


ABSTRACT
ON THE OPTIMAL SAMPLED-DATA TRACKING PROBLEM
By

Richard Kuang-tzan Ma

The optimal sampled-data tracking problem is formulated
and solved using an efficient computational algorithm. The
optimization is performed on the number of samples, the sampling
instants sequence, and on the order of polynomial approximation
to the control law over each sampling interval. This sampled-data
control is parameterized by specifying the parameters and order
polynomial approximation over each sampling interval, the number of
samples, and the length of each sampling interval. Comparisons are
made on both control performance and sampling efficiency for con-
trol laws with different order approximations and with both periodic
and optimal aperiodic sampling criteria. These results form a
basis for analyzing the performance advantages and costs for using
higher order control approximations and optimal aperiodic sampling
criterion.

Sampled-data controllability and observability are defined
for the case where both the number of sampling times and the lengths
of sampling intervals are free and considered control variables. The
sampled-data system is proved to be observable (controllable) if

and only if the continuous time system is observable (controllable).
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A sufficient condition on the sampling time sequence is stated which
guarantees the preservation of controllability and observability
when the continuous measurements and controls are replaced by
sampled ones.

The infinite-time sampled-data regulator problem is formulated
for the case where both the number of sampling times and the lengths
of sampling intervals are considered control variables.

The existence of an optimal closed-loop sampled-data control
law is proved for the cases where the number of samples are both
finite and infinite. Computational algorithms for calculating the

optimal control are also proposed.
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CHAPTER 1

INTRODUCTION

Periodic sampling criteria have often been used in industrial
control to simplify the design and analysis. Aperiodic sampling
criteria have become quite practical in both design and control
with the introduction of computers. Therefore, numerous [13 - 20]
aperiodic sampling criteria have been studied in an effort to improve
the system performance and sampling efficiency relative to a
Periodic sampling criterion. Improved control performance with
reduced computer memory and communication requirement makes aperiodic
Samp ling criteria particularly useful for numerical control applica-
tions.

The optimal sampled-data tracking problem originated from
the yesearch on the development of optimal programmed control for
Machine tools [8]. In a computer-aided-manufacturing (CAM) system
°f the future, a large central computer system will compute and
Store the programmed control for each part. The programmed control
WOuld be stored and then transmitted at the proper time to the
Minji-computer or controller that monitors and controls a particular
Machine tool. Immense data storage and communication facilities

AYXe required to accurately specify the cutter path for each part
And each machine tool. Since a major commitment in computer and

Communication hardware is required to handle machine tool control

1



and since the computer and communication system must also handle
material handling, scheduling and inventory control, the programmed
control for each part should be specified with as little informa-

tion as possible.

Therefore, the optimal programmed control for a machine tool

should be designed to not only produce excellent quality parts but

also minimize the information-handling requirement. Since the control

is parameterized by specifying the polynomial approximation over each
sampling interval and the length of each sampling interval, this
minimization will be accomplished by selecting both the best control

approximation parameters on each sampling interval and the optimal

sampling intervals sequence. The additional flexibility provided

by selecting the order of the polynomial approximation in each

Sampling interval and the flexibility of selecting the length of

€ach sampling interval and the number of sampling intervals promise

to permit great reduction in data transmission and storage required

to obtain a particular tolerance level and surface finish quality.
This optimal sampled-data control problem was first

formulated [6, 7] in an effort to obtain sampling criteria that pro-

Vide better performance than any periodic or arbitrary aperiodic

Sampling criteria. Necessary conditions were derived in both papers

but were never used to obtain an efficient computational algorithm

for the optimal solution. A sequential unconstrained minimization

technique (SUMT) has been used with some success in the special case

Where the continuous time problem can be transformed to an equivalent

discrete time one [9].






An efficient computational algorithm was developed for
this optimal sampled-data control problem for the special case where

the optimal control sequence can be determined as a unique function

of the particular sampling intervals sequence chosen. For this

special case, the performance index can be determined as a function

of this sampling intervals sequence. The optimal sampling intervals

sequence can be found by minimizing this derived performance index.
The optimal sampled-data control law is then specified by the optimal
control sequence which results upon the substitution of the optimal
sampling intervals sequence.

This algorithm was applied to compute the optimal sampled-
data control law for the regulator problem with constrained [9],
State-dependent [10], and adaptive [11] sampling criteria. The
éXcellent performance obtained with very few control changes in-
dicates that the computer memory and system - computer communica-
tion required to store and transmit the control can be significantly
educed if the sampling intervals are determined optimally rather

than specified apriori.

With the same concept of optimal sampling for control, the

*
OPtimal sampled-data tracking (and servo ) problem is investigated

In this thesis. Instead of assuming a step (sample and hold) control

APproximation, the control approximation is assumed to be of poly-

Nomjial form over each sampling interval. The order of the control

QApproximation is varied from zero to two.

*

By convention, if the plant's outputs are to follow a class of
desired trajectories, the problem is referred to as a servo problem;
on the other hand, if the desired trajectories is a particular func-

tion of time, it is called a tracking problem.



Necessary conditions are obtained and are used to derive
the control sequence as a function of the sampling intervals sequence.
The optimal control law and a derived performance index are then
proved to exist and to be unique for any sequence of sampling intervals.

The existence of an optimal sampling interval sequence is finally

proved.

An algorithmic procedure for computing the optimal sampled-

dat a control is proposed. This algorithmic procedure extends the

prewvious procedure [9] by not just searching over a sequence of
sampling intervals for a particular number of samples but also

searching over the number of samples required. The sub-algorithm for

Searching over the sampling intervals, developed by Schlueter [9],
is implemented with both a gradient and a non-gradient algorithm.

The computational results show that the non-gradient Powell algorithm

(331 is more efficient than a Fletcher-Powell gradient algorithm

(32] s 1i.e. the computational effort and the number of iterations

fequ i red to obtain convergence are less.

A cost of implementation is adjoined to the performance index
for the first time because the optimal sampled-data control was

PToved to be the optimal continuous-time if a cost of implementation

W3S mneglected. An optimal continuous-time control is in general sub-

°Ptima] if a cost of implementation is added. After a search of the

1lteT-‘ature, a particular form for this cost of implementation is

adopted, The computational results show that augmenting the perfor-
Mance jndex with a cost of implementation not only makes the design

PIOblem more reasonable but also improves the convergence of the

Computational algorithm.



A comparison of performance of an optimal sampled-data con-
trol law with periodic, optimal aperiodic, and adaptive sampling
criteria was made. A comparison of performance was also made for
sampled-data control laws with a zero, first and second order control

approximation. Comparisons were also made for various sampling
cx iteria - control approximation combinations to determine which
combination needs the fewest parameters to specify a control with

a given level of performance. These comparisons of control

approximations and sampling criteria were carried out on three dif-
ferent systems and for different trajectories. These results form
a basis for analyzing the performance advantages and costs for using
higher order control approximations and optimal aperiodic sampling
criteria.

Sampled-data controllability and observability are defined
for the case where both the number of sampling times and the length
of each sampling interval are free and considered to be control
vVar iables. The sampled-data system is proved to be observable (con-
trol lable) if the continuous time system is observable (controllable).
Moreover, it is proved that if the system is observable (controllable),
it can be observed (controlled) in q sampling intervals, where
9 1is the order of the minimal polynomial of the plant. A test is
Proposed to determine whether controllability or observability is

Preserved for a particular sequence of sampling intervals. The test
depends only upon the eigenvalues of the plant and the sampling
intervals chosen. Some preliminary results are derived to indicate

the condition which must be satisfied for a system which is observable



(controllable) to be unobservable (uncontrollable) for a particular
sampling intervals sequence.

The infinite-time sampled-data regulator problem is formulated
for the case where both the number of sampling times and the lengths
of the sampling intervals are considered control parameters. The
ex istence of an optimal closed-loop sampled-data control law is
proved for the cases where the number of samples are both finite and
infinite. Computational algorithms for calculating the optimal

control are proposed for both the case of finite and infinite

number of samples.



CHAPTER II

PROBLEM FORMULATION

Consider the linear dynamic system

x(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t) (2)
x(t ) = ¢
x(t &

wvhere x(t) e R", u(t) « R, y(t) ¢ R" and A, B, C, are compatible
matrijces. Initial time t, and terminal time tN are both assumed
fixedq,

The design objective is to maintain the output trajectory
y(t) as close as possible to a desired trajectory z(t) with
Minimum control effort along with minimum communication requirement.
Besi&ies, this cost functional should penalize the system for error
OT excessive control inputs continuously in time, not only at

Samp 1 jng instants.

To achieve this objective, a performance index of the form

S=J+C (3a)

18 chosen where the control performance is measured by

< 1
1= g ey - 2y, Flyley - 2(r)>
1 N (3b)
t3 ft [<y(t) = z(t), Q(y(t) - z(t))> + <u(t),Ru(t)>]dt

o
7



and the cost of implementation is assumed to be measured by
N-1 —BTi
C= I ae (3¢)
i=0
where F_ Q are positive semi-definite symmetric matrices not
both identically zero and R 1is positive-definite, symmetric.
These matrices are respectively the '"weighting factor" for the end
po int error, error energy y(t) - z(t) and control energy.

A cost for implementation is adjoined and represents the
economic costs for implementing and operating a sampled-data control
law. This cost for implementation can be considered to represent
the cost for transmitting and storing the cptimal sampled-data
control law. It is similar in form to the costs for sampling used
in the analytic derivation of adaptive sampling rules [13] and the
Optimal periodic sampling rate for a feedback control problem [56].

The sampled-data control law is a polynomial approximation
of the true optimal control and is constrained to be piecewise
Polymomial of the order up to two. The order of polynomial
Approximation is determined by the tradeoff between the control per-

foII‘tnance and the amount of information to be transmitted. The

Control is assumed to have the form

u(t) = ) (4)

. i+l
J

N~ x

_ b
. %i(t ti) t e [ti, t

where k = 0,1,2 represents a step, ramp and parabolic control

approximation respectively.

N-2
The N sampling instants {ti+l }i=0 are chosen such that

th - =
e sampling intervals ti+1 t, Ti satisfy



0 < Ti min hl Ti = Ti max (5a)
5(T0, Tisenes TN-l) = gv (5b)

and N satisfies
N <N ) (5¢)

These sampling constraints (5a, 5b, 5c) can specify an
op timal periodic sampling criterion if

8(Tgs Typeves Ty ) =T, = (—g—

On the other hand, a suboptimal periodic sampling criterion
Can i = =
be specified by fixing N Nmin Nmax'

Similarly, a suboptimal aperiodic sampling criterion can be

SPecified by choosing N as

Nmin = Nmax
N-1

Finally, the optimal aperiodic sampling criterion has to

Satisfy (5a), (5¢) and (5d).

\J \J
The Timax s, Timin s, Nmin and Nmax all come from

the hardware limitation.
The optimal sampled-data tracking problem with polynomial

Control approximation over constrained sampling intervals can be
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stated formally as follows:
Given the linear dynamic system (1), (2) with polynomial control
approximation (4); determine the optimal control sampling intervals

sequence, and the number of sampling intervals

T .., T ) and N

O
lugdion I' = (T Tpoeen Ty

that minimizes the cost functional (3) and satisfies (5a), (5b),

L)

v _ '
and (5¢) where ug (EOi""’Ekl



CHAPTER III

PROBLEM SOLUTTON

This tracking problem cannot be solved directly because the
admissible controls are constrained to be piecewise polynomial.
Nevertheless, the constrained problem can be transformed into an
equivalent unconstrained one by integrating the differential equa-
tion (1) and cost functional (3) over each sampling interval
[tit+1’ ti) separately, substituting output equation (2) and finally
invoking the control constraints (4).

The resulting discrete state equation becomes (derived in

Appendix A, B)

Xijp1 = 8% ¥ D0y )
y; = Cx;
where
x; = x(t)
AT,
9, =8(T) =e
Dy = D(Ty) = (Ryyse-sDyy)
and

11



N-1
s =J* % XE 2y - hyxy t % Do(eiQux, + 2xMiuy + uiRiuy
i=0
N-1 BT,
- 23151 - 2_qil_1.l) + I ae (8)
i=0
where
i-1
;= LT
j=0
Q=cqc
F=Cc'Fc
= '
hy=2'(tDFC
4 N
R . Et2k—3 Bt2k-2
] Bt2k-l EtZk
\ /
1 N
= =[,! '
Jo = 2" (tF 2(t) + ftO 2'(£)Q z(t)dt]
T
_ _ . i A't Ao At
gi—g(Ti) —fo e—  Q e~ dt
T
_ _ i Aty
M, = M(T)) = /7 e "QD(t)dt
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T,
o [R(t) +D'(£)Q D(t)]dt

R = R(T)) =
Ti At

h; =h(T)) =/ " 2"(t; + £)Q C e dt
Ti

8; = g(Ti) = J’O g'(ti + t)Q C D(t)dt

D(t) = [Dy(t),...,D, (t)]
D (6) = s (e - 0" & B ax

t fixed

W ™
-3
[l

Even though Q and R are constant, Qi’ M., R, are in

general, time varying. ¢, 1is nonsingular because it s a fundamental

matrix [29]. 91 (Bi) is positive semidefinite (definite)

symmetric since Q (R) 1is positive semidefinite (definite)
symmetric.
The discrete time problem becomes:

Given the sampled-data system (7) with specified initial condition,

N-1
i=0°

T' = (To,Tl,...,TN_l) and N that minimizes the cost functional

determine the control and sampling intervals sequence Lqi}

(8) subject to the constraints (5a), (5b), (5¢).
The following theorems establish both the existence of an
optimal solution and the structure for the computational algorithm.
For any specified T and N satisfying the sampling con-

straints (5a), (5b), (5c¢), the existence of an optimal control and
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an optimal state sequence are guaranteed if it satisfies the follow-
ing Kuhn-Tucker conditions.
THEOREM ] (Kuhn-Tucker Necessary Condition)

If the sampling constraint T ¢ [a, b] holds, then an optimal

solution _gi(l) =u, and x (T) = x

x0T X.,q exist if and only if there

exists vectors Py such that

X, =&

Xi41 T &4%; * Dyuy

By = Exy - by

Ry = QyX; *Myjuy +eipiyy - by

' ' o' =
Rpuy + My%; +Dipyyy -8 =0

for

Proof

The Kuhn-Tucker necessary condition for the quadratic pro-
gramming problem is stated in Appendix C and the above conditions
are established in Appendix D.
THEOREM 2

For each T satisfying T ¢ [a, b], there exists an unique

control law and trajectory sequence. The control law is

= ("L -1y a L - b
P_i (Ei y‘i + §i 'Qil(‘i'i"l:'i)z(‘i + -S—i (gi Qiki-i-l) (9
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the cost functional is S(T,N,k) = J(T,N,k) + C(T,N,k) where

1
J(T,N,k) = J + > x[K X X5

- l ' 1 ] -1 [] ]
2 2 (83 ~ Dk )78, (g5 - Diky ) (10)
i=0
N-1 -8T,
C(T,N,k) = I ae =
i=0
5; = Ry + DK D))
-1
=) = - '
Yy T 95 - DyRMS
v -1, -1
G = MRy DK RSy (11)
and K,, k., satisfy
—i’ —i
K=(Q—MR M)+n' I - -1 (12)
Ky = @ +1[L - D8, DK, 41 8,
= M - -1 1, 1t
ky = 85 - DS, DKy Kyyy + i85 - by (13)
with terminal conditions
- " - 0
Ky=CEC and kg =-2"(t))FC (14)

Proof
The existence and uniqueness are proved in Appendix G and
the derivation of (9), (10), (11), (12), (13), (14) are in Appendix

E and F.
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THEOREM 3

If the sampling constraints are satisfied, then there exists
*
an optimal sampling intervals sequence T .
Proof

There exists an unique optimal control and trajectory

N-1 (I)}N_l, for each T satisfying (5a),

sequence {Ei(l)}i=0’ x4 i=

(5b), (5c). The cost functional is obviously a continuous function
of T since ii’ 21’491’ Hi’ Bi’ 8> hi’-gi’-ki are continuous
matrix functions of T. Therefore, the cost functional S(T) is
*
continuous on 2 compact set and an optimal solution T  for this
derived problem exists. Q.E.D.
Thus, there exists a solution
* N

N-1 *
(o, (M)} o s (%, (@)

-1 *
i=0

and T

for the optimal linear tracking problem with constrained sampling
times.

This control law is open loop and pre-programmed since the
derived cost function and thus 1* depends on initial state X,
and the entire trajectory 2z(t), t € [to, tyl-

This theorem shows that the solution I* to the derived
optimization problem (minimize S(T,N,k) over the set [a,b]) can
be used to determine the optimal control and trajectory from the

*
state equation (7) and the control law (9) after matrices 51(1.)

*
and Gi(l ) have been computed for i =N, N-1, ..., 1,0 from

(11) to (14) assuming N and k are specified.



CHAPTER 1V

COMPUTATIONAL ALGORITHM

The derived minimization problem

min S(I_’N)k)

N,TeQ
[ O0<T, . <T, <T, (5a)
imin — i — Timax
Q= 4le; satisfying Nmin <N< Nmax (5b)
g(TO,Tl,...,TN_l) = Qv (5¢)

can be solved for any given particular values of both N and k
using a sequential unconstrained minimization technique (SUMT).
The convergence of this algorithm was proved in [34].

