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ABSTRACT
NON-LINEAR BEHAVIOR OF CYLINDRICAL SHELLS
by Cary Kau-Kei Mak

An analytical method has been developed to study the non-
linear behavior of elastivc thin circular cylindrical shells under-
going large displacements. The shells are supported by flexible
beams on the longitudinal edges and rollers on the curved edges,
or by rollers on all the edges. Three types of loading are con-
sidered: a uniform radial pressure, a uniform'live load (vertical
load distributed over the horizontal projection of the shell), and
a uniform dead load (vertical load distributed over the curved
surface of the shell).

The method of analysis is based on a large deflection theory
of shells by including the quadratic terms ( ?Tu){ )Z and ( -%% )z
in the strain tensor. The variational problem resulting from an
application of the principle of stationary potential energy is solved
approximately by the method of Rayleigh-Ritz. The radial dis-
placement function w, with two undetermined parameters, is chosen
to represent a first harmonic approximation of the deflection of

the shell, The longitudinal and circumferential displacement
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functions u and v, are considered to consist of two parts: up, vp

and up, v. The functions up and vp are chosen to be the parti-

cular solutions of the equations of equilibrium in the longitudinal

and circumferential directions, respectively, and uy, and vy, are

homogeneous solutions of V4uh = V‘Vh = 0, so that the sums

u= up +u, andv = vp + vy, satisfy approximately the geometric

and natural boundary conditions. By applying these approximating

functions to the Rayleigh-Ritz procedure, a set of two simultaneous

algebraic cubic equations are obtained. With the use of a high speed

digital computer, these equations are solved by the iteration scheme
I of Newton-Raphson. For a given shell and loading type, a load-
deflection curve is obtained from a series of solutions corresponding
to a range of loading intensity. The curve, in general, is non-
linear. It is indicated that after a certain range of essentially linear
behavior,, the stiffness of the shell decreases. In many cases the
shell '""buckles,'" i. e., the displacement would increase substantially
with little change in load.

By a repeated application of the above procedure for different
values of shell parameters, a number of load deflection curves are
obtained. From these numerical results, the principle findings may
be summarized as follows:

Among the three loading conditions considered, the shell has

the lowest stiffness (or buckling load) under the dead load. The
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~ parameter S, larger values of the radius to thickness parameter Z,

i

and for smaller edge beams.
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I. INTRODUCTION
1.1. Object and Scope

The purpose of this study is to investigate analytically the non-
linear behavior of thin circular cylindrical shell panels undergoing
large deflections. The objectives of this investigation were:

(1) To develop a procedure of analysis to solve the large
deflection problem of cylindrical shell panels with certain
boundary and loading conditions that have not been considered
thus far.

(2) To apply the procedure to investigate the influences of
different types of loading and of various shell parameters
on the behavior of the shell structure.

This study is based on a large deflection theory advanced by
Donnell (4), (1934)* who developed the non-linear equations of cylindri-
cal shells by including certain quadratic terms in the strain-
displacement relations. This approach leads to three non-linear
partial differential equations of equilibrium in terms of the displace-
ment  u (in the longitudinal direction, x), v (in the circumferential
direction, ¢-), and w (in the radial direction, z).

In the particular case when the loads are applied in the radial

*Numbers in the first and second parentheses refer to reference
number and year of publication, respectively, as listed in the
bibliography.
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direction and/or on the boundary only, the equilibrium equations in x
and ¢ directions can be satisfied identically by the introduction of an
Airy $tress function . Thus the problem becomes simplified
appreciably as the three equilibrium equations are reduced to one
equilibrium equation in the z direction and a compatibility equation
in terms of w and "/’ These two equations, being non-linear in w,
are usually solved approximately either by means of the Rayleigh-
Ritz or the Galerkin-Bubnov method. Because of the inherent
difficulty in solving non-linear boundary-value problems, all the
published work on shell stability from the large deflection point of
view has been limited to the previously mentioned types of loading,
which made the above simplification possible.

In this study, three types of loading conditions are considered;
namely: radial pressure, live load (a vertical load distributed over
the horizontal projection of the shell),and dead load (a vertical load
distributed over the surface of the shell). It is noted that the latter
two types of loading have a component in the circumferential
direction, so that the simplification mentioned above is not applicable.
Consequently the problem is treated in terms of all three displace-
ment components u, v and w, and is solved approximately by the
Rayleigh-Ritz method. In applying this method, w is chosen to be
a first harmonic approximation of the shell deflection, while u and

v are chosen not only to be the particular integrals (up, vp) of the



equilibrium equations (as was done in Ref. 9) but to contain also
homogeneous solutions (up, vy) so that the sums u = up +up; V= vp tvp
approximately satisfy the geometric and natural boundary conditions.
The approximations involved are twofold. First, in considering the
natural boundary conditions only the membrane forces Ny and N?; are

‘
taken into account. (For 'long'' shells, these are the dominant
forces.) Second, certain trigonometric functions describing the
force distribution along the boundary are approximated by polynomials.
Such approximations are necessary because it seems impossible to
find a set of u and v so that the governing differential equations and
all the associated boundary conditions are simultaneously and
rigorously satisfied. With u and v chosen as described, even with
only two undetermined parameters in the assumed radial deflection
function w, physically meaningful results are obtained. These
results depict the non-linear behavior of the shells considered.

This thesis also deals with shells supported by flexible, rectangular
edge beams, which represent more realistic boundary conditions for
concrete roof shells than that assumed by other researchers.

Briefly, the contents of this study are arranged as follows:

Chapter II gives an outline of the basic assumptions, as well
as an expression of the total potential energy of the shell and the edge
beams. A detailed discussion of the choice of the approximate de-
flection functions is also presented. The latter portion of the chapter

describes the numerical solution of the non-linear equations resulting
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from an application of (;he Rayleigh-Ritz procedure.

The numerical results obtained in this investigation are pre-
sented in Chapter III, in which the influences of the types of loading
and the properties of the shell on its behavior are considered.
Then,the accuracy of the analysis is evaluated by comparing the
solutions with a linear problem solved in the ASCE Manual No. 31 (1)
(1952) and with a non-linear problem investigated by Kornishin and
Mushtari (11), (1959).

In Chapter IV, in addition to a short summary of the work,
some remarks are made concerning the relation of this study to
the present practice of stability consideration in concrete roof
shell design. Finally, some suggestions are offered for possible

future work.

1.2. Review of Literature

In 1934, Donnell, (4) (1934) making use of von K;rmén‘s (22)
(1910) approach to the problem of large deflections of plates, for-
mulated the non-linear governing differential equations for cylin-
drical shells by including in the strain tensor the quadratic terms
in '2% and 2—!‘;’3 . Later, von Karman and Tsien (9), (1941) used
the same formulation to investigate the buckling problem of
cylinders under axial compression with the Rayleigh-Ritz procedure.
In this celebratedlwork, stable post-buckling equilibrium configurations

were found, corresponding to axial loads as low as 25% of the critical
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loads predicted by the classical small deflection theory. These im-
portant results partly explained the large discrepancies which existed
between experimental and earlier theoretical results, and demonstrated
dramatically the inadequacy of the classical small deflection theory in
predicting the buckling load of thin shells.

Since that time, research efforts devoted to the investigation of
the stability problem of shells have been very intense. The emphasis,
however, has been restricted to axially symmetric, closed shells,
such as complete circular cylinders, truncated conical shells and
spherical shells. Very little work has been done on open shell panels,
such as circular cylindrical roof panels of rectangular planform.

In the American Society of Civil Engineers Manual No. 31 (1), (1952),
it is suggested that the buckling stress of a long circular cylindrical roof
shell could be approximated by the critical stress of a long cylinder
under axial compression obtained by Timoshenko (21), (1936), using
the classical small deflection theory. But Karakas and Scalzi (8), (1961),
who test-loaded a cylindrical shell panel made of reinforced plastic,
showed that such an approximation oversimplifies the problem and leads
to erroneous and even unsafe design. The shell was found to buckle
at 32% of the critical stress calculated according to the suggestions
of the ASCE Manual No. 31.

Koiter (10), (1956) investigated the postbuckling behavior of a
narrow cylindrical panel, such as that occurring in stiffened cylindrical

shells under axial compression. He conjectured that the behavior of




a very narrow curved panel in the advanced postbuckling stage would
approach the behavior of a flat plate panel of the same width.

Soderquist (18), (1960) investigated experimentally the buckling
strength of a series of curved panels with rectangular stiffeners.
The load was applied in compression axially, and measurements were
made of the initial buckling stress. The ultimate strength of the
panels was found to increase markedly with curvature, and the rate
of increase to depend on the ratio of stiffener spacing to shell
thickness.

Finkel'shtein (5), (1956) studied the buckling problem of a
cylindrical panel under the combined action of axial compression
and uniform transverse radial pressure. Considering the panel to
be simply supported along the edges of the shell, he assumed that
no moment would appear in the shell so long as the loads were below
their critical buckling value. However, when buckling took place,
large deformations were produced. Thus, the problem was reduced
to a system of two non-linear differential equations. The unknown
functions were the radial displacement w and the stress function 31’
The radial displacement was assumed to be the same as in the case
of small displacements and was substituted into one of the differential
equations which was solved for ¥is Substituting both w and ¥ into
the second equation, the author obtained a function & which contained
the maximum deflection and the loading as its arguments. The

function é was expressed as a Fourier series and, by equating its

M



coefficients to zero, the conditions of buckling were obtained.
Kornishin and Mushtari (11), (1959) presented an algorithm
applicable to the solution of nonlinear problems of the theory of shallow
shells. They applied the algorithm to the buckling problem of a cir-
cular cylindrical panel of rectangular planform supported by ''rollers'
on all sides and loaded transversely by a uniform radial pressure.
(At a roller support, w = 0, and the forces vanish.) As mentioned
earlier, the simplicity of loading enabled them to express the
problem in the form of an equilibrium equation in the radial direction
and a strain compatibility equation in terms of a stress function, ’51’ %
and w. They were both non-linear 4th order partial differential
equations. After choosing a set of appropriate trigonometric functions
containing a total of six arbitrary undetermined parameters for w and
1{1‘ , the differential equations were solved approximately using the
Bubnov -Galerkin method. In this way the problem was reduced to a
set of 6 cubic algebraic equations to be solved simultaneously. The
authors then proposed an algorithm to solve approximately these
non-linear algebraic equations. The results were presented in the
form of a set of load-deflection curves for different parameters.
Sunakawa and Uemura (20), (1960) solved a problem similar
to that of Kornishin and Mushtari (11) except that the straight edges
were assumed to be clamped while the curved edges were simply
supported. Using techniques similar to those employed by Kornishin

and Mushtari, Sunakawa and Uemura approximated w and v by a




polynominal containing only one arbitrary undetermined parameter.

The numerical results of the last two references, (11) and (20)
will be further referred to in the later chapters of this thesis.

This brief review has included materials on the large deflection
or buckling of cylindrical panels only, as they are of primary concern
in the present study. A more comprehensive survey of published
literature on the general theory of elastic stability of closed shells
may be found in reviews by Langhaar (12), (1958), Nash (16), (1960)

and Fung and Sechler (6), (1960).

1. 3. Notation
The symbols used in this study are defined as they first appear in
the text., They are summarized here in alphabetical order for

convenient reference:

A = cross sectional area of edge beam;

Ags Bj = coefficients relating to up, vp, defined by Egs. (2.21a-e)
and (2.22a-h). i varies from 1 to 7, and j from 2 to 11;

a, b = depth and width of edge beams;

cij, djj = coefficients of Eq. (2.492b) as listed in Appendix II
i and j vary from 1 to 3;

D = —lﬁtj—z)‘ = flexural rigidity;

e = quantity to be evaluated at the junction of the edge beam

and the shell;

E = Young's Modulus;



g h

J(Xp)

K

kij

L

Mg, My
fo’ fo
Ny, N¢
Nxf' Nﬂx

undetermined parameters defining the center deflection
of edge beam and shell and the center deflection of shell,
respectively;

-ﬁ- , {.‘.— 5 -respectively;

horizontal centroidal axis of edge beam;

moment of inertia of the beam section about the
horizontal principal axis, Hg;
Jacobian matrix of a system of equations evaluated at X

Et
£ yz = extensional rigidity;

coefficients of Eq. (2.50), defining the total potential
of the shell system;

longitudinal length of shell;

bending moments per unit of longitudinal and circum-
ferential length, respectively;

circumferential and longitudinal twisting moments per
unit of circumferential and longitudinal length,
respectively;

longitudinal and circumferential normal forces per
unit of circumferential and longitudinal length,
respectively;

circumferential and longitudinal shearing forces per
unit of circumferential and longitudinal length,

respectively;




o

)

&
n

% - |
g " PRL|
= ~
ok -pLTL
9py, * -?%L
J
R =
b 5
B =
Se Sy -

the superscript m indicates the number of the load
increment applied, and the subscript n indicates

the number of iterations performed by the computer;
intensities of load components in the longitudinal,
circumferential, and radial directions, respectively,
Their positive senses are orientated in the
directionsof positive x, y and z;

intensity of radial load;

intensity of live  load;

intensity of dead load;

dimensionless load parameter in longitudinal,

circumferential, and radial direction, respectively;

dimensionless load parameter of radial, live and

dead load, respectively;

radius of shell;

curved length of shell;

-'R—-, dimensionless parameter of shell;

L

transverse shearing forces per unit of circumferential

and longitudinal length, respectively;

V 9
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i = lateral thrust acting on the shell edge;
t = thickness of shell;
U = total potential energy of the shell system;
U S A
EtR¢ L
u, v, w = displacement components in the longitudinal,

circumferential and radial direction, respectively;

e
‘i § :, = dimensionless displacement components in the
‘: 3 : longitudinal, circumferential and radial directions;
e, gy
Ty, ;h = dimensionless displacement functions that satisfy
the biharmonic equations of T and ¥ respectively;
\%, Vp = dimensionless displacement functions that satisfy
the equilibrium equations in the axial direction,
and the circumferential direction, respectively;
ﬁs, up = longitudinal displacement of the shell at n=+ 1/2,
and of the edge beam, respectively;
v = -?-, dimensionless shell parameter;
Vb = strain energy of edge beams;
Ve = strain energy of shell;
= = vertical centroidal axis of édge beam;
w 5 %, dimensionless shell parameter;
Y 2 = shell coordinates defining the mid-surface of the shell;

V %




z.i) /3,

€,

&, &, €

}1.£
g;’l
6
»

2
A

f o
e, Ryy fop

. 4

u
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-15—', dimensionless shell parameter;

horizontal displacement component of the edge beams
along the centroidal axis Ho' positive to the right;
vertical displacement component of the edge beams
along the centroidal axis V,, positive upward;

vertical displacement of the shell at I? = ié— P and
of the edge beam, respectively;

axial strain of the edge beam;

longitudinal, circumferential and shear strain at

the middle surface of shell, respectively;

quantity is to be evaluated at S = 1-% 9 and rl = ii ]
respectively;

dimensionless coordinates on middle surface;

%—‘S , rise angle of shell;

Poisson's Ratio;

potential energy of the loads;

shell coordinate in the circumferential direction;
opening angle of shell;

longitudinal, circumferential curvature change,

and twist of the middle surface, respectively;

Airy Stress Function;
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II. METHOD OF ANALYSIS

2,1, Shell Structure Considered

The shells considered in this investigation are shown in Fig., 2.1
and Fig, 2.2. The shell, with its mid-surface defined by the co-
ordinates x and f, is cut from a perfect circular cylindrical shell
of constant thickness by two pairs of planes containing the principle
radii of curvature. Fig. 2.la depicts a shell supported by two
identical rectangular flexible beams along the longitudinal edges
and by rollers along the curved edges. The shell shown in Fig, 2.2
is supported by rollers along all edges.

