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ABSTRACT

A CHARACTERIZATION OF CERTAIN CLOSED 3—MANIFOLDS

by Gerhard Walter Knutson

Let M be a closed connected combinatorial 3—manifold.

A compact subcomplex A of M is a residual set of M if

M is the disjoint union A U U of an open 3-cell U dense

in M and a non-separating continuum A of dimension less

than 3. The singular set of A, S(A), is the set of points

of A that do not have an open 1- or 2-dimensional euclidean

neighborhood in A.

In this thesis we examine the relationship between A

and M. ‘In particular we show that if A does not contain

a wild are then we may pick A so that S(A) is a point.

Then we prove the following theorem: M has a residual set

that contains no wild arc if and only if M is the con—

nected sum of closed 3-manifolds each of which is topologi-

cally the 3-sphere, real projective 3-space, 51 x 82, or

the twisted S2 bundle over 81.

We also show that A may be pidked so that A - S(A)

is the disjoint union of Open arcs and the interiors of com-

pact 2-manifolds with connected boundaries. Under this as-

sumption, if S(A) is a simple closed curve, M is the con-

nected sum of closed 3-manifolds each of which is topologi-

cally 81 x 82, the 3-sphere, real projective 3-space, the

twisted 82 bundle over SI, or a lens space.
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CHAPTER I

INTRODUCTION

In 1962 Doyle and Hocking established a decomposition

of a closed n-manifold into an open n-cell and a non—sep-

arating continuum of dimension less than n. In this thesis

we start with the continuum and under certain conditions

reconstruct the manifold. Since our concentration is on

connected 3-manifolds, we assume that all our manifolds are

combinatorflfl.and connected. Furthermore, all subsets are

simplicial and all maps are piecewise linear.

In this chapter we establish some elementary relations

between the manifold and its decomposition.

1. Homology and Homotopy of Residual Sets

Definition 1.1.1: Let M be a compact n—manifold. A com-

pact subcomplex A of M is a residual set of M if M

is the disjoint union M = A U U of an open n-cell U

dense in M and a non-separating continuum A of dimen-

sion less than n. A U U is called a decomposition of M.

We remark that if M has non-empty boundary, the

boundary of M is contained in A. Therefore we must not

confuse the residual set with a spine [17]. However, if A

is a residual set of M then A is a Spine of M less an

Open n-ball of the interior of M.

1
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Note that we will assume that a residual set does not

collapse onto any proper subset of itself.

.In [5] Doyle and Hocking prove that every compact n-

manifold has a decomposition. The Brown-Casler Theorem [2]

asserts the existence of a continuous function f from the

closed n-ball Bn onto M such that f|Int Bn is a homeo-

morphism, f-1f(Bd Bn) = Bd B“, and dim f(Bd Bn) < n.

Thus if M = A U U is a decomposition of M, we will always

 

assume we are given the map f: (Bn,Bd Bn) > (M. A).

It will be useful to establish the relationship be-

tween the homology and homotopy groups of A and M.

Since M is the adjunction Space obtained by attaching Bn

to A by means of f, the pair (M,A) is a relative n-cell.

n-1)
' e ’ M’A = “ SH nce Hq( ) Hq_1(

for 0 < q <-n [10]. Note that we will use equality to mean

for all q and Wq(M4A) = 0

group isomorphism or space homeomorphism whenever no con—

fusion is likely.

n-1 . .

) IS the above isomor-
 > fi _

q 1(5
fh: ,AI q Hq(M )

h' d f : “’1p ism an Hq( ) Hq(S )
 

> Hq(A) is the homomorphism

induced by f, we obtain the commutative diagram:

   

Hq(M) > Hq(M,A) > Hq_1(A) > Hq(M)

hq Hq_1§f)

a n-1

Hq_1(S )

where the unnamed maps are the maps of the exact homology

sequence of the pair (MJA).
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Using these definitions we state two well known theorems

and an immediate corollary.

Theorem 1.1.2[8]: The following hold;

' = f , -11) Hq(M) Hq(A) or q # n n

11) Hn-1(M) = Hn_1(A)/Im Hn_1(f)

and

 
 

> O
 

 

iii) 0 > Hn(A) > Hn(M) > ker Hn-1(f)

is exact.

Corollary 1.1.3: If dim A < n-l, M is orientable.

Proof: If dim A < n-l, Hn(A) = O = H A) and so
n-1(

Im Hn_1(f) = 0. Thus ker Hn_1(f) = z and so Hn(M) = 2.

Hence M is orientable.

Theorem 1.1.4: vq(M) = w A) for 0 :_q < n-1.q(

Theorem 1.1.5: Let M be a closed n-manifold. Let A be
 

a residual set of M with dim A < n/2. If n is odd sup-

pose that H(n-1)/2 (A) is torsion free. Then M is a

homology n-sphere.

Egggg: If n = 1 or 2, A is a point and so M is a

Sphere. If n = 3, A is a 1-complex and hence A is the

homotopy type of an r-leafed rose. By Corollary 1.1.3 M

is orientable. Thus ker H2(f) = Z and Im H2(f) = 0. By

'Dheorem 1.1.2, H2(M) = H2(A). By Poincare duality H1(M) =

H2 (A) = 0. Thus H1 (A) = 0 = H1(M) and so A is contract-

able. Hence M is a 3-sphere.
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Suppose that n > 3. Then M is orientable and

Hn_1(A) = Hn_1(M). By Theorem 1.1.2, we obtain:

Z q = O or q = n

Hq(M) = 0 n/Z fi.q :.n-1

Hq(A) 1 :.q < n/2.

By Poincare duality Hq(M) = Hn-q(M)° Hence

Z q 0 and q = n

Hq(M) = 0 1.: q < n/2

H (A) n/2 _<_ q :n-1.

By Theorem 5.5.3 of {14], Hq(M) = Hom(Hq(M),Z) 0

Tor(Hq+1(M)). Hence Hq(M) = 0 if q # 0 or n and

H0(M) = 0 = Hn(M).

Corollary to the proof: If M is a closed 3-manifold with

a residual set of dimension 1, M is a 3-sphere.

2. Local Connectivity of A Relative to M

Let X be a separable metric space and A a subset of

X. Let x be an element of X. We say A is locally p-

connected in the sense of homotopy at x (p-LC at x) if

for every Q > 0 there is a a > 0 such that each map

f : s9 —-—-> sx(5) r} A is null homotopic in sx(z;) n A [.7],

where SX(§) is an Q-ball centered at x. A iis locally

Ap:connected in the sense of homotopy in relation to X (A is
 

p-LC rel X) if A is p-LC at x for each x in X.
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Lemma 1.2.1: Let M be a closed n-manifold with a decom-

position M = A U U. If U is p-LC rel M for O fi.p :.k,

then dim A fi.n — (k+2).

‘ggggfi: Let B be a Simplex of A with maximal di-

mension m. Let x be an interior point of B. Then x

has a neighborhood N in M with (N,N n U) = (Rn,Rn - Rm).

Thus N n U contains an (n — (m + 1))-sphere that does not

bound in N n U. Hence U is not (n -(m + 1))-LC rel M.

Since k < n - (m + 1) by definition of p-LC, and m =

dim A, it follows that dim A :,n - (k + 2).

Corollary 1.2.2: If U is O-LC rel M, then M is orient-

able.

Proof: From Lemma 1.2.1, dim A i.n-2 and so, by

Corollary 1.1.3, M is orientable.

Corolla£y 1.2.3: If M is a closed 2- or 3-manifold and U
 

O-LC rel M, then M is a Sphere.

Corollary 1.2.4: Let M be a closed 4-manifold with

U O-LC rel M. If 'M is not a 4-sphere dim A = 2.

To see that Corollary 1.2.4 cannot be strengthened,

consider S2 x 32. This manifold has a residual set that

is topologically the one-point union of two 2—Spheres.

.Qprollary 1.2.5: Let M be a closed n-manifold and suppose

that U is p-LC rel M for 0 j,p :_n-3. Then M is an

n—sphere.
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A concept similar to p-LC is obtained using Singular

chains and cycles. Using the corresponding definitions we

obtain similar results.



CHAPTER II

TOROIDAL MANIFOLDS

In this chapter we investigate the relationship be-

tween the residual set of a connected sum and the residual

sets of the summands and between the residual set of a disk

sum and the residual sets of the summands. Finally we will

investigate the residual set of a toroidal manifold.

1. Residual Sets of Connected Sums

Definition 2.1.1: Let M and M' be two closed combina-

torial n-manifolds. The connected sum M # M' is obtained

by removing the interior of a closed n—ball from each mani-

fold and matching the resulting boundaries by means of a

piecewise linear homeomorphism. If the manifolds are

orientable this sum is not always well defined unless the

homeomorphism is orientation reversing. >When we write

M # M' we will imply that the sum is well defined.

In latter chapters we will use the connected sum of

3-manifolds. In the construction it will follow that the

homeomorphism will be orientation reversing whenever neces-

sary. We note that if M has an orientation reversing self

homeomorphism, M is homogeneous in the sense of Brown and

Gluck, and so M #’M' is well defined. We remark that S3.

31 x 52, and RP3 (real projective 3-Space) have orienta-

tion reversing self homeomorphisms.

7
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Theorem 2.1.2: If A and A' are residual sets of the

closed n—manifolds M and M'. M #'M' has a residual set

homeomorphic to the one.point union of A and A' (writ-

ten A VA').

Proof: If we pick the n-balls of the connected sum

to be n-Simplexes of some triangulation of M, and M' that.

meet the respective residual sets at a point, the theorem

follows.

