
ABSTRACT

AN EXPERIMENTAL INVESTIGATION OF A NON-ISOTHERMAL

TURBULENT WALL JET

by Jack Duane Wilson

The characteristics of the flow field produced by a

given ventilation inlet is of primary importance in the

design of a ventilation system. This investigation was con-

ducted to determine the characteristics of the temperature

and velocity fields resulting from a slotted inlet in a wall.

adjacent to the ceiling. The velocity field, produced by

such an inlet arrangement, is described as a wall Jet. A

simulated wintertime ventilation application was investigated.

Thus the temperature of the incoming ventilation air was

lower than that of the ambient room air.

The experimental arrangement consisted of a four feet

wide by twelve feet long "section" of a ceiling, with a #8

inch long by .49 inch high slotted inlet at one end and adja-

cent to the ceiling. A means was provided to control both

the temperature and the velocity of the incoming ventilation

air. Mean velocities were determined using a constant tem-

perature hot film anemometer and mean temperatures were

measured with thermocouples.

The independent variables of the investigation were

the inlet air temperature and the inlet air velocity. Five

inlet velocities were selected as representative of those
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encountered in ventilation practices. They were: 1200, 1000,

800, 600 and 400 ft/min. For each velocity the isothermal

case plus three temperature differences, between the incoming

ventilation air and the room air, were investigated. The

temperature differences were approximately 50°F, #00F and

20°F. Velocity and temperature profiles were determined at

eight different longitudinal distances from the inlet.

Assuming that similarity of the temperature profiles

applied. analysis indicated that the decay of the maximum

temperature difference is a power function of the longitudinal

distance from the inlet (e.g. AXTmaCbe). The same analysis

indicated that the growth of the thermal boundary layer, as

represented by a characteristic length 6t, is a linear func-

tion of the longitudinal distance from the inlet.

Using theory already available the mean velocity

results were analyzed. The mean velocity profiles generallyv

appeared to be congruent when plotted in dimensionless form.

The decay of maximum velocity was fairly well represented by

a relationship of the form Emaclxa. The average value of a

from all tests was -.53.

The mean temperature profiles were plotted in dimen-

sionless form. Generally, similarity of temperature profiles

was indicated except for the 400 ft/min inlet velocity cases.

An exponential relationship due to Reichardt (1941) was found

to represent reasonably well the data in the outer portion of

the dimensionless temperature profiles.

For all cases the growth of the thermal boundary layer
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was a linear function of x. The rate of growth of the ther-

mal boundary layer was found to be inversely proportional to

the inlet Reynolds number.

The eXperimental results indicated that the decay of,

the maximum temperature difference was reasonably well repre-

sented by the previously mentioned power law relationship.

The average value of the eXponent b for all tests was -.63.

This was considerably higher than the velocity decay exPonent,

indicating a faster rate of decay for temperature than for

velocity. The rate of decay of the maximum temperature dif-

ference appeared to be inversely proportional to the inlet

Reynolds number, indicating less thermal mixing of the cold

air with the warm air, at the higher inlet Reynolds numbers.

Buoyancy forces appeared to be negligible at the

higher inlet Reynolds numbers. However, at the 600 ft/min

and #00 ft/min inlet velocities, there was an indication that

buoyancy forces were influencing the flow field.

An eXpression was found for determining the tempera-

ture at any position in the thermal boundary layer. Sample

calculations made using this eXpression indicated it was
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1. INTRODUCTION

The concept of controlled environment housing of live-

stock was first introduced in the United States ten to fifteen

years ago. Its advantages include a means of providing

environmental conditions the year around which are favorable

to optimum livestock production and a situation which lends

itself to better management practices. Because of these

advantages, this type of housing has gained wide acceptance

with livestock producers.

The success of controlled environment housing depends

largely on the fulfillment of three requirements. First it

is necessary to maintain temperature at an optimum level

within the structure. The removal of moisture and the keep-

ing of undesirable gases at a tolerable level are the last

two requirements. The structure's ventilation system is

primarily reSponsible for meeting these requirements.

Most ventilation systems currently available do a sat-

isfactory Job of controlling the temperature, moisture level

and gas levels within the structure. These same ventilation

systems however, leave something to be desired when it comes

to the problem of ventilation air distribution, that is, ven-

tilating as evenly as possible all areas of the structure.

The reasons for this can be viewed as twofold. One is that

economic considerations provide a limitation on the sophisti-



cation of the system. Secondly there is a lack of basic

research results on room air distribution as influenced by

the ventilation system.

An obvious place to begin research on ventilation

systems is with the inlet.

One type of ventilation inlet system used in con-

trolled environment structures utilizes a continuous slot

in the ceiling adJacent to the wall. A hinged baffle is

used to deflect the air across the ceiling for wintertime

ventilation or directly downward adjacent to the wall for

summertime ventilation. The wintertime application provides

maximum mixing of the cold air with the warm air near the

ceiling, before it comes into contact with the occupants.

Both summer and winter inlet systems provide a Jet of air

defined in the literature as a wall Jet.

Tuve (1953) noted that when the ceiling or wall

coincides with one edge of a ventilation inlet a greater

throw of the air stream resulted than for the same inlet

discharging into an open space (e.g. a free Jet). Borque

and Newman (1960) discovered the eXplanation for this

phenomenon to be a result of the Coanda effect.

Glauert (1956) was the first to examine theoretically

the similarity problem (e.g. congruency of dimensionless

velocity profiles) of the laminar and turbulent, radial and

plane wall Jet. He realized that a wall Jet is character-

ized by two regions, one close to the wall which resembles

boundary layer flow over a flat plate, and an outer region



which closely resembles free Jet flow. He succeeded in

establishing that similarity does indeed exist for both the

laminar and turbulent wall Jet.

Myers, Schauer and Eustis (1963b) investigated heat

transfer to plane turbulent wall Jets. Their analytical

development and eXperimental results showed that similarity

of temperature profiles existed for the wall region of the

Jet. Buoyancy effects were neglected since the outlet

velocities used were quite high. They also noted a greater

spread of the temperature profile than the velocity profile.

This investigation was concerned with a chilled wall

Jet as might be encountered in wintertime ventilation. The

effect of the initial temperature difference between the

incoming and ambient air and the slot inlet velocity on the

mean temperature and velocity profiles, was investigated.



2. LITERATURE REVIEW

2.1 Horizontally ProJected Non-isothermal Free Jets

A number of researchers have investigated heated and

chilled free Jets at velocities encountered in ventilation.

Nottage, Slaby and Gonza (1952) observed a signifi-

cant effect of buoyancy forces on the traJectory of a chilled

round free Jet. In their investigation the temperature of

the incoming air was 40°F below that of the room air and the

outlet velocity was 8.33 ft/sec. The following empirical

relation was found to correlate their data.

Za=K(x/do)2 (2.1)

where:

Zazdisplacement of the Jet axis below the horizontal

K =an empirical constant (.02 for their tests)

x =distance from the outlet

d =outlet diameter
0

Koestal (1955) worked on the problem of horizontally

proJected heated and chilled Jets. By means of a theoretical

approach he arrived at the following equation expressing dis-

placement of the centerline of the Jet axis in terms of the

independent variables.

t<y/ao)=(mosgdo/UOZ)[(a/b + max] (x/dof- (2.2)



where:

y =distance from the horizontal

To=temperature difference at the outlet

8 acoefficient of eXpansion of air

g sacceleration due to gravity

anoutlet velocity

a/baa function of the turbulent Prandtl number

K =an empirical constant

The dimensionless group AToBgdo/Uo2 is actually equal to

the Grashoff number divided by the square of the Reynolds

number. This relationship is shown below.

ziwossdo/Uoz=(AxTOBstB/vz)(vz/U02d02)=GrO/Re02 (2.3)

The c in the subscript means that both of these dimensionless

groups are evaluated at the outlet for this particular case. .

The Grashoff number is the free convection dimensionless

modulus and can be considered as the ratio of buoyancy forces

to viscous forces. The Reynolds number is considered a mea-

sure of the ratio of the inertia forces to the viscous forces.

Thus the ratio Gro/Reo2 might be thought of as a ratio of

buoyancy forces to inertia forces. Koestal's derived equation

applies only if the slope of the traJectory of the Jet center-

line is not greater than approximately 15 degrees. This

seriously limits the applicability of his expression.

Baturin (1959) investigated non-isothermal plane Jets

and arrived at the following equation relating Jet centerline

displacement with the independent variables.
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(y/L)Ar/Tu/To=(0.226/a2)(a(x/L) + 0.025)5/2 (2.4)

where:

Tu=absolute temperature of the medium

To=absolute temperature of the air stream

L =outlet height

a =turbulence coefficient (0.09 to .20 for a two-

dimensional Jet)

Ar=gL(Tu‘To)/U02Tu

Abramovich (1938) investigated both warm and cold air

free Jets. His analytical approach assumed the buoyancy

force was balanced by the vertical acceleration of the mass

flow of the air + the change due to the mass change of

entrainment. He arrived at the following equation which

expresses the relationship between the displacement of the

Jet axis from the horizontal and the independent variables

of outlet temperature and outlet velocity.

r=o.026Kx3 (2.5)

where:

Y =2(y/do)

X =2(x/do)

K =(gao/2UOZ><To/Th>

Thgtemperature of the air in the space

Abramovich found this equation to predict very closely his

experimental results fortflmaoutlet velocity range from 5.89

to 20.3 :ft/sec. and temperature differences at the outlet

from 142 to 454°F.



In summarizing, Koestal arrived at results which indi-

cate one of the independent variables to be a dimensionless

group analogous to the hydrodynamic Froude number. Baturin's

equation includes an experimentally determined coefficient

which is dependent on turbulence conditions. Koestal's

equation includes a number which is a function of the turbu-

lent Prandtl number. This may be questionable since numerous

researchers have found the turbulent Prandtl number for a

free Jet to be nearly independent of test conditions and equal

to approximately 0.71.

All of these researchers agree that at the lower

velocities encountered in ventilation practices, buoyancy

forces do have an effect on the traJectory of the free Jet

centerline.

2.2 General Observations on Ventilation Jets

in the Presence of Solid Boundaries

It is not always possible to delineate the difference

between a true wall Jet and a Jet at some distance from,

parallel to and bounded by a solid surface (semi-bounded Jet).

Indeed in some cases of a semi-bounded Jet the resulting flow

condition might be accurately described as a wall Jet. With

this in mind the following section of literature review is

presented.

Nottage (1951) found that when the axis of a circular

Jet is close to a wall, floor or ceiling and parallel with it,

the spread of the Jet in the transverse direction is reduced.



Kerka as reported by Tuve (1953) in a series of tests

on circular Jets with and without adJacent walls found a

greater throw for the Jet with an adJacent wall. He also

found the angle of divergence in a transverse direction to

the wall was less than one-half that of a free Jet. Parker

and White (1965) also observed that when the Jet inlet is in

the proximity of a wall or a ceiling an increase in throw is

obtained.

