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ABSTRACT 

FOREST COVER CHANGE IN NORTHEAST CHINA DURING THE PERIOD OF 1977-2007 

AND ITS DRIVING FORCES 

By 

Miaoying Shi 

Motivated by asking the question whether or not the large Natural Forest Protection 

Program (NFPP) had been effective in protecting the natural forests in northeast China. Ten 

adjacent counties were selected in Sanjiang Plain area of Heilongjiang, upon which region the 

NFPP had been heavily concentrated. The three chief hypotheses are:  (1) the region had undergone 

severe deforestation and forest degradation before the implementation of NFPP; (2) while the 

decline of forest cover might have been slowed down following the initiation of NFPP, it would 

take a longer time to see any significant gain; (3) farmland expansion is the dominant driver of 

deforestation, whereas population increase, economic growth, and management policy are among 

the more fundamental forces. Thus the specific tasks were set to detect the regional LUCC over a 

period of 30 years (1977-2007) and to explore the demographic, economic, political, and other 

determinants of the detected changes.  

Landsat images for six periods were acquired to derive the Land Use Land Cover (LUCC) 

information. With minor classes being merged, classification resulted in four classes—forestland, 

farmland, built-up land and other (wetland being a main component). Rule-based rationality 

evaluation and formal accuracy assessment both proved the classification results are acceptable. 

The detection results show that: (1) farmland and forestland are the two predominant classes of 

the regional land use; (2) farmland and built-up land increased persistently during the 30 years; (3) 

forestland suffered an extended, heavy loss before the end of last century and the decline slowed 

down significantly thereafter; and (4) “other” land declined continuously. Detailed examination 



 
 

based on extended conversion matrixes reveals that although forestland experienced the most loss, 

while wetland suffered the largest proportional reduction. Moreover, the calculated landscape 

diversity and integrity indexes show that the distribution of land-cover types became more uneven, 

and land-use patches became more interspersed.  

During the investigation the effects of various forces driving deforestation based on series 

of single equation models, it was found that directly taking farmland as regressor suffer problems, 

e.g. endogeneity. Thus instrument variables analysis and simultaneous equation modelling were 

employed to remedy the endogeneity problem and to incorporate the interaction and feedback 

effects between different land uses. 

The outcomes of using the instrumental variable (IV) method were much improved—the 

coefficients of NFPP is significant, implying that the program has played a positive role in 

protecting local forests. In addition, the coefficient of the “Forestland-Farmland-Wetland” system 

are generally consistent with those derived from the IV method. The area of wetland is negatively 

correlated with the area of forestland, indicating a mutual substitution in farmland expansion; 

likewise, farmland is negatively correlated with wetland. The significantly positive coefficient of 

built-up area in the farmland equation suggests a strong link between farming activities and 

residential construction. The significant negative coefficient of irrigation confirms that wetland 

loss is adversely affected by the change in local cropping structure. However, due to the limitations 

of small sample data, estimates could possibly suffer an upward bias while inferences are not 

reliable.  
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BACKGROUND, LITERATURE REVIEW, AND RESEARCH OBJECTIVE
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1.1 Introduction 

Forests in China used to play an important role in the national economy by supplying 

energy, lumber, and pulp and papers. Like all other sectors, the forest sector has undergone 

tremendous change over times (Yin 1998; Zhang 2001; Yin et al. 2003). In the northeast state 

forest region, the growth of logging and forest products manufacturing, and the expansion of 

agriculture, among other things, had depleted vast natural forests and led to worsening ecological 

conditions. Subsequently, the government was forced to take drastic policy measures to halt the 

deforestation and improve the forest condition in the region at the turn of the century (Zhang et al. 

2000; Xu et al. 2004).  

Nevertheless, some important questions concerning the resource dynamics and factors 

influencing them remain poorly addressed. These questions include: How severe the regional 

deforestation and forest degradation had become before the Natural Forest Protection Program 

(NFPP) was initiated at the end of the 1990s? Whether the forest condition has significantly 

improved ever since? And what are the major forces that have affected the forest dynamics over 

time? The goal of this study is to address these questions in a theoretically sound and practically 

relevant manner. Answering the above questions is not only worthwhile but also important in 

improving our knowledge of the resource dynamics and environmental consequences and their 

socioeconomic, policy, and other drivers, and in improving the effectiveness of policy making and 

implementation and, ultimately, the resource condition. In the following section, I will first briefly 

examine the major policy changes in China, with particular attention to the northeast state-owned 

forest region. Then, I will present a literature survey regarding the effects of the NFPP and the 

driving forces of the forest dynamics in the broader context of the land-use and land-cover change 
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in the region. Finally, I will outline the analytic tasks that I will undertake in this dissertation 

project and how the chapters are organized. 

1.2 Overview of the Forest History and Policy 

China’s forest sector, just like its overall economy, witnessed several stages of 

development since the new republic was founded in 1949 (Wang et al. 2007). A brief overview of 

the history is beneficial to a clear understanding of the socioeconomic and policy evolution and 

the associated changes of the resource conditions over time.  

After the People’s Republic of China was established in 1949, large tracts of primary 

natural forests remained in the northeast. In 1958, the national wide ‘Great Leap Forward’ 

campaign was launched, thousands of inefficient furnaces were built to produce steel and massive 

forests were destroyed (Zhang 2001). Several years later, state-owned forest bureaus were 

gradually set up in these forests and nearly 1 million forest workers were dispatched to forested 

areas to produce timber (SFA 2000; Zhao & Shao 2002). Prior to 1978, under the policy of 

“Prioritizing Food Production”, China emphasized grain production. At the same time, the Chinese 

Ministry of Forestry had tight control over the forests (Wang et al. 2004). Supplies from both the 

agricultural and forest sectors were underpriced in order to support the economic development. 

The state-owned forest companies in northeast China were under the government control, with 

little freedom related to decision making in forest management. Over-cutting became prevalent 

and regeneration was neglected. During the period of “Cultural Revolution” in 1966-1977, large-

scale deforestation and over-harvesting gradually depleted the natural forest resources in the region 

(Zhang et al. 2000; Li 2004). 
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Started in 1978, the economic reform and opening up policy have stimulated economic 

growth. In the agricultural sector, the introduction of Household Responsible System (HRS) 

provided incentives for households and thus increased land productivity as well as per-capita 

incomes. During 1981-1985, the HRS found its way into the forest sector. Due to the long rotation 

periods and high uncertainty of forestry policies, however, incentives of planting trees were 

inadequate (Yin 1998; Wang et al. 2007). Despite the repeated upward adjustments of timber 

prices by the government, the pricing signals failed to reflect societal needs during that time. In 

northeast China, the rapid national economic growth increased demands for its forest products. 

There were heavy logging activities. After years of experimenting, the country’s first Forest Law 

officially entered into force in 1984 (Zhang et al. 2000; Wang et al. 2004).  

In 1985, the compulsory production quotas and the dual-price system for agricultural 

products were abandoned. The HRS success in the agricultural sectors provided incentives for a 

series of policy reforms. Contract Responsibility System (CRS) was developed in the non-

agricultural enterprises in rural areas and Township and Village Enterprises (TVEs) emerged under 

contract with the local administrative authorities (Hyde et al. 2003).  Disparities between 

household incomes increased. In the forest sector, industries producing wood products and pulp 

and paper grew rapidly in the TVEs. One year after the Forestry Law was enacted, the logging 

quota system was introduced by the Ministry of Forestry (Wang et al. 2004). In northeast China, 

the government relaxed its monopolistic role in most state-owned enterprises but continued to 

control most capital investment decisions. Prices still suffered from distortion in the forest sector, 

with forest rents arbitrarily captured by downstream manufacturers. 
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Beginning in 1991, some state-owned enterprises were privatized and some were shut 

down. Timber prices became mostly market determined and household incomes continued to 

increase (Yin et al. 2003). In 1989, the Ministry of Forestry reinforced the logging quota system 

and required that forest growth must exceed timber removal (Zhang et al. 2000; Yu et al. 2011). 

As a result of a series of reforms in the administrative hierarchy, the state-owned enterprises in the 

northeast China became more autonomous. Large forest industry groups emerged in the early 

1990s; with reduced government control, forest companies were more flexible with responding to 

market signals and thus improved economic efficiency.  Nonetheless, excessive cutting and 

deforestation continued. According to Yu et al. (2011), about 50% of the matured stands in the 

northeast disappeared in less than 20 years, with stocking volume falling from 1660 million m3 in 

1981 to 860 million m3 in 1998. In Heilongjiang province, logging beyond quota limits was most 

severe, reaching 843,000 m3, or 31% beyond the allowable quota (MOF 1997). Based on Jiang et 

al. (2011),  the percentage of mature stock in timber forests in Heilongjiang dropped from 65.6%  

in 1984 to 3.2% in 2004. Muldavin (1997) noted that logging in Heilongjiang caused serious soil 

erosions, and the “forest ‘reserves’ consist of barren and rocky yellow subsoils. The slopes, still 

classified as protected forests, are barren and eroded.”  

The booming economy along with population expansion has put great pressure on the 

natural resources and ecosystems. Deforestation, wetland destruction, and farmland degradation 

have caused severe problems of soil erosion, water shortages, dust storms, and habitat losses over 

the last few decades (Liu and Diamond 2005; Xu et al. 2006). To combat these problems, the 

Chinese government has launched several ecological restoration programs since the late 1990s, 

including the Natural Forest Protection Program (NFPP) and the Sloping Land Conversion 

Program (SLCP) (Yamane 2001b; Yin & Yin 2010). Among those huge ecological restoration 
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programs, the NFPP is recognized as one of the largest in terms of geographic scope, financial 

investment, and number of people impacted (Zhang et al. 2000). The NFPP is also regarded as a 

far-reaching historic step toward protecting the natural forest resources and carrying out strategic 

changes in forestry management. It was initiated in the wake of the huge floods of 1998 in the 

Yangtze River basin and some major waterways in the northeast (Xu et al. 2005). It covers 17 

provinces with an initial investment commitment of 96.4 billion (US$14.1 billion) (SFA 2000). 

The specific goals of the NFPP are to: (1) reduce commercial timber harvests in the natural forests 

from 32 million m3 in 1997 to 12 million m3 by 2003; (2) conserve nearly 90 million ha of natural 

forests; and (3) afforest and revegetate an additional 8.7 million ha by 2010 by means of mountain 

closure, aerial seeding, and artificial planting (Liu 2002).  

Now the NFPP has entered into its second phase, under a total budget of 244.02 billion 

yuan (US$38.5 billion). According to the decision made by the State Council, 219.52 billion yuan 

would be invested by the central government and 24.5 billion by local governments. It is hoped 

that by 2020, the forestland, stock volume, and carbon sequestration would increase, respectively, 

by 780 million mu (or 52 million hectares), 1.1 billion cubic meters, and 416 million tons (NFPP 

Management Center 2011).  

1.3 Existing Studies of the NFPP 

There have been studies of the effects, as well as the effectiveness, of the NFPP. Xu et al. 

(2006a) summarized its preliminary economic impacts using Qinhe forest bureau (in Heilongjiang) 

as an example. Their descriptive statistics showed that from 1998 to 2001, logging and processing 

revenues together with the local tax incomes had sharply declined. Meanwhile, along with the 

increased government investments, the earnings of employees in the forest bureau improved while 
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the local farmers experienced a large decline in their income. As this study was published soon 

after the NFPP was initiated, the data were insufficient to support a more comprehensive analysis. 

Later, Zhang et al. (2011) built a panel dataset based on 35 forest farms in northeast China in 2000, 

2003, and 2006. The study explored the forest condition change with respect to the new plantation 

area, the area under protection, and the volume of harvested timber. Their results indicate that the 

NFPP policy measures, like afforestation, forest protection, and forest management, all have had 

positive effects. A shortcoming of the study lies in that it assumes the geographic and 

socioeconomic characters are homogenous in northeast China.  

In response, Huang et al. (2010) relaxed the homogeneity assumptions and concluded 

differently. They formulated three regression equations in a structural model to explore the causes 

of forest changes in northeast China from 1985 to 2005. They claimed that the socioeconomic 

factors, like total population, rural population, and GDP, play an influential role in influencing 

forest dynamics. Also, the geographic and meteorological indicators, like terrain slope, elevation, 

and climate conditions, are important factors leading to the forest changes. This study provides 

some interesting results, but its analytical framework is problematic. For example, the whole 

model is not predicated on any existing theory, and the variable selection seems ad hoc.  

A more rigorous model is developed by (Mullan et al. 2009). This study employed two-

period survey data from the collective forest areas to estimate the NFPP impact on local household 

income and labour decision. They took the NFPP as a natural experiment, using the difference-in-

differences method to compare the changes between households in the NFPP and non-NFPP areas. 

Their results suggest that the NFPP has had a negative impact on the income of timber harvesting. 

And more importantly, the NFPP has stimulated more off-farm labour supply in the NFPP areas 

than in the non-NFPP areas and made a positive impact on overall household income. However, 
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data based on two points of time (1997 and 2004) would not capture the whole process of policy 

implementation. An inherent problem lies in the recall data for the local situations before the 

introduction of the NFPP. 

Jiang et al. (2011) conducted a more convincing analysis, which integrated theoretical 

analysis and empirical estimation. They analysed the harvest and investment behaviour of the 

state-owned forest enterprises (SOFEs) under the utility maximization assumption and built a 

panel dataset based on 75 state-owned forest enterprises in northeast China during 1980-2004 to 

test their hypothesis. Their results demonstrate that policy measures can have positive effects on 

the development of forest resources through changing the SOFEs managerial behaviour. Moreover, 

due to the inability of making significant changes related to employee adjustment and social 

services provision, the SOFEs “have had relatively few effects on harvest and investment decisions, 

and on development of the forest resources” (Jiang et al. 2011). 

Previous studies have provided useful background information and interesting case 

descriptions related to the NFPP implementation and impacts. Most research findings indicate that 

the NFPP has positive impacts on improving local environment and farmers’ income, as well as 

infrastructure and public services. However, their analyses are hardly comprehensive; various 

aspects of the regional social and natural environments were not clearly examined. First, most 

papers were based on forest census statistics, while these statistics are generally viewed as being 

less comprehensive and of lower quality. Thus, rigorous statistical analyses are uncommon (Xu et 

al. 2005). Second, efforts of studying the NFPP from the perspective of land-use and land-cover 

change (LUCC) are limited, and long-term comparisons of the forest dynamics induced by policy 

and other forces are rare. Also, insufficient attention was paid to the dramatic forestland change 

during the last a few decades, and it still remains unclear whether the natural forests have indeed 
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been well protected and what are the factors that have led to their depletion and recovery, if any. 

These observations have motivated my study. 

1.4 Review of LUCC in Northeast China 

As forestland is part of overall land use and forest cover is part of the regional land cover, 

it is natural to study forest cover change through the typical LUCC lens.1 LUCC is a complex 

process combining natural and social systems through the linkage of human interventions at 

different temporal and spatial scales (Lambin et al. 2001b; Turner et al. 2008b). Consensus exists 

in literature that human demand induced social driving forces play a dominant role in LUCC 

process, and the conversions between farmland, forestland, wetland, etc. are one of the important 

external display of human activities (Foley et al. 2005; Lambin & Meyfroidt 2011). 

LUCC has become a global research thrust as the land surface processes affect ecosystem 

services and human wellbeing (Foley et al. 2005; Lambin & Geist 2008). It has greatly influenced 

the soil carbon storage (Post & Kwon 2000; Fargione et al. 2008) and greenhouse emissions 

(Searchinger et al. 2008), and has contributed to watershed degradation (Sliva & Williams 2001; 

Tong & Chen 2002), habitat fragmentations (Wang et al. 1997; Fischer & Lindenmayer 2007), and 

biodiversity losses (Jetz et al. 2007; Kleijn et al. 2009). Meanwhile, the current demographic and 

economic trends will possibly lead to further degradation of the environmental conditions 

(Millennium Ecosystem Assessment 2005). Commonly, land use is studied at the regional/local 

scale. LUCC studies tend to implement scenario-based analyses to identify critical land 

                                                           
1 “Forest cover” refers to the land present with a specified density of trees, not to a land use pertaining to 

forestry, nor to a continuous representation canopy density (Hansen et al. 2010; Kim et al. 2014). Lund (2006) shows 

that more than 800 definitions of forests and wooded areas are used around the world. The Food and Agriculture 

Organization (2015) states that a forest has “a minimum threshold for the height of trees (5 m), at least 10 percent 

crown cover, and a minimum forest area size (0.5 hectares).”  
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conversions, and sometimes predict the short- and long-term land-use dynamics. Occasionally, 

they also explore the proximate and underlying causes (Verburg et al. 2002; Foley et al. 2005). 

Regional land use studies overview present and past land use histories, recognizing how land uses 

are interconnected and how they change under human interferences. Developing and implementing 

regional land study can help foster a vision of land use dynamics in human-dominated ecosystems 

and shed light on better future land use managements in a fast-developing environment (Foley et 

al. 2005). 

China’s forests are unevenly distributed and generally divided into four geographic regions: 

the northeast state forest region, the northern plains agroforests, the southern collective forest 

region, and the southwest state forest region (Harkness 1998; Zhang et al. 1999). Among the four 

regions, the northeast state forest region, which covers Heilongjiang, Jilin, and Liaoning provinces, 

and the eastern part of Inner Mongolia autonomous region, has the largest natural forests (Zhang 

et al. 2000; Yu et al. 2011). Within in the region, Heilongjiang, sitting on one of the world's three 

major black soil zones, is a resource-rich province and used to be the national base of timber and 

grain. It  has the name of “the great northern granary” (Muldavin 1997) and owns the highest 

percentages of forested land area (40.7 %) (SFA 2005; Yu et al. 2011). The province has gone 

through extensive landscape changes during the past decades, which has in turn put great pressure 

on its natural resources and ecosystems. Deforestation, wetland destruction, and farmland 

degradation have caused severe problems of soil erosion, water shortages, and habitat losses over 

the last several decades (Xu et al. 2006a; Yin & Yin 2010; Jiang et al. 2011).  

While there have been numerous LUCC studies of China, not many of them have been 

done in the northeast in general, and in Heilongjiang in particularly. Song et al. (2009b) mapped 

the LUCC in the Amur River basin using MODIS 250 m normalized difference vegetation index 
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(NDVI), land surface water index (LSWI) time series data in 2001. The study suggested this type 

of time series data has great potential for large-region LUCC monitoring, but the results lacked 

sufficient confidence as the spatial resolution was too coarse. Tang et al. (2005) used Landsat 

images of three periods (1990, 1996 and 2000) to capture the LUCC trajectory of Daqing in 

Heilongjiang. It is found that the most significant change is wetland degradation and fragmentation, 

whereas grassland was converted to agriculture.  

The study of Huruyama et al. (2009) was based on two-period JERS-1 SAR images (1992 

and 1996) in the middle reaches of the Amur River basin. Their results showed that cropland was 

increasing on all of the geomorphologic landforms, mainly at the expense of wetland on the alluvial 

plain. Wang et al. (2006) used Landsat MSS and/or TM imagery in three periods of time (1980, 

1996 and 2000) to estimate the area changes and the transition of land-use types in the Sanjiang 

Plain area. The conclusion is similar to that of Huruyama et al. (2009) in terms of the general 

LUCC trend. Wang et al. (2006) also examined the impact of land-use change on variation in 

ecosystem services. They found that the total annual ecosystem service value in the the Sanjiang 

Plain declined by 40% between 1980 and 2000 and this large decline was mainly attributed to the 

53.4% loss of wetland. A follow-up paper by the same team (Wang et al. 2009) estimated the 

impacts of land-use change on regional vegetation productivity in the area. They concluded that 

the considerable increase of cropland area came mainly from the reclamation of forestland, 

grassland, and wetland during 2000-2005. Also, they pointed out that the regional LUCC 

negatively impacted carbon sequestration and food supply. 

Because the study areas were selected in the alluvial lowland and the main attention was 

paid to the wetland, these earlier works are not necessary complete or systematic. Meanwhile, 

there have been few studies of forestland, despite its importance in Heilongjiang. Further, the 
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NFPP and other ecological restoration efforts could have exerted great influence on LUCC in this 

region after 2000. Unfortunately, most of the existing studies dealt with changes before 2000 (Song 

et al. 2009, Huruyama et al. 2009, Tang et al. 2005, and Wang et al. 2006). LUCC in the region 

after 2000 has rarely been examined. Therefore, it is interesting to detect the induced land cover 

change of these initiatives in a timely manner. To capture the reduction of forestland and the 

expansion of cropland, I will go back as far as the late 1970s when continuously and consistently 

archived Landsat images became available. This will put the forest degradation, deforestation, and 

the recent implementation of the NFPP in an appropriate historical context.  

1.5 Objectives and Organization 

With a focus on forestland, the primary objectives of this study are to examine the 

underlying land conversion trends in the Sanjiang Plain region of Heilongjiang and to investigate 

the driving forces of LUCC in general and forestland dynamics in particular. Therefore, the two 

tasks of this dissertation project are: (1) detecting LUCC dynamics in northeast China for the past 

30 years; and (2) exploring the demographic, economic, political, and other determinants of these 

changes. My hypotheses are: (1) the region had suffered severe deforestation and forest 

degradation before the Natural Forest Protection Program (NFPP) was initiated; (2) while the 

decline of forest cover might have been slowed down following the NFPP implementation, it 

would take a longer time and more effective management measures to see any significant gain in 

it; and (3) farmland expansion is a direct driver of deforestation, and population increase, economic 

growth, and management policy are among the more fundamental drivers.    

The first task, detecting LUCC dynamics, will be carried out in the next chapter, based on 

satellite image interpretation using Eardas Imaging and GIS. The general LUCC trends and the 
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internal land-use interactions will be examined. While I will pay particular attention to LUCC 

since the late 1990's when various forest and wetland protection and restoration projects were 

launched, I will trace the regional LUCC back to the late 1970's. By doing so, I will be able to 

obtain a much longer LUCC series, allowing a more thorough analysis of causal factors and 

feedback effects in later chapters. 

The second task, discerning the LUCC driving forces, will be based on multiple modeling 

efforts informed by a systematic literature review in Chapter 3, as well as a careful characterization 

of the regional land-use situation. Using a panel dataset that integrates LUCC information and 

observations of other social-ecological variables, I will explore various modeling schemes and 

estimation techniques. The important direct and indirect natural and human-induced causes will 

be investigated with theoretically sound and empirically practical approaches. Specifically, I will 

develop reduced-form single-equation models first in Chapter 4 and then more sophisticated 

strategies, such as instrumental variable method and system of simultaneous equations, in Chapter 

5 to explore the LUCC driving forces in general and those of the forestland change in particular.  

It is expected that this study will improve the understanding of the dynamics and driving 

forces of the regional LUCC process and that the integration of multivariate analysis and careful 

specification of the relationship between the LUCC and its primary drivers will lead to more 

rigorous findings. Certainly, this will shed light on the important policy question of how to improve 

the regional land use and environmental management. 
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LAND USE AND LAND COVER CHANGE IN HEILONGJIANG
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2.1 Introduction  

China’s booming economy, along with its population expansion, has put great pressure on 

its natural resources and ecosystems. Deforestation, desertification, wetland destruction, and 

farmland degradation have caused severe problems such as soil erosion, water shortages, dust 

storms, and habitat losses over the last few decades (Liu & Diamond 2005; Xu et al. 2006b; Yin 

& Yin 2009). To combat these problems, the Chinese government has launched several ecological 

restoration programs since the late 1990s. One of these programs is the Natural Forest Protection 

Program (NFPP), which I have described in Chapter 1. The tremendous efforts to date 

notwithstanding, it remains questionable whether the existing natural forests have been effectively 

protected under the NFPP. To address this question, I have selected a primary area of natural 

forests in northeast China that experienced heavy logging and farming expansion in the three 

decades prior to the program as the focus of this study (Yin 1998).  

While there have been many studies of China’s land use/land cover change (LUCC), few 

of them have been done in the northeast, especially the forest ecosystems in Heilongjiang. As 

discussed in last chapter, a large portion of the literature has concentrated on wetland in the region, 

with study sites mostly located in the Sanjiang and Armu river basins (Tang et al. 2005; Wang et 

al. 2006; Song et al. 2009a). These studies have concluded that wetland degradation and 

fragmentation was widespread in the region, but they have not provided sufficient insight into 

changes in forestland. Also, most of the existing studies dealt with changes that occurred before 

the year 2000, which means that they were not able to consider the NFPP and other ecological 

restoration efforts that could have potentially influenced the regional LUCC in recent years (Zhang 

et al. 2003; Liu et al. 2004; Tang et al. 2005; Wang et al. 2006; Song et al. 2009a; Wang et al. 2009; 
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Gao & Liu 2011). So, it is interesting and beneficial to detect the land cover change induced by 

these initiatives in a timely manner.  

To capture the early reduction of forestland and the expansion of farmland, I will go back 

as far as the late 1970s, when continuously archived Landsat images became available. 

Considering both relevance and feasibility, I have selected 10 adjacent counties in Heilongjiang 

province as my study site (see Figure 2.1). Heilongjiang lies in the corner of northeast China 

bordering Russia by the Amur River in the north and the Wusuli River in the east. Forests in 

Heilongjiang are made up of three large tracks—the Yichun Forest Region, the Mudanjiang Forest 

Region, and the Daxinanling Forest Region—covering nearly 36% of the province’s total land area. 

The 10 counties selected for this study are located in the Mudanjiang Forest Region. They 

are: Fangzheng, Yilan, Huachuan, Huanan, Jixian, Shuangyashan, Qitaihe, Suibin, Youyi and Boli. 

The whole area ranges from 128.15°-132.33°E and 45.32°-47.45°N, and covers about 29,029 

square kilometers. Relatively flat and low in altitude, this area includes a large part of the Sanjiang 

Plain, which consists of alluvial deposits from the Amur, Songhua, and Wusuli rivers. The Songhua 

River has two primary tributaries—the Mudan and Mayi rivers. The study site features a temperate 

continental monsoon climate. Winters are long and bitter, with an average temperature of −31 to 

−15°C in January, and summers are short and warm with an average temperature of 18 to 23°C in 

July. The annual rainfall ranges from 400 to 700 millimeters, concentrated mostly in summer. The 

main soils are black soil (Luvic Phaeozem), chernozem (Haplic Chernozem), and meadow soil 

(Eutric Vertisol). Agricultural production is mainly based upon such crops as rice, soybeans, maize, 

and wheat. Cash crops include beets, flax, and sunflowers. 
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Figure 2.1 Study site in Heilongjiang, northeast China 

 

The most common tree species in the study site are Dahurian larch (Larix gmelinii), white 

birch (Betula papyrifera), and Mongolian oak (Quercus macrocarpa). Like all other natural forests 

in China, forests in this region have undergone tremendous changes over time. Massive 

deforestation in Heilongjiang started in the 1920’s following the construction of the “Mid-eastern” 

Railway. According to Yin (1998), large tracts of primary natural forests still remained after the 

People’s Republic of China was established in 1949, but in order to spur the young economy, over-

cutting became prevalent without enough incentive and autonomy from local forest farms to 

manage and utilize the resources efficiently. In the meantime, population and employment 

expansion in these forest regions led to more fuelwood consumption, housing construction, and 

land clearing. (Yamane 2001a) estimated that timber extraction from northeast China accounted 

for more than 40% of the total national log production in the 1970s and over 20 percent thereafter. 
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2.2 Data and Methodology 

2.2.1 Pre-Classification Preparations and Classification Processes  

For my study, Landsat images for six periods were acquired, covering the time span of the 

late 1970s to 2007. They include two sets of MSS images for the late 1970s (roughly 1977) and 

1984; three sets of TM images for 1993, 2004, and 2007; and one set of ETM+ images for 2000. 

The images for the first four periods were downloaded from the United States Geological Survey 

website (U.S. Department of the Interior 2009). The images for 2004 were ordered from the China 

Remote Sensing Satellite Ground Station (Chinese Academy of Sciences 2008). For each period, 

there are three Landsat scenes to cover the entire study area. Notably, due to quality concerns, 

images for a given year may not be useable, in which case, a common practice is to assemble them 

around a given year as closely as possible. Also, due to the low quality of ETM+ images for 2004 

and 2007, TM images are used instead. 

            The images were first georeferenced and rectified by the GLCF to UTM projection zone 

52 and WGS84 datum. Based on the image-to-image registration method, I manually geo-encoded 

and matched the 1984 MSS images and the 2004 ETM+ images one by one using a second order 

polynomial transformation with an average root mean square error (RMSE) of less than 0.5 pixel 

units. Since atmospheric influences are acute to multi-temporal studies of land cover change, I 

employed the cosine approximation model (COST) to correct the ETM+ and TM images (Chavez 

1996; Song et al. 2001), and Dark-Object-Subtraction (DOS) method to correct the MSS images 

(Chavez 1996). Then, the geometrically corrected and radiometrically calibrated images were 

cropped to the extent of the study area.  
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           Before classification, the Principal Component Analysis (PCA) method was used to account 

for over 98% of the variance (Deng et al. 2008). Then, the PCA-enhanced images were first 

classified using unsupervised classification. Initially, a modified version of the U.S. Geological 

Survey Land Use/Land cover Classification System was employed (Anderson et al. 1976), which 

includes nine classes—farmland (dry land and paddy land), forestland (dense forest and sparse 

forest), grassland (dense grass and sparse grass), water body, built-up land, and unused land. 

Fieldwork was carried out from May to June 2010 to gain better knowledge of the study area and 

improve the accuracy of the LUCC maps obtained from my classification. During the classification 

process, ground truth knowledge can help to identify what is actually present and group the various 

sub-categories together into land use categories more accurately. Still, as the classification went 

on, I found that some classes of land use, like grassland, are quite difficult to be identified and 

differentiated from unused land. Finally, I decided to merge those minor categories because they 

are not the focus of this study.  These minor categories of land use, including water bodies, wetland, 

and grassland add up to less than 4% of the whole region. As a result, the classes of land use 

examined in this study were reduced to four—farmland, forestland, built-up area, and “other.” 

2.2.2 Post-Classification Analysis 

          A traditional “conversion matrix”, which is also called a “transition matrix”, is commonly 

employed to demonstrate the land use transitions. Rows in a conversion matrix display the 

categories of the staring period, and the columns display the categories of the ending period. 

Entries on the diagonal line indicate the persistence of each category, while those off the diagonal 

line indicate transitions from the row category to the column category.  
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Pontius et al. (2004) pointed out a deficiency underlying the traditional conversion matrix. 

For example, if 12.9% of the total land area was transformed from forest to farmland or built-up 

land (or F&B), does this indicate that the most systematic process of the land-use transition is from 

forestland to F&B? Pontius et al. (2004) demonstrated that it is not necessarily so. To answer the 

question properly, they proposed to consider the size of each land use category. For a particular 

category of land use, the changes of land-use are mainly about “gains” and “losses”. Pontius et al. 

(2004) calculated the expected value representing a random process of gain based on Equation 2.1 

below. This equation assumes the gain of each land-use category is fixed, and this gain is then 

distributed across other categories according to the relative proportions of other categories at time 

1 (the starting time point of land-use change in the matrix); that is, the gain in each column is 

distributed among the off-diagonal entries within that column. In Equation 2.1, i stands for row 

and j for column, so Pi+ stands for the total percentage of in row i and P+j for the total percentage 

in column j.  

𝐺𝑖𝑗 = (𝑃+𝑗 − 𝑃𝑗𝑗)(
𝑃𝑖+

∑ 𝑃𝑖+
𝐽
𝑖=1,𝑖≠𝑗

)                                             (Eq. 2.1) 

Similarly, Pontius et al. (2004) generated a table for losses of different classes of land 

use. The expected percentages of the loss in a category were random, as given by  

𝐿𝑖𝑗 = (𝑃𝑖+ − 𝑃𝑖𝑖)(
𝑃𝑖+

∑ 𝑃𝑖+
𝐽
𝑖=1,𝑖≠𝑗

)                                             (Eq. 2.2) 

where 𝐿𝑖𝑗 represents the loss on the off-diagonal cells in conversion matrix. Eq. 2.2 assumes the 

loss in each category of land use is fixed, and distributes the loss across other categories according 

to the relative proportions of the other categories at time 1.  In my study, I chose to use time 1 

where Pontius et al. (2004) calculated the loss based on the relative proportion of other categories 
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at time 2. This is because when one category is replaced by a combination of other categories 

through random processes, it should be based on how those categories populate the landscape in 

situ, not on the landscape structure in future. These extended conversion matrixes of specific gains 

and losses provide more detailed information than one can get from the conventional conversion 

matrixes.   

Another difficulty with the common conversion matrixes is that it is possible for changes 

to occur within a class of land use while its aggregate quantity remains the same, which is not 

represented clearly in this type of matrixes. For example, forests could be cleared in some places 

while the same amount of forest could be gained elsewhere.  (Pontius Jr et al. 2004) called this 

kind of change a “swap.” Thus, swap (locational change) and net change (quantity change) together 

represent a composite of the total changes of LUCC transitions. 