Another level of optimization can be performed to de-
termine both the optimal number of sampling times N* and the
optimal order of control approximation k*. This optimization could
be performed by searching the optimal system performance S(If,N,k),
which results from solving this derived minimization problem over

each N and k satisfying

k =0,1,2

17
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This level of optimization over N and k can be performed
using an integer programming algorithm. This generalized algorithm
now has three levels of optimization
(1) determine {gfi(l,N,k)}T;é by solving the Kuhn-Tucker necessary

conditions for any (T,N,k) and determine the derived perfor-
mance index S(T,N,k).

(2) determine the optimal sampling intervals sequence Ef(N,k) for
any N and K using the SUMT algorithm and determine the
performance S(If,N,k).

(3) determine the optimal number of sampling intervals N* and k*
that minimize S(If,N,k) using an integer programming algorithm
and determine the optimal sampled-data control law specified by

N-1

* * % % *x * % * *
{uy (TN LK) TV KD, N, k

x k&
and the performance S(T ,N ,k ).

Although such an algorithm could be implemented, no effort
was made to optimize over either N or k in this research. How-
ever, extensive evaluation of system performance S(l&,N,k) is per-
formed for different values of N and k.

This generalized algorithm has several advantages over other
possible procedures:

(1) the optimization over integers and real variables are separated.
(2) the search dimension on the real variables is reduced from

N(n + kr + 1) to N and the Nn equality constraints (7)

are eliminated by solving for E:(I)N’k) using the Kuhn-Tucker

necessary conditions.
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*
The SUMT algorithm, used to determine T in this generalized
algorithm, has never been tested for the case where an equality con-

straint

g(TO, Tl""’ TN—l) =0,

was imposed on the sampling intervals. The SUMT algorithm can be used
in this case if an appropriate penalty function is used. However,
convergence may be slow and the cost of computation may be high. The
form of the equality constraints imposed are quite simple and there-
fore the v equations can be uniquely solved for v variables as

follows. The Vv wvariables

_—
b (T, »T, 5eee T, )

1 2 v

can be expressed in terms of the N-v variables

such that

3

= £(1) .
The derived performance index becomes
s(2,N,K) = s, £(D),N,k)

where variables Ti are considered to belong to a new set
L
[

a, ,b, ] which guarantees that
12 12
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is satisfied for i = 0,1,...,N-1.
The vector f can now be used to represent the N-1

free sampling intervals

_—
T [TO,Tl,....T ]

N-2
if the sampling constraint specifies the terminal time

N
E(TO,...,TN_l) =

1

I o1
-
|
~
rt

i=0

This vector i can also represent the sampling period T

g(TO,...,TN_l) =

A

Thus the vector T can represent either the first N-1
sampling intervals if an aperiodic sampling criterion is used or
the sampling period if a periodic sampling criterion is used. This
vector is defined in order to simplify the notation in Chapter V.
The proper interpretation of i. is always clear from the context

where it 1is used.



21

The SUMT algorithm can solve this reduced derived minimization
problem with less computational effort because the search dimension
is reduced from N to N-v. A penalty function P(T) is adjoined

to form an augmented cost functional

L(T,N,K,V) = S(T,N,k) + vp(})

N
T = z i - -
P(T) Q=v+l[m1n(0,bi£ Tiﬂ)](biQ Til)

+ (min(O’Til_ail)](Tiﬂ-aii)

which incorporates the sampling interval constraint

Te [a, b]

where

i
v+1

Since the penalty for violating the latter is proportional to
V (V > 0), the minimization of L(i,N,k,V) for monotonically in-
creasing sequence {Vp} results in a sequence {2}:=l that con-
verges [9] to the optimal if.

The computational effort required by the SUMT algorithm

developed by Schlueter [9] is quite large because the gradient of

the performance index must be computed every time the performance
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index is evaluated. Therefore, a non-gradient algorithm and a gradient
algorithm are used to solve the same problem in order to determine
whether the non-gradient algorithm will require less computational

effort.

The Fletcher-Powell gradient search algorithm used by
Schlueter to determine l* requires (N + 1) evaluations of the
performance index at every iteration to compute the gradient and
evaluate the performance index. The Powell algorithm requires only
one evaluation of the performance index because the gradient is not
required. The following example problem was solved using both a

non-gradient Powell search algorithm and the Fletcher-Powell algorithm

and the numbers of evaluations of the performance index are compared.
EXAMPLE 4-1.
Given the system

x(t) = u(t) x(0) =1
with the cost functional
t

J= xz(tf) + % B2 + ul(e))de
0

where the control satisfies the constraints

u(t) = uy t e [ti, ti+l)

for i =0,1 and t_. =t is free .
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The Powell and Fletcher-Powell algorithms both converge

as shown in Table 4-1.

TABLE 4-1. Convergence of Powell and Fletcher-Powell Algorithm

POWELL FLETCHER-POWELL
1 0.54064 0.54064
6 0.53340 0.52309
11 0.52799 0.52050
14 0.52174 0.52019 (converge)

20 0.52020 (converge)

The results indicate the Powell algorithm needs a few more
iterations for convergence, but the computational effort is much
less since the Powell algorithm requires only 20 evaluations of the
performance index while the Fletcher-Powell algorithm requires 42
evaluations to obtain both the performance index and the gradient
at each iteration. Therefore, the Powell algorithm is used in all
the computational work which follows.

The Powell computational algorithm yas first tested on
problems where the cost of implementation was neglected as in Exam-
ple 4 -1. The computational algorithms often did not converge or
converged to local minima rather than global minima. This lack of
convergence is not always caused by the round off error or by the
failure of the computational algorithms to converge, but can be
attributed to the fact that the sampling constraints which require

the sampling intervals to be positive were never imposed in the
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optimization algorithm. The following theorem, which states that

the sampling intervals will tend to approach zero if the cost of
implementation is zero and the number of sampling times is unbounded,
provides an indication that some difficulty with convergence might

be observed if a cost of implementation is omitted.
THEOREM 4-1

The optimal sampled-data control for the regulator problem is the
optimal continuous-time control if the cost of implementation is

negligible and the number of samples t 1is unbounded.

The optimal sampled-data solution to the regulator problem for every
T and N has been shown to be an optimal approximation to the
optimal continuous-time solution for the appropriate Hilbert space
norm [57]. Since a sampled-data control

u(t) = u(e) te [t t)

i+l

is a restricted class of controls, the control performance for the
optimal continuous-time control is less than or equal to the perfor-
mance of an optimal sampled-data control for any T and N. How-

ever, the optimal periodic sampled-data control with period

has been shown to converge to the optimal continuous-time control

[1] as N approaches infinity. Therefore, since the optimal
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continuous-time control has the minimum value of control perfor-
mance of all optimal sampled-data control laws specified by T and
N, the optimal continuous-time control is the optimal sampled-data
control for the special case where the cost of implementation is

negligible and the number of sampling times is unbounded.

Q.E.D.

If a cost of implementation is included or if Nmax is
bounded, the continuous time control law will not be the optimal
sampled-data control law. If Nmax is unbounded but the cost of
implementation is omitted some elements of the optimal sampling
intervals sequences will always be very small. Thus, the computa-
tional algorithm, in searching for the optimal sampling intervals
sequence, would often select a negative sampling interval which
caused the algorithms to diverge. This convergence difficulty could
be overcome by either adjoining a penalty term on the performance
index which penalizes negative sampling intervals or by including
the sampling constraints which restrict the sampling intervals to
have non-negative values. The first approach is taken because there
are penalties on performance in actual engineering design which pre-
vent the sampling intervals from becoming too small. This penalty,
which is the economic cost for implementing and operating a sampled-
data control law, has been overlooked in previous work on optimal
sampling criteria [9 - 11].

The design of sampling criteria always includes a tradeoff

between control performance and economic cost which usually occurs

after the continuous time control law is designed [2, 16]. The
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inclusion of economic cost permits the design of a sampling criterion
and control law together in one step using a single performance index.
The economic cost should represent the cost for implementing
and operating the hardware to
1) measure and collect the data about the states of the system.
2) transmit this data to the controller.
3) estimate the state and compute the control.
4) transmit the control back to the system.
5) actuate the control.
The cost of implementation will be negligible if the cost
of computing, storing, transmitting data and implementing a continuous-
time control law is low. In this case, the continuous-time system
is optimal. However, in most cases the cost of implementing a
continuous-time control will be high and thus the cost of implementa-
tion (COI) must be included.
From this perspective, the optimal continuous-time control
is a special case of the optimal sampled-data control problem. Thus,
the sampled-data control problem formulation is more general and
should be used as the basis for design. The formulation of the
continuous-time problem implicitly assumes that the cost of implementa-
tion is negligible. The omission of a cost of implementation term
in the performance index when it is not negligible is just as severe
in terms of overall system performance as omitting any other significant
term in the performance index.
The inclusion of a cost of implementation is an important
contribution to the art of optimal design since many optimal control

laws are often criticized for being overly costly or impractical.
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Thus, a cost of implementation term in the performance index may
prove to be an effective approach toward making optimal design
techniques more consistent with present engineering practice.

The literature on a proper form for a COI for control laws
is sparse. Research is presently under way [51] to develop models
for implementation cost. The best intuitive models for COI presently
available were found in the literature on ada%tive sampling and
optimal aperiodic sampled-data control law [13, 56]. This form for
the COI is adopted for this study.

The effects of including a COI are illustrated in the follow-

ing example.
EXAMPLE 4-2

Consider the linear system

0 1 0
x(t) = x(t) + u(t)
0 -1 15
with cost functional
1 0 1 tf 2 0]
3=z x'(t) x(t) +35 /0 (x'(D) x(t)
0 1 %o 0o 2

+ ul(t))de .

The initial time to = 0 and the terminal time tf = 20 are

specified and the initial state is

1
x =
R
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The control is piecewise constant and changes only at the sampling

time t1 such that

u(t) = u(ti) =u te [ti, t.,,) for i=0,1

i+l
Augmenting the above performance index with a cost of

implementation

C(T,N) = COI = zl 0.le 1
i=0
has a dramatic effect on the convergence of the Powell algorithm.
The computational results, shown in Table 4-2, indicates
that the inclusion of a COI term not only causes the algorithm to
converge when it did not without COI but also suggests that optimal
solution with COI may be global.
The lack of convergence and divergence problems exhibited
in the computational results, obtained when a cost of implementation
was omitted, indicate
(1) the changes in control performance for changes in the sampling
times is often small near the optimal.

(2) there can be several local minima for the derived control per-
formance J(T,N).

(3) the contraints that require the sampling intervals must be
included if the cost of implementation is omitted in order to

prevent divergence of the computational algorithm.
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The high rate of convergence and apparent global convergence of
the algorithm, when a cost of implementation is included, indicates
the inclusion of a cost of implementation
(1) makes for a better formulation of the control design problem

since the minimal value of the performance is more clearly
defined.

(2) prevents the algorithm from diverging by penalyzing small
positive or negative values for the sampling intervals. The
algorithm no longer selects negative values for the sampling
intervals which previously had caused it to diverge.

Although Powell algorithm works poorly with more than ten
independent variables, it is quite satisfactory with the three
examples computed , since the cost functional for the optimal
sampling starts leveling off before N (number of free sampling
intervals) reaches five.

The optimal sampling intervals sequence becomes periodic if
the cost of implementation is much larger than the control perfor-

mance cost so that

S(T,N,k) = COI = I ae

This cost of implementation becomes large if the cost per
sample a or the number of sampling times becomes large. A
heuristic proof that optimal aperiodic sampling is periodic when
the cost of implementation is very large is included below.

The optimal sampling interval sequence I* can be obtained

by solving the necessary conditions for the problem



N-1 -BT,
min{S(T,N,k) = L ae '}
T i=0
subject to the condition
N-1
g(TO,Tl,...,TN_l) = .Z Ti - (tf - to) =0
i=0
The necessary conditions become
d BT
Sir-[S(I,N,k) + 2 g(MI| , = -aBe +A =0
i T

and thus the optimal aperiodic sampling criterion is periodic when
the cost of implementation is high, This result fits intuition
and provides justification for the particular form of the cost of

implementation chosen.



CHAPTER V

COMPUTATIONAL RESULTS

5.1 Introduction

The performance of the optimal periodic and optimal
aperiodic sampled-data control law will be compared in this chapter.
Performance of a sampled-data control law can be measured in several
ways. Control performance J(T,N,k) defined by (3b), is the per-
formance of the control law in meeting its objectives and has been
the standard measure of performance. If this measure of perfor-
mance were used exclusively, the continuous-time control law

(T =0, N

=) would always be optimal as proved in Chapter IV.

A second performance measure, system performance S(i,N,k)
defined by (3a), includes both the control performance J(i,N,k)
and the cost of implementation C(i,N,k). This cost for implementa-
tion should include the hardware and software costs for measuring
the outputs, transmitting this data from the plant to the computer,
computing the control law and state estimates, transmitting the
control back to the plant, and actuating the control commands.

These two performance measures can be used to compare the
relative control performance and system performance for different
sampling criteria (i,N) or different control approximations (k)

specified by (i,N,k).

33
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A third measure of performance is the sampling index
I(Jo,k,lj which is defined as the number of sampling intervals
required for a particular sampling criterion (N,T) and control law
approximation (k) required to obtain a control performance value
JO. The sampling index can also be based on system performance
rather than control performance. These three measures of perfor-
mance will be used to
(1) compare the control performance, system performance and informa-

tion required for differencecontrol approximations in section 5.2.
(2) compare the control performance, system performance and sampling
efficiency of optimal aperiodic and periodic sampled-data
control laws in section 5.3.
(3) compare the performance of an optimal control law which is
sampled adaptively using different adaptive sampling schemes
and the performance of the optimal aperiodic sampled-data
control law, in section 5.4.
(4) compare the control performance and sampling efficiency for
both an unstable and a stable system with ramp and parabolic
desired trajectory in section 5.5.

This study is made to illustrate a design procedure which
designs both the control law and sampling criterion together by
performing the tradeoff between control performance and cost of
implementation in a single step. This procedure is used to eval-
uate different order control approximations and compare optimal
periodic and optimal aperiodic sampled-data control laws. This

study is intended to provide the basis for understanding the design
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procedure, but is not intended as an indication of performance
tradeoffs for any particular application.

The system chosen for investigation was selected because it
has been used extensively [13-20] for the evaluation of sampling
criteria in the literature on adaptive sampling. Therefore, it
provides a basis for comparing periodic and adaptive sampling
criteria on an optimal control law with the optimal aperiodic
sampled-data control law. This system is also chosen because it is
unstable without feedback and therefore provides a good basis for
comparing performance of the optimal control law implemented with
different sampling criteria.

This example problem will be used to compare the perfor-
mances of different control approximations in section 5.2 and
optimal aperiodic, periodic and adaptive optimal sampled-data con-
trol laws in sections 5.3 and 5.4.

EXAMPLE 1

Consider the system

*1 o ol |*1 1
d _
at |x.| < 1.1
2 1 0 2 0
X1
y = [10 100]
)

with cost functional

t
J = %(y(tN) - z(tN))2 + % ftg [(y(6) - 2()7 + .02 u’(0)]dt
N-1 -BT,
+ I «ae .

i=0
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where t

0 is zero, t

N 20, and the desired trajectory and initial

conditions are given below

z(t) =0 t>0

x(ty) =

Matrices F and Q are set as 1 while R 1is set as 0.02 since
Athans [24] suggested that in order to obtain satisfactory tracking
performance, the weighting coefficient on the error energy should
be at least 50 times greater than that on the control energy.

a and B are chosen as 0.1 and 10 respectively because:

(1) small intervals below 0.1 second will be penalized heavily.

(2) it is common practice in the design of adaptive sampling
criteria [13] that aB = 1. Therefore, the same practice is
used here.

The design objective is to
(1) keep the output as close as possible to the desired trajectory.
(2) minimise the control energy expenditure.

(3) minimize the information to be transmitted.

5.2 Comparison of Control Approximations

The control performance, system performance and information
required to specified a control will be compared for an optimal
zero, first, and second order control approximation. These compari-
sons will be performed for a control law with both periodic and

aperiodic sampling .
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The performance indices J(i,N,k), S(i,N,k) and I(Jo,k,i)
do not compare the relative performance of the system with different
order control approximations. Therefore, the performance of the
zero, and the first order control approximation will be normalized
by dividing this performance value with N samples, (J(i,N,k)
for k = 0,1) by the performance for the second order (k = 2)
control approximation with N samples. The normalization can be

based on either the control performance measures

A%
J(T7,N,K)
Ry(Nk) = ————
J(T ,N,2)

or the system performance measure

oK
s(i”,N,k)
RS(N,k) =
S(t,N,2)

If the sampling criterion is periodic the optimal sampling

*
sequence T is specified as

=
1}
-]
]

A% .
and thus the vector T 1is identical in the numerator and denominator
of these performance ratios. However, for optimal aperiodic
sampling, the optimal sampling interval sequence

* * * *
T = [Ty TyseeesTy,]
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are determined by optimizing S(T,N,k) for some specified number
of samples N and a particular control approximation k. Therefore,
the optimal sampling sequence in the numerator and denominator of
these performance ratios are not identical and depend on the order
of the control approximation (k) specified.

