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ABSTRACT
FLOW THROUGH COLLAPSIBLE VESSELS
By

Carol Kindermann Lyon

These experiments examined the properties of flow through the
classical physical model of collapsible blood vessels, the Starling
resistor, and compared the results to the predictions of the mathemati-
cal "waterfall" model, and to the data generated from in vitro veins.
The effects of increasing tissue pressure, outflow resistance, length,
tension, stretch, and diameter were simulated. The pressure-flow
relationships consisted of: first, an initial rising phase of high
resistance at Tow flow rates; second, a plateau phase at moderate flow
rates; and third, a late rising phase at high flow rates. Self-excited
oscillations of the collapsible tubing were quantified, as was their
effect of increasing the resistance of second and third phase pressure-
flow relationships. The waterfall model predicts neither first phase,
nor third phase pressure-flow relationships of the model or of in vitro
veins. Simulation of the microcirculation using high viscosity fluids

indicated a trend toward closer agreement with the waterfall model.
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I. INTRODUCTION

This work investigates the phenomenon of vascular collapse which
may occur when fluid pressure at some point within a vessel is exceeded
by pressure external to that vessel. For blood vessels, external pres-
sure includes all sources of tissue pressure, as defined by Guyton
(1971): 1liquid, gel, and solid. The difference between intraluminal
pressure and extraluminal pressure is defined as transmural pressure.
When extraluminal pressure exceeds intraluminal pressure, transmural
pressure is negative. Negative transmural pressure can cause a blood
vessel to undergo partial to complete collapse, and consequently can
alter the pressure-flow relationships of that vessel.

Examples of blood vessels that are normally subjected to collapse
are: the cutaneous veins (Bates, 1974), myocardial blood vessels
(Downey and Kirk, 1975) and those of skeletal muscle (Gray et al., 1967)
and the liver (Mitzner, 1974), the placental circulation (Bissonette
and Farrell, 1973), the renal venous system (Swann et al., 1952),
interabdominal veins (Guyton and Adkins, 1954), and the microcirculation
of the lung (Maloney et al., 1968). Pathophysiological collapse of
blood vessels also occurs. As examples, cerebral capillaries have been
shown to collapse when intracranial pressure is suddenly increased
(Hekmatpanah, 1970), and the abdominal vena cava is known to collapse

when abdominal pressure is increased by ascites (Vix and Payne, 1972).



Occasionally, external interventions are used to induce vascular
collapse. Pressurized antigravity suits are used to increase tissue
pressure of the extremities and induce collapse of the dependent veins
and thereby prevent pooling of blood in the vessels of the extremities
(Guyton, 1976). Pneumatic cuffs are used to collapse arteries to pre-
vent hemorrhage during orthopedic surgery (Guyton, 1976), and to measure
blood pressure by the production of the Korotkoff sounds heard with the
stethoscope (Brooks, 1916).

The pressure-flow relationships of collapsible vessels have been
modeled by use of a physical model that utilizes a "Starling resistor",
and a mathematical "waterfall model". The physical model takes its
name from the fact that the noted physiologist, E. H. Starling (Knowlton
and Starling, 1912) devised a freely collapsible tube traversing a
chamber in which pressure could be controlled, for use in his now famous
heart-lung preparation. Vessels which are subject to passive collapse,
whether experimental or physiological, have come to be known as
“Starling resistors". Holt (1941) utilized such a physical model in an
effort to understand and quantify the non-linear pressure-flow relation-
ships of veins. Canine jugular veins and Penrose tubing were tested in
the pressure chamber. Holt's data demonstrated that whenever the vein
was partially collapsed, the relationship between flow and apparent
driving pressure (inflow pressure minus outflow pressure, Pi'Po) became
independent. Interestingly, Holt noted oscillations of these vessels
when they were in a partially collapsed state. Many investigators have

used a similar physical model to demonstrate the hemodynamics of



collapsible blood vessels (Swann et al., 1952; Brecher, 1952; Rodbard
and Saiki, 1953; Katz et al., 1969; Fung and Sobin, 1973).

The "waterfall model" was described in simple quantitative terms
by Permutt et al. (1962) and Lopez-Muniz et al. (1968). This model
has been widely quoted to explain the pressure-flow relationships of
both large and small blood vessels (Nakhjavan, 1966;Scharf.g§_gl., 1971;
Downey and Kirk, 1974, 1975; Green, 1975; Mitzner, 1974). Just as flow
over a waterfall is independent on the height of the falls, Permutt
et al. (1962) proposed that flow through a blood vessel that is partial-
1y collapsed by tissue pressure is independent of outflow pressure.
Other more sophisticated mathematical models of flow through collapsible
vessels have been proposed (Kresch and Noordegraaf, 1969; Katz et al.,
1969; Mahrenholtz, 1974; Oates, 1975a, 1975b), but the non-conventional
cross-sectional geometry of the vessels and the non-linearity of fluid
behavior present major theoretical difficulties. Therefore, none of the
presently available mathematical models is sophisticated enough to
encompass all of the phenomena of flow through collapsible vessels.

Recently, a revitalized interest in physical modeling of the
dynamics of flow through collapsible vessels has been taken by bio-
medical engineers and physicists (Conrad, 1969; Katz et al., 1969; and
Moreno et al., 1969). The families of pressure-flow relationships
published by these investigators appeared to be radically different
from any previously published curves. A most obvious difference was the
presence of a "negative resistance" region of their curves where it
appeared that a decrease in driving pressure was accompanied by

increased flow.



The differences in apparatus, methods, experimental and extraneous
variables has made comparison of published data extremely difficult.
The continuing need for a reasonably simple expression describing
pressure-flow relationships of collapsible vessels was answered in part
by Brower and Noordergraaf (1973), who analyzed previous data for
collapsible vessels, and made theoretical predictions for the flow
ranges of zero to 14 cc/sec, conforming to the graphic form of Pi-Poas a
function of flow (Q) and the difference between pressure external to the

vessel and outflow pressure (Pe-Po).

The pressure-flow relationships of the classical physical model
of a collapsible vessel, the Penrose tubing Starling resistor, remain
to be thoroughly quantified expe;imenta11y. Pressure-flow data for high
flow rates, high viscosity flow, and comparable data for living vessels
is not available, and consequently the appropriateness of the model is
not known. An additional difficulty is the fact that the predictions
of the "waterfall model" do not appear to be in agreement with the
available data from physical modeling, especially in the low flow ranges.
The present investigation studies in depth the properties of the
Starling resistor, quantifies data for high and low Reynolds numbers,
and compares these models to the data generated from experiments using

in vitro equine jugular and cephalic veins.



IT1. LITERATURE REVIEW

Characteristics of Flow through Collapsible
Blood Vessels

In 1941, J. P. Holt used a Starling resistor* model to demonstrate
the non-linear pressure-flow relationships of collapsible veins. In
doing so, he introduced into vascular research the use of a physical
model to circumvent many of the experimental difficulties inherent to
in vivo research. His prototype model has been used by many investiga-
tors (Brecher, 1952; Swann et al., 1952; Rodbard, 1955; Doppman et al.,
1966; Katz et al., 1968; Fung and Sobin, 1972) for quantification of
pressure-flow relationships of collapsible vessels.

Resort to the use of physical models to demonstrate vascular
behavior underscores the difficulties inherent in the research of col-
lapsible vessels in vivo. When vessels collapse to non-circular cross-
section, they present paradoxical pressure-flow relationships: calcu-
lated resistance may fall greatly as flow increases (Permutt et al.,
1962); a rise in outflow resistance may be associated with a decrease
in total calculated resistance (Rodbard, 1955); and absence of flow may
exist in the presence of a measured inflow-outflow pressure difference

(Nichol et al., 1951).

*Star1ing (Knowlton and Starling, 1912) used a collapsible tube encased
within an airtight compartment in his heart-lung preparation.
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Collapse of blood vessels is both common and normal. An example
of vascular collapse can be seen when the hands or legs are elevated
above the level of the heart. The visible cutaneous veins can be seen
to flatten. In fact, if the jugular veins of the neck do not collapse
when an indivudual is in the erect position, this is indicative of heart
failure (Bates, 1974). Other examples of blood vessels that are
normally subjected to collapse are: coronary vessels (Downey and Kirk,
1975), vessels of the skeletal muscle (Gray et al., 1967), and liver
(Mitzner, 1974), the placental circulation (Bissonette and Farrell,
1973), the renal venous system (Swann et al., 1952), inter-abdominal
veins (Norhagen, 1963) and the microvasculature of the lung (Maloney
et al., 1968).

Collapse of blood vessels is not an all or none process. The
cross-section of a collapsed vessel may be elliptical, or it may be
flattened so that opposite sides are touching. The term "collapse"
refers to any intermediate stage between circular cross-section and
total closure.

Vascular collapse occurs because the cross-sectional shape of
blood vessels with thin non-self supporting walls is markedly influenced
by extravascular tissue pressure. The difference between intravascular
blood pressure and extravascular tissue pressure is defined as trans-
mural pressure. Vascular collapse can occur whenever the transmural
pressure is negative.

Extravascular, or total tissue pressure, is influenced by the

quantity of fluid and gel within the extravascular compartment, the



physical characteristics of the surrounding tissue, and location within
the body. Increases in the fluid and gel content of the interstitial

and intercellular compartments may be caused by an electrolyte imbalance,
an increase in microvascular pressure, an increase in microvascular
permeability, a decrease in plasma colloid osmotic pressure, or decreased
efflux via the lymphatic system (Haddy et al., 1976).

fhe tension and visco-elastic properties of the tissue fibers
surrounding the blood vessels influence the compliance of the extra-
vascular compartment. The lower the tissue compliance, the greater the
change in tissue pressure that will result from a given increase of
extravascular volume. Some organs are enclosed within relatively non-
compliant structures. For example, the brain is enclosed within the
rigid cranium, and the kidney is enclosed within a fibrous encapsulating
membrane. Tissue pressures within these organs are relatively sensitive
to extravascular volume changes. Active contraction of muscle within
the extravascular compartment also will decrease tissue compliance.

