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ABSTRACT

EVALUATION OF THE WEIGHTING FUNCTION OF A LINEAR
SYSTEM BY THE METHOD OF DECONVOLUTION

by Arvydas Joseph Kliore

In an adaptive control-system, one of the basic problems is
that of identifying the dynamic characteristics or mathematical model
of the section of the system which varies with time in an unpredictable

manner.

For slowly time-varying linear systems it is proposed to con-
tinuously monitor the weighting function of the system by employing the
method of deconvolution to effect a step-by-step solution of the con-
volution summation, the convolution summation being defined as a finite

approximation of the convolution integral.

Two types of error are inherent in this method of deconvolution.
One is caused by imperfect knowledge of the weighting (response) function
of the system, which in general must be estimated prior to the appli-
cation of the deconvolution method. The second type of error is caused
by the truncation of the convolution summation. The propogation of both
types of error through iterations of the deconvolution procedure is in-
vestigated, and a set of sufficient conditions for the convergence of
these errors is derived in terms of certain matrices which are functions
of the variations of the input function. These conditions can be applied

directly if the input function is known in advance. If the input function
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is not known, as is the case usually, the investigation of the convergence
of errors in advance of the deconvolution computation is difficult. However,
these conditions may be applied while the computation is in process to

check the behavior of errors during the actual computation.

Finally, it is shown that if the input function meets certain
conditions under which the system may be considered initially quiescent,
the deconvolution computatioh may be carried out without the effect of

these errors.
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I. INTRODUCTION

In recent years the field of automatic control has witnessed a
rapid growth of interest in the concept of adaptive control. In mosf
general terms, an adaptive control system is oﬁe in which the input-out-
put characteristics of the process to be controlledare measured continu-
ally and these measurements are used for continuous self-optimization of
the entire system regardless of the criteria of optimization. As is the
case with 6rdinary feedback control systems, a concise mathematical de-
finition of an adaptive system is difficult to realize, and for this

reason the usual definition is conceptual rather than mathematical.

Historically, the shift of interest to adaptive control was
prompted by the increasing complexity of control problems, which made
standard feedback control techniques inadequate, and by the simultaneous
advancement of computer technology, which made possible the inclusion of
complex digital or analog computers as real time elements of a control

- *
system.(1 2)

For example, a system whose dynamic characteristics vary
with time in an unpredictable manner can only be handled from the adap-

tive viewpoint.

A conceptual diagram of a general adaptive system appears in
Figure 1. The identification computer continuously monitors the dynamic

characteristics of the process and the actuating-signal computer

The superscript indicates the number of the reference in the
Bibliography, and the page number of a specific reference. Thus, (1-2)
refers to reference No. 1, page 2.
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Input Actuating Actuating Signal Output
—> Signal Process
Computer
Identification
Computer
Process Characteristics

Figure 1. A general adaptive system

generates an actuating signal, based on the input and the process charac-
teristics to realize a desired output. The two basic problems in such
an adaptive system are identification and actuation. The problem of
identification may be considered the primary requisite of any adaptive
control system, since adaptivity implies an automatic and frequent de-
termination of the dynamic characteristics of the process to be con-
trolled. These characteristics may be expressed as the weighting func-
tion, transfer function, differential equation, or some other mathema-
tical model.(l-g)

Various methods of solving the identification problem have ap-

(lO,ll) One class of identification schemes

peared in the literature.
requires test input signals in addition to the normal operating signals
of the system. An example of such a scheme is one in which a multi-

channel correlator is used to measure the process weighting function as

the cross-correlation function between the process output and a binary
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white-noise which is added to the system input.(12’13)

A second example of an identification scheme employing a test
signal is found in the Sperry adaptive autopllot, in which a train of
pulses is added to the ordinary command signals, and the response of the
(14)

system to this input is used to evaluate a performance criterion.

Other identification procedures have been devised based entirely
upon the information contained in the normal input and output signals
of a process. Among these is a technique due to Kalman(IS) which is
considered to be the first significant contribution in the field of adap-
tive control. This technique employs the solution of a difference-equa-
tion representation of the input-output relationship of a process to

obtain a Z-transform representation of the process transfer function.

An identification scheme employing orthonormal expansion was

(16)

proposed by Braun. The input of the system is expressed as an ex-
pansion in Laguerre functions or exponentials, and the coefficients in
the corresponding expansion of the unit-step response are computed. An
orthogonal-spectrum analyzer is applied to the implementation of this

procedure.

In a method proposed by Mishkin and Haddad£l7) the unit step

responsevof a process is obtained by an approximate solution of the con-
volution integral when the input is assumed to be composed of a combi-
nation of impulse, step, ramp or parabolic functions. This method re-
quires repeated differentiation of the output function to derive the

necessary Taylor-series coefficients.
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The identification methods mentioned above are only several of
the many that have been proposed. They were outlined here because they

are typical of the various methods that have been published.

This thesis presents a method of process identification based
on a finite summation representation of the convolution integral which
may be implemented through relatively simple computation. The approxi-
mations inherent in this method lead to errors which are comprehensively

analyzed in Section IV.






II. MATHEMATICAL DESCRIPTION OF PHYSICAL SYSTEMS

In the broadest sense of the term, a physical system is a col-

»
1

lection of components that are connected in some rational manner to per-
form a specific function. If the exact characteristics of all components
of the system are known, aléng with their interconnection, then the char-
acteristics of the system can be completely determined analytically.
However, when such information is not available, it is necessary to es-
tablish the characteristics of the system from external measurements.
This is the well known"black-box" approach, in which a system, no matter
how complex, is assumed to have 6ne input and one output of interest.

In the work that follows the output variable of the system is assumed

to be dependent only upon the one input variable, and the characteristics

of the system itself.

The methods of ﬁathematically describing éuch unilaterally de-
pendent systéms constitute the major part of this section. Only those
topics which are relevant to later development are discussed. This
discussion is given here only as background for later work, and is not

a rigorous development in itself.

2.1 Linear Systems

Let a system be represented schematically as in Figure 1. Let
r(t) be the input variable and c(t) the output, or response variable of
the system. In general, the outﬁuﬁ variable of the system depends on
the input variable and the system characteristics. The system charac-

teristics may in turn be dependent on the input variable or any of its

-5-
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r(t) — 5. System L ce(t)
System System
Input Output
Variable Variable

Figure 2. Representation of a system

derivatives, and also upon one or more independent variable such as
time, temperature, etc. Systems that have characteristics which are
dependent on the input variable are classified as nonlinear. The fol-
lowing discussion will consider only systems that can be assumed to be

linear over some range of the input variable.

A linear system is defined as one for which the derivatives of
the input and output variables are related by a linear equation, as

shown below:

q p

k
d
a, (t) "

k=0 §=0

a9
c(t) = )b (t) —— r(t) (2-1)
30 aed

Time-Invariant Linear Systems

In Eq. (2-1) the coefficients ak(t) and bJ(t) are functions of
time, and this characterizes the system as being time-varying. However,
the simplest mathematical analysis results when the system characteristics
can be assumed to be time-invariant, and hence it is advantageous if the

mathematical characterization of the system can be expressed in the form
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of a differential equation with constant coefficients
q p

ad

5 =(t) (2-2)
dt

c(t) = bj

k=0 3=0

In this discussion, a system will be assumed to be time-invar-
iant if the coefficients in the differential equation do not change over
the interval of time required for measurement.