The number of samples, I(Jo,k,i*), is not a proper measure
of performance for comparing different control approximations.
The number of data words required to transmit a particular control
approximation is a more significant measure of control approxima-

tion performance. Thus, an information index is defined as
kD = (k+ D1,0,,kD

where (k + 2) represents the number of parameters required to

specify the control approximation and the length of each sampling
interval. This information index is the number of data words re-
quired by a control approximation k to obtain a control perfor-

mance value J This information index can be based on either con-

. 0.
trol performance or system performance. The normalization of

this information index can be performed based on either the control

performance
i ki
J 70’ =
EJ(N,k) N
or the system performance
%k
f(s45%,T)

Eg(N,k) = 4N
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where fJ(») and fs(-) are the number of data words required to
achieve the same value of control performance JO or system perfor-

mance S0 obtained by parabolic control approximation with 4N
data words. This information ratio index thus compares the number

of data words used by a step or ramp control approximation with the

number used by a parabolic control approximation.
5-2-1 Periodic Sampling

The effects of the order of control approximation on control
performance and information requirements can be observed for a peri-
dic sampling criterion in Fig. 1 and 2. The two figures indicate
the values of control performance over two separate ranges of N
(i.e. 2 to 14 and 14 to 49) in order to provide better resolutions
for comparison of the control approximations of order zero, one and

two.

The value of the control performance decreases monotonically
to the value which could be obtained with the optimal continuous
time control law. The ratios of the control performance for step

and ramp control approximation

J(T,N,k)
= 2 =
RJ(N,k) 'ETTTETET k 0,1

are shown in Table 5-1.

TABLE 5-1. Control Performance Ratio for Periodic Sampling

N 2 4 8 14 19 24 20 34 39 44 49
STEP RJ(N,O) 3.98 4.19 4.47 4.82 5.50 5.20 5.32 5.41 5.44 5.46 5.49

RAMP RJ(N,l) 1.76 1.79 1.86 1.92 1.95 1.95 1.97 1.99 1.98 1.98 1.98
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These results indicate a very significant improvement in
control performance can be obtained by using higher order control
approximation. The control performance ratio increases as N
increases which indicates the performance improvement per additional

sample is greater for step and ramp than for a parabolic control

approximation. .

The information ratio index for step and ramp control approx-

imation based on control performance is shown in Table 5-2.

TABLE 5-2, Information Ratio for Periodic Sampling

N 2 4 8 14 19 24 29 |
STEP  [E;(N,0) | 2.75 2.35 2.2 * * * *

RAMP EJ(N,l) 1.65 1.43 1.31 1.32 1.31 1.30 1.29

* indicates that value could not be computed from data shown on figure

The information ratio index indicates the parabolic control
approximation can achieve the same performance as a lower order con-
trol approximation with significant fewer specifying parameters.
This information ratio index decreases as N increases indicating
the importance of each sample or data word decreases faster for
lower order control approximation than the higher order control
8PProximation. The performance ratio and information ratio index
Indicace very significant improvement in both performance and in-
formae g o, requirements are possible by using a higher order control

4PPIOX fmation.
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The system performance for the three control approximations
is plotted in Figure 3. These results indicate that the system
performance decreases for small N and has approximately the same
value as obtained for control performance. The system performance,
however, levels off and increases as N becomes large. This in-
Crease in system performance can be attributed to an increase in the

cost of implementation.
COI = Na exp(-B

as N becomes large. Therefore, the system performance curves
have a parabolic shape since the decrease in control performance
as N increases (due to better approximation to the optimal con-
tinuous-time control) is eventually offset by the increase in the
cost of implementation.
% *

The minimum system performance index S(Nk,k,z ) occurs at

* *
value N, which decreases as k increases. This value N

k k

*
specifies the optimal sampling rate Nk/(tf -t for that control

)
approximation. Thus, the optimal sampling rate also decreases as
the order of the control approximation increases. Since the cost
of implementation is proportional to N;, the parabolic control
approximation not only improves the control performance and re-
quires fewer control changes and less data to specify the control,

but also has a lower cost of implementation using this particular

form for the cost of implementation.
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The increase in system performance as N becomes large is
reflected in the performance ratio table RS(N,k) and the informa-
tion ratio table ES(N,k) shown in Table 5-3 and 5-4 respectively.
The performance ratio does not continue to increase as N gets
large but levels off and begins to decrease. Thus, the control
performance advantage of higher order of ccatrol approximations is
no longer as significant for large N because the cost of implementa-
tion is so high. The information ratio ES(N,k) decreases more
rapidly than EJ(N,k) indicating the effect of implementation

costs.

TABLE 5-3. System Performance Ratio for Periodic Sampling

N 2 4 8 14 19 24 29 34 39 44 49

STEP RS(N,O) 3.98 4.19 4.47 4.82 5 5.10 4.88 4.69 3.07 2.24 1.73

RAMP RS(N,l) 1.76 1.79 1.86 1.92 1.95 1.95 1.89 1.69 1.46 1.27 1.16

TABLE 5-4 Information Ratio for Periodic Sampling

N 2 4 8 14
STEP ES(N,O) 2.75 2.35 2.13 *
RAMP FS(N’I) 1.65 1.43 1.31 1.30

In summary, the value of the performance ratio and informa-
tion ratio indicate that a significant improvement in performance
can be obtained using higher order control approximations if each
control approximation is constrained to have the same number

of specifying parameters. Moreover, if the desired value of control
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performance is specified, the number of data-words of information
required to specify a control with that performance value decreases
significantly as the order of control approximation increases. The
only disadvantage of using a higher order control approximation is
the increased computational effort required to compute the optimal
control when the effective dimension of the control vector (k + 1)r
increases with k. This cost for computation should be included

in the cost of implementation if a proper measure of the perfor-

mance of different order control approximations is to be made.

5-2-2 Optimal Aperiodic Sampling

The effects of the order of the control approximation on
system performance and information requirement will now be in-
vestigated for the case of optimal aperiodic sampling. The control
performance and system performance for all three control approxima-
tions (k = 0,1,2) are plotted in Figure 4. The J-axis is on a

logarithmic scale in order to include a wide range of variation.

The N-axis varies from 1 to 6 since all curves level off beyond

N = 3 as also shown in Table 5-5.
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* * *
TABLE 5-5. (J (N + 1) - J (N))/J (N)

Contro . ! 2 3 4 >
STEP 897% 47%  J31%  .13% 0%
RAMP .94% 0% 0% 0% 0%
PARABOLA 7.86%  .11% 0% 0% 0%

TABLE 5-6. System Performance Ratio for Optimal Aperiodic Sampling

N
Control

STEP RS(N,O) 60.6 6.8 3.6 3.6 3.6

RAMP RS(N,l) 1.47 4.3 2.3 2.3 2.3

The results indicate the system performance levels off
very quickly as the number of sampling intervals increases. More-
over, the system performance level for the lower order control
approximation will never even approach the level of system perfor-
mance obtained for the parabolic control approximation because
(1) the control performance decreases so slowly as N increases

as shown in Table 5-5.
(2) the cost of implementation increases as N increases.

The performance advantage of higher order control approxi-
mationsis also indicated by noting that the system performance
ratio RS(N,k) is extremely large when N is small. These values
for RS(N,k) for OAS are much larger than were obtained for PS.
This dramatic improvement in performance obtained by selecting

both the control sequence and the sampling intervals sequence
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combination optimally occurs because the control approximation
parameters and performance index have been shown to depend on the
sampling intervals sequence chosen and therefore the performance
index is decreased significantly as the sampling intervals sequence
approaches the optimal. The performance also decreases more rapidly
with increase in the order of the control approximation as the
sampling intervals sequence approaches the optimal.

The optimal number of sampling times N; for OAS for zero,
first and second order control approximations are 3, 2 and 2
respectively while the optimal number of sampling times for periodic
sampling are close to 39, 34 and 29 respectively. Thus, the selection
of both the sampling intervals and the control approximation co-
efficients over each interval also significantly reduces the number
of sampling intervals and thus the information required to transmit
the control. A more complete comparison of the performance of optimal
aperiodic (0OAS) and periodic (PS) sampled-data controls will be

performed for zero, first and second order control approximations in

the next section.

5.3 Comparison of Optimal Aperiodic and Periodic Sampling Criteria

A comparison of optimal periodic and aperiodic criteria
will now be performed using control performance, system performance,
and sampling index as performance indices. The optimal control
performance and system performance for both periodic and optimal
aperiodic sampling criteria are plotted together for zero, first

and second order control approximations in Figures 5, 6 and 7

respectively. A logarithmic scale is used to cover the large

range of performance index values.
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For each case, the clear superiority of OAS over PS is
shown for each control approximation. The control performance for
49 periodic control changes does not achieve the control perfor-
mance obtained with two control changes made over optimally chosen
sampling intervals. Thus, OAS requires one control change for
every 25 periodic control changes to obtain the same performance
regardless of the order of the control approximation used. Moreover,
the performance index depends very significantly on the sampling
intervals sequence chosen since both the control approximation
parameters over each sampling interval and the length of the sampling
interval both depend on the sampling intervals sequence chosen.

The performance advantages of OAS over PS for the different
control approximations can be determined by computing the control

performance ratio

t,. -t
N 0
. I >N,k
Ry(N,k) = —
J(T ,N,k)
or the system performance ratio
t .-t
N 0
F 3 S( N )NQk)
RG (N, k) = —
S(T ,N,k)

which is the optimal performance value of PS divided by the optimal
performance value of OAS with the same control approximation (k)

*
and the same number of sampling intervals. The values of RJ(N,k)

*
and RS(N,k) are shown in Table 5-7 and 5-8 for N = 2 and 4
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and for zero, first and second order control approximations.
*
Since optimal performance for OAS occurs for Nk< 4,

for each k, the computation is limited to small values of N.

TABLE 5-7. Control Performance Ratio between OAS and PS

Control N 2 4
STEP R;(N,l) 19.3 31.7
RAMP Rj(N,Z) 50.5 30
PARABOLA Rj(N,3) 40.8 23.3

TABLE 5-8. System Performance Ratio between OAS and PS

Control N 2 4
STEP R;(N,l) 17.5 20
RAMP Rg(N,2) 33.1  19.3
PARABOLA |  R{(N,3) 30 17

The performance ratios are quite large for each control
approximation and again confirms the significant improvements in
performance possibly by using OAS rather than PS. The performance
improvement ratio for the ramp control approximation are the
largest indicating the parabolic term Uy, in the control approxi-
mation does not contribute to control performance improvement as
significnatly as does the linear term uqg-

The decrease in this performance ratio as N increases

indicates that OAS's performance advantage over PS decreases as

N 1increases. The system performance achieved by OAS can never be
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reached using PS since the improvement of control performance is

offset by the increase in COI as the number of samples increases.
The ratio of the optimal system performance of OAS is about

2:3:7 achieved at N: = 2, 2 and 4 for parabolic, ramp, and step

control approximations whereas the ratio of PS is close to

4:7:16 at N: = 29, 34, and 39. The difference in optimal system

performance ratio is less than for PS because the performance for

OAS is so good that the order of control approximation has less

effect.

5.4 Comparisons of OAS and Adaptive Sampling Rules

Numerous studies have been made to develop sampling criteria
that outperform a periodic sampling criterion [13-20]. Additional
studies have been made to compare the performance of periodic and
adaptive sampling criteria for a simple feedback control system
with a specified non-optimal control law.

An optimal aperiodic sampled-data control law with second
order control approximation is sampled by a sample and hold
mechanism triggered by different adaptive criteria. The performance
of this adaptively sampled optimal control law is compared with the
performance of an optimal aperiodic sampled-data control law with
zero order control approximation. The study is performed to compare
the performance of adaptive and optimal aperiodic sampling criteria
on an optimal control law. This comparison is not perfect because
the control law that is sampled adaptively is not the continuous

time control.
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All the presently known adaptive sampling criteria depend
only on the input signal variations and do not directly depend on
the system dynamics or the performance indices. Therefore, applying
those criteria to an optimal control input can be expected to
provide poor performance compared to the optimal aperiodic sampled-
data control law. This conjecture is supported by the following
simulation results.

The comparison of optimal aperiodic and adaptive sampling
criteria will be compared based on the performance of the system
given in Example 1. The optimal control law, which is to be sampled
adaptively, is determined by computing the optimal aperiodic sampled-
data control law with three control (N = 3) changes and second order

control approximation (k = 2). This control law has the form

2 0 <t <0.30376

-
1.7172 - 26.974 + 78.461 t

-0.085785 + 0.37588(t - 0.30376) 0.30376 < t < 1.10653

Fle) - - 0.37389(t - 0.30376)°
.0032652 - .0091914(t - 1.10653) 1.10653 < t < 2,36193
p + .0057176(t - 1.10653)2
-5.8153 x 1077 2.36193 < t < 20

+ 1.1827 «x 10‘7(: - 2.36193)

- 2
E 5.5011 x 10 9(t - 2.36193)

This optimal control is then sampled by a sample and hold
mechanism triggered by the following adaptive sampling rules

developed by Hsia [13], Dorf [20], Gupta [14] and Mitchell [17].
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=
Hsia Ti = ?B a = 0.1 B =10
. |
i
Dorf T, = ¥2/3a8 «=0.1 B=10
'IU.I
i
Gupta T, = -2.303 a a<o0 di
0.5 a a > a -
2 i,
i
T VAR .. _
Mitchell Ti = —ﬁ + (ui/ui) + 2R/ui R = 0.1
i

The variable ﬁi and 31 in this table represent the

first and second derivatives of the control u(t) at t = ti.

Sample and Hold
Mechanism

u*(t) pY SYSTEM
y  Ex. )y

The value of control performance for each of these adaptive
sampled-data control laws and the number of samples required are
then recorded. The value of the performance index computed for the
optimal aperiodic sampled-data control law with four control
changes (N = 4) and zero order control approximation (k = 0) is
also determined. These values of the performance index and the
resultant number of samples required are tabulated in Table 5-9
for both the optimal aperiodic and adaptively sampled-data control

laws.
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TABLE 5-9. Performance of Different Sampling Criteria

Number of Sampling Cost
Hsia 5 614469.53
Dorf 4 13239277.91
|Gupta ® = 0.0178
Mitchell 880,000 = 0.0178
Optimal 4 0.06382

The optimal aperiodic sampled-data control with zero order
control approximation outperforms all of the adaptively sampled
optimal control. This optimal aperiodic sampled-data control law,
specified by an optimal control sequence-optimal sampling intervals
sequence combination, had approximately the same level of control
performance as the optimal control law sampled using Gupta's and
Mitchell's criteria, but with significantly fewer control changes.
This optimal aperiodic sampled-data control had significantly better
control performance than the optimal control laws adaptively sampled
by Dorf's and Hsia's criteria. This comparison is based on

approximately the same number of control changes.

The values of costs for Gupta and Mitchell's criteria are
obtained by the observation that they both sample almost continuously
on the optimal control. Therefore, the control performance is
approximately the value obtained using the optimal control.

The large values of control performance obtained using
Hsia and Dorf's criteria can be explained by the fact that they

fail to sample the small variations of the optimal control in the
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final period which is the longest. Since this system is highly
unstable, the control performance will deteriorate if the sampling
mechanism is not triggered sufficiently often.

The results indicate that the selection of a sampling
rule for even an optimal control law can have disastrous results
if the rule is not selected properly or if the sampling rate for
periodic sampling is not high enough. Moreo;er, it is obvious
that by selecting the optimal control sequence and sampling
intervals sequence combination, excellent control performance can
be obtained with very few sampling instants. Since the optimal
control sequence depends on the sampling intervals sequence chosen
for this optimal aperiodic sampled-data control, the sampling
instants can be viewed as tuned to the system dynamics, optimal
sampled-data control law, the performance index, the trajectory and

the initial conditions.

5.5 Performance, Different Systems with Different Inputs

The control performance, system performance and sampling
efficiency will be compared using both periodic and optimal aperiodic
sampling for different systems with different desired trajectories.

A stable and an unstable system will be tested with both ramp and

parabolic inputs.

5.5.1 Performance of a Stable System
The following example uses a system with both eigenvalues
negative. This system makes a good model of a closed-loop system

and thus the tracking performance can be compared for both periodic
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and optimal aperiodic sampling since the control energy required
to perform the regulation function is negligible.

EXAMPLE 2

Consider the system

d 1 0 1 1 0
d—' = + u(t)
t X -.5 -1 X 5
2 ) 2 :
b’
1
y=1[1 0]
X2

with cost functional

1 0 2
3= 3 (y0) - 20 + 201y (0) - z(e)? + Loz’ (0))de
N-1 -8T,

+ I ae a = 0.1 B = 10
i=0
and initial condition
xl(O) 0
xz(O) 0
Case 1. Ramp Trajectory z(t) = 0.1t

This Type O (plant has no poles at the origin) system will
follow a ramp trajectory with a monotonically increasing error.
Therefore, one might expect a rather large performance index value
regardless of the sampling criteria or control approximation used.

The optimal control performance, plotted in Fig. 8 and 9 for PS
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Fig. 8 System Performance of PS for the system of example 2 in
Tracking a ramp trajectory
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Fig. 9 System Performance of OAS for the system of example 2 in
Tracking a ramp trajectory
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and OAS sampling criteria, are rather large as expected. Although
the performance index value decreases as the order of control
approximation increases, the relative improvement in performance is
insignificant. Moreover, the decrease in control performance is
also very small as the number of sampling times increases.