The level of tissue pressure varies from organ to organ. It is
negative within the thorax and positive in the kidney. In some organs,
the lungs and the heart for example, the level of tissue pressure
changes cyclically. However, there is no general consensus regarding
the magnitude of "normal" tissue pressure. The controversy arises
largely because of differences in measurement techniques, but it is also
related to the problem of defining "tissue pressure".

Intra-tissue "balloon" type methods (Gregg and Eckstein, 1941;
Kjellmer, 1964; Kirk and Honig, 1964a) and needle or capillary pipette



methods (Hinshaw et al., 1959, 1960; Gilmore, 1964; Gottschalk, 1952)
measured pressures which were predominantly positive, and this generally
was accepted as the correct value prior to 1960. However, Guyton
(1963a) measured negative interstitial fluid pressure using implanted
capsules. Other investigators, using cotton wick techniques that depend
on fluid equillibration (Scholander et al., 1968; Stromberg and
Wiederhielm, 1970; Stromme et al., 1969) have obtained pressures similar
to those that Guyton measures.

The implanted capsule and the cotton wick techniques have been
criticized (McDonald, 1968; Stromberg and Wiederhielm, 1970; Snashall
et al., 1971) on the basis that osmotic forces exerted by proteins
within the interstitial gel create artifactually negative pressures
within the capsule and the cotton wick. Guyton (1971) has countered
that the capsule method measures only true interstitial fluid pressure,
but that the tissue balloon and needle techniques measure total tissue
pressure, which is composed of the sum of "interstitial fluid pressure"
and "solid tissue pressure". This difference is very important.
Transmural pressures are affected by "total tissue pressure" since both
solid and fluid phases are in direct physical contact with vascular
walls.

In addition to extravascular tissue pressure, the other major
determinant of transmural pressure is the lateral blood pressure exerted
by the blood upon the walls of the blood vessels. Total blood volume,
the pumping action of the heart, and vascular compliance and radius

determine the blood pressure at any point in the vascular tree.



Within the capillaries, the hydrostatic pressure (blood pressure)
depends on capillary volume which in turn depends on arterial pressure,
venous pressure, and pre-capillary and post-capillary resistances.

An increase in either arterial or venous pressure will result in an
increase in capillary volume and hence pressure. An increase in post-
capillary resistance will increase capillary volume and hence pressure;
whereas, an increase in pre-capillary resistance will have the opposite
effect. Just as tissue pressure varies from tissue to tissue, so too
does capillary hydrostatic pressure (Berne and Levy, 1972). A final
factor influencing lateral pressure of blood within large vessels is
the velocity of blood flow. Blood flowing through a vessel of larger
radius past a segment of smaller radius must accelerate to a higher
velocity in the narrowed segment. By the Bernoulli effect, the
increased velocity of blood flowing through the narrowed segment is
accompanied by a decreased lateral pressure (White, 1974).

From the foregoing discussion, it can be seen that there are many
factors which can produce a negative transmural pressure, either by
increasing extramural tissue pressure or by decreasing intramural blood
pressure. Whenever transmural pressure is negative, collapse of thin

walled blood vessels becomes a possibility.

Theories of Flow Through Collapsible Blood Vessels

Collapse of the Inferior Vena Cava

Collapse of the inferior vena cava associated with respiratory

activity has been the subject of a great deal of physiological research.
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Early researchers of the venous system generally believed that negative
intrathoracic pressure was an important factor in returning blood to
the heart (Volkman, 1950; Donders, 1859; Ledderhose, 1906). Donders
(1859) treated flow through the veins as if they were rigid tubes; he
expected that flow should be proportional to the pressure gradient.
He promoted the belief that the greater the inspiratory effort, the
greater the blood flow into the thoracic cavity would be. Donders had
completely ignored the fact that veins are non-self supporting struc-
tures that collapse when a critical transmural pressure is reached.
Collapse of a vein greatly increases its resistance to flow, so that
when collapse occurs, a non-linear pressure flow relationship results.
The extravascular pressure relationships along the length of the
inferior vena cava subject it to conditions favoring collapse. When a
vein transverses a chamber of higher pressure to enter one of lower
pressure, collapse may occur at the downstream end of the higher pres-
sure chamber. Tissue pressure within the abdominal cavity fluctuates
with respiratory activity and is generally increased by descent of the
diaphragm during respiration (Moreno et al., 1967; Katz, 1968).
Pressure within the thorax is normally sub-atmospheric. With quiet
breathing, pressure varies from about -8 mm Hg during inspiration to
-4 mm Hg during expiration. Blood pressure of the intrathoracic
inferior vena cava is approximately atmospheric. Therefore, a positive
transmural pressure within the thorax holds the thoracic inferior vena
cava open. However, the higher tissue pressure of the abdomen subjects

the inferior vena cava to sub-diaphragmatic collapse.
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There is ample evidence of sub-diaphragmatic collapse of the .
inferior vena cava. The collapse has been visualized radiographically
during normal respiration (Katz, 1968; Norhagen, 1963; Nordenstrom and
Norhagen, 1965), and during conditions of increased abdominal pressure
(Ranniger and Switz, 1965; Vix and Payne, 1972; Doppman et al., 1966).
Pressures recorded from a pressure catheter being pulled across the
diaphragmatic region of the inferior vena cava demonstrate the drop in
pressure that occurs across a collapsed vascular segment (Guyton and
Adkins, 1954; Duomarco and Rimini, 1954; Lawrence and Myerson, 1973).
Finally, catheter tip flow velocity meters have recorded flow accelera-
tion during inspiration when collapse is most likely to occur (Wexler
et al., 1968; Yokota and Kreuzer, 1973).

When the veins entering the thorax collapse, flow becomes inde-
pendent of the pressure gradient from the peripheral veins to the right
atrium, and peripheral venous pressure is independent of pressure in
the right atrium. Under these circumstances, decreasing right atrial
pressure to lower levels has no effect on extrathoracic venous pressures
(Holt, 1941). In experiments when thoracic pressure was decreased by
breathing air under negative pressure, venous return remained essential-
1y constant, even though the usual pressure drop from peripheral veins
to right atrium was increased many fold (Holt, 1944; Lenfant and Howell,
1960).

Duomarco et al. (1944) supported the concept of Holt (1944) that
venous collapse concommitant to negative intra-thoracic pressures would

prevent an inspiratory increase in venous return. Dumarco et al. (1944)
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measured pressures in the canine inferior vena cava and the jugular-
vena cava venous system and they noted a drop in pressure wherever a
vein entered the thorax. They considered the cause of this pressure
drop to be collapse of the venous segment. This pressure gradient was
likened to the hydraulic gradient of a waterfall, where upper level,
lower level, and flow constitute mutually independent factors: the
downstream level has no effect on flow falling over the falls. This
analogy was later presented in mathematical form by Permutt et al.
(1962) and has become known as the "waterfall model" of flow through
collapsible vessels.

In the years following Holt's original experiment (1941), further
studies have led to conflicting views concerning the effect of respira-
tion on venous return. Contrary to the predictions of Holt (1941) and
Dumarco et al. (1944), many studies report a phasic increase in blood
flow into the heart during inspiration (Yokota and Kreuzer, 1973; Tafur
and Guntheroth, 1966; Morgan et al., 1966; Moreno et al., 1967; Katz,
1968). But it is generally conceded that a decrease in pressure within
the thorax, below the level at which the veins entering the chest
collapse, can cause no further increase in the rate of venous return
(Holt, 1941, 1944; Brecher, 1956; Guyton and Adkins, 1954; Guyton,
1962). And it is also well documented that an increase in thoracic
pressure to the point that right atrial pressure exceeds atmospheric
pressure will cause a decrease in the rate of venous return to the heart
(Ho1t, 1944; Brecher and Mixter, 1954; Brecher, 1956; Guyton, 1963b).

However, the effects of normal respiratory pressure fluctuations on
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inferior vena cava pressure flow relationships remain controversial.
Brecher (1952, 1956; Brecher et al., 1952) claims that normal
respiration augments venous return. Measurements of flow in the
superior and the thoracic inferior vena cava in the closed-chest dog,
using the bristle flowmeter, showed that the rate of flow to the right
atrium increased during inspiration and decreased during expiration.
The increased flow during inspiration was attributed to the emptying of
blood from the extrathoracic veins into the thoracic veins and to the
increased intra-abdominal pressure compressing the abdominal veins.
Brecher referred to this phenomenon as a "time dependent depletion
stage" of venous collapse. Brecher suggested that the time required for
vena cava collapse was of the same order of magnitude as the events of
the respiratory cycle. This time dependency was said to prevent vena
cava collapse from reaching the flow limiting stage during a normal
inspiration. Brecher et al. (1953) simulated the pressure changes with-
in the vena cava which accompany the respiratory cycle, and as a result
of this simulation, claimed that the algebraic summation of the
increased flow during inspiration, and the decreased flow during expira-
tion, would cause a net increase in the return of blood to the heart.
Guyton (1962, 1963b) has taken the position that increases and
decreases in central venous pressure resulting from respiration are
harmful rather than helpful to venous return. He showed that when right
atrial pressure became more negative than -4 mm Hg, venous collapse
occurred, and a further increase in negativity of right atrial pressure

did not cause a further increase in venous return (Guyton and Adkins,
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1954). However, as right atrial pressure was increased from zero to
the level of mean circulatory filling pressure, venous collapse did not
occur, so that venous return decreased linearly to zero. Guyton (1962)
reasoned that if increasingly negative right atrial pressures could not
increase venous return, but positive right atrial pressures could
decrease it, the net effect of such pressure pulsations would be to
decrease venous return. He called this phenomenon "venous rectification".
To test this premise, varying quantities of blood were injected and
withdrawn from the canine right atrium at frequencies varying from
between 60 to 160 cycles per minute and of zero to 64 ml volume per
cycle. This procedure never increased venous return. Instead, even the
smallest experimental right atrial pulsation decreased venous return
when right atrial pressure was in the range of zero to -4 mm Hg.
Intense pulsations reduced venous return to as low as 50% of normal.
The fact that venous return decreased, even at rapid pulsation frequen-
cies, tended to refute the claim of Brecher et al. (1953) that a "time
dependent depletion stage" causes respiratory enhancement of venous
return. However, the apparently conflicting findings might be explained
by differences in collapsibility of the right atrium and the vena cava.
The effects of respiration upon the pressure-flow relationships of
the vena cava remain controversial. Because venous researchers have
been unable to agree even on the directional changes of flow effected by
inferior vena cava collapse during normal respiration, much less on
qualitative or quantitative changes, physical modeling continues to be
an important means of discovering the underlying mechanisms and princi-

ples of venous collapse.
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Vascular Collapse in the Microcirculation

The non-linear pressure-flow relationships of the pulmonary circu-
lation have been studied extensively by use of the isolated perfused
lung technique (Permutt et al., 1962; West et al., 1964; West and
Dollery, 1965; Lopez-Muniz et al., 1968; Maloney et al., 1968). By use
of this method, perfusion pressure can be modified at will, and tissue
pressure can also be easily modified simply by changing bronchial ventil-
atory pressure. Because pulmonary capillaries are in direct contact
with the alveolar wall, they are subjected to alveolar air pressures.
Therefore, ventilatory pressure is generally assumed to be directly
transmitted through the alveoli to the pulmonary capillary walls.

