A CHARACTERZATION OF CERTAN

 CLOSED 3- MANFOLDSThesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSTY GERHRDD WALTER KNUTSON 1968

This is to certify that the
thesis entitled
A CHARACTERIZATION OF
CERTAIN CLOSED
3-MANIFOLDS
presented by

Gerhard W. Knutson
has been accepted towards fulfillment
of the requirements for
Ph.D. degree in Mathematics

Date July 8, 1968

Abstract

A CHARACTERIZATION OF CERTAIN CLOSED 3-MANIFOLDS

\section*{by Gerhard Walter Knutson}

Let M be a closed connected combinatorial 3-manifold. A compact subcomplex A of M is a residual set of M if M is the disjoint union $A \cup U$ of an open 3-cell U dense in M and a non-separating continuum A of dimension less than 3. The singular set of $A, S(A)$, is the set of points of A that do not have an open 1- or 2-dimensional euclidean neighborhood in A.

In this thesis we examine the relationship between A and M. In particular we show that if A does not contain a wild arc then we may pick A so that $S(A)$ is a point. Then we prove the following theorem: M has a residual set that contains no wild arc if and only if M is the connected sum of closed 3-manifolds each of which is topologically the 3 -sphere, real projective 3 -space, $s^{\mathbf{1}} \times s^{\mathbf{2}}$, or the twisted $S^{\mathbf{2}}$ bundle over S^{1}.

We also show that A may be picked so that $A-S(A)$ is the disjoint union of open arcs and the interiors of compact 2-manifolds with connected boundaries. Under this assumption, if $S(A)$ is a simple closed curve, M is the connected sum of closed 3-manifolds each of which is topologically $s^{1} \times s^{2}$, the 3-sphere, real projective 3-space, the twisted S^{2} bundle over S^{1}, or a lens space.

A CHARACTERIZATION OF CERTAIN CLOSED 3-MANIFOLDS

By
Gerhard Walter Knutson

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor P. H. Doyle for suggesting the problem and for his helpful suggestions and guidance during the research.

T○ My

Mother and Father
iii
CHAPTER Page
I. INTRODUCTION 1

1. Homology and Homotopy of Residual Sets 1
2. Local Connectivity of A relative to M 4
II. TOROIDAL MANIFOLDS 7
3. Residual Sets of Connected Sums 7
4. Residual Sets of Disk Sums 8
5. Toroidal 3-Manifolds 9
III. A CHARACTERIZATION OF CLOSED 3-MANIFOLDS WITH RESIDUAL SETS CONTAINING NO WILD ARC 16
6. A is a One-Point Union 16
7. The 2-Manifolds of A 20
8. Reconstruction of M 24
9. Compact 3-Manifolds with Boundary 31
IV. A CHARACTERIZATION OF CERTAIN CLOSED 3- MANIFOLDS WHOSE SINGULAR SET IS A SIMPLE CLOSED CURVE 34
10. The Singular Set 34
11. Residual Sets with $S(A)$ a Simple Closed Curve 44
BIBLIOGRAPHY 54

LIST OF FIGURES

FIGURE Page
2.1 14
4.1 48

CHAPTER I

INTRODUCTION

In 1962 Doyle and Hocking established a decomposition of a closed n-manifold into an open n-cell and a non-separating continuum of dimension less than n. In this thesis we start with the continuum and under certain conditions reconstruct the manifold. Since our concentration is on connected 3-manifolds, we assume that all our manifolds are combinatorial and connected. Furthermore, all subsets are simplicial and all maps are piecewise linear.

In this chapter we establish some elementary relations between the manifold and its decomposition.

1. Homology and Homotopy of Residual Sets

Definition 1.1.1: Let M be a compact n-manifold. A compact subcomplex A of M is a residual set of M if M is the disjoint union $M=A \cup U$ of an open n-cell U dense in M and a non-separating continuum A of dimension less than n. $A \cup U$ is called a decomposition of M.

We remark that if M has non-empty boundary, the boundary of M is contained in A. Therefore we must not confuse the residual set with a spine [17]. However, if A is a residual set of M then A is a spine of M less an open n-ball of the interior of M.

Note that we will assume that a residual set does not collapse onto any proper subset of itself.

In [5] Doyle and Hocking prove that every compact nmanifold has a decomposition. The Brown-Casler Theorem [2] asserts the existence of a continuous function f from the closed n-ball B^{n} onto M such that $f \mid$ Int B^{n} is a homeomorphism, $f^{-1} f\left(B d B^{n}\right)=B d B^{n}$, and $\operatorname{dim} f\left(B d B^{n}\right)<n$. Thus if $M=A \cup U$ is a decomposition of M, we will always assume we are given the map $f:\left(B^{n}, B d B^{n}\right) \longrightarrow(M, A)$.

It will be useful to establish the relationship between the homology and homotopy groups of A and M. Since M is the adjunction space obtained by attaching B^{n} to A by means of f, the pair (M, A) is a relative $n-c e l l$. Hence, $H_{q}(M, A)=\hat{H}_{q-1}\left(S^{n-1}\right)$ for all q and $\pi_{q}(M, A)=0$ for $0<q<n[10]$. Note that we will use equality to mean group isomorphism or space homeomorphism whenever no confusion is likely.

If $h_{q}: H_{q}(M, A) \longrightarrow \hat{H}_{q-1}\left(S^{n-1}\right)$ is the above isomorphism and $H_{q}(f): H_{q}\left(S^{n-1}\right) \longrightarrow H_{q}(A)$ is the homomorphism induced by f, we obtain the commutative diagram:

where the unnamed maps are the maps of the exact homology sequence of the pair (M,A).

Using these definitions we state two well known theorems and an immediate corollary.

Theorem 1.1.2[8]: The following hold;
i) $H_{q}(M)=H_{q}(A)$ for $q \neq n, n-1$
ii) $H_{n-1}(M)=H_{n-1}(A) / \operatorname{Im} H_{n-1}(f)$
and

$$
\begin{aligned}
\text { iii) } & 0 \longrightarrow H_{n}(A) \longrightarrow H_{n}(M) \longrightarrow \operatorname{ker} H_{n-1}(f) \longrightarrow 0 \\
& \text { is exact. }
\end{aligned}
$$

Corollary 1.1.3: If $\operatorname{dim} A<n-1, M$ is orientable.

Proof: If $\operatorname{dim} A<n-1, H_{n}(A)=0=H_{n-1}(A)$ and so $\operatorname{Im} H_{n-1}(f)=0$. Thus ker $H_{n-1}(f)=Z$ and so $H_{n}(M)=Z$. Hence M is orientable.

Theorem 1.1.4: $\pi_{q}(M)=\pi_{q}(A)$ for $0 \leq q<n-1$.
Theorem 1.1.5: Let M be a closed n-manifold. Let A be a residual set of M with $\operatorname{dim} A<n / 2$. If n is odd suppose that ${ }^{H}(n-1) / 2$ (A) is torsion free. Then M is a homology n-sphere.

Proof: If $n=1$ or 2, A is a point and so M is a sphere. If $n=3, A$ is a 1 -complex and hence A is the homotopy type of an r-leafed rose. By Corollary 1.1.3 M is orientable. Thus $\operatorname{ker} \mathrm{H}_{2}(\mathrm{f})=\mathrm{Z}$ and $\operatorname{Im} \mathrm{H}_{2}(\mathrm{f})=0$. $\quad \mathrm{By}$ Theorem 1.1.2, $H_{2}(M)=H_{2}(A)$. By Poincare duality $H_{1}(M)=$ $H_{2}(A)=0$. Thus $H_{1}(A)=0=H_{1}(M)$ and so A is contractable. Hence M is a 3-sphere.

Suppose that $n>3$. Then M is orientable and $H_{n-1}(A)=H_{n-1}(M) . \quad$ By Theorem 1.1.2, we obtain:

$$
H_{q}(M)= \begin{cases}\mathrm{z} & \mathrm{q}=0 \text { or } \mathrm{q}=\mathrm{n} \\ 0 & \mathrm{n} / 2 \leq \mathrm{q} \leq \mathrm{n}-1 \\ \mathrm{H}_{\mathrm{q}}(\mathrm{~A}) & 1 \leq \mathrm{q}<\mathrm{n} / 2\end{cases}
$$

By Poincare duality $H^{q}(M)=H_{n-q}(M)$. Hence

$$
H^{q}(M)= \begin{cases}Z & q=0 \text { and } q=n \\ 0 & 1 \leq q<n / 2 \\ H_{n-q}(A) & n / 2 \leq q \leq n-1\end{cases}
$$

By Theorem 5.5.3 of $\{14\}, H_{q}(M)=\operatorname{Hom}\left(H^{q}(M), Z\right) \oplus$ $\operatorname{Tor}\left(H^{q+1}(M)\right)$. Hence $H_{q}(M)=0$ if $q \neq 0$ or n and $H_{0}(M)=0=H_{n}(M)$.

Corollary to the proof: If M is a closed 3-manifold with a residual set of dimension $1, M$ is a 3-sphere.

2. Local Connectivity of A Relative to M

Let X be a separable metric space and A a subset of X. Let x be an element of X. We say A is locally p connected in the sense of homotopy at x ($p-L C$ at x) if for every $\zeta>0$ there is a $\delta>0$ such that each map $f: S^{p} \longrightarrow S_{x}(\delta) \cap A$ is null homotopic in $S_{x}(\zeta) \cap A$ [7], where $S_{x}(\zeta)$ is an ζ-ball centered at x. A is locally p-connected in the sense of homotopy in relation to X (A is $p-L C$ rel x) if A is $p-L C$ at x for each x in x.

Lemma 1.2.1: Let M be a closed n-manifold with a decomposition $M=A U U$. If U is $p-L C$ rel M for $0 \leq p \leq k$, then $\operatorname{dim} A \leq n-(k+2)$.

Proof: Let B be a simplex of A with maximal dimension m. Let x be an interior point of B. Then x has a neighborhood N in M with $(N, N \cap U)=\left(R^{n}, R^{n}-R^{m}\right)$. Thus $N \cap U$ contains an $(n-(m+1))$-sphere that does not bound in $N \cap U$. Hence U is not $(n-(m+1))-L C$ rel M. Since $k<n-(m+1)$ by definition of $p-L C$, and $m=$ $\operatorname{dim} A$, it follows that $\operatorname{dim} \mathrm{A} \leq \mathrm{n}-(\mathrm{k}+2)$.

Corollary 1.2.2: If U is 0 -LC rel M, then M is orientable.

Proof: From Lemma 1.2.1, $\operatorname{dim} A \leq n-2$ and so, by Corollary 1.1.3, M is orientable.

Corollafy 1.2.3: If M is a closed 2- or 3-manifold and U $0-L C$ rel M, then M is a sphere.

Corollary 1.2.4: Let M be a closed 4-manifold with U 0-LC rel M. If M is not a 4-sphere $\operatorname{dim} A=2$.

To see that Corollary 1.2.4 cannot be strengthened, consider $S^{2} \times S^{2}$. This manifold has a residual set that is topologically the one-point union of two 2-spheres.

Corollary 1.2.5: Let M be a closed n-manifold and suppose that U is $p-L C$ rel M for $0 \leq p \leq n-3$. Then M is an n-sphere.

A concept similar to p-LC is obtained using singular chains and cycles. Using the corresponding definitions we obtain similar results.

TOROIDAL MANIFOLDS

In this chapter we investigate the relationship between the residual set of a connected sum and the residual sets of the summands and between the residual set of a disk sum and the residual sets of the summands. Finally we will investigate the residual set of a toroidal manifold.

1. Residual Sets of Connected Sums

Definition 2.1.1: Let M and M^{\prime} be two closed combinatorial n-manifolds. The connected sum M \# M' is obtained by removing the interior of a closed n-ball from each manifold and matching the resulting boundaries by means of a piecewise linear homeomorphism. If the manifolds are orientable this sum is not always well defined unless the homeomorphism is orientation reversing. When we write M \# M' we will imply that the sum is well defined.

In latter chapters we will use the connected sum of 3-manifolds. In the construction it will follow that the homeomorphism will be orientation reversing whenever necessary. We note that if M has an orientation reversing self homeomorphism, M is homogeneous in the sense of Brown and Gluck, and so M \# M^{\prime} is well defined. We remark that \mathbf{s}^{3}, $S^{1} \times S^{2}$, and R^{3} (real projective 3-space) have orientation reversing self homeomorphisms.

Theorem 2.1.2: If A and A^{\prime} are residual sets of the closed n-manifolds M and $M^{\prime}, ~ M ~ \# ~ M ' ~ h a s ~ a ~ r e s i d u a l ~ s e t ~$ homeomorphic to the one-point union of A and A^{\prime} (written $\left.A V A^{\prime}\right)$.