 

2.3 Results 

Two accuracy assessment methods were employed to validate the classification results—

the rule-based rationality evaluation technique (Liu & Zhou 2004) and the spatially balanced 

sampling method (SBS) (Foody 2009a). The assessment results demonstrate that my classification 

results are fairly robust and accurate. Appendix A and Appendix B reports the assessment details. 

Figure 2.2 shows the trajectories of the changes in the four land-use classes from 1977 to 2007. 

Farmland and built-up land increased dramatically, while forestland and the other lands declined 

sharply during the 30 years.  Examining these changes in more detail, in 1977 there were only 

14,301 km2 of farmland and built-up land combined; this figure increased to 17194 km2 by 2007. 

Forestland experienced a dramatic decrease during the period. In 1977, forestland amounted to 

12,294 km2, but it shrank to only 9,509 km2 in 2007, showing a more than 20% loss. After the 
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introduction of the NFPP, the rate of forestland decrease became much smaller, suggesting a 

stabilization of forest cover. 

Figure 2.2 LUCC trajectories during 1977-2007 

 

Note: The “other” category, including water bodies, wetland, and grassland, decreased persistently 

during the 30-year study period. 

   

Tables 2.1 and 2.2 are the extended conversion matrixes with specific gains and losses. Due 

to a confusion between farmland and built-up land during the MSS data classification process, I 

merged these two classes for the period of 1977-1984 for a clearer presentation. Each block in 

these tables contains four values, listed vertically: (1) the observed value, (2) the expected value, 

(3) the difference between the observed and expected value, and (4) the percentage ratio of 

difference calculated by dividing the difference by the expected amount of land conversion and 

multiplied by 100 percent.  
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Table 2.1 Percentages of land-use changes during 1977-2007 based on Equation 2.1 

(The expected gain represents a random process) 

  2007 
1977 Total  Losses 

  F&B Forest Other 

1977      

F&B 

47.40 2.76 0.45 50.62 3.22 

47.40 2.96 0.31 50.67 3.26 

0.00 -0.20 0.15 -0.05 -0.05 

0.00 -6.62 48.07 -0.10 -1.51 

Forest 

12.86 29.39 0.11 42.35 12.97 

14.31 29.39 0.26 43.95 14.56 

-1.45 0.00 -0.15 -1.60 -1.60 

-10.13 0.00 -57.45 -3.63 -10.96 

Other 

3.82 0.61 2.60 7.03 4.43 

2.37 0.41 2.60 5.38 2.79 

1.45 0.20 0.00 1.65 1.65 

61.05 47.71 0.00 30.57 59.09 

    64.09 32.76 3.16 100.00 20.61 

2007 

Total 
64.09 32.76 3.16 100.00 20.61 

      0.00 0.00 0.00 0.00 0.00 

 0.00 0.00 0.00 0.00 0.00 

Gains 

16.68 3.37 0.56 20.61  

16.68 3.37 0.56 20.61  

0.00 0.00 0.00 0.00  

0.00 0.00 0.00 0.00   

Note: (1) Due to the coarse image resolution, there was confusion regarding farmland and built-

up land in 1977, so these two classes were merged into “F&B” to allow for a more meaningful 

comparison between different time periods. (2) The bold figures are the observed percentages, and 

the regular figures are the expected percentages under the assumption that the loss to each category 

is random; the figures in both bold and italics are the difference between the observed and the 

expected values; and the figures in italics only are the result of the differences divided by the 

expected values, multiplied by 100 percent. 
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Table 2.2 Percentages of land-use changes during 1977-2007 based on Equation 2.2 

(The expected loss represents a random process) 

  2007 1977 

Total  
Losses 

  F&B Forest Other 

1977           

F&B 

47.40 2.76 0.45 50.62 3.22 

47.40 2.76 0.46 50.62 3.22 

0.00 0.01 -0.01 0.00 0.00 

0.00 0.21 -1.29 0.00 0.00 

Forest 

12.86 29.39 0.11 42.35 12.97 

11.39 29.39 1.58 42.35 12.97 

1.47 0.00 -1.47 0.00 0.00 

12.93 0.00 -93.13 0.00 0.00 

Other 

3.82 0.61 2.60 7.03 4.43 

2.41 2.02 2.60 7.03 4.43 

1.41 -1.41 0.00 0.00 0.00 

58.51 -69.93 0.00 0.00 0.00 

2007 

Total  

64.09 32.76 3.16 100.00 20.61 

61.20 34.16 4.64 100.00 20.61 

2.88 -1.41 -1.48 0.00 0.00 

4.71 -4.11 -31.88 0.00 0.00 

Gains 

16.68 3.37 0.56 20.61  

13.80 4.78 2.04 20.61  

2.88 -1.41 -1.48 0.00  

20.90 -29.43 -72.51 0.00   

Note: See the note beneath Table 2.1 for definitions of the different values. 

 

A positive difference between expectation and observation indicates that the category in 

that row lost more to the category in the column than would be predicted by a truly random process 

of gain (or loss). Obviously, the two largest categories of land use are F&B and forest in the region. 

Forestland experienced the largest loss—12.97% of the total landscape—while F&B had the 

largest gain—16.68% of the total landscape. During 1977-2007, 20% of the study site underwent 

land use changes. From Tables 2.1 and 2.2, I further generated a summary of the systematic land-

use transitions during 1977-2007, as shown in Table 2.3. In the region, farmland and other land 

converted mutually, with farmland having gained more from other. Even though a large amount of 
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forestland was converted into farmland, it appears that forestland was not the first option for 

farmers to reclaim.  

Table 2.3 Land-use transitions, 1977-2007 

LUCC 

transition 

 

 

Important 

Transition Diff Diff % Interpretation 

1977 2007 

Gains 

F&B Other 0.15 48.07 Other gains, it replaces F&B more 

Forest F&B -1.45 -10.13 F&B gains, it replaces forest less  

Forest Other -0.15 -57.45 Other gains, it replaces  forest less 

Other F&B 1.45 61.05 F&B gains, it replaces other more 

Other Forest 0.20 47.71 Forest gains, it replaces other more 

Losses 

Forest F&B 1.47 12.93 Forest loses, F&B replaces it more 

Forest Other -1.47 -93.13 Forest loses, other replaces it less 

Others F&B 1.41 58.51 Other loses, F&B replaces it more 

Others Forest -1.41 -69.93 Other loses, forest replaces it less 

Note: (1) “Diff” is the difference between observed and expected values. “Diff %” is the percentage 

of difference calculated in the previous column divided by expected amount of land conversion. 

F&B stands for the combination of farmland and built-up area. (2) In the interpretation column, 

“more” means “more than as expected and “less” means “less than as expected”. 

 

 

To understand the LUCC before and after the introduction of the NFPP, I selected two time 

periods—the period of 1993-2000 and the period of 2000-2007—in my assessment.  Due to the 

better quality of TM/ETM images for these periods, built-up land can be more easily differentiated 

from farmland, and thus comparisons can be made more thoroughly. Also, to save space, I merged 

the “gain” and “loss” conversion matrixes. Table 2.4 shows the matrix for the period 1993-2000, 

and that for the period of 2000-2007 is displayed in Table 2.5.  
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Table 2.4 Percentages of land change in terms of gains and losses, 1993-2000 

  2000 

1993 Total  Losses   Farm   Forest  Built-up Other 

1993 Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss 

Farm 

50.25 3.74 0.80 1.34 56.11 5.87 

50.25 50.25 3.45 4.76 0.55 0.45 0.84 0.66 55.10 56.11 4.85 5.87 

0.00 0.00 0.28 -1.02 0.24 0.35 0.49 0.67 1.02 0.00 1.02 0.00 

0.00 0.00 8.24 -21.48 43.72 77.90 58.37 101.58 1.85 0.00 21.01 0.00 

Forest 

5.66 29.76 0.07 0.08 35.58 5.82 

6.17 5.07 29.76 29.76 0.35 0.30 0.54 0.45 36.81 35.58 7.05 5.82 

-0.50 0.59 0.00 0.00 -0.28 -0.23 -0.45 -0.36 -1.23 0.00 -1.23 0.00 

-8.14 11.70 0.00 0.00 -79.29 -75.95 -84.24 -81.17 -3.34 0.00 -17.46 0.00 

Built-up 

0.38 0.02 2.93 0.01 3.34 0.42 

0.58 0.24 0.21 0.15 2.93 2.93 0.05 0.02 3.76 3.34 0.84 0.42 

-0.20 0.14 -0.18 -0.13 0.00 0.00 -0.04 -0.01 -0.42 0.00 -0.42 0.00 

-33.89 58.99 -88.57 -84.61 0.00 0.00 -83.23 -60.39 -11.17 0.00 -50.32 0.00 

Other 

1.56 0.20 0.09 3.11 4.96 1.85 

0.86 1.09 0.31 0.69 0.05 0.06 3.11 3.11 4.33 4.96 1.21 1.85 

0.70 0.47 -0.10 -0.49 0.04 0.02 0.00 0.00 0.63 0.00 0.63 0.00 

81.25 42.93 -33.47 -70.63 74.19 31.21 0.00 0.00 14.62 0.00 52.12 0.00 

2000 

Total  

57.85 33.72 3.88 4.54 100.00 13.95 

57.85 56.65 33.72 35.36 3.88 3.74 4.54 4.25 100.00 100.00 13.95 13.95 

0.00 1.20 0.00 -1.64 0.00 0.14 0.00 0.30 0.00 0.00 0.00 0.00 

0.00 2.12 0.00 -4.64 0.00 3.72 0.00 7.00 0.00 0.00 0.00 0.00 

Gains 

7.61 3.96 0.95 1.43 13.95  

7.61 6.40 3.96 5.60 0.95 0.81 1.43 1.13 13.95 13.95   

0.00 1.20 0.00 -1.64 0.00 0.14 0.00 0.30 0.00 0.00   

0.00 18.80 0.00 -29.27 0.00 17.09 0.00 26.23 0.00 0.00   
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Table 2.5 Percentages of land change in terms of gains and losses, 2000-2007 

  2007 

2000 Total Losses   Farm   Forest  Build-up Other 

2000 Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss 

Farm 

52.84 3.79 0.96 0.26 57.85 5.01 

52.84 52.84 3.70 4.01 0.65 0.46 0.20 0.54 57.39 57.85 4.55 5.01 

0.00 0.00 0.09 -0.22 0.31 0.50 0.06 -0.28 0.46 0.00 0.46 0.00 

0.00 0.00 2.42 -5.44 48.23 107.37 30.49 -51.33 0.81 0.00 10.17 0.00 

Forest 

5.09 28.52 0.05 0.07 33.72 5.21 

5.11 4.55 28.52 28.52 0.38 0.30 0.12 0.36 34.12 33.72 5.61 5.21 

-0.02 0.54 0.00 0.00 -0.33 -0.25 -0.05 -0.29 -0.40 0.00 -0.40 0.00 

-0.45 11.96 0.00 0.00 -86.45 -83.29 -42.53 -81.10 -1.17 0.00 -7.11 0.00 

Built-up 

0.09 0.01 3.78 0.00 3.88 0.10 

0.59 0.06 0.25 0.03 3.78 3.78 0.01 0.00 4.63 3.88 0.85 0.10 

-0.50 0.03 -0.24 -0.03 0.00 0.00 -0.01 0.00 -0.75 0.00 -0.75 0.00 

-85.04 49.04 -96.76 -76.61 0.00 0.00 -84.85 -55.84 -16.23 0.00 -88.46 0.00 

Other 

1.21 0.44 0.06 2.83 4.54 1.72 

0.69 1.04 0.29 0.61 0.05 0.07 2.83 2.83 3.86 4.54 1.03 1.72 

0.52 0.17 0.15 -0.17 0.01 -0.01 0.00 0.00 0.69 0.00 0.69 0.00 

76.01 16.42 51.80 -27.32 27.56 -7.45 0.00 0.00 17.84 0.00 66.80 0.00 

2007 

Total  

 

59.23 32.76 4.86 3.16 100.00 12.03 

57.85 58.49 33.72 33.17 3.88 4.62 4.54 3.73 100.00 100.00 12.03 12.03 

1.38 0.74 -0.97 -0.41 0.97 0.24 -1.39 -0.57 0.00 0.00 0.00 0.00 

2.38 1.27 -2.87 -1.24 25.10 5.11 -30.50 -15.27 0.00 0.00 0.00 0.00 

Gains 

6.39 4.24 1.07 0.33 12.03   

7.61 5.65 3.96 4.65 0.95 0.84 1.43 0.90 13.95 12.03   

-1.22 0.74 0.28 -0.41 0.12 0.24 -1.10 -0.57 -1.92 0.00   

-16.00 13.17 6.96 -8.83 12.48 28.24 -76.76 -63.14 -13.76 0.00   
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In the first period (1993-2000), 13.95% of the landscape was transformed. Farmland gained 

7.61% and lost 5.87%, and forestland gained 3.96% and lost 5.82%. Built-up area increased by 

0.53% and other decreased by 0.42%, respectively. In the second period (2000-2007), the total 

gain of farmland was 6.39% while its total loss was 5.01%, leading to a net gain of 1.38%. 

Forestland experienced a smaller net loss than in the prior period, with a total gain of 4.24% and a 

total loss of 5.21%. 

As stated before, the LUCC statistics do not mean only quantity changes but also locational 

transformation. Table 2 demonstrates the percentages of losses, gains, net changes, and swaps of 

the three categories of land use. Among them, a major swap occurred in forestland—6.74% of the 

total land that was forestland in 1977 was cleared and reforested by 2007. To better understand the 

LUCC in Heilongjiang and the NFPP’s effects, I aggregated the LUCC transitions. 

Table 2.6 Percentages of gains, losses, net changes, and swaps of the land use categories, 

1977-2007 

  1977 2007 Gains Losses Total Change Net Swap 

F&B 50.62 64.09 16.68 3.22 19.90 13.47 6.43 

Forest  42.35 32.76 3.37 12.97 16.34 9.60 6.74 

Other 7.03 3.16 0.56 4.43 4.99 3.87 1.12 

Total 100.00 100.00 20.61 20.61 41.23 26.93 14.29 

 

app:ds:transformation
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Table 2.7 Percentages of gains, losses, net changes, and swaps of the land use categories in 

1977-2000 and 2000-2007 

Period  Classes Time 1 Time 2 Gains Losses Total Change Net Swap 

1993-2000 

 Farm  56.11 57.85 7.61 5.87 13.48 1.74 11.74 

 Forest  35.58 33.72 3.96 5.82 9.78 1.86 7.93 

 Built-up  3.34 3.88 0.95 0.42 1.37 0.54 0.83 

 Other 4.96 4.54 1.43 1.85 3.28 0.42 2.86 

 Total 100 100 13.95 13.95 27.90 4.55 23.36 

2000-2007 

 Farm  57.85 59.23 6.39 5.01 11.40 1.38 10.02 

 Forest  33.72 32.76 4.24 5.21 9.45 0.97 8.48 

 Built-up 3.88 4.86 1.07 0.10 1.17 0.97 0.20 

 Other 4.54 3.16 0.33 1.72 2.05 1.39 0.66 

 Total 100 100 12.03 12.03 24.07 4.71 19.36 

Difference 

 Farm  -1.74 -1.38 1.22 0.86 2.08 0.36 1.72 

 Forest  1.86 0.96 -0.28 0.61 0.33 0.89 -0.55 

 Built-up -0.54 -0.98 -0.12 0.32 0.20 -0.43 0.63 

 Other 0.42 1.38 1.10 0.13 1.23 -0.97 2.20 

 Total 0.00 0.00 1.92 1.92 3.83 -0.16 4.00 

Note: Differences resulted from the values from 1993-2000 minus the values from 2000-2007. 

To better examine the effects of the NFPP, I selected two time periods that bookended its 

introduction in 2000—the period of 1993-2000 and the period of 2000-2007. We can get quite 

amount information from Table 2.7. Built-up land expanded considerably during 2000-2007, with 

a net increase of 0.43%. There is also a small increase in other land, which means there was a small 

gain in wetland, or grassland, etc. In particular, there are two important messages conveyed in the 

“Difference” block. Firstly, we can see that forestland gained more and lost less in the period of 

2000-2007 and the net change is smaller in the period of 2000-2007 compared to the period of 

1993-2000. Meanwhile, larger swap change in 2000-2007 suggests local farmers reforested more 

than before, which could result from a large area of reforestation as well as agriforestation in most 

farmland-dominant counties, like Suibin and Youyi. 
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2.4 Conclusion 

In this chapter, I have assessed the temporal dynamics of LUCC in Heilongjiang between 

1977 and 2007. My LUCC classification results show that the study region underwent enormous 

land-use changes during 1977-2007. A large quantity of forestland was converted into farmland, 

and built-up land increased continuously. Moreover, by taking the relative land use sizes into 

consideration, the extended conversation matrixes reveal that wetland and grassland tended to be 

the first targets to be converted into farmland, but the loss of forestland was much larger. Based on 

these findings, the dominant land use conversions are depicted in Figure 2.3. 

Figure 2.3 Relationship between the two major land-use classes 

 

To better examine the effects of the NFPP, I also made a close comparison using images of 

two neighboring periods before and after 2000—1993-2000 and 2000-2007. My results show that 

there was no net increase in forestland following the initiation of the NFPP, but the decrease slowed 

down in the latter period. Also, the location change in forestland was larger after 2000, which 
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implies that local farmers reforested more than before the NFPP. These are good signs regarding 

the initial impact of the program. 

In this chapter, I have tried to understand the LUCC transitions in different ways. This 

knowledge of the regional LUCC is of scientific and policy significance. Based on the detected 

LUCC outcomes, I am now in a position to take further steps to investigate the driving forces of 

the LUCC—what factors have affected the LUCC dynamics and to what extent. Certainly, my 

central focus will be on the determinants of forest cover change, including the potential impact of 

the NFPP. Before undertaking these tasks, though, a careful review of the literature of LUCC 

driving force analysis is called for so that I can better understand the various theoretical 

frameworks, modeling approaches, data requirements, and estimation techniques.  
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Appendix A: Accuracy Assessment of LUCC Classification—Rule-based Classification 

Rationality Evaluation 

Validating classified results from long-series of images is always a problem because 

simultaneous reference data is frequently not available. The rule-based rationality evaluation, 

suggested by (Liu & Zhou 2004), can be employed as an alternative accuracy assessment technique 

in certain cases, including this study. The advantage of the method is that it only employs a set of 

rules while no reference map is needed.  

Given that the classified images cover six time periods (1977, 1984, 1993, 2000, 2004, and 

2007), the maximum chance for land use change is five. If t denotes the number of potential 

changes over the six periods, then 0 ≤ 𝑡 ≤ 5. If t equals 0, it implies that the pixel under analysis 

did not change at all during the whole time under study; if t equals 5, the pixel under investigation 

changed classes in each period. Each pixel in each of the six periods was generalized into one of 

four different assessment results: “Consistent”, “Fuzzy”, “Uncertain” or “Misclassified.” These 

four statuses denote that “the pixel is correctly classified,” “the pixel is in a fuzzy state,” “whether 

the pixel was fuzzy or it was misclassified, or it is actually a real change remains uncertain,” and 

“the pixel is not correctly classified,” respectively. 

The images were classified into four classes: C1=“Farmland,” C2=“Forestland,” 

C3=“Other,” and C4=“Built-up.” If change was detected between two neighboring periods, it was 

denoted as T(Ca, Cb). So, T(C2, C4) describes a pixel that changed from forestland to built-up in 

images from two consecutive periods. As shown in Figure 2.4, six rules were employed to assess 

the rationality of each pixel change trajectory. For each pixel, the rules are examined in sequential 

order. 
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Figure 2.4 Rationality evaluation rules 
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The six rules are defined and explained as follows: 

Rule 1: If t=0, then accept “Consistent.” 

Rule 2: If t=1, i.e. T(Ca, Cb), AND if (a==4)||(a==3&&b==4), THEN accept “Misclassified;” 

otherwise, “Consistent.”     

Rule 3: If t=2, i.e. T(Ca, Cb, Cc), AND if (a==4)||(b==4)||(b==3&&c==4), THEN accept 

“Misclassified.” Otherwise, check if (a==c). If so, “Uncertain;” otherwise, “Fuzzy.”      

Rule 4: If t=3, i.e. T(Ca, Cb, Cc, Cd), AND if (a==4)||(b==4)||(b==3&&c==4), THEN accept 

“Misclassified;” otherwise, “Fuzzy.” 

Rule 5: If t=4, i.e. T(Ca, Cb, Cc, Cd, Ce), AND if (a==4)||(b==4)||(c==4)||(d==4)||(d==3&&e==4), 

 THEN accept “Misclassified;” otherwise, “Fuzzy.” 

Rule 6: If t=5, i.e. T(Ca, Cb, Cc, Cd, Ce, Cf), AND if 

(a==4)||(b==4)||(c==4)||(d==4)||(e==4)||(e==3&&f==4), THEN accept “Misclassified;” 

otherwise, “Fuzzy.” 

 

There are two most important assumptions behind these six rules. First, the change to built-

up from other land-use classes is irreversible, so that any pixel that is classified as built-up in a 

previous period and later placed into any other land use class would be regarded as a 

misclassification. Second, it is also uncommon to construct on wetland, therefore, conversions 

from wetland to built-up are all processed as misclassifications. These two underlying rules are 

generally applied to all cases during the six periods.  
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Rule 1 is quite straightforward; if a pixel is classified as the same land use class for all six 

periods, then the pixel is regarded as “consistent.” Rule 2 concerns the situation when a once-only 

change is detected for a certain pixel. If the land conversion direction is true (T) with the two 

misclassification statements, then the change is labeled “misclassified.” In other cases, I take it as 

a possible change, and regard it as correctly classified (“consistent”). Similar to Rule 2, Rule 3 

first defines that if the reverse process (i.e. change from built-up area to another land use type) or 

the unlikely process (i.e. the change to built-up from other) were detected, the changes are taken 

as not correctly classified. This rule then deals with a one-time error of multi-temporal remote 

sensing image classification. If a pixel is found to have changed from one class (Ca) to another (Cb) 

and back to its original status (i.e. Ca), this situation could either be taken as a one-time 

classification error (i.e. Cb is the incorrect class), or it could be that the pixel itself is a fuzzy pixel, 

in which case the pixel could be classified as Ca or Cb. This one-time inconsistent situation does 

not affect the final result of cover detection, but it is hard to tell if it is a real classification error or 

not, so the pixel is regarded as “Uncertain”. Finally, Rule 3 specifies the treatment of a case where 

the land use type changed twice to two different classes during the study period. In this case, I 

consider the pixel “Fuzzy” with a composite land use type.  

Rules 4, 5 and 6 consider pixels that change frequently between cover types. This is most 

likely a consequence of mis-registration in geometric image rectification (Townshend et al. 1992, 

Stow 1999). Obviously, the reverse process and the unlikely process would be both improbable 

according to Rule 2, which indicates that the pixel may not be correctly classified. For other similar 

pixels, this can be considered as a “Fuzzy” case with frequent cover classes.  

Since in this project, a county is the basic unit of observation and analysis, all the pixel-based 

results of LUCC detection are aggregated into the ten counties. The rationality evaluation results, 
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shown in Figure 2.5, are generally acceptable. “Consistent” classified pixels in each county are 

above 80%, the “Misclassified” rate is low, and the “Uncertain” and “Fuzzy” rates are both below 

10%.  

Figure 2.5 Rule based rationality evaluation results 

 

Note: C, M, U, F stand for “Consistent,” “Misclassified,” “Uncertain,” and “Fuzzy,” respectively. 

The ten counties are: 1, Fangzheng; 2, Yilan; 3, Huachuan; 4, Suibin; 5, Youyi; 6, Jixian; 7, 

Shuangyashan; 8, Huanan; 9, Qitaihe; and 10, Boli. 

The “Uncertain” and “Fuzzy” classes are possibly the most active pixels where land 

conversion tends to take place. Since some of the once-only land use changes determined by in 

Rule 2 are also regarded as “Consistent,” the potential LUCC change is larger than that reflected 

in the proportion of “Uncertain” and “Fuzzy.” The rule-based rationality evaluation is beneficial 

especially in identifying the misclassification rate. This could be helpful for further classification 

correction. However, there are also some logical limits in this flow chart design. For example, it 

is hard to clearly differentiate once-only changes from fuzzy pixels, thus the “Uncertain” and 

“Fuzzy” rates are subject to dispute.  
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Appendix B: Accuracy Assessment of LUCC Classification—Traditional Accuracy 

Assessment Results 

To validate the accuracy of my classified LUCC results under this method, I first adopted 

the simple equation used to estimate sample size in this context:  (Foody 

2009b). The overall accuracy P for each class of land use is usually assumed to be 80%. CI is the 

half width of the confidence interval; a value of 0.05 is often taken. And following conventional 

practice, is set at 1.96. The calculated results show that sample size for each category should 

be 246. Given that I have four landscape classes, about 1000 points needed to be drawn from the 

map of my study site.  

To this end, I employed the spatially balanced sampling method (SBS), which draws 

sample points proportional to the presence of the area (Stevens Jr & Olsen 2004). I generated 1200 

points in my study site and used images in Google Earth as the reference data for my classification 

results for 2000, 2004 and 2007, respectively. After the layer of randomly sampled points was 

created, I converted it into a KML file readable by Google Earth, and marked the categories of 

those points on Google Earth. Next, the extracted Google Earth map information was compared to 

the classification results (Boulos 2005; Du et al. 2009). So, I got two datasets for the same points, 

based on which Kappa indices and conversion matrixes can be derived. After I started counting 

whether the sampled points are correctly classified, I identified an error in ArcMap 10, which 

provided wrong numbers in the attributes table. This led me to estimate the density of sampling 

points incorrectly, with less than 40 points for the minor LUCC categories (built-up and other). To 

get a larger sample to alleviate this problem, I added another 400 sample points to the two minor 

categories. In the end, I reached a total sample size of 1550 points. 

2 2

/2 (1 ) /N Z P P CI 

/2Z
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But for the land-use maps before 2000—covering 1977, 1984 and 1990, it is not feasible 

to directly take a reference map from Google Earth, because most images in Google Earth are post-

2000. Because there was not any other kind of map available, it was extremely difficult to get a 

reliable reference for those earlier periods. In this case, I took the following two steps to address 

the problem. First, note that the four classes of land use are not easily re-convertible. For example, 

it is highly unlikely for forestland to be converted to farmland and then reconverted back to 

forestland. So, my first step was to select those consistent points from a land-use classification 

map from an earlier time period and the Google Earth data from 2004 in the whole sample and 

take those points as unchanged. My second step was to extract the inconsistent points and compare 

them with the original images. I realized that the geo-corrected and atmospheric adjusted images 

are the best available reference data. So, I manually recorded the classes of land use for those 

inconsistent points to distinguish points of real change from those misclassified. 

Based on the above steps, the accuracy assessment results are summarized in Table 2.7. 

The overall accuracy rates for the six periods are around or above 85%. For 1977 to 1984, as the 

MSS data have coarser spatial resolution than TM and ETM+ images, I merged farmland and built-

up land into one category, called F&B. The overall accuracy for 1977 and 1984 is 91.6 % and 

90.5%, respectively, and the overall Kappa indexes are 86.1% and 84.2%, which are generally 

higher than for the rest of the images used in this study. The classifications of the maps for the 

other four periods include four LUCC categories: farmland, forestland, built-up land and other. 

The overall accuracy rates for these four periods are around 85%, and the Kappa indexes are about 

80%. The accuracy of the 1993 and 2007 maps is a bit higher than that of the remaining two periods. 

The Kappa indexes for these two periods are around 80%, while that of 1993 is 82% and 2000 is 

about 77%. Due to the large sample size, the standard deviations and coefficients of variation for 
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both overall accuracy and kappa indexes are very small. As I use the high accuracy Google Earth 

maps as reference maps, it is inevitable that the classification map accuracy would be lower than 

expected. 

I also calculated the classification accuracy for each land-use class and the results are 

reported in Tables 2.8 and 2.9. In both tables, the left block is the common confusion matrix (Foody 

2002); the middle block contains the calculated indices of user’s accuracy (UA); and the right 

block contains the indices of producer’s accuracy (PA). There are no clear patterns of performance 

for the assessed user’s and producer’s accuracies. For example, in Table 2.8, the user’s accuracy 

for F&B and other is generally higher than the producer’s accuracy. But the producer’s accuracy 

for forestland is higher than the user’s accuracy. For a more thorough assessment of classification 

accuracy, the tables also included the Kappa index, which reflects the difference between the 

classification agreement and the agreement expected by chance (Stehman 1997). Some authors 

argue that this index tends to underestimate the accuracy (Rosenfield & Fitzpatrick-Lins 1986). 

The calculated values are generally lower than those from the user’s and producer’s accuracy 

statistics. 

Table 2.8 Overall accuracy report of LUCC classification results 

 Year OA% Std(10-2) CV% Kappa% Std(10-2) CV% 

1977 91.61 0.70 0.76 86.14 1.16 0.74 

1984 90.52 0.74 0.82 84.17 1.24 0.68 

1993 87.81 0.83 0.95 82.21 1.21 0.68 

2000 84.24 0.93 1.10 77.15 1.35 0.57 

2004 86.24 0.88 1.02 80.09 1.28 0.63 

2007 89.08 0.79 0.89 84.44 1.13 0.75 

Note: OA stands for overall accuracy, Std stands for standard deviation, and CV is short for 

coefficient of variation, which shows the extent of variability in relation to the overall accuracy. 
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Table 2.9 LUCC category-based accuracy report for 1977 and 1984 

    F&B Ft Other UA Kappa Std PR Kappa Std 

1977 

F&B 705 16 18 0.95 0.91 0.02 0.89 0.78 0.02 

Ft 63 513 4 0.88 0.82 0.02 0.97 0.95 0.01 

Other 28 1 201 0.87 0.85 0.03 0.90 0.88 0.02 

1984 

F&B 741 12 29 0.95 0.89 0.02 0.88 0.76 0.02 

Ft 61 459 7 0.87 0.81 0.02 0.97 0.96 0.01 

Other 38 0 203 0.84 0.81 0.03 0.85 0.82 0.03 

Note: F&B stands for farmland and built-up, Ft stands for forest, and Other mainly includes 

wetland, grassland and unused land. UA and PA are short for user’s and producer’s accuracy, 

respectively. Std stands for standard deviation. The number of observations in 1977 was 1549 

while the number of observations in 1984 was 1550.  

 

Table 2.10 LUCC category-based accuracy report for 1993, 2000, 2004 and 2007 

    Fm Ft Other Bltup UA Kappa Std PR Kappa Std 

1993 

Fm 585 15 65 19 0.86 0.75 0.02 0.89 0.80 0.02 

Ft 33 443 5 3 0.92 0.88 0.02 0.96 0.95 0.01 

Other 28 1 170 1 0.85 0.82 0.03 0.69 0.65 0.03 

Bltup 12 1 6 163 0.90 0.88 0.03 0.88 0.86 0.03 

2000 

Fm 559 38 36 12 0.87 0.76 0.02 0.81 0.67 0.02 

Ft 64 393 2 5 0.85 0.79 0.02 0.89 0.84 0.02 

Other 56 9 186 3 0.73 0.69 0.03 0.81 0.78 0.03 

Bltup 13 1 5 166 0.90 0.88 0.03 0.89 0.88 0.03 

  Fm Ft Other Bltup UA kappa Std PR kappa Std 

2004 

Fm 564 30 30 7 0.89 0.81 0.02 0.82 0.69 0.02 

Ft 63 406 2 7 0.85 0.79 0.02 0.92 0.89 0.02 

Other 50 4 195 2 0.78 0.74 0.03 0.85 0.82 0.03 

Bltup 15 1 2 170 0.90 0.89 0.02 0.91 0.90 0.02 

2007 

Fm 561 13 6 3 0.96 0.93 0.01 0.81 0.70 0.02 

Ft 43 422 3 0 0.90 0.86 0.02 0.96 0.94 0.01 

Other 71 4 216 5 0.73 0.68 0.03 0.95 0.94 0.02 

Bltup 17 2 2 180 0.90 0.88 0.02 0.96 0.95 0.02 

Note: Fm stands forfarmland, Ft stands for forestland, Bltup is short for built-up and Other mainly 

includes wetland, grassland and unused land. UA and PA are short for user’s and producer’s 

accuracy, respectively. Std stands for standard deviation.  

