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ABSTRACT

ON THE OPTIMAL SAMPLED—DATA TRACKING PROBLEM

By

Richard Kuang-tzan Ma

The optimal sampled—data tracking problem is formulated

and solved using an efficient computational algorithm. The

optimization is performed on the number of samples, the sampling

instants sequence, and on the order of polynomial approximation

to the control law over each sampling interval. This sampled-data

control is parameterized by specifying the parameters and order

polynomial approximation over each sampling interval, the number of

samples, and the length of each sampling interval. Comparisons are

made on both control performance and sampling efficiency for con—

trol laws with different order approximations and with both periodic

and Optimal aperiodic sampling criteria. These results form a

basis for analyzing the performance advantages and costs for using

higher order control approximations and Optimal aperiodic sampling

criterion.

Sampled-data controllability and observability are defined

for the case where both the number of sampling times and the lengths

of sampling intervals are free and considered control variables. The

sampled-data system is proved to be observable (controllable) if

and only if the continuous time system is observable (controllable).



Richard Kuang—tzan Ma

A sufficient condition on the sampling time sequence is stated which

guarantees the preservation of controllability and observability

when the continuous measurements and controls are replaced by

sampled ones.

The infinite-time sampled-data regulator problem is formulated

for the case where both the number of sampling times and the lengths

of sampling intervals are considered control variables.

The existence of an Optimal closed-loop sampled-data control

law is proved for the cases where the number of samples are both

finite and infinite. Computational algorithms for calculating the

Optimal control are also prOposed.
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CHAPTER I

INTRODUCTION

Periodic sampling criteria have often been used in industrial

cryntrol to simplify the design and analysis. Aperiodic sampling

curiteria have become quite practical in both design and control

unith the introduction of computers. Therefore, numerous [l3 — 20]

armeriodic sampling criteria have been studied in an effort to improve

tile: system performance and sampling efficiency relative to a

Periodic sampling criterion. Improved control performance with

reKiLlced computer memory and communication requirement makes aperiodic

SENDI)ling criteria particularly useful for numerical control applica-

tiCDrls.

The optimal sampled—data tracking problem originated from

thfi research on the development of optimal programmed control for

maC11“1:i.ne tools [8]. In a computer—aided—manufacturing (CAM) system

of the future, a large central computer system will compute and

5store the programmed control for each part. The programmed control

wellld be stored and then transmitted at the prOper time to the

"“iIIi-computer or controller that monitors and controls a particular

maChine tool. Immense data storage and communication facilities

are required to accurately specify the cutter path for each part

aDdeach machine tool. Since a major commitment in computer and

Communication hardware is required to handle machine tool control

1



and since the computer and communication system must also handle

material handling, scheduling and inventory control, the programmed

control for each part should be specified with as little informa-

tion as possible.

Therefore, the Optimal programmed control for a machine tool

sfliould be designed to not only produce excellent quality parts but

zalso minimize the information—handling requirement. Since the control

113 parameterized by specifying the polynomial approximation over each

sampling interval and the length of each sampling interval, this

nuinimization will be accomplished by selecting both the best control

Iajxproximation parameters on each sampling interval and the Optimal

sampling intervals sequence. The additional flexibility provided

bY' sselecting the order of the polynomial approximation in each

Sampling interval and the flexibility of selecting the length of

553(111 sampling interval and the number of sampling intervals promise

t“) 13ermit great reduction in data transmission and storage required

tc’ (Dbtain a particular tolerance level and surface finish quality.

This optimal sampled—data control problem was first

f0lfinulated [6, 7] in an effort to Obtain sampling criteria that pro-

"i£1e better performance than any periodic or arbitrary aperiodic

SanIlpling criteria. Necessary conditions were derived in both papers

13‘1t were never used to obtain an efficient computational algorithm

fCDI the Optimal solution. A sequential unconstrained minimization

tiichnique (SUMT) has been used with some success in the special case

Where the continuous time problem can be transformed to an equivalent

discrete time one [9].





An efficient computational algorithm was deveIOped for

this optimal sampled-data control problem for the special case where

the optimal control sequence can be determined as a unique function

of the particular sampling intervals sequence chosen. For this

sipecial case, the performance index can be determined as a function

()f this sampling intervals sequence. The Optimal sampling intervals

seequence can be found by minimizing this derived performance index.

Tfiie Optimal sampled—data control law is then specified by the Optimal

ccrntrol sequence which results upon the substitution of the optimal

sampling intervals sequence.

This algorithm was applied to compute the Optimal sampled—

déltéi control law for the regulator problem with constrained [9],

Stilt:e—dependent [10], and adaptive [ll] sampling criteria. The

echellent performance obtained with very few control changes in-

dilléites that the computer memory and system - computer communica-

ti<3r1 required to store and transmit the control can be significantly

refilllced if the sampling intervals are determined Optimally rather

than specified apriori .

With the same concept of Optimal sampling for control, the

*

0Ptimal sampled—data tracking (and servo ) problem is investigated

1‘1 this thesis. Instead Of assuming a step (sample and hold) control

aD‘proximation, the control approximation is assumed to be of poly—

r“31111611 form over each sampling interval. The order of the control

approximation is varied from zero to two.

\_

*

By convention, if the plant's outputs are to follow a class of

desired trajectories, the problem is referred to as a servo problem;

On the other hand, if the desired trajectories is a particular func-

tion of time, it is called a tracking problem.



Necessary conditions are obtained and are used to derive

the control sequence as a function of the sampling intervals sequence.

The optimal control law and a derived performance index are then

proved to exist and to be unique for any sequence of sampling intervals.

The existence of an Optimal sampling interval sequence is finally

proved.

An algorithmic procedure for computing the Optimal sampled—

data control is proposed. This algorithmic procedure extends the

prraxzious procedure [9] by not just searching over a sequence Of

sampling intervals for a particular number of samples but also

3e21rnzhing over the number of samples required. The sub-algorithm for

SEEirwzhing over the sampling intervals, developed by Schlueter [9],

is iInplemented with both a gradient and a non—gradient algorithm.

ThE! (:omputational results Show that the non—gradient Powell algorithm

[33:] is more efficient than a Fletcher-Powell gradient algorithm

[32] , i.e. the computational effort and the number of iterations

requi‘red to Obtain convergence are less.

A cost Of implementation is adjoined to the performance index

for tine first time because the optimal sampled-data control was

prOVed to be the Optimal continuous—time if a cost of implementation

was IIeglected. An optimal continuous—time control is in general sub-

OptitDal if a cost of implementation is added. After a search of the

liteI‘ature, a particular form for this cost of implementation is

adoPted. The computational results show that augmenting the perfor-

maUCe index with a cost of implementation not only makes the design

Problem more reasonable but also improves the convergence of the

COmputational algorithm.



A comparison Of performance of an Optimal sampled—data con—

trol law with periodic, Optimal aperiodic, and adaptive sampling

criteria was made. A comparison of performance was also made for

sampled-data control laws with a zero, first and second order control

approximation. Comparisons were also made for various sampling

criteria - control approximation combinations to determine which

combination needs the fewest parameters to specify a control with

a given level of performance. These comparisons of control

approximations and sampling criteria were carried out on three dif—

ferent systems and for different trajectories. These results form

a basis for analyzing the performance advantages and costs for using

higher order control approximations and Optimal aperiodic sampling

Criteria.

Sampled-data controllability and Observability are defined

for the case where both the number of sampling times and the length

0f each sampling interval are free and considered to be control

variables. The sampled-data system is proved to be observable (con—

trc>llab1e) if the continuous time system is observable (controllable).

Moreover, it is proved that if the system is observable (controllable),

it Can be observed (controlled) in q sampling intervals, where

q is the order of the minimal polynomial of the plant. A test is

proposed to determine whether controllability or observability is

preServed for a particular sequence of sampling intervals. The test

depends only upon the eigenvalues of the plant and the sampling

it‘ter‘vals chosen. Some preliminary results are derived to indicate

the condition which must be satisfied for a system which is observable



(controllable) to be unobservable (uncontrollable) for a particular

sampling intervals sequence.

The infinite-time sampled—data regulator problem is formulated

.fc3r the case where both the number of sampling times and the lengths

c>f’ the sampling intervals are considered control parameters. The

¢e><jstence of an optimal closed-loop sampled—data control law is

[arrcwed for the cases where the number of samples are both finite and

:irlfinite. Computational algorithms for calculating the optimal

cecaritrol are proposed for both the case of finite and infinite

ricunber of samples.



CHAPTER II

PROBLEM FORMULATION

Consider the linear dynamic system

.g(t) = §§(t) + 99(c) (1)

2(c) = §§(t) (2)

§(t > = E.
0

whezrwe .§(t) e Rn, 3(t) E Rr, y(t) c Rm and ‘A, B, C, are compatible

mallrfiices. Initial time t0 and terminal time t are both assumed

N

fixreci,

The design Objective is to maintain the output trajectory

Xfiti) as close as possible to a desired trajectory z(t) with

“Ullinnum control effort along with minimum communication requirement.

Besixics, this cost functional should penalize the system for error

or eXcessive control inputs continuously in time, not only at

samp 1 ing ins tants .

To achieve this Objective, 3 performance index of the form

S a J + c (3a)

is Chosen where the control performance is measured by

J = l _ _
2 <1(tN) 5(tN), EQUN) §_(tN))>

1 tN
(3b)

0

7



and the cost of implementation is assumed to be measured by

N-l —BTi

C = 2 ae (3C)

i=0

uflaere §_HQ are positive semi-definite symmetric matrices not

13c>th identically zero and .3 is positive—definite, symmetric.

frtiese matrices are respectively the "weighting factor" for the end

;)c>int error, error energy y(t) - z(t) and control energy.

A cost for implementation is adjoined and represents the

economic costs for implementing and operating a samPled"data control

lii‘fi. This cost for implementation can be considered to represent

Clue: cost for transmitting and storing the Optimal sampled-data

CHDIItrol law. It is similar in form to the costs for sampling used

if! tfhe analytic derivation of adaptive sampling rules [13] and the

oF’txtmal periodic sampling rate for a feedback control problem [56]-

The sampled-data control law is a polynomial approximation

of tzhe true optimal control and is constrained to be piecewise

PCK13rnomia1 of the order up to two. The order of polynomial

aPPII‘oximation is determined by the tradeoff between the control per—

formance and the amount of information to be transmitted. The

control is assumed to have the form

k

Xuflt) = ) (4)
_ j

uji(t ti) t 5 [ti, ti+l

i=0

“Wuire k = 0,1,2 represents a step, ramp and parabolic control

approximation respectively.

The N sampling instants {t, ‘}N-2 are chosen such that

1+1 1=O

the sampling intervals ti+l - ti = Ti satisfy



O < T. . < T. < T. (5a)
1 min — 1 ‘— 1 max

5(1‘0, T1,..., TN_1) = 2, (Sb)

and N satisfies

< N.fi N ‘. (5c)

These sampling constraints (5a, 5b, 5c) can specify an

o;>t:imal periodic sampling criterion if

g_(TO, T1,...” TN-l) = Ti - (—‘N——fi—O—) = 0 i = 0,1,...,N-1

On the other hand, a subOptimal periodic sampling criterion

can be specified by fixing N = N . = N .
min max

Similarly, a suboptimal aperiodic sampling criterion can be

SPECified by choosing N as

g(TO, T1,...,TN_1) = z T. - (tN - t0) = 0 (5d)

Finally, the Optimal aperiodic sampling criterion has to

Satisfy (5a), (5c) and (5d).

The T 's, T 's, N . and N all come from
imax imin min max

the hardware limitation.

The optimal sampled-data tracking problem with polynomial

control approximation over constrained sampling intervals can be
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stated formally as follows:

Given the linear dynamic system (1), (2) with polynomial control

Iapproximation (4); determine the optimal control sampling intervals

s;equence, and the number of sampling intervals

In PM. T' = (T
-i i=0 — 0’ T

1,...

t:11at minimizes the cost functional (3) and satisfies (Sa), (5b),

£111d (5c) where u; = (u',,...,g'.).



CHAPTER III

PROBLEM SOLUTION

This tracking problem cannot be solved directly because the

aicimissible controls are constrained to be piecewise polynomial.

bieevertheless, the constrained problem can be transformed into an

¢e<;uivalent unconstrained one by integrating the differential equa—

t:icwn(l) and cost functional (3) over each sampling interval

[tai+l’ ti) separately, substituting output equation (2) and finally

invoking the control constraints (4).

The resulting discrete state equation becomes (derived in

Appendix A, B)

351+1 = 91% + 9131 (7)

I, = 9. as,

whfitre

a, = Em)

AT.
“ 1

9:, = 2“,) = e

—i = 2(Ti) 2 (20i"°"P-ki)

and

11
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12

T.

1
= = _ = 2Dki Dki(Ti) f0 (Ti t) e— B dt k 0,1,

The cost functional in discrete form is

  

1 1 N-I

__ v _ _ ‘ v v v

+ 2 5N3 5N DNEN + 2 1:0 (gig-iii + Zii-MIUI + 313191

N-I -ETi ,

- Zhiii - 2912.1) + .1. 0.8 (8)

I=O

I—l

ti = E T

j=0 J

§=9R9

E=£T9

___.. v
—N z (tN)F.§

' \

B- Btu-3 Rt2R--2

E“) = BCZR—l

BtZk-l BtZk

‘ J

1 CN
= _ v !

JO 2Q UN): EON) + Ito g (t)9_ _z_(t)dt]

T
_ _ i A't . At

g1 —_Q(Ti) — f0 e— .9 e— dt

T
_ _ i A'tA

Ni - M(Ti) - f e— gg(t)dc
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51 = Roi) = foi [3m + g'mg 9mm

Ti At

—1 = _h_(Ti) = ID _z_'(ti + 0g 9 e- dt

Ti

gi = g(Ti) = ID E (ti + t)g g Q(t)dt

2(t) = [20(t).---,Qk(t)]

Dk(t) = I; (t — x)k c2535x E dx

t fixed

II
M *
3 ll

Even though _Q and .R are constant, Q1, Mi, Bi are in

general, time varying. $1 is nonsingular because it s a fundamental

matrix [29]. 9i (31) is positive semidefinite (definite)

symmetric since .9 (R) is positive semidefinite (definite)

symmetric.

The discrete time problem becomes:

Given the sampled-data system (7) with specified initial condition,

determine the control and sampling intervals sequence [ui}§;é,

‘1' = (TO’T1”°°’TN-1) and N that minimizes the cost functional

(8) subject to the constraints (5a), (5b), (5c).

The following theorems establish both the existence of an

Optimal solution and the structure for the computational algorithm.

For any specified .2 and N satisfying the sampling con-

straints (5a), (5b), (5c), the existence of an optimal control and
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an Optimal state sequence are guaranteed if it satisfies the follow—

ing Kuhn-Tucker conditions.

THEOREM ] (Kuhn-Tucker Necessary Condition)

If the sampling constraint T_e [a, 9] holds, then an Optimal

solution _ui(T) = Bi and x. (I) = x1+1 -—i+l eXIst If and only If there

exists vectors Bi such that

(
[
3
7
:

x, — .x. . .
—i+l gl—l —I—1

r
m

9
-
“
-

u

v _ v

-91§i + E1131 + $191+1 D1

+ ' + '

R u. M.X. QiB. = 0
‘_I—l -I_1 -—

_ '

1+1 51

for

The Kuhn-Tucker necessary condition for the quadratic pro—

gramming problem is stated in Appendix C and the above conditions

are established in Appendix D.

THEOREM 2

For each .3 satisfying ‘3 e [3, b], there exists an unique

control law and trajectory sequence. The control law is

-1 ' -1 ' -1 ' '

= ..
Q

-

9., (31 E, + £1 Qifiiflliei + £1 (S1 2151“) (9)
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the cost functional is S(I,N,k) = J(T,N,k) + C(T,N,k) where

J(T,N,k) = J + l x'K x + k'x

l ”‘1 I
_ __ v _ v v - v _

2 .Z (5 1315144) 5—1 (51 —1 1+1) (10)
1=O

N—l -BT.

C(T,N,k) = 2 me 1

i=0

= I

§1 (31 + 9151+191)

-1
o = _ v

—i ‘gi -EiBi-gi

' = -1 :1 -1

2. as + 12.129 (11>

and K,, k. satisfy

—1 -—1

K=(Q-MR1M)+O'+1[_I_—D,S,',1D1<JG (17-)
‘1 _' —i—i-—i—i+l -—i

-l
= Q' - v v _ v

51 (I Dl—S—DiKi+l) 51H + 9151 hi ”3)

with terminal conditions

: '
' = _ 0

EN 2.139. and EN 2 (tN>E_c: (14)

Proof

The existence and uniqueness are proved in Appendix C and

the derivation of (9), (10), (11), (12), (13), (14) are in Appendix

E and F.



l6

THEOREM 3

If the sampling constraints are satisfied, then there exists

_ *

an Optimal sampling intervals sequence “I .

Proof

There exists an unique Optimal control and trajectory

N—l

i=0’ {
sequence {31(2)} (1)}E-1, for each T_ satisfying (5a),

xi+1 1=

(5b), (5c). The cost functional is Obviously a continuous function

of ‘I since -91"91’-91’ Mi, Bi’ gi, hi’-Ei’-Ei are continuous

matrix functions of I, Therefore, the cost functional 5(2) is

*

continuous oneicompact set and an Optimal solution _T for this

derived problem exists. Q.E.D.

Thus, there exists a solution

N 1 *it

{gi(_1_‘)}.

- * N-l

1:0 ’ {51(3 )}i=0 and I

for the optimal linear tracking problem with constrained sampling

times.

This control law is open 100p and pre-programmed since the

derived cost function and thus _T* depends on initial state x0

and the entire trajectory _§(t), t 6 [t0’ tNlo

This theorem shows that the solution ‘I* to the derived

optimization problem (minimize 8(IJN’k) over the set [ExR]) can

be used to determine the optimal control and trajectory from the

*

state equation (7) and the control law (9) after matrices 51(1 )

a

and Gi(T ) have been computed for i = N, N - 1, ..., 1,0 from

(11) to (14) assuming N and k are specified.



