ELAFSED PROCESS

TIME

441.43
4u3.54
445.57
445.57
441.43

462.56
468.95
471.04
471.04
471.04
462.56

487.47
502.52
504.88
S04.88
504.88
504.88
u87.47

644,82
654.00
627.30
656.28
656.28
656.28
656.28
627.297

TIME

95. 46
127.67
71.89
43.00
72.22

9S5.49
126.63
76.01
48.80
21.22
78.78

95.54
128.55
78.36
53. 16
22.46

4.89
89.78

96.51
138.82
78.19
52.67
11.176
3.81
2.30
138.81

WRKG
SEI
100
64
4y
54
110

70
52
40
44
62
62

56
S0
42
46
48
38
34

56
46
44
uy
44
26
20
34

OVRHED

01101
02011
03001
04000
05110
OVRHED

01101
02011
03001
04000
05110
06101
OVRHED

01101
02011
03001
04000
05110
06101
07100
OVRHED

Table AS.
CPU CYICLE
UTIL TIME
0.22 0.036
<29 .063
.16 .114
.10 .193
.16
.21 .038
«27 .067
<16 .112
.10 .179
.05 .394
<17
.20 .039
.26 .070
.16 .117
11 172
.04 .325
.01 .383
.18
.15 .048
<21 .076
.13 .118
.08 .167
.02 .228
.01 .307
.00 .398
0.22

Paging

TI/0
RATE

27.57
15.79
8.80
5.17

26.60
14.99
8.91
5.59
2.54

25.57
14.34
8.57
5.80
3.07
2.61

21.03
13.24
8.51
5.98
4.38
3.26
2.51

165

CPU

RATE QUANTUM

CPU

125.74 0.00784

54. 20
Sy.u8
53.40

125.71
54.17
54.75
$3.51
52.37

125.63
S4.10
S4. 15
53.41
S2.28
51.17

124.38
53.63
53.47
52.62
48. 14
48. 29
40.00

.01823
.01834
.01867

.00776
.01801
.01812
.01855
.01772

.00796
.01784
.01810
.01816
-01u447
«00371

.00712
.01604
.01465
.01343
.00389
.00178
0.00140

PAGEIN

RATE

0.4
'2
.0
.0
.1

o7
-4
.1
.0
.2
2

0.9
.5
.2
.2
.7

2.1
«6

e o 6 0 0 & o o
NEOODO®OWOWE

D DWW e N

Runs Repl II - Calculated

I/0 CYICLE
RATE FACTOR

27.19
15.60
8.79
5.15

25.9°5
14.63
8.83
5.54
2.36

24.62
13.84
8.40
5.62
2.33
0.50

18.61
11.38
6.67
“. 22
0.82
0.28
0.14

0.995
0.992
0.988
0.985
0.994

0.995
0.992
0.988
0.985
0.982
0.993

0.994
0.991
0.988
0.985
0.983
0.981
0.992

0.991
0.989
0.987
0.984
0.983
0.981
0.979
0.989

L

PROG
CNTL
CNTL
CNTL
CNTL
OVRHED

CNTL
CNTL
CNTL
CNTL
CNTL
OVRHED

CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
OVRHED

CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
OVRHED

Table A9.