It can be seen from the above tables that the classification of farmland and forestland— the 

focal classes of land use—is reasonably good, despite some misclassifications between the two 

classes. The accuracy for built-up land is relatively low because it was hard to clearly distinguish 
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built-up areas from farmland in certain cases. While people can easily differentiate forestland and 

farmland using Google Earth, classification differences can happen in a 30-by-30-meter pixel 

given the possibility that an area of that size may include more than one use. Meanwhile, small 

positional deviations between Landsat images and images in Google Earth could also be a potential 

source for lower accuracy (Dai & Khorram 1998; Potere 2008).  
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Appendix C: Landscape Composition and Configuration Change 

The composition and configuration of a landscape are fundamental aspects of landscape 

pattern, and studies of these patterns are useful for quantifying human impact. Development of 

quantitative indexes of spatial patterns (O’Neill 1988) enables the analysis and characterization of 

landscapes in terms of their patch composition, spatial relations, and dynamics. FRAGSTATS 

(McGarigal & Marks 1995; McGarigal 2012) is widely used for the description and analysis of 

landscape configuration. Various landscape metrics offer a wide range of measures of varying 

complexity and facilitate making comparisons across landscapes. Table 2.10 shows some of the 

most popular and frequently employed landscape metrics, which I employed to monitor landscape 

diversity and integrity. 

Table 2.11 Landscape diversity and integrity change, 1977~2007 

Year  MSIDI   MSIEI   LSI  CONTAG  PLADJ   AI 

1977 0.85 0.61 76.32 61.19 97.49 97.52 

1984 0.82 0.59 99.90 60.45 96.70 96.73 

1993 0.81 0.58 118.02 59.17 96.10 96.12 

2000 0.79 0.57 114.06 59.50 96.23 96.26 

2004 0.77 0.56 128.16 59.59 95.76 95.78 

2007 0.77 0.55 141.96 59.05 95.29 95.32 

Note: The 8-neighbor rule was selected to capture the adjacency of neighboring land cover, under 

which the 8 pixels adjacent vertically, horizontally, and diagonally are included.  

 

MSIDI and MSIEI quantify composition at the landscape level, which refers to the number 

and occurrence of different classes of land use. The most frequently employed measures of 

landscape composition include the Shannon and Simpson indexes. The Shannon index is sensitive 

to rare cover types and emphasizes landscape richness, whilst the Simpson index places more 

weight on the dominant cover types and the landscape evenness (McGarigal & Marks 1995; 
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Nagendra 2002). Because my focus is primarily on forestland and farmland, the Simpson Index 

family fits better. 

The value of SDI is expressed as the probability that any two cells selected at random 

would be different patch types. Thus, the higher the value, the greater the likelihood that any two 

randomly drawn cells would be different patch types. The Modified Simpson Diversity Index is 

adapted from the SDI. It combines evaluations of richness and evenness. It increases when the 

number of land-cover types (landscape richness) increases, or the land distribution balance 

amongst the various cover types (landscape evenness) increases (Pielou 1975; Turner 1990). As 

the number of land-cover types in my study is fixed at four, the richness information can be 

excluded from the MSDI. So the change in MSIDI in Table 2.10 reflects the decreasing trend of 

landscape evenness. 

The MSIEI is measured as the observed level of diversity divided by the maximum possible 

diversity for a given patch richness (Wickham & Rhtters 1995).  It facilitates evaluating evenness 

by normalizing comparisons of landscapes differing in the number of cover types (Hunziker & 

Kienast 1999). MSIEI takes a value between 0 and 1, with 0 indicating the exclusivity of one land 

use category, and 1 signifying an equal abundance of all the land use categories. As shown in Table 

2.10, MSIEI drops considerably from 0.6102 to 0.5533 over the 30-year period, indicating that the 

balance of distribution of land amongst the four cover types (landscape evenness) decreases. 

In assessing the biological integrity of the landscape, it is of importance to measure 

landscape aggregation. To measure the land aggregation, I tried to incorporate metrics with 

different emphases, including LSI, CONTAG, PLADJ, and AI. LSI is a normalized perimeter-to-

area ratio, which is equal to 0.25 (adjustment for raster format) times the sum of the entire 

landscape boundary and all edge segments (m) divided by the square root of the total landscape 
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area (McAlpine & Eyre 2002; McGarigal 2012). In contrast to total edge or edge density, LSI 

provides a standardized measure that adjusts for the size of the landscape (McGarigal 2012). Thus, 

by measuring the geometric complexity of the landscape, LSI is usually interpreted as a measure 

of landscape disaggregation: the greater the value of LSI, the more dispersed the patch types are. 

At the landscape level, LSI equals 1 when the landscape only consists of a single patch, and it 

increases as levels of internal edges increase and patch shape becomes more irregular. From Table 

2.11, it can be seen that LSI increased during the study period. Compared to all the other indexes, 

the absolute change in LSI value is largest. From 1977 to 2007, LSI approximately doubled, 

indicating dramatically increased levels of internal edge and corresponding decreases in the 

aggregation of patch types in the study area. A limitation of LSI is that it assumes that a square is 

the most aggregated shape in a raster data format. However, if the set of patches comprises multiple 

circular patches of different sizes, LSI will never equal 1. Table 2.10 shows that the LSI value in 

2000 is smaller than that in 1993, which does not match my expectation. As LSI includes two 

aspects—edges and patch shape—I would conclude this result indicates that patches in 2000 are 

more compact. It is also possible that image quality in 1993 (clarity, cloud situation, seasonal 

effects, etc.) is better, and that in the classification process I distinguished more small patches.  

CONTAG implies that pixels having the same attribute class tend to be adjacent. The 

Contagion Index, as defined by O’Neill et al. (1988), has been widely used in landscape ecology 

because it is an effective summary of overall “clumpiness” on categorical maps (Turner 1989; 

Graham et al. 1991). CONTAG is defined as proportion of all adjacencies that are same-class 

adjacencies, and it incorporates two distinct components—patch type interspersion (i.e., the 

intermixing of units of different patch types) and patch dispersion (i.e., the spatial distribution of 

a patch type) at the landscape level (Li & Reynolds 1993). The CONTAG values in Table 2.10 
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show a decreasing trend during the study period; the higher value in 1977 indicates that the study 

area had large, contiguous patches then, and these patches became more interspersed and dispersed 

over the study period. 

Though by design CONTAG values are converted to a proportion percentage, the relative 

amount of value change of is much smaller than that of LSI. Also, like LSI, CONTAG values still 

show a small reversal in 2000 compared to those of 1993. CONTAG has its own advantage, as it 

is affected by both the dispersion and interspersion of patch types, and it has a complex, nonlinear 

formulation and multiple input components (Li & Wu 2004). PLADJ, measuring the proportion of 

cell adjacencies involving the same class, computes the sum of the diagonal elements of the 

adjacency matrix divided by the total number of adjacencies (McGarigal 2012).  Due to the design 

of the metric, PLADJ measures patch dispersion of land use classes—a landscape containing larger 

patches with simple shapes will have a higher PLADJ value. It can be seen in Table 2.10 that while 

the PLADJ values remain high, they did decrease during the study period. Compared to CONTAG, 

PLADJ measures only patch-type dispersion, not interspersion. Accordingly, the relative value of 

PLADJ is larger. Also, as PLADJ calculation relates to the proportion of the landscape focal class 

P (farmland in this study), and both farmland and forestland in the study area are contagiously 

distributed, the PLADJ value is very high in our case. 

AI is the ratio of the observed number of like adjacencies to the maximum possible number 

of like adjacencies given the proportion (P) of the landscape comprised of each patch type (He et 

al. 2000; McGarigal 2012). Like PLADJ, AI adjusts for P in different ways. At the landscape level, 

it is computed as an area-weighted mean class aggregation index where each class is weighted by 

its proportional area in the landscape. In Table 2.10, the AI values are close to the values for of 
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PLADJ. Also, the magnitude of decrease is similar. As AI measures land-patch dispersion—the 

same as PLADJ—the information I obtained tend to be consistent. 
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CHAPTER 3  

LITERATURE REVIEW OF LUCC DRIVING FORCE ANALYSIS: MODELING 

APPROACHES, RESEARCH FINDINGS AND KNOWLEDGE GAPS
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3.1 Modeling LUCC Driving Forces 

Much progress has been made since the 1990s in capturing the effects of socioeconomic 

and biophysical factors on land use and land cover change (LUCC) (Kaimowitz & Angelsen 1998; 

Geist & Lambin 2001; Irwin & Geoghegan 2001b; Lambin et al. 2001a; Geist & Lambin 2002a; 

Verburg et al. 2002; Parker et al. 2003; Verburg et al. 2004a; Railsback et al. 2006; Turner et al. 

2008a). There are many modeling methods that vary across disciplines and exhibit different 

strengths and weaknesses. As synthesized by Kaimowitz and Angelsen (1998), the three main 

LUCC modeling approaches are: analytical, regression, and simulation. The decision on which 

model to use depends largely on the specialty and preference of the researcher. A review by Irwin 

(2010), based on modeling works of land-use changes published from 2003 to 2010, suggests that 

94 percent of the papers in geography were simulation models, either cellular automata or agent-

based; more than 60 percent of the papers in economics journals were statistical; and  30 percent 

were analytical with a simulation extension. In this chapter, I will review these approaches and the 

empirical results generated from their applications, as part of preparation for my own modeling 

work. In addition, because my empirical work will be largely econometric by nature, I will discuss 

the different strategies and techniques employed in estimating single-equation and system of 

equations models.  

3.1.1 Analytical Models 

Analytical models, which study individual behavior at the micro-level, are deeply rooted 

in economic theories and presented in a rigorous framework. The most representative analytical 

models are the household or firm-level models, in which agents are assumed to allocate their inputs 

(e.g., land, labor, and capital) to maximize the expected utility by consuming goods—home-
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produced or purchased—and leisure under labor, time, market, preference, and property 

constraints (Chomitz & Gray 1996; Angelsen 1999). Usually, standard mathematical techniques, 

such as Lagrange optimization (with equality constraints) and linear programming (with inequality 

constraints), are employed to solve the objective functions.  

These types of models have sound theoretical underpinnings that allow researchers to focus 

on some key aspects of human behavior associated with land use changes. But as indicated by 

Taylor and Adelman (2003), a major limitation of the household- or firm-level models is that they 

“risk missing an array of indirect influences shaped by fundamental features of rural economics.” 

It is true that these models take endogenous variables into consideration, but it is unlikely for them 

to cover all the endogenous variables involved in the behavioral process. Along with the model 

abstraction and simplification process, the underlying assumptions (household’s preferences, 

market constraints/mechanisms, and property regimes) often carry strong implications, and, to 

some extent, the conclusions depend greatly on the initial assumptions and sometimes they even 

produce ambiguous results (Kaimowitz & Angelsen 1998; Parker et al. 2003) . At the same time, 

since most analytical models mimic human behavior and work at the micro-level, difficulties arise 

from scaling these models up (Verburg et al. 2004a; Verburg et al. 2004b). Consequently, 

inferences drawn from micro-level findings for aggregate level outcomes should be avoided.  

3.1.2 Regression Models 

Empirical studies of LUCC driving forces tend to employ discrete-choice models. These 

models prescribe that the share or quantity of a particular land use is determined by land rent, land 

and landowner characteristics, among other factors (Chomitz & Gray 1996; Turner et al. 1996; 

Nelson & Geoghegan 2002; Walker et al. 2002; Vojáček & Pecáková 2010). In general, scholars 
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use multinomial logit or probit models since the dependent variable is typically a discrete category 

of land use. These regression models using relatively reliable data and large samples tend to give 

modelers a higher degree of freedom. Thus, discrete-choice models have received a considerable 

amount of attention in published studies. But a key problem for using discrete-choice models in 

LUCC lies in the i.i.d. (independent and identically distributed) assumption—that is, the errors 

should be independent of each other and with the same probability distribution. In a regional study, 

spatial dependence, such as neighborhood effect, spatial spillover, and network effect, is common, 

and the unobserved factors related to different land uses might be similar. For example, certain 

land use is determined perhaps by similar soil types in neighboring locations; hence, the random 

component might have different covariance structures (Anselin 2002). By the same token, the 

dependent variables can possibly be related. For instance, farmland at one location tends to form 

clusters with other farmland in the neighborhood. In both cases, the assumption of independence 

of these variable is inappropriate (Anselin 2002; Vojáček & Pecáková 2010). Meanwhile, the 

discrete-choice models usually fail to account for the endogenous effects of certain variables. For 

example, in the household- or firm-level models, prices are exogenous, while at more aggregate 

levels they could become endogenous to land-use change. Further, other important variables, like 

road development and population change, should be considered more carefully (Irwin & 

Geoghegan 2001b). As such, using the discrete-choice models while not taking the spatial 

dependence and endogeneity issues into consideration could lead to inconsistent parameter 

estimates and inappropriate policy conclusions (Berry 1994; Staiger & Stock 1994; Fleming 2004; 

Wooldridge 2005). 

Geographers were pioneers in estimating spatially explicit empirical models by 

incorporating remote sensing data on land use/cover change (Chomitz & Gray 1996; Mertens & 

http://en.wikipedia.org/wiki/Probability_distribution
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Lambin 1997; Anselin & Bera 1998). These models do a good job of analyzing the correlation 

between land use and location-specific variables, such as distance from markets, topography, soil 

quality, and forest fragmentation. One shortcoming of these models is that they fail to incorporate 

the human behavior underlying spatial pattern/process/outcome of land use change because the 

models are often specified without a theoretical underpinning  (Irwin & Geoghegan 2001b). 

Another deficiency of these models is that the study units were often based on individual pixels or 

some aggregate particles. From the behavioral perspective, none of these units were the true 

decision-making units. Finally, while many models incorporate spatial interactions, the spatial 

correlation still remains poorly reflected in their specifications. So, the models cannot contribute 

much to understanding how or why these interactions occur (Anselin 2010).  

3.1.3 Simulation Models 

Simulation methods are rooted in natural sciences. Cellular models and agent-based models 

are the most frequently used simulation systems. Tobler (1979) was one of the first to use a cellular 

model (CM) to simulate geographical processes. CMs define the interaction between land use at a 

certain location, the conditions in the surrounding pixels, and the transition rules, with all cells 

updated simultaneously according to those rules (Hogeweg 1988; Clarke 1997; Alonso & Sole 

2000). Because CMs provide a good representation of the spatial dynamics of land use, they have 

been useful for modeling the ecological aspects of LUCC. However, they face challenges when 

human decision-making is incorporated (White & Engelen 2000; Parker et al. 2003). Thus, CMs 

have recently become hybrids with agent-based models (ABM).  

An ABM couples social and environmental models and focuses primarily on human actions. 

It consists of units of “agents” that interact both with one another and with their environment, and 
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can make decisions and change their actions as a result of this interaction (Ferber 1999). In 

studying LUCC, ABMs incorporate the influence of micro-level human decision-making on land 

uses so that the linkages between human behavior and biophysical processes occurring in the 

landscape and the possible future land use situations can be clearly represented (Matthews et al. 

2007). Compared to the traditional analytical and empirical methods, ABMs are superior in 

handling spatial interactions, socioeconomic processes, and decision feedbacks under multiple 

spatial scales. Because of the advent of powerful and flexible ABMs, various agent-based 

simulation platforms such as Swarm, Repast, MASON, and NetLogo, have evolved over the past 

decade  (Railsback et al. 2006). Criticism of ABMs has surfaced mostly from concerns about 

model verification and validation of the potential outcome, since the traditional hypothesis testing 

methodology is not possible in this context, and more appropriate strategies and standards are yet 

to be developed (White & Engelen 2000). 

3.1.4 Structural Equation Modeling 

Structural equation modeling (SEM) originated in the sciences of psychology and 

education. SEM is also referred to as “causal modeling,” which takes a hypothesis-testing approach 

to analyzing the structural relationships of interested variables. This involves integrating a series 

of statistical tools such as simultaneous equation modeling, path analysis, and confirmatory factor 

analysis (Anderson & Gerbing 1988; MacCallum & Austin 2000; Ullman & Bentler 2001; Byrne 

2010).  

The SEM system allows a network of relationships between independent variables and 

dependent variables. It integrates advantages from psychometrics, econometrics, sociometrics, and 

multivariate statistics (Bound et al. 1995). Thus, it is always presented diagrammatically to give a 
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clear conceptualization of the issues under study. Both the independent and dependent variables 

can be either measured variables or factors (Anderson & Gerbing 1988). Measured variables also 

are called manifest variables, indicators, or observed variables. Factors are hypothetical constructs 

that cannot be directly measured, often referred to as latent variables, composite variables, 

constructs, or unobserved variables (Ullman & Bentler 2001). Latent variables usually have 

multiple indicators and are defined, in effect, by whatever their indicators have in common; thus, 

they provide multidimensional representations of ideas of interest and overcome the imperfect 

validity and reliability of a single measured variable (MacCallum & Austin 2000). In a SEM, the 

manner in which the measured variables are linked to the latent variables is called the 

“measurement model,” and the hypothesized linkages between the latent variables are called the 

“structural model” (Ullman & Bentler 2001). As a whole, the measurement model combined with 

the structural model provides a comprehensive, confirmatory assessment of interdependences 

between constructs (Anderson & Gerbing 1988). 

Existing literature describing the possible determinants of LUCC and their systematical 

structures provides the initial framework for SEM model development, so relevant variables are 

related in a theoretically sound way. In addition, both direct and indirect effects on LUCC can be 

incorporated into an SEM, resulting in more complex linkages between the different variables that 

are being hypothesized (Grace 2006; Byrne 2010). Further, because “SEM is a statistical technique 

for testing and estimating causal relations using a combination of statistical data and qualitative 

causal assumptions” (Pearl 2000), this empirical testing of causality will help advance our 

understanding of the complex LUCC relationships and simulate future LUCC scenarios. 

Due to its confirmatory nature, SEM aims to assess and modify theoretical models, so the 

model-building task should be based on existing comprehensive studies. Before specifying the 
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structural equation model however, it is necessary to look into previous studies and understand the 

potential causes and effects they revealed. Because the interactions between land and humans are 

very complicated and vary from place to place, the structural equation model is not as popular as 

the three previously detailed modeling techniques in land use research.   

In addition, due to stringent confirmatory demands, SEM is very sample-size demanding 

to achieve stable results. In psychology and education publications, it is quite common to see 

thousands of observations for the targeted analysis (Bound et al. 1995; Baltagi & Liu 2009). In 

land use analysis, it is easy for us to get thousands of pixels; but, as previously noted, these 

abundant pixels are not decision-making units. Collecting and matching relevant socioeconomic 

and biological data for large samples normally is not feasible for many researchers. 

In summary, each of the modeling approaches discussed above has its own advantage(s) 

and encounters its own specific difficulties in explaining LUCC. The popularity of the analytical 

models lies in their clear logical and theoretical basis. But the simplification of model 

representations and their underlying assumptions limit their policy implications in the real world. 

The regression-based empirical models can handle relatively large numbers of independent 

variables, but these models commonly have limited ability to explain human behavior, and it is not 

easy to separate correlation from causality. The simulation models are versatile, but the model 

fitness and validation are greatly dependent on the modeler’s knowledge and experience. SEM 

provides a framework for analyzing the interdependencies among a set of variables with multiple 

equations that are logically linked. However, it is a confirmatory model, not suitable for explorative 

studies. Overall, econometric and simulation models provide evidence confirming certain basic 

conclusions from the analytical models, but they have not contributed much so far to resolving 

issues where analytical models provide inconclusive results (Kaimowitz 1998). 
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3.2 Main Results of LUCC Driving Force Analysis 

My dissertation will explore the causes of LUCC, with a focus on deforestation in northeast 

China. It is thus necessary to examine the variables employed and the interactions and feedbacks 

between them in the deforestation and LUCC literature to gain a comprehensive understanding of 

the driving forces affecting forest cover changes.  

Deforestation is induced by various proximate causes, which in turn are mediated by 

certain underlying determinants. A large number of published studies have tried to explore the 

causes of deforestation (Nelson & Hellerstein 1997; Kaimowitz & Angelsen 1998; Angelsen & 

Kaimowitz 1999; Pfaff 1999b; Angelsen et al. 2001; Zhang 2001; Geist & Lambin 2002a). 

According to these studies, proximate causes of deforestation include wood extraction, transport 

costs, and agricultural expansion. Included in the underlying causes are population growth, input 

and output prices, wage rates, agricultural productivities, and off-farm employment. Overall, 

deforestation is a complex process stemming from the multifaceted interactions among many 

socioeconomic and biophysical factors. In the following section, I will synthesize the potential 

relationships of those variables relevant to my study region, rather than providing a general review 

of the causes of deforestation.  

3.2.1 The Direct Causes of Deforestation 

Studies completed by Geist and Lambin (2002) revealed: 102 out of 152 cases of 

deforestation related to wood extraction, 146 cases from agricultural expansion, and 110 cases due 

to transport extension and settlement/market expansion. As such, the authors came to the 

conclusion that agricultural expansions, wood extraction/logging, and infrastructure development 

are the three main direct causes for deforestation. 
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Wood Extraction/Logging 

In certain times and/or phases of development, wood extraction does improve the level of 

social welfare. Swanson (1994) characterized deforestation as an economic activity that is “stock 

disinvestment” or “resource mining.” Commonly, selective wood extraction alone would not 

necessarily lead to deforestation because it does not necessarily result in a dramatic loss of canopy 

cover (Rudel & Roper 1997; Mainardi 1998). However, the impact of wood extraction is likely to 

become more significant over time, and studies found that wood production and deforestation are 

positively correlated (Burgess 1993; Asner et al. 2005; Bekker & Ploeg 2005; Asner et al. 2006). 

A study of deforestation in the Amazon by Asner et al. (2005) showed that logging annually 

impacts a forest area of between 12,000 and 19,000 square kilometers. Subsequent analysis by 

Asner et al. (2006) revealed that 76% of selective logging resulted in high levels of forest canopy 

damage. The study predicted the logged forests would be cleared within four years. 

Agricultural Expansion 

Agriculture expansion has been cited as another major cause of deforestation (Chichilnisky 

1994; Barbier 2004). A sizable number of analyses start with the hypothesis that forest loss is the 

result of competing land use between agriculture and forestry (Barbier & Burgess 1997; Angelsen 

et al. 1999; Walker et al. 2002). Competing land-use models occasionally measure the cost of 

farmland by figuring lost net revenue from timber production plus the evaluated environmental 

benefits if the forest stands remain (Hausman et al. 2007). When exploring the underlying 

determinants of land conversion to agriculture, studies tend to focus on the decisions of agricultural 

households. The classic general equilibrium model helps integrate linkages between the 

agricultural and forestry sectors. In such models, the equilibrium level of  deforestation is 

frequently hypothesized to  be  determined by output and input prices and other factors affecting 
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the famers’ incomes (Rudel & Horowitz 1993; Bawa & Dayanandan 1997; Angelsen et al. 1999; 

Van Soest et al. 2002; Hausman et al. 2007). 

Infrastructural Development 

Infrastructural development is another proximate cause that promotes the conversion of 

forest to other land uses. The von Thünen theory, which posits that the agricultural frontier will 

expand until the net profit or land rent becomes zero, is still widely used in empirical studies 

(Angelsen et al. 2001); Chomitz and Gray (1996). Integrating the spatial dimension into an 

economic model of land use in Belize, the study found that road access would expose the forest to 

various forms of degradation, and that market access and distance to roads are key determinants 

of the type of land use. Pfaff (1999b) developed a deforestation equation from an economic land-

use model and tested a number of factors influencing forest clearing at the county level. The results 

suggest that factors affecting transportation costs, road density and distance to major markets are 

significant. Mertens et al. (2002) examined the relationship between roads and deforestation by 

further classifying the roads into main and secondary road networks, and concluded that the 

improved road network along with other factors has made the remote forests more likely to be 

converted into pasture. All this empirical evidence suggests that lower access costs fuel 

deforestation. But Angelsen and Kaimowitz (1999) present a caveat, pointing out that studies tend 

to overstate the causality between road construction and deforestation because, in reality, roads are 

commonly built on cleared land rather than forested land that needs to be cleared. 
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3.2.2 The Underlying Causes of Deforestation 

Demographic Factors 

Population growth is widely recognized as a trigger of LUCC (Cropper et al. 1997; 

Angelsen 1999; Carr et al. 2005). For instance, limited farmland per capita can lead farmers to 

clear forests. Studies in the Neo-Malthusian tradition often view population expansion as an 

underlying cause of deforestation (Sandler 1993; Vanclay 1993). But Mather and Needle (2000) 

pointed out that attempts to link deforestation with population growth usually neglect to take into 

account that children require years to be considered a factor. Mertens et al. (2000) considered a 

five-year lag in the influence of population on deforestation. Meanwhile, studies in the Neo-

Boserupian tradition argued that increasing population could also induce technological and other 

changes without overexploiting the natural resources (Goldman 1993; Drechsel et al. 2001). The 

two cases in West Africa reported by Leach and Fairhead (2000) suggest that an increase in the 

number of people can even lead to the development of more forests in the forest-savanna transition 

area. Overall, higher population density is associated with more deforestation in most cases; while 

in certain context, population increase could correlate with forest land expansion. 

Technological Change 

 Local farmers face a production constraint, or technology, that depicts the relationship 

between inputs and outputs. In the agricultural sector, technology takes various forms—some are 

embodied in inputs, such as improved plant seeds, and some are disembodied, like the use of new 

machines (Lambin et al. 2003). The employment of new technologies in agricultural production 

requires labor and/or capital investments; for instance, the use of fertilizers requires cash for 

purchasing them and labor expenditure for applying them. Technological progress can change the 

relative scarcities of inputs, exerting contradictory effects on productivity. Findings of the effects 
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of agricultural technology on forests are ambiguous, depending on the production constraints and 

the forms of the technological progress: On one hand, technological progress may increase the 

marginalized return for labor, making households willing to supply more labor, which may lead to 

a greater demand for clearing land. On the other hand, technology may also raise a household’s 

income, resulting in more spending on goods and leisure activities, which may reduce the pressure 

placed on land-based production activities. So, the overall effect of agricultural technology on 

forests depends on which scenario dominates in the local area (Van Soest et al. 2002; Pacheco 

2006; Varian 2009).  

Market and Price 

The case study by Geist and Lambin (2002b) revealed that the growing prices of cash crops 

constitute a robust driver for deforestation. Timber price increase would lead to more logging in 

the short run but possibly to more forestation in the long run (Vincent 1990).  Meanwhile, low 

timber prices make profit-orientated farmers less motivated to institute logging and prone to more 

crop production. Barbier (1994) pointed out that policies designed to ‘‘improve’’ the overall 

economy in the presence of market failures, such as the lack of prices for converted forests, may 

result in incentives that worsen forest loss. According to Zhang (2001), from the late 1970s to the 

mid-1990s, the timber prices in China went up sharply due to scarcity, but the prices increase 

became subsided as timber imports and plantation forests grew. 

Studies  also  confirm  that agricultural conversion  is positively related to agricultural  

output prices but negatively correlated with  rural wage rates (Barbier & Burgess 1996; Lopez 

1997).  Rent-seeking behavior in the agricultural sector will lead to farming intensification as well 

as farmland expansion. According to the study by (Deininger & Minten 1999), biased price 
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policies also could increase resource consumption and become a motivation for agricultural 

expansion. 

Economic Growth (GDP) 

Poverty is one of the frequently used drivers of deforestation (Dradjad H. Wibowo 1999). 

Deininger and Minten (1999) pointed out that higher levels of poverty significantly contribute to 

increased deforestation, and poverty- or capital-driven deforestation is often seen in developing 

counties (Rudel & Roper 1997). The environmental Kuznets curve (EKC) postulates that during 

the early stage of economic development in a country with substantial natural forests, deforestation 

will get worsened. As per-capita income  increases, though, deforestation will slow down along 

with the emergence of reforestation and even afforestation (Zhang 2001). Studies by Grainger 

(1995) and Mather et al. (1999) confirmed  the existence of Kuznets-type trends in forestry. They 

also found out that forests expanded more in emerging market economies. Rudel and Roper (1997) 

concluded that “Rates of deforestation are high in impoverished places; they increase with an 

initial surge of economic growth, and they decline when additional wealth creates other economic 

opportunities.”  

Policies  

Given that the social costs of deforestation are usually not taken into account under the 

market mechanism, government policy becomes an important tool for internalizing various social 

costs. Angelsen et al. (1999) argued that many policies, including adopting improved technologies 

that are good for agricultural development, frequently promote deforestation. A panel-data analysis 

for all Mexican states confirmed that the potential impact of agricultural policy reform on the 

expansion of agricultural area is the direct effect of changes in pricing on the incentives for frontier 

expansion and forest conversion by rural households (Barbier & Burgess 1996). 
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3.3 Data Structure and Strength 

The availability of annual observations on socioeconomic conditions for each sample 

county is an advantage of my research. In order to optimize the utilization of my data and better 

understand the linkages between various social-ecological factors and forest dynamics, I will 

interpolate the LUCC information into annual observations to enable the attainment of a panel 

dataset that integrates the LUCC information with information for other variables. This type of 

panel data, or cross-sectional time series data, involve two dimensions—a cross-sectional 

dimension (county) denoted by subscript i , and a time dimension (year) denoted by subscript  t  

(Beck 2001; Hsiao 2003; Frees 2004). As county i  is observed in each year t , it is a balanced 

panel. In an unbalanced panel, there are missing data on some units in some years (Baltagi & Song 

2006). 

According to the relative magnitude of N and T (i=1, 2,...N; t=1, 2,...T), a panel dataset 

can be called a macro panel, in which N is moderate (typically less than 100) and T is substantial 

(usually larger than 20), or a micro panel, in which N is large (hundreds or even thousands) and T 

is small (usually less than 10 and most commonly less than 5 (Judson & Owen 1999; Baltagi 2008). 

The two-dimensional panel data set generally has a large number of data points, so more detailed 

and sophisticated econometric questions can be addressed that may not be handled using 

conventional cross-sectional or time-series datasets. (Baltagi & Giles 1998; Hsiao 2003) illustrated 

several major advantages in panel data applications. The enlarged dataset can lead to more 

variability among the variables. Also, it allows us to make different transformations, and we can 

get more reliable estimates and test more sophisticated assumptions and hypotheses (Hsiao 2014).  

For instance, as typical in cross-sectional data, the unobserved individual-specific effects usually 
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leads to biased estimates, while under the panel data setting, the advantages of controlling the 

effects of individual heterogeneity or omitted (mis-measured or unobserved) variables are widely 

recognized. Also, it is often difficult to make inferences about the dynamics based on cross-

sectional evidence, while panel datasets are better able to identify the before-and-after effects and 

even the effects of dynamic behavior. Another important advantage occurs in the case of a non-

stationary time-series where the data no longer follow normal distribution and the least-squares 

estimators and the maximum likelihood estimators would be biased.  But when observations of 

cross-sectional units are available, under the independently distributed assumption, the central 

limit theorem based on cross-sectional units points out that the limiting distributions of  estimators 

remain asymptotically normal (Hsiao 2007). 

 

3.4 Basic Econometric Methods Using Panel Data 

Because my econometric estimation of the LUCC driving forces will be primarily using 

the two main approaches of regression analysis under panel data setting—fixed effects (FE) model 

and random effects (RE) model—it is worthwhile to review these approaches here as well. A clear 

illustration of these methods is necessary to understanding my empirical analysis later. 

3.4.1 Fixed Effects Model 

The fixed effects (FE) estimator is known as the within estimator because only variations 

within a unit over time are used in the regression.  Sometimes, it is also called the least-squares 

dummy-variable (LSDV) estimator (Cameron & Trivedi 2009). Without loss of generality, the 

fixed effect model can be illustrated as the following: 

                     TtNiXY ititiit ,...1,,...1,'                                         (3.1) 
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where 
'  is a K1  vector of constants and i  is a 11  scalar constant representing the 

unobserved heterogeneity peculiar to the i th individual over time. The FE model treats i to be 

fixed, and allows possible correlation between individual unobserved effect i  and any regressor 

of interest, so regressor itx  may be endogenous (with respect to i  but not it ). The error term, it , 

represents the effects of the omitted variables that are peculiar to both the  individual units and 

time periods. It is assumed that it  is uncorrelated with ( 1ix ,..., iTx ) and can be characterized by an 

independently identically distributed random variable with mean zero and variance 
2

 . 

The idea of using the FE model to obtain a consistent estimator is to remove i  from the 

estimated equation. After calculating the means of time-series observations separately for each 

cross-sectional unit, the FE model transforms the observed variables by subtracting out the 

corresponding time-series means, and then apply the least squares method to the transformed data. 

That is, the individual-demeaned y is regressed against individual demeaned x . 

Ttxxxxyy iitikitkkiitiit ,...2,1,)()( 1110                                    (3.2) 

With such a transformation, variations between individuals are not used in the estimation, 

so we cannot obtain the coefficients of the regressors that are time-invariant.  

In the panel data case, the individual unit is sampled more than once. Repeated 

observations for the same unit are often referred as a “group,” or more officially a “cluster.” Cluster 

analysis is very popular now, and various econometric studies have used clusters in their modeling 

procedure (Kaufman & Rousseeuw 2009; Anderberg 2014). 