Normal pulmonary capillary pressure is very low, somewhere between
8 and 12 mm Hg (West, 1974). This means that a slight decrease in pul-
monary capillary pressure, or an increase of alveolar pressure such as
that which results from expiration, can lower transmural pressure suffi-
ciently to cause vascular collapse of the pulmonary microvasculature,
resulting in a non-linear pressure-flow relationship. In an effort to
explain the dynamics of this non-linear pressure-flow relationship,
Permutt et al. (1962) adopted Duomarco and Rimini's (1954) waterfall
analogy. They presented a mathematical analysis of flow through the
microcirculation of the lung which is now called the "waterfall model".
Permutt et al. (1962) proposed that flow through a blood vessel which is
partially collapsed by tissue pressure is independent of outflow pres-
sure, just as flow over a waterfall is independent of the height of the

falls. According to the waterfall model, if Pis Pyo and Pe are inflow,

0
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outflow, and exterior tissue pressures, then the pressures, flow Q, and
resistance R, can be described by the following statements:

P.-P
When Pi> Po>-Pe, Q= 1R O , and the vessel is open. (1)

P.-P
When Pi> Pe>-PO, Q= 1R € » and the vessel is partially
collapsed and the flow is (2)
independent of Po'

When Pe>»Pi>»P°, Q = 0, and the vessel is closed. (3)

West et al. (1964) presented evidence that vascular collapse in
different parts of the lung was a function of pulmonary capillary hydro-
static level, and that on this basis, the lungs can be divided into
three zones. If PA’ Pa’ and Pv are alveolar pressure, pulmonary arteri-
al pressure, and pulmonary venous pressure, respectively, then for:

Zone I, the apex, PA>Pa>Pv, and Pe>P1.>P0 (vessels closed);

Zone 1I, the mid-portion, Pa>PA>Pv, and P1. >Pe>Po (vessels

partially closed); and in

Zone III, the base, Pa> Pv>'PA’ and Pi> P0> Pe (vessels open).

These zones have been shown to move up and down the lungs as alveolar
pressure and pulmonary artery and vein pressures fluctuate (Maloney
et al., 1968).

Another theory proposed to explain non-linear pressure-flow rela-
tionships of the microvasculature is that of "critical closure".
Burton (1951) and Nichol et al. (1951) showed that when the perfusion

pressure of a vascular bed was gradually decreased, flow ceased before
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the arteriovenous pressure gradient reached zero. When extravascular
tissue pressure was progressively increased, flow ceased when tissue
pressure was less than arterial pressure. This phenomenon was most
Tikely to occur under conditions of high vasomotor tone. Burton (1951,
1962) theorized that when transmural pressure falls to a critically low
value, the presence of active tension within the wall of a vessel could
overcome even a positive transmural pressure and collapse the vessel.
Burton called this pressure the "critical closing pressure". He con-
cluded that the arteriole, because it has a minimal radius and high
levels of active tension, was the most 1ikely anatomical location for
critical closing.

Permutt and Riley (1965) applied the waterfall model to the
phenomenon of critical closure. They assumed that active tension is
additive to exterior tissue pressure (Pe), to give a critical closing
pressure (Pc)' Under these circumstances, the pressure-flow relation-
ship of a vascular bed would depend upon the gradient between inflow
pressure and the critical closing pressure:

P.-P
-1 C
Q = R (4)

The mechanism responsible for the lack of flow in the presence of
an inflow-outflow pressure difference remains controversial. The
vascular wall of the small arteriole has a wall thickness to radius
ratio of %% (30 p diameter, 20 u wall thickness) and is composed of a
moderate amount of elastin fibers and a relatively large amount of

muscle (Strandness and Sumner, 1975). This elastic tissue would tend
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to resist the deformation required for complete closure (Alexander,
1977).

Histological studies have been equivocal regarding the role of
the arteriole in vascular collapse. The anatomical site of vascular
collapse in the microcirculation has been investigated in skeletal muscle
(Gray et al., 1967) and in the pulmonary circulation (Maloney et al.,
1968).

Gray et al. (1967) investigated this phenomenon in rat and dog
calf muscles during isometric muscle contraction. Radiographs showed
"nipped" and narrowed arterial segments during contraction. Rapidly
frozen histological preparations showed kinking and pinching of
arteries as they entered the muscle, and of arteries and veins as they
passed between muscle fasciculi. The appearance of the capillaries sug-
gested that they were at least as wide as when the muscle was relaxed.
Their findings suggested that compression of the larger supplying
vessels, not collapse of the microvasculature, was responsible for
increased vascular resistance during strong muscular contraction.

Maloney et al.(1968) found different vessels responsible for vascu-
lar collapse in the pulmonary circulation. They showed that wherever
pulmonary artery pressure was less than pericapillary tissue pressure
(Zone 1), most of the vessels of less than 30 u diameter were closed.
Small arterioles, pre-capillary sphincters, pre-capillary arterio-venous
anastomoses, capillaries and venules are all less than 30 p diameter,

and would fall into this category.



19

Presently, the mathematical waterfall model (Permutt et al.,
1962) is cited frequently to explain non-linear pressure-flow relation-
ships of the microcirculation (Scharf et al., 1971; Downey and Kirk,
1974, 1975; Green, 1975; Mitzner, 1974). The "critical closure" theory
of Burton (1951) remains controversial (Alexander, 1977). One of the
goals of the present experimental research is to measure pressure-flow
relationships in a Starling resistor model of the microcirculation.

The data will be compared to the theoretical models of flow through the

microvasculature, especially the "waterfall model".



IIT. REVIEW OF MODELING OF FLOW THROUGH
COLLAPSIBLE VESSELS

Physical Modeling of Pressure-flow Relationships

The use of thin-walled collapsible tubing as a physical analogue
of blood vessels dates back to 1912, when Starling (Knowlton and
Starling, 1912) devised this method to simulate peripheral resistance
in the heart-lung preparation. It consisted of a freely collapsible
tube traversing a chamber in which pressure could be controlled. The
term "Starling resistor" is now generally applied to vessels that
collapse passively, whether experimental or physiological. The first
pressure-flow data was published by Holt (1941). His prototype experi-
mental apparatus has since been modified and used to model flow through
the lungs (Lopez-Muniz et al., 1968), kidney (Swann et al., 1952),
arterioles (Rodbard et al., 1971), single segments of vein (Brecher,
1952), segments of vein in series (Doppman, et al., 1966), and the
entire length of the inferior vena cava (Katz, 1968).

The purpose of the use of a Starling resistor model was to circum-
vent, via an hydraulic analog, the experimental inconveniences encount-
ered during in vivo research of collapsible blood vessels: the experi-
mental animal must be kept in a physiological steady state for a
reasonably long period of time; perfusion pressure, outflow pressure,

and blood flow must be controlled; and tissue pressure outside of the

20
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vessels must be accurately measured, modified, and/or maintained
constant. Because flow rates and experimental pressures, especially
tissue pressure, are extremely difficult to reproduce from one animal
experiment to the next, only a statistical quantification of these
relationships can be established in vivo. Therefore, it has been much
more convenient to conduct experiments on a Starling resistor model to
quantify pressure-flow relationships during collapse in order to better
understand the underlying physical principles.

The experimental set-up has consisted of a flexible latex tube
(Penrose drain) mounted between two rigid tubes within an airtight box
in which pressure can be controlled. There are variable resistances
both upstream (Ri) and downstream (Ro) to the flexible tubing, and an
upstream source of flow. The pressure external to the tubing within
the box (Pe) and pressures immediately upstream and downstream to the
flexible tube (Pi and Po respectively) and flow (Q) are monitored.

Although the use of Penrose tubing as a model collapsible vessel
circumvented many of the experimental difficulties of in vivo research,
a state of confusion still remained concerning even qualitative pressure-
flow relationships. This can be accounted for by the variety of experi-
mental conditions used by different investigators. The reason for this
is that there are more independent variables for the pressure-flow
relationships of a collapsible vessel than for the simple pressure-flow
relationship of a long, round, cylindrical tube. During steady, laminar
flow through the latter tube, the driving pressure, AP, (Pi'Po) is pro-
portional to flow, so that

AP = RQ (5)
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R is given by Poiseuille's Law:

Tr®

where r is the radius of the tube, n is the viscosity, and 1 is the
length of the vessel. For a collapsible vessel, transmural pressure
also must be considered because it affects the cross-section of the
vessel and therefore, the resistance to flow. This factor increased

the number of variables to be measured during experiments on collapsible
tubing. Flow was sometimes measured as a function of variations in any
one of the three variables, Pys Po’ or Pgs while the other two were

held constant; occasionally flow was held constant while one or two of
the pressures were varied. This resulted in a wide variety of pressure-
flow graphs, each with different variables and parameters.