The cross-section of the edge beams is shown in Fig. 2.1lc
in which \I° and H, denote the vertical and horizontal centroidal
axes, and /8 and & the corresponding displacements.

The external load applied on the shell is to be represented by
the three components: Px' P#’ and Pr' denoting load intensities in
the longitudinal, circumferential, and radial directions, respectively.
The loading types considered are, as mentioned in Chapter I,
radial load, live load, and dead load.

As usual, the symbols Nx, N¢, ny(’ N;‘x denote the normal and
shearing membrane forces; Mx, M¢, Mx¢, M¢x are the bending and

twisting moments; and S, and S¢ are the transverse shearing forces

14




acting on the shell. The positive directions of these internal forces

are indicated in Fig., 2.1b.

2.2. Assumptions and Limitations

The analysis is based on a large deflection theory first
advocated by Donnell (4), (1941). Associated with this theory are
the following basic assumptions:

(1) The problem is restricted to small strains, i.e., the

strains are small in comparison with unity.

(2) The problem is restricted to geometrical non-linearity.
The material which forms the shell, however, remains
linearly elastic so that Hooke's Law for a homogeneous
and isotropic material may be applied.

(3) The shell under investigation is assumed to be thin;

that is, % ~ & in which t and R are the thickness and
radius of the shell, respecﬁvely, and & is the strain
in the x or 5# direction. This assumption reduces the
shell to a two dimensional problem and justifies the
use of a simplified expression for strain energy of the
shell by neglecting quantities having the same order of
magnitude as -% in comparison with unity. It becomes
possible to apply the Kirchhoff-Love hypothesis

that vectors perpendicular to the mid-surface of the
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shell before bending remain perpendicular after bending.
At the same time normal stresses perpendicular to the
mid-surface are considered to be small in comparison
with the stresses tangential to the mid-surface. This
hypothesis leads to an error of at mostvl% in comparison
with unity. (17).

(4) In addition, the shell is assumed to be limited to
""medium bending, "' that is, the maximum deflection is
of the same order of magnitude as that of the thickness,
but is small in comparison with other linear dimensions.

(5) The shell is also assumed to be shallow; that is,

\2 AN\E 1 ¢ P
(_ﬁ) = (._) <</ in which s is the curved length
2/ 2R
of the shell and y!k is the opening angle. Except for one
case, the maximum value of ¢k considered in this study

is limited to ¢, = 0.632 (approximately 36°) so that
2

(2219 <, 0.1,

(6) Furthermore, the shell considered is assumed to be
long, i.e.,
R
-¢—k— SEONE
L
in which L = longitudinal length of shell. In this way,
the deformed shape of the shell might be closely approxi-

mated by a half cosine wave in both the longitudinal and

circumferential directions and the dominant internal

A



forces will be the normal membrane forces Nx and N#.

The first five assumptions are generally made in most of the
research work in the large deflection theory of shells. The addi-
tional sixth assumption is made to facilitate the development of
the analytical procedure used in this study. Generally, these
assumptions are applicable to reinforced concrete roof shells

provided the opening angle is not too large.

2.3, Potential Energy of the Shell System

As mentioned earlier, the method of Rayleigh-Ritz is used
in this study. It is therefore necessary to have the expression
of the potential energy of the shell system.

2.3.1. Strain-Displacement Relations of the Shell: Based

upon assumptions outlined in section 2.2., the strain of the mid-
surface of the shell can be related to displacements u, v and w by

the following expressions:

€x = Wx + % (w0
€ = wWp+ R + e ()
2€xp = Wix + Rie + KW Wip
(2.1a-f)
A x = ~Wxx
he = ~mWes

ey = —-'ptW',x#a
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in which é,) E¢1 e"? = longitudinal, circumferential
and shear strain in mid-surface,
respectively.
ﬁlz k?; ka = longitudinal, circumferential
curvature change, and twist
of mid-surface, respectively.
The notation has been adopted that a comma followed by a

subscript indicates a partial derivative. Thus M,x = 20 etc.

2X

2.3.2. Strain Energy of Shell: The strain energy of the

shell, Vs’ can be expressed in the following form if quantities of
the order of magnitude of _It(' in comparison with unity are neglected

(13), (1962).

£k
Vo= I?L L‘ <K{(e,+ o) z(;—v)(exe¢_e,(f)}+ o
+D {<$'x+"¢)7:‘2("‘1))("4x1¢—M?a)}>kd4: dx

in which
K = extensional rigidity = Z’E;—t;,{)
D 1 1 rigidit £
= exural rigidif y =
12(1-p%)
Y = Poisson's ratio
E = Young's modulus

If the strain-displacement relations Eqgs, (2.la-f) are substituted

into the strain energy expression of the shell, Eq. (2.2) becomes
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L
RN ¥<K [t Sl 5 +45 + e o] =
s 20, 'Y Mxt7Wx)+ g e +7 +2r2 (W
i i
—z(;—v){[u,u%(ur,x)z][ﬁw""eaz‘*é‘gt(“&ﬁz]“
—i[«cﬁriu,w&w,-«w]ig* iy

+ D{[W,xx + %wr,qq]ll-

2097 Wty - 1 («c;¢)’]}> Rdgdx

2.3.3. Strain Energy of Edge Beam: Assuming that the

displacements of the edge beams are small in comparison with their
cross-sectional dimensions, the elementary beam theory will

be used. Furthermore, in accordance with the accepted procedure
of shell design (1), it is assumed that the edge beams have zero
rigidity against bending in the horizontal plane and against twisting,
and the strain energy due to shear deformation is negligible. Thus

the strain energy of the two edge beams is:
£
Vi = j-% { EA(&) +E1, (,bn)z} dx (2.4.)

A = (a)(b), a is the depth of the beams and b the width;
LH =—3‘1%b-; moment of inertia of the beam cross section about
the horizontal principal axis, Hy;
€o = axial strain of the edg;e beam.
The deformations of the edge beams are related to those of

the shell by the following expressions:
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P= e conds -4, dinds

€= (€3, + F(px)e s
2 :
;- (M)n)l,+ %(W}x)l_* %{(Mxt)&&ﬁ% = ('V;u)gmgi}
The subscript e indicates the quantity to be evaluated at the junction

of the edge beam and the shell; i.e., at g = dk

Substituting Eqs. (2. 5) into Eq. (2. 4) the total strain energy of

the two edge beams becomes

Y = [ A e 2 oo sin 4

2

+ Elyf [we souds -1 mgs],“}‘>4x (2.6.)

2.3.4. Potential Energy of Loads on the Shell: The potential

energy of the loads acting on the shell domain is

sy
Q --S_tj%(ﬁwn R4 + B w) Rdpdx o

2.4, Principle of Stationary Potential Energy of the Shell System

The total potential energy of the shell system is:

U=V +Vpt+ 01 (2.8.)
in which Vs, Vwand 0 are given by Egs. (2.3), (2.6) and (2.7),
respectively.

If the shell system is in equilibrium the variation of the total
potential $U must vanish for any arbitrary virtual displacement, i.e.,

SU = §(Vg+Vy+Q) =0 > (2.9.)

A
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2.5. Rayleigh-Ritz Method
Instead of solving the variational equation, Eq. (2.9),
directly, the approximate method of Rayleigh-Ritz is applied.
The procedure of solution is outlined as follows:
(1) A set of displacement functions, u, v, and w with
n undetermined parameters are assumed and substi-
tuted into Eq. (2.8).

(2

The total potential of the shell system is made stationary
with respect to the n undetermined parameters, i.e.,
the partial derivative of the total potential, U , with
respect to each of the n parameters is obtained and set
equal to zero.
(3) After carrying out the integration, the result is a
set of n simultaneous non-linear algebraic equations
from which the n parameters can be determined.
The above procedure yields the deflection of the shell for
a given load intensity. By repeating this process for different
values of the load, a load-deflection curve, which depicts the

behavior of the shell, can be obtained.

2.6, Approach Used in Choosing Approximate Displacement Functions

2.6.1. General: The method of Rayleigh-Ritz has been

successfully applied to stability problems of shell structures when

a VN
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the deflection functions chosen actually approximate the real deformed
shapes of the shells observed in experiments. Such was the case of
a circular cylinder in compression; the deflection functions used by
various investigators approximated the diamond shape deflection
pattern observed in laboratory tests. In the case of cylindrical
panels under transverse loads, however, no definitive experimental
data are available. However, one might suspect that the radial
deflection w will be close to the first harmonic in both the longitu-
dinal and circumferential directions. This approximation was found
to be satisfactory by Kornishin and Mushtari (11), (1959) for
cylindrical panels supported by rollers on all sides and loaded
transversely by radial forces, provided that the assumptions listed
in section 2.2 are satisfied. It is far more difficult, however, to
estimate by physical intuition alone the forms of the displacement
functions u and v. Chung and Veletsos (3), (1962), in solving the
linear equilibrium problem of a cylindrical roof shell by means of
the Rayleigh-Ritz' method, used orthogonal trigonometric
functions. By using all harmonics up to and including the 4th in
each of the deflection functions, u, vyand w, they found the solutions
converged to those given in ASCE Manual No. 31 (1). However,

to investigate the non-linear behavior of the shell, these approxi-
mating functions with 15 arbitrary undetermined parameters may

not be accurate enough as they do not satisfy the equilibrium equations
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of the shell in its interior, or the forced and natural boundary condi-
tions.

In this investigation, the function w is chosen essentially on
an intuitive basis and is limited to a first harmonic approximation.
The functions, u and v, however, are not chosen arbitrarily.
Rather,they are made consistent with the choice of w in that they
satisfy exactly the equilibrium equations in the x and ¢ directions
and approximately the associated boundary conditions. The dis-
placement functions u and v may be considered to be composed
of two parts:

u = “p +uy,
(2.10a-b)

v = vp +ovy
in which u, and vp are the particular solutions of the equilibrium
equations in the x and ¢ directions (Eqgs.(2.1la-d), to be given
later). In general, up and vp do not satisfy all the natural and
geometric boundary conditions. Therefore, the additional ex-
pressions, u, and Vhe which are solutions of the homogeneous
equilibrium equations, are obtained in such a manner that the sums
“p + 1w, and vp + i satisfy approximately the boundary conditions.
In general, for each particular case of load type and boundary

conditions, u and v must be derived individually.

2.6.2. Equilibrium Equations of Shell: The equilibrium

equations for the x and ¢ directions of the shell can be obtained
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from a consideration of the equilibrium of a differential element

of the shell. (14), (1961). They are given as follows:

Moyext (S2) kg + (122) ko + Fatut Fi + & = (2. 11a-b)
TI<14’,‘M+(T»)_ syxp (122D 4 xxt “’"?*‘FUB =0
in which
= [LZ (W;x)z* 2%{'- (WHD)Z]),(" (‘_;2) E‘x (% W}#),#
(2.11c-d)

f2 = &zl ()" + 3 () y+ (2% (Wxag) ¢

Egs. (2.1l1a-b) can be expressed in terms of w only by the use of

the following relations:

Sl 211), ,,f*‘{Eq)(lea}“ E‘,’?é{&g(znb)},q AR

o2 IFEhT s
e {Eq (211 0)] 4y + B {Eq(2- B i k{Eg (21 a)xp=0
Then Egs. (2.1la-b) are transformed into the following:

Y
v - Rt R Wyxeé 'ﬁ,xx oL ﬁ,¢¢+(“9‘)‘l‘ﬁ,x¢'

k() Biep =k Boxe+ k (EB) & Poyse
(2.13a-b)
T =~ Weae -~ (269 thxt - (25) Foux = Fope +

+(%)ﬁﬁ;*¢_Kl_EPﬂ¢¢— )%ﬂ* e )"'Px)w

V N
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in which
V* = ( ),xxxx i %,( ),)\xw +_&‘( ))N’ﬂ’
Substituting the derivatives of fl and fz (Eqs. (2.11c-d))into

Eqgs. (2.13a-b), then VuAA and V’fV‘ become functions of w, the

applied load, and their derivatives,as follows:

4
V= %W“x TR Wixee AWy AW, xxxn = 34&7;\1 )uq.

-2(2+y) |I—;\t W, x¢ Wjxxp ",%. W x W xxpd —‘%p'wfﬂ Wixpp -
=1
Re W W 4444 ~ Too W00 Wixbd — s Wxe Wiony +

+ e W W44 ~ g (55) Pad ~ Poxx + 1 (42) By
(2.14a-b)

VU =~ Wape - 287 Wxxp —Fs Wrp Wiaxpp - 22D 1 yp M nip -
LRt W4~ g U e = T Wk W =
~F W Winp ~ s W Woodd — Bx W0 Wi +
+ B Wex Wiggg -k Popt -k (B5) Boxx +

AL A
+x () & B
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2,6.3. Dimensionless Coordinates and Dimensionless Parameters:

In the following, the x and? coordinates are expressed in
terms of the dimensionless coordinate ; and ? H
in which
; SR
i L
AR
Furthermore, the properties of the shell system will be expressed

in terms of ¢k' » as well as the following dimensionless

parameters:

SR

S i

z = R

t

SR

Vi

b

e = x
Qx’ Qﬁ' Qr = %, —IP;d 3 .;: , respectively.