The cluster-specific FE model is an extension if the original fixed effect model (Cameron 

et al. 2011). It includes a separate intercept for each cluster, igig

G

h gigig udhxy   1

'   where 
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igdh  is the 
thh of G dummy variables, equals one if the 

thig observation is in cluster h  and zero 

otherwise (Wooldridge 2003). There are two main approaches to obtain the cluster-specific FE 

estimators: The least squares dummy variable employs OLS with regression of igy  on igx together 

with G dummies, and the FE estimator also uses OLS but with the mean-difference model 

)()()( '

giggiggig uuxxyy   . Mainstream empirical researchers tend to use the FE 

estimator as it controls for a certain form of endogeneity of regressors when the regressors are 

correlated with the cluster invariant component g , in which case, the traditional OLS and 

Feasible Generalized Least Square (FGLS) estimators would be inconsistent while the FE 

estimator eliminates g  by the design and is consistent if either G  or gN (Cameron & 

Miller 2015). 

The major attraction of an FE estimator is that it suites well for non-experiment research 

fields. It controls for unobserved and stable characteristics of the unit in the study, and it allows 

unobserved variables are correlated with observed variables (Hsiao 1985; Lau et al. 1998; Allison 

2009). In a regression equation the unobserved effects can either be directly estimated or parceled 

out. Thus, it is a huge advantage when omitted variable bias is an issue. On the other hand, it has 

some crucial limitations that should not be ignored. First, if a researcher wants to estimate the 

individual effects, the dummy variable approach is costly in terms of degrees of freedom (Allison 

2009). Second, as stated, a classic FE model will not produce any estimates of the effects of 

variables that don’t change over time. Third, when the between variation is larger than the within 

variations in the predictor variables, the fixed effect estimates will be imprecise, leading to larger 

standard errors and wider confidence intervals (Hedges & Vevea 1998; Allison 2009). This is 

because in estimating an FE model, the differences between individuals are essentially discarded 
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during the process of subtracting the mean differences across the units of observation, leaving only 

the within-individual differences in the estimated equation. 

3.4.2 Random Effects Model 

An RE model can be written as  

                             itititiitit xxy   ''                                          (3.3) 

The error term it contains two components, that is, itiit   , where i  is referred to as 

individual random effects. In the RE model, there are two fundamental assumptions. First, the 

unobserved individual effects i are random draws from a common population. Second, there is 

no correlation between the observed explanatory variables and the unobserved effect, or i is 

assumed to be uncorrelated with itx . Thus, 0),cov( iitjx  with kjTt ,...,2,1;,...2,1  (Laird & 

Ware 1982; Hedges & Vevea 1998). 

The RE model is a weighted average of the within (or fixed effects) estimator (variation 

within units over time) and the between estimator (variation between units at the cross-sectional 

level) (Hedges & Vevea 1998; Wooldridge 2012). It can be estimated by Generalized Least Square 

(GLS), which id obtained using a least squares regression of  

   Ttxxyy iiiiiiitiiiit ,...2,1},)ˆ1()ˆ1{()ˆ()ˆ1(ˆ
10             (3.4) 

In the above equation, regressor itx is exogenous. All the feasible GLS estimators are efficient 

asymptotically as N and T goes to infinity. The constant   measures the weight given to the 

between-group variation, the equation for weight is as following:  

                                                 
22

2

1









T
                                                         (3.5) 
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As the quantity under the square root sign approaches zero,  is close to 1, then the model would 

become the fixed effect model. It is likely when the idiosyncratic variation 
2

 is small relative to 

T 2

 , that is, more of the variation is from fixed effect. Also, when the time span is long (T is 

large), there would be greater variation across time for each individual, or the FE 2

 is big,   

approaches to 1, and the FE dominants. Vice versa, when 2

  is relative lager in magnitude, the 

pooled OLS suites  (Laird & Ware 1982; Wooldridge 2012). 

The RE estimator offers distinct advantages over the FE estimator in terms of efficiency 

because the former uses more of the variation in X (specifically, the cross sectional/between 

variation), which leads to smaller standard errors (Robinson 1991). Meanwhile, with random 

effects, we can estimate the effects of stable covariates such as race and gender. The most serious 

drawback of the RE approach is that it doesn’t control for unmeasured, stable characteristics of the 

individuals (Semykina & Wooldridge 2010; Wooldridge 2012). Suppose that there is a variable z

omitted from the model specification when predicting y  in the RE model, any correlation between 

x  and i  can imply an omitted variable z that produces bias in estimates of  (Baltagi 2008). 

3.4.3 Choice between FE and RE 

When deciding whether to employ a FE or RE estimator, there are a number of practical 

and technical issues to be taken into account. First, an important misunderstanding of the 

frequently used terminology needs to be noted here. In FE models, the i  term is treated as a set 

of fixed parameters which may either be estimated directly or conditionally on the estimation 

process. In RE models, however, the i  term is treated as a random variable with a specified 
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probability distribution (usually normal, homoscedastic, and independent of all measured 

variables).  So the term “FE model” is usually contrasted with “RE model.”  

Unfortunately, this terminology is the cause of much confusion. As suggested by (Mundlak 

1978), the key issue involving i  is whether or not it is uncorrelated with the observed explanatory 

variables itx  , for t = 1, ..., T.  In a more advanced framework (Wooldridge 2002), the authors 

avoid referring to i  as RE or FE. Instead, they suggest referring to i as unobserved effect, or 

unobserved heterogeneity; and what truly distinguishes the two approaches is the structure of the 

correlations between the observed variables and the unobserved variables. So, as pointed out by 

Mundlak (1978), the "FE" specification can be viewed as a case in which i  is a random parameter 

with 0),cov( iitjx  , whereas the RE model correspond to the situation in which 0),cov( iitjx   

Theoretically, the decision to treat the between-unit variation as fixed or random is a trade-

off choice between the problem of high variance and that of bias. As stated earlier, the FE model 

is making inferences conditional on the effects that are in the sample; it will produce unbiased 

estimates of  , but those estimates can be subject to high sample-to-sample variability (Hedges & 

Vevea 1998; Clark & Linzer 2012). The RE model makes unconditional or marginal inferences 

with respect to the population of all effects; so, it often introduces bias in the estimates of  , but 

it can greatly constrain the variance, leading to estimates that are closer (on average) to the true 

value. 

Then, the decision about whether i  should be treated as random variables or as 

parameters sometimes is dependent on the researcher—different researchers in different 

disciplines have different preferences. For example, economists tend to use fixed effect models 

because, in most cases, the data are not randomly drawn from experiments and they are more likely 

file:///C:/Users/Owner/Desktop/Chapter%203%20original.doc%23_ENREF_8


79 

to focus on estimating the effects of stable covariates, such as personal and family characteristics 

(Todd & Wolpin 2003).  Similarly, the choice of different models also are predicated on answers 

to such questions as whether it’s important to control for unmeasured characteristics of individuals 

and whether the loss of information from discarding the between-individual variation is acceptable 

(Clarke et al. 2010). 

Another consideration relates to sample size. If the situation were one of analyzing a few 

numbers of units, say five or six, and the only interest lay in just these units, then i  would more 

appropriately be fixed, not random. However, if the observed units are a sample from a larger 

population, and inferences will be made about the effects of a population, then the effects should 

be considered random. Also, as pointed out by Wooldridge (2003), with a large number of random 

draws from the cross-section, it almost always makes sense to treat the unobserved effects i  as 

random draws from the population, along with ity  and itx . However, random and FE models yield 

vastly different estimates, especially if T is small and N is large. While T is large, whether to treat 

the individual effects as fixed or random makes no differences. (Clark & Linzer 2012) summarized 

their advice for selecting the best approach based on the sample size. When both N and T are very 

small (say, N is smaller than 10 and T is smaller than 5), they suggest using the random effect 

model; when N is abundant while T is smaller than 5, the final decision lies in the value of 

),cov( iitjx  —choose random effect when the correlation is low and fixed effect otherwise. In the 

case that both N and T are large, they generally encourage using the fixed effect model; and if N 

fewer than 10 while T is large, the choice is correlation-dependent—large correlation leading to 

fixed effect while small correlation leading to random effect. 

A common technique of choosing between FE and RE estimators is to employ the Durbin–

Wu–Hausman  tool, or Hausman’s test (Hausman 1978), which is intended to tell the researcher 
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how significantly parameter estimates differ between the two approaches. The null hypothesis of 

the Hausman’s test (1978) is that the unobserved heterogeneities are not correlated with the itx  

( 0),cov( iitjx  ) and the test is generally presented as a test of specification (fixed or random) of 

the unobserved effects. The basic rationale of this test is that the FE estimator is consistent whether 

the effects are or are not correlated with itx . If the null hypothesis is true, the FE estimator is not 

efficient, because it relies only on the within variation in the data. On the other hand, when the 

effects are correlated with the itx , the RE estimator is efficient under the null hypothesis but is 

biased and inconsistent (Baltagi & Giles 1998). So a statistically significant difference is 

interpreted as evidence against the random effect assumption. More specifically, if 0),cov( iitx  , 

both rê  and 
fê  are consistent, but the RE model is more efficient than the FE model, or

)ˆ()ˆ( fere sese   . If 0),cov( iitx  , only 
fê  is consistent, and with null hypothesis

0),cov( iitx  , ))ˆ()ˆ(/()ˆˆ( 2**

referefe VarVarw   is distributed with Chi-squared of 
2

1x  

(Wooldridge 2002). When the null hypothesis is true, the numerator of w  would be small while 

the denominator would be large. If the null hypothesis is false, the difference between coefficients 

estimated by FE and RE is large, so the numerator would be large; because of the large numerator, 

w  is large and we would choose the FE model. The above decision rules are summarized in Table 

3.1. 

Table 3.1 Model rules based on Durbin–Wu–Hausman test  

 H0 is true H1 is true 

rê  (RE estimator) Consistent and Efficient (choose RE) Inconsistent 

fê  (FE estimator) Consistent but Inefficient Consistent (choose FE) 
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 The Hausman test has been quite popular in helping to decide between the FE or RE 

models. However, it is not without problems since the null hypothesis of the Hausman test requires 

the random effect estimator to be efficient and thus requires the i and it  are dii .. , which violates 

the assumption of cluster robust standard error for the random effect estimator.  A simpler version 

of the test is  

              Ttxxyy itiitiitiit ,...2,1,)()(                                   (3.6) 

This is simply the RE equation augmented with the additional variables. This equation consists of 

the time-demeaned original regressors. Here, y and x  are defined as previously and  includes 

the M1 subset of time varying variables included in x  (dummy variables are excluded). A test 

of 0   can be implemented after the pooled OLS estimator. The F statistic is computed when 

1M . When the homoscedasticity assumption is violated, the robust version of test is needed 

(Wooldridge 2002, pp. 290-91). When heteroskedasticity as well as serial correlation are present, 

it is advisable to use cluster-robust standard errors (Baltagi & Giles 1998; Schmidheiny & Basel 

2011). 

In STATA, the model estimation procedure can be implemented manually. One could also 

take advantage of the user-written module “xtoverid,” which is used to test over-identification 

restrictions after xtreg, xtivreg, xtivreg2 or xthtaylor. STATA will report this test after standard 

panel data estimation with xtreg, re. The rationale of using an over-identification restrictions test 

to decide the FE or RE estimator is that the additional orthogonality conditions the RE estimator 

uses, i.e., 0),cov( iitx  , are used to compare to the FE assumption.  Unlike the Hausman test, 

the test executed by xtoverid guarantees to generate a nonnegative test statistic. Further, it extends 

straightforwardly to heteroskedastic- and cluster-robust test versions. 
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3.5 Summary 

Selecting the appropriate framework, model, and estimation technique is crucial for 

adequately elucidating the driving forces of LUCC in general and deforestation in particular. 

Therefore, this chapter has reviewed the modeling approaches used and empirical results generated 

by previous studies of the driving forces of deforestation, and discussed the advantages and 

limitations of various models as well as the FE and RE estimation strategies associated with single-

equation models. It has also articulated why we need and how we build more advanced modeling 

systems. These steps have prepared me well for my own modeling work in the next two chapters. 

While there can be analytic, simulation, and regression models, I have decided to develop 

regression models, including single-equation and system of equations ones, in my empirical 

research. The variables to be considered in these models will be consistent with the proximate and 

underlying drivers of deforestation identified in the literature and the specific context of my study 

site. Because FE and RE estimations have their own advantages and shortcomings in estimating 

single-equation models, it is necessary for me to explore the ramifications of these different 

strategies and obtain more robust empirical findings, based on the data that I have collected. This 

will be the task of Chapter 4. Moreover, because single equations cannot deal with the endogeneity 

of certain right-hand side variable(s) or capture the interaction between different classes of land 

use, it is essential to develop and estimate better models to represent the complex linkages between 

the LUCC dynamics and their drivers. This will be the task of Chapter 5, where the Instrumental 

Variable Method and a system of equations will be used.  

I know that completing these empirical tasks will require a skillful and careful application 

of economic principles and econometric tools. I am confident that I can complete get them done 
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successfully. Certainly, I hope that my work will contribute to an improved understanding of both 

the multi-faceted linkages between deforestation and its determinants in northeast China and the 

economic and policy implications to more effective forest protection and management as well as 

land use there and elsewhere.  
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AN ANALYSIS OF THE FORCES DRIVING FOREST COVER CHANGE 
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4.1 Introduction  

As stated in Chapter 1, the vast forests in Heilongjiang have a paramount status in China. 

The province has more natural forests than any other one in China, and it is also home to much of 

the country’s timber industry (Jiang et al., 2011). Meanwhile, due to its high quality black soil, 

Heilongjiang has been long recognized as the “Northeastern Granary.” Its forests are regarded as 

playing an important role in stabilizing the local ecological system and helping secure the 

country’s grain supply by protecting soils, preserving water supply, sheltering farmland, and 

moderating strong winds (Wang et al., 2006). Moreover, the Natural Forest Protection Program 

(NFPP), initiated in 2000, signified a major shift from traditional forest utilization to a new era of 

forest conservation (Xu et al., 2006; Yin & Yin, 2010). For all of these reasons, it is essential for 

me to focus on the determinants of Heilongjiang’s forestland change. 

Also, as depicted in Chapter 2, forestland and farmland are the two dominant classes of 

land use in the study region. In combination, they occupy around 80% of the total land area; and 

the predominant type of land transition has been the conversion of forestland to farmland. 

Therefore, the relationship between forestland and farmland requires close scrutiny. In this chapter, 

I will derive a theoretically consistent empirical model for analyzing the driving forces of forest 

cover change in Heilongjiang. Chapter 3 has reviewed a variety of approaches to deforestation 

analysis, some of which are theoretically motivated while others are empirical investigations. The 

economic and human behavior-based analytical models illuminate the causal relations in farmers’ 

land allocation decision, such as how farmers react to price change and technology development 

under different market and/or land constraints. Understanding the findings based on this theoretical 

reasoning and other empirical studies as well as the intrinsic relationships between different 

indicators/variables will lay a solid foundation for me to specify my own empirical models.  
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Meanwhile, I will also emphasize the application of different estimating methods. Different 

regression tools could produce different empirical results, and variation in empirical results could 

be largely dependent on modeling specifications (Hegre & Sambanis, 2006). To validate the 

robustness of my results, a number of well-established and commonly used methods will be used 

with the same dataset. Comprehensive, though not exhaustive, exploration of the performance of 

different estimators can help me avoid poor empirical results and thus enhance their robustness. 

To both ends, my strategy is to begin with simple regressions by specifying only the 

primary driving forces of deforestation in the empirical model, namely, the proximate factors in 

land use conversions—farmland expansion and wetland loss. As a second step, I will move on to 

augmented specifications where I will capture the effects of additional factors of deforestation 

identified in the literature review, such as socioeconomic development, political transformation, 

and demographic change.  

The first part of this chapter is based on the land conversion data I have derived in Chapter 

2. I will use all 48 observations (eight counties in six periods) in this analysis. To better organize 

the material of this chapter and present the analytic results, I will summarize the key findings in 

sub-sections 4.1.1 and 4.1.2, with the detailed modeling steps and between-model comparisons 

being covered in the Appendix (sub-section 4.4.1). The second section of this chapter begins with 

a discussion of the selected variables. Regression results are then presented in sub-sections 4.2.2 

and 4.2.3, where I employ the most frequently used Fixed Effects (FE) and Random Effects (RE) 

estimators in the single-equation model with panel data. Here, Land Use and Land Cover Change 

(LUCC) data from the six periods (1977, 1984, 1993, 2000, 2004, and 2007) are linearly 

interpolated to derive annual observations, so that these land-use data can be more effectively 

integrated with social economic data in the driving force analysis. With a time span of from 1977 
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to 2007 for 8 counties: Suibin, Boli, Yilan, Fangzheng, Huanan, Huachuan, Qitaihe, and Jixian 

(Youyi and the municipality of Shuangyashan were dropped due to limited forest cover in their 

jurisdictions). The analysis in the second section will thus be based on 248 observations. By taking 

advantage of these long time-series, the analysis in sub-section 4.2.4 is intended to complement 

the earlier regressions. Finally, the implications of my modeling of the deforestation driving forces 

are discussed in section 4.3. 

4.1.1 Initial Analysis Based on Land Use Categories: Fixed-Effects Estimation  

For an initial analysis of the main driving forces of forestland changes, I have decided to 

include both farmland expansion and wetland loss in my models. As shown in Chapter 2, forestland 

and wetland (wetland and grassland constitute the most part of the “Other” class of my LUCC 

classification) are the two main sources for farmland expansion. Thus, the two types of land use 

can be mutually substitutable. Including the “Other” category in the regressions will help identify 

the underlying relationships in the LUCC dynamics. The general form of the regression models is: 

𝐹𝑡𝑖𝑡 = 𝑓(𝐹𝑚𝑖𝑡, 𝑊𝑡𝑖𝑡) + 𝛼𝑖 + 𝜀𝑖𝑡                                              (Eq. 4.1) 

In Eq.4.1, i denotes observation units (counties), and t indexes time (year). The variables are the 

total areas (km2) of different land uses, respectively; 𝛼𝑖 is the fixed county effect, and  𝜀𝑖𝑡 is the 

random error. Table 4.1 reports the FE estimates of the driving forces of the forest cover changes 

based on six alternative modeling schemes. Mathematically, all the models in Table 4.1 are 

equivalent to the within-groups method and therefore estimated results are very similar. 
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Table 4.1 Initial results of the drivers of forestland change with unobserved heterogeneities 

being assumed as fixed 

 I II III IV V VI 

Forestland reg_lsdv Xtreg xtivreg2 xtreg_clbs areg_clbs Fese 

       

Farm -1.14*** -1.14*** -1.14*** -1.14*** -1.14*** -1.14*** 

 (0.04) (0.04) (0.03) (0.05) (0.05) (0.04) 

Others -0.82*** -0.82*** -0.82*** -0.82*** -0.82*** -0.82*** 

 (0.14) (0.11) (0.13) (0.37) (0.37) (0.11) 

Fangzheng -160,842***      

 (5,723)      

Huachuan -176,619***      

 (2,536)      

Huanan 910.0      

 (983.9)      

Jixian -209,300***      

 (766.8)      

Qitaihe -386,032***      

 (6620)      

Suibin -107,539***      

 (7,165)      

Yilan 38,755***      

 (8,673)      

Constant 460,474*** 335,390***  335,390*** 335,390*** 335,390*** 

 (2,182) (8,450)  (47,850) (47,850) (8,450) 

R2 0.99 0.95 0.95 0.95 0.99 0.99 

Note: Standard errors are in parentheses.  *, **, and *** indicate the significance levels of 90%, 

95%, and 99%, respectively. 

 

Column I reports results derived from a regression with dummy variables for each county 

estimated with Ordinary Least Squares (OLS) and clustered variances. Column II presents results 

derived from the most frequently employed FE modeling routine using the STATA “xtreg, fe” 

command. Results in column III come from the user-written “xtivreg2” command, which is robust 

to heteroscedasticity Standard Errors (SE). Column IV presents the “xtreg, fe” results derived from 

400 bootstrap replications with the cluster-robust SE. Results in column V are derived from the 

“areg” command with 400 bootstrap replications clustering on counties. Results in column VI are 

estimated by the user-written codes “fese.”   
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All the estimation strategies give consistent point estimates with varying SE. The 

consistency is due to the six models all being based on the same rationale. A small portion of the 

varying SE is due to the programming design behind different estimation routines, and a more 

significant portion lies in the degree of freedom adjustments (see Appendix A for detail). However, 

the dominant difference of the SE is due to the variance-covariance structures specified for 

exploring the data’s potentials (also see Appendix A for details). Of course, the limited sample 

size is another reason for the unstable SE when bootstrapping is employed. 

The coefficients of farmland and wetland estimated by the six alternative strategies match 

very well—1.14 units of farmland expansion is associated with one unit of forestland loss; 

meanwhile, 0.82 unit of wetland loss prevents one unit of forestland from loss. Therefore, the 

evidence supports the inclusion of wetland change in the regressions.  

4.1.2 Initial Analysis Based on Land Use Categories: Random Effects Estimation  

The general specification of a RE model is similar to the FE counterpart, with the fixed 

effect 𝛼𝑖  being absorbed. In the following equation, 𝜏𝑖𝑡  stands as observation-specific random 

errors. 

𝐹𝑡𝑖𝑡 = 𝑓(𝐹𝑚𝑖𝑡, 𝑊𝑡𝑖𝑡) + 𝜏𝑖𝑡                                              (Eq. 4.2) 

I will employ four commonly used estimators in my analysis, all of which assume the 

unobserved heterogeneities are uncorrelated with the independent variables. They are the between-

model estimator (Model I), the generalized least square (GLS) random-effects estimator (Model 

II, IV and V), the maximum likelihood estimator (MLE) (Model III), and the generalized 

estimation equation (GEE) with population-averaged estimator (Model VI). As shown in Table 

4.2, the four different estimators have produced different results. 
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Table 4.2 Preliminary results of the drivers of forestland change assuming that the 

unobserved heterogeneities are random  

 I II III IV V VI 

VARIABLES xtreg_be Mdlk xtreg_mle xtreg_re xtreg_rebs xtreg_paexbs 

       

Farm 0.37 -1.14*** -0.71* -1.12*** -1.12*** -1.13*** 

 (0.81) (0.04) (0.41) (0.05) (0.26) (0.21) 

Others -2.31 -0.82*** -0.44 -0.80*** -0.80 -0.81*** 

 (5.03) (0.11) (1.42) (0.12) (1.08) (0.25) 

mean_Farm  1.51***     

  (0.46)     

mean_Others  -1.50     

  (1.70)     

Constant 89,424 89,424 251,614* 332,581*** 332,581*** 334,040*** 

 (167,906) (82,084) (130,276) (37,012) (66,133) (37,532) 

Note: Standard errors in parentheses. *, **, and *** indicate the significance levels of 90%, 95%, 

and 99%, respectively. 

 

The models in Table 4.2 offer different perspectives of the data structure (see Appendix B). 

For example, contrary to fixed effects estimates, which discarded the differences between counties 

through the process of subtracting the mean differences across unit of observation, Model I treats 

the cross sectional/between-county variations as its focus. As the between variations have little 

explanatory power, this relationship is weak and proves that the FE model (i.e., the within 

estimator) did not lose much useful information during the demeaning process and is valid in 

explaining the general forestland transitions. Also, in Model II, the significant correlations of the 

averaged farmland and other land call into question the validity of the RE assumption—the 

observed variables are uncorrelated with the unobserved heterogeneities. This indicates that when 

the coefficients differ a lot between the FE and RE models, the FE estimates are probably more 

appropriate. Moreover, the poor performance of Model III cautions me that the small dataset may 

not fit the normal distribution assumption related to the classical MLE.  

In addition to the important ramifications discussed above, these models have also verified 

the key findings shown in Table 4.1. Under the assumption that the unobserved heterogeneities are 
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random, the correlations between deforestation and farmland expansion fall in the range of -1.12 

and -1.13. These are close to the fixed effect estimates -1.14. Also, the correlation coefficient of 

wetland change with farmland expansion between is -0.80 and -0.82, and the corresponding 

coefficient from the FE models is -0.82. These results confirm the dominant role of agricultural 

expansion in forestland loss as well as the importance of considering substitution between 

forestland and wetland in analyzing the driving forces behind the LUCC in general and 

deforestation in particular.  

In short, this section not only serves as the analytic basis but also offers guidelines for 

model selection in the following section. Based on the LUCC data extracted from satellite images, 

deforestation is mainly correlated with farmland expansion and wetland change; the estimated 

coefficients are descriptive of the average land conversion ratios. As such, these coefficients could 

also be a gauge for evaluating the appropriateness for the following models. 

 

4.2 Augmented Analysis of Deforestation Drivers 

4.2.1 Model Specification  

Coupled with a clear understanding of the advancement in land change science (Angelsen 

& Kaimowitz, 1999; Geist & Lambin, 2002; Kaimowitz, 1998; Lambin et al., 2001; Turner, et al., 

2008) and the history of forest transition in northeast China (Xu et al., 2006; Yu et al., 2011; Zhang 

et al., 2011; Zhang et al., 2000), the initial results in section 4.1 have presented a solid starting 

point to specify my own model of the forces driving deforestation, in which I will include 

agricultural expansion and wood extraction as the two main direct causes for deforestation. 

Farmland (Fm) and forestland (Ft) are variables derived from the LUCC detection. Wood 

extraction includes government-sanctioned timber harvests and local farmers’ consumption of 
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fuelwood as well as construction timber. As there are no direct and accurate measures of wood 

extraction, I will use the gross output value of forestry (O) as a proxy. The data for this variable 

came from the Heilongjiang Statistical Yearbook, and the nominal output values were deflated 

with the GDP deflator (1976 as the base year). 

During the study period (1977-2007), the regional forest sector witnessed heavy logging 

and thus resource degradation in the 1980s and 1990s; by the turn of the century, however, the 

Natural Forest Protection Program (NFPP, shortened as N in Eq.4.3), one of the largest ecological 

restoration programs in China (Xu et al., 2006), had been initiated. So, the year 2000 could be a 

turning point of the overall management policy affecting forestland use (Yin & Yin, 2009). A 

dummy variable is created to reflect the implementation of the NFPP. 

Timber price (Tp) change is another important factor that influences the behavior of forest 

enterprises and farmers and thus the forest condition. Low prices could make profit-orientated 

farmers switch their production efforts from logging to cropping (Yin & Newman, 1996; Yin et 

al., 2003) and cause the forest entities to neglect their management duties (Yin, 1998). Thus, timber 

price change could affect the aggregate timber supply as well as local timber inventories, and, 

coupled with excessive logging, could even lead to the deterioration of forest resources and 

subsequently impact the LUCC (Lambin et al., 2001). Timber price data were gathered from the 

Forest Industry Bureau of Heilongjiang Province with a unit of yuan/m3 and they were deflated 

with the provincial-level Consumer Price Index (or CPI, with a base year of 1976) to obtain the 

real price series.  

I also assume that a shorter distance and thus lower transportation cost facilitate wood 

extraction and annual-crop cultivation by local farmers, and even make it possible to convert land 

being used for other purposes into farmland. More specifically, I will take distance (D) from the 
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forest farms to the nearby timber markets, as well as the seats of the counties where the farms are 

located, as a proxy measure of transport costs. The process of data generation on this variable is 

the following. First, I extracted the centroids of each forest farm polygons with a total of 171 points. 

The number is larger than the total number of forest farms in the study area, because sometimes 

one forest farm has jurisdiction over several patches of forestland. Then, I extracted the centers of 

the county seats and included the largest timber markets located close to the study region. These 

markets are in the cities of Harbin, Suifenghe, Jiamusi, and Mudanjiang. Utilizing the “spatial join” 

tool in ArcMap, I got attributes of the 171 points from the county polygon layer. Then I employed 

the “near” tool to calculate the distances between the forest farm centroids to the 14 cities with a 

distance ranging up to 1000 km. After that, I calculated the mean distance (Km) from a forest farm 

to each city for each sample county. 

As stated-owned enterprises, forest farms follow specific regulations imposed by the 

central government, such as the logging and reforestation quotas (Xu et al., 2004). I include the 

numbers of government-owned forest farms (Nf) in my model based on the assumption that the 

more clustered forest farms are in a county, the larger their aggregate effect is in protecting forests 

from farming encroachment. Such effects could be reflected geographically and institutionally—

the locally clustered forest farms reduced the possibility of disturbance of human activities and 

thus avoiding fragmentation and further forestland loss; also, with more organizational presence, 

there would be more supervisory power that could lead to less excessive deforestation and better 

policy implementation (Key & Runsten, 1999).  

Further, population (P) and Gross Domestic Product (or GDP), are two most frequently 

used indicators in land use change analyses. The widely acknowledged effects of population 

dynamics on LUCC mainly occur through the direct actions of clearing land for shelter and 
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meeting increasing demand for forest products (Carr et al., 2005; Geist & Lambin, 2002). As local 

population grows and spreads, more farmland is converted into built-up areas; clearing patches of 

forest for farming is inevitable in order to meet local farmers’ growing production needs. Also, 

population growth is closely linked to increases in wood products consumption and fuelwood 

demand. GDP is an indirect indicator, predicated on the theoretical reasoning embedded in the 

environmental Kuznets curve, which hypothesizes that as an economy develops, deforestation 

rates tend to first increase and then decrease (Bhattarai & Hammig, 2001; Koop & Tole, 1999). 

Based on the above discussion, the general model of deforestation determinants can be 

expressed as: 

𝐹𝑡𝑖𝑡 = 𝑓(𝐹𝑚𝑖𝑡, 𝑂𝑖𝑡, 𝑁𝑡 , 𝑇𝑝𝑡, 𝐷𝑖 , 𝑁𝑓𝑖 , 𝑃𝑖𝑡, 𝐺𝐷𝑃𝑖𝑡 , ) + 𝑢𝑖𝑡                        (Eq. 4.3) 

In Eq. 4.3, the subscript 𝑖 denotes county; if 𝑖 is not present, it means that county level data 

are not available and provincial data are used instead. Similarly, 𝑡 denotes time; if a variable, such 

as distance to markets, does not vary with time, 𝑡 is absent from the variable’s subscript. The error 

term, 𝑢𝑖𝑡 represents the effects of the omitted variables that are peculiar to both the individual units 

and time periods. Under the fixed-effect assumption, 𝑢𝑖𝑡is the combination of an independently 

identically distributed (i.i.d.) random error 𝜀𝑖𝑡 and an unobserved heterogeneity 𝛼𝑖  peculiar to 

county 𝑖 over time (Hausman & Taylor, 1981; Nickell, 1981). Under the assumption that 𝑢𝑖𝑡 is 

random, then it is just an i.i.d. random variable with zero mean and variance 𝜎𝜏
2. For detailed 

statistical information of the variables in Eq.4.3, see Table 4.3 below. The above model will be 

estimated with the panel dataset of 248 observations—31 years (from 1977 to 2007) in 8 counties.  

 

http://en.wikipedia.org/wiki/Economic_development
http://en.wikipedia.org/wiki/Market_forces
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Table 4.3 Variables for the single equation analysis of deforestation  

Var  Definition Unit Mean Std. Dev. Min Max 

Ft Forest Area km2 1194.52 901.92 5.13 2622.70 

Fm Farm Area km2 1773.47 799.59 206.25 2876.01 

Tp Price Index of Timber 1976=100 88.90 23.46 54.50 161.60 

O Gross Output Value of Forestry  1000 ￥ 4538.87 5165.00 164.99 33424.47 

D Mean Distance to Large Markets Km 26.10 9.57 15.96 46.56 

Nf No. of Forest Farm in County None 6.38 4.04 1.00 13.00 

N 0 before 2000; otherwise 1 None 0.30 0.46 0.00 1.00 

P Total Population  1000 305.76 99.79 104.00 527.50 

Note: Var means variable and ￥is a unit of Chinese currency. 

 

4.2.2 Fixed-Effects Estimation 

As before, six different estimating methods were adopted in the augmented model in 

correspondence to the different variance-covariance structures. Results are presented in Table 4.4. 