Parker and White (1965), Becker (1950) and Farquharson

(1952) concluded that Jets in the proximity of solid boun-

aries will be drawn to and remain close to that surface. It

was not until Borque and Newman (1960) did their definitive

study on the reattachment of a two-dimensional Jet that any

real physical explanation could be offered for the above

mentioned phenomenon. The reattachment problem, which comes

under the general area of the Coanda effect, was eXplained

thusly by Borque and Newman. After the fluid leaves the slot

the highly unstable shear layers on both sides of the Jet

quickly become turbulent and entrainment takes place. That

fluid which is entrained near the wall is slightly accelerated,

thus causing a corresponding decrease in static pressure along

the wall. The pressure at the wall now being less than that

of the surroundings, the Jet curves towards the wall further

reducing the pressure there. Thus eventually, the wall being

long enough, the flow attaches to it. They eXplain that the

establishment of this flow phenomenon is favored by approx-

imately two-dimensional conditions. They also observed, that



for given upstream conditions, the mass flow from the slot

is greater than that of a free Jet if the flow is subsonic.

Although their investigation was aimed towards aerodynamic

applications, their findings indicate the reason for the

behavior of a ventilation air Jet near a solid boundary.

2.3 Wall Jets

2.3a Definition of a wall Jet

Schwarz and Cosart (1960) describe a wall Jet as a

Jet of fluid which impinges onto a wall at an angle from 0

to 90 degrees. Kruka and Eskinazi (1964) describe a plane

wall Jet as a flow of fluid emanating from a narrow slot and

flowing over a rigid wall. Glauert (1956) writes, for a

wall Jet as for a free Jet, the corresponding condition is

that the radial velocity component falls to zero at the outer

edge of the Jet. Figure 2.1 shows a typical wall Jet configura-

tion. The name wall Jet seems to have been ascribed by

Glauert (1956), although the terms partially open Jet, sur-

face Jet, and submerged Jet have been used by Forthmann

(1934), Zerbe and Selma (1946) and Poreth and Cermak (1959)

respectively.

2.3b Wall Jet similarity

In boundary layer flows as represented by Prandtl's

approximations to the momentum equations, it is common to

solve the equation or equations by finding a similarity

parameter f(n) in the velocity field. In this case n is the

transverse distance made dimensionless with a x-dependent
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characteristic dimension. Thisallowstzensformation of the

partial differential equation to a total differential equa-

tion which is comparatively easy to solve. In the physical

sense similarity means that the velocity profiles at differ-

ent longitudinal distances from the outlet can be made con-

gruent by the proper choice of a velocity scale factor and

a width scale factor (pg. 130, Schlichting (1959)).

The earliest known work on the turbulent wall Jet was

done by Forthmann (1934) who observed the similarity nature

of the wall Jet.

Glauert (1956) was the first to attack the similarity

problem of the wall Jet. The form of the equation for the

boundary layer approximation to the equation of motion for a

steady, plane, turbulent, incompressible flow with constant

properties is given by Glauert as:

(2.6)

Here the barred quantities refer to mean values while cm is

the eddy diffusivity for momentum as defined in Eckert and

Drake, 1959, p. 219. Some assumption had to be made about

the behavior of em. Glauert assumed initially in his analysis

that em behaved according to the hypothesis of Prandtl (1942).

This assumes that it has a constant value across the boundary

layer and is proportional to the product of the maximum mean

velocity and a characteristic width of the boundary layer.

However, experiments by Bakke (1957) indicated considerable

deviation from such an assumption, near the wall the velocity
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gradient being much higher than that predicted by Prandtl's

hypothesis. Glauert then assumed that the behavior of the

eddy diffusivity for momentum near the wall is governed by

the empirical equation due to Blasius (1913), based on a

study of turbulent pipe flow. This equation is:

T°=o.0225/062(.fi¥.)1/4 (2.7)

y

where:

T°=the wall shear stress

f3=the fluid density

y =the kinematic viscosity

Using the concept according to Boussinesq (1877) the equa-

tion becomes:

a“ ..
To=em_ij=o.0225U2(=L)i (2.8)

5y Uy

This equation implies that Uay1/7. Glauert observed further

that Blasius's equation may be expected to hold near the wall

in any turbulent boundary layer flow, outside the viscous

sublayer. These assumptions suggest that the wall Jet may be

divided into an inner layer which acts much like boundary

layer flow over a flat plate and an outer layer which behaves

much like a free Jet. This theory has been shown to be valid

by Myers, Schauer and Eustis (1963b), Schwarz and Cosart

(1960) and Kruka and Eskinazi (1964). Glauert realized that

because of the two layer nature of the wall Jet, complete

similarity is not attainable. However, confident predictions

can be made about the nature of the maximum velocity decay



13

and the rate of growth of the wall Jet. Glauert hypothesized

that the following relationships were valid,

fimocclxa (2.9)

00CC2Xb (2.10)

where:

6=a characteristic dimension of the wall Jet

These hypotheses were made according to the conditions of

Goldstein (1939) for the existence of similarity conditions

in boundary layer flow.

2.3c Maximum velocity decay and wallfiJet growth

Myers et al (1963a) investigated a wall Jet in a still

medium. They used integral methods applied to the incompres-

sible boundary layer equations to obtain a prediction for the

decay of the maximum velocity and the growth of the boundary

layer. They built on Glauerts analysis, notably assuming that

Blasius's relation held in the inner layer while in the outer

layer the hypothesis by Prandtl applies. Their theoretical

analysis showed no Reynolds number effect on the velocity

decay while their data seemed to indicate a slight Reynolds

number effect with the higher Reynolds numbers exhibiting a

slower velocity decay. The effect of Reynolds number on the

wall Jet growth was predicted to be small by their analysis

and no effect could be observed in their data. The boundary

layer thickness (e.g. 6) was shown to grow as x°95t°°5. Their

6 was defined to be the point where U/Um=%. The following

equation was found to fit their eXperimental data which was
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taken in the outlet Reynolds number range from 7100 to 56,000,

corresponding to outlet velocities from 28 to 222 f“t/seo.

fim/fio=3.45(X/L)‘°'”9 (2.11)

where:

Umgthe maximum velocity at any given longitudinal

position

U°=the outlet velocity

x =the distance from the outlet

L =the slot height

Data were taken in the dimensionless slot width (e.g. x/L)

range from 24 to 180. Their mean velocity profiles exhibited

similarity for the test conditions given above.

Schwarz and Cosart (1960) used the similarity approach

in determining a relationship for decay of the maximum

velocity and growth of the wall Jet, in a still medium. Their

analysis involved selection of appropriate transformation

functions and a transformation variable. This enabled trans-

formation of the partial differential equation of motion into

an ordinary differential equation. Analysis of this trans-

formed equation indicated the same relationships for maximum

velocity decay and wall Jet growth as were given by Glauert

(1956). Their experimental data were taken in the outlet

Reynolds number range from 13,000 to 40,000, corresponding

to outlet velocities of 27 to 83 ft/sec. Data were taken in

the dimensionless slot number (e.g. x/L) range from 18 to 66.

The equation which fit their data for the decay of maximum
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velocity is:

fim/fio=5.395(x/L + 11.2)"555 (2.12)

where the variables are the same as those used above in the

equation of Myers et a1. Schwarz and Cosart found no sys-

tematic dependence on Reynolds number of the wall Jet growth,

with the following equation representing their experimental

data:

6/L=0.0678(x/L + 11.2) (2.13)

where:

6=the transverse distance to where U/Um=%

They also found that when U/Um was plotted versus y/é the

data were correlated well over the entire wall Jet (e.g. the

resultant profiles were congruent). Thus their similarity

assumption was verified.

Schwarz and Cosart attempted to fit the outer part of

their universal velocity profile with functional curves. The

two functional relationships used were:

- - 2

U/Um=exp [}A(n-nm) ] (2.14)

and

U/U =sech2n
m

where:

n =y/6

nm=(y/6 fi=6m

Neither curve represented the data particularly well.

Seban and Back (1961) investigated a wall Jet inJected
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into a turbulent boundary layer (e.g. into a free stream

flow). The ratios of free stream to slot outlet velocity

were between .2 and .11. The slot outlet velocities used

were from 56 to 211 ;rt/sec. Measurements were taken for

2.4Sx/LS62.4. Their measured mean velocity profiles indi-

cated similarity for x/L greater than 37. Their results

generally conformed to Glauert's theory for a wall Jet in

a still medium. However, the values of the eXponent for

their velocity decay results were slightly lower than those

found by Schwarz and Cosart (1960) and Myers et al (1963a),

for wall Jets in a still medium.

Kruka and Eskinazi (1964) used the similarity approach

in investigating the wall Jet in a moving stream. Their

analysis predicted a power law relationship for the decay

of maximum velocity. This power law relationship had the

same form as the one given by Glauert (1956). The value of

the exponent was shown by their experimental results to be

dependent on the ratio of the slot outlet velocity to free

stream velocity.

Table 2.1 provides a summary of the results of the

various investigators concerning wall Jet growth and the

maximum velocity decay.

2.3d Velocity distribution in the inner layer

Glauert (1956) assumed that the equation due to

Blasius (1913) governed the behavior of the eddy diffusivity

for momentum in the inner layer of the wall Jet. This equa-

tion implies the following relationship:
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Table 2.1 Summary of results for the decay of maximum

velocity and growth of a wall Jet, of various

investigators

 

 

 

 

 

 

Type of wall Jet Um

Plane wall Jet in a still medium 50

(Myers et al) x“‘

Plane wall Jet in a still medium _.555

(Schwarz and Cosart) . x

Plane wall Jet in a still medium _ 533

(Glauert) x '

Plane wall Jet inJected into a turbulent

boundary layer (Kruka and Eskinazi) _ 45

6301 I .

Plane wall Jet inJected into a turbulent _ 510

“boundary layer (Seban and Back) B=.055 x ’

 

I

5 Slot outlet velocit

Free stream velocity
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UoCy(1/n) (2.16)

where:

n=7.0

The observations of Forthmann (1934) also indicated this to

be the case. However, Schwarz and Cosart (1960) and Myers

et al (1963b) found a value of n = 14 to describe their data

in the inner layer. In his investigation of a wall Jet in a

moving stream Patel (1962) found n = 11 in the inner layer.

Kruka and Eskinazi (1964), in their study of a wall Jet in a

moving stream, found n to be dependent on the ratio of slot

outlet velocity to free stream velocity and in all cases to

be substantially higher than 7. Schwarz and Cosart believed

that the intermittant nature of the outer layer of the wall

Jet was the probable reason for the difference between the

velocity distribution in the boundary layer of free stream

flow over a flat plate and that for the inner layer of the

wall Jet.