CHAPTER IV

COMPUTATIONAL ALGORITHM

The derived minimization problem

min 3(I;N,k)

N369

. . < T. < T. (53)
1mm — 1 —' Imax

9 = N,'_T_; satisfying Nmin i N : Nmax (5b)

g(TO,T1,...,TN_1) = 9v (5c)

can be solved for any given particular values Of both N and k

using a sequential unconstrained minimization technique (SUMT).

The convergence of this algorithm was proved in [34].

Another level of Optimization can be performed to de—

termine both the optimal number of sampling times N* and the

optimal order of control approximation k*. This Optimization could

be performed by searching the Optimal system performance S(Tf,N,k),

which results from solving this derived minimization problem over

each N and k satisfying

. N <

min —- - max

k = 0,1,2

17
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This level of Optimization over N and k can be performed

using an integer programming algorithm. This generalized algorithm

now has three levels of optimization

(1) determine {ufi(I,N,k)}:;3 by solving the Kuhn-Tucker necessary

conditions for any (T,N,k) and determine the derived perfor-

mance index S(T,N,k).

(2) determine the optimal sampling intervals sequence Tf(N,k) for

any N and K using the SUMT algorithm and determine the

performance S(Té,N,k).

(3) determine the optimal number of sampling intervals N* and k*

that minimize S(Tf,N,k) using an integer programming algorithm

and determine the Optimal sampled-data control law specified by

* * k * N—l * * * * *

{gig ,N ,k )}i: , l (N ,k ), N , k

* k t

and the performance 8(1 ,N ,k ).

Although such an algorithm could be implemented, no effort

was made to optimize over either N or k in this research. How-

ever, extensive evaluation of system performance S(T%,N,k) is per—

formed for different values of N and k.

This generalized algorithm has several advantages over other

possible procedures:

(1) the Optimization over integers and real variables are separated.

(2) the search dimension on the real variables is reduced from

N(n + kr + 1) to N and the Nn equality constraints (7)

are eliminated by solving for u:(T,N,k) using the Kuhn-Tucker

necessary conditions.
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*

The SUMT algorithm, used to determine I_ in this generalized

algorithm, has never been tested for the case where an equality con—

straint

.8.(T09 T19°°°9 TN‘l) = 9V

was imposed on the sampling intervals. The SUMT algorithm can be used

in this case if an appropriate penalty function is used. However,

convergence may be slow and the cost of computation may be high. The

form of the equality constraints imposed are quite simple and there—

fore the v equations can be uniquely solved for v ‘variables as

follows. The V ‘variables

can be expressed in terms of the N-V variables

T'=(Ti ,T ,....,T

such that

T
a
:

= £<i>

The derived performance index becomes

S<i.N,K) = 3(1, £(i).N,k)

where variables T1 are considered to belong to a new set

2

[ai ’bi ] which guarantees that

2 2
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is satisfied for i = 0,1,...,N—l.

The vector .3 can now be used to represent the N-l

free sampling intervals

1' = [T T ...,T
09 l, ]

N—2

if the sampling constraint specifies the terminal time

This vector .1 can also represent the sampling period T

-E(TO’°°"TN-l) =

A

Thus the vector .1 can represent either the first N—l

sampling intervals if an aperiodic sampling criterion is used or

the sampling period if a periodic sampling criterion is used. This

vector is defined in order to simplify the notation in Chapter V.

The proper interpretation of T, is always clear from the context

where it is used.
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The SUMT algorithm can solve this reduced derived minimization

problem with less computational effort because the search dimension

is reduced from N to N-v. A penalty function P(T) is adjoined

to form an augmented cost functional

L<_T_.N.K.v> = s<T.N.k> + mi)

N

A = Z: ' _ _P(T) [m1n(0,bifi Tifi)](bi2 T12)

2=v+l

+ [min(0’TiQ—ai£)](TiQ-aifl)

which incorporates the sampling interval constraint

i 6 [3, .121

where

‘3' = [a ,a, ,. ,a ]

iv+l 1v-i-Z 1N

b' = [b. ,b ,...,b ]

1

v+1

Since the penalty for violating the latter is proportional to

V (V > 0), the minimization of L(T,N,k,V) for monotonically in-

creasing sequence {Vp} results in a sequence {I}:=l that con—

verges [9] to the Optimal if.

The computational effort required by the SUMT algorithm

developed by Schlueter [9] is quite large because the gradient of

the performance index must be computed every time the performance
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index is evaluated. Therefore, a non—gradient algorithm and a gradient

algorithm are used to solve the same problem in order to determine

whether the non—gradient algorithm will require less computational

effort.

The Fletcher-Powell gradient search algorithm used by

Schlueter to determine If requires (N + l) evaluations of the

performance index at every iteration to compute the gradient and

evaluate the performance index. The Powell algorithm requires only

one evaluation of the performance index because the gradient is not

required. The following example problem was solved using both a

non-gradient Powell search algorithm and the Fletcher-Powell algorithm

and the numbensof evaluations of the performance index are compared.

EXAMPLE 4—1.

Given the system

Mr.) = u(t) x(0) = 1

with the cost functional

t

J = x2(tf) + % f f (x2(t) + u2(t))dt

o

where the control satisfies the constraints

u(t) = 111 t 6 [ti’ ti+l)

O < ti+1 _ tI < w

for i = 0,1 and t = t is free .
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The Powell and Fletcher-Powell algorithms both converge

as shown in Table 4-1.

TABLE 4-1. Convergence of Powell and Fletcher-Powell Algorithm

POWELL FLETCHER-POWELL

1 0.54064 0.54064

6 0.53340 0.52309

11 0.52799 0.52050

14 0.52174 0.52019 (converge)

20 0.52020 (converge)

The results indicate the Powell algorithm needs a few more

iterations for convergence, but the computational effort is much

less since the Powell algorithm requires only 20 evaluations of the

performance index while the Fletcher-Powell algorithm requires 42

evaluations to Obtain both the performance index and the gradient

at each iteration. Therefore, the Powell algorithm is used in all

the computational work which follows.

The Powell computational algorithm was first tested on

problems where the cost of implementation was neglected as in Exam-

ple 4 -1. The computational algorithms Often did not converge or

converged to local minima rather than global minima. This lack of

convergence is not always caused by the round Off error or by the

failure of the computational algorithms to converge, but can be

attributed to the fact that the sampling constraints which require

the sampling intervals to be positive were never imposed in the
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optimization algorithm. The following theorem, which states that

the sampling intervals will tend to approach zero if the cost of

implementation is zero and the number of sampling times is unbounded,

provides an indication that some difficulty with convergence might

be observed if a cost of implementation is omitted.

THEOREM 4-1

The optimal sampled-data control for the regulator problem is the

optimal continuous-time control if the cost of implementation is

negligible and the number of samples t is unbounded.

The optimal sampled-data solution to the regulator problem for every

.1 and N has been shown to be an Optimal approximation to the

optimal continuous-time solution for the appropriate Hilbert space

norm [57]. Since a sampled—data control

30:) = 30:1) t 6 [ti, t )
i+1

is a restricted class of controls, the control performance for the

Optimal continuous-time control is less than or equal to the perfor—

mance of an Optimal sampled—data control for any .3 and N. How-

ever, the optimal periodic sampled—data control with period

has been shown to converge to the Optimal continuous—time control

[1] as N approaches infinity. Therefore, since the optimal



25

continuous—time control has the minimum value of control perfor—

mance of all Optimal sampled-data control laws specified by T and

N, the optimal continuous—time control is the optimal sampled—data

control for the special case where the cost of implementation is

negligible and the number of sampling times is unbounded.

Q.E.D.

If a cost of implementation is included or if Nmax is

bounded, the continuous time control law will not be the optimal

sampled-data control law. If Nmax is unbounded but the cost of

implementation is omitted some elements of the optimal sampling

intervals sequences will always be very small. Thus, the computa—

tional algorithm, in searching for the optimal sampling intervals

sequence, would often select a negative sampling interval which

caused the algorithms to diverge. This convergence difficulty could

be overcome by either adjoining a penalty term on the performance

index which penalizes negative sampling intervals or by including

the sampling constraints which restrict the sampling intervals to

have non-negative values. The first approach is taken because there

are penalties on performance in actual engineering design which pre-

vent the sampling intervals from becoming too small. This penalty,

which is the economic cost for implementing and Operating a sampled—

data control law, has been overlooked in previous work on Optimal

sampling criteria [9 - 11].

The design of sampling criteria always includes a tradeoff

between control performance and economic cost which usually occurs

after the continuous time control law is designed [2, 16]. The
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inclusion of economic cost permits the design of a sampling criterion

and control law together in one step using a single performance index.

The economic cost should represent the cost for implementing

and operating the hardware to

1) measure and collect the data about the states of the system.

2) transmit this data to the controller.

3) estimate the state and compute the control.

4) transmit the control back to the system.

5) actuate the control.

The cost of implementation will be negligible if the cost

of computing, storing, transmitting data and implementing a continuous-

time control law is low. In this case, the continuous-time system

is optimal. However, in most cases the cost of implementing a

continuous-time control will be high and thus the cost of implementa-

tion (COI) must be included.

From this perspective, the optimal continuous—time control

is a special case of the Optimal sampled-data control problem. Thus,

the sampled—data control problem formulation is more general and

Should be used as the basis for design. The formulation Of the

continuous-time problem implicitly assumes that the cost of implementa-

tion is negligible. The omission of a cost of implementation term

in the performance index when it is not negligible is just as severe

in terms of overall system performance as omitting any other significant

term in the performance index.

The inclusion of a cost of implementation is an important

contribution to the art of optimal design since many Optimal control

laws are often criticized for being overly costly or impractical.
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Thus, a cost of implementation term in the performance index may

prove to be an effective approach toward making Optimal design

techniques more consistent with present engineering practice.

The literature on a proper form for a COI for control laws

is sparse. Research is presently under way [51] to develop models

for implementation cost. The best intuitive models for COI presently

available were found in the literature on adaptive sampling and

Optimal aperiodic sampled—data control law [13, 56]. This form for

the C01 is adopted for this study.

The effects of including a COI are illustrated in the follow—

ing example.

EXAMPLE 4-2

Consider the linear system

0 l 0

in) = 33(t) + u(t)

0 —l 15

with cost functional

1 l 0 1 tf 2 0

J = E 33'(tf) ytf) + -2- ft (§'(t) EU)

0 l 0 0 2

+ u2(t))dt .

The initial time t0 = 0 and the terminal time tf = 20 are

specified and the initial state is

E0
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The control is piecewise constant and changes only at the sampling

time tl such that

Augmenting the above performance index with a cost of

implementation

1

C(T,N) = COI = 2 0.1e i

=0

has a dramatic effect on the convergence of the Powell algorithm.

The computational results, shown in Table 4-2, indicates

that the inclusion of a COI term not only causes the algorithm to

converge when it did not without COI but also suggests that Optimal

solution with C01 may be global.

The lack of convergence and divergence problems exhibited

in the computational results, obtained when a cost of implementation

was omitted, indicate

(1) the changes in control performance for changes in the sampling

times is often small near the optimal.

(2) there can be several local minima for the derived control per-

formance J(T,N).

(3) the contraints that require the sampling intervals must be

included if the cost of implementation is omitted in order to

prevent divergence of the computational algorithm.
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The high rate of convergence and apparent global convergence of

the algorithm, when a cost of implementation is included, indicates

the inclusion of a cost of implementation

(1) makes for a better formulation of the control design problem

since the minimal value of the performance is more clearly

defined.

(2) prevents the algorithm from diverging by penalyzing small

positive or negative values for the sampling intervals. The

algorithm no longer selects negative values for the sampling

intervals which previously had caused it to diverge.

Although Powell algorithm works poorly with more than ten

independent variables, it is quite satisfactory with the three

examples computed , since the cost functional for the Optimal

sampling starts leveling off before N (number of free sampling

intervals) reaches five.

The optimal sampling intervals sequence becomes periodic if

the cost of implementation is much larger than the control perfor-

mance cost so that

SCI,N,R)

ll

0 O H

II

I!
M Q C
D

This cost of implementation becomes large if the cost per

sample a or the number of sampling times becomes large. A

heuristic proof that optimal aperiodic sampling is periodic when

the cost of implementation is very large is included below.

The optimal sampling interval sequence .T* can be obtained

by solving the necessary conditions for the problem
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N-l -BT

min{S(T,N,R) = 2: ae 1}

T_ i=0

subject to the condition

N-l

g(TO,Tl,...,TN_l) = 120 T1 - (tf - to) = 0

The necessary conditions become

*

-BT.

3 = —OBe 1 + A = 0‘—‘- [5(23N.k) + 4 5(1)]
3T. *

I

and thus the optimal aperiodic sampling criterion is periodic when

the cost of implementation is high. This result fits intuition

and provides justification for the particular form of the cost of

implementation chosen.



CHAPTER V

COMPUTATIONAL RESULTS

5.1 Introduction

The performance of the Optimal periodic and optimal

aperiodic sampled-data control law will be compared in this chapter.

Performance of a sampled-data control law can be measured in several

ways. Control performance J(T,N,k) defined by (3b), is the per-

formance of the control law in meeting its objectives and has been

the standard measure of performance. If this measure of perfor-

mance were used exclusively, the continuous-time control law

(T =_0, N 00) would always be optimal as proved in Chapter IV.

A second performance measure, system performance S(i,N,k)

defined by (3a), includes both the control performance J(T,N,k)

and the cost of implementation C(T,N,k). This cost for implementa—

tion should include the hardware and software costs for measuring

the outputs, transmitting this data from the plant to the computer,

computing the control law and state estimates, transmitting the

control back to the plant, and actuating the control commands.

These two performance measures can be used to compare the

relative control performance and system performance for different

sampling criteria (i,N) or different control approximations (k)

Specified by (T,N,k).

33
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A third measure of performance is the sampling index

I(J0,k,T) which is defined as the number of sampling intervals

required for a particular sampling criterion (N,T) and control law

approximation (k) required to Obtain a control performance value

J The sampling index can also be based on system performance0'

rather than control performance. These three measures of perfor—

mance will be used to

(1) compare the control performance, system performance and informa—

tion required for differencecontrol approximations in section 5.2.

(2) compare the control performance, system performance and sampling

efficiency of optimal aperiodic and periodic sampled-data

control laws in section 5.3.

(3) compare the performance of an optimal control law which is

sampled adaptively using different adaptive sampling schemes

and the performance of the Optimal aperiodic sampled-data

control law, in section 5.4.

(4) compare the control performance and sampling efficiency for

both an unstable and a stable system with ramp and parabolic

desired trajectory in section 5.5.

This study is made to illustrate a design procedure which

designs both the control law and sampling criterion together by

performing the tradeoff between control performance and cost of

implementation in a single step. This procedure is used to eval-

uate different order control approximations and compare optimal

periodic and Optimal aperiodic sampled-data control laws. This

study is intended to provide the basis for understanding the design
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procedure, but is not intended as an indication of performance

tradeoffs for any particular application.

The system chosen for investigation was selected because it

has been used extensively [13-20] for the evaluation of sampling

criteria in the literature on adaptive sampling. Therefore, it

provides a basis for comparing periodic and adaptive sampling

criteria on an Optimal control law with the Optimal aperiodic

sampled-data control law. This system is also chosen because it is

unstable without feedback and therefore provides a good basis for

comparing performance of the optimal control law implemented with

different sampling criteria.

This example problem will be used to compare the perfor-

mances of different control approximations in section 5.2 and

Optimal aperiodic, periodic and adaptive Optimal sampled—data con-

trol laws in sections 5.3 and 5.4.

EXAMPLE 1

Consider the system

x1 0 0 x1 1

d .-

751? X — X + u

2 1 0 2 0

X1
y = [10 100]

x2

with cost functional

1 2 1 tN 2 2
J=fiflt)—dt» +—f HflU-zun +£2uUHM

2 N N 2 t0

N-I —BT.
1

+ 2 0e

i=0
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where tO is zero, t = 20, and the desired trajectory and initial

N

conditions are given below

z(t)=0 t_>_0

§(t0) = O

Matrices F_ and 9' are set as 1 while .3 is set as 0.02 since

Athans [24] suggested that in order to obtain satisfactory tracking

performance, the weighting coefficient on the error energy should

be at least 50 times greater than that on the control energy.

a and B are chosen as 0.1 and 10 respectively because:

(1) small intervals below 0.1 second will be penalized heavily.

(2) it is common practice in the design of adaptive sampling

criteria [13] that 08 = 1. Therefore, the same practice is

used here.

The design objective is to

(1) keep the output as close as possible to the desired trajectory.

(2) minimise the control energy expenditure.

(3) minimize the information to be transmitted.

5.2 Comparison of Control Approximations

The control performance, system performance and information

required to specified a control will be compared for an optimal

zero, first, and second order control approximation. These compari—

sons will be performed for a control law with both periodic and

aperiodic sampling .
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The performance indices J(T,N,k), S(T,N,k) and I(J0,k,i)

do not compare the relative performance of the system with different

order control approximations. Therefore, the performance of the

zero, and the first order control approximation will be normalized

by dividing this performance value with N samples, (J(T,N,k)

for k = 0,1) by the performance for the second order (k = 2)

control approximation with N samples. The normalization can be

based on either the control performance measures

..3':

MI ,N.k)

RJ(N,k) = —:—*———"-—

3(3 ,N,2)

or the system performance measure

x99:

S(I_,N,k)

RS(N,k) = -4

sq ,N,2)

If the sampling criterion is periodic the Optimal sampling

*

sequence .1 is specified as

1*

and thus the vector T. is identical in the numerator and denominator

of these performance ratios. However, for optimal aperiodic

sampling, the Optimal sampling interval sequence

:9: k :‘c *

T_ = [T0, T1,...,TN_2]
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are determined by Optimizing S(T,N,k) for some specified number

of samples N and a particular control approximation k. Therefore,

the optimal sampling sequence in the numerator and denominator of

these performance ratios are not identical and depend on the order

Of the control approximation (k) specified.