(2)

2.2 The Convolution Integral

Suppose that an input r(t) is applied to a linear, time-invar-
iant system. Furthermore, let the input be subdivided into a series

of rectangular pulses of width T, as shown in Figure 3.

r(t) <¥:(tk)

Figure 3. Decomposition of a time-function into rectangular pulses.
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When a unit-pulse function is defined as below, then the input function

may be approximately represented by

o0
(<) = r(t, ) p(t,,T)T
k=-00
where ) _ 1
p(Lk,T) = 3 fort, < t< t +T (2-3)
= 0 otherwise.
and as T—> 0
o0
r(t) = 1lim r(tk) p(tk,T)T (2-4)
T—>0
== 00

Let the response of the system to a unit pulse, p(tk,T), at t = tk be
denoted by v(t-tk,T). Then, the response to a pulse of height r(tk)

and width T at t = tk is

ck(t) = v(t-tk, T) r(tk) T (2-5)

where v(t-t., T) =0 fort, >t
k k
Now, using the superposition property, the total response can be appro-

ximated as the sum of the various pulse responses of the form of

Eq. (2-5) and is given by

c(t) = :E::

(o ] oQ
ck(t) = v(t-tk, T) r(tk)T (2-6)
k=-00 k=-00
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Let g(t-tk) be defined as the limit of the unit-pulse response V(t-tk,T)

when T — O

g(t-t,) = 1im v(t-t,, T) (2-7)
T—>0

From the definition of an integral it follows that

oo
c(t) = 1lim v(t-tk, T) r(tk) T
T— 0
k=-00
o0
=] gt - t7) r(t7) at”’ (2-8)
)
and since
gt -t’)=0 for t <t
the response of the system is
t
o(t) =/ a(t - %) x(t7) at’ (2-9)
(- @

Letting ¥ = t-t  the expression may also be written as

c(t) =f°2(1) r(t-1)dr (2-10)
0

This is commonly known as the convolution, or superposition integral,

used extensively in the analysis of linear, time-invariant systems.

The function g(t) appearing in the convolution integral is

commonly called the weighting function. It is a characteristic of the
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system, and by means of the convolution integral the knowledge of this
function is sufficient to determine the response of a system to any in-

put function r(t).

2.3 The Transfer Function

Many of the properties of the weighting function g(t¥) can be

considered in terms of its Laplace transform.

In Eq. (2-9), let the function r(t) be such that r(t) = 0 for

t < 0, then
t
c(t) =\/pg(t - 1) r(1)dr (2-11)
0

If c(t), r(t) and g(t) are Laplace transformables3_332) then taking

the Laplace transform of both sides of Eq. (2-11) gives

t
c(s) =Z[fg(t - 1) r(‘r)d'r] (2-12)

0
. s (3-228)
The application of the complex multiplication theorem of Laplace-
transform theory to the right-hand side of Eq. (2-12) yields
¢(s) = G(s) R(s)
whe
T o(s) =2 Le(t)]
(2-13)
R(s) =2 [r(t)]

G(s) =L [g(t))
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The s-domain function G(s) =»§%§%— is commonly called the transfer

function of the system having a weighting function g(t) az::l [c(s)].

2.4 Properties of the Weighting Function of a Linear System(3'159)

It can be shown, that for a general linear system, G(s) is a

rational function of s

b sP + b §P-1 4 oo +b.s +D
P p-1 1 o)

a s +a .S + ... +a. s +a
q g-1 1 o

(2-14)

where for convenience aq is taken as unity.

In the development that follows it is assumed that p < q. This
restriction applies to a very large class of physical systems, particularly
to those that are described as having "inertia" effects. Thus, when
p < q, B(s)/A(s) is a proper fraction, and if the polynomial equations
A(s) = 0 and B(s) = O have no common robts, the g-th order polynomial
equation (commonly designated the characteristic equation)

A(s) = s  + a s I a,s + a, = 0

(2-15)
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in general has n distinct roots 815 S » S, with each root s; ap-

2’ L B ]
pearing with some multiplicity m, .

Thus, G(s) may be written as

o(s) = oy B(s) . (2-16)
(s-sl) (s-sz) 2 ... (s-sn) n

The fraction %%g% can now be expressed as a sum of partial fractions.

For each pole s, of multiplicity mk, there are m, partial fractions of

k
the form

e o Me My
ok gt T
S-Sk

(s-sk) 5-8,

and G(s) may be expressed as a sum of fractions

G(s) = jg:: jg%i —y CXT (2-17)

1 ad-1 (s-gk)mk B(s)

. = lim =% :
MkJ s—s, (3-1)! asdt A(s)

where

The inverse Laplace transform of G(s) may now be evaluated, to yield g(t)
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-j s, t
o S
(m - J3)

=1 -1 (2-18)

where Mkj is defined as in Eq. (2-17).

Stabilitz(3-l97)

For the purpose of this discussion a system is defined to be
absolutely stable if all the roots Sy of the characteristic equation
A(s) = 0 have negative real parts. If this condition is satisfied, then

from Eq. (2-18)

n M
M . -j ot Jmt
lim g(t) = 1lim —ki tmk e * e “x
+t - 00 t2>00 (mk- J)!
k=1 j=1
and, if Uk < O for all k
then lim g(t) = 0 (2-19)
t>00

and for an absolutely stable system, g(t) vanishes with increasing t.
If 5 is that root of A(s) which has a negative real part such that
|cj| < [°k| for all k # J

then, for t sufficiently large, the effect of all other roots is negli-

gible and g(t) may be approximated by
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m
M, . m,-Jj = les Ja, t
g(t) ~ ij g 4 o ot 1
(m,- J)!
i
=T
~ Kt" exp (-a t) exp (jmit) (2-20)
where m,
n M, . m,-j
Kt ~ —31J = 7
(mi- J)"
J=1
and
a =[°i|

The Weighting Function at t = 0

In later work, it is necessary to specify the behavior of g(t)
as t approaches zero. This information is most conveniently obtained

from the transfer function, G(s). If

L [g(t)] = 6(s)

then, from the initial value theorem(3_267)

lim g(t) = 1im s G(s) (2-21)
t=-0 s = 0o
If bsP+b _sPT +b.s+b
_B(s) _ p p-1 : 1
s sTra sty ... +as+a
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then

lim g(t) = 1lim s B(s)

t->0 s -»00 A(s)

Thus, if it is required that 1lim g(t) = 0, it is necessary that

t=>0
1lim E—Eiél = 0. This is true only if the order of A(s) is greater than
s-=»00 A(s)
the order of s B(s), i.e.,

q > p+l or q > p+2 (2-22)
This property is important in the development of forthcoming sectionms.

(L,5)

2.5 Time-Series Representation of Continuous Systems

Let a continuous input function be considered as a series of
pulses at t =0, T, 2Ty .. , kT, ... , of width T and height r(kT). If
T is chosen to be such that r(t) and g(t) do not change appreciably in
the period T, and if the width T of the pulses is very small, then from
the superposition property, the response of the system may be approximated
by the sum of the responses to each pulse, which may be assumed to be of
the form of Eq. (2-7). Thus for kT <t < (k + 1)T, the response of the

system may be approximated by

c(t) =~ g(t - nT) r(nt)T (2-23)
n=-00

The approximation becomes better as T becomes smaller. For T suffi-

ciently small, it follows from Eq. (2-23) that at t = kT
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c(kT) = T r(nT) gl(k-n)T] (2-24)

n=-0o

or; changing the order of summation,

c(kT)

|
H

g(JT) rl(kx-3)T] (2-25)

J=0

In the special case where r(t) = O for t < 0, Eq. (2-24) shows the se-
quence of values of the output function c(t), at intervals of time T, as
an explicit function of the corresponding values of the input function
r(t) and the values of the weighting function g(t) evaluated at t = nT,

and can be written as

— _—

[ <(0) | g0) 0 0 - -- r(0) |
c(T) . g(r) g(0) o - - - r(T)
c(2r) g(2r) g(T) 2(0) - - - r(er)

(2-26)

This time series representation of the characteristics of linear systems
is useful in various numerical techniques of system analysis and syn-
thesis, and forms the basis for the computational deconvolution tech-

nique described in Section III.






III. THE METHOD OF DECONVOLUTION

For the purposes oﬁ this discussion, the term deconvolution is
defined as the step-by-step solution of the convolution summaﬁion to ob-
tain the weighting function g(t), or more precisely, the values of the
continuous weighting function at uniformly spaced points in time. The
convolution summation is defined as the finite approximation to the con-
volution integral arising from the time-series representation of the
response characteristics of a linear, time-invariant system, as defined

in the preceding section.