Here, I will first focus on illustrating the alterative estimators and their implications. 
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Table 4.4 Estimation results of the drivers of forestland change with the unobserved 

heterogeneities being fixed  

 I II III IV V VI 

Forestland reg_lsdv_cl xtreg_cl areg_cl xtivreg2_hac fese_hc xtreg_clbs 

       

Farm (Fm) -1.04*** -1.04*** -1.04*** -1.04*** -1.04*** -1.04*** 

 (0.06) (0.06) (0.06) (0.04) (0.03) (0.13) 

ForOpt (O) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) 

NFPP (N) 16.96 16.96 16.96 16.96 16.96 16.96 

 (12.52) (12.34) (12.52) (13.56) (11.13) (14.59) 

TimberPrice (TP) 0.16 0.16 0.16 0.16 0.16 0.16 

 (0.44) (0.43) (0.44) (0.26) (0.22) (0.38) 

Meandist (D) 98.71***      

 (5.63)      

NForFarm (Nf) 389.02***      

 (10.51)      

TotalPop (P) -0.55*** -0.55*** -0.55*** -0.55*** -0.55*** -0.55 

 (0.14) (0.14) (0.14) (0.08) (0.10) (0.44) 

Fangzheng 246.09***    2915.48***  

 (48.44)    (24.34)  

Huachuan 1,191.06***    2568.26**  

 (58.12)    (59.70)  

Huanan 289.41***    4549.63**  

 (23.86)    (72.12)  

Jixian 1,322.85***    2454.66**  

 (82.70)    (56.25)  

Qitaihe     896.57**  

     (20.74)  

Suibin     2750.12**  

     (82.89)  

Yilan -158.19***    4781.62**  

 (22.16)    (80.91)  

Boli     4548.90**  

     (62.12)  

Constant -2,235*** 3,183*** 3,183***  3,183*** 3,183*** 

 (114.6) (128.0) (129.8)  (55.55) (532.8) 

Observations 248 248 248 248 248 248 

R2 0.996 0.884 0.996 0.884 0.996 0.884 

Note: Standard errors are in parentheses.  *, **, and *** indicate the significance levels of 90%, 

95%, and 99%, respectively. 

 

The first estimator in Table 4.4, marked as “reg_lsdv,” used the least square dummy 

variable and the corresponding standard error was estimated using the clustered-robust variance-
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covariance matrix. The second estimator used the widely used fixed effect analysis routine of 

“xtreg, fe.” The third estimator employed a similar STATA routine “areg” with the cluster-robust 

standard errors (CRSE), the same as Estimator V in Table 4.1. The fourth estimator utilizes a user-

written package “xtivreg2” as a wrapper for ivreg2. So, it is close to Estimator III in Table 4.1. A 

major alteration I made for the Estimator IV was that, rather than using the bootstrapping cluster-

robust standard errors, I specified the heteroscedasticity and autocorrelation consistent (HAC) 

standard errors with the Bartlett kernel; the bandwidth I chose here was 2. Estimator V 

implemented the “fese” module with heteroscedasticity-robust (Hr) errors. The last estimator used 

the xtreg routine with 400 bootstrap replications clustering on counties. 

The first three estimators were based on the clustered-robust variance covariance matrixes, 

but some subtle differences between them can still be seen. The SE from estimators LSDV and 

areg are relatively larger than those from estimator xtreg, which can be attributed to the different 

degrees of freedom adjustments: areg subtracts the degree of freedom by the number of unit effects 

that were swept away in the within-group transformation in FE estimation, while LSDV and xtreg 

do not make such degrees of freedom adjustments. When observations for any group are classified 

exactly within the same cluster, xtreg’s output is considered to be more appropriate (Gould, 1996; 

Gould, 2013). 

I considered three different standard errors: Newey-West standard errors (or HAC) 

(Hoechle 2011) in Estimator IV (see Appendix 4.4.3 for more detail), Hr in Estimator V, and CRSE 

in Estimator VI. Compared to Estimator V, which considers autocorrelations in the time dimension, 

SE in Estimator IV are larger. Estimator VI reports the largest SE; my interpretation of the 

difference is that the SE estimated by OLS are biased downward when a large proportion of 

variability is due to fixed effects. The HAC are also biased but with relatively small magnitude. 
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Of the three estimators, the clustered standard errors should be closer to the true errors (Petersen, 

2009).  

Fixed unit effects are reported only for the LSDV and fese estimators. These unit effects 

were generated by different mechanics. Dummy variables were created in the LSDV estimation. 

In order to avoid the multicollinearity, STATA automatically excluded one unit (Boli in my 

sample). All the other unit effects reported are the disparities from the unreported fixed effect of 

Boli. In the fese estimation, the intercept is the average value of the fixed effects while the specific 

unit effects were the differences to the mean fixed effects. So, STATA drops dummy variables in 

LSDV due to multicollinearity, but this does not happen to the fese estimator. 

All the six regressions report identical coefficient estimates. First, one unit of forestland 

loss is associated with 1.04 units of farmland expansion. Second, the policy dummy NFPP has a 

positive but insignificant effect on forestland. Similarly, deforestation is correlated with slowly 

rising timber prices, but the relationship is not significant. Further, the gross output value of 

forestry is little correlated with deforestation. The coefficient of mean distance suggests that forests 

closer to the timber markets have a greater likelihood to be depleted. Finally, the significant 

positive coefficient of number of forest farms indicates that counties with more forest agencies 

tend to have less deforestation. 

4.2.3 Random Effects Modeling Results  

The key estimation options for random effect models are the between-effects estimator (BE) 

(I in Table 4.5 below), the Mundlak estimator (II), the random effect estimator (or RE and MLE) 

(III, IV, and VI), and the population-averaged estimator (or PA). Except estimator II, consistency 

estimation requires that the error term be uncorrelated with the regressors.    



108 
 

Estimator I used only the cross-sectional information in the data, the information reflected 

in the changes between counties. Estimator II was developed to relax the assumption that the 

observed variables are uncorrelated with the unobserved heterogeneities, providing additional 

details on the within and between variation of the independent variables. Here, the coefficients of 

the original regressors were calculated based on the within estimator, so these values are the same 

as those of the fixed effects model in Table 3. Meanwhile, the coefficients related to the mean of 

time-varying variables are tabulated based on the difference of between and within estimators.  

Estimator VI was based on 400 bootstrap samples; as the error term is likely to be correlated over 

time for a given county, it is essential that OLS SE be corrected for clustering on the counties. 

Estimator IV assumes the observed heterogeneities and the idiosyncratic errors are normally 

distributed. Through maximizing the log of the likelihood function, the MLE coefficients are 

consistent when T is large (Laird & Ware, 1982; Raudenbush et al., 2000). Estimator V is also 

called the generalized least square estimator in the literature. As the observed heterogeneities are 

assumed to be random and averaged out, this estimator is consistent. 
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Table 4.5 Single equation models assuming that the unobserved heterogeneities are random 

 I II III IV V VI 

Forestland xtreg_be Mdlk xtreg_re xtreg_mle xtreg_paex xtreg_rebs 

       

Farmland(Fm) -0.20 -1.04*** -1.00*** -0.99*** -1.03*** -1.00** 

 (0.12) (0.03) (0.03) (0.07) (0.06) (0.41) 

ForOpt(O) 0.12* -0.00 -0.00 -0.00 -0.00 -0.00 

 (0.04) (0.00) (0.00) (0.00) (0.00) (0.01) 

NFPP(N)  16.96 15.01 14.86 16.66 15.01 

  (11.13) (12.17) (28.90) (12.29) (36.65) 

TimberPrice(Tp)  0.16 0.08 0.07 0.15 0.08 

   (0.22) (0.24) (0.56) (0.43) (1.24) 

Meandist(D) 11.60 11.60 71.21*** 71.02*** 73.39*** 71.21 

 (10.99) (10.99) (7.35) (16.90) (21.56) (104.65) 

NForFarm(Nf) 187.89** 187.89*** 304.82*** 304.58*** 307.66*** 304.82** 

 (33.74) (33.74) (17.06) (39.07) (44.43) (147.22) 

TotalPop(P) -2.57 -0.55*** -0.55*** -0.55** -0.55*** -0.55 

 (0.91) (0.10) (0.11) (0.25) (0.14) (1.89) 

M(Farm)  0.83***     

  (0.12)     

M(ForOpt)  0.12***     

  (0.04)     

M(TotalPop)  -2.02**     

  (0.91)     

Constant 292.26 273.71 -679.67*** -677.57 -703.30 -679.67 

 (374.92) (375.35) (255.33) (584.20) (874.21) (1,516.02) 

Note: Standard errors in parentheses. *, **, and *** indicate the significance levels of 90%, 95%, 

and 99%, respectively. 
 

 

Results derived from Estimator I indicate that there is not much between-county variation 

with respect to the driving forces. Compared to the results of xtreg, fe in Table 4.4, it can be 

inferred that a large part of the changes in forest cover came from the time changing effects within 

counties. Estimator II incorporates both between- and within-county variations. The significances 

in coefficients of farmland, forest output and total population indicate that the random effect 

assumption may be too strict, i.e., these variables are probably correlated with some of the 

unobserved heterogeneities.  
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Estimator IV assumes that the cross-sectional effects are normally distributed. This normal 

distribution assumption was rejected in an earlier analysis of the 48 original observations (see 

Table 4.2 and Appendix B for further information). But when the 248 annual observations are used 

and the model is augmented, the coefficients of the current estimator become closer to those 

derived from other estimators.  

There are several other covariance matrix options, like “independent (absence of 

covariance and correlations)” and “unstructured” (unconstrained pairwise correlation) for the 

population-averaged estimator V, but many of them are not realistic due to the small sample size. 

Thus, relatively, it seems to fit better under the default “exchangeable” error correlation 

assumption (uniform correlations across time). The difference between Estimators III and VI is 

that Estimator VI is based on 400 bootstrap samples. From the results, it can be seen that the 

standard errors changed considerably. 

Overall, the differences between the estimated RE results and the FE ones are relatively 

small. The RE coefficients of farmland are around -1, close to those derived from the FE estimators. 

Also, the coefficient magnitudes of other variables, like NFPP, forestry output, and timber price, 

as well as population, are similar. Further, the coefficient significances of all the variables are 

identical between the two approaches. In Table 4.5, the coefficients of time-invariant variables—

number of forest farms in a county and average distance from the forest farms to nearby county 

seats and markets—are not dropped. Thus, the effect of administrative arrangements and the 

geographic influence can be quantified by the RE model, which is complimentary.  

 

 

 



111 
 

4.2.4 Long Panel Data Analysis 

As the dataset covers 31 years, exploring the information of the panel dataset with annual 

observations could offer more insight into how I might improve my results. A key difference in 

model specification between the repeated cross-sectional and panel data is that with the former, it 

is impossible, and perhaps unnecessary, to deal with serial correlation, while with the latter, it is 

necessary and feasible to consider serial correlation. Thus, serial correlation is generally assumed 

for the error term when panel data are used (see Tables 4.6 and 4.7).   
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Table 4.6 Single equation models with special attention to the long panel structure 

 I II III IV V VI VII VIII IX 

Forestland pw_iid pw_car1 pw_ar2 pw_psar1 pw_psar1dw fgls_psar1 fgls_cpsar1 regar_fear1 regar_rear1 

          

Farm(Fm) -0.41*** -0.59*** -0.41*** -0.71*** -0.67*** -0.73*** -0.76*** -0.67*** -0.75*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.01) (0.03) (0.03) 

NFPP(N) 57.60 10.11 57.60* 12.56** 11.02* 3.07 11.45*** 15.64*** 12.09** 

 (45.04) (6.76) (30.22) (6.16) (6.14) (4.90) (2.04) (5.32) (5.80) 

TimberPrice(Tp) 1.11 0.09 1.11** 0.07 -0.01 -0.06 -0.18*** 0.05 -0.06 

 (0.88) (0.15) (0.40) (0.14) (0.12) (0.10) (0.04) (0.11) (0.11) 

ForOpt(O) 0.01*** 0.00 0.01*** 0.00 0.00 0.00 0.00 0.00 -0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Meandist(D) 26.10*** 45.56*** 26.10*** 49.75*** 39.19*** 43.57*** 63.87***  57.13*** 

 (2.10) (3.26) (3.00) (3.71) (4.34) (3.21) (1.18)  (10.61) 

NForFarm(Nf) 252.07*** 264.51*** 252.07*** 290.01*** 256.08*** 271.66*** 276.20***  277.83*** 

 (5.21) (5.84) (5.15) (7.01) (10.69) (6.72) (2.63)  (24.96) 

TotalPop(P) -1.15*** -0.23* -1.15** -0.24* -0.11 -0.06 -0.10*** -0.02 -0.14 

 (0.33) (0.13) (0.42) (0.13) (0.11) (0.08) (0.03) (0.10) (0.10) 

GDP -0.00*** -0.00*** -0.00** -0.00*** -0.00** -0.00*** -0.00*** -0.00 -0.00* 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Constant -28.70 -

512.85*** 

-28.70 -

603.22*** 

-106.71 -224.29** -733.86*** 2,201.17*** -672.45* 

 (110.73) (70.81) (150.32) (84.40) (73.94) (94.95) (37.76) (2.30) (374.48) 

R2 0.94 0.93 0.94 0.97 0.92     

Note: (1) The model specification details are listed in Table 4.7. (2) Standard errors in parentheses. (3) *, **, and *** indicate the 

significance levels of 90%, 95%, and 99%, respectively. (4) Model VI and Model VII do not report R-squared but with Wald chi2 (8) 

equals to 2313.96 and 30351.54 respectively.  The within R-squared for Model VIII is 0.71 and the between R-squared for Model 9 is 

around 0.87. 
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Table 4.7 Different autocorrelation and panel correlation specifications  

 Panels Autocorrelation Estimator 

Model 1 Heteroskedastic No Pooled OLS 

Model 2 Correlated AR(1) Prais-Winsten 

Model 3 Heteroskedastic with CS correlation AR(2) Pooled OLS 

Model 4 Correlated panel-specific AR(1) Prais-Winsten 

Model 5 Correlated panel-specific AR(1) Prais-Winsten 

Model 6 Heteroskedastic panel-specific AR(1) Two-step FGLS 

Model 7 Heteroskedastic with CS correlation panel-specific AR(1) Two-step FGLS 

Model 8 Independent AR(1) FE 

Model 9 Independent AR(1) RE GLS 

Note: Table 4.7 is an explanation of the models used in Table 4.6, and CS stands as cross-sectional. 

In order to improve modeling efficiency, I have employed several different techniques of 

coefficient estimation. Estimators I and III are pooled OLS ones; Estimators II, IV and V are Prais-

Winsten ones; Estimators VI and VII use the FGLS and Estimators VIII and IX apply the within 

estimator and the GLS to obtain the FE and RE results. Moreover, in order to account possible 

correlations over time and between counties and insure the reliability of estimation results. I 

included different estimation packages (xtpcse, xtgls, xtscc, and xtregar) to adjust the SEs of the 

coefficient estimates for possible dependence in the residuals. Brief introduction of these packages 

and their specialties are generalized in the sub-section of 4.4.3, and the specific estimation 

procedures and interpretation of the corresponding result will follow.  

Compared to results reported in the previous sections, it is obvious to see that the overall 

correlation between farmland and forestland is smaller in magnitude in the panel-data regressions.  

For example, the estimated minimum coefficient is -0.76, while the coefficients are around -1 in 

the FE and RE versions of the model. A straightforward way to decide the appropriateness of 

different estimators is to check the estimated results against the proportion of land change. From 

the conversion matrixes in Chapter 2, we know that the farmland gain is always a little larger than 

forestland loss. Thus, it is easy to tell that the FE and RE versions of my model in the previous 
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sections better fit the data. The under performance of the panel-data estimation has to do with the 

data generation mechanism. That is, the deficiencies of interpolated data make the estimated results 

less reliable when capturing the autocorrelation or differences from the means.  

Nonetheless, the panel-data analysis provides some useful information. In the case of a 

small N, it seems that specifying the contemporaneous correlation between cross-sections is not 

suitable; but exploring the autocorrelation of panel data becomes beneficial. For instance, with all 

the disturbances being cross-sectionally correlated, the results of Estimators II-V vary a lot; 

however, once the panel-specific AR(1) is considered by Estimators IV and V, the coefficient of 

farmland sees an immediate increase and is much closer to its counterpart found in sub-section  of 

4.1.1. Also, Estimator VII gives the most expected coefficient signs to the results, under the 

assumptions that the data are heteroskedastic with cross-sectional correlation and that each cross-

section is auto-correlated. Estimator IX is less optimal because while it assumes data auto- 

correlated with one lag, it does not consider the cross-sectional correlation. 

The panel-data analysis is also helpful for choosing a more appropriate estimation method.  

Different estimators are rooted in different methods of parameterization. With the same model 

specification, it seems that the FGLS estimators present relatively more consistent and efficient 

parameters (see estimators VI and VII).  FGLS enables me to account for dependence over time 

for each county; and more importantly, the asymptotic properties of FGLS with a small sample 

size make it out-perform other estimators (Altonji & Segal, 1996).  
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4.2.5 Model Validations 

Estimation Model Selection 

Models listed in the previous sections explore the potentials of how the data would be 

utilized under different specifications and error structures. Thus the first question I am going to 

address for this small section is which model reflects the data and covariance structure best. It is 

straightforward to see that the data interpolation has caused the estimates of long panel analysis in 

section 4.2.4 to be biased. Thus, comparisons here will be only between the FE and RE models.   

The between-effects estimator (Model I) in Table 4.5 utilizes the variations that are 

discarded from the within estimators, i.e. the fixed effects estimators. The poor estimation results 

of Estimator I in turn suggest that the FE model actually captured the dominant variations of 

forestland change. This implies that the FE models are more reliable. Meanwhile, the Mundlak 

model (Model II) in Table 4.5 also proves that the FE analysis fit the data better. The significances 

in coefficients of the mean values of farmland, output value of forestry and total population imply 

that the random effect assumption are relatively too strict; that is, some explanatory variables are 

potentially correlated with the unobserved heterogeneities. So, the within estimators instead could 

do better by taking into account the cross-sectional heterogeneities.  

Thus, both Estimator I and II in Table 4.5 confirm the validity of FE models. To be cautious, 

though, other tests are also considered here. Among them, the Hausman test is the most widely 

employed one. However, a weakness of the Hausman test is that it assumes the RE model is 

efficient by default, which violates the assumption of cluster-robust standard errors in several of 

the estimators listed in Table 4.4 and Table 4.5. To overcome this weakness, I constructed the 

Sargan-Hansen test suggested by Arellano (1993) and Wooldridge (2002, pp. 290-91). As an RE 

model requires that the independent variables are uncorrelated with the county-based unobserved 
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heterogeneities. This additional orthogonality condition features the over-identification 

restrictions. The P-value of Sargan-Hansen test is less than 1%, which rejected the null that these 

additional orthogonality restrictions are valid. Thus, it is safe to conclude that the FE model is 

more appropriate. 

Variable Selection 

 The drivers in the augmented models are predicated on insights found in the literature, and 

they are thus expected to be relevant causes to the deforestation in northeast China. Some of the 

variables didn’t turn out as expected, like the insignificant coefficient of the NFPP. For some 

reason, these unexpected results could be possibly be attribute to the specific local context as well 

as overall model speciation problem (see further analysis in Chapter 5). In order to seek a model 

that is more concise in capturing the deforestation mechanisms, I employed the Akaike's 

information criterion (AIC) and Bayesian information criterion (BIC) as two indicators for better 

balancing between models fit and complexity. A model is considered to be closer to the truth as 

the AIC and BIC values are the smallest. I started with the whole set of variables in FE models 

and recorded the corresponding AIC and BIC values. The formal stepwise selection method 

doesn’t support panel data analysis. As I gained knowledge of the data, I could manually try out 

different variable combinations. Table 4.8 below listed the all the AIC and BIC values with respect 

to each model. 
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Table 4.8 Variable selection process and corresponding AIC and BIC values 

 (I) (II) (III) (IV) (V) (VI) 

Forestland All ForOpt TimbPrice NFPP TotalPop Wetland 

       

Farmland -1.10*** -1.10*** -1.12*** -1.13*** -1.15*** -1.03*** 

 (0.02) (0.02) (0.03) (0.03) (0.03) (0.07) 

Wetland -0.96*** -0.96*** -0.92*** -0.88*** -0.85***  

 (0.08) (0.08) (0.09) (0.10) (0.10)  

TotalPop -0.40** -0.40** -0.47*** -0.54***   

 (0.12) (0.13) (0.10) (0.06)   

NFPP -12.19 -11.42 -21.09    

 (11.09) (9.61) (13.80)    

TimbPrice -0.48** -0.47**     

 (0.19) (0.19)     

ForOpt 0.00      

 (0.00)      

Constant 3,485.54*** 3,483.98*** 3,487.54*** 3,523.29*** 3,378.55*** 3,016.37*** 

 (47.79) (53.08) (55.45) (58.02) (53.80) (127.32) 

AIC 2383.55 2381.80 2396.74 2410.08 2510.29 2723.67 

BIC 2404.63 2399.37 2410.80 2420.62 2517.32 2727.18 

R2 0.97 0.97 0.97 0.96 0.94 0.87 

Note: (1) All the models in Table 4.8 were estimated using the most frequently used xtreg, fe 

routine with heteroskedastic-robust standard errors. (2) Robust standard errors in parentheses. *, 

**, and *** indicate the significance levels of 90%, 95%, and 99%, respectively. 

 

From Table 4.8, it is easy to recognize that Model II giving smallest AIC and BIC values 

over the set of models considered. Thus, model II meets the requirement with the annual output 

value of forestry being dropped out. The coefficient of output value of forestry is approximately 

0; so, from now on this variable will not be included in the following analysis. 

 

4.3 Discussion and Conclusions 

In this chapter, I have employed a series of empirical methods to investigate the effects of 

various forces driving deforestation in northeast China. Although variations resulted from different 

estimators, the coefficients tended to be in general agreement. First, the rate of deforestation is 

highly associated with farmland expansion—a one-unit loss of forestland is tied to more than one 
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unit of farmland expansion. Also, forests located closer to a county seat and/or a large timber 

market tend to have a higher probability of deforestation; counties with more forest farms and thus 

a greater presence of forestry administration in their jurisdictions seem to have a lower risk of 

forestland loss. In addition, population growth is also strongly associated with a higher rate of 

deforestation. As for the effect of implementing the NFPP, all the models corroborated the finding 

that it is positive, though insignificant. Finally, the influences of forestry output and GDP on 

forestland reduction are weak and thus negligible.  

Some of the estimated coefficients seem counter-intuitive. For instance, timber price is 

positively, and insignificantly, correlated with forestland changes. It is generally thought that 

timber price increases would lead to more logging and thus deforestation at least in the short run, 

so that the impact should be significantly negative. My conjecture is that under government market 

control, timber prices were depressed and thus did not play much of a role in the study region. 

Thus, my analysis reflects that timber price has little correlation with forestland change. Moreover, 

it is conceivable that the long-run price effect may be positive if the incentive structure for 

reforestation and forest management can be improved persistently.  

Because there are no direct and accurate measurements of annual wood extraction, the 

gross output value of forestry was used as a proxy. It can be seen from Table 4.4 and Table 4.5 

that forestry output is negatively associated with forestland change, as expected. But the coefficient 

is insignificant, too. This could partly be attributed to the imperfect approximation using the gross 

output value of forestry, but it could also indicate that local farmers as well as forest-based 

industries tend to under-report the actual quantities of wood extraction. 

The results of the augmented single-equation reveal a strong linkage between population 

growth and deforestation, which is consistent with a majority of the reported evidence in the 
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literature (Angelsen & Kaimowitz 1999; Geist & Lambin 2001; Carr et al. 2005). As other income 

opportunities for local farmers are limited, families living on the edges of forests continue clearing 

land to expand farming and increase their revenues. Even in the days of more developed 

agricultural technologies and labor shifts away from agriculture, it remains a common practice for 

local farmers to reclaim forestland for cultivation. 

The effects of “Meandist” (distance from the forest farms to the nearby timber markets and 

county seats) and “NForFarm” (numbers of forest farms within a county) are detected mainly 

through the RE versions of my model. As expected, the evidence indicates that forests closer to 

the large markets and cities have a larger probability of being cleared. Similarly, because forest 

farms are the grassroots units of forest organization, I presumed that counties with more forest 

farms tend to have less deforestation. The estimated effects in the RE analysis and the LSDV 

version of the FE analysis give clear support to my hypothesis. 

My results also suggest that there is considerable variation across counties. Both from the 

initial and augmented single-equation analyses, the county dummy variables are statistically 

different from zero at a 95% or higher significance level. This implies that even if I have tried to 

incorporate the potentially important causes of deforestation, it appears that the data I gathered 

may not allow me to capture the heterogeneity in my model due to either the missing variable 

problem or the limited size of my observations. With a small sample, of course, empirical results 

are sensitive to the model specification and related assumptions.  

In this chapter, I have explored both FE and RE approaches to econometric estimation of 

a single-equation model. The differences between the estimated results o0f the FE and RE methods 

are fairly small. Still, a close comparison between these results has led to some interesting 

implications. First, results from different FE estimators are consistent, with a major difference 
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lying in the specifications of error structures and degrees of freedom adjustments embedded in the 

estimators. When the unobserved heterogeneities are assumed to be random, the weak explanatory 

power of the between estimator lends further confidence to the FE method. Also, the significant 

coefficients of the time-varying variables confirm the validity of the FE assumption.   

Thus far, my empirical work has assumed that the explanatory variables of deforestation 

analysis are exogenous. Within the RE modeling framework, the assumption that the error term 

and the regressors are uncorrelated has been crucial. In comparison, the FE methods can 

moderately mitigate the threat of endogenous bias as they can deal with the dependence between 

the disturbances and the regressors. However, when the unobservable effects are time-varying, an 

FE estimator cannot fully rule out the endogeneity bias. Additionally, a key limitation of FE 

methods is that they are not able to determine the effect of a variable that has little within-group 

variation. Therefore, in the next chapter I will try to address the potential endogeneity problem by 

developing and estimating alternative models based on the instrumental variable method and a 

system of structural equations. I hope that combining my efforts here and in the next chapters will 

enable me to derive robust findings.  
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Appendix A: Description of the Initial Fixed-Effects Regressions  

In this sub-section, I will present the detailed estimation procedures and outcomes of the 

initial FE regressions. A number of estimators have been used to explore the stability of the 

regression outcomes. These estimators make different assumptions about the variance-covariance 

structure of the empirical model. Specifically, Estimator I, called the least-squares dummy variable 

estimator (LSDV), combines the traditional OLS procedure with dummy variables. It captures the 

unobserved heterogeneity (or unobserved effect) with the coefficients of the individual-specific 

dummy variables (Andrews et al., 2006; Stimson, 1985). A dummy variable is a binary variable 

that is coded either 1 or 0, and it is commonly used to examine individual (or group) and time 

effects in a regression model. In my case, dummy variables represent different counties, or cross-

sections in the sample. In STATA, a dummy variable is created by prefixing the notation xi with 

the regress command and specifying the sample unit. To avoid the dummy variable trap (perfect 

multicollinearity), STATA arbitrarily chooses one unit to be the reference (without coding this 

county as a dummy). Given the need for dummy variables and computational feasibility, the LSDV 

estimator is not very practical when there are a large number of individuals in the panel data 

(Andrews et al., 2006). 

In Estimator II, xtreg is used for the purpose of estimation in panel-data settings—fixed-, 

between-, random-effects, and population-averaged linear models. In a fixed-effects (FE) model, 

xtreg captures within-group variation by computing the differences between observed values and 

their means. But the output of xtreg is less informative than what is derived from an LSDV 

estimator with explicit dummy variables. On the other hand, when creating a dummy for each unit 

leads to too many explanatory variables, xtreg becomes more efficient (Hamilton, 2012). The 

STATA software estimates an FE model  with grand means of , )()( iitiitiit XXyy  
ity
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,  and . That is, it estimates  under 

the constraint . So, adding grand means to both sides of the equation has no effect on 

the estimated coefficients (Gould, 2013). 

In comparison, Estimator V (areg) handles a model by absorbing its categorical factors 

(unit effect or unobserved heterogeneity). Note that areg was designed for identifying linear 

regression with many groups, but not groups that increase with the sample size (that is, the number 

of parameters remains unchanged while the sample size increases). On the other hand, xtreg, fe 

handles cases where as sample size increases, the dimension of unit effects also increases 

(Andrews et al., 2006; Guimaraes & Portugal, 2010). Both xtreg, fe and areg present the intercept 

calculated at the means of the independent variables as equal to the mean of the dependent variable, 

or ; the reported intercept is therefore the average value of the fixed effects. But the 

calculation of R2 is different with these two procedures. In xtreg, fe, the unit effects for different 

groups are subtracted, whereas in areg, R2 is based on the part explained by X plus each dummy 

variable for the unit effect (Gould, 1996). The standard errors also differ when cluster-robust 

variance–covariance matrix is used. That is, areg reports larger cluster-robust standard errors 

because it subtracts the degree of freedom from the number of unit effects swept away in the 

within-group transformation, but xtreg, fe does not use such degree of freedom adjustments. When 

observations for any group are classified in the same cluster, xtreg is considered to be more 

appropriate (Wooldridge, 2010).  

The code of Estimator III, xtivreg2, is user-written. It is an upgraded version of STATA 

program ivreg2, which mainly implements IV/GMM estimations. By omitting the IV options, 

xtivreg2 also supports a FE model with no endogenous variables, and this is not allowed in the 

official STATA program of xtivreg (Schaffer, 2012). So, xtivreg2 offers a variety of choices 
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between HAC standard errors and cluster-robust options, and thus the standard errors given by 

xtivreg2 can be made consistent to various violations of i.i.d. error assumption (Baum et al., 2007). 

The R2 reported by xtivreg2 for the FE estimation is the "within R2" obtained by the mean-

differenced regression. Standard errors displayed by xtivreg2 with clusters are by default without 

degrees-of-freedom adjustments for the number of fixed effects. While for FE estimation without 

cluster, the standard errors are adjusted for the number of fixed effects. In a small sample setting 

and with no endogenous variable, the “small” option corrects standard errors by the degree of 

adjustment (N-Ng-K), where Ng is the number of groups (clusters) and K is the number of regressors. 

And the small-sample adjusted standard error matches those from areg and xtreg. 

Estimator VI (fese) is also a user-written package built on the areg procedure. More than 

what xtreg and areg do, fese also estimates FE and their standard errors, which are saved into the 

dataset by default (Mihaly et al., 2010). This estimator produces the standard errors not usually 

generated in other programs of FE estimation. Like xtreg and areg, fese can incorporate the 

ordinary, heteroskedasticity-robust, and cluster-robust SE as well. But Nichols (2008) cautions 

that when implementing the cluster-robust SE, the usual asymptotic justification does not apply, 

so it is better to avoid using cluster-robust SE for application purposes. Also, note that the FE 

standard errors generated by fese only vary across panels, not by individuals.  

The coefficients derived with the six estimators are the same, while the estimated standard 

errors differ. Estimators II and VI report the FE results with no extra or special data structure 

assumptions. The post-estimation heteroskedasticity test is based on the null hypothesis that the 

errors are homoskedastic across units (P=0 while the null hypothesis is 𝜎(𝑖)2 = 𝜎2,  where here i 

refers to county). With Estimator III, I choose the conventional sandwich variance-covariance 

estimator, and statistics reported are robust to heteroskedasticity. Further, a correction of small 
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sample size bias is made, so the results report the small-sample statistics (F and t-statistics) instead 

of large-sample statistics (𝜒2and z statistics). Estimators II, III, and VI relax the within-panel serial 

correlation in the idiosyncratic error term, which is reasonable as the dataset used is not continuous 

in the time dimension. It includes 6 periods covering a time span of 31 years with irregular intervals. 

Estimator III employs the heteroskedasticity-robust standard errors as well as a degree of freedom 

adjustment; thus, among these three estimators, it provides more reliable standard errors. 

Now, let me discuss how to incorporate the autocorrelation patterns in the residuals and 

create a pseudo-sample to relax the constraint of a limited sample size. With Estimator I, I specify 

the vce (robust) option in the model specification by clustering on the unit (county) in order to 

produce estimates that are robust to cross-sectional heteroskedasticity and within-panel (serial) 

correlation (Arellano, 1987). It is worth noting that Estimator I in Table 4.1 is a least square dummy 

variable estimator, while the rest are all within estimators. LSDV and within estimation result in 

identical coefficient estimates but different standard errors, due to different degrees of freedom 

corrections. LSDV correctly counts the parameters as G+K rather than the within estimator views 

as K. LSDV also automatically generate the FE output when dummy variables are included. 

Estimator IV and V employ the bootstrapping cluster-robust errors. They share almost same 

estimation procedures; so, their outputs are the same, except for the R2 values. A closer look at the 

standard errors in Table 4.1 suggests that the bootstrapping results produced slightly larger 

standard errors than the others. This is counter-intuitive, as bootstrapping cluster-robust errors are 

usually downward-biased. Petersen (2009) showed that when fixed effects exist in both the 

independent variable and the residual, the standard errors estimated by OLS are biased downward.  

They also conclude that the Newey-West standard errors are also biased, but the magnitude of bias 
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is relatively small. Of the most frequently used approaches, the clustered standard errors are very 

close to the true errors.  