The number of samples, I(J0,k,i*), is not a prOper measure

of performance for comparing different control approximations.

The number of data words required to transmit a particular control

approximation is a more significant measure of control approxima—

tion performance. Thus, an information index is defined as

1J(J0.k._T_) = (k + 2)IJ(JO.R,_T>

where (k + 2) represents the number of parameters required to

specify the control approximation and the length of each sampling

interval. This information index is the number Of data words re—

quired by a control approximation k to obtain a control perfor-

mance value J This information index can be based on either con—

. O.

trol performance or system performance. The normalization Of

this information index can be performed based on either the control

 

performance

I (J k T*)
J O, ’—

EJ(N,k) 4N

or the system performance

-*

 

ES(N’k) = 4N
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where IJ(o) and IS(-) are the number of data words required to

achieve the same value of control performance J0 or system perfor-

mance S0 Obtained by parabolic control approximation with 4N

data words. This information ratio index thus compares the number

of data words used by a step or ramp control approximation with the

number used by a parabolic control approximation.

5-2—1 Periodic Sampling

The effects of the order of control approximation on control

performance and information requirements can be observed for a peri—

dic sampling criterion in Fig. 1 and 2. The two figures indicate

the values of control performance over two separate ranges of N

(i.e. 2 to 14 and 14 to 49) in order to provide better resolutions

for comparison of the control approximations of order zero, one and

two.

The value of the control performance decreases monotonically

to the value which could be obtained with the optimal continuous

time control law. The ratios of the control performance for step

and ramp control approximation

J(T N k)
- , _

RJ(N,k) — ETTfNT27 k - 0,1

are shown in Table 5-1.

TABLE 5-1. Control Performance Ratio for Periodic Sampling

 

N 2 4 8 14 19 24 20 34 39 44 49

STEP RJ(N,0) 3.98 4.19 4.47 4.82 5.50 5.20 5.32 5.41 5.44 5.46 5.49

 

  
RAMP RJ(N,1) 1.76 1.79 1.86 1.92 1.95 1.95 1.97 1.99 1.98 1.98 1.98
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These results indicate a very significant improvement in

control performance can be obtained by using higher order control

approximation. The control performance ratio increases as N

increases which indicates the performance improvement per additional

sample is greater for step and ramp than for a parabolic control

approximation. ,

The information ratio index for step and ramp control approx-

imation based on control performance is Shown in Table 5—2.

TABIJES-Z. Information Ratio for Periodic Sampling

 N 2 4 8 l4 19 24 29

 

SEEP EJ(N,0) 2.75 2.35 2.2 * * * *

   
RAMP EJ(N,1) 1.65 1.43 1.31 1.32 1.31 1.30 1.29

 

* iruiicates that value could not be computed from data shown on figure

The information ratio index indicates the parabolic control

aPPrtniimation can achieve the same performance as a lower order con—

tr01.approximation with significant fewer specifying parameters.

This idxformation ratio index decreases as N increases indicating

the iuumortance of each sample or data word decreases faster for

lower <3rder control approximation than the higher order control

approximation. The performance ratio and information ratio index

in“Cate very significant improvement in both performance and in-

formation requirements are possible by using a higher order control

approx imation .



C
O
S
T

1
5

1
.
2
5
r

 

S
T
E
P

—
-
—
—

R
A
M
P

‘
‘
‘
‘
‘

P
A
R
A
B
O
L
A

 

S
y
s
t
e
m

P
e
r
f
o
r
m
a
n
c
e

f
o
r

P
e
r
i
o
d
i
c

S
a
m
p
l
i
n
g

 

43



44

The system performance for the three control approximations

is plotted in Figure 3. These results indicate that the system

performance decreases for small N and has approximately the same

value as obtained for control performance. The system performance,

however, levels off and increases as N becomes large. This in-

crease in system performance can be attributed to an increase in the

cost of implementation.

COI = Na eXp(-B

as N becomes large. Therefore, the system performance curves

have a parabolic shape since the decrease in control performance

as N increases (due to better approximation to the Optimal con—

tinuous—time control) is eventually offset by the increase in the

cost of implementation.

a *

The minimum system performance index S(Nk,k,T ) occurs at

* *

value Nk which decreases as k increases. This value Nk

for that control

*

Specifies the optimal sampling rate Nk/(tf — to)

approximation. Thus, the Optimal sampling rate also decreases as

the order of the control approximation increases. Since the cost

Of implementation is prOportional to N*, the parabolic control

approximation not only improves the control performance and re—

quires fewer control changes and less data to specify the control,

but also has a lower cost of implementation using this particular

form for the cost of implementation.
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The increase in system performance as N becomes large is

reflected in the performance ratio table RS(N,k) and the informa-

tion ratio table ES(N,k) shown in Table 5—3 and 5—4 respectively.

The performance ratio does not continue to increase as N gets

large but levels off and begins to decrease. Thus, the control

performance advantage of higher order of control approximations is

no longer as significant for large N because the cost of implementa—

tion is so high. The information ratio ES(N,k) decreases more

rapidly than EJ(N,k) indicating the effect of implementation

COStS .

TABLE 5-3. System Performance Ratio for Periodic Sampling

 

N 2 4 8 14 19 24 29 34 39 44 49
 

STEP RS(N,0) 3.98 4.19 4.47 4.82 5 5.10 4.88 4.69 3.07 2.24 1.73

   RAMP RS(N,1) 1.76 1.79 1.86 1.92 1.95 1.95 1.89 1.69 1.46 1.27 1.16

 

TABLE 5-4 Information Ratio for Periodic Sampling

 

 

_ N 2 4 8 14

STEP ES(N,O) 2.75 2.35 2.13 *

RAMP S(N,1) 1.65 1.43 1.31 1.30

    

In summary, the value of the performance ratio and informa—

tion ratio indicate that a significant improvement in performance

can be obtained using higher order control approximations if each

control approximation is constrained to have the same number

of specifying parameters. Moreover, if the desired value of control
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performance is specified, the number of data—words of information

required to specify a control with that performance value decreases

significantly as the order Of control approximation increases. The

only disadvantage of using a higher order control approximation is

the increased computational effort required to compute the Optimal

control when the effective dimension of the control vector (k + l)r

increases with k. This cost for computation should be included

in the cost of implementation if a proper measure of the perfor-

mance of different order control approximations is to be made.

5-2—2 Optimal Aperiodic Sampling

The effects of the order of the control approximation on

system performance and information requirement will now be in-

vestigated for the case of optimal aperiodic sampling. The control

performance and system performance for all three control approxima-

tions (k = 0,1,2) are plotted in Figure 4. The J-axis is on a

logarithmic scale in order to include a wide range Of variation.

The N—axis varies from 1 to 6 since all curves level off beyond

N = 3 as also shown in Table 5-5.
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1k * :1:

TABLE 5—5. (J (N + 1) - J (N))/J (N)

 

 

Contro N 1 2 3 4 5

STEP 89% 47% .31% .13% 0%

RAMP .94% 0% 0% 0% 0%

PARABOLA 7.86% .11% 0% 0% 0%   
 

TABLE 5—6. System Performance Ratio for Optimal Aperiodic Sampling

 

N

Control
 

STEP RS(N,0) 60.6 6.8 3.6 3.6 3.6

   RAMP RS(N,1) 1.47 4.3 2.3 2.3 2.3

 

The results indicate the system performance levels off

very quickly as the number of sampling intervals increases. More-

over, the system performance level for the lower order control

approximation will never even approach the level of system perfor-

mance Obtained for the parabolic control approximation because

(1) the control performance decreases so slowly as N increases

as shown in Table 5-5.

(2) the cost of implementation increases as N increases.

The performance advantage of higher order control approxi-

mationsis also indicated by noting that the system performance

ratio RS(N,k) is extremely large when N is small. These values

for RS(N,k) for OAS are much larger than were Obtained for PS.

This dramatic improvement in performance obtained by selecting

both the control sequence and the sampling intervals sequence
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combination optimally occurs because the control approximation

parameters and performance index have been shown to depend on the

sampling intervals sequence chosen and therefore the performance

index is decreased significantly as the sampling intervals sequence

approaches the optimal. The performance also decreases more rapidly

with increase in the order of the control approximation as the

sampling intervals sequence approaches the Optimal.

The Optimal number of sampling times N: for OAS for zero,

first and second order control approximations are 3, 2 and 2

respectively while the optimal number of sampling times for periodic

sampling are close to 39, 34 and 29 respectively. Thus, the selection

of both the sampling intervals and the control approximation co-

efficients over each interval also significantly reduces the number

of sampling intervals and thus the information required to transmit

the control. A more complete comparison of the performance of optimal

aperiodic (OAS) and periodic (PS) sampled-data controls will be

performed for zero, first and second order control approximations in

the next section.

5.3 Comparison of Optimal Aperiodic and Periodic Sampling Criteria

A comparison of Optimal periodic and aperiodic criteria

will now be performed using control performance, system performance,

and sampling index as performance indices. The optimal control

performance and system performance for both periodic and Optimal

aperiodic sampling criteria are plotted together for zero, first

and second order control approximations in Figures 5, 6 and 7

respectively. A logarithmic scale is used to cover the large

range of performance index values.
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For each case, the clear superiority of OAS over PS is

Shown for each control approximation. The control performance for

49 periodic control changes does not achieve the control perfor—

mance obtained with two control changes made over optimally chosen

sampling intervals. Thus, OAS requires one control change for

every 25 periodic control changes to obtain the same performance

regardless of the order of the control approximation used. Moreover,

the performance index depends very significantly on the sampling

intervals sequence chosen since both the control approximation

parameters over each sampling interval and the length of the sampling

interval both depend on the sampling intervals sequence chosen.

The performance advantages of OAS over PS for the different

control approximations can be determined by computing the control

performance ratio

 

 

 

 

t -t

N 0
* J( N ,N,k)

RJ(N,k) = *

J(T ,N,k)

or the system performance ratio

t -t

N 0

* S( N ,N,k)

RS(N,k) = *

S(T ,N,k)

which is the optimal performance value of PS divided by the Optimal

performance value of OAS with the same control approximation (k)

*

and the same number of sampling intervals. The values of RJ(N,k)

*

and RS(N,k) are shown in Table 5-7 and 5—8 for N = 2 and 4
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and for zero, first and second order control approximations.

1:

Since optimal performance for OAS occurs for Nk< 4,

for each k, the computation is limited to small values of N.

TABLE 5-7. Control Performance Ratio between OAS and PS

 

 

   

Control N 2 4

STEP R:(N,1) 19.3 31.7

RAMP R:(N,2) 50.5 30

PARABOLA R:(N,3) 40.8 23.3

 

TABLE 5—8. System Performance Ratio between OAS and PS

 

 

Control N 2 4

STEP R:(N,l) 17.5 20

RAMP R:(N,2) 33.1 19.3

PARABOLA R:(N,3) 30 17
    

The performance ratios are quite large for each control

approximation and again confirms the significant improvements in

performance possibly by using OAS rather than PS. The performance

improvement ratio for the ramp control approximation are the

largest indicating the parabolic term UZi in the control approxi-

mation does not contribute to control performance improvement as

significnatly as does the linear term uli'

The decrease in this performance ratio as N increases

indicates that OAS's performance advantage over PS decreases as

N increases. The system performance achieved by OAS can never be
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reached using PS since the improvement of control performance is

offset by the increase in COI as the number Of samples increases.

The ratio of the Optimal system performance of OAS is about

2:3:7 achieved at N: = 2, 2 and 4 for parabolic, ramp, and step

control approximations whereas the ratio of PS is close to

4:7:16 at N: = 29, 34, and 39. The difference in Optimal system

performance ratio is less than for PS because the performance for

OAS is so good that the order of control approximation has less

effect.

5.4 Comparisons of OAS and Adaptive Sampling Rules

Numerous studies have been made to develop sampling criteria

that outperform a periodic sampling criterion [13-20]- Additional

studies have been made to compare the performance of periodic and

adaptive sampling criteria for a simple feedback control system

with a specified non-optimal control law.

An optimal aperiodic sampled-data control law with second

order control approximation is sampled by a sample and hold

mechanism triggered by different adaptive criteria. The performance

of this adaptively sampled Optimal control law is compared with the

performance of an Optimal aperiodic sampled-data control law with

zero order control approximation. The study is performed to compare

the performance of adaptive and optimal aperiodic sampling criteria

on an optimal control law. This comparison is not perfect because

the control law that is sampled adaptively is not the continuous

time control.
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All the presently known adaptive sampling criteria depend

only on the input signal variations and do not directly depend on

the system dynamics or the performance indices. Therefore, applying

those criteria to an Optimal control input can be expected to

provide poor performance compared to the Optimal aperiodic sampled-

data control law. This conjecture is supported by the following

Simulation results.

The comparison of Optimal aperiodic and adaptive sampling

criteria will be compared based on the performance of the system

given in Example 1. The optimal control law, which is to be sampled

adaptively, is determined by computing the Optimal aperiodic sampled-

data control law with three control (N = 3) changes and second order

control approximation (k = 2). This control law has the form

2
p

1.7172 — 26.974 + 78.461 t O < t < 0.30376

0.30376) 0.30376 5_c < 1.10653-0.085785 + 0.37588(t

u*(t) . - 0.37389(t - 0.30376)2

.0032652 - .009l9l4(t - 1.10653) 1.10653_: t < 2.36193

4 + .0057176(t - 1.10653)2

-5.8153 x 10’7 2.36193_: t_: 20

+ 1.1827 x 10’7(t - 2.36193)

   - 2

t 5.5011 x 10 9(t — 2.36193)

This Optimal control is then sampled by a sample and hold

mechanism triggered by the following adaptive sampling rules

developed by Hsia [13], Dorf [20], Gupta [l4] and Mitchell [17].
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V08

Hsia T1 = . a = 0.1 B = 10

lu.|
1

/____.

Dorf T1 =M a = 0.1 B = 10

VIU.|

I

Gupta T1 = —2.303 a a < 0 Si

0 5 a a > ‘a =-:—
_. u.

1

"0’1 ' 2
Mitchell T. = -—— + /(u /H,) + 2R/fi, R = 0 l

1 fi - i 1 1

i

The variable 61 and ui in this table represent the

first and second derivatives of the control u(t) at t = ti.

Sample and Hold

Mechanism

*(t) N SYSTEM

“ (Ex. 1) ———-)y(t)

The value of control performance for each of these adaptive

 

 

  

sampled-data control laws and the number of samples required are

then recorded. The value of the performance index computed for the

Optimal aperiodic sampled-data control law with four control

changes (N = 4) and zero order control approximation (k = 0) is

also determined. These values of the performance index and the

resultant number of samples required are tabulated in Table 5-9

for both the optimal aperiodic and adaptively sampled—data control

laws.
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TABLE 5-9. Performance of Different Sampling Criteria

 

 

Number of Sampling, Cost

Hsia 5 614469.53

Dorf 4 13239277.9l

Gupta m 3 0.0178

Mitchell 880,000 ; 0.0178

Optimal 4 0.06382     

The optimal aperiodic sampled—data control with zero order

control approximation outperforms all of the adaptively sampled

Optimal control. This optimal aperiodic sampled-data control law,

specified by an Optimal control sequence-Optimal sampling intervals

sequence combination, had approximately the same level of control

performance as the optimal control law sampled using Gupta's and

Mitchell's criteria, but with significantly fewer control changes.

This optimal aperiodic sampled-data control had significantly better

control performance than the Optimal control laws adaptively sampled

by Dorf's and Hsia's criteria. This comparison is based on

approximately the same number of control changes.

The values of costs for Gupta and Mitchell's criteria are

Obtained by the observation that they both sample almost continuously

on the Optimal control. Therefore, the control performance is

approximately the value obtained using the Optimal control.

The large values of control performance Obtained using

Hsia and Dorf's criteria can be explained by the fact that they

fail to sample the small variations of the optimal control in the
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final period which is the longest. Since this system is highly

unstable, the control performance will deteriorate if the sampling

mechanism is not triggered sufficiently often.

The results indicate that the selection of a sampling

rule for even an optimal control law can have disastrous results

if the rule is not selected prOperly or if the sampling rate for

periodic sampling is not high enough. Moreover, it is obvious

that by selecting the Optimal control sequence and sampling

intervals sequence combination, excellent control performance can

be obtained with very few sampling instants. Since the optimal

control sequence depends on the sampling intervals sequence chosen

for this Optimal aperiodic sampled—data control, the sampling

instants can be viewed as tuned to the system dynamics, optimal

sampled-data control law, the performance index, the trajectory and

the initial conditions.

5.5 Performance, Different Systems with Different Inputs

The control performance, system performance and sampling

efficiency will be compared using both periodic and Optimal aperiodic

sampling for different systems with different desired trajectories.

A stable and an unstable system will be tested with both ramp and

parabolic inputs.

5.5.1 Performance of a Stable System

The following example uses a system with both eigenvalues

negative. This system makes a good model of a closed-loop system

and thus the tracking performance can be compared for both periodic
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and Optimal aperiodic sampling since the control energy required

to perform the regulation function is negligible.

EXAMPLE 2

Consider the system

d 1 0 l 1 0

__ =
+ U(t)

d" x -5 -1 x 5
2 ° 2

X

1
y = [1 0]

x2

with cost functional

  

O 2 2

J = —§- (yum - 2410))2 +§710Hy<c> - z(t)) + 0211 (t)]dt

N—l -BT.

+ 2 ae 1 a = 0.1 B = 10

i=0

and initial condition

f

xl(0; 0

x2(0) O

k A

Case I. Ramp Trajectory z(t) = 0.1t

This Type 0 (plant has no poles at the origin) system will

follow a ramp trajectory with a monotonically increasing error.

