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ABSTRACT

ON MINIMIZATION OF SOME NON-SMOOTH CONVEX FUNCTIONALS
ARISING IN MICROMAGNETICS

By

Hongli Gao

This thesis is motivated by studying the properties of ferromagnetic materials using

the Landau-Lifshitz theory of micromagnetics. In this theory the state of a ferromagnetic

material is described by the magnetization vector m in terms of a total micromagnetic energy

that consists of several competing sub-energies: exchange energy, anisotropy energy, external

interaction energy and magnetostatic energy. For large ferromagnetic materials and under

some limiting regimes of the model, the exchange energy can be negligible and the total

energy becomes a reduced model. Our investigations focus on the study of such a reduced

model of Landau-Lifshitz theory.

The primary focus of the thesis includes two parts: the minimization (static) study and

the evolution (dynamic) study. We investigate a new method for the existence of minimizers

of the reduced micromagnetic energy based on a duality method. In this method, the reduced

micromagnetic energy is closely related to a convex functional (the dual functional) on the

curl-free vector functions. Our minimization and dynamics studies are based on the study

of the minimization and gradient flow of this dual functional. Much of the thesis is focused

on the minimization problem of two special cases: soft case and uniaxial case on the annulus

domain; in particular, in the soft case, for some range of the parameter, the energy minimizers

of the original micromagnetic energy are constructed through the Euler-Lagrange equation

of the dual functional using the characteristics method for a reduced Eikonal type equation.

The second direction of our study of this thesis is an attempt to obtain certain reasonable



dynamic process for the evolution of m, where the asymptotic behavior of the gradient flow

of the reduced energy functional is investigated.
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Chapter 1

Introduction

1.1 Landau-Lifshitz theory of micromagnetics

Our research is based on the well-known Landau-Lifshitz theory of micromagnetics; see

Brailsford [7], Brown [11] and Landau et al [36]. Under this theory, observable magnetic

properties of a ferromagnetic material are described by a magnetization vector m through a

formulation of a total micromagnetic energy including several competing energies:

E(m) =
α

2

∫
Ω
|∇m(x)|2 dx+

∫
Ω
ϕ(m(x)) dx−

∫
Ω
H(x) ·m(x) dx+

1

2

∫
Rn
|Fm(z)|2 dz, (1.1)

where Ω is a bounded domain in Rn (n = 2, 3 in practice) occupied by the ferromagnetic

material, Fm ∈ L2(Rn;Rn) is a magnetic field induced by m on the whole Rn that is

determined by the simplified Maxwell’s equations:

curlFm = 0, div(−Fm + mχΩ) = 0 in Rn, (1.2)

ϕ(m) is a given function representing the anisotropy energy density that is minimized along

certain preferred crystallographic directions, and H(x) is a given vector function representing

the external applied field. Here α > 0 is a material constant. Under this theory, when below
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certain critical temperature, the magnetization m should have constant magnitude:

|m(x)| = Ms, (1.3)

where Ms > 0 is a saturation constant.

The first term in the energy E(m) is called the exchange energy, the second term the

anisotropy energy, the third term the external interaction energy, and the last term is a

non-local energy and is usually called the magnetostatic energy. The non-locality and non-

convexity of the total energy E(m) not only present a major and challenging mathematical

problem but also provide a concrete example for some other physical problems of a similar

nature.

The Landau-Lifshitz model has been at the center of much of current active research;

see the survey by Kruz̀ık and Prohl [35]. On one hand, the static Landau-Lifshitz theory

is postulated by minimization of energy E(m) under the saturation condition (1.3). On the

other hand, the dynamic theory for time evolution of magnetization m is governed by the

Landau-Lifshitz equation:

∂tm = γm× Feff + β
γ

|m|
m× (m× Feff) (1.4)

on Ω× [0,∞), where γ < 0 is the electron gyromagnetic ratio, β > 0 is the Landau-Lifshitz

phenomenological damping parameter, and Feff is the total effective magnetic field defined

by the functional derivative of E(m) as

Feff = − ∂E
∂m

= α∆m− ϕ′(m) +H(x) + Fm.

2



This equation is also equivalent to the so-called Landau-Lifshitz-Gilbert equation. Many

results, such as existence ([2, 3, 16, 17, 19, 30, 32, 50]), stability ([14]) and asymptotic

behavior have been well established for the Landau-Lifshitz equations that include the so-

called exchange energy (when α > 0). Such exchange energy provides the magnetization m

with m ∈ L∞((0,∞);H1(Ω)) which allows us to have some compactness and stability that

are needed for using the standard methods.

1.2 Reduced model of Landau-Lifshitz theory

For large ferromagnetic materials, it has been justified by DeSimone [22] (see also James and

Kinderlehrer [33]) that the total micromagnetic energy can be approximated by the following

reduced form (ignoring the exchange energy):

I(m) =

∫
Ω
ϕ(m(x)) dx−

∫
Ω
H(x) ·m(x) dx+

1

2

∫
Rn
|Fm(z)|2 dz. (1.5)

Throughout this thesis, we assume the magnetization m has unit length:

|m(x)| = 1.

Due to the saturation constraint |m| = 1 and the anisotropy energy, the existence of min-

imizers of this energy I(m) is not guaranteed; so more careful analysis should be carried

out.

A new method for minimization of this functional I(m) has been introduced by Pedregal

and Yan [43, 44] based on the idea of duality; see also [33]. The main idea of this method is
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motivated by rewriting the magnetostatic energy as

1

2

∫
Rn
|Fm|2 = min

divG=0

1

2

∫
Rn
|mχΩ −G|2

by (1.2), where the minimum is taken over all divergence-free fields G in L2(Rn;Rn). In [44]

it has been proved that

inf
m∈L2(Ω;Rn)
|m(x)|=1

I(m) = − min
F∈L2(Rn;Rn)

curlF=0

J∗(F ),

where J∗(F ) is a convex functional defined by

J∗(F ) =

∫
Ω

Φ
(
F (x) +H(x)

)
dx+

1

2

∫
Rn
|F (x)|2 dx (1.6)

with a convex function Φ defined by

Φ(ξ) = max
h∈Rn,|h|=1

(ξ · h− ϕ(h)) (ξ ∈ Rn).

It is easily seen that J∗ is strictly convex on V = L2(Rn;Rn) ∩ {curlF = 0}. The existence

of the minimizer F̄ ∈ V is guaranteed by the general theory. Using this unique minimizer

F̄ of J∗(F ), a necessary and sufficient condition for the existence of minimizers of I(m) has

been given in [44, 52]. In [52], a notion of generalized minimizers of I(m) has been also

defined. A similar dual formulation to the functional J∗(F ) has also been used by Melcher

[38] to approach some regularity problems for thin films.

We follow this line of investigations to study some concrete problems regarding the min-

imization of functional I(m). Our primary results will be the construction of minimizers of
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some special energy I(m) on an annulus domain Ω, which may have some physical applica-

tions in studying magnetic nanorings [15].

The evolution model based on the reduced energy I(m) leads to a corresponding reduced

Landau-Lifshitz equation (1.4) with α = 0 and has been recently studied in [26, 27, 53, 54].

In this case, one only has m ∈ L∞((0,∞);L∞(Ω)) which leads to the lack of compactness

and stability. Yan [54] discussed stability and asymptotic behaviors of solutions for a degen-

erate Landau-Lifshitz equation in micromagnetics involving only the nonlocal magnetostatic

energy. He showed that the Cauchy problems for such an equation are not stable under the

weak∗ convergence of initial data. For the asymptotic behaviors of weak solutions, he estab-

lished an estimate on the weak ∗ω-limit sets that is valid for all initial data satisfying the

saturation condition. Deng and Yan [27] have presented a new method for the existence of

global weak solution to the reduced Landau-Lifshitz equation. In addition, they also estab-

lished higher time regularity when the initial value m0 is constant. They studied the weak

ω-limit sets for the soft case and the asymptotic behaviors in the case when Ω is ellipsoid

and initial value m0 is constant.

In attempt to obtain other reasonable dynamic processes for the evolution of m, we study

the gradient flow of the convex functional L : L2(Rn;Rn)→ R̄ := (−∞,∞],

L(F ) =


∫

Ω
Φ
(
F (x) +H(x)

)
dx+

1

2

∫
Rn
|F (x)|2 dx, F ∈ V,

+∞, F ∈ L2(Rn;Rn)\V.

(1.7)

1.3 Main results

Our results consist mainly of two parts: minimization of the functional L and the asymptotic

behavior of the gradient flow.
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Since every F (x) ∈ V can be written as F (x) = ∇u(x), where u ∈ H1
loc(Rn), we introduce

the following variational functional:

L(u) = LΩ(u) ≡
∫

Ω
Φ(∇u(x) +H(x)) dx+

1

2

∫
Rn
|∇u(x)|2 dx (1.8)

for all u ∈ H1
loc(R

n) with ∇u ∈ L2(Rn;Rn). For simplicity and when there is no confusion,

we simply use L(u) to denote LΩ(u).

Note that L(u + c) = L(u) for all constants c ∈ R. To fix the idea, we define the linear

space X by

X =

{
u ∈ H1

loc(R
n)
∣∣∣ ∇u ∈ L2(Rn;Rn),

∫
∂Ω

Γu dS = 0

}
, (1.9)

where Γu = u|∂Ω is the well-defined trace in H1/2(∂Ω) (see [1]). It is easily seen that L is

strictly convex on X . Hence L has a unique minimizer on X ; we denote this unique minimizer

by ū = v̄χΩ + w̄χΩc . Certainly, this function ū depends on the domain Ω, the anisotropy

function ϕ (in terms of function Φ), and the applied field H(x). Pedregal and Yan [44] have

shown that ū is uniquely determined by its boundary data ḡ = ū|∂Ω and, in particular, that

w̄ is harmonic on Ωc. They have also established a necessary and sufficient condition for the

existence of minimizers of energy I(m) in terms of the unique minimizer ū = v̄χΩ + w̄χΩc

of functional L(u). For example, they established the following theorem.

Theorem 1.3.1. Let ū = v̄χΩ + w̄χΩc ∈ X be the unique minimizer of functional L defined

above. Then, the energy I(m) has a minimizer if and only if there exists a function G ∈
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L2(Ω;Rn) that satisfies


div(∇ū+GχΩ) = 0 in Rn,

G(x) ∈ Σ(∇v̄(x) +H(x)) a.e. x ∈ Ω.

(1.10)

Here, Σ(η) = {h ∈ Sn−1 | Φ(η) = η ·h−ϕ(h)}. In addition any m̄ ∈ L∞(Ω; Sn−1) satisfying

m̄(x) = G(x) a.e. on Ω is a minimizer of energy I.

We focus on how to find the minimizer ū of L(u). The following result has been proved

in [44]. We provide in Chapter 3 a different proof for it.

Theorem 1.3.2. (Chapter 3, section 3.1.2) A function ū = v̄χΩ + w̄χΩc ∈ X is a minimizer

of L(u) if and only if there exists a vector function G ∈ L2(Ω;Rn) such that


div(∇ū+GχΩ) = 0 in Rn,

G ∈ ∂Φ(∇v̄ +H(x)) a.e. Ω,

(1.11)

where ∂Φ(ξ) denotes the sub-differential of Φ at ξ. Any such function G is called a generalized

minimizer of the functional I(m).

Depending on the different anisotropy density functions ϕ, the functional L(u) takes a

different form in terms of the convex function Φ defined above.

We say that the material is in the soft case if ϕ ≡ 0; in this case Φ(ξ) = |ξ| on ξ ∈ Rn.

We say the material is in the uniaxial case if ϕ(h) = β(1− |h · e|), where β > 0 is a constant

and e ∈ Rn is a given unit vector; in this case, the function Φ can be explicitly computed and

the sub-differential set ∂Φ(ξ) has a special structure (see below), which affects the existence

of the solution to the problem (1.11).
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We are also interested in the dependence of ū on the domain Ω. When a small region E is

removed from the domain Ω, we want to study how the minimizer of LΩ\E(u) (or ultimately

the minimizers of I(m)) should change. In particular, can the minimizers of LΩ(u) and

LΩ\E(u) be the same on Ω \ E?

We have the following result.

Theorem 1.3.3. (Chapter 3, Section 3.1.3 ) Let ū = v̄χΩ + w̄χΩc be the minimizer of the

functional LΩ(u) and E ⊂⊂ Ω. Define w̃ by


∆w̃ = 0 in E,

w̃ = ū on ∂E.

(1.12)

Suppose that there exists G̃ ∈ L2(Ω \ E;Rn) satisfying



div(∇v̄ + G̃) = 0 in Ω \ E,

(G̃+∇v̄) · ν = ∂w̄
∂ν on ∂Ω,

(G̃+∇v̄) · ν = ∂w̃
∂ν on ∂E,

G̃ ∈ ∂Φ(∇v̄ +H(x)) a.e. Ω \ E.

(1.13)

Then ũ = ūχRn\E + w̃χE is the minimizer of LΩ\E(u).

In Chapter 4, we apply this result to the minimization of I(m) and L(u) in the soft case

(when Φ(ξ) = |ξ|) with constant applied field H = λe1 for an annulus Ω = {x ∈ Rn | a <

|x| < 1}, where 0 < a < 1. Such condition leads to the study of Lipschitz solutions to the
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boundary value problem of the Eikonal equation below:



|∇ψ(s, t)| = tn−2 in a2 < s2 + t2 < 1, t > 0,

ψ(s, t) = 0 on s2 + t2 = a2, t ≥ 0,

ψ(s, t) = nλ
n−1t

n−1 on s2 + t2 = 1, t ≥ 0,

ψ(s, t) = 0 on t = 0, a ≤ |s| ≤ 1.

(1.14)

We prove that the boundary value problem (1.14) has a Lipschitz solution if and only if

0 ≤ λ ≤ 1

n
(1− an−1), (1.15)

and that, in this case, we can construct infinitely many Lipschitz solutions. This construction

is the primary goal of Chapter 4 of the thesis. We summarize the result as follows:

Theorem 1.3.4. (Chapter 4, Section 4.1) If 0 ≤ λ ≤ 1
n(1− an−1), then the problem (1.14)

has infinitely many Lipschitz solutions ψ(s, t), constructed in Theorems 4.4.6 and 4.4.9 in

Chapter 4. In this case, the minimizers m̄ of I(m) obtained from the constructed solution ψ

will be the constant ±e1 in certain subdomains Ω0 = {(x1, x
′) ∈ Ω | (|x1|, |x′|) ∈ Z0} away

from the boundary ∂Ω.

The second direction of our study is an attempt to obtain certain reasonable dynamic

process for the evolution of m. We study the gradient flow of the convex functional L on

L2(Rn;Rn):

Ḟ (t) ∈ −∂L(F (t)) (t > 0), F (0) = F0, (1.16)

9



where the subdifferential ∂L(F ) is given by

∂L(F ) = F + PV
(
∂Φ(F (x) +H(x))χΩ

)
+ V⊥ ∀ F ∈ V,

with PV being the orthogonal projection on V.

The existence of the gradient flow is standard; see [10, 28]. For the asymptotic behavior as

t→∞, Bruck [8] has shown that in general the gradient flow of a strictly convex functional

converges weakly to a minimizer, while Baillon [9] has given a counterexample showing that

in general the gradient flow does not strongly converge to a minimizer.

Due to the fact that the minimizer of L is harmonic outside Ω, we obtain the strong

convergence of the gradient flow for the function L outside of Ω.

Theorem 1.3.5. (Chapter 3, section 3.2) For each F0 ∈ V there exists a unique solution to

the gradient flow (1.16). Furthermore, F (t) ⇀ F̄ as t→∞ and F (t)→ F̄ in L2(Ω̃c;Rn) for

all compact sets Ω̃ containing Ω̄.

Note that the gradient flow (1.16) determines a (nonunique) time-dependent vector func-

tion m(t) = m(x, t) with the property


div(Ḟ (t) + F (t) + m(t)χΩ) = 0 (t > 0),

m(x, t) ∈ ∂Φ(F (x, t) +H(x)) a.e. x ∈ Ω, t > 0.

This, along a subsequence tk → ∞, determines a vector function m̄(x) satisfying div(F̄ +

m̄χΩ) = 0. If, in addition, one has that F (t) → F̄ strongly in L2(Rn;Rn) then it would

follow that m̄(x) ∈ ∂Φ(F̄ (x) + H(x)) for a.e.x ∈ Ω and thus m̄(x) would be a generalized

minimizer for energy I(m).
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At the end of Chapter 3, we will discuss a particular example for the soft case with

a constant applied field H on the unit ball in R3. In this case, the gradient flow can be

expressed as an ordinary differential equation, where we have the strong convergence for

gradient flow both inside and outside of Ω.
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Chapter 2

Preliminaries

In this chapter, we review some preliminary definitions and results in order to present our

results in Chapter 3 and Chapter 4.

2.1 Notations and definitions

Throughout this thesis, we use H to denote the real Hilbert space L2(Rn;Rn) with usual

L2-inner product F ·G and norm || · ||. When using the convergence notation in this thesis,

“→ ” denotes the strong convergence in L2(U ;Rn); “ ⇀ ” denotes the weak convergence in

L2(U ;Rn) provided ∫
U
ukv dx→

∫
U
uv dx as k →∞.

for each v ∈ L2(U ;Rn). Here U ⊆ Rn is any set in Rn.

Let V be the subspace of H defined by

V = {F ∈ H | curlF = 0 in the sense of distributions on Rn}.

Then each element F ∈ V can be represented as F = ∇u for some function u ∈ H1
loc(R

n).

Moreover the orthogonal complement of V is exactly given by

V⊥ = {G ∈ H | divG = 0 in the sense of distributions on Rn};
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that is, G ∈ V if and only if

∫
Rn

G(x) · ∇ζ(x) dx = 0 ∀ ζ ∈ C∞c (Rn).

We refer to the books [47, 49] for the proof of these results.

We next review some notations and definitions in convex analysis (see, e.g., [6, 45]). Let

p : H→ R̄ be a given functional on H.

Definition 2.1.1. The (convex) conjugate or the Legendre transform p∗ of p and the

convexification p# of p are, respectively, defined by

p∗(G) = sup
F∈H
{F ·G− p(F )}, p#(G) = sup

F∈H
{F ·G− p∗(F )};

that is, p# = (p∗)∗. Both are convex functionals on H and it also follows that p∗ = (p#)∗.

Definition 2.1.2. The sub-differential of p at G ∈ H is defined to be the set

∂p(G) = {F ∈ H | p(A) ≥ p(G) + F · (A−G) ∀ A ∈ H}. (2.1)

Note that ∂p(G) 6= ∅ only if p(G) <∞, and that if ∂p(G) 6= ∅ then it is a convex subset

of H. Moreover, 0 ∈ ∂p(G) if and only if p(G) is the absolute minimum of p on H.

We also have the following property:

F ∈ ∂p(G) if and only if p∗(F ) = F ·G− p(G). (2.2)
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Moreover, if q is a convex functional on H, then

‖F‖ ≤ sup
‖A‖≤1

{q(G+ A)− q(G)} ∀ F ∈ ∂q(G). (2.3)

2.2 The duality method for micromagnetics

Assume that ϕ : Sn−1 → R is a given function representing the anisotropy energy density, Ω

is a given bounded domain with piece-wise smooth boundary occupied by the ferromagnetic

material, and H ∈ L2(Ω;Rn) is a given applied magnetic field. Consider the (reduced)

micromagnetic energy introduced above

I(m) =

∫
Ω

[ϕ(m(x))−H(x) ·m(x)] dx+
1

2

∫
Rn
|Fm|2 dx,

where Fm ∈ V is defined by Maxwell’s equation (1.2) above.

Note that, by (1.2), the magnetostatic energy can be expressed as a variational problem

1

2

∫
Rn
|Fm|2 = min

G∈V⊥
1

2

∫
Rn
|mχΩ −G|2.

Introduce an auxiliary functional A(m, G) for m ∈ L∞(Ω;Sn−1), G ∈ H = L2(Rn;Rn) by

A(m, G) =

∫
Ω
ϕ(m)−

∫
Ω
H(x) ·m +

1

2

∫
Rn
|mχΩ −G|2, (2.4)

which leads to I(m) = min
G∈V⊥

A(m, G). Therefore

inf
|m|=1

I(m) = inf
|m|=1

[
inf

G∈V⊥
A(m, G)

]
= inf
G∈V⊥

[
inf
|m|=1

A(m, G)

]
.