The difference in performance for OAS and PS sampling
criteria 1is also slight. Thus the control performance is apparently
dominated by the large output error and the large control energy
requirements which result from requiring a Type O system to follow

a ramp trajectory.

The optimal sampling intervals sequence are shown below

for different values of N and k.

TABLE 5-10. The Optimal Sampling Intervals Sequence in Tracking
a Ramp Trajectory

N k Step (0) Ramp (1) Parabolic (2)
1 4.7189 8.5 9
5.2811 1.5 1
3.2807 %4.2885 3.9074
2 2.6595 4.1087 3.5406
4.0598 .16028 2.5520
3.7024 1.5848 2.9422
2.7380 4.8031 2.6346
3 2.8871 2.5885 2.499
0.6726 1.0238 1.9242
2.9613 1.4271 2.2155
2.3063 3.6 3.0819
4 2.0169 2.1168 2.0005
1.9763 1.8497 1.9892
0.7297 1.0063 1.7318
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The optimal sampling intervals sequence depends on the shape
of the trajectory to be followed, the order of the control approxi-
mation, and the performance index used. Since the terminal error
is weighted, the error at the terminal time should be small and there-

fore the last sampling interval should be short. The

[tN-l’tN]
results indicate the last interval is generally the shortest in

the sequence. The lengths of the other sampling intervals in the
sequence depend on how well the control approximation can represent
the desired trajectory to be followed since in this case the shape of
the desired trajectory z(t) and control u(t) should be nearly identical
a short time after the input is applied. The higher order control
approximation (k = 1,2) can accurately represent the ramp trajectory
and thus for N2> 2 the sampling intervals sequence is close to
periodic as the order of control approximation increases. For

N = 2, the initial sampling interval increases as k 1increases
because the control approximation can better represent the con-
tinuous-time optimal control over this interval as k increases.

Thus, since the control over the initial interval is more accurate

the length of that interval increases and the length of the final

interval is reduced.

Case II. Parabolic Trajectory z(t) = 0.1 ¢t
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Fig. 10 System Performance of PS for the system of example 2 in
Tracking a parabolic trajectory
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Fig. 11 System Performance of OAS for the system of exmaple 2 in
Tracking a parabolic trajectory
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The optimal control performance for PS and OAS are plotted
in Fig. 10 and 11 respectively. The control performance value is
large and again does not change greatly for changes in sampling
criteria (N,T) or control approximation (k). These changes are
however considerably greater than observed for the ramp trajectory
input. This result might be expected since the parabolic trajectory

is more difficult to follow than the ramp trajectory.

The control performance is always lower for OAS than PS and
decreases with increase in either N or k as expected. The
sampling intervals sequence as a function of N and k are shown
in Table 5-11.

TABLE 5-11. Optimal Sampling Intervals Sequence in Tracking a
Parabolic Trajectory

N Step (0) Ramp (1) Parabola (2)
1 5.0932 8.0559 9
4.9068 1.9441 1
2.9891 4.8577 8.7762
2 3.2119 3.9979 0.6149
3.7990 1.1444 0.6089
2.1042 3.9095 8.9975
2.2253 2.4563 0.3340
3 2.2527 2.5670 0.3340
3.4179 1.0671 0.3340
0.8979 3.0226 8.1
1.8 2.0322 0.6916
4 2.0 2.0019 0.4814
2.0 1.9737 0.3618
3.3021 0.9696 0.3651

The second order control approximation can approximate the
parabolic change in the desired trajectory very well and therefore

the initial sampling interval T, 1is always large for this control

0

approximation. The error near the end of the control interval is
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heavily weighted in the performance index and therefore the number
of sampling times at the end of the control interval increases as
N 1increases in order to minimize the terminal error.

The initial sampling interval T for the optimal aperiodic

0
sampled-data control laws with lower order control approximations are
much smaller than for the second order approximation because these
lower order control approximations cannot apéroximate the parabolic
trajectory as well over the initial interval. This can be observed
especially on the zero order control approximation because many

more sampling instants occur near the initial part of the control

interval as N increases.
5-5-2. Performance of an Unstable System

A non-minimum phase system with the same gain characteristics
as the previous example is now considered. Since this system is
unstable, control energy must now be expended to perform both

regulation and tracking functions.

EXAMPLE 3

Consider the system

4 x1 0 1 xl 0
- = + u(t)
de p x, -5 L.s| | *2 .5
X
y=1[1 0] 1
X2

with cost functional
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1 ,10

J =% (y(10) - z(10))2 + 3 11y - 2(6))2 + .02u2(¢t) 1dt
N-1  -gT
+ I ae i
1=0
a=0.1 B =10

Case I. Ramp Trajectory z(t) = 0.1t

The system performance for OAS and PS sampling criteria
are plotted in Fig. 12 and 13 respectively for a ramp trajectory.
The performance curves for zero, first and second order control

approximations are shown in both figures.

The system performance decreases significantly as the number
of samples increases for both PS and OAS criteria. The performance
for the second order control approximation is almost identical for
OAS and PS. However, for lower order control approximation the per-

formance of the OAS is significantly better than for PS. Apparently
the optimal sampled-data control with second order control approxi-
mation so closely approximates the optimal continuous time control
that the selection of sampling intervals does not greatly affect
the performance.

The system performance ratio RS(N,k) are given in Table
5-12 and 5-13 for PS and OAS. These performance ratios decrease
as N 1increases for both zero and first order control approximations
and for both sampling criteria. Thus, the performance advantag; of

the parabolic control approximation decreases as the number of

samples increases.



68

COsST
1.0 —STEP
L 3
L J
{ - RAMP
5 r - — PARABOLA
. 1
.2 &
D Y
L ]
®
.05 &
<*
.02 \
\\
\s\
‘~~~~\ - o - \-\.-
.01 o 1’1“‘- ' '--.:. o a ) N
1 2 3 4 5

Fig. 12 System Performance of PS for the system of example in
tracking a ramp trajectory
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Fig. 13 System Performance of OAS for the system of example 3 in
tracking a ramp trajectory
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The performance ratio for PS is much higher than for
OAS because the optimal sampled-data control with OAS and with any
control approximation is so close to the optimal continuous

time control that the improvement due to additional terms in the
control approximation is less than for the control law with periodic

sampling.

TABLE 5-12. System Performance Ratio for Periodic Sampling

N 1 2 3 4 5
Step RS(N,O) 16.61 8.17 3.34 2.08 1.59
Ramp RS(N,l) 2.17 2.34 1.14 1.07 1.02

TABLE 5-13. System Performance Ratio for Optimal Aperiodic Sampling

N 1 2 3 4 5
Step RS(N,O) 1.69 1.69 1.19 1.15 1.14
Ramp RS(N,l) 1.20 1.11 1 1 1

The optimal sampling intervals sequence for different control

approximation and different number of samplings are shown below.



71

TABLE 5-14. Optimal Sampling Intervals Sequence in Tracking a Ramp

Trajectory
k
N Step (0) Ramp (1) Parabolic (2)
1 .58262 1 1.7529
9.4174 9 8.2471
0.57325 0.97197 1.5114
2 3.7592 6.9998 6.7511
5.6672 2.0284 1.7375
0.64978 0.82625 1.9130
2.3205 5.0144 3.1614
3 2.9347 2.8353 2.8392
4.1042 1.3241 2.0864
0.65095 1.0101 1.9701
1.7476 3.5440 2.1187
4 1.9167 2.2670 2.0333
2.0385 1.9722 2.0014
3.6477 1.2067 1.8764
0.68421 0.96478 1.5909
1.4281 2.8156 2.2513
1.1949 1.7785 1.6850
5 1.6309 1.6672 1.6685
1.5873 1.5893 1.6605
3,4747 1.1746 1.1439

The approximation to the optimal continuous-time control
should be excellent over the initial segment of the control interval
in order to adequately regulate the unstable system and to track the
ramp trajectory. Therefore, the initial interval [to,tl) was
samll for all N and k. Moreover, in general, the length of this
interval increased as N and k 1increased. The performance index
penalizes terminal error and therefore the lengths of the terminal

interval is also small. The number of samples in the

ey 1oty
middle of the control interval increase as the number of samples
increase. The sampling intervals in the middle of the control

interval becomes closer to periodic as both N and k increase

indicating the regulation and tracking tasks require constant control

effort for this particular system.
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Case II. Parabolic Trajectory z(t) = 0.1t2

The system performance for OAS and PS criteria are plotted
in Fig. 14 and 15 respectively for a parabolic trajectory. The
performance curves for the zero, first and second order control
approximations are also shown in both figures.

The system performance generally decreases significantly
as either the order of control approximation increases or as the
number of sampling times increases. However, for the case of
parabolic control approximation and OAS, the increased number of
small sampling times in the initial period increases the COI
without improving the performance enough to offset it and there-
fore the system performance increases with the number of sampling
times. Thus, for this case,excellent system performance was
achieved using very few optimal aperiodic sampling times and a
high order of control approximation.

The system performance ratios RS(N,k) are given in Table
5-15and 5-16 for PS and OAS. These performance ratios decrease
as N increases for both the zero and first order control
approximation. This result implies the performance advantage of
the second order control approximation is much greater when the
number of sampling times is small. The ratio is larger for PS
than for OAS because the control law with OAS closely approximates
the continuous-time optimal control so that increasing the order of
the control approximation does not significantly increase system

perfromance.
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TABLE 5-15. System Performance Ratio for Periodic Sampling

. N 1 2 3 4

Step RS(N,O) 32.46 3.78 1.5 1.28

amp RS(N,l) 1.26 1.14 1.07 1

TABLE 5-16. System Performance Ratio for Optimal Aperiodic Sampling
N 1 2 3 4

Step RS(N,O) 12.82 1.81 1.33 1.23

Ramp RS(N,l) 1.39 1.20 1.16 1.08

different values of N

TABLE 5.17.

and k.

Parabolic Trajectory

The optimal sampling intervals sequence is shown below for

Optimal Sampling Intervals Sequence in Tracking a

N Step (0) Ramp (1) Parabolic (2)

0.2 2.095 9

1 9.8 7.905 1
1.9083 3.7552 9.317

2 4.0514 5.6 0.3417
4.0403 0.6448 0.3413
0.52507 2.6451 8.8372
4.8085 3.5664 0.4136

3 1.6811 2.6352 0.3752
2.9881 1.1533 0.3743
1.1063 2.3539 6.8133
1.9981 2.0519 1.3542

4 1.9946 1.9996 0.7699
1.8982 2.0013 0.512
3.0028 1.5933 0.5236
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The optimal sampling interval sequences are chosen based
on the order of the control approximation and the trajectory to be
followed. The second order control approximation can accurately
follow the parabolic trajectory and thus the first sampling interval
is large. As the number of sampling intervals increases, the length
of the initial sampling interval decreases and the length of the
other sampling intervals increase. The zero and first order control
approximations cannot follow the parabolic trajectory accurately
over any interval. Thus, the length of the initial interval de-
creases significantly as the order of the control approximation
decreases. The last sampling interval, where the rate of change
of trajectory is the largest, tends to be the smallest of the sampling
intervals for the first and second order control approximations.
The first interval is the smallest for the zero order approximation
because the sampling intervals have to be chosen to provide effective
control because the approximation to the parabolic trajectory is so
poor. Thus, the sampling times for lower order control approxima-
tions must be used to maintain tracking accuracy much more than for

higher order control approximations.



CHAPTER VI

SAMPLED-DATA CONTROLLABILITY AND OBSERVABILITY

Controllability and observability were originally developed
as purely mathematical concepts. However, they were soon found to
be related to the possibility of achieving a desired degree of con-
trol and obtaining the desired information about the system.

Controllability assures that the optimal control law designed
for a linear system using a quadratic performance index will be
asymptotically stable. Observability assures the Kalman filter will
be asymptotically stable. Moreover, controllability and observability
are also important in the realm of mathematical modeling. Although a
state space model is desired for analytic design of the control law,
one often starts with an input-output model obtained experimentally.
The minimal realization which does not introduce any phenomena that
cannot be accounted for by an input-output description of the system,
is intimately related to the concepts of controllability and
observability. Thus, controllability and observability are important
concepts in the areas of control, estimation, and identification of
dynamical systesm.

Controllability and observability will be investigated for
sampled-data control systems where the continuous-time plant is known
but the actuators and sensors are not specified and must be designed

77
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as part of the control law. For this case, the number of sampling
times and the lengths of sampling intervals are design parameters or
control variables for the system.

Definitions of controllability and observability have been

recently proposed by Troch [41] for the case where the number of

sampling intervals is specified but the lengths of the sampling
intervals are free and considered control variables. However, there
never existed definitions that considered both the number of
sampling times and the length of each sampling interval as control
variables.

Therefore, extended definitions of controllability and
observability are proposed. Under these extended definitions, any
system which is either controllable or observable when the control
and measurements are continuous functioms of time is shown to be
controllable or observable when controls are changed and measurements
are made only at the sampling times. Since controllability and
observability should be only a property of the dynamic system being
controlled and not a property of the hardware used to implement this
control, the number of sampling times should be as much a control
parameter as the lengths of the sampling intervals and the control
levels over each sampling interval. Under this extended definition
the actuators and sensors must be viewed as part of the control law
being implemented rather than part of the system to be controlled.
This point of view is required because the number of sampling times
and the lengths of the sampling intervals are control parameters or

variables.
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Sufficient conditions were derived by Troch [41] which
guaranteed that an observable system would be sampled-data observable
over q sampling times where q is the order of the minimal
polynomial. The conditions derived for observability were never
extended to controllability. Moreover, the conditions were quite
restrictive and did not indicate the conditions under which a system
could not be observed on q sampling intervals.

Necessary and sufficient conditions for the controllability
and observability of sampled-data system are derived. These theorems
state that a sampled-data system is controllable (observable) if
and only if the continuous-time system is controllable (observable)
and the sampling time sequence is such that a certain matrix is non-
singular. This nonsingularity of this matrix can be used as a test
for controllability or observability of a sampled-data system. This
trst is used to determine conditions on the sampling times for which
an observable and controllable continuous time system will not be
observable and controllable on a sequence of sampling times. Finally,
conditions on the sampling times are derived for guaranteeing that
a system which is controllable and observable with continuous measure-
ments and controls will be controllable and observable with sampled
measurements and controls.

The sampled-data control problem is now formulated in order
to provide an appropriate framework for defining sampled-data
controllability and observability.

Consider the linear system
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x(t) = A x(t) + B u(t) x(tg) = & (15)

y(t) = C x(t)

(16)

where x(t) is the n-dimensional state vector, u(t) is the r-
dimensional control, and y(t) 1is the m-dimensional output vector
and A, B, C are compatible time-invariant matrices.

The sensor provides measurements

y(epyg) = € x(e ) (17)
at the sampling times {t }N_ that are not specified but are
h+1°i=0
constrained to satisfy
0 < Tmin = th+i+l - th+i - Ti iTmax (18)

The control actuator is also assumed to be a sampled-data device

and therefore the control u(t) is sampled-data of the form

) =u, .. t e [t ) (19)

ule) = uleg) = Uy

h+i’ th+i+1

for i = 0,1,...,N-1. This control is assumed specified by knowing

N-1

the control sequence {u } -0’ the sampling intervals sequence

—h+i’ i
{ N-1

i=0

This system can be represented by a set of difference equa-

}

i ,» and the number of sampling times N.

tions if the state differential equation is integrated over each

sampling interval [ ) separately. The difference

th+1’ th+i+1

equations have the form
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+ D

il - EntiZhti ¥ Dheilhed i=0,1,....8-1  (20)

where Xori = E(E)
AT,
Sheg = 2Ty = e
Ty
—Qh+i = Q(Ti) = fo ¢(t)Bde .

This representation does not indicate clearly that the

sampling times are control variables, but imbeds these variables

in the matrices $h+i and 2h+i'

Moreover, the state X+ is the
state at the sampling time specified by knowing the control

N N-1
ntil=00 (85}i-0

system is used for notationmal convenience. The dependence of ih+

{N, {¢t This representation of the sampled-data

i

and D on {th ,}F must always be considered in this develop-

—h+i +i"i=0

ment.

6-1. Observability

Definition

The system (15) is said to be sampled-data observable at

L N-1

th if there exists a finite N and a sequence {th+i}i=0 such that
any initial state §(th) can be determined from the knowledge of

N-1 N-1
tye )y and lule D5 -

It should be noted that N 1is arbitrary but finite and the
sequence {th+i}?;é is not specified but is contrained to satisfy

t. <t
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Although a system may be sampled-data observable, it may
not be observable if N = p measurements are used. Therefore,
p-sampled-data observability is defined as follows.

Definition
The system (15) is said to be p-sampled-data observable at

t. if there exists a sequence {t

h such that any state

ot
h+1"i=0
i(th) can be determined from the knowledge of {zﬁth+i)}§;é and
(uey Vg -

A system which is sampled-data observable is p-sampled-data
observable for all p greater than some N = No where No is the
minimum number of sampling intervals required to determine the
initial state X, . The following theorem is obtained by extending

a theorem on discrete-time observability (Appendix H) to obtain a

necessary and sufficient condition for p-sampled-data observability.