Therefore, one might expect a rather large performance index value

regardless of the sampling criteria or control approximation used.

The Optimal control performance, PlottEd in Fig. 8 and 9 for PS
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and OAS sampling criteria, are rather large as expected. Although

the performance index value decreases as the order of control

approximation increases, the relative improvement in performance is

insignificant. Moreover, the decrease in control performance is

also very small as the number of sampling times increases.

The difference in performance for OAS and PS sampling

criteria is also slight. Thus the control performance is apparently

dominated by the large output error and the large control energy

requirements which result from requiring a Type 0 system to follow

a ramp trajectory.

The Optimal sampling intervals sequence are shown below

for different values of N and k.

TABLE 5-10. The Optimal Sampling Intervals Sequence in Tracking

a Ramp Trajectory

 

 

 

 

 

   

N k Step (0) Ramp (l) Parabolic (2)

1 4.7189 8.5 9

5.2811 1.5 1

3.2807 4.2885 3.9074

2.6595 4.1087 3.5406

4.0598 .16028 2.5520

3.7024 1.5848 2.9422

2.7380 4.8031 2.6346

2.8871 2.5885 2.499

0.6726 1.0238 1.9242

2.9613 1.4271 2.2155

2.3063 3.6 3.0819

2.0169 2.1168 2.0005

1.9763 1.8497 1.9892

0.7297 1.0063 1.7318
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The optimal sampling intervals sequence depends on the shape

Of the trajectory to be followed, the order of the control approxi-

mation, and the performance index used. Since the terminal error

is weighted, the error at the terminal time should be small andthere-

fore the last sampling interval should be short. The

[tN-l’tN]

results indicate the last interval is generally the shortest in

the sequence. The lengths of the other sampling intervals in the

sequence depend on how well the control approximation can represent

the desired trajectory to be followed since in this case the Shape of

the desired trajectory z(t) and control u(t) should be nearly identical

a short time after the input is applied. The higher order control

approximation (k = 1,2) can accurately represent the ramp trajectory

and thus for N) 2 the sampling intervals sequence is close to

periodic as the order of control approximation increases. For

N = 2, the initial sampling interval increases as k increases

because the control approximation can better represent the con-

tinuous-time Optimal control over this interval as k increases.

Thus, since the control over the initial interval is more accurate

the length of that interval increases and the length of the final

interval is reduced.

Case 11. Parabolic Trajectory z(t) = 0.1 t
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The Optimal control performance for PS and OAS are plotted

in Fig. 10 and 11 respectively. The control performance value is

large and again does not change greatly for changes in sampling

criteria (N,I) or control approximation (k). These changes are

however considerably greater than Observed for the ramp trajectory

input. This result might be expected since the parabolic trajectory

is more difficult to follow than the ramp trajectory.

The control performance is always lower for OAS than PS and

decreases with increase in either N or k as eXpected. The

sampling intervals sequence as a function of N and k are shown

in Table 5—11.

TABLE 5-11. Optimal Sampling Intervals Sequence in Tracking a

Parabolic Trajectory

 

 

 

 

 

 

N Step (0) Ramp (l) Parabola (2)

5.0932 8.0559 9

4.9068 1.9441 1

2.9891 4.8577 8.7762

3.2119 3.9979 0.6149

3.7990 1.1444 0.6089

2.1042 3.9095 8.9975

2.2253 2.4563 0.3340

2.2527 2.5670 0.3340

3.4179 1.0671 0.3340

0.8979 3.0226 8.1

1.8 2.0322 0.6916

2.0 2.0019 0.4814

2.0 1.9737 0.3618

3.3021 0.9696 0.3651
     

The second order control approximation can approximate the

parabolic change in the desired trajectory very well and therefore

the initial sampling interval T is always large for this control

0

approximation. The error near the end of the control interval is
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heavily weighted in the performance index and therefore the number

of sampling times at the end of the control interval increases as

N increases in order to minimize the terminal error.

The initial sampling interval T for the Optimal aperiodic

0

sampled-data control laws with lower order control approximations are

much smaller than for the second order approximation because these

lower order control approximations cannot approximate the parabolic

trajectory as well over the initial interval. This can be observed

especially on the zero order control approximation because many

more sampling instants occur near the initial part of the control

interval as N increases.

5-5—2. Performance of an Unstable System

A non-minimum phase system with the same gain characteristics

as the previous example is now considered. Since this system is

unstable, control energy must now be expended to perform both

regulation and tracking functions.

EXAMPLE 3

Consider the system

d x1 0 1 x1 0

a; = X + u(t)

x2 -.5 1.5 2 .5

X

1

y = [l 0]

x2

with cost functional
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J =-% (y(10) — 2410))2 +-% féo[(y(t) - z(t))2 + .02u2(t)]dt

N-l —BT

+ 2 ac 1

i=0

a = O 1 B = 10

Case I. Ramp Trajectory z(t) = 0.1 t

The system performance for OAS and PS sampling criteria

are plotted in Fig. 12 and 13 respectively for a ramp trajectory.

The performance curves for zero, first and second order control

approximations are shown in both figures.

The system performance decreases significantly as the number

of samples increases for both PS and OAS criteria. The performance

for the second order control approximation is almost identical for

OAS and PS. However, for lower order control approximation the per-

formance of the OAS is significantly better than for PS. Apparently

the optimal sampled-data control with second order control approxi-

mation so closely approximates the optimal continuous time control

that the selection of sampling intervals does not greatly affect

the performance.

The system performance ratio RS(N,k) are given in Table

5-12 and 5-13 for PS and OAS. These performance ratios decrease

as N increases for both zero and first order control approximations

and for both sampling criteria. Thus, the performance advantage of

the parabolic control approximation decreases as the number of

samples increases.
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The performance ratio for P8 is much higher than for

OAS because the optimal sampled—data control with OAS and with any

control approximation is so close to the Optimal continuous

time control that the improvement due to additional terms in the

control approximation is less than for the control law with periodic

sampling.

TABLE 5—12. System Performance Ratio for Periodic Sampling

 

 

 

N l 2 3 4 5

Step RS(N,0) 16.61 8.17 3.34 2.08 1.59

Ramp RS(N,1) 2.17 2.34 1.14 1.07 1.02

   
 

TABLE 5—13. System Performance Ratio for Optimal Aperiodic Sampling

 

 

N 1 2 3 4 5

Step RS(N,0) 1.69 1.69 1.19 1.15 1.14 r

Ramp RS(N,1) 1.20 1.11 1 l l

     

The Optimal sampling intervals sequence for different control

approximation and different number of samplings are shown below.
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TABLE 5-14. Optimal Sampling Intervals Sequence in Tracking a Ramp

 

 

 

 

 

 

    

Trajectory

k

Step (0) Ramp (l) Parabolic (2)

.58262 1 1.7529

9.4174 9 8.2471

0.57325 0.97197 1.5114

3.7592 6.9998 6.7511

5.6672 2.0284 1.7375

0.64978 0.82625 1.9130

2.3205 5.0144 3.1614

2.9347 2.8353 2.8392

4.1042 1.3241 2.0864

0.65095 1.0101 1.9701

1.7476 3.5440 2.1187

1.9167 2.2670 2.0333

2.0385 1.9722 2.0014

3.6477 1.2067 1.8764

0.68421 0.96478 1.5909

1.4281 2.8156 2.2513

1.1949 1.7785 1.6850

1.6309 1.6672 1.6685

1.5873 1.5893 1.6605

3,4747 1.1746 1.1439
  

The approximation to the Optimal continuous—time control

should be excellent over the initial segment of the control interval

in order to adequately regulate the unstable system and to track the

ramp trajectory. Therefore, the initial interval [t0,t1) was

samll for all N and k. Moreover, in general, the length of this

interval increased as N and k increased. The performance index

penalizes terminal error and therefore the lengths of the terminal

interval is also small. The number of samples in the

middle of the control interval increase as the number of samples

increase. The sampling intervals in the middle of the control

interval becomes closer to periodic as both N and k increase

indicating the regulation and tracking tasks require constant control

effort for this particular system.
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Fig. 14 System Performance Of PS for the system of example 3 in

tracking a parabolic trajectory
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Case 11. Parabolic Trajectory z(t) = 0.1t2

The system performance for OAS and PS criteria are plotted

in Fig. 14 and 15 respectively for a parabolic trajectory. The

performance curves for the zero, first and second order control

approximations are also shown in both figures.

The system performance generally decreases significantly

as either the order of control approximation increases or as the

number of sampling times increases. However, for the case of

parabolic control approximation and OAS, the increased number of

small sampling times in the initial period increases the COI

without improving the performance enough to offset it and there-

fore the system performance increases with the number of sampling

times. Thus, for this case,exce11ent system performance was

achieved using very few optimal aperiodic sampling times and a

high order of control approximation.

The system performance ratios RS(N,k) are given in Table

5—15and 5—16 for PS and OAS. These performance ratios decrease

as N increases for both the zero and first order control

approximation. This result implies the performance advantage Of

the second order control approximation is much greater when the

number of sampling times is small. The ratio is larger for PS

than for OAS because the control law with OAS closely approximates

the continuous-time Optimal control so that increasing the order of

the control approximation does not significantly increase system

perfromance.
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TABLE 5-15. System Performance Ratio for Periodic Sampling

_ N 1 2 3 4

Step RS(N,0) 32.46 3.78 1.5 1.28

amp RS(N,1) 1.26 1.14 1.07 1

TABLE 5—16. System Performance Ratio for Optimal Aperiodic Sampling

_ N l 2 3 4

Step RS(N,0) 12.82 1.81 1.33 1.23

Ramp RS(N,1) 1.39 1.20 1.16 1.08

    

The Optimal sampling intervals sequence is shown below for

different values of N and k.

 

 

TABLE 5.17. Optimal Sampling Intervals Sequence in Tracking a

Parabolic Trajectory

k .
N Step (0) Ramp (1) Parabolic (2)

0.2 2.095 9

1 9.8 7.905 1

1.9083 3.7552 9.317

2 4.0514 5.6 0.3417

4 0403 0.6448 0.3413

0.52507 2.6451 8.8372

4.8085 3.5664 0.4136

3 1.6811 2.6352 0.3752

2.9881 1.1533 0.3743

1.1063 2.3539 6.8133

1.9981 2.0519 1.3542

4 1.9946 1.9996 0.7699

1.8982 2.0013 0.512

3.0028 1.5933 0.5236
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The Optimal sampling interval sequences are chosen based

on the order of the control approximation and the trajectory to be

followed. The second order control approximation can accurately

follow the parabolic trajectory and thus the first sampling interval

is large. As the number of sampling intervals increases, the length

Of the initial sampling interval decreases and the length of the

other sampling intervals increase. The zero and first order control

approximations cannot follow the parabolic trajectory accurately

over any interval. Thus, the length of the initial interval de-

creases significantly as the order Of the control approximation

decreases. The last sampling interval, where the rate of change

of trajectory is the largest, tends to be the smallest Of the sampling

intervals for the first and second order control approximations.

The first interval is the smallest for the zero order approximation

because the sampling intervals have to be chosen to provide effective

control because the approximation to the parabolic trajectory is so

poor. Thus, the sampling times for lower order control approxima-

tions must be used to maintain tracking accuracy much more than for

higher order control approximations.



CHAPTER VI

SAMPLED—DATA CONTROLLABILITY AND OBSERVABILITY

Controllability and Observability were originally developed

as purely mathematical concepts. However, they were soon found to

be related to the possibility Of achieving a desired degree Of con-

trol and obtaining the desired information about the system.

Controllability assures that the Optimal control law designed

for a linear system using a quadratic performance index will be

asymptotically stable. Observability assures the Kalman filter will

be asymptotically stable. Moreover, controllability and observability

are also important in the realm of mathematical modeling. Although a

state space model is desired for analytic design of the control law,

one Often starts with an input-output model Obtained experimentally.

The minimal realization which does not introduce any phenomena that

cannot be accounted for by an input-output description of the system,

is intimately related to the concepts of controllability and

observability. Thus, controllability and observability are important

concepts in the areas Of control, estimation, and identification of

dynamical systesm.

Controllability and Observability will be investigated for

sampled-data control systems where the continuous—time plant is known

but the actuators and sensors are not specified and must be designed

77
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as part of the control law. For this case, the number Of sampling

times and the lengths Of sampling intervals are design parameters or

control variables for the system.

Definitions of controllability and observability have been

recently prOposed by Troch [41] for the case where the number of

sampling intervals is specified but the lengths of the sampling

intervals are free and considered control variables. However, there

never existed definitions that considered both the number Of

sampling times and the length of each sampling interval as control

variables.

Therefore, extended definitions of controllability and

Observability are proposed. Under these extended definitions, any

system which is either controllable or observable when the control

and measurements are continuous functions of time is shown to be

controllable or observable when controls are changed and measurements

are made only at the sampling times. Since controllability and

observability should be only a property of the dynamic system being

controlled and not a property of the hardware used to implement this

control, the number Of sampling times should be as much a control

parameter as the lengths of the sampling intervals and the control

levels over each sampling interval. Under this extended definition

the actuators and sensors must be viewed as part of the control law

being implemented rather than part of the system to be controlled.

This point of view is required because the number of sampling times

and the lengths Of the sampling intervals are control parameters or

variables.
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Sufficient conditions were derived by Troch [41] which

guaranteed that an observable system would be sampled-data observable

over q sampling times where q is the order of the minimal

polynomial. The conditions derived for observability were never

extended to controllability. Moreover, the conditions were quite

restrictive and did not indicate the conditions under which a system

could not be observed on q sampling intervals.

Necessary and sufficient conditions for the controllability

and observability of sampled-data system are derived. These theorems

state that a sampled-data system is controllable (observable) if

and only if the continuous—time system is controllable (observable)

and the sampling time sequence is such that a certain matrix is non-

singular. This nonsingularity of this matrix can be used as a test

for controllability or observability of a sampled-data system. This

trst is used to determine conditions on the sampling times for which

an observable and controllable continuous time system will not be

observable and controllable on a sequence of sampling times. Finally,

conditions on the sampling times are derived for guaranteeing that

a system which is controllable and observable with continuous measure-

ments and controls will be controllable and observable with sampled

measurements and controls.

The sampled—data control problem is now formulated in order

to provide an apprOpriate framework for defining sampled-data

controllability and observability.

Consider the linear system



8O

fiflt) .A_§(t) +_§_g(t) -§(t0) =_§ (15)

10:) _9 35m
(16)

where _x(t) is the n-dimensional state vector, u(t) is the r—

dimensional control, and y(t) is the m-dimensional output vector

and A, B, C_ are compatible time-invariant matrices.

The sensor provides measurements

=
17

at the sampling times {t }N that are not specified but are
h+i i=0

constrained to satisfy

- = 18

0 < Tmin-i th+1+1 th+1 Ti i-Tmax ( )

The control actuator is also assumed to be a sampled—data device

and therefore the control gfit) is sampled-data of the form

= =

l

3‘t) -3(th+i) Eh+i t 6 [th+i’ th+1+1) ( 9)

for i = 0,1,...,N-1. This control is assumed specified by knowing

the control sequence {Eh+i}§;0’ the sampling intervals sequence

N-l

{th+i}i=0’ and the number of sampling times N.

This system can be represented by a set of difference equa-

tions if the state differential equation is integrated over each

sampling interval [ ) separately. The difference
th+1’ th+i+1

equations have the form
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+ D

ih+i+1 = $h+i§h+i —h+13h+i i = 0’1’ ' ' ' ’N'1 (20)

Where 2Eh+i = 5(th+i)

AI,

$h+i =-$(Ti) = 9

Ti
2h+i = 2(1‘1) = ID 3(t)§dt .

This representation does not indicate clearly that the

sampling times are control variables, but imbeds these variables

in the matrices O and. D .. oreover he a e . i t e

-h+1 '—h+1 M ’ t St t 35h-+1 S h

state at the sampling time specified by knowing the control

N N-l

m, {th+i}i=0’ {391:0}.

system is used for notational convenience. The dependence of 2h+i

This representation of the sampled-data

}N must always be considered in this develop-

0" {th+i i=0and 2h+i

ment.

6-1. Observability

Definition
 

The system (15) is said to be sampled—data observable rat

. . . N—l
th if there ex1sts a finite N and a sequence {th+i}i=0 such that

any initial state §(th) can be determined from the knowledge of

N-l N—l

{14th+1)}1-0 and LE<th+i)}i=0 °

It should be noted that N is arbitrary but finite and the

sequence {th+i}§;0 is not specified but is contrained to satisfy

th < th+l<'°'<th+N-l
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Although a system may be sampled-data observable, it may

not be observable if N = p measurements are used. Therefore,

p-Sampled-data Observability is defined as follows.

Definition
 

The system (15) is said to be p-sampled—data observable at

t if there exists a sequence {th such that any state}P‘1
h+1 i=0

‘£(th) can be determined from the knowledge of {y(th+i)}:;é and

{3(th+i)}Ii:(l) .

A system which is sampled—data observable is p-sampled-data

observable for all p greater than some N = NO where NO is the

minimum number of sampling intervals required to determine the

initial state xh. The following theorem is obtained by extending

a theorem on discrete-time observability (Appendix H) to obtain a

necessary and sufficient condition for p-sampled-data observability.

THEOREM 6-1 (Necessary and Sufficient Condition on p-Sampled—Data

Observability)

The system (15) is p—sampled—data observable at th if and

only if there exists a finite time sequence {th+i}§;0 such that

- I' v v' ' v v

2049- :9h+1,h -C-: “:9 h+p—1,h 9]

has rank n where

(I) =2(t-:t

—j 9k 3 k)

For the case of periodic sampling, p—sampled-data observa-

bility is assured if a sampling period T can be found such that
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1' I v. ' ! p-l v

a C C C9.0 [_ :9; _: :(g) _]

has rank n where

$1 = $(T) i = 0,1,...,p-l

This theorem can be used to test for the minimum number of

sampling times NO required for observability. The test could be

performed by determining the minimum integer p that satisfies

p‘: n/m

for which a sequence {th+i}g;0 can be found such that 90 has

rank n. Although No can be the smallest integer which satisfies

this inequality, the actual value of NO is often larger than this

minimum number because some of the measurements are redundant.