14



Now, for fixed G ∈ H, define

J(G) = inf
|m|=1

A(m, G),

where the infimum (in fact a minimum) is taken over all m ∈ L∞(Ω; Sn−1). Then one easily

has

inf
|m|=1

I(m) = inf
G∈V⊥

J(G).

An elementary computation shows that

J(G) =

∫
Ω
ψ(x,G(x)) dx+

1

2

∫
Ωc
|G|2 dx, (2.5)

where

ψ(x, ξ) =
1

2
(|ξ|2 + 1)− Φ(ξ +H(x))

with Φ denoting the convex function defined above by

Φ(η) = max
h∈Sn−1

[η · h− ϕ(h)], (η ∈ Rn). (2.6)

Define

Σ(η) = {h ∈ Sn−1 | h · η − ϕ(h) = Φ(η)}.

Then

Σ(η) = ∂Φ(η) ∩ Sn−1 (η ∈ Rn).

Remark 2.2.1. (1) If anisotropy energy density ϕ is given by ϕ = 0, which is the soft case,

then Φ(η) ≡ |η|.
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(2) If anisotropy energy density ϕ is given by

ϕ(h) = β(1− |h · e|), (2.7)

where β > 0 and e ∈ Sn−1 are given constants. Then ϕ(h) ≥ 0 and equals 0 if and only

if h ∈ {e,−e}; these are the so-called easy axes. This is the uniaxial case. In this case the

function Φ defined above can be easily found as follows:

Φ(η) = max
|h|=1

(η · h+ |h · βe| − β)

= max
|h|=1

max
t=±1

{η · h+ tβe · h} − β

= max
t=±1

max
|h|=1

(η + tβe) · h− β

= max
t=±1

|η + tβe| − β

= (|η|2 + 2β|η · e|+ β2)1/2 − β.

Therefore,

∂Φ(η) =


η+β sgn(η·e)e
|η+β sgn(η·e)e| , if η · e 6= 0,{

η+tβe

(|η|2+β2)1/2
: −1 ≤ t ≤ 1

}
, if η · e = 0.

We study these two special cases for minimization or gradient flow.
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In general, the Legendre transform of ψ(x, ·) can be computed as follows:

ψ∗(x, λ) = sup
ξ∈Rn

{λ · ξ − ψ(x, ξ)}

= sup
ξ∈Rn

{
λ · ξ − 1

2
(|ξ|2 + 1) + Φ(ξ +H(x))

}
= sup

ξ∈Rn

{
λ · ξ − 1

2
|ξ|2 − 1

2
+ max
h∈Sn−1

{(ξ +H(x)) · h− ϕ(h)}
}

= sup
ξ∈Rn

[
max

h∈Sn−1

{
(λ+ h) · ξ − 1

2
|ξ|2 − 1

2
+H(x) · h− ϕ(h)

}]

= sup
h∈Sn−1

[
sup
ξ∈Rn

{
(λ+ h) · ξ − 1

2
|ξ|2 − 1

2
+H(x) · h− ϕ(h)

}]

= sup
h∈Sn−1

[
1

2
|λ+ h|2 − 1

2
+H(x) · h− ϕ(h)

]
= sup

h∈Sn−1

[
1

2
|λ|2 + (λ+H(x)) · h− ϕ(h)

]
=

1

2
|λ|2 + Φ(λ+H(x)).

Therefore, the Legendre transform of J can be written as

J∗(F ) =

∫
Ω

Φ
(
F (x) +H(x)

)
dx+

1

2

∫
Rn
|F (x)|2 dx (2.8)

for all F (x) ∈ H. Let L(F ) be defined by (1.7) on H.

Theorem 2.2.2. [44, Theorem 1.2] Let F̄ be a minimizer of L(F ). A vector field m̄ is a

minimizer of I(m) if and only if


div(F̄ + m̄χΩ) = 0 in Rn,

m̄(x) ∈ Σ(F̄ (x) +H(x)) a.e. Ω.

(2.9)

17



Since there exists u, such that F̄ = ∇u. Accordingly, div(∇u+ m̄χΩ) = 0, which yields

that

∆u = − div(m̄χΩ).

Hence, u(x) can be solved by Newton’s potential:

u(x) =

∫
Ω

m(y) · ∇Γ(x− y) dy = cn

∫
Ω

m(y) · (y − x)

|y − x|n
dy,

where Γ(z) is the fundamental solution of Laplace’s equation and cn is a constant.

Remark 2.2.3. If Ω is the unit ball in Rn and m ≡ K ∈ Rn is a constant, then u(x) can

be expressed explicitly by (see [34] or [44, Lemma 4.2]):

u(x) =


K · x
n

x ∈ Ω,

K · x
n|x|n

x ∈ Ωc,

which will be later applied to the calculation of gradient flow in the soft case in Chapter 3.

2.3 Constant constraint problem in V⊥

In this section, we review some existing results that are helpful to understand the main

results in this thesis.

In [44] it has been shown that the condition (1.10) is equivalent to the following con-
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strained problem for function G̃ ∈ L2(Ω;Rn):


div(G̃χΩ) = 0 on Rn;

G̃(x) ∈ S(x) a.e. x ∈ Ω,

(2.10)

where S(x) is some set-valued function. The constrained problem (2.10) for divergence-free

fields with constant set S(x) = S has been recently studied by many authors; see, e.g.,

[5, 12, 18, 20, 33, 44]. For example, the following result has been proved in [5, 18].

Theorem 2.3.1. (cf, [5, Theorem 4.15]; [18, Theorem 6.2]) Let n = 3 and let Ω be any

bounded open set in R3, and assume S(x) = S is any constant bounded set in R3. Then

problem (2.10) has a solution if and only if either 0 ∈ S or there exists a subset F ⊆ S

such that dim (span F) ≥ 2 and 0 ∈ ri(con F). Moreover, in this case, a solution G̃ can be

obtained by G̃ = ∇× ω with some ω ∈ W 1,∞
0 (Ω;R3).

This theorem has its own limitations: (1) S(x) has to be constant; (2) G̃ · ν has to be

0 on the boundary but sometimes we do not have such condition. For example, in the case

when the domain is annulus, such condition fails and we cannot use this theorem.
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Chapter 3

General Results

In this chapter, we present our general results in the minimization and the asymptotic

behavior of gradient flow of the functional L. Some special cases will be also discussed.

3.1 Minimization of the dual functional

3.1.1 The minimizer is harmonic outside Ω

Theorem 3.1.1. Suppose that the functional L is defined by (1.7). If follows that F̄ is

harmonic on Ωc.

Proof. Let ζ ∈ C∞c (Ωc) be a test function with compact support in Ωc. Since L(F̄ + ε∇ζ) ≥

L(F̄ ) and ζ ≡ 0 on Ω,

∫
Ω

Φ
(
x, F̄

)
dx+

1

2

∫
Ωc

|F̄ + ε∇ζ|2 dx ≥
∫
Ω

Φ
(
x, F̄

)
dx+

1

2

∫
Ωc

|F̄ |2 dx.

Let
∫

Ωc
|F̄ + ε∇ζ|2 dx = h(ε), then the above inequality implies that h(ε) ≥ h(0). Therefore

h′(0) = 0, i.e. ∫
Ωc
F̄ · ∇ζ = 0 for any ζ ∈ C∞c (Ωc).
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Combing the definition of F̄ , we have the following results

div F̄ = 0 on Ωc,

curl F̄ = 0 on Ωc,

in the sense of distribution. We apply the distributional identity

curl curl(N) +4(N) = ∇(div(N))

to have that

∆F̄ = 0 on Ωc.

in distribution and thus in classical sense.

3.1.2 A necessary and sufficient condition for the minimizer

It has been established in [44] a necessary and sufficient condition for the existence of mini-

mizers of energy I(m) in terms of the unique minimizer ū = v̄χΩ + w̄χΩc of functional L(u)

on Ω, which is a bounded domain in Rn with piecewise smooth boundary. L(u) is defined

previously,

L(u) =

∫
Ω

Φ(∇u+H(x)) dx+
1

2

∫
Rn
|∇u|2 dx

Theorem 3.1.2. A function ū = v̄χΩ + w̄χΩc ∈ X is a minimizer of L(u) if and only if
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there exists a function G ∈ L2(Ω;Rn) such that


div(∇ū+GχΩ) = 0 in Rn,

G ∈ ∂Φ(∇v̄ +H(x)) a.e. Ω.

(3.1)

Any such function G is called a generalized minimizer of the functional I(m).

Remark 3.1.3. Let ν be the outward unit normal to the boundary ∂Ω of domain Ω. Then

both G · ν and ∂w̄
∂ν are defined as elements in H−1/2(∂Ω) (see, e.g., [49, Page 9]). The above

necessary and sufficient condition (3.1) can be also reformulated as:



div(∇v̄ +G) = 0 in H−1(Ω),

(G+∇v̄) · ν = ∂w̄
∂ν on ∂Ω,

∆w̄ = 0 in Ωc,

G ∈ ∂Φ(∇v̄(x) +H(x)) a.e. x ∈ Ω.

(3.2)

Here we present a different method to prove Theorem 3.1.2.

Proof. Suppose that there exist G and ū satisfying (3.1) then for any v ∈ X , we have

L(v)− L(ū)

=

∫
Ω

Φ(∇v +H(x))− Φ(∇ū+H(x)) dx+
1

2

∫
Rn

(
|∇v|2 − |∇ū|2

)
dx

≥
∫

Ω
G · (∇v −∇ū) +

∫
Rn
∇ū · (∇v −∇ū) +

1

2

∫
Rn
|∇v −∇ū|2 dx

=

∫
Rn

[GχΩ +∇ū] · (∇v −∇ū) +
1

2

∫
Rn
|∇v −∇ū|2 dx

=
1

2

∫
Rn
|∇v −∇ū|2 dx ≥ 0.
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Therefore, ū is the minimizer of (1.8).

Next, assume that ū is a minimizer of L(u). Introduce a function Φε(η), for ε > 0, which

is defined as

Φε(η) = min
ξ∈Rn

{
1

2ε
|η − ξ|2 + Φ(ξ)

}
.

Φε(η) follows the following properties (refer to Brézis[10]):

(1) Φε(η) is convex;

(2) Φε(η) is differentiable;

(3) Φε(η)→ Φ(η) as ε→ 0;

(4)
∣∣Φ′ε(η)

∣∣ ≤ 1;

(5) Φε(η) ≤ Φ(η).

Consider the functional below

Lε(u) =

∫
Ω

Φε(∇u+H(x)) dx+
1

2

∫
Rn
|∇u|2 dx

=

∫
Ω

1

2ε
|∇u+H(x)−B|2 + Φ(B) dx+

1

2

∫
Rn
|∇u|2 dx.

Then, functional Lε(u) is differentiable, strictly convex on X and thus has a unique minimizer

uε in X . Let Lε(uε) = minLε(u). Then we apply the definition of Φε to have

Lε(uε) =

∫
Ω

Φε(∇uε +H(x)) dx+
1

2

∫
Rn
|∇uε|2 dx (3.3)

=

∫
Ω

1

2ε
|∇uε +H(x)−Bε|2 + Φ(Bε) dx+

1

2

∫
Rn
|∇uε|2 dx (3.4)

Therefore, by Euler-Lagrange equation,

div
(
Φ′ε(∇uε +H(x))χΩ +∇uε

)
= 0.
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Let Gε(x) = Φ′ε(∇uε + H(x)). Then there exist G(x), such that Gε(x) ⇀ G(x) weakly

in L∞. Consequently,

div (GχΩ +∇ū) = 0.

Since Lε(uε) ≤ Lε(0) =

∫
Ω

Φε(H(x)) dx =

∫
Ω

Φ(H(x)) dx < ∞. In addition, Φ(η) is

Lipschitz so |Φ(η)| ≤ c(|η| + 1). Therefore, |Φε(η)| ≤ |Φ(η)| ≤ c(|η| + 1), which yields that

|∇uε| is uniformly bounded from (3.4). Hence ∇uε is weakly convergent and there exists

ũ ∈ X , such that ∇uε ⇀ ũ weakly as ε→ 0 . Note that L is lower semicontinuous,

L(ũ) ≤ lim
ε→0

L(uε). (3.5)

Note that Lε(uε) and ∇uε are bounded and Φ is Lipschitz, there exist M1,M2 > 0 such

that

M1 ≥ Lε(uε) =

∫
Ω

Φε(∇uε +H(x)) dx+
1

2

∫
Rn
|∇uε|2 dx

=

∫
Ω

1

2ε
|∇uε +H(x)−Bε|2 + Φ(Bε) dx+

1

2

∫
Rn
|∇uε|2 dx

≥
∫

Ω

1

2ε
|∇uε +H(x)−Bε|2 − |Bε| dx−M2.

Note that |∇uε + H| is L2 bounded and we apply the triangle inequality and Cauchy in-
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equality to have that

∫
Ω
|∇uε +H(x)−Bε|2 dx

≤ 2ε

∫
Ω
|Bε| dx+ 2εM1

≤ 2ε

∫
Ω
|∇uε +H(x)−Bε| dx+ 2ε

∫
Ω
|∇uε +H(x)| dx+ 2(M1 −M2)ε

≤ 2ε

[
1

2

∫
Ω
|∇uε +H(x)−Bε|2 dx+

1

2
|Ω|
]

+ εM3

for some constantM3, which yields that

∫
Ω
|∇uε+H(x)−Bε|2 dx ≤

ε

1− ε
·M, for some M >

0. Thus ∫
Ω
|∇uε +H(x)−Bε|2 dx→ 0, as ε→ 0. (3.6)

Note that Φ is Lipschitz,

Lε(uε) =

∫
Ω

1

2ε
|∇uε +H(x)−Bε|2 + Φ(Bε) dx+

1

2

∫
Rn
|∇uε|2 dx

≥
∫

Ω
Φ(Bε) dx+

1

2

∫
Rn
|∇uε|2 dx

≥
∫

Ω
[Φ(∇uε +H)− |∇uε +H −Bε|] dx+

1

2

∫
Rn
|∇uε|2 dx

which yields that

Lε(uε) ≥ L(uε)−
∫

Ω
|∇uε +H −Bε| dx. (3.7)

Combining (3.5), (3.7)and (3.6), we have that

L(ũ) ≤ lim
ε→0

L(uε) ≤ lim
ε→0

[
Lε(uε) +

∫
Ω
|∇uε +H −Bε| dx

]
≤ lim

ε→0
Lε(v) + lim

ε→0

∫
Ω
|∇uε +H −Bε| dx

= L(v), for any v ∈ X .
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Hence ũ is the minimizer of L and thus ũ = ū. In addition,

Lε(ū)− Lε(uε)

=

∫
Ω

Φε(∇ū+H(x)) dx−
∫

Ω
Φε(∇uε +H(x)) dx+

1

2

∫
Rn
|∇ū|2 dx− 1

2

∫
Rn
|∇uε|2 dx

=

∫
Ω

Φε(∇ū+H(x))− Φε(∇uε +H(x)) dx+
1

2

∫
Rn
|∇ū−∇uε|2 dx

+

∫
Rn
∇uε(∇ū−∇uε) dx

≥
∫

Ω
Φ′ε(∇uε +H(x)) · (∇ū−∇uε) dx+

∫
Rn
∇uε(∇ū−∇uε) dx+

1

2

∫
Rn
|∇ū−∇uε|2 dx

=

∫
Rn

[
Φ′ε(∇uε +H(x))χΩ +∇uε

]
· (∇ū−∇uε) dx+

1

2

∫
Rn
|∇ū−∇uε|2 dx

=
1

2

∫
Rn
|∇ū−∇uε|2 dx

yields

1

2

∫
Rn
|∇ū−∇uε|2 dx ≤ Lε(ū)− Lε(uε)

≤ L(ū)− Lε(uε) ≤ L(uε)− Lε(uε)

≤
∫

Ω
|∇uε +H −Bε| dx→ 0.

Hence

∇uε → ∇ū a.e. in L2(Rn). (3.8)

By the definition of Gε(x),

Φε(η) ≥ Gε(x) · (η −∇uε −H) + Φε(∇uε +H)
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Let ζ be a test function with ζ ∈ C∞(Rn), multiply both sides by ζ and integrate both sides,

∫
Rn

ζΦε(η) ≥
∫
Rn

ζGε(x) · (η −∇uε −H) dx+

∫
Rn

ζΦε(∇uε +H) dx.

Let ε→ 0 which yields that

∫
Rn

ζΦ(η) ≥
∫
Rn

ζG(x) · (η −∇u−H) dx+

∫
Rn

ζΦ(∇u+H) dx.

i.e.

G ∈ ∂Φ(∇v̄ +H(x)).

The last term is obtained by the fact that

|Φε(∇uε +H)− Φ(∇u+H)|

≤ |Φε(∇uε +H)− Φε(∇u+H)|+ |Φε(∇u+H)− Φ(∇u+H)|

≤ |∇uε −∇u|+ +|Φε(∇u+H)− Φ(∇u+H)|

= 0 as ε→ 0.

This completes the sufficient part.

3.1.3 A domain dependence result for the minimizer

Suppose that the domain Ω has a small region E removed from inside.
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Ω

E

Figure 3.1: The new domain when a small region E is removed

Let us denote

LΩ(u) =

∫
Ω

Φ(∇u(x) +H(x)) dx+
1

2

∫
Rn
|∇u(x)|2 dx,

LΩ\E(u) =

∫
Ω\E

Φ(∇u(x) +H(x)) dx+
1

2

∫
Rn
|∇u(x)|2 dx.

Theorem 3.1.4. Let ū = v̄χΩ+w̄χΩc be the minimizer of the functional LΩ(u) and E ⊂⊂ Ω.

Define w̃ by 
∆w̃ = 0 in E,

w̃ = ū on ∂E.

(3.9)

Suppose that there exists G̃ ∈ L2(Ω \ E;Rn) satisfying



div(∇v̄ + G̃) = 0 in Ω \ E,

(
G̃+∇v̄

)
· ν = ∂w̄

∂ν on ∂Ω,

(
G̃+∇v̄

)
· ν = ∂w̃

∂ν on ∂E,

G̃ ∈ ∂Φ(∇v̄ +H(x)) a.e. Ω \ E.

(3.10)
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Then ũ = ūχRn\E + w̃χE is the minimizer of LΩ\E(u).

Proof. This follows directly from Remark 3.1.3.

3.1.4 The uniaxial anisotropy energy

We consider the easy case where the anisotropy energy density ϕ(h) = β(1− |h · e|), where

β > 0 and e ∈ Sn−1 are given constants. In this case, let us recall from Remark 2.2.1,

Φ(η) = (|η|2 + 2β|η · e|+ β2)1/2 − β, (3.11)

and

∂Φ(η) =


η+β sgn(η·e)e
|η+β sgn(η·e)e| , if η · e 6= 0,{

η+tβe

(|η|2+β2)1/2
: −1 ≤ t ≤ 1

}
, if η · e = 0.

Let Ω = {x ∈ Rn| a < |x| < 1} be an annulus domain in Rn. Consider

L(u) =

∫
Ω

Φ(∇u+H) dx+
1

2

∫
Rn
|∇u|2 dx

where H ∈ Rn is a constant and H 6= 0.

Theorem 3.1.5. Suppose that Φ is defined as (3.11). Then the minimizer of L cannot be

linear on Ω.

Proof. Notice that η = 0 is the only minimizer of Φ, defined in (3.11) on Rn. Suppose that

the minimizer ū of L(u) is linear on Ω : ū(x) = λ̄ · x on Ω. Then recall from Remark 2.2.3,
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ū = λ̄ · xχ|x|<1 + λ̄·x
|x|nχ|x|>1, and there exists a G ∈ L2(Ω;Rn) such that



divG = 0 in H−1(Ω),

G · ν = −nλ̄ · ν on |x| = 1,

G · ν = 0 on |x| = a,

G(x) ∈ ∂Φ(λ̄+H) a.e. Ω.

We proceed with 2 cases.

Case 1:
(
λ̄+H

)
· e 6= 0. Then G(x) ≡ Φ′(λ̄+H). Since G · ν = −nλ̄ · ν on |x| = 1, then

Φ′(λ̄ + H) = −nλ̄ = 0. Hence λ̄ = 0 and Φ′(H) = 0. Accordingly, H = 0 and λ̄ + H = 0

which is a contradiction.