EWN =

NN EWNa VEWN=

SNSoOonsEWwWwNh=

PAGES
QUT

28
23
33
57

70
90
83
13
184

312
312
419
600
685

575
579
793
915
970
901
805

166

Page Allocation Runs - Measured

PAGES
IN

143

73
110
275

263
269
210
326
381

1,534
1,502
1,554
1,746
1,854

3,306
2,787
2,682
2,500
2,411
2,192
1,095

OTHER
149

12, 144
9,123
6,223
3,409

8,101
6,679
5,353
3,904
3,975

3,785
2,712
1,848
1,144

538

3,647
3,161
1,693
711
333
194
156

ELAPSED PROCESS

TIME

761.46
761.46
762.73
762.73
761.46

655.25
655.25
655.25
649.05
636.48
636.48

393.59
393.59
393.59
393.58
391.53

391.53

609.72
609.72
609.72
609.72
606.47
606.47
584.38
584.38

IIME

222.39
164.80
113.59

64.75
110.71

142.30
116. 44
94.19
70.22
74.19
95.19

68.75
49.12
33.66
21.24
10.87

91.72

68.90
60.90
32.77
14.02
6.82
4.33
3.54
138.5C

WRKG
SET

82
S8
64
78

66
52
52
52
54

62
52
S2
us
38
26

56
52
48
40
36
26
24

BROG

CNTL 1
CNTL 2
CNTL 3
CNTL 4
OVRHED

Table A10.
CPU CYCLE
UTIL TIME

0.29 0.062
.22 .083
<15 .120
.08 .207
.15
.22 .078
.18 .094
.14 .118
11 .153
.12 .146
.15
018 -O7u
.13 .093
.09 .116
.05 .136
003 .16“
001 L] L] L]
.23
.11 .088
.10 .103
.05 .139
.02 .190
.01 .221
.01 .254
.01 0.286

0.24

167

Page Allccation Runs - Calculated

TI,/0
RATE

16.17
12.08
8.30
4.83

12.77
10.60
8.49
6.52
6.85

13.52
10.71
8.65
7.35
6.11
4.20

11.40
9.76
7.18
5.27
4.52
3.93
3.50

CEU

BATE QUANTUM

CFU

54.61 0.01801

55.37
S4.78
£2.66

56.94
57.37
56.85
55.60
53.59

55.07
55.23
54.93
53.90
49.49

52.95
51.92
$1.69
50.77
48.95
45.01
44.40

«01792
.01794
«01757

.01701
.01677
.01693
.01660
.01703

.01292
.01165
.00989
.00735
00455

.00990
.00964
.00749
.00437
.00249
.00181
0.00171

EAGEIN
BRAIE

0.2
.1
.1
’“

- U
.u
.3
-5
.6

¢ o o o o o
OVWNEOVWOVO

wesssWWW

wwesessessunm
o o o & o o 0

NOAOL&EO0E

I/0
BATE

15.95
11.98
8. 16
4.47

12. 37
10.20
8.17
6.02
6.25

9.62
6.89
4.70
2.91
1.37
0.31

5.98
5. 19
2.78
1. 17
0.55
0.32
0.26

CYCLE
FACTOR

0.996
« 994
«993
«992

<994
. 993
993
992
«992

. 989
. 988
. 987
. 987
- 986
. 985

« 997
« 996
« 996
«995
. 995
«995
0.995

PROG

000
CTL
CTL
CTL
OVRHED

011
CTL
CTL
CTL
OVRHED

101
CTL
CTL
CTL
OVRHED

110
CTL
CTL
CTL
OVRHED

CTL
CTL
CTL
001
OVRHED

CTL
CTL
CTL
010
OVRHED

CTL
CTL
CTL
100
OVRHED

CTL
CTL
CTL
111
OVRHED

Table A11.