The condition of this theorem can also be used to determine

whether a system is observable on a particular sequence of N = p

sampling times. However, a stronger condition can be found by pro-

perly decomposing the condition found in Theorem 6-1 into a condition

on the plant (15) and a condition on the sampling times for the case

where p = q, the order of the minimal polynomial for the system.

This strong condition for p-sampled-data observability is stated in

the following theorem.

THEOREM 6—2 (Necessary and Sufficient Condition on q-Sampled—Data

Observability)

A system(15)‘which has a system matrix A_ with minimal poly—

nomial of degree q;
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r r k

1,...,(A — Ak) k with Zm(l) = (A - Al)

is q—sampled-data observable if and only if

(i) the system(15) is observable in Kalman's sense [36]

(ii) there exists a sequence {t }q-1 such that the q x q matrix

 

  

h+i i=0

\

r exlth exlth+l A1th+q-1

t 3 A1% A1th+1 t A1th+q-1

h h+1 h+q—l

r -1 r —1

t( 1 ) A t t( l ) t

h e l h h+g-l l h+q-l

(rl—l)! (rl—l)!

E0 = -—-X-E-----------------------X- E _——_‘
e 2 h 2 h+q-l

t<r2-l) A t t(r2-l) A t

h e 2 h h+g-l 2 h+q—1

(r 2-1)! . . . (1.2-1)

(rk—l) (r —1)

th Akth c k t
7% _1)! e ‘_p+9-1 e k h+q—l

(rk-l)!

L /  
is nonsingular.

£1192};

The parameters h and th are assumed to be zero without

loss of generality. The condition will be proved for the special

case where all the eigenvalues are distinct. The general case follows

directly. This condition will be proved by examining the condition



where

I A": _
:8 q 12'] .

{I a (t )I o o a

" O l — o

0

O aq-l(tl)‘I’. aq—

\
 

It is known that the powers of A. and the constituent matrices

Z of A_ are related by

F

-i

 L

I
»

I
H

[
<
3

1   J»
where .1 is a generalized Vandermonde matrix [54]. Since .2 is

nonsingular

 v—i
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f T ‘

20 (.1.

. = 2E1 .

z Aq-l

—<1-1 —

x J JL J

. -l .
Now letting y_ =‘E = {wik}’ it can be shown that

q .

__ r Z w.. AJ
i—l 1:1 1,]+l—

. . At .
- Since the fundamental matrix e— can also be expressed in

terms of the constituent matrices

and since each constituent matrix can be expressed as a matrix poly-

nomial function of A,

q-l q A,t q A t q—l

e53t = Z a,(t) Aj = X e 1 -§i-1 - X e ( 2 W1 Aj)

j=0 3 1:1 :1 j=0 +1

the aj(t) functions become

q lit

aj(t) = 1:1 e wi,j+l j = 0,1,...,q—l

The observability matrix -90 can now be expressed as
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I

 

  

  

 

 

‘

a (0)1 . . . a (t )I
o - o q-l —

Q = [C' A'C' ... (A')q lc'] o

‘0 —' —'—' —- “1(O)l. . . . I

a (0)1 . . (t )I

Lq—l - q-l q—l j

_ I v c v (1'1 9 " "
— [C A C 000(A) C 1. ‘4 . X

- --— '— —- —- -o

where I_ is an m dimensional identity matrix and

I A A ‘t t

l. e 1 ll . e 1 q-l—

30 =

A t A t

k 1 e q 11 . e q “1
)1

V ‘4

wll-l W21 1 . . . wq 1‘_

£4. = 1

w . . w I

lq - qq —

L 1'

The matrix @_ is nonsingular if and only if E_ is non-

singular since

Det fi_= (Det Hf)m

The matrix .30 is nonsingular if and only if ~§o is nonsingular

since

llDet i (Det X )

—O A
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Now, the system is q—sampled data observable if and only if

matrix -Qo has rank n, Matrix 90 has rank n if and only if

matrix

[9' Avg! . . . A'q-lg']

-1 .

has rank n and there exists a sequence {th+i}qi=0 such that matrix

R is nonsingular. Therefore, since the above matrix has full row
—o

rank if and only if the system is observable and since -go is non-

singular if and only if go is nonsingular, the system is q—sampled-

data observable if and only if condition (1) and (ii) are satisfied.

Q.E.D.

This theorem clearly states a system is observable with

sampled measurements (z(t )}2;3 if and only if it is observable

h+i

with continuous measurements z(t); t e [to, tN) . Moreover, the

theorem places a necessary and sufficient condition on the q

sampling times which must be satisfied if the system is to be observ-

able on a particular sampling time sequence. Finally it should be

noted that p is constrainted to be the order of the minimal poly-

nomial for the theorem to hold. However, if a sequence of q

sampling times can be found for which the system is observable, the

}P'
1

h+i i=0 for eachsystem will be observable for some sequence {t

p > q since there is a guarantee that n independent measurements

can be found by selecting only q sampling times. Thus, if the

system is q—sampled—data observable it is p-sampled-data observable

for all p > q. The following theorem, stated and proved by Troch
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[41], provides a sufficient condition on the sampling times which

guarantees that a system which is observable with continuous

measurements will be observable with sampled measurements.

THEOREM 6-3 (Sufficient Condition for q-Sampled—Data Observability)

A system (15) which is observable with continuous measure-

ments is q-sampled-data observable.

(i) for all sampling intervals sequence {t .}q-l if all of the
h+i i=0

eigenvalues of .5 are real.

.}q'lh+1 i=0 such that
(ii) for all sampling intervals sequences {t

t t < TT

h+i h
 

i = 1,2,... q—l

mgmax ,

where wgmax is the greatest imaginary part of the eigen—

values of A.

The proof follows immediately if -§o can be proved non-

singular over the set of sampling intervals sequence specified in

case (i) and (ii) respectively. The functions ok(t) form a

Chebyshev system [41] over [th, 00) if all eigenvalues are real and

 

over [th’ t ) if some eigenvalues are complex. Since the

h wfimax

functions ok(t) are Chebyshev over these respective intervals for

-l

A.t A.t A1 1.1:
. i i t i

the two cases, the functions e , te ,...;-———-—T e ,

i = 1,2,...,k are also linearly independent over the same respective

intervals for the two cases. Thus A0 is nonsingular over the

intervals specified for the respective cases and the theorem is

proved. Q.E.D.
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This theorem clearly indicates that a system which is

observable with continuous measurements is observable with any

sequence of q sampled measurements as long as all of the eigen-

values are real. If some eigenvalues are complex, the q sampling

times must all be selected in an interval of length Tr/mflmax to

insure that observability will be preserved using sampled measure-

ments instead of continuous measurements. Since u&max is the largest

imaginary part of the complex eigenvalues of .A, this constraint

implies sampling must occur at a rate at least q times faster than

the NquiSt rate (T = "/whnax) in order to insure all q sampling

times occur in a "/wfinax interval. This constraint is restrictive

for some applications and since it is only a sufficient condition,

less restrictive conditions are investigated in Section 6.3.

The result of this theorem also guarantees that there will

always exist q sampling times for which the system is observable

and therefore the following theorem can be established.

THEOREM 6—4 (Sufficient Condition for Sampled-Data Observability)

If the system (15) is observable with continuous measurements,

it is sampled—data observable.

Proof

From Theorem 6.3 it has been established that there always

exists q sampling times {th+i}2;0 such that a system which is

observable with continuous measurements will be observable with q

sampling measurements. The system is always p-sampled-data observ-

able for any p > q if it is q-sampled-data observable. Thus, there

N-l
always exists an N and a sampling times sequence {th+i i=0 to

make the system sampled-data observable. Q.E.D.
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In the previous definitions of observability for sampled-

data system [39, 41], either the number of sampling intervals and

the length of each sampling interval are both specified or the

number of sampling intervals is specified and the lengths of

sampling intervals are considered control parameters. In both of

these definitions, a system which is observable with continuous

measurements may not be observable with sampled measurements. This

extended definition, where both the number of sampling intervals and

the lengths of sampling intervals are control parameters, permits

the preservation of observability when the outputs are no longer

measured continuously but are sampled. This preservation of

observability under the imposition of sampling requires a system

designer to view the sensor and its sampling intervals sequence

specified by

N—l
*

{th+i}i=0 and N ( )

to be part of the control law rather than part of the plant being

controlled. This perspective is required since the sampling

intervals sequence are control parameters in this extended

definition of observability.

Some explicit conditions on the sampling times {t }2_
l

n+i '=0

for which A0 is singular will be investigated in Section 6-3

after a similar matrix condition is derived for controllability.

In postponing this develOpment, the similarity of conditions for

sampled-data controllability and observability will be emphasized

and no duplication of discussion is required.
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6-2. Controllability

Definition

The system (15)is said to be sampled-data controllable at

there exists a finite N andif for every initial state -§h’
th

a control

) i = 0,1,...,N-1
Bit) = Eh+1 t 6 [th+i’ th+i+1

}§;é, the sampling time

E.

defined by the control sequence {uh+i

and N, such that h+N ='Q.sequence {th+i}i=0

is finite but arbitrary and the sequenceAs stated above, N

N—l . .

is not constrainted in any way except{

th+i i=0

1: < th+l<...<th+N .

Although a system may be sampled—data controllable, it may

piecewise constant controls arenot be controllable if only N = p

used. Therefore, p-sampled—data controllability is defined as follows.

Definition

 

The system1(15)is said to be p—sampled—data controllable at

there exists a controlif for every initial state Eh’

th

30:) = 94““ t e [th+i’th+i+l) i = 0,1,...,p-1

p-l

defined by specifying both the control sequence {2h+i}i=0’ and

p 8sampling time sequence {th+i}i=0’ such that §h+p 9,
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A system which is sampled-data controllable is p-sampled

data controllable for all p greater than some N = NC where NC

is the minimum number of sampling intervals required to return

Eh to the origin. The following theorem which is obtained by

extending a theorem on discrete-time controllability (Appendix H)

states a necessary and sufficient condition for p-sampled-data

controllability.

THEOREM 6-5 (Necessary and Sufficient Condition on p—Sampled—Data

Controllability)

The system(15) is p-sampled-data controllable at th if

. . . . . p-l

and only if there ex1sts a finite time sequence {th+i}i=0 such

that

, I ' ... '¢ D
2. 121...-1:A+p,h+p-12h+p-zg :——h+p,h+1—h1

has rank n where

2.52.12.-. ,1.

For the periodic sampling case, p—sampled—data controlla-

bility is assured if a sampling period T can be found such that

has rank n where

1310‘) and _D_i=p_('r) i 0,1,...,p-1
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This theorem provides a condition which can be used to

test for the minimum number of sampling times NC required to

assure sampled-data controllability. The test could be performed

by finding the minimum integer p satisfying

p :_n/r

where r is the dimension of control .3, for which the matrix QC

has rank n. Although NC can be the smallest integer which satisfies

this inequality, the actual value of NC is often larger than this

minimum number because some of the controls are redundant.

The conditions of this theorem can also be used to determine

whether a system is controllable on a particular sequence of N = p

sampling times. However, a stronger condition can be formed by

properly decomposing the condition found in Theorem 6-5 into a con-

dition on the plant (1) and a condition on the sampling times. This

strong condition which holds only for the case where p is the order

of the minimal polynomial of matrix A, is stated in the following

theorem.

THEOREM 6-6 (Necessary and Sufficient Condition for q—Sampled-Data

Controllability)

A system (15)which has system matrix A: with minimal poly—

nomial of order q

r r r

1 2 k

m(A) = (A - A1) (A - A2) ...(A - Ak)

with
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is q-sampled—data controllable if and only if

(i) the system (15) is controllable with continuous controls

(ii) there exists a sampling intervals sequence {t }q such

h+i i=0

that q X q matrix

K' '4

t -A C t -A g t —A c

. +fth 1 e 1 dc f h+2e 1 dc fth+q e 1 dc

h th+1 h+q—1

t -A C t —A C t “A
h+1 + CIt (-C)e 1 dc fth+2(_€)e 1 dz; fth q (1)8 1 d;

h h+1 h+q—1

t rl'l t 1 t rl'l A c
h+ 2 — +2 r - - + _ ) ’

ft K-{Er -l)! edfifth (—-C-)—l——— exlc fth q ( {(r -1)! e l dg

h 1 h+1 (rl-l)! d; h+q-1 1

X = ———————————————————————————————————————————————————————————————

t -A a; t —A I,

fth+l e 2 dc fth+q e 2 d:

h h+q-l

r -1 _r -1

t 2 A 2 A

f h+1042 e chc f h+q (-c2 8 ZCdC
_ I -.

th (r2 1). th+q 1 (r2 1)

______________________________________________________________J

t -A t t -A ;

+1 k + k
1th dc 1th q e dt

h h+q-1

r -l r "l

t k A t k -A

h+1(-C) kc h+q («2) k”

ft (r -1)' dC ft ( —1)! e d;
h k ’ h+q-1 rk

K /’
  

is nonsingular.

Proof

The parameter h is assumed to be zero without loss of

generality. The condition will be proved for the special case where
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all the eigenvalues are distinct. The general case follows directly.

This theorem will be proved by examining the condition

Rank (QC) = n

where

T ' AT T I ' A(T 1+T 2+...+Tl) To At

-1 At — q-l q—Z At I I — (1" (1" Bdt

9c = [qu e— Bdt:e f0 e-‘Bdt : . |e f0 __ 1

Since

A(T +T +...+T .) T ._ t -° -A

e_' 9‘1 9‘2 q’1 f q'1 1 eétht = eétq f q 1 e _5ga;
0 _ tq—i-l

and since the fundamental matrix can be expressed as

q—1

eét = 2 ok(t)AF

k=0

9c can be expressed as

I
t t1 7

t O —' O

q—l 0

t

f q a (mag. . . f
L tQ‘l q-l t0   

However, it is proved in Theorem 6-2 that

Ait

“k(t) = mi,k+1e

"
P
L
O

i 1

and therefore QC becomes

where U and T are (qr) square matrices defined by
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’ s

wlll-WZIl . . . wal

., w12l w22-1-

E =

w I . . w I

1(1— cm—

h I

and

f t A g t A t A ‘1’ ‘ C ’ C

fth+l e 1d: I f h+2 e ldtI fth+q e l ch

h h+1 h+q-1

t "A C t "A C -A C

~ I h+1 e 2 dCI fth+2 e 2 dCl . f h+q e 2 dCI

X_= h h+1 h+q-l

t “AC t ’A C t ‘A C

fth+1 e q dgl fth+2 e q dCl . . .fth+q e q dCL

h h+1 h+q—l

L )
At

The matrix e q is a fundamental matrix and is nonsingular.

~

The matrix E_ is nonsingular if and only if matrix .fl is non-

singular since

Det E_= (Det E_)

where r is the dimension of the control.

The system is q sampled-data controllable if and only if

9c has rank n. Moreover ‘Qc has rank n if and only if there

}q
i=0 for which X_ isexists a sampling intervals sequence {th+i

nonsingular and the matrix

[B A B A23 . . . 51-12]

has rank n. Since this matrix is of rank n if and only if the

system is controllable with continuous controls and since 2_ is

nonsingular if and only if X1 is nonsingular because
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X_ is nonsingular because

r

Det Z_= (Det X)

the system is q—sampled—data controllable if and only if conditions

(i) and (ii) are satisfied. Q.E.D.

The computation of X_ for controllability is much more

difficult than the computation of go for observability because each

element of '1 is an integral of the similar term in fig. Since

these integrals can be evaluated analytically, a matrix condition

can be obtained for controllability which is quite similar in form

to matrix condition on observability. This condition is derived

for the case where the eigenvalues are distinct.

Corollary 6-1

A system.(l5)which has system matrix .A with minimal poly-

nomial of order q and with distinct eigenvalues

m(A) = (A - Al)(A - A2) . . . (A - Aq)

is q-sampled-data controllable if and only if

(i) the system (15) is controllable with continuous controls

(ii) there exists a sampling intervals sequence such
9

{th+1}i=0

that a (q + 1) square matrix
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K s
-A t -A t

l 0 e l q

'Azto ‘Ath

e e

X =

—c .

"A t “A t

8 q 0 8 q q

l 1 . l

x J

is nonsingular. This matrix must be modified by replacing a row

“AiarAifi. 'A,t

[e e . . . . e 1 q]

by the q + 1 row vector

[t0 t1 . . . tq]

if eigenvalue A1 = 0.

Proof

Assuming all eigenvalues are non-zero, the matrix .Q

can be expressed as

q-l

 
 

 
 

1 I ~ ~
= e— B'A B . . .u B - w YQC L_{___: .__ _J _H_

where 2_ becomes

/ A A 4,

—Altq-l -Altq ’ 1‘0 ’ 1‘1
—e e -e

A _1 . . . A _g

1 1

i = O O

-A t -A t -A t -A t

8 q q-1_e q q 8 q 0_e q 1

I“x l o o o Aq _-

1 q J  
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and Q_ is defined in the previous theorem. It has been proved that

the Inatrix 9c has rank n is and only if

[B A B AZB . . . Aq'lB]

9

}i=0

is nonsingular. Thus since the system is controllable if and only

has rank n and there exists a sequence { such that .2

th+i

if the matrix QC has rank n, the theorem is proved if it can be

~

shown that X, is nonsingular if and only if 'XC is nonsingular.