2.3e Temperature profiles in the wall_J§£

Only one source of literature was found which dealt

with the non-isothermal wall Jet in a still medium. Myers,

Schauer and Eustis (1963b) investigated the heat transfer

to a wall Jet for the case of a step temperature distribu-

tion. In their analysis they assumed that the temperature

profile for the inner portion of the wall Jet was given by:

T=Tw[i - (Jr/691”] (2.17)
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where:

T =the temperature difference above ambient

Tw=the temperature at the wall above ambient

6t=the thermal boundary layer thickness

Their eXperimental data indicated that a one-seventh power

law was not representative of the temperature distribution

in the inner layer. A 1/14 power law relationship provided

a better fit of their data. They also observed a greater

Spread of the temperature profile than that of the velocity

profile. Similarity of the temperature profiles did hold in

the inner layer.

No references were found concerning the similarity

problem for temperature profiles in the outer layer of a

wall Jet in a still medium. However, Seban and Back (1961)

investigated the problem for a wall Jet inJected into a mov-

ing stream. The test conditions were the same as those men-

tioned in the discussion of their findings for the velocity

case (see section in Literature Review on Maximum Velocity

Decay). The Jet was heated and the wall was adiabatic. By

means of an energy balance procedure they were able to derive

an eXpression.for the effectiveness. The effectiveness was

defined as the ratio of local adiabatic wall temperature to

the temperature of the injection air. The following relation-

ship was derived:

TW/TS=7.7(x/L)'°°° (2.18)
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where:

Twzwall temperature

Ts=the free stream temperature

When Tw/TS was plotted versus y/o similarity of temperature

profiles was indicated.

2.4 Wall Jet Shearing Stress

Although the results of the various investigators

show close agreement for the decay of maximum velocity and

the growth of the wall Jet, there is considerable disagree-

ment between their findings concerning the shearing stress

at the wall.

Sigalla (1958) obtained shear data by the method of

Preston (1954) which involves the use of pitot tubes. He

took data out to 65 slot widths for a Reynolds number range

from 22,800 to 52,000. The following equation was found to

fit his data:

cf=o.0565(fim6/y)'% (2.19)

where:

Cf=the friction factor

6 =the lateral distance to where U/Um=l/2

Y =the kinematic viscosity

Schwarz and Cosart (1960) obtained their wall shear-

ing stress information by applying momentum-integral tech-

niques to their measured velocity profiles. Their results

showed values of the wall jet friction factor to be at most

(a slowly varying function of Reynolds number and independent
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of the downstream position. The average value for their

experimental conditions was, Cf=1.109 x 10'2.

Forthmann (1934) also used the momentum-integral

method to obtain the shear distribution normal to the flat

surface but did not show a variation along the plate.

As part of an investigation of a wall Jet with an

external stream, Bradshaw and Gee (1960) obtained some

shear stress results for the ordinary wall Jet. They found

friction factors about 6% higher than those of Sigalla.

Myers et al (1963a) used a hot film technique for

measuring the wall shear stress. They obtained values

about 15% higher than those of Sigalla's but 50% lower than

those of Schwarz and Cosart. They comment on these differ-

ences by noting that the method of Preston has been found

to be in error by about 12 to 14% below accepted flat plate

data. This would bring the results of Sigalla more in line

with their own. They also state that measuring wall shear

stress by the momentum-integral technique is not an accurate

means since a small error in the determination of the deriva-

tive of the velocity profile would be greatly magnified in

the final answer for the wall shear stress.

2.5 Eggpriffusivity_For Momentum

Although considerable research has been undertaken

with wall Jets to determine relationships for velocity decay,

Jet growth, wall shear stress and heat transfer, little has

been done in the way of determining the turbulence properties
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of a wall Jet. Perhaps the most important property of the

turbulent flow regime is the eddy diffusivity for momentum,

cm,

Glauert (1956) assumed that e was proportional to U
m

in the inner layer and remained constant in the outer layer

much like a free Jet. Since any reasonable assumption of

the behavior for em will result in a solution of the mean

flow parameter which fit the data reasonably well, Glauerts

assumed variation of em remains to be tested against eXperi-

mental data.

Schwarz and Cosart (1960) derived an expression for em

in terms of their universal velocity profile. This eXpression

necessitated differentiation and integration of the universal

profile for the determination of e They did this for them.

outer portion of the wall jet as represented by their eXperi-

mental data. The values obtained showed that cm was fairly

constant in the middle portion, diminishing towards the outer

edge. Thus their results tend to verify Glauert's assumed

behavior of em in the outer portion of the wall jet. It is

well to note that Schwarz and Cosart mention that such a

method for the determination of the eddy diffusivity for

momentum.often produce results which are moderately inaccur-

ate even when exceptional care is taken.

2.6 Turbulent Prandtl Number

The process of turbulent mixing causes the transfer

of properties or fluid in a lateral direction of the stream.
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Analogous to the eddy diffusivity for momentum which appears

in the turbulent form of the momentum equation, there is a

eddy diffusivity for heat (e.g. 63) which appears in the tur-

bulent form of the energy equation (Eckert and Drake, 1959,

pg. 219).

Initially it was believed that the mechanisms of mo-

mentum transfer and heat transfer in turbulent flow were

identical. However, measurements by Reichardt (1944) in a

two-dimensional free Jet showed that the temperature profiles

are wider than the velocity profiles. This result hasteen

confirmed by Corrsin (1950), Hinze (1948) and Forstall and

Shapiro (1950). An entirely satisfactory explanation for

this phenomenon has not yet been found.

The ratio em/eH is called the turbulent Prandtl number,

Prt, and its determination has been the subject of numerous

researchers. Forstall and Shapiro (1950) found a value of

0.70 for the turbulent Prandtl number in their investigation

of coaxial free Jets. They indicated the value to be sub-

stantially independent of the nature of the eXperiment.

Nottage, Slaby and Gojsza (1952) in their investiga-

tion of a chilled, free jet also found a value for the turbu-

lent Prandtl number of 0.70.

Reichardt (1940 and 1951) made an extensive investiga-

tion of the heat transfer across turbulent boundary layers

and found a value of 0.77 for the turbulent Prandtl number.

The problem of the determination of the turbulent

Prandtl number for wall jets has apparently received very
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little attention to this time. The only reference to be found

in the review of literature concerning this subject was that

of Myers et al (1963b). They hypothesized as to the behavior

of the value of the turbulent Prandtl number and assumed an

average value across the entire wall jet.



3. ANALYTICAL CONSIDERATIONS

The analysis phase of this investigation will be

undertaken in two steps. They are:

1. A dimensional analysis of the governing equations

will be carried out. This will provide-some

information about the magnitude of the buoyancy

forces relative to the magnitude of the inertia

and viscous forces.

2. A similarity approach will be used on the energy

equation to determine relationships for maximum

temperature decay and the thermal boundary layer

growth.

Before proceeding further one assumption will be made.

This is,that the fluid properties can be assumed to be inde-

pendent of temperature. Schlichting (1962), pg. 295, states

that fluid properties may be assumed constant for temperature

differences less than 50°C. The temperature differences

encountered in this investigation are well below this limit.

Since buoyancy forces arise from density changes pro-

duced by temperature differences it appears that the assump-

tion of constant properties implies negligible buoyancy forces.

This is not necessarily true (Eckert and Drake, 1959, pg. 327)

and further development will proceed under the premise of con-

stant fluid properties and appreciable buoyancy forces.

25
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3.1 Dimensional.Analysis of the Governing §guations

In non-isothermal ventilation it is important to know

whether the buoyancy forces have an effect on the velocity

field and if they do, the magnitude of that effect.

As mentioned in the Literature Review, non-isothermal

free jet trajectories have been found to be affected by the

buoyancy forces which result from the temperature differences.

The dimensional analysis of the governing equations

will be carried out in two steps. They are:

1. The governing differential equations will be made

dimensionless for the purpose of determining the

dimensionless groups which govern the solution of

the problem.

2. The resulting dimensionless equations will be

examined by an order of magnitude approach to

attempt to gain some insight into the importance

of the various forces in the flow field.

The dimensional analysis approach outlined above is discussed

in Schlichting (1962) and Kline (1965).

3.1a Analysis of the boundary layer equations

Prandtl's approximation to the equations of motion for

 

the case of steady, plane, turbulent, incompressible, two-

dimensional flow with constant physical properties and with

buoyancy forces may be written as (Eckert and Drake, 1959,

pg. 218):

for the x-direction

.. 2 _

-au 50 1 a a auv
Ufi+€§=753£+Y§§2-'5'y—+8x86 (3.1)
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for the y-direction

3113... .2

The barred quantities are mean values and the lower case let-

ters denote the fluctuating component of the instantaneous

velocity. Also:

/o=the density before heating or cooling

gx and gy=the vectors of gravitational acceleration

B =the coefficient of expansion of gas

6 =a characteristic temperature difference

However, the x-direction for this case, is perpendicular to

the_direction of gravitational acceleration thus the buoyancy

1

force term is zero for equation 3.1.

Now according to Boussinesq (1877)

-13? -_—. ems-3y!- (3.3)

and thus equation 3.1 becomes

.. .. _, 2 -

-oU ~aU l_'g a U a w
U—— + V—— = - + -—2-+ ——e-- .4
6x 8y /0 ax Yay By may (3 )

The pressure term 3; , may be neglected for the case of

a wall Jet, Glauert (1956), Schwarz and Cosart (1961) and

Myers et al (19633). Also the term representing the viscous

shear stress may be neglected in the turbulent case since it

is negligible compared to the turbulence shear stresses.

Equations 3.2 and 3J+ may be transformed into a dimen-

sionless form. To do this, dimensionless quantities are

defined as follows:
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- " - " . 6 .. '

U'=%J-: V'=:Y-: x:=.§., y'=1: SIDE-g: p'- U
0 UC h h /o c

where:

Uc=a characteristic velocity

h =a characteristic length

Substituting into equations 3.2 and 3.4 for the dimensional

variables in terms of the dimensionless quantities and simp-

lifying, the following dimensionless form of equations 3.2

and 3.4 are obtained.

U 3U' - 30' Y 5 50'

5y!

2

The body force term of equation 3.2 now appears as gyBeh/Uc .

syBBh/Ucz (3.6)

This term is equal to the Grashoff number divided by the

square of the Reynolds number as shown below.

8 86h g Beh3
7211...: ('17—:”FY—HP = Gr/Rez (3.7)

c 0

Thus equation 3.6 may be written as:

-§;} = Gr/Re2 (3.8)

Prandtl's approximation to the turbulent energy equa-

tion of the boundary layer is given by Eckert and Drake (1959),

pg. 219, as:

- - 2- —

OE...- flz—ls—a T -—a—Vt (309)

BX 837 pcpay ay

-Vt = SITE;
(3010)
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which when substituted into the boundary layer equation gives:

- - - - 2 -

U534 v93= 41-9—3. 5 M (3.11)
ax ay ,ocp ay oy oy

where:

e=a characteristic temperature difference

and introducing these dimensionless quantities into the above

equation we have after some simplification

F
B
I

U'-—l-+ V'

x

0
1

H
I

2
-

a ! a 5 T' + _&__2.th223. (3.12)

as" = 3.11: 5'7 hUc ay as"

where:

a=k40cp=the thermal diffusivity

k=the thermal conductivity

cp=the Specific heat

The dimensionless group a/hUc can be further simplified as

shown below.

d/hUc=(a/Y)(y/hUc)=1/RePr (3.13)

where:

Pr=the Prandtl number

3.lb nger of magnitude analysis of the momentum equations

As was mentioned previously the body force term in

the dimensionless form of equation 3.2 appears as the ratio

Gr/Rez. This suggests that if the magnitudes of all the

terms of the momentum equations could be determined, then

it might be possible to predict the effect of the body
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forces on the velocity field.

