remove this checkout from your record. FINES wiI] __, be charged if book is returned after the date stamped beIow. MSU# gElURNING MATERIALS: P1ace in book drop to LIBRARIES VARIABLE COST-SHARING LEVEL PROGRAM IMPLICATIONS FOR KENTUCKY'S JACKSON PURCHASE AREA: AN ECONOMIC AND POLICY STUDY OF CASH GRAIN PRODUCTION CONSIDERING SOIL DEPLETION BY Daniel Edward Kugler A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Agricultural Economics 1984 ABSTRACT VARIABLE COST-SHARING LEVEL PROGRAM IMPLICATIONS FOR KENTUCKY'S JACKSON PURCHASE AREA: AN ECONOMIC AND POLICY STUDY OF CASH GRAIN PRODUCTION CONSIDERING SOIL DEPLETION By Daniel Edward Kugler The existence of environmental and conservation problems which reduce the productivity of water and land resources or degrade the environment has been a concern of the {1.8. Department of Agriculture. since the 19303. Farmers have been provided with educational, technical and financial assistance through the Soil Conservation Service and Agricultural Stabilization and Conservation Service to promote conversion to less erosive farming practices. During the 1981 national evaluation of the Agricultural Conservation Program by the Agricultural Stabilization and Conservation Service, the Variable Cost/Sharing Level Program was initiated in an effort to establish higher cost-share rates for soil conservation practices which achieve the largest reductions in soil loss. The program's assignment of variable cost-share rates is solely based on physical measures, i.e. pre-conversion and post-conversion erosion rate calculations . The purpose of this research is to selectively explore the relationship between the Variable Cost/Share Level Program cost-sharing rates and the changes in income which result from changing resource management systems to achieve soil erosion control. The research will formulate a procedure for incorporating economic criteria in a variable rate cost-sharing format and discuss the policy implications of the use of the procedure. Short-term, par- tial enterprise budgets are developed for corn, wheat and soybeans. Resource Management Systems for a corn followed by double-crOpped wheat with soybeans Daniel E. Kugler rotation are established for conventional, conservation and no till tillage methods in combination with up and down, contouring, contour stripcropping and parallel terracing conservation practices on 11 erosive soil groups for Kentucky's Jackson Purchase Area. Representative soils within soil groups are selected for economic analyses of long-term productivity change attributable to erosion using a Soil Depletion Estimates model program. The results show four economically rational ways erosion control may be achieved: (1) net return change may be positive, (2) Program cost-sharing may offset net return loss, (3) the depletion investment annuity may offset net return loss and (A) the depletion investment annuity plus Program cost-sharing may offset net returns loss. The results demonstrate the potential for Program cost-sharing in the short-term leading to a long-term income losing conversion.‘ The proposed variable rate cost-sharing method is shown to effectively encourage conversions to the more profitable conversion options. ‘ \ .'-( ACKNOWLEDGEMENTS To Dr. Larry Libby, I extend my appreciation for helpful technical and policy guidance as the chairman of my dissertation committee and member of my guidance committee. To Dr. John Hoehn, Dr. Delbert Mokma, Dr. Roy Black and Dr. Hilton Steinmueller, I also express appreciation for the assistance and advice they provided as members of my dissertation and/or guidance committee. 'To the 0.8. Department of Agriculture's Economic Research Service, I ex- tend gratitude for continuing employment and encouragement of graduate studies and professional development. Special thanks are owed to Dr. Anthony M. Grano for several years of professional advice and direction and for review of my dissertation. To my colleagues Jim Reisen and Gauri Singh, many thanks for data processing and programming assistance. Appreciation also goes to Harold Jolley, Stuart Calvert and Henry Amos with the State Office and to Jackson Purchase Area district personnel of the Soil Conservation Service for the assistance they provided. To Tom Howard with the Agricultural Stabilization and Conservation Service in Kentucky, I extend my gratitude. To my wife Ann E. Haman and my children, Elizabeth and Nicholas, I am deeply grateful for their encouragement, support and patience during this endeavor. ii CHAPTER I TABLE OF CONTENTS PROBLEM STATEMENT O O C O C O O I O O C O O O O O 0 Background and Origin of the Variable Cost/Share Level Program . . . . . . . . . . . . . . . . . . . . . . Objectives of the Variable Cost/Share Level Program . Economic and Policy Implications . . . . . . . . . . . Purpose of the Research . . . . . . . . . . . . . . . Research Objectives . . . . . . . . . . . . . . . . . Organization of the Dissertation . . . . . . . . . . . Description of the Study Area . . . . . . . . . . . . CHAPTER II ECONOMICS AND SOIL CONSERVATION . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . Public Intervention in Soil Conservation . . . . . . . Economics and Private Choice . . . . . . . . . . . . . Public Intervention and Private Choice . . . . . . . . Economic Methods . . . . . . . . . . . . . . . . . . . Policy and Programs . . . . . . . . . . . . . . . . . CHAPTER III RESEARCH PROCEDURES . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . General Research Procedure . . . . . . . . . . . . . . Soil Resource Groups . . . . . . . . . . . . . . . . . Resource Management Systems . . . . . . . . . . . . . Soil Depletion Estimates . . . . . . . . . . . . . . . Variable Cost/Share Level Program . . . . . . . . . . CHAPTER Iv RESEARCH RESULTS 0 O O O I O O O O O O O C O O O 0 CHAPTER V ME” NH Format for Presentation . . . . . . . . . . . . . . . Resultso.....o................ Interpretation of Results and Policy Implications . . 4.3.1 Path A . . . . . . . . . . . . . . . . . . . . 4.3.2 Path 3 . . . . . . . . . . . . . . . . . . . . 4.3.3 Path C . . . . . . . . . . . . . . . . . . . . No Depletion Effect . . . . . . . . . . . . . . With Depletion Effect . . . . . . . . . . . . . INTEGRATING ECONOMIC CRITERIA IN ASCS'S VARIABLE COST/SHARE LEVEL PROGRAM s s e s e o o s o a e e s s s o . IntrOdUCtion s e o 0 a s e o s o e o e e o o e e s s e What Has Been Learned? . o e s e s e s e e s e a e e 0 iii Page OOOO‘U‘U’H ,_.,... l3 13 14 18 23 27 34 39 39 40 42 46 51 58 62 62 69 93 93 94 95 96 100 111 111 111 5 .3 What can Be Done? 0 O O O O O O O O O O O O O O O O O O O O 0 CHAPTER VI O‘O‘GO‘ o fiunw SUMMARY, CONCLUSIONS, LIMITATIONS AND SUGGESTIONS FOR FURTHER RESEARCH . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . Limitations . . . . . . . . . . . . . . . . . . . . . . . . . Suggestions for Further Research . . . . . . . . . . . . . . . LIST OF REFERENCES I O O O O O O O O O O O O O O O O O O O O O O O O 0 APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX I II III IV VI VII Soil Resource Groups by Soil Name, Land Capability Unit, Texture, Slope, Productivity Index, T/K Factor and Acreage. O O O O O O O I O O O O O O O O O O O O O O O I Fertilizer, Chemical and Equipment Complements and Tillage Methods for Kentucky's Jackson Purchase Area Resource “amgementSYStemSeesooooeooooooaoeooe Base Partial Enterprise Budgets. . . . . . . . . . . . . Economic and Soil Conservation Impact Calculations for Kentucky's Jackson Purchase Area: Partial Budgeting and Erosion Results by Soil Resource Group-Subgroup. . . . . Soil Depletion Estimates Computer Program. . . . . . . . Soil Depletion Estimates for Kentucky's Jackson Purchase Area: Results by Representative Soils by Soil Resource Groups-SUbgroup3. soooooooooooooooooo Variable Cost/Share Levels by Prepractice Erosion Rate and Percent Reduction in Soil Loss. . . . . . . . . . . . iv Page 114 121 121 121 124 125 128 135 152 162 183 244 251 332 10. 11. 12. 13. 14. LIST OF TABLES Representative Soils for Soil Depletion Estimates by Soil Resource Group for Kentucky's Jackson Purchase Area. . . . . . . . . Selected Resource Management Systems for Economic and Soil Conservation Analyses, Kentucky's Jackson Purchase Area. . Sample Output Table for the Soil Depletion Estimates Computer "Odel. O O C O O O O O O O O O O O O O O O O O O O 0 O O I Example Format for Presentation of Path C Research Results: Soil Resource Group SA. . . . . . . . . . . . . . . . . . . Research Results Index by Soil Resource Group-Subgroup, Table number and Path. 0 O O O O O I O O O O O O O O O O 0 Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Groups 1A, lC, 2A, 2C, 3A and 3C (T - 5T/A/Y) Path A. . . . Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Groups 4A (T - 5T/A/Y) Path C. . . . . . . . . . . . . . . Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group SA (T . 3T/A/Y) Path C. o o a o o e o o o e e o e o 0 Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group 5C (T . 3T/A/Y) Path Ce 0 o o o a e o o o o o a a e 0 Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group 6A (T - 5T/A/Y) Path C. . . . . . . . . . . . . . . . Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group 7A (T - 3T/A/Y) Path C. O O O O O O O O O .7 O O O O 0 Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group7C(T-3T/A/Y)Pathco 00000000000000. Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group8C(T'3T/A/Y)PathC. 00000000000000. Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource GrouP8E(T.3T/A/Y)Path80 000.000.0000... Page 47 50 57 66 70 71 72 73 75 77 80 83 86 88 15. 16. 17. 18. 19. 20. 21. Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Groups 9C and 9E (T - 3T/A/Y) Path B. . . . . . . . . . . . Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group 10A (T - STIA/Y) Path Ce 0 e o o e o o o o e o e o 0 Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Group 10C (T - STIA/Y) Path Be a o o o o o o c o o e o o 0 Resource Management System Conversions for Corn-Wheat/Soybeans Rotation in Kentucky's Jackson Purchase Area on Soil Resource Groups 11C and 118 (T - hT/A/Y) Path B. . . . . . . . . . . Analysis Categories by Research Procedure Path and Relevant Economic Factors. . . . . . . . . . . . . . . . . . . . . . Comparison of Cost Sharing Rates and Amounts for Conversions from C-W/S ll (conventional-contour stripcropping) in Kentucky's Soil Resource Group 4A: Variable Cost/Share Level Program vs. Proposed Procedure. . . . . . . . . . . . . . . . . . . Comparison of Cost Sharing Rates and Amounts for Conversions from C-W/S ll (conservation-up and down) in Kentucky's Soil Resource Group 5A for the Grenada Series Soil: Variable Cost/Share Level Program vs. Proposed Procedure. . . . . . vi Page 89 90 91 92 112 117 118 LIST OF FIGURES Page la. Total Cost Curve by Erosion Rate . . . . . . . . . . . . . . . . . . 24 lb. Marginal Cost of Erosion (MCe) and Marginal Returns (MDe) from an Erosion Damage Reduction Subsidy . . . . . . . . . . . . . 24 2. Example Net Returns Time Stream for PV"/, PV“/° and APV"/° Calculations. . . . . . . . . . . . . . . . . . . . . . . . . 33 3. General Research Procedure. . . . . . . . . . . . . . . . . . . . . 63 vii CHAPTER 1 -- PROBLEM STATEMENT 1.1 BACKGROUND AND ORIGIN OF THE VARIABLE COST/SHARE LEVEL PROGRAM Until the late-19203 to early 19303 in the United States, it was generally believed that individual farmers would practice soil conservation without public assistance or intervention. It was thought that soil conserva- tion was in the farmers' long-term self-interest and that an awareness of the severity of soil erosion, particularly in terms of potential loss in cropland productivity, would be sufficient incentive for a farmer to engage in less erosive farming practices. (3) By the mid-19308, the belief that individual choice would lead to ade- quate protection of the nation's cropland soils lost support. Drought and duststorms, soil erosion control work under the public works programs of the New Deal, and cooperative experimental research projects with state agricul- tural colleges all served to demonstrate the need for and benefits of public intervention in soil conservation. In l935, with passage of the Soil Conservation Act, Congress declared soil erosion to be a national menace and established a permanent soil conser- vation program in the Soil Conservation Service (SCS) of the U.S. Department of Agriculture. In 1936, with passage of the Soil Conservation and Domestic Allotment Act, the Agricultural Adjustment Administration (AAA) began adminis- tration of soil conservation payments under its Agricultural Conservation Program (ACP), leaving SCS to administer technical assistance. AAA eventually became the Agricultural Stabilization and Conservation Service (ASCS) and ASCS's ACP program evolved into a cost sharing program for voluntary adaption of 3041 conservation practices. (3,46) While consistently appropriating funding for ACP, Congress, at the urging of a variety of public and private interest groups and agencies, revised the emphasis of ASCS's ACP program through the next 40 years. The revisions were mainly directed toward eliminating cost sharing for conservation practices that were mainly production oriented or which resulted in little or no con- servation or pollution benefits. The revisions also established that coopera- tive determination of practices eligible for ACP cost sharing be undertaken by ASCS, SCS and the Forest Service. When the Food and Agricultural Act of 1977 was passed, Congress specifically directed the Secretary of the 0.8. Department of Agriculture to base ACP assistance on the existence of environ- mental or conservation problems which reduce the productive capacity of water and land resources or degrade the environment. (h6,59) In determining the level of assistance, the Secretary is to consider the extent of the conservation or environmen- tal benefits occurring to society; the cost of measures or practices; dhe degree to which appropriate practices would be applied in the absence of assistance; and, the extent to which producers benefit from other conservation and environmental protection programs. (59, pg. A) To partially accommodate the policy directives of the Food and Agricultural Act of 1977, President Carter called for the Secretary of Agriculture to undertake an indepth study of agricultural programs. (24) The President was concerned that the nation's soil conservation programs were not as effective as they could or should be and, in particular, encouraged a thorough examination of cost-sharing practices. (10) In compliance with this directive, USDA's Agricultural Stabilization and Conservation Service (ASCS) undertook a comprehensive evaluation study of the Agricultural Conservation Program (ACP). Through ACP, farmers and ranchers receive financial and technical assistance for the installation of conservation and environmental practices and measures. The financial assistance is received as