Under different modeling routines, there exist two different R2 values in Table 4.1. R2 

reported by xtreg and xtivreg2 procedures are 0.951 and R2 reported by LSDV, areg, and fese are 

0.998. Generally, R2 reported by the xtreg and xtivreg2 models are lower than the rest. This is 

because xtreg and xtivreg2 report the within R2, and the method of calculation for these is different 

from the usual method. Specifically, R2 is equal to 1 minus the Residual Sum of Squares (RSS) 

divided by the Total Sum of Squares (TSS). In my considered cases, the RSSs are all the same, 

however, the TSSs differ: Conventionally, TSS = ; in the xtreg, fe routine, it 

does not report the TSS, but the within sum of squares (or model sum of squares) is calculated by

. Based on the different uses of grand mean  and unit mean  during the 

computation, LSDV, areg and fese estimators include the variance explained by the absorbed 

dummies (McCaffrey et al., 2010; Nichols, 2008), whereas xtreg, fe, and xtivreg2 do not
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Appendix B: Description of the Initial Random-Effects Estimation  

Estimator I employed the between estimator that only utilizes cross-section variation of the 

data. The between estimator is the OLS estimator of . Here, consistency 

requires that the error term  be uncorrelated with . Thus, the between estimator is 

inconsistent under the FE assumption. In STATA, the between estimator is obtained by specifying 

the be option of the xtreg command (Cameron & Trivedi, 2009).  From the results in Table 4.2 

derived by this estimator, we can see that the coefficients of farmland and other land changes are 

insignificant, indicating only using the between variations of the predictors cannot effectively 

explain overall forest land transitions. 

Estimator II relaxed the assumption that the unobserved heterogeneities are uncorrelated 

with the independent variables in the traditional RE estimators by integrating the group-means of 

 in the overall model:  (Mundlak, 1978), and 

showed that the generalized least squares estimation yields 
 
and

, where  is a matrix that averages the 

observations across time for each individual and  is a matrix that obtains the 

deviations from individual means (Baltagi, 2006; Debarsy, 2012; Mundlak, 1978). With this 

estimation method, the coefficients on farmland and other land are just the fixed effects estimates 

in Table 4.1. The averaged values based on county-specific farmland and other land were 

automatically generated by the estimation techniques. The importance of these mean values in the 

model proposed by Mundlak (1978) is to test whether the assumption that the observed variables 

are uncorrelated with the unobserved heterogeneities. Statistical significance of the estimated 
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coefficients on the group mean of farmland indicates that such an assumption may not hold 

(Wooldridge, 2010). 

Estimator III employed the MLE model (xtreg, mle). More than assuming that the 

unobserved heterogeneities are uncorrelated with X, this model also requires that they follow the 

normal distribution. The coefficients are smaller than those from both the FE and other RE 

estimators. For instance, a one-unit forestland decrease is associated with a 0.71-unit farmland 

expansion, which is small compared to the result derived from the conversion matrix. This could 

be due to the MLE method, which is sensitive to small sample size when distributional assumption 

for the unobserved heterogeneities is inappropriate (Breusch, 1987; De Janvry et al., 1991; Zellner 

& Theil, 1992). 

The GLS RE estimation xtreg, re is widely used in the literature. As stated before, it takes 

a weighted average of the fixed and between estimates by assuming there is no correlation between 

the unobserved heterogeneities and X. Compared to the coefficients (-1.14 and -0.82) estimated in 

Table 4.1, the coefficients under the RE assumptions in Table 4.2 are very close to those under the 

fixed effects assumption (-1.12 and -0.80). The difference of the standard errors originates from 

the error specification that Estimator V employed in bootstrapping. As the same situation happened 

in the FE analysis, cluster-robust bootstrapping results produced slightly larger standard errors. 

This is also due to the within-county correlation between the two predictors. 

Estimator VI is a pooled estimator, which simply regresses  on an intercept and , 

using both cross-sectional and within variation in the data, that is, . 

The individual effects  are now centered on zero. Consistency of OLS requires that the error 

term be uncorrelated with . Under the assumption that the unobserved 

heterogeneities are averaged out, the pooled OLS is consistent if the RE assumption is appropriate 
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but inconsistent if the FE one is appropriate. Standard errors need to adjust for any error correlation 

and, given that, more-efficient FGLS estimation is possible. In STATA, “pa” is specified, as the 

individual effects are assumed to be random and are averaged out. A deficiency of this estimator 

is the assumption of constant correlation (  = c) by using the “exchangeable” option, which may 

not be good given that the time intervals of repeated cross-sections in my data are not even. The 

other options of error correlation forms that available in STATA (e.g., “independent” “AR (n)”) 

are not appropriate, and results from “unstructured” error correlation cannot achieve convergence, 

so I did not include them here. Compared to the FE coefficients in Table 4.1 and the RE ones in 

Table 4.2, the coefficients from the pooled estimators are close to those of xtreg, as pa with 

“exchangeable” is asymptotically equivalent to xtreg, re (Cameron & Trivedi, 2009)

ts
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Appendix C: Description of Long Panel Estimation  

The xtpcse command in STATA is specifically designed for estimating panel-corrected 

standard errors in long panel models (Hoechle, 2007). The standard error estimates are robust to 

heteroskedasticity, contemporaneously cross-sectionally correlated, and autocorrelated to type 

AR(1) disturbances. AR(1) denotes that 𝜇𝑖𝑡 = 𝜌𝑖𝜇𝑖,𝑡−1 + 𝜀𝑖𝑡, where 𝜀𝑖𝑡 are serially uncorrelated but 

are correlated over 𝑖 with 𝐶𝑜𝑟(𝜀𝑖𝑡, 𝜀𝑖𝑠) = 𝜎𝑡𝑠.)  Beck and Katz (1995) demonstrate that the large 

T-based standard error performs well in correcting for contemporaneous correlation in small panels 

(the ratio of T/N is not small). 

Just as is seen with xtpcse, the xtgls command also allows the presence of AR(1) 

autocorrelation within panels and cross-sectional correlation and heteroskedasticity across panels 

(Chen et al., 2010; StataCorp, 2005). This estimator fits panel-data linear models by using FGLS. 

It is commonly more efficient asymptotically than xtpcse (Reed & Ye, 2011; StataCorp, 2005). 

The xtregar command in STATA estimates panel data regression when the disturbance 

term is AR(1). It is a within estimator under the FE assumption and a GLS estimator under the RE 

assumption (StataCorp, 2005). Its advantage lies in its ability to fit to an unbalanced longitudinal 

dataset with observations unequally spaced over time (Baltagi & Wu, 1999). A limitation of 

xtregar is that it does not incorporate the White correction for heteroskedasticity. 

Rather than restricting errors to be AR(1) in xtpcse and xtgls, the user-written xtscc 

command (Hoechle, 2011) applies the method proposed by Driscoll and Kraay (1998). It obtains 

Newey-West type standard errors that allow auto-correlated errors of a general form, which allows 

the error to be serially correlated for 𝑚 lags. 

In Table 4.6, Estimator I assumes that 𝜇𝑖𝑡 is heteroskedastic, meaning that each county has 

a different variance of 𝐸(𝜇𝑖𝑡
2 ) = 𝜎𝑖

2. With no correlation between or within panels, this estimator 
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provides a base scenario. Compared to the results derived from other estimators, the effect of 

farmland expansion is relatively small. Estimators II, xtpcse, performs a Prais-Winsten regression 

(StataCorp, 2005), which assumes AR(1) with the same 𝜌 across the panel 𝜇𝑖𝑡 = 𝜌𝜇𝑖,𝑡−1 + 𝜀𝑖𝑡. The 

estimates reveal a stronger association between farmland expansion and forestland loss.  

Estimator III is a pooled OLS estimator with Driscoll-Kraay standard errors (Hoechle, 

2011). The initial intention here was to see how the results vary with different autocorrelation lags. 

The calculated default maximum lag period is 3(m(T)=floor[4(T/100)^(2/9)]). Because results 

changed little under the AR(1), AR(2) and AR(3), I included the AR(2) case in the table by 

specifying the disturbance as heteroskedastic with cross-sectional correlation. Still, the results are 

not much improved from those derived by Estimator I. The problem is possibly attributable to the 

inappropriate use of pooled OLS estimation. Coefficients derived by Estimator IV are slightly 

better than those of Estimator II—the coefficient of farmland is larger and the NFPP turns out to 

be significant at the 95% level. Then, results derived with Estimator V show that different 𝜌𝑖 

computation methods affect both the parameter and standard error estimation, but the effects are 

not large here. Results derived by estimators VI and VII seem more realistic in terms of the 

estimated effect of farmland. Also, both the coefficients of NFPP and timber price become 

significant at the level of 1%. But a double check of the literature suggests that results from xtgls 

tend to produce smaller standard error estimates (Beck & Katz, 1995). So, it is good to be cautious 

with interpreting the standard error in the two regressions. Estimators VIII and IX perform FE and 

RE regressions with overall panel AR(1). As the FE regression cancelled the county-specific FEs, 

the only two variables with significant coefficients are farmland and NFPP. Results of RE 

regression are similar to those derived by Estimator VII. 

 



132 
 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 



133 
 

REFERENCES 

Altonji, J. G., & Segal, L. M. (1996). Small-sample bias in GMM estimation of covariance 

structures. Journal of Business & Economic Statistics, 14(3), 353-366.  

Andrews, M., Schank, T., & Upward, R. (2006). Practical fixed-effects estimation methods for the 

three-way error-components model. Stata journal, 6(4), 461-481.  

Angelsen, A., & Kaimowitz, D. (1999). Rethinking the Causes of Deforestation: Lessons from 

Economic Models. The World Bank Research Observer, 14(1), 73-98.  

Arellano, M. (1987). Practitioners' Corner: Computing Robust Standard Errors for Within‐groups 

Estimators. Oxford bulletin of Economics and Statistics, 49(4), 431-434.  

Baltagi, B. H. (2006). An Alternative Derivation of Mundlak's Fixed Effects Results Using System 

Estimation. Econometric Theory, 22(6), 1191-1194.  

Baltagi, B. H., & Wu, P. X. (1999). Unequally spaced panel data regressions with AR (1) 

disturbances. Econometric Theory, 15(6), 814-823.  

Baum, C. F., Schaffer, M. E., & Stillman, S. (2007). ivreg2: Stata module for extended 

instrumental variables/2SLS, GMM and AC/HAC, LIML and k-class regression. 

Beck, N., & Katz, J. N. (1995). What to do (and not to do) with Time-Series Cross-Section Data. 

The American Political Science Review, 89(3), 634-647.  

Bhattarai, M., & Hammig, M. (2001). Institutions and the environmental Kuznets curve for 

deforestation: a crosscountry analysis for Latin America, Africa and Asia. World 

Development, 29(6), 995-1010.  

Breusch, T. S. (1987). Maximum likelihood estimation of random effects models. Journal of 

Econometrics, 36(3), 383-389.  

Cameron, A. C., & Trivedi, P. K. (2009). Microeconometrics using stata (Vol. 5): Stata Press 

College Station, TX. 

Carr, D. L., Suter, L., & Barbieri, A. (2005). Population dynamics and tropical deforestation: State 

of the debate and conceptual challenges. Population and environment, 27(1), 89-113.  

Chen, X., Lin, S., & Reed, W. R. (2010). A Monte Carlo evaluation of the efficiency of the PCSE 

estimator. Applied Economics Letters, 17(1), 7-10.  

De Janvry, A., Fafchamps, M., & Sadoulet, E. (1991). Peasant household behaviour with missing 

markets: some paradoxes explained. The Economic Journal, 1400-1417.  

Debarsy, N. (2012). The Mundlak approach in the spatial Durbin panel data model. Spatial 

Economic Analysis, 7(1), 109-131.  



134 
 

Driscoll, J. C., & Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially 

dependent panel data. Review of economics and statistics, 80(4), 549-560.  

Geist, H.J., Lambin, E.F., (2001). What drives tropical deforestation? A meta-analysis of 

proximate and underlying causes of defores-tation based on subnational scale case study 

evidence. In: LUCC Report Series No. 4., University of Louvain, Louvain-la-Neuve 

Geist, H. J., & Lambin, E. F. (2002). Proximate Causes and Underlying Driving Forces of Tropical 

Deforestation Tropical forests are disappearing as the result of many pressures, both local 

and regional, acting in various combinations in different geographical locations. 

BioScience, 52(2), 143-150.  

Gould, W. (1996). Why isn’t the calculation of R2 the same for areg and xtreg, fe? . from 

http://www.stata.com/support/faqs/statistics/areg-versus-xtreg-fe/ 

Gould, W. (2013). How can there be an intercept in the fixed-effects model estimated by xtreg, 

fe? . from http://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/ 

Guimaraes, P., & Portugal, P. (2010). A simple feasible procedure to fit models with high-

dimensional fixed effects. Stata journal, 10(4), 628.  

Hamilton, L. (2012). Statistics with STATA: Version 12. Boston: Cengage Learning. 

Hausman, J. A., & Taylor, W. E. (1981). Panel data and unobservable individual effects. 

Econometrica: Journal of the Econometric Society, 1377-1398.  

Hegre, H., & Sambanis, N. (2006). Sensitivity analysis of empirical results on civil war onset. 

Journal of conflict resolution, 50(4), 508-535.  

Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. 

Stata journal, 7(3), 281.  

Hoechle, D. (2011). XTSCC: Stata module to calculate robust standard errors for panels with 

cross-sectional dependence. https://ideas.repec.org/c/boc/bocode/s456787.html#cites 

Jiang, X., Gong, P., Bostedt, G., & Xu, J. (2011). Impacts of Policy Measures on the Development 

of State-Owned Forests in Northeastern China: Theoretical Results and Empirical 

Evidence. Environment for Development(Discussion Paper Series).  

Kaimowitz, D., Angelsen, A. (1998). Economic Models of Tropical Deforestation. A Review. 

Jakarta: Centre for International Forestry Research. 

Key, N., & Runsten, D. (1999). Contract farming, smallholders, and rural development in Latin 

America: the organization of agroprocessing firms and the scale of outgrower production. 

World Development, 27(2), 381-401.  

Koop, G., & Tole, L. (1999). Is there an environmental Kuznets curve for deforestation? Journal 

of Development Economics, 58(1), 231-244.  



135 
 

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 963-

974.  

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., . . . Xu, J. 

(2001). The causes of land-use and land-cover change: moving beyond the myths. Global 

Environmental Change, 11(4), 261-269. doi: http://dx.doi.org/10.1016/S0959-

3780(01)00007-3 

McCaffrey, D. F., Lockwood, J., Mihaly, K., & Sass, T. R. (2010). A review of Stata routines for 

fixed effects estimation in normal linear models. Unpublished manuscript.  

Mihaly, K., McCaffrey, D. F., Lockwood, J., & Sass, T. R. (2010). Centering and reference groups 

for estimates of fixed effects: Modifications to felsdvreg. Stata journal, 10(1), 82.  

Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica: Journal 

of the Econometric Society, 69-85.  

Nichols, A. (2008). FESE: Stata module to calculate standard errors for fixed effects. Statistical 

Software Components.  

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the 

Econometric Society, 1417-1426.  

Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing 

approaches. Review of financial studies, 22(1), 435-480.  

Raudenbush, S. W., Yang, M., & Yosef, M. (2000). Maximum likelihood for generalized linear 

models with nested random effects via high-order, multivariate Laplace approximation. 

Journal of Computational and Graphical Statistics, 9(1), 141-157.  

Reed, W. R., & Ye, H. (2011). Which panel data estimator should I use? Applied Economics, 43(8), 

985-1000.  

Schaffer, M. E. (2012). xtivreg2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, 

LIML and k-class regression for panel data models. Statistical Software Components.  

StataCorp, L. (2005). Stata base reference manual (Vol. 2): Citeseer. 

Stimson, J. A. (1985). Regression in space and time: A statistical essay. American Journal of 

Political Science, 29(4), 914-947.  

Turner, B. L., Lambin, E. F., & Reenberg, A. (2008). Land Change Science Special Feature: The 

emergence of land change science for global environmental change and sustainability (vol 

104, pg 20666, 2007). Proceedings of the National Academy of Sciences of the United 

States of America, 105(7), 2751-2751.  



136 
 

Wang, Z., Zhang, B., Zhang, S., Li, X., Liu, D., Song, K., . . . Duan, H. (2006). Changes of land 

use and of ecosystem service values in Sanjiang Plain, Northeast China. Environmental 

Monitoring and Assessment, 112(1-3), 69-91.  

Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT 

Press. 

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge: MIT 

press. 

Xu, J., Tao, R., & Amacher, G. S. (2004). An empirical analysis of China's state-owned forests. 

Forest Policy and Economics, 6(3), 379-390.  

Xu, J., Yin, R., Li, Z., & Liu, C. (2005). China’s ecological rehabilitation: the unprecedented 

efforts and dramatic impacts of reforestation and slope protection in western China. 

Ecological Economics, 57(4), 595-607.  

Xu, J., Yin, R., Li, Z., & Liu, C. (2006). China's ecological rehabilitation: Unprecedented efforts, 

dramatic impacts, and requisite policies. Ecological Economics, 57(4), 595-607.  

Yin, R. (1998). Forestry and the environment in China: the current situation and strategic choices. 

World Development, 26(12), 2153-2167.  

Yin, R., & Newman, D. H. (1996). The effect of catastrophic risk on forest investment decisions. 

Journal of Environmental Economics and Management, 31(2), 186-197.  

Yin, R., Xu, J., & Li, Z. (2003). Building institutions for markets: Experiences and lessons from 

China's rural forest sector. Environment, Development and Sustainability, 5(3-4), 333-351.  

Yin, R., & Yin, G. (2009). China's Ecological Restoration Programs: Initiation, Implementation, 

and Challenges An Integrated Assessment of China's Ecological Restoration Programs (pp. 

1-19): Springer Netherlands. 

Yin, R., & Yin, G. (2010). China’s primary programs of terrestrial ecosystem restoration: initiation, 

implementation, and challenges. Environmental Management, 45(3), 429-441.  

Yu, D., Zhou, L., Zhou, W., Ding, H., Wang, Q., Wang, Y., . . . Dai, L. (2011). Forest management 

in Northeast China: history, problems, and challenges. Environmental Management, 48(6), 

1122-1135.  

Zellner, A., & Theil, H. (1992). Three-stage least squares: Simultaneous estimation of 

simultaneous equations Henri Theil’s Contributions to Economics and Econometrics (pp. 

147-178): Springer. 

Zhang, K., Hori, Y., Zhou, S., Michinaka, T., Hirano, Y., & Tachibana, S. (2011). Impact of 

Natural Forest Protection Program policies on forests in northeastern China. Forestry 

Studies in China, 13(3), 231-238.  



137 
 

Zhang, P., Shao, G., Zhao, G., Le Master, D. C., Parker, G. R., Dunning Jr, J. B., & Li, Q. (2000). 

China's forest policy for the 21st century. Science, 288(5474), 2135-2136.  

 



138 
 

 

 

 

 

 

 

 

 

 

CHAPTER 5   

A SYSTEMATIC ANALYSIS OF LAND USE CHANGE DRIVERS  
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5.1 Introduction 

Building upon what I have done in Chapter 4, this chapter attempts to achieve more 

rigorous results through systematic analysis of the driving forces of LUCC in northeast China. The 

emphasis of Chapter 4 was to explore the drivers of deforestation using conventional single-

equation regression models and typical estimation techniques. However, my extensive work 

indicated that the single-equation models have some weaknesses. First, while it is reasonable to 

focus on the determinants of deforestation within a single-equation model, these determinants of 

deforestation are assumed to be exogenous (Mertens et al. 2000; Geoghegan et al. 2001; Schneider 

& Pontius 2001; Deininger & Minten 2002; Munroeaic et al. 2002; Pan et al. 2004; Franzese & 

Hays 2007; Song et al. 2008). However, the Mundlak model I have estimated shows that the mean 

value of farmland is correlated with the error term. Therefore, ignoring the potential issue that 

farmland expansion might not truly be exogenous and thus taking it as independent variables could 

cause biased estimation, which I will address here.  

Endogeneity usually refers to situations where nonzero correlation exists between the error 

terms and observed explanatory variables in a model (Louviere et al. 2005; Chenhall & Moers 

2007). This can lead to biased and inconsistent parameter estimates, making reliable inference 

impossible (Semykina & Wooldridge 2010). Endogeneity comes from various sources; the most 

common ones are omitted variables, measurement error, and simultaneity (Brownstone et al. 2002; 

Semykina & Wooldridge 2010). So, characterizing the endogenous land use changes is both 

necessary and desirable (Jöreskog & Sörbom 1986; Baltagi 2006; Fingleton & Gallo 2007). In my 

study region, the LUCC dynamics indicate that potential endogeneity could arise from: (1) 

simultaneity that is intrinsic in the land-use conversions; (2) spatial dependences of LUCC between 
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different classes of land use; and/or (3) indirect or spillover effects induced by other land-use 

changes. 

Simultaneity arises when one or more of the explanatory variables are jointly determined 

with the dependent variable, usually through an equilibrium mechanism (Baltagi 1981; Zellner & 

Theil 1992). A frequently used example is the “supply and demand” relationships in determining 

the price and quantity of “beef or pork,” in which the consumer’s demand for beef is not just 

affected by the price of beef itself, but also by the price of a substitutive good, such as pork (Epple 

1987; Angrist & Krueger 2001). Models of this sort are known as simultaneous-equations models 

(SEMs), which are an important class of empirical models in economics (Wooldridge 2010, 2012). 

For an equation system to be viewed as an SEM, at least one of the right-hand-side variables in 

one of the equations should be endogenous and thus correlated with the error term.  

Simultaneity is also embedded in LUCC conversion. In my study region, farmland 

expansion comes at the expense of loss of forestland as well as wetland. Numerous studies have 

documented the encroachment of agriculture on wetland (Liu et al. 2004; Wang et al. 2006; Zhang 

et al. 2010; Wang et al. 2011). As an important food basket of China, Heilongjiang has experienced 

a rapid expansion of rice growth due to the higher yield and better quality of rice there (Jiang et al. 

2006; Sun et al. 2010). Meanwhile, the acreage of other crops has declined substantially. For 

instance, the statistics Zhou et al. (2009) calculated, based on 15 farms surrounding the Honghe 

Natural Reserve in the Sanjiang Plain, suggest that the rice fields there increased from about 200 

km2 in 1993 to more than 2000 km2 in 1998. By 2002, the overall area of crop fields had reached 

3,781 km2, of which rice accounted for 2,024 km2. So, when characterizing the relationship of 

farmland demand and supply, agricultural growth is a primary factor on the demand side, whereas 

forestland and wetland (“Others” in my classification scheme) are two of the main variables on the 
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supply side. Also, since wetland is an alternative source of for farmland expansion, it could be a 

substitute for forestland. Therefore, it is worthwhile and beneficial to adopt a more integrated 

framework to identify the indirect linkages between wetland and forestland, as well as the direct 

linkages between farmland and the other two classes of land use.  

Moreover, there can be spatial dependence, which tends to be multi-directional: each 

location serves as a “neighbor” for its nearby locations, and according to the Tobler’s law, things 

that are located closer to each other tend to be and behave more alike (Tobler 1970). Thus, land 

use conversion between two neighboring classes is two-directional; each type of land use can be 

an intruder on the other. In this hedonic case, the “strict exogeneity” assumption fails. Instead, it 

is more appropriate to hypothesize that changes in farmland and forestland are endogenous 

(Anselin 2003). From the land conversion matrixes derived in Chapter 2, however, we see that 

forestland generally did not take over farmland. So, it is natural to hypothesize that farmland is 

endogenous to forestland. 

Endogeneity and the potentially biased estimation when it is ignored are well accounted 

for in econometrics, despite the slow progress of adopting the idea and procedure of endogeneity 

testing and correction in analyzing the forces driving LUCC. Examples of endogeneity testing of 

driving forces in land-use studies are particularly limited before 2000s (Irwin & Geoghegan 2001a; 

Lambin et al. 2001b; Verburg et al. 2004a). Lambin et al. (2001) reviewed some of the recent 

models of spatial land-use changes and affirmed the contribution of structural economic models in 

addressing spatial dependency and endogeneity. Verburg et al. (2004) conducted a thorough 

review of land-use models and related concepts regarding the forces driving changes in land use, 

and pointed out that road development, population change and production prices could be 

endogenous under certain circumstances. Following a discussion of advances in understanding the 
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causes and consequences of land conversion, Irwin and Geoghegan (2001) built a system of 

interactive equations for population migration and government expenditures and revenues. Then, 

they illustrated a decision framework for land use conversion, showing how to estimate the implicit 

residential land value with a spatially explicit hedonic pricing model. 

Studies linking LUCC to socioeconomic factors with recognition and careful handling of 

endogenous variables are still rare in literature (Chomitz & Gray 1996; Pfaff 1999a; Mertens & 

Lambin 2000; Herbert & Arild 2009; Yin & Xiang 2010). Chomitz & Gray (1996), Pfaff (1999) 

and Mertens & Lambin (2000) developed land-use models by starting with land allocation 

according to the rule of maximizing expected profits. They perceived potential endogeneity 

problems when selecting variables that are included in the land-use conversion model. Chomitz & 

Gray (1996) found that road development suffers endogeneity as the siting of roads is affected by 

agricultural production. Pfaff (1999) examined the possible endogeneity problem associated 

between population change and forest conversion. He argued that population may be endogenous, 

or it may be collinear with government policies that encourage development of targeted areas. 

Per a suggestion by Chomitz and Gray (1996), Mertens & Lambin (2000) developed their 

modeling approach by introducing a variable to measure the suitability of land for agriculture to 

reduce the endogenous bias. Herbert & Arild (2009) further suspected that indicators, like plot 

area, land under bush fallow, farm-related assets, and number of livestock are endogenous 

variables. They applied the three-stages least squares method to control for potential unobserved 

heterogeneity and simultaneity. Yin and Xiang (2010) developed a structural model with four 

equations featuring the multiple dimensions of agriculture (cropland use, grain production, soil 

erosion and technical change); by solving this system of equations, the interactions and feedback 
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of cropland change dynamics were clearly validated within the complex human and natural 

connections. 

In sum, the complex land-use system being examined in this study calls for a more 

sophisticated modelling strategy. A fundamental problem of the single-equation regression models 

lies in their failure to capture the underlying interactions between drivers of different classes and 

processes of land use. Meanwhile, when we consider the complex relationships of a land-use 

system, the assumption of consistent OLS estimation—where the error term is unrelated to any of 

the regressors—may become no longer valid because of potential endogeneity (Semykina and 

Wooldridge 2010). 

   

5.2 Model Specification 

There are two ways to estimate a model consistently with the endogeneity issues—single-

equation estimation with instrumental variables (IV) and system of equations estimation. Single-

equation estimation, by definition, involves one equation of main interest, while it considers an 

endogenous variable to be determined by a set of exogenous variables in a “side” equation (Angrist 

et al. 1996). In other words, these exogenous variables are used to identify the effects of an 

endogenous variable in the main equation. The exogenous variables in the side equation are called 

the instrumental variables for the identification. In the first stage regression, thus, all the exogenous 

variables in main equation and side equation(s) are taken as explanatory regressors for the 

endogenous variable. To distinguish the exogenous variables in the main equation from those in 

the side equation, the instruments in the side equation are called excluded instrument variables 

while the instruments in the main equation are called included instrument variables. So, a single-
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equation estimation, when endogeneity appears, is oftentimes viewed as a simultaneous system 

with jointly determined dependent variable Y and endogenous variable X(s) (Wooldridge 2002). 

Compared to single-equation estimation with one endogenous variable, system of 

equations estimation involves estimating a set of equations in which one or more explanatory 

variables are jointly determined with the dependent variables. So, the conventional regressors that 

appear only on the right hand side of an equation can also have their own equation(s). Equations 

in the system that contains endogenous variables are usually referred as structural equations. 

Structural equations cannot be directly estimated. Using algebra, the endogenous variables could 

be expressed as functions of only exogenous regressors on the right hand side, leading to an 

equation in reduced form. As the error term in one equation is likely to be contemporaneously 

correlated with the error terms in other equations of the system, estimating the system of equations 

jointly captures the interactions of underlying causes and improves the estimation efficiency from 

cross-equation coefficient restrictions and correlations (Zellner & Theil 1992; Wooldridge 1996).  

In the following two subsections, I will first define a single equation with instrumental 

variables to examine linkages between the two dominate land-use classes—forestland and 

farmland. Then, I will specify a system of equations to depict the LUCC relationships when 

wetland is considered as well. For both models, the detailed steps of estimation will be elaborated. 

5.2.1 Analysis of the Two Dominant Land-Use Classes: An Instrumental Variable Method 

The single-equation models in Chapter 4 have already included variables for the most 

relevant forces driving changes in forest cover that are frequently used in the literature: timber 

price (Tp), gross output value of forestry (O), dummy variables capturing the effect of 

implementing the NFPP (N), distance between a forest farm and its closest timber market and 

county seat (D), number of forest farms in each county (Nf), and the local population (P). 



145 
 

From a land-use perspective, agricultural expansion is the extension of cultivation into 

previously uncultivated areas. This process may require increased inputs, including 1) increased 

labor use for land conversion (e.g. construction of swamp drainage and irrigation channels) and 

cultivation, 2) increased spending on purchasing production materials, and 3) capital investment 

in technical capacity that can raise land productivity (De Janvry et al. 1991; Grossman & Helpman 

1993; Färe et al. 1994; Kalirajan et al. 1996). In practice, the relative feasibility of these factors is 

likely to vary in different places. Meanwhile, farmland expansion is often driven by an increased 

demand for food products, which is partly reflected in the prices of agricultural products.  

The above-mentioned inputs seems to be relevant candidate instruments for the potential 

endogenous variable “farmland”: number of agricultural laborers (L), per capita annual net income 

(C) (as the potential expenditure of farming), and total agricultural machinery power (T) (a proxy 

for technological development).  I will also incorporate the price index of agricultural products 

(AP) to reflect market demand relative to supply. Built-up area (B) is included as a determinant of 

farmland growth based on the assumption that more settlement leads to greater agricultural 

expansion.  

With farmland expansion encroaching upon forestland, the equation of farmland use is 

linked to the equation of forestland as follows: 

                                          𝐹𝑡𝑖𝑡 = 𝑓(𝐹𝑚𝑖𝑡, 𝑇𝑝𝑡, 𝑂𝑖𝑡, 𝑁𝑡, 𝐷𝑖 , 𝑁𝑓𝑖 , 𝑃𝑖𝑡) + 𝑢𝑖𝑡                          (Eq.5.1)    

𝐹𝑚𝑖𝑡~𝑓(𝐿𝑖𝑡, 𝐶𝑖𝑡, 𝑇𝑖𝑡, 𝐴𝑃𝑡 , 𝐵𝑖𝑡) + 𝜐𝑖𝑡                                           (Eq.5.2) 

In both equations, 𝑖 denotes county; if 𝑖 is not present in a variable, it means that county-level data 

are not available and provincial data are used instead. Similarly, 𝑡 denotes time; if a variable, such 

as distance to markets, does not vary with time, 𝑡 is absent from the variable’s subscript. In Eq.5.1, 

forestland is a function of the right-hand-side variables that are independent, except for farmland. 
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Farmland, on the other, is assumed to be endogenous and instrumented with a set of selected 

variables on the right side of Eq.5.2. 

Figure 5.1 The relationship between the two major land-use classes 

 

Note: The dominant conversion is from forestland to farmland. Built-up land doesn’t interact with 

forestland directly, so it is taken as an instrument candidate for the expansion of farmland. 

 

Figure 5.1 above depicts this relationship. In addition to this major linkage of the LUCC 

dynamics, considerable conversion of farmland to built-up area is also involved. With built-up 

area being an exogenous variable, the strong correlation between farmland and built-up area makes 

built-up area an important instrument candidate in Eq.5.2. The error term, 𝑢𝑖𝑡 represents the effects 

of the omitted variables that are peculiar to both the individual units and time periods. Under the 

fixed-effect assumption, 𝑢𝑖𝑡 is a combination of an independently identically distributed (i.i.d.) 

random error 𝜀𝑖𝑡 and an unobserved heterogeneity 𝛼𝑖 peculiar to county 𝑖 over time (Hausman & 

Taylor 1981; Nickell 1981). 
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The instrumental variables method (IV) is used as follows. The potentially endogenous 

variable (farmland in this case) is first regressed on the excluded instrumental variables in Eq.5.2 

as well as all the exogenous variables in Eq.5.1. Given the least squares regime, this first-stage 

regression produces an optimal linear combination of exogenous variables. Then, the predicted 

values of farmland are used as the independent variable in Eq.5.1 in the second stage regression 

(Wooldridge 2002; Murray 2006). Therefore, this procedure is also called the two-stage least 

squares, or 2SLS (Wooldridge 2002). The 2SLS regression, coupled with a fixed-effect estimator, 

controls for not only the endogeneity in farmland but also unobserved heterogeneity. However, 

this procedure does not account for the potential simultaneity among different classes of land use.  