3.1 The Finite Approximation of the Convolution Summation

Let a linear system having a weighting function g(t) be sub-
jected to an input r(t), and let the resulting output be represented by
c(t). Furthermore, let r(kT) and c(kT) be the values of r(t) and c(t)

at t = to+ kT, where to is some arbitrary time origin, as shown in

Figure k.
c(t) c(kT)

—r(kT) ¢
r(t) e R

t -2T -
o to T to tO+T t°+2T to+kT t

Figure 4. Input-output conventions for the convolution summation
-17-
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Let the weighting function of the system, g(t),be such that

1) 1lim g(t) = 0
t =0
2) 1lim g(t) =0

t=>00
(3-1)
It was shown in Section II, that the conditions in Eq. (3-1) are satis-
fied by an absolutely stable system with "inertia" effects. The form

of such weighting function is shown in Figure 5.

f
g(t)
0 T 2T 3T ~_ _L— (N-aT) &
g(kT)

i"gure 5. Weighting function of a stable system with inertia effects

As shown in Section 2.5, if T is chosen such.that the varia-
tion in r(t) and g(t) over any interval of time T is small, the response

of the system may be expressed in the form of a convolution summation

e(nT) = T g(kT) r[(n-k) T] (3-2)

=0
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where in order to simplify the notation c¢(nT) = c(to + nT)

r[(n-k)T ]

r(to+nT - XT)

g(0 + kT)

g(kT)

and T is the sampling interval.

Since 1lim g(t) = 0, for any e > 0, there exists a positive
t=>00
integer N, such that for k > N, g(kT) < ¢, and if ¢ is chosen suf-

ficiently small with respect to the precision of observation, the appro-

ximation can be made that

g(kT) = 0 for k > N (3-3)

and the convolution summation (3-1) becomes

N-1
c(nl) = T g(kr) r[(n-k) T) (3-4)
k=0

Thus, under the finite assumption, the value of the output function c(t)
at any sampling instant is dependent only on the values of the input

function r(t) at the preceding N-1 sampling instants.

3.2 The Procedure of Deconvolution

For purposes of clarification, let it be assumed that the sy-
stem is at rest prior to the time to, at which time it is desired to be-

gin the deconvolution computation, i.e., r(t) = O for t < t e
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Furthermore, let the following notation be adopted:

r, = r(to + kT)
¢y = c(to + kT)
g, = &(kT)

(3-5)
Using this notation, the expression for the convolution summation is

c_ =T & Trx (3-6)

where =0 fork=1, 2, ....

At t = to, the value of the output °, is given by

or (]
(3-7)

As g(t) was assumed to be such that g(0) = 0, the above compu-
tation is theoretically not necessary, because the result is known before-
hand. However, this initial computation will be useful in the error

analysis of Section IV.

At t = to + T, the convolution summation gives
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[e]
"

1 T(rl go + ro gl)

but, since g, = 0,
c

c, =Trg or g, = 1
1 o°1’ 1 Tr (3-8)
Similarly, at t = to + 2T
c, = T(rl g + T, ge)
and since gl is available from the preceding computation;
c r
-2 1
g2 - Tr = T gl (3"9)
o o

Continuing the procedure; at t = to + 3T, the convolution summation gives

C3=T(r2g1+r1g2+rog3)

and since gl and 85 have been previously computed,

r2 rl
g3 Tro - -r—- gl = ;_ g2 (3'10)

Continuing in this manner, at t = to + iT, the output is given by the

convolution summation

i i-1
e; =T Tk 8 =T (v e+ Tix &)
and k=1 i1 k=1
¢4 1
& Tr -~ T Ti-x % (3-11)
(o] (o]
=1

where 8 has been previously computed for k=1, 2, ... , i-1.






-22-

r
Letting 5, = k s> Eq. (3-11) may be written as
Yo
i-1
°4
g = - S _x & (3-12)
Tro
k=1

Thus, at any time t = to + iT, g; can be computed using the re-
sults of previous computations and the appropriate values of the input
function, together with the value of the output at t = to + iT. If
the computation is continued through t = t_ + (N-1)T, all values of
g(kT) from k = 1 to (N-1) will have been computed, and the entire pro-
cedure may be started again at t = to+ NT or at any arbitrary time there-

after.

Again, let té be defined as the time at which the new iter-

ation is begun, and let

2]
I

= '
r(to + kT)

and

[e]
I

c(té + XT) (3-13)

Furthermore, let E& be the values of gk computed during the
first iteration. If the system has been operating for a time greater
than NT before the beginning of the computation, the values Ek will
be taken as estimates of the actual values. Then, at t = té the con-

volution summation gives
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N-1
¢, = T T x 8
k=0
or, solving for g,
N-1
o
gO = - s-k gk (3'1)“‘)
Tr
k=1

In general,the value of g, as calculated from Eq. (3-14) is non-zero only

because of one or both of two sources of error:

1) Errors in the initial estimates of g -

2) Truncation errors resulting from the finite summation.

Since the actual value of go is known to be zero the result of
the computation in Eq. (3-14) represents the error, which will be de-
signated as Eo' In order to partially compensate for the effect of these
systematic errors let Eo be subtracted from the calculated values of

each gi.

Thus, although at t = té + T, assuming g, = 0, the convolution

summation states that
N-1

c) =T (r 8 + ¥ e+l &)

the computation for =5 will be defined as

N-1

&7 Skl B T B (3-15)
Tro

k=2
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where Ek are the previously computed or estimated values of g(kT). Simi-

larly, at t = té + 2T

N-1

cp,=T (r; g +71 8, + T e &)

k=3

or, using the value of g, obtained from the preceding computation
? 1

At t = té + 3T the convolution summation gives

N-1

ey = T (rggl + T8, + T s +

k=4

T _e3 &)

(3-16)

and using the values of g, and g, computed during the two previous in-
1 2

tervals

N-1
c
€3 = - - 581 T 518 -
Tr
k=
Finally, at t = té + iT, for any i = 1, 2,
N-1
¢ =T Tok+i Bk

S x+3 & ~ Eo

(3-17)

eo sy (N -1),






-25.

or
i1 N-1
Ci \
G 2 T YT Y T et B
=T k=il

A1l 8 (k=1, 2, ... , i-1) have been computed previously in
this iteration and &, (k = i+1, ... , N-1) are known either from previous

iterations, or as estimates. Therefore, g; can be computed as follows

i-1 N-1
[
= £ -] - s g -E
& k18 B )
Tro
=1

k=i+1 (3-18)

When all N-1 values have been computed, the iteration is com-
plete and the next iteration may be started at t = t(‘) + NT or at any
time thereafter. The iteration cycle starts with a computation of Eo’
and continues with the computations of each g (1 =1toi=N-1)
during successive sampling intervals, using the most recently computed
values of 8 in each computation. Thus, this computational procedure
may be carried on indefinitely, completely regenerating all gi during
each iteration. If the system weighting function g(t) varies slowly
with time in such a manner that the variation is small over a period
of time NT, the deconvolution computation provides a revised represen-

tation of g(t) at intervals of time t = NT.






IV. ERROR ANALYSIS

The success of any computational procedure, such as that which
was discussed in the preceding section, depends to a great extent on the
errors that arise as a result of various inaccuracies which distinguish

an actual computation from an idealization.

From a strictly computational viewpoint, these sources of error
may be divided into two groups; (1) the errors that are caused by arith-
metical operations with finite precision and, (2) those which arise as
a result of approximations, estimates, and other sources of inaccuracy

present in a particular computation.

The first of these is common to all computational procedures
and various methods of evaluating its effect may be found in mathe-

(6)

matical literature, and for this reason it is not discussed.

The other sources of error are characteristic of the particular

computat ional procedure. These errors are discussed here in detail.

As the deconvolution procedure is applied in an iterative
manner, the behavior of errors propogated from iteration to iteration is
of great importance, and the determination of conditions under which
these propogated errors converge to zero is the primary objective of this

error analysis.

4.1 Analysis of the Error Caused by Inaccurate Initial Estimates

It is reasonable to assume that the weighting function, g(t),
of a time-varying system is initially known to some degree of accuracy.

-26-
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The purpose of this section is to analyze the effect of initial error in
the values of each g(kT) on the results of successive computations of the

weighting function.