Case 2:
(
λ̄ + H

)
· e = 0. Then G(x) =

η+t(x)βe√
|η|2+β2

for some function t(x) ∈ L∞(Ω),

−1 ≤ t(x) ≤ 1, where η = λ̄ + H. Then applying the condition divG = 0 in H−1(Ω),

we have that ∂t
∂e(x) = 0 in H−1(Ω), which implies that t(x) = t(x′) if x = x1e + x′e′ =

x1e + x2e2 + ...+ xnen with ei ⊥ e, ei · ej = 0 for i 6= j, and |ei| = 1. Since for any |x| = a,

G(x) · x = 0. We have that

η · x+ t(x′)βe · x = 0, ∀ |x| = a.

If assume that η 6= 0 and let x =
η

|η|
a. Then we have η = 0. Therefore, η = 0 and λ̄ = −H.

Accordingly, G(x) = t(x)e. Let x1 6= 0, then 0 = G(x) · x = t(x′)βx1 yields that t(x′) = 0.

Thus G(x) ≡ 0 and therefore −nλ̄ = H = 0, which yields a contradiction.
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3.2 The gradient flow of the dual functional

In this section, for simplicity, we write Φ(x, F ) ≡ Φ(F (x)+H(x)). Recall that L is previously

defined as:

L(F ) =


∫

Ω
Φ(x, F )dx+

1

2

∫
Rn
|F (x)|2 dx, F ∈ V;

+∞, F ∈ H\V.

3.2.1 The subdifferential

To study the asymptotic behavior of gradient flow of L(F ), we first calculate the subdifferen-

tial ∂L(F ). Note that this functional is convex on H with (finite-value) domain D(L) = V.

For each F ∈ D(L) = V, the subdifferential of L is defined as:

∂L(F ) = {K ∈ H | L(X) ≥ L(F ) +K · (X − F ) ∀ X ∈ H}.

Theorem 3.2.1. For each F ∈ D(L) = V, we have

∂L(F ) = F + PV
(
∂Φ(x, F )χΩ

)
+ V⊥,

where PV : H → V is the projection operator and V⊥ is the orthogonal complement of V in

H.

Proof. Clearly, F + PV
(
∂Φ(x, F )χΩ

)
+ V⊥ ⊆ ∂L(F ). Now let K ∈ ∂L(F ). With an abuse

of notation, we define

L(F ) =

∫
Ω

Φ(x, F )dx+
1

2

∫
Rn
|F (x)|2 dx,∀F ∈ H,
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namely, L(F ) = J∗(F ) on H, defined in (2.8) before. We may assume K ∈ V. Then

L(X) ≥ L(F ) +K · (X − F ) for all X ∈ V. This means that F ∈ V is the minimizer of the

functional

L̃(X) = L(X)− L(F )−K · (X − F )

over V. For each ε > 0 consider the functional

L̃ε(X) = L̃(X) +
1

2
‖X − F‖2 +

1

2ε
‖PV⊥(X)‖2

on X ∈ H, where PV⊥ : H → V⊥ is the projection operator. The functional L̃ε is convex

and thus the standard direct method of the calculus of variations shows that it has a unique

minimizer Fε over whole H. For this minimizer Fε, since L̃ε(Fε) ≤ L̃ε(F ) = L̃(F ) = 0, we

have

L̃(Fε) +
1

2
‖Fε − F‖2 +

1

2ε
‖PV⊥(Fε)‖2 ≤ 0. (3.12)

From this and the linear growth of L(X), we have that {Fε}ε>0 is bounded; therefore, by a

subsequence, we assume Fε ⇀ F̃ as ε→ 0+, weakly in H, for some F̃ ∈ H. From (3.12) and

the lower semicontinuity of L̃, it follows that

L̃(F̃ ) +
1

2
‖F̃ − F‖2 ≤ 0, ‖PV⊥(F̃ )‖ ≤ lim

ε→0+
‖PV⊥(Fε)‖ = 0.

Therefore, F̃ ∈ V and hence L̃(F̃ ) ≥ L̃(F ) = 0; this implies that F̃ = F and Fε → F as

ε→ 0+. Finally, from 0 ∈ ∂L̃ε(Fε) the elementary computations yield that

K ∈ 2Fε − F + ∂Φ(x, Fε)χΩ +
1

ε
PV⊥(Fε).
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Let, via subsubsequences if necessary, 1
εPV⊥(Fε) ⇀ G in H as ε→ 0+. Then G ∈ V⊥ and

K ∈ F + ∂Φ(x, F )χΩ +G,

which proves K ∈ F + PV
(
∂Φ(x, F )χΩ

)
+ V⊥.

3.2.2 The gradient flow

Since L is convex, proper and lower semicontinuous, we have that for any initial datum

F0 ∈ V, there exists a unique function F : [0,∞)→ V such that


0 ∈ Ḟ + ∂L(F ), t > 0,

F (0) = F0.

(3.13)

Bruck [8] demonstrated that, for general gradient flow of a strictly convex functional

F (t) ⇀ F̄ weakly as t→∞,

where F̄ is the unique minimizer of the functional. Next, we will show that for the functional

L defined above, we also have strong convergence outside of Ω. Let us summarize our

discussion above in the theorem below:

Theorem 3.2.2. For each F0 ∈ V there exists a unique solution to the gradient flow given

by (3.13). Furthermore, F (t) ⇀ F̄ as t → ∞ and F (t) → F̄ in L2(Ω̃c;Rn) for all compact

sets Ω̃ containing Ω̄.
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Proof. Since F (t) ∈ V, the gradient flow should be reduced to


0 ∈ Ḟ + F + PV

(
∂Φ(x, F )χΩ

)
, t > 0,

F (0) = F0.

(3.14)

Let N ∈ PV
(
∂Φ(x, F )χΩ

)
. then we have curl(N) = 0 by definition and div(N) = 0 in Ωc in

the sense of distribution. By the identity curl curl(N) +4(N) = ∇(div(N)), we have that

4N = 0 in Ωc in the sense of distribution. Hence

4(Ḟ + F ) = 0 in Ωc.

Solving this evolution equation, we obtain that F (x, t) = F0(x)e−t + U(x, t) for x ∈ Ωc and

t > 0, where 4U(x, t) = 0 in Ωc × (0,∞). Let V (x, t) = U(x, t) − F̄ (x). Then V (x, t) is

harmonic in Ωc and V (x, t) ⇀ 0 as t→∞. For any fixed x0 ∈ Ωc,

V (x0, t) =
1

|Br(x0)|

∫
Br(x0)

V (x, t)dx→ 0 as t→∞.

For any ball Rn ⊃ BR(0) ≡ BR ⊃⊃ Ω, Ωc = BcR + BR\Ω. Let C ⊂ BR\Ω̃ be any

compact set with d(C, ∂Ω̃) = d0 > 0.

V (x, t) =
1

Bd0
2

(x)

∫
Bd0

2

(x)
V (y, t) dy, ∀ x ∈ C.

=⇒

|V (x, t)| ≤ 1

Bd0
2

(x)
· ||V (y, t)||

L2 ·
(∣∣Bd0

2

(x)
∣∣)1

2 ≤ M.
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Therefore,

U(x, t)→ F̄ (x) strongly in C, when t→∞,

by the Bounded Convergence Theorem.

Let’s fix t first. For any x ∈ BcR,

|V (x, t)| =

∣∣∣∣∣∣ 1

|B|x|−R(x)|

∫
B|x|−R(x)

V (y, t) dy

∣∣∣∣∣∣ ≤ C(|x| −R)−n/2, (3.15)

Now let x→∞, we have that V (x, t)→ 0, for all t. Applying the Kelvin Transform,

(assume R = 1
2 below) we have that

Ṽ (y, t) =
1

|y|n−2
V
( y

|y|2
, t
)
, 0 ≤ |y| ≤ 1. (3.16)

We proceed with three cases when x ∈ BcR:

(i) If n = 3, let x =
y

|y|2
, so |x| ≥ 1 and there exists c > 0, not depending on t, such that

|Ṽ (y, t)||y| = |V (x, t)| ≤ c(|x| −R)−3/2 ≤ c|y|3/2, (3.17)

i.e. |V (y, t)| ≤ c|y|
1
2 . So y = 0 is a removable singular point. Therefore, we define

W (y, t) =


Ṽ (y, t), y 6= 0,

0, y = 0.

Thus |W (y, t)| ≤ c1|y|. and combined with (3.17), it follows that

|V (x, t)|2 ≤ C1|y|4 = C1|x|−4 ∈ L1(BcR).
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By the Dominant Convergence Theorem, V (x, t)→ 0 strongly in L2(BcR) as t→∞.

(ii) If n = 4, the Kelvin Transform is Ṽ (y, t) =
1

|y|2
V
( y

|y|2
, t
)

and there exists some

constant c2 such that |Ṽ (y, t)| ≤ c2. Suppose that there exists a > 0, such that

W (y, t) =


Ṽ (y, t), y 6= 0,

a, y = 0.

Hence ∃ δ > 0, s.t. when |y| < δ,
1

|y|2
|V (x, t)| ≥ a > 0. Thus |V (x, t)| ≥ a · |y|2 = a|x|−2 6∈

L2(BcR). This contradiction implies that a = 0, i.e. W ≡ 0 when y = 0. Thus there exists a

constant c3, not depending on t, such that |W (y, t)| = |
∑
cjy

j | ≤ c3|y|. Therefore,

|V (x, t)| ≤ c3|y|3 = c3|x|−3 ∈ L2(BcR).

By the Dominant Convergence Theorem, V (x, t)→ 0 strongly in L2(BcR) as t→∞.

(iii) If n ≥ 5, we already have |V (x, t)| ≤ C1|x|−
n
2 for any fixed t > 0 by (3.15). Define

Y (x) =
C2

|x|n−2
. Let Z(x, t) = Y (x) − V (x, t), for a R1 > 0, we can find a constant C2 > 0

such that Z(x, t)
∣∣∣
|x|=R1

> 0 and we claim that

Z(x, t) ≥ 0 in
{
x ∈ Rn; |x| ≥ R1

}
.

If not, there exists x0 ∈ Rn, |x0| > R1 and α > 0 such that Z(x0, t) = −α < 0. Therefore,

there exists R2 > R1, s.t.
(
Z(x, t) +

α

2

)∣∣∣
|x|=R2

> 0. Applying the maximum principle to

Z(x, t) + α
2 on

{
x ∈ Rn;R1 ≤ |x| ≤ R2

}
yields a contradiction! Therefore,

Z(x, t) ≥ 0 in
{
x ∈ Rn; |x| ≥ R1

}
.
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i.e.V (x, t) ≤ Y (x) in
{
x ∈ Rn; |x| ≥ R1

}
and Y (x) ∈ L2(Rn\B1). Therefore when n ≥ 5,

V (x, t)→ 0 strongly, as t→∞, when x > R1

by the Dominant Convergence Theorem.

Combining all the results, for any compact Ω̃ ⊃⊃ Ω,

F (x, t)→ F̄ (x) strongly in L2(Ω̃c), as t→∞.

3.2.3 Possible dynamics for magnetization m

Note that the gradient flow (3.13) on H = L2(Rn;Rn) determines a (nonunique) time-

dependent vector function m(t) = m(x, t) with the property


div(Ḟ (t) + F (t) + m(t)χΩ) = 0 (t > 0),

m(x, t) ∈ ∂Φ(F (x, t) +H(x)) a.e. x ∈ Ω, t > 0.

(3.18)

The first condition asserts that Fm(t) = −Ḟ (t)− F (t).

From the general theory of gradient flow [10], we have

∫ ∞
0
‖Ḟ (t)‖2H dt <∞,

which implies that, along a subsequence tk → ∞, one has Ḟ (tk) → 0 in H. Hence, along a
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further subsequence of {tk}, we have m(tk) ⇀ m̄; for this m̄ we have

div(F̄ + m̄χΩ) = 0.

If, in addition, one has that F (t) → F̄ strongly in L2(Rn;Rn) then it would follow that

m̄(x) ∈ ∂Φ(F̄ (x) + H(x)) for a.e.x ∈ Ω and thus m̄(x) would be a generalized minimizer

for energy I(m).

Therefore, in some sense, the system (3.18) defines a reasonable evolution process for the

functional I(m).

3.2.4 Study of a special case

We investigate a special case of the gradient flow in the soft case in R3. Assume ϕ ≡ 0

and thus Φ(ξ) = |ξ|. Let H be a constant and Ω be a ball in R3. We study the gradient

flow (3.13) with initial datum F0 ∈ V that equals a constant vector parallel to H; that is,

F0 = αH in Ω, where α ∈ R is a constant.

We are trying to find the solution F (t) such that F (x, t) = η(t) on Ω and a corresponding

vector function m(t) = m(x, t) of (3.18) is also constant in Ω; that is, m(x, t) = k(t) ∈ R3

for x ∈ Ω. Therefore PV(k(t)χΩ)(x, t) = −Ḟ (x, t)− F (x, t) for x ∈ R3.

Let us recall from Section 2.2 that for unit ball Ω = B1(0) ∈ Rn and any constant k ∈ Rn,

we have

PV(kχΩ) =


1
nk in Ω,

∇
( 1

n

k · x
|x|n

)
in Ωc.
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Therefore, in our case, since

∂Φ(ξ) =


ξ/|ξ| (ξ 6= 0),

B1(0) (ξ = 0),

the gradient flow implies

η̇(t) + η(t) +
1

3
K(η(t)) 3 0 (t > 0), (3.19)

where K(η) is the set-valued function defined by

K(η) =


η +H

|η +H|
, η 6= −H,

B1(0), η = −H.

Once we solve η(t) from (3.19), let k(t) = K(η(t)) and solve f(x, t) for all x ∈ Ωc by


ḟ(x, t) + f(x, t) +∇

(
k(t)·x
3|x|3

)
= 0 (t > 0),

f(x, 0) = F0(x).

Then the function F (x, t) = η(t)χΩ(x) + f(x, t)χΩc(x) will be the solution to the gradient

flow (3.13). Consequently, the gradient flow (3.13) becomes equivalent to the 3-D gradient

flow (3.19) on R3. Define

E(η) =
1

2
|η|2 +

1

3
|η +H| (η ∈ R3).

39



Then the problem (3.19) becomes the gradient flow of E(η) on η ∈ R3.

We now study the solution η(t) to (3.19) in difference cases.

Case 1. |H| ≤ 1/3. (In this case, notice that the minimizer of E(η) is η̄ = −H.)

I. If α = −1, i.e. η(0) = −H, then η(t) ≡ −H. Next, consider that α 6= −1. The

gradient flow is given by

η̇ + η +
1

3

η +H

|η +H|
= 0,

η(0) = αH.

Let P be a vector such that P ⊥ H and we denote η(t) · P = h(t) and we dot product both

sides by P , then

h′(t) + h(t) +
1

3

h(t)

|η +H|
= 0,

h(0) = 0.

We can conclude that h(t) ≡ 0, which implies that there exists g(t), such that η(t) = g(t) ·H.

Consequently, 
g′(t) + g(t) +

1

3|H|
g(t) + 1

|g(t) + 1|
= 0,

g(0) = α.

(3.20)

Let g(t) + 1 = r(t), then the equation above reads

r′(t) + r(t) +
1

3|H|
r(t)

|r(t)|
= 1,

r(0) = α + 1.
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II. If α > −1, then r(0) > 0. Thus r(t) > 0 in 0 ≤ t < t̄, for some t̄ > 0. Hence the

equation becomes r′(t) + r(t) +
1

3|H|
= 1, then r(t) = 1 − 1

3|H|
+
(
α +

1

3|H|

)
e−t, and let

r(t̄) = 0, then we have t̄ = ln
[ 3α|H|+ 1

−3|H|+ 1

]
.

III. α < −1, i.e. r(0) < 0. Thus r(t) < 0 in 0 ≤ t < t̄, for some t̄ > 0. Thus the

equation becomes r′(t) + r(t) − 1

3|H|
= 1, then r(t) = 1 +

1

3|H|
+
(
α − 1

3|H|

)
e−t, and let

r(t̄) = 0, then we have t̄ = ln
[ 3α|H| − 1

−3|H| − 1

]
, accordingly.

Combing all the cases when |H| ≤ 1

3
, there exist t̄ < ∞ such that r(t̄) = 0, which is

equivalent to say η(t̄) = −H ≡ η̄, shown in Figure 3.2.

r(t)

O t̄ t

r(t)

O t̄ t

α > −1, |H| ≤ 1/3 α < −1, |H| ≤ 1/3

Figure 3.2: The graphs for the case of |H| ≤ 1
3 .

Case 2. |H| ≥ 1/3. (In this case, notice that the minimizer of E(η) is η̄ = − H
3|H| .)

Now we still consider problem (3.20).

I. α > − 1

3|H|
, i.e. g(0) > − 1

3|H|
. Therefore g(0) + 1 > − 1

3|H|
+ 1 > 0, which implies

that g(t)+1 > 0 in 0 ≤ t < t̄, for some t̄ > 0. Now the equation becomes: g′(t)+g(t)+
1

3|H|
=

0. Hence g(t) = − 1

3|H|
+
(
α +

1

3|H|

)
e−t. It is easy to see that g(t) is decreasing and
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α

− 1
3|H|

t

−1

|H| > 1/3

t∗

Figure 3.3: The graphs for the case of |H| > 1
3 .

g(t)→ − 1

3|A|
as t→∞.

II. −1 < α < − 1

3|H|
, i.e. −1 < g(0) < − 1

3|H|
. Accordingly, g(0) + 1 > −1 + 1 = 0,

which implies that g(t) + 1 > 0 in 0 ≤ t < t̄, for some t̄ > 0. Now the equation becomes:

g′(t) + g(t) +
1

3|H|
= 0 and the solution is g(t) = − 1

3|H|
+
(
α+

1

3|H|

)
e−t. It is easy to see

that g(t) is increasing and g(t)→ − 1

3|H|
as t→∞.

III. α < −1, i.e. g(0) < −1. In this case, g(0) + 1 < −1 + 1 = 0, which implies that

g(t)+1 < 0 in 0 ≤ t < t∗, for some t∗ > 0. Now the equation becomes g′(t)+g(t)− 1

3|H|
= 0,

when 0 ≤ t < t∗. The and the solution is g(t) =
1

3|H|
+
(
α− 1

3|H|

)
e−t, which is increasing.

And t∗ can be solved by setting g(t∗) + 1 = 0 and t̄ = ln
1− 3|H|α
1 + 3|H|

, which indicates that

g(t) should satisfies that


g′(t) + g(t)− 1

3|H|
= 0, with g(0) = α, 0 ≤ t < t∗

g′(t) + g(t) +
1

3|H|
= 0, with g(t∗) = −1, t ≥ t∗.
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with

g(t) =


1

3|H|
+
(
α− 1

3|H|

)
e−t, 0 ≤ t < t∗

− 1

3|H|
+
(
− 1 +

1

3|H|

)
e
−
(
t−1−3|H|α

1+3|A|

)
, t ≥ t∗.

We can also see that g(t) is increasing and g(t)→ − 1

3|H|
as t→∞.

Combining all the cases when |H| > 1

3
, We can also see that g(t) → − 1

3|H|
as t → ∞

but never equals − 1

3|H|
, shown in Figure 3.3.
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Chapter 4

A Minimization Problem on Annulus

In this chapter, we assume n ≥ 3 is an integer and Ω = {x ∈ Rn | a < |x| < 1} is a spherical

shell in Rn. We study the reduced micromagnetic energy:

I(m) = −
∫

Ω
λm1(x) dx+

1

2

∫
Rn
|Fm(x)|2 dx

for certain constants λ ≥ 0.