In order to carry out an order of magnitude analysis

it is first necessary to evaluate the Reynolds number and

Grashoff number. They are represented in the dimensionless

form of the momentum equations as:

Re=Uch/Y

Gr= syB 9h3/Y2

Uc, h and 9 remain to be defined and the ratio Gr/Re2 will

depend strongly on their definition.

One way of defining U h and e is:c'

00:81

h=L

9: A51

Thus the Reynolds number and Grashoff number would be evalu-

ated at the inlet. This is a convenient method. However,

there is no reason to be certain that this will provide a

representative ratio Gr/Rez.

Another way of evaluating Re and Gr is to define Uc,

h and e as follows:

Uc=Um

h=6t

9=ATm

where:

6t=the thermal boundary layer thickness

and the subscript m refers to the maximum value at any given

longitudinal position. This would permit an order of magnitude
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analysis at any particular longitudinal location in the wall

jet and hopefully provide an indication of the body force

effect on the velocity field. Since this system necessitates

knowing values from experimental results, evaluation must

follow experimentation. Therefore this system cannot be used

for prediction but only as a tool for analyzing eXperimental

results.

The method mentioned first, will be used in facilitat-

ing an order of magnitude analysis of the momentum equations.

Thus for the dimensionless quantities the following orders

of magnitudes could be eXpected.

U'=U/U1 and OEU/Ulfl

7'=V/Ui and DEV/U15.l

x'=x/L and Ofix/LSlOO

y'=y/L and Ofy/LSlO

€m'=€m/Y and cm/Yze2x103

It is necessary to determine values of the Grashoff and

Reynolds numbers to determine the order of magnitude of the

buoyancy force term. This will be done for three different

conditions. They are

i. U -400 ft/min. and 7311=50°F1-

2. U1=600 ft/min. and 11T1=50°F

3. 81:800 ft/min. and ZkTi=50°F

The value of the Grashoff number for all three conditions is

13,640 and the values of the Reynolds numbers are as follows:
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Re11=2039

Re12=3140

Re13=5830

The ratios of the Grashoff number to the square of the

Reynolds number are:

Gr/Rei

Condition 1 .00271

Condition 2 .00129

Condition 3 .00040

Equations 3.5 and 3.6 are written again with the esti-

mates of the order of magnitude of each term indicated under-

neatho

- a" aU' 1 a aU'
! t__...__._._ i..—

U 511"")7 y "Relays!“ ay

1 1 1.1. _1_2000__1_

'1'0'0 ’ 10 Rei'io' 10

Thus compared to the magnitude of the terms of the

momentum equation the buoyancy force term has a magnitude: of

the same order for condition 1, about one degree less for

condition 2 and considerably less for condition 3. Therefore

from this analysis it appears that buoyancy forces may be

neglected for inlet velocities of approximately 800 ft/min»

and greater and inlet temperature differences of 50°F and

less. Below 800 ft/min. and at the higher temperature dif-

ferences buoyancy forces may be appreciable.
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3.2 Maximum Temperature Difference Decay

and Thermaleoundary Layer Growth

For the case of a chilled ventilation wall Jet it

would be convenient to determine a relationship between the

maximum temperature difference at any longitudinal position

and the distance from the inlet. Such a relationship might

provide a measure of the "cooling potential" of the wall jet

for a given distance from the inlet.

Before proceeding further, another assumption in addi-

tion to the one of constant fluid properties, will be made.

This assumption is that buoyancy forces can be neglected. As

shown in the dimensional analysis, the validity of this

assumption is dependent on the test conditions. However,

most of the test conditions of this investigation will be

within the limits prescribed for assuming negligible buoyancy

effects.

In the general case of non-isothermal flow the momen-

tum and heat energy equations mutually interact. When buoy-

ancy forces are neglected and fluid properties are assumed

to be independent of temperature, the velocity field no

longer depends on the temperature field although the inverse

of this statement does not apply. If similarity of velocity

profiles applies for the case of the chilled wall jet it

seems reasonable that similarity of temperature profiles

might also apply.

The following development of a similarity solution of

the turbulent energy equation closely parallels the similarity



34

solution of the turbulent momentum equation by Schwarz and

Cosart (1961).

Prandtl's approximation to the turbulent heat energy

equation for steady, two-dimensional, turbulent and incom-

pressible flow is given as:

u.°_T.+V.°2=a.°__§.-.°lE (3,111)

ax 6y ay' by

Assuming that similarity of temperature profiles

applies, similarity functions and a'similarity transforma-

tion variable may be defined as follows.

U=Umr(n) (3.15)

TBTm81(n) (3016)

€L;Tmfim82(n) y (3017)

”By/0t (3018)

6t=the thermal boundary layer thickness (not yet defined)

Tk=the temperature difference between a point in the

wall Jet and the ambient temperature in the venti-

lated space

Making use of the similarity functions and the similar-

ity transformation the partial derivatives of the energy equa-

tion are evaluated as follows.

‘ BTm Tm d:t 081(n)n

" as ('0)
8T 1 By

2' ‘ 62 ( )
éuaai 3.6 2.2T -_a____._81"

dy 6y by = an 33—By 6 2 bn2 (3.21)

t
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fit, 8171-: M?-Eflsw (3.22)
3y 582)”; on 'y 0t an

V may be found in terms of U by making use of the equation of

continuity which is:

%’7°+3§3= o (3.23)

However the density is assumed to be constant thus the contin-

uity equation becomes:

BU 5V _ or 5V _ _ aU
Si- + «5; — 0 'a-y- — Si- (3.24:)

Integrating both sides yields:

'5 "Iva Us: (3 25)_ as; .

Changing variables gives:

The energy equation after making appropriate substitu-

 

 

tions is:

T U T d6 as (11)

Um'd'x" f(n)81(n) - _Igt_m as? n) ‘31?“ .. (3.27)

- a. 2 -

d8 (0) - 0 0T d (n) -
m 1 d m g1 m (1

6 dn dx In't 2 2"' m, 2
t o 6t dn 6t an

And finally after some simplification the energy equation

becomes:

5 d'"m d6 d8 (n)
t t 1 (3.28)

Tm dx (1081(0) dx (n ) dn 0

d6 as (n) ‘ d" ds (0)

,dx dn ojnfmmn U; dx an of f(n)dn .-

c d28;(n) d ( )

6 U dn dn
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For a turbulent flow condition the first term on the

right hand side of the equation can be neglected as molecu-

lar heat diffusion is of a considerable smaller magnitude

than the diffusion due to the eddy diffusivity for heat.

If the flow is similar the functions f(n), gl(n) and

g2(n) are independent of x thus the solution of 3.28 requires

that the coefficients of the universal functions be either

non-zero constants or zero. The coefficients are:

0 di‘ d6 8 dU
.1242, _i and ._.£_a

TIn dx dx U x

m

For a non-trivial solution the coefficients may be

equated to constants and the resulting differential equa-

tions are solved as follows.

d6

7.13213 = Co (3.29)

Therefore:

6t = Cox + C1 (3.30)

This may be rewritten as:

6t = Co(x + 03) (3.31)

where:

6063 = 01 (3.32)

Thus C3 may be viewed as the distance to the virtual origin

or C3=xO where x0 is the distance to the virtual origin.

Figure 3.1 shows the relationship between 6t, x and x0.

Therefore:

6t = Co(x + x0) (3.33)
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and a simple transformation where:

x' = x + x0 (3.34)

yields:

6t = Cox' . (3.35)

Now let:

E§§E= CLP (3.36)

Substituting the relationship for 6t and separating variables

yields:

dTm C4 dx'

' 3'— ' (3 37)
It: Co x

.

Let

°4/°o = b (3.38)

Performing the integration yiauis:

lnTm = blnx' + inc5 (3.39)

This simplifies to:

- b
lnTm = lnC5x' (3.40)

Therefore:

- b

Tm = C5X' (3041)

Now let:

8 dU

{an dx

Substituting for 9t, separating variables, integrating and

simplifying the results yields:

Um = C7X'a (3.143)

This is the relationship derived by Schwarz and Cosart (1961)
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from the momentum boundary layer equation.

Under the previous assumption, that buoyancy forces

are negligible, the above similarity analysis applies to flow

in either the horizontal or vertical direction. It would

also apply equally well to a chilled or a heated jet of air.

Boundary conditions have not been explicitly included

in the above development. However the assumption that the

coefficients of equation 3.28 are constant with respect to 1,

implies that the wall temperature is constant in the x-direc-

tion. The validity of this assumption remains to be checked

from the experimental data.

From the analysis of the energy equation and assuming

that similarity holds for the temperature profiles, it may be

seen that the growth of the temperature boundary layer is a

linear function of x while the decay of the maximum tempera-

ture difference is a power function of x. The constants and

exponent must be determined experimentally.



4. EXPERIMENTAL PROCEDURE

AND EQUIPMENT

4.1 Eguipment

All tests were conducted in a large room where the

temperature could be held to within i2°F during any one test

period. An overall view of the experimental equipment is

shown in Figure 4.1.

An arrangement consisting of a slotted inlet adjacent

to a section of ceiling provided the simulated ventilation

system which was investigated. This is shown in Figure 4.2.

A schematic view of the nozzle-plenum assembly which

formed the two-dimensional inlet is shown in Figure 4.3. The

perforated sheets used in the assembly were made of 11 gauge

material. The open area of the sheet constituted 25% of the

total area and the diameter of the perforations was 0.20

inches. The nozzle consisted of two sections made of care-

fully rounded sheet metal and mounted on a wooden frame. The

lips of the nozzle were formed by bars of cold rolled steel

thus providing a sharp corner for the nozzle exit. The noz-

zle height was .49 inches and its width was 48 inches.

The velocity profiles at the nozzle were measured at

three locations along the length of the nozzle. These loca-

tions were two inches from either end and midway between the

ends. No significant difference could be found in either the

40



 
Figure 4.2-- Ceiling with adjacent slotted inlet, thermocouples

indicated by lighter areas in the center
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shape of the velocity profiles or the velocity magnitude,

between these positions. This was done for three different

inlet velocities. Thus it was believed that this indicated

a very good representation of two-dimensional flow.

The ceiling was formed with one and one-half 4x8

sheets of 3/4 inch thick plywood which were fastened by

screws to a ceiling stud assembly. The plywood was finished

with three coats of plane Dura Seal and sanded after each

coat to provide a relatively smooth surface. :The 2x4 ceil-

ing studs were constructed by gluing and nailing together 2

inch wide by 8 foot strips of 1/2 inch thick plywood. The

edges of each laminated 2x4 were then run over a jointer to

insure as straight an edge as possible. A screw jack was

mounted on each leg for leveling the ceiling assembly.