At the same time, the displacements u, v, and w are expressed

in the following dimensionless form:

= %
b7 Al )
B LN
t
=, ]
t

In terms of dimensionless coordinates and parameters and
setting the Poisson ratio Y.= 0, the equilibrium equations,

Eqgs. (2. l4a-b),are transformed into:




e s
R = gogs Wnn = 3005 Wy — 38 Wy Mgy~
- Sage Mogn Wyggq— sge (Wi Biggan + sy By g00) -
e o5 R g
~svage (W qgpy + Bog Bignq + 2Wysp Wyng)-

2z * 2
~ < Qnn ~ 5 Qs + g, Qe
(2.15a-b)

T4 =- ;{1;; ;091 —g%ﬁ%m - gz Wy Wiggny -
- Szge (Agn Wignq +2 Byggn Wygy) —
=55 (W Wiggs + Wy Wigqn + 2 Wggy Wgn) =
- s (Djq Bpgny & 3 W50 Wypn0)

i 2 z
-5 Qony — 25 Quyy + 25 Oy
in which

G

<l
I

Loss * 3520 Dsnet 553 C )nang
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2.7 Choice of w

The displacement function w used in this investigation is given

as follows:

W = g covd B + %,wv.!% s (2.16)

in which the parameter h accounts for part of the deflection at
the center of the shell, while the other parameter g accounts
for part of the deflection at the center of the shell and the de-
flection of the edge beams. Eq. (2.16) may be reduced to a

dimensionless form as follows:

W = G oy coomy + H coomy wouns (2.17)
in which
1" 8
iy il
HG =l 2B
T

2.8, Choice of U.F_ and TJP to Satisfy Equilibrium Equations
2.8.1. Radial Load Case: For the case of a uniformly

distributed radial load PRL'

Q =% 0

x
Qd = 0 3 (2.18a-c)
@ the sonsPRpetion o

T ) RL

Substituting Eqs,(2.17) and (2.18a-c) into Eqgs.(2.15a-b), after

several transformations, the following partial differential equations
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of U and ¥V in terms of G and H are obtained.
A = Gy cn b sim + His coung aums + (64 H) LS simr, cours +
+ ahd{zms L[5 "+ 4V Loy coung simvng Lo —
= 6H<4tr + 51+ J>§3; Al M piwvig 0T +
+ &"<2"‘ (w >mz4wz mw§mng+

+ H? 2n5(]+$,_ >m2nr} Amnsmns
(2.19a-b)

2

VAT = -6 (% - %) simden £oums - H (3 S4+W_)walmnj+

+ 6" g5 wimden aovdun + &M 1+ 368 Tz conden dimg +
+GH 5+ ) g5, im ey coomy + H2Bas Aimmy oy +
+ & [ L7 (F) aiw g eom b 2onzeg +

+6H{[znz+ L +4:u_‘ +W}mmﬁqqu Aowzns +
+GH [ 2262+ &) *+ 4T +§,}§$§E aimbe) counq couzns +

& +1¢x—s\:]l-%: Ly Lo rmzry

It is noted that Eqgs. (2.19a-b) do not involve any loading term
because the consideration of equilibrium condition in x and,( directions
does not involve the radial load. Thus, a particular solution of

Egs. (2.19a-b) 45 found to be the following:
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Wp = GA covhriaimms +HA, congaimng + (6 HY) A; simrg poomt, +
G A, Cn 2 piwns coens + GH As oo e £oumy Mnd cood +
+ GH Ay feq pintig 4w eourts + K2 A7 con2mg aimoms covmg

(2. 20a-b)
Np = G B, simdeqonng + HBs dimmy poums +

+

G By Lim i Louden) + GH B coudin Aimmn+

o

G H By twben couny + H By swmryp toung +

-

& Bg vim e comdin covar + 6H Bq e aiwy v zng +

+*

GH Bjo Mwdeneovmpeanzng + H* By aiwry £ovmy #v 211¢

in which

% ns

1 (1 +m2s?)*

- L -y

2 T+ g47)?

Ay B Ay (&5 AT)TE “4’5"5 (2.21a-e)
- _Qd; -0sa

A iy a}

A - _0104-020,

6 ;- a;
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% [(2W1+‘7;$1+ BE + )2+ Antdst] wdhs
= (Andpie™ + 14 b )2y Anted

= (AmEst M4 $2) 2ndrs

= (4P +t+ d2) 4nde

= slirentst)

(24 1)
1+ 24257
T (I + dre)E
4
By = —

b‘ilfi‘lrs lrs

b=l . (e.22ah

lra b =lr, s
- b

By = ’SL

brs bre = by e
__Ebr::_c_;ll.

by lre = I/'g’.lra

l":_!/‘a
= (desr)TR by - (v 42) v )
e on SRR LINC 2 e
= [$2(ams™+ 1) Amdies 3n%) '—m?_&
AR By b8 =gl

"

(> (242s+ 1)+ 4rpiet+3 +:J %&
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2.8.2. Live Load Case: For the shell system subjected to
a uniform vertical live load Prre the force components can be

expressed in terms of Prp, 28 follows:

Q = 10
Q = '%L_ Aimbud = 4 bimdiy eovde] . (2i23a-c)
e —)PEL_L m’} =% UWL%’[

If Eqs. (2.17) and (2.23a-c) are substituted into Eqgs. (2.15a¢b),
the following equations are obtained:
VYL = Right hand side of Eq. (2.19a) b
3 (2 24a-b)
V‘/\]’ = Right hand side of Eq. (2.19b) + %LL 24 A‘W\z#g'[_
Then a particular solution of Egs. (2.24a-b) for the uniform
live load case : is found to be
Gp = Right hand side of ' Eq. (2.20a)
(2 25a-b)
VP = Right hand side of Eq. (2.20b) + %LL& MZM

2.8.3. Dead Load Case: For a shell subjected to a uniform

dead load Ppps the force components can be expressed as follows:

Q1 A ppeO
Q- ‘%&‘”"“* = 4y A ¢ ¥ ii22base)
Bguet is % wmip = —%DLM*‘?

Substituting Eqs. (2.17) and (2.26a-c) into Egs. (2.15a-b), the
following equations are obtained:
v‘,ﬁ = Right hand side of Eq. (2. 19a)

(2.27a-b)
T4 = Right hand side Eq. (2.19b) + %’L—; Amiq

A



Then a particular solution of Egs. (2.27a-b) for the dead
load case 4s¢ found to be:

ﬁp = Right hand side of Eq. (2.20a) (2.28a-b)

- B : X 2
vp = Right hand side of Eq. (2.20b) + %DL"‘ M#n'l

2.9. Choice of Ty and ¥, to Satisfy Boundary Conditions

2.9.1. General: It has been pointed out that the parti-
cular solutions of ﬁp and ‘_’p given in Section 2.8 generally will
not satisfy the geometric and natural boundary conditions of
the shell. In passing, it may be mentioned that when &, ﬁp and
VP alone are applied to the Rayleigh-Ritz procedure, the load-
deflection response of the shell is very 'stiff' and exhibits only
mild nonlinearity even at large deflections. If, however, the
assumed functions of ﬁp and VP are modified by Gh and ;h so
that the geometric and the natural boundary conditions are
approximately satisfied, the same shell shows a marked decrease
of stiffness when the deflection becomes sufficiently large (See
Fig. A.1l in Appendix I).

In the following, the procedure for obtaining ﬁh and Vh will
be discussed in detail for shell systems

(a) with all edges supported on rollers,and

(b) with the longitudinal edges supported by flexible beams

while the curved edges ‘are supported by rollers.
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2.9.2. Shells Supported by Rollers on All Sides: Along the

curved edges, the boundary conditions corresponding to roller supports

are expressed in dimensionless form as follows:

{w};ﬁ-\i = 0
{M&h’sﬂi = _é_zz{"ﬁ}ﬁ}s:ii &= (]
s a _{dd (2.29a-d)
sy = R @), = 0
e _ 5 et
(Nl - T Bt d Font g Wiy}, | = 0

§=1%
in which { ﬁiﬂﬁi indicates that the quantity is to be evaluated at g::t'z 3
Along the longitudinal edges, the boundary conditions for roller
support are as follows:
{W}'l':*"i = 0
{Mﬁ,ﬁl - A ,2@2 {WSMI' =2 = 0
== ? (2. 30a-d)

{N?}q=i-i 5 % itvﬂ’[ +HI+ ﬁ:(ﬁlh)z}rz:ﬁt =0
m?"}.,ﬂ; ﬁ{/‘_fz;’fi:s—n AR T ‘7’}2'[,I=,_§ 0

In general, it seems impossible to find a Gh and ;h such
that U = Gp +8 andV = ‘_'p + ;h satisfy exactly the boundary condition
Egs. (2.29a-d) and (2. 30a-d) simultaneously. In the particular
case of roller supports on all edges, G in Eqgs. (2.17) and (2. 20a-b)

is set equal to zero, The resulting equations reduce to functions

VX%
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of H alone. When these simplified expressions for W, Ep,and ;p
are substituted into the boundary condition equations, it is found that
only Egs. (2.29a-b) and (2. 30a-b) are satisfied, while the membrane

forces

iN&)IFi% g {N*lf}g:t-'{ ; {N#X‘}q;gta and { Nq:}rl:i%

do not vanish on the boundary. The additional terms T’h and Gh are
then chosen so that only Eqs. (2.29c) and (2. 30c) are also satisfied;
des. , {Nx}§=ﬁi = 0 and {N¢}q=ﬂi = 0. A justification for
this procedure may be, as indicated earlier, that the dominant

internal forces for long shells ( _&E} <:0.5) are Ny and N, These

forces probably contribute more to the non-linear behavior of
shells than any other stress resultant (1).
2.9.2.a. Radial Load Case: For a shell supported by

rollers on all edges, G = 0. Under the action of radial pressure,

the deflection functions are reduced to the following:

w = H cmm) covm, (2. 3la-c)
G, = HAwengang+ HY(As+ A-,muq)m‘r{)muﬁ
v, = HBzammpeooni+ H(Brt By 400 2m6) ammy Loy

After substituting Eqs. (2.10a-b) into Eqgs. (2.29c) and (2. 30c), the
following relations are obtained:

NS =51A i S () =
{N,{;ii = {Mfﬁ 5 M‘LA.} = (Mi) ]S=1‘£‘ - (2. 32a-b)

{N¢],‘ 1% Fpn t g 4\.'1“’*2"‘&(“:'1’}4:,; .y
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Egs. (2. 32a-b) imply that

{“-I‘\)S‘l == {11 st 251‘1.-(‘;%)? {=ty

={ Pyt 0+ 253, Dol oy

(2. 33a-b)

when substituting the values of Gp ) VP and \?'P, taken from Egs.(2. 3la=c)

into Eqgs. (2.33a-b) the following relations are obtained:

{Eﬂ,xh:& = HE(nAs=ST)(1 + conznn)

{vﬁ,.ﬁ gi= H*(nB, ‘&‘— (1'+ tov2s) (2:34a55)
Since E'h and Vh have to satisfy the biharmonic equations

o 45 ——

Vit=0: V% =0

the trigonometric expressions (l+cos2m) and (1+cosm$) are
replaced by approximating polynomials 2(1-21 ) and 2(1-2% ),
respectively,for all § definedin 0< 7_ Zz» and i defined in Oig &%
ThenT‘,l and ‘-;h may be written as the follwoing:

= H@mAs-3T)§ (1-20)

HZ(Z)(T[ 5,—‘7'%i)vl(|-zg) (2. 35a-b)

It is noted that the original trigonometric functions are even

=_<l o1

over the intervals —% gg < '3 y - é < 'Z = é . Since the
approximating polynomial expressions are defined only over the
intervals 0= ; & .i y [(E &S , the energy integrals,
in changing to the approximating polynomials and the corresponding

new limits of integration, must be multiplied by 2.
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It should be pointed out also that the polynomials are close
approximations of the trigonometric functions. Over the interval
of definition, the polynomials have approximately the same shape
as the trigonometric expressions;and in this particular case, have
identical Marea' under the curves. Since these expressions
essentially represent the distribution of Nx and N)‘ on the boundaries,
the "same area" aspect implies that the replacement is ''statically
equivalent' to the original trigonometric functions. In short,
this replacement of the trigonometric functions by the polynomials
physically means that instead of Nx and N,‘ strictly vanishing on
the boundary, there will be a small residual distribution of these
forces equal to the differences between the trigonometric and
polynomial functions.

2.9.2.b. Live Load Case: In a procedure similar
to that usea in the radial load case, the deflection functions are

found to be as follows:

£l
1

Right hand side of Eq. (2. 3la)
% = Right hand side of Eq. (2. 31b) (2. 36a-e)
< & : : 22 .
s =  Right hand side of Eq. (2. 3lc) +%LL'?(MM7$"0
T, = Right hand side of Eq. (2.35a)
2,
Vh = Right hand side of Eq. (2.35b)— %L\.%T‘k (m«#g)v[
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2.9.2.c. Dead Load Case: Similarly, in this

case,
w = Right hand side of Eq. (2. 3la)
u = Right hand side of Eq. (2. 31b) ’
P (2.37a-e€)
Vp = Right hand side of Eq. (2. 3lc) + %mi-t@ilv\.égq)
Gh = Right hand side of Eq. (2, 35a)
¥, = Right hand side of Eq. (2.35b)- §, 2*h(e00d)

2.9.3. Shells Supported by Rollers on Curved Edges,

and Rectangular Beams on the Longitudinal Edges:

Along the curved edges, the boundary conditions are given by
Eqgs. (2.29a-d) . Along the longitudinal edges, however, if the
edge beams are assumed to have zero rigidity against lateral bending
and twisting as indicated in Section 2.3.3, the boundary conditions

are as follows:

Ty "

iMéq.—.t; 0 ' (2. 38a-d)
ﬁs = up
A = Je

in which

{T}'Fit lateral thrust acting on shell edge at n:i.!z_ :

longitudinal displacement of shell at ] =:!:32-_ >

us, uB

and of the edge beam, respectively;
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/:3; /EB = vertical displacement of the shell at ¢} =i—é,
and of the edge beam, respectively.
Eq. (2. 38a) can be expressed in terms of the following boundary

forces:

{T}'I%'E:{Hf toude + S Miés}qgits o) L (2.39)

For thin and shallow shells, ﬁy‘co s% >> Sf M%

Eq. (2. 39) is then simplified to the following:

fT}q,i*={N¢m$}},l=ii = 0 L (2.40)

In terms of dimensionless displacements:

{'ﬂ? m%ﬂsk ’l--t-%—: '1‘?.' m%{#%ﬂ;q + W+ E‘;ﬁ(ﬂb\;)’f}'i=§%0 (2.41)

2.9.3.a. Dead Load Case: For shells acted

upon by dead load, the deflection functions w, ﬁﬁ and V_ expressed

P
by Eqgs. (2.17) and (2.28a-b), respectively, do not satisfy all the
boundary condition equations (2.29a-d) and (2. 38a-d). Again it will
be impossible to find a 'ﬁh and a ;h so that all these boundary condi-
tions are rigorously fulfilled simultaneously. However, it can be
shown that Eqs.(2.17) and (2. 28a-b) satisfy the boundary conditions

Eqgs.(2.29a-b) identically. In addition, Ty and ¥}, are chosen in

such_a way that Eqs. (2.29c) and (2. 41) are satisfied; i. e.,

{n*h:-_‘_-.li = 0 and {N-fM%} - 0.