reimbursement for expenses incurred in the installation of practices. In theory, the share of the total cost of the practice paid through the program is commensurate with the public's share of the benefits derived. (59, pg. 2) In the evaluation of cost-sharing levels, ASCS noted a tendency to standardize cost-share levels for certain practices and recommended that flexibility be exercised in setting costosharing levels to fit specific situations. It was also noted that information on practice costs and returns would enable case-by-case setting of cost-share levels. (59) Joint discussions were held between representatives of ASCS's Conservation and Environmental Protection Division and the Soil Conservation Service's (SCS) Land Treatment and Programs Division during the ACP evalua- tion. A need for a common sense approach to improve the cost-effectiveness of ACP was recognized. (13) To begin to meet this need, ASCS internally initi- ated the Variable Cost/Sharing Level Program (VC/SL) on a pilot, experimental basis. (58,76) The crux of the pilot program is to provide greater incen— tives to treat land eroding the fastest and to establish higher cost-share rates when the largest decrease in soil loss is obtained. (14, pg. 2) ASCS determined that the pilot VC/SL Program was showing greater cost effectiveness "...by directly tying the cost-share level to the severity of erosion and to how much soil can be saved," and urged at all levels that the feasibility of implementing the Program be explored. (62, pg. 1) Early in 1984, the ASCS national office encouraged expansion of VC/SL to add 400 addi- tional volunteer counties to the 126 pilot counties. (64) 1.2 OBJECTIVES OF THE VARIABLE COST/SHARE PROGRAM The VC/SL Program strives to achieve the greatest amount of soil saved 'witfla available funding through changes in soil conservation practices. The objectives of the VC/SL Program are: 1. Improve the effectiveness of Agricultural Conservation Program (ACP) practices in conserving soil resources. 2. Improve the cost-effectiveness of the ACP and thereby get more needed conservation accomplished. 3. Improve ASCS's ability to identify and set high priority conservation needs in State and County ACP programs. (58, pg. 75) ASCS's measure of cost-effectiveness is based on the physical measure of tons of soil saved and the fiscal measure of Federal conservation dollars expended for soil conservation practice changes. Using the Universal Soil Loss Equation (79) pre-practice and after-practice erosion rates and the per- cent reduction in soil erosion are calculated. The pre-practice erosion rate and percent reduction in soil erosion are used in "look-up" tables (63) by soil tolerance or T-value (67) to determine the appropriate variable cost/ share level. VC/SL rates vary from 4 percent to a maximum 75 percent. The annual amortized cost of the erosion control practice is set cooperatively by ASCS and SCS. The VC/SL rate is multiplied by the cost of the erosion control practice to derive the Federal cost/share dollar expendi- ture. The after-practice erosion rate is subtracted from the pre-practice erosion rate to derive tons of soil saved. The Federal-cost/share dollar expenditure divided by tons of soil saved is the ASCS measure of cost-effectiveness in dollars expended per ton of soil saved. With higher cost/share rates assigned to soil conservation practices (It mixtures of practices which achieve the greatest soil savings per dollar .spent, the most cost-effective practice or practice mixture should be more ‘likely to be installed by the farmer. That practice or practice mixture wcnxld also generate greater returns or benefits per tax dollar expended and iuqyrove the allocation and efficiency of cost/sharing assistance. (14) 1.3 VC/SL ECONOMIC AND POLICY IMPLICATIONS The VC/SL Program is a positive policy response to the national ACP evaluation. It takes fuller account of the economic aspects of soil erosion control by encouraging conversion to cost-effective conservation practices to benefit individuals and society. While allocation and efficiency of cost— sharing assistance may improve under the Program, many other factors influence a farmer's decision to adopt conservation practices. Income effects, tech- nology, wealth position, managerial ability, personal preferences and ethics, investment objectives, tenure and tax and loan policies are a few of these factors. (3) Two interrelated questions arise regarding the economic performance of the VC/SL Program: 1. How does the Program perform in terms of adoption of conservation practices? 