Related to the minimization of this functional I(m), we study the boundary value prob-

lem of the Eikonal equation:



|∇ψ(s, t)| = tn−2 in a2 < s2 + t2 < 1, t > 0,

ψ(s, t) = 0 on s2 + t2 = a2, t ≥ 0,

ψ(s, t) = nλ
n−1t

n−1 on s2 + t2 = 1, t ≥ 0,

ψ(s, t) = 0 on t = 0, a ≤ |s| ≤ 1,

(4.1)

where 0 < a < 1, λ ≥ 0 and n ≥ 3 are given numbers. The problem (4.1) is also related

to the problem of finding a divergence-free unit-length vector function G ∈ L2(Ω;Sn−1)

satisfying

G · ν = 0 on |x| = a, G · ν = nλx1 on |x| = 1, (4.2)

where ν denotes the outer unit normal on ∂Ω. For example, if ψ(s, t) is a solution to (4.1),
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then the vector function G(x) defined by

G(x) = |x′|2−n
(
ψt(x1, |x′|)e1 − ψs(x1, |x′|)

x′

|x′|

)
(4.3)

is a divergence-free unit-length vector function satisfying (4.2) in the distributional sense,

where {e1, e2, . . . , en} is the standard basis of Rn and x′ = x2e2 + · · ·+ xnen. Let

wλ(x) = λx1 χ{|x|≤1} +
λx1

|x|n
χ{|x|>1}, Fλ = −∇wλ.

Then, all such unit-length vector functions G can be described by

div(Fλ +GχΩ) = 0 (4.4)

in the sense of distributions on Rn.

Suppose ψ is a Lipschitz solution to (4.1) and let m = G(x) be defined by (4.3); so

(4.4) holds. Since Fλ = −λe1 in Ω, for all F ∈ L2(Rn;Rn) with curlF = 0, we have

|F + λe1| = |F − Fλ| ≥ G · (F − Fλ) and hence

J∗(F )− J∗(Fλ) ≥
∫
Rn

Fλ · (F − Fλ) dx+

∫
Ω
G · (F − Fλ) dx

=

∫
Rn

(Fλ +GχΩ) · (F − Fλ) dx = 0.

Therefore Fλ is the unique minimizer of J∗. For m = G(x), by (4.4), we have that Fm = −Fλ

and that
∫
Rn F

λ · Fλdx = −
∫

Ω F
λ ·Gdx, and hence

I(m) =

∫
Ω
Fλ(x) ·G(x) dx+

1

2

∫
Rn
|Fλ(x)|2 dx = −1

2

∫
Rn
|Fλ|2 dx = −J∗(Fλ).
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Consequently, m̄ = G(x) is a minimizer of I.

Some existence results on the Lipschitz solutions to the boundary value problem for gen-

eral first-order differential equations have been given in [20], but to apply such an existence

theorem to our problem, one would need to find a Lipschitz function ψ0 satisfying, in addi-

tion to the required boundary conditions, the inequality |∇ψ0(s, t)| ≤ tn−2; the construction

of such a function ψ0 is equally difficult as that of a solution ψ of (4.1). Even such a func-

tion ψ0 is known to exist, the general existence theorem would only assert the existence

of infinitely many Lipschitz solutions to (4.1) without specifying the structures of any such

solutions.

Our main idea is to use the characteristics method to construct the local solutions near

the boundaries and then glue them together with certain trivial solutions away from the

boundaries. As we shall see in Theorems 4.4.6 and 4.4.9 below, the solutions constructed

this way do not have infinitely many oscillations, which would be otherwise expected by the

general existence theorems of [20].

4.1 The characteristics method

The rest of the chapter is devoted to the construction of the Lipschitz solutions ψ(s, t) of

(4.1) that are even in s. For this purpose, let

ω = {z = (s, t) | s > 0, t > 0, a2 < s2 + t2 < 1}.

We state our main result as the following theorem.

Theorem 4.1.1. The following problem has a Lipschitz solution ψ(s, t) on ω̄ if and only if
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the following condition holds.

0 ≤ λ ≤ 1

n
(1− an−1), (4.5)



|∇ψ(s, t)| = tn−2 in ω,

ψ(s, t) = 0 on |z| = a with s > 0, t > 0,

ψ(s, t) = 0 on t = 0, s ∈ [a, 1],

ψ(s, t) = nλ
n−1t

n−1 on |z| = 1 with s > 0, t > 0.

(4.6)

Proof of the necessity of (4.5). Suppose ψ is a Lipschitz solution on ω̄. Then

n

n− 1
λ =

∫ 1

a
ψt(0, t) dt ≤

∫ 1

a
|∇ψ(0, t)| dt

≤
∫ 1

a
tn−2 dt =

1

n− 1
(1− an−1).

This proves that λ ≤ 1
n(1− an−1).

The proof of the sufficiency of (4.5) is the main purpose of this thesis; we state this

sufficiency part in the following theorem, including some application to certain minimizers

of the functional I(m).

Theorem 4.1.2. If 0 ≤ λ ≤ 1
n(1 − an−1), then the problem (4.6) has infinitely many

Lipschitz solutions ψ(s, t), constructed in Theorems 4.4.6 and 4.4.9 below. In this case,

when n ≥ 3 is integer and Ω is defined as above, the minimizers m̄ = G(x) of I(m) given

by (4.3) with the constructed solution ψ will be the constant ±e1 in certain subdomains

Ω0 = {(x1, x
′) ∈ Ω | (|x1|, |x′|) ∈ Z0} away from the boundary ∂Ω.

Some existence results on the Lipschitz solutions to the boundary value problem for gen-
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eral first-order differential equations have been given in [20], but to apply such an existence

theorem to our problem, one would need to find a Lipschitz function ψ0 on ω̄ satisfying,

in addition to the required boundary conditions, the inequality |∇ψ0(s, t)| ≤ tn−2 in ω.

Construction of such a function ψ0 is equally difficult as that of a solution ψ of (4.6).

Our main idea is to use the characteristics method to construct the local solutions near

the two quarter-circles of the boundary of ω and then to glue them together with certain

trivial solutions away from the boundaries. We write the equation |∇ψ| = tn−2 as

F (s, t, ψ, ψs, ψt) = 0,

where F (s, t, z, p, q) = 1
2(p2 + q2− t2n−4). The characteristics ODEs for this first-order PDE

are given by (see [28])

ds

dτ
= p,

dt

dτ
= q,

dz

dτ
= t2n−4,

dp

dτ
= 0,

dq

dτ
= (n− 2)t2n−5.

(4.7)

We solve the system (4.7) on τ ≥ 0 with given initial data

(s, t, z, p, q)|τ=0 = (α(θ), β(θ), γ(θ), f(θ), g(θ)), (4.8)

where α(θ), β(θ), γ(θ), f(θ) and g(θ) depend on a parameter θ in an interval I. Assume the

functions α(θ), β(θ), γ(θ), f(θ) and g(θ) are smooth in I and satisfy the characteristics strip

conditions: 
f(θ)2 + g(θ)2 = β(θ)2n−4,

f(θ)α′(θ) + g(θ)β′(θ) = γ′(θ)

∀ θ ∈ I. (4.9)
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For each θ ∈ I, the smooth solutions to (4.7)-(4.8) will be denoted by

s = S(τ, θ), t = T (τ, θ), z = Z(τ, θ), p = P (τ, θ), q = Q(τ, θ).

We easily solve s = S(τ, θ) and p = P (τ, θ) to have

P (τ, θ) = f(θ), S(τ, θ) = α(θ) + f(θ)τ ∀ τ ≥ 0, θ ∈ I. (4.10)

Solving (t, q) in (4.7) we have that, for each θ ∈ I, the unique smooth solution t = T (τ, θ)

exists on a maximal interval [0, τM (θ)) and satisfies


t′2 = t2n−4 − f(θ)2, 0 < τ < τM (θ),

t(0) = β(θ), t′(0) = g(θ),

(4.11)

and hence the solution Q(τ, θ) = Tτ (τ, θ) satisfies

f(θ)2 +Q(τ, θ)2 = T (τ, θ)2n−4 ∀ θ ∈ I, τ ∈ [0, τM (θ)). (4.12)

After we solve T (τ, θ), we easily obtain z = Z(τ, θ) by integration:

Z(τ, θ) = γ(θ) +

∫ τ

0
T (η, θ)2n−4dη ∀ θ ∈ I, τ ∈ [0, τM (θ)). (4.13)

Using T 2n−4 = f2 +Q2 and Tτ = Q, an integration by parts yields that

Z(τ, θ) = γ(θ) + f(θ)2τ +

∫ τ

0
Tη(η, θ)Q(η, θ) dη
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= γ(θ) + f(θ)2τ + [T (η, θ)Q(η, θ)]τ0 −
∫ τ

0
T (η, θ)Qη(η, θ) dη.

Plugging in Qη(η, θ) = (n− 2)T (η, θ)2n−5 and rearranging terms, we have

Z(τ, θ) = γ(θ) +
1

n− 1
[f(θ)2τ + T (τ, θ)Q(τ, θ)− β(θ)g(θ)]

=

(
γ − fα + gβ

n− 1

)
+
S(τ, θ)f(θ) + T (τ, θ)Q(τ, θ)

n− 1
.

(4.14)

We remark that when n = 3 the equations for (t, q) become linear and the system (4.7)

can be solvable in an explicit form; however, the subsequent calculations are complicated

and too specific. As we see later, the case n > 3 presents some different features from the

case n = 3.

4.1.1 The maximal existence time τM(θ)

In view of the two subsequent cases to be considered, we make the following assumption:

α(θ) > 0, β(θ) > 0, f(θ) 6= 0 ∀ θ ∈ I. (4.15)

For a given θ ∈ I we find the number τM = τM (θ) according to the sign of g(θ).

Case (i): Assume g(θ) ≥ 0. In this case, the equation in (4.11) becomes

dt

dτ
=
√
t2n−4 − f(θ)2 on τ ∈ (0, τM ).
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The solution t = T (τ, θ) is increasing in τ and satisfies T (τ, θ) > β(θ) on (0, τM ); moreover,

since (0, τM ) is maximal interval of existence for T (τ, θ), we must have

lim
τ→τ−M

T (τ, θ) =∞.

Given any τ ∈ [0, τM ) and t ≥ β(θ), it follows that t = T (τ, θ) if and only if

τ = A(t, θ) :=

∫ t

β(θ)

dy√
y2n−4 − f(θ)2

. (4.16)

Therefore, we obtain

τM = τM (θ) =

∫ +∞

β(θ)

dy√
y2n−4 − f(θ)2

if g(θ) ≥ 0.

Note that τM = +∞ if n = 3 and τM < +∞ if n > 3 since f(θ) 6= 0. In this case, t = T (τ, θ)

is the inverse function of τ = A(t, θ), and Q(τ, θ) > 0 for all 0 < τ < τM (θ).

Case (ii): Assume g(θ) < 0. In this case, we have that Tτ (τ, θ) = Q(τ, θ) < 0 and thus

T (τ, θ) is decreasing in τ on some interval τ ∈ [0, τm), where τm = τm(θ) > 0 is a number

such that Q(τ−m, θ) = Tτ (τ−m, θ) = 0. By (4.12), we obtain

lim
τ→τ−m

T (τ, θ) = |f(θ)|
1

n−2 .

Clearly, the functions t = T (τ, θ) and q = Q(τ, θ) satisfy

dt

dτ
= q = −

√
t2n−4 − f(θ)2 ∀ τ ∈ (0, τm). (4.17)
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It follows that |f(θ)|
1

n−2 < T (τ, θ) ≤ β(θ) for 0 ≤ τ < τm. Moreover, given any 0 ≤ τ <

τm(θ) and |f(θ)|
1

n−2 < t ≤ β(θ), it follows that t = T (τ, θ) if and only if

τ = −A(t, θ) =

∫ β(θ)

t

dy√
y2n−4 − f(θ)2

. (4.18)

Letting τ → τ−m, we see that

τm = τm(θ) =

∫ β(θ)

|f(θ)|
1

n−2

dy√
y2n−4 − f(θ)2

. (4.19)

Note that 0 < τm < +∞ since f(θ) 6= 0. We now solve T (τ, θ) and Q(τ, θ) for τ > τm. As in

the first case, using T (τm, θ) = |f(θ)|
1

n−2 , solutions t = T (τ, θ) and q = Q(τ, θ) satisfy

dt

dτ
= q =

√
t2n−4 − f(θ)2 ∀ τ ∈ (τm, τM ).

Hence t = T (τ, θ) is increasing in τ and satisfies T (τ, θ) > |f(θ)|
1

n−2 on (τm, τM ). The

maximal existence time τM of T (τ, θ) must satisfy

lim
τ→τ−M

T (τ, θ) =∞.

Moreover, given τ ∈ [τm, τM ) and t ≥ |f(θ)|
1

n−2 , it follows that t = T (τ, θ) if and only if

τ − τm =

∫ t

|f(θ)|
1

n−2

dy√
y2n−4 − f(θ)2

,

that is,

τ = 2τm(θ) + A(τ, θ) = 2τm(θ) +

∫ t

β(θ)

dy√
y2n−4 − f(θ)2

. (4.20)
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Letting τ → τ−M , we obtain

τM (θ) = 2τm(θ) +

∫ +∞

β(θ)

dy√
y2n−4 − f(θ)2

if g(θ) < 0.

Again, τM = +∞ if n = 3 and τM < ∞ if n > 3. In this case, it is easily shown that the

solution T (τ, θ) so constructed is smooth on [0, τM (θ)) by verifying Tτ (τ−m, θ) = Tτ (τ+
m, θ).

(Some related computation is given below.) Furthermore, Q(τ, θ) < 0 for 0 < τ < τm(θ) and

Q(τ, θ) > 0 for τm(θ) < τ < τM (θ).

4.1.2 Inverting the characteristics map

Let τM (θ) be defined as above, and define

D = {(τ, θ) | θ ∈ I, 0 ≤ τ < τM (θ)}. (4.21)

Define the characteristic map

(S(τ, θ), T (τ, θ)) : D → R2,

and consider the curve Γ = {(α(θ), β(θ)) | θ ∈ I}. We would like to find a subdomain Z of

ω with Γ ⊂ ∂Z and a subdomain Y of D such that for each (s, t) ∈ Z there exists a unique

(τ, θ) = (η(s, t), ξ(s, t)) in Y satisfying

(s, t) = (S(τ, θ), T (τ, θ));
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that is, the map (S, T ) : Y → Z is bijective. Let (τ, θ) = (η(s, t), ξ(s, t)) : Z → Y be its

inverse map. Of course, a standard method would be to study the Jacobian of the map

(s, t) = (S(τ, θ), T (τ, θ)). However, we use different (but, eventually, equivalent) methods

depending on the specific parametrization of curve Γ.

4.1.3 Construction of the local solutions

Once we obtain the inverse map (η, ξ) of the map (S, T ), we define a local solution ψ by

ψ(s, t) = Z(η(s, t), ξ(s, t)) ∀ (s, t) ∈ Z,

where Z(τ, θ) is defined by (4.13) above. By continuity we may also extend ψ to some of the

boundary points of Z. Note that by (4.14) the solution ψ on Z can be computed as

ψ(s, t) =

[
γ(θ)− f(θ)α(θ) + g(θ)β(θ)

n− 1
+
sf(θ)± t

√
t2n−4 − f(θ)2

n− 1

]
θ=ξ(s,t)

(4.22)

with the choice of “±” the same as the sign of Q(η(s, t), ξ(s, t)).

In the next two sections, we carry out these constructions near the inner circle |z| = a

and near the outer circle |z| = 1 separately.

4.2 Construction near the inner quarter-circle

In this case, we choose the interval I = (0, π/2) and define

α(θ) = a cos θ, β(θ) = a sin θ, γ(θ) = 0 ∀ θ ∈ I.
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We fulfill the strip conditions (4.9) by selecting

f(θ) = (a sin θ)n−2 cos θ, g(θ) = (a sin θ)n−2 sin θ.

Hence the condition (4.15) holds and g(θ) > 0 for all θ ∈ I and the domain D in (4.21)

becomes

D =

{
(τ, θ)

∣∣∣ θ ∈ (0, π/2), 0 ≤ τ <

∫ +∞

β(θ)

dy√
y2n−4 − f(θ)2

}
.

4.2.1 The characteristics solutions

The function t = T (τ, θ) is determined uniquely by

τ =

∫ T (τ,θ)

β(θ)

dy√
y2n−4 − f(θ)2

∀ (τ, θ) ∈ D.

Also Q(τ, θ) = Tτ (τ, θ) =
√
T (τ, θ)2n−4 − f(θ)2 ≥ 0 and a change of variables yields that

Z(τ, θ) =

∫ T (τ,θ)

β(θ)

y2n−4dy√
y2n−4 − f(θ)2

∀ (τ, θ) ∈ D.

Let

R := {(t, θ) | θ ∈ I, t ≥ β(θ)}

and

U(t, θ) =

∫ t

β(θ)

y2n−4dy√
y2n−4 − f(θ)2

∀ (t, θ) ∈ R. (4.23)

Then

Z(τ, θ) = U(T (τ, θ), θ) ∀ (τ, θ) ∈ D.
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As above, let

A(t, θ) =

∫ t

β(θ)

dy√
y2n−4 − f(θ)2

∀ (t, θ) ∈ R.

Then, for (τ, θ) ∈ D and (t, θ) ∈ R, it follows that t = T (τ, θ) if and only if τ = A(t, θ).

4.2.2 Inverting the characteristics map

Define B(t, θ) = S(A(t, θ), θ), that is,

B(t, θ) = α(θ) + f(θ)

∫ t

β(θ)

dy√
y2n−4 − f(θ)2

∀ (t, θ) ∈ R.

A direct computation yields that

Bθ(t, θ) = − a

sin θ
+ f ′(θ)

∫ t

β(θ)

y2n−4 dy

(y2n−4 − f(θ)2)3/2
∀ θ ∈ I. (4.24)

Lemma 4.2.1. Let U(t, θ) and B(t, θ) be defined as above. Then

Uθ(t, θ) = Bθ(t, θ)f(θ) ∀ (t, θ) ∈ R. (4.25)

Proof. By (4.23),

Uθ(t, θ) = −β
′β2n−4

g
+ ff ′

∫ t

β

y2n−4 dy

(y2n−4 − f2)3/2
.

Since

ff ′
∫ t

β

y2n−4 dy

(y2n−4 − f2)3/2
= f(θ)Bθ(t, θ) +

af(θ)

sin θ
,
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consequently, it follows that

Uθ(t, θ) = −β
′β2n−4

g
+
af(θ)

sin θ
+Bθ(t, θ)f(θ) = Bθ(t, θ)f(θ),

resulting from the identity β′β2n−4

g =
af(θ)
sin θ .

Note that

f ′(θ) = a(a sin θ)n−3[(n− 2)− (n− 1) sin2 θ].

So, for θ̂ = arcsin(
√

(n− 2)/(n− 1)), it follows that

f ′(θ) > 0 ∀ θ ∈ (0, θ̂), f ′(θ) < 0 ∀ θ ∈ (θ̂, π/2).

Hence, by (4.24),

Bθ(t, θ) < 0 ∀ θ ∈ [θ̂, π/2), t ≥ β(θ).

Lemma 4.2.2. For all t > 0,

lim
θ→0+

Bθ(t, θ) =


a
∫∞

1
dη√

η2n−4−1
(n > 3),

+∞ (n = 3).

(4.26)

Proof. By a change of variables and integration by parts, we have

Bθ(t, θ) = −a(n− 1)

n− 2
sin θ +

1

n− 2

∫ t/k

β/k

f ′f
3−n
n−2dη√

η2n−4 − 1
− tf ′√

t2n−4 − f2

 ,
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where k = f
1

n−2 . Since β/k = 1/(cos θ)
1

n−2 → 1 and t/k →∞ as θ → 0+, it follows that

lim
θ→0+

∫ t/k

β/k

dη√
η2n−4 − 1

=


∫∞

1
dη√

η2n−4−1
(n > 3),

+∞ (n = 3).

Note that

lim
θ→0+

f ′(θ) =


a (n = 3),

0 (n > 3)

and lim
θ→0+

f ′(θ)f(θ)
3−n
n−2 = a(n− 2).

Combining these limits, we have (4.26).

For each t > 0, let

θ0(t) =


arcsin t

a 0 < t < a,

π/2 t ≥ a.