N=43
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A possible justification of such a choice is similar to that stated

in the previous section; that is, both {M‘}ff-’-i‘k and {N*Wz}q-b&
are the dominant boundary forces

‘When Eqgs. (2.10a-b) are substituted into Eqgs

. (2.29c) and
(2. 41), the following relations are obtained

Ny, 5

{Mf'§+ M"‘)"+2-é(w3)} t'k

‘ (2. 42a-b)
om0
(2. 42a-b) imply that
[t ceti R LISEE 0 hy s
{”i»'l ity -{V;‘r,,zw,‘«'ri- 'z'liﬁ(w"nzj? n

Substituting the values of w up,and v

-p from Eqs. (2.17) and
(2.28a-b) into Egs. (2. 43a-b), the following'relatlons are obtained

{“-&,s {& (TAs- 53 B5)( 1+ 20w 2a) + e T (Ag~ 1) condug ommp +
+&H A Abawdy M + HZ(TTAg-“z})(I + oz

(2. 44a+b)
{47,‘ =$ {- D#,woﬂ- & (o3 B 4) conde “oomg —

- & (B b (comtfe — A8} B imide) 1+ conzng)
+6H [(ebs + TB,-15) Ui +

+ (dbg +T By s 1) aim e con2m] +

+H* [vB-, -‘1‘—%&] (I +mzwg)}
in which B =4, 2°



41

In order to have T, and vy, satisfy the biharmonic equations, the
trigonometric expressions in § and f) are replaced by approxi-
mating polynomials as follows:

(14 cos2dn) = 2- (1 - cosh) 2y

(cosdeneovny) = |—20

(4w e 10) = 2(dirv )

(1+ame2m) = 2(1-29)

for all values of I) defined in the interval O%ns<% , and

cosmé = (| - 4¢7)

( 1+ ron2mg) = 2(1-25)

caw 2ng o (1—-49%)

for all values of § defined in the interval 04§ £ %.
Then, & and ¥}, are found to be as follows:

(@) = o (nhs- ) 2 - (1 -cnb20)  +
rar[m(As-TE(1-29) + Ay2n (smdg)n] 4 +
+HZ(HA3—%XZ)U“ZVD§} (2. 45a-b)

(W) = {-Bydeleooden - & (o BohXemmdeX1-24")y -

—G? [ Bydu (comds —auide) +He simi) 201-29)n +
+GH (4 B + 1By~ 72) nde + (hbog + WBye~75 Nin 351-45)] n
i (nBy g3 @) (1-29)7]

2.10. Dimensionless Form of the 'Pdﬂenti@li::Enér’g_z

In terms of the dimensionless coordinates and parameters used

in the foregoing, the equations for the total potential energy of the
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shell system, Egs. (2.8), (2.3), (2.6) and (2.7) are reduced

to the following:

T = (%+ L‘(ﬂ"ivlr + zzﬁ) (2. 46)
in which

- 22

U = Etre Y

Vs ) S <{ s&,;*-fi(w)';) +ﬁ4"q +w~"‘—i’f§i(ibq)

~2[sTq + 7 (T ) (Fu Ty + B+ g () -
= [$Wor Hhg + 5,004 Ktv]z} + Tz’i*{ (2. 47a-d)
{[5 W56+ d Wian) —2 (33 Wy Wy { m) >J$"'Z
S<{5(“:sk+z-z(w e +¥§ [(W/si):. —(549) Mﬁ‘}+
+ 1 {7, oy - B sinde) | >a@
n = 48%5%(-P;A—A+ R4+ P m)dyds

o ‘o

2.11. Derivation of the Algebraic Equations

For the various loading and support conditions, U and ¥ can

be obtained by substituting Tip, ;p

sections, The resulting expressions, W and v, together with %

, ﬁh,and ;h derived in the preceding

expressed by Eq. (2.17) or Eq. (2. 3la), are then substituted into
the total potential energy expression U of Eq. (2.46). The latter

quantity is then made stationary with respect to the undetermined
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parametersG and H, i.e.,

& (2. 48a-b)
2U _
2H - ©

After carrying out the integration, Eqs. (2.48a-b) are transformed
into two simultaneous non-linear algebraic equations of G and H
which have the following form:
c30G 3 +cpGPH e, GHA +eg 3H 34, 0GR 4ep GHc oz HE +ep gGtegiH+c o= 0
(2. 49a-b)

d30G3+d21G2H+dlzGH2+dO3H3+dzoGz+duGH+d02Hz+d10G+d01H+d00= 0
The coefficients €4 and djj, related to the variables GiHj, are
very complicated expressions, containing the shell and loading
parameters, and are listed in Appendix II.

It may be pointed out that some of the coefficients of the
simultaneous non-linear algebraic Eqs. (2.49a-b) are related.
This is due to the fact that the equations are derived from making
the total potential of the shell system stationary. Since the strain
is a quadratic of displacements, the total potential of the shell
system U must be a 4th degree polynomial of displacement parameters
G and H in the following form:
TG, H)= k,yG*+ka G H itk G2HZ 4k ;GH3+ko 4H 4+

+ k3G 4kp) GEH g, GHZ 4k 3H  +kp 0 G2 +e GH kg HE+ (2, 50)

+k10G+k01H+k00
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in which k;; is the coefficient for term G'HJ.

By makin g the total potential . energy stationary:

_.%%

4k 40G3+3k3)G2H+2kp ) GH? +k; 3H 3+
+3k30G2+2kp GH+k) g H2 +

+2ky oG+ky H+k) g = 0 (2. 5la-b)
%U,_-l- = ky G2k, , GPH+3k) 3GHE +4k 4H3+

+kp) G242k, GH+3kq 3H? +

+k11G+2kg2H+kg) = 0

When the coefficients of Eqs. (2.5la-b) are compared with Eqs.(2. 49a-b)
it becomes obvious that some of the coefficients in Eqs. (2.49a-b)

are related in the following manner::

Cp = 3d3g

2 = dz

3cg3 = dpp (2. 52a-f)
T = 2dzq

2¢92 = dp

o1 = dio

Even though the realization of these relations, Eqs.(2.52a-f),
has no great theoretical value, yet, in practice, it is of some
importance. Since the generation of the coefficients Cij and dij into
a form adaptable to the computer involves very tedious computations,

recognition of Eqgs.(2.52a-f) will save labor or serve as a check

when the coefficients are derived independently. This becomes
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even more important when a larger number of undetermined
parameters are used,

Making use of the relations shown in Eqs. (2. 52a-f),
Eq. (2.49b) may be written as:
($)ep1G > +e12GPH+3c03GH +d 3H 3 b)) G2 4202 GH+dgHE +

+C01G+d01H+d00 =0 (2. 53)

2.12. Solution of the Non-linear, Simultaneous Algebraic Equations

2.12.1. General: For a given set of load and geometric
parameters, the coefficients Cij and dij are simply constants.
The resulting set of cubic equations are then solved by the Newton-
Raphson iteration scheme programmed for the CDC 3600 computer
at the Michigan State Computer center. In passing, it may be
mentioned that the Gauss-Seidel method was tried but it failed
to converge in some cases. The computer generates the numerical
values of the coefficients as well as solves the equations., The

method of solution. is described in the following section:

2,12.2, Newton-Raphson Iteration: A normal system of

algebraic equations,

fl(XI, Xz, X3, o e e Xi) =0 (2. 54)

fi(x1’ xz, x3’ DY xi) = 0
can be expressed in matrix notation as

F(x)=0 (2.55)
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The solution of Eq. (2. 55) by the Newton-Raphson iteration pro-
cedure is as follows:

X X, - (X)) IF(X,) (2.56)

n+l =
in which J(X,) is the Jacobian matrix of the system of Eqs. (2.55)
evaluated at X . The subscript n indicates the number of iterations.
As pointed out by Henrici (7), (1962) and Zaguskin (23), (1961),

the above procedure converges to the real solutions provided

that X, the initially guessed solutions, are sufficiently close to

o?
the true solution and that J(X,) is non-singular. Thus the
solutions of Eqs. (2.49a) and-(2.53), when expressed in
the form of the iterative Eq. (2.56), become:
2
(G4 = (G) ~ (DH x CC - CH x DD)'} / (CG x DH - CH?)™
(2.57a-b)
(H)"h41 = (H)® - (- CH x CC + CG x DD)mn/(CG x DH - CH?)™®
The subscriptn indicates the number of iterations while the
superscript m indicates the number of load increments applied, and
(CC)™ = { Left-hand side of Eq. (2..49a)‘}“; (2. 58a-b)

m _ . P m
(DD) n = { Left-hand side of Eq. (2. 53)} n

m

with G and H evaluated at G and H}, while (CG), (CH)Y, , (DG)T

and (DH)nl: are partial derivatives of (CC)n; and (DD)nI: with respect

to Gmn and Hmn. They are given as follows:
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2
(CG)T] =5

m) _ 4. 2 2 m
e {corT} = (3c39G+2¢)GH e H 4205 0Grey Hic )T

(2.59%a-c)

(DG)™ =5%'-{(DD)r2} = (cy,G®+2¢)GH*3c sH  +¢) G2 ey Hbcqp)
(DH)™ = 2 DD) T = (¢, G%+bc(3GH+3dg3HP+2c(,GH2dgHHdg)) D

(CcH)™ ﬁ-{(ccf‘;} = ‘-2-2-4{(DD)mn} = (D)™

For a given shell system, under the first small increment
of load, the shell behavior will be essentially linear, therefore,
the solution of the linearized equations, G]]; and Hi , obtained by
setting all the non-linear terms of Eqs. (2.49a) and (2. 53) equal
to zer.o, will be very close to G1 and H1 , the real solutions of
Eqs. (2.49a) and (2.53). Therefore the linearized solutions, GIL
and H}_‘ are used as a first approximation applied in the iteration .
scheme outlined by Eqs. (2.57a-b);

i.e.,

1 1
G =

1 - 1 . (.‘20 60a"'b )
H1 = HL .

After substituting Eqs.(2. 60a-b) into Eqs.(2.57a-b) and starting the

iteration, new values C«Z1 and H1 are obtaihed, which are in turn

2
substituted back into Eqs.(Z; 57a-b) to obtain Gg and H; This
iterative process will continue until G! and H! | reach the value
n+l n+l
A A | -
of 6! and fi! , such that |G- Gl |<1x1079 ana |f! - HM<1 x10™7,

S
simultaneously. G! and ﬁl are considered to be the solutions to

- Eqgs. (2.49a) and (2. 53) with load increment equal to one unit. When
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the next increment of load is added, the initial guessed solutions
A
Gi and Hi will be extrapolated linearly from 61 , ﬁl and G° , I/:Io.

A A
The latter quantities, G°, H° are equal to zero as they correspond

to the case of no load on the shell, It can be shown that7

A A A

G2 = 2(G'-G% +G° (2. 6la-b)
A A VS

H(Z) - 2! - #°) +HP°

In general, when the (m+l)th increment of load is added to the shell
system, the initial guessed solutions Gn(:ﬂ and I--Iom+1 can be
expressed as

A A
Gm+1 _ 2(C.'m . gm

o (2. 62a-b)

N
HP - @™ . gm-l) 4 gl

and from the existence of a continuous solution of the problem,

G:)nﬂ and Hr:ﬂ will be very close to the real solutions, Gm+1

and , provided that the load increment chosen is sufficiently

small. The iterative procedure of Newton-Raphson therefore
converges rapidly to Gm“ and /I-;mﬂ. However, if the load increment
used happens to be not small enough so that the iterative procedure
diverges, it is halved and the guessed solutions will also be reduced

accordingly. The halving process will continue until a solution is

obtained.



III. NUMERICAL RESULTS

3.1, Effect of Types of Load

As pointed out earlier, because of the inherent difficulty in
dealing with loading that has a component in the circumferential
direction, all the research work done on the large deflection be-
havior of cylindrical shell panels has been concerned with radial
pressure only. However, for shell structures in civil engineering,
such as cylindrical roof shells, the dead load and live load are the
more common types of loading considered in design. It is
therefore of interest to compare the behavior of a cylindrical
shell with different types of loading.

Fig. 3.1. presents the load-deflection behavior of shells
supported by rollers on all the edges and subjected to the thrAee
types of loading: radial load, live load and dead load. All
shells have ¢, = 0.632 and S = 0.791l. Three sets of curves are
shown for Z =100, 125, and 150. These curves are plotted with
the load parameters 9y,1 9RL °F 9pj, @8 the ordinate, and the
dimensionless deﬂection%ﬁl as the abscissa, in which w,
is the deflection at the center of the shell.

It can be seen from the figure that for small deflections,

(say _v{_Q < 0.5 ) the load-deflection behavior is essentially linear.

49
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With increasing load, however, the characteristics of non-linear
behavior become evident. The slopes of the curves decrease over
a large range of deflection -- indicating a loss of stiffness. After
that, within the range of deflections considered, the stiffness may
continue to decrease or begin to increase, depending upon the
values of parameters used. For example, in the case of Z = 150,
the stiffness of the shell continues to decrease. In fact, these
curves all have a large ''flat'" portion. (For convenience of
discussion, the loading corresponding to this flat portion of the
curve will be referred to as the '""buckling load" ) However,

for Z = 100, the curves begin to regain stiffness after some initial
loss.

From Fig. 3.1. it is seen that for Z = 150, the buckling load
for radial pressure is about 5% higher than that for live load and
10% higher than that for dead load. This may be explained
qualitatively by noting that the radial component of load tends to
keep the shell circular in shape while the tangential component tends
to flatten the shell, and therefore contributes more to instability.
A simple analysis shows that, by integrating the load functions of
the three types of loading over a half section of the shell, the total
resultant force in the radial direction for the three loading conditions
are nearly the same. However, the dead load has a larger re-
sultant of tangential component than that of the live load while the

radial load has a zero tangential component.
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It can be seen also from Fig. 3.1. that the differences in
the stiffness of the shell subjected to different types of loads
decrease as the value of Z is increased. This may be explained
by noting that Z is essentially a curvature parameter, and the
difference in the three types of loading is essentially due to the
curvature of the shell surface. When Z becomes very large, the
shell approaches a flat plate and the three types of loading
become identically the same.

It might be pointed out also, that the effects of different
types of load on the large deflection behavior are not great, because
the shells considered have relatively small ¢,. When g, is large,

the effects might be more pronounced than those shown in Fig. 3.1.