2. Can the performance of the Program be further improved by including factors other than cost-effectiveness? One measure of economic performance which is practical to consider is the income effect, i.e., the change in income or net returns (gross production revenues minus total production costs) which may occur with changes in conser- vation practices. Precedence for consideration of the income effect is well established. The Agriculture and Food Act of 1981 (l), the Soil Conservation Service's 1984 report to research and education agencies and organizations on soil and water conservation (78), and the 1983 American Agricultural Economics Association Task Force on Soil Conservation Policy (11) are three recent exam- ples. The VC/SL Program deals only with the costs of incremental changes in conservation practices and does not consider the overall income effect which mayv result from those changes. Changing conservation practices may entail a. conversion to a significantly different management system for the farmer. Gross revenues may change because of changes in expected cr0p yields and/or changes in crops or rotations in a conversion. Total production costs may change because of changes in fixed and variable inputs (seeding rates, chemical and fertilizer use, machinery equipment and operations, labor requirements, fuels use, and borrowing periods on operating capital). The cost can include changes in tillage method and conservation practice. Partial enterprise budgets are available from a variety of sources and readily adapt- able to analyse the income effect conservation practice changes. While the VC/SL Program purports to improve the cost effectiveness of allocation of funding for soil conservation practices, the performance measure is based on pre practice and post practice erosion rate calculations, i.e. based purely on physical measures. Many studies have recommended that mea- sures of economic performance be included in soil conservation programs and policy. The AAEA Task Force in particular recognizes that a more systematic, holistic approach to evaluating the costs and benefits of soil conservation practice conversions must be undertaken rather than just analyzing erosion rate changes and costs of conservation practices. (11) This research is directed toward emphasizing measures of economic performance in soil conserva- tion programs and policy. 1.4 PURPOSE OF THE RESEARCH Soil erosion is a pervasive national concern that has broad reaching on- site and off-site effects. Since the 1930's, soil conservation policy has been directed toward reducing farmland erosion and maintaining or enhancing the productive capacity of the soil base. Public intervention to promote soil conservation has traditionally come in the form of technical and educational assistance from the Soil Conservation Service and financial assistance from ‘I-IOI'. v... a... A ur_ a ' ..u \ ~55 :- .‘s- 'q. ‘ I \‘n‘ -l the Agricultural Stabilization and Conservation Service, U.S. Department of Agriculture. The soil conservation literature suggests that while many policy efforts to promote farmer adoption of soil conservation practices have proven bene- ficial, a more systematic or holistic approach would be more beneficial. In particular, expanding the economic components of soil conservation policies and programs to more fully complement the physical components, in both the short and long term, has become a high priority research need. The Variable Cost/Share Level Program is one method of public interven- tion in soil resource conservation. It is devised to provide cost-sharing incentives for farmers to voluntarily conserve more soil and, in principle, pass their endowment of soil resources unimpaired or at least less impaired to future generations. The program is one more step toward reaching a social optimum by improving the performance of the Agricultural Conservation Program. The VC/SL Program instrument for cost sharing is purely based on physical measures, a comparison of the erosion rate derived from an existing resource management system with the erosion rate derived from an alternative, less erosive resource manangement system. The program does not consider the impact of changing resource management systems on the farmer's net returns in either the short or long term. In the short term, resource management systems (RMS) conversion can in- clude changes in the machinery complement, chemicals, fertilizers, labor and fuel requirements. These changes combined with changes in expected yield levels have a direct, short term impact on the farmer's net returns and, con- sequently, may impact the farmer's decision to adopt an alternative RMS. The ‘VC/SL program assumes that a comparison of RMS erosion rates will serve as an .adequate, proxy measure of changes in net returns. This assumption is one question which this research will address. Adequacy will be explored for cases where net returns decrease and cost sharing may be an apprOpriate means to encourage soil conservation from private and societal perspectives. Ade- quacy will also be explored for cases where net returns may increase through RMS conversion. In the long term, the VC/SL program does not include any measure of the fragility of soil for application of alternative RMSs. An erosion rate associated with each RMS directly influences the rate at which soil depletion will occur on each soil. The starting erosion