To document the confusion that existed in 1969, Conrad (1969)
plotted the experimental results described in four publications (Holt,
1941, 1959; Rodbard, 1955; Rodbard and Saiki, 1953) on a single
pressure-flow graph. It does not appear that the four curves agree
even qualitatively without the expenditure of considerable time and
effort to understand the graph. In an effort to clarify these relation-
ships, Conrad (1969) proposed a three-dimensional surface to encompass

P., P, and Q, with Pe fixed. Brower and Noordergraaf (1973) found that

i’ o

this three-dimensional surface was difficult to interpret, saw the need
for a uniform treatment of variables, and suggested the use of Q for

the independent variable; Pi'Po for the dependent variable, and Pe-Po
for the parameter. The rationale for the use of these variables will be

discussed subsequently.
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Let us take a closer look at the results of the aforementioned
experimental studies. The earliest data on pressure-flow relationships
in a collapsible vessel were obtained by Holt (1941) using thin walled
rubber tubes and also a canine jugular vein. He showed that when the
partially collapsed tube was being perfused, increasing inflow pressure,
Pi’ increased the rate of flow through the collapsible segment and
decreased its resistance to flow. Under the same circumstances of par-
tial collapse, lowering the pressure on the downstream side of the
collapsible segment, Po’ increased the resistance to flow through the
collapsible segment and either did not change the rate of flow, or
decreased it slightly. Increasing the chamber pressure, Pe’ around the
collapsible tube decreased the rate of flow and increased flow resist-
ance. In these experiments, the tube opened and closed periodically
when partially collapsed. This oscillatory phenomenon will be discussed
in another section, but it must be noted that these oscillations affect
the pressure-flow relationships of the collapsible vessels.

Although the data.obtained by Rodbard (1953) with the one tube
model generally confirmed the findings of Holt (1941), he further added
to the confusing number of variables when he devised an elaborate sys-
tem of tubes and resistances which he called a "capillaron" (Rodbard,
1963). In his capillaron model, a collapsible tube was mounted within
a chamber in which the pressure was regulated by varying the resistance
of a shunt flow from the inflow tubing. 1In this system, as upstream
pressure was increased, it tended to increase the flow through the

collapsible segment, but the pressure in the chamber increased also,
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and the increased chamber pressure tended to collapse the tubing and
thus 1imit flow. This experimental set-up was designed to explain
autoregulation of organs within non-compliant enclosing capsules, such
as the kidney. Rodbard suggested that increased filtration due to
increased capillary pressure may increase tissue pressure surrounding
capillaries and collapse them. His experiments established the fact
that flow through a collapsible vessel can be regulated by a passive
hydraulic device with the proper selection of pressures and resistances,
but they also increased the number of variables used for the pressure-
flow graphs.

In 1969, IEEE Transactions on Bio-Medical Engineering published a

symposium on veins, reflecting a revitalized interest in the phenomenon
of flow through collapsible vessels being taken by bio-medical engineers
and physicists. The detailed experiments of Conrad (1969), Moreno et al.
(1969), and Katz et al. (1969), all of whom published similar pressure-
flow data, exemplify this renewed interest. Conrad (1969) generated
three families of curves using the parameters Pe held con;tant, down-
stream resistance (Ro = 5%) held constant, and the ratio ﬁf held con-
stant. By systematic variation of these parameters, he was able to
elucidate some of the underlying mechanisms of flow through collapsible
tubes. The curves were plots of Pi'Po as a dependent variable of Q and
were of the general form of Figure 1.

Photographs (Conrad, 1969) of the tube showed the following:

In Region I, the tube was collapsed flat except for two small channels

which remained open at either side of the tube. In Region II, the
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collapse was asymetric along its length; the greater collapse was at
the downstream portion of the tube. In Region III, the tube was com-
pletely open.

The steep slope of Region I resulted from flow through the side
channels of the tube which was collapsed sufficiently to cause the
sides to come into contact with one another. As the parameter Pe was
increased, the initial slope and the maximum pressure difference, Pi-Po,
increased also.

In Region II, Pi> Pe>'Po’ and the slope was negative, implying
that the driving pressure decreased as flow was increased. Conrad
called this a "negative resistance region", and showed that the negative
slope of this region was proportional to outflow resistance Ro' Katz
et al. (1969) further showed that when flow increased, P, remained near-
ly constant, but Po increased rapidly, as could be expected with the use
of high outflow resistance. A little consideration of these facts
reveals that by holding Pe constant, and allowing Po to increase, that
Pe-Po, and thus transmural pressure was allowed to vary. Use of the
parameter Pe-Po held constant by Brower and Noordergraaf (1973) thus
eliminated this apparent contradiction of the negative resistance
region.

The valley point (vp), which is the transition from Region II to
Region III, occurs at higher flow rates when Pe is increased and/or Ro
is decreased. Using Conrad's (1969) definition of Po = ROQZ, and the
data which he supplied, it can be shown that flow at the valley point is

equal to the flow at which Po approximates Pe' Therefore, in Region III,
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the tube is open and the slope of the curve is similar to that of an
open rigid tube, much lower than that of Region I. The curves of
Conrad (1969), Katz et al. (1969), and Moreno et al. (1969) were dras-
tically different from any previously presented for pressure-flow
relationships of a collapsible tube.

Obviously, the presentation of data for direct comparison of
experimental results suffered from the presence of so many experimental
and extraneous variables. The continuing need for a reasonably simple
expression describing pressure-flow relationships for a collapsible
tube was answered in part by Brower and Noordergraaf (1973), who took
advantage of the fact that although there are three different pressures
(Pi’ Po’ and Pe), each independent, and three pressure differences
(Pi'Po’ Pi'Pe’ and Pe-Po), only two of these pressure differences are
independent. Brower and Noordergraaf (1973) chose the flow Q as the
independent variable and the parameters Pi-Po’ Pe-P0 as independent
variables. They recalculated the data of Conrad (1969), Katz et al.
(1969), and Moreno et al. (1969) to conform to the graphic form of P1.-PO
as a function of Q and Pe-Po. This eliminated the negative resistance
region of their curves. Brower and Noordergraaf (1973) then replotted
the data of Holt (1941, 1959), Rodbard (1955), and Rodbard and Saiki
(1953) using these new parameters, and were able to combine their data
into the same set of curves. Thus, Brower and Noordergraaf (1973) were
able to reconcile the apparently contradictory results of many earlier
reports of pressure-flow experiments. However, they stated that for

flow rates greater than 14 cc/sec, the pressure-flow relationships were
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uncertain due to lack of data. It is our intention to investigate
these higher flow rates because they in fact represent physiological

flow ranges.

Oscillatory Phenomena

A fascinating property of a collapsible tube is that when
Pi> Pe> Po’ pulsatile flow may occur under steady state conditions.

A possible mechanism of this phenomenon can be explained as follows.
Consider a segment of the tube at the downstream end, where Pe>»Po,
that is completely collapsed instantaneously by Pe' Then Q = 0 out of
the tube. When flow stops, continued inflow into the tube from the
upstream pressure source causes the pressure within the whole tube to
rise toward the level of Pi' This forces the tube open because Pi>'Pe'
When the tube opens and flow commences, the pressure immediately drops,
and the cycle begins again. This principle also operates in the
musical vibrations of reed instruments, and probably in the vocaliza-
tions of the larynx also (Rodbard, 1953).

Early investigators have noted these oscillations (Brooks and
Luckhardt, 1916; Holt, 1941; Brecher, 1952; Rodbard, 1953, 1955), but
quantification under controlled experimental conditions remained elusive.
Brecher (1956) reported oscillations of frequencies as low as 1 per 20
seconds and as high as a few hundred per second when using Penrose tub-
ing, and from 3 to 20 per second in animal experiments. Rodbard (1953)
speculated that these oscillations may be the cause of a variety of

cardiovascular vibrations: those associated with coarctation of the
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aorta; murmurs of arteriovenous anastomoses, patent ductus arteriosus
and aortic stenosis; and the Korotkoff sounds heard when arteries are
compressed during the measurement of blood pressure.

Conrad (1969) recorded oscillations which he found in the negative
resistance region of the pressure-flow curves that he plotted, and Katz
et al. (1969) programmed into their mathematical model a facsimile of
the oscillations of the negative resistance region. Since these curves
were plotted at constant Pe rather than constant transmural pressure,
these results apply to specific cases and are not generalizable.

Other mathematical treatments of oscillatory phenomena have sug-
gested that the cause may be that mean flow velocity has exceeded the
sonic velocity, i.e., the velocity of pressure waves on the tube
(Griffiths, 1971; Oates, 1975a; Brower and Scholten, 1975), but Conrad
et al. (1978) refute this mechanism as a cause of oscillations. Whether
or not oscillations may exist in the vessels of the microcirculation
remains controversial. Conrad's (1973) calculations show that under the
flow conditions of the microcirculation (low Reynolds number flow
oscillations may be present, while Fung (1973) calculates that such
oscillations cannot exist in the vessels of the microcirculation. Our
intention is to provide quantification of these oscillations under con-
trolled experimental conditions at both high and low Reynolds number
flow, and under conditions simulating a variety of physiological

stresses to which blood vessels are subjected.
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Modeling of the Cross-sectional Shapes of Collapse

When a segment of a blood vessel collapses to an elliptical cross-
sectional shape, i.e., buckles, resistance to flow through that segment
increases more than might be predicted by the change in cross-sectional
area alone. For a vessel of elliptical cross-section, resistance is a
complex function of both area and cross-sectional shape (Langlois, 1964).
For mathematical modeling of pressure-flow relationships of collapsing
vessels, it has therefore been necessary to know their cross-sectional
dimensions at varying transmural pressures. Measurements of the cross-
sectional dimensions of Penrose tubing have been obtained (Brooks and
Luckhardt, 1916; Reddy et al., 1970), and recently, Attinger (1969) and
Reddy et al. (1970) have measured the cross-sectional dimensions of
veins in vitro. This data has not always been applied to the development
of the mathematical models.

Mathematical models of the collapse phenomenon, or buckling, have
been developed by Katz and Chen (1970) and Moreno et al. (1970), Kresch
and Noordergraaf (1972) and Flaherty et al. (1972). Katz and Chen

(1970) and Moreno et al. (1970) developed programmable equations for the

collapse phenomenon by applying the mathematical theory of bending move-
ments. Their assumption of constant perimeter, with bending as the only
mechanism for increase in cross-section, is contrary to the finding of
Reddy et al. (1970) who noted that stretching as well as bending is an
important mechanism for increases in cross-sectional area of veins.