2. Residual Sets of Disk Sums

Definition 2.2.1: Let M and M' be connected compact n-

manifolds with connected non-empty boundaries. The disk sum

M A M' is obtained by pasting an (n-1)-ball of Ed M onto

an (n-1)—ball of Ed M'.

Theorem 2.2.2: If A and A' are residual sets of the
 

compact n-manifolds M and M'. where Bd M and Ed M'

are connected and non-empty, -M A M' has a residual set

homeomorphic to the Space obtained by removing the interior

of an (n-1)-ball from both A and A' and sewing the re-

sulting sets together along the boundaries of the removed

balls.

Proof: If we pick the (n+1)-balls of the disk sum to

be (n-1)-Simplexes of Ed M and Ed M'. under some triangu-

lation of M and M'. the theorem follows.
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3. Toroidal 3—Manifolds

It is well known that each closed connected orientable

3-manifold M may be obtained by sewing two solid tori of

the same genus together by a boundary homeomorphism. We

investigate M when we know how M is obtained from two

tori. In particular we investigate toroidal manifolds.

Theorem 2.3.1: Let M be a closed orientable 3-manifold.

Suppose that T1 and T2 are two solid tori of genus n,

and h is a homeomorphfimlof Bd T1 onto Bd T2 with M =

T1 Uh T2. Let Ti = Ai U Ui be a nice decomposition of Ti'

Then there is a 2—cell C in A1 with Int C open in A1

and h(Int C) open in A2 such that M has a decomposi—

tion M = A U U, where U = (U1 U Int C) U1‘] (U2 U h(Int C))

and A = (A1 Int c) Uh (A2 - h(Int c)).

Proof: A nice decomposition of a solid torus T of

genus n, T A U U, is obtained by taking A to be the

boundary of T plus n disjoint 2-cells C1. ---. C

n

where Ci 0 Bd T = Bd C1 and Ed T - U Bd Ci is a sphere

i=1

with 2n holes. For example in the torus of genus one,

n

T = 51 x B2, A would be (S1 x Bd B”) U (p x 8’) where

p is a point of 81.

We will consider T1 and T2 as submanifolds of M

with M=T1UT2 and T10T2=BdT1=BdT2. Then M=

A1 U A2 U 01 U U2. Since A1 U A2 is 2-dimensiona1, there

is a 2-cell C in T1 n T2, such that C is the carrier of

a 2-Simp1ex of some triangulation of M. Then M has a

5
‘
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decomposition of the desired form, namely M = ((A1 - Int C)

U (A2 - Int c)) U (U1 U IntC UU2).

Corollary 2.3.2: Any closed orientable 3-manifold has a

residual set which is an orientable surface of genus n, less

an open 2-cell, to which 2n 2-disks are attached by means

of homeomorphisms of their 1-Sphere boundaries.

If M is a 3-manifold obtained by attaching two solid

tori of genus n by a boundary homeomorphism, we will call

M an n-tuple toroidal manifold or an n-TM. Bing [1] has

Shown that any l-TM is either the 3—sphere, 81 x S2, or

a lens Space. In Chapter IV we will need to know the residual

set of a l-TM, so we turn our attention to that goal.

Eadh l-TM is obtained by attaching two solid tori T1

and T2 by an appropriate boundary homeomorphism. We now

describe such a homeomorphism.

Let Mi and Li be meridianal and kmgitudinal Simple

closed curves on Bd Ti' for i - 1 or 2. Suppose that n

and m are relatively prime positive integers. Let a1,

-~-, an be n points on M2, cyclicly ordered by their

subscripts. Let J(n,m) be a Simple closed curve on Bd T2

that meets M2 at the n points ai, with the ai

cyclicly ordered on J(n,m) as a1, a , ..., a(n-1)m+1°

Let h be a homeomorphism of Ed T1 onto Bd T2 such that

h(Ml) = J(n,m). Define T(n,m) to be the adjunction Space

T1 Uh T2. Set J(1,0) = M2 and J(0,1) = L2. Then

S1 x 82 = T(l,0) and S3 = T(0,1). Since isotopic maps
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yield homeomorphic l-TM's and since each isotopy class of

homeomorphisms of Ed T1 onto Bd T2 has a representative

that maps M1 onto J(n,m), each 1-TM is a T(n,m) mani-

fold.

To obtain a decomposition for T(n,m), we consider T1

and T2 as submanifolds of T(n,m) with T1 U T2 - T(n,m)

and T1 0 T2 = Bd T1 - Bd T2. In T1, J(n,m) is a meridianal

simple closed curve and so bounds a disk D in T1 with

Int D C Int T1. Then T1 has a residual set Bd T1 U D.

Considering T2 as B2 x 81, where B2 is the closed unit

2—ball, let G be the simple closed curve in T2 corre—

3ponding to (0) x 51. Let B be the singular annulus ob-

tained by pushing J(n,m) onto C by a radial projection;

that is, B corresponds to the image of the function

 

F : J(n,m) x I > 82 x 81 defined by F(((x,y),s),t) =

(((1-t)x,(1-t)y),s), where (x,y) is a point of J(n,m)

and s lies on 81. Since T(n,m)-(B U D) is an open

3-cell B U D is a residual set of T(n,m). Notice that

B U D is topologically the quotient space of an n-gon ob-

tained by identifying each edge with a simple closed curve

in an orientation preserving manner.

In [3] Casler defines a standard Spine of a 3-manifold

with non-empty boundary. Following this definition we will

define a standard residual set of a closed 3-manifold.

Let K be a 2-complex. A vertex v of K is of type

I if v has a 2-cell neighborhood, of type II if v is

not of type I and has a 3—book neighborhood, and of type III
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if v is not of type I or II and has a neighborhood homeo-

morphic to the cone over a set consisting of a circle to-

gether with three of its radii. K is a standardgg:gomplex

if the following hold:

i) each vertex of K is of type I, II or III.

ii) K less its singular 1-skeleton, K1, is a count-

able number of disjoint open disks, and

iii) K1 less the Singular 0-skeleton of K1 is the

sum of a countable number of pairwise disjoint

open arcs.

If A is a standard 2-complex and if A is a residual

set of a closed 3-manifold M, then A is defined to be a

standard residual set. Likewise A is a standard Spine if

A is a standard Z-complex and A is also a Spine.

The main result of [3] is:

Theorem 2.3.3: If K is a standard Spine of a compact 3—

manifold M with non-empty boundary and K' is a standard

Spine of a compact 3-manifold M' with non-empty boundary,

and if K and K' are homeomorphic, then M is homeomor-

phic to M'.

Recall that we are in the piecewise linear category so

that the above homeomorphisms are piecewise linear.

Corollary 2.3.4: If two closed 3-manifolds have homeomorphic

standard residual sets, then the manifolds are homeomorphic.
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Proof: We need only note that a standard residual set

of a closed 3-manifold is a standard spine of the manifold

less an Open 3-Simplex and then apply Theorem 2.3.3.

We would now like to find a standard residual set for

the manifold T(n,m). If n ? 2, B U D is a copy of the

real projective plane. By a result of Hocking and Kwun [9],

T(2,m) is real projective 3-space. Since T(3,1) and

T(3,2) are homeomorphic we need only consider T(3,1). For

T(3,1), s u D is'a 3-book with its ends identified after a

twist of 120 degrees. Let v be a vertex Of B U D Of

type II. Let N be a 3-book neighborhood of v in B U D,

with pages P1, P2 and P3. Swell up v to a 3-cell C

that meets B U D in a disk E contained in P1 U P2 with

E contained in the boundary of C. By collapsing C onto

a copy of Bing's house with two rooms leaving E fixed,

we obtain a standard residual set for T(3,1). If n.Z 4,

we do not consider the residual set B U D, but rather start

all over. As before T(n,m) - T1 Uh T2, and D is the same

nice disk in T2. We now decompose T1 into two Open sets

U1 and U2, each topologically the upper half 3-space, and

a continuum H. -Then U1 U U2 U Int(T2-D) is an open 3-cell

and if H is sufficiently nice H U D is a standard residual

set for T(n,m). To construct H, consider T1 as being

Obtained as the identification Space of Bzrx I, under the

action of a homeomorphism f Of B2 x (0) onto 82 x (1),

i9+(2v/m) 1).
defined by f(tele,0) - (te Then T1 is
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homeomorphic to (B2 x I)/R, where R is the equivalence

relation x §'f(x). Let p be the composite map

  

p : 32 x I > (B2 x I)/R > T1. where the first map is

the quotient map and the second is the above homeomorphism.

 

 

 

\L, //11_

Figure 2.1

Let L1, ---, Ln be n arcs in Ed (B2 x I) such that

n .

p(U Li) 3 J(n,m). Now consider B2 x I as a cube with

1

B2 x (O) as top and B2 x (1) as bottom. Furthermore

consider L1, L2, L3 and L4 as the four edges on the Sides

of the cube. The remaining arcs, L5, ---, Ln' are on the

side that has L1 and L4 as edges. Now collapse B2 X I

onto a copy of Bing's house with two rooms as in Figure 2.1.

Setting H equal to the image of the house under the map p,

it follows that H U D is a residual set Of T(n,m).

'
5
‘
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However, H U D was so constructed that, if a little care

is taken as to how we collapse onto the house, H U D will

be a standard residual set for T(n,m).