Proof: If we pick the n-balls of the connected sum to be n-simplexes of some triangulation of M and M that meet the respective residual sets at a point, the theorem follows.

2. Residual Sets of Disk Sums

Definition 2.2.1: Let M and M^{\prime} be connected compact n manifolds with connected non-empty boundaries. The disk sum $M \Delta M^{\prime}$ is obtained by pasting an ($\mathrm{n}-1$)-ball of $\mathrm{Bd} M$ onto an ($n-1$)-ball of Bd^{\prime} '.

Theorem 2.2.2: If A and A^{\prime} are residual sets of the compact n-manifolds M and M^{\prime}, where $B d M$ and $B d M^{\prime}$ are connected and non-empty, $M \Delta M^{\prime}$ has a residual set homeomorphic to the space obtained by removing the interior of an ($n-1$)-ball from both A and A^{\prime} and sewing the resulting sets together along the boundaries of the removed balls.

Proof: If we pick the ($n-1$)-balls of the disk sum to be ($n-1$)-simplexes of $B d M$ and $B d M^{\prime}$, under some triangulation of M and M ', the theorem follows.

3. Toroidal 3-Manifolds

It is well known that each closed connected orientable 3-manifold M may be obtained by sewing two solid tori of the same genus together by a boundary homeomorphism. We investigate M when we know how M is obtained from two tori. In particular we investigate toroidal manifolds.

Theorem 2.3.1: Let M be a closed orientable 3-manifold. Suppose that T_{1} and T_{2} are two solid tori of genus n, and h is a homeomorphism of $B d T_{1}$ onto $B d T_{2}$ with $M=$ $T_{1} U_{h} T_{2}$. Let $T_{i}=A_{i} U U_{i}$ be a nice decomposition of T_{i}. Then there is a 2-cell C in A_{1} with Int C open in A_{1} and $h\left(\right.$ Int C) open in A_{2} such that M has a decomposition $M=A \cup U$, where $U=\left(U_{1} \cup\right.$ Int $\left.C\right) U_{h}\left(U_{2} U h\right.$ (Int C)) and $A=\left(A_{1}-\operatorname{Int} C\right) U_{h}\left(A_{2}-h(\operatorname{Int} C)\right)$.

Proof: A nice decomposition of a solid torus T of genus $n, T=A \cup U$, is obtained by taking A to be the boundary of T plus n disjoint 2-cells C_{1}, \cdots, C_{n} where $C_{i} \cap B d T=B d C_{i}$ and $B d T-\bigcup_{i=1}^{n} B d C_{i}$ is a sphere with $2 n$ holes. For example in the torus of genus one, $T=S^{1} \times B^{2}, A$ would be $\left(S^{1} \times B d B^{2}\right) U\left(P \times B^{2}\right)$ where p is a point of s^{1}.

We will consider T_{1} and T_{2} as submanifolds of M with $M=T_{1} \cup T_{2}$ and $T_{1} \cap T_{2}=\operatorname{Bd} T_{1}=\operatorname{Bd} T_{2}$. Then $M=$ $A_{1} \cup A_{2} \cup U_{1} \cup U_{2}$. Since $A_{1} \cup A_{2}$ is 2-dimensional, there is a 2-cell C in $T_{1} \cap T_{2}$, such that C is the carrier of a 2-simplex of some triangulation of M. Then M has a
decomposition of the desired form, namely $M=\left(A_{1}-\right.$ Int $\left.C\right)$ $\left.U\left(A_{2}-\operatorname{Int} C\right)\right) U\left(U_{1} U\right.$ Int $\left.C U U_{2}\right)$.

Corollary 2.3.2: Any closed orientable 3-manifold has a residual set which is an orientable surface of genus n, less an open 2-cell, to which $2 n$ 2-disks are attached by means of homeomorphisms of their 1-sphere boundaries.

If M is a 3-manifold obtained by attaching two solid tori of genus n by a boundary homeomorphism, we will call M an n-tuple toroidal manifold or an $n-T M$. Bing [1] has shown that any $1-T M$ is either the 3 -sphere, $S^{1} \times \dot{S}^{2}$, or a lens space. In Chapter IV we will need to know the residual set of a $1-T M$, so we turn our attention to that goal.

Each 1-TM is obtained by attaching two solid tori T_{1} and \mathbf{T}_{2} by an appropriate boundary homeomorphism. We now describe such a homeomorphism.

Let M_{i} and L_{i} be meridianal and longitudinal simple closed curves on $B d T_{i}$, for $i=1$ or 2 . Suppose that n and m are relatively prime positive integers. Let a_{1}, \cdots, a_{n} be n points on M_{2}, cyclicly ordered by their subscripts. Let $J(n, m)$ be a simple closed curve on $B d T_{2}$ that meets M_{2} at the n points a_{i}, with the a_{i} cyclicly ordered on $J(n, m)$ as $a_{1}, a_{m+1}, \ldots, a_{(n-1) m+1}$. Let h be a homeomorphism of $B d T_{1}$ onto $B d T_{2}$ such that $h\left(M_{1}\right)=J(n, m)$. Define $T(n, m)$ to be the adjunction space $T_{1} U_{h} T_{2}$. Set $J(1,0)=M_{2}$ and $J(0,1)=L_{2}$. Then $S^{1} \times S^{2}=T(1,0)$ and $S^{3}=T(0,1)$. Since isotopic maps
yield homeomorphic 1-TM's and since each isotopy class of homeomorphisms of $\mathrm{Bd} \mathrm{T}_{1}$ onto $\mathrm{Bd} \mathrm{T}_{2}$ has a representative that maps M_{1} onto $J(n, m)$, each $1-T M$ is a $T(n, m)$ manifold.

To obtain a decomposition for $T(n, m)$, we consider T_{1} and T_{2} as submanifolds of $T(n, m)$ with $T_{1} \cup T_{2}=T(n, m)$ and $T_{1} \cap T_{2}=B d T_{1}=B d T_{2}$. In $T_{1}, J(n, m)$ is a meridianal simple closed curve and so bounds a disk D in T_{1} with Int $\mathrm{D} \subset$ Int T_{1}. Then T_{1} has a residual set $\mathrm{Bd} \mathrm{T}_{1} \cup \mathrm{D}$. Considering T_{2} as $B^{2} \times S^{1}$, where B^{2} is the closed unit 2-ball, let C be the simple closed curve in T_{2} corresponding to (0) $\times S^{\mathbf{1}}$. Let B be the singular annulus obtained by pushing $J(n, m)$ onto C by a radial projection; that is, B corresponds to the image of the function $F: J(n, m) \times I \longrightarrow B^{2} \times S^{1}$ defined by $F(((x, y), s), t)=$ $(((1-t) x,(1-t) y), s)$, where (x, y) is a point of $J(n, m)$ and s lies on S^{1}. Since $T(n, m)-(B \cup D)$ is an open 3-cell $B \cup D$ is a residual set of $T(n, m)$. Notice that $B \cup D$ is topologically the quotient space of an n-gon obtained by identifying each edge with a simple closed curve in an orientation preserving manner.

In [3] Casler defines a standard spine of a 3-manifold with non-empty boundary. Following this definition we will define a standard residual set of a closed 3-manifold.

Let K be a 2-complex. A vertex v of K is of type I if v has a 2-cell neighborhood, of type II if v is not of type I and has a 3-book neighborhood, and of type III
if v is not of type I or II and has a neighborhood homeomorphic to the cone over a set consisting of a circle together with three of its radii. K is a standard 2-complex if the following hold:
i) each vertex of K is of type I, II or III.
ii) K less its singular 1 -skeleton, K_{1}, is a countable number of disjoint open disks, and
iii) K_{1} less the singular 0-skeleton of K_{1} is the sum of a countable number of pairwise disjoint open arcs.

If A is a standard 2-complex and if A is a residual set of a closed 3 -manifold M, then A is defined to be a standard residual set. Likewise A is a standard spine if A is a standard 2-complex and A is also a spine. The main result of [3] is:

Theorem 2.3.3: If K is a standard spine of a compact 3manifold M with non-empty boundary and K^{\prime} is a standard spine of a compact 3 -manifold m^{\prime} with non-empty boundary, and if K and K^{\prime} are homeomorphic, then M is homeomorphic to M^{\prime}.

Recall that we are in the piecewise linear category so that the above homeomorphisms are piecewise linear.

Corollary 2.3.4: If two closed 3-manifolds have homeomorphic standard residual sets, then the manifolds are homeomorphic.

Proof: We need only note that a standard residual set of a closed 3-manifold is a standard spine of the manifold less an open 3-simplex and then apply Theorem 2.3.3.

We would now like to find a standard residual set for the manifold $T(n, m)$. If $n=2, B \cup D$ is a copy of the real projective plane. By a result of Hocking and Kwun [9], $T(2, m)$ is real projective 3 -space. Since $T(3,1)$ and $T(3,2)$ are homeomorphic we need only consider $T(3,1)$. For $T(3,1), B \cup D$ is a 3 -book with its ends identified after a twist of 120 degrees. Let v be a vertex of $B U D$ of type II. Let N be a 3-book neighborhood of v in $B U D$, with pages P_{1}, P_{2} and P_{3}. Swell up v to a 3-cell C that meets $B \cup D$ in a disk E contained in $P_{1} \cup \mathbf{P}_{2}$ with E contained in the boundary of C. By collapsing C onto a copy of Bing's house with two rooms leaving E fixed, we obtain a standard residual set for $T(3,1)$. If $n \geq 4$, we do not consider the residual set $B U D$, but rather start all over. As before $T(n, m)=T_{1} U_{h} T_{2}$, and D is the same nice disk in $\mathbf{T}_{\mathbf{2}}$. We now decompose $\mathbf{T}_{\mathbf{1}}$ into two open sets U_{1} and U_{2}, each topologically the upper half 3-space, and a continuum H. Then $U_{1} \cup U_{2} \cup$ Int $\left(T_{2}-D\right)$ is an open 3-cell and if H is sufficiently nice $H U D$ is a standard residual set for $T(n, m)$. To construct H, consider T_{1} as being obtained as the identification space of $B^{2} \times I$, under the action of a homeomorphism f of $B^{2} \times(0)$ onto $B^{2} \times(1)$, defined by $f\left(t e^{i \theta}, 0\right)=\left(t e^{i \theta+(2 \pi / m)}, 1\right)$. Then T_{1} is
homeomorphic to $\left(B^{2} \times I\right) / R$, where R is the equivalence relation $x \sim f(x)$. Let p be the composite map $p: B^{2} \times I \longrightarrow\left(B^{2} \times I\right) / R \longrightarrow T_{1}$, where the first map is the quotient map and the second is the above homeomorphism.

Figure 2.1

Let L_{1}, \cdots, L_{n} be n arcs in $B d\left(B^{2} \times I\right)$ such that $p\left(\cup_{1}^{n} L_{i}\right)=J(n, m)$. Now consider $B^{2} \times I$ as a cube with $B^{2} \times(0)$ as top and $B^{2} \times(1)$ as bottom. Furthermore consider L_{1}, L_{2}, L_{3} and L_{4} as the four edges on the sides of the cube. The remaining arcs, L_{5}, \cdots, L_{n}, are on the side that has L_{1} and L_{4} as edges. Now collapse $B^{2} \times I$ onto a copy of Being's house with two rooms as in Figure 2.1. Setting H equal to the image of the house under the map p, it follows that $H \in D$ is a residual set of $T(n, m)$.

However, H U D was so constructed that, if a little care is taken as to how we collapse onto the house, $H \cup D$ will be a standard residual set for $T(n, m)$.

A CHARACTERIZATION OF CLOSED 3-MANIFOLDS WITH RESIDUAL SETS CONTAINING NO WILD ARCS

In this chapter we establish that a closed 3-manifold has a residual set containing no wild arc if and only if it is the connected sum of closed 3 -manifolds each of which is homeomorphic to a 3 -sphere, real projective 3 -space, $S^{1} \times S^{\mathbf{2}}$, or the twisted S^{2} bundle over S^{1}. Finally we establish a similar characterization for compact 3-manifolds with boundary.

1. A Is a One-Point Union

Definition 3.1.1: An arc B in a complex X is wild if there does not exist a homeomorphism of X onto itself carrying B onto a polyhedral arc of X.

Since a trefoil knot may be embedded in a 3-book, a 3book contains a wild arc [14]. Thus if A is a residual set of a closed 3 -manifold that does not contain a wild arc, then A does not contain a 3-book. Recall that A does not collapse onto any subcomplex of itself. If v is a vertex of A and $N(v, A)$ the second derived neighborhood of v in $A[16]$, we may classify the vertices of A into three disjoint types:
i) $N(v, A)$ is an arc,
ii) $N(v, A)$ is a disk, and
iii) $N(v, A)$ is the one-point union of arcs and disks.