Kresch and Noordergraaf (1972) reduced the problem to determining

the shape of a uniformly collapsed isotropic tube with zero longitudinal
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stress. The condition of constant cross-sectional shape along the
length of the tube is severely restrictive, and the assumption of zero
longitudinal pre-stress is not in keeping with physiological data
(Yates, 1969; Moreno et al., 1970).

Flaherty et al. (1972) also formulated programmable equations for
a wide range of transmural pressures, taking into account the fact that
vascular collapse may be multi-lobular. A multi-lobed collapse due to
anatomical tethering appears to be possible because Reddy et al. (1970)
noted a three-lobed collapse in vitro that was caused by the end con-
straints on the vein. They further calculated flow conductance of an
incompressible fluid through a collapsed vessel as a function of trans-
mural pressure and number of lobes of collapse.

While knowledge of cross-sectional shape is necessary for mathe-
matical modeling, it is not needed for physical modeling. The experi-
mental transmural pressures and flow rates determine the cross-sectional
dimensions of the tube. For this reason, data for cross-sectional

dimensions need not be collected.

Mathematical Modeling of Pressure-flow Relationships
in Collapsible Vessels

Perhaps the earliest and simplest mathematical model of flow
through collapsible vessels was the "waterfall model" formulated by
Permutt et al. (1962). However, the use of digital and analog computers
has led to more sophisticated models. Attempts to use these computers

to model and analyze the entire cardiovascular system have led to the
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realization that the constituents of the system require more accurate
representation (Moreno et al., 1969).

In keeping with this need for definition and understanding of
specific components of the system, investigators of hemodynamics of the
venous system have formulated mathematical models of an individual seg-
ment of vein (Kresch and Noordergraaf, 1969) and a collapsible tube
(Oates, 1975a, 1975b; Mahrenholtz, 1974; Katz et al., 1969). The pur-
pose of this modeling is to gain insight into the behavior of intercon-
nected segments of veins, and then the entire venous system.

Kresch and Noordergraaf (1969) were the first to base their analy-
sis on the linearized Navier-Stokes equations of incompressible viscous
fluid flow, which they modified by a cross-sectional shape factor
developed from wave transmission theory. The resulting model considered
fluid inertia, resistance to flow, and vascular compliance.

Another recent theory for flow through collapsible tubes, proposed
by Katz et al. (1969), was based on empirically derived laws of fluid
mechanics for nozzle flow, and it included a nonlinear convective
acceleration term. In this model, cross-sectional area was based on
experimentally determined transmural pressure versus area relationships
for Penrose tubing. In computer simulation of this mathematical model,
the connecting elements used in series with the Penrose tubing of the
physical model were also simulated, resulting in curves similar to those
of Conrad (1969), Katz et al. (1969), and Moreno et al. (1969), that
show a region of apparent negative resistance, which Brower and
Noordergraaf (1973) later showed was not a property of the collapsible

tube itself, but of the connecting elements in series with the tube.
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The major difficulties of mathematical modeling flow through
collapsible vessels are the non-conventional cross-sectional geometry
of the tube and the non-linearity of fluid behavior. The use of 9 vari-
ables and ten system parameters by Katz et al. (1969) for their model
was not adequate to describe the myriad of additional phenomena to which
flow through collapsible vessels is subjected. In this regard, no
presently available model can without additional data.

Brower (1970) attempted a mathematical model encompassing changes
in tension or longitudinal pre-stress, length and diameter of tubing,
and viscosity. He used for his mathematical model short lengths of
tubing of rectangular cross-section and assumed boundary layer separa-
tion in the divergent portion of the immediate post-collapse segment of
the collapsible tubing. Except for changes due to fluid viscosity, the
changes that Brower attempted to model mathematically have been general-
ly ignored by both theoretical and experimental investigators even
though they represent important physiological phenomena. Our plan is to
utilize the physical model to generate quantitative data for the effects

of length, longitudinal pre-stress, and stretch.

Physical Modeling of the Microcirculation

When Permutt (1962) applied his Starling resistor model to the
microcirculation, he assumed that pressure-flow data obtained from water
perfusion of large diameter tubing applied equally well to miniature
blood perfused vessels. The non-1inear Navier-Stokes equations for

viscous flow indicate that the instabilities observed with flow through
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large collapsible vessels may disappear as the diameter of the vessel
becomes so small that viscous effects dominate inertial effects.
Whether or not flow is stable (laminar) or turbulent can be predicted
from vessel diameter, mean flow velocity, and the density and viscosity
of the fluid. These parameters can be expressed by a dimensionless

quantity, the Reynolds number:

Re = VD _pVD (7)
AY n

where Re = Reynolds number (unitless)

<|
"

average velocity in cm/sec
D = diameter of the tube in cm
p = fluid density in Gm/cc

n = viscosity in poises

v = % = kinematic viscosity in stokes.

Modeling theory states that flows with the same Reynolds number
demonstrate the same flow characteristics. Therefore, if the diameter
of the vessels of the microvasculature cannot be utilized for physical
modeling, the Reynolds number corresponding to microvascular blood flow
still can be estimated and approximated by increasing the viscosity of
the perfusing fluid. In this way, the pressure-flow relationship for a
given Reynolds number can be measured and applied to flow of the same
Reynolds number in the microcirculation.

Physical modeling with high viscosity fluids has been minimal.
Holt (1969) perfused Penrose tubing with 0.125 stokes fluid and achieved

a Reynolds number of 130 at low flow rates. He reported only that
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increasing viscosity resulted in an increased cross-sectional area of
the tubing at any given flow rate. In an effort to model pulmonary
alveolar blood flow, Fung and Sobin (1972) perfused 2 cm diameter tubing
with 300 poise fluid at a flow velocity of 3 cm/sec and thereby achieved
a Reynolds number of 0.02, which is comparable to that in the pulmonary
capillary bed. Photographs of the tube taken over extended periods of
time revealed no flutter but a slight constriction at the outflow end
of the tube. Because quantitative pressure-flow data for low Reynolds
number flow is entirely lacking from the literature, we expect that the
data we will generate from physical modeling with high viscosity fluids
will supply much needed information for the development of theory of

pressure-flow patterns of the microcirculation.



IV. STATEMENT OF OBJECTIVES

From the preceding discussion, it is apparent that further

experimentation is needed in the following areas:

1) Pressure-flow relationships for flow ranges above 4 cc/sec
during water perfusion to simulate venous blood flow.

2) Pressure-flow relationships simulating the effect of increas-
ing tissue pressure, outflow resistance, length, tension,
stretch, diameter and changes in composition of blood vessels.

3) Pressure-flow relationships during perfusion with high
viscosity fluid that simulate the flow in the microcirculation.

4) Quantification of the oscillatory phenomenon and its effect
on pressure-flow relationships under the above controlied
experimental conditions.

5) In vitro pressure-flow relationships of large and small veins.

The goal of this experimental research is to provide such

information.
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V. METHODS

The physical model (Figure 2) used in the present study consisted
of flexible latex Penrose tubing (American Hospital Supply, McGaw Park,
IL) enclosed in an air-tight transparent Plexiglas box. The Penrose
tubing was 1.27 cm in diameter when expanded, 7.5 cm long, and had a
wall thickness of 0.032 cm. Within the box, the tube was mounted at
both ends on rigid cylindrical metal tubes of 1.27 cm inner diameter,
having a wall thickness of 0.05 cm. The tubing was mounted horizontally
and was strain free longitudinally unless otherwise noted. The plane of
collapse due to residual strains of the manufacturing process was posi-
tioned horizontally. Pressure ports, for the measurement of inflow
pressure (Pi) and outflow pressure (PO) were located outside the box on
the metal tubing, 8.5 cm from either end of the collapsible tube. The
pressure in the box (Pe) was modified by the use of a hand-held rubber
bulb pump connected by latex tubing to a port in the box. The Pe pres-
sure cannula was inserted into the box through an air-tight needle hole

in this latex tubing. P_, P., and P° pressure measuring cannulae were

e’ i

polyethylene tubing (PE 60), 80 cm long, filled with distilled water,
connected to Statham low volume displacement transducers (P23Gb)

(Hato Rey, Puerto Rico) and coupled to a Hewlett-Packard (7796 Model
1065C) (Waltham, MA) direct writing oscillograph and an Esterline Angus-

XY recorder (Model 575, Indianapolis, IN). A1l pressure transducers

37



38

RECORDER X-Y PLOTTER

COLLAPSIBLE
TUBE

AIR-TIGHT BOX

PUMP

Figure 2.

Starling resistor model for perfusion with water. Pressure
ports for the measurement of inflow pressure (Pi)’ outflow
pressure (P,), and the pressure in the box (Pe), are located
outside of ghe air-tight box. Upstream resistance (Ri) and
downstream resistance (R ) consist of screw-clamps on latex
tubing. Q represents £18w measured by the flow-meter.
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were calibrated with a mercury manometer using fluid pressure during
zero flow as the zero reference point. The Hewlett-Packard electronic
mean was used for all pressure-flow measurements. Oscillations of the
tubing were quantified for pressure amplitude and frequency by use of
the Hewlett-Packard electronic low filter setting and expansion of the
time scale.

Resistances upstream to the Pi pressure port (Ri) and downstream
to the Po pressure port (Ro) were controlled by screw clamps on latex
tubing, 1.2 cm inner diameter. This latex tubing extended 8.5 cm from
the P0 pressure port to an outflow reservoir and it produced minimal
outflow resistance (approximately 1 mmHg/80 cc water/sec.). Unless
otherwise stated, R 1is non-constrictive. Outflow resistance (Ro) down-
stream to the P0 pressure port was applied when stated by tightening
the screw clamp of the outflow tubing so that it formed a near elliptical
cross-section, the size of which was measured by the size of its minor
axis.