EWN = EWN = EWN - EWN EWNa EWN = EWN=a (o

EFEWN =

PAGES
QuT

1

9
23
51
12

23
0
28
57
5

22
0
6

59

15

5
1
25
60
15

24
29
39
70
16

26
17
34
52
21

38
27
36
59
25

31
26
35
65
19

168

Program Estimation Runs - Measured

PAGES
IN

4y
21
47
76
32

144
4
47
101
14

165
4
8

112

49

4y
23
43
97
29

117
78
97

239
60

143
57
117
115
53

167
68
128
125
72

166
81
116
240
65

OTHER
10

8,462
4,302
2,467
1,293

8,409
4,015
2,230
1,114

8,313
3,777
2,129
1,050

8,440
4,415
2,575
1,359

11,915
8,961
6,044
8,718

12,395
9,330
6,418
8,720

12,075
9,174
6,255
8,720

11,941
9,025
6,148
8,718

ELAPSED PROCESS

IIME

288.76
288.76
290.81
280.56
280.56

270.62
270.62
270.62
258.43
258.43

260.51
260.51
262.60
250.35
250.35

294.87
294.87
296.96
286.67
286.67

746.14
748.17
748.17
737.97
737.97

776.517
776.57
778.60
768.41
7686.41

760.68
76C.68
762.76
752.52
752.52

752.53
752.53
752.53
742.29
742.29

I18E

67.18
79.81
46.37
24.54
45. 27

67.66
74. 3%
42.04
21. 15
42.63

66.82
69.83
39.77
19.99
41.53

67.58
81.51
48.29
25.81
46.35

218.38
161. 44
110.52
68. 3€
108.75

227.01
168. 15
117.22
68. 48
112.33

219.93
164.09
113.55
68. 26
110.79

219.04
162.67
112.41
69. 14
109.74

WRKG
SEI

56
52
64
96
96

92
sS4
56
76
94

94
56
58
64
82

72
<8
62
84
80

84
58
66
70
94

90
60
66
58
96

82
62
64
64
84

82
58
64
.74
88

169

Table A12. Program Estimation Runs - Calculated

CPU CYCLE TI/O CEU PAGE PAGEIN EXP ALJ-CEU
PROG UIIL IIME RATE RAIE RATE RAIE FACTOR RAIE

000 1 0.23 0.034 29.46 125.98 0.2 0.2 0.995 126.58
CNTL 2 .28 .067 14.93 54.92 0.1 0.1 0.991 54.38
CNTL 3 .16 .116 8.65 53.23 0.2 0.2 0.990 53.79
CNTL 4 .09 .205 4.88 52.73 0.5 0.3 0.989 53.32
OVRHED .16 0.2 0.1

011 1 .25 .032 31.08 126.20 0.6 0.5 0.995 126.80
CNTL 2 .28 .067 15.83 54.02 0.0 0.0 0.991 54.51
CNTL 3 .16 .119 8.42 53.07 0.3 0.2 0.989 £3.65
CNTL 4 .08 .213 4.71 52.71 0.6 0.4 0.988 53.32
OVRHED .17 0.1 0.1

101 1 .26 .031 32.57 124.50 0.7 0.6 0.995 125.07
CNTL 2 .27 .069 14.52 54.10 0.0 0.0 0.993 S4.u48
CNTL 3 .15 .123 8.14 53.57 0.1 0.0 0.991 54.05
CNTL 4 .08 .215 4.65 52.58 0.7 0.4 0.990 53.09
OVRHED .17 0.3 0.2

110 1 .23 .035 28.78 124.91 0.2 0.1 0.995 125.53
CNTL 2 .28 .066 15.05 54.18 0.1 0.1 0.992 54.64
CNTL 3 .16 .113 8.82 53.37 0.2 0.1 0.990 53.90
CNTL 4 .09 .197 5.08 52.55 0.5 0.3 0.989 53. 14
OVRHED .16 0.2 0.1

CNTL 1 .29 .062 16.13 54.57 0.2 0.2 0.995 $4.86
CNTL 2 .22 .083 12.08 55.52 0.1 0.1 0.993 55.91
CNTL 3 .15 .122 8.21 54.70 0.2 0.1 0.992 £5.15
001" 4 .09 .082 12.14 127.55 0.4 0.3 0.992 128.53
OVRHED .15 0.1 0.1

CNTL 1 .29 .062 16.15 54.61 0.2 0.2 0.995 54.90
CNTL 2 .22 .083 12.09 5%5.49 0.1 0.1 0.993 55.88
CNTL 3 .15 .119 8.39 54.76 0.2 0.2 0.992 55.21
010 4 .09 .087 11.50 127.36 0.2 0.2 0.992 128.35
OVRHED .15 0.1 0.1

CNTL 1 .29 .062 16.09 54.91 0.3 0.2 0.995 55.20
CNTL 2 .22 .082 12.15 5%5.91 0.1 0.1 0.993 56.31
CNTL 3 .15 .119 8.37 55.10 0.2 0.2 0.992 $5.55
100 4 .09 .085 11.76 127.77 0.2 0.2 0.992 128.76
OVRHED .15 0.1 0.1

CNTL 1 .29 .062 16.09 54.52 0.3 0.2 0.995 S54.82
CNTL 2 .22 .083 12.10 5t5.49 0.1 0.1 0.993 £5.88
CNTL 3 .15 .120 8.33 54.70 0.2 0.2 0.992 £5.16
100 4 .09 0.083 12.07 126.12 0.4 0.3 0.992 127.10
OVRHED 0.15 0.1 0.1

SELECTED BIBLIOGRAPHY

SELECTED EIBLIOGRAPHY

Bard, Y. "Characterization of Program Paging in a
Time-Sharing Environment", IBM Journal of Research
and Development, Vcl. 17, No. 5, (Sept 1973), pp.
387-393.