3.2. Effect of Shell Geometry

The following discussion is concerned with the effects of the
geometric parameters on the behavior of shells supported by flexible
beams on the longitudinal edges, and by rollers on the curved edges.
Only the dead load case is considered. As before, the behavior of
the shells s described in terms of load-deflection curves.

3.2.1. Effect of Z (radius/thickness ratio): From the figure

presented in the preceding section, it can be seen that the shell is
stiffer for smaller values of Z. Additional data on the influence of
Z are presented in Fig. 3.2. in which the shells are supported by

edge beams (V = 10, W = 0.025). Five values of Z, ranging from
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75 to 175 are considered. As before, it is seen that the buckling load
is lower for higher values of Z. This general result agrees with
the physical intuition that the thinner the shell (or flatter the cur-
vature), the smaller would be the buckling load.

In order to better relate the results to practical cases, the
shell considered in Fig. 3.2. may be interpreted as having the
following dimensions:

R = 60'-0", L = 76'-0", a = 41" and b = 18",

For the case of Z = 175, t is equal to 4.1", and E = 3 x 106psi;

the buckling load is then equal to 340 psf. If Z =100, and t is equal
to 7.2'", then the buckling load is 880 psf. Whereas,if Z = 75 so
that t becomes 9. 6'", the shell becomes very stiff, and does not
buckle even when the load has been increased to four times the
buckling load for t = 4.1'". This nonlinear phenomenon is different
from the linear relationship between the buckling load and Z im-
plied in the ASCE Manual No. 3l.

3.2.2., Effect of k- Obviously, the size of the opening angle
of a shell, ﬁk’ influences the buckling strength of the shell.

Fig. 3. 3. presents the effect of ¢k on the buckling strength of shells
having the following properties:

S=0.791, V=10, W = 0,025, Z =125 and 150.

Three values of S‘k are considered: 0.5, 0.632 and 0.8. It is seen

that the buckling strength of shells increases with an increase of ¢,.
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(For ¢k = 0.8, the shell did not buckle at all). For the case Z = 150,
the shell could be interpreted to be one having L = 63'-4", R = 50'-0",

t=4", a=40", b=15" and E = 3 x 10°

psi. For this shell,if F‘k =0.5
(roughly 299), the buckling dead load is 200 psf. If ¢k = 0.632
(roughly 36°), the buckling load becomes 430 psf. When ¢k = 0.8
(roughly 46°), the shell becomes so stiff that even when Ppy, is

equal to 1,250 psf. it is still stable.

3.2.3. Effect of S :(radius/length ratio): The effect of S on

shell behavior is presented in Fig. 3. 4. in which the shells con-
sidered have the following properties:

$p = 0.632, Z =125, W = 0.025, V =10,
and S takes on five different values., Itis seen that the buckling
load increases with an increase of the value of S.

If t is again assumed to be 4'", then the shells considered in

Fig. 3.4. correspond to those having the following dimensions:

¢k = 0.632, R = 41'-8", a = 40", b = 15",

0.475) and E = 3 x 10%psi, the

If L is equal to 88'-0" (corresponds to S
buckling load is ppy; = 70psf. If L is decreased to 66'-0" (corresponds
to S = 0.632), the buckling dead load is 300 psf. If L is decreased

to 53'-0 (corresponding to S = 0. 791), the buckling dead load becomes
580 psf. These results simply indicate that if all other parameters
are held constant, a decrease in the span length of the shell would

result in an increase of the buckling strength.



54

3.2.4. Effect of Edge Beams: The role of the edge beams

is represented by the depth parameter V (= fa') and the width parameter
W(=‘E). The influence of V and W are shown in Fig. 3.5. and Fig. 3.6.,
respectively. In these two figures, the following shells are considered:
fk = 0.632, S =0.791, Z =100, 125,and 150.
In Fig. 3.5., W is held constant at 0.025 and V takes on
the values of: 5, 10, 15 and 20, It is seen that for a given Z, the
initial deflection is essentially independent of V. However, as the
deflection increases to a certain value (depending on the value of Z),
the influence of V becomes more conspicuous; it is more pro-
nounced for smaller values of Z. Furthermore, as V increases
in value, the shell becomes stiffer.
In Fig. 3.6., V is held constant at 10, and three values of
W are assumed: 0.0125, 0.025 and 0.05. The behavior pattern
is similar to that just discussed for Fig. 3.5. That is, the influence
of W becomes apparent only after the deflection assumes a substantial
magnitude. This influence is also larger for smaller values of Z.
This case may be interpreted as indicating that the influence of the
edge beam is greater for thicker shells. This behavior might be
explained by the fact that for thinner shells, the stiffness of the edge
beam is probably not called on to play its part, even when the shell

is undergoing large deflections.
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3.3. Comparison of Results

The method of analysis used in this study is an approximate
one and involves a number of assumptions. It is, therefore,
natural to question the accuracy of the results obtained. In general,
the assessment of the accuracy of an approximate method of this
type is to compare results with known exact solutions. As dis-
cussed in the Introduction, for the case of nonlinear behavior of
cylindrical shell panels, available solutions are extremely scarce;
besides, they are all approximate solutions of the Rayleigh-Ritz
type. In fact, so far as is known to the author, Ref. (11) containg
the only existing data that may be used for comparison in order
to give some indication of the accuracy of the results of this
study. Before presenting this comparison, however, a linear
problem will be examined.

Consider a concrete shell simply supported by edge beams
with the following dimensions: R = 33'-4", L =111'-0", ¢k = 300,
t=4", a=60"andb =8". The load is derived from a live load
of 25 psf. and the weight of the shell itself. The solutions of this
structure in terms of N, and N¢ at the mid-span of the shell for
different values of ¢ are plotted in Fig. 3.7. It might be pointed
out that in this case, the linear version of the solution (by
dropping out the non-linear terms of G and H in Eqs. (2.49a) and

(2.53)) is very close to the non-linear solutions. This is, of
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course, to be expected since the deflections are small. The linear
response of the same shell has also been discussed in ASCE Manual
No. 31 (1) (page 60). For all practical purposes, the solutions
therein may be considered as exact,and they are also graphed in
Fig. 3.7. It can be seen that results corresponding to the present
analysis differ from the ASCE Manual solution only by about 1% at
the crown. However, the agreement is not as good for points
closer to the edge of the shell. Nevertheless, in view of the
gross approximation used in the present analysis, the differences
indicated in Fig. 3.7. should not be considered as being large.
For a comparison involving a non-linear problem, consider
a shell loaded radially and supported by rollers on all its edges.
Limiting to ¢k < 0.2, and ¢kS = 0.5, the load-deflection curves
for different values of deZ are calculated and presented as solid
curves in Fig. 3.8., in which the load parameter (qRLZ4¢k4)
is plotted against_‘;'i. Also, shown as dotted lines in Fig. 3. 8.
are the results obtained by Kornishin and Mushtari, (11) for the
same shell. As mentioned in the Introduction, the latter results
were obtained by applying the method of Bubnov and Galerkin to
the compatibility equation and the radial equilibrium equation. It
is seen that the solutions obtained by the two procedures seem to
differ appreciably. Depending on the value of ¢k2Z, the buckling

loads corresponding to the present analysis are approximately
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10% to 70% higher than those indicated by Ref. (11), the discrepancy
being smaller for smaller values of ¢kZZ.

It should be noted that the results of Ref. (11) were obtained
employing six undetermined parameters in the assumed functions,
while in this study, only two undetermined parameters have been
used. Therefore, it is probably reasonable to assume that for
the problem considered the numerical results of Ref. (11) would
be more accurate. It may appear that the difference between the two
are substantial., It should be borne in mind, however, that the
procedure used herein is devised to handle more realistic problems
(particularly from the point of view of concrete shell structures)
to which the technique used in Ref. (11) cannot be applied. Further-
more, against the background of the present state of knowledge of
large deflection behavior of shells, as discussed in the Introduction
and later in the Conclusion, this difference may not be as signi-

ficant as it seems at first glance.



Iv. SUMMARY AND CONCLUSION

4.1. Summary

A method has been developed to study analytically the non-
linear behavior of elastic thin cylindrical shells. The shells are
supported by rollers on all the edges or by rollers on the curved
edges and flexible beams on the longitudinal edges. Three types
of loadihg are considered: a uniform radial pressure, a uniform
live load, and a uniform dead load.

The method of analysis is based on a large deflection theory
of thin shells by including the quadratic terms (%”)2 and (?(AT)Z
in the strain tensor. The variational problem resulting from an
application of the principle of stationary potential energy, is
solved approximately by the method of Rayleigh-Ritz, A first
harmonic approximation with two undetermined parameters, is
chosen to represent the radial displacement function w. The longi-
tudinal and circumferential displacement functions u and v are

considered to consist of two parts: up, v_ and Uy, Vi The functions

P

up and vp are chosen to be the particular solutions of the equation of

equilibrium in the longitudinal and circumferential directions,
respectively. The functions uy and v} are homogeneous solutions

to V4uh = V4vh = 0, so that the sumsu=u.p+uhandv=v t Vh

P

satisfy approximately the geometric and natural boundary conditions.
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By applying these approximating functions to the Rayleigh-Ritz
procedure, a set of two simultaneous algebraic cubic equations
are obtained. Using a high speed digital computer, these equations
are solved by the iteration scheme of Newton-Raphson. For a
given shell and loading type, a load-deflection curve is obtained
from a series of solutions corresponding to a range of load
intensity. The curve is, in general, non-linear. It is indicated
that after a certain range of essentially linear behavior, the
stiffness of the shell decreases. Depending upon the values of the
parameters of the system, the shell may or may not buckle.
(Buckling is considered to have occurred if the shell undergoes
substantial displacement with little change in load magnitude.)

By a repeated application of the above procedure for different
values of shell parameters, a number of load deflection curves are
obtained. From these numerical results, the principal findings may
be summarized as follows:

Among the three loading conditions considered, the shell has
the lowest stiffness (or buckling load) for the dead load case. The
shells have lower stiffness or buckling loads for: smaller values
of the opening angle, ¢k’ smaller values of the radius to lepgth
parameter, S, larger values of the radius to thickness parameter,

Z, and for smaller edge beams.
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4,2, Concluding Remarks

In the past, the elastic stability of thin shells, treated either
as a linear eigen-value problem or a non-linear large deflection
problem, had been formulated in such a way that the boundary con-
ditions were assumed not to play an important role in the behavior
of the system. (2), (1947) and (9), (194!l). Recently it was pointed
out that the degree of constraint offered by the boundary could
be a significant factor, (15), (1961) and (19), (1962). This is further
demonstrated by the following comparison.

If one considers a shell loaded radially and having the following
parameters: S =0.91, ¢, =0.632, Z =100, and the shell is simply
supported on the curved edges and clamped along the longitudinal
edges, the radial buckling load has been found by Sunakawa and
Uemura (20), (1960) to be: dRy, = &%&s_f . However, if the
boundary conditions are changed to roller supports on all edges, the
buckling load reduced to qp = -—ZQQ%P—S—f (obtained by the procedure
used herein). Thus, it is noted that the different boundary conditions
lead to a difference in buckling load of 500%!

The aspect of boundary condition on shell buckling has not been
emphasized in the discussions of Stability of Roof Shells in the
ASCE Manual No. 31 (1). In fact, the manual stated that for a long
roof shell, N_ being the predominant force, the buckling characteristics

are analogous to those of a curved panel stiffened at the edges sub-
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jected to axial compression; thus, the actual character of the
boundary supports never enters into consideration. Such an
assumption obviously oversimplifies the problem, as it should be
clear from the preceding. That is, the buckling strength of a
roof shell depends significantly on the degree of restraint offered
by the supports.

Therefore, in the design of a roof shell, if the buckling problem
is to be investigated, the actual boundary conditions should be
duly taken into account. The method described in this thesis,
admittedly approximate, may be used for that purpose.

4,3, Suggested Future Work

As a possible extension of the present work, it is natural to
consider the use of the present approach by including higher harfnonics
.in the assumed displacement functions. However, it is emphasized
that the amount of labor involved in the analysis is immense.
Therefore, before making such an effort, it seems dewsirable to
conduct an experimental investigation of the problem. The results
of such an investigation may provide a more definite idea about the
accuracy of the present approach. Furthermore, observations
on the actual physical behavior may suggest a more intelligent
chpice of the assumed deflection functions for the Rayleigh-Ritz

method.
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APPENDIX I

COMPARISON OF TWO CHOICES OF DISPLACEMENT FUNCTIONS

This appendix gives the comparison of the solutions obtained by
a set of approximating displacement functions which do not satisfy the
natural boundary conditions,and by those which satisfy the natural
boundary conditions :approximately.  The comparison is shown in
Fig. A.l. in the form of load-deflection curves for shells roller

supported,loaded radially.
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APPENDIX II.

COEFFICIENTS OF EQUATIONS (2.49a-b)

A.2.1. General

The coefficients of Eqgs. (2.49a-b) are given below in terms
of the Fortran language (see, for example, ‘McCracken,D. D.,
"A Guide to Fortran Programming," John Wiley and Sons 1961). The
definitions of the Fortran variables used are given in Section A. 2. 2.,
and then followed by the presentation in Section A. 2. 3. of the
c.oefficients €45 and dij' It is noted that the materials presented
subsequently are direct printouts from the original computer program.
This is done in order to avoid possible errors in transcribing these

lengthy expressions, as well as for convenience of reproduction.

7
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A2.2 #%%%% _I1ST OF FORTRAN VARIABLESe. ¥&¥#%

##PARAMETERS OF SHELL e ##

XBAR=RADIUS TO LENGTH RAT1O0s Se
Z1 =RADIUS TO THICKNESS RATI1O. Ze
P  =OPENING ANGLE.

v =EDGE BEAM DEPTH TO THICKNESS RATI10.

WBAR®EDGE BEAM WIDTH TO RADIUS RAT!Og
v 2POISSON+S RATIO

OL= LOAD INTENS!TY OF RADIAL PRESSUREs LIVE LOADs OR DEAD LOAD.