Sides four feet high were provided to insure the main-

tenance of two-dimensional flow conditions.

A centrifugal type fan with a constant Speed 5 h.p.

electric motor was used to provide the air flow. The air

velocity at the inlet was controlled by a slide arrangement

at a mixing box. The inlet air velocity was determined by

measuring the flow rate through a venturi. The venturi was

calibrated using a Meriam Laminar Flow Meter, Model 50MC2-4P.

A total head pitot tube was used at the inlet as a means of

checking the inlet velocity. Micro-manometers each with an

accuracy of 1.001 inches of water were used to measure the

pressure. The venturi and manometer are shown in Figure 4.4.
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,, r, I

Venturi and manometer used in measuring

the air-flow rates

I

Figure 4.5-- Temperature control units, fan and mixing

box
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The inlet air temperature was controlled by connecting

a commercial ceiling type evaporator unit, with accompanying

compressor, to the outlet side of the fan. It was found

necessary to connect the fan inlet, via a mixing box, to the

cold outside air source for the lowest temperature tests.

The mixing box enabled either cold outside air, warm room air

or a mixture of the two to be the source air depending on the

test being run. Figure 4.5 shows a view of this part of the

equipment. All ducts, the fan, the evaporator and the nozzle-

plenum assembly were insulated with two inches of Owens-

Corning Fiberglas bat-type insulation (k=.125 BTU/hr-in-°F).

4.1a Mean velocity profiles

Mean velocity was measured with a Thermo-Systems con-

stant temperature anemometer (Model 1051 Monitor and Power

Supply, Model 1053A Anemometer Module). The sensor element

was of the hot-film type. All velocity measurements were

corrected for temperature by multiplying the anemometer

bridge voltage output by an appropriate dimensionless tem-

perature ratio (see Appendix, section A.1).

Figure 4.6 shows the complete system used in measur-

ing the mean velocity. The signal from the anemometer was

fed to a Hickock digital voltmeter (Model DMS-3200) with an

accuracy of ii for the last‘digit. At each transverse posi-

tion with reSpect to the ceiling, ten readings were taken

over a 20 second period. Since the digital voltmeter reads

the instantaneous velocity the folloWing relationship was



 

Figure 4.6-- Temperature and velocity instrumentation

 
Figure 4.7-- Traversing mechanism with velocity probe and

temperature sensing unit
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used to determine the mean velocity.

U = 126 1:1 U1 (4.1)

U is the mean velocity and U1 is the instantaneous velocity

at time i.

The traversing unit on which the velocity probe was

mounted had an accuracyof 1.5 mm in the vertical (trans-

verse) direction and :1/16 inch in the longitudinal direc-

tion. Figure 4.7 shows the traversing mechanism.

4.1b Mean temperature profiles.

The mean temperature profiles were measured using

nineteen, 30 gauge, copper-constantan thermocouples in a

stack arrangement (Figure 4.8) plus an additional thermo-

couple imbedded in the ceiling surface for the ceiling sur-

face temperature. The thermocouple junctions extended one

inch beyond the wood support strips. Another thermocouple

was placed on the traversing mechanism itself at a point

where it was well outside of the thermal boundary layer for

any particular flow situation studied. This temperature

was considered to be the ambient temperature. Since tem-

perature profiles were measured at eight stations with

reSpect to the longitudinal distance from the inlet it was

necessary to use a switching box to handle the eight thermo-

couples which were imbedded in the ceiling. All temperatures

were recorded on a Leeds and Northrup Speedomax G, 24 point

recording potentiometer with a print Speed of 4 seconds, a

temperature range of -20°F to 125°F and an accuracy of 1.25%
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Figure 4.8—- Closeup View of velocity probe and thermocouple

stack
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of full scale reading.

All thermocouples were calibrated against a certified

mercury in glass thermometer.

A means was provided for measurement of the heat

transfer through the ceiling. A thermocouple was placed on

the top side of the ceiling at station one. This provided

the temperature differential at that point. The heat trans-

fer rate was then determined from the temperature differen-

131310

4.2 Scope of Tests

The independent variables studied in this investiga-

tion were:

a. inlet velocity

b. inlet temperature difference between the inlet

air and the ambient air.

4.3 Eerrimental Procedure

Five inlet velocities were selected as being represen-

 

tative of those encountered in ventilation practices. These

five were 1200, 1000, 800, 600 and 400 ft per min. For each

velocity the isothermal case and those of 3 different temper-

ature differences between the space air and the incoming air

were investigated. The largest temperature differential case

could not be reached for the 400 ft per min inlet velocity.

Thus a total of nineteen tests were run.

All velocity and temperature profiles were measured
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in a plane perpendicular to and midway from either end of the

inlet. Eight stations were selected at distances of 8, 14,

22, 32, 44, 58, 72 and 90 inches from the inlet. Velocity

and temperature profiles were determined at these stations

only. These stations will be referred to henceforth as

station numbers 1, 2, 3, 4, 5, 6, 7 and 8 reSpectively.

For the non-isothermal cases velocity and temperature

profiles were measured simultaneously by placing the temper-

ature and velocity sensing probes two inches apart and at

the same longitudinal.distance from the inlet (Figure 4.8).

The exact procedure was as follows. First the

velocity profiles were measured for the isothermal case.

Room, ambient (space), inlet and venturi air temperatures

were monitored throughout the test to insure as close as

possible, isothermal conditions. The venturi pressure dif-

ferential and pitot tube pressure readings were taken

throughout the test to insure a constant inlet velocity.

Next the velocity and temperature profiles were measured

for each of three different temperature differences between

the space air and inlet air and at approximately the same

velocity as used in the isothermal test. The temperature

differences (henceforth reffered to as ANT) were:

AleZOOF, AUZ=40°F and AT3~5O°F. As mentioned pre-

viously the AT3 condition could not be reached for the

lowest inlet velocity of 400 ft per min. As implied above

the inlet air velocity was not identical between the iso-

thermal case and each of those for the non-isothermal cases,
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however they were reasonably close. The largest velocity

difference was 10.5% and the lowest was 0.25%. The average

difference was 6.15%.

Only one transverse traverse was made to determine

the velocity profile for each of the eight longitudinal

stations. Three complete temperature profiles were mea-

sured during this same time for each station.

A considerable amount of time was allowed before

each non-isothermal run in order for steady state tempera-

ture conditions to be reached. This condition was affirmed

by noting when certain reference temperatures had reached

steady state. These reference temperatures were the venturi

air temperature, inlet air temperature and the ceiling

temperature.

During preliminary non-isothermal tests it was noted

that the eXperimental space temperature ran from two to four

degrees Fahrenheith below that of the room air temperature.

It seemed logical therefore to use the Space temperature

rather than the room temperature as a reference for taking

into account any possible buoyancy effects.

The relative humidity of the ventilation air was not

measured.

Table 4.1 indicates the inlet velocity, the inlet

temperature difference, the slot inlet Reynolds number and

the inlet Grashoff number, for each test.
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5. EXPERIMENTAL RESULTS

5.1 Mean Velocity Results

The mean velocity profiles indicated some scattering'

occurring with increased distance from the inlet. This con-

dition was accentuated with decreasing slot inlet velocities.

It was felt that the major contributing factor for this was a

probable increased scale of turbulence occurring at the

lower mean velocities.. Figure 5.1 shows a mean velocity

profile typical of those which were on the least end of the

scatter Spectrum. Figure 5.2 shows a mean velocity profile

representative of those exhibiting a greater degree of

scatter.

A previous assumption was made that the velocity

fields of this two-dimensional, chilled wall Jet conformed

to the similarity conditions of a two-dimensional, turbulent

wall Jet. The theory of Schwarz and Cosart (1961) will be

used to check this assumption.

Schwarz and Cosart found a number of conditions to

characterize the velocity field of a two-dimensional, turbu-

lent wall Jet. Two of them were:

1. The mean velocity profiles, at different longitu-

dinal positions with reSpect to the inlet, were

similar when U/UIn was plotted versus y/6m.

2. The decay of maximum velocity was described by a

53
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-power law of the form Um/U1=C7(x'/L)a.

If the velocity fields of this investigation can be charac-

terized as a turbulent wall jet then they should exhibit the

above characteristics.

The mean velocity profiles from the various stations

for each test were plotted on a dimensionless basis, that is,

by plotting U/UIn versus y/6m. Um and 6m were determined by

observation from the measured mean velocity profiles. Figure

5.3 indicates such a plot for the results of Test no.1 (1200

ft/min inlet velocity range, isothermal). The velocity pro-

files from stations 2, 3, 4, 5, 6 and 7 are congruent. There

is a reasonably close grouping of the experimental points.

The value of y/6m for which U=Um, appears to be approximately

.2 which concurs with the findings of Schwarz and Cosart.

Thus from the standpoint of congruency of velocity profiles,

similarity of the mean velocity profiles does apply for Test

no. 1.

Attempts have previously been made to fit various

types of curves to the dimensionless velocity profiles.

Schwarz and Cosart (1961) tried fitting two types of curves

to the outer portion of their measured profile. Neither

curve described their data particularly well. However, the

basic assumption made by investigators of wall jets, that the

outer portion behaves much like a free jet, encourages trying

to fit a known solution of a free jet. To this end an expo-

nential'curve due to Reichardt (1941) was tried.

Reichardt's inductive theory of free turbulence has
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often been used by researchers in their investigations of

free jets. For a thorough discussion of his theory,

Schlichting (1962) or Hinze (1959) may be consulted.

Reichardt's theory offers an exponential relationship,

= exr-(-2—-‘§—-)2 (5.1)
XC

I
I
C
Z
I

m

as representing the mean velocity profiles in free jet flow.

CIn is a velocity spreading coefficient, y is the transverse

distance and x is the longitudinal distance. If y = 6m is

defined as the transverse distance to where U=Um/2, it

follows that:

6 2

1
eXp - (-—§E§—) =«— (5.1a)

20m x 2

from which

2
6

2o 2x2 a. .a. (5.2)
m

ln2

Substitution of this expression into equation 5.1 yields

- 2

g—.= eXp -(z—2-ln2) (5.3)

Um 6m

This SXpression for U/Um does not contain any arbit-

rary constants.

Schwarz and Cosart attempted to fit an eXponential

curve to their data points by matching them at the points

where U/Um=1. However, if the SXponential curve represented

by equation 5.3 above is matched to the experimental data of

Figure 5.3 by placing the U/Umzi ordinate of the exponential

curve, at the ceiling, the data points from y/6m=0.3 and
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greater are represented quite well. ReichardUs form of the

velocity profile implies a constant coefficient of the eddy

diffusivity for momentum. ‘Therefore, based on the close fit

between the eXponential curve of Reichardt and the data

points for the outer part of the wall jet, it appears that

Glauert's (1956) assumption of a constant eddy diffusivity

for momentum in this area, is indicated for Test no. 1.