Then Bθ(t, θ0(t)) = −a2/t < 0 if 0 < t < a sin θ̂, and Bθ(t, θ) < 0 for all θ ∈ [θ̂, π/2) if

t ≥ a sin θ̂. Hence the following quantity is well-defined:

θ∗(t) = inf{θ ∈ (0, θ0(t)) | Bθ(t, θ′) ≤ 0 ∀ θ < θ′ < θ0(t)}. (4.27)

Clearly θ∗(t) ≤ θ̂ for all t > 0 and, by (4.26), θ∗(t) > 0 for all t > 0. Furthermore,

Bθ(t, θ∗(t)) = 0, Bθ(t, θ) ≤ 0 ∀ θ∗(t) ≤ θ < θ0(t). (4.28)

Lemma 4.2.3. For each t > 0, the function B(t, θ) is one-to-one on the interval θ ∈
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π
2 θ

a

t

0

θ = θ∗(t) θ = θ0(t)

θ̂

Figure 4.1: The function θ = θ∗(t) defined by (4.27) is strictly increasing and left-continuous.

[θ∗(t), θ0(t)). Moreover, the function θ∗(t) is strictly increasing and left-continuous on t > 0

and θ∗(0+) = 0.

Proof. Let a, b ∈ [θ∗(t), θ0(t)) be such that B(t, a) = B(t, b). We show a = b. If a < b

then Bθ(t, θ) = 0 for all θ ∈ (a, b), which is impossible by the formula of Bθ(t, θ) given

above. Therefore B(t, θ) is one-to-one on [θ∗(t), θ0(t)). To show θ∗ is strictly increasing,

let 0 < t < t′ and suppose, for the contrary, θ∗(t) ≥ θ∗(t′); then θ∗(t′) ≤ θ∗(t) ≤ θ̂ and

Bθ(t
′, θ∗(t)) ≤ 0. Note that

Bθt(t, θ) =
f ′(θ)t2n−4

(t2n−4 − f(θ)2)3/2
> 0 ∀ 0 < θ ≤ θ̂, t ≥ β(θ).

We have that Bθ(t
′, θ∗(t)) > Bθ(t, θ∗(t)) = 0, which gives a contradiction. To show the left-

continuity of θ∗, given t > 0, let l = θ∗(t−); then 0 < l ≤ θ∗(t) and Bθ(t, l) = 0. Given each

θ′ ∈ (l, θ0(t)), for all t′ < t sufficiently closed to t, we have θ∗(t′) < l < θ′ < θ0(t) and hence

Bθ(t
′, θ′) ≤ 0. Taking t′ → t− yields that Bθ(t, θ

′) ≤ 0. By definition, l ≥ θ∗(t); so l = θ∗(t).
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This proves that θ∗ is left-continuous on t > 0. Furthermore, from β(θ∗(t)) < β(θ0(t)) ≤ t,

it follows that θ∗(0+) = 0.

s

t

0

Z1

s+(t)

s−(t)

s1(t)

a

a

Figure 4.2: The domain Z1 and the smooth increasing function s = s1(t) determined in
Lemma 4.2.7.

Define (see Figure 4.2)

s+(t) = B(t, θ∗(t)), s−(t) =
√

(a2 − t2)+ ∀ t > 0,

and

Z1 = {(s, t) : t > 0, s−(t) < s < s+(t)}.

In general, s+(t) is left-continuous but may not be continuous on (0,∞). Note that

s−(t) = lim
θ→θ0(t)−

B(t, θ) ∀ t > 0. (4.29)
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Lemma 4.2.4. There exists a unique function θ = ξ(s, t) on Z1 such that

s = B(t, ξ(s, t)) ∀ (s, t) ∈ Z1.

Moreover, the function θ = ξ(s, t) is continuous on Z1 and is differentiable at every point

(s0, t0) of Z1 where Bθ(t0, ξ(s0, t0)) 6= 0 and, at any such point (s, t), we have

ξt = −Bt(t, ξ)/Bθ(t, ξ), ξs = 1/Bθ(t, ξ).

Proof. Let (s, t) ∈ Z1; then t > 0 and s−(t) < s < s+(t). Hence B(t, θ0(t)−) < s <

B(t, θ∗(t)). Since B(t, θ) is one-to-one on θ ∈ [θ∗(t), θ0(t)), there exists a unique θ = ξ(s, t)

such that

θ∗(t) < ξ(s, t) < θ0(t), B(t, ξ(s, t)) = s.

We now prove the continuity of ξ(s, t); namely, for all (s0, t0) ∈ Z1, it follows that

lim
i
ξ(si, ti) = ξ(s0, t0)

for all sequences (si, ti) in Z1 converging to (s0, t0). Let any convergent subsequence of

ξ(si, ti)→ l. Note that

θ∗(ti) ≤ ξ(si, ti) ≤ θ0(ti), si = B(ti, ξ(si, ti)).

Since θ∗(t0) = θ∗(t−0 ) ≤ θ∗(t+0 ) < θ0(t0), it follows that θ∗(t0) ≤ l < θ0(t0) and s0 = B(t0, l).

Hence, by definition, l = ξ(s0, t0). This proves the continuity of ξ.

The differentiability of ξ(s, t) at point (s0, t0) ∈ Z1 where Bθ(t0, ξ(s0, t0)) 6= 0 follows from
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the continuity of ξ by the implicit function theorem.

4.2.3 Construction of the solution on Z1

Let ξ(s, t) be the function defined above and the function U(t, θ) be defined by (4.23).

Theorem 4.2.5. Define

ψ1(s, t) = U(t, ξ(s, t)) ∀ (s, t) ∈ Z1.

Then ψ1 is differentiable in Z1 with ψ1
s(s, t) > 0 and satisfies the Eikonal equation |∇ψ1(s, t)| =

tn−2 in Z1. Furthermore, ψ1 can be extended continuously to the curve s = s−(t) for all

t > 0 such that

ψ1(s−(t), t) =
1

n− 1
(tn−1 − an−1)+ ∀ t > 0. (4.30)

Proof. The function ψ1 is clearly continuous in Z1.At each point (s, t) ∈ Z1 whereBθ(t, ξ(s, t)) 6=

0, ψ1 is differentiable, and by (4.25),

ψ1
s(s, t) = Uθ(t, ξ)ξs(s, t) =

Uθ(t, ξ)

Bθ(t, ξ)
= f(ξ(s, t)) > 0.

On the other hand, with θ = ξ(s, t),

ψ1
t (s, t) = Ut(t, θ) + Uθ(t, θ)ξt(s, t) = Ut(t, θ) + f(θ)Bθ(t, θ)ξt(s, t)

= Ut(t, θ)− f(θ)Bt(t, θ) = Ut(t, θ)− f(θ)2At(t, θ)

=
t2n−4√

t2n−4 − f(θ)2
− f(θ)2√

t2n−4 − f(θ)2
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and hence

ψ1
t (s, t) =

√
t2n−4 − f(ξ(s, t))2.

The formulas of ψ1
s and ψ1

t also show that ψ1 is differentiable at every point of Z1, with

ψ1
s(s, t) = f(ξ(s, t)) > 0, and satisfies the equation |∇ψ1| = tn−2. Finally, we extend ψ1 to

the curve s = s−(t) by letting

ψ1(s−(t), t) = lim
s→(s−(t))+

ψ1(s, t) ∀ t > 0.

We show

ψ1(s−(t), t) =
1

n− 1
(tn−1 − an−1)+ ∀ t > 0.

Fix t > 0. By (4.29), we have

lim
s→(s−(t))+

ξ(s, t) = θ0(t).

Therefore

lim
s→(s−(t))+

ψ1(s, t) = lim
s→(s−(t))+

U(t, ξ(s, t))

= U(t, θ0(t)) =

∫ t

β(θ0(t))

y2n−4 dy√
y2n−4 − f(θ0(t))2

=
1

n− 1
(tn−1 − an−1)+.

Lemma 4.2.6. For all (s, t) ∈ Z1 ∩ {s > 0, s2 + t2 = 1}, we have

ψ1(s, t) >
1− an−1

n− 1
tn−1. (4.31)
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Proof. Let (s, t) ∈ Z1 be such that s > 0, s2 + t2 = 1. Then ψ1(s, t) = U(t, h(t)), where

h(t) = ξ(
√

1− t2, t). We first show that

h(t) < arcsin t.

To this end, let θ̃ = arcsin t; so α(θ̃) = a
√

1− t2 and β(θ̃) = at. We then have

B(t, θ̃) = α(θ̃) + f(θ̃)

∫ t

β(θ̃)
(y2n−4 − f(θ̃)2)−1/2dy

< a
√

1− t2 + f(θ̃)

∫ t

at
(β(θ̃)2n−4 − f(θ̃)2)−1/2dy

= a
√

1− t2 +
f(θ̃)

g(θ̃)
(t− at) =

√
1− t2 = B(t, h(t)).

Since Bθ(t, θ) ≤ 0 for all θ ∈ (θ∗(t), θ0(t)), we derive θ̃ > h(t). Finally, by the formula of

U(t, θ), we have

ψ1(s, t) = U(t, h(t)) ≥
∫ t

β(h(t))
yn−2 dy =

tn−1 − β(h(t))n−1

n− 1

>
tn−1 − β(θ̃)n−1

n− 1
=

1− an−1

n− 1
tn−1.

Lemma 4.2.7. There exists a smooth increasing function s1(t) ∈ (s−(t), s+(t)) such that,

for all t > 0,

ψ1(s, t) <
tn−1

n− 1
∀ s−(t) < s < s1(t),

ψ1(s, t) >
tn−1

n− 1
∀ s1(t) < s < s+(t).
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Proof. Let K(s, t) = ψ1(s, t) − tn−1

n−1 . Then Ks(s, t) = ψ1
s(s, t) = f(ξ(s, t)) > 0 and so, for

each t > 0, K(s, t) is strictly increasing in s ∈ [s−(t), s+(t)]. We will show that

K(s−(t), t) < 0, K(s+(t), t) > 0 ∀ t > 0. (4.32)

This will prove the existence of s1(t) ∈ (s−(t), s+(t)) such that

K(s1(t), t) = 0.

Moreover, since Ks(s1(t), t) > 0, by the implicit function theorem, the function s1(t) is also

differentiable in t > 0, with

s′1(t) =
tn−2 − ψ1

t

ψ1
s

> 0 ∀ t > 0,

which completes the proof. To prove (4.32), first of all, note that K−(t) = K(s−(t), t) =

U(t, θ0(t))− tn−1

n−1 . If 0 < t < a, then U(t, θ0(t)) = 0; if t ≥ a,

U(t, θ0(t)) = U(t, π/2) =

∫ t

a
yn−2 dy =

1

n− 1
(tn−1 − an−1).

So K−(t) < 0 for all t > 0. We now show that

K+(t) = K(s+(t), t) = U(t, θ∗(t))−
tn−1

n− 1
> 0 ∀ t > 0.
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Given t > 0, we have Bθ(t, θ∗(t)) = 0 and hence θ∗(t) ∈ (0, θ̂). We will actually show that

U(t, θ) >
tn−1

n− 1
whenever Bθ(t, θ) = 0. (4.33)

Note that, by (4.14),

(n− 1)U(t, θ) = f(θ)2A(t, θ) + tQ(A(t, θ), θ)− β(θ)g(θ)

= f(θ)2A(t, θ) + t
√
t2n−4 − f(θ)2 − β(θ)g(θ).

From the definition of A(t, θ), integration by parts yields that

A(t, θ) =
t√

t2n−4 − f2
− β

g
+ (n− 2)

∫ t

β

y2n−4 dy

(y2n−4 − f2)3/2
.

Assume, at point (t, θ), Bθ(t, θ) = 0; so 0 < θ < θ̂. By (4.24), we have

∫ t

β

y2n−4 dy

(y2n−4 − f2)3/2
=

a2

βf ′
.

Hence

A(t, θ) =
t√

t2n−4 − f2
− β

g
+

(n− 2)a2

βf ′
.

Therefore,

(n− 1)U(t, θ) =
tf2√

t2n−4 − f2
− f2β

g
+

(n− 2)a2f2

βf ′
+ t

√
t2n−4 − f2 − βg

=
t2n−3√
t2n−4 − f2

− β2n−3

g
+

(n− 2)a2f2

βf ′
> tn−1 − β2n−3

g
+

(n− 2)a2f2

βf ′
.
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Clearly

0 <
f ′

f
= (n− 2)

cos θ

sin θ
− sin θ

cos θ
< (n− 2)

cos θ

sin θ
.

Hence

(n− 2)a2f2

βf ′
>

(n− 2)a2f

β

sin θ

(n− 2) cos θ
=
β2n−3

g
,

from which it follows that (n− 1)U(t, θ) > tn−1.

4.3 Construction near the outer quarter-circle

In this case, again let I = (0, π/2) but define

α(θ) = cos θ, β(θ) = sin θ, γ(θ) =
nλ

n− 1
(sin θ)n−1 ∀ θ ∈ I.

4.3.1 Characteristics strip conditions

To select the functions f(θ) and g(θ) to fulfill the strip condition

f2(θ) + g2(θ) = (sin θ)2n−4, (4.34)

−f(θ) sin θ + g(θ) cos θ = γ′(θ) = nλ(sin θ)n−2 cos θ, (4.35)

we define

f(θ) = (sin θ)n−2 cosϕ, g(θ) = (sin θ)n−2 sinϕ,

where ϕ = ϕ(θ) is a function of θ to be selected below. In view of (4.35), we have

sin(ϕ− θ) = nλ cos θ.
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This condition alone does not determine sinϕ and cosϕ uniquely. We require the charac-

teristic curve go inside the disc s2 + t2 < 1 for small τ > 0. To this end, let ρ(τ, θ) =

S2(τ, θ) + T 2(τ, θ). We require that

dρ

dτ
(0+, θ) = 2α(θ)f(θ) + 2β(θ)g(θ) = 2(sin θ)n−2 cos(ϕ− θ) < 0

and so that

cos(ϕ− θ) = −
√

1− (nλ cos θ)2.

In this way, f and g are uniquely determined if we set, for all θ ∈ I,

sinϕ = nλ cos2 θ − sin θ
√

1− (nλ cos θ)2,

cosϕ = −nλ cos θ sin θ − cos θ
√

1− (nλ cos θ)2.

Lemma 4.3.1. It follows that

1 ≤ ϕ′(θ) < 2, ϕ′′(θ) ≥ 0 ∀ θ ∈ I.

Proof. Differentiating sin(ϕ− θ) = nλ cos θ twice, we have

cos(ϕ− θ)(ϕ′ − 1) = −nλ sin θ,

− sin(ϕ− θ)(ϕ′ − 1)2 + cos(ϕ− θ)ϕ′′ = −nλ cos θ = − sin(ϕ− θ).

Hence

ϕ′ = 1− nλ sin θ

cos(ϕ− θ)
= 1 +

nλ sin θ√
1− (nλ cos θ)2

,
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cos(ϕ− θ)ϕ′′ = sin(ϕ− θ)ϕ′(ϕ′ − 2).

The first equation implies 1 ≤ ϕ′ < 2 since 0 ≤ (nλ)2 < 1; so, from the second equation, it

follows that ϕ′′ ≥ 0, due to the inequalities sin(ϕ− θ) ≥ 0 and cos(ϕ− θ) < 0.

Note that f(θ) < 0 but g(θ) changes signs on I. We solve g(θ) = 0 to obtain θ∗ =

arctan(nλ) ∈ [0, π/4) such that

g(θ) > 0 ∀ θ ∈ (0, θ∗), g(θ) < 0 ∀ θ ∈ (θ∗, π/2).

Let

t∗ = sin θ∗ =
nλ√

1 + (nλ)2
, s∗ = cos θ∗ =

1√
1 + (nλ)2

.

Lemma 4.3.2. There exists a (unique) number θ̄ ∈ (θ∗, π/2) such that

f ′(θ) < 0 ∀ θ ∈ (0, θ̄); f ′(θ) > 0, f ′′(θ) > 0 ∀ θ ∈ (θ̄, π/2).

Proof. We easily have f ′(θ) = (sin θ)n−3h(θ), where

h(θ) = (n− 2) cos θ cosϕ− (sin θ sinϕ)ϕ′.

So f ′(θ∗) = (2− n)(t∗)n−2s∗ < 0 and f ′(π/2) = 1 + nλ > 0. It is easy to check, by Lemma

4.3.1, that

h′(θ) = −(n− 2)(sin θ cosϕ+ ϕ′ cos θ sinϕ)− ϕ′ cos θ sinϕ

−(sin θ cosϕ)(ϕ′)2 − (sin θ sinϕ)ϕ′′ > 0 ∀ θ ∈ (θ∗, π/2);

hence h is strictly increasing on (θ∗, π/2). Therefore, h and f ′ have a unique zero θ̄ ∈
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(θ∗, π/2), that is,

f ′(θ) < 0 ∀ θ ∈ [θ∗, θ̄), f ′(θ) > 0 ∀ θ ∈ (θ̄, π/2).

From this we also obtain that f ′′(θ) > 0 for all θ ∈ (θ̄, π/2). Finally, it is easy to see that

f ′(θ) < 0 for all θ ∈ (0, θ∗]. This completes the proof.

As above, let S(τ, θ), T (τ, θ), P (τ, θ), Q(τ, θ) and Z(τ, θ) be the characteristic solutions

defined on the domain

D = {(τ, θ) | θ ∈ (0, π/2), 0 ≤ τ < τM (θ)}.

Here τM (θ) = +∞ if n = 3, and if n > 3, τM (θ) is defined by

τM (θ) =


∫ +∞
β(θ)

dy√
y2n−4−f(θ)2

∀ θ ∈ (0, θ∗],

2τm(θ) +
∫ +∞
β(θ)

dy√
y2n−4−f(θ)2

∀ θ ∈ (θ∗, π/2),

where

τm(θ) =

∫ β(θ)

|f(θ)|
1

n−2

dy√
y2n−4 − f(θ)2

∀ θ ∈ (θ∗, π/2).

4.3.2 Inverting the characteristic map

Unlike the case of the inner circle, we solve τ from s = S(τ, θ) to have

τ = C(s, θ) =
s− α(θ)

f(θ)
∀ 0 < θ < π/2.
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Consider the function

F (s, θ) = T (C(s, θ), θ) (4.36)

defined for all (s, θ) with s > 0 and 0 < C(s, θ) < τM (θ); that is, in the set

S = {(s, θ) | 0 < θ < π/2, l̃(θ) < s < α(θ)},

where l̃(θ) = max{0, l(θ)} with

l(θ) =


−∞ if n = 3,

α(θ) + f(θ)τM (θ) if n > 3.

Let

l1(θ) = α(θ) + f(θ)τm(θ) ∀ θ ∈ (θ∗, π/2).

Note that 0 < C(s, θ) <
l̃(θ)−α(θ)
f(θ)

for all (s, θ) ∈ S. Let

D0 = {(τ, θ) | 0 < θ < π/2, 0 < τ < τ0(θ)},

where

τ0(θ) =
l̃(θ)− α(θ)

f(θ)
= min

{
−α(θ)

f(θ)
, τM (θ)

}
.

Proposition 4.3.3. (a) If n > 3, then l(0+) = 1 and there exists a (unique) number

θ̂ ∈ (0, π/2) such that

l(θ) > 0, l′(θ) < 0 ∀ θ ∈ (0, θ̂); l(θ) ≤ 0 ∀ θ ∈ (θ̂, π/2).
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(b) For all n ≥ 3, it follows that l1((θ∗)+) = s∗ and there exists a (unique) number

θ̂1 ∈ (θ∗, π/2) such that

l1(θ) > 0, l′1(θ) < 0 ∀ θ ∈ (θ∗, θ̂1); l1(θ) ≤ 0 ∀ θ ∈ (θ̂1, π/2).

Proof. Let k = |f(θ)|
1

n−2 . We have

∫ +∞

β

dy√
y2n−4 − f(θ)2

= k3−n
∫ ∞
β
k

dη√
η2n−4 − 1

∀ θ ∈ (0, π/2),

τm(θ) = k3−n
∫ β

k

1

dη√
η2n−4 − 1

∀ θ ∈ (θ∗, π/2).

1. We first prove part (a). In this case, n > 3 and l = α + fτM can be written as

l(θ) =


α− k

∫∞
β
k

dη√
η2n−4−1

∀ θ ∈ (0, θ∗],

α− k
∫∞
β
k

dη√
η2n−4−1

− 2k
∫ β
k

1
dη√

η2n−4−1
∀ θ ∈ (θ∗, π/2).