Lemma 3.1.2: Let A be a residual set for the closed 3manifold M which contains no wild arcs. Then there is another residual set A^{\prime} for M that is the one-point union of closed 2-manifolds and 1-spheres.

Proof: If the dimension of A is less than two, M is a 3-sphere and so A is a point. Suppose that A has dimension two and that a is a vertex of A. Let $\operatorname{st}(x, x)$ and $L k(x, X)$ be the star and link of x in the second derived subdivision of a complex triangulating X [16]. Then St (a,M) is a 3-ball with $S t(a, A)$ contained in $S t(a, M)$ as the join of a with $L k(a, A)$.

Since $\operatorname{Lk}(a, A)=L k(a, M) \cap A$ is the disjoint union of $p \geq 01$-spheres and $q \geq 0$ points, we may associate with a the pair (p, q) and a will be called a (p, q)-point. We will define a series of moves that change A into A; where A^{\prime} contains only (1,0)-points, $(0,2)$-points and one (m, n)-point.

MOVE A: Let a be a (p,q)-point of A with $p q>2$. Let x be an isolated point of $\operatorname{Lk}(a, A)$. In $L k(a, M)$ there is an arc C with $B d C=A \cap C=x \cup y$, where Y is a point of a 1-sphere of $L k(a, A)$. There is a 2-cell B in $S t(a, M)$ with $A \cap B=A \cap B d B=a o x \cup$ aoy and $B d B=$ aox U aoy $U C$. Here " 0 " denotes the join operator. An A-move expands A to $A \cup B$ and collapses from aox across B onto $C l(A-a o x) \cup C$.

MOVE B: Let a be $a(p, 0)$-point of A with $p>1$. There is a 1 -sphere S of $L k(a, A)$ that bounds a 2-disk D in (Lk(a,M) - Lk(a,A)) US. Thus there is a 3-cell C in $S t(a, M)$ with $A \cap C=A \cap B d C=$ aos and $B d C=$ aoS U D. A B-move expands A to A UC and collapses onto (A-aoS) U aoy $U D$, where Y is a point of S.

MOVE C : Let a be a $(0, q)$-point of A with $q>2$. Suppose that x is a point of $L k(a, A)$ and aox may be extended to an arc B in A with $B d B=a U y$, where y is a (p, q)-point of A with $p q \neq 0$, such that Int B contains only (0,2)-points. Let $z \neq x$ be a point of $L k(a, A)$. There is a 2-cell C in M with $A \cap C=A \cap B d C=$ B U aoz. Let $D=C l(B d C-(a o z U B))$. A C-move expands A to $A \cup C$ and collapses from aoz across C onto (A-aoz) U a $\cup D$.

MOVE D: Let a be a $(1,1)$-point of A with x the isolated point of $L k(a, A)$. Suppose that Y is $a(p, q)-$ point of A in the same 2 -chainable component of A as a. There is an arc C in A, with $B d C=a U y$ and Int C containing only (1,0)-points, and a 2-cell B in M with $A \cap B=A \cap B d B=C \cup$ aox. Let $D=C l(B d B-(C \cup$ aox $))$. A D-move expands A to $A \cup B$ and collapses from aox across B onto (A-aox) U a $U D$.

MOVE E: Let a be a $(1,1)$-point of A with x the point and S the 1-sphere of $L k(a, A)$. Suppose that aox may be extended to an $\operatorname{arc} B$ in A with $B d B=a \cup y$,
where y is a (p, q)-point of A with $p q \neq 0$, and Int B containing only (0,2)-points. There is a 3-cell C of M with $A \cap C=B \cup$ aos and $A \cap B d C=Y \cup$ aos, such that C collapses onto $B U$ aos. Let $D=C l(B d C-a o S) . A n E-$ move expands A to $A \cup C$ and collapses from aos across C onto (A - (B \cup aos)) $\cup D$.

We observe that each move transforms A into a residual set of M. By a finite series of A-moves we may assume that each vertex of A is either a $(1,1)$-point, a $(0, q)$ point or a $(p, 0)$-point. By A - and B-moves we may assume that each $(p, 0)$-point of A has $p=1$. By A - and C moves each vertex of A is $a(1,1)-,(1,0)$ - or a $(0,2)-$ point. By D- and E-moves we obtain the desired form.

Lemma 3.1.3: If A is as in the conclusion of Lemma 3.1.2, where A is the one-point union of $n \quad 1$-spheres and m closed 2-manifolds, $n \leq m$.

Proof: Since Theorem 1.1.2 holds for arbitrary coefficients, it follows that $H_{2}\left(M ; Z_{2}\right)=H_{2}\left(A ; Z_{2}\right)$ and $H_{1}\left(M ; Z_{2}\right)$ $=H_{1}\left(A ; Z_{2}\right)$. By Poincare duality and the universal coefficient theorem for cohomology, $H_{1}\left(A ; Z_{2}\right)=H_{2}\left(A ; Z_{2}\right)$. Since $H_{2}\left(A ; Z_{2}\right)=\stackrel{m}{\oplus} \underset{1}{\oplus} Z_{2}$, and $\underset{1}{\oplus} Z_{2} \subset H_{1}\left(A ; Z_{2}\right)$, the lemma follows.

Remark 3.1.4: Given $m \geq n \geq 0$ there is a closed 3-manifold with a residual set that is the one-point union of n 1-spheres and m closed 2-manifolds. The connected sum of n copies of $S^{1} \times S^{2}$ and $m-n$ copies of $R P^{3}$ has the desired residual set.

Remark 3.1.5: By swelling up a principal simplex of a residual set and collapsing onto a copy of Bing's house with two rooms we see that every 3 -manifold has a residual set that contains an arc that is wild.

If A is as in the conclusion of Lemma 3.1.2, and M is not a 3-sphere, then $m \neq 0$ and so M has a non-trivial second homology group with Z_{2} coefficients. Thus we obtain:

Corollary 3.1.6: A residual set of a counter example to the 3-dimensional poincaré conjecture must contain a wild arc.

2. The 2-Manifolds of A

If A is a residual set that is the one-point union of n 1-spheres S_{i} and m 2-manifolds P_{i} we will call A an (n, m)-residual set. Again $N(X, M)$ will be the second derived neighborhood of X in M. We will set $N(X)=$ $N(X, M)$ if the manifold M is understood.

Remark 3.2.1: If S is a 1-sphere embedded in a closed 3manifold $M, N(S, M)$ is either a solid Klein bottle or a solid torus. Notice that if M is non-orientable $N\left(S^{\mathbf{1}}\right)$ may be either a solid torus or a solid Klein bottle. For example in J, the twisted s^{2} bundle over S^{1}, both types of neighborhoods are easily found.

Lemma 3.2.2: A regular neighborhood of a compact 2-manifold embedded in the interior of an orientable 3-manifold is topologically independent of the 3 -manifold.

Proof: Suppose that P and Q are isomorphic, (that is, P and Q are homeomorphic under a simplicial map), compact 2-manifolds simplicially embedded in the interior of two orientable 3-manifolds M and N respectively. Triangulate M and N so that under the induced triangulation P is isomorphic to Q.

Now $N(P, M)$ is a solid torus H of genus n plus some 3-cells attached to H along annuli. Also $N(Q, N)$ is a solid torus K of genus m plus some 3-cells attached to K along annuli. Since P and Q are isomorphic, we may take H and K as the second derived neighborhood of the respective 1 -skeletons so that $n=m$. Moreover the isomorphism of P onto Q extends to an isomorphism of $P \cup H$ onto $Q U K$. By collapsing $P U H$ and $Q U K$ carefully, we obtain P^{\prime} and Q^{\prime}, standard spines of $N(P, M)$ and $N(Q, N)$ respectively. Furthermore, P^{\prime} and Q^{\prime} will be isomorphic. By Theorem 2.3.3, $N(P, M)$ is isomorphic to $N(Q, N)$. The above collapse is obtained by collapsing each neighborhood of a vertex to a copy of Bing's house with two rooms, so that the house meets the tubes of H and K in disks whose interiors are open in the house. Then collapse the tubes by pushing the disks into the middle of the tubes.

Since an orientable 2-manifold embeds in R^{3}, we obtain:

Corollary 3.2.3: A regular neighborhood of a compact orientable 2-manifold embedded in the interior of an orientable 3-manifold is a product neighborhood.

Lemma 3.2.4: Let A be an (n, m)-residual set of a closed orientable 3-manifold M. Then each P_{i} is either a 2-sphere or a real projective plane.

Proof: Consider $N(A)=\left(\underset{i=1}{n} N\left(S_{i}\right)\right) U\left(\underset{i=1}{\mathrm{U}} N\left(P_{i}\right)\right)$. Since $N(A)$ is topologically M less an open 3-cell, $B d N(A)$ is a 2-sphere. If a is the join point of A, $N(a, M)=B$ is a 3-ball with $N(A)-B$ the disjoint union of the n sets $N\left(S_{i}\right)-B$ and the m sets $N\left(P_{i}\right)-B$. By definition of the second derived neighborhood, it is clear that $B d\left(N\left(P_{i}\right)-B\right)$ is $B d N\left(P_{i}\right)$ less two disks. Since $B d N\left(P_{i}\right)$ is a 2-manifold and $B d\left(N\left(P_{i}\right)-B\right)$ is contained in $B d N(A)$, a 2-sphere, $B d N\left(P_{i}\right)$ is either one or two 2-spheres. Suppose that P_{1} is orientable. Then $N\left(P_{1}\right)$ is topologically $P_{1} \times I$ and so $B d N\left(P_{1}\right)$ is two disjoint copies of \mathbf{P}_{1}. Hence if \mathbf{P}_{1} is orientable, P_{1} is a 2-sphere. Suppose that P_{1} is nonorientable. If P_{1} has an orientable handle, $B d N\left(P_{1}\right)$ must contain a torus with a hole. Since a torus with a hole does not embed in a 2 -sphere, P_{1} does not have an orientable handle. Since the Klein bottle embeds in $S^{\mathbf{1}} \times \mathbf{S}^{\mathbf{2}}$ with a regular neighborhood having a torus boundary,

Lemma 3.2.2 implies that P_{1} is not a Klein bottle. Hence if P_{1} is non-orientable, P_{1} is a real projective plane.

Lemma 3.2.5: Let A be an (n, m)-residual set for a closed 3-manifold M. Then each P_{i} is either a 2-sphere or a real projective plane.

Proof: If. $N\left(P_{1}\right)$ is orientable, Lemma 3.2.4 produces the desired result. Suppose that $N\left(P_{1}\right)=N$ is nonorientable. As in Lemma 3.2.4, $\mathrm{Bd} N$ is one or two 2spheres. If $B d N$ is one 2-sphere, let E be a 3-ball attached to N by a boundary homeomorphism. Since N collapses onto P_{1} and $N U E$ is non-orientable, we obtain the Mayer Vietoris sequence:

$$
\longrightarrow \mathrm{H}_{\mathrm{q}}(\mathrm{~N} \cap \mathrm{E}) \longrightarrow \mathrm{H}_{\mathrm{q}}(\mathrm{~N}) \oplus \mathrm{H}_{\mathrm{q}}(\mathrm{E}) \longrightarrow \mathrm{H}_{\mathrm{q}}(\mathrm{~N} \cup \mathrm{E}) \longrightarrow
$$

Hence $0 \longrightarrow \mathrm{Z} \longrightarrow \mathrm{H}_{2}\left(\mathrm{P}_{1}\right) \longrightarrow \mathrm{H}_{2}(\mathrm{~N} \cup \mathrm{E}) \longrightarrow 0$ is exact. Thus $H_{2}\left(P_{1}\right) \neq 0$ and so P_{1} is orientable. If P_{1} has genus $g, H_{1}\left(P_{1}\right)$ is the direct sum of $2 g$ copies of Z. Since $H_{1}(N \cap E)=0, H_{1}(N \cup E)=\stackrel{2 g}{\oplus} \mathrm{Z}$. Thus, if $\chi(X)$ is the Euler characteristic of $X, \chi(N \cup E)=1-2 g+0-0$ $=0$, since $N \cup E$ is a closed 3-manifold. Since g is an integer, we have a contradiction. Thus BdN is two 2spheres. Let E and F be two 3-cells attached to N by boundary homeomorphisms. We obtain the $M-V$ sequence

$$
\longrightarrow H_{3}(N \cup E \cup F) \longrightarrow H_{2}(N \cap(F \cup E)) \longrightarrow H_{2}(N) \oplus H_{2}(E \cup F) \rightarrow
$$

Since $N \cup E \cup F$ is non-orientable and $N \cap(E \cup F)=B d N$,

$$
0 \longrightarrow \mathrm{Z} \oplus \mathrm{Z} \longrightarrow \mathrm{H}_{2}\left(\mathrm{P}_{1}\right) \longrightarrow \mathrm{H}_{2}(\mathrm{~N} \cup \mathrm{E} \cup \mathrm{~F}) \longrightarrow \cdots
$$

is exact. However $H_{2}\left(P_{1}\right)=0$ or Z. This contradiction establishes the lemma.