—
_
-
-
—
_
J
u
n
-
x
1

 



CHAPTER III

A CHARACTERIZATION OF CLOSED 3—MANIFOLDS

WITH RESIDUAL SETS CONTAINING NO WILD ARCS

In this chapter we establish that a closed 3-manifold

has a residual set containing no wild arc if and only if it

is the connected sum of closed 3-manifolds each of which is

homeomorphic to a 3—sphere, real projective 3-space, 81 x 52,

or the twisted S2 bundle over 81. Finally we establish

a Similar characterization for compact 3-manifolds with

boundary.

1. A Is a One-Point Union

Definition 3.1.1: An arc B in a complex X is wild if

there does not exist a homeomorphism of X onto itself

carrying B onto a polyhedral arc of X.

Since a trefoil knot may be embedded in a 3-bOOk, a 3-

book contains a wild arc [14]. Thus if A is a residual

set Of a closed 3-manifold that does not contain a wild arc,

then A does not contain a 3-book. Recall that A does

not collapse onto any subcomplex of itself. If v is a

vertex Of A and N(v,A) the second derived neighborhood

of v in A [16], we may classify the vertices of A into

three disjoint types:

1) N(v,A) is an arc,

ii) N(v,A) is a disk, and

iii) N(v,A) is the one-point union of arcs and disks.

16
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Lemma 3.1.2: Let A be a residual set for the closed 3-

manifold M which contains no wild arcs. Then there is

another residual set A' for M that is the one-point

union of closed 2—manifolds and 1-spheres.

2522:: If the dimension of A is less than two, M

is a 3-sphere and SO A is a point. Suppose that A has

dimension two and that a is a vertex of A. Let St(x,X)

and Lk(x,X) be the star and link of x in the second

derived subdivision Of a complex triangulating X [16].

Then St(a,M) is a 3-ball with St(a,A) contained in St(a,M)

as the join Of a with Lk(a,A).

Since Lk(a,A) = Lk(a,M) n A is the disjoint union Of

p.1 0 1-spheres and q 3.0 points, we may associate with

a the pair (p,q) and a will be called a (p,q)-point.

We will define a series of moves that change A into .N;

where A' contains only (1,0)-points, (0,2)-points and one

(m,n)-point.

MOVE A: Let a be a (p,q)-point of A with pq > 2.

Let x be an isolated point of Lk(a,A). In Lk(a,M)

there is an arc C with Bd C = A D C - x U y, where y

is a point of a 1—sphere Of Lk(a,A). There is a 2-cell B

in St(a,M) with A n B = A n Bd B = aox U aoy and Bd B =

aox U aoy U C. Here "o" denotes the join Operator. An

A-move expands A to A U B and collapses from aox across

B onto Cl(A-aox) U C.



18

MOVE B: Let a be a (p,0)—point Of A with p > 1.

There is a l-Sphere S of Lk(a,A) that bounds a 2-disk

D in (Lk(a,M) - Lk(a,A)) U S. Thus there is a 3-cell C

in St(a,M) with A n C = A n Bd C = aoS and Bd C =

aOS U D. A B—move expands .A to A U-C and collapses

onto (A-aoS) U aoy U D, where y is a point of S.

MOVE C: Let a be a (O,q)-point of A with q > 2.

Suppose that x is a point Of Lk(a,A) and aox may be

extended to an arc B in A with Ed B = a U y, where y

is a (p,q)-point of A with pq # 0, such that Int B con-

tains only (0,2)-points. Let 2 # x be a point of Lk(a,A).

There is a 2-cell C in M with A n C = A n Bd C =

B U aoz. Let D = Cl(Bd C - (aoz U B)). A C-move expands

A to A U C and collapses from aoz across C onto

(A-aOZ) U a U D.

MOVE D: Let a be a (1,1)-point of A with x the

isolated point of Lk(a,A). Suppose that y is a (p,q)-

point of A in the same 2—chainable component of A as a.

There is an arc C in A, with Bd C = a U y and Int C

containing only (l,O)-points, and a 2-cell B in .M with

A n B = A 0 Bd B = C U aox. Let D = Cl(Bd B - (C U aox)).

A D-move expands A to A U B and collapses from aox

across B onto (A-aox) U a U D.

MOVE E: Let a be a (1,1)-point of A with x the

point and S the 1—Sphere Of Lk(a,A). Suppose that aox

may be extended to an arc B in A with Bd B = a U y,
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where y is a (p,q)-point of A with pq # O, and Int B

containing only (0,2)-points. There is a 3-cell C of M

with A n C = B U aoS and A n Bd C = y U aOS, such that C

collapses onto B U aOS. ‘Let. D = Cl(Bd C - aos). An E-

move expands A to A U C and collapses from aOS across

C onto (A — (B U aoS)) U D.

We observe that each move transforms A into a resid-

ual set Of M. By a finite series of A-moves we may assume

that each vertex of A is either a (1,1)-point, a (O,q)-

point or a (p,O)-point. By A- and B-moves we may assume

that each (p,0)-point of A has p = 1. By A- and C-

moves each vertex of A is a (1,1)-, (1,0)— or a (0,2)-

point. By D- and E-moves we Obtain the desired form.

Lemma 3.1.3: If A is as in the conclusion Of Lemma 3.1.2,

where A is the one-point union Of n 1-Spheres and m

closed 2-manifolds, n j,m.

Egggfi: Since Theorem 1.1.2 holds for arbitrary coef-

ficients, it follows that H2(M;Zz) ='H2(A:Z2) and H1(M;Zz)

= H1(A;Zz). By Poincare duality and the universal coeffici-

ent theorem for cohomology, H1(A;Z2) = H2(A:Z2). Since

H2 (A;Zz) =

#
4
9
5 n

Z2, and O Z2 C H1(A;Zz), the lemma follows.

1

Remark 3.1.4: Given m Z-n 3.0 there is a closed 3-mani-

fold with a residual set that is the one-point union of n

1-spheres and m closed 2-manifOldS. The connected sum Of

n copies of 81 x 82 and m-n OOpies Of RP3 has the

desired residual set.
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Remark 3.1.5: By swelling up a principal Simplex of a re-

sidual set and collapsing onto a OOpy of Bing's house with

two rooms we see that every 3-manifold has a residual set

that contains an arc that is wild.

If A is as in the conclusion of Lemma 3.1.2, and M

is not a 3—Sphere, then m f 0 and so M has a non-trivial

second homology group with 22 coefficients. Thus we Ob-

tain:

Corollary 3.1.6: A residual set of a counter example to the

3-dimensional Poincare conjecture must contain a wild arc.

2. The 2-Manifolds of A

If A is a residual set that is the one-point union of

n 1-spheres Si and m 2-manifolds Pi we will call A

an (n,m)—residual set. Again N(X,M) will be the second

derived neighborhood of X in M. We will set N(X) =

N(X,M) if the manifold M is understood.

Remark 3.2.1: If S is a 1-sphere embedded in a closed 3-
 

manifold M, N(S,M) is either a solid Klein bottle or a

solid torus. Notice that if M is non—orientable N(Sl)

may be either a solid torus or a solid Klein bottle. -For

example in J, the twisted $2 bundle over 81, both types

of neighborhoods are easily found.
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Lemma 3.2.2: A regular neighborhood of a compact 2-mani-

fold embedded in the interior of an orientable 3-manifold

is topologically independent of the 3—manifold.

‘ggggg: Suppose that P and Q are isomorphic, (that

is, P and Q are homeomorphic under a simplicial map),

compact 2-manifolds simplicially embedded in the interior

of two orientable 3-manifolds M and N respectively.

Triangulate M and N so that under the induced triangula-

tion P is isomorphic to Q.

Now N(P,M) is a solid torus H of genus n plus

some 3-cells attached to H along annuli. Also N(Q,N) is

a solid torus K of genus m plus some 3-cells attached

to K along annuli. Since P and Q are isomorphic, we

may take H and K as the second derived neighborhood of

the respective l-skeletons so that n = m. Moreover the

isomorphism of P onto Q extends to an isomorphism of

P U H onto Q U K. By collapsing P U H and. Q U K care—

fully, we Obtain P' and 0', standard spines of N(P,M)

and N(Q,N) respectively. Furthermore, P' and Q' will

be isomorphic. By Theorem 2.3.3, N(P,M) is isomorphic to

N(Q,N). The above collapse is Obtained by collapsing each

neighborhood Of a vertex to a copy of Bing's house with two

rooms, so that the house meets the tubes of H and K in

disks whose interiors are open in the house. Then collapse

the tubes by pushing the disks into the middle of the tubes.

Since an orientable 2—manifold embeds in R3, we Obtain:
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Corollary 3.2.3: A regular neighborhood of a compact orient-

able 2-manifold embedded in the interior of an orientable

3-manifold is a product neighborhood.

Lemma 3.2.4: Let A be an (n,m)-residual set of a closed
 

orientable 3-manifold M. Then each Pi is either a 2-Sphere

or a real projective plane.

n

Proof: Consider N(A) = ( U N(Si)) U ( U N(Pi)).

. .i=1 . .i=1 ,

Since N(A) is topologically M less an Open 3-cell,

Bd N(A) .is a 2-Sphere. If a is the join point of A,

N(a,M) = B is a 3-ball with .N(A) - B the disjoint union

of the n sets N(Si) - B and the m sets N(Pi) - B.

By definition Of the second derived neighborhood, it is

clear that Ed (N(Pi) - B) is Bd N(Pi) less two disks.

Since Bd N(Pi) is a 2—manifold and. Bd (N(Pi) - B) is

contained in Bd N(A), a 2—sphere, Bd N(Pi) is either

one or two 2-Spheres. Suppose that P1 is orientable.