———————_e "aApplication of the Page Survival Index
(PSI) to Virtual-PlMemory System Performance®", IBM
Journal of Research and Development, Vol. 19, (Hay
1975) , pp. 212-220.

_e ®"A Characterization of VM/370 Workloads",
IBM Cambridge Scientific Center, Technical Report
No. G320-2111, (April 1976).

Baskett, F., and Gomez, F.P. "Processor Sharing in a
Central Server Queuing Model of Multiprogramming
with Applications", Sixth Annual Princeton Confer-
ence on Ipformatiopn Sciences 3and Systeams, (1972),

Bass, L.J. "On Optimal Processor Scheduling for Multi-
programming®™, SIAM J. COMPUT., Vol. 2, No. 4,
(December 1973), pp. 273-80.

Belady, L.A., and Kuehner, C.J. "“Dynamic Space-Sharing
in Computer Systems", Copmunications of the ACH,

Boyd, D.L. ™A Multiple Resource Model for A Batch-Pro-
cessing Multiprograsming System"™, National Technical
Information Service, U.S. Department of Ccamerce,
Report AD-722332, (March 1971).

Boyse, J.W., and Warn, D.R. "A Straightforward Model
for Computer Perfcrmance Prediction", Ccmputing
Surveys, Vol. 7, No. 2, (June 1975), pp. 73-93.

Brandwajn, A. "A Queuing Model of Multiprogrammed
Computer Systems Under Full 1Ioad Conditions",
Communications of the ACM, (April 1977), pp-
222‘2“00

171

10.

11.

12.

13.

14.

15'

16.

17.

18.

19.

20.

21.

172

Buchholz, W. "A Synthetic Job for Measuring Systea
Performance", IBM Systeamas Journal, Vol. 8, No. 4,
(1969), pp. 309-318.

Burge, W.H., and Konheim, A.G. "An Accessing Model®",
Journal of the ACM, Vol. 18, No. 3, (July 1971), Ppp.
400-404.

Chamberlain, D.D., PFuller, S.H., and Liu, L.Y. An
Analysis of Page Allocation Strategies for Multipro-
gramming Systemas with Virtual Memory", IBM Journal
of Research and Development, Vol. 17, No. 5, (Seft
1973) , pp. 404-412.

Chang, W. "Single-Server Queuing Processes in Cceputing
Systeas", IBM Systems Journal, Vol. 9, VNo. 1,

Courtois, P.Jd. "Decomposibility, Instabilities, and
Saturation in Multiprogramaing Systeas", Copmunica-

tions of the ACM, Vol. 18, No. 7, (July 1975), Ep.
371-376.

Cox, D.R. "A Use of Complex Probabilities in the
Theory of Stochastic Processes", Proceedings of the
Cambridge Philosophical Society, Vol. 51, (19595),
pp. 313-319.

——————_e Planning of Experiments, New York: John
Wiley and Somns,Inc., 1958.

Denning, P.J. "Effects of Scheduling on File Memory

Operations®", Spring Joint Computer Conference,
(1967), pp. 9-21.

e "The Working Set Model for Prograi Behav-
ior", Communications of the ACM, Vol. 11, No. 5,

(May 1968), pp. 323-33.

Denning, P.J., and Schwartz, S.C. "Properties of the
Working Set Model", Communications of the ACH, Vol.
15, No. 1, (March 1972), pp. 191-198.

Fenichel, R.R., and Grossman, A.J. "An Analytic Model
of Multiprogrammed Computing"™, Eroceedings of the

spring Joint Computer Conference, (1969), Ep-
717-21.

Fernandez, E.B., and lang, T. "Computation of Lower
Bounds for Multiprocessor Schedules", IBM Journal of
Research and Development, Vol. 19, No. 5, (September
1975), pp. 435-44.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

173

Finn, J.D. A General PModel for Multivariate Analysis,
New York: Holt, Rinehart and Winston, Inc., 1974.

Forbes, K., and Goldsworthy, A.W. "A Prescheduling
Algorithm -- Scheduling a Suitable Mix Prior to
Processing", The Computer Journal, Vol. 20, VWNo. 1,
(1977), pp. 27-29.