Corollary to the proof: If A is an (n, m)-residual set for the closed 3-manifold $M, N\left(P_{i}, M\right)$ is orientable for all i.

3. Reconstruction of M

Suppose that A is an $(n, k+m)$-residual set of the closed 3-manifold M, with k of the 2-manifolds of A 2-spheres and m of the 2 -manifolds real projective planes. By the argument of Lemma $3.1 .3, H_{2}\left(A ; Z_{2}\right)=H_{1}\left(A ; Z_{2}\right)$. But
 Hence A is the one-point union of n 1-spheres S_{1}, \cdots, S_{n}, n 2-spheres T_{1}, \cdots, T_{n} and m real projective planes P_{1}, \ldots, P_{n}. If A is in this form, we will call A an (n, n, m)-residual set.

Lemma 3.3.1: Let A be an (n, n, m)-residual set for the closed 3-manifold M. Then

Proof: Suppose that a is the join point of A. Then the simple closed curve $L=P_{1} \cap \operatorname{Lk}(a, N)$ bounds two disks D and D^{\prime} in $L k(a, M)$. If Int (D) $\cap L k(a, A)$ is empty, by a B-move we may change A into $A^{\prime}=(A-a o \ddagger) U$ xol $U B$, where x is an interior point of $a O D$ and B is the straight line segment from a to x. Let
$P^{\prime}=\left(P_{1}-a O L\right) \cup x o L$. Then $A^{\prime}=\left(A-P_{1}\right) \cup P^{\prime} \cup B$ and since $N(B)$ is a 3-cell $N\left(A^{\prime}\right)$ is homeomorphic to $N\left(\left(A-P_{1}\right) U a\right) \Delta N\left(P^{\prime}\right)$. Since $N\left(P^{\prime}\right)$ is homeomorphic to $N\left(P_{1}\right)$ the lemma will follow by induction if we are able to justify our initial assumption, that $\operatorname{Int}(D) \cap \operatorname{Lk}(a, A)$ is empty.

Let L_{1}, \ldots, L_{p} be the simple closed curves in
$A \cap$ Int D and suppose that x_{1}, \ldots, x_{q} are the points of $A \cap$ Int D. Likewise let $L_{p+1}, \ldots, L_{n+m-1}$ be the simple closed curves of $A \cap$ Int D^{\prime} and $x_{q+1}, \ldots, x_{2 n}$ the points of $A \cap$ Int D^{\prime}. By the elementary moves of Lemma 3.1.2, we may change A into a residual set $A "$ with $A "=$ $(A-S t(a, M)) \cup x o\left[\left(\underset{i=1}{p} L_{i}\right) \cup\left(\underset{i=1}{\cup} x_{i}\right)\right] \cup B \cup y o\left[\left(\underset{p+1}{\cup+m-1} L_{i}\right) \cup\left(\underset{q+1}{2 n} x_{i}\right)\right] \cup B^{\prime}$ where x is an interior point of $a O D, y$ is an interior point of $a O^{\prime}, B=a o x$ and $B^{\prime}=$ aoy.

Since $N\left(P_{1}, M\right)$ is orientable, $N\left(P_{1}, M\right)$ is homeomorphic to $N\left(R P^{2}, R P^{3}\right)$. Since $R P^{3}$ is obtained by the antipodal identification of the boundary of the unit 3-ball, we may consider $N\left(R^{2}, R P^{3}\right)$ as the quotient space ($\left.S^{2} \times I\right) / R$, where R is the equivalence relation
$R:\left\{((x, 0),(-x, 0)) \mid x \in S^{2}\right\} \cup\left\{((x, t),(x, t)) \mid(x, t) \in S^{2} \times I\right\}$ (For the definition of quotient space see [6].) Suppose that $q: S^{2} \times I \longrightarrow N\left(P_{1}, M\right)$ is the composite of the quotient map and the obvious homeomorphism. Without loss of generality we may assume that $q((1,0,0), 0)=a$,
$q((1,0,0) \times I)=B \cap N\left(P_{1}\right)$ and $q((-1,0,0) \times I)=$ $B^{\prime} \cap N\left(P_{1}\right)$. Let E be the 2 -cell in $S^{2} \times I$ given by $E=\left\{((x, y, 0), t) \mid x^{2}+y^{2}=1, y \geq 0\right.$, and $\left.0 \leq t \leq 1 / 2\right\}$. Then $q(E)$ is a singular 2-cell in M. $q(E)$ meets $A "$ on ($B \cap q(E)) \cup\left(B^{\prime} \cap q(E)\right) \cup\left(P_{1} \cap q(E)\right.$. Let C be the arc of $q(E)$ given by $c=q\left(\left\{((x, y, 0), 1 / 2) \mid x^{2}+y^{2}=1\right.\right.$ and $\mathrm{y} \geq 0\}$).

To make the desired change of $A^{\prime \prime}$, expand $A^{\prime \prime}$ to $A " \cup q(E)$ and collapse $A " \cup p(E)$ onto ($A "-(B \cap q(E)))$ UC U a. Let $A^{\prime \prime \prime}$ denote the resulting residual set. Let F be the arc $F=C l(B-q(E)) \cup C l\left(B^{\prime}-q(E)\right) \cup C$. Consider the relation $R:(F \times F) \cup\{(z, z) \mid z \in M\}$. Let $M^{\prime}=$ M / R. Since F is point-like, M^{\prime} is homeomorphic to M. Note that $A^{\prime \prime} / R$ is a residual set for M^{\prime} that has the desired form. Thus M itself has a residual set of the desired form and the lemma is established.

Lemma 3.3.2: Suppose that M is a closed 3-manifold with an ($n, n, 0$)-residual set. Then M has an ($n, n, 0$)-residual set such that for all i,
i) S_{i} pierces T_{i} and no other 2-sphere,
ii) T_{i} is pierced by S_{i} and no other 1 -sphere and iii) $N\left(S_{i} \vee T_{i}\right)$ is topologically either $S^{1} \times S^{2}$ less an open 3-cell or the twisted S^{2} bundle over s^{1} less an open 3-cell.

Moreover, $N(A)=N\left(S_{1} \vee T_{1}\right) \Delta \ldots \Delta N\left(S_{n} V T_{n}\right)$.

Proof: Suppose that $n=1$. If S_{1} does not pierce T_{1}, then $\operatorname{Bd} N\left(\mathbb{S}_{1} \vee T_{1}\right)=\operatorname{Bd} N\left(S_{1}\right) \# B d N\left(T_{1}\right)$. By Corollary 3.2.3. $N\left(T_{1}\right)$ is homeomorphic to $S^{2} \times I$ and by the remark after Lemma 3.2.1, $N\left(S_{1}\right)$ is either a solid torus or a solid Klein bottle. Thus if S_{1} does not pierce T_{1} we will contradict the connectivity of $B d N(A)$. Therefore S_{1} pierces T_{1}.

Since $N(A)=N\left(S_{1}\right) \cup N\left(T_{1}\right), N(A)=\left(B^{2} \times I\right) U_{h}$ ($S^{2} \times I$), where h is a homeomorphism of $B^{2} \times B d I$ onto two disks of $B d\left(S^{2} \times I\right)$. Since $B d N(A)$ is connected, h must take each of the disks of $\mathrm{B}^{2} \times \mathrm{Bd} \mathrm{I}$ into distinct 2-spheres in $B d\left(S^{2} \times I\right)$. If $N\left(S_{1}\right)$ is a solid torus, h is either orientation preserving or orientation reversing on both ends of $B^{2} \times I$. If $N\left(S_{1}\right)$ is a solid Klein bottle, then h is orientation preserving on one end and orientation reversing on the other. In the first case $N(A)$ is orientable and by attaching a 3-cell to $N(A)$ by a boundary homeomorphism we obtain $S^{1} \times S^{2}$. In the second case $N(A)$ is non-orientable and by attaching a 3-cell to $N(A)$ we obtain the twisted S^{2} bundle over S^{1}. "Thus the Lemma holds if $n=1$.

Assume the lemma is true for $n=1,2, \ldots, k-1$. Define x by $x=C l\left(B d\left[N(a, M)-\left(\underset{i=1}{\cup} N\left(T_{i}\right) \cup \underset{i=1}{\cup} N\left(S_{i}\right)\right)\right]\right)$, where a is the join point of $A . X$ is a 2-sphere with k disjoint open annuli and $2 k$ disjoint open disks removed. We may obtain $B d N(A)$ from X by attaching $2 k$ disks to
the boundaries of the annuli and k annuli to the boundaries of the $2 k$ disks. Note that the annuli may be attached with different orientations on each end. Since X has $k+1$ components and $B d N(A)$ is a 2-sphere, the annuli must bridge the components of X. Hence each component has a disk removed.

MOVE F: Let a be the join point of A. Suppose x_{1} and \mathbf{x}_{2} are two isolated points of $L k(a, A)$ that lie in the same component of $L k(a, M)$ less the 2 -manifolds of A. Since $B d N(A, M)$ is a 2-sphere, x_{1} and \mathbf{x}_{2} belong to two distinct 1 -spheres, say S_{1} and S_{2}, of A. There is a 2-ball B in M with $A \cap B=A \cap B d B=\operatorname{aox}_{1} \cup$ aox $_{2}$. Let $C=C l\left(B d B-\operatorname{aox}_{1} \cup \operatorname{aox}_{2}\right)$. Then there is a 2-ball D in M with $A \cap D=A \cap B d D=C l\left(S_{2}-a o x_{2}\right) \cup X_{1}$ and $B \cap D=B \cap B d D=C . \quad$ Let $E=B d D-\left(C \cup C l\left(S_{2}-\operatorname{aox}_{2}\right)\right)$. An F-move expands A to $A \cup B \cup D$ and collapses from aox_{1} across B $\cup D$ onto $\left(A-\left(a o x_{1}\right)\right) U$ a $U E$.

The effect of an F-move is to slide a disk from one component of X along an annulus to another component. Thus we may assume that k of the disks lie in one component of X and that each of the other components contain exactly one of the disks.

Since at least one of the 1-spheres of $L k(a, A)$ is nullhomotopic in $\mathrm{Lk}(\mathrm{a}, \mathrm{M})$ less the other 1-spheres of $L k(a, A)$, suppose that $L=T_{1} \cap L k(a, M)$ is the 1-sphere. Then L bounds a disk D in $L k(a, M)$ with $T_{i} \cap D$ empty
for $i \geq 2$. By F-moves we may assume that only S_{1} intersects D. Then $D \cap S_{1}$ is a point x_{1}. By another series of F-moves, we may assume that each 1-sphere of A meets the component of $L k(a, M)$ less all the 2 -manifolds that has L as one of its boundary components. Thus S_{1} pierces T_{1}. Since any other S_{i} lies on one side of T_{1}, S_{i} cannot pierce T_{1}. Likewise S_{1} lies on one side of the other T_{i} and so cannot pierce them.

Let $A^{\prime}=\left(A-\left(S_{1} \cup T_{1}\right)\right)$ Ua and suppose that x is an interior point of aox_{1} and y is an interior point of $\left(S_{1}-a o x_{1}\right) \cap S t(a, M)$. Let $T^{\prime}=\left(T_{1}-a O L\right) U$ xoL. Then by elementary moves change A to $A^{\prime} U$ aox $U T T^{\prime} U S_{1} \cdot B y$ another series of elementary moves, move aoy along aox to an arc C from y to x. Set $S^{\prime}=\left(S_{1}-a o(x \cup y)\right) \cup c$. Thus we may change A into a new residual set $A^{\prime} U S^{\prime} U T^{\prime}$ U aox $=A^{\prime \prime}$. Now $N\left(A^{\prime \prime}\right)$ is homeomorphic to both $N(A)$ and $N\left(S^{\prime} V T^{\prime}\right) \Delta N\left(A^{\prime}\right)$. Clearly A^{\prime} is an ($n-1, n-1,0$) -residual set for a closed 3-manifold, for $N\left(A^{\prime}\right)$ is a 3-manifold with 2-sphere boundary. Since $N\left(S^{\prime} V\right.$ T') is homeomorphic to $N\left(S_{1} V T_{i}\right)$, the lemma follows by induction.