Then N(Pl) is topologically P1 x I and so Bd N(Pl)

is two disjoint OOpies of P1. Hence if P1 is orient-

able, P1 is a 2-Sphere. Suppose that P1 is non-

orientable. If P1 has an orientable handle, Bd N(Pl)

must contain a torus with a hole. .Since a torus with a hole

does not embed in a 2-sphere, P1 does not have an orient-

able handle. Since the Klein bottle embeds in 81 x S2

with a regular neighborhood having a torus boundary,
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Lemma 3.2.2 implies that P1 is not a Klein bottle. Hence

if P1 is non-orientable, P1 is a real projective plane.

Lemma 3.2.5: Let A be an (n,m)-residual set for a closed

3-manifold M. Then each Pi is either a 2-sphere or a

real projective plane.

3322;} If .N(P1) is orientable, Lemma 3.2.4 produces

the desired result. Suppose that N(Pl) -'N is non-

orientable. -AS in Lemma 3.2.4, Bd N is one or two 2-

spheres. If Bd N is one 2-Sphere, let E be a 3-ball

attached to N by a boundary homeomorphism. Since N col-

lapses onto P1 and N U E is non-orientable, we Obtain

the Mayer Vietoris sequence:

  anm n s)‘ > qu) e Hq(E) —> qu U/E) -—->

Hence 0 -—s Z ——> H2(P1) -—> H2(N U E) ——> O is eXact.

Thus H2(P1) # 0 and so P1 is orientable. If P1 has

genus g, H1(P1) is the direct sum of Zg copies Of Z.

Since H1(N n E) - O, H1(N U E) = i; Z. Thus, if x(X)

is the Euler characteristic of x, x(N U E) - 1 - Zg + O - O

= 0, since N U E is a closed 3-manifold. Since 9 is an

integer, we have a contradiction. Thus Rd N is two 2-

spheres. Let E and F be two 3-cells attached to N by

boundary homeomorphisms. We Obtain the M-V sequence

—.> “3““ U E U F) —> H2(N n (F U E)) —>H2(N) enzua: U F)—>.

Since N U E U F is non-orientable and N n (E U F) 3 Bd N,

  

0 >Z$Z—>H2'(P1)'_>H2(NUEUF)
> on.
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is exact. However H2(P1) = O or Z. This contradiction

establishes the lemma.

Corollary to the proof: If A is an (n,m)-residual set

for the closed 3-manifold M, N(Pi,M) is orientable for

all i.

3. Reconstruction of AM

Suppose that A is an (n,k+m)-residual set Of the

closed 3-manifold M, with k of the 2-manifolds of A

2-Spheres and m of the 2-manifolds real projective planes.

By the argument of Lemma 3.1.3, -Hz(A;Zz) = H1(A:Zz). But

n+h1 k+m

H1(A722) = O 22 and H2 (A722) = O 220 ‘Thus k = n.

1 1

Hence A is the one-point union Of n 1-spheres $1, ---,

Sn' n 2-Spheres T1, °°-, Tn and m .real projective

planes P1, ..., Pn. If A is in this form, we will call

A an (n,n,m)-residual set.

Lemma 3.3.1: Let A be an (n,n,m)-residual set for the
 

closed 3-manifold M. Then

N(A) = N(( 3 Si) v (.3 Ti)) A N(Pl) A ... A N(Pm).

i=1 l=1

grggr: Suppose that a is the join point of A. Then

the Simple closed curve L = P1 0 Lk(a,N) bounds two disks

D and D' in Lk(a,M). If Int(D) n Lk(a,A) is empty,

by a B-move we may change A into A' = (A - aOL) U xoL U B,

where x is an interior point of aoD and B is the

straight line segment from a to x. Let
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P' = (P1 - aoL) U xoL. Then A' = (A - P1) U P' U B and

since N(B) is a 3-cell N(A') is homeomorphic to

N((A - P1) U a) A N(P'). Since N(P') is homeomorphic to

N(Pl) the lemma will follow by induction if we are able to

justify our initial assumption, that Int (D) n Lk(a,A) is

empty.

Let L1, ..., Lp be the simple closed curves in

A n Int D and suppose that x1, ..., xq are the points of

A n Int D. Likewise let L be the simplep+1, ..., Ln+m-1

I

closed curves Of A n Int D and Xq+1’ ..., xan the

points Of A 0 Int D'. By the elementary moves of Lemma

3.1.2, we may change A into a residual set A" with A"

P q n+m-1 2n

(A-St(a,M))Uxo[( U Li)U( U xi)]UBUyo[( U Li)U( U xi)]UB'

i=1 i=1 p+1 q+1

where x is an interior point of aoD, y is an interior

point of aoD', B = aox and B' = aoy.

Since N(P1,M) is orientable, N(P1,M) is homeomor-

phic to N(RP2,RP3). Since RP3 is Obtained by the anti-

podal identification of the boundary of the unit 3-ball, we

may consider N(RP2,RP3) as the quotient space (S2 x I)/R,

where R is the equivalence relation

R: {((x,0).(-X.0))|x e 52] U [((X.t).(X.t))|(X.t) 6 52 x I}

(For the definition of quotient space see [6].) Suppose

 that q: 82 x I > N(P1,M) is the composite of the quo-

tient map and the obvious homeomorphism. [Without loss of

generality we may assume that q((1,0,0),0) = a,
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q((1,0,0) x I) = B n N(Pl) and q((-1,0,0) x I) =

B' n N(Pl). Let E be the 2-cell in 82 x I given by

E = {((x,y,0),t)| x2 +y2 = 1, ygo, and o:t:1/2}.

Then ‘q(E) is a singular 2-cell in VM. q(E) meets A"

on (B n q(E)) U (B' n q(E)) U (91 n q(E). -Let c be the

arc of q(E) given by C = q((((x,y,0),1/2)|x2 + y2 = 1

and y.: 0]).

To make the desired change of A", expand A" to

A" U q(E) and collapse .A" U p(E) ,Onto h(A" +H(B n q(E)))

U C U a. Let A"' denote the resulting residual set.' Let

F be the arc F = Cl(B - q(E)) U Cl(B' - q(E)) U C. Con-

sider the relation R: (F x F) U {(z,z)|z e M}. Let M' =

M/R. Since F is point-like, M' is homeomorphic to M.

Note that A"'/R is a residual set for M' that has the

desired form. Thus M itself has a residual set of the

desired form and the lemma is established.

Lemma 3.3.2: Suppose that .M is a closed 3-manifold

with an (n,n,0)-residual set. Then M has an (n,n,0)-re-

sidual set such that for all i,

1) Si pierces Ti and no other 2-sphere,

ii) Ti is pierced by Si and no other 1-sphere and

iii) N(Si V Ti) is tOpOlogically either 81 X S2

less an Open 3-cell or the twisted $2 bundle

over 31 less an open 3-cell.

Moreover, N(A) = N(31 V T1) A ... A N(Sn V Tn).
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.grggg: Suppose that n = 1. If .81 does not pierce

T1, then Bd N(Sl v T1) = Bd N(Sl) # Bd|N'('r1):.~ Bthorollary

3.2.3, N(T1) is homeomorphic to S2 X I. and by the re-

mark after Lemma 3.2.1, N(Sl) is either a solid torus or

a solid Klein bottle. Thus if 31 does not pierce T1 we

will contradict the connectivity of Bd N(A). ~Therefore $1

pierces T1.
. §

Since N(A) S N(S1) U N(Tl), N(A) = (32 x I) Uh

(S2 x I), where h is a homeomorphism of. B2 X Ed I onto

two disks of Ed (S2 X I). Since Bd N(A) is connected, h

must take each Of the disks of B2 X Ed I into distinct

2-Spheres in Ed (S2 X I). If N(Sl) is a solid torus, h

is either orientation preserving or orientation reversing

on both ends of B2 X I. If N(Sl) is a solid Klein bottle,

then h is orientation preserving on one end and orienta-

tion reversing on the other. In the first case N(A) is

orientable and by attaching a 3-cell to ‘N(A) by a boundary

homeomorphism we obtain 81 X 82. [In the second case N(A)

is non-orientable and by attaching a 3-cell to N(A) we.

obtain the twisted S2 bundle over Sl.'iThuS the Lemma

holds if n H 1.

Assume the lemma is true for n = 1, 2, ..., k-l. De—

k. k

fine x by x‘= Cl(Bd[N(a.M) - ( U N(Ti) U U N(Si))]).

i=1 . i=1 .

where a is the join point Of A. -X is a 2—Sphere with k

disjoint open annuli and 2k disjoint Open disks removed.

We may Obtain Bd N(A) from X by attaching 2k disks to
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the boundaries of the annuli and k annuli to the boundaries

of the 2k disks. Note that the annuli may be attached

with different orientations on each end. Since X has k+1

components and Bd N(A) is a 2-Sphere, the annuli must

bridge the components of X. Hence each component has a

disk removed.

MOVE F: Let a be the join point of A. Suppose x1

and x2 are two isolated points of Lk(a,A) that lie in

the same component of Lk(a,M) less the 2-manifolds of A.

Since Bd N(A,M) is a 2-Sphere, x1 and x2 belong to two

distinct 1-spheres, say 51 and $2, of .A. There is a

2-ball B in M with A n B - A n Bd B = aoxl U aoxz.