Markings were etched into the sides of the rigid mounting tubes at
1 cm intervals so that either the length or the amount of longitudinal
strain of the Penrose tubing could be controlled and modified. To study
the effects of vessel length, a section of tubing was cut shorter in 1
centimeter decrements and the distance between the mounting tubes was
shortened accordingly. The effects of pre-stress and stretch were
studied by taking 4%, 7%, and 10) cm lengths of tubing and pre-stressing
them to 3 cm longer than manufactured length. The effects of stretch

were also studied by mounting a 4% cm section of tubing and increasing
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the distance between the mounts by 0.5 to 1 cm increments, and securing
them in place.

For water perfusion experiments, a pressure-dependent centrifugal
pump (Little Giant Pump Company, Okalhoma City, OK) capable of deliver-
ing from less than 1 cc/sec up to 80 cc/sec of non-pulsatile flow was
employed to recirculate room temperature water through the system.

Ri served to modify the flow rate. Flow rate was measured upstream to
P, by a flow-through flow probe (3/16 inch diameter) (BLC-2048) con-
nected to a BL-610 Pulsed Logic Flowmeter (Biotronex Laboratory, Inc.,
Silver Springs, MD), also coupled to the oscillograph and XY recorder.
The zero flow setting was obtained by stopping the pump, clamping the
latex tubing in front of the flowmeter, and waiting for stabilization;
calibration was obtained from fifteen second timed collections which
demonstrated that the flow meter output was linear. Zero drift was
less than 0.1 cc/sec during the time necessary to plot a curve and the
zero flow setting was checked immediately before initiating flow.
Calibration checked at the end of the experiments was found to vary less
than 1%.

Because there were high amplitude fluctuations of PO when the
Penrose tube oscillated, a "windkessel" chamber was used during water
perfusion experiments to dampen the pulse of the Po measurements. It
consisted of a 1.5 cc water filled latex bulb chamber connected in
series by a T-tube to the pressure transducer at its junction with the
P0 cannula. This compliance chamber was tested at low amplitude fluc-

tuations (+ 10 mmHg) and produced the same mean pressure as when the
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Hewlett-Packard electronic mean was used without the compliance chamber.

The method of experimentation used in this study was to initiate
a low flow rate through the system. Pressure in the box was adjusted to
a predetermined level of Pe'Po for each curve. As flow was increased in
small step-wise increments, slight changes of Pe were necessary to main-
tain Pe-Po at a constant level. With Q as the independent variable,
Pi'Po was chosen as the dependent variable to allow comparison with dafa
obtained from physiological experimentation. This method was used by
Brower and Noordergraaf (1973) and it allows a more compact presentation
of data because it makes use of the fact that although there are three
different pressures, there are only two independent pressure differences.
A11 data points were graphed immediately via the XY recorder, which
also served as an analog computer of Pi'Po and Pe-Po. Data points were
then recalculated and replotted when necessary.

Dow Corning Series 200 silicone fluid (0.5 stokes and 10 stokes)
was used to study the effects of viscosity. The experimental setup was
modified to consist of a reservoir filled with fluid which was pumped
by a powerful Sigma-motor positive displacement pump designed to deliver
constant flow against high back pressure (35# torque, 1-400 rpm).

Tubing from the pump led to an inverted 1 quart Ball glass jar with a
rubber stopper held by a bail top. Inflow and outflow tubing were
inserted through the metal stopper. This jar served as a pressure
chamber which effectively extinguished the pulse of the pump and drove
flow through the experimental tubing. As it passed through the experi-

mental apparatus, fluid dropped from the outflow tube of the model into
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a reservoir atop a Toledo scale counterbalance. The counterbalance
served to quantify flow. Changes in weight during a timed collecting
period were optically recorded* and then the necessary adjustment for
specific gravity of the silicone fluid was calculated. Both the Sigma
motor pump and the centrifugal pump were used and comparable data
resulted from both methods of pumping fluid, therefore data resulting
from both pumping methods were combined for the representative 0.5
stoke graph.

The elements in series with the collapsible tubing furnished con-
siderable resistance to high viscosity flow, and it was necessary to
adjust for this. The resistance of the elements exclusive of the col-
lapsible tube was determined experimentally and found to be within 2%
of that determined theoretically. Therefore, for any given flow rate,
the level of Pe-Po was increased to take into account the theoretical
pressure drop across the metal mounting tube from the end of the col-
lapsible tube to the point at which Po was measured. The true P1.-Po
was computed by subtracting the theoretical pressure drop across the
rigid mounting tubing from the recorded Pi'Po'

Penrose tubing of 0.633 cm diameter, and dialysis tubing (Arthur
H. Thomas Co., Philadelphia, Pa.) of 1.58 cm diameter were used to

determine the effect of different quality and diameter of tubing.

Reliability of timing and reading of the Toledo counterbalance was
tested with the lowest, highest and medium constant flow rates of the
pump. Readings were accurate to within 10%. When data was being col-
lected, two readings were taken at each experimental flow rate. If the
readings differed by more than 10%, a third reading was taken.
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The 1.58 cm diameter tube was mounted on the 1.27 cm rigid tubes. The
0.635 cm tubing was mounted on 0.635 cm internal diameter rigid tubing.
To maintain the length-diameter ratio that was used for the general
characteristics of the 1.27 cm diameter tubing, the 0.635 cm tubing was
of 3.25 cm length. The distance from the flowmeter to the Pi pressure
port was 10 cm, and from the pressure ports to collapsible tubing was
2 cm. The outflow tubing was 10 cm long and 0.635 cm internal diameter.
For the study of veins, equine jugular veins of 7.5 cm length, and
equine cephalic veins of 3.5 cm Tength were used. These veins were free
of valves and side branches, exhibited very little taper, and were
approximately 1.3 cm and 0.64 cm respectively in diameter when the horse
was in the lateral recumbent position. Before the vein was dissected
free from its connective tissue sheath, it was catheterized with poly-
ethylene tubing and then carefully tied to the tubing so that the physio-
logical length-tension relationship of the vein was maintained. Immedi-
ately after removal from the horse, the vein was mounted on the corre-
sponding size of rigid tubing within the warm, humidified box, the
catheterizing tubing was removed, and the vein was perfused in the
physiological direction of flow. A gas mixture of 95% 02, 5% CO2 was

bubbled through the perfusate of either Ringer's bicarbonate* solution

*Ringer's Bicarbonate Solution

46.5 Gm. Sodium Chloride 128 meq.
11.4 Gm. Sodium Bicarbonate 22 meq.
0.85 Gm. Magnesium Chloride 2 meq.
1.8 Gmn. Potassium Chloride 4.2 meq.
5.0 Gm. Calcium Gluconate 5 meq.

Distilled water quantity sufficient to make 6 liters.
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or stirred equine blood with 5,000 units Sodium Heparin added per liter.

Both fluids were kept at 37°C.



VI. RESULTS

General Characteristics

A representative graph of the pressure-flow relationships of 1.27
cm diameter Penrose tubing held at manufactured length (7.5 cm) during
water perfusion, is presented in Figure 3. For many of these curves,
there are three distinct phases: an initial sharply rising phase, a
plateau phase, and a late rising phase, of lower slope than the initial
rising phase.

The slope of the initial rising phase increased as the parameter
Pe-P0 was increased. During the initial rising phase, at flows less
than 6 cc/sec, the tube had the appearance of a flattened tube with
small round side channels. As flow approached 6 to 8 cc/sec., the
length of the flattened area gradually decreased until, at the beginning
of the plateau phase, only the outflow region of the tube appeared to be
"pinched" closed and the tube began to open and close intermittently.
When Pe-Po was held constant at low levels, these self-excited oscilla-
tions (flutter) became increasingly more vigorous as flow was increased
(Table 1). Pi'Po stabilized during the plateau phase at approximately
the level of Pe-Po. At flows greater than 20 cc/sec the curves again
began to rise. This late rising phase appeared at higher flow rates

for higher Pe-Po and was not noted at all when Pe-P0 was held at 50mm Hg.

45
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Table 1. The Effect of Pe-P, and Flow on Frequency and Pressure Ampli-
tude of Oscillations

Pe-PO Flow Amplitude Frequency Pi-P0 Flow Amplitude Frequency Pi—P0

mm Hg jjcc/sec | mm Hg Hz mm Hg || cc/sec { mm Hg Hz mm Hg
0 16 -- -- 1.4 50 31 5.25 1
10 16 1 5.5 11.0 50 16 7.0 16.8
30 16 1 10.5 31.5 50 1 10.25 33.6
50 16 1 14.5 50.7 50 1 13.0 52.9

It was also noted that the amplitude of the flutter-caused pressure
fluctuations increased during the late rising phase. Reynolds number
for this data based on tubing diameter, maximum flow rate, and average

velocity of flow ranges from zero to 6,000.

The Effect of Oscillations when Pg-P5 = 0

When Pe-P0 was held at zero, oscillations of the tube occurred at
flow rates greater than 20 cc/sec. These oscillations were sustained as
flow was incrementally increased, but they could easily be discontinued
by a slight temporary increase in Ro' The effect of these oscillations
(Table 2) was to greatly increase the required inflow pressure (Pi'Po)’

for any given flow rate.
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Table 2. Oscillatory Flow When Pe-P0 =0

Oscillatory Non-Oscillatory
Flow ‘AmpTlitude Frequency Pi-P0 Pi-P0
cc/sec mm Hg Hz mm Hg mm Hg
16 -- -- -- 1.4
23 12 3.0 4.5 2.5
50 31 5.25 11.0 4.0

The Effect of Outflow Resistance

Raising outflow resistance (Ro) downstream to the Po pressure
port, had the effect of increasing the value of all pressure measure-
ments. However, with Pe-Po held constant, this outflow resistance
effectively reduced the frequency and the pressure amplitude of the
flutter, and consequently decreased the slope of the late rising phase.
Table 3 summarizes the flutter data of a representative experiment at
Pe-Po = 16 mm Hg. A graph of a representative experiment at Pe-Po =10

mm Hg is shown in Figure 4.

Table 3. The Effect of Outflow Resistance on Frequency and Pressure
Amplitude of Oscillations

pe-po = 16 mm. Hg. Flow rate = 75 cc/sec

Inner Minor Po Frequency Amplitude P.-P
Axis (mm.) mm. Hg. Hz. mm. Hg. meh . HY .
12.7 (round) 1 15 19-24 26
1.5 6 14 5 18
0.5 42 12 3 18
Minimum 58 1 1 16.5
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The Effects of Length, Longitudinal Pre-stress,
and Stretch

The effects of length, longitudinal pre-stress, and stretch were
tested at Pe-P0 = 16 mm Hg because the changes in the slope of the late

rising phase of the curves seemed to be maximal at low levels of Pe-Po.