The Propogated Error

Let the deconvolution computation begin at some arbitrary time
to. Furthermore, let the values of the input function r(t) be known
for t = (to -T), (to - 2T)y iue. [to - (N-1)T], and let these values

be designated by

ro = r(to - kT)
Also, let it be assumed that the estimated values of the weighting
function g(t) at t = T, 2T, ..., kT, ..., (N-1)T are available, and are

represented by

+ e (4-1)

vhere g _ = g(kT) and e, is the error associated with the estimate of

& Furthermore, let

gk =0 for k > N

As shown in Section III, the value of the output function c(t) at

t = to+ is given by the convolution summation
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N-1
c, = T Ty 8 2
k=0
or
N-1
c
=2 =r g + r. g
T o o -k °k
where
c, = c(to)
. r_k
Setting s_k = 5 1t follows that
Yo
N-1
%o
€ T Tr B °x &
=1

However, since the actual computation is performed with values

of gk that are not exact, the result is:

N-1
8 ~ Tr - S_x &
=1
N-1 N-1
C
=2 . s - 5, e
Tr, -k 8 x %k



or
g=g+lEO’
where
N-1
1% = - 5 x %k
k=1

However, as shown in Section II, for all systems under consider-
ation, gO'EE 0, and thus the result of the first computation gives the

error

E =g = - s, e (4-2)

Now, for t = to + T, the convolution summation with go = 0 is

ey = Trg g + T el &)
k=2
or, solving for gl
N-1
g, = cl - S &
1 Tr “k+1 Tk
k=2
Since lEO is available from the previous computation.let the

computation of'él be defined as follows



R
'—l
]
3
=
]
0
U
w
+
| ot
o !
[
'_l
(2]
o

N-1 N-1
°1
= Tr, S k+1 Bk T S_x+1 %k ~ 1%
k=2 k=2

Setting El = gl + lEl

it follows that the error associated with the second computation is
N-1

11 1% ~ S_x+1 %k (4-3)

k=2

Similarly, for t = t_ + 2T, the convolution summation is

N-1
o
T T T 8 tTr, 8" T _x+2 8
k=3
and N-1
2 e o) s
8y = T~ %1 & -k+2 Sk
k=3

Again, the actual computation forg2 using the previously com-

puted value of él gives

N-1



N-1 N-1
_ (o]
€y = Tr_ ~ 518 S x+2 8 " 51 1F1 5 x+2%
k=3 k=3
and letting
€y = 8y * Ep

The expression for the error associated with the evaluation of & is

N-1
E (b-lk)

Continuing the error analysis, at t = to + 3T, the convolution

summation is

N-1
ey = T ( r g *+ T8, + r g+ T 143 gk)
k=4
or
N-1
°3
83 © Tr_ ~ 508 7 5185 - S_x+3 &
k=

However, the actual computation using the previously computed values El

and Eé gives



=32«

182 - S x+3% ~ 2 181 7 5115 - Sx+3% T 170

1937 7 S 1% 7 81 1% " S_k+3% ~ 1% (4-5)

where

Proceeding with the computation cf each successive 8;» each time

subtracting , 1t will be found that the expression relating all Ei’

150
{1 =1, 2, .... N-1) is

.. T . E - 7
1 0 0 o o][E B - %
5 1 0 --- 0 0|, -1Bo -
32 sl 1 - - - 0 0 lE3 -lEO - Qu
| | | l [ | |
| | | | | I = |
| | | L | I
SN-3  Sw-h Syes © -7 1 O 1By “1% " 51 Sy
Sge2 Sye3 Swey - - Sy LBy “1%

4L | L i

(4-6)



where

To transform Eq. (4-6) into a form convenient for analysis, pre-

multiply both sides by the nonsingular matrix

(M]

to obtain

1
(s,-1)
(5,5

|
(sy_37sy.y)
(s

—

N-2"5y.3)

1 0
-1 1
0 -1
| |
| I
! |
0 0
0 0
b
0
1
(s,-1)

1% - 9o
o, -
Q- 9,

S e
5.1 -1

O — — —

°l

H—— — O

(5,-1)

(@)

o—— — o

H

(4-7)

1y-2

lEN-l

(4-8)
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Now, let the differences between successive values of the nor-

malized input function be defined as

s, - 8, . =4, (4-9)

N-1
lEo = - S-kek = —s_lel - s_2e2 - s_3e3 - o = s-(N-l)eN-l
k=1
and N-1
92 = s-k+lek = s_le2 + S-2e3 + + s-(N-2)eN-l
k=2

it follows that the first entry on the right-hand side of Eq. (4-8) is

1By - 9, = 5 .8 - (s_l—s_z)e2 -(5_2-5_3)e3 - e - [s_(1\1_2)-s_(1\7_1)]eN_l
N-1
= (1 - Ao)el - 8 11 (4-10)
k=2
Similarly, for all i =1, 2, ..., N-1, since
N-1
9 = Sox+i-1 %k T o181 Y St S_(m-1)Sm-1
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and

&G S x+i %k T %1 %in

k=i+l1

-t S (§-i-1) S§-1

it follows that the i-th entry on the right-hand side of Eq. (4-8) is

Q, -0, . =5 _ e, - (8-1'5-2) €. . = v.e. - [s

17 Y41 T 51 G i+l -(N-i-1) ~ s-(N-i)]eN-l

N-1

(1 - Ao)ei - (4-11)

A kel Sk
k=1+1

Substituting Eq. (4-9), Eq. (4-10) and Eg. (4-11) into the
matrix equation (4-8) a set of equations relating the errors in the first
iteration to the errors in the original estimates and the normalized in-

put differences Ai is obtained.

— ] [ ]
1 0 0 -——- 0 O 1B
A 1 0 -——- 0 O 15
8, b, 1 -—-—- 0 0 1E3
| | | . |
| | | | | |
I I [ | | [
Ayos Byey By - L0 15y-2
AN-2 AN-3 Aoy = Al 1 lEN-l
L I I _



where

o———o0

. (4-12) may bve
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“A_(§-3)
A (w-u)

'A-fN-s)

(l-Ao)

[E] =(B] !

-

o

H-——0O O

O ——— 0

N-2

°N-1

(4-12)

rewritten in symbolic matrix notation

(4-13)
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Since [A] is triangular,the inverse. [A]£l~ exists(é) and Eq. (L4-13)
can be solved to obtain the errors in the first iteration as explicit
functions of the errors in the initial estimates and differences between

the successive values of the normalized input function

(E], = (A)]" [B] [l (4-14)
= (¢l [e]
where
-1
[cl, = (A" (8]

During the second iteration, begun at some time t Z'to + NT, the com-
putational procedure will be exactly the same, except that the error
assoclated with each value of the weighting function 8; used in the com-
putation is designated by _E ,(i = 1,2,...,N-1), i.e., the error result-

143
ing from the first iteration.

Thus, the expression for the error propogated through the second

iteration of the deconvolution procedure is of the same form as Eq.(4-14),

namgly
-1
[E], = (a]}" [B], [E),
= fcl, [E]] (4-15)
where 2E1_T
[El, = |28,

B!
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and the [A]2 and [B]2 matrices are identical in form to [A]1 and [B]l,

differing only in the values of the entries A Substituting Eq. (4-14)

i
into Eq. (4-15) the errors in the second iteration are given by

[E], = [cC] [e] (4-16)

. (c]

2 1

For each successive iteration the computational procedure is re-
peated, using the Ei computed in the preceding iteration. Thus, the

expression for the error Ei associated with each 8; computed during the

J
Jj-th iteration is

— -l p—
(E], = [A]j [B]J (E], , l[c]J [E]J_l
where —
%1
(E]y = |82
jEN-l

and [A]j and [B]J are identical in form to [A]l and [B]l' But since

(£], = (o], [E],

(B)y o= 10, 181 g
|

(2], - [C] [e]

it follows that the error associated with the j-th iteration, as an ex-

plicit function of the error associated with the original estimates, is
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[E]j = [c]j [c]j_l [c]J_2 R (S P [ M O
J
= ‘ l [cl, L [e] (4-17)
=1 )
where ’
-1
[c]‘ = [A]‘ [B]t
and [A]‘and [B]‘ are matrices identical in form to [A]l and [B]l

shown after Eq. (4-13).

Conditions for Convergence of the Propogated Error

In previous discussion the nature of the initial errors e, was not
defined. However, before any statement concerning the convergence of the
propogated error can be made, the properties of the initial errors e
must be known.

Since these errors arise from the imperfect knowledge of the values
of the weighting function g(t) at t =T, 2T, ... (N-1)T, it is reason-
able to assume that each e:.L is an independent random variable. Further-

more, let it be assumed that each e, is normally distributed, with a

mean m, = O, and a variance 05 = ai for all i =1, 2, ..., (N-1).