Let C = Cl(Bd B - aoxl U aoxz). Then there is a 2-ball D

in M with A n D = A n Bd.D Cl(Sa - aoxz) U x1 and

C. Let E Bd D - (C U Cl(Sz - aox2)).B H D = B 0 Ed D

An F-move expands A to A U B U D and collapses from

aoxl across B U D onto (A - (aox1)) U a U E.

The effect of an F-move is to slide a disk from one

component of X along an annulus to another component.

Thus we may assume that k of the disks lie in one compo—

nent of ~X and that each of the other components contain

exactly one of the disks.

Since at least one Of the 1-Spheres of Lk(a,A) is

nullhomotopic in Lk(a,M) less the other 1-spheres of

Lk(a,A), suppose that L = T1 n Lk(a,M) is the 1-Sphere.

Then L bounds a disk D in Lk(a,M) with Ti n D empty



29

for i 3,2. By F-moves we may assume that only 81 inter-

sects D. Then D n 81 is a point x1. By another series

of F-moves, we may assume that each 1-sphere Of A meets

the component of Lk(a,M) less all the 2-manifolds that has

L as one of its boundary components. Thus 31 pierces T1.

Since any other Si lies on one side of T1, Si cannot

pierce T1. Likewise $1 lies on one side of the other T

and SO cannot pierce them.

Let A' = (A - (81 U T1)) Ua and suppose that x is an

interior point of aoxl and y is an interior point of

($1 - aoxl) n St(a,M). Let .T' = (T1 - aoL) U xoL. Then

by elementary moves change A to A' U aox U T' U 81. -By

another series of elementary moves, move aoy along aox to

an arc C from y to x. Set 8' = ($1 - ao(x U y)) U C.

Thus we may change A into a new residual set A' U S' U T'

U aox = A". Now N(A") is homeomorphic to both N(A) and

N(S' V T') A N(A'). Clearly A' is an (n-1,n-1,0)-residual

set for a closed 3—manifold, for N(A') is a 3-manifold

with 2-Sphere boundary. Since N(S' V T') is homeomorphic

to N(81 V Ti), the lemma follows by induction.

From Lemma 3.3.1 and Lemma 3.3.2, we Obtain:

Lemma 3.3.3: Let A be an (n,n,m)-residua1 set of a closed
 

3-manifold M. Then

N(A) = N(81 v T1) A A N(Sn v Tn) A N(P1)A A N(Pm).
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Theorem 3.3.4: Let A be an (n,n,m)-residual set and let B

be a (p,p,q)-residual set for the same closed 3-manifold M.

Then A and B are homeomorphic.

2599;: The second homology groups with Z2 coeffici-

ents of A, B and M are isomorphic and so n + m = p + q.

Since the rank of H1(A), H1(M), and H1(B) is the same,

n = p. Thus A and B are homeomorphic (n,n,m)-residual

sets for M.

Theorem 3.3.5: Suppose that M and M' are two closed 3-

manifolds with the same orientability. If M and M' have

homeomorphic (n,n,m)-residual sets A and A', then .M is

homeomorphic to M'.

lgrggg: Suppose that the 1-spheres of A are denoted

by Si’ the 2-spheres by Ti' and the real projective planes

by Pi' Let Si. Ti, and Pi denote the correSponding parts

of A'. Let N(X,M) = N(X) and N(X,M') = N'(X). By

Corollary 3.3.3, N(A) = N(51 v T1) A ... A N(sn v Tn) A N(Pl)

A ... A N(Pm) and N'(A') = N'(Si v Ti) A ... A N'(Sfi v TA) A

N'(Pi) A ... A N'(P$).

Suppose that X in a subcomplex Of M with Ed N(X)

a 2-Sphere. Then we will denote the closed 3-manifold ob-

tained by attaching a 3-cell to N(X) by M(X). In the

same manner define M'(X). Then M(A) is homeomorphic to

M and M'(A') is homeomorphic to M'.
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Notice that if N(X U Y) - N(X) A N(Y), it follows

that M(x U Y) = M(X) # M(Y), whenever N(X U Y) has a 2-

Sphere boundary. Thus we obtain:

M = M(81 v T1) # ... #M(sn v Tn) # M(Pl) # ...# M(Pm) and

M' - M'(si v Ti) # ...# M'(Sfi v TA) # M'(Pi) #...# M'(Pé).

Since Pi is a 2-manifold that is a residual set of

the closed 3-manifold M(Pi) it follows from [9] that

M(Pi) is a copy of real projective 3-space. Also M'(Pi) -

RP3.

Since J # J = J # 81 X 82 [13], we may assume that

M(Si V Ti) and M'(Si V Ti) are topologically 81 x 82

for i # 1. Since M and M' are either both orientable

or both non-orientable, the same is true for M(A) and

M'(A'). Hence each term in the connected sum is pairwise

homeomorphic. Thus M and M' are homeomorphic.

Combining these results we Obtain:

Theorem 3.3.6: A Closed 3-manifold has a residual set that
 

contains no wild arc if and only if it is the connected sum

of closed 3-manifolds each Of which is homeomoprhic to a

3-sphere, RP3,i 51 X S2 or J.

4. Compact 3-Manifolds with Boundary

Lemma 3.4.1: Let M be a compact 3-manifold with or without
 

boundary. Suppose that M = A U U is a decomposition of M

such that A contains no wild arc. Let C be a 3-cell in

Int M. Then M - Int C has a decomposition M - Int C =

A' U U' such that A' contains no wild arc.
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grggr: Since C is point-like, there is a homeomorphism

h of M onto itself such that h(C) C‘U. After a possible

subdivision there is a simplicial arc B in U U x, where

x is a point of A, with B n h(C) = y and Bd B = x U y.

Thus we may expand h(C) U B to a 3-cell D in U U x.

Then there is a homeomorphism k of M onto itself such

that k(D) = h(C). Thus c - h-1k(D) and M - Int D is a

compact 3-manifold with a decomposition M - Int D =

(A U Ed D) U (U - D). Since A n Ed D = x, A U Ed D con-

tains no wild arc. Thus M --Int C has a decomposition

M - Int c = h'1k(A U Ed D) U h'1k(U — D), and h’1k(A U Bd D)

contains no wild arc.

Lemma 3.4.2: Let M1 and M2 be compact 3-manifolds with

boundary. Suppose that B1 and 82 are homeomorphic

boundary components of M1 and M2 reSpectively. Let M

be obtained by sewing M1 and M2 together along BL and

B2. Suppose that Mi - Ai U Ui is a decomposition of M1

such that Ai contains no wild arc. Then M has a residual

set that contains no wild arc.

Proof: Consider M1 and M2 as submanifolds of M

so that M - M1 U M2 and M1 n.M2 = 31 = B2. Set B = B1.

Since Ai does not contain a wild arc B n Cl(Ai - B) is

a finite point set. By elementary moves we may assume that

B n Cl(Ai - B) = x for i = 1 or 2, where x is a (1,2)-

point of A1 U A2. Let C be a 2-Simplex of B. Then M

has a decomposition
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M = ((A1 -B) U (B - Int c) U (A2 -B)) U (U1 U Int(C) UU2).

By collapsing B - Int C to a Spine K, we Obtain residual

set A for M, where A = (A1 - B) U K U (A2 - B). Clearly

A contains no wild arc.

With the notation of the above lemma, N(KPA) is K

with two whiskers. If M is not a closed 3-manifold, take

the double of M. It follows that A less some Open disks

Of A embeds in a residual set of a closed 3-manifold.

Thus Bd N(K,M) less two disks embeds in a 2-sphere. Since

K has the homotopy type of an r-leaved rose, Bd N(K,M)

is a 2-sphere with r handles, orientable or not. Thus

r = O and N(K,M) is a 3-ball. Therefore K is a point

and B is a 2—Sphere. Thus we have established:

Corollary 3.4.3: If M is a compact 3-manifold with boundary

having a residual set containing no wild arc, each boundary

component is a 2-sphere.

Theorem 3.4.4: Let M be a compact 3—manifold. M has a

residual set that contains no wild are if and only if M is

obtained from the connected sum of closed 3-manifolds each

of which is S3, 51 X 82, RP3 or J, by deleting n.: O

disjoint 3-balls.

Proof: One way follows from Theorem 3.3.6 and Lemma

3.4.1. The converse follows by sewing n 3-balls onto M

and applying Lemma 3.4.3 and Theorem 3.3.6.



CHAPTER IV

A CHARACTERIZATION OF CERTAIN CLOSED 3*MANIFOLDS

WHOSE SINGULAR SET IS A SIMPLE CLOSED CURVE

In this chapter we define the singular set Of a re-

sidual set A of a closed 3-manifold, denoted by S(A).

We Show that A may be chosen so that A - S(A) is the

disjoint union of Open arcs and the interiors of compact

2-manifolds with connected boundary. ~We then classify all

closed 3-manifolds with S(A) a simple closed curve.

1. The Singular Set

Definition 4.1.1: Let A be a residual set for a closed

3-manifold M. The Special singular set S'(A) of A is

the set of all points of A that do not have an Open 2-

dimensional euclidean neighborhood in A. The singular set
 

S(A) of A is the set of all points of 1A that do not

have an Open 1- or 2-dimensional euclidean neighborhood in

A. If A is already lOcally euclidean, we will set S'(A)

= S(A) - a where a is an arbitrary point of A.

Suppose that M is not a 3-Sphere. Then A is a 2-

complex. Since S'(A) is a subcomplex of A, S'(A) is

contained in the 1-skeleton of A, A1. Let T be a maxi-

mal tree of A1. Mod out T: that is consider the quotient

space M/T obtained by identifying T to a point [6].