The matrix .2 is nonsingular if and only if

  

  

 

’ N

- - -A -A
A1‘q—1 A1‘q 1‘0 1‘1

e - e e - e

A1 A1

X.= -

-A t -A t —A c —A t

6 q q-1 _ 8 q q e q 0 _ e q 1

A . . . A

q q
\ I 

is nonsingular because

~ r
Det X_= (Det X)

The matrix .X_ can be expressed as

X.= L“!

where



l
p

[
P

>
4

H

N

>
q
|
H

  
The matrix .2

assumed non—zero and therefore

is nonsingular.

 

1B is nonsingular where

I

-A t —A t

(e l 0_e 1 l) (e

-A2t0 -A2tl

(e -e )

p”:

—A t —A t

(e q O—e q l) (e

k 0

Furthermore, E

where

[
3
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(e 
-A t .—

q-l q-1_e

A t

9‘1 Q)

is nonsingular because all eigenvalues are

Moreover,‘M

X is nonsingular if and only if ‘M

is nonsingular if and only if matrix

can be expressed as

 

B X
—tE
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Since _g is nonsingular _P is nonsingular if and only if

q . .
there exists a sequence {th+i}i=0 such that AC is nonSingular.

This proves the theorem for the case where all eigenvalues are non-

zero. If an eigenvalue is A1 = 0, the proof follows identically if

the row

. ' .t 'A.t
[e 1 h e 1 h+1 . . . e 1 h+q]

in matrix 5c is replaced by q + 1 row vector

[th, th+1,..., ‘h+q] . Q.E.D.

This theorem states that a system will be controllable with

sampled—data controls

}N—1 {t }N and N
{Ehu i=0 h+i i-O

if and only if it is controllable with continuous controls

{3(t), t e [to, tN]}. Moreover, the system is q—sampled-data con-

trollable if and only if there exists a sampling intervals sequence

such that .1 (or ‘§c) is nonsingular. The condition on X_ requires

an integration of each term which is inconvenient. The condition

on .AC does not require integration of each term and provides a

condition on the sampling times which is similar to the condition

on -§o obtained for observability. Although the condition on .AC

was only stated for the case where eigenvalues are distinct, a

matrix Eh could be derived for the case where the eigenvalues are

not distinct. The derivation of an appropriate form for .Ac for
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the case of multiple eigenvalues is a subject for future research.

The condition on .X_ (or AC) can be used to test whether

a system which is controllable using continuous control will be

q-sampled-data controllable on some particular sampling intervals

sequence {th+i}g=0° Finally it should be noted p is constrained

to be the order of the minimal order of the plant. However, if a

sequence of q-+ l sampling times can be found for which the system

is controllable, the system will be controllable for some sequence

P

}i-0
{ th+i for each p > q since there is a guarantee that n

independent controls can be found by selecting only q + l sampling

times. Thus, if the system is q-sampled-data controllable it is

p-sampled-data controllable for all p > q.

The following theorem provides a sufficient condition on

the sampling times which guarantees that a system which is controllable

with continuous controls will be controllable with sampled controls.

THEOREM 6—7 (Sufficient Condition for q-Sampled-Data Controllability)

A system (15) which is controllable with continuous controls

is q-sampled-data controllable.

(i) for all sampling intervals sequence {th+i}2=0 if all of the

eigenvalues of ‘A_ are real

(ii) for all sampling intervals sequence )3 such that

{‘h+i =0

t - t < n/h+i h i = 1,2,...,qw
gmax

where is the greatest imaginary part of the complexw
2max

eigenvalues of .A.
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The proof follows immediately if .X can be proved nonsingular

over the sets of sampling intervals sequences specified in case (i)

and (ii) respectively. The functions ok(t) form a Chebyshev system

[41] over [th,m) if all eigenvalues are real and over [th, h

if some eigenvalues are complex. Since the function ok(t) are

Chebyshev over these respective intervals for the two cases, the

functions

‘h+i+1
f ok(C)dC k = 1,2,...,q

t .

h+i

also form a Chebyshev system over the same respective intervals for

the two cases. Thus, the functions

A.-l

t 3 AI; t o o t I l AOC

++ + ++f h i l e i dC f h+i 1 Ce 1 d; . . . f h i 1 C e 1 dc

_ '

‘h+i th+i ‘h+i (Y1 l)'

are linearly independent over the same respective intervals for case

(i) and (ii). The matrix X_ is therefore nonsingular over these

intervals and the theorem is proved. Q.E.D.

This theorem clearly indicates that a system which is con—

trollable with continuous controls is controllable with a sampled—

data control over q sampling intervals as long as all of the

eigenvalues of the system matris are real. If some eigenvalues are

complex, the q + 1 sampling times must all be selected in an

interval of length fl/m to insure that controllability will be
imax

preserved using sampled—data controls instead of continuous controls.

t + 11/(0

Qmax
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Since ”imax is the largest imaginary part of the eigenvalues of

A, this constraint implies sampling must occur at a rate at least

q times faster than the Nyquist rate (T = "/wfimax) in order to insure

all q sampling times occur in a "/wflmax interval. This constraint

is restrictive for some applications and since it is only a suf—

ficient condition, less restrictive conditions are investigated in

Section 6.3.

The result of this theorem guarantees that there will

always exist q + 1 sampling times for which a controllable system

will be a q-sampled-data controllable. Therefore, the following

theorem can be established.

THEOREM 6-8 (Sufficient Condition for Sampled—Data Controllability)

If the system (15) is controllable with continuous controls,

it is sampled—data controllable.

From Theorem 6.7 it has been established that there always

exists q + l sampling times {t such that if the system is
}q

h+i i=0

controllable using continuous controls, it will be controllable using

sampled-data controls. The system is always q—sampled-data con-

trollable and is therefore always p-sampled—data controllable for

all p > q. Thus, there always exists an N and a sampling times

}N
sequence {th+i 130 to make the system sampled-data controllable.

Q.E.D.

The implications of Theorem 6—8 are quite important. First,

if the continuous-time system is completely controllable, then it

is sampled-data controllable which implies there exists a control
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).g(t) =_g(t ) t 6 [ch
h+i = Eh+1 +i’ th+i+l

for i = 0,1,...,N—l specified by a finite set of parameters

N—l N . .

Eh+i}i=0’ {th+i}i=0 and N that will for any initial state x
‘ —0

guarantee that §-+N?Q' Thus, the controllability of the system

does not depend on whether the control is actuated with an analog

or sampled-data device. In previous definition of controllability

[36, 41], either the number of sampling intervals and the lengths

of sampling intervals were specified or the number of the sampling

intervals was specified and the lengths of sampling intervals were

free and considered control parameters. In both definitions, the

sampled-data system could be uncontrollable when the continuous-

time system was controllable. The implicit assumption made in these

definitions [36, 41] was that the system model included the sampled-

data actuator and the sampling intervals sequence. In this defini-

tion, the actuator and the sampling intervals sequence are considered

part of the control law. This development of sampled-data con-

trollability provides a more general perspective on dynamic system

and control.

In the following section, the explicit condition on sampling

times for which ”AC or Ac is nonsingular will be investigated.

6—3. Sufficient Condition for the Singularity of A0 and Ac

The sufficient conditions imposed on the sequence of sampling

times for the special case where the system matrix has complex eigen—

values may be quite restrictive for some applications where the cost

of communicating, storing and processing data are quite high. In
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these cases, the average sampling rate may be much closer to the

Nyquist rate. Sufficient conditions should be established which

will guarantee that observability and controllability can be pre-

served if a sampling process is imposed by design considerations.

A rule for selecting sampling times is desired which, if followed,

would guarantee the preservation of controllability and observability.

Although such a rule is not derived. a rule is suggested by in-

vestigating sufficient conditions for the singularity of matrices

X and ~§c° The pattern develOped by investigating the conditions
..O

sampling intervals sequence must satisfy to make 1A0 and -§c

singular provide a basis for suggesting a rule for selecting

sampling intervals sequence which will preserve controllability

and observability.

The following theorems, which are extensions of results by

Kalman [36] for periodic sampling, provide a basis

for the develOpment of this sampling rule.

THEOREM 6-9

Given a system.(L5)which is controllable in the Kalman's

sense [36], the system is not controllable with a sampled—data

control if

t =— k=1,2,...

i = 0,1,...,q-1

for any m2, where w are the imaginary parts of eigenvalues of

A,

Proof

Since the eigenvalues occur in complex conjugate pairs
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A = + °
2 02 3‘2

A1+1 = 02 ’ 3‘2

. = _I
the apprOpriate rows of Afi for th+i wk have the form

-Az ‘h "A2‘h+1 -‘2th+q
[e , e ,..., e ]

-A2+1‘h "‘2+1‘h+1 —A£+lth+q
= [e , e ,..., e ]

= [eofithcos t ‘eogth+lco t -e02th+qcos w t ]

“2 h’ S “2 h+1’°"’ 2 h+q

Since two rows of 'AC are identical,‘)_(C is singular and the theorem

is proved. Q.E.D.

THEOREM 6-10

Given a system (l3)which is observable in the Kalman's

sense [36], the system is not observable with sampled measurements if

t =-—- k = 1,2,...

for any wl’ where w 's are the imaginary parts of the complex
2

eigenvalues of A, The proof of this theorem is identical to the

proof of Theorem 6—9 except that -§O replaces AC.

The results of these two theorems indicate that if the

sampling times are all multiples of a basic period n/ml for some

2, then the system will not be observable or controllable using the

sequence. This condition does not imply that the sampling criterion

described by this condition be periodic as assumed by Kalman.
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General conditions which will describe all sampling

intervals sequences for which -§0 and -§c are singular are not

derived. However, from a brief study of the following simple cases

and the results of Theorem 6—9 and 6-10, a possible set of conditions

can be suggested. In the following set of examples, conditions are

derived on a set of any two sampling times in the sequences which

together could cause X or AC to be singular. A matrix .A is
_0

A0 or -§c'

(i) Assume that m(A) has two complex eigenvalues and thus the

used to denote either

matrix .A has the form

C s

(p+jw)t0 (p+ju))t1

e e

I
x u

(o-jw)t0 (o-jw)t1

e 8 J  
\

This matrix is singular whenever

(ii) Assume m(A) is of degree 3 and has eigenvalues p + jw,

p - jw, and o . The 3 by 3 _A matrix will be singular if

any two of the columns of _A are dependent. Therefore,

determine the conditions for which
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r ‘ f ]

(0+Jw)t12 (0+Jw)til

e e

(o-jw)t. (o-jw)t.

e 12 = c e 11 (21)

0‘12 0‘11
Le e

J ( ,   
for some real c. A condition

 

    

2kn . .

‘12 ' ‘11 ' 0 O :-11 < 12-3 2

is imposed so that

r 1 ’ a

+' _ ~
(0 Jw)t12 0(t12 ‘11 (0+Jw)til

e e . e

(o-Jw)t12 0(ti2-til (p-Jw)ti1

e = e . e

0‘12 “(‘21"11 0‘11

e e . e

k a L .

The second condition

0:0

(iii) Assume m(A) is of degree 5 with two pairs of complex con-

jugate eigenvalues and one real eigenvalue.

The matrix .A is singular if any two of the columns of .A

are dependent. Therefore, determine the conditions for which



lll

    

 

    

r ‘ ' 1

(91+Jw1)ti2 (91+3w1)‘11
e e

(91’3w1)‘12 (01'3“1)‘11
e e

+' ( +- (22)
(92 J“’2)‘12 = c 02 sz)‘11

e e

(92’3“2)‘12 (92’3w2)‘i1
e e

0‘12 0‘11
e e '

L . . 1

The first condition

2k n 2k 0

t. — t. = 1 = 2

12 1l “1 “2

so that

I T ' 3

(“1+3w1)‘12 “1(‘12“11) (91+3w1)‘11
e e e

(91‘3“1)‘12 91(‘12't11) (pl-jwl)til
e e e

(92+3w2)‘12 _ 92(‘12“11) (02+3w2)‘11
e “ e e

(92'3”2)‘12 92(‘12"11) (92-392)‘11
e e e

0(t. )

0‘12 0(‘12 11) 1‘
e * e e

1k 4 g J

The second condition

92 = D]. = 0

”(‘12-‘11) _ 89(‘127‘11)

In summary, Theorem 6—9 and 6-10 indicate that observability

and controllability can not be preserved if the q + 1 sampling
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times {t .}3 are chosen to be a multiple of the same period

h+1 i=0

T when

T =n/wl 2 = 1,2,...,k

The results of example (i) - (iii) indicate the observability

and controllability may not be preserved if

for = 0,1,...,q—l. Thus, these two conditions suggest that

11’12

a sufficient condition which will preserve controllability and

observability is to select all sampling times so that

t -t. #51

(A)

= 0,1,...,q-l

11 2

il,i2

for all integers k and all mg, 1= 1,2,...,q.

This condition has not been established as a sufficient condition

for the singularity of -§c and A0 and thus is purely a hypothetical

condition suggested by the results in this section. The establish-

ment of a sufficient condition for the invertibility of .A is an

important result because it provides guidelines for the system

designer. Thus, the derivation of this sufficient condition is

an important topic for further research.



CHAPTER VII

THE INFINITE TIME REGULATOR PROBLEM

The infinite—time periodic sampled—data regulator was

formulated as an extension of the finite—time problem [2]. The

existence of an optimal feedback control and the form of this

infinite—time control law were both established formally in a more

recent publication [55]. The convergence of the finite-time feed-

back control law to the infinite—time feedback control law was also

formally provem in this latter publication. However, these results

were established only for the case of periodic sampling where the

length of the sampling period is specified.

The infinite-time sampled-data regulator problem is formulated

in this paper for the case where both the number of sampling times

and the lengths of the sampling intervals are considered control

parameters. The existence of an optimal closed loOp sampled-data

control law is proved for the cases where the number of samples are

both finite and infinite. Computational algorithms for calculating

the Optimal control are proposed for both the case of finite and

infinite number of samples.

7.1 Problem Formulation

Consider the linear system

33(t) = _ 35(t) + g 30:) (23)

113
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1(t) = _ §(t)

with randomly distributed initial state

€{§O} = £0

(24)

“(£0 -§0)(§0 -€__0)'} =3

where §(t) is the n-dimensional state vector, 3(t) is the r—

dimensional control, and y(t) is the m-dimensional output vector

and .é:.§9.9 are compatible time-invariant matrices. The sensor

provides measurements

10:1) = g yci) (25)

at the sampling times {ti}§=0 that are not specified and are con-

strained to satisfy

0 < Tmin 5 ‘1+1 ' ‘1 = Ti 3 Tmax (26)

where N is unspecfied and satisfies

(NiN
(27)

The control actuator is also assumed to be a sampled-data device

and therefore the control .E(t) satisfies

30:) = 3(t ) = u t 6 [ti, t ) (28)
i —i i+1

for i = 0,1,...,N—l. This sampled-data control is specified by

_ N

the control sequence {Bi}:=0’ sampling time sequence {ti}i=0 and

the number of sampling times N. The initial time t0 6 (-m,w)
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and the terminal time (tf = tN = 00) are specified.

The design objective is to minimize the error §(t) with

minimal control energy and minimal cost for implementing and Operating

a sampled-data control.

A system performance index is chosen of the form

8 = J + C ‘ (29)

where the control performance has the form

J = ex {It éq'mg §(t) + gmg 3mm} (30)

—O 0

and the cost of implementation has the form

C(T,N) = X as (31)

The matrix “Q is positive semi-definite symmetric matrix and '3

is a positive definite symmetric matrix.

A cost for implementation is adjoined and represents the

economic costs for implementing and Operating a sampled-data control

law. This cost for implementation can be considered to represent the

cost for transmitting and storing the optimal sampled—data control

law. It is similar in form to the costs for sampling used in the

analytic derivation of adaptive sampling rules [13] and the optimal

periodic sampling rate for a feedback control problem [56].

The control problem becomes:

Given the linear system (23, 24) with measurements (25) determine

the piecewise constant control (28) specified by the control and

sampling times sequence
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{u.}N'l {c.19 1
—1 i=0 ; 1 i=0 ; and N

that minimizes the performance index (29) satisfies the sampling

constraints (26, 27).

This problem can not be solved directly due to the con-

strainton control (16). Therefore, the problem is transformed from

a continuous-time one into a discrete—time one by the same technique

used in Chapter III.

The sampled-data problem can be transformed into an equi-

valent discrete-time one by integrating (12) and (18) over each

sampling interval T1 = ti+l — ti'

§1+1 = 31% + 9.121
(32)

N-l

= 1 v v t

3 Ex {‘2 >3 (iigiii + 251M121 + 313153)} + c(_T_,N) (33)

-—0 i=0

where x, = x(t,) and

’“1 — l

—1 = 3(1‘1)

Ti

—i " 2(Ti) = ID 3(t)§ dt

T1
= = ' ¢

91 Q(Ti) f0 3 (t)_(; _(t)dt

Ti
= = '

_i MTi) f0 9; (mg p_(t)dt

Ti

_i = B<Ti) = f [3 + you; you:

O

The matrices fli’-Ei and -Qi are in general time varying

even though '0 and .3 are constant because the sampling intervals
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are not equal. The matrix 21 is nonsingular because it is a

fundamental matrix. Moreover, it is easily shown that -Qi(Bi) is

a positive semidefinite (definite) symmetric matrix because ‘Q(§)

is a positive semidefinite (definite) symmetric matrix.

The discrete-time problem becomes:

Given the sampled-data system (32, 24) with the measure-

ments (25),determine the control and sampling interval sequences

N-l , _
{31}. 3 - (TO,T1,...,TN_1)

i=0

and N

that minimize the cost function (33) subject to the sampling con—

straints (26, 27).

7.2 Computational Algorithm

The existence of an optimal control law for the optimal

sampled-data regulator problem is now established for both the case

where the number of samples is finite and unspecified and for the

case where the number of samples is infinite. In both cases, the

existence and uniqueness of the control is first established for the

case where the number of samples and lengths of sampling intervals

are specified. The existence of an optimal sampling interval sequence

which defines the Optimal sampled—data control law for a specified

number of samples is then proved. In order to establish existence

of a control for these cases, three separate sets of definitions of

controllability and stabilizability are thus required. The definitions

are stated for the following three conditions:

(1) where both the number of samples and the lengths of

sampling intervals are specified;
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(2) where the number of samples is specified but the lengths

of sampling intervals are unspecified and considered

control parameters;

(3) where both the number of samples and the lengths of

sampling intervals are considered control parameters.