Figure 5.4 shows the dimensionless velocity profile

for Test no. 4 (1200 ft/min inlet velocity range, A§T=52.3°F).

The conclusions reached concerning Test no. 1 apply equally

well to the results of this test, with one exception. The

exception is, that there is some deviation between the

exponential curve due to Reichardt and the data points

beyond y/6m=1.4. However, this region is the intermittant

region of the boundary layer and no corrections were made

for intermittancy.

In comparing Figures 5.3 and 5.4 it appears that there

was little temperature effect on the shape of the dimension-

less velocity profile for the 1200 ft/min inlet velocity

range.

The remarks concerning the dimensionless velocity

profiles of Test nos. 1 and 4 can be extended to include

Test nos. 2 and 3 ([§T=20.7°F and [3T:41.8°F rSSpectively),

the two remaining non-isothermal tests of the 1200 ft/min

inlet velocity range.

For the 1000 ft/min velocity range (Test nos. 5. 6.

7 and 8), the above remarks apply with one exception. There
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was slightly more scattering of the data points for these

tests. The data for these tests, as well as that for all

tests not presented in graphical form, are given in tabular

form in the Appendix.

The dimensionless velocity profiles of Test nos. 9,

10, 11 and 12 (800 ft/min inlet velocity range), gave the

same results as those of the 1200 and 1000 ft/min velocity

ranges. However, there was slightly more scattering of the

data points and the velocity profiles from stations 2, 3, 4,

5 and 6 only, were similar.

Figures 5.5 and 5.6 show the dimensionless velocity

profiles from Tests 13 and 16 (600 ft/min inlet velocity

range, isothermal case and AlT=50.1°F respectively). For

Test 13 the velocity profiles at stations 2, 3, 4, 5 and 6

indicated that similarity applies. However for Tests 14.

15 and 16, only the velocity profiles from stations 2, 3 and

4 indicated similarity. ‘The mean velocity profiles for

stations 5 and 6 of Tests 14, 15 and 16 exhibited too much

scatter to be able to determine with any reasonable accuracy

a representative profile. Thus it was imposSible to plot

dimensionless profiles for these tests. The SXponential

curve provides a reasonable fit to the data of Test no. 13.

However, it appears that the data of Test no. 16 deviates

somewhat from the SXponential curve for the region .25y/6m5

.7. The reason for this deviation cannot be ascertained

exactly although a likely reason is, that it is due to

temperature effects. Deviation of the data from the
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exponential curve was also indicated for Tests 14 and 15 (ZiT:

21.9°F and.£iT=38.5°F respectively) although it was not quite

as great as it was for Test 16. Further evidence of a pos-

sible temperature effect on the velocity field was the fact

that the air flow became detached from the ceiling at station

7 for Tests 14, 15 and 16, while this was not true for Test

13. The 600 ft/min inlet velocity range was the highest one

for which a temperature effect was indicated.

The dimensionless velocity profile for Test 17 (400

ft/min inlet velocity range, isothermal) indicated Similarity

for the velocity profiles from stations 2, 3, 4 and 5. The

SXponential curve provided a reasonably good fit of the data.

The amount of scatter was greater than that found at the

higher velocities. Dimensionless plots were not made for

Tests 18 and 19 (A§T=18.2°F and 131=40.8°F reSpectively).

Although velocity profiles were measureable to station 7

for Test 17, the air flow became detached after station 5,

for Tests 18 and 19. This detachment appears to indicate a

temperature effect on the flow field.

The theory of Schwarz and Cosart (1961) indicated

that the decay of maximum velocity follows a power law rela-

tionship of the form Um=C7x'a. The determination of values

forzi,necessitates knowing the location of the virtual origin.

The location of the virtual origin can be obtained from ana-

lyzing the data for the growth of the momentum boundary

layer (9-8- using °m=Cl(X + xo)L However, it was felt that
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the amount of scatter in the velocity profiles precluded an

accurate determination of the location of x by this method.
o

For this reason x instead of x' was used in analyzing the

velocity decay data. Myers et al (1963a) used this method

for determining a in their investigation. In addition Kruka

and Eskinazi (1964) arrived at a prediction equation for

velocity decay of the same form as that of Schwarz and

Cosart but used x in the actual determination of a.

Um/U1 was plotted versus x/L on log-log paper for

Tests 1 through 17. The data were handled in this dimension-

less fonnbecause of its more universal applicability. The

resulting plots indicated that for each test, most of the

data points appeared to be well represented by a straight

line. Accordingly a least squares method was used to deter-

mine best fit lines through the data points. A representa-

tive sample of the plots with their best fit lines are shown

in Figures 5.7.5.8,5.9, and 5.10. The values of C7 and the

exponent a for the rest of the tests, along with the number

of points used in determining the best fit lines is shown in

Table 5.1.

The average value of the exponent a for all the tests

is -.530. This compares with a value of -.49 found by

Myers et al (1963a) and a value of -.55 by Schwarz and Cosart

(1961). The higher value of Schwarz and Cosart cannot be

compared directly with the values found by Myers et al or

this investigator. The reason for this is that using x'

(adding the virtual origin to x) for determining a, auto-
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Table 5.1 EXperimentally determined constants for velocity

decay

 

 

 

Test No. C7 a Pgufiggruggd

i 4.12 -.588 7

2 3.#3 -.553 7

3 3.41 -.54# 7

4 3.12 -.514 7

5 3.13 -.526 7

6 3.69 -.572 7

7 3.16 -.5#7 7

8 2.99 -.514 6

9 3.08 -.536 6

10 2.98 -.531 6

11 2.81 -.520 5

12 2.29 -.470 5

13 3.01 -.530 6

1h 3.82 -.623 4

15 2.29 -.u98 4

16 2.07 -.u65 a

17 2.17 -.474 6
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matically increases the value of a.

Figure 5.11 shows a plot of the eXponent a versus the

inlet Reynolds number. A best fit straight line was deter-

mined, however the correlation coefficient was very low indi-

cating that a linear relationship was not applicable. It

appears from the data that over the range of Reynolds numbers

tested there was no functional relationship between the eXpo-

nent a and the inlet Reynolds.number.

A plot of the eXponent a versus the inlet Grashoff

number is shown in Figure 5.12. A least squares, best fit

straight line is also indicated. The correlation coefficient

was .73, indicating that the data were reasonably well corre-

lated by a straight line. The data seemed to indicate a

slight Grashoff number effect with lower values of the eXpo-

nent occurring at the higher Grashoff number. This means

that the rate of maximum velocity decay decreased with

increasing temperature differences, for the range of inlet

Reynolds numbers tested. No eXplanation was found in the

literature which could provide any reason for such a result.

The results indicate that the velocity fields of

these tests exhibited the characteristics of a two-dimensional,

turbulent wall Jet. This observation appears to apply better

at the higher inlet Reynolds numbers.

5.2 Similarity of Mean Temperature Profiles

In the analysis phase of this investigation, the

assumption was made that similarity applied for the mean
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temperature profiles. If this assumption is true the mean

temperature profiles at different longitudinal positions with

reSpect to the inlet (e.g. stations) will be congruent when

plotted‘in a dimensionless form. The arbitrarily defined

similarity function and similarity variable, g1(n)=[§T/£3Tm

and n=y/6t reSpectively, were used in obtaining the dimen-

sionless plot. The selection of a definition for 6t is

arbitrary. It was defined to equal the transverse distance

y, where AstlkTm/Z. This is analogous to the mean velocity

case.

Using the above definition of 6t, dimensionless plots

of ZkTflng versus y/6t were made for non-isothermal tests, 2

through 19.

For the 1200 ft/min inlet velocity range (Tests 2, 3,

and 4) the dimensionless profiles from stations 2, 3, 4, 5,

6 and 7 appear to be similar. There was a reasonably tight

grouping of the data for these three tests. Figures 5.13,

5.1“ and 5.15 show the data.

It would be advantageous to be able to describe the

dimensionless temperature profile with some type of curve.

It was found that an eXponential curve due to Reichardt

(1941) approximated the data points in the outer portion of

the dimensionless velocity profiles quite well, for nearly

all of the tests. Reichardt further hypothesized the follow-

ing relationship describing the mean temperature profile for

a free jet.

1.3.1.: -__.L_2 4Aim up (2 c X) (5. )

T
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CT is a temperature Spreading coefficient analogous to the

velocity Spreading coefficient. By defining y=6t as the

transverse distance to where Z§T=Z§Tm/2 the following form

of equation 5.4 is obtained.

2

[if
—_= - 1 2 O:Tm exp (lg-6t n ) (5 5)

This equation is shown in Figures 5.13, 5.14, and 5.15. It

is apparent that it represents the data points of Test no. 2

([3T=20.7°F) reasonably well for y/6t3.2. However, the

exponential curve deviates slightly from the data of Test no.

3 (Z§T=4l.8°F). The deviation is even more for Test no. 4

([XT=52.3°F). Thus there appears to be some temperature

effect on the shape of the dimensionless temperature profiles

in the 1200 ft/min velocity range.

Figures 5.16, 5.17, and 5.18 show the dimensionless

temperature profiles for Tests 6, 7 and 8 (1000 ft/min velo-

city range, Z§T=21.3°F, ZXT=40°F and Z§T=54.8°F respectively).

There is greater scatter of the|data for these tests than for

the data of the tests in the 1200 ft/min velocity range. The

eXponential curve appears to be a reasonable fit to the data

for y/6t2.3 for both Tests 6 and 7. However, there is some

deviation of the data for Test no. 8, from the eXponential

curve.

Tests 10, 11 and 12 (800 ft/min inlet velocity range,

AT=21.8°F, AT=41.4°F and AT=55.1°F reSpectively) indicated

that the eXponential curve was a reasonably good representa-

tion for the mean temperature profiles, in the outer layer.
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In fact the data for Test 12 were represented better by the

exponential curve than were the £§T250°F cases of the higher

velocity ranges. For Tests 10,11 and 12 the velocity pro-

files from stations 1, 2, 3 and 4 exhibited similarity.

Figures 5.19. 5.20 and 5.21 show the dimensionless temper-

ature profiles for these tests.

The exponential curve was a reasonable representation

for the data in the outer layer. for Test 14 and 15. For

these tests the temperature profiles from stations 1, 2 , 3

and 4 exhibited similarity. For Test no. 16 the temperature

profiles from stations 1, 2 and 3 were similar. The dimen-

sionless temperature profiles for these tests are shown in

Figures 5.22, 5.23 and 5.24.

In the 400 ft/min inlet velocity range there was no

apparent similarity of the temperature profiles.

The assumption of similarity of temperature profiles

appears to be a valid one for the range of Reynolds numbers

and temperature differences investigated. This vindicates

the selection of15t as the y-value at which liTzAkTm/Z.

No attempt was made to fit a curve to the inner layer

of the thermal boundary layer although it appears that a

power law relationship of the form used by Myers et al (1963b)

would apply.