QR., =DIMENSIONLESS LOAD.PARAMETER¢ DL/E

E 2YOUNGS MODULUS

#%#FORTRAN VARIBLES USED IN COMPUTER PROGRAM#*#*

DOL =LOAD INCREMENT,

DOADIN=L OAD INCREMENT COUNTERs THAT IS
ACCUMULATED,

QR=DL /E

2312, %P%P%21

vy=le/21/P

X2 XBAR#P

wevVH#VEVEWBAR

F2=p1l /P

F3=ptxX

Fazplxp

FS=p/x

Fé=Pl /X

Fl2ePl Pt /P/P

F13=P] #P1 ®X%#X

Flaxzpl *Pl #Pxp

F23=zP1 #P 1 #X#P [ %X %X

F3120e5/(F2=160)%%2

F32=0¢5/(F241s0)%%2

F33=20,5/(F12=14,0)

THE NUMBER OF LOAD INCREMENT

Alz((P*P —-U%F13 JRF4  #*X)/(PRP +F13 ) w2

A2 ( (1 e0-URXREX JRPEX)/(PI#( ] 04+X%X )R#2)

A= (PIH#R2AXAR2-URPR#2) /{8,0%P | #X)
AGx ( (X#%H2-U) %P1 )/ (8s0#X )

ASa((((4.0%F13 J+H(PI#PI+P*P ) ) #%2+4,04F 14 YRF3 R (2

«O¥F13 +PIRPI4+P*P ) R#24+2,0%#F 13

#(2,04F 13-

UR(PIXPI+P#P )) )~8.0%F3#F4*F4 #((4,0%F13 +PIX*PI+P*P )&

LY

(2¢0%(2.0+U)%F 13

+P%P +PIXP1)))/(((4e0%F 13 +P1#P1

+PRP ) #%24+4 40%F 14 YRE2~(40%#F4 #(4,0%F13 +PI#PI+

PRP. ) ) ##2)
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A6=( (F3 *#(4,0+F4 #(4,0%F13 +PI*PI+P®P )))*( (2,0%F13
+PIXPI+P*P ) #%#242,0%F 13 #(2.,0%F13 -U*(pxp -pt
XP1)))=2,0%F3%#F4 -+ #((440*F13 +PI#PI4+P*P )% %244 ,0%F 14
JH(2.0%#(240+U)¥F 13 +PIEPI+P#P ) )/ (((4,0%F13
+PI*PI+PXP ) #¥24+4,0%F 14 I RA2=(Q,0%F4 %(4,0%F13 +
PIXPI+P#P ) ) #%2)
A7=P1#X/840,
A20x2,0%# (A3%F3-0,25%F13)
B2x=((P*#P +(2,0+U}*F13 YAPRP ) /(PP +F13 ) %2
B32=((1e0+(2e0+U)XX¥X Y HP/(PI#(]os0+XHX ) H%2))
Baz (P#P ~U*F13 )/ (B.0%P)
BS2(((PIXPI+P*P ) *#%#2+4,0%F14 YR(PHP % (3,0% PI*PI+P#*P ) «U{
F13 . YH(PI*¥PI+3.,0%P#P ) ) #(P1/2.0)=(2.0%PI*F14 *(PI*PI+P*
P Y)#(PIRPI43,0%P#P —URXRX ¥ (3,0#P[#P1+PXP )))/(((PI1XPl+PRP
yR%2+4 JORF 14 Y RX2~ (4 40%F4 #H(PIEPI+PXP ) )%22)

BOu (I (PIXPI+PHP )X R2+4, 0P XPIXPHP I H(PIX*PIH(PIRP[+3,0%PH¥P )-U*F|{3
H(BOXPIRP[+PHP ) ) #0045 (2, 0PI RPIH(PIHP[+PRP ) ) *({P*pP

#(3,0%PI*PI+P*P )-U*F 13 #(PIAPI+3,0%P*P ) ) ) ¥P/(((PI#PI+P*P
YRR2+4 ,0%F 14 YRU2-(4e0%F4 ®(PIRPI4+PEP ) )%%2) :
B7= P1#(].0-UxX%¥X )/8e¢0
B8=P/840
BO=(((440%#F13 +PIXPI+P*P ) X%2+4,0%F 14 J*{(20%F13
+P#P JRA24+PHP *# (4 ,0%#F 13 +3,0%¥PI*P] ) -UnF13 ?
(PI¥PI—PX¥P ) )%P1/240=(4,0%F4 %(4,0%F13 +PI#PI+P®P )i
((2.0%F13 +PIRPI ) HX2+P I #PI#(4.0%F13 +3.0%P%P, ) 4
UXF13 *(PI#PI—P*P ) )%P/2.0)/(((4.0%#F13 +P1apt4p
P Y RA2+460%F 14 YRR2~(440%F4 %(4,0%F13 +P1xPL 4+
PXpP ) )R#2)
B10=(((440%F13 +PI#P1+PAP )% #2+4.0%F14 Y%l (2,0%#F13
+PIXPI )X %2+P 1 #PI%(4,0%F13 +3,0%P*P j+U#F 13
#(PIX¥PI~PxP ) ) #P/2¢0-(4s0%F4 X(4,0%F13 +PIXPI4+PRP ) ) *
((2.0%#F13 +PRP YR R2+PAP *(4,0#F13 +3,0%Pt#P] ) =U
F13 #{PI*PI~PXP ))#P1/240)/(((440%F13 +PI*P1+PRP
YRR2440%F 1 4 JRR2-(Q,0%F4 #(4,0%F13 +P{*P 1 +PaP
SR LY}
B11=P{/840
B2020,0

B21=2~(B2+1.0)%C1%C1
B22=2,%# (- +25%P [ +B7 ) *F2%#C1

C1=COSF(P/240})

C2=COSF (P)

C3=COSF (P/2+0)/(Fl2 w]e0)

C4=COSF(P/2+0)/((F12 ~1.0)%( 9.0#F12 “]e0))
CS52COSF(P)/((P1/P)#%2=4,0)

C6=COSF (1 45#PY) /(F12 «9,0)

Cl10=4,0%F31#F32x%C1
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Di= SINF(P/2.0)
D2=SINF (P)
D3=SINF(1e5%P)

D4=SINF (2.0#P}
DS=SINF(P)/(F{2 ‘e0}
D6aSINF(P/260)/( 4.0%F12 “{e0})
D10=aF314D1

D11=F32#D1

D12=F33#01
DX1=2,0%A2/P/F12
OX2sA2/P/F12/X/X
DX3=B3/P/F12/X
DX4=B3#X/F12?

DOX5=A2/F12
DX622,0%B3/F12/%
DXT=1,980/F2/F12/X
E10x1,0~C2

El1=D2~P*C2 .
E12=(F12+1.0)#C10=-P#D12
E13=F2#D12=F33
El4sF2%F33-012
E15=P1#D12<2,0#F2#C10
E16=D1=0e5%P#C 1
El‘lal.O-Ci

A2¢3 ##x%x COEFFICIENTS OF ALGEBRAIC EQUATIONSe *¥#¥%%

CALCULATION OF C30

C30=CA304CB30

IN WHICH

CA30a (AZRAZIAP[#FI#P)+2 ORAZRATEPIRF 3  HD2+ATHATRPI#F3  #{P+Da*0¢5)
#0e5~-(A3¥PI¥F13 #(P+D2))*#0e25-(ATHPI*#F 13 * (PO 5+D2+D4 %04
25) ) %06 125+ (ATHATHPRFSH(P=D4%e5) ) #0e25+(ATRBBAF 4 #(P-DAX05) I #
OeS=(A7RF4 %P *(P=D4%0,5) ) #0,0625+(BSHBBXPI#F3  #(P-D4%0e5)|) #0
025~ (BBAF3%F 4 #(P=D4#0e5) ) #0125+ (B4*BA4XPHP /X*#(P+D4%#0¢5))+B8
RBBHPHP /XX (P+D4R0eS5) #05+BA%PERI/ X ¥ (D2-PH0e5-Da4%0:25) #05+B8#P
RH3/XR0425 #(D2-P%0e5-D4*0425)-ATHPI#F 13 X(PX0e54+024D4%#0425)
#0e125+3.0%P1#F23 /32¢0#(0e75*P+D2+D4#125)+F 14 *X#
(P=D4%065)/64e0-ATHF4XP *#(P-Da*0e5)%060625

OOV PWN—

VEe . YTeT
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CB3020.09375%P%#4 /X% (0e75#P-D2+D4#06125)+

W/V/V %#(260%A3%AZHPIRF3  +4,0%AZKATHPINF3  #C2+2.O#ATHATRPIHF3
#C2#C2-A3#P1I*F13 *#C1XCI-ATH*PI#F 13 RCI#CIHC24+3,0%P1#F23
/8eORCIHHA ) +WHY/VH (4o OXAIXBB*PI*#F 13 #D1#D1#C148 QA TXBB*P ]

#F13 #D1#D1#C 1 #C2-2.0%B8XP [ #F23 DI RO RCI#X34+4,O#AIXBBHP I *

F13 *¥D1XDIHCL1)I+WRYHY *#(32.0%¥BB#BB8*PI*#F23 /73.0%D 1 %RQ4RCIXCL)

aOew -

CALCULATION OF cai

C21=CA21+CB21+CC21+CD21+CE21

IN WHICH

CA21230#A3RASHP | #F2#F3 ¥C3+30FAZHAGHPI#FI  #C3+1SHASRATHPI #F2#
F3%#(C34CO)+1 SHAGHATRPIHF 3  #{3,0%C6-CI)~AIRPIXF2%#F13 *#C3=-A5#
PIXF2%F13 #040625%(3s0%C3+CE)~ACRPI*#F13 *#¥0e0625#({C3+3,0%#C6
Y=ATHPIHF2#F {3 #0e5 #(C3+CE)I+0eITSHASHATRFE /XH(C3+3,0%#CE6I+0e3
TSHASHATRFE /XA (C3~CE)=0e3TSHAGRATHPI AP LI/ X% ICI=CE)=0e37SHALRAT?
RPEP /XK (C3+3.0%CE)+BBX(AS-AGRF2 I #PI%PI%#0,125#(C3=C6)+BB*(ASH
F2 =AG)#F4 #0,125#(C3+3.0%#C6)+ATHBOAF4 #(C3+3,0%C6}
+ATHBIORPI AP [ #(C3~C6) - (ASHF2 ~AG)#0s03125%#F4#P  #(CI+3,0%Co}ul
AS-AGRPI /P)#0.03125%P 1 #F4 #(C3-CO6)~AT*PI#F4 #0,25%(C3LC6)

CB21m=ATH#PI#F4 #0,25#{C3+3.0%#C6)+1.5*#BB#BO#PI#FI #(C3+3,0%C6)+

1 1.5%B8*B1O#PI#F3#F2 #(C3-COH)+(ASHF2 ~AG)*BB#F4G %0.25#(C3+3,0%

2 CO)+(AS~ALXF2 ) XBBRPIRP[#0425#(C3~COI+ATHBIAFG R0+S* (C3+3.0%#C6)

3 +ATHB1O¥PI##2%0¢5#(C3~C6H)~(20%#BB+BI0)#0e125%P 1 #%3AXR(C3-C6H)I=(240

A ABB¥F2 +B9)¥0.125%F3%F4 #{C3+3.0%#CE)+3.,04Ba4xBSHPHP /XA IF]{2

5 +1.0)#C3+(F12 ~3,0)%CA)+6.0%BARBEXFE /X% (C3=CE)+]54BBXB

6OXPRP /XH((F12 +1.0)%C3+(F12 ~3.0)#C6)+3.,04B84#B10*F4 )

7 X¥(C3=-CO)+BL4HF4*P /XR(=C3+3.0%C6)+00125%BS5HP* ¥ X% (F12 ,

8 3.0)%(C3=~CE)+0.25%BEXF4H Fo#l-C3+C6o)

CC2120.5*BBAF4XFS *(-C3+3.0*C6)+0.0625*B9*P*P*F5*1F12
=3,0)#(C3=C6)+0e125#B10%¥F4#FS #(=C3+C6)~0e 1 25#ASKP | #F 1 IHF2
H(300%#C3+CH)=0,125%AEXPI*F 13 #(C3+3s0%#CE)-0eSHAZAPIXF ]3I HF2

#C3=025HATHP I #F 1 3#F 2 #(C34+C6)+0.28125%P | ¥F23%F 2 #(3,0%C3+C6
J*PIRFARF3 #0,03125#(C3~COH)+PI*F4%F3 #0,0625#(C34+3,0#C6)=B1O#
PIRPIX#¥F3%#,125#(C3-C6)~0e125#(BBXF2 +BY)#FI3XF4 #(C3+3,0%C6)~!
AS*#F2 ~Ab6)*F4%P %#0603125%#(C3+3e0%#CEHY)=~(AS~AGXKF2 H1#De0312S%PI*F
4 H(C3=COH)~AT#0e125#PI#F4 #(C3+3.0#CE)+0.8437SHF4*#PAFS #{C3«C6
) +0.25#BSKPHPRFSH( F12 ~3,0)#C3«C6)

CD21=0+5*B6XF4RFS R (=C34CEH)+0.SHBARFLAFS #(=C34+3.0%#CH6I+
0¢ 125*BOXPRPXFSR(F12 ~360)#(C3«CO)+0s25%B1O#¥F4#FS *(=-
C34+C8)+0, 2SHBBRF 4 RFS #(=C34+3.0%CE)I+0.0625*P I #F3#F4 #|{C3~C6)+
PIXF3#F4 #0,03125#(C3+3.0%#C4)-BO*F3*#F4 *0e125%#(C3+43,0%#C6)~(B8+B
10) P #R3XXX06 125#(L3=COH)~(ASHF2 ~AG)XF4*P %#0e03125%#(C3+3,0%C6)
~(AS«AG¥F2 ) %PI#F4 #0e03125%(C3-CEH)-ATHPIXF4 %0e125%#(C3=CE)+W/
V/V #(3,0%A3RAGKPIHF3 HD14+3¢0RACKATHPIHFI  #D1#C2-Oe TSHALHPIXF {3

RDIRC1#CLI+WHY/VH(GORASHBORPI#F 13 #D1%#C14+6.,0%A6%BE#P L #F |
3 *¥D1¥HIRC1+6, OXATRBOXPI#F 13 *D1#Ci%#C2)
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CE21=WHkY/V¥(~] S*BO¥P¥#F23 HDIHCIHHI)+WRYRY *(16-0*88*89*P1*F23
1 ¥D1#X3%C1#C1)

CALCULATION OF C12
C12=CA12+CB1”24+CC12+CD12+CE12

IN WHICH
CA12=A3XA4RPI XF3%P+06 125%ASRASKPI#F3 #(P+D2+4D5)

+00 12SHAGHACHPIRF3 % (P-D2+DS)+A4RATAPIHF3  HD2+ATHATHPI*F3  *
DS=0,125#A3%#F 13%F 4 _ «0e062SHASKP | #F 13 #(P+D24DS5)=H4 0625%A6
API® FI3RF2 #DS-0+125%ATXPI#F13%F 12 #D5+0+015625#ASKAS P [ #F 6