The error propogated through the j-th iteration of the deconvo-
lution procedure is given by Eq. (4-17)

Letting 3

l l[C]E = [D]j (4-18)
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Eq. (4-17) can be written as

[(E], = [D]. I[e]
or in detail
1 %11 M2 3%1,N-1 €1
$F2 5921 332 77 7 3%,N-1 o
| | | | |
| - | | | | (4-19)
a - -
EN-1 5%-1,1 %-1,2 3%-1,5-1 | | -1
[ 1 L J I ]
N-1
Thus, jEi = jdik e s fori=1, 2, ..., (N-1).

k=1

. 2
Now , since all ek are independent and have the same variance O it

can be shown that the variance of each jEi is(9'99)

N-1

Var ( E.) = a2 o (4-20)

g1 3%k e
k=1
i=1, 2 , (N-1)
and the mean M(jEi) is
N-1
M (jEi) = 3%k T
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However, since m = 0 for all k, it follows that:

M(jEi) =0 (4-21)

The propogated errors will be considered to be convergent if the
variance of each jEi obtained in the j-th iterationis less than the vari-

ance of each (4 l)Ei obtained in the (j-1) iteration, i.e.,

2
Var (JEi) < Var (j-lEi) <..... <Var (lEi) <o,
foralli=1, 2, ... , (N-1) (4-22)

If this condition is met, then

lim Var ( E,) =0
j =00 e
and thus, after many iterations of the deconvolution procedure, the vari-

ance of the error approaches zero.Since the mean of each ;Ei is zero, the

value of each jEi vanishes.

From the expression for the variance of each given in Eq (4-20)

!
the condition in Eq. (4-22) implies first of all that
2
Var (lEi) < o

Since for the first iteration [E]l = [cl. [e] = [D]1 le]

1

Var (1Ei) =

1
[Y




=Loo

To satisfy Eq. (4-22) it is necessary that

k=1 k=1

foralli=1, 2, ..., (N-1)

For the second iteration

[E]2 = [Cle [C]I el = [D]2 [el
N-1
and, Var (2Ei) = 2d§k 02 ,i=1,2, ..., N-1
k=1

To satisfy the condition of Eq. (4-22) it is necessary that

N-1 N-1

2 2

2%ix 1%1x
k=1 =)

for alli=1, 2, ..., (N-1)

Finally, to satisfy the condition of Eq. (4-22) for j iterations, the

entries in the rows of the respective [D] matrices must be such that
N-1 N-1 N-1
g 2 E 2 2
jdik < (j-l)dik <... < ldik <1
k=1 k=1 k=1

for all rows i =1, 2, ... , (N-1) (4-23)
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J
where [D]j = ’ l [C]Q
=1

end [c] = (A7 [B],

Thus, if the conditions of Eq. (4-23) are satisfied, the propo-
gated errors resulting from inaccurate initial estimates have decreasing

variances, and are considered to converge in a statistical sense.

4.2 Analysis of the Truncation Error

In the previous discussion, the assumption was made that the
weighting function g(t) vanishes for t > NI, and thus the effect of all
&, for k > N was neglected. However, as ghown in SectionII, for any
absolutely stable system, g(t) approaches zero asymptotically for large

t, but it does not vanish identically for any finite value of t.

In this section the error introduced by the truncation of
g(t) at t = NT is analyzed to determine its effect on successive iter-

ations of the process of deconvolution.

The Propogated Error

As in previous sections, let the following notation be used:

g, = g(kl) fork=0,1, 2, ...,
rk=r(to+kT)

fork=0,21,%2, ..., 2
¢, = c(to + kT)






Ll
where to is the time at which the deconvolution computation is started.
Furthermore, let the discussion be restricted to systems for which go = 0.

The finite approximation of the convolution summation for the

value of the output, c(t), at t = t_is

o
N-1
c, =T (rogO + T gk)
=1
Tk
and thus, letting Sy = F the computed value of 8, is
o
N-1
c
g, = —— - 5 8
SR - -k "k
k=1

However, the exact expression for <, is

or

0
1]

N-1 oo
o= Tlrg, * g Ty &t % T i &)
k=1 k=N

and hence, the true value of &, is:

N-1 o

3 O -
& Tr_ S x 8k S_x &
k=1 -
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The difference lEO between the computed value,<Eo, and the true

value, 8, is

E =g -g = 5 ) 8 (4-24)

Since go = 0, it is apparent that the result obtained in the

computation of Eo represents only the error, lEO.

At t = to+T, the actual value of the output c. is

1
N-1 o0

o = Tlryg, + rog) + g Toerl B * T &)
k=2 =N
and therefore N-1 0o

‘1
& = Tr_ 5180 - S_x+1 & S_x+1 Bk

k=2 k=N

However, in the actual computation for El’ the convolution sum-
mation is truncated. Furthermore, the value of g, is taken to be zero,

and the quantity Eo which was computed previously is subtracted in order

1

to partially compensate for the truncation error.

N-1

0]
i)
|

" T S 11 % 1%

k=2

& *+ 1%
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(4-25)

oo
vhere 151 5xa & - 1%
k=N
‘Continuing in the same manner, at t = to + 2T, the actual value
of <, is

c, = T(rlgl

and therefore,

_ %

&> = Tr
(]

However, the computed

N-1 %)

trgy é T xeo & F g T 2 B
k=3 k=N
N-1 00

T 58 - % S k+2 8 T é S_x+2 8k
k=3 k=N

value of Ee is

N-1
& = Fr "~ 51 8 S x+2 & " 1%
k=3
N-1
s
= Tr s,(g) +,B)) - 5 x+2 & " 1%
k=3
=8+ 5
where oy
1B = -8 B ¢ S_x+2 & ~ 150

In general, at t = to + iT, the actual value of the output 4 is

k=N

(4-26)
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1-1 N-1 00
c; = T Tiok & Y T8 t Tt B * E T i &)
k=1 k=1i+1 k=N
or i-1 N-1 [oYe)
¢4
8 = Tr Six & S x+i & S x+1 B
k=1 k=141 k=N

But using the finite approximation and the previously computed

values of Ej’ for =1, 2, ..., (i-1), the value of the computed Ei is

N-1
g = E S x+i & " 1%
k=1 k=1+1
N-1 i-1
= i-k & - Sk+i B © ) %1k 1% " 1%
=1 =i+l k=1
=8 B
where i-1 oo
o Bl 8ix 15 * S_xk+i 8 " 1% (4-27)
k=0 =N
The expressions for each .E,, (i=1, 2, ... N-1) can be

written in the form of a matrix equation
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_ . _ _
1 0 0 =---0 o0 E H - E
5 1 0 =---0 0 s H, - |E_
s, 5 1 - - - ? ? s H, - B,
| | | | l [
| | | ! | = I
| | | | | 1 | (4-28)
Sv-3 Sy Sys - - L O 1Ey-2 Hy o - 15
Sy-2 Sy-3 Syy T T 5y 1 1Ey-1 o - 1%
S _J I - S —
[o ]
where Hi = S i B (4-29)
k=N

To facilitate analysis, both sides of Eq. (4-28) are pre-
multiplied by the nonsingular transformation matrix [M] given in

Eq. (4-7) to give

— - . - —

1 0 0 ---0 0 lEl H1 - HO
Al 1 0 - =-- 0 0 1E2 H2 - Hl
A2 Al 1 -~-=- 0 0 lE3 H3 - H2
I [ | ' | | [ -
| | | l | | = | (4-30)
I | | | | | I

by-z by By - L0 15y-2 Hy o - Hy3

Ayeo Bz Bwey m o 4y 1;J 1Eya1 Hy.1 - Hyeo

where Ai = si - si-l represents the difference between the normalized

input function at successive intervals.
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Upon examination of the right-hand side of Eq. (4-30), it is

observed that, for the i-th term

(o o]
H = S k+i Bk = S.Net ON Y S_Nei-1 B oo
k=N
and o0
Hia = S k+i-1 8 = S_n#i-18w Y S_nei-2 B F o
=N

and therefore

o
1
e}
|

1 "B = (e Somaen)ey (S g1 SonesolBr * oo

B nei BN T Anei-o1l BNer ot

|
>
U
'
+
[=N
R

Eq. (4-30) can now be written as

1 0 0 ---0 0 Ey B
8, 1 0 ---0 0 Ep D,
A - .
4 1 1 ? ° 1?3 Py
| |
: | . | : | = { (4-31)
| | | ' l .
b2 N3 gy --- 1O 1%N-2 By.2
byoy By Bgs - 81 15y-1 PN-1
—1 — | - pu—






-50-

o0
where

p; = B x+i B

k=N

The right-hand side of Eq. (4-31) can be expressed as a product

of two infinite matrices

_ -
Py Al Cn by1 -0 ey
Py by by Ay - &N+l
P3 bz P By v ENe2
| | | |
: = | | I : (4-32)
! | | l
|
pN-2 A-2 A-3 A-u ) °
P A A A e o o
| N-1 -t -2 -3 L a
or symbolically
P, = [(F]; [G] (4-33)

The coefficient matrix on the left-hand side of Eq. (4-31) is
exactly the [A] matrix defined in Eq. (4-13) and therefore Eq.‘(h-3l) can

be expressed in the symbolic form.