From Lemma 3.3.1 and Lemma 3.3.2, we obtain:

Lemma 3.3.3: Let A be an (n, n, m)-residual set of a closed 3-manifold M. Then
$N(A)=N\left(S_{1} V T_{1}\right) \Delta \ldots \Delta N\left(S_{n} V T_{n}\right) \Delta N\left(P_{1}\right) \Delta \ldots \Delta N\left(P_{m}\right)$.

Theorem 3.3.4: Let A be an (n, n, m)-residual set and let B be a (p, p, q)-residual set for the same closed 3 -manifold M. Then A and B are homeomorphic.

Proof: The second homology groups with Z_{2} coefficients of A, B and M are isomorphic and so $n+m=p+q$. Since the rank of $H_{1}(A), H_{1}(M)$, and $H_{1}(B)$ is the same, $\mathrm{n}=\mathrm{p}$. Thus A and B are homeomorphic ($\mathrm{n}, \mathrm{n}, \mathrm{m}$)-residual sets for M.

Theorem 3.3.5: Suppose that M and M^{\prime} are two closed 3manifolds with the same orientability. If M and M ' have homeomorphic (n, n, m)-residual sets A and A^{\prime}, then M is homeomorphic to M'.

Proof: Suppose that the 1-spheres of A are denoted by S_{i}, the 2 -spheres by T_{i}, and the real projective planes by P_{i}. Let S_{i}, T_{i}^{\prime}, and P_{i}^{\prime} denote the corresponding parts of A^{\prime}. Let $N(X, M)=N(X)$ and $N\left(X, M^{\prime}\right)=N^{\prime}(X)$. By Corollary 3.3.3, $N(A)=N\left(S_{1} \vee T_{1}\right) \Delta \ldots \Delta N\left(S_{n} \vee T_{n}\right) \Delta N\left(P_{1}\right)$ $\Delta \ldots \Delta N\left(P_{m}\right)$ and $N^{\prime}\left(A^{\prime}\right)=N^{\prime}\left(S_{i} \vee T_{i}\right) \Delta \ldots \Delta N^{\prime}\left(S_{n}^{\prime} \vee T_{n}^{\prime}\right) \Delta$ $N^{\prime}\left(P_{i}\right) \Delta \ldots \Delta N^{\prime}\left(P_{m}^{\prime}\right)$.

Suppose that X in a subcomplex of M with $B d N(X)$ a 2-sphere. Then we will denote the closed 3-manifold obtained by attaching a 3-cell to $N(x)$ by $M(x)$. In the same manner define $M^{\prime}(X)$. Then $M(A)$ is homeomorphic to M and $M^{\prime}\left(A^{\prime}\right)$ is homeomorphic to M^{\prime}.

Notice that if $N(X \cup Y)=N(X) \Delta N(Y)$, it follows that $M(X \cup Y)=M(X) \# M(Y)$, whenever $N(X \cup Y)$ has a 2sphere boundary. Thus we obtain:
$M=M\left(S_{1} V T_{1}\right) \# \ldots \# M\left(S_{n} V T_{n}\right) \# M\left(P_{1}\right) \# \ldots \# M\left(P_{m}\right)$ and $M^{\prime}=M^{\prime}\left(S_{i}^{\prime} V T_{i}^{\prime}\right) \# \ldots M^{\prime}\left(S_{n}^{\prime} V T_{n}^{\prime}\right) \# M^{\prime}\left(P_{i}\right) \# \ldots \# M^{\prime}\left(P_{m}^{\prime}\right)$.

Since P_{i} is a 2-manifold that is a residual set of the closed 3-manifold $M\left(P_{i}\right)$ it follows from [9] that $M\left(P_{i}\right)$ is a copy of real projective 3 -space. Also $M^{\prime}\left(P_{i}^{\prime}\right)=$ RP ${ }^{3}$.

Since $J \# J=J \# S^{1} \times S^{2}[13]$, we may assume that $M_{(}\left(S_{i} V T_{i}\right)$ and $M^{\prime}\left(S_{i}^{\prime} V T_{i}^{\prime}\right)$ are topologically $S^{\mathbf{1}} \times S^{\mathbf{2}}$ for $i \neq 1$. Since M and M^{\prime} are either both orientable or both non-orientable, the same is true for $M(A)$ and $M^{\prime}\left(A^{\prime}\right)$. Hence each term in the connected sum is pairwise homeomorphic. Thus M and M ' are homeomorphic.

Combining these results we obtain:

Theorem 3.3.6: A Closed 3-manifold has a residual set that contains no wild arc if and only if it is the connected sum of closed 3-manifolds each of which is homeomoprhic to a 3-sphere, RP ${ }^{3}, S^{1} \times S^{2}$ or J.

4. Compact 3-Manifolds with Boundary

Lemma 3.4.1: Let M be a compact 3 -manifold with or without boundary. Suppose that $M=A U U$ is a decomposition of M such that A contains no wild arc. Let C be a 3-cell in Int M. Then M - Int C has a decomposition M - Int $C=$ $A^{\prime} U U^{\prime}$ such that A^{\prime} contains no wild arc.

Proof: Since C is point-like, there is a homeomorphism h of M onto itself such that $h(C) \subset U$. After a possible subdivision there is a simplicial arc B in $U U x$, where x is a point of A, with $B \cap h(C)=y$ and $B d B=x \cup y$. Thus we may expand $h(C) U B$ to a 3-cell D in $U X$. Then there is a homeomorphism k of M onto itself such that $k(D)=h(C)$. Thus $C=h^{-1} k(D)$ and M - Int D is a compact 3-manifold with a decomposition M - Int $D=$ $(A \cup B d D) \cup(U-D)$. Since $A \cap B d D=x, A \cup B d D$ contains no wild arc. Thus M - Int C has a decomposition $M-\operatorname{Int} C=h^{-1} k(A \cup B d D) \cup h^{-1} k(U-D)$, and $h^{-1} k(A \cup B d D)$ contains no wild arc.

Lemma 3.4.2: Let M_{1} and M_{2} be compact 3-manifolds with boundary. Suppose that B_{1} and B_{2} are homeomorphic boundary components of M_{1} and M_{2} respectively. Let M be obtained by sewing M_{1} and M_{2} together along B_{1} and B_{2}. Suppose that $M_{i}=A_{i} U U_{i}$ is a decomposition of M_{i} such that A_{i} contains no wild arc. Then M has a residual set that contains no wild arc.
proof: Consider M_{1} and M_{2} as submanifolds of M so that $M=M_{1} \cup M_{2}$ and $M_{1} \cap M_{2}=B_{1}=B_{2}$. Set $B=B_{1}$. Since A_{i} does not contain a wild arc $B \cap C l\left(A_{i}-B\right)$ is a finite point set. By elementary moves we may assume that $B \cap C l\left(A_{i}-B\right)=x$ for $i=1$ or 2 , where x is a $(1,2)-$ point of $A_{1} \cup A_{2}$. Let C be a 2-simplex of B. Then M has a decomposition
$M=\left(\left(A_{1}-B\right) U(B-\operatorname{Int} C) U\left(A_{2}-B\right)\right) U\left(U_{1} \cup \operatorname{Int}(C) U U_{2}\right)$. By collapsing B - Int C to a spine K, we obtain residual set A for M, where $A=\left(A_{1}-B\right) \cup K \cup\left(A_{2}-B\right)$. clearly A contains no wild arc.

With the notation of the above lemma, $N(K, A)$ is K with two whiskers. If M is not a closed 3-manifold, take the double of M. It follows that A less some open disks of A embeds in a residual set of a closed 3-manifold. Thus $\mathrm{Bd} N(\mathrm{~K}, \mathrm{M})$ less two disks embeds in a 2-sphere. Since K has the homotopy type of an r-leaved rose, $B d N(K, M)$ is a 2-sphere with r handles, orientable or not. Thus $r=0$ and $N(K, M)$ is a 3-ball. Therefore K is a point and B is a 2-sphere. Thus we have established:

Corollary 3.4.3: If M is a compact 3-manifold with boundary having a residual set containing no wild arc, each boundary component is a 2-sphere.

Theorem 3.4.4: Let M be a compact 3-manifold. M has a residual set that contains no wild arc if and only if M is obtained from the connected sum of closed 3-manifolds each of which is $S^{3}, S^{1} \times S^{2}, R P^{3}$ or J, by deleting $n \geq 0$ disjoint 3-balls.

Proof: One way follows from Theorem 3.3.6 and Lemma 3.4.1. The converse follows by sewing n 3-balls onto M and applying Lemma 3.4.3 and Theorem 3.3.6.

CHAPTER IV

A CHARACTERIZATION OF CERTAIN CLOSED 3-MANIFOLDS WHOSE SINGULAR SET IS A SIMPLE CLOSED CURVE

In this chapter we define the singular set of a residual set A of a closed 3-manifold, denoted by $S(A)$. We show that A may be chosen so that A - $S(A)$ is the disjoint union of open arcs and the interiors of compact 2-manifolds with connected boundary. We then classify all closed 3-manifolds with $S(A)$ a simple closed curve.

1. The Singular Set

Definition 4.1.1: Let A be a residual set for a closed 3-manifold M. The special singular set $S^{\prime}(A)$ of A is the set of all points of A that do not have an open 2dimensional euclidean neighborhood in A. The singular set $S(A)$ of A is the set of all points of A that do not have an open 1- or 2-dimensional euclidean neighborhood in A. If A is already locally euclidean, we will set $S^{\prime}(A)$ $=S(A)=a$ where a is an arbitrary point of A.

Suppose that M is not a 3-sphere. Then A is a 2complex. Since $S^{\prime}(A)$ is a subcomplex of $A, S^{\prime}(A)$ is contained in the 1 -skeleton of A, A^{1}. Let T be a maximal tree of $A^{\mathbf{1}}$. Mod out T; that is consider the quotient space M / T obtained by identifying T to a point [6]. Since T is contractable, T is point-like and so M / T
is homeomorphic to M. Notice that A^{\prime} / T is a t-leafed rose and since $S(A) / T \subset S^{\prime}(A) / T \subset A^{1} / T, S(A)$ is an $r-$ leafed rose and $S^{\prime}(A)$ is an s-leafed rose. Since T is contained in $A^{\mathbf{1}},(M-A) / T$ is an open $3-c e l l$ and A / T is a non-separating continuum of dimension two. Thus M / T has a decomposition $M / T=(A / T) U(M-A) / T)$. The singular set of A / T is clearly $S(A) / T$ and $S^{\prime}(A / T)=S^{\prime}(A) / T$. Since M and M / T are homeomorphic, we may assume that A is already in the above form, that is $S(A)$ is an r-leafed rose and $S^{\prime}(A)$ is an s-leafed rose.

Let $M_{1}^{\prime}, \ldots . M_{n}^{\prime}$ be the components of $A-S^{\prime}(A)$. Then each M_{i}^{\prime} is an open 2-manifold; in fact, each M_{i}^{\prime} is the interior of a compact 2-manifold \mathbf{M}_{i} with non-empty boundary. Thus A is obtained by attaching the $M_{i}{ }^{\prime} s$ to $S^{\prime}(A)$ by wrapping each boundary component of the $M_{i}{ }^{\prime}$ s around $S(A)$. To be more precise, let X be the disjoint union of the M_{i} 's and let Y be the disjoint union of the boundaries of the $M_{i}{ }^{\prime} s$. Then there is a continuous $\operatorname{map} \phi: Y \longrightarrow S^{\prime}(A)$ such that A is topologically the space obtained by attaching X to $S^{\prime}(A)$ by Φ. For the definition of the attaching of spaces see [6]. In effect we are sewing the M_{i} onto $S^{\prime}(A)$ by the map Φ. Let $p: x \longrightarrow A$ denote the composite of the quotient map and the homeomorphism between $X U_{\phi} S^{\prime}(A)$ and A.

To obtain a better picture of A let us examine the map Φ. Now Φ is a map onto $S(A)$, an r-leafed rose. Let L_{1}, \ldots, L_{r} be the leaves of $S(A)$, where the L_{i} are given a definite orientation. Let f_{i} be the map from the unit interval onto L_{i} given by $f_{i}(t)=h_{i}\left(e^{2 \pi i t}\right)$, where h_{i} is a homeomorphism of the unit 1-sphere onto L_{i} with the induced orientation of $h_{i}\left(S^{1}\right)$ agreeing with the orientation of L_{i} and $f_{i}(B d I)$ is equal to the join point, a of $S(A)$. Suppose that S is a component of the boundary of one of the M_{i}. Let $\Phi \mid S=\phi^{\prime}$. Since we have modded out a maximal tree in the 1 -skeleton of a residual set of M to obtain A, Φ^{\prime} will induce a subdivision of s into k segments s_{1}, \ldots, s_{k} with the interiors of the S_{i} disjoint and ϕ^{\prime} mapping each S_{j} onto one of the L_{i} in the same way that f_{i} or f_{i}^{-1} maps the unit interval onto L_{i}. If Φ^{\prime} already maps S homeomorphically onto one of the leaves of $S(A)$, we denote ϕ^{\prime} by f_{i} or f_{i}^{-1} depending on how ' Φ^{\prime} operates. If Φ^{\prime} is the constant map we denote Φ^{\prime} by 0 . If Φ^{\prime} is more complex we assume that the S_{i} are cyclicly ordered on S by their subscripts. By disregarding the obvious homeomorphism between the unit interval and each S_{j}, we regard f_{i} as a map from S_{j} onto L_{i}. We then denote the action of ϕ^{\prime} by setting $\phi^{\prime}=h_{1} h_{2} \ldots h_{k}$ where h_{j} is one of the maps f_{i} or f_{i}^{-1} for some i.