The first set of definitions are for the case where both

the number of samples and the lengths of sampling intervals are

specified.

Definition. A system (23) is said to be controllable on a sampling
 

interval sequence {t.}? if for any initial state x there
i i=0 -o

exists a control sequence {3113;5 which specifies the sampled-

data control (28), such that AP = 0,

Definition. A system (23) is said to be stabilizable on a sequence
 

{th+l}5;0 if the part of the system, which can not be controlled

. p-l .
by selecting {Ei}i=0’ is stable.

The following set of definitions of controllability and

stabilizability hold for the case where the number of samples is

1
0 and samplingspecified (N = p) but the control sequence {Bi}:;

time sequence {ti}‘i)=O are control parameters.

Definition. The system (23) is p—sampled—data controllable at tO
 

if for every initial state E0 there exists a control sequence

p-l . p . .f
{Bi}i=0 and a sampling time sequence {ti}i30’ which speCi y the

sampled-data control (28), such that é? = 9,

Definition. A system is p-sampled—data stabilizable if the part of
 

the system, which can not be controlled by selecting {Bi}:;0 and

{ti}‘i)=O for a sampled-data control (28)’is stable.
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The final set of definitions hold for the case where both

the number of samples and the lengths of sampling intervals are

control parameters.

Definition. The system (23) is sampled-data controllable at to,
 

if for every initial state E0: there exists a finite number of

N-

samples N, a control {Ei}i—O’ and a sampling time sequence

N .

{ti}i=0’ which specify the sampled—data control (28), such that

we-

Definition. A system is said to be sampled-data stabilizable if
 

the part of the system which can not be controlled by selecting

N, (311%, and (t }1: i 2:0, for a sampled-data control (28) is stable.

The existence of an Optimal sampled—data control law is

first proved for the case where the number of samples is finite and

unspecified and then for the case where the number of samples is

infinite.

This theoretical develOpment is presented not only to

establish the existence of solutions, but also to provide a frame-

work for the computational algorithm which follows development.

7.2.1 The Infinite-Time Problem with a Finite Number of Samples

The existence of an optimal sampled-data control law is

proved in the following theorem for the case where the number of

samples is specified. This result is proved by first establishing

the existence and uniqueness of the closed lOOp control law for

the case where both the number of samples and the lengths of

sampling intervals are specified.
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Theorem 7.1.

An optimal closed-loop control exists for the infinite-time

sampled—data regulator if the system is p-sampled—data controllable

or p—sampled-data stabilizable.

nggfg Consider the problem first for the case when E0 is

specified. A feasible solution {Bi}::0 exists for each {tn+i}§=0

for which the system is controllable or stabilizable. If the system

is p-sampled-data controllable there exist sampling interval sequences

.2 e [§,§] for which feasible control sequences {Bi}:;3 exist.

Therefore, it follows from Theorems 1 and 3 [22, pp. 137 and 133]

respectively that there exist unique optimal control and trajectory

sequences

p—l p—l

{31(E)}i=0 {§i+1(l)}i=0

for each T_£ [_,2] for which the system is controllable and

stabilizable. For each feasible _1, the necessary conditions

[6, 7], can be solved to obtain the control law

2,02) = £59510)

where the ‘r)(r1 dimensional feedback gain matrix satisfies

1M! + [R. + DZK. D ]-1D'K 0
—i —i -—i—i+-§1(:) =-31 1—1 -i~i+l—i

The matrixes Ei‘l) satisfy the matrix Riccati equation

1 ‘1 v

51 = I + Aim K, D] DR 10
_ '

1 -—1+1 -—1+191L31 +-9151+1—1 —1—3+1 -i

for i = p-l,p-2,...,l,0 with boundary condition
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K = O
—p ._

_ '1' _ "'1! -
where g1 31 -2iRi M1 and Ii Oi - fliBi-Ei' The assoc1ated

Optimal cost can be expressed as a function 8(1) defined over

each 3.5 [§,§]. This derived cost function can be expressed as

_—————-

80(2) = {S = %-xK(T)xO :a < T < b} + C(T, N)

k

The Optimal sampling interval sequence To which minimizes 80(2)

over this set of feasible .2 specifies an open loop control because

Tn depends directly on the initial state x

-o —0

Now letting E0 be randomly distributed and letting

{Ei(§o)}:;0 be any closed loop control law the system performance

(18) becomes

[
.
1

51(T) = EX {—'X K (T) } =

l

2 —o—o E0 2
_0

(ngoyg) + E; K t ) + C(T,N)

since the following exchange of operators is valid

p-l

min {E {l-x' Qx + %- Z (x!Q.x, + 2x!M.u, + u!R.u.)}}
_ £0 2 —-p——p i=0 _I—I—l -—i—i—i -—i-r-i

{u (X )}p

1 1 p“
= E {min {—-x'Qx + —- Z (xEQ.x, + 2fo,u, + u!R,u,)}}

x 2 —p—#p 2 i=O-—i—r—i -i—i—i ‘—I—I—l
—o p-l

{El-1‘50) }i=0

Since there exist feasible solutions if the system is p—sampled-

data controllable or p-sampled-data stabilizable and since the

performance index Sk(T); k = 0,1 is non-negative on each feasible

sequence of sampling intervals, there exists an infinum 2f. Since

k

the set T_e [3,2] is closed and bounded, there exists an optimal
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a

solution -Ik for this derived problem. Thus, there exists a

solution

A N-l * N A

{Ei(lk)}i=0’ ‘§i(—T—k)}i=1 ’ and 3k

for the optimal infinite-time sampled-data regulator if the system

is p-sampled-data controllable or p-sampled-data stabilizable. The

control law is closed loop when the initial state is randomly dis-

tributed (k = 1) because the optimal sampling interval sequence

:1 does not depend on the initial state.

An Optimal control law will not exist if the system is not

p-sampled—data controllable or, p-sampled-data stabilizable for a

particular value N = p. However, if N is not specified and the

system is controllable with continuous controls, it has been proved

in Theorem 6.8 that the system will be controllable with sampled—

data controls (28) for all N :_q where q is the order of the

minimal polynomial of the system matrix ‘A. Therefore, an Optimal

infinite-time sampled-data control exists for all p :.q if the

system is controllable with continuous controls. The maximum number

of samples Nmax should be chosen greater than q in order to

insure that an Optimal sampled-data control exists for every system

for which an optimal continuous—time control law exists.

The algorithm, developed to compute the Optimal sampled—

data control law for the tracking problem can also be used to

compute the control law for this problem with one slight modification.

Since the control interval is now infinite, one of the sampling

intervals would be infinite. Therefore, this control interval should
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be selected as large as possible, consistent with the word length of

the computer being used to solve this problem.

Since this problem is related to the finite time problem

and since extensive computational results have already been obtained

for that problem, no effort will be made to present computational

results for this case.

7.2.2 The Infinite—Time Problem with an Infinite Number of Samples

The existence of an optimal closed—loop sampled—data control

law is now proved for the case where the number of samples is in-

finite. This result is proved by first establishing the existence

of an optimal open loop control and then establishing the existence

and uniqueness of a closed loop control law for the case where the

number of samples and the lengths of sampling intervals are specified.

These two preliminary results are presented in order to indicate

the theoretical difficulties in proving the existence and uniqueness

of this closed loop control law.

The existence of an optimal open loop sampled—data control

law is now established.

THEOREM 7.2

An optimal open loop sampled—data control exists if the

system is controllable or stablizable on the sampling time sequence

{t.}f chosen.
1 i=0

If the system is sampled—data controllable or stabilizable

for the sampling times sequence chosen, the system can be driven to

the origin and therefore the error energy and control energy are

both finite. Therefore, there exist feasible solution sequences
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G)

} {...}?
§i+l i=0 -—1 i=0

{

for the sampling interval sequence .3

. =T (TO,T1,...,Ti,...)

chosen if the system is controllable or stabilizable on this sequence.

Since this set of feasible intervals is compact and since the perfor-

mance index is bounded above and non—negative on this set, there

J.

exists an Optimal control sequence {Bi}:=0 which minimizes the

system performance (33) if the system is controllable or stabilizable

on the sequence .T chosen.

Although an Optimal open loop sampled-data control exists

for each sampling interval sequence _T for which the system is con-

trollable or stabilizable, the control is impractical because the

entire infinite control sequence and sampling interval sequence must

be computed and stored. The cost of implementation would make the

system performance high and thus would make the Open—100p control sub—

optimal. Since, the system is assumed observable, a closed loop

control law is possible. If the gain of this closed loop control

law is time invariant, the cost of implementation will be relatively

low and the closed loop control law may be quite practical. There—

fore the existence and uniqueness of the closed loop control law is

established.

In the previous literature, the infinite—time sampled-data

problem was only considered for the case of periodic sampling where

the sampling period was specified. The existence and uniqueness of

this closed lOOp control law was established [2] by first assuming
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the existence of the optimal infinite time control law and then

assuming that the extension of the finite—time control converged to

the infinite time control law as N and tf = tN approached in—

finity. In a recent paper [55], the form of this infinite-time

closed loop control law was established and the existence and unique-

ness of the closed loop control was proved. Moreover the finite—

time control was proved to converge to the infinite-time control as

N approaches infinity. These results have only been established

properly for the case of periodic sampling and have never been

proved for the case of aperiodic sampling.

The existence and uniqueness of the optimal closed—loop

control law for aperiodic sampling is not proved here because

(1) all previous work (except [55]) on the infinite time

problem have always assumed that the finite-time

feedback control law can be extended to the in-

finite time case;

(2) the results on the periodic sampled—data control law

should be enough to suggest that the finite-time

aperiodic sampled-data closed 100p control law can

also be extended to the infinite—time case; and

(3) the proofs for the aperiodic case are tedious and

beyond the sc0pe of this work.

The existence and uniqueness of the extension of the finite

time closed loop control law is now proved.

THEOREM 7.3

An Optimal closed-loop sampled—data control law exists and

is unique if the system is controllable or stabilizable on the

sampling time sequence chosen.
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Proof.

Consider the case first when the initial state A0 is

Specified. The existence of an Optimal open-loop control was proved

if the system is controllable or stabilizable on the infinite

sampling interval sequence chosen. Moreover, the infinite-time

closed loop control was proved to exist for a finite number of

samples and thus exists for an infinite number of samples. Moreover,

it is assumed that the finite-time control law converges to the

optimal infinite time control law as the number of sampling—times

in the sequence increases to infinity. Thus, the infinite time

control law has the form:

21(2) = —91(£)§1 (I)

where the r;<'n dimensional feedback gain matrix satisfies

_ “l v v '1 v

91(3) ’ R1 51 + [31 + 2151+121] 2151+191

-l

' - D D'K O

.

V

The matrices E11. 1 _i+l-I)‘i [Bi + RiEi+l—i —1—j_+l —i

for i = N-l,N—2,...,l, 0 with boundary condition with

Eva

where N = m, 0. = 0, - D R—lM! and F, = Q. — M.Rf1M The
'

-1. —1 —i—i-i -1. —i —i—i'-i'

associated Optimal cost can be expressed as a function 8(2) over

the set I_e [2,3]. This derived cost function has the form

x K (T)x :a < T < b} + C(T)

—o—o —-—o ————— -—N
H
F
‘

30(3) = {ST =

The Optimal sampling interval sequence Io which minimizes 80(1)
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over this set of feasible T. specifies an Open 100p control because

*
T . . . . .
—0 depends directly on the initial state E0

Now letting go be randomly distributed and letting

{Ei(§0)}i=0 be any closed IOOp control law, the cost function

becomes

x K (T)x

-rr1>--oN
I
H_ _ _1_ .

51(1) - E5: } - 2995031} + a K a > + co)

since the following exchange of operators is valid

00

min {E {l 2 (x',Q,x, + 25631.0, + u',R,u.)}}
w E0 2 i=O-—r—i—i -r—i-i -r—r—i

{u.(x )}.
-i —o i=0

= E {min I %- Z (x!Q,x, + 2x!M.u. + u!R.u.)}}

m . -—r-i-i -—i—i—1 -—i-i—i

—0 {n.(x )}. i=0
—i —0 i=0

The Optimal sampled—data control law obtained by

minimizing 81(T) over ‘T e [A,§] is closed loop because the

infinite sampling interval sequence does not depend on the initial

state A0. The existence of the control law has been established

under the assumption that the extension of the finite-time control

law is the optimal infinite time control law for the case where the

number of samples and the lengths of sampling intervals are specified.

The uniqueness Of the control is proved by establishing the

uniqueness of the sequence [E1]? . Two distinct sequences

i=0

[i.lf and {R }? are assumed and are now shown to be identical.

1 1=0 '—i i=0

Let all n x n matrices form a metric space which is

complete. From Theorem B [29, pg. 47] this metric space forms a

normed linear space with matrix norm
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The matrix sequence {Ei} and {£1} satisfy the Reccah

equation and therefore

A

‘7 _ r = :7 — 'h

51 51 9151+19 91—i+1—9—i

where

- -1 -— -l

= +

9i [l- P-i‘-‘Si'-Qi—K-i+l] ‘gi

A = +

9i [l- D1RilDigi+110i

This matrix difference can be expressed as

A -1,-1—
k+l][1+§, DR D] )0

'_ A A A —l

K - K = + .—1 _. 0 {[1 K. D1.11 D'. ][E 1+1-1-i -—1 _1
i —i —- —i++1— —i'—i i+1 -

The term in the parenthesis is just a matrix

similar to .R, — R, and thus has the same eigenvalues as

-—1+1 -—i+1

Ei+l - l<--i+1 [28]. Since §i+l _-Ei+l is symmetric and n x n ,

the norm of this matrix on the normed linear space is the maximum

absolute value of the eigenvalues of the matrix. Therefore

. -1 ._ z 3

ne+ésesrenen-sfiue+ssasL%1A

= H§i+l ' 5&1 H

The norm of this matrix difference in the normed linear

space has the form



H11. - 11;. u sHéiH-HEM - gun-Hg“

where the norms

1191“ < 1

H511 < 1

if the system is controllable or stabilizable on the sampling interval

sequence .1. Then the difference matrix must approach zero as i

approaches zero. Thus, there is a unique sequence {Ki}:=0 and a

unique control law if the system is controllable or stabilizable on the

infinite sampling interval sequence I,

The existence and uniqueness of the optimal closed loop

control law was proved formally for the case of periodic sampling

[55]. The finite-time closed loop control law was then proved to be

the infinite-time control law as the number of samples approach

infinity. Thus, the assumption that the extension of the finite-

time control law is the infinite-time control law is valid for the

case of periodic sampling. The control law for the case of periodic

sampling has also been proved time invariant rather than time varying.

The following theorem is stated to establish the form and the

existence and uniqueness of the periodic sampled-data control law.

THEOREM 7.4.

An optimal closed loop sampled—data control

* k

u (T) = -G(T)x.(T)
—i —- —i

where
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1

gm = [IE 1+ [3 +252'1’1Egg

exists and is unique if the system is controllable or stabilizable

on a periodic sampling time sequence with period T. The system

performance is

_i .
SO(T) - 2 xo§_x0 + L(T) (34)

where ‘E satisfies the Riccati equation

E=£+@K-§2W+EEMEM9

The proof of this theorem is contained in the literature

[55] and is not proved here.

The system performance (34) becomes

k
fl
h
‘

31(1‘) = (53715;) + Tr{§ _w}) + C(T)

if the initial conditions are randomly distributed as assumed pre—

viously. The assumption is made, as pointed out earlier, in order

k

to make the optimal sampling interval sequence El independent of

the initial state go. The following theorem establishes the

existence of an optimal closed-loop sampled-data control law.

THEOREM 7.5

An optimal closed loop sampled—data control specified by

{3:}m and If exists if the system is sampled-data controllable

or sampled-data stabilizable.

In Theorem 7.3, the existence and uniqueness of the optimal

control was proved for each 2.5 [a,b] for which the system is
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either controllable or stabilizable. Since the control is unique

a derived performance index 81(2) was defined over I 6 [3,9].

Since there exist feasible solution {2, {Bi}:=0} and since

Sl(T) is non-negative, an infinum exists. Since the set of

feasible sampling intervals sequences I_e [3,b] is a compactum,

an optimal sampling interval sequence 2: exists. Thus an optimal

control sequence {3:(I:)}:=O and trajectory sequence £§i(:1)}:=0

exists. The control law is closed loop because the optimal sampling

interval sequence I: does not depend explicitly on the inital state.

Computing the optimal sampling interval sequence is in gen-

eral impractical due to the high cost of computation storage, and

hardware implementation. Thus the optimal sampling interval sequence

must be highly structured and must depend on the form of the cost

of implementation chosen.

A periodic sampling criterion has been heuristically

established as optimal if the cost of implementation has the form

8

-BT.
i

C(T) = as (35)

i "
M

0

It is quite apparent that other structured sampling criteria may

be Optimal if other forms for the cost of implementation are prOposed.

The optimal sampling period T* for this infinite-time

optimal sampled-data regulator problem with cost of implementation

(35) can easily be computed using a one dimensional search algorithm,

such as Fibonacci search. The use of such an algorithm on several

example problems is a subject for future research.



CHAPTER VIII

CONCLUSIONS AND FURTHER INVESTIGATION

The principal contribution of this thesis is the develop-

ment of a new framework for the design and analysis of sampled-

data control systems.

The formulation of the sampled—data control problem is

extended by considering both the number of samples and the lengths

of sampling intervals as control parameters. A system performance

index is proposed which measures not only control performance but

also the cost of implementation. The sampled-data control is

generalized by assuming polynomial form over each sampling interval.