5.2.2 A More Integrated System of Land Use: Simultaneous Equations Modelling   

To disentangle the direct and indirect effects of LUCC and eliminate the potential 

endogeneity, I will further analyze the LUCC processes by developing and estimating a 

simultaneous equations model. For the three closely interrelated categories of land use—forestland, 

farmland, and wetland, I can specify a system of three equations to describe their behavior and 

reflect their interaction. For simplicity, I have decided to name them the deforestation equation, 

the farmland expansion equation, and the wetland loss equation, respectively. Meanwhile, built-

up land comes from converting farmland, but after it is built up it will no longer be converted into 

any other type of land use. Built-up area can thus be viewed as an external factor that affects the 

“forestland-farmland-wetland” system one way or another. This theoretical consideration is indeed 

confirmed by my empirical evidence from the identification tests (see the section of 5.3.1). 

Similar to the analytic system of the two dominant classes of land use specified above, the 

deforestation equation in the SEM is defined on the basis of the existing literature investigating its 

driving forces. In the farmland expansion equation, I will deliberately include the full set of 
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explanatory variables in Eq.5.2. As noted earlier, wetland is one of the targets of agricultural 

expansion, and it also serves as a substitute for forestland in farmland demand. Thus, the status of 

wetland is connected to the dynamics of farmland and forestland. 

Agricultural production in the region used to be comprised mostly of water-saving crops 

such as wheat, corn, and soybeans, but it has gradually shifted to paddy rice (Yun et al. 2005). The 

rapid increase in paddy rice fields has greatly propelled water demand in the Sanjiang Plain—

pumping groundwater for irrigation; this has in turn led to a continual decline of groundwater level 

(Zhang et al. 2009). Local farmers’ establishment of extensive irrigation networks has thus 

accelerated the wetland loss: reservoir construction disturbs the local natural waterways, and the 

corresponding expansion of dams, canals, and dikes also cut off the wetlands’ water supply from  

nearby rivers or lakes (Zhou et al. 2009). As such, I will use the effective irrigation area to 

approximate the aggregate water use for irrigation. Natural factors, such as climate change, may 

also affect the status of wetland. For example, a warming climate and decreasing precipitation 

could possibly result in wetland reduction in the long run (Yan et al. 2001; Yan et al. 2002; Song 

et al. 2008; Zhang et al. 2010).  

Based on the above discussion, I can define wetland loss (Wt) as being associated with 

farmland expansion (Fm), forest-cover change (Ft), human water withdrawal and reservoir 

construction (I), and climate change as reflected in decreased precipitation (Pr) and increased 

temperature (T). This leads to Eq.5.5 below. 

𝐹𝑡𝑖𝑡 = 𝑓(𝐹𝑚𝑖𝑡, 𝑊𝑡𝑖𝑡, 𝑇𝑝𝑡, 𝑂𝑖𝑡, 𝑁𝑡, 𝐷𝑖, 𝑁𝑓𝑖 , 𝑃𝑖𝑡) + 𝑢𝑖𝑡                    (Eq.5.3) 

𝐹𝑚𝑖𝑡 = 𝑓(𝐿𝑖𝑡, 𝐶𝑖𝑡, 𝑇𝑖𝑡, 𝐴𝑃𝑡 , 𝐵𝑖𝑡) + 𝜑𝑖𝑡                                            (Eq.5.4) 

𝑊𝑡𝑖𝑡 = 𝑓(𝐹𝑚𝑖𝑡, 𝐹𝑡𝑖𝑡, 𝐼𝑡 , 𝑃𝑟𝑡, 𝑇𝑒𝑡) + 𝜔𝑖𝑡                                        (Eq.5.5) 
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The land conversion dynamics underlying the above specification are illustrated in Figure 

5.2, with the dark arrows indicating the linkages among the three classes of land use embodied in 

Eq. 5.3-5.5. Eq.5.3 and 5.4 are similar to Eq.5.1 and 5.2 for the two dominant classes of land use, 

but an important distinction is that farmland change is instrumented with a set of candidate 

variables in Eq. 5.2, whereas those variables are now treated as regular regressors in Eq.5.4. 

Compared to a single-equation model, a system of equations estimated with panel data has 

an even shorter intellectual history (Biørn 2004). A general strategy in adopting the three-equation 

system is to combine the features of simultaneous equations while allowing for possible interaction 

between some of the dependent variables. The three-stage least squares procedure (3SLS) exactly 

fulfils these two important objectives. It combines insights from instrumental variable and GLS 

methods to achieve consistency and efficiency through appropriate weighting in the variance-

covariance matrix (Wooldridge 1996; Baltagi & Liu 2009). 

Figure 5.2 A driving force analysis of the “Forest-Farm-Wetland” system 

 

 



150 
 

The 3SLS procedure consists of the following steps. First, convert the structural equations 

containing endogenous explanatory variables into reduced form equations, in which only 

exogenous variables appear on the right-hand side, and then estimate the reduced-form equations 

by OLS to obtain fitted values for the endogenous variables. Second, estimate the structural 

equation through 2SLS by replacing the endogenous regressors with their fitted values derived in 

step one and retrieve the covariance matrix of the equations disturbances. Finally, perform a GLS-

type estimation on the stacked system using the covariance matrix from the first step (Cornwell et 

al. 1992; Wooldridge 1996).  

Before proceeding, it is necessary to verify whether the order condition for identification 

is satisfied. That condition for an equation requires that the number of excluded exogenous 

variables (See the model specification part for “excluded instrument variables”) is at least as many 

as the number of included right-hand-side endogenous variables (Baumol & Hall 1977; Engle & 

Kroner 1995). It is easy to see that each equation in the “Forest-Farm-Wetland” system contains 

more than three exogenous variables—6 in Eq.5.3, 5 in Eq.5.4 and 3 in Eq.5.5. On the other hand, 

the maximum number of endogenous variables is 2 in Eq. 5.3 and Eq. 5.5. Therefore, the order 

condition is satisfied. 

 

5.3 Data and Variables 

Table 5.1 below presents a general description of all the variables. The variables in bold 

are the three land-use classes (forestland, farmland, and wetland), which are taken as endogenous, 

and thus have their own explanatory variables. My panel data in this study span 31 years and 8 

counties. Recall that the original LUCC data were derived from six periods of time (1976, 1984, 

1993, 2000, 2004, and 2007) and they were then interpolated to obtain annual observations. In 
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Table 5.1, column 1 lists the variables with their corresponding name abbreviations; the full name 

of each variable is given in column 2 and their units in column 3; and columns 4-7 summarize their 

basic statistic values. Details regarding the data sources of the variables and potential concerns 

about them are discussed below. 
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Table 5.1 Summary data description 

 

Variable Definition Abbreviation Unit Mean Std Min Max 

Forest Area Forest (Ft) Km2 1194.52 901.92 5.13 2622.70 

Price Index of Timber TimberPrice (Tp) 1976=100 88.90 23.46 54.50 161.60 

Gross Output Value of Forestry  ForOpt (O) 1,000 ￥ 4538.87 5165.00 164.99 33424.47 

Mean Distance to Nearby Large Markets Meandist (D) Km 26.10 9.57 15.96 46.56 

Number of Forest Farm in County NForFarm (Nf) None  6.38 4.04 1.00 13.00 

0 before 2000; otherwise 1 NFPP (N) None  0.30 0.46 0.00 1.00 

Total Population  TotalPop (P) 1,000 P   305.76 99.79 104.00 527.50 

Farm Area Farm (Fm) Km2 1773.47 799.59 206.25 2876.01 

Built-up Area Builtup (B) Km2 92.63 55.50 12.38 243.04 

Number of Agricultural Laborers Aglabor (L) 1,000 L 52.15 29.23 11.40 146.04 

Per Capita Annual Net Income of Rural Population  IncmRurPop (C) Yuan 312.06 192.39 36.04 920.31 

Agricultural Machinery Power AgMachPowr (T) 1000 kWh 137.73 68.08 27.21 417.80 

Price Index of Agricultural Products AgPrice (Ap) 1976=100 344.00 170.34 100.00 578.04 

Wetland Wetland (Wt) Km2 173.59 231.38 2.04 1033.88 

Farm Area Farm (Fa) Km2 1773.47 799.59 206.25 2876.01 

Forest Area Forest (Fo) Km2 1194.52 901.92 5.13 2622.70 

Irrigation Area in Heilongjiang IrrigatArea (I) Km2 131.26 70.33 60.50 295.00 

Average Annual Total Precipitation  Precip (Pr) Mm 524.01 70.85 383.49 657.59 

Average Annual Temperature  AveTemp (Te) 0.1 °C 30.34 7.44 17.06 46.50 

Note:  “￥”is the unit of Chinese currency (Yuan). The unit for “Total Population” is 1000 persons and the unit of “Number of 

Agricultural Laborers” is 1000. The unit of “kWh” in the “Agricultural Machinery Power” stands for kilowatt hour, and “mm” in 

“Average Annual Total Precipitation” stands as millimeter. 
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Variables Used in the Deforestation Equation   

Again, NFPP (N) is a discrete dummy variable which takes value 0 before 2000 and 1 

otherwise, indicating that the forest protection program is “on” after 2000. Timber price (TP) data 

came from Forest Industry Bureau of Heilongjiang with a unit of yuan/m3. The real price series 

were obtained by deflating the nominal prices with the provincial-level Consumer Price Index (or 

CPI, with a base year of 1976) (Heilongjiang Statistical Bureau 1986-2008). The number of forest 

farms (Nf) in each county is included to explore the institutional effect based on the assumption 

that with more government owned forests being located in a county, there would be less illegal 

logging and thus less deforestation. As local population growth (P) increased and spread, more 

farmland was converted into built-up areas and clearing forests for farming became inevitable in 

order to increase local farm production and meet the demands of a larger population. Also, 

population growth is closely linked to rising consumption of wood products and fuelwood. Mean 

distance (D) measures the average distance from a forest farm to nearby capitals and timber 

markets. 

Agricultural-Expansion-Related Variables 

Agricultural labor (L) is a proxy for labor use in farmland. Data on agricultural laborers 

came from the Heilongjiang Statistical Yearbook (Heilongjiang Statistical Bureau 1986-2008) and 

the area of farmland is derived from my land-use classification results. Per capita annual income 

(C) of a rural population connects agricultural production to the local economy. As rural people 

gradually began participating in non-agricultural activities, a question was whether the local 

farmers would invest their income in increased agricultural production by purchasing commercial 

inputs. If they did so, the relationship between their income and farmland area should be positive; 

however, if local farmers had enough access to other business activities, such as commerce and 



154 
 

services, there would be less desire for agricultural expansion, in which case the relationship 

between rural income and farmland expansion would be negative.  

Agricultural machinery power (T) is a main indication of the technological sophistication 

of agricultural production. The agricultural machinery power of each county is documented in its 

statistical yearbook. A concern is whether this variable is representative of local agricultural 

technology adoption, because technological improvement could be embedded in various inputs, 

such as better seeds, more fertilizer and pesticide use, and adoption of more effective methods of 

cultivation. Unfortunately, I could not find any statistics to capture these phenomena. Of course, 

even if machinery is an appropriate indicator for farming technology, a large machinery use does 

not guarantee a high technological efficiency.  

Data on price index of agricultural products (Ap) were collected from the Heilongjiang 

Price Annals (volume 42) for the period of 1976-1985 (Compilation Committee of Heilongjiang 

Annals 1993) and Heilongjiang Statistical Yearbook for the period of 1986-2007 (Heilongjiang 

Statistical Bureau 1986-2008). After the dual-track pricing system was introduced in 1985 (Qian 

2000), agricultural product prices gradually went up. Prices reached their peak in 1996 and 1997, 

partly caused by the high levels of countrywide inflation in 1994 (Wang 2008).  

Wetland-Loss-Related Variables 

Irrigation area (I) data were taken from the publication “Sixty Years of Heilongjiang” 

(Heilongjiang Statistics Bureau 2009). This variable is an important indicator for agricultural water 

consumption; along with increasing local rice production, the effective irrigation area increased 

rapidly. Precipitation (Pr) and temperature (Te) were the annual averages over the 13 

meteorological stations in Heilongjiang, which were acquired from the website of the China 

Meteorological Data Sharing Service System ( National Meteorological Information Center， 
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2009). Yan et al. (2002) pointed out that in the Sanjiang Plain, the annual average temperature rose 

from 1.2°C to 2.3°C from 1955 to 1999. The average temperature during the period of 1976-2007 

trended upwards from 1.71 °C in 1977 to 4.65 °C in 2007. Zhou et al. (2009) also confirmed the 

decreasing precipitation trend with data from the Jiansanjiang Weather Station during 1957 to 

2000. Therefore, I assume that in addition to the human drivers, natural factors like decreased 

precipitation and warming temperatures have also contributed to wetland loss.  

 

5.4 Estimated Results 

5.4.1 Two Dominant Classes of Land Use 

Model Validation 

As a preliminary step, it is necessary to validate the selected instruments and the goodness 

of fit of first-stage regression. Table 5.2 reports my testing results in terms of under-identification, 

weak identification, and weak-instrument-robust inference. Four diagnostic tests are conducted in 

the second-stage: endogeneity test, under-identification test, weak identification test, and over-

identification test. The statistics for the under-identification and weak identification tests are the 

same as those in the first stage, while the endogeneity and over-identification tests are specific to 

the second stage (see Appendix A for more detail).  
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Table 5.2 1st and 2nd stage test results of instrumental variable analysis 

Tests Statistics All IV No B No AP No C No L No T No T or AP Only B 

Under- 

Identification 

SW 𝜒2 86.56 79.53 82.04 78.62 83.36 60.54 57.88 37.92 

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

KP 𝜒2 42.65 41.63 39.29 40.88 42.61 38.27 35.96 31.60 

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Weak- 

Identification 

CD F 22.60 21.70 26.86 21.79 27.92 22.41 29.64 50.89 

KP F 16.67 19.22 19.83 19.00 20.15 14.63 18.73 37.13 

Weak- 

instrument- 

robust inference 

AR F 30.63 23.01 38.08 31.70 35.56 28.61 37.65 82.36 

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AR 𝜒2 159.11 95.21 157.59 131.18 147.14 118.39 116.34 84.12 

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SW 𝜒2 61.76 50.02 61.27 57.95 61.26 59.87 59.05 56.51 

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Endogeneity 
Ed-test 6.78 6.15 33.95 7.56 7.28 12.16 35.57 46.27 

P-value 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 

Over- 

Identification 

Hsen J 33.95 13.43 8.88 22.58 22.73 17.84 7.41 
  

P-value 0.00 0.00 0.03 0.00 0.00 0.00 0.02 

Note:  (1) B represents Built-up Area, AP Agricultural Price Index, C Per Capita Net Income, L Average Laborers per Unit Farmland, 

and T Agricultural Machinery per Unit Farmland. (2)  SW 𝜒2indicates Sanderson-Windmeijer 𝜒2statistic; KP 𝜒2 Kleibergen-Paap rk 

LM 𝜒2statistics; CD F Cragg-Donald (CD) Wald F statistic; KP F Kleibergen-Paap Wald F statistic; AR F Anderson-Rubin (AR) Wald 

F statistics; AR 𝜒2 Anderson-Rubin (AR) Wald test; Ed-test endogeneity test of endogenous regressor; Hsen J: Hansen J statistic. 
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When all instruments were included, they passed all the tests except the Hansen J test (Pitt 

2011), which rejected the assumption that “all the excluded instruments are valid” (see Appendix 

A), casting doubt over the validity of this instrument combination. To make sure that only the 

exogenous instrumental variables are included, I took a further step to try different instrument 

combinations and recorded the corresponding test statistics (see Table 5.2). However, all of the 

over-identification test results still could not eliminate of the doubt over the validity of these 

instruments. This model validation process continued until I found that the variable built-up area 

fits as an instrument.  

It is known that built-up area includes the areas that have been most intensely changed by 

human activities, such as cities, towns, villages, and road networks. My classification results 

suggest that both built-up area and farmland experienced an expansion, but the built-up area does 

not necessarily encroach onto forestland. These relationships perfectly satisfy the requirements of 

a suitable instrument variable. Moreover, the existing literature confirms a strong correlation 

between settlement and road development on the one hand and agricultural land expansion on the 

other. Thus, built-up area can serve as a good instrument for farmland change. Subsequently, my 

statistical testing results nicely validated this assertion. 

The endogenous test strongly rejected the null hypothesis of exogeneity while the under-

identification power did not lose much strength by only keeping one instrument in the model. The 

weak-identification statistics also outperformed the previous tests based on various combinations 

of instruments. These results consistently point to the choice of built-up area as an instrument for 

farmland and, therefore, I dropped all the other instrument candidates.  
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Modelling Results from the System of Two Dominant Classes  

Results reported in Table 5.2 are based on the system of two dominant land-use classes, 

with the endogenous variable farmland being replaced by built-up area. Models I-VI were 

estimated using different FE estimators. The 2SLS is the most widely used IV estimator (Model 

I), but it is also known to likely cause substantial bias in over-identified models,  and especially 

when the first stage partial R2 is low (Bound et al. 1995). The Limited Information Maximum 

Likelihood (LIML) estimator naturally comes as a remedy for this problem (Staiger & Stock 1994) 

(Model II), and is believed to outperform both the 2SLS or the GMM estimators in finite samples 

(Murray 2006; Cameron & Trivedi 2009). However, Morimune (1983) pointed out that the LIML 

has the potential problem of considerable large dispersion in the estimates. 

Subsequently, Bekker and Ploeg (2005) and Hausman et al. (2007) argued that the LIML 

is inconsistent with the presence of heteroskedasticity when the number of instruments is large. 

The continuous updating estimator (Model III) which is GMM-like generalization of the LIML, 

could tackle possible heteroskedastic and auto-correlated disturbances but still has the moment 

problem and exhibits wide dispersion (Hausman et al. 2007). On the other hand, the widely applied 

GMM estimation methods have the virtue of avoiding unnecessary structure assumptions in the 

data generating process, and thus the specification of a particular distribution of the error terms 

(Model IV and Model V). Compared to the one-step GMM estimators which use weight matrices 

that are independent of estimated parameters, the two-step GMM constructs a weighting matrix 

with a consistent estimate of the parameters in its first step (Windmeijer 2005). The two-step 

efficient GMM estimator in Model IV is robust to arbitrary heteroskedasticity while Model V 

implemented the kernel-based heteroskedasticity and autocorrelation consistent (HAC) covariance 

matrix. Still, like the 2SLS, the GMM procedures have a finite sample bias. Thus in Model VI, I 
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bootstrapped 400 replications by clustering on the unit of “County” with the HAC covariance 

matrix, Model VI is robust to arbitrary heteroskedasticity and intra-group correlations. 
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Table 5.3 Results of instrument variable analysis under different estimating settings 

 (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) 

Forestland IV IV_limlr IV_cuer IV_gmm2sr IV_hacr IV_bscr IV_re IV_ec2sls IV_nosa IV_be 

           

Farm(Fm) -1.47*** -1.47*** -1.47*** -1.47*** -1.47*** -1.47* -1.46*** -1.34*** -1.43*** -0.09 

 (0.10) (0.09) (0.09) (0.09) (0.13) (0.78) (0.11) (0.09) (0.14) (0.27) 

TbPrice(Tp) 1.15*** 1.15*** 1.15*** 1.15*** 1.15*** 1.15 1.13*** 0.85** 1.08**  

 (0.36) (0.31) (0.31) (0.31) (0.43) (0.81) (0.41) (0.35) (0.52)  

ForOpt(O) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.05) 

NFPP(N) 40.15** 40.15*** 40.15*** 40.15*** 40.15** 40.15 39.60** 33.04** 38.05  

 (16.45) (12.81) (12.81) (12.81) (19.80) (41.87) (18.65) (16.29) (23.93)  

TotalPop(P) -0.73*** -0.73*** -0.73*** -0.73*** -0.73*** -0.73 -0.74*** -0.69*** -0.75*** -2.69 

 (0.14) (0.09) (0.09) (0.09) (0.13) (0.87) (0.16) (0.14) (0.20) (1.10) 

Meandist(D)       101.66*** 93.51*** 99.55*** 4.05 

       (11.17) (9.55) (10.53) (20.52) 

NFtFarm(Nf)       347.02*** 335.76*** 344.44*** 175.36* 

       (22.83) (19.82) (18.22) (47.78) 

Constant 3,913.86***      -968.55*** -890.81*** -942.73*** 381.94 

 (164.47)      (320.12) (280.61) (227.20) (481.21) 

           

R2  0.77 0.77 0.77 0.77 0.77     

Note: TbPrice = TimberPrice, and NFrFarm = NForFarm; standard errors are in parentheses. *, **, and *** indicate the significance 

levels of 90%, 95%, and 99%, respectively. As most 2SLS modelling tests were based on the degrees of freedom, with the same variable 

and data set, the modelling testing results are close, please refer to the final column of Table 5.2 for testing information. 
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Models VII-IX apply RE estimators in conjunction with the IV method. Model VII was 

estimated by default with the G2SLS RE estimator, Model VIII was based on Baltagi's EC2SLS 

RE estimator, and Model IX used the Baltagi-Chang estimators for the variance components.  The 

G2SLS and EC2SLS estimators differ in how they construct the GLS instruments. The traditional 

G2SLS estimator passes each exogenous variable in 𝑋 through the feasible GLS transformation 

(See Eq.3.4 and 3.5 in Chapter 3), while Baltagi’s EC2SLS spans the set of instruments used by 

including the group means of each variable 𝑋𝑖𝑡 . Baltagi and Liu (2009) argued that the extra 

instruments in EC2SLS can lead to efficiency gains in small samples. Model VII and Model VIII 

used the default adapted Swamy-Arora estimators (Swamy & Arora 1972) when computing the 

variance components, while Model IX employed the Baltagi-Chang estimators. The difference 

between these two methods is that the Swamy-Arora estimator considers degree-of-freedom 

corrections which are supposed to improve the model performance for small samples. Given the 

two different model and variance estimators, we can see in Table 5.3 that the magnitude of 

coefficients and standard errors in Model VIII, based on the EC2SLS estimator and default 

Swamy-Arora variance estimator, are all smaller relative to the default G2SLS estimator in Model 

VII. The coefficients of Model IX generally lie between those of Model VII and Model VIII, but 

the standard errors fall outside of the corresponding range of Model VII and Model VIII due to no 

degree adjustment in its variance estimator.  

The ultimate goal of including so many estimators in the fixed-effects IV analysis was to 

get the most robust estimation. In case all the four candidate instruments are included for one 

endogenous regressor, these estimators report results with more variations.  In the just-identified 

fixed-effect analysis, with the endogenous regressor being instrumented by one variable, the 2SLS 

is equivalent to the IV method. Meanwhile, all these models were required to report results that 
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are at least robust to heteroskedasticities, making the estimation differences under different 

estimators small and negligible. 

The RE models in Table 5.3 are meant to offer insights complimentary to the system of 

two classes of land-use. The correlations between forestland change and the two time-invariant 

variables—the mean distance to nearby cities and timber markets and the number of forest farms 

located within the same county—are dropped in FE analysis. These two drivers apparently play 

important roles in influencing forestland change. The highly significant coefficients of “Meandist” 

suggest that forest farms located farther away from timber markets and large cities tend to suffer 

less deforestation. Also, with more forest farms clustered in same county, the forestland tends to 

be better protected. These additional findings generated by the random-effect analysis are useful 

for understanding the driving forces of deforestation and their interaction. Further, the seemingly 

non-significant between-effect derived from Model 10, where the regressors explain little of the 

variance in the dependent variable, actually confirms that changes of regressors between counties 

are small, validating the appropriateness of choosing FE (or within-effects) estimators in this 

analysis of two land-use classes. 

Generally speaking, the signs and magnitudes of the 2SLS coefficients outperform 

considerably those from the single-equation regressions in Chapter 4. Specifically, farmland use 

is strongly correlated with forestland change, with a coefficient of -1.47—larger than that derived 

from the FE OLS estimators. The dummy variable for the NFPP is now significant, suggesting a 

positive effect on forestland protection. Also, the effect of population change is consistent with the 

general finding that deforestation occurs under human pressure in developing countries. 

Meanwhile, the coefficient of timber price is positive, which seems counterintuitive.  
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5.4.2 A More Systematic Analysis of Land Use Driving Forces 

Various model validation routines are presented in the Appendix B. Table 5.4 in the next 

page presents the 3SLS estimates for the “forest-farm-wetland” system. The first column is the 

variables and their notations specified in section 5.2.2. The second column lists the to-be-checked 

hypothesis (sign of the coefficient). The estimated results are listed in the last three columns of the 

table. 

The coefficient estimates of the deforestation equation are generally consistent with those 

of the two land-use classes. The statistically significant coefficient of “Farm” indicates that 

farmland expansion has a strong and negative correlation with forestland (-1.40). The area of 

wetland is also negatively correlated (-0.39) to the area of forestland, attributable to their mutual 

substitution in farmland expansion. The negative coefficient of population change shows that the 

increasing population could have put pressure on forest resource extraction, leading to more 

forestland losses. On the other hand, timber price and the NFPP are positively correlated with 

forestland change. It is easy to interpret the positive policy effect—the NFPP has played a role in 

protecting local forests. While the positive effect of timber price seems counterintuitive, it is 

possible that the forest cover will expand, partially in response to higher timber prices over the 

long run.   
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Table 5.4 Results of 3SLS analysis of the “Farmland-Forestland-Wetland” system 

 Expected (1) (2) (3) 

VARIABLES Sign Forestland Farmland Wetland 

     

Farmland - -1.40***  -0.24*** 

  (0.03)  (0.07) 

Wetland - -0.39***   

  (0.12)   

Price Index of Timber - 0.40**   

  (0.17)   

Population - -0.25***   

  (0.07)   

NFPP + 25.19***   

  (7.33)   

Forestland -   -0.26*** 

    (0.05) 

Irrigation Area -   -4.05*** 

    (0.45) 

Average Annual Total Precipitation +   -0.04 

    (0.03) 

Average Annual Temperature -   -0.96*** 

    (0.31) 

Built-up Land +  2.18***  

   (0.21)  

Net Income of Rural Population +  0.12**  

   (0.05)  

Number of Agricultural Laborers +  1.05***  

   (0.39)  

Agricultural Machinery Power +  0.11  

   (0.14)  

Price Index of Agricultural Products +  -0.25***  

   (0.08)  

Constant  3,775.21*** 1,552.02*** 1,003.48*** 

  (64.73) (19.68) (189.34) 

     

Number of Observations  248 248 248 

R2  0.86 0.33 0.58 

Note: (1) The signs indicate that the dependent variable is expected to be associated with the 

independent variables positively or negatively. (2) Standard errors are in parentheses. *, **, and 

*** indicate the significance levels of 90%, 95%, and 99%, respectively. 
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The fitted equation of farmland expansion demonstrates that the increases of built-up area 

and farmland expansion are strongly correlated. I employed per capita annual net income of rural 

population, number of agricultural laborers, and the total agricultural machinery power to capture 

the effects of changed inputs and outputs on farmland. The significantly positive coefficient (0.12) 

of farmers’ net income indicates that it is highly correlated with agricultural expansion. Likewise, 

rural laborer is positively correlated with agricultural expansion; but the coefficient of agricultural 

machinery power is not statistically significant. Finally, the coefficient of price index for 

agricultural products is negatively correlated with farmland expansion, revealing that price 

increase may not necessarily result in farmland expansion at the extensive margin. 

In wetland loss equation, as expected, farmland expansion is strongly negatively correlated 

with wetland loss, with a coefficient of -0.24. The relationship between wetland and forestland is 

substitutional. The significant negative coefficient of irrigation area confirms the view that wetland 

loss is strongly related to the change in local cropping pattern (from dryland crops to irrigated 

crops). In this region, pumping water greatly disturbs the local natural water system; at the same 

time, the irrigation network also cuts off the hydraulic relationships of the local natural water 

system. All these practices have limited water supplies from rivers to wetland, exerting a strong 

negative correlation (-4.05) between irrigation area increase and wetland loss. In addition, as the 

warming climate (-0.96) also contributed to wetland loss over the past 30 years. 

Various other model validation techniques are listed in Appendix B below. Here, I took a 

sensitivity analysis by dropping out variables   one by one for each step. The first variable I omitted 

from the system is the built-up land which is assumed to be exogenous of the “Forestland-

Farmland-Wetland” system, then price index of timber, price index of agricultural products, 
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agricultural machinery power, and average annual total precipitation were dropped out step by step. 

The results are listed in Table 5.9 below. 

From the Table 5.5 below, by omitting the built-up land from the explanatory variable set, 

model performance actually improved. With a coefficient of the farmland being less than 1.30, the 

value is more trustworthy according to the extended land conversion matrixes. And the model 

progress a little with the price index of timber excluded. In this model, the wetland are negatively 

correlated to forestland, and the coefficient magnitude were verified by following on regression.  

In sum, Table 5.5 demonstrates that there are model improvement spaces by omitting 

variables from the explanatory variable set. With the exogenous variable built-up land and the 

price index of timber casted out, coefficients in the “Forestland-Farmland-Wetland” model are 

more close to the magnitude as expected.   



167 
 

Table 5.5 Sensitivity analysis of “Forestland-Farmland-Wetland” model 

VAR Forestland Farmland Wetland Forestland Farmland Wetland Forestland Farmland Wetland 

 Built-up Land Price Index of Timber Price Index of Agricultural Products 

Farmland -1.28***  -0.54*** -1.24***  -0.47*** -1.25***  -0.38*** 

 (0.04)  (0.07) (0.03)  (0.07) (0.03)  (0.08) 

Wetland -0.16   -0.31***   -0.38***   

 (0.13)   (0.11)   (0.11)   

TimberPrice 0.30         

 (0.20)         

TotalPop -0.48***   -0.43***   -0.41***   

 (0.08)   (0.06)   (0.06)   

NFPP 36.79***   32.17***   28.51***   

 (9.09)   (8.47)   (8.35)   

AgPrice  -0.04   -0.05     

  (0.07)   (0.07)     

IncmRurPop  0.24***   0.25***   0.24***  

  (0.06)   (0.05)   (0.05)  

Aglabor  2.72***   2.81***   2.60***  

  (0.45)   (0.45)   (0.38)  

AgMachPowr  0.21   0.18   0.15  

  (0.17)   (0.16)   (0.15)  

Forestland   -0.55***   -0.51***   -0.47*** 

   (0.06)   (0.06)   (0.06) 

IrrigatArea   -4.19***   -4.62***   -4.97*** 

   (0.36)   (0.37)   (0.38) 

Precip   -0.05**   -0.05**   -0.05** 

   (0.02)   (0.02)   (0.02) 

AveTemp   -1.07***   -1.06***   -1.09*** 

   (0.26)   (0.27)   (0.27) 

Constant 3,601.78 1,541.25 1,899.62 3,577.86 1,539.79 1,733.10 3,592.24 1,541.19 1,534.10 

 (77.20) (20.31) (196.64) (69.91) (20.34) (200.64) (68.89) (20.28) (208.29) 

R2 0.88 0.39 0.79 0.90 0.39 0.75 0.91 0.39 0.69 
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Table 5.5 (cont’d) 

VAR Forestland Farmland Wetland Forestland Farmland Wetland 

 Agricultural Machinery Power Average Annual Total Precipitation 

       

Farmland -1.25***  -0.36*** -1.26***  -0.32*** 

 (0.03)  (0.08) (0.03)  (0.08) 

Wetland -0.32***   -0.30***   

 (0.10)   (0.10)   

TotalPop -0.41***   -0.41***   

 (0.06)   (0.06)   

NFPP 31.97***   33.90***   

 (8.41)   (8.47)   

IncmRurPop  0.26***   0.26***  

  (0.04)   (0.04)  

Aglabor  2.74***   2.77***  

  (0.35)   (0.35)  

Forestland   -0.44***   -0.41*** 

   (0.06)   (0.07) 

IrrigatArea   -4.98***   -4.80*** 

   (0.39)   (0.38) 

Precip   -0.05**    

   (0.02)    

AveTemp   -1.04***   -1.02*** 

   (0.27)   (0.27) 

Constant 3,591.27 1,548.19 1,456.41 3,591.79 1,547.89 1,330.27 

 (69.65) (19.53) (210.97) (70.48) (19.55) (220.49) 

       

R2 0.90 0.38 0.67 0.90 0.38 0.64 

Note (1) All the constant are significant at the level of p<0.01, the “***” mark were deleted for 

the purpose of saving space. (2) Numbers of Observations are 248. (3) Standard errors in 

parentheses, *, **, and *** indicate the significance levels of 90%, 95%, and 99%, respectively. 

 

 

5.5 Discussion and Conclusions 

The basic purpose of this chapter is to explore the underlying driving forces in more 

systematic frameworks.  Based on the single-equation OLS analysis results in Chapter 4, I first 

constructed an interactive system of two classes of land use, forestland and farmland, assuming 

that farmland could be endogenous in explaining the deforestation process. Then, a series of formal 
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statistical tests was conducted to select appropriate instruments among multiple combinations of 

candidate variables that were thought to be relevant to agricultural development. It was found that 

built-up land, which increased along with farmland expansion but did not have a direct relationship 

with forestland, was the only satisfactory instrument. Meanwhile, tests also demonstrated that the 

finite sample bias of IV analysis is smaller than that of OLS. The IV results provided strong 

evidence of endogeneity of land use; thus, I went one step further by including another class of 

land use, wetland, in a system of three classes of land use, with forestland-farmland-wetland being 

jointly determined. The three interrelated classes of land use—deforestation, farmland expansion, 

and wetland loss—were investigated together through three equations. The interactive 

relationships of the three classes of land use rendered this system of three equations to be a 

simultaneous equations model.  