#(P+D2-D5)+0s0312S¥ASHASHP I #FE #DS5-0e0312SHASHAGRP [ X¥F2HFE #
D5«0603125*%AS#A6¥F4 /X*# (P+D2~D5)+0.015625#ASKASRPRES | P-D2-DS)
~0e03125%ASRAEKFE  /X*(P=-D2-DS)-0e03125*#ASHAEHF4 /X*DS54+0.015625#
AGHAGHPLI¥#FE #(P-D5-D2)+0:03125*A6KAGHPI%FE #DS5+0e015625%A6#AE6H
PRFS % (P+D2-DS)+0SHATHATHPI#F6 *D5+0.0625%AS*(BO+B1O%F2 ) #P!
AP 1 ADS+0,0625*#¥B1OR (AS-A6XF2 I#F4 *(P=-D2=D5)

CB122+0.0625#B9# (ASHF2 ~AG)#F4 *#(P+D2-DS)~0De0625#A6*{BO¥F2 +B
1O)RPIH#P[#DS+0,S*ATHB1 | ¥P [ #P [ #D5~0,015625# (ASHF2 —A6)XPI*F4 *
DS-0,015625% (AS#F2 -AG)*¥PI*F4 #(P+D2-D5)-0e015625%#(A5=~A6%#F2 )
RF Q%P #(P-D2-D5)~0e015625#(AS-A6RF2 ) ¥PI#XIADS-0e 125¥ATHP I ##3
#0540 25%#BIXBORPI#F 3 #(P+D2~DS5)+0,2S*#B1O¥X2%#PI#F3 #(P=~D2-=D5)+0
o5H(BB*#B11+BIXBI0) XP I #F3*HF2 *DS+0SHATHBEHP | ##3/P*DS5+0.0625* (AS%
PI/P-A6)%BO®F4 *#(P+D2-D5)+0.0625%((AS*F2 ~A6)#Bi0+lAS-A6XF2 )
*#BOY AP #P I #DS5+00625% (AS-A6#F2 ) *¥B10%¥F4 #(P-D2-D5)~-0+0625%B9*pP|
ARIRXH(PHD2-D5)=060625% (2. 0#B8XF2 +B9+B1OXF2 ) #P1##32#X#D5

CC12=~,0625%B1 OXF3*F 4 #(P-D2-D5)+2, OXBA*BTAF 4 /XADS+0,25#BS*#
2RPAFS  #((Fi2 +1.0)%P+(F12 ~2.0)#D2)+BSHBEXFE  /X* (P
~0eS#D2)+0,25#BEXBOEXPAFS #((F12 +1.0)%¥P=-F12 #D2)+B88*B
11%F4 /X%DS4+04125%BIXBOXPAFS *#((F12 +1e0)#P+({F12 -2
0)#D2)+0.5*BOXBIOXF4 /XX (P-0,5%D2)+0¢125%B1O#%2#P*FS #{(F12

+1e0)#P-F12 #D2)+0e25#B4XF 4 %F 6 #(D2-DS)~0e 1254BS*#F 4+
FS X (P-2s0%D2)+0e125*BEHF4¥#F 6 #(D2-P)+0+125#BBXF4*F 6 #*
(D2~DS)+0e0625*BO#F 4 ¥F S #(2,0%D2-P)+0s0625*B1O#F4#*F 6 *{D2
~P)=0e125%A4#PI*F13 ®#(P+D2)~0e125*ATXPI*F 13 #D5-060625%#A5%
PI1*F13 #(P+D24D5)~0.0625%A6XP 1 #F 1 3%F2 *DS

CD12=204140625#P1#F23 *#(P+D24D5)+0e03125%#P ! ¥ %4 #X¥D5+06015625*P |
XRGEXR (PHD2-D5)~0e60625 #BOXPIXX3I X% (P+D2-DS5)=0e0625%(BlO#P[/P+B
11 ) ¥P I RAIAXHDS5 =06 0625 *#ATHP [ ¥ %3%XD5-0,015625# { ASHP [ /P-AS)*PI#F4 +#
(P+D2-D5)~06015625%(AS~A6%¥F2 ) *#P | #%#3%D5+0e140625%F 14 /X% (P
=D2+DS5)~0425%¥B7#F 4 XFS #DS5+0e 125#BSHF4AFS #({2.0%D2-P)+0e125
A*BEAF 4 AF6 #({D2-P)-0e125%B1 1 #F4*#F5S *¥DS5+040625*BO*FA4RFS *
(20%#D2-P)+0,0625%¥B10*F4%F6 *#(D2-P)+0e015625%F14 ®#xX% (P~
D2-DS5)+0603125#P1 ##4%XXAD5-040625% (BO+B11)#P1 ¥ %3 ¥X¥D5~040625%#B1 0%
F3%F4 #(P-D2-D5)~040825*ATHP I ¥ %3%DS~0s015625% (ASHF2 =AS)IXPI*
F4 %#D5~0.015625%(AS-A6#F2 ) #F4*P *#{P-D2~D5)

oo PLPWNM- ONOUPUN~ VONOU PW N~

ooOoNJoOOP>PWN~—
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CGLl2aW/V/V #(2,0%A3XA4RPINF3 =2, 0%AZXATHPIRF3 +AGHAGKP|%#F3 %#D]
1 D142 0%A4RATRPIRF3 #HC2-2,0#ATHA2RPIHF3 #C2-0S*AGAPI#F 13 #*
2 CI1#C1+0,5*AT#PI#F13 HCIRCLI+WHY/VH(2,0%ACKBIRP#F 13 #D1#01
3 #C1+4,0%A4%BERPI#F 13 XDI#DI1#C1-4,0*A7*BBAP#F 13 *DI#D1¥C1 ¢+
4 2,0%A6%#BOXPIXF13 DI #D1#CL)+WHYRY #(16,0#BOXBI*PI#F23 /340
S #D1#D1#C1%#C1) +0.2SHASRAGARPI #F3RF2 #DS

CE12=A20%# (P1#P 1 #X% (04375%#P-0425%C2/P) =0 25#P/XREL1O0+AT/F2/X/X¥EL10+
1 B8/XHEL10)+B22% (=eSHPHXKE] 1+ 125#PAPHFSX(PINPI+4,0)/P1/PI*

2 (P=D2)+AT7#2.0/F2%E114+2,0%BBAX¥E ] | +BaRPHFSHD2+40#B8/F12/X#D2)

CALCULATION OF CO03

C03=CA03+CBO3+CCO3+CEO3
IN WHECH

CAOI=ALHASHP I #F3IHF2 #CI+ASHATHPIRFIRF2 #(12,0#F12 #C4«C3)+A4
RAGRPIAF3  HCI+AGRATHPIHFI % (4,0#F12 #C4-C3)-1 e SHASKP | % %6%
XRH2/PRAIANCE~0SHAGHP [ #F 1 3%#F 12 #C4+0sSHASHATRP | XF2RFE *13,
O%F12 ~1 e O) HCA4+ASRATRPIRF2XF 6 #CH4-AGRATHP [ #F 1 2#F 6 *C4
~0eSHAGHATHPIRFE #(3,0%F12 =1e0)#C4+B11R(AS-ACHF2 ) XPI¥%3/
PHC4+0.5#B11# (ASHP1/P-AS)RPI#P I X (3,0%F12 ~1e0)%C4-04125%(ASH
F2 <«AG)#PI*%A3%(3,0%F12 ~1e0)#C4=0s25%#(AS-AGRF2 ) #P1#%4/P%
Ca42,0#BORBl 1 #PI#F3#F2 *# (3,0%F12 ~1e0)#C4+4,0%B1O*B1 1 ¥P I *F 3
*F12 #Ca4+2, 0ORATRBOHP I ¥%3/PH(3,0%F12 ~140)%#Ca4+4,0%ATRB| O*P
IRPIHF 12 #C4-0,SHBOXP I #H4AX/PR(3,0%F 12 “1.0)4Cq

CBO3uwBiORPI #¥P [ #F3#F 12%C4+2. OXBSHBTRFAE /XX (3,0%¥F12#F12 +6.0#F12

~160)#CA+16,0%BOXBTRPI#F 12%#F 6 *C4H+BORBI1#F4 /X# (3,04
F12#F12 4+6.0%F12 ~100)%#C4+8,0%¥B1O*Bl1#PI*F12%*F6 *#C4+0,5S%B
SF4#F6 #(3.0%F12#F 12 =Bs0%*F12 +1e0)%CA-2,0%BE*P I #P I #F 12
#FEXC4+0,25*BIHF4RF 6 % (340RF12%#F12 . ~840%F12 +1.0)*#Ca-B1
ORPIRPIHF 1 2#FO#CA-0SHAARPI RF 1 3HF2 #C3-0SHATXPIXF13IHF2 #{3.0
®F12 +160)#CA4+2,25HP I HATRXRRI/PHAIRCAE+00e 125KP I ¥ XSHX/PH(340#%
F12 ~100)#CA=0,S#BLI¥P ¥4 ¥X/PH(3,0%F]12 ~1e0)%CA-0s5#A
TRP I # X4 /PR (3,0%F 12 ~160)#CA+0,37SHPIXFL4HFE *(T7,0%F12 -
1.0)#CA+BTHF4%#F6 #(4.0%F12 %#C4=C3)

CCO3=0.5%B11%¥F4*F6 #(4,0%F12 *C4-C3)+0.25%P ! ##5%X/P#C4-B1
1 1 %P IRRGEX/PHCH4~-ATRP [ ¥4 /PRCH4+W/V/V ¥ (A4XAGHPIXF3 - #D1 —AGHATHP | *F

2 3 #D1)4WHY/VH(2.0%A4#BOXPI#F 13 RDIHC1-2, OXATHBIOXP #F 13 *D

3 1%#C1)

CEO3=A20%# (2, 0%#F3#F2#(F31+D11+F32-D10)~-FORE14~FS*#E13+AS/X/X#E14+
AS/F2/X/X*E13-A6/X/XHE13-A6/F2/X/X*E14+BO*440/X*E14+4.04810/
XEE13)+B22% (=2, ORFIHEL12+0¢SHFS/F2R(PI*¥P[+4,0) #C3-2,0*PXXHELS
+ASH2OXE12+ASH2 ¢ OR (PRHD12-2e0%#C10)~A6*2,0%E15-20%A6/F24E 12+
BeORBORXHE 1248 0%BlORXKE 1 S+BSEPRFSH(F12-1.0)#C3+4,0#B9/F12/X
#(F12-1,0)#C3)

OO N Ud N -
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CALCULATION OF c27

C20=CA20+4CB20+CE20

IN WHiCH

CA20=1¢0/Y%# (4, 0%A1XAZHF3 *D1+2,0%A1#ATHF3 *#(D1+D3/3.0)+A1%F 13
1 #0e5#(3,0#D14+D3/3.0)+ 2e0%A1 #ATHFS/F2 #(D1=D3/340)

2 +2¢0/3.0%A1 X¥BB#P#(3.0#D1~D3)+240 :

3 *AT#B2#P*(D1-D3/36¢)=1¢0/640%A1#P*P % (340%#D1~D3)+2+0/3.0%B2%B8

4 #F3 #(3,0#D1-D3) . :

5 =160/6e0%B2%#F4 #XH(3,0%D1-D3)+6,0#B2*¥BAXFS/F2 #{D1

6 +D3/3¢0)+2.,0%#B2*BB#F5/F2 #(D1+D3/3¢0)+6e0*¥BAXFS5/F2 #{D1+4D3
7 /360)+2.0#BBRFS/F2. #(D1+D3/3¢0)+B2/3.0%¥P#FS/F2 %(3.0%¥D1=D3)+
8 PRFS/3e¢0/F2 #(360#D1=D3))+W/Y/V/V #(4,0#A1RAZ¥F3 %#C144,0%A1 A7
9 #F3 #CI#C2+2.0%A1%¥F13 #C1#%3)

CB20=W/V#(—-2,0#A3%#F 13 HC1%C1-2s0%ATXF13 #C1#C1#C24840
1 *A1#*B8*F13 ¥D1#DI#HC1#C1+2.,OXA3IXB2#F13 FDIHD1+2sO%ATH
2 B2%*F13 - #D1 #¥D1*#C2~-F23 #C1##44+B2#F23 *#D1#D1#C1*C
3 1)+WRYR(~=16¢0/3,0%#B8*F23 ¥D1#D1¥C1¥%#3+16,0/3.0%B2#BB*F23
4 #DIRHGHCL) - :

CE20=4,0/Y#(B21%(BB8#0¢ 7S#X#¥E11+A7#0e7S/F2%E11-3s0/16,0%P#X#E1{+

1 B4%0,SHPHP/X%#D2+1 ¢ SABB/F12/X#D2+1e0/16.0%P*(P1X¥P1+3,0)/Fl2/
2 X*(P=D2)))

CALCULATION OF Cti

C11=CA11+CB11+CC1i+CE11
IN WHICH
CAl121e0/Y¥(4,0/3¢0%A1#ASHXRPH (] e0+C2+4,0%#CS)+8e0/3s0%A1¥ALRP | #XH
CS5+8¢0/3¢0#A2¥A3RXHP+B8e0/3.0#A2RATRFIHF2 #CS5+4,0/3.0#A1 %Pt P
X#X %#(160+C244¢0%C5)+400/3e0%A1 RASHP/XHCS5+260/360%A1¥ASKP/X# (1 0/
F12 ~C5)=2,0/3s0X%A1XA6XPI/X¥(1e/F12 =CS5)=«440/3¢0*A1 RAERPRP/
Pl/X%C5416¢0/3e0%A2%#ATHP/X#CS+8e0/3e0RA 1 HBIXPACS+8e0/30#A1XB1O¥*
Pl*(1e/F12 =CS5)+B2# (AS~-A6*P1/P)*#P1/3s0%(1e/F12 wC5)4+2.0/340%
B2¥#(ASHP ] /P=A6) #P#C54166¢0/3¢0%ATHBIRPHCS=2,0/3,0%A1¥P1 ¥P*(14/F12
~C5)=2e0/3¢0%A1RP I #PXCS+16e0/3e0%#B2¥BIXP [ #XXCS+8,0/3.,0%B2#B10
RFINF2 *(1e/F12 ~C5)+16e0/3,0%B3%BBHP I AXHCE5+260/3s0%B2%({ASH
P1/P=A6) #PXC5+B2# (AS-AGXP1/P)#P1/3,0%(1e/F12 -CS5) )
CB1121e0/Y#(86¢0/3¢0%#(2s0%¥A2%¥BBXPI/P+AI#BO)¥PRCS=2,0/3+0%B2%P]#F3
#CS5=2e0/3,0#B2#P[#F3 ¥ (1e/F12 ~CS5)+BeOXBIXBLRP[ /XRCS+4 4OXB2#
BS*FS/F2 $(1e04C2+42,0#C5)+4,0%B2ABEXFS/F12 *(1e0+C2+(4,40
-2.0%F12 JHCS)+4e0/3,0%B2XBIXFS/F2 . %#(160+C2+2.0%#C5)+440/
3.,0#B2#B1O#FS/F12 #(100+C24(4e0-2,0%F12 IRCS5)+8e0/360%
B3#BARP | /X#CS5+B8¢ O#BARP/XHCS+4 ¢ OXBSHFS/F2 *#01e0+C2+260%C5)+440
*BORFS/Fl12 #(1e04C2+(8e0x2,0%F12 YHC5)+860/3,0%B8#P /X%
CS5+8,0/3,0RBO#FS/F2 $(1e0+C2+2.0#C5)+440/3,0%BiOXF5/F12
#(1e0+C24(440-2,0%F12 YHCS5)+1660/30%B2APRFS HCS5+416,0/340%
PRFS #C5+260/30%AHPI#PXXAX #(]1e0+C2+4,0%#CS) )

oSO S W -
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CCl1=1e0/Y%(=200/340%(B2%¥P1/P+B3)RP[¥P¥XHCS5~2¢0/30%(A1+A2) %P %#P*CS