Since T is contractable, T is point-like and SO M/T

34
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is homeomorphic to M. .Notice that A'/T is a t-leafed

rose and since S(A)/T C?S' (A)/T C Al/T, S(A) is an r-

leafed rose and S'(A) is an s-leafed rose. Since T is

contained in A1, (M~A)/T is an Open 3-cell and A/T is

a non-separating continuum of dimension two. Thus M/T

has a decomposition M/T = (A/T) U ((MeA)/T). The Singular

set of A/T is clearly S(A)/T and S'(A/T) = S'(A)/T.

Since M and M/T are homeomorphic, we may assume that A

is already in the above form, that is S(A) is an r-leafed

rose and S'(A) is an s-leafed rose.

Let Mi, ..., MA be the components of A - S'(A).

Then each Mi is an open 2-manifold; in fact, each AM;

is the interior of a compact 2-manifold Mi with non-empty

boundary. Thus A is Obtained by attaching the Mi's

to S'(A) by wrapping each boundary component of the Mi's

around S(A). To be more precise, let X be the disjoint

union of the Mi's and let Y be the disjoint union Of

the boundaries of the Mi's. Then there is a continuous

 

map ¢: Y > S'(A) such that A is topologically the

space obtained by attaching X to S'(A) by e. For

the definition of the attaching of spaces see [6]. In

effect we are sewing the Mi onto S'(A) by the map ¢.

 

Let p: X > A denote the composite of the quotient map

and the homeomorphism between X U¢ S'(A) and A.
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To Obtain a better picture of A let us examine the

map ea Now e is a map onto S(A), an r—leafed rose.

Let L1, ..., Lr be the leaves Of S(A), where the Li

are given a definite orientation. Let fi be the map from

the unit interval onto Li given by fi(t) = hi(e2”it),

where hi is a homeomorphism Of the unit 1-sphere onto Li

with the induced orientation of hi(Sl) agreeing with the

orientation of Li and fi(Bd I) is equal to the join

point .a Of S(A). Suppose that S is a component of

the boundary of one Of the Mi' Let ?|S = ¢'. Since we

have modded out a maximal tree in the 1-Skeleton of a re-

sidual set of M to obtain A, ¢' will induce a subdivi-

sion of S into k segments 81, ..., Sk with the inter-

iors of the Si disjoint and ¢' mapping each Sj onto one

of the Li in the same way that fi or f;1 maps the unit

interval onto Li' If ¢' already maps S homeomorphically

onto one of the leaves of S(A), we denote ¢' by fi or

f;1 depending on how *¢' Operates. If e' is the con-

stant map we denote ¢' by 0. If ¢' is more complex we

assume that the Si are cyclicly ordered On S by their

subscripts. By disregarding the Obvious homeomorphism be-

tween the unit interval and each Sj' we regard fi as a

map from Sj onto Li' »We then denote the action of ¢'

by setting ¢' = hlhz ... hk where hj is one of the maps

.—1 .

fi or fi for some 1.
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Definition 4.1.2: .Let A be a residual set for a closed 3-

manifold M. -With A as above, a presentation P of A

P : S(A), S'(A), M1, ..., Mn; ¢

is a set consisting Of the Singular set, the special singu-

lar set, the compact 2—manifolds Mi and the map ¢.

We now establish some properties of A.

Let ki be the rank Of H1(Mi) and hi the number of

boundary components of Mi' Let V be a second derived

neighborhood of S'(A) in A and let W be the closure

of A - V. Since A = W U V and .W n V is the disjoint

n

union of 2 hi simple closed curves, X(A) = x(V) +

i=1 ‘

x(W) - x(V n W). Since V collapses onto S'(A), an S-

leafed rose, x(V) = 1 - S. Since W is homeomorphic to

n

the disjoint union Of the Mi’ x(W) = 2 (1 - ki). Since

i=1
n

V 0 W is 2 hi disjoint simple closed curves, x(W n V)

i=1

= 0. If C is a 3-simplex Of M - A, .M - Int C collapses

onto A and so x(A) = x(M - Int C) = x(M) + 1. However,

 

M is a closed 3-manifold and so x(M) = 0. Hence

n n

1 = x(A) = (1 - S) + Z (1 - k.) = n + 1 - (s + Z k.).
. 1 . 1
1:1 1:1

n

Lemma 4.1.3: n = s + Z ki'

i=1

Lemma 4.1.4: Let M be a closed 3-manifold and A a re-
 

sidual set for M with a presentation

P:S(A)( S'(A)IM1I “'0! Mn;¢o
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Suppose that ¢ restricted to any boundary component S is

either the constant map or ¢|S = h1h2... hp, with each hi

either hi or h;1, where hl and p depend on S. Then

M has a residual set A' with a presentation

p' smurs'm'). N1. Nn:¢'.

where Ni is homeomorphic to Mi for all i, and ¢' re-

stricted to any boundary component 8' is either the con-

stant map or O'IS' = hlhl...h1 = h?, for 0 < q j,p.

Proof: Let S be a boundary component of M1 and

hfl. Then

1

¢|s = h1...hihi+1...hp, With p > 1 and hi*1

¢ induces a subdivision of S into p arcs $1, ...,.Sp

cyclicly ordered by their subscripts. Let B and C be

proper subarcs of Si and Si+1 respectively with B U C

connected and p(B) ? p(C). Then .B U.C lies on a 2-cell

D in .M1 with B U C = D n Bd M1. Clearly p(D) is a

2-cell of A. -Moreover p(D) lies on a 3-cell E in M

as three sides of a 3-simplex. -Let F be the remaining

side of ~E. Suppose that E n A = p(D). Swell up A to

A U E and collapse onto (A - E) U F U p(B). By modding

out the closure Of p(Si) - p(B), we Obtain a new residual

set A' with a presentation

P': S(A'), S'(A'), N1, ..., Nn; s‘,

with N1 homeomorphic to Mi and ¢' restricted to the

component 5' of N1 corresponding to S is given by

¢'|s' = hlhz...hi_1hi+g...hp.
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In the above we assumed that E n A = p(D). In general

this is too much to ask. However, if E n A # p(D), there

is a finite sequence of disks D1, ..., D - D in the dis-
t

t

joint union of the Mi’ with p( U D.) homeomorphic to the

i=1

cone over X with vertex v, where X is the planar set

that is the union Of the simple closed curves Ci =

[(x,y)|(x-i)2 + y2 = 12], for 1,: 1.: t, and voci is

mapped onto Di for all i. In M there is a finite

sequence of 3-cells E1, ..., E with E = E and p(Di)
t’ t

lying on Ei as three Sides of a 3-simplex. ~Moreover the

Ei may be so chosen that the above homeomoprhism extends

to a homeomorphism.of the cone over the bounded region

bounded by C onto E in such a way that the cone over
t t

the compact plane set bounded by C1 is mapped onto Ei'

Then by collapsing first E1 as above and continuing for

the other Ei we finally collapse E. -In each step we

Obtain a residual set with a presentation closer to the de-

sired presentation. Thus the Obvious induction establishes

the lemma.

Corollary 4.1.5: Each closed 3-manifold has a residual set
 

A with a presentation

P: S(A),'S'(A):1M1: ooopMn7¢I

such that if S is a boundary component of one Of the Mj’

_ . . . 7 -1 .
¢|S - h1---hp Wlth hi distinct from hi+1 for all 1.

Corollary 4.1.6: If the dunce hat is a residual set for a
 

closed 3-manifold M, M is a 3-sphere.
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Proof: Let D be the dunce hat. Then D has a pre-

sentation

p: 51, s1, 32; hhh-l.

By Lemma 4.1.4, M has a residual set A with a presenta-

tion

P': SI, 81, B2; h.

Hence A is a disk and SO M is a 3-sphere.

Lemma 4.1.7:, Each Mi in a presentation for A is either

a disk with holes or a Moebius band with holes.

grggfi: Suppose that each Mi has connected boundary.

Since each p(Mi) contains a topological OOpy Pi Of Mi in

P(Mi) - S(A), Bd(N(Pi,M)*N(Bd Pi,M)) embeds in Ed N(A,M),

a 2-Sphere. Let N = N(P1,M). If ‘N is orientable, it

is unique by Lemma 3.2.2. Since any 2—manifold with non-

empty boundary embeds in R3, N is homeomorphic to

N(P1,R3). If P1 is orientable with positive genus, or

if P1 is non-orientable with genus greater than two,

N' ='N - N(Bd P1,M) has a boundary that contains a torus

with a disk removed. If P1 is a Klein bottle less an

Open disk, Bd N' is two open annuli attached in such a

way that Bd N' does not embed in a 2-sphere. Thus if

N(P1,M) is orientable, P1 is either a disk or'a Moebius

band. Suppose that N is non-orientable. Since N col-

lapses onto P1, H2(N) = O and H1(N) is free. Since N

is non-orientable, H3(N,Bd N) = 0. Thus the exact homology

sequence of the pair (N,Bd N) yields an exact sequence
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 0 > H2(Bd N) > 0.