THEOREM 6-1 (Necessary and Sufficient Condition on p-Sampled-Data
Observability)
The system (15) is p-sampled-data observable at ty if and

. . . . -1
only if there exists a finite time sequence {th+i}g—0 such that

W 1 ' [
Q31 8f g h S i 1 n &)

has rank n where

¢ =2(t,,t) .

=j,k j’k

For the case of periodic sampling, p-sampled-data observa-

bility is assured if a sampling period T can be found such that
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;[9|:$| E': Ve E(i')p—l_c_']
[] ]
has rank n where

9, = (D) i=0,1,...,p-1

This theorem can be used to test for the minimum number of

sampling times N0 required for observability. The test could be

performed by determining the minimum integer p that satisfies

p > n/m

for which a sequence {th+i}§;é can be found such that 90 has
rank n. Although No can be the smallest integer which satisfies
this inequality, the actual value of N0 is often larger than this
minimum number because some of the measurements are redundant.

The condition of this theorem can also be used to determine
whether a system is observable on a particular sequence of N = p
sampling times. However, a stronger condition can be found by pro-
perly decomposing the condition found in Theorem 6-1 into a condition
on the plant (15) and a condition on the sampling times for the case
where p = q, the order of the minimal polynomial for the system.

This strong condition for p-sampled-data observability is stated in

the following theorem.

THEOREM 6-2 (Necessary and Sufficient Condition on gq-Sampled-Data
Observability)
A system (15) which has a system matrix A with minimal poly-

nomial of degree q;
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r r
n() = (A - A) Lo, - A < with

"~ x

i

is gq-sampled-data observable if and only if
(i) the system(15) is observable in Kalman's sense [36]

(ii) there exists a sequence {th+i}2;é such that the q x q matrix

é \
1% A1t A1t htq-1
e . e
C e A1tht A 1%he+1 . 1% htq-1
h h+1 ' h+q-1
r -1 r_ -1
t( 1 At t( 1D At
h . Lh h+q-1 1 h+q-1
(rl—l)l (rl—l)!
LS TTThot T TTTTTTTTTTTTTTTT X.t . . T ]
o 2°h 2 "h+q-1
(r2-1) (rz-l)
t At t At
h o2 htq-1 "2 h+q-1
(r 2-1) ! cot e (r 2—1)
t(rk—l) At D
h k h t At
e . . h+q-1 k h+q-1
@ D) S e
L (rk-l)!
/

is nonsingular.
Proof

The parameters h and th are assumed to be zero without
loss of generality. The condition will be proved for the special

case where all the eigenvalues are distinct. The general case follows

directly. This condition will be proved by examining the condition



where

o

o

1

- .

aq-l(tl)14

_(t_)I

It is known that the powers of A and the constituent matrices

Z, of A are related by

(

—1i

3

>

> |-

I

/

H
|<

Z

[

1

/

where V 1is a generalized Vandermonde matrix [54]. Since V s

nonsingular
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/3 r Y
z, 1
. vt
q-1
Zq-1 A
\ / L /

Now letting yfl =W = {wik}’ it can be shown that

= h|
Zi Yij412

)
N ™Ma

1

. . A .
- Since the fundamental matrix e—  can also be expressed in

terms of the constituent matrices

and since each constituent matrix can be expressed as a matrix poly-

nomial function of A,

q-1 q At qQ Xi.tg-l
eé\-t = I a,(t) _q = I el Z 1= I e (z w, Aj)
§=0 i=1 1 i=1 §=0 +1-
the aj(t) functions become
q Ait
aj(t) = iil e wi,j+1 j=0,1,...,q-1

The observability matrix 90 can now be expressed as
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4 ~
RO S
- | L L ] q l L} .
Q, = [C A'C' ... (a")™ 7C'] a (O . . . :
Laq_l(O)I . . . q—l(tq-l)!j

where I is an m dimensional identity matrix and

( A A )
t t
1 el ... el
-
At At
I e ;l . el q—¥£
N
7’
f
v, I wor oo wq 1 I
W= :
w o o w I
qu— qq —

The matrix Q is nonsingular if and only if W is non-

singular since

Det W = (Det W)™

The matrix go is nonsingular if and only if 50 is nonsingular

since

Det X = (Det X )"
o o
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Now, the system is q-sampled data observable if and only if
matrix 90 has rank n, Matrix go has rank n if and only if

matrix
[gv élgt L. é.q-lg.]

-1 .
has rank n and there exists a sequence {th+i}g=0 such that matrix

K is nonsingular. Therefore, since the above matrix has full row
2,

rank if and only if the system is observable and since Eo is non-
singular if and only if 50 is nonsingular, the system is q-sampled-

data observable if and only if condition (i) and (ii) are satisfied.

Q.E.D.

This theorem clearly states a system is observable with

sampled measurements {y(t )}g;é if and only if it is observable

h+i
with continuous measurements y(t); t e [tO, tN) . Moreover, the
theorem places a necessary and sufficient condition on the q

sampling times which must be satisfied if the system is to be observ-

able on a particular sampling time sequence. Finally it should be
noted that p is constrainted to be the order of the minimal poly-
nomial for the theorem to hold. However, if a sequence of q

sampling times can be found for which the system is observable, the

yP-1
h+i i=0

P > q since there is a guarantee that n independent measurements

system will be observable for some sequence {t for each
can be found by selecting only q sampling times. Thus, if the
system is gq-sampled-data observable it is p-sampled-data observable

for all p > q. The following theorem, stated and proved by Troch
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[41], provides a sufficient condition on the sampling times which
guarantees that a system which is observable with continuous

measurements will be observable with sampled measurements.

THEOREM 6-3 (Sufficient Condition for q-Sampled-Data Observability)

A system (15) which is observable with continuous measure-

ments is q-sampled-data observable.

. -1
£ ; . . : N q
(i) or all sampling intervals sequence {th+i}i=0 if all of the

eigenvalues of A are real.

(ii) for all sampling intervals sequences {th+i}g;é such that

t (:<TT
h+i ~ 'h

- i=1,2,...,q-1
gmax

where W) max is the greatest imaginary part of the eigen-
values of A.
The proof follows immediately if Eo can be proved non-
singular over the set of sampling intervals sequence specified in

case (i) and (ii) respectively. The functions ak(t) form a

Chebyshev system [41] over [th, ) if all eigenvalues are real and

over [t , t + T ) if some eigenvalues are complex. Since the
h™ "h o wenay
functions ak(t) are Chebyshev over these respective intervals for
A.-1
.t
Ait Ait ¢ i Al

the two cases, the functions e , te seeers o —IyT © .

(v;-D!
i=1,2,...,k are also linearly independent over the same respective
intervals for the two cases. Thus 50 is nonsingular over the
intervals specified for the respective cases and the theorem is

proved. Q.E.D.
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This theorem clearly indicates that a system which is
observable with continuous measurements is observable with any
sequence of q sampled measurements as long as all of the eigen-
values are real. If some eigenvalues are complex, the q sampling
times must all be selected in an interval of length n/mgmax to
insure that observability will be preserved using sampled measure-
ments instead of continuous measurements. Since Wy nax is the largest
imaginary part of the complex eigenvalues of A, this constraint
implies sampling must occur at a rate at least q times faster than
the Nyquist rate (T = "/wﬂnax) in order to insure all q sampling
times occur in a "/w&nax interval. This constraint is restrictive
for some applications and since it is only a sufficient condition,
less restrictive conditions are investigated in Section 6.3.

The result of this theorem also guarantees that there will
always exist q sampling times for which the system is observable

and therefore the following theorem can be established.

THEOREM 6-4 (Sufficient Condition for Sampled-Data Observability)

If the system (15) is observable with continuous measurements,

it is sampled-data observable.

Proof

From Theorem 6.3 it has been established that there always

exists q sampling times {th+i}g;é such that a system which is

observable with continuous measurements will be observable with ¢

sampling measurements. The system is always p-sampled-data observ-

able for any p > q if it is q-sampled-data observable. Thus, there
N-1

always exists an N and a sampling times sequence {th+i}i=0 to

make the system sampled-data observable. Q.E.D.
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In the previous definitions of observability for sampled-
data system [39, 41], either the number of sampling intervals and
the length of each sampling interval are both specified or the
number of sampling intervals is specified and the lengths of
sampling intervals are considered control parameters. In both of
these definitions, a system which is observable with continuous
measurements may not be observable with sampled measurements. This
extended definition, where both the number of sampling intervals and
the lengths of sampling intervals are control parameters, permits
the preservation of observability when the outputs are no longer
measured continuously but are sampled. This preservation of
observability under the imposition of sampling requires a system
designer to view the sensor and its sampling intervals sequence

specified by

N-1
{th+i}i=0 and N (*)

to be part of the control law rather than part of the plant being
controlled. This perspective is required since the sampling
intervals sequence are control parameters in this extended
definition of observability.

1
i=0

Some explicit conditions on the sampling times {t }2_

n+i
for which 50 is singular will be investigated in Section 6-3
after a similar matrix condition is derived for controllability.
In postponing this development, the similarity of conditions for

sampled-data controllability and observability will be emphasized

and no duplication of discussion is required.



92

6-2. Controllability

Definition
The system (15) is said to be sampled-data controllable at

th if for every initial state X there exists a finite N and

a control

u(t) = u., te [th+i, th+i+l) i=o0,1,...,N-1

defined by the control sequence {uh+i}§;é, the sampling time

N
sequence {th+i}i=0 and N, such that XN = 0.
As stated above, N is finite but arbitrary and the sequence

N-
1 is not constrainted in any way except

{
Chti i=0

N R Wt

Although a system may be sampled-data controllable, it may

not be controllable if only N = p piecewise constant controls are

used. Therefore, p-sampled-data controllability is defined as follows.

Definition

The system (15) is said to be p-sampled-data controllable at

t, 1if for every initial state X there exists a control

h

u(t) = W o t e [th+i’th+i+1) i=0,1,...,p-1

p-1

defined by specifying both the control sequence {u1+i}i=0’ and
P =

sampling time sequence {th+i}i=0’ such that X, 0.
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A system which is sampled-data controllable is p-sampled
data controllable for all p greater than some N = NC where NC
is the minimum number of sampling intervals required to return
X, to the origin. The following theorem which is obtained by
extending a theorem on discrete-time controllability (Appendix H)

states a necessary and sufficient condition for p-sampled-data

controllability.

THEOREM 6-5 (Necessary and Sufficient Condition on p-Sampled-Data

Controllability)
The system (15) is p-sampled-data controllable at th if

. . . . p-1
and only if there exists a finite time sequence {t h+1}i -0 such
that

:[D b e D, ]

Qe yp1 u—h+p,h+p-1—h+p-2: ! 2h4p,h+1=h

has rank n where
b Tt e b

For the periodic sampling case, p-sampled-data controlla-

bility is assured if a sampling period T can be found such that

Q +[D ¢D ¢ 2p ... P71

has rank n where

0,1,...,p—l

e
[

= ¢(T) and b, = D(T)
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This theorem provides a condition which can be used to
test for the minimum number of sampling times NC required to
assure sampled-data controllability. The test could be performed

by finding the minimum integer p satisfying
p>n/r

where r 1is the dimension of control u, for which the matrix Qc
has rank n. Although Nc can be the smallest integer which satisfies
this inequality, the actual value of NC is often larger than this
minimum number because some of the controls are redundant.

The conditions of this theorem can also be used to determine

whether a system is controllable on a particular sequence of N = p

sampling times. However, a stronger condition can be formed by
properly decomposing the condition found in Theorem 6-5 into a con-
dition on the plant (1) and a condition on the sampling times. This
strong condition which holds only for the case where p is the order

of the minimal polynomial of matrix A, is stated in the following

theorem.

THEOREM 6-6 (Necessary and Sufficient Condition for q-Sampled-Data

Controllability)

A system (15) which has system matrix A with minimal poly-

nomial of order q

r r r
_ 1 2 k
m(A) = (A - Al) (\ - Az) veo(X - Ak)
K
with I r,=gq
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is g-sampled-data controllable if and only if
(1)  the system (15) is controllable with continuous controls
(i1) there exists a sampling intervals sequence {t 13 such

h+i"i=0
that q x q matrix

/ N
t =X,z t -\, t -A.C
+
fth 1 o 1 dc f h+2e 1 dc fth+q o 1 dr
h th+1 h+q-1
t =iz t -\ t -
h+1 1 +2 h+ 4
fo T(-pe T dg fth (-g)e 1742 Ie b (-pe 17T
h h+1 h+q-1
r,-1 r -1
t 1 t r -1 t 1 4
h+ ) -\ h+2 <A h+ -2) 1
ft lcﬁr -1)! edéft (G R — e 1° ft T ir -1)! e de
h 1 b+l (r,-1! dg h+q-1 "°1
t ASC t -A.C
fth+l 2 dc fth+q e 2 dc
h h+q-1
r,-1 -r -1
t 2 A t 2 -
L &9 N zcdg ghraa zcdc
- | -
ty (r2 1! th+q 1 (1—2 1)
______________________________________________________________ -
t -\ C t -\,
s TN fth+q e K4
h h+q-1
r -1 r -1
theao) MeE “htq (0 NS
e (r-Dr e Ty G -Dt ¢ 9
h k h+q-1 Tk ~7°

is nonsingular.
Proof
The parameter h 1is assumed to be zero without loss of

generality. The condition will be proved for the special case where
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all the eigenvalues are distinct. The general case follows directly.

This theorem will be proved by examining the condition

Rank (Qc) =n

where

Since

+...F
eéﬁTq'l+TQ'2 T

and since the fundamental matrix can be expressed as

q-1
At - x ak(t)ék
k=0
gc can be expressed as
4 tq
ft ao(-c)dQL .
q-1
Q= 2B a8 A% ... a%B) :
t
;.9 o (-z)dzl .
h tq-l q-1

However, it is proved in Theorem 6-2 that

and therefore Q. becomes

-1 - ~
BAB...AT Bl W %

gc = e—

where W and Y are (qr) square matrices defined

q-i-1
, 3
S 7 a (-g)dgl
t. o &
0
Y
S T a (-z)dzl
t -1 =
0
P o
by

T, t o A
a-* foq_l-l Atpdr = 2 ftq 1 B4
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b
wll£ wZIl . e wal
) wlzl wzzl . .
E =
w, I . . w I
1q= qq—
\ /
and
£ -Ag t . -AC t . -rg )
r e tar 10 M e tann s ™9 e Var
h h+1 h+q-1
t -2,z t b N4 t -2,z
e e P fth+2e2dCI VL PR TS
Y= h h+1 h+q-1
t “A T t -2z t -2z
fth+1 e d dc;_fth+2 e d dzlI . . .fth+q e d dz L
h h+1 h+q-1
X /
At

The matrix e ¢ is a fundamental matrix and is nonsingular.

-~

The matrix W 1is nonsingular if and only if matrix W is non-

singular since
Det W = (Det W')

where r 1is the dimension of the control.
The system is q sampled-data controllable if and only if

Qc has rank n. Moreover Qc has rank n 1if and only if there

}q

=0 for which Y is

exists a sampling intervals sequence {th+i

nonsingular and the matrix

(BaAaBA% . ..a%lg

has rank n. Since this matrix is of rank n if and only if the

system is controllable with continuous controls and since Y is

nonsingular if and only {f Xb is nonsingular because
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Y 1is nonsingular because
r
Det Y = (Det Y)

the system is q-sampled-data controllable if and only if conditions
(i) and (ii) are satisfied. Q.E.D.

The computation of Y for controllability is much more
difficult than the computation of Eb for observability because each
element of Y 1is an integral of the similar term in X. Since
these integrals can be evaluated analytically, a matrix condition
can be obtained for controllability which is quite similar in form
to matrix condition on observability. This condition is derived

for the case where the eigenvalues are distinct.

Corollary 6-1

A system (15) which has system matrix A with minimal poly-

nomial of order q and with distinct eigenvalues
m(A) = Q-2 =-2) ... (- xq)

is q-sampled-data controllable if and only if

(1) the system (15) is controllable with continuous controls

(ii) there exists a sampling intervals sequence such

q
{th+1}i=0

that a (q + 1) square matrix
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-, t -A,t
10 e 17q

'Azto ‘Ath
e e

X = :

~ .
-x t R
e d0 e 149
ll 1 ... 1 J

is nonsingular.

-Ai%-kiﬁ -A. t
[e e e e e . €

by the q + 1 row vector
[ty &ty - - - tq]
if eigenvalue Ai = 0.

Proof

This matrix must be modified by replacing a row

Assuming all eigenvalues are non-zero, the matrix gc

can be expressed as

] - ~ ~
Q =< BlaB). . 4aYTE) - W
h '
where i_ becomes
,
—xltq—l -Altq
-e
A l . L]
1
¥ = -
-\ t -1 -\t
e 994, Q4a I
A = . 3
k q

-Ajtg _e-xlcl
\ I
1
Y Y
qfo "*qf1




100

and i is defined in the previous theorem. It has been proved that

the matrix gc has rank n 1is and only if

(BABA% .. .a% s

}q

has rank n and r .
there exists a sequence {th+1 =0

such that i
is nonsingular. Thus since the system is controllable if and only
if the matrix gc has rank n, the theorem is proved if it can be

shown that Y is nonsingular if and only if Zc is nonsingular.