Definition 4.1.2: Let A be a residual set for a closed 3manifold M. With A as above, a presentation P of A $P=S(A), S^{\prime}(A), M_{1}, \ldots, M_{n} ; \phi$
is a set consisting of the singular set, the special singular set, the compact 2 -manifolds M_{i} and the map Φ.

We now establish some properties of A.
Let k_{i} be the rank of $H_{1}\left(M_{i}\right)$ and h_{i} the number of boundary components of M_{i}. Let V be a second derived neighborhood of $S^{\prime}(A)$ in A and let W be the closure of $A-V$. Since $A=W U V$ and $W \cap V$ is the disjoint union of $\sum_{i=1}^{n} h_{i}$ simple closed curves, $\chi(A)=\chi(V)+$ $\chi(W)-\chi(V \cap W)$. Since V collapses onto $S^{\prime}(A)$, an $s-$ leafed rose, $\chi(V)=1$ - s. Since W is homeomorphic to the disjoint union of the $M_{i}, \chi(W)=\sum_{i=1}^{n}\left(1-k_{i}\right)$. since $V \cap W$ is $\sum_{i=1}^{n} h_{i}$ disjoint simple closed curves, $\chi(W \cap V)$ $=0$. If C is a 3-simplex of $M-A, M$ - Int C collapses onto A and so $\chi(A)=\chi(M-$ Int $C)=\chi(M)+1$. However, M is a closed 3 -manifold and so $\chi(M)=0$. Hence $1=\chi(A)=(1-s)+\sum_{i=1}^{n}\left(1-k_{i}\right)=n+1-\left(s+\sum_{i=1}^{n} k_{i}\right)$.

Lemma 4.1.3: $n=s+\sum_{i=1}^{n} k_{i}$.

Lemma 4.1.4: Let M be a closed 3-manifold and A a residual set for M with a presentation

$$
P: S(A), S^{\prime}(A), M_{1}, \ldots, M_{n} ; \Phi
$$

Suppose that ϕ restricted to any boundary component S is either the constant map or $\phi \mid S=h_{1} h_{2} \ldots h_{p}$, with each h_{i} either h_{1} or h_{1}^{-1}, where h_{1} and p depend on S. Then M has a residual set A^{\prime} with a presentation

$$
p^{\prime}: S\left(A^{\prime}\right), S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots, N_{n} ; \Phi^{\prime},
$$

where N_{i} is homeomorphic to M_{i} for all i, and ϕ^{\prime} restricted to any boundary component S^{\prime} is either the constant map or $\phi^{\prime} \mid S^{\prime}=h_{1} h_{1} \ldots h_{1}=h_{1}^{q}$, for $0<q \leq p$.

Proof: Let S be a boundary component of M_{1} and $\Phi \mid S=h_{1} \ldots h_{i} h_{i+1} \ldots h_{p}$ with $p>1$ and $h_{i \neq 1}=h_{i}^{-1}$. Then Φ induces a subdivision of S into p arcs $S_{1}, \ldots . S_{p}$ cyclicly ordered by their subscripts. Let B and C be proper subarcs of S_{i} and S_{i+1} respectively with $B \cup C$ connected and $p(B)=p(C):$ Then. $B \subset C$ lies on a 2-cell D in M_{1} with $B \cup C=D \cap B d M_{1}$. Clearly $p(D)$ is a 2-cell of A. Moreover $p(D)$ lies on a 3-cell E in M as three sides of a 3-simplex. Let F be the remaining side of E. Suppose that $E \cap A=p(D)$. Swell up A to $A \cup E$ and collapse onto $(A-E) \cup F \cup p(B)$. By modding out the closure of $p\left(S_{i}\right)-p(B)$, we obtain a new residual set A^{\prime} with a presentation

$$
P^{\prime}: S\left(A^{\prime}\right), S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots, N_{n} ; \Phi^{\prime},
$$

with N_{i} homeomorphic to M_{i} and Φ^{\prime} restricted to the component S^{\prime} of N_{1} corresponding to S is given by $\phi^{\prime} \mid S^{\prime}=h_{1} h_{2} \cdots h_{i-1} h_{i+2} \cdots h_{p} \cdot$

In the above we assumed that $E \cap A=p(D)$. In general this is too much to ask. However, if $E \cap A \neq p(D)$, there is a finite sequence of disks $D_{1}, \ldots, D_{t}=D$ in the disjoint union of the M_{i}, with $p\left(U_{i=1} D_{i}\right)$ homeomorphic to the cone over X with vertex v, where X is the planar set that is the union of the simple closed curves $C_{i}=$ $\left\{(x, y) \mid(x-i)^{2}+y^{2}=i^{2}\right\}$, for $1 \leq i \leq t$, and voC_{i} is mapped onto D_{i} for all i. In M there is a finite sequence of 3-cells E_{1}, \ldots, E_{t}, with $E_{t}=E$ and $p\left(D_{i}\right)$ lying on E_{i} as three sides of a 3-simplex. Moreover the E_{i} may be so chosen that the above homeomoprhism extends to a homeomorphism of the cone over the bounded region bounded by c_{t} onto E_{t} in such a way that the cone over the compact plane set bounded by C_{i} is mapped onto E_{i}. Then by collapsing first E_{1} as above and continuing for the other E_{i} we finally collapse E. In each step we obtain a residual set with a presentation closer to the desired presentation. Thus the obvious induction establishes the lemma.

Corollary 4.1.5: Each closed 3-manifold has a residual set A with a presentation

$$
P: S(A), S^{\prime}(A), M_{1}, \ldots, M_{n} ; \Phi_{0}
$$

such that if S is a boundary component of one of the M_{j}, $\phi \mid S=h_{1} \ldots h_{p}$ with h_{i} distinct from h_{i+1}^{-1} for all i.

Corollary 4.1.6: If the dunce hat is a residual set for a closed 3-manifold M, M is a 3-sphere.

Proof: Let D be the dunce hat. Then D has a pre-

 sentation$$
\mathrm{P}: \mathrm{S}^{1}, \mathrm{~S}^{1}, \mathrm{~B}^{2} ; \mathrm{hhh}^{-1}
$$

By Lemma 4.1.4, M has a residual set A with a presentation

$$
P^{1}: S^{1}, S^{1}, B^{2} ; h .
$$

Hence A is a disk and so M is a 3-sphere.

Lemma 4.1.7: Each M_{i} in a presentation for A is either a disk with holes or a Moebius band with holes.

Proof: Suppose that each M_{i} has connected boundary. Since each $p\left(M_{i}\right)$ contains a topological copy P_{i} of M_{i} in $P\left(M_{i}\right)-S(A), B d\left(N\left(P_{i}, M\right)-N\left(B d P_{i}, M\right)\right)$ embeds in $B d N(A, M)$, a 2-sphere. Let $N=N\left(P_{1}, M\right)$. If N is orientable, it is unique by Lemma 3.2.2. Since any 2-manifold with nonempty boundary embeds in R^{3}, N is homeomorphic to $N\left(P_{1}, R^{3}\right)$. If P_{1} is orientable with positive genus, or if P_{1} is non-orientable with genus greater than two, $N^{\prime}=N-N\left(B d P_{1}, M\right)$ has a boundary that contains a torus with a disk removed. If P_{1} is a Klein bottle less an open disk, $B d N^{\prime}$ is two open annuli attached in such a way that $B d N^{\prime}$ does not embed in a 2-sphere. Thus if $\mathrm{N}\left(\mathrm{P}_{1}, \mathrm{M}\right)$ is orientable, P_{1} is either a disk or a Moebius band. Suppose that N is non-orientable. Since N collapses onto $P_{1}, H_{2}(N)=0$ and $H_{1}(N)$ is free. Since N is non-orientable, $H_{3}(N, B d N)=0$. Thus the exact homology sequence of the pair ($N, B d N$) yields an exact sequence

$$
0 \longrightarrow \mathrm{H}_{2}(\mathrm{Bd} \mathrm{~N}) \longrightarrow 0 .
$$

Since $B d N$ is a closed 2-manifold, each component of $B d N$ is non-orientable. \therefore Let, $Q=N\left(B d P_{1}, M\right)$ and $N=N-Q$. Then $B d N^{\prime}$ embeds in $B d N(A, M)$ and so each component of $\operatorname{Bd} N^{\prime}$ is a disk with holes. Since $B d N=B d N N^{\prime}(\operatorname{Bd} N \cap B d Q)_{p}$ $B d N \cap B d Q$ is non-orientable. Thus Q is a solid Klein bottle and $B d Q$ is a Klein bottle. Since $P_{1} \cap B d Q=C$ is a simple closed curve, $N(C, B d Q)$ is either an annulus or a Moebius band. In the first case $B d Q-N(C, B d Q)$ is a pair of Moebius bands and in the second case it is a single Moebius band. Since $B d N=B d N ' U(B d Q-N(C, B d Q))$ and $B d N$ is a closed 2-manifold, the first case implies that $B d \quad N$ is either two projective planes or a Klein bottle and the second case implies that $B d N$ is a projective plane. If $B d N$ is a projective plane, $2 \chi(N)=\chi(B d N)=1$. Thus $\chi(N)=1 / 2$. This is impossible. If $B d N$ is two projective planes, we obtain from the homology sequence of the pair $(N, B d N)$ the exact sequence

$$
0 \longrightarrow \mathrm{H}_{2}(\mathrm{~N}, \mathrm{Bd} \mathrm{~N}) \longrightarrow \mathrm{Z}_{2} \oplus \mathrm{Z}_{2} \longrightarrow \mathrm{H}_{1}(\mathrm{~N}) \longrightarrow \ldots
$$

This is impossible since $H_{1}(N)$ has no torsion and $\operatorname{Tor}\left(\mathrm{H}_{2}(\mathrm{~N}, \mathrm{Bd} \mathrm{N})\right)=\mathrm{Z}_{2}$. Thus Bd N is a Klein bottle. The exact homology sequence for the pair (N,BdN) becomes
$0 \longrightarrow \mathrm{H}_{2}(\mathrm{~N}, \mathrm{Bd} \mathrm{N}) \longrightarrow \mathrm{Z} \oplus \mathrm{Z}_{2} \longrightarrow \mathrm{H}_{1}(\mathrm{~N}) \longrightarrow \mathrm{H}_{1}(\mathrm{~N}, \mathrm{Bd} N) \longrightarrow 0$. Thus $H_{1}(N)=Z=N_{1}\left(P_{1}\right)$. Since P_{1} has connected boundary P_{1} is a Moebius band.

To complete the proof observe that if M_{1} is a surface with holes, M_{1} contains a surface of the same genus
with only one hole. In this surface find a P_{1} as before. The above argument then implies that M_{1} is either a disk with holes or a Moebius band with holes.

Theorem 4.1.8: If M is a closed 3-manifold, M has a residual set A with a presentation P,

$$
P: S(A), S^{\prime}(A), M_{1}, \ldots, M_{n} ; \phi .
$$

where each M_{i} has connected boundary.

Proof: Suppose that A is a residual set for M with a presentation where at least one of the M_{i}, say M_{1}, does not have connected boundary. Let S and T be two components of $B d M_{1}$. Let B be an arc in M_{1} connecting S and T such that Int $B \subset$ Int M_{1} and p maps one of the end points of B onto a, the join point of $S^{\prime}(A)$. Either $\mathrm{p}(\mathrm{B})$ is an arc or a simple closed curve in A. If $p(B)$ is an arc, $M / \mathrm{p}(\mathrm{B})$ has a residual set $\mathrm{A} / \mathrm{p}(\mathrm{B})$. Since M is homeomorphic to $M / P(B)$ we need only show that $A^{\prime}=$ $A / p(B)$ has a presentation that simplifies the presentation of A in the sense that the number of boundary components is reduced. A^{\prime} has a presentation P^{\prime},

$$
P^{\prime}=S\left(A^{\prime}\right), S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots, N_{n} ; \Phi^{\prime},
$$

where N_{i} is homeomorphic to M_{i} for $2 \leq i \leq n$ and Int $N_{1}=\left(\operatorname{Int} M_{1}\right) / p(B)-p(B) / p(B)$. We may think of N_{1} as being derived from M_{1} by expanding B to $N\left(B, M_{1}\right)$ and removing the open star of B in M_{1}.