Franklin, M.A., and Gupta, R.K. "Computation of Page
Pault Probability frcm Program Transition Diagrams",
Communications of the ACM, Vol. 17, No. 4, (April
1974) , pp. 186-191.

Gaver, Jr., D.P. "A Waiting Line with 1Interrupted
Service Including Priorities", Journal of the Royal
Statistical Society, Series 13, ©No. 24, (1962), pp.

73-90.

—e———_e UWProbability Models for Multiprogramming
Computer Systems", Journal of the ACM, Vol. 14,No.
3, (1967), pp. 423-38.

Ghanem, M.Z. "Dynamic Fartitioning cf Main Memory Using
the Working Set Concept", IBM Journal of Eesearch
and Development, Vcl. 19, No. 5, (September 1975),

——- - —

Gordon, W.J., and Newell, G.F. "Closed Queuing Systess
with Exponential Servers", QOperations Research, Vol.
15, No. 2, (April 1967), pp. 254-265.

IBM Corporation "Analysis of Some Queuing Models in
Real-Time Systems",Form GF20-0007, Data Processing
Division, White Plains, N.Y. 10604.

Isaacson, E., and Keller, H.B. Analysis of Nymerical
Methods, New York: John Wiley & Scms, Inc., 1966.

Iverson, K.E. A Programming lLanquage, New York, John
Wiley & Sons, Inc., 1962.

Jackson, J.R. "Jobshop-Like Queuing Systems", Manage-
ment Science, Vol. 10, No. 1, (Oct 1963), pp.
131-142.

Kimbleton, S.R. "Batch Computer Scheduling: A Heuristi-
cally Motivated Approachn", Office of Naval Research,
Report AD-A007922 (September 1974).

Levwis, P.A.W., and Schedler, G.S. "A Cyclic Queue Model
of Multiprogramming®, Journal of the ACM, Vol. 18,

35.

36.

37.

38.

39.

40.

u1¢

uz.

43.

44,

45.

46.

174

Miller, Jr., R.G. "Priority CQueues", The Anpals of
Mathematical sStatistics, Vol. 31, = (1960), pE.

Muntz, R.L. "Poisson Ceparture Processes and Queuing
Networks", Conference on Information Sciences and

Systems, (March 1973), pp. 43S5-44C.

National Bureau of Standards, Fractional Factorial

Designs for Factors at 2 Levels, Washington: U. s.
Department of Commerce, 1957.

Oden, P.H., and Schedler, G.S. "A Model of Memory
Contention in a Paging Machine", Communications of

the ACM, Vol. 15, NCO. 8, (August 1972), pp 761-771.

Reiser, M. "Interactive Modeling of Computer Systeas",
IBM Systems Jourpmal, Vol. 15, No. 4, (1976), Ep.
308-27.

Saltzer, J.H. "A Simple Linear Model of Demand Paging
Performance", Commupications of the ACM, Vcl. 17,
No. 4, (April 1974), pp. 181-186.

Seaman, P.H., Lind, R.A., and Wilscon, T.L. "On Telep-
rocessing System Design, Part IV: An Analysis of
Auxiliary Storage Activity", IBM Systems Journal,
Vol. 5, No. 3, (1968), pp. 158-17C.

Sreenivasan, K., and Kleinman, A.J. "On the Construc-
tion of a Representative Synthetic Workload¥,
Communications of the ACM, Vol. 17, No. 3, (March
1974) , pp. 127-33.

Teorey, T.J. "Properties of Disk Scheduling Policies on
Multiprogramaed Ccmputer Systeas", Fall Joint
Computer Conference, (1972), pp. 1-11.

Waters, S.W. "Estimating Magnetic Disk Seeks", The
Computer Journal, Vcl. 18, No. 1, (1975), pp. 12-17.

Wilhelm, N.C. "A General Model for the Performance of
Disk Systeams", Journal of the ACM, Vol. 24, No. 1,
(Jan 1977), pp. 14-31.

Welch, P.D. "On Pre-Emptive Resume Priority (Queues",

The Annals of Mathematical Statistics, Vol. 35,
(1964) , pp. 1340-u8.

|
‘l

i

LN

©
'~
)
<
o
=]
)
»
=~
>
3

2=
==
==
"=
I
=
z—
=
==
T=—