The matrix i is nonsingular if and only if

V] N
M1 Mt At Mt
e - € e - e
A A
Y = . .
-2t -)t -\t -2t
e 1971 _ . agq e 10 _ . ql
T “e =
q q
\ /

is nonsingular because
5 r
Det Y = (Det Y)
The matrix Y can be expressed as

Y=1M

where
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~
( 4
1 N -\t Y
i (e 1'q-1 -e 1 q) . (e
1 .
1
XZ .
.]: = * . E =
. - t -\ t -
1 (e 91 a-l_ a-la . (e
T \

The matrix L 1is nonsingular because all eigenvalues are
assumed non-zero and therefore Y is nonsingular if and only if M
is nonsingular. Moreover, M is nonsingular if and only if matrix

P is nonsingular where

4
-\, t -, t -, t -\t -\, t -\, t -A.t
(e 10 "1 1) (e 111 2) (e 17q-1_, "1 Q. 1q
-Aat -2.t -2t
(e 2 0_, 2 1) o 2°q
P = .
At =)t A t, -At -1t -1t -2t
(e 9 0_, g 1) (e @ 1. 4 2) (e 4 q-1_, 1 94 o 94
0 0 0 1
k J

Furthermore, P can be expressed as

P=XG
P=XG
where
/ \
1
-1 1
G = 101
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Since G 1is nonsingular P is nonsingular if and only if

}q
h+i” i=0

This proves the theorem for the case where all eigenvalues are non-

there exists a sequence {t such that Xc is nonsingular.
zero. If an eigenvalue is Ai = 0, the proof follows identically if

the row

- - -a
ith 1htl 1*htq
(e e Y ]

in matrix gc is replaced by q + 1 row vector

[t Q.E.D.

h Shal? o7 Chag!

This theorem states that a system will be controllable with

sampled-data controls

}N_l {t }N and N

LAY h+i’ i=0

if and only if it is controllable with continuous controls

{u(t), te [to, tN]}. Moreover, the system is q-sampled-data con-
trollable if and only if there exists a sampling intervals sequence
such that Y (or gc) is nonsingular. The condition on Y requires
an integration of each term which is inconvenient. The condition

on gc does not require integration of each term and provides a
condition on the sampling times which is similar to the condition

on §° obtained for observability. Although the condition on X

was only stated for the case where eigenvalues are distinct, a

matrix gc could be derived for the case where the eigenvalues are

not distinct. The derivation of an appropriate form for §C for
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the case of multiple eigenvalues is a subject for future research.
The condition on Y (or zc) can be used to test whether

a system which is controllable using continuous control will be

q-sampled-data controllable on some particular sampling intervals

sequence Finally it should be noted p is constrained

q
theetie00
to be the order of the minimal order of the plant. However, if a

sequence of q+ 1 sampling times can be found for which the system

is controllable, the system will be controllable for some sequence

{t, .}?

1=0 for each p > q since there is a guarantee that n

Ch+i
independent controls can be found by selecting only q + 1 sampling
times. Thus, if the system is g-sampled-data controllable it is
p-sampled-data controllable for all p > q.

The following theorem provides a sufficient condition on

the sampling times which guarantees that a system which is controllable

with continuous controls will be controllable with sampled controls.

THEOREM 6-7 (Sufficient Condition for q-Sampled-Data Controllability)
A system (15) which is controllable with continuous controls

is q-sampled-data controllable,

(1) for all sampling intervals sequence {th+i}g=0 if all of the
eigenvalues of A are real
(ii) for all sampling intervals sequence {th+i}g=0 such that

t -t </

h+i = th 1=1,2,...59

W max

where Wemax is the greatest imaginary part of the complex

eigenvalues of A.
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The proof follows immediately if Y can be proved nonsingular
over the sets of sampling intervals sequences specified in case (i)
and (ii) respectively. The functions ak(t) form a Chebyshev system
[41] over [th,m) if all eigenvalues are real and over [th, h
if some eigenvalues are complex. Since the fuqction ak(t) are
Chebyshev over these respective intervals for the two cases, the
functions

i+l

S ak(C)dC k =1,2,...,q

Chti

also form a Chebyshev system over the same respective intervals for

the two cases. Thus, the functions

A1 Xz

t . 1
h+i+l ¢ o i dr

t, .. AT t, . A, T
+i+1 +i+
'fthl eldc fthllceldc...ft (v -1
h+i h+i h+i Yy

are linearly independent over the same respective intervals for case
(i) and (ii). The matrix Y 1is therefore nonsingular over these
intervals and the theorem is proved. Q.E.D.

This theorem clearly indicates that a system which is con-
trollable with continuous controls is controllable with a sampled-
data control over q sampling intervals as long as all of the
eigenvalues of the system matris are real. If some eigenvalues are
complex, the q + 1 sampling times must all be selected in an

interval of length 1/w to insure that controllability will be

{max

preserved using sampled-data controls instead of continuous controls.

th t TI/wlmax)
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Since Wo ox is the largest imaginary part of the eigenvalues of
A, this constraint implies sampling must occur at a rate at least

q times faster than the Nyquist rate (T = 7/ ) in order to insure

fmax

all q sampling times occur in a n/ interval. This constraint

Yymax
is restrictive for some applications and since it is only a suf-
ficient condition, less restrictive conditions are investigated in
Section 6.3.

The result of this theorem guarantees that there will
always exist q + 1 sampling times for which a controllable system

will be a gq-sampled-data controllable. Therefore, the following

theorem can be established.

THEOREM 6-8 (Sufficient Condition for Sampled-Data Controllability)
If the system (15) is controllable with continuous controls,
it is sampled-data controllable.
From Theorem 6.7 it has been established that there always

exists q + 1 sampling times such that if the system is

q
ttritiso

controllable using continuous controls, it will be controllable using
sampled-data controls. The system is always q-sampled-data con-
trollable and is therefore always p-sampled-data controllable for

all p > q. Thus, there always exists an N and a sampling times

N
i=0

sequence { } to make the system sampled-data controllable.

Chti
Q.E.D.
The implications of Theorem 6-8 are quite important. First,

if the continuous-time system is completely controllable, then it

is sampled-data controllable which implies there exists a control
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u(t) = u(e, ) te [t )

h+i’ ~ ZhH +i’ Theditl

for i =0,1,...,N-1 specified by a finite set of parameters

{Eh+i}?;é’ {th+i}§=0 and N that will for any initial state X,
guarantee that §h+N;g. Thus, the controllability of the system

does not depend on whether the control is actuated with an analog

or sampled-data device. In previous definition of controllability
[36, 41], either the number of sampling intervals and the lengths

of sampling intervals were specified or the number of the sampling
intervals was specified and the lengths of sampling intervals were
free and considered control parameters. In both definitions, the
sampled-data system could be uncontrollable when the continuous-

time system was controllable. The implicit assumption made in these
definitions [36, 41] was that the system model included the sampled-
data actuator and the sampling intervals sequence. In this defini-
tion, the actuator and the sampling intervals sequence are considered
part of the control law. This development of sampled-data con-
trollability provides a more general perspective on dynamic system
and control.

In the following section, the explicit condition on sampling

times for which -EO or zc is nonsingular will be investigated.

6-3. Sufficient Condition for the Singularity of 50 and Ec

The sufficient conditions imposed on the sequence of sampling
times for the special case where the system matrix has complex eigen-
values may be quite restrictive for some applications where the cost

of communicating, storing and processing data are quite high. 1In



107

these cases, the average sampling rate may be much closer to the
Nyquist rate. Sufficient conditions should be established which
will guarantee that observability and controllability can be pre-
served if a sampling process is imposed by design considerations.
A rule for selecting sampling times is desired which, if followed,
would guarantee the preservation of controllability and observability.
Although such a rule is not derived, a rule is suggested by in-
vestigating sufficient conditions for the singularity of matrices
§0 and §c° The pattern developed by investigating the conditions
sampling intervals sequence must satisfy to make 50 and Ec
singular provide a basis for suggesting a rule for selecting
sampling intervals sequence which will preserve controllability
and observability.

The following theorems, which are extensions of results by

Kalman [36] for periodic sampling, provide a basis

for the development of this sampling rule.

THEOREM 6-9
Given a system (15) which is controllable in the Kalman's
sense [36], the system is not controllable with a sampled-data

control if

km
th+i _‘*’g k =1,2,...
i=20,1,...,9-1
for any W) s where w, are the imaginary parts of eigenvalues of
A.
Proof

Since the eigenvalues occur in complex conjugate pairs
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>
n
Q

+

("
€

_ km
the appropriate rows of -Xc for thei — @ have the form

L
BT A | " thiq
[e , e yesey € ]
“Ae1th T Me+1thel "X +1%hq
= [e , e yeesy € ]
-0 t -0 t -0 t
_ 2 h 2 "h+l 2 h+q
= [e cos w,t, , e COS Wyt 1seesse cos wlth+q]

Since two rows of X, are identical, X. is singular and the theorem

is proved. Q.E.D.

THEOREM 6-10
Given a system (15) which is observable in the Kalman's

sense [36], the system is not observable with sampled measurements if

t = — k =1,2,...

for any w,, where w,'s are the imaginary parts of the complex

L L

eigenvalues of A. The proof of this theorem is identical to the
proof of Theorem 6-9 except that go replaces zc'

The results of these two theorems indicate that if the
sampling times are all multiples of a basic period n/m2 for some
2, then the system will not be observable or controllable using the

sequence. This condition does not imply that the sampling criterion

described by this condition be periodic as assumed by Kalman.
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General conditions which will describe all sampling

intervals sequences for which 50 and -Kc are singular are not

derived. However, from a brief study of the following simple cases
and the results of Theorem 6-9 and 6-10, a possible set of conditions
can be suggested. 1In the following set of examples, conditions are
derived on a set of any two sampling times in the sequences which
together could cause X, or Ec to be singular. A matrix X is

=0

§0 or éc'

(i) Assume that m()) has two complex eigenvalues and thus the

used to denote either

matrix X has the form

4 -
(p+jw) to (p+jw) t)
e e

(o-jw)to (o-jw)t1
e e J

\

This matrix is singular whenever

t, -t = — k=1,2,...

(ii) Assume m(\) is of degree 3 and has eigenvalues p + juw,
p - ju, and o . The 3 by 3 X matrix will be singular if
any two of the columns of X are dependent. Therefore,

determine the conditions for which



(p+Jw)t12
(o-jw)ti2

ot,
t12

for some real c.

is imposed so that

4

The second condition

(iii)

e

e

Assume m())

y
(O+Jw)t12
(O'Jw)tiz

t,
oti2

(

p(

o(

110

(p+jm)ti
e

1

(p-jQ)) til
e

ot
e

A condition

L7t

Lyt

= e

)

Pt "ty

-
(O+jw)til
e
(p-jw)til
e

t.
oty
e

)

jugate eigenvalues and one real eigenvalue.

The matrix X is singular if any two of the columns of X

are dependent.

(21)

is of degree 5 with two pairs of complex con-

Therefore, determine the conditions for which
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¢ 3 ( 1
(py+judt,, (o) +iwydey)
e e
(oy=Jupdey, (o)-Jwpeyy
e e
(optwydtsy | = ¢ (oytiwy)tyy
e e
(pz-sz)tiZ (pz—sz)til
e e
otio ot
e e 13
L ) L )
The first condition
. . ~ 2k1n 2k2n
i i, o, -
2 1 9 )
so that
/ Y 7
(py*jwydty, py(tipmtyy) (pytiupdeyy
e e e
(py-Juwpdty, py(tiptyy) (py-jupdty,y
e e e
e(°2+3“2)t12 ) °2(tiz‘t11)e(°2+3“z)t11
(py=Juplty, pp(tiptyy) (py=juyltyy
e e e
o(t..)
oti2 o(tiz til) il
e e
\ e ~ J
The second condition
Pg = °q =0

12741 eO(tiz”til)

(22)

In summary, Theorem 6-9 and 6-10 indicate that observability

and controllability can not be preserved if the

q+1

sampling
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times {th+i}g—0 are chosen to be a multiple of the same period
T when
T =n/wl 2 =1,2,...,k
The results of example (i) - (iii) indicate the observability

and controllability may not be preserved if

for =0,1,...,q-1. Thus, these two conditions suggest that

10t
a sufficient condition which will preserve controllability and

observability is to select all sampling times so that

i, = 0,1,...,q-1

km .
t, - t, # " i»1,

1 9

for all integers k and all Wy s L= 1,2,...,q.

This condition has not been established as a sufficient condition

for the singularity of Xc and Ko and thus is purely a hypothetical
condition suggested by the results in this section. The establish-
ment of a sufficient condition for the invertibility of X is an
important result because it provides guidelines for the system
designer. Thus, the derivation of this sufficient condition is

an important topic for further research.



CHAPTER VII

THE INFINITE TIME REGULATOR PROBLEM

The infinite-time periodic sampled-data regulator was
formulated as an extension of the finite-time problem [2]. The
existence of an optimal feedback control and the form of this
infinite-time control law were both established formally in a more
recent publication [55]. The convergence of the finite-time feed-
back control law to the infinite-time feedback control law was also
formally provem in this latter publication. However, these results
were established only for the case of periodic sampling where the
length of the sampling period is specified.

The infinite-time sampled-data regulator problem is formulated
in this paper for the case where both the number of sampling times
and the lengths of the sampling intervals are considered control
parameters. The existence of an optimal closed loop sampled-data
control law is proved for the cases where the number of samples are
both finite and infinite. Computational algorithms for calculating
the optimal control are proposed for both the case of finite and

infinite number of samples.

7.1 Problem Formulation

Consider the linear system

x(t) = A x(t) + B u(t) (23)

113
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with randomly distributed initial state

8{50} =&,

(24)

el (x, £ 'Y =u

- £, -t

where x(t) 1is the n-dimensional state vector, u(t) is the r-
dimensional control, and y(t) is the m-dimensional output vector
and A, B, C are compatible time-invariant matrices. The sensor

provides measurements

y(t) = C x(t)) (25)

1

at the sampling times {t N

iti=0 that are not specified and are con-

strained to satisfy

0 < Tmin iti+l - ti = Ti = Tmax (26)

where N 1is unspecfied and satisfies

. < N<N (27)
min —  — Tmax

The control actuator is also assumed to be a sampled-data device

and therefore the control u(t) satisfies

u(t) =u(t) =u ) (28)

t. .
1 te| i t1

+1
for i = 0,1,...,N-1. This sampled-data control is specified by
- N

the control sequence {Ei} é, sampling time sequence {t

i= i’ 4=0 and

the number of sampling times N. The initial time t € (= ,®)
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and the terminal time (tf = tN = o) are specified.
The design objective is to minimize the error i(t) with
minimal control energy and minimal cost for implementing and operating

a sampled-data control.

A system performance index is chosen of the form
Ss=J+C (29)

where the control performance has the form

3= e U, Fx(DQ x(6) + u' (DR u(t)]de) (30)
O

and the cost of implementation has the form

N-1  -8T,
C(I,N) = I ae (31)
i=0
The matrix Q 1is positive semi-definite symmetric matrix and R
is a positive definite symmetric matrix.

A cost for implementation is adjoined and represents the
economic costs for implementing and operating a sampled-data control
law. This cost for implementation can be considered to represent the
cost for transmitting and storing the optimal sampled-data control
law. It is similar in form to the costs for sampling used in the
analytic derivation of adaptive sampling rules [13] and the optimal
periodic sampling rate for a feedback control problem [56].

The control problem becomes:

Given the linear system (23, 24) with measurements (25) determine

the piecewise constant control (28) specified by the control and

sampling times sequence
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N1 e

1
i=0 ; i" i=0 3 and N

{gi}

that minimizes the performance index (29) satisfies the sampling
constraints (26, 27).

This problem can not be solved directly due to the con-
strainton control (16). Therefore, the problem is transformed from
a continuous-time one into a discrete-time oné by the same technique
used in Chapter III.

The sampled-data problem can be transformed into an equi-

valent discrete-time one by integrating (12) and (18) over each

sampling interval Ti =t t;-
el T 4% T D0y (32)
N-1
P 1 1 1 1
S=e {2 I (xQx; + 2x;Mu, +uiRu)} + C(T,N) (33)
-0 i=0
where x. = gﬁti) and
&y = o(T)
Ti
D, = D(T,) =/ = &(t)B dt
Ti
= = A )
Qi Q(Ti) fo $'(t)Q ¢(t)dt
Ti
= = \J
H, -ﬂ(Ti) fo ¢'(t)Q D(t)dt
Ti
R, = R(T)) =/ 7[R+ D'(£)Q D(t)]dt
)

The matrices gi, 51

even though Q and R are constant because the sampling intervals

and 91 are in general time varying
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are not equal. The matrix 31 is nonsingular because it is a
fundamental matrix. Moreover, it is easily shown that gi(gi) is
a positive semidefinite (definite) symmetric matrix because Q(R)
is a positive semidefinite (definite) symmetric matrix.
The discrete-time problem becomes:
Given the sampled-data system (32, 24) with the measure-

ments (25),determine the control and sampling interval sequences

L.
T' = (TO’Tl""’TN-l) and N

that minimize the cost function (33) subject to the sampling con-

straints (26, 27).