It then follows that l(0+) = 1 and l((π/2)−) = 0. In order to find l′(θ), we use the elementary

identities

k′

k
=

f ′

(n− 2)f
,

(
β

k

)′
=

(
β

k

)
ϕ′ sinϕ

(n− 2) cosϕ
(4.37)

to obtain

l′(θ) =


α′ − ϕ′β

n−2 − k
′
(∫∞

β
k

dη√
η2n−4−1

)
∀ θ ∈ (0, θ∗),

α′ − ϕ′β
n−2 − k

′
(∫∞

β
k

dη√
η2n−4−1

+ 2
∫ β
k

1
dη√

η2n−4−1

)
∀ θ ∈ (θ∗, π/2).

(4.38)
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From this, we see that l′ exists at θ∗ and also l′((π/2)−) = +∞. In either case of the formula

(4.38), the term in the parenthesis equals α−l
k and so we simplify (4.38) to obtain that

l′(θ) =

[
α′ − ϕ′β

n− 2
− f ′α

(n− 2)f

]
+

f ′l
(n− 2)f

= − 1

sin θ
− nλϕ′

(n− 2[nλ sin θ +
√

1− (nλ cos θ)2]
+

f ′l
(n− 2)f

.

(4.39)

Since l((π/2)−) = 0, there exists a θ′ < π/2 closed to π/2 such that l(θ′) < 0. Let θ̄ be

determined in Lemma 4.3.2. Then, by (4.38) and (4.37), it follows that l′(θ) < 0 for all

θ ∈ (0, θ̄], and by (4.39), it follows that l′(θ) < 0 whenever l(θ) ≥ 0 and θ ∈ [θ̄, π/2).

2. We proceed in two cases.

Case 1: l(θ̄) ≤ 0. In this case, since l(0+) = 1 > 0, there exists a number θ̂ ∈ (0, θ̄]

such that l(θ̂) = 0. We show that this θ̂ satisfies the conclusion of the lemma. Clearly

l(θ) > 0, l′(θ) < 0 for all θ ∈ (0, θ̂). To show l(θ) ≤ 0 for all θ ∈ (θ̂, π/2), suppose otherwise,

for some d ∈ (θ̂, π/2), l(d) > 0. Then the maximum of l on [θ̂, d] must attain at some

c ∈ (θ̂, d], where l(c) > 0 and l′(c) ≥ 0, and so c ∈ (θ̄, π/2); this is a contradiction to (4.39).

Case 2: l(θ̄) > 0. In this case, there exists a number θ̂ ∈ (θ̄, θ′) such that l(θ̂) = 0.

We show that this θ̂ satisfies the conclusion of the lemma. We first show l(θ) ≤ 0 on

θ ∈ (θ̂, π/2). Suppose otherwise, for some d ∈ (θ̂, π/2), l(d) > 0. Then the maximum of l on

[θ̂, d] is positive and attains at some point c ∈ (θ̂, d) with l(c) > 0 and l′1(c) = 0; this is a

contradiction to (4.39). We now show that l(θ) > 0, l′(θ) < 0 for all θ ∈ (0, θ̂). It suffices

to show l′(θ) < 0 for all θ ∈ (0, θ̂). Suppose otherwise l′(e) ≥ 0 for some e ∈ (0, θ̂). Then

e ∈ (θ̄, θ̂). The maximum of l on [e, θ̂] must attain at some f ∈ (e, θ̂]. At this point f we

must have l(f) ≥ 0 and l′(f) ≥ 0; this is again a contradiction to (4.39).
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3. To prove the part (b), note that, similar to l(θ), we have

l1(θ) = α− k
∫ β

k

1

dη√
η2n−4 − 1

∀ θ ∈ (θ∗, π/2).

It follows that l1((θ∗)+) = s∗ and l1((π/2)−) = 0; moreover,

l′1(θ) = α′ − ϕ′β
n− 2

− k′
∫ β

k

1

dη√
η2n−4 − 1

∀ θ ∈ (θ∗, π/2). (4.40)

We simplify (4.40) to obtain that

l′1(θ) = α′ − ϕ′β
n− 2

− f ′α
(n− 2)f

− f ′l1
(n− 2)f

= − 1

sin θ
− nλϕ′

(n− 2)[nλ sin θ +
√

1− (nλ cos θ)2]
− f ′l1

(n− 2)f
.

(4.41)

So l′1((π/2)−) = +∞. Furthermore, by (4.40) and (4.37), it follows that l′1(θ) < 0 for all

θ ∈ (θ∗, θ̄], and by (4.41), it follows that l′1(θ) < 0 whenever l1(θ) ≥ 0 and θ ∈ [θ̄, π/2).

Therefore, in a completely analogous way to the proof of part (b), we can prove part (b).

Let

τ1(θ) = min{τ0(θ), τm(θ)} = min

{
−α(θ)

f(θ)
, τm(θ)

}

and consider the following subsets of D0:

D1 = {(τ, θ) | 0 < θ < θ∗, 0 < τ < τ0(θ)},

D2 = {(τ, θ) | θ∗ < θ < π/2, τ1(θ) < τ < τ0(θ)},

D3 = {(τ, θ) | θ∗ < θ < π/2, 0 < τ < τ1(θ)}.
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Define R = {(t, θ) | θ ∈ (0, π/2), t ≥ |f(θ)|
1

n−2} and

A(t, θ) =

∫ t

β(θ)

dy√
y2n−4 − f(θ)2

∀ (t, θ) ∈ R.

By (4.16), (4.18) and (4.20), it follows that

τ = A(T (τ, θ), θ) ∀ (τ, θ) ∈ D1,

τ = A(T (τ, θ), θ) + 2τm(θ) ∀ (τ, θ) ∈ D2,

τ = −A(T (τ, θ), θ) ∀ (τ, θ) ∈ D3.

(4.42)

Let Sk = {(s, θ) ∈ S | (C(s, θ), θ) ∈ Dk}, k = 1, 2, 3, be subdomains of S; namely,

S1 = {(s, θ) | 0 < θ < θ∗, l̃(θ) < s < α(θ)},

S2 = {(s, θ) | θ∗ < θ < π/2, l̃(θ) < s < l̃1(θ)},

S3 = {(s, θ) | θ∗ < θ < π/2, l̃1(θ) < s < α(θ)},

where l̃1(θ) = max{0, l1(θ)}. Taking τ = C(s, θ) in (4.42) yields that

C(s, θ) = A(F (s, θ), θ) ∀ (s, θ) ∈ S1,

C(s, θ) = A(F (s, θ), θ) + 2τm(θ) ∀ (s, θ) ∈ S2,

C(s, θ) = −A(F (s, θ), θ) ∀ (s, θ) ∈ S3.
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Differentiating with respect to θ yields that

Fθ(s, θ) =



√
F 2n−4 − f2(Cθ − Aθ(F, θ)) if (s, θ) ∈ S1,√
F 2n−4 − f2(Cθ − Aθ(F, θ)− 2τ ′m) if (s, θ) ∈ S2,

−
√
F 2n−4 − f2(Cθ + Aθ(F, θ)) if (s, θ) ∈ S3.

(4.43)

In order to find Fθ(s, θ), we need to derive the formula for Aθ(t, θ). Assume (t, θ) ∈ R

with θ 6= θ∗ and t > |f(θ)|
1

n−2 . Let k(θ) = |f(θ)|
1

n−2 . Then from

A(t, θ) = k(θ)3−n
∫ t/k(θ)

β(θ)/k(θ)

dη√
η2n−4 − 1

∀ (t, θ) ∈ R,

it follows that

Aθ(t, θ) =(3− n)k2−nk′
∫ t/k

β/k

dη√
η2n−4 − 1

+ k3−n
[

(t/k)′√
(t/k)2n−4 − 1

− (β/k)′√
(β/k)2n−4 − 1

]
,

which, by (4.37), simplifies to

Aθ(t, θ) = −sgn(g)ϕ′β
(n− 2)f

− (n− 3)f ′

(n− 2)f
A− tf ′

(n− 2)f
√
t2n−4 − f2

. (4.44)

Also we have

τ ′m(θ) = −n− 3

n− 2

f ′

f
τm −

βϕ′

(n− 2)f
∀ θ ∈ (θ∗, π/2). (4.45)
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Proposition 4.3.4. It follows that

Fθ(s, θ) =


√
F 2n−4 − f2 L(s, θ) + f ′F

(n−2)f
if (s, θ) ∈ S1,2,

−
√
F 2n−4 − f2 L(s, θ) + f ′F

(n−2)f
if (s, θ) ∈ S3,

(4.46)

Fθs(s, θ) = (n− 2)F 2n−5L(s, θ)

f(θ)
∀ (s, θ) ∈ S, (4.47)

where

L(s, θ) =
β

f

(
1 +

ϕ′

n− 2

)
− f ′

(n− 2)f
C(s, θ). (4.48)

Moreover, L(s, θ) < 0 for all s ∈ [0, 1] and θ ∈ (0, π/2); therefore, Fθs(s, θ) > 0 for all

(s, θ) ∈ S.

Proof. If θ 6= θ∗, then two formulas in (4.46) follow from (4.43), (4.44) and (4.45). For

θ = θ∗, the formula follows by continuity. Formula (4.47) follows from (4.46). We only need

to prove L(s, θ) < 0. Using the identities f ′ = (n− 2)fαβ − gϕ
′ and α2 +β2 = 1, we compute

that

(n− 2)f(θ)2L(s, θ) = (n− 2)βf + βfϕ′ − f ′fC

= (n− 2)βf + βfϕ′ + f ′α− sf ′

= (n− 2)
f

β
(1− αs) + (βf − gα + sg)ϕ′ < 0

for all s ∈ [0, 1] and θ ∈ (0, π/2), thanks to the fact that f < 0, ϕ′ > 0 and the elementary

calculation using (4.35),

βf − gα + sg = (sin θ)n−2(s sinϕ− nλ cos θ)
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= (sin θ)n−2[snλ cos2 θ − s sin θ
√

1− (nλ cos θ)2 − nλ cos θ]

< (sin θ)n−2(nλ cos2 θ − nλ cos θ) < 0.

Let Z̃(s, θ) = Z(C(s, θ), θ). Then, after a change of variables,

Z̃(s, θ) = γ(θ) +
1

f(θ)

∫ s

cos θ
F (y, θ)2n−4 dy ∀ (s, θ) ∈ S. (4.49)

This function serves in the same role as does the function U(t, θ) used above. For example,

we have the following result.

Lemma 4.3.5. Let Q̃(s, θ) = Q(C(s, θ), θ). Then

Z̃θ(s, θ) = Q̃(s, θ)Fθ(s, θ) ∀ (s, θ) ∈ S.

Proof. A direct proof by brutal calculations seems too complicated and getting nowhere;

instead, for fixed θ, we consider function ρ(s) = Z̃θ(s, θ) − Q̃(s, θ)Fθ(s, θ) on interval s ∈

(l(θ), cos θ) and show that ρ′(s) = 0 and ρ((cos θ)−) = 0. This proves that ρ(s) = 0 and

finishes the proof. By (4.49), we have

Z̃θ(s, θ) = γ′ − f ′

f2

∫ s

cos θ
F (y, θ)2n−4 dy +

β2n−4 sin θ

f

+
1

f

∫ s

cos θ
(2n− 4)F (y, θ)2n−5Fθ(y, θ) dy.
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From (4.51), in terms of function Q̃(s, θ) = Q(C(s, θ), θ), we have

Fθ(s, θ) = Q̃(s, θ)L(s, θ) +
f ′F

(n− 2)f
∀ (s, θ) ∈ S. (4.50)

Therefore

lim
s→(cos θ)−

ρ(s) = γ′ +
β2n−4 sin θ

f
− g

[
βg

f
(1 +

ϕ′

n− 2
) +

βf ′

(n− 2)f

]
= 0.

We also compute that

ρ′(s) = −F
2n−4f ′

f2
+

(2n− 4)F 2n−5Fθ
f

− Q̃sFθ − Q̃Fθs.

Using (4.50) and

Q̃s = QτCs =
(n− 2)F 2n−5

f
, Fθs =

(n− 2)F 2n−4L

f
,

we have ρ′(s) = 0. This completes the proof.

Let θ0(s) = arccos(s). By Proposition 4.3.3, we see that domains S and S3 can be written

as

S = {(s, θ) : 0 < s < 1, θ̃(s) < θ < θ0(s)},

S3 = {(s, θ) : 0 < s < s∗, θ̃1(s) < θ < θ0(s)},

where θ̃(s) = 0 if n = 3, and θ̃(s) (if n > 3) and θ̃1(s) are the inverse functions of l(θ) (if

n > 3) on (0, θ̂) and l1(θ) on (0, θ̂1), respectively. Note that S has the property that every

vertical or horizontal line-segment belongs to S whenever the endpoints belong to S.
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In what follows, for each fixed s ∈ (0, 1), we study F (s, θ) as a function of θ defined on

interval (θ̃(s), θ0(s)). We first have the following result.

Lemma 4.3.6. It follows that

lim
θ→(θ0(s))−

Fθ(s, θ) =

√
1− (nλs)2

nλs
√

1− s2 + s
√

1− (nλs)2
∀ s ∈ (0, 1), (4.51)

lim
θ→(θ̃(s))+

Fθ(s, θ) = −∞ ∀ s ∈ (0, 1), (4.52)

Fθ(s, θ̃1(s)) =
1

2− n
f ′(θ̃1(s))|f(θ̃1(s))|

3−n
n−2 ∀ s ∈ (0, s∗). (4.53)

Proof. 1. We first prove (4.51). Note that, as θ → (θ0(s))−, it follows that

C(s, θ)→ 0, F (s, θ) = T (C(s, θ), θ)→ β(θ0(s)) =
√

1− s2.

If θ < θ0(s) and is sufficiently closed to θ0(s), we have (s, θ) ∈ S1,3 and hence, by (4.46),

lim
θ→(θ0(s))−

Fθ(s, θ) =

[
g(θ) sin θ

f(θ)
+
gϕ′ sin θ
(n− 2)f

+
sin θf ′

(n− 2)f

]
θ=θ0(s)

=

[
g(θ) sin θ

f(θ)
+ cos θ

]
θ=θ0(s)

=

√
1− (nλs)2

nλs
√

1− s2 + s
√

1− (nλs)2
.

2. To prove (4.52), we first assume n > 3. In this case, l(θ̃(s)) = s and so C(s, θ̃(s)) =

τM (θ̃(s)); hence,

lim
θ→(θ̃(s))+

F (s, θ) = lim
θ→(θ̃(s))+

T (C(s, θ), θ) = +∞.
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Thus, with L defined by (4.48), we have

lim
θ→(θ̃(s))+

[
L(s, θ) +

f ′

(n− 2)f

F√
F 2n−4 − f2

]
= L(s, θ̃(s)) < 0.

From this, (4.52) follows by (4.46).

3. Now assume n = 3. Then θ̃(s) = 0. First, assume θ∗ > 0 (so λ 6= 0). Then, for all

0 < θ < θ∗, we have that C(s, θ) = A(F (s, θ), θ) and hence

s− α(θ) = −k
∫ F/k

β/k

dη√
η2 − 1

,

where k = |f(θ)|. Since k(θ) → 0 and β(θ)/k(θ) → µ = 1√
1−9λ2

> 1 as θ → 0+, from the

above equation, we obtain that

F (s, θ)

k(θ)
≥ (1− s)M

k(θ)2

as θ → 0+, where M > 0 is a constant. Hence F (s, θ) → +∞ as θ → 0+. Note that, by

(4.46),

lim
θ→0+

Fθ(s, θ) = lim
θ→0+

√
F 2 − f2

f2

[
f2L(s, θ) + f ′f

F√
F 2 − f2

]
. (4.54)

By (4.48), we have f2L(s, θ) = βf(1 + ϕ′) − (s − α)f ′. Since f ′(0) = −
√

1− 9λ2 < 0, we

have

lim
θ→0+

[
f2L(s, θ) + f ′f

F√
F 2 − f2

]
= (1− s)f ′(0) < 0.

Consequently, (4.52) follows from (4.54). Now assume θ∗ = 0 (so λ = 0). In this case,
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θπ
2

s

0 θ̂1 θ̂∗

θ0(s) = arccos s

θ̃1(s)

θ̃(s)

θ∗(s)

θ̂θ∗

1

s∗

ŝ

Figure 4.3: The domain S is between the two smooth curves θ0(s) and θ̃(s), while S1 is the
part with 0 < θ < θ∗ (empty if θ∗ = 0), S2 is the part bounded by θ̃ and θ̃1 with θ∗ < θ < θ̂1,
and S3 is the part between θ̃1 and θ0 with θ̂1 < θ < π/2. The number ŝ is determined in
Lemma 4.3.8.

C(s, θ) = A(F (s, θ), θ) + 2τm(θ), which gives

s− α(θ) = −k
∫ F/k

β/k

dη√
η2 − 1

− 2k

∫ β/k

1

dη√
η2 − 1

.

where k = |f(θ)|. As above, we still have that F (s, θ) → +∞ as θ → 0+ and, again, that

(4.52) follows from (4.54).

4. Finally (4.53) is immediate from (4.46). This completes the proof.

For each s ∈ (0, 1), define (see Figure 4.3)

θ∗(s) = inf{θ ∈ (θ̃(s), θ0(s)) : Fθ(s, θ
′) ≥ 0 ∀ θ′ ∈ (θ, θ0(s))}.

The well-definedness of θ∗ follows from Lemma 4.3.6; moreover, for all s ∈ (0, 1), it also
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follows that θ̃(s) < θ∗(s) < θ0(s) and

Fθ(s, θ∗(s)) = 0, Fθ(s, θ) ≥ 0 ∀ θ∗(s) ≤ θ < θ0(s).

Furthermore, there exists a sequence θ′i → θ∗(s)− such that Fθ(s, θ
′
i) < 0, which shows that

Fθθ(s, θ∗(s)) ≥ 0.

Lemma 4.3.7. For each s ∈ (0, 1), function F (s, θ) is one-to-one on the closed interval

θ ∈ [θ∗(s), θ0(s)). Moreover, the function θ∗(s) is strictly decreasing, right-continuous on

(0, 1), and satisfies that θ∗(1−) = 0.

Proof. The proof is similar to that of Lemma 4.2.3. Let a, b ∈ [θ∗(s), θ0(s)) be such that

F (s, a) = F (s, b). We show a = b. If a < b then Fθ(s, θ) = 0 for all θ ∈ (a, b), which

is impossible by the formula of Fθ(s, θ) given above. Therefore F (s, θ) is one-to-one on

[θ∗(s), θ0(s)). To show θ∗ is strictly decreasing in (0, 1), let 0 < s < s′ < 1. Suppose, for the

contrary, θ∗(s) ≤ θ∗(s′); then θ̃(s) < θ∗(s) ≤ θ∗(s′) < θ0(s′) < θ0(s) and so Fθ(s, θ∗(s
′)) ≥ 0.

Because the line-segment connecting points (s, θ∗(s′) and (s′, θ∗(s′)) belongs to S and because

Fθs > 0 on S, we have Fθ(s, θ∗(s
′)) < Fθ(s

′, θ∗(s′)) = 0, which gives a contradiction. To

show the right-continuity of θ∗, given s ∈ (0, 1), let l = θ∗(s+); then θ̃(s) ≤ l ≤ θ∗(s) and

Fθ(s, l) = 0, which implies l > θ̃(s). Given each θ′ ∈ (l, θ0(s)), for all s′ > s sufficiently closed

to s, we have θ∗(s′) < l < θ′ < θ0(s′) and hence Fθ(s
′, θ′) ≥ 0. Taking s′ → s+ yields that

Fθ(s, θ
′) ≥ 0. By definition, l ≥ θ∗(s); so l = θ∗(s). This proves that θ∗ is right-continuous

on (0, 1). Finally, from 0 < θ∗(s) < θ0(s), we have that θ∗(1−) = 0.

Lemma 4.3.8. There exists a number ŝ ∈ (0, 1) such that

Z̃(s, θ∗(s)) >
1

n− 1
F (s, θ∗(s))n−1 ∀ ŝ ≤ s < 1. (4.55)
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Proof. From the definition of Z̃(s, θ), by (4.13), we have

(n− 1)Z̃(s, θ) = (n− 1)γ − βg + C(s, θ)f2 + F (s, θ)Q̃(s, θ).

Since Fθ = Q̃L+ f ′F
(n−2)f

and Fθ(s, θ∗(s)) = 0, it follows that

L(s, θ∗(s)) = − f ′(θ∗(s))F (s, θ∗(s))

(n− 2)f(θ∗(s))Q̃(s, θ∗(s))
∀ s ∈ (0, 1).