(a1, (£, = [F] [c] (4-34)

The system of Eq. (4-34%) can be solved for [E]l, giving the

errors in the first iteration as an explicit function of the normalized

input differences Ai and the values of the truncated portion of g(t).
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[E]. = (a7t [F)

1 1 p [6] (h-35)

During the second iteration, begun at some time t > to + NT,
the computation is carried out with values ofEi which have an error
lEi' In addition,truncation errors also accumulate. Therefore the
total error propogated through the second iteration is the sum of the

two contributions

(al, [El,=(B], [E] +[F], (c] (4-36)

2 1

where [F]2 is of the same form as [F]l in Eq. (4-34).

Substituting Eq. (4-35) into Eq. (4-36) and solving for the

errors [E]2 there results

-1 =1 -1
[E]2 = [Al;" [B], [A]] [F], (6] + (Al (Fl, (] (4=37)
During the third iteration the values ofEi used in compu-

tation are in error by Ei' Including these errors along with the

2
truncation errors, the errors propogated through the third iteration of
the deconvolution procedure are related to previous errors by
(Al [E]_ = [B), [E], + [F), (G 4-38
1, [E], = (8], LE], + [F], (c] (4-38)
Substituting the expression for [E]2 from Eq. (4-37) and

solving for [E]3 gives
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-1 -1 -1 -1 -1
(E]3 = [A]3 A[B]3 (Al;" [B], [A)]" [F], (6] + [A]3 [B]3 (al;" (F], (6]

+ (A1 (P, ()

3 3 (4-39)
Letting
[c]J = [A]:j'l [B]J.
and n-k
[c]j = el el .. .lc) 5 0C] o
J=n

the total error in the third iteration can be expressed as

2
[E], - l (el (a1 (¥l (6] + | |Cc], (al5t (7, Lo)
5=3

J=3
N
2 k+1
_ ~H'[c]J (a1 (7], (6] + (15 (¥, (o)
(| 53 (4-k0)

If this procedure is carried out through the i-th iteration, it
can be shown that the expression for [E]i will have a form similar to

Eq . (4-40), namely

121 k+l
=1 -1
[E]i = [A]i [F]i (c] Z ‘ ’ [c]J (A]k [F]k (c]
1 9T (h-b1)
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Now, using the notation

j-nt+l
[D]n = l \[c]J
=i
and
[P]n = [F]n (c]

the expression for the total error in the i-th iteration as an explicit

function of the differences Ai between adjacent values of the normalized

input function and the values of the truncated portion of g(t) is
i-1

(B], = (A);V [Pl + ) (D], , (A;' (P

i i k k (4-h2)

k=1

Convergence of the Truncation Errors

In order to analyze the convergence of the truncation errors,

it is first necessary to investigate the nature of the matrices [Pij.
From Eq. (4-32)
[(P1, = [F], [G]
J [ J

or in detail,

L _ o
3P PLIE S L Powr o0 ey
iF2 JA-N+2 jA-N+l JA-N et ENe1
i¥3 Pewsz Peawe Pawa v 0 a2

|
| | |
| | |
Py L L 2oy ce

PRl B L s ce

- )
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where the pre-subscripts j identify quantities associated with the j-th

iteration.

Each entry of [P]J thus has the following form (dropping the

pre-subscripts to simplify notation)
o0

Pi= ) A &

k=N

Now, if A > |8 | for all j, it follows that
max -— J

)
IpiI S Bpax ngl (4-13)
k=N

for all i = 1, 2, ..., (N-1)

Furthermore, it is shown in Appendix B, that for an ab-

solutely stable system,given e > O, there exists an integer P, such

that for any N > P

w.
)<
k=N

or, from Eq. (L4-43)

oy < & ¢ (l=bls)

Now, let

fal, = [A]}l ], (4-15)
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then Eq. (4-42) can be written as follows

i-1
[E], = [a]; + (o), , Q] (k-46)
k=1
where from Appendix A
— —
1 0 0 --- 0
jal 1 0 -=-=-0
-1
A = .8 .a 1 - - -
[ ]j Ja J1

H——— O

o — — —
o —— —
L]
8
i

|
|
|
i*N-2 %ne3 3ON-k

Therefore, the i-th entry of [Q] ia Eq. (4=46) is of the form
i-1

q = B + P, 8 (4-k7)

k=1

To establish a bound on the magnitude of qi’ let

Ijai < e for i=1, 2, «u. , (N-1)
j = l, 2, oo o0
then, from Eq. (4-44) and Eq. (4-47)
|l s [+ (1) e o (4-48)

for all j.
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Forming the matrix product indicated in Eq. (L4-46), the n-th
entry of [E]i representing the error associated with gn in {;he i-th
iteration is

i-1 N-1

E = .4 + (3,57 (x5) (4-19)

i™n
k=1 J=1

The bound of this error is

i-1 N-1
IiEnl < qma.x {l * Z Z:’kdnj| } (-50)
k=1 j=1

where from Eq. (4-48)
q‘ma.x =1+ (N—2) a'ma.x] Ama.x € 2'jqi‘
fOI‘ all j, and all i = lg 29 600 9 N“’lo

Now let all [D]k be such that, for any row n

N-1
18] = 1-8y
. N1
|2dn,jl < @- Bn) Xlldnjl
J=1 , =1
N-1 N-1

Z'kdnj' < @- Bn) lkdnj'

J=1 ) =1







where
o<p, <1 (4-51)

If the conditions of Eq. (4-51) are satisfied, Eq. (4-50) can

be written as

i-1
‘iEnl < Yy Z(l - fsn)k (4-52)
k=0

In the limit, as the number of iterations; i, increases without bound,

[o @)
lim |,E|<q (1 -p)¥
1 —>00 in max n

k=0

or
Unax

lim IE | <
i >oolim B, (4-53)
fOr n = l, 2, o 0 o 3 (N"‘l)

Thus, if the conditions of Eq. (4-51) are satisfied, the
accumulated error due to truncation approaches a limit. Furthermore,

this limit may be made arbitrarily small by choice of N.

Comparing the conditions of Eq. (4-23) of Section 4.1 with the
conditions of Eq. (4-51) it is observed that the latter are much more

restrictive, and in fact imply the former. Specifically, from Eq. (4-51)

N-1
Zlkdm‘ s -8 = lkdnJ‘ <t

for all k,
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and therefore

2
kdnj < |kdnj'

1 N-1
2 i
kg < Ikdnjl
J=1

It should be pointed out, that the conditions of Eq. (4-51) are

and N-

J=1

sufficient conditions for convergence of the truncation error, and that in

practice a less restrictive condition may bring about convergence.

4.3 Discussion of the Error Analysis

In the preceding sections,the conditions for the convergence of
the errors caused by inaccurate initial estimates and truncation were de-
rived in terms of a coefficient matrix [D]. This matrix is a product of
matrices [C]j’ the entries of which are complicated functions of dif-
ferences of the adjacent values of the normalized input function s(t)
over the entire interval of time during which the deconvolution procedure
is carried out. In order to investigate the behavior of errors for any
given input function, it is necessary to derive the [A] and [B] matrices
given in Eq. (4-13) for each period of iteration, invert the [A] matrices,
compute the coefficient matrices [C] = [;\]-l (B] and, finally, form the
products of the [C] matrices to obtain the [D] matrices which contain the

information required for application of the convergence criteria.