The similarity analysis of the energy equation was

based on the implicit assumption that the ceiling temperature

was constant in the x-direction. Actual measurements showed

that the ceiling temperature varied considerably in the
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x-direction. Thus while the boundary condition at the ceil-

ing does not conform to the conditions for analytical simi-

larity, eXperimental similarity is indicated by the measured

mean temperature profiles. This apparent discrepancy could

be due to a number of reasons. One reason could be this.

The dimensionless temperature profiles are "force fitted"

and this creates congruency at one section of the profile.

In this particular case the section in question would be at

the point where y/6t21.0 or what is the same point, where

ZSTASTm=O.5. Another reason could be this. EXperimental

errors in the temperature measurement would hinder the

attempt to verify whether similarity does exist. A third

explanation might be this one. Recall that Myers et al

(1963a) concluded that the outer region, which closely

8 resembles a free jet, dominates the hydrodynamics of the

turbulent wall jet. In this free jet region of the wall

jet, turbulent mixing of the cold jet air with the warmer

ambient air occurs through the entrainment process and the

ensuing turbulent diffusion. Now it is shown in the appen-

dix that the percentage of heat added to the wall jet by

heat transfer through the ceiling is at most 6% of the

total heat, transferred to the wall jet. Thus it seems

reasonable that the effect of a varying ceiling tempera-

ture would not be indicated in the temperature profile of

the outer region.. Rather, it appears logical to eXpect

that the varying ceiling temperature would be reflected in

the temperature measurements of the inner layer. Table A.20
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in the.Appendix gives the temperature difference at the

ceiling along the maximum temperature difference, for each

test.

The width of the thermal boundary layer was greater

than the width of the momentum boundary layer, for all

tests.

5.3 Thermal Boundary Layer Growth

The similarity analysis of the turbulent energy

 

equation of the boundary layer has indicated that the growth

of the thermal boundary layer is a linear function of the

longitudinal distance x, from the inlet. This functional

relationship may be written as 0 =Co(x + x0) where x0 is the
t

distance to the virtual origin and 6t has been previously

defined as the transverse distance to where £1T=£5Tm/2.

The determination ofCo and x0 for each test was

carried out in several steps. First the values of 6t were

determined by observation, from the mean temperature profiles.

A plot of 6t vs. x, was then made. From this plot it was

determined whether the data points appeared to describe a

straight line. This was done without regard to similarity

of the mean temperature profiles. In only two cases, were

the values of 5t not used in determining a best fit line

describing the growth of the thermal boundary layer. These

two locations were station eight for Tests 4 and 11.7 The

reason they were not used was that they deviated appreciably

from the trend established by the rest of the points of the
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test. The method of least squares was used in determining

the best fit lines.

In order to make the data applicable to other systems

the thermal boundary layer thickness was made dimensionless

by dividing it by the slot height L and the same procedure

was used for x. Thus the equations of the best fit lines

are of the form ét/L=A + Co(x/L) or in terms of the virtual

origin, 6t/L=Co[x/L + (Io/Li].

Table 5.2 gives the values of Co and x0 for each test.

Also given is the number of stations used in the determina-

tion of the best fit lines and the values of the correlation

coefficient, for each test. The correlation coefficients

indicate that the data points are described quite well by a

straight line for all tests. As a further check on the val-

idity of the apparent linear relationship between 6t and x,

the best fit lines were drawn through the data. In all cases

the data indicated no apparent curvature with reSpect to the

best fit line. The standard deviation of the observed values

of 6t from the best fit line is also given in Table 5.2.

The values of the virtual origin and Co were plotted

against both the inlet Reynolds number and the inlet Grashoff

number to try and determine if any functional relationship

existed between them. Although there was considerable scat-

tering of the data, there.nevertheless appeared to be a

definite trend between the inlet Reynolds number and both

the virtual origin and Co. Best fit lines were determined

through the data points by the method of least squares.
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The best fit lines along with their equations are shown

in Figures 5.25 and 5.26. The correlation coefficient for

the relationship between Reynolds number and Co was .8345 which

indicates a straight line to be a reasonable approximation.

Thus over the range of inlet velocities tested, it appears

that the slope of the line describing the growth of 6t,

decreases with increasing inlet Reynolds number. In other

words, at the higher inlet velocities (e.g. Reynolds numbers),

there appears to be less Spreading out in the transverse

direction of the mean temperature profile or less mixing of

the cold air with the warm air.

The correlation coefficient for the equation describ-

ing the relationship between the virtual origin and the inlet

Reynolds number was .5848 thus making the assumption of a

linear relationship between them. rather tenuous.

The correlation coefficients for Grashoff number ver-

sus x0 and the Grashoff number versus CO were both well

below .5 indicating that a linear relationship did not exist.

No other type of curve fitting was attempted.

The fact that the growth of the thermal boundary

layer was well represented by a linear relationship for all

tests, implies that the buoyancy forces were negligible come

pared to the inertia and viscous forces. If the buoyancy

forces had been Significant, the line describing 6 would
t

have been curved, not straight. However, for the 600 ft/min

inlet velocity range the air flow became detached from the
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ceiling at station 7 for the three non-isothermal tests.

This was not the case for the isothermal test. This same

phenomenon occurred for the 400 ft/min inlet velocity range.

This detachment appears to indicate buoyancy force effects,

which contradicts the results of the thermal boundary layer

growth data. In light of these observations it is interest-

ing to note that the order of magnitude analysis of the

momentum equations indicated that buoyancy force effects

would be important at both the 600 ft/min and 400 ft/min

inlet velocity ranges. This may be fortuitous since the

order of magnitude analysis at best, is approximate.

It appears that for the range of velocities and tem-

perature differences tested, and within the range of experi-

mental accuracy, buoyancy forces were found to have a neglig-

ible effect on the growth of the thermal boundary layer.

5.4 Results of Temperature Decay_Measurements

Analysis has predicted that, based on assumed similar-

ity of temperature profiles, a power law relationship of the

form [5Tm=C x'b

5

ture difference. It has already been shown that the mean

will describe the decay of maximum tempera-

temperature profiles of this investigation do exhibit simi-.

larity. It remains now to examine the data in order that

the validity of the analysis concerning the maximum tempera-

ture decay, may be either proven or diSproven.

If the power law relationship holds then a log-log

plot of [ST versus x' Should describe a straight line. Such
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plots for four of the five velocity ranges investigated, are

shown in Figures 5.27 through 5.38. The 400 ft/min inlet

velocity cases are not shown, the reason being that the

temperature profiles could not be measured at enough stations

for this inlet velocity. The data is presented in dimension-

less form. This allows wider application of the results to

Similar systems without changing the basic functional rela-

tionship between [5T and x'. A look at the resultant plots

indicates that at least part of the points appear to describe

a straight line. Using the method of least squares, best fit

straight lines were found for the data.

In determining a best fit straight line through the

data points it was necessary, at the lower velocities and

higher temperature differences, to exclude some of the data

points from the stations farthest from the inlet. These

points were rejected on an arbitrary basis. The criteria

for rejection was, observing when a point seemed to deviate

markedly from a trend established by the closer stations.

Thus the resultant best fit lines describe only a portion

of the data points with the number of data points used in

each case. indicated by the range over which the best fit

lines are drawn, in the figures. In some cases, data

points from stations whose temperature profiles did not

indicate similarity were used, however the inverse was not

true. It is questionable whether a straight line is the

best representation of the data, for all the tests. This
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.2

 .1
1 2 3 5 78910 20 30

x'/L(x10'1)

Figure 5.27-- Maximum temperature difference decay results

for test no. 2, U1=1236 ft/min,z3T1=20.7°F

 
1 2 3 45678910 20 30

x7L(xio'1)

Figure 5.28-- Maximum temperature difference decay results

for test no. 3, U1=1225 ft/mianT1=41.8°F
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Figure 5.30-- Maximum temperature difference decay results

for test no. 6, 81:981 ft/min1QTi-21.3°F
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Figure 5.31-- Maximum temperature difference dgcay results
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Figure 5.32-- Maximum temperature difference degay results

for test no. 8, U1=1015 ft/min,Z§T1-54.8°F
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Figure 5.33- Maximum temperatume difference demay results

for test no. 10, U1=769 ft/min,z3T1-21.8°F
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Figure 5.34-- Maximum temperatume difference decay results

for test no. 11, U1=771 ft/min,Z§T1=41.4°F
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Figure 5. 35-- Maximum temperature difference decay results

for test no. 12, Ui=760 ft/min,13T1- 55.1°F
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Figure 5. 36--Maximum temperature difference decay results

for test no. 14, U1=570 ft/min,z§T1=21. 90F
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can be seen by observing the data and best fit lines of Tests

7, 8, 12 and 16. For these four tests there is a curving of

the data with respect to the lines, at the larger x'/L values.

Table 5.3 shows the values of C and b as determined

5

by the least squares best fit line of the data. The correla-

tion coefficient for each case is also given in Table 5.3.

The average value of the eXponent b for all the tests was

-.768. This is considerably greater than the average value

of the eXponent a from the velocity decay data. However,

the eXponent a was determined by using x for the abcissa of

the log-log plot, instead of (x + x0). Thus direct compari-

son is impossible.

Over the range of inlet Reynolds numbers tested, an

apparent functional relationship existed between them and the

exponent b. The rate of decay of the temperature difference

appeared to be inversely proportional to the inlet Reynolds

number. This result indicates that there is less thermal

mixing of the cold incoming air with the warm air, at the

higher inlet Reynolds numbers. This observation agrees with

the results of the thermal boundary layer growth data, which

indicated that the growth was inversely proportional to the

inlet Reynolds number.

A plot of inlet Reynolds number versus b, along with a

best fit line to the data, is shown in Figure 5.39. The cor-

relation coefficient was .767.

There appeared to be no functional relationship between

b and the inlet Grashoff number. A least squares, straight
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line fit was attempted. However, the correlation coefficient

was well below .1 indicating that a linear relationship did

not exist.

In order that the maximum temperature difference decay

rate might be compared with the velocity decay rate, the

temperature data were replotted, using x instead of (x + x0)

as the abcissa. Best fit straight lines were then determined

for each test. The values of C5 and b as found from the best

fit lines are given in Table 5.3. Also shown is the range of

x/L for which the equation of the best fit line applies. The

average value of b was -.63. This compares to a value of

-.53 for the velocity decay exponent. The larger value for

the exponent of the temperature decay agrees with the observa-

tions that the thermal boundary layer was wider than the

momentum boundary layer for all tests.

The value of the exponent b, found using x as the

abcissa, was 22% smaller than the value using (x + x0) as the

abcissa. This large discrepancy points out the apparent

sensitivity of b, to the value found for the virtual origin.

Thus any error which might occur in the determination of xo

would also affect the value found for b.

Generally the maximum temperature decay was reason-

ably well represented by a power law relationship, over the

range of inlet Reynolds numbers and inlet temperature

differences tested.



6. APPLICATION

Having an eXpression for the decay of the maximum

temperature difference and also an eXpression for the tem-

perature distribution, it is possible to obtain an eXpres-

sion for the temperature at any point in the thermal boundary

layer.