If $p(B)$ is a simple closed curve for all choices of B, $\Phi \mid T \cup S$ is the constant map. Let $S '$ be a simple closed
curve in the interior of M_{1} with $S U S$ ' bounding an annulus D in M_{1}. Then $p(D)$ is a disk meeting $S(A)$ only at a. Either $S^{\prime}(A)$ pierces $p(D)$ or it does not. Suppose that $S^{\prime}(A)$ does not pierce $p(D)$. By swelling p (D) up to a 3-cell and collapsing as in a B-move and then pushing the resulting arc along $p\left(M_{1}-D\right)$ as in an E-move, so as to form a simple closed curve, we obtain a new residual set A^{\prime} for M. A' has a presentation

$$
P^{\prime}: S\left(A^{\prime}\right), S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots, N_{n} ; \Phi^{\prime}
$$

Again it is clear that N_{i} is homeomorphic to M_{i} for i $\neq 1$. N_{1} may be obtained from M_{1} by cutting M_{1} along S^{\prime} and sewing in a 2-cell. Note that we then must add one more 1-sphere to $S^{\prime}(A)$ in order to obtain $S^{\prime}\left(A^{\prime}\right)$. Suppose that $S^{\prime}(A)$ pierces $p(D)$. Without loss of generality, assume Corollary 4.1 .5 has been applied. Swell up p(D) to a 3-cell E as before. Let $F=C l(B d E-p(D))$.
$A \cap$ Int $E=C$ is an arc in a 1-sphere of $S^{\prime}(A)$. Expand A to $A \cup E$ and collapse $A \cup E$ onto (A - E) UFUC. There are two arcs of (A - E) UF U C that meet Int F, C and C^{\prime}. By E-moves push the end points of C and C^{\prime} along $F \cup p\left(M_{1}-D\right)$ to the join point a. Let A^{\prime} be the resulting residual set. A^{\prime} has a presentation

$$
P^{\prime}: S\left(A^{\prime}\right), S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots N_{n} ; \Phi,
$$

with N_{i} homeomoprhic to M_{i} for $i \neq 1$. N_{1} is obtained from M_{1} by cutting M_{1} along S^{\prime} and sewing in a 2-cell. Note that we have added a 1-sphere to $S^{\prime}\left(A^{\prime}\right)$ in order to obtain $S^{\prime}\left(A^{\prime}\right)$. Thus no matter what $p(B)$ is we are able
to find a new residual set with a presentation that has reduced the number of boundary components of the 2 -manifolds. Therefore, by an inductive argument, the lemma is established.

Remark 4.1.9: Lemma 4.1.8 enables us to assume that each M_{i} has connected boundary. However, we may have to sacrifice a little, for by reducing the number of boundary components we may increase the number of leaves of $S(A)$. As an example, let $M=R P^{\mathbf{2}} \times S^{\mathbf{1}} . \mathrm{RP}^{\mathbf{2}}$ has a residual set $\mathrm{RP}^{\mathbf{1}}$, a 1-sphere. Let p be a point of $S^{1 .} M$ has a residual set $A=\left(R P^{\mathbf{2}} \times p\right) U\left(R P^{\mathbf{1}} \times S^{\mathbf{1}}\right)$, with a presentation P,

$$
P: R^{1} \times p, R P^{1} \times p, M_{1}, M_{2} ; \Phi,
$$

where M_{1} is a disk, M_{2} is an annulus, $\phi \mid B d M_{1}=f f$ and Φ restricted to either component of $B d \quad M_{2}$ is f. By changing A as in Lemma 4.1.8, we obtain a residual set A^{\prime} with a presentation P^{\prime},

$$
P^{\prime}: S\left(A^{\prime}\right), S^{\prime}\left(A^{\prime}\right), N_{1}, N_{2} ; \phi^{\prime},
$$

where N_{1} and N_{2} are disks, $S\left(A^{\prime}\right)=S^{\prime}\left(A^{\prime}\right)$ is a 2-leafed rose, $\phi^{\prime} \mid B d N_{1}=f_{1} f_{2} f_{1} f_{2}$ and $\dot{\phi}^{\prime} \mid B d N_{2}=f_{1} f_{2} f_{1}^{-1} f_{2}^{-1}$.
2. Residual Sets with $S(A)$ a Simple closed Curve

In this section we assume that each 2-manifold in a presentation has connected boundary.

Theorem 4.2.1: Let A be a residual set for a closed 3manifold M. Suppose that A has a presentation that has only one 2-manifold. Then M is either the twisted S^{2} bundle over S^{1} or a toroidal manifold.

Proof: By Lemma 4.1.3, $1=s+k_{1}$. If $s=0$, $S^{\prime}(A)$ is a point and so Φ is the constant map. Thus A is homeomorphic to RP^{2} and hence $\mathrm{M}=\mathrm{RP}^{3}=\mathrm{T}(2,1)$. If $s=1$ and $r=0, S^{\prime}(A)$ is a 1 -sphere and $S(A)$ is a point. Thus A is the one-point union of a 1 -sphere and a 2-sphere. By Theorem 3.3.6, M is either $S^{1} \times S^{2}=$ $T(0,1)$ or J.

Thus we may assume that $S(A)=S^{\prime}(A)$ is a 1 -sphere. By Lemma 4.1.4, A has a presentation

$$
\mathrm{P}: \mathrm{S}^{1}, \mathrm{~S}^{1}, \mathrm{~B}^{2} ; \mathrm{h}^{\mathrm{k}}, \mathrm{k}>0
$$

If $k=1, A$ is a disk and so $M=S^{3}=T(1,1)$. If $k=$ 2, A is R^{2} and so $M=R P^{3}$. Thus we assume that $k \geq 3$. Suppose that M is orientable. Since $S(A)$ is a $\mathbf{1}$-sphere, it follows that the singular points of A lie in n-books. Thus $A \cap N$ is an n-book with its ends identified after a twist of $2 \pi / m$ degrees for some integer M. Hence $A \cap B d N$ is a $J(n, m)$ curve on the boundary of a solid torus. We now proceed as in Chapter II to construct a standard residual set for M. Since the argument goes through exactly as in Chapter II, we find that M and $T(n, m)$ have homeomorphic standard residual sets. By Corollary 2.3.4, M and $T(n, m)$ are homeomorphic if M is orientable.

We now show that M is orientable. As in the proof of Lemma 4.1.3, we obtain the exact sequence:

$$
0 \longrightarrow \mathrm{H} \longrightarrow \mathrm{H} \longrightarrow \mathrm{H}_{1}(\mathrm{~A}) \longrightarrow 0 .
$$

we will show that $H_{1}(A)=Z_{k}$ for some k. Thus $H_{2}(A)=0$ and so M is orientable.

Let $B=N(S(A), A)$. Since $S(A)$ is a simple closed curve, $\pi_{1}(B)=(b:)$. Since $A-S(A)$ is an open disk $\pi_{1}(A-S(A))$ is trivial. Since $(A-S(A)) \cap B$ is a half open annulus, $\pi_{1}((A-S(A)) \cap B)=(a:)$. By the van Kampen Theorem and the observation that $a \sim b^{k}$ in B and $a \simeq 0$ in $A-S(A)$, we obtain $\pi_{1}(A)=\left(b: b^{k}=0\right)=Z_{k}$. Thus $H_{1}(A)=Z_{k}$.

Suppose that $S(A)$ is a 1 -sphere and that $S^{\prime}(A)$ is an s-leafed rose. By Lemma 4.1.6 and our assumption that each M_{i} has connected boundary, M_{i} is either a disk or a Moebius band. Let the M_{i} be arranged so that the first q are disks and the last $n-q$ are Moebius bands. By Lemma 4.1.4, we may assume that $\phi \mid B d M_{i}=f^{k(i)}$. If $k(i)=0$, $p\left(M_{i}\right)$ is either a 2-sphere or a copy of R^{2} attached to $S(A)$ at a, the join point of $S^{\prime}(A)$. Suppose that $p\left(M_{i}\right)=R P^{2}$. Let $N=N\left(p\left(M_{i}\right), M\right)$ and $B=B d N$. If N is non-orientable, consider the exact homology sequence of the pair (N, B),

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{H}_{2}(\mathrm{~B}) \longrightarrow \mathrm{H}_{2}(\mathrm{~N}) \longrightarrow \mathrm{H}_{2}(\mathrm{~N}, \mathrm{~B}) \longrightarrow \mathrm{H}_{1}(\mathrm{~B}) \\
& \longrightarrow \mathrm{H}_{1}(\mathrm{~N}) \longrightarrow \mathrm{H}_{1}(\mathrm{~N}, \mathrm{~B}) \longrightarrow \hat{H}_{0}(\mathrm{~B}) \longrightarrow 0 .
\end{aligned}
$$

Since $H_{2}(N)=H_{2}\left(p\left(M_{i}\right)\right)=0, H_{2}(B)=0$. However, B less two disks embeds in a 2-sphere. Thus B is either one or two 2-spheres and so $\mathrm{H}_{2}(\mathrm{~B}) \neq 0$. Thus N is orientable. By the proof of Lemma 3.3 .1 , we may change A into a residual set topologically $\left(A-p\left(\operatorname{Int} M_{i}\right)\right) \cup B U R P^{2}$, where B is an arc from a point of $\left(A-p\left(\right.\right.$ Int $\left.\left.M_{i}\right)\right)$ to a point of
R^{2} such that Int B does not meet $\left(A-p\left(I n t M_{i}\right)\right) U R P^{2}$. We will say that such an RP 2 has been "put on a stick". In the same way we put each $p\left(M_{i}\right)$ on a stick if $q+1 \leq$ $i \leq n$ and $k(i)=0$. If $p\left(M_{i}\right)$ is a 2-sphere, the connectivity of $B d N(A, M)$ implies that $P\left(M_{i}\right)$ is pierced by a 1-sphere of $S^{\prime}(A)$. By an argument similar to that of Lemma 3.3.2, we may assume that one and only one of the 1spheres of $S^{\prime}(A)$ pierces $p\left(M_{i}\right)$ and that $p\left(M_{i}\right)$ and that 1 -sphere may be put on a stick. Hence we obtain:

Lemma 4.2.2: Let A be a residual set for the closed 3manifold M. Suppose that A has a presentation

$$
P: S^{1}, S^{\prime}(A), M_{1}, \ldots, M_{n} ; \Phi,
$$

with M_{1}, \ldots, M_{q} disks and M_{q+1}, \ldots, M_{n} Moebius bands. Suppose that $\Phi \mid B d M_{i}=0$ for $p+1 \leq i \leq q$ and $t+1 \leq i \leq n$. Then $M=M^{\prime} \# M^{\prime \prime}$ where M^{\prime} has a residual set A^{\prime} with a presentation

$$
P^{\prime}: S^{1}, S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots, N_{p} N_{q+1}, \ldots, N_{t} ; \Phi^{\prime}
$$

with N_{i} homeomorphic to M_{i} and $M^{\prime \prime}$ is the connected sum of $q-p$ copies of $s^{1} \times s^{2}$ or J and $n-t$ copies of RP^{3}.

With the above notation, if $k(i)=1$ for some i between 1 and $p, p\left(N_{i}\right)$ is a disk. By modding it out we obtain a 3-manifold homeomorphic to M' that has a residual set whose singular set is a point. Since the main theorem of Chapter III classifies all closed 3-manifolds with this property we assume that $k(i) \neq 1$ for $1 \leq i \leq p$.

Suppose that $N=N\left(S\left(A^{\prime}\right), M^{\prime}\right)$ is a solid Klein bottle. Let $C_{i}=p\left(N_{i}\right) \cap B d N . \quad C l e a r l y \quad C_{i}$ is a simple closed curve for all i. By [12], there are exactly four isotopy classes of simple, closed, orientation preserving paths and exactly four isotopy classes of simple, closed, orientation reversing paths on $B d N$. Let $0, a,-a$ and b be representatives of the orientation preserving classes and p_{1}, $p_{2},-p_{1}$ and $-p_{2}$ be representatives of the orientation reversing classes. These may be pictured as in Figure 4.1.

Figure 4.1.