7.2 Computational Algorithm

The existence of an optimal control law for the optimal
sampled-data regulator problem is now established for both the case
where the number of samples is finite and unspecified and for the
case where the number of samples is infinite. In both cases, the
existence and uniqueness of the control is first established for the
case where the number of samples and lengths of sampling intervals
are specified. The existence of an optimal sampling interval sequence
which defines the optimal sampled-data control law for a specified
number of samples is then proved. In order to establish existence
of a control for these cases, three separate sets of definitions of
controllability and stabilizability are thus required. The definitions
are stated for the following three conditions:

(1) where both the number of samples and the lengths of

sampling intervals are specified;
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(2) where the number of samples is specified but the lengths
of sampling intervals are unspecified and considered
control parameters;

(3) where both the number of samples and the lengths of
sampling intervals are considered control parameters.

The first set of definitions are for the case where both

the number of samples and the lengths of sampling intervals are
specified.
Definition. A system (23) is said to be controllable on a sampling
interval sequence {t.}P if for any initial state x there

i"i=0 —o
p-1
i=0
data control (28), such that Ep = 0.

exists a control sequence {gi} which specifies the sampled-

Definition. A system (23) is said to be stabilizable on a sequence

{th+l}z;; if the part of the system, which can not be controlled
p-1

by selecting {Ei}i=0’ is stable.

The following set of definitions of controllability and
stabilizability hold for the case where the number of samples is
specified (N = p) but the control sequence {Ei}g;é and sampling
time sequence {ti}?=O are control parameters.

Definition. The system (23) is p-sampled-data controllable at to
if for every initial state X, there exists a control sequence

p-1 P . .
{Ei}i=0 and a sampling time sequence {ti}i=0, which specify the
sampled-data control (28), such that §p = 0.
Definition. A system is p-sampled-data stabilizable if the part of

the system, which can not be controlled by selecting {31}5;3 and

{ti}g=0 for a sampled-data control (28),is stable.
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The final set of definitions hold for the case where both
the number of samples and the lengths of sampling intervals are
control parameters.

Definition. The system (23) is sampled-data controllable at t,
if for every initial state X there exists a finite number of
samples N, a control {Ei}ﬁ;é’ and a sampling time sequence

N

ttydizo

= 0.

, which specify the sampled-data control (28), such that
Xy
Definition. A system is said to be sampled-data stabilizable if
the part of the system which can not be controlled by selecting

N-1
N, {Ei}i=0’ and {t }

i §=0, for a sampled-data control (28) is stable.

The existence of an optimal sampled-data control law is
first proved for the case where the number of samples is finite and
unspecified and then for the case where the number of samples is
infinite.

This theoretical development is presented not only to
establish the existence of solutions, but also to provide a frame-

work for the computational algorithm which follows development.

7.2.1 The Infinite-Time Problem with a Finite Number of Samples

The existence of an optimal sampled-data control law is
proved in the following theorem for the case where the number of
samples is specified. This result is proved by first establishing
the existence and uniqueness of the closed loop control law for
the case where both the number of samples and the lengths of

sampling intervals are specified.
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Theorem 7.1.

An optimal closed-loop control exists for the infinite-time
sampled-data regulator if the system is p-sampled-data controllable
or p-sampled-data stabilizable.

Proof: Consider the problem first for the case when X, is
specified. A feasible solution {91}2:3 exists for each {tn+i}§=0
for which the system is controllable or stabilizable. If the system
is p-sampled-data controllable there exist sampling interval sequences
T ¢ [a,b] for which feasible control sequences {gi}i;é exist.
Therefore, it follows from Theorems 1 and 3 [22, pp. 137 and 133]

respectively that there exist unique optimal control and trajectory

sequences
p-1 p-1
oM, @i

for each I_e [gjgj for which the system is controllable and
stabilizable. For each feasible T, the necessary conditions

[6, 7], can be solved to obtain the control law
u, (1) = -6, (Dx,(T)

where the r y n dimensional feedback gain matrix satisfies

1 ] ] -1 (R7e
M+ [R, + DiK. D,] "D!K,, .0

;M =R 1= 2iNi+1%

The matrixes Ei(z) satisfy the matrix Riccati equation

17 o'k, 1o,

LS —i—i+l' =1

-1

K. D

' _ '
+0;[Kiyy ~ Ky gDy [Ry + DiK 4Dy

i

for i = p-1,p-2,...,1,0 with boundary condition
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K =0
- =

1

lM' and T, = Q, - M,R, M'. The associated
- =i == —i

where 0, =¢, - D;R, "M/ i

_.i
optimal cost can be expressed as a function S(I) defined over

each Te IEAPJ' This derived cost function can be expressed as

S,(D) = (S = 3 X K (Dx_:a<T< bl +C(L,N

*
The optimal sampling interval sequence Eo which minimizes SO(I)
over this set of feasible T specifies an open loop control because
*
T depends directly on the initial state x .
) -0

Now letting X, be randomly distributed and letting

{gi(go)}g;é be any closed loop control law the system performance

(13) becomes

=

5,(D) = E_ {3 XK (Dx} =5 (Tr{R W} + £'K £ ) + C(T,N)

X
2 =00 —~o
)

since the following exchange of operators is valid

p-1
min {E {l-x' Qx  + %— I (x'Q.x, + 2x'M.u, + u'R.u,)}}
X 2—p-p . —i—i—i —i—i—i —i—i-i
p-1 o i=0
{u, (x )1} _
—i'—0" "i=0
1 1 P71
= E_ {min {(Zx'Qx += I (x'Q.x, + 2x'"M.u, + u'R.,u.)}}
X 2 2 —i-=*i—1i —i—i—i —i—i—i
{u.(x )}p 1 i=0
=i i=0

Since there exist feasible solutions if the system is p-sampled-
data controllable or p-sampled-data stabilizable and since the
performance index Sk(!); k = 0,1 1is non-negative on each feasible

*
sequence of sampling intervals, there exists an infinum T . Since

k

the set T € [a,b] is closed and bounded, there exists an optimal
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*
solution Ik for this derived problem. Thus, there exists a

solution

*

* . N-1 * N
o, @Yy @RI, > and Ty

for the optimal infinite-time sampled-data regulator if the system

is p-sampled-data controllable or p-sampled-data stabilizable. The
control law is closed loop when the initial state is randomly dis-

tributed (k = 1) because the optimal sampling interval sequence

E: does not depend on the initial state.

An optimal control law will not exist if the system is not
p-sampled-data controllable or, p-sampled-data stabilizable for a
particular value N = p. However, if N 1is not specified and the
system is controllable with continuous controls, it has been proved
in Theorem 6.8 that the system will be controllable with sampled-
data controls (28) for all N > q where q 1is the order of the
minimal polynomial of the system matrix A. Therefore, an optimal
infinite-time sampled-data control exists for all p > q if the
system is controllable with continuous controls. The maximum number
of samples Nmax should be chosen greater than q in order to
insure that an optimal sampled-data control exists for every system
for which an optimal continuous-time control law exists.

The algorithm, developed to compute the optimal sampled-
data control law for the tracking problem can also be used to
compute the control law for this problem with one slight modification.

Since the control interval is now infinite, one of the sampling

intervals would be infinite. Therefore, this control interval should
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be selected as large as possible, consistent with the word length of
the computer being used to solve this problem.

Since this problem is related to the finite time problem
and since extensive computational results have already been obtained
for that problem, no effort will be made to present computational

results for this case.

7.2.2 The Infinite-Time Problem with an Infinite Number of Samples

The existence of an optimal closed-loop sampled-data control
law is now proved for the case where the number of samples is in-
finite. This result is proved by first establishing the existence
of an optimal open loop control and then establishing the existence
and uniqueness of a closed loop control law for the case where the
number of samples and the lengths of sampling intervals are specified.
These two preliminary results are presented in order to indicate
the theoretical difficulties in proving the existence and uniqueness
of this closed loop control law.

The existence of an optimal open loop sampled-data control
law is now established.
TUEOREM 7.2

An optimal open loop sampled-data control exists if the
system is controllable or stablizable on the sampling time sequence
{ti}:=0 chosen.

If the system is sampled-data controllable or stabilizable
for the sampling times sequence chosen, the system can be driven to
the origin and therefore the error energy and control energy are

both finite. Therefore, there exist feasible solution sequences
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o

} {u,}?

{§i+l i=0 —i"i=0
for the sampling interval sequence T
' =
T (TO’Tl""’Ti"")

chosen if the system is controllable or stabilizable on this sequence.
Since this set of feasible intervals is compaét and since the perfor-
mance index is bounded above and non-negative on this set, there
exists an optimal control sequence {gi}?=0 which minimizes the
system performance (33) if the system is controllable or stabilizable
on the sequence T chosen.

Although an optimal open loop sampled-data control exists
for each sampling interval sequence T for which the system is con-
trollable or stabilizable, the control is impractical because the
entire infinite control sequence and sampling interval sequence must
be computed and stored. The cost of implementation would make the
system performance high and thus would make the open-loop control sub-
optimal. Since, the system is assumed observable, a closed loop
control law is possible. If the gain of this closed loop control
law is time invariant, the cost of implementation will be relatively
low and the closed loop control law may be quite practical. There-
fore the existence and uniqueness of the closed loop control law is
established.

In the previous literature, the infinite-time sampled-data
problem was only considered for the case of periodic sampling where
the sampling period was specified. The existence and uniqueness of

this closed loop control law was established [2] by first assuming
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the existence of the optimal infinite time control law and then
assuming that the extension of the finite-time control converged to

the infinite time control law as N and t t approached in-

£ N
finity. 1In a recent paper [55], the form of this infinite-time
closed loop control law was established and the existence and unique-
ness of the closed loop control was proved. Moreover the finite-
time control was proved to converge to the infinite-time control as
N approaches infinity. These results have only been established
properly for the case of periodic sampling and have never been
proved for the case of aperiodic sampling.

The existence and uniqueness of the optimal closed-loop

control law for aperiodic sampling is not proved here because

(1) all previous work (except [55]) on the infinite time
problem have always assumed that the finite-time
feedback control law can be extended to the in-
finite time case;

(2) the results on the periodic sampled-data control law
should be enough to suggest that the finite-time
aperiodic sampled-data closed loop control law can
also be extended to the infinite-time case; and

(3) the proofs for the aperiodic case are tedious and
beyond the scope of this work.

The existence and uniqueness of the extension of the finite

time closed loop control law is now proved.
THEOREM 7.3

An optimal closed-loop sampled-data control law exists and

is unique if the system is controllable or stabilizable on the

sampling time sequence chosen.
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Consider the case first when the initial state X, is
specified. The existence of an optimal open-loop control was proved
if the system is controllable or stabilizable on the infinite
sampling interval sequence chosen. Moreover, the infinite-time
closed loop control was proved to exist for a finite number of
samples and thus exists for an infinite number of samples. Moreover,
it is assumed that the finite-time control law converges to the
optimal infinite time control law as the number of sampling-times
in the sequence increases to infinity. Thus, the infinite time

control law has the form:
u (D) = -G, (Dx, (D

where the r > n dimensional feedback gain matrix satisfies

= -1 ' ' -1
G;(I = Ry My + [Ry + DiKy )0y

\J
12517 DK, 0

—i—i+1—-1i

-1
U _ '
+0:[K ;- K D1 DK, 10,

- L}
The matrices K; =T 17 KRy Ry + DK D50 DKy

i

for i = N-1,N-2,...,1, O with boundary condition with

Ky = 0

1M!. The
=i

1]
8
(0]
|

where N . - D.R.'M! and I, =Q, - M.R,
—i i —i—i

R RS L L

associated optimal cost can be expressed as a function S(T) over

the set T e¢ [a,b]. This derived cost function has the form

5,(I) = (S, = 7 x K (Dx_:a < T < b} + C(D)

*
The optimal sampling interval sequence Io which minimizes SO(I)
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over this set of feasible T specifies an open loop control because
*
T, depends directly on the initia ate .
T p y tial stat X,
Now letting X, be randomly distributed and letting

{Ei(zo)}i=0 be any closed loop control law, the cost function

becomes

N =

x K (1)

=1 '
Tx } = S(Te{K W} + £'K £ ) + C(T)

5,(1) = E_
-0

since the following exchange of operators is valid

o

min {E {l- 2 (x'Q.x, + 2x'M.u, + u'R,u.)}}
- X 2 jmo i —i—i—i —i—i—i
{u,(x )},
=i —0" " i=0
= E {min { % T (x'Q.x, + 2x'M.u, + u'R.u.)}}
®© . —1—1—1 —i—1—1 —1—1—1
~o {Bi(x )}i_0 i=0

The optimal sampled-data control law obtained by
minimizing Sl(I) over T ¢ [a,b] 1is closed loop because the
infinite sampling interval sequence does not depend on the initial
state X, The existence of the control law has been established
under the assumption that the extension of the finite-time control
law is the optimal infinite time control law for the case where the
number of samples and the lengths of sampling intervals are specified.

The uniqueness of the control is proved by establishing the

oo
uniqueness of the sequence {Ei}, Two distinct sequences

i=0"

{_IZ,}oo are assumed and are now shown to be identical.

i i=0 and {Ei}

(e}
i=0
Let all n x n matrices form a metric space which is

complete. From Theorem B [29, pg. 47] this metric space forms a

normed linear space with matrix norm
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1A x|
W i1 = TR

The matrix sequence {Ei} and {Ei} satisfy the Reccah

equation and therefore

—_ — —_ -~

- K, =0'K, .0, -0'k

i Si—i+l-i "‘1—1+l~
where
Ei =L+ 218—11~1:1+1]-191
6, = [1+DR1D'R 19;
25 = —i—i —i—-i+l

This matrix difference can be expressed as

z 5o _ A 5 L% 5 5 -1.,,-1%

Ki = 8y = 0 UL+ K5 DR DK g = Ry T + Ky ) DyRy DT 70y
The term in the parenthesis is just a matrix

similar to -Ei+l _-5i+l and thus has the same eigenvalues as

Kin - K [28]. Since K.t~ K;yq 1s symmetric and n x n,

the norm of this matrix on the normed linear space is the maximum

absolute value of the eigenvalues of the matrix. Therefore

. -1 — . N -1 . .-
(L + Ry DR D IR, g = Ky JIT + Ky DR, D] ]“
=Ry - R

The norm of this matrix difference in the normed linear

space has the form
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NE, - & <181 1K - K8,
where the norms
ol < 1
(AR

if the system is controllable or stabilizable on the sampling interval
sequence T. Then the difference matrix must approach zero as i
approaches zero. Thus, there is a unique sequence {Ei}:=0 and a
unique control law if the system is controllable or stabilizable on the
infinite sampling interval sequence T.

The existence and uniqueness of the optimal closed loop
control law was proved formally for the case of periodic sampling
[55]. The finite-time closed loop control law was then proved to be
the infinite-time control law as the number of samples approach
infinity. Thus, the assumption that the extension of the finite-
time control law is the infinite-time control law is valid for the
case of periodic sampling. The control law for the case of periodic
sampling has also been proved time invariant rather than time varying.
The following theorem is stated to establish the form and the
existence and uniqueness of the periodic sampled-data control law.
THEOREM 7.4.

An optimal closed loop sampled-data control
* T c *
u (1) = -G(Dx(T)

where
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-1

(M = [RM+ (R+D kD' DK 0]

exists and is unique if the system is controllable or stabilizable
on a periodic sampling time sequence with period T. The system

performance is

s_(1) = %505 x_ + C(T) (34)

where K satisfies the Riccati equation

The proof of this theorem is contained in the literature
[55] and is not proved here.

The system performance (34) becomes
= Lo .
$,(T) = (g)K g+ Tr{K W}) + C(T)

if the initial conditions are randomly distributed as assumed pre-
viously. The assumption is made, as pointed out earlier, in order
to make the optimal sampling interval sequence I: independent of
the initial state X - The following theorem establishes the
existence of an optimal closed-loop sampled-data control law.
THEOREM 7.5

An optimal closed loop sampled-data control specified by
{3:}°° and If exists if the system is sampled-data controllable
or sampled-data stabilizable.

In Theorem 7.3, the existence and uniqueness of the optimal

control was proved for each T ¢ [a,b] for which the system is
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either controllable or stabilizable. Since the control is unique
a derived performance index Sl(I) was defined over T e [a,b].
Since there exist feasible solution {T, {Ei}:=0} and since
Sl(T) is non-negative, an infinum exists. Since the set of
feasible sampling intervals sequences T ¢ [a,b] is a compactum,
an optimal sampling interval sequence I; exists. Thus an optimal
control sequence {gz(I:)}:=0 and trajectory sequence {51(21)}:=0
exists. The control law is closed loop because the optimal sampling
interval sequence I; does not depend explicitly on the inital state.
Computing the optimal sampling interval sequence is in gen-
eral impractical due to the high cost of computation storage, and
hardware implementation. Thus the optimal sampling interval sequence
must be highly structured and must depend on the form of the cost
of implementation chosen.
A periodic sampling criterion has been heuristically

established as optimal if the cost of implementation has the form

o -BTi
C(I) = I ot (35)

i=0

It is quite apparent that other structured sampling criteria may

be optimal if other forms for the cost of implementation are proposed.
The optimal sampling period T* for this infinite-time

optimal sampled-data regulator problem with cost of implementation

(35) can easily be computed using a one dimensional search algorithm,

such as Fibonacci search. The use of such an algorithm on several

example problems is a subject for future research.