The eXpression for the decay of the maximum tempera-

ture was found to be:

zxfimAgT1=c5(x/L)b (6.1)

Therefore

Amm=Ari C5(x/L)b (6.1a)

Reichardt's representation of the temperature distribution

was seen to approximate reasonably well the temperature data

in the outer layer. It is:

[ifégim=eXp-(y/ot)2 1n2 (6.2)

Thus

lifeliTm eXp-(y/ét)2 1n2 (6.2a)

Substituting equation 6.1a for [3Tm into equation 6.2a

results in the following.

- b 2

[Nim=ziT1C5(X/L) eXp-(y/ét) 1n2 (6.3)

However

6t=co(x + xo)=Cox' (6.4)
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Therefore

Z§T=ZXT1C5(x/L)b eXp-(y/Cox')2 1n2 (6.5)

Taking the log of both sides of equation 6.5 gives:

2

- - .1... 2

lnATzlnATi + lnC5 + ln(%)b + lne (COX') In

(6.6)

Simplification yields:

2
- - b __X_

an§T=an§T1 + inc5 + ln(%) . 1n2(Cox') (6.7)

Taking the anti-logs of both sides results in the following:

2
- - __Z_

AT=AT1C5(%)b/2(Cox') (6.8)

C5, b, Co and x are determined eXperimentally. Therefore
o

for a given outlet velocity (e.g.. x0, Co, C5 and b are

Reynolds number dependent) and a known inlet temperature

difference, the temperature at any point in the outer por-

tion of the thermal boundary layer can be determined. This

assumes that the inlet Reynolds number and the inlet tem-

perature difference are within the range covered in this

investigation.

Example calculations are given in the Appendix.



3.

7. CONCLUSIONS

The velocity fields of the chilled wall jets of this

investigation conformed to the characteristics of a

turbulent wall jet. The velocity profiles exhibited

similarity. The decay of maximum velocity was inversely

a where the average value of a for thisproportional to x

investigation was, -.53.

Generally the mean temperature profiles of the chilled

wall jets were congruent when plotted in a dimensionless

form. This better applies at the higher inlet Reynolds

numbers. The dimensionless temperature scale was AxTAQTm

and the dimensionless distance scale was y/bt. The tem-

perature distribution in the outer layer, was described

reasonably well by an eXponential relationship (6.3.

AT/AimeeXp-(M921112) .

The maximum temperature difference was inversely propor-

tional to xb, where b was a function of the inlet

Reynolds number. The average value of b for all the

tests was -.63. Thus the rate of maximum temperature

difference decay was greater than the maximum velocity

decay. This is a reasonable result in light of the fact

that the thermal boundary layer was always wider than the

momentum boundary layer.

The growth of the thermal boundary layer, as described by
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a characteristic length dimension 6t, was a linear func-

tion of x.. The rate of growth of the thermal boundary

layer was inversely proportional to the inlet Reynolds

number. This agrees with the results on the relation-

ship between the maximum temperature difference decay

and the inlet Reynolds number.

In general, buoyancy forces effects were found to be

negligible. This is based primarily on the fact that

the thermal boundary layer growth was always linear.

However, for the non-isothermal cases of the lower

inlet Reynolds numbers, the air flow was observed to be

detached from the ceiling, at the further distances

from the inlet. Thus it appears that there were some

buoyancy forces effects at the lower velocities but they

could not be determined from the measurements taken.

The following relationship was found for determining the

temperature at any position in the outer layer of the

thermal boundary layer, of the chilled wall jets of this

investigation.

2

611468105(x/L)b/2 y/C°‘X+x°’

Calculations made using this relationship agreed reason-

ably well with measured temperatures.



8. RECOMMENDATIONS FOR FUTURE WORK

The results of this investigation indicate the need

for additional work in the following areas.

1. Additional work is needed at the lower inlet velocities

to further attempt to determine any possible buoyancy

effects.

Measurements should be made of the turbulence shear

stresses. This would permit evaluation of the eddy

diffusivity for momentum. The effect of inlet Reynolds

number and temperature on the eddy diffusivity for

momentum might then be investigated.

Measurements of the correlation between the fluctuating

components of temperature and velocity (e.g. Vt) should

be made. Thus the eddy diffusivity for heat could be

determined. Knowing the diffusivities for heat and

momentum, the turbulent Prandtl number could then be

determined. The effect of the inlet Reynolds number

and temperature on the turbulent Prandtl number should

be investigated.

The effect of different types of ceiling configurations,

such as a corrugated ceiling material, on the character-

istics of the momentum and thermal boundary layers,

should be investigated.

An attempt should be made to solve the turbulent form of
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the momentum equation, with the boundary conditions of

this problem, by the method of finite differences.

This would involve assuming values for the eddy diffu-

sivities for momentum which would in effect be a way of

determining such values.



APPENDIX

A.1 Correcting for Error in Velgcity Measurements

Due to Fluid Property Changes

A constant temperature anemometer instantaneously

measures fluid flow parameters by sensing the heat transfer

rate (heat flux) between an electrically heated sensor and

the flow medium. The basic signal depends on the fluid

composition, mass flow and temperature difference. For

many measurements, density is constant and the instrument

measures velocity. When temperature varies, compensation

is needed to correct for the temperature differences.

The sensor element (hot film) can be assumed to be a

cylinder for purposes of heat transfer study. Various heat

transfer relations for a cylinder in cross flow are avail-

able. A commonly used relation for air is that by Collis

and Williams (1959).

‘-O.17
Nu(Tf/Te) = c + DRen (A.1)

where:

Nu=Nusselt number

Re=Reynolds number

kf=thermal conductivity of the environment fluid

Yf=kinematic viscosity

/of=fluid density
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do=sensor diameter

h =heat transfer coefficient

V =velocity

Tf=film temperature=(Te+TS)/2

Te=environment temperature

Ts=sensor surface temperature

The values of C, D and n are dependent on the Reynolds

number.Recommended values, for the Reynolds no. range in

which present tests were conducted, are C=O.24, D=O.56 and

n=0.45.

For measurements with hot-film and hot-wire sensors

it is convenient to put equation A.1 in the form:

where:

P=[A + an](rS-Te) (1.2)

0.17
A=kaC(Tf/Te)

0.1 n
B=kaD(Tf/Te) 7(do/Yf)

P=power or heat flux dissipated by sensor

L=sensor length

Sample calculations of P for the same velocity but

:for two different temperatures will provide an indication

(of the error in the velocity measurement due to neglecting

:fluid property changes.

‘the following values for P

Assuming temperatures Tl=O°F, T2=6O°F and TS=392°F

and P2 were calculated.

1

6 0.45
6 + 1865 x 16' x V1 (1.3)21:2.40 x 10'
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P2=2.48 x 10'6 + 1497 x 10"6 x V20°45 (A.u)

Assuming V equal to V2 the ratio of P to P2 is:

1 1

Pl/P221.245

Thus assuming that the anemometer had been calibrated at 60°F

and was being used to measure velocity in a medium whose

temperature was 00F, the bridge voltage would be 20.5% too

high. However, Pl can be corrected by multiplying it by the

dimensionless temperature ratio (TS-Th)/(TS-Tc) where:

T =sensor temperature
3

Th=temperature at which the anemometer was calibrated

Tc=temperature at which the measurement was taken

For the assumed temperatures, the dimensionless tem-

perature ratio is .857. Multiplying this times 1.245 we get

1.055. Thus the error would now be 5.5% if the measured air

temperature is known and is used in forming a simple correc-

tion factor.

A.2 Heat Transfer Through the Ceiling

As a chilled wall Jet moves away from the inlet its

thermal boundary layer is characterized by a growth in the

transverse direction and a decay of the maximum temperature.

If heat transfer through the ceiling is neglected, both of

these characteristics are due primarily to the entrainment

taking place between the wall jet and the still, ambient air.

An appreciable amount of heat being transferred through the

wall to the chilled wall jet, would have an effect on both

the thermal boundary growth and the maximum temperature difé
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ference decay. Consequently calculations were made of the

amount of heat transfer through the ceiling for a number of

the tests.

Following are the calculations for Test u.

Knowns: ceiling thickness=.75"

k (for plywood)=.8 BTU-in/hr-ftz-OF

Temperature of incoming air=19°F

Temperature of ambient air=71.3°F

=200.5 cfm=16.95 lb air/min
Qinlet

ceiling temperatures (next to wall Jet)

 

Station

1 2 3 4 5 6 7 8

 

33°F 43°F 50°F 55°F 59°F 62°F 64°F 67°F

 

The temperature on the top side of the ceiling at station 1‘

was 60°F. Assume the temperature on the top side of the ceil-

ing at stations 2 through 8 to be equal to the room air tem-

perature, 73°F. Thus the average temperature difference

across the ceiling for a section four ft wide by 7.5ft long,

would be 16.3°F. Assuming the relative humidity of the

incoming air to be 60%, its enthalpy would be 6 BTU/1b air.

Assuming the relative humidity of the ambient air to be 30%,

its enthalpy would be 22.0 BTU/lb air. Therefore 16.6 BTU

must be added to each lb of air per minute to raise it to

the ambient temperature. The total amount of heat which

must be added per minute is:
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Total amount of heat=16.95 1b air/min x 16.6 BTU/lb air

=278 BTU/min

The amount of heat transferred through the ceiling per minute

is:

Q=(kA/L)QST)=(.8/.75)(30)(1/60)(16.3)=9.19 BTU/min

Therefore:

heat transferred throu h the ceiling 3 3%

heat gained by entrainment + heat transfer through ceiling

The highest percentage of heat transfer through the

 

ceiling for any of the tests was approximately 6.1%. Thus

the heat transfer was assumed negligible.

A.3 Calculating Temperature UsingEmpirical ExEression

The eXpression for the temperature difference at any

location in a chilled wall Jet was determined to be:

' ’ b Y/Co(X') 2
A§T=Z§T1C5(x/L) /2

As a check on the accuracy of this eXpression a number of

sample calculations were made. As one example the calculated

temperatures are compared to the measured temperatures for

Test 3.

Test 3 C5=4.78

b =.568

Co=.0994

xo=5.12

13T1=41.8°F
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Station 3 (x=22 inches)

y=1"

y=3u

2

(1/2'695) =203.5/9.58=21.3°FZ§T=(41.8)(4.87)(45)/2

This compares to the measured temperature which

was 19.80F. Therefore the error is 4.76%.

ZXT=203.5/20.6=9.87°F The measured temperature

was 9.8°F. The error is .07%.

Station 7 (x=72 inches)

Z§T=203.5/17.05=11.8°F The measured temperature

was 11.2°F. The error is 5.35%.

Z§T=203.5/22.9=8.9°F The measured temperature

was 80F. The error is 11.25%.

These examples are typical of those calculations which

were made for other cases. In general the error was largest.

for those cases where the magnitude of the temperature differ-

ence was small (at large transverse distances and large

longitudinal distances).
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