Substitution into the definition of L(s, θ) yields

C(s, θ∗(s)) =

[
F (s, θ)

Q̃(s, θ)
+

(n− 2)βϕ′)
f ′

]
θ=θ∗(s)

.

Simplifying, we obtain that

(n− 1)Z̃(s, θ∗(s)) =

[
(n− 1)γ − βg +

(n− 2 + ϕ′)βf2

f ′

]
θ=θ∗(s)

+
F (s, θ∗(s))2n−3

Q̃(s, θ∗(s))
.

(4.56)

First, let s′ ∈ (0, 1) such that θ∗(s) ∈ (0, θ̄) for all s ∈ [s′, 1), where θ̄ ∈ (θ∗, π/2) is

determined in Lemma 4.3.2. Hence f ′(θ∗(s)) < 0 and thus 0 < Q̃(s, θ∗(s)) < F (s, θ∗(s))n−2

for all s ∈ [s′, 1). Therefore

F (s, θ∗(s))2n−3

Q̃(s, θ∗(s))
> F (s, θ∗(s))n−1 ∀ s′ ≤ s < 1.
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We now show that there exists a number θ′ ∈ (0, θ̄) such that

(n− 1)γ − βg +
(n− 2 + ϕ′)βf2

f ′
> 0 ∀ 0 < θ < θ′.

This is proved by computing that

(n− 1)γ − βg +
(n− 2 + ϕ′)βf2

f ′

= (sin θ)n−1

1− sinϕ+
(n− 2 + ϕ′) sin θ cosϕ(
n− 2− ϕ′ sin θ sinϕ

cos θ cosϕ

)
cos θ

 ,
and noticing that

lim
θ→0+

1− sinϕ+
(n− 2 + ϕ′) sin θ cosϕ(
n− 2− ϕ′ sin θ sinϕ

cos θ cosϕ

)
cos θ

 = 1− nλ > 0.

Finally, let ŝ ∈ [s′, 1) be such that θ∗(s) ∈ (0, θ′) for all s ∈ [ŝ, 1). Then, for this ŝ, (4.55)

follows from (4.56).

Lemma 4.3.9. Let t∗(s) = F (s, θ∗(s)) for all s ∈ (0, 1). Then the function t∗(s) is right-

continuous on (0, 1) with t∗(1−) = 0 and 0 < t∗(0+) < 1.

Proof. Since θ∗(s) is right-continuous and F (s, θ) is continuous, it follows that t∗(s) is right-

continuous. Also, since 0 < F (s, θ∗(s)) ≤
√

1− s2 for all 0 < s < 1, we easily see that

t∗(1−) = 0. Let θ̂∗ = θ∗(0+). We consider the following cases:

Case (a): 0 < θ̂∗ < π/2. Given any θ̂∗ < θ < π/2, we have F (s, θ∗(s)) < F (s, θ̂∗) <

F (s, θ) <
√

1− s2 for all sufficiently small s, and hence, letting s→ 0+,

t∗(0+) ≤ F (0+, θ̂∗) ≤ F (0+, θ) ≤ 1
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Suppose, for the contrary, that t∗(0+) = 1. Then F (0+, θ) = 1 for all θ̂∗ < θ < π/2. For

s > 0 sufficiently small and θ < π/2 sufficiently close to π/2, we have (s, θ) ∈ S3 and hence

s− cos θ

f(θ)
=

∫ sin θ

F (s,θ)

dy√
y2n−4 − f(θ)2

.

Let s→ 0+ and we have

−cos θ

f(θ)
=

∫ sin θ

1

dy√
y2n−4 − f(θ)2

.

for all θ < π/2 sufficiently close to π/2; this is impossible as seen by taking the limits as

θ → π/2. Therefore 0 < t∗(0+) < 1.

Case (b): θ̂∗ = π/2. In this case, (s, θ∗(s)) ∈ S3 for all sufficiently small s > 0. Hence,

from Fθ(s, θ∗(s)) = 0, by (4.46), it follows that

(n− 2)f(θ∗(s))L(s, θ∗(s)) = f ′(θ∗(s))
t∗(s)√

t∗(s)2n−4 − f(θ∗(s))2
. (4.57)

Note that

fL = β(1 +
ϕ′

n− 2
)− f ′C

n− 2
, C =

∫ β

F

dy√
y2n−4 − f2

.

So (4.57) implies

[β(n− 2 + ϕ′)]
∣∣∣
θ=θ∗(s)

=

[
f ′t∗(s)√

t∗(s)2n−4 − f2
+

∫ β

t∗(s)

f ′ dy√
y2n−4 − f2

]
θ=θ∗(s)

Taking limit as s → 0+, since θ∗(0+) = π/2 and f ′((π/2)−) = ϕ′((π/2)−) = 1 + nλ, we
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s

t

0

Z2

t∗(s)

t̂

t∗(0+)
t1(s)

1ŝ

1

Figure 4.4: The function t∗(s) = F (s, θ∗(s)) and the domain Z2. The number t̂ is determined
in Lemma 4.3.11 and the smooth function t1(s) is determined in Lemma 4.3.13.

have that ŷ = t∗(0+) satisfies

n− 2 + (1 + nλ) = (1 + nλ)

(
ŷ3−n +

∫ 1

ŷ
y2−n dy

)
.

From this, we solve for ŷ to obtain

t∗(0+) =


e
− 1

1+3λ if n = 3,(
1+nλ

n−2+nλ

) 1
n−3 if n > 3.

(4.58)

Therefore 0 < t∗(0+) < 1.

Lemma 4.3.10. (See Figure 4.4.) Let

Z2 = {(s, t) | 0 < s < 1, t∗(s) < t <
√

1− s2}.
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Then, for each (s, t) ∈ Z2, there exists a unique number θ = ξ(s, t) ∈ (θ∗(s), θ0(s)) such that

t = F (s, ξ(s, t)) ∀ (s, t) ∈ Z2.

The function θ = ξ(s, t) is continuous in Z2 and is differentiable at every point (s0, t0) of

Z2 where Fθ(s0, ξ(s0, t0)) 6= 0. Moreover, at any such point, we have

ξs = −Fs(s, ξ)/Fθ(s, ξ), ξt = 1/Fθ(s, ξ).

Proof. For each (s, t) ∈ Z2, since F (s, θ) is one-to-one on θ ∈ [θ∗(s), θ0(s)), there exists a

unique number θ = ξ(s, t) ∈ (θ∗(s), θ0(s)) such that

t = F (s, ξ(s, t)) ∀ (s, t) ∈ Z2.

We first show the continuity of ξ(s, t); namely, for all (s0, t0) ∈ Z2, it follows that

lim
i
ξ(si, ti) = ξ(s0, t0)

for all sequences (si, ti)→ (s0, t0) in Z2. Let a subsequence of ξ(si, ti)→ l. Note that

θ∗(si) ≤ ξ(si, ti) ≤ θ0(si), ti = F (si, ξ(si, ti)).

Since θ∗(s0) = θ∗(s+
0 ) ≤ θ∗(s−0 ), it follows that θ∗(s0) ≤ l < θ0(s0) and t0 = F (s0, l). Hence,

by definition, l = ξ(s0, t0). This proves the continuity of ξ.

The differentiability of ξ(s, t) at every point (s0, t0) of Z2 where Fθ(s0, ξ(s0, t0)) 6= 0 follows
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from the continuity of ξ and the implicit function theorem.

Lemma 4.3.11. There exists a number t̂ ∈ [t∗(0+), 1) such that

lim
(s,t)→(0,t0)

(s,t)∈Z2

ξ(s, t) = π/2 ∀ t̂ ≤ t0 < 1,

lim
(s,t)→(0,t0)

(s,t)∈Z2

Q̃(s, ξ(s, t)) = −tn−2
0 ∀ t̂ ≤ t0 ≤ 1.

Proof. 1. Assume the first limit is proved. Then we have (s, ξ(s, t)) ∈ S3 for all sufficiently

small s > 0 and t̂ ≤ t < 1 and hence, for all such (s, t),

Q̃(s, ξ(s, t)) = −
√
t2n−4 − f(ξ(s, t))2,

from which the second limit follows.

2. We now prove that there exists a number t̂ such that the first limit holds. Let

ξ(si, ti) → θ′ along a sequence (si, ti) → (0, t0) in Z2. Since θ∗(s) < ξ(s, t) < θ0(s) for all

(s, t) ∈ Z2, it follows that

0 < θ∗(0+) ≤ θ′ ≤ π/2.

If θ̂∗ = θ∗(0+) = π/2 (the Case (b) in the proof of Lemma 4.3.9), then θ′ = π/2 and, in this

case, the number t̂ can be chosen to be t̂ = t∗(0+).

3. Now assume θ̂∗ < π/2. First, let µ1 ∈ (θ̂∗, π/2) be such that |f(θ)|2 < 1/2 for all

θ ∈ [µ1, π/2) and such that (s, θ) ∈ S3 for all 0 < s < s′ and µ1 ≤ θ < θ0(s), where s′ > 0

is a small number. We claim that there exists a number 0 < µ2 < 1 such that

∀ θ̂∗ < θ < π/2, F (0+, θ) ≥ µ2 ⇒ θ ≥ µ1.

89



If not, then there exist numbers θi ∈ (θ̂∗, π/2) such that

F (0+, θi) ≥ 1− 1

i
, θi < µ1 ∀ i = 1, 2, · · · .

Assume θi → µ3 ≤ µ1 as i→∞. Then F (0+, θ) = 1 for all θ ∈ (µ3, π/2). This is impossible,

as proved in the Case (a) of the proof of Lemma 4.3.9. Let 0 < µ4 < 1 be a number such

that

µ2n−4
4 > 2/3,

√
6(1− µ4) < inf

θ∈[θ̂∗,π/2)

− cos θ

f(θ)
. (4.59)

Finally, let t̂ = max{t∗(0+), µ2, µ4}. Then t∗(0+) ≤ t̂ < 1. We claim that θ′ = π/2 for all

t̂ ≤ t0 < 1. Suppose, for the contrary, that θ̂∗ ≤ θ′ < π/2. Then t0 = F (0+, θ′) ≥ µ2; so

θ′ ≥ µ1. Hence |f(θ′)|2 < 1/2 and (s, θ′) ∈ S3 for all sufficiently small s > 0. So

s− cos θ′

f(θ′)
=

∫ sin θ′

F (s,θ′)

dy√
y2n−4 − f(θ′)2

.

Let s→ 0+ and, by (4.59), we arrive at a desired contradiction:

− cos θ′

f(θ′)
=

∫ sin θ′

t0

dy√
y2n−4 − f(θ′)2

<

∫ 1

t0

dy√
y2n−4 − f(θ′)2

≤
√

6(1− µ4) < inf
θ∈[θ̂∗,π/2)

− cos θ

f(θ)
.

4.3.3 Construction of the solution on Z2

Let ξ(s, t) be the function on Z2 defined above and Z̃(s, θ) be defined by (4.49).
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Theorem 4.3.12. Define

ψ2(s, t) = Z̃(s, ξ(s, t)) ∀ (s, t) ∈ Z2.

Then ψ2 is differentiable in Z2, with ψ2
s(s, t) < 0, and satisfies the Eikonal equation |∇ψ2(s, t)| =

tn−2 at every point (s, t) ∈ Z2. Moreover, ψ2(s, t) can be continuously extended to the curve

s =
√

1− t2, 0 < t ≤ 1 and to the line segment s = 0, t̂ ≤ t ≤ 1 to satisfy

ψ2(s, t) =


nλ
n−1t

n−1 on s =
√

1− t2, 0 < t ≤ 1,

1
n−1(1 + nλ− tn−1) on s = 0, t̂ ≤ t ≤ 1.

(4.60)

Proof. Since ξ is continuous on Z2, we easily see that ψ2 is continuous on Z2. As ξ is

differentiable at every point (s, t) of Z2 with Fθ(s, ξ(s, t)) 6= 0, we see that ψ2 is differentiable

at every point (s, t) of Z2 with Fθ(s, ξ(s, t)) 6= 0. Moreover, at all such points, using

ξs = −Fs(s, ξ)/Fθ(s, ξ), ξt = 1/Fθ(s, ξ) and Z̃θ = Q̃Fθ, we arrive at the formula

ψ2
s(s, t) = f(ξ(s, t)) < 0, ψ2

t (s, t) = Q̃(s, ξ(s, t)). (4.61)

Therefore, by the continuity of ξ, ψ2
s and ψ2

t can be extended continuously to every point

(s, t) ∈ Z2. This proves that ψ2 is differentiable at every point of Z2. By (4.61),

(ψ2
s)2 + (ψ2

t )2 = f2 + Q̃2 = F (s, ξ)2n−4 = t2n−4 ∀ (s, t) ∈ Z2.
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We now prove the continuity of ψ2 under the extension (4.60). First, it is easily seen that

lim
(s,t)→(s0,t0)

ξ(s, t) = arcsin t0 ∀ 0 < t0 < 1, s0 =
√

1− t20.

Hence, by (4.49),

lim
(s,t)→(s0,t0)

ψ2(s, t) = lim
(s,t)→(s0,t0)

Z̃(s, ξ(s, t)) = γ(arcsin t0) =
nλ

n− 1
tn−1
0 .

Next, by Lemma 4.3.11 and the formula (4.22), we obtain that

lim
(s,t)→(s0,t0)

ψ2(s, t) =

γ(θ)− f(θ)α(θ) + g(θ)β(θ)

n− 1
−
t0

√
t2n−4
0 − f(θ)2

n− 1


θ=π/2

=
1

n− 1
(1 + nλ− tn−1

0 ) ∀ t̂ ≤ t0 < 1.

This completes the proof.

Lemma 4.3.13. Let t0(s) =
√

1− s2. Then there exists a smooth decreasing function t1(s)

on s ∈ (ŝ, 1) such that, for all ŝ < s < 1,

ψ2(s, t) >
tn−1

n− 1
∀ t∗(s) < t < t1(s),

ψ2(s, t) <
tn−1

n− 1
∀ t1(s) < t < t0(s).

Proof. Let

K(s, t) = ψ2(s, t)− tn−1

n− 1
.

Then Kt(s, t) = ψ2
t (s, t) − tn−2 < 0 and so, for each fixed 0 < s < 1, K(s, t) is continuous
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and strictly decreasing in t ∈ [t∗(s), t0(s)]. Clearly

K(s, t0(s)) =
(t0(s))n−1

n− 1
(λn− 1) < 0.

On the other hand, by Lemma 4.3.8, we have that w(s) = K(s, t∗(s)) > 0 on s ∈ (ŝ, 1). There-

fore, there exists a unique t1(s) ∈ (t∗(s), t0(s)) for each s ∈ (ŝ, 1) such that K(s, t1(s)) = 0.

This function t1(s) satisfies the requirement of the lemma. Moreover, since Kt(s, t1(s)) > 0,

by the implicit function theorem, the function t1(s) is differentiable in s ∈ (ŝ, 1). Differenti-

ating K(s, t1(s)) = 0 yields that ψ2
s + ψ2

t t
′
1 = tn−2

1 t′1 and hence

t′1(s) =
ψ2
s

tn−2
1 − ψ2

t

=
f(ξ(s, t1))

tn−2
1 − Q̃(s, t1)

< 0 ∀ ŝ < s < 1,

which proves that t1(s) is strictly decreasing on s ∈ (ŝ, 1).

4.4 Gluing the local solutions: Proof of Theorem 4.1.2

In what follows, we assume

0 ≤ nλ ≤ 1− an−1.

Our goal is to piece together the solutions ψ1 and ψ2 constructed above with a suitable

trivial solution of the form

η(t) =
k∑
i=1

χ[ai−1,ai]
(t)

(−1)i−1

n− 1
(tn−1 − li),

where k is an integer, 0 = a0 < a1 < a2 < · · · < ak < 1 and li ∈ R, to obtain a solution of

(4.6) in Theorem 4.1.2.
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4.4.1 The preparations

Let ψ1, ψ2 be the functions determined above by the characteristics method, with domains

Z1, Z2, respectively. Let Z = Z1 ∩ Z2.

Let s = s1(t) be the increasing function determined in Lemma 4.2.7, and let s = r1(t) be

the inverse function of the function t = t1(s) determined in Lemma 4.3.13. Note that r1(t)

is well-defined, smooth and strictly decreasing on (0, t1(ŝ−)). (See Figure 4.5.)

s1(t)

s

t

ZA

Z2

a

a

s

t

0

Z1

1

t̂

ŝa

1

A

A

r1(t)A1

B1

A2

B2

Figure 4.5: The domains Z1,Z2 and ZA, the curve s = s1(t) determined in Lemma 4.2.7,
and the curve s = r1(t) that is the inverse function of the function t = t1(s) determined in
Lemma 4.3.13.

Let max{a, ŝ, t̂} < A < 1 be any given number. We consider the arc ΓA = {(s, t) | s ≥

0, t ≥ 0, s2 + t2 = A2}. Then ΓA intersects the curves s = r1(t) and s = s1(t) at unique
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points (B1, A1) and (B2, A2), respectively. Let

t̃1(s) =


√
A2 − s2 (0 ≤ s ≤ B1),

t1(s) (B1 < s < 1),

s̃1(t) =


√
A2 − t2 (A2 ≤ t ≤ A),

s1(t) (0 < t < A2).

(4.62)

and define the set

ZA = {(s, t) | 0 < s < 1, t̃1(s) ≤ t ≤
√

1− s2}.

Note that A1 → 0 and A2 → Ā ∈ (0, 1) as A → 1. Hence, we can choose the number A

sufficiently close to 1 so that the following conditions hold:

max{a, ŝ, t̂} < A < 1, 0 < A1 < A2 < A < 1, ZA ⊂ Z2. (4.63)

4.4.2 Constructions from the function ψ2

The following result is critical for our construction.

Theorem 4.4.1. Let A be any number satisfying (4.63) and let A0 ∈ (A, 1) be any fixed

number. Then there exists an increasing sequence

0 < a1 < a2 < · · · < am < · · · < 1
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such that, for functions ηi(t) =
(−1)i−1

n−1 (tn−1 − li), where numbers li are defined by l1 = 0,

l2j = 2an−1
2j−1 − 2an−1

2j−2 + · · ·+ 2an−1
1 , l2j+1 = 2an−1

2j − l2j ,

there exist functions ri(t) on [ai−1, ai] satisfying

bi−1 < ri(t) <
√

1− t2, ψ2(ri(t), t) = ηi(t) ∀ ai−1 < t < ai, i = 2, 3, · · · ,

where bi−1 =
√
A2

0 − a
2
i−1, and for all j = 1, 2, · · · ,

ψ2(
√

1− t2, t) = η2j(t) at t = a2j , ψ2(b2j , t) = η2j+1(t) at t = a2j+1.

Proof. (See Figure 4.6.) Let (b1, a1) be the intersection point of the curve s = r1(t) with the

arc s2 + t2 = A2
0. This defines a1 ∈ (0, A1) and b1 =

√
A2

0 − a
2
1.

1. Let r1(t) be the function defined above. Define l1 = 0 and

η1(t) =
1

n− 1
(tn−1 − l1) =

1

n− 1
tn−1.

Then

(r1(t), t) ∈ ZA, ψ2(r1(t), t) = η1(t) ∀ 0 < t ≤ a1.

Define l2 = 2an−1
1 and

η2(t) =
1

n− 1
(l2 − tn−1) =

1

n− 1
(2an−1

1 − tn−1).
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r1(t)

r2(t)
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a1

a2

a3

a2q−1
a2q−2

a2q

1b1b2b3b2q−2b2q−1

1

A0

A0A

Figure 4.6: A typical construction of sequence {ai} and functions ri(t) on [ai−1, ai] in The-
orem 4.4.1.

We solve η2(t) = nλ
n−1t

n−1 to obtain the number a2 given by

(1 + nλ)an−1
2 = l2 = 2an−1

1 .

So a2 > a1 and nλ
n−1t

n−1 < η2(t) for all a1 < t < a2. Now consider the function

h(t) = ψ2(b1, t)− η2(t) ∀ a1 ≤ t ≤
√

1− b21.