Length

An experiment with different lengths of tubing with no stretch
resulted in the graph of Figure 5. Changes in length affected both the
initial and late rising phases. During the initial rising phase, the
2.5 cm length of tubing was held partially open by the end constraints,
resulting in a very low pressure gradient at flows less than 25 cc/sec.
For the 2.5 cm length, no flutter, only a four-lobed constriction, was
noted at all flow rates. This effect of the end constraints was also
apparent in the initial rising phase of the curve for the 3.5 cm segment
of tubing. The pressure difference of the late rising phase reached a
maximum at a length of 5.5 cm. At lengths greater than 5.5 cm, the
slope of the late rising phase decreased with length. Representative

flutter data for lengths greater than 4.5 cm is presented in Table 4.
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Table 4. The Effect of Length of Vessel on Frequency and Pressure
Amplitude of Oscillations

Pe-P, = 16 mm Hg.

27 cc/sec 75 cc/sec

Length |Frequency [Amplitude| P.-P Frequency | Amplitude | P.-P
cm. Hz. mm Hg. | mh HY. Hz. mm Hg. |mh H3.
2.5 0 0 2 0 0 16
4.5 0 0 16 11 7 24
5.5 0 0 18 12 26 43
6.5 8 1 18.5 12 24 4]
7.5 8 3 19 11.5 25 39
10.5 8 1.5 18 8 28 31.5
13.5 8 2 17.5 9 16 27

Longitudinal Pre-stress

A representative graph demonstrating the effect of longitudinal
changes in pre-stress (tension) while length is held constant, is pre-
sented in Figure 6. Longitudinal pre-stress decreased the slope of the
initial rising phase as compared to the same length unstressed.
Increased longitudinal tension, which resulted from pre-stress probably
decreased the compliance of the tube for cross-sectional changes and so
the end constraints tended to keep the tubing open, and this decreased
the slope of the initial rising phase. This effect was more marked
with shorter lengths. Longitudinal pre-stress increased the pressure
amplitude of the flutter and increased the slope of the late rising
phase when compared to the same length unstressed. The effect of longi-

tudinal pre-stress on flutter is presented in Table 5.
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The Effect of Longitudinal Pre-stress

Pressure Amplitude of Oscillations

on Frequency and

Pe-P0 = 16 mm Eg.

Flow rate =75 cc/sec

Manufactured Experimental Frequency Amp1i tude P;i-Po
Length cm Length cm Hz mm Hg. mm Hg.
13.5 13.5 8.8 29 27
10.5 13.5 8.5 63 39
10.5 10.5 9.3 38 31

7.5 10.5 10.1 43-58 41.5

7.5 7.5 10.8 20-30 33

4.5 7.5 11.2 52-54 54.5
Stretch

The effect of stretch was quantified by taking a 4.5 cm. length
of tubing and recording the characteristics when it was stretched to
5.5, 6.5, 7.5, 8.5, and 9 centimeters length. In this manner, both
longitudinal stress and stretched length were increased concommitantly.
Whereas for the previous experiments, the changes were reasonably con-
sistent, the results obtained for stretch, which is a combination of
longitudinal stress and length, were less so. Therefore, a statistical
analysis of the pressure gradient at a flow rate of 74 cc/sec was under-
taken (Table 6). This analysis demonstrated that at this high flow rate,
the pressure gradient increased as the tube was stretched from 4.5 to

7.5 cm. When stretched to 7.5 cm., the tube existed in either one or
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Table 6. The Effect of Stretch on Resistance.

(n = 25)

Pe-P0‘= 16 mm Hag. Flow rate = 74 cc/sec

Manufactured Experimental P.-Po Pi'Po Resistance
Length Length méan s.d.

Cm. Cm. mm Hg. mm Hg. | mm Hg/cc/sec

4.5 4.5 25.9* 2.4 0.35
4.5 5.5 38.5* 2.5 0.52
4.5 6.5 56.1* 3.2 0.76
4.5 8.5 42.0* 1.6 0.57
4.5 9.0 43 .9* 0.9 0.59

*
P<0.05

the other of two distinct states: a high resistance state of vigorous
flutter (mean P].-Po = 52.6 mm Hg), or a lower resistance state of less
vigorous flutter (mean Pl.-P0 = 36.5 mm Hg). Stretched to 8.5 cm. and
9 cm., the resistance of the tube increased incrementally from its lower
resistance state at 7.5 cm. As can be seen from Figure 7, stretch also
decreased the slope of the initial rising phase. The effect of shorten-
ing the tube shorter than manufactured length was to cause either kink-
ing or intussusception. When the tube kinked, either a partial or
complete blockage of flow resulted. Intussusception decreased flutter
and decreased the slope of the late rising phase, probably by the
mechanism of increased outflow resistance.

Analysis of variance (Table 7) was performed on the raw data of

the stable stretched lengths. Tukey's multiple comparisons between all
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Table 7. Analysis of Variance: The Effect of Stretch on Resistance.
Pe-P° = 16 mm Hg, Flow Rate of 74 cc/sec.

ANOVA
Sum of

Source df squares Mean square F
Treatment 4 89,101.2 22,275.5 586.8*
Error 120 4,555.3 38.0
Total 124 93,656.6
%*

P< 0.005

stable means proved significant (p<0.05). Table 8 summarizes the data
obtained from a representative experiment to elucidate the effect of
stretch on frequency and pressure amplitude of flutter. It shows that
the pressure amplitude of the flutter of the stretched tubing was always
greater than that for the unstretched tubing.

Table 8. An Example of the Effect of Stretch on Frequency and Pressure
Amplitude of Oscillations

Pe-Po = 16 mm Hg. Flow rate = 75 cc/sec
Manufactured Experimental Frequency Amp1itude P.-P
Length Length Hz mm Hg. mh H8.

Cm Cm
4.5 4.5 11 6-8 26.8
4.5 5.5 10.25 24-30 33.5
4.5 6.5 12.25 58 63
4.5 7.5 11.25 47 51.8
4.5 7.5 9.7 9-26 33.3
4.5 8.5 11 12-47 40
4.5 9.0 4.1 7-50 44.3
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The Effect of Viscosity (0.5 Stokes)

A representative graph of the pressure-flow relationships of 7.5
cm Penrose tubing held at manufactured length, during perfusion with
0.5 stokes fluid is presented in Figure 8. Note the continued presence
of the initial rising phase with zero pressure intercept, for flow rates
less than 3 cc/sec. Although flows up to 60 cc/sec were measured, the
results are not presented in the graph because an increase of slope at
high flow rates (third phase) was never observed. Flutter was initiated
precipitously at 20 to 30 cc/sec and was of comparable frequency, but
much lower pressure amplitude at any given flow rate when compared with
the flutter observed during water perfusion (Table 9). Linear regres-
sion for the slopes of these curves at flow rates greater than 10 cc/sec

yielded these slopes:

Pe-P, = 10 mm Hg, 0.118 mm Hg/cc/sec.
Pe-P, = 15 mm Hg, 0.155 mm Hg/cc/sec.
Pe-P0 = 30 mm Hg, 0.105 mm Hg/cc/sec.
Pe-Po = 60 mm Hg, 0.181 mm Hg/cc/sec.

These slopes are two to four times the slope calculated from Poiseuille's
law for the open Penrose tube (0.041 mm Hg/cc/sec) perfused with 0.5
stokes fluid. The resistance of the open tube to this fluid determined
experimentally was 0.0537 mm Hg/cc/sec. Neither outlet resistance nor
removal of the end piece distal to the Po port caused any apparent
change in this slope. The cross-sectional shape of the tube during the

early rising phase of the curves varied from round at the inflow end,
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Table 9. The Effect of Viscosity on Frequency and Pressure Amplitude
of Oscillations

Po-P, = 10 mn Hg.

e
Viscosity Flow Amp1itude Frequency P.-
in stokes cc/sec. mm Hg. Hz mh H8
P Po
0.01 16 1 * 5.5 n
0.50 14.5 0 12 6.0 10.8
10. 14.5 0 0 0
0.01 50 16 * 7 16.8
0.50 52 4 9 8.2 15.5

*
Po amplitude too great to measure.

to oval in the center, and flattened at the outlet. As flow was gradual-
ly increased from 3 cc/sec up to the flow at which flutter was initiated,
a construction of the tubing at the outlet was observed. Maximum

Reynolds number based on tubing diameter, maximum flow rate, and average

velocity of flow for this data was 110.

The Effect of Viscosity (10 Stokes)

A representative graph of the pressure-flow relationships of 7.5
cm Penrose tubing held at manufactured length, perfused with 10 stokes
fluid is presented in Figure 9. Both the initial rising phase and the
late rising phase are absent. No flutter of the tubing was ever ob-

served during these experiments. When the tube was empty and collapsed
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Figure 9. Pressure-flow relationships of 7.5 cm Penrose tubing during
perfusion with 10 stokes fluid.
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by the pre-set Pe’ and fluid was pumped into the tube at a very low
flow rate, the tube gradually opened from the inflow end toward the
outflow end, and it was not until then that fluid began to exit from
the outflow tubing. Throughout the entire flow range, the outflow end
of the tube remained somewhat constricted. Linear regression yielded

the following results:

For Pe-Po = 60 mm Hg., Y = (1.26X + 60.03) mm Hg.
For Pe-P0 = 30 mm Hg., Y = (1.16X + 31.42) mm Hg.
For Pe-Po = 10 mm Hg., Y = (0.92X + 8.16) mm Hg.

(Y is the level of Pi'Po’ X is the flow rate)
These slopes are somewhat higher than the slope calculated from
Poiseuille's law for the open Penrose tube perfused with this fluid,
0.829 mm Hg/cc/sec. The resistance of the open tube to this fluid,
determined experimentally, was 0.848 mm Hg/cc/sec. Maximum Reynolds
number based on tubing diameter, maximum flow rate, and average velocity

of flow for this data was 2.6.