The controllability and observability of these sampled-

data control systems are defined for the case where both the number

of sampling times and the lengths of sampling intervals are control

variables. It is established that a necessary and sufficient con-

ciition for p-sampled-data controllability and observability can be

<iecomposed into a condition on the controllability and observability

of the continuous-time system and a condition on the sampling times

sequence. A sufficient condition on the sampling time sequence

is stated which will guarantee the preservation of controllability

and observability when continuous measurements and controls are

replaced by sampled measurements and a sampled—data (sample and

hold) control. Finally, a system which is controllable with

132
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continuous controls and observable with continuous measurements is

proved to be controllable with a sampled-data control and observable

with sampled measurements if the number of sampling times and the

lengths of sampling intervals are chosen properly. Some sufficient

conditions are derived which indicate the properties which must be

satisfied for a system which is controllable and observable with

continuous measurements and controls to be uncontrollable and un-

observable with sampled measurements and a sampled-data control.

These results on controllability and observability indicate the

actuator which implements the control commands and the sensor which

makes measurements should be considered part of the control law

rather than part of the model of the system to be controlled since

the number of samples and the lengths of sampling intervals are

shown to be control parameters.

These control problems were formulated in this thesis: the

sampled-data tracking problem, the infinite time sampled-data

regulator problem. The existence of an optimal sampled-data control

law was proved and a computational algorithm was developed for both

problems.

The optimal continuous time control law was proved to be a

sub-optimal sampled-data control law if the cost for implementation

‘was not negligible and the optimal sampled—data control law if the

cost for implementation was negligible. This result indicates this

sampled-data formulation should be the general formulation of the

optimal control problem because the decision on the form of the

control, the form of the measurement system, and the form of the
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actuator can only be made properly if this formulation is used.

Extensive computation results were obtained to compare the

performance of optimal periodic sampled-data control and optimal

aperiodic sampled-data control for the tracking problem. Comparisons

of performance were made on different examples with different inputs.

Moreover the performance of these systems was also evaluated for

optimal sampled-data control laws with different order control

approximations. The study of both the order of control approximation

and the optimal aperiodic sampling were made to determine the possible

reduction in information required and possible control performance

improvement which can result by properly parameterizing the optimal

control.

Topics for further investigation are listed below:

(1) the development of a cost of implementation which more

realistically models the cost of utilization of computer

and communication hardware, the cost of sensors, actuators,

and the cost of computing the control,

(2) the investigation of alternative search algorithms which

can outperform Powells algorithm in the computational

programs developed,

(3) the extension of controllability and observability of

sampled-data systems to the case where the sampled-data

control is modeled by a polynomial rather than a sampled

and hold mechanism,

(4) the development of computer program which implements the

algorithms developed for the infinite time regulator problem,
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(5) the formulation and solution of optimal stochastic

sampled-data control problem.
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A. SAMPLED DATA FORM OF THE SYSTEM EQUATIONS

yo = 53 yo + g 30:)

has a solution

gut-t )

x(t) = e x(t0) + ft 65(t‘T)_ _ to __E(T)dT

Therefore the solution over one interval becomes

  

AT. t. A(t. -T)
_ —-1 1+1 —- i+1 k

51H ’ 8 £1 + fti e M301 + + 3115T " ti) 1dr

Changing variables ti+1 — T = t gives

T T

_ 1 At 1 At k
§i+l - gixi + [O e—-Bdt 201 +...+ f0 e—_B_(Ti - t) dt Bki

which can be put into matrix form as

f 1

301

51+1 = 91151 + [90i’°°°’2ki] ' = $1351 + 919—1 (A1)

EM
4

T' At k
where D , = f 1 e— B(T, — t) dt

-—ki 0 -— i

The variable k = 0,1,2, represents step, ramp and parabolic control

approximation respectively.

Similarly, the following equations can be established

33m = $(t)§i + 2(t)gi (.12)



where
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B. DISCRETE FORM OF COST FUNCTIONAL

The continuous form of cost functional is

t

1 1

s = 7,31%) - 3(tN).§(_y(tN) - _z_<cN>)> 133:7; [u(t) - 50.3mm

N-l -BT.

-_§(t))> + <g(t),Rug(t)>]dt + z 66 1 (Bl)

i=0

Since y(t) = Cx(t) and .F is symmetric

  

1 _ 1. 1* 1 . - "

2<l(tN) ’ 5(tN)’§(Y—(tN) " 551») ' 2 1EN: EN + 2 3 (til): ERN) h—N—AN

(82)

where

i=9£9

_ l

1,, 2 (59:9.

5N --§(CN)

Using (A2) and the fact that

t, N-l t.

f “ f(t)dt = 2 f l+lf(t)dt
t . t.
0 i=0 i

and

m w

k 201

k .

gt) - 301 +...+ gkiu - ti) - [_I_,...,(t - ti) _I_] . ,

31d

5 a

it is obvious that
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t

 

%ftN[<_):(t) - g<t>,g(y_(t> - §(t))> + <g(t).§ 3(t)>]dt

O

N-l 1 1
- _ v v _ v _ _

‘ 1:0 [2 519151 +~§1§131 + 2 315191 b151 -5131]

t

+ if N 2'(t)Q 2(t)dt
2 c — -—-—

O

T, ,

M, = f 1 e5 To D(T)dT
“1 o -—-—

T, ,

where Q. = f-1 eé To eAIdT_1 O __

r _ _~

Ti R . RTZk 3 RIZk 2

.. v " "' " — _
Bi - f0 [D (T)Q.R(T) + . EFZk'l

ET2k—1 BTZR

( J 

_ i , AT,

—i [O §_(ti + I)g C e— OT

(r1

= I
.51 f0 '3 (ti + T)Q_C_D(r)dr

Substituting (B2) and (B3) into (Bl) gives

N-l -BTi 1 . 1 N—l

= __ V _ + __ V + V

5 J0 + .2 “e + 2 §N£~£N hMEN 2 .2 (£191§1 2515131
1=O

1=O

' - -

+ AME, 23151 2819.1)

tN

where J = l g}(t)§_g(t)dt

0

N
H
P
‘

. .1
§_(tN)§_gfltN) + 2 It

(B3)

]dT

(B4)
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C. KUHN-TUCKER NECESSARY CONDITION OF OPTIMALITY FOR QUADRATIC

PROGRAMMING PROBLEM

The canonical form of the quadratic programming problem is:

. . . l
Minimize —<v, v> + <d,v>

2—

subject to the constraints:

.§.X ='g and a < v < 8 (C1)

The Kuhn-Tucker necessary conditions for this problem are

stated in the following theorem.

THEOREM

If g_ is a feasible solution to problem (C1), then .2

is an Optimal solution if and only if there exists a vector

3' = (w',...,wm) e Em

such that for i = 1,2,...,n

<1111> - <ais2> - 11 = 0 if 9.1 < 21 < E1

i i _ i

<ii.i> - (£1122) - g 1 0 if a - 2

up? - 311.93 - 91 : 0 if 11 = 5:1

where for i = 1,2,...,n, 11 is the ith column of -§’«fli is the

ith column of g, and d} is the ith component of d.
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D. NECESSARY CONDITIONS FOR OPTIMALITY OF THE SAMPLED DATA TRACKING

PROBLEM

The sampled-data tracking problem can be put into the

canonical form (Appendix C) of the quadratic programming problem

as follows.

The cost functional

N-l -8T 1 l N-l

= _ t " __ v I
J J0 + .1 ae + 2 x F EN EN§1 + 2 Z (x Qixi + 2xiM u

i=0 =0

' — —

+ 313131 2519—1 25151)

can be represented as

N-l -BT. 1

J = J + 2 ae 1 + 7 <v,Q v> + <d,v> (Dl)

0 i=0 2 _ 7 — _ _

The (n + kr)(N + 1)* vector 3_ has the form

, V V V V

4.4) 41-1 21-1 4. 91

and the (n + kr)(N + 1) square matrix Q. is

  

( x

(3

770..

21

2:

911-1

9N

K I

 

As the dimension is concerned, k = 1 for step, k = 2 for ramp,

k = 3 for parabola.



147

where the (n + kr) square matrices Qi’ i = 0,1,...,N are defined

as follows

. M.
A "‘1 _l

g} = for i = 0,1,...,N-l

1 M'. R
—l —l

i‘ 9

E; =

—N 9 0

The (n + kr)(N + 1) vector d is

v _ _ _ _ _ -
fl “ [ I109 E090°09 LIN-1, ‘g‘N-l’ ENDQJ

The state equations and the initial condition

10 = .5.

51+1 = $133, + 9.131 1 = 0,1,. ,N—l

can be put into the form as

BX = 9 (D2)

where the n(N + l)X(n + kr)(N + 1) matrix .R is

  

/ -

l-9n(kr)

-$0 - D I O
_0 __ __

-$l—Rl _I. .9.

3 =

9111-1 I311—1 —I- 9
5

)1
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and the n(N + 1) vector 9 is

c'=[§g... 0]

The inequality constraints

g<l<§ (D3)

are not restrictive since all the elements in a are set as —m

and in §_ as + m

From (D1), (D2), (D3) the tracking problem is transformed

into a canonical quadratic programming problem as (Cl). By using

the theorem in Appendix C, if 3_ is a feasible solution, then ‘3

is an Optimal solution if and only if there exists a vector

t
o
.
-

ll

1 v I

[20,219 ° ° ° ’RN]

Where Bi = [pil:p12’°°°apin]

such that for i = 1,2,...,(N + 1)

<11, > — <3]??? - 51-1 = O

This condition can be stated in matrix form as follows

"
‘
1

m

I

[
o

x-9=9

because a = -m B = m V i

This vector condition can be shown to be equivalent to the

following set of conditions.

 



= I 1 __ I
‘Ri ¢'pi+l + pr, + M,u. h.

0 = D' + Mix
_1_.

- V

-kr —1P—1+1 + R'”' 51i ‘—l_1

for i = 0,1,...,N—1 and

P—1\1=£351~1"—}11\1

Thus the necessary conditions for the problem are the

equations stated in Theorem 1.

(D4)

(D5)

(D6)
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E. DERIVATION OF THE CONTROL LAW

The control law can be solved for uniquely using (US) to

obtain

u =-R-1(M'x + D'D - g') (E1)

—' ~1 -—1—1 ~1~1+1 1

ssince Bi is positive definite for all i.

Assuming the (Lagrange) multipliers have the form (verified

in [24])

pi = K.x + k. (E2)

where Ei’ 3i are to be determined.

Using (El), (E2) eliminates Hi from (7) and (D4),

followed by rearranging terms with the help of the well known

matrix identity

(1 + A B')‘1 = 1 — A(I + B'A)—1B'
"‘11 _‘-' -n ""I' ‘_—‘ ‘—

firmly yields

x = O x + D 8.1("' — D'k ) (E3)

~1+1 41—1 ~1—1 21 -—i—i+1

o = O' + F x + M R-1 ' - h' (E4)

*1 —191+1 «—1—1 —im1-5i -—1

for i = 0,1,...,N-l where

o = 6 - D.RT1M!
_‘1 *1. “1-1 "l

D = (I — D s'lD'K )o
—1 —— —d=1 —1—1+1-—1
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U
3 ll

'-i (R'1+'2iEi+1Di)

-1 '

Comparing (E2) with (E4) and substituting (E3) for §i+l

give

K.x+k. =(OiK ei+ri,)x+(cfg.-h'.+o..k) (ES)

—- 1+ —i ~i-1 —il— i—ifl

where G: = (IvLRTl + C'K D Sl)
-i -i-ii1-1-—i--i

Since (E5) must hold for any choice of initial state g

and since -Ei’-Ei does not depend on .EI (E5) must be satisfied

for all xi. This implies

= 1 E6
451 9151+191£1 ( )

= I I _ I 4

51 E1—g-1 fl1 +9111‘1+1 (U)

Substituting (E2), (E3) into (E1) and rearranging terms

finally obtain

-1 -

“ E1x1 §1 (519—1—131+1) (E )
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E. DERIVATION OF THE OPTIMAL COST

The discrete form of cost functional is (from B4)

N-l -8Ti 1 . N-l

_ __ I _
S J0 + .2 ae + 2 EN- EN hlxl + .2 J1 (F1)

i=0 i=0

where

l I . I I .

J. = -(x,Q.x. + 2x,M.u. + u.R.u. - 2h.x, - 2g.u.)

i 2-—i»i—i —i—i—i i—i—i -—1—1 -—1—1

Replacing .31 by use of (El) obtains

l ' . '1 I l 1 I -1 V= _ . + T + ._ . :1 _.

J1 2313151 P—1+1[9—131 9131“” 5251—1151 £5-1 2D~151

- g. R-lg') (F2)
1‘1 1

Using (E1), (7) can be rearranged as

D R-lDflp = —x + O x + D R.1 ' (F3)

-—1—1 —1 1+1 ——1+1 ~1——-1 ~1-1 51

Replacing the bracketed term in (F2) by (F3) substituting

u. for using (E1) and using the rearranged (E4)

-1

= ' + ' + « ' -

(F2) becomes

1; I I I -1_ "'1 I '1 I _

1 ’ 2H21X—1 P—1+13‘-1+1) + (121112131 52151 + 513131 >311 5151]

L
. l

) - u'O' - hix (F4)
.1. v _ .

2 [(131331 E1+1-“31H —191 —1]

Replacing Bi with (E8), rearranging (E7) and substituting

(E3), the following expression becomes
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V V I

u.g. + n.x, = .u, + h,x,

_ILI -i~i ~§i—i '—1*1

= A __ I _ I _l I

(91—51“ 3—1) 331 51—911 Bi£i+l + 51—8—1 51

= I _ I _ I I "'1 I _ I

(5'+1§1+1 5151) + (g1 9341) —S—1 (51 9151“) (F5)

Therefore, putting (F5) back into (F4) obtains

l V V

J1 ’ IMP—1351 ’ P—1+13‘—1+1) ' (51+1§1+1 " 51331)

I I I '1 I I '

-(gi-Qk )s.<g.-Dk )1 (F6)
i—i+1 '—1 ~~i ‘—i—i+1

Substituting (F6) into (F1) and using (D6), which implies

1, = 1 and 1N = ~11,

gives (10) i.e.

N-l -BT. l

S = J + 2 ae l +-— x'K x + k'x

0 i=0 2 —o—o—O mo—o

1 N‘1 1
_ __ I _ I I " I _ I

2 .2 (g1 9151+1) §1 ($1 9151M)
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G. EXISTENCE AND UNIQUENESS OF OPTIMAL CONTROL AND TRAJECTORY FOR

EACH SPECIFIED T

It is shown in Appendix D that a quadratic programming

problem is formed by (D1), (D2), (D3). The following two theorems

state conditions for the existence and uniqueness of an optimal

solution for this problem.

THEOREM

*

If n (Q) n n(R) = {0} and the quadratic programming problem

(D1, D2, D3) has a feasible solution, then it has a unique optimal

 

solution.

THEOREM

If (9):? = 0 for every .3 6 En satisfying .g‘g =q0 and

Rug =.g and if there exists a feasible solution to the quadratic

programming problem (D1, D2, D3), then there exists an Optimal

solution.

It is established that the conditions in the above theorem

for existence and uniqueness of an optimal solution are satisfied

if [Q] has maximum column rank, and g_ is positive semi definite.

Therefore these two conditions will be established to prove the

existence and uniqueness of the optimal solution.

The matrix Q. is now proved to be positive semi definite.

The matrix

[Q 7

K
)

p

_q=

21-1 .
3

L ,1

it

n(') means "the null space of".
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o o o a I o A V r o a o o

is p051tive semi-definite if {Qi}i are pOSitive semi-definite.
._ l:

0

The matrices -§i; i = 0,1,...,N-1 have the form

\I

—Q—i Lil

Q1 _ M! R.
-i -—i

-l '1

1 11.11. g. — M.R. M'. 0 1 0
- ~i—i 1 —1—1 —1 — - ‘-

9 1 9 1 3511' 1

gi - Mifi;¥fl; is positive semi-definite from the proof of Lemma 1

of (2, p. 347) and therefore -§i are positive semi-definite for

i = 0,1,...,V-l. The matrix

1: K
:

N 9 I
D

A

is positive semi—definite since F is positive semidefinite and

therefore 0' is positive semidefinite which completes one part of

the proof.

The ((n + kr)(N + l) + n(N + 1)) by (n + kr)(N + 1)

matrix [ ] has the form

l
w
b
o

; W

9.92.
M' R

—o —o

I
W

1
.20..

A
C
H
C
N

  



By apprOpriate column and row Operation, it can be trans-

formed into an equivalent matrix.

 

  

fgg ‘

O R

- —o

99

0 R .

k —' ’1 -

9 °.
*2 -----------------

3

1.9

9919

99

L J k

9
These Tfs and Ei's are nonsingular; the matrix * has

9 3.

independent columns. Therefore, has maximum ra k nd the

R

second part of the proof is complete. Therefore there exists a

unique solution to the tracking problem.
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H. SOME PROPERTIES OF MATRIX NORMS

(1) If the norm of a n by n matrix Q is defined as

W = :38 W

where ‘5 is a n-vector, then it satisfies

<a> M > o

(b) “a + 1:) _

V E + :
5

(c) m - 9H : Mlfila‘.

(d) “a5“ = lQl'Héfl a is a scalar.

n

and HXH = ( Z I .l2)l/2H . 1

i=1

(2) if g is hermitian ”9“ = 0(5) where p(§)=:max lxil is the

1

spectral radius of .5.

(3) If .5 is positive definite, then pi(é) > O V i. This can

be expressed as ‘5 > 0.

(4) If ‘R > 0,.X < 0 then nfi +12“ < “E“

If .E > 0 then ”(1 + §)—lu < l

(5) If ‘A > O, B > 0 then 9.9 > O

(6) If .9 is a triangular (upper or lower) square matrix with

0, then Hegtu = l.C..

11

(7) Two similar square matrices which have the same characteristic

polynomial, will have the same values of norm.
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