If $C_{i} \simeq 0$ or $b, k(i)=0, a$ contradiction. If $c_{i} \simeq \pm p_{1}$ or $\pm p_{2}$ for $1 \leq i \leq p, k(i)=1$, a contradiction. Thus $C_{i} \simeq \pm a$ for $1 \leq i \leq p$. By reversing the orientation of N_{i}, we may assume that $c_{i} \simeq a$ for $1 \leq i \leq p$. Likewise $c_{i} \simeq \pm a, \pm p_{1}$ or $\pm p_{2}$ for $q+1 \leq i \leq t . S u p-$ pose that $c_{t} \simeq \pm p_{1}$. By an isotopy we may assume that $C_{t}=$ $\pm p_{1}$. Since $B d N-C_{t}$ is a Moebius band, no other
$c_{i} \simeq \pm p_{1}$. In the same way, if $c_{t} \simeq \pm p_{1}$ and $c_{t-1} \simeq \pm p_{2}$, no other c_{i} may be isotopic to $\pm p_{1}$ or $\pm p_{2}$. Thus we obtain three cases:

CASE 1: $\quad C_{i} \simeq \pm a$ for all i,
CASE 2: $c_{i} \simeq \pm a$ for $i \neq t$ and $c_{t} \simeq \pm p_{1}$ and
CASE 3: $\quad c_{i} \simeq \pm a$ for $i \neq t, t-1, c_{t} \simeq \pm p_{1}$ and

$$
c_{t-1} \simeq \pm p_{2}
$$

In any case there are two C_{i}, say C and C^{\prime}, that bound an annulus E on $B d N$, with $C_{i} \subset E$ if $C_{i} \simeq \pm a$. If there is only one $C_{i} \simeq \pm a$, set $C_{1}=E$. Notice that $E^{\prime}=N(E, B d N)$ is an annulus.

CASE 1: Since Bd N - E' is two open Moebius bands and $B D^{N}-E^{\prime}$ less some disks embeds in a 2-sphere, we have a contradiction. It is necessary to remove the disks since an arc of $S^{\prime}\left(A^{\prime}\right)$ - $S^{\prime}\left(A^{\prime}\right)$ may intersect $B d N-E^{\prime}$.

CASE 2: A similar argument excludes this case.

CASE 3: Let $P=\operatorname{Cl}\left(p\left(N_{t}\right)-N\right) . \quad P$ is a Moebius band. Clearly $N\left(P, M^{\prime}\right)$ is either a solid torus or a solid Klein bottle. Since $B d N\left(C_{t}, N\right)-N\left(C_{t}, B d N\right)$ is a Moebius band embedded in $B d N\left(P, M^{\prime}\right), N\left(P, M^{\prime}\right)$ is a solid Klein bottle. However, $\left.B d N(P, M)^{\prime}\right)-B d N\left(C_{t}, N\right)$ is a Moebius band that embeds in a 2-sphere, excluding case 3.

Lemma 4.2.3: Let A be a residual set of a closed 3-manifold M with $S(A)$ a simple closed curve. Then $N(S(A), M)$ is orientable.

Proof: As in Lemma 4.2.2, we write $M=M^{\prime} \# M^{\prime \prime}$. Notice that $N(S(A), M)$ is homeomorphic to $N\left(S\left(A^{\prime}\right), M^{\prime}\right)$. However, the above argument implies that $N\left(A\left(S^{\prime}\right), M\right)$ is orientable.

Remark 4.2.4: Our assumption that the M_{i} have connected boundary is essential in Lemma 4.2.3. Again $M=R^{2} \times S^{1}$ gives the counter example, for $N(S(A), M)$ is a solid Klein bottle.

Lemma 4.2.5: Suppose that A is a residual set of the closed 3-manifold M and that A has a presentation P $\mathrm{P}: \mathrm{S}^{\mathbf{1}}, \mathrm{S}^{1}, \mathrm{M}_{1}, \mathrm{M}_{2} ; ~ Ф$.
Then $M=R P^{3} \# T(n, m)$ or $M=R P^{3} \# J$.

Proof: Since $2=1+k_{1}+k_{2}$ by Lemma 4.1.3, we may assume that M_{1} is a disk and M_{2} is a Moebius band. If $\Phi \mid B d M_{1}$ is the constant map, $p\left(M_{1}\right)$ is a 2-sphere and so $B d N(A, M)$ is not connected. If $\Phi \mid B d M_{2}$ is the constant map, $p\left(M_{2}\right)$ may be put on a stick. Then M has a residual set $R^{2} V P\left(M_{1}\right)$ and so $M=R P^{3} \# T(n, m)$ or $M=R P^{3} \# J$ by Theorem 4.2.1. Thus we assume that ϕ is not the constant map on either boundary component. By Lemma 4.2.4, we may assume that $\phi \mid B d M_{1}=f^{k}$ and $\phi \mid B d M_{2}=f^{h}$ with $k \neq 0 \neq h$. By Lemma 4.2.3, N(S (A), M) is a solid torus T. Let $C=$ $(B d T) \cap p\left(M_{1}\right)$ and $D=(B d T) \cap p\left(M_{2}\right)$. Now C is a $J(k, m)$ curve and D is a $J\left(h, m^{\prime}\right)$ curve. Since C does not meet D, after changing the orientation of M_{1} if
necessary, $k=h$ and $m=m^{\prime}$. Thus $C U D$ bounds an annulus E on $B d T$. Swell up $S(A)$ to a singular solid torus T ' with boundary $\left(\left(p\left(M_{1}\right) \cup p\left(M_{2}\right)\right) \cap T\right) \cup E . \quad$ Thus all the singularities of $T '$ lie on $S(A)$. Collapse $T '$ from $p\left(M_{2}\right) \cap T$ onto $\left(p\left(M_{1}\right) \cap T\right) \cup E$. Mod out an arc J on $p\left(M_{1}\right) \cap T$, with one end point x on $p\left(M_{1}\right) \cap B d T$ and the other end point a on $S(A)$, such that int $J \subset$ p (Int M_{1}) \cap Int T. Let A^{\prime} be the resulting residual set. A' has a presentation

$$
P^{\prime}: S^{1} V S^{1}, S^{1} V S^{1}, B_{1}, B_{2}, N ; \Phi^{\prime},
$$

where the B_{i} are disks and N is a Moebius band. Moreover, $\phi^{\prime}\left|B d B_{1}=f, \phi^{\prime}\right| B d B_{2}=g^{k} f$ and $\phi^{\prime} \mid B d N=f$, where f is the map around one of the leaves and g is the map around the other leaf. Thus $p\left(B_{1}\right)$ is a disk. Mod out $p\left(B_{1}\right)$, obtaining a residual set $A^{\prime \prime}$ with a presentation

$$
P^{\prime \prime}: S^{1}, S^{1}, N_{1}, N_{2} ; \phi^{\prime \prime}
$$

where N_{1} is a disk with $\Phi^{\prime \prime} \mid B d N_{1}=g^{k}$ and N_{2} is a Moebius band with $\Phi " \mid B d N_{2}=0$. Hence $A "$ is the onepoint union of $R P^{2}$ and the residual set for a $T(k, m)$ manifold. Thus the Lemma is established.

Theorem 4.2.6: Let A be a residual set for a closed 3manifold M. Suppose that A has a presentation

$$
P: S^{1}, S^{\prime}(A), M_{1}, \ldots, M_{n} ; \Phi,
$$

then either

$$
\text { i) } M=\left(\underset{1}{q-1} S^{1} \times S^{2}\right) \#\left(\underset{1}{\#-q} R P^{3}\right) \#(T(n, m)) \text { or }
$$

Proof: By Theorem 4.1.4, $\Phi \mid B d M_{i}=f^{k(i)}$. Since $N(S(A), M)$ is a solid torus, the argument of Lemma 4.2 .5 implies that either $k(i)= \pm k$ or $\phi \mid B d M_{i}$ is the constant map. By Lemma 4.2.2, we may write $M=M^{\prime} \# M^{\prime \prime}$, where M^{\prime} and $M^{\prime \prime}$ are as in the lemma. Let A^{\prime} be the residual set for M^{\prime}. As in Lemma 4.2.2, A' has a presentation

$$
P^{\prime}: S^{1}, S^{\prime}\left(A^{\prime}\right), N_{1}, \ldots, N_{p}, N_{q+1}, \ldots, N_{t} ; \Phi^{\prime} .
$$

Note that $\Phi^{\prime} \mid B d N_{i}=f^{ \pm k}$ for all i. set $C_{i}=$ $p\left(N_{i}\right) \cap B d N\left(S\left(A^{\prime}\right) ; M^{\prime}\right)$. Then there are two of the C_{i}, say C_{1} and C_{2}, that bound an annulus E on $\left.B d N(S)^{\prime}, M^{\prime}\right)$ with $C_{i} \subset E$ for all i. As in Lemma 4.2.5, there is a singular torus T^{\prime} in $\left.N\left(S^{\prime \prime}\right), M^{\prime}\right)$ bounded by $\left(\left(p\left(N_{1}\right) \cup p\left(N_{2}\right)\right) \cap N\left(S\left(A^{\prime}\right), M^{\prime}\right)\right) \cup E . C o l l a p s e T^{\prime}$ from $p\left(N_{1}\right) \cap N\left(S\left(A^{\prime}\right), M^{\prime}\right)$ onto $E \cup\left(p\left(N_{2}\right) \cap N\left(S\left(A^{\prime}\right), M^{\prime}\right)\right)$.

Let J be as in Lemma 4.2.5. Mod out J. If there are any arcs in the resulting residual set that do not form a simple closed curve move their end points, by E-moves, to the image of the join point. We thus obtain a residual set A" with a presentation

$$
P^{\prime \prime}: S^{1} V S^{1}, S^{\prime}\left(A^{\prime \prime}\right), Q, Q_{1}, \ldots, Q_{p} Q_{q+1}, \ldots, Q_{t} ; \phi^{\prime \prime}
$$

where Q is a disk with $\Phi^{\prime \prime} \mid B d Q=g^{k} f$ and Q_{i} is homeomorphic to N_{i} for all i with $\Phi " \mid B d Q_{i}=f$. since Q_{1} is a disk, $p\left(Q_{1}\right)$ is a disk. By modding out $p\left(Q_{1}\right)$ we obtain a residual set $A^{\prime \prime}$ ' with a presentation

$$
p^{\prime \prime}=S^{1}, S^{\prime}\left(A^{\prime \prime}\right), D, D_{2}, \ldots, D_{p}, D_{q+1}, \ldots, D_{t} ; \phi^{\prime \prime}
$$ with D homeomorphic to Q and D_{i} homeomorphic to Q_{i}, and $\phi^{\prime \prime} \mid B d D=g^{k}$ amd $\phi^{\prime \prime} \mid B d D_{i}=0$. The theorem follows.

[1] R. H. Bing, "Some aspects of the topology of 3-manifolds related to the Poincare conjecture", Lectures on Modern Mathematics, John Wiley and Sons (1964), Vol. 2, 93-128.
[2] M. Brown, "A mapping theorem for untriangulated manifolds", Topology of 3-manifolds and Related Topics, Prentice- Hall (1962), 92-94.
[3] B. G. Casler, "An imbedding theorem for connected 3manifglds with connected boundary", Proc. Amer. Math. Soc. 16 (1965), 559-566.
[4] P. H. Doyle, "Two weak Poincarè theorems", Proc. Camb. Phil. Soc. 62 (1966), 23.
[5] P. H. Doyle and J. G. Hocking, "A decomposition theorem for n -dimensional manifolds", Proc. Amer. Math. Soc. 13 (1962), 469-471.
[6] J. Dugnundji, Topology, Allyn and Bacon (1966).
[7] S. Eilenberg and R. L. Wilder, "Uniform local connectedness and contractibility", Amer. J. Math. 64 (1942), 613-622.
[8] M. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, Inc. (1967).
[9] J. G. Hocking and K. W. Kwun, "Shrinking a manifold in a manifold", Proc. Nat. Acad. Sci. No. 255 (1966), 259-261.
[10] S. T. Hu, Homotopy Theory, Academic Press (1959).
[11] H. Kneser, "Geschlossen Flächen in dreidimensionalen Mannigfaltigkeiten", Jber. deutschen Math. Verein. 38 (1929), 248-260.
[12] W. P. R. Lickorish, "Homeomorphisms of non-orientable two-manifolds", Proc. Camb. Phil. Soc. 59 (1963), 307-317.
[13] J. Milner, "A unique decomposition theorem for 3manifolds", Amer. J. Math. 84 (1962), 1-7.
[14] C. A. Persinger, "Subsets of m-books in E" ", Pacific J. Math. 18 No. 1 (1966), 169-173.
[15] E. H. Spanier, Algebraic Topology, McGraw-Hill (1966).
[16] E. C. Zeeman, Seminar on Combinatorial Topology, Mimeographed notes, Inst. Hautes Etudes Sci., Paris (1963).
[17] E. C. Zeeman, "On the dunce hat", Topology 2 (1963), 341-358.