Admittedly, the preceding is cumbersome to apply and requires

considerable computation. However, attempts to obtain convergence
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conditions in terms of quantities more simply related to the input func-
tion r(t) have not been successful, primarily because of the unwieldly

form of the coefficients of [A]™% (see Appendix A).

Furthermore, since the convergence criteria are based on the
behavior of the input function r(t) over the entire interval of time over
which the deconvolution computation is iterated; they cannot be applied

in advance of the actual computation without knowledge of r(t) for the

entire interval of interest. Thus, these criteria are of limited value
for investigating the convergence of errors caused by truncation and in-
exact initial knowledge of the weighting function in advance of the
actual computation. However, the application of the error convergénce
criteria simultaneously with each iteration of the deconvolution com-
putation would furnish information on the behavior of the error while the
computation is being carried out.

Thus; while in the general case, evaluation of the effects of
the two types of inherent errors is difficult, in practical applications
of the deconvolution procedure some quite feasible simplifying restric-

tions can be imposed. Several of these are discussed next.

4.4 Periodic Input Functions

The error analysis is considerably simplified if the input
function r(t) is known to be periodic, and if the period is an integral

multiple of the time NT, i.e.,

r(t, + XNT) = (s ), k=1, 2, .... (L-54)






Under these conditions

r) = r(to +T) = r(to + T + kNT)

“x1
and in general,
r; = r(to + iT) = r(to + iT + kNT) (4-55)
X1

fori=0,%1, *x2, ..., % (N-1)
where the pre-subscript k indicates the value of r, used in the k-th
iteration of the deconvolution computation. Thus, under this condition,
the values of ri occurring in every iteration of the deconvolution pro-

cedure are identical to the corresponding r, occurring during the first

i

iteration, i.e.,

r, = .= T, = eeuas e B T, T ceeses (4-56)

where 1, 2, ... , k, ... is the number of the iteration.

T
Now, since , s, = kri , from Eq. (4-56) it follows that, for
k0
i=0,%1,%2, ... XN
S,= S = S = e0eeseo0 = s = ® 0o 00 0 ()+-57)

Using the definition of Eq. (4-9), it follows that

foralli=o0, x1, %2 ... %N,
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(4-58)

Referring to the form of the [A] and [B] matrices shown in

Eq. (4-13), it may be noted that since the form of these matrices does

not change from iteration to iteration, and since the Ai

which constitute

the coefficients of these matrices are identical for each iteration, the

matrices [A] and [B] respectively will be identical for each iteration.

Thus

L}

[A) (4], = [A]3 = teees = [A]k = ceee

2

and

[B] [B], = [B]3 = eoeeee = [Bl, = coeo

2 k

Since [C]J is defined as

-l
[cly = [al” (B

it follows from Eq. (4-59) that

[C]l = [C]2 = [0]3 = e00000e = [C]k= R
and 3
= - J
[D]J = ‘£=L[c]k = [c]y

(k-59)

(4-60)

(4-61)

Now, since the convergence conditions in Eq. (4-23) and Eq. (L4-51)

are stated in terms of the coefficients of the [D] matrix, the application
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of these conditions becomes considerably simpler when the [D] matrix can

be evaluated as in Eq. (4-61).

Under these conditions, the computation of the [C] matrix, which
requires the inversion of the [A] matrix, must only be performed once, and
the [D] matrices for successive iterations are found simply by performing
the multiplication of [C] into itself the required number of times. This
not only leads to a considerable computational simplification, but also
allows the convergence conditions to be applied in advance of the aciual

deconvolution computation.

4,5 Initially Quiescent Systems

From the viewpoint of the practical application of the deconvo-
lution procedure, a very important simplification is obtained when the
system can be considered to be quiescent prior to the commencement of the

deconvolution computation.

For the purposes of this discussion, a system will be con-
sidered to be quiescent if the input function r(t) has a constant value
or is equal to zero for all time t such that (to -N) < t< t, - T,
where to is the time at which the deconvolution computation is to be

started.

Let the input function r(t) be of the form shown in Figure 6
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r(t) A

v

Figure 6 The form of the input function for an initially quiescent

system

Analytically, the form of such an input function is

r(t)

i
=

for (to -N) < t < (t0 -T) (4-62)

r(t)

I

R+r (t) fort>t-T
v [e)

Using the convolution summation the output c(t) of the system

at any sampling instant (to + nT), wvhere n=0, 1, ... , N-1, is given by
N-1
c(to +nl) =T g(kr) r [t  + (n-k)T) (4-63)
k=0

but,since r(t) is of the form shown in Eq.(4-62)



N-1 n
c(to + nT) = TR g(kT)+ T g(xT) rv[to + (n-k)T] o (k-64)
k=0 k=0
or
c(to +nT) =C + cv(to + nT)
where n
cv(to+ nT) = T g(kT) rv[to + (n-k)T] (4-65)
k=0

From Eq. (4-64) it can be seen that the output c(t) prior to

t = to consists only of the constant C, and the varying part of the out-
put cv(t) is related to the varying part of the input, rv(t),by a con-
volution summation of the same form as Eq. (4-63), but having only n + 1
terms. Thus, considering only the varying parts of the output and in-
put functions, the deconvolution computation may be started at t = to

without knowledge of the initial values of g(kT), since

r (t +kT) =0 for k < 0.
v (o]

Using the notation

e (t, +mT) = c (4-66)

n

and

rv(to + nT) = r

then, from the summation in Eq. (4-65), at t = t o+ T, the output c, is






¢, = 1T 8 T1-x
¥=0

- T[gorl * glro]

but go = 0 for all systems under consideration, and hence;

!

& *Tr
o

Similarly, for t = to + 2T,

|
H
pch
[}
H
H
H
+
oo
n
H
[e)
o

and it follows that:

r
&2 Tr T T &
(o]
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In general, for t = to + nT, wheren=1, 2, 3, ... , N-1

n-1
T gnro +T gk rn-k

k=1

(4-67)

(4-68)
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but, since all gk for k=1, 2, ... , n-1 are available from previous com-

putation, gn can be computed as

n-1
C
g = - - s
n Tr_ € ®n-k (4-69)
=1
where
r
S = _—n
n r
O

Thus, for an initially quiescent system, all values of g, may
be computed sequentially without any previous knowledge of the values of
gko These computed values are then available for use in subsequent ite-
rations of the deconvclution procedure, and it is not necessary to use
estimated values of gko Under these conditions the procedure is free of

the effects of the error that is associated with estimation.

However, the special nature of the input function r(t) which is
necessary to obtain an initially quiescent system raises another problem.
It may be observed from the expressions for the computation of any 8’

that in each case the computation requires multiplication by the term

— , Wwhere r, is the value of rv(t) at t = to. It is also required that
o

rv(to - T) = 0, thus r_ represents the change in the input function r(t)
from t = to- T to t = to, a period of time equal to the sampling interval
T. If this change is small, then the reciprocal (—%&-) is subject to
large inaccuracy for even a small error in the measugement of the value

of roo Thus, the change in r(t) from t = to- T tot = to must be large

in order to make the computation of —%— as accurate as possible. For
o
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example, if 1% accuracy is desired in —%— s and the precision of measure-
o
ment of r, is ¢; then

1 - = l+ < agl

ro o € o
or

r 2> 100e

This implies that in order to benefit from the simplification brought about
by the consideration of an initially quiescent system, the deconvolution
computation must be started immediately after introducing a large distur-
bance into the input of the system which had been quiescent for a time
greater than NT previous to that time. This requirement, while restric-

tive, is not unreasonable in applications to some practical systems.

The second type of error that has been considered, the trunca-
tion error, is not eliminated by the restriction to initially quiescent
systems. However, as shown in Appendix B, the contribution of the trun-
cation error can be made arbitrarily small by choice of a large enough
time NT. Thus, if in a practical application NT is chosen such that
g(nT) for n > N is much smaller than the precision of measurement, e,
of the system, the contribution of the truncation error may be made

negligible.