1 44¢0/3.0#¥B3%PI#P/X*(1e/F12 ~C5)+4e0/3.0%P#FS #(1,/F12 «~C5)

2 ~2e0/3.0%B3#P | ¥PHXHCS5-2e0/3s0%A2XP | X#PHCS)+W/Y/V/V #(8,0/340%A1
3 HAGHPIRX¥D1IHC1)I+W/VH(~4e0/3.0%A6%F 13 *¥D1%#C1¥#C1+1660/340%A1
4 #BOXF13 DI #C1%#C14+4¢0/3s0%A3XB3*F13 #D144e0/3.0%A6%8
S 2%F13 #D1%¥%#34+4,0/3,0¥A7*B3*F 13 %D 1%¥C24+240/3.0¥B3#F23
6 ADIXCLI*¥CL)+WHYR(=3260/9.0#B9%F23 #¥DIHC1*%#3+3260/940%B
7 2%BO9*F23 *#¥D 1 #%#3%C1432¢0/9.0%B3%B8#F23 . . #D1¥%3INC1)

CE11=B21#44/Y#(4,0%#BIOXXRE124+4¢0#B1ORXKEIS+ASHE 1 2+ASH (PAD 12«24+ 1O}
1 ~AG#E1S-AG/F2*E12+BS5#2¢0/3¢0%#PHFS*(F12~160)#C342,0%B9/ X%

2 100-1060/F12)%#C3+1e0/3¢0/F2XFSH(PI#P[4+3,0)%C3+F3%#(1s0«F12)

3 #C10)

CALCULATION OF CO02

C02=CA02+CB02+CC0O02+CEO2
IN WHICH
CAO2x1¢0/Y%#(440/3¢0%A1%A4XF3  %D144e0/3¢0XA1RATHF3  *D6+8¢0,3,0¥A2
#ASHFI#F 12 #DE6+4e0/3ORARAGKF2XF 3 *#D6+440/30%A1RF13%#F 12
#DE6+8e0/3¢OXAIRATHFE #D6+1e0/30%A2#ASKFE %(D]1«D6)+2
00/3 0RA2AASHFE #D6=260/3,0XA2%AERF2AFE #D6-160/3.0A2%A6#FS
#(D]1~D6)+8e0/3¢0%A1 4Bl 1#P[#D6+1e0/3:0%B3# (ASHF2 «A6)#PX({D]~D
6)42e0/3:0%B3 % (AS-AGHF2 HHPINDE6~2e0/3¢0X¥A{ %P IXPI%DE+4,0/3.,0%B3
RBORF3 #(D1~D6)+B8e¢0/3,0%(B2#B11+B3*¥B10)*¥F3#F2 *#¥D6+8+.0/30%A
THB2H¥PI#F2 #D6+4,0/30%A2¥BIO*PI#(D1-D6E)+8e¢0/30%A2%BI1ORPIRF2
#D6=2e0/30XB2XP I XFI¥F2 %D6+4 O *BIABSAFE H(2,0%F12 ~1e0)%
D6+4,0%B3IXBE*¥F2%#F 6 ¥D6+4 .0 %B2ABTHFS *#D6+4e0/3,0*B2*¥B11¥F5 #D6)
CBO02=1 ¢0/Y#(460/3¢0%BIXBORFE #(2,0%F12 ~140)#¥D6+4e0/3.0%B3
*B1ORF2#F 6 *D6+4,0#BSHFS #(2,0%F {2 ~1e0)%#D6+4.0%¥BEXF6
#D6+4e0/3¢0%BOXFS #(2.0%F 12 ~1e0)*¥D6+440/3s0#B10*F6 *D6+2
00/3,0%B2%¥F A4 /X¥(D1=D6)+a,0%#B7#FS #D64+4¢0/3:0%¥B11%FS #D64+2.0/3
eORF4 /X% (D1=D6)+8e¢0/3s0%A2¥F13%F 12 *D6=B3/3. 0PI #F3 *
(D1-D6)~A2/3,0%P [ #P ¥ (D1-D6)+8¢0/3.0%B3X¥PIAFE #DE6+8e¢0/3,0%F4
/XHD6=2¢0/3¢0%BIXPIHF3  #D6-2¢0/3s0FA2XPI#P [ *#¥D6)Y+W/Y/V/V #(440/
3e0%A1#A4XF3  %#C1-4e0/3.0%A1XATHF3  #C1)I+W/VR(240/3,0%A6#B3%#F 13
*¥D1#D1=2e0/3.0%A4%F 13 #C1#C14260/3¢0%A7XF 13 *C
1%#C142e¢0/3.0#F13%D1#D1 *B2*#{Aa=AT))
CCO22WhY#(16.0/9.0%#B3%¥BO*F 23 *¥Di#D1%#C1)
CEO251¢0/Y*(B21%#(B11*¥P*X/F24+AT#P/F2=0¢25%PRPAX+PAP/12.0/X* (PI#P14
1 3e0))+8¢0%#B22/F12/X%D1+A20%A1*E1T7#(8e/P+4.0%P/F13)+B22*E16* (A
2 1/F2+B2%X)%#4,04B21%#B22/6 ¢ 0XPAPXPAX+A20%#¥B2%4,0/F3*¥E1T7+A20%#821/640
3 #PHFS+B2#B22%¥8e0/F12/X*D1+B21%4B22%540/12 0XPHPXFS)

VONOU&WN—
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CALCULATION OF DO3

D03=p03 +DEO3
IN WHICH
DO3=A4#AGHP ] #¥F 3 %P +0 s SHATHATHFIRF 4 ~0e125%A4%F4%F 13 =040
62SHATHFA4*F 13 +0 e 25HATHATRF4AF 6 +0.2S*ATXB11%*PI%#F4 =0
O62S*ATHPI %3 XP+0,25%¥B11*¥B1 1 ¥F3%F4 +0e2S*ATXB11¥PI*F4 ~060625
*#BLIRPIXRF3XF4 +B7RBT7AF4L4AFE +0.5%B1 1 ¥ X2XF4XF 6 ~Qe 125#B7*P [ %
F4%F6 —0,0625#Bl I ¥PI#F4XFE ~0e125*A4HF4%F 13 ~0e0625%AT7H*
F4#F13 +0.0703125*%F4%F23 +0e0078125*¥P | ¥ X4 %#PXX-0603125%B1 1
HPIHFIHF4 ~0,0312SKATHP [ ¥ X3 ¥P4+0.0703125*P I X *# 4P/ X~-06125%¥B7*P | *F 4
*#FE6 ~040625#B11HPIHFL4HFE +0e0078125#P | X4 %P *HX-0603125%B]1 | #P[#F3
#F4 ~0e0312S%ATRP I #XIXPHW/V/V R (2s0%AQ*ALGAXPI#F3  ~4,0%A4GRATXP]
#F3  +2.0XATHATHPI#F3)
DEO3=2¢0%# (A20% (1 ¢ /3e0%A20#P/X+P I AP XX* (06 125%#P+0e5/P/F12)42¢0%A7/
1 F2/X/X+2e0%B11/F2/X=0e5%¥P/X)+B22% (2+0#B1 1 ¥P%X/F2+20*¥A7*P/F2
2 ~0eSHPHP#X+06 125¥PAP /X% (PI*¥P[+460) ) +A20% (A20#P/6e/ X/ X/ X+B22
3 0 25SHFSHP ) +B22XB22*¥PAPXP/340%* (X/2e0+160/X))

VCONOU W N

CALCULATION OF DOZ2

D02=D02N+DE0O21+4+DEO22

IN WHICH

DO2N=E] 0O/ Y% (4 o OXAHAQUPAX+40e0/3¢ORA2KATRPEX+4 00/ ¢ ¥A2HF 4 AX %X
+8e0/3¢0%A2RATHP/X+8e0/90#A2XBI1%#P+1660/9e0XATABINP=260/Fe0%#A2
#F4 +8¢0/9.0%B3%B11# P#X+16e0/9¢0%¥B3%#B1 1 %¥P%X+8¢0/9:0%A
TRB3XP+16e0/3e0#A2XB1 1 %#P-240/90%¥B3%¥F3 #P+4,0%B3%B7¥P/X+4¢0/3e0
*#B3#B1 1 ¥P/X+8.0/30%B7*#FS/F2 +8.0/9.0%B11%¥F5/F2 +440/940%
B3%#F4 /X+440/3.0%B7#FS/F2 +440/9.0%#B1 1 #FS5/F2 +440/9¢0%P*
FS +8e¢0/9,0%A2%F3%P*X ~260/9.0%¥B3%F4 %#X~2,0/90%#A2%F4 +840
/9e0%B3%F4  /X+8Be0/9¢0OUPAFS «2,0/9.0#B3%F 4 #X~2,0/90%A2%F4 )
+W/VR (2., 04A4%B3%#F 13 #D1=2.,0%A7#B3*F13 *D1)

DEO21=12¢/Y%#B22#(DX4+DX5+DX6+DX7)

DE0222120/Y% (DX1+DX2+DX3) #A20

CALCULATION OF CiO

BNV & W -

C10=CA10+CB10+CE10

IN WHICH

CA10=1e0/Y/Y #(AIXAI¥PIAF3  /440%(P+D2)+A1 XA #P¥FS5Xe125 % (P-D2)+
AL¥B2%F4  /840% (P~D2) +B2¥B2¥P [ *F3%41250% (P=D2)+0e 125¥A1 ¥B2*F 4
#(P=D2)+2.0%Q*B4*P*#FS #(D1+D3/3.0)+B2APXFS5#,5 *(P+D2)1+P*F5
*,25 #(P4+D2)+ ¢ 25*B2XB2XPAFES X (P+D2) +Q¥P¥%3/(12e0%X ) #(3s0%D1 ~
D3))+1e0/12,0%(0.25%P1*#F23 X (P+D2)+0e25*PR%4,/X¥(P+D2)+0e5%F 14

EXH(P=D2))+W/(YRY %VEV JRAIXAIX¥PI#F3  %CIHCl+W/ (YHV) ¥ (=

OeS*AI*PI#F13 HC1##3+0,SHALI¥B2¥P [ *¥F 13 ¥DI*D1#C1-0e5*A1 P
*F13 #C1#%3+0,5*A1 ¥B2#PI*F 13 *¥D1*D1XC1)+W* (PI¥F23 /3e0%
Cl##4-2,0%B2*¥PI #F23 /3.0%D1%¥D1%C1%C1)

oONOUPWN~
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R LY Geg o PR A TR NP O L OV ARSTP TR A T O, - . e e,

CBilO=Wk (B2*#B2*P [ *F23 /3.0*01**4)~Q*Z*Z /144.0*84/(3.0*X)*(300*

1 D1-D3)

CE10=4,0/Y/Y#(B21*#(B2%#80XX/PI*¥E16+A1%8,0#P/PI/PIRE16+(1640/F12/
1 F3#D1)¥(B2+1¢0)+B21#PAPHPAX/180+B21¥PHPRP/X#2:0/15,0)+B20%

2 PRPAP/1660/X% (P-D2 ) +B4#B20#0 SHP*P/X#D2 )

CALCULATION oF col

CO01=C0t +CEO1
IN WHICH

CO1 =1e0/Y/Y #(AI#AHPIXFIRF2 #C3+0.SHAIHA2HF 4G  /XXC3+0.5#A1 B3 *

ABIAPIHFE #C3+B2%FAQ /X*C3+F4 /XHCI+BINPIXHFE #CI3+Q#F4#F5

NoOUPWN—-

*P/F3 *#(1e0=-F12 *C5))

F4 #C3+0.5#B2*#BIPI#F3  #C3+0.SHAKB2AP[#P | #CI+QABSHPHFS  *(140
+C2+2.0#C5)+Q*BORPHFS/F2 = #(160+C2+(440-2,0%#F12 ) #CS)+B2

#CS5)+1e60/12.0#(PI*F23%F2 RCI+PIHFAHFE #C3+2.0¥PI#F3XF4 #C3H)+
W/CYRV)RH(OSHAL#BI#PI#F13 *#D1%#C1)+WH(-B3*P [ *#F23 /3.0%D1%*
C1#C1+B2#B3#P*#F 23 /3¢0%#D1RRI)—~QUZRZ /144,0%#(2.0%¥B5/X#C5+86

CE018400/Y/Y*(BEI*(B3*4.O*X/PI/F12+A2*400/F12/PI+83*800/F12/F3+8.0

1 #P/PI1/F12/F3)+B20%0¢25*#P | #PRFSHCI34+BSHB20*PHP /X0 e SH(F12«10)%*
2 ¢3)

CALCULATION OF CO0O

COO0=QR/Y*#%4%#4 ,0/F3%D1

CALCULATION OF DO

DOl= DO1 +DEOI

IN WHICH :

D01=1,0/Y/Y #(025#A2HA2HFIF4 +0e 125#A2XA2HF4#F6 +0+25%A2

1 *B3¥PI#F4 +0,125#B3*B3*F4*F3 +4 ., 0%Q*¥B7#F4 /X*¥D6+0,25#B3#B3
2 #F4%F6 +0 s SHBIHFAAFS +0425#P# %3/ X+0 SHQAF4#F 6 #{D1=«D6))
3 +1e0/1240%(0e25%#F4#F23 +0e2SHPI¥PI#F4# (FE+24%#F3) ) +WkB3*
4 B3XPI*F23 /3e0%DI XD —QUZH¥Z /1444,0%4,0%BT7*P1/(P*X)*D6

DEO1=1 e 0/Y/YR(QRB22¥PXPXFSHC1+0625 *B20*¥F14/X+B20*B22 *ESHPRP )

CALCULATION OF DOO

DOO =440/Y/Y/Y#(B20*P/F12/X+B20#B3/F2%F5 )+QR/Y**#4#4,0/F2/F3
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