CHAPTER VIII

CONCLUSIONS AND FURTHER INVESTIGATION

The principal contribution of this thesis is the develop-
ment of a new framework for the design and analysis of sampled-
data control systems.

The formulation of the sampled-data control problem is
extended by considering both the number of samples and the lengths
of sampling intervals as control parameters. A system performance
index 1is proposed which measures not only control performance but
also the cost of implementation. The sampled-data control is
generalized by assuming polynomial form over each sampling interval.

The controllability and observability of these sampled-
data control systems are defined for the case where both the number
of sampling times and the lengths of sampling intervals are control
variables. It is established that a necessary and sufficient con-
dition for p-sampled-data controllability and observability can be
decomposed into a condition on the controllability and observability
of the continuous-time system and a condition on the sampling times
sequence. A sufficient condition on the sampling time sequence
is stated which will guarantee the preservation of controllability
and observability when continuous measurements and controls are
replaced by sampled measurements and a sampled-data (sample and

hold) control. Finally, a system which is controllable with

132
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continuous controls and observable with continuous measurements is
proved to be controllable with a sampled-data control and observable
with sampled measurements if the number of sampling times and the
lengths of sampling intervals are chosen properly. Some sufficient
conditions are derived which indicate the properties which must be
satisfied for a system which is controllable and observable with
continuous measurements and controls to be uncontrollable and un-
observable with sampled measurements and a sampled-data control.
These results on controllability and observability indicate the
actuator which implements the control commands and the sensor which
makes measurements should be considered part of the control law
rather than part of the model of the system to be controlled since
the number of samples and the lengths of sampling intervals are
shown to be control parameters.

These control problems were formulated in this thesis: the
sampled-data tracking problem, the infinite time sampled-data
regulator problem. The existence of an optimal sampled-data control
law was proved and a computational algorithm was developed for both
problems.

The optimal continuous time control law was proved to be a
sub-optimal sampled-data control law if the cost for implementation
was not negligible and the optimal sampled-data control law if the
cost for implementation was negligible. This result indicates this
sampled-data formulation should be the general formulation of the
optimal control problem because the decision on the form of the

control, the form of the measurement system, and the form of the
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actuator can only be made properly if this formulation is used.

Extensive computation results were obtained to compare the
performance of optimal periodic sampled-data control and optimal
aperiodic sampled-data control for the tracking problem. Comparisons
of performance were made on different examples with different inputs.
Moreover the performance of these systems was also evaluated for
optimal sampled-data control laws with different order control
approximations. The study of both the order of control approximation
and the optimal aperiodic sampling were made to determine the possible
reduction in information required and possible control performance
improvement which can result by properly parameterizing the optimal
control.

Topics for further investigation are listed below:

(1) the development of a cost of implementation which more
realistically models the cost of utilization of computer
and communication hardware, the cost of sensors, actuators,
and the cost of computing the control,

(2) the investigation of alternative search algorithms which
can outperform Powells algorithm in the computational
programs developed,

(3) the extension of controllability and observability of
sampled-data systems to the case where the sampled-data
control is modeled by a polynomial rather than a sampled
and hold mechanism,

(4) the development of computer program which implements the

algorithms developed for the infinite time regulator problem,
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(5) the formulation and solution of optimal stochastic

sampled-data control problem.
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A. SAMPLED DATA FORM OF THE SYSTEM EQUATIONS
x(t) = A x(t) + B u(t)

has a solution

A(e-t )
x(t) = e x(e) + 5 AR uman
0

Therefore the solution over one interval becomes

AT t, A(t, ,-T1)
_ =1 i+l = i+l k
X1 - € Xy + fti e 21301 +"'+-Eki(T - ti) Jdt
Changing variables ti+l -1 =1t gives
T T
_ i At i At k
Xipp S 8% 7 fO e~ Bdt u,. +...+ IO e~ B(T; - t) dt Yy
which can be put into matrix form as
Y )
201
3(_1+1 = giii + [D i,...,Qki] . = gi')ii + Qiy_i (A1)
ki
\ L
T,
where p.,=/"1 eétB(T, - t)kdt
—ki 0 =i

The variable k = 0,1,2, represents step, ramp and parabolic control
approximation respectively.

Similarly, the following equations can be established

x(t) = E(t)ii + Q(t)gi (A2)

< <
for ty ittt



where
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B. DISCRETE FORM OF COST FUNCTIONAL

The continuous form of cost functional is

t
5 = 3<3(ty) - 2(6),F(y(t) - 2(6))> + 3 CTORECR D
N-1  -BT,
- z(t))> + <u(t),R u(t)>ldt + & ae (B1)

i=0
Since y(t) = Cx(t) and F is symmetric

Tey(ty) = 2(6),F(y(ty) - 2(5))> = 3 x3F x + 3 2" (£)F 2(c) -

—N— —N N N
(B2)
where
E=CcFC
- 1)
he = 2" (t)F C
xy = x(t)
Using (A2) and the fact that
t., N-1 t,
rNfyae = ¢ s Meae
t . t
o i=0 i
and
4 «
u..
. K —0i
u(t) =uyp +oetu (e -e)" = [I,...,(c - t) I : ,
ki
S/

it is obvious that
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% [<1(t) - z(t),Q(y(t) - z(t))> + <u(t),R u(t)>]dt
0

N-1 1
= | ] = ' _
2o (3 xQsx; + XMy + 5 wRiuy - hyxy - g;u4)
t
1. N _,
to /.2 (£)Q z(t)dt (B3)
o
T
_ i A'te
I‘jl—fo e— Q D(r)drt
T, .,
where Q. =/ T o2 T &ATgr
o o Q
T, R. .. Re2K3 pe2k2
= ' A - - - _
R, =/, [D'(0)Q D(t) + |. BT?.k 1| ldt
. 3T21<-1 ET2k
Q=¢c'ac
Ty 2!
hy z'(t; +1Q C ATdr
T,
8; = fo z'(l:i + 1)Q C D(1)dr

N-1  -gT L. L N1
S=Jp* I ae 4o xiFxgcha g DoGG0x; + 2xMau,
i=0 i=0
+ —l-l-;'[-gigi - zhi.’ii - z_g.il’.i) (B4)
1, 1 N,
where Jj =7z (tN)g E(tN) ty /2 (£)Q z(t)dt

o
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C. KUHN-TUCKER NECESSARY CONDITION OF OPTIMALITY FOR QUADRATIC
PROGRAMMING PROBLE:

The canonical form of the quadratic programming problem is:

P 1
Minimize ==<v,Qv> + <d,v>

2_

subject to the constraints:

Rv=c and a <v<8@g (Cl)

The Kuhn-Tucker necessary conditions for this problem are
stated in the following theorem.
THEOREM

If ¢ 1is a feasible solution to problem (Cl), then ¢

is an optimal solution if and only if there exists a vector
¥'o= (v, e BN

such that for 1 =1,2,...,n

<Ygo¥> - <qy,9> - at =0 1f of <ol <pl
i i_ 1

Yyo¥> - <qq59> -4 <0 if o =90

<y ¥ - <q,9> - dt >0 af ghe ot

where for i =1,2,...,n, Y; 1is the ith column of R, g, 1is the

ith column of Q, and Q} is the ith component of d.
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D. NECESSARY CONDITIONS FOR OPTIMALITY OF THE SAMPLED DATA TRACKING
PROBLEM
The sampled-data tracking problem can be put into the
canonical form (Appendix C) of the quadratic programming problem
as follows.

The cost functional

N-1 —BTi 1 1 N-1
= . = 'f - - ' '
J=Jy+ ‘L ae +5 X F XN DNEN + 5 z (51915‘ + 2§i§13'
i=0 i=0
' — -
*uiRuy - Zgpuy - 2hxy)
can be represented as
N-1 -8T, 1
J=J,.4+ ¢ ae Ly <v,Q v> + <d,v> (D)
0 i=0 2 7= T

The (n + kr)(N + 1)* vector z has the form

and the (n + kr)(N + 1) square matrix Q is

( N
Q
AO ~
9
Q= .
Q-1
Q
\ /

As the dimension is concerned, k = 1 for step, k = 2 for ramp,
k = 3 for parabola.
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where the (n + kr) square matrices Qi’ i=20,1,...,N are defined

as follows

,0. )
A =i —1i
gi = for i = 0,1, ,N-1
M' R,
~_l _1)
/. N\
F 0
Q. =
=N Lg 0 J

The (n + kr)(N + 1) vector d is

[ _ - - -
4" = (hgmggs e~y s By gy, 0)

The state equations and the initial condition

X" £
Xyl T 4%y YDy 1=201,...,8-1
can be put into the form as
Rv =¢C (D2)

where the n(N + 1)X(n + kr)(N + 1) matrix R 1is

’ -
L Qn(kr)
- -D IO
b, 10
-(Rl_gl l 9
R = .
On-1 21 1O

\ /
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and the n(N + 1) vector C is

c'=[0... 0]

The inequality constraints

a<v<B (D3)

are not restrictive since all the elements in o are set as -
and in B as + <« |

From (Dl), (D2), (D3) the tracking problem is transformed
into a canonical quadratic programming problem as (Cl). By using
the theorem in Appendix C, if ¥ 1is a feasible solution, then ¥

is an optimal solution if and only if there exists a vector

o
]

[B'('),‘Bi’..."p‘l\']]

where Ri = [pil’pi2’°°"pin]

such that for i =1,2,...,(N + 1)
<YjeR> T <g49 - at - o
This condition can be stated in matrix form as follows
Rp-Qv-d=0
because 0 = =2, B =oo yi

This vector condition can be shown to be equivalent to the

following set of conditionms.
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= \ + + h - L
By = 9Py T Qyxy Y My, - hy

0

= N '
Or 7 BiRyyy * X

i PRY -8y

for i = 0,1,...,N-1 and

| 1>

By = Exg - by

Thus the necessary conditions for the problem are the

equations stated in Theorem 1.

(D4)

(D5)

(D6)
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E. DERIVATION OF THE CONTROL LAW

The control law can be solved for uniquely using (D5) to

obtain

ES N + - 1
up =Ry QX 4 Dipyyy o8y (ED)

since Ei is positive definite for all 1i.

Assuming the (Lagrange) multipliers have the form (verified

in [24])

p; = K.x. + k., (E2)

where §i’ Ei are to be determined.
Using (E1), (E2) eliminates u, from (7) and (D4),
followed by rearranging terms with the help of the well known

matrix identity

(I + A B')'l =1 - A(1 + B'A)—lB'
-n - — -1 — —r - - -
firmly yields
x. = 0x. +D.5  a' - D'k, ) (E3)
Si4l 0 Siti 0 i =i T Si—i+l
5, = 0! +Tox, + MR g - n' (E4)
2y T 2Py T X TSN 8 Ty
for i =0,1,...,N-1 where
0, =6, - DR, Ty
-1 -1 —1—1 —1
0, =(IL -D sTiprk )0
~i =T 27 Siti+l 5
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S; = (B + DK, D)

- -1,
Li - Qi ﬂlﬂl !1

Comparing (E2) with (E4) and substituting (E3) for X

give

Kox, +k, = (O}K, e +Ix, + (G'g, - h! +0'k..) (ES)
= i+ =i —i2i —i -

1- i—id

where G! = (H,R-,l + C' D.S 1)
-1 —i—i —i+1=i-i

Since (E5) must hold for any choice of initial state §
and since Ei’ Ei does not depend on §, (E5) must be satisfied

for all X Thnis implies

= .6
5i 915 +191 * Il (£6)

- 'e"' _ o
k; = Gig; - hi +91k1+1 (E7)

Substituting (E2), (E3) into (E1) and rearranging terms

finally obtain

= -1 _ ' ~
ug = =Gyxy + 885 - Dikyyy) (E3)
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£E. DERIVATION OF THeE OPTIMAL COST

The discrete form of cost functional is (from B4)

N-1 -BTi N-1
= ' -
S JO + iioae + X F X h”x‘ + ii J (F1)

N[
T

where

i l | ‘ LEN ] .
Ji =y Qyxy + Zxpiuy + ugRiuy - 2hyx, - 28,

Replacing u, by use of (E1l) obtains

1 ., .
J, = S(x [, + Py +l[ DR, D iR +l]) + —(Zx M, R g - 2h_.x

i 2 —i—1i —i—i
-1,
- 5igi 31) (F2)
Using (E1l), (7) can be rearranged as
-1, = _ .
DRIDIp; g =y * Opx + DRE! (F3)

Replacing the bracketed term in (F2) by (F3) substituting

u, for using (E1l) and using the rearranged (E4)

-1
' = p! + x'T, + M) -

(F2) becomes

= = -1 -1 ' -1 [
3y = LR - RiypXgy) + @5DiRy -8Ry ¥ EMRTIE] - hix]

- h,x,] (F4)

) - uig - hyxy

= ' oA
2 [Ri%y = RyyiXi4
Replacing u, with (E8), rearranging (E7) and substituting

(E3), the following expression becomes
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'0' 1 =
ujg; *hyxy = gu; +hix
=(€)k -k)'x, - g.S Dk _gS—lg'
Oikiv1 ~ Ky %y~ 855 Diki * 85, 8y
= - ' ' 1 -1 _ '
(Rip1Xie1 = K% + (85 - Diky 75,7 gy - Dikyyy) (F5)

Therefore, putting (F5) back into (F4) obtains

) - (k - k'x.)

1 '
J; = ol iv15+1 T S

i~ 2i+1tin
' -1 [} ' .
- (g; - Dik, )'S, "(g; - Dik, )] (F6)

i —i—i+1

Substituting (F6) into (Fl) and using (D6), which implies

§N =F and -EN = ~hi\
gives (10) i.e.
N-1 -BT. 1
S=J. + I ae T +=x"Kx_ +k'x
0 2 —0—0
i=0
N-1
- _l. ' _ ' 1 -1 '
2 i (-&1 —1——i+l) 34 (-&1 2151+l)
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G. EXISTENCE AND UNIQUENESS OF OPTIMAL CONTROL AND TRAJECTORY FOR
EACH SPECIFIED T

It is shown in Appendix D that a quadratic programming
problem is formed by (D1l), (D2), (D3). The following two theorems
state conditions for the existence and uniqueness of an optimal
solution for this problem.
THEOREM

*
If n (Q) n n(R) = {0} and the quadratic programming problem

(b1, D2, D3) has a feasible solution, then it has a unique optimal

solution.
THEOREM

If <d,¥> =0 for every ¢ ¢ E" satisfying Q ¢ = 0 and
Rv =0 and if there exists a feasible solution to the quadratic
programming problem (D1, D2, D3), then there exists an optimal
solution.

It is established that the conditions in the above theorem
for existence and uniqueness of an optimal solution are satisfied
if [%] has maximum column rank, and Q 1is positive semi definite.
Therezsre these two conditions will be established to prove the
existence and uniqueness of the optimal solution.

The matrix Q 1is now proved to be positive semi definite.

The matrix

Q
( J
*

n(+) means "the null space of".
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. o . - A N - . -
is positive semi-definite if {gi}i_ are positive semi~definite.

0

The matrices Qi; i=20,1,...,N-1 have the form

9—]’. =4
oM R,
=i -1
-1 -1
I MR, Q. - MR . M O I 0
- —i-i i =i—i i = = =
o 1 0 R [xhe 1
Qi - migzlﬂ; is positive semi-definite from the proof of Lemma 1

of (2, p. 347) and therefore éi are positive semi-definite for

i=20,1,...,N-1. The matrix

E

|o

(Y

I

~

is positive semi-definite since F 1is positive semidefinite and
therefore Q 1is positive semidefinite which completes one part of
the proof.

The ((n + kr)(N + 1) + n(N + 1)) by (n + kr)(N + 1)

matrix [Z] has the form

I o

[}=°]




By appropriate column and row operation, it can be trans-

formed into an equivalent matrix.

r N
00
0 R
= -0
(U
0 R, .
* - 1 .
Q T
*= ----------------- “’,..‘
R .
10
0010 2
00 |
. J *
2
These 1I's and gi’s are nonsingular; the matrix % has
Q R
independent columns. Therefore, has maximum rank 4nd the
R

second part of the proof is complete. Therefore there exists a

unique solution to the tracking problem.
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H. SOME PROPERTILS OF MATRIX NORMS

(1) If the norm of a n by n matrix A is defined as

| = su H
Al = sur )

where x 1is a n-vector, then it satisfies

(@ 1] > 0

(b) A + Bl

| v

lall + 11l

() 1o - Bl < |A]-[8])

—i

| A

(d) oAl = lo “llal a 1is a scalar.

n
and H’,S“.\. = (¢ |x,

|2
b i=l 1

)1/2

(2) if A is Hermitian Héﬂ = p(A) where p(A)=max |)\i| is the
i
spectral radius of A.

(3) 1If A is positive definite, then pi(é) >0 VY i. This can

be expressed as A > 0.

(4) If X>0,Y<0 then |[X + Y|| < I|X|
If X>0 then l[(I + z(_)_ln <1
(5) 1f A>0,B>0 then A B >0

(6) If C 1is a triangular (upper or lower) square matrix with

0, then \\egtu = 1.

cC..
11

(7) Two similar square matrices which have the same characteristic

polynomial, will have the same values of norm.
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