It may be therefore concluded, that while the effects of the
truncation and estimation error are difficult to evaluate in general,
the process of deconvolution may be carried out essentially free of these
types of error if the system is initially quiescent in the sense of the pre-

ceding discussion; and if the process is truncated only after a sufficiently
large time NT.






V. CONCLUSION

In the preceding sections; the method of deconvolution was in-
vestigated as a solution to the identification problem inherent in any ap-
proach to an adaptive control system. The implementation of this method
would make continuously available a representation of the weighting func-
tion of a slowly time-varying system, which then might be used in some
adaptation scheme to render the overall system independent of the variation.

To compute one point on the weighting function, N-1 multiﬁli-
cation operations and N addition operations are required, where N is the
number of sampling intervals. This computation is shown schematically
in Figure 7. Thus, a total of 2N-1 arithmetical operations must be per-
formed for each point. The number of samples, N, depends on the value
of T chosen in the approximation of the convolution integral, since the
total time NT is approximately constant for any one system under con-
sideration. The storage requirements also depend on N, since 2N numbers
must be in storage at all times. Thus, both the complexity of compu-
tation and the storage requirements are directly proportional to the
number of samples, N.

However, the accuracy of the approximation, and hence the ac-
curacy of the results, becomes better as T is made smaller, and consé-
quently, as the number N is increased. As a result, in any application
of the deconvolution procedure, a compromise must be made between ac-
curacy and the size and complexity of the required computation. Né at-
tempt has been made to prepare specific computation techniques for the
implementation of the decgnvolution method, as that is not the purpose

of this work.
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The error analysis, which comprises the greater portion of this
work, is important because of the iterative nature of the deconvolution
method and the errors arising from the finite approximation (truncation)
and the inexact knowledge of the system characteristics prior to the be-
ginning of the computation. The results of the error analysis are expressed
as a set of indirect restrictions on the allowable variation of the input
signal to insure convergence of these propogated errors. Since these

restrictions are expressed as conditions applying to highly complicated

functions of the variation of the input signal, direct conditions applying
to the input signal could not be derived analytically, and the practical
application of these conditions in the general case is difficult. However,
certain simplifications are introduced by imposing restrictions on the

input function r(t).

In particular, if the input function r(t) is periodic with a
period kNT, the computation of the quantities required for the application
of the error convergence criteria is greatly simplified. In addition;
this restriction makes possible the application of the convergence cri-

teria prior to the deconvolution computation.

Finally, in the special case in which the system can be consid-
ered to be initially quiescent, the deconvolution computation is free of
the errors caused by inexact knowledge of the initial values of the weigh-
ting function. If in addition the number of sampling intervals N is chosen
to be such that g(NT) is much less than the precision of measurement, the
effect of truncation is negligible, and the deconvolution computation can

be carried out without the effect of these two types of inherent error.
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APPENDIX A

INVERSION OF THE [A] MATRIX

It is desired to obtain the inverse of the matrix [A] shown below

B 1
1 0 0 -=--0 0
8, 1 0 --- 0 0
A, 8, 1 --=-0 0
[a] = A3 A2 Al --=- 0 0 (A-1)
| l | ' I
| | | | |
I | | | [
AN_3 Ay, AN_5 - -1 0
Ay-2 AN-3 Aoy - A1

This matrix is unit lower triangulars6) thus its inverse is also
unit lower triangular and it can be obtained in a straightforward manner-

By definition of an inverse, if

1 0 0 --- 0 0
a 1 0 --- 0 o0
8, a 1 --= 0 O©
-1
| l | | |
| | | I |
&y-3 %y s - - - 1 0
L:ﬁN-z oy-3 SNy - - 8 1

-T1-
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then it follows that:
-1
[A] (A] = [1] (A-3)
or in detail
1 0 0 - == 0 1 0 0 - -0
- - - A - -
al 1 0] 0 1 1 0 0
a, & 1 --- 0 b, A1 -- 0 |_
| ! ] ' | | | '
| I | ' | | | |
| | | ' I | | l
®n-2 w-3 %wen T T 1_} by Byez By 7 - lJ
(1 0 o --- 0]
0 1 0 - == 0
0] 0 1 - - =0
| I | |
[ [ I I
| | | |
0 0o 0 ---1
From Eq. (A-3) it follows that
a, +4, =0, ora = - Al (A-L)
and
a.+a, A +A_ =0 or a.= - A_ + A2 (A-5)
2 1 1 2 ’ 2 2 1



Similarly,

or

the first

and thus

-T3-

a3 + a2 Al + al A2 + A3 =0
a. = - b +2AA - A3
3 3 182 - 44

In the same manner, multiplication of the fifth row of [A]-l into

column of [A] yields:

"
(@]

au + a3 Al + a2 A2 + al A3 + Au

2 2
- 3AlA2 + A2 + A

H o

ah = - Ah + 2 A1A3

Employing the same procedure, it can be shown that

(19)

(A-6)

(A-T7)

_ 2 2 3 5
a5 = - A5 + 2Ah Al + 2A3A2 - 3A3Al - 3A2Al + uAeAl - Al
(A-8)
a,= A, + 20 A, + 20 A -3AA2+A2-6AAA
6 6 51 472 471 3 37271
3 3 2,2 L 6
+ 1+A3Al +A5+ 6A2Al - SBA; + 8] (A-9)
2
a, = - A7 + 2hA + 2A5A2 - 3A5Al + 2AhA3
3 2 2 2
- 6A,+A2Al + 1+A)+Al - 3A3Al - 3A3A2 + 12A3A2Al
L 3 2,3 5 7
- 5A3Al + hAeAl - 10A2Al + 6A2Al - Al (A-10)



“Th-

= A8+2A7A +2A6A2'3A6l+2A5A3

[
0]
|
]

3
6A5A A, + hAsAl + Ah - 6AhA3Al

2 2 R 2
- 38,8, + 128,887 - S8 A - 384,

+ 6% Al + 12 A A%, - 2048 43

3 321 321
5 _ a4 3,2 2, h 26 .8
+ 6A3Al - A, - 10AZAL + 1588, - TAA; - &) (A-11)
The form of the expression for terms up to a,, may be found

in Reference 18 and for terms greater than a,_ in Reference 19.

10



APPENDIX B

BEHAVIOR OF THE ABSOLUTE SUM OF THE TRUNCATED VALUES OF g(t)

It was shown in Section II, that for any absolutely stable
linear system, g(t) will, in the general case, have the following form when

t is sufficiently large
g(t) = Kt" exp (-at) exp ijit) ' (B-1)

where n is a positive integer or zero; a,aﬁ_ are positive constants.

Under the assumption that g(t) is of the above form for

t > NI, it follows from Eq. (B-1) that, since |exp (3 aEt) | = 1,
Ig(t)l - g t" exp (-at) (B-2)
and
n
g | = K0 exp (-exr) (8-3)

Consequently the summation of the absolute values of the truncated
portion of g(t) is
o0 (o)
le |- x (x7)" exp (-akT) (B-1)

=N k=N

In order to evaluate Eq. (B-4) it is necessary to apply

(7)

Maclaurin's Integral Theorem
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To apply this theorem, the following must hold:

el _
Bl "

1 (B-5)

Substituting Eq. (B-3) into Eq. (B-5)

[(x+1)T]?  exp [-a(k+1)T]

< 1
(xT)® exp (-akT) -
and it follows that
(55 )" < exp ()
or
m (8 < & (-6)

If Eq. (B-6) is satisfied for all k > N, the hypothesis
of Maclaurin's Integral Theorem is satisfied and
oo (%)
(xT)" exp (-akT) < " x> exp (-aTx) dx (B-7)
k=N

exp (-aNT) | (onr)™+ n(anv?)™ Y+ ... + n!
- an+l P






e

For any finite n, the bracketed expression in Eq. (B-7) is of
less than exponential order in (aNT), and thus the term exp(-aNT) domi-

nates. Thus, for any'ﬁ > 0, there exists an integer P such that for any

N>P
exp Lol [(aN'I‘)n + n(aNm)™ ™t 4 Ll s n:} < £
a T
or co
CARR (2-8)
k=N

Thus, Eq. (B-8) states that for any absolutely stable linear system,

oo
% ng‘ is bounded and can be made arbitrarily small by choice of N.

k=N
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