Effects of Diameter and Tubing Composition

The pressure-flow relationships of the water perfused 0.635 cm
diameter, 3.25 cm length Penrose tubing, mounted upon 0.635 cm internal
diameter rigid tubing demonstrated an interesting effect of tubing
diameter (Figure 10). The initial rising phase of the curves was
steeper, and the plateau phase began earlier, at approximately 5 cc per

second, at Pi-P0 always lower than Pe-Po. Flutter of the tubing was
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noted at the beginning of the plateau phase and continued as flow was
increased. The steep curve of the late rising phase also began at lower
flow rates than when 1.27 cm diameter tubing was used, at a flow rate

of approximately 8 cc/sec, while P1.-P° was still less than Pe-Po. The
Reynolds number for water perfusion at 20 cc/sec of the 0.635 cm
diameter tubing is 4,000.

Water perfusion of dialysis tubing, 1.58 cm diameter, 7.5 cm
length resulted in the graph presented in Figure 11. The zero flow
pressure intercept was approximately at Pi-P0 = Pe-PO. The curve at
flow rates less than 5 cc/sec was slightly convex to the pressure axis;
at higher flow rates up to 77 cc/sec, the pressure-flow relationship

appeared to be linear. At all flow rates above 5 cc/sec, a low intens-

ity flutter of the tubing was apparent.

Pressure-flow Relationships of Veins

The pressure-flow relationships of an equine jugular vein, 7.5 cm
in length, 1.3 cm diameter, perfused with blood, are presented in
Figure 12. The graphs of the jugular veins perfused with blood and
those perfused with Ringer's bicarbonate solution were qualitatively
identical. Neither the Ringer's perfused, nor the blood perfused veins
demonstrated a zero pressure-flow intercept for Pe-P0 greater than zero.
The graph demonstrates that there was total closure of the vein at
Pi-Po<<Pe-Po, when Pi <Pe. At Pi<<Pe, and in the very low flow ranges

(1ess than 5 cc/sec), a three lobed collapse was observed. At flow
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rates greater than 5 cc/sec, the vein was seen to undergo a relatively
weak flutter.

Perfusion of equine cephalic veins, 3.5 cm length, 0.64 cm
diameter, with Ringer's bicarbonate solution resulted in the graph of
Figure 13. When Pe'Po was held at 8 mm Hg, there was a zero pressure-
flow intercept. The curve showed an initial rising phase, convex to
the pressure axis for flows less than 10 cc/sec. When Pe-Po was held
at 15 mm Hg, the zero flow intercept was approximately 7.5 mm Hg; at
Pe-P0 = 20 mm Hg, the zero flow intercept was approximately 11 mm Hg.

In other words, flow began when Pi was from 7.5 to 9 mm Hg less than Pe'
A11 three curves demonstrated a relatively steep initial rising phase,
followed by a plateau phase, the slope of which is slightly greater than
the slope of the pressure-flow relationship when Pe = 0. At flow rates
greater than 30 cc/sec, there was a tendency for the slopes to increase,
suggesting the presence of a third phase of pressure-flow relationships.
A three lobed collapse was noted in the low flow ranges (zero to 5

cc/sec) and flutter was noted at all flow rates above 10 cc/sec.
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VII. DISCUSSION

The non-1linear pressure-flow relationships of collapsible vessels
have been described by both a mathematical waterfall model (Permutt
et al., 1962) and a physical model using a Starling resistor.
Unfortunately, the predictions of pressure-flow relationships based on
the two models do not seem to be in agreement with each other. The
present work studies in depth the properties of flow through the
Starling resistor model and compares the results to the waterfall model.
For these experiments, blood flow through collapsible blood vessels was
simulated by pumping fluid through a segment of Penrose tubing inside a
pressurized box, and the relationship between external pressure (Pe),
inflow pressure (Pi)’ outflow pressure (Po)’ and flow (Q) was investi-
gated. The pressure gradient (Pi-PO) was plotted as a function of Q at
various constant values for Pe-Po. An objective of this present study
was to determine which model more closely approximates venous behavior,
and toward this end, pressure-flow relationships of in vitro veins were

also measured.

Comparison of Models

The pressure-flow relationships of the Penrose rubing Starling
resistor model show that at Tow flow rates, where Pe> Pi>'Po’ the

initial steep slope of the curves increased as the parameter Pe-Po

69
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increased. This data confirms the predictions of Brower and
Noordergraff (1973). In this flow range, the pressure-flow relation-
ships were also similar to those reported by Conrad (1969), Katz et al.
(1969), and Moreno et al. (1969). This might be expected even though
the aforementioned investigators held Pe constant, while Pe-Po was held
constant for this investigation. This similarity is accounted for by
the fact that in this flow range Po is Tow, so the difference between
Pe and Pe-Po is minimal. This early rising phase is not predicted at
all by the waterfall model, and reasons for this will be discussed
subsequently.

At flow rates of approximately 6 to 8 cc/sec, the curves leveled
off to a plateau, the second phase. As the parameter Pe-Po was in-
creased, this second phase began at lower flow rates. Although the
pressure-flow relationships in these flow ranges are similar to the
theoretical curves of Brower and Noordergraaf (1973) and those of the
waterfall model, they are strikingly different from those of Conrad
(1969), Katz et al. (1969), and Moreno et al. (1969). Three dimensional
pressure-flow surfaces for both the mathematical waterfall model
(Figure 14) and the Starling resistor physical model (Figure 15) will
serve to clarify the differences between the two models at these flow

rates.

The Waterfall Model

On the axes of this three dimensional graph are Q extending across
the page, Pi-P° extending upward, and Po coming out of the page. The

parameter Pe is held constant. Note that there are sharp transitions
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between the three flow regimes proposed by Permutt et al. (1962). The
lower portion of the figure represents the flow regime of the fully
expanded tube, when Pi> Po> Pe and

P.-P
- 1 0
Q - R . (])

The no flow regime corresponds to Pe>’Pi >,P0 and is represented by the
small triangle bounded by the Pi-P0 axis, and Po axis, and the line

Py = Pe' Q = 0 unless Pi exceeds Pe(Pi'Po> Pe-Po), and when inflow is
suddenly stopped, Pi drops to the level of Pe’ The upper portion of

the figure depicts flow when Pi> Pe> Po and

_ i e
Q - R s (2)
hence
Pi'Po =RQ+ Pe-Po . (8)
The dashed lines represent Permutt's original formulation of the water-

fall model (1963), as it was presented in graphic form: Q as a function

of Po'

The Starling Resistor Model

Pressure-flow relationships of a Penrose Starling resistor are
depicted in Figure 15. Note that while the curves in the regime of
Pi> Pe>P0 are similar to the above graph, the curves become rounded
when Pe>'Pi> Po’ due to the fact that under these conditions, flow
persists through small side channels of the collapsed tube.

The curves emanating from the P0 axis, where Pe>-Po, represent the

pressure-flow relationships which were recorded during this present
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study, using minimal outflow resistance and holding Pe-—Po constant.

If Pe rather than Pe-P0 is held constant and there is a high level of
outflow resistance, then as Po increases linearly with Q, P° approaches
and then exceeds Pe' The resulting curve cuts diagonally across the
surface along the dashed 1ine. Such a curve is typical of those
generated by Conrad (1969), Katz et al. (1969), and Moreno et al. (1969),
when they experimented with high outflow resistance and plotted Pi'Po

as a function of constant Pe’ but areatly decreasing Pe-PO.

The three-dimensional graphs serve to illustrate that the so-
called "negative resistance" region in the curves of Conrad (1969),
Katz et al. (1969), and Moreno et al. (1969) results from their particu-
lar method of experimentation. In fact, by drawing a similar curve
diagonally across the pressure-flow surface of the waterfall model, a
region of negative slope can be demonstrated.

One of the major differences between the two models appears to be
the presence of an early rising phase of the curves in the Starling
resistor model, and its absence in the waterfall model. In pilot
experiments, we found that the mechanical properties of Penrose tubing
changed when it was exposed to air, heat, and 1ight for an extended
period of time. Under these circumstances, perfusion of the deterio-
rated Penrose tubing did not yield an early rising phase of pressure-
flow relationships. Nor did water perfusion of dialysis tubing
(Figure 9). This indicates that a different type of tubing may have
been used by Permutt et al. (1962) for their physical model from which
they derived their mathematical model of flow through collapsible

vessels.
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General Characteristics

The First Phase: The Early Risina Phase

In our experiments with water perfusion, we found that the slope
of the early rising phase was increased by increasing Pe-PO, increasing
length of tubing, and decreasing diameter of the tubing. Increasing
viscosity also increased the slope of the first phase. Pre-stress and
stretch decreased the slope.

These results indicate that the greater the rigidity of the vessel
wall opposing bending and complete closure of the lumen, the lower will
be the slope of the initial rising phase. This is confirmed by the
fact that the dialysis tubing, which is extremely compliant at low
transmural pressures, collapsed completely and did not present an

initial rising phase of pressure-flow relationships.

The Second Phase: The Plateau Phase

During water perfusion, a second phase of the pressure-flow rela-
tionships, the plateau phase, began at flow rates of 6 to 8 cc/sec,
when P1.-Po was almost equal to Pe-Po. At these pressures, a critical
transmural pressure was achieved at which the sides of the collapsed
tube were no longer in contact with each other. Oscillations of low
pressure amplitude developed in the tubing at the beginning of the
plateau phase and continued throughout this phase. In this flow range,
the frequency of the oscillations increased as the level of Pe-Po was

increased.
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t al., 1969;

Other investigators (Katz et al., 1969; Moreno
Conrad, 1969) have noted the appearance and then gradual disappearance
of this oscillatory phenomenon. One reason for the disappearance of
the oscillations is that these investigators held Pe constant, and used
high outflow resistance. As Po approximated Pe’ the relationship
Ri> Pe>'Po’ upon which the oscillatory mechanism is dependent, became
Pi> Po"Pe' Under these conditions, the tube does not flutter, but
remains fully open to flow.

During water perfusion, the slope of the curves of the second
phase for Pe-Po gre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>