Since Bd N is a closed 2-manifold, each component of Ed N

is noneorientable.i Let» Q = N(Bdfipi,M), and: N' =‘N -NQ; N

Then Bd N' embeds in Bd N(A,M) and so each component of

Ed N' is a disk with holes. Since Bd N Bd N' U (Bd N.n Bd Q»

Bd N 0 Bd Q is non-orientable. Thus Q is a solid Klein

bottle and Bd Q is a Klein bottle. Since P1 n Bd Q - C

is a Simple closed curve, -N(C,Bd Q) is either an annulus

or a Moebius band. In the first case Bd Q - N(C,Bd Q) is

a pair of Moebius bands and in the second case it is a

single Moebius band. Since Bd N = Bd N' U (Bd Q - N(C, Bd Q))

and Bd N is a closed 2—manifold, the first case implies

that Bd N is either two projective planes or a Klein bottle

and the second case implies that Ed N is a projective

plane. If Bd N is a projective plane, 2X(N) - x(Bd N) = 1.

Thus x(N) = 1/2. This is impossible. .If Bd N is two

projective planes, we Obtain from the homology sequence of

the pair (N,Bd N) the exact sequence

   0 -—-w H2(N,Bd N) > 22 0‘22 > H1(N) > ...

This is impossible since H1(N) has no torsion and

Tor(H2(N,Bd,N))='Zz. [Thus Bd N is a Klein bottle. The

exact homology sequence for the pair (N,Bd N) becomes

0
 > H2(N,Bd N) -> Z O 22 -> H1(N) -> H1(N,Bd N) -—e 0.

Thus H1(N) =‘Z -‘N1(P1). Since P1 has connected boundary

P1 is a Moebius band.

’TO complete the proof Observe that if M1 is a sur-

face with holes, M1 contains a surface of the same genus
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with only one hole. In this surface find a P1 as before.

The above argument then implies that .M1 is either a disk

with holes or a Moebius band with holes.

Theorem 4.1.8: If .M is a closed 3-manifold, M has a

residual set A with a presentation P,

P: S(A).~S'(A), M1, .... Mn:¢.

where each Mi has connected boundary.

Proof: Suppose that A is a residual set for M with

a presentation where at least one of the Mi' say M1, does

not have connected boundary. Let S and T be two com-

ponents of Ed M1. Let B be an arc in M1 connecting .S

and T such that Int B CZInt M1 and p maps one of the

end points of B onto a, the join point of S'(A). Either

p(B) is an are or a simple closed curve in A. (If p(B)

is an arc, -M/p(B) has a residual set A/p(B). ~Since- M

is homeomorphic to M/p(B) we need only ShOw that A' =

A/p(B) has a presentation that Simplifies the presentation

of A in the sense that the number Of boundary components

is reduced. A' has a presentation P',

P': S(A').-S'(A‘). N1, ..., Nn7 ¢',

where Ni is homeomorphic to Mi for 2.: 1,: n and

Int N1 = (Int.M1)/p(B) - p(B)/p(B). ~We may think of N1

as being derived from M1 by expanding B to N(B,M1)

and removing the Open star Of B in M1. 9

If p(B) is a simple closed curve for all choices of B,

¢|T U S is the constant map. »Let S' be a simple closed
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curve in the interior of M1 with S U S' bounding an

annulus D in M1. Then p(D) is a disk meeting S(A)

only at a. .Either S'(A) pierces p(D) or itdoeS not.

Suppose that S'(A) does not pierce p(D). By swelling

p(D) up to a 3-cell and collapsing as in a B-move and then

pushing the resulting are along p(M1 - D) as in an E—move,

so as to form a Simple closed curve, we obtain a new re—

sidual set A' for .M. A' has a presentation

P': S(A'), S'(A'), N1, ...,,Nn: ¢'.

Again it is clear that Ni is homeomorphic to Mi for

i # 1. N1 may be Obtained from M1 by cutting .M1 along

8' and sewing in a 2-cell. Note that we then must add one

more 1—sphere to S'(A) in order to obtain S'(A'). Sup-

pose that .S'(A) pierces p(D). ~Without loss of generality,

assume Corollary 4.1.5 has been applied. -Swell up p(D)

to a 3-cell E as before. Let F = Cl(Bd E - p(D)).

A 0 Int E - C is an arc in a l-Sphere of SJ(A). ~Expand

A to A U E and collapse A U E onto (A - E) U F U C.

There are two arcs of (A - E) U F U C that meet Int F,

C and C'. By E-moves push the end points of C and C'

along F U p(M1 - D) to the join point a. Let A' be

the resulting residual set. A' has a presentation

P': S(A'), S'(A'). N1, ...-Nn:¢,

with Ni homeomoprhic to Mi for i # 1. -N1 is Obtained

from M1 by cutting M1 along 8' and sewing in a 2-cell.

Note that we have added a 1-sphere to S'KA) in order to

obtain S'(A'). Thus no matter what p(B) is we are able
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to find a new residual set with a presentation that has re-

duced the number of boundary components of the 2-manifolds.

Therefore, by an inductive argument, the lemma is established.

Remark 4.1.9: Lemma 4.1.8 enables us to assume that each
 

'Mi has connected boundary. However, we may have to sacri-

fice a little, for by reducing the number of boundary com-

ponents we may increase the number Of leaves of -S(A). As

an example, let .M =‘RP2 X 81. RP2 has a residual set RP1,

a 1-Sphere. Let p be a point Of ~31. .M has a residual

set A = (RP2 X p) U (RP1 X 81), with a presentation P,

9: RP1 x p,.RP1,x p, M1,.M2;,¢,

where _M1 is a disk, .M2 is an annulus, ¢|Bd M1 = ff

and ¢ restricted to either component of Bd M2 is f.

By changing .A as in Lemma 4.1.8, we Obtain a residual

set A' with a presentation P'L

P': S(A'), S'(A'), N1, N2: ¢'.

where N1 and N2 are disks,' S(A') = S'(A') is a 2—leafed

. ' ...—.1

rose, ¢'|Bd N1 =1f1f2f1f2 and ¢'|Bd N2 = flfzfllfz .

2. Residual Sets with S(A) §_§imple Closed Curve

In this Section we assume that each 2-manifold in a

presentation has connected boundary.

Theorem 4.2.1: Let A be a residual set for a closed 3-
 

manifold M. (Suppose that A has a presentation that has

only one 2-manifold. -Then »M is either the twisted S2

bundle over 81 or a toroidal manifold.
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.grggg: By Lemma 4.1.3, 1 = s + k1. If S = 0,

S'(A) is a point and so ¢ is the constant map. Thus

A is homeomorphic to RP2 and hence M = RP3 = T(2,1).

If S = 1 and r = 0, S'(A) is a l-Sphere and S(A) is

a point. Thus A is the one-point union of a 1—sphere and

a 2-sphere. By Theorem 3.3.6, M is either 81 x S2 =

T(0,1) or J.

Thus we may assume that S(A) = S'(A) is a 1-sphere.

By Lemma 4.1.4, A has a presentation

P: SI, 81, B2; hk, k > 0.

If k = 1, A is a disk and so M = S3 = T(1,1). If k =

2, A is RP2 and so M = RP3. Thus we assume that k.2.3.

Suppose that M is orientable. Since S(A) is a 1-Sphere,

it follows that the singular points Of A lie in n-books.

Thus A n N is an n-book with its ends identified after a

twist of ZW/m degrees for some integer M. Hence A n Bd N

is a J(n,m) curve on the boundary of a solid torus. We

now proceed as in Chapter II to construct a standard residual

set for M. Since the argument goes through exactly as in

Chapter II, we find that M and T(n,m) have homeomorphic

standard residual sets. By Corollary 2.3.4, M and T(n,m)

are homeomorphic if M is orientable.

We now Show that M is orientable. As in the proof

of Lemma 4.1.3, we Obtain the exact sequence:

     

O >1Hz(A) >2 >Z >H1(A) >0.

We will Show that H1(A) = Z for some k. Thus H2(A) = O
k

and so M is orientable.
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Let B = N(S(A),A). Since S(A) is a Simple closed

curve, W1(B) = (b: ). Since A - S(A) Vis an open disk

F1(A - S(A)) is trivial. —Since (A - S(A)) n B is a half

open annulus, 7T1((A - S (A)) n B) = (a: ). By the van

k
Kampen Theorem and the Observation that a ::b in B and

a :10 in A - S(A), we Obtain r1(A) - (b: bk = O) - Zk‘

Thus H1(A) : Zk.

Suppose that S(A) is a 1-sphere and that S'(A) is

an s-leafed rose. By Lemma 4.1.6 and our assumption that

each Mi has connected boundary, Mi is either a disk or a

Moebius band. Let the M1 be arranged so that the first q

are disks and the last n - q are Moebius bands. By Lemma

4.1.4, we may assume that ¢|Bd Mi : fk(i). If k(i) I 0.

p(Mi) is either a 2-sphere or a copy of RP2 attached to

S(A) at a, the join point of S'(A). Suppose that

p(Mi) = RP2. -Let N = N(p(Mi),M) and B = Bd N. If N is

non-orientable, consider the exact homology sequence of the

pair (N,B).

    

0 > H2(B) > H2(N) > H2(N:B) > H1(B)

   > H1(N) > H1(N,B) > HO(B)--—> 0.

Since H2(N) - H2(p(Mi)) = O, H2(B) = 0. However, B less

two disks embeds in a 2-Sphere. Thus B is either one or

two 2-spheres and so H2(B) # 0. Thus N is orientable.

By the proof of Lemma 3.3.1, we may change A into a resid-

ual set topologically (A - p(Int Mi)) U B U RPZ, where B

is an are from a point of (A - p(Int Mi)) to a point of
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RP2 such that Int B does not meet (A - p(Int Mi)) U RPz.

We will say that such an RP2 has been "put on a stick".