Clearly, results derived from the forestland-and-farmland and forest-farm-wetland systems 

are more encouraging and robust. All of the included variables, except for price indices for timber 

price and agricultural products, have the correct signs. This study was partly motivated to 

investigate the effect of implementing the NFPP, which was positive but insignificant in the OLS 

analysis of Chapter 4. Now, it is confirmed that the program has played a significantly positive 

role in protecting local forests in both systems. Meanwhile, deforestation is more strongly 

correlated with farmland expansion, and wetland change has a strong substitutive effect with 

forestland—loss of wetland tends to save forestland from loss, and vice versa. Additionally, with 

an IV method and an SEM, exploring the underlying driving forces became more likely to answer 

such questions as how the population growth and urbanization, irrigation system construction and 

climate condition changes have affected wetland change, and how local farmers’ revenue increases, 
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amount of available agricultural labor, and machinery purchases have influenced their land 

allocation decisions.  

Moreover, different estimation strategies have allowed comparisons of the performance of 

regression methods as well as estimated results. From the single-equation model used in Chapter 

4 to the IV method and SEM analysis in this chapter, I have employed a number of typically-used 

modeling approaches: fixed-, random-, and between-effects models; and ML, LIML, GMM, 2SLS 

and 3SLS estimation techniques. The between-effects models have little power in explaining 

forestland change in a single-equation model, lending confidence to the validity of choosing to use 

fixed-effects estimators. Indeed, the Mundlak model in Chapter 4 shed light on the existence of 

endogeneity; in this chapter, endogeneity has been formally tested and addressed. What is even 

more important is that the alternative models have generally corroborated the consistency of my 

empirical results, making them more robust and reliable. 

Because the coefficients of prices for timber and farm products are insignificant, however, 

a closer examination of the price indices is necessary. Data show that the timber price index went 

up sharply after the year 2000, exactly when the NFPP was initiated; before that, it fluctuated 

within a relatively small range, but did not demonstrate any trend over time as deforestation did. 

This implies that timber price had little effect on local farmers’ decisions over timber harvesting 

or forestland clearing. As we traced the data back to the earlier years, we realized that prices for 

both forest and farm products in this region were under strict government control for quite a long 

time. It appears that this had depressed prices and caused some abnormal association between the 

dynamics of farmland and forestland and output prices. Similarly, machinery power grew much 

faster after 2000, but with the NFPP and wetland protection programs having been put in place 
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further farmland expansion was halted, making the relationship between machinery power and 

agricultural land not as strong as expected. 

There are some other limitations in the current study. The small sample size has made the 

estimated results sometimes sensitive to the modeling framework used and assumptions made. 

Also, the small sample size did not allow me to take into consideration the spatial autocorrelation. 

Because the original LUCC data covered six periods, I had to linearly interpolate these periodic 

data to obtain annual observations to match the existing socioeconomic data. This has made it a 

challenge to apply panel-data and other estimation methods. It is hoped that future research will 

be able to overcome these problems.  
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Appendix A: A Description of Various Tests When Instrument Variables Are Used  

In the case of a weak instrument variable problem, several tests are needed during the first 

and second stages of estimation: the under-identification tests, weak identification tests, and weak-

instrument-robust inference tests during the first-stage regression; and the endogeneity test and 

under-, weak- and over-identification tests during the second stage regression. 

First Stage Test Result 

The under-identification tests detect whether the equation is “identified;” in other words, 

whether the instrument variables are "relevant." An instrument is relevant if it correlates with the 

endogenous regressors 𝐹𝑎 and thus accounts for significant variation in 𝐹𝑎 (Baum et al. 2007b; 

Schaffer 2012). The Sanderson-Windmeijer (SW) chi-squared statistic (Sanderson & Windmeijer 

2013) and Kleibergen-Paap (KP) rk LM chi-squared statistics are used for testing under-

identification.  The KP statistic is robust to various forms of heteroskedasticity, autocorrelation, 

and clustering (Kleibergen & Paap 2006). The null hypothesis is that the endogenous regressor 𝐹𝑎 

in regression is unidentified. The large statistics and corresponding small P-values in Table 5.2 

suggest that the null hypothesis is rejected, and the model is identified. 

Based on the under-identification tests, weak-identification tests discern whether the 

excluded instruments are “weakly” correlated with the endogenous regressors. Table 5.2 contains 

two diagnostic statistic values for weak identification: the Cragg-Donald (CD) Wald statistic 

(Cragg & Donald 1993) and the Kleibergen-Paap Wald statistic (Baum et al. 2007a). Commonly, 

it is required that the maximal bias in IV be no more than 10% of the bias of OLS. Thus, according 

to a rule of thumb proposed by Staiger and Stock (1994), F values larger than 10 are required, and 

in my results, the values of the F statistics all exceed 10. Compared to the critical values tabulated 

by Stock and Yogo (2005) for a single endogenous regressor with 5 excluded instruments, the 
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threshold value of 10% maximal LIML size is 4.84. So, we can infer that the instruments are not 

weak as all the first stage F statistics are larger than the critical values. 

Table 5.2 also presents results of weak-instrument-robust inference tests. The null 

hypothesis is that the joint significance of endogenous regressors in the structural equation equals 

zero. This is equivalent to testing that the coefficients for the excluded instrument variables equal 

zero in the reduced form (Andrews & Stock 2005; Chernozhukov & Hansen 2008). The Anderson-

Rubin (AR) Wald test and its F statistics (Anderson & Rubin 1949) and the Stock-Wright (SW) S 

statistic, all these tests are robust to weak instruments, that is, no information about the correlation 

between the endogenous variable farmland and the exogenous variables is required (Stock & 

Wright 2000; Stock et al. 2002; Moreira 2003). The corresponding p-values in Table 5.2 reject the 

null hypothesis, indicating the coefficient of the endogenous variable “farmland” is non-zero. 

Second Stage Test Results 

The null hypothesis of the endogeneity test is that the specified endogenous regressors can 

be treated as exogenous. It is the difference of the two Hansen (or Sargan) statistics—one for the 

model where the suspected variable is treated as endogenous and the other for the equation with 

the suspect variable treated as exogenous (Schaffer 2012). So the endogeneity test resembles the 

Hausman test under the homoskedasticity assumption, but the test statistics reported in Table 5.2 

are robust to heteroskedastisity of various forms (Hayashi 2000). From the Chi-squared and 

corresponding p-values, even with different model specifications, the assumption that farmland 

area change is exogenous with forestland change is easily rejected. 

The Hansen’s J statistic tests the over-identification restrictions of all instruments. Similar 

to the Sargan's statistic, the null hypothesis of a Hansen’s J test is that all the excluded instruments 

are valid. Under the assumption of homoskedastic errors, the Sargan's statistic is reported; 

otherwise, the Hansen’s J statistic is reported instead. In the case where all instruments were 



175 
 

included, the test statistic rejected the null assumption, casting doubts on the validity of these 

instruments.  As the excluded variables are strongly correlated with the suspect endogenous 

variable farmland, this satisfies the first requirement of a good candidate for an instrument variable. 

Thus the potential problem of these instrument variables would lie in the non-zero correlations 

between the excluded instruments with the error terms.  
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Appendix B: Validation of the “Farmland-Forestland-Wetland” System  

Variable Selection  

As nested regression models do not support the criteria of AIC and BIC (StataCorp. 2013), 

the variables, though based on theoretical rationale and evidence in the literature, should still 

subject to close scrutiny. So, I did a pre-estimation validation based on separate equations. Also, 

because stepwise variable selection method doesn’t support panel data regression, I tried different 

variable combinations manually. Recall that the deforestation equation was already calibrated in 

Chapter 4, I have estimated the agricultural land expansion and wetland loss equations here, with 

results being listed in Table 5.6 and Table 5.7 below.  

Table 5.6 Farmland expansion model variable selection 

 (I) (II) (III) (IV) (V) 

Farmland All Builtup AgMachPowr AgPrice Aglabor 

      

Aglabor 2.01 2.25* 2.43** 2.74*** 3.83*** 

 (1.23) (1.06) (1.00) (0.60) (0.74) 

IncmRurPop 0.19 0.19 0.22* 0.26  

 (0.12) (0.11) (0.11) (0.15)  

AgPrice -0.10 0.02 0.08   

 (0.10) (0.15) (0.17)   

AgMachPowr 0.37 0.37    

 (0.43) (0.40)    

Builtup 0.65     

 (0.94)     

Constant 1,532.20*** 1,537.01*** 1,549.66*** 1,550.32*** 1,573.69*** 

 (58.45) (61.29) (55.27) (52.96) (38.70) 

      

AIC 3053.48     3056.75     3058.84 3058.06     3082.71   

BIC 3071.04 3070.80 3069.38 3065.09 3086.22 

R2 0.41 0.40 0.39 0.38 0.32 

Note: Robust standard errors in parentheses. *, **, and *** indicate the significance levels of 90%, 

95%, and 99%, respectively. 

 

Model I has the smallest AIC, in which number of agricultural laborers, annual net income 

of rural population, price index of agricultural products, aggregate agricultural machinery power, 

and built-up land are included. At the same time, Model IV has the lowest BIC, in which only 
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number of agricultural laborers and annual net income of rural population are included. Also, most 

variables have the expected signs though some of their coefficients are not statistically significant. 

Based on the AIC, BIC, and estimated coefficients, thus, there is no strong reason to differentiate 

Model I, II, III and IV.  

Table 5.7 Wetland loss model variable selection 

 (1) (2) (3) (4) (5) 

Wetland All Precip AveTemp IrrigatArea Forest 

      

Farmland -0.78*** -0.78*** -0.78*** -0.84** -0.14* 

 (0.16) (0.16) (0.18) (0.28) (0.06) 

Forestland -0.73*** -0.73*** -0.72*** -0.68**  

 (0.15) (0.15) (0.17) (0.27)  

IrrigatArea -3.63*** -3.42*** -4.12***   

 (0.54) (0.49) (0.67)   

AveTemp -1.20** -1.20**    

 (0.36) (0.36)    

Precip -0.05**     

 (0.02)     

Constant 2,554.47*** 2,518.32*** 2,475.36*** 2,488.80** 426.61*** 

 (453.32) (466.06) (516.56) (828.76) (107.69) 

      

AIC 2245.60     2249.63     2270.72     2456.59     2669.97      

BIC 2263.16 2263.69 2281.26 2463.61 2673.48 

R2 0.85 0.85 0.83 0.64 0.14 

Note: Robust standard errors in parentheses. *, **, and *** indicate the significance levels of 90%, 

95%, and 99%, respectively. 

 

 

As the linkages in the equation of wetland loss are more straightforward, the included 

variables are all strongly correlated with it. Consequently, the AIC and BIC criteria point to an 

agreement to include all the variables, among which irrigation area increase played a dominant 

role in wetland decrease and climate change, as reflected in average temperature increase and 

precipitation increase, also had a significant effect. 
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Model Validation  

Here, I first manually verified the correlation between equations. The correlation 

coefficient between the error terms of forestland equation and farmland equation is 0.74; the same 

coefficient between forestland and wetland equations is -0.37, and that between farmland and 

wetland equations is -0.17. The Breusch-Pagan LM Diagonal Covariance Matrix Test is a formal 

test which hypothesizes that the OLS estimate is appropriate. Test outcomes rejected the null with 

a P-Value close to zero (Lagrange Multiplier Test = 176.61), in favor of the alternative 3SLS. 

Table 5.8 Breusch-Pagan LM diagonal covariance matrix  

 Forestland Farmland Wetland 

Forestland 2208.29   

Farmland 3944.68 12819.11  

Wetland -520.90 -575.87 915.47 

 

Additionally, I tried to compare the forecasted and observed values of the relevant variables 

as part of my model validation efforts. As the year of imagery classified land use data are 1977, 

1984, 1993, 2000, 2004 and 2007, I dropped data for the last three years, the estimation results are 

very close to the results produced with the full data set (see Table 5.9 below).  

 

 



179 
 

Table 5.9 Results of 3SLS analysis of the “Farmland-Forestland-Wetland” system based on 

data from 1977 to 2004 

 Expected (1) (2) (3) 

VARIABLES Sign Forestland Farmland Wetland 

     

Farmland - -1.39***  -0.27*** 

  (0.04)  (0.07) 

Wetland - -0.60***   

  (0.13)   

Price Index of Timber - 0.36   

  (0.23)   

Population - -0.26***   

  (0.07)   

NFPP + 18.35**   

  (7.61)   

Forestland -   -0.28*** 

    (0.05) 

Irrigation Area -   -3.89*** 

    (0.52) 

Average Annual Total Precipitation +   -0.03 

    (0.03) 

Average Annual Temperature -   -1.15*** 

    (0.33) 

Built-up Land +  1.99***  

   (0.21)  

Net Income of Rural Population +  -0.21**  

   (0.09)  

Number of Agricultural Laborers +  0.13**  

   (0.06)  

Agricultural Machinery Power +  0.93**  

   (0.38)  

Price Index of Agricultural Products +  0.31*  

   (0.18)  

Constant  3,809.43*** 1,535.17*** 1,090.76*** 

  (75.62) (22.24) (176.76) 

     

Number of Observations  248 248 248 

R2  0.88 0.32 0.59 

Note: The signs indicate that the dependent variable is expected to be associated with the 

independent variables positively or negatively.  
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Forecasting of simultaneous equation based on panel data doesn’t work in STATA. As a 

compromise, I made land-use predications based on the estimated coefficients of the “Forestland-

farmland-wetland” system and compared the predicated values to the observations across the study 

period. Results for forestland are shown in Figure 5.3. 

Figure 5.3 Predicted and observed values of forestland based on the “Forestland-

Farmland-Wetland” model 

 

 

Overall, the predicted areas of forestland capture the general patterns of observed 

forestland dynamics. Meanwhile, gaps exist between predicted and observed changes of forestland, 

due to the heterogeneities of the initial forestland areas. Since I am more interested in the land 

dynamics in the whole study region, the 8 counties are studied as an integrated landscape. The 

disparities across counties are not so much a concern to me. Further, within a small sample, it 
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would cost too many degrees of freedom to create dummies for each county. Thus, I leave the 

prediction gaps for certain counties as such. It is easy to find out in Figure 5.3 that Qitaihe has the 

largest prediction gap. Qitaihe is a prefecture-level city with large area of built-up land in its 

jurisdiction. During the process of urbanization, farmers flocked into the city; and the 

disproportionately increased number of laborers, income and non-agricultural used machinery 

could have made the predicted amount of forestland deviate from its observed values.  

Figure 5.4 Predicted and observed values of farmland based on the “Forestland-Farmland-

Wetland” model 

 

 

Farmland prediction pattern are not as fit compared to that of forestland while it is still 

adequate. The county which matches best is Jixian, and the predictions of Boli, Huachuan and 

Huanan   are all very close. The prediction of municipal district of Qitaihe, as expected, differs 
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most from its true values. As the city area of Qitaihe shifts it production from agricultural industry 

into other activities, the prediction of farmland are higher than all the rest counties.  Meanwhile, 

the Suibin county and Yilan county are agricultural dominate, the real amount of farmland are 

larger than as predicted. 

Figure 5.5 Predicted and observed values of wetland based on the “Forestland-Farmland-

Wetland” model 

 

Comparisons of predicted and observed values of farmland and wetland tell a similar 

story—while overall patterns of change over time are largely consistent, there exist gaps between 

them. Wetland area in all the counties demonstrates a decreasing trend. As wetland is a minor land 

use category in the study region and varies according to meteorology changes. Counties like Suibin, 

bordering Songhua Rive and Amur River (Heilongjiang), wetland area fluctuate due to the 

floodplain changes according to different precipitation situations.   
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6.1 Motivations, Tasks, and Hypotheses  

The initial question of my dissertation research was whether or not the large Natural Forest 

Protection Program (NFPP) had been effective in protecting the natural forests in northeast China, 

upon which region the program had been heavily concentrated. Quickly, my literature review 

revealed that studies of the effectiveness and impact of the NFPP were not many, and they tended 

to focus on the short-term outcomes. Few had put it in an adequate historical context and examined 

the regional depletion and possible recovery of natural forests, and even fewer had investigated 

the major factors affecting the resource dynamics from a more holistic view. Further, previous 

studies of the deforestation determinants were mainly based on forest census statistics, despite the 

common concern that these statistics would be less comprehensive and of poor quality. These 

observations motivated me to consider the NFPP from the perspective of land-use and land-cover 

change over a longer time span.  

Therefore, I decided to investigate the land conversions in the Sanjiang Plain area of 

Heilongjiang and their driving forces, with a focus on the forestland dynamics. Accordingly, the 

two tasks of my dissertation were set to detect the regional LUCC over a period of 30 years (1977-

2007) and to explore the demographic, economic, political, and other determinants of the detected 

changes. I had three chief hypotheses to test. First, the region had suffered severe deforestation 

and forest degradation before the NFPP was initiated. Second, while the decline of forest cover 

might have been slowed down following the NFPP implementation, it would take a longer time 

and more effective efforts to see any significant gain. Third, farmland expansion is a primary direct 

driver of deforestation, whereas population increase, economic growth, and management policy 

are among the more fundamental drivers. 
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I will report the main findings of my LUCC detection in the next section. Then, I will 

summarize my modeling approaches, data treatment, and empirical results in section 6.3. Finally, 

limitations of my research and future directions will be discussed in section 6.4.   

 

6.2 Main Findings of Land-Use Change Detection 

I selected 10 adjacent counties as my study site, based on considerations of relevance and 

feasibility. This area used to have large tracks of natural forests and wetland, but it experienced 

heavy logging and farming expansion during the second half of last century. Then, Landsat images 

for six periods were gathered to derive the LUCC information. Before interpretation, the images 

were corrected and enhanced. Next, unsupervised classification was conducted according to the 

USGS Classification System. In light of the overall regional land-use structure and my fieldwork 

knowledge, minor classes of land use were merged, resulting in four classes—forestland, farmland, 

built-up land and other (wetland being a main component).  

Later, accuracy assessment was performed before my arrival at the final detection results. 

Because validating long-term image classification is always problematic due to the unavailability 

of simultaneous reference data, a rule-based rationality evaluation was taken as a preliminary step. 

Subsequently, a formal accuracy assessment was performed with the spatially balanced sampling 

method. Using a sample of 1550 points for each period of time, the accuracy rates for the six 

periods are all around 85% and thus acceptable.  

As reported in Chapter 2, it is found that: (1) farmland and forestland are the two 

predominant classes of the regional land use; (2) farmland and built-up land increased persistently 

during the 30 years; (3) forestland suffered an extended, heavy loss before the end of last century 

and the decline slowed down significantly thereafter; and (4) “other” land declined continuously. 
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Meanwhile, by taking the relative land use sizes into consideration, I calculated the extended 

conversation matrixes, which present a clear picture of the LUCC. As large as the forestland loss 

may be, it was not the first to be encroached by farmland expansion; instead, local farmers targeted 

“other” land, especially wetland, first, for farming. Additionally, my work discovered that 

reforestation as well as agroforestry in the farmland-dominant counties became prevalent after the 

NFPP was initiated. Moreover, the calculated landscape diversity and integrity indexes show that 

the distribution of land-cover types became more uneven, and land-use patches became more 

interspersed.  

In short, these findings are interesting and important in and of themselves. They also make 

it likely and feasible for me to undertake the other task of my research—analyzing the deriving 

forces of the regional LUCC in general and deforestation in particular. 

 

6.3 Analysis of the LUCC Driving Forces 

Modeling Approaches  

With a satisfactory generation of the regional LUCC data for my study site, I was excited 

to embark on studying the determinants of the LUCC, especially those of the deforestation. I 

started with an extensive review of the relevant literature, which has been rapidly growing since 

the 1990s. As documented in Chapter 3, LUCC driving force analysis can be done with an analytic 

approach, a simulation approach, and/or a regression approach. Given the advantages and 

disadvantages of these approaches, as well as my academic background of and interest in applied 

economics, I decided to take the regression approach. There can be single-equation regression 

models or system of equations regression models reveals, and these models have their own 
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strengths and weaknesses, in addition to their particular data requirements and estimation 

techniques.  

Taking all these factors into account, I decided to develop and estimate both kinds of 

regression models in my empirical analysis. Furthermore, my literature review indicates that 

deforestation is largely driven by a combination of three proximate factors—wood extraction, 

farming expansion, and infrastructure development. These proximate factors are in turn mediated 

by a whole host of more fundamental forces, including demographic change, economic growth, 

and institutional, policy and market factors. 

Data Treatment       

I had three options in compiling the dataset needed for analyzing the regional LUCC 

driving forces. The first option was to do a pixel-level analysis, which could give rise to a large 

number of observations, allowing the adoption of various econometric strategies and estimation 

methods. However, the fundamental problem with that option is that LUCC is a social-economic 

phenomenon, which is not organized at the pixel level. The unit of my observation and analysis 

should thus be some socioeconomic organization, be it household, community, township, county, 

municipality, or province. That’s why I chose to do my LUCC detection and driving force 

determination at the county level from the beginning.  

Another straightforward option would be to combine the repeated cross-sectional LUCC 

data that I had obtained from my first task and the corresponding social-ecological data that I had 

gathered from existing sources. While this dataset consists of original observations at the 

appropriate level, the sample size is small—only 48 observations (8 counties and 6 intermittent 

points of time). Given the limited degree of freedom, relying solely on this small dataset would 

make me severely handicapped in addressing issues like spatial and temporal correlations and to 
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obtain stable and reliable results. Certainly, it would not permit me to take advantage of the more 

advanced modeling frameworks or estimation techniques in dealing with potential endogeneity 

and simultaneity. 

The other option was to interpolate the LUCC data for the missing years between nearby 

two points of time in the 31 years and then integrate the annualized LUCC information with the 

existing annual social-ecological data to form a panel dataset of 248 observations. With the 

available LUCC data in about every five years, an interpolation would be easy and reasonable. Of 

course, someone may wonder why I did not do my LUCC detection for more cross-sections and/or 

more points of time over the whole period of study. But that would be a huge amount of work, 

which is unfortunately beyond the reach of my dissertation project. On the other hand, the 

interpolated and integrated dataset could open up some substantial analytic opportunities as what 

I have alluded to above. So, I decided to pursue it as part of my analysis of the LUCC determinants. 

Below, I will synthesize my modeling efforts and findings first; then, I will discuss the effects of 

this data treatment.    

Empirical Findings 

I undertook multiple single-equation regressions in Chapter 4, whereby fixed effects and 

random effects estimators were considered. Indeed, I began with simple specifications of single-

equation models to explore the possibilities and pitfalls of the two datasets (one with the original 

48 observation and the other with the 248 observations derived through interpolation). Several 

useful messages emerged from this preliminary exploration. First, the results of fixed-effects 

analysis are more reliable than those of random-effects analysis. Second, it seems problematic to 

directly incorporate farmland expansion as a repressor in explaining deforestation, for example, 

potential endogeneity. Endogeneity could result in biased coefficient estimates. Third, the counties 
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under study varied a lot in their land resource endowment, leading to the inapplicability of 

traditional homoscedastic standard error in this study. As such, adopting the heteroskedastic robust 

standard errors is a basic regression requirement. 

The results of estimated single-equation models demonstrated that farmland expansion and 

population growth are significantly correlated with deforestation. The coefficients of distance to 

market and number of forest farms are significantly positive. Meanwhile, the NFPP effect, while 

having the correct sign, is insignificant. Also, the coefficient of timber price is insignificant. It 

should be further noted that given the small cross sections (8 counties only), spatial correlation 

was impractical to capture the potential spatial correlation. And when the temporal correlation was 

considered, the outcomes were mixed; some of the coefficients got improved (e.g., NFPP) while 

others (e.g., farmland) became not as strong.  Therefore, caution is called for in interpreting the 

estimated results. 

Then, in Chapter 5, I adopted the instrumental variable method and a system of 

simultaneous equations model to incorporate the interaction and feedback effects between different 

land uses in an attempt to improve my empirical results. The outcomes of using the instrumental 

variable method to deal with the potential endogeneity embedded in farmland were much 

improved—the coefficients of NFPP and timber price are significant, implying that the program 

has played a positive role in protecting local forests. The bias associated with instrument variable 

analysis is smaller than those with the OLS estimation. In addition, the coefficient estimates of the 

3SLS estimation of the system are generally consistent with those derived from the IV method. 

The area of wetland is negatively correlated with the area of forestland—a mutual substitution in 

farmland expansion; likewise, farmland is negatively correlated with wetland. The significantly 

positive coefficient of built-up area in the farmland equation suggests a strong tie between farming 
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activities and residential construction. The significant negative coefficient of irrigation confirms 

that wetland loss is adversely affected by the change in local cropping structure. There and other 

findings carry some interesting policy implications.  

 

6.4 Limitations and Future Work 

Overall, different estimation strategies have allowed me to compare the performances of 

alternative regression models of the LUCC driving forces, and these alternative regression models 

have corroborated the consistency of my empirical results. These are encouraging outcomes and 

they should help mitigate the concerns with my data interpolation as well as the limited number of 

observations in my sample. At the same time, I must admit that the two datasets I have put together 

do have limitations. First, as noted, I was unable to capture any of the potential spatial correlation, 

and I was unable to adequately capture the temporal correlation. Second, while I was able to 

develop more sophisticated models and use more advance estimation techniques based on the long 

panel dataset with interpolated observations, the small sample size made the estimated results 

sometimes sensitive to the modeling framework used and assumptions made. Further, I had to 

ignore potential time lags between dependent and independent variables due to the limited degree 

of freedom. So, caution is needed in interpreting the estimated results. 

It is hoped that future research will be able to overcome these problems. Accumulating 

longer time-series and larger cross-sectional data will be a fundamental undertaking in order to 

accommodate more advance econometric tools and frameworks to derive more robust empirical 

results. Also, the quality of LUCC and other social-ecological data should be carefully scrutinized 

and, if possible, data with higher quality and reliability should be incorporated into the datasets. 

Moreover, data for other relevant variables, such as changes in the ecological conditions induced 



211 
 

by implementing the NFPP, should be collected or updated. To pursue these activities, it becomes 

essential to develop strong collaboration with other scholars. I am confident that these steps will 

go a long way in advancing research agenda along the direction that I have embarked on.  
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APPENDIX 

 

Model Validation and Model Limitations 

Model Validation 

Model validation is an important step in the model building. I employed methods like 

different formal hypothesis tests, descriptive statistics and graphic checks to validate the different 

model sets. 

Variable filtering is an important step in the model building sequence. In order not to 

include extra and unnecessary terms, and to minimize the effects of the potential high prevalence 

of correlated predictors in ecological and socioeconomic dataset, even though I did primitive 

correlation related analysis, different examining approaches were further carried out in order to 

reach a concise but still powerful model. In the single equation model, tests of individual 

parameters and the information criteria of AIC and BIC help exclude  the variable of annual output 

value of forestry sector and provide foundations for  all the other predictors are included in the 

model. In the instrumental variable based two system model, various statistical tests were used to 

check whether there is overfitting, or over-identification situation. The statistical tests effectively 

ruled out all the other instrument candidates while only keeping built-up land as the one and only 

effective instrument. Due to the nested nature in the “Forestland-Farmland-Wetland” model, 

typical information criteria are not applicable. As a compromise, I examined equations one by one, 

thus, the final model started with relatively simple and have a few terms and most of them were 

turned out to be significant in the final estimation results. 

Meanwhile, In order to test whether there is omitted variable problem or model 

misspecifications in the functional part of deforestation model, series of different models which 
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has different emphasis are considered. Cases happened that even some models had little 

explanatory power, they provided evidences and hints for modelling specification from different 

perspectives. For example, the failure of between-effects model layer a strong foundation for fixed-

effects analysis, and the significance of the coefficient of the mean value of farmland in the 

Mundlak model lead me to test of the hypothesis that the single equation model is insufficient, and 

possibly the variable of farmland subjects to further exploration, e.g. endogeneity.  Thus, exploring 

the applicable models provide the rich feedbacks for appropriate selecting a rigorous analysis as 

well as for identifying potential limits in the functional part of the model. 

Model limitations 

As forestland were largely replaced by farmland, though some turned into eroded and 

barren land (Muldavin 1997). Thus how to incorporate farmland expansion as an important causal 

impact need further consideration. And this may point to the single equation models in Chapter 4 

suffering from problems in directly employing farmland as regressor for explaining the 

deforestation causes. The following on Chapter 5 partly remedied this problem by incorporating 

instrument variables analysis and simultaneous equation modelling. For both estimation 

procedures, fitted values for the variable farmland (and wetland) were estimated through reduced-

form equations which is explained by the instrument variables (built-up land) and/or the underlying 

driving forces (Wooldridge 1996). Therefore, the instruments and driving forces in the farmland 

expansion and wetland loss equations as well as in the forestland loss are the true variables which 

have effects on deforestation. So these two methods not only just addressed the endogeneity issue, 

they also played an important role in mediating the problem of explaining deforestation by 

farmland expansion,  as well as examining the indirect or spillover effects on deforestation  that 

were induced by farmland and wetland changes. 
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The exogeneity of “built-up land” was based on the perspective of land conversion trend 

that built-up land converted from farmland and both land uses increased a lot with a high 

correlation and the few land interactions between forestland and built-up land.  The validity of the 

instrument is well grounded based on land use studies, and also under strict inspection by a 

comprehensive statistical tests during different estimation stages, like endogeneity test, under-

identification test, weak identification test, and over-identification test. The instrument built-up 

land passed all the examination tools. However, the model’s statistical validated power in 

mitigating the biases that ordinary least squares estimation suffers when a troublesome explanatory 

farmland is correlated with the disturbances. It is suggested that the two stage least square estimator 

is not sufficiently robust when testing candidate instrument that potentially is not strong enough 

(Murray 2006). The author suggests using conditional likelihood ratio techniques and Fuller’s 

estimators in over-identified models due to the good properties which is regard would not be 

diluted by weak instruments. As variable inspection procedure excluded all the other candidates, 

the model is an exact-identified case. In this dissertation I have only compared the efficiency given 

the set of instruments that in the framework and within my research sight, and I still keep the 

suspects for the instrument validity as it is well known that how hard it is to find an appropriate 

instrument. 

The intrinsic interactions between the land use classes “Forestland-Farmland-Wetland” 

lead to the systematic analysis, and model specification further strength the nature of related 

equation.  It was found that formal validation based on such nested models were limited and it has 

received little attention despite now gradually being applied to different research areas (Al-

Tuwaijri et al. 2004; Herbert & Arild 2009; Yin & Xiang 2010). Mathematical computation based 
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on the errors in the post-estimation stage supports the legitimacy of using 3SLS analysis, and 

carrying out the Breusch-Pagan LM diagonal covariance matrix test confirm the existence of the 

correlations and feedback effects between different models. 

Due to the small sample size, at the post-estimation process, I took a further step to simplify 

the big model by carry out sensitivity analysis. Dropping out regressors with relatively weaker in 

capturing the explanatory variance, this procedure has led to a more concise model while still 

keeping the explanatory power and model integrity. Meanwhile, there exists practical obstacles for 

examining the model fit in the “Forestland-Farmland-Wetland” system through partitioning 

dataset into two parts and comparing the forecasted and observed differences in forestland. The 

graphical checks of comparisons based on the predicted and observed values are quantitative and 

informative, which support the conclusion that the explained variations effectively captures the 

land dynamic trends for most counties. 

An important issue needs to be raised is the time series problem in the “Forestland-

Farmland-Wetland” model. As cautioned by Wooldridge (1996), when the instruments (included 

and excluded) are specified for each equation, dependence in the data exacerbates three stage least 

square estimation as the assumption that no temporal correlations is violated in the possible 

situation that instrument correlate with the errors. So, for future study, the explanatory variables 

should be further examined. 

Many land use studies utilize such periodic sampling frequency and different interpolation 

methods were employed, while the effects of interpolation on the time series properties and 

statistical inferences were not much examined (Vachaud et al. 1985; Jenerette & Wu 2001; Strasser 

& Mauser 2001; Moody et al. 2005; Hoek et al. 2008; Song et al. 2008). Jaeger (1990) suggests 
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that segmented linear trend interpolation for constructing U.S. prewar output series may cause 

ambiguous findings. Subsequently, Dezhbakhsh and Levy (1994) linearly interpolated trend 

stationary series, data exhibits significant periodic variation. Though the land use data differs a lot 

from economic data, their research implications are helpful that estimates form the conventional 

time series methods would biased upward and corresponding inferences are not reliable.  
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