Then h(a1) = 0 and h′(t) = ψ2
t (b1, t) + tn−2 > 0 for a1 < t <

√
1− b21. Hence h(t) > 0

for all a1 < t <
√

1− b21; that is, η2(t) < ψ2(b1, t) for all a1 < t <
√

1− b21. We have thus
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shown that

ψ2(
√

1− t2, t) < η2(t) < ψ2(b1, t) ∀ a1 < t < min{a2,
√

1− b21}. (4.64)

Consequently, there exists a continuous function r2(t) on a1 ≤ t ≤ min{a2,
√

1− b21}, dif-

ferentiable in a1 < t < min{a2,
√

1− b21}, such that

b1 < r2(t) <
√

1− t2, ψ2(r2(t), t) = η2(t) ∀ a1 < t < min{a2,
√

1− b21}. (4.65)

From this we also have that r′2(t) > 0 and hence r2(t) is strictly increasing in a1 < t <

min{a2,
√

1− b21}. If a2 ≥
√

1− b21, then, letting t →
√

1− b21 in (4.65), we would obtain

b1 = r2(
√

1− b21) > r2(a1) = b1, a contradiction. Therefore, a2 <
√

1− b21. Furthermore,

by the definition of a2, we have r2(a2) =
√

1− a2
2.

2. We construct am+1 inductively for m ≥ 2. Suppose, for some m ≥ 2, we have defined

the numbers a2 < · · · < am < 1 such that, for numbers li defined by

l1 = 0, l2j = 2an−1
2j−1 − 2an−1

2j−2 + · · ·+ 2an−1
1 , l2j+1 = 2an−1

2j − l2j (4.66)

with each 2 ≤ 2j, 2j+ 1 ≤ m and functions ηi(t) =
(−1)i−1

n−1 (tn−1− li), there exist functions

ri(t) on [ai−1, ai] satisfying

(i) bi−1 < ri(t) <
√

1− t2, ψ2(ri(t), t) = ηi(t) ∀ ai−1 < t < ai,

where bi−1 =
√
A2

0 − a
2
i−1, for each i = 2, · · · ,m, and

(ii) ψ2(
√

1− t2, t) = η2j(t) at t = a2j , ψ2(b2j , t) = η2j+1(t) at t = a2j+1

for each j with 2 ≤ 2j, 2j + 1 ≤ m.

(4.67)
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Note that the condition (4.67)(ii) implies

l2j = (1 + nλ)an−1
2j , l2j+1 < (1− nλ)an−1

2j+1 ∀ 2 ≤ 2j, 2j + 1 ≤ m. (4.68)

To construct am+1 so that (4.66) and (4.67) hold when m is replaced by m+ 1, we consider

the cases of m being even or odd separately.

(a) Assume m = 2q is even. Let l2q+1 = 2an−1
2q − l2q and

η2q+1(t) =
1

n− 1
(tn−1 − l2q+1) =

1

n− 1
(tn−1 − 2an−1

2q + l2q).

Then, by (4.68),

nλ

n− 1
tn−1 = ψ2(

√
1− t2, t) < η2q+1(t) ∀ a2q < t < 1.

Consider the function

h(t) = ψ2(b2q, t)− η2q+1(t) ∀ a2q ≤ t ≤
√

1− b22q. (4.69)

Then h′(t) = ψ2
t (b2q, t)− tn−2 < 0 for a2q < t <

√
1− b22q. Note that

h(a2q) = ψ2(b2q, a2q)− η2q(a2q) = ψ2(b2q, a2q)− ψ2(
√

1− a2
2q, a2q) > 0

and

h(
√

1− b22q) = ψ2(b2q,
√

1− b22q)− η2q+1(
√

1− b22q) < 0.
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Therefore, there exists a unique number a2q+1 with a2q < a2q+1 <
√

1− b22q such that

h(a2q+1) = 0; hence h(t) > 0 in a2q < t < a2q+1. So we have

ψ2(
√

1− t2, t) < η2q+1(t) < ψ2(b2q, t) ∀ a2q < t < a2q+1.

Consequently, there exists a continuous function s = r2q+1(t) on a2q ≤ t ≤ a2q+1, differen-

tiable in a2q < t < a2q+1, such that

b2q < r2q+1(t) <
√

1− t2, ψ2(r2q+1(t), t) = η2q+1(t) ∀ a2q < t < a2q+1. (4.70)

Clearly, from h(a2q+1) = 0 we have that ψ2(b2q, t) = η2q+1(t) at t = a2q+1. Therefore,

(4.67) holds with m = 2q + 1.

(b) Assume m = 2q − 1 ≥ 3 is odd. Let l2q = 2an−1
2q−1 − 2an−1

2q−2 + · · · + 2an−1
1 =

2an−1
2q−1 − l2q−1 and

η2q(t) =
1

n− 1
(l2q − tn−1).

Let a2q be the number determined by (1 + nλ)an−1
2q = l2q. Then, by the second condition of

(4.68), we have a2q > a2q−1 and

nλ

n− 1
tn−1 < η2q(t) ∀ a2q−1 < t < a2q.

Again consider the function

h(t) = ψ2(b2q−1, t)− η2q(t) ∀ a2q−1 ≤ t ≤
√

1− b22q−1.
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Then h(a2q−1) = 0, h′(t) > 0 and hence h(t) > 0 for a2q−1 < t <
√

1− b22q−1. We have

thus shown that

ψ2(
√

1− t2, t) < η2q(t) < ψ2(b2q−1, t) ∀ a2q−1 < t < min{a2q,
√

1− b22q−1}.

So, there exists a continuous function r2q(t) on a2q−1 ≤ t ≤ min{a2q,
√

1− b22q−1}, differ-

entiable in the interior, such that

b2q−1 < r2q(t) <
√

1− t2, ψ2(r2q(t), t) = η2q(t) (4.71)

for all a2q−1 < t < min{a2q,
√

1− b22q−1}. From this we also have that r′2q(t) > 0 and

hence r2q(t) is strictly increasing in the interval. If a2q ≥
√

1− b22q−1, then, letting t →√
1− b22q−1 in (4.71), we would obtain that

b2q−1 = r2q(
√

1− b22q−1) > r2q(a2q−1) = b2q−1,

a contradiction. Therefore, a2q <
√

1− b22q−1 < 1.

3. Finally we completed the induction process and thus finished the proof.

Lemma 4.4.2. Let {ai} be the sequence constructed in Theorem 4.4.1. Then there exists an

integer k ≥ 2 such that ak−1 < A and ak ≥ A.

Proof. Suppose, for the contrary, that ai < A for all i = 2, 3, · · · . Let

Σ = {(s, t) | a1 ≤ t ≤ A,
√
A2

0 − t2 ≤ s ≤
√

1− t2}.
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Then there exists a number ε0 > 0 such that

−ψ2
s(s, t) ≥ ε0 ∀ (s, t) ∈ Σ. (4.72)

Let h(t) be the function by (4.69). Then, for some c ∈ (b2q,
√

1− a2
2q) and hence (c, a2q) ∈ Σ,

we have that

h(a2q) = ψ2(b2q, a2q)− ψ2(
√

1− a2
2q, a2q) = ψ2

s(c, a2q)(b2q −
√

1− a2
2q)

= (−ψ2
s(c, a2q))(

√
1− a2

2q −
√
A2

0 − a
2
2q) ≥ ε0(1− A0).

Since h(a2q+1) = 0, there exists a number d ∈ (a2q, a2q+1) such that h(a2q) = h′(d)(a2q −

a2q+1). Therefore

a2q+1 = a2q −
h(a2q)

h′(d)
= a2q +

h(a2q)

−h′(d)
≥ a2q +

ε0(1− A0)

2
,

since −h′(d) = |h′(d)| ≤ |ψ2
t (b2q, d)|+ dn−2 ≤ 2dn−2 < 2. Hence a2q+1− a2q ≥

ε0(1−A0)
2 for

all q = 1, 2, · · · , which yields

A > a2q+1 − a2 >

q∑
j=1

(a2j+1 − a2j) ≥
ε0(1− A0)

2
q ∀ q = 1, 2, · · · ,

a contradiction.

Let k be the integer determined in Lemma 4.4.2, with ak−1 < A and ak ≥ A. Fix any
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even integer K ≥ k. Then lK = (1 +nλ)an−1
K ≥ (1 +nλ)An−1, ηK(t) = 1

n−1(lK − tn−1) and

ηK+1(t) =
1

n− 1
(tn−1 − 2an−1

K + lK).

Let ãK+1 be the root of the equation ηK+1(t) = 1
n−1(1 + nλ − tn−1), which is uniquely

determined by

ãn−1
K+1 =

1 + nλ+ 2an−1
K − lK

2
=

1 + nλ+ (1− nλ)an−1
K

2
.

Therefore we easily see that aK < ãK+1 < 1 and

nλ

n− 1
tn−1 < ηK+1(t) <

1

n− 1
(1 + nλ− tn−1) ∀ aK < t < ãK+1.

Hence, there exists a continuous function r̃K+1(t) on [aK , ãK+1] such that

0 < r̃K+1(t) <
√

1− t2, ψ2(r̃K+1(t), t) = ηK+1(t) ∀ aK < t < ãK+1.

We summarize what we have proved in the following theorem.

Corollary 4.4.3. Let K be an even number determined above and define

ηA(t) =
K∑
i=1

χ[ai−1,ai]
(t)ηi(t) + χ[aK,ãK+1](t)ηK+1(t),

rA(t) =
K∑
i=1

χ[ai−1,ai]
(t)ri(t) + χ[aK,ãK+1](t)r̃K+1(t),

where the numbers 0 = a0 < a1 < a2 < · · · < aK < ãK+1 < 1 and the functions ηi(t), ri(t)
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Figure 4.7: (The case 0 ≤ nλ < 1 − an−1). The curve s = rA(t) determined in Corollary
4.4.3, the curve s = lA(t) determined Lemma 4.4.4, and the sub-domains divided by s = lA(t)
and s = rA(t) in the domain ω.

and r̃K+1(t) are determined above. Then

(rA(t), t) ∈ ZA, ψ2(rA(t), t) = ηA(t) ∀ t ∈ (0, ãK+1].

We now prove Theorem 4.1.2 by constructing the Lipschitz solutions of (4.6) that depend

on the choice of the number A; by choosing different A’s, we obtain the infinitely many

Lipschitz solutions.Let 0 ≤ nλ ≤ 1− an−1. We proceed with two cases: 0 ≤ nλ < 1− an−1

or nλ = 1− an−1, separately.
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4.4.3 The proof in the case 0 ≤ nλ < 1− an−1

In this case, let ā be the number defined by

ān−1 =
1 + nλ+ an−1

2
.

Then a < ā < 1.

By Lemma 4.2.6, the set S = {(s, t) ∈ Z | ψ1(s, t) = ψ2(s, t)} does not intersect the

circle {s2 + t2 = 1}. Consequently, we select a number A sufficiently close to 1 so that



(i) Condition (4.63) holds,

(ii) ā < A < 1,

(iii) ψ1(s, t) > ψ2(s, t) ∀ (s, t) ∈ ZA ∩ Z1.

(4.73)

For such a number A, let ηA and rA be the functions determined in Corollary 4.4.3 above.

Note that

a < ā < A < ãK+1.

The following result is crucial to continue our construction.

Lemma 4.4.4. There exists a (unique) number a < a∗ < A such that

ηA(a∗) = ψ1(0, a∗) =
1

n− 1
(an−1
∗ − an−1).

Moreover, there exists a continuous function s = lA(t) on (0, a∗] such that

lA(a∗) = 0, ψ1(lA(t), t) = ηA(t) ∀ t ∈ (0, a∗].
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Proof. Note that the function h(t) = ψ1(0, t) − ηA(t) is continuous and nondecreasing on

[a,A], h(a) = −ηA(a) = −ψ2(rA(a), a) < 0 and

h(A) = ψ1(0, A)− ψ2(rA(A), A) > ψ1(0, A)− ψ2(0, A) > 0.

Hence there exists a unique number a∗ ∈ (a,A) such that h(a∗) = 0. For this a∗ we have

h(t) ≤ 0 for all a ≤ t ≤ a∗. Furthermore, if a∗ ≤ A2 then ψ1(s̃1(t), t) = 1
n−1t

n−1 ≥ ηA(t)

for all 0 < t ≤ a∗, where s̃1(t) is defined in (4.62) above; if a∗ > A2, then by (4.73)(iii),

ψ1(s̃1(t), t) > ψ2(s̃1(t), t) ≥ ψ2(rA(t), t) = ηA(t) for all A2 ≤ t ≤ a∗. Therefore we have

proved that

ψ1(s−(t), t) ≤ ηA(t) ≤ ψ1(s̃1(t), t) ∀ 0 < t ≤ a∗,

where s−(t) =
√

(a2 − t2)+. Therefore, there exists a continuous function s = lA(t) on

(0, a∗] such that

s−(t) ≤ lA(t) ≤ s̃1(t), ψ1(lA(t), t) = ηA(t) ∀ t ∈ (0, a∗].

Finally lA(a∗) = 0 follows from ψ1(0, a∗) = ηA(a∗) by the choice of a∗.

Lemma 4.4.5. For all 0 < t ≤ a∗, we have lA(t) < rA(t).

Proof. Clearly, lA(t) ≤ s̃1(t) ≤ rA(t). So, if lA(t1) = rA(t1) for some t1 ∈ (0, a∗], then

(lA(t1), t1) ∈ ZA and, by (4.73)(iii), ηA(t1) = ψ1(lA(t1), t1) > ψ2(rA(t1), t1) = ηA(t1), a

contradiction.
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Define the functions

l̃A(t) =


0 (a∗ < t ≤ 1)

lA(t) (0 < t ≤ a∗)

, r̃A(t) =


0 (ãK+1 < t ≤ 1)

rA(t) (0 < t ≤ ãK+1)

and the sets

Zl = {(s, t) ∈ ω | 0 < t ≤ a∗, s−(t) ≤ s ≤ lA(t)},

Z0 = {(s, t) ∈ ω | 0 < t ≤ ãK+1, l̃A(t) ≤ s ≤ rA(t)},

Zr = {(s, t) ∈ ω | 0 < t ≤ 1, r̃A(t) ≤ s ≤
√

1− t2}.

We easily obtain the following result and thus complete the proof of Theorem 4.1.2 in this

case.

Theorem 4.4.6. The function

ψ(s, t) =



ψ1(s, t) (s, t) ∈ Zl,

ηA(t) (s, t) ∈ Z0,

ψ2(s, t) (s, t) ∈ Zr

is a Lipschitz solution to the problem (4.6).

4.4.4 The proof in the case nλ = 1− an−1

In this case, let A′ be a number such that

max{A′2, t̂} < A′ < 1, ZA′ ⊂ Z2,
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where a < A′2 < 1 is the unique solution of s1(t) =
√

1− t2, and t̂ is the number determined

in Lemma 4.3.11.

We first prove the following result.

Lemma 4.4.7. There exist number A′′ ∈ (A′, 1) and function s = c(t), differentiable in

(A′′, 1) and continuous on [A′′, 1] with c(1) = 0, such that

0 < c(t) <
√

1− t2, c′(t) < 0,

ψ1(s, t) < ψ2(s, t) ∀ A′′ ≤ t < 1, 0 ≤ s < c(t),

ψ1(s, t) > ψ2(s, t) ∀ A′′ ≤ t < 1, c(t) < s ≤
√

1− t2.

(4.74)

Proof. Let h(s) = ψ1(s, t)− ψ2(s, t); then h′(s) = ψ1
s − ψ2

s > 0. Furthermore,

h(0) =
tn−1 − an−1

n− 1
− 1 + nλ− tn−1

n− 1
=

2tn−1 − 2

n− 1
< 0 ∀ A′ ≤ t < 1,

and by Lemma 4.2.6, h(
√

1− t2) > 1−an−1

n−1 tn−1 − nλ
n−1t

n−1 = 0. Therefore, there exist a

function s = c(t) on t ∈ [A′, 1) with 0 < c(t) <
√

1− t2 such that ψ1(c(t), t) = ψ2(c(t), t)

and hence the last two conditions of (4.74) hold. Moreover, since ψ1 − ψ2 is differentiable

and ψ1
s − ψ2

s > 0, by the implicit function theorem, s = c(t) is also differentiable in (A′, 1).

Differentiating ψ1(c(t), t) = ψ2(c(t), t) yields that

c′(t) =
ψ2
t (c(t), t)− ψ1

t (c(t), t)

ψ1
s(c(t), t)− ψ2

s(c(t), t)
.

Note that ψ1
s − ψ2

s > 0 and ψ1
t > 0. Clearly c(1−) = 0 and so there exists A′′ ∈ (A′, 1) such

that ψ2
t < 0 near s = 0 and t = 1. Hence, c′(t) < 0 for any t ∈ (A′′, 1).
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Figure 4.8: (The case nλ = 1−an−1). The curve s = c(t) on [A′′, 1] determined in Lemma
4.4.7, the curve s = lA(t) determined in Lemma 4.4.8, and the curve s = rA(t) intersect at
t = a∗.

By Lemma 4.2.6, we now select A′′′ ∈ (A′′, 1) such that

ψ1(s, t) > ψ2(s, t) ∀ (s, t) ∈ ZA′′′ ∩ Z1 ∩ {0 < t ≤ A′′′}. (4.75)

We then select a number A sufficiently close to 1 so that


(i) Condition (4.63) holds,

(ii) A′′′ < A < 1.

(4.76)

For such a number A, let ηA and rA be the functions determined in Corollary 4.4.3 above.

The following result is crucial to continue our construction.
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Lemma 4.4.8. There exists a (unique) number aK < a∗ < ãK+1 such that

ηA(a∗) = ψ2(c(a∗), a∗) = ψ1(c(a∗), a∗).

Moreover, there exists a continuous function s = lA(t) on (0, a∗] such that

lA(a∗) = c(a∗), lA(t) < rA(t), ψ1(lA(t), t) = ηA(t) ∀ t ∈ (0, a∗).

Proof. Since c(t) is decreasing on [A′′, 1] and rA(t) is increasing on [aK , ãK+1], there must

exist a unique a∗ ∈ (aK , ãK+1) such that rA(a∗) = c(a∗). By the selection of c(t) and

definition of ηA(t), we have that ηA(a∗) = ψ2(c(a∗), a∗) = ψ1(c(a∗), a∗). If a < t < a∗ and

we consider h(t) = 1
n−1(tn−1 − an−1) − ηA(t), then h′(t) ≥ 0 a.e. on (a, a∗) and h(a∗) =

ψ1(0, a∗)−ψ1(c(a∗), a∗) < 0; hence h(t) < 0 for all t ∈ (a, a∗). This proves that ψ1(s−(t), t) =

1
n−1(tn−1 − an−1)+ < ηA(t) for all 0 < t < a∗. Let

s̄1(t) =



c(t) (A′′ ≤ t < a∗)

√
A2 − t2 (A2 < t < A′′)

s1(t) (0 < t ≤ A2).

Then ψ1(s̄1(t), t) ≥ ψ2(s̄1(t), t) > ψ2(rA(t), t) = ηA(t). Consequently, for each t ∈ (0, a∗),

there exists a number s = lA(t) with s−(t) < lA(t) ≤ s̄1(t) < rA(t) such that ψ1(lA(t), t) =

ηA(t). Clearly, lA(t) is continuous on (0, a∗] and increasing in [aK , a
∗]; it also follows that

lA(a∗) = c(a∗).
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Define the functions

l̄A(t) =


c(t) (a∗ < t ≤ 1)

lA(t) (0 < t ≤ a∗)

, r̄A(t) =


c(t) (a∗ < t ≤ 1)

rA(t) (0 < t ≤ a∗)

and the sets

Zl = {(s, t) ∈ ω | 0 < t ≤ 1, 0 ≤ s ≤ l̄A(t)},

Z0 = {(s, t) ∈ ω | 0 < t ≤ a∗, lA(t) ≤ s ≤ rA(t)},

Zr = {(s, t) ∈ ω | 0 < t ≤ 1, r̄A(t) ≤ s ≤
√

1− t2}.

We easily obtain the following result and thus complete the proof of Theorem 4.1.2 in this

case.

Theorem 4.4.9. The function

ψ(s, t) =



ψ1(s, t) (s, t) ∈ Zl,

ηA(t) (s, t) ∈ Z0,

ψ2(s, t) (s, t) ∈ Zr

is a Lipschitz solution to the problem (4.6).
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