In the same way we put each p(Mi) on a stick if q + 1.:

i j.n and k(i) = 0. If p(Mi) is a 2-Sphere, the con-

nectivity of Bd N(A,M) implies that p(Mi) is pierced

by a 1-sphere of -S'(A). By an argument similar to that of

Lemma 3.3.2, we may assume that one and only one Of the 1-

spheres of S'(A) pierces p(Mi) and that p(Mi) and

that l-sphere may be put on a stick. -Hence we Obtain:

Lemma 4.2.2: Let A be a residual set for the closed 3-

manifold M. Suppose that A has a presentation

P: 31, S'(A), M1, ..., Mn;¢,

with M1, ..., M disks and M
q q+1'

'Suppose that ¢|Bd Mi = 0 for p+1 j.i :.q and t+1.: i.: n.

...,Mn Moebius bands.

Then M ='M' # M" where M' has a residual set A' with

a presentation

I. 1 I I .

P o S I S (A )I N1: °°°Iinl Nq+1r 00-: Ntl

with N1 homeomorphic to Mi and M" is the connected

4";

sum of q — p copies of 81 x 52 or J and n - t copies

of RP3.

With the above notation, if k(i) = 1 for some i be-

tween 1 and p, p(Ni) is a disk. By modding it out we

Obtain a 3-manifold homeomorphic to M' that has a residual

set whose Singular set is a point. Since the main theorem

of Chapter III classifies all closed 3-manifolds with this

prOperty we assume that k(i) # 1 for 1.: 1.: p.
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Suppose that N = N(S(A'),M') is a solid Klein bottle.

Let Ci = p(Ni) n Bd N. Clearly Ci is a simple closed

curve for all 1. By [12], there are exactly four isotopy

classes of simple, closed, orientation preserving paths and

exactly four isotopy classes of Simple, closed, orientation

reversing paths on —Bd N. Let 0, a, -a and b be repre-

sentatives of the orientation preserving classes and p1,

p2, -p1 and -p2 be representatives of the orientation re-

versing classes. These may be pictured as in Figure 4.1.
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>Figure 4.1.

If Ci 2:0 or b, k(i) = 0, (a contradiction. If

Ci 211 p1 or 1 pa for 1 j_i E.p, k(i) I 1, a contra—

diction. :Thus Ci 2:: a for 1 fi.i :.b. By reversing the

orientation of Ni’ we may assume that Ci 22a for 1.: 1.: p.

Likewise. Ci 2:: a, 1 p1 or 1 p2 for q+1 : 1.: t. Sup-

pose that ~Ct 2:1 p1. -By an isotopy we may assume that Ct =

r p1. Since Bd N - C is a Moebius band, no other
t
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Ci 3' 1 p1. In the same way, if .Ct 21 1 p1 and ct_1 : 1 p2,

no other 'Ci may be isotopic to 1 p1 or 1 p2. Thus we

Obtain three cases:

CASE 1: Ci :1: a for all 1,

CASE 2: Ci :;i:a for i # t and Ct :11 p1 and

CASE 3: ci ~ i a for i 75 t, t-l, ct Zr p1 and

C
t-1 1: p2.

In any case there are two Ci’ say C and C', that

bound an annulus E on Bd N, with Ci C’E if Ci 2:: a.

If there is only one C. 2!: a, set C1 - E. Notice that
1

E' = N(E,Bd N) is an annulus.

CASE 1: Since Bd.N - E' is two Open Moebius bands

and Ed N - E' less some disks embeds in a 2-sphere, we

have a contradiction. It is necessary to remove the disks

since an arc of S'(A') - S(A') may intersect Bd N - E'.

CASE 2: A similar argument excludes this case.

CASE 3: Let P = Cl(p(Nt) — N). P is a Moebius band.

Clearly N(P,M') is either a solid torus or a solid Klein

bottle. -Since Bd N(Ct,N) -N(Ct,Bd N) is a Moebius band

embedded in Bd N(P,M'), N(P,M') is a solid Klein bottle.

However, Bd N(P,M') - Bd N(Ct,N) is a Moebius band that

embeds in a 2-Sphere, excluding case 3.

ppmma 4.2.3: Let A be a residual set Of a closed.3-mani-
 

fold M with AS(A) a simple closed curve. Then N(S(A),M)

is orientable.
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grgpr; As in Lemma 4.2.2, we write M = M' # M". No-

tice that N(S(A),M) is homeomorphic to N(S(A'),M'). How-

ever, the above argument implies that N(A(S'),M) is orient-

able.

Remark 4.2.4: Our assumption that the Mi have connected

boundary is essential in Lemma 4.2.3. Again M - RP2 X 81

gives the counter example, for N(S(A),M) is a solid Klein

bottle.

Lemma 4.2.5: Suppose that A is a residual set of the
 

closed 3-manifold M and that A has a presentation P

P: 51, 31. M1. M2; e.

Then M = RP3 # T(n,m) or M = RP3 # J.

grpgr: Since 2 = 1 + k1 + k2 by Lemma 4.1.3, we may

assume that M1 is a disk and M2 is a Moebius band. If

¢|Bd M1 is the constant map, p(Ml) is a 2-Sphere and so

Bd N(A,M) is not connected. If ¢in M2 is the constant

map, p(Mz) may be put on a stick. Then M has a residual

set RP2 v p(M1) and so M = RP3 # T(n,m) or M - RP3 # J

by Theorem 4.2.1. Thus we assume that ¢ is not the con-

stant map on either boundary component. By Lemma 4.2.4, we

h with k r o r h.may assume that ¢|Bd M1 = fk and ¢|Bd M2 = f

By Lemma 4.2.3, N(S(A),M) is a solid torus T. Let C =

(Bd T) n p(Ml) and D - (Bd T) n p(Mz). Now C is a J(k,m)

curve and D is a J(h,m') curve. Since C does

not meet D, after changing the orientation Of M1 if
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necessary, k = h and m - m'. Thus C U D bounds an

annulus E on Bd T. Swell up S(A) to a singular solid

torus T' with boundary ((p(M1) U p(M2)) n T) U E. Thus

all the Singularities of T' lie on. S(A). »Collapse *T'

from p(Mz) n T onto (p(Ml) n T) U E. .Mod out an arc J

on p(Ml) n T, with one end point x on p(Ml) n Bd T and

the other end point 'a on S(A), such that Int J C:

p(Int M1) 0 Int T. ALet A' be the resulting residual set.

A' has a presentation

P': 31 v 31, 51 v31, 131,132, N; 4>',

where the Bi are disks and N is a Moebius band. -More-

over, ¢'|Bd 31 = f, ¢'|Bd B2 = gkf and ¢'|Bd N = f,

where f is the map around one of the leaves and g is

the map around the other leaf. Thus p(B1) is a disk.

Mod out p(Bl), Obtaining a residual set A" with a pre-

sentation

P": sl,.sl, N1, N2; ¢".

where N1 is a disk with ¢"|Bd N1 = 9k and N2 is a

Moebius band with ¢"]Bd N2 = 0. Hence A" is the one-

point union of RP2 and the residual set for a T(k,m)

manifold. Thus the Lemma is established.

Theorem 4.2.6: Let A be a residual set for a closed 3-
 

manifold M. Suppose that A has a presentation

P: 81, S'(A); M1, ...,-Mn;-¢’

then either

Q-I n—q

i) M = ( f 81 X 32) # ( # RP3) # (T(n,m)) or

1 .
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(1&1 n-q

ii) M = ('# J) # ( # RP3) # T(n,m).

1 1

[Proof: By Theorem 4.1.4, ¢|Bd M1 = k(l). Since

N(S(A),M) is a solid torus, the argument Of Lemma 4.2.5

implies that either k(i) = i k or ¢|Bd Mi is the COD?

stant map. By Lemma 4.2.2, we may write M =‘M' # M",

where M' and »M" are as in the lemma. Let A' be the

residual set for M'. As in Lemma 4.2.2, A' has a pre-

sentation

I, 1. I l . . I

P .S I S (A)IN1! 0-01Npqu+11 00-: Ntl ¢ 0

ik .

Note that ¢'|Bd Ni- f for all 1. Set ci =

p(Ni) n Bd.N(S(AF)}M?)L- Then there are two of the ‘Ci,

say C1 and C2, that bound an annulus E on Bd N(S(A)',M')

with Ci CiE for all i. As in Lemma 4.2.5, there is a

singular torus T' in N(S(A'), M') bounded by

((P(N1) U p(N2)) fl N(S(A'), M')) U E. Collapse T' from

p(Nl) n N(S(A'),M') onto E U ( p(Nz) n N(S(A'),M')).

Let J be as in Lemma 4.2.5. MOd out J.. If there are

any arcs in the resulting residual set that do not form a

simple closed curve move their end points, by E-moves, to

the image of the join point. 'We thus obtain a residual

set A" with a presentation

ll. 1 1 I II o n

P . s vs , s (A ), Q, Ql, Qp, Qqfl. Qt. <1>,

where Q is a disk with ¢"|Bd Q = gkf and Qi is homeo-

morphic to Ni for all i with ¢"|Bd Qi = f. Since Q1

is a disk, p(Ql) is a disk. By modding out p(Ql) we

obtain a residual set A"' with a presentation
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III. 1 I III , III

p ‘3 IS (A )I DI D2: 00-: Dpl Dq+11 000! Dtl ¢ I

with D homeomorphic to Q and Di homeomorphic to 01'

and ¢"'|Bd D 3 gk amd ¢"'|Bd Di = O. The theorem follows.
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