phase of a soil and the physical characteristics of soil horizons in the crop rooting zone affect a 3011's productivity. As erosion proceeds over time, productivity changes occur and these productivity changes affect the gross revenues expected by a farmer. Changes in gross revenues in turn affect the expected net returns. Typically, a soil undergoing depletion with a RMS will usually incur a loss of long term productive capacity (yield) and a loss of capital value for the farmland soil which usually is irreversible. To an extent, production inputs other than soil can be substituted to maintain productivity, but these substi- tutions result in additional costs of production which also reduce expected net returns. The loss of farmland capital value associated with soil loss is essentially irreversible because of the extremely slow process of soil building. As with the short term, the VC/SL program assumes that a comparison of RMS erosion rates will serve as an adequate, proxy measure of changes in net returns at any point in time. This research will address the adequacy of this assumption. More specifically, the impact of soil depletion on net returns through time by RMS on fragile soils will be explored. The research will develop a method to compute a level of investment by a farmer in conservation u '44. ,.‘.“ L ' 1 .- ., " practices which would leave the farmer no worse off, i.e., a breakeven analysis of soil conservation by RMS and soils which considers soil depletion. If an economic measure of soil depletion were considered as a component of a variable rate cost-sharing level determination, RMS conversions by producers may be quite different from the conversions under the VC/SL Program's cost- sharing incentive. 1.5 RESEARCH OBJECTIVES The purpose of this research is to selectively explore the relationship between the VC/SL Program cost-sharing rates and the changes in income (pri- vate net returns to cash grain farming) which result from changing resource management systems. The research will attempt to formulate a procedure for incorporating economic criteria in a variable rate cost-sharing format. The intent is to provide a means to achieve more conservation of soil resources by more efficiently and equitably allocating soil conservation funds. Incorpo- rating the effects of soil depletion on long-term productivity will also be an integral part of the research. The specific objectives of the study are: 0 Determine VC/SL program cost-sharing rates for RMS conversions. 0 Determine net return changes for RMS conversions. 0 Establish criteria for selection of fragile soils and determine the economic and depletion effects for those soils. 0 Compare VC/SL cost-sharing rates with net return changes and with economic and depletion effects for non-fragile and fragile soils, respectively. 0 Develop an alternative variable rate cost-sharing arrangement which incorporates economic criteria. 0 Recommend an alternative cost sharing arrangement and discuss its policy implications. 0 Suggest policy applications of the research and further research needs, as appropriate. 10 1.6 ORGANIZATION OF THE DISSERTATION Chapter 1 is the problem statement with discussions of the background and origin of ASCS's Variable Cost/Share Level (VC/SL) Program, the objectives and economic and policy implications of VC/SL, the purpose of the research, and the research study area. In Chapter 2, the conceptual framework for analyzing the economics of soil conservation is developed. It focuses on justification for public (policy) intervention in soil conservation and the economics of private choice, economic methods including present value and capitalization theory, and a policy and programs format for analyses. Chapter 3 describes the research procedures and methodology used to integrate long and short-term economic measures in the analysis of soil conservation practice conversions by resource management systems. In Chapter 4, research results are presented and interpreted and the policy implications of the results are discussed. Chapter 5 summarizes the interpretations and policy implications of the results and a method for integrating economic criteria in a variable rate cost-sharing arrangement is presented and evaluated. Chapter 6 presents a broad summary and conclusions drawn from the research, a discussion of limitations of the research, and suggestions for further research. 1.7 DESCRIPTION OF THE STUDY AREA As a result of the erosivity of the soils and the intensity of cropland utilization, the Soil and Water Resource Conservation Act 1980 Appraisal found that the Jackson Purchase Area (JPA) had one of the highest composite erosion rates in the nation. (70) Consequently, the JPA became one of the designated resource problem areas for targeting additional technical and financial assis- tance. (69) ASCS expenditures under the targeting program totaled approxi- mately $490,000 in fiscal year 1982 and $275,000 in fiscal year 1983 for the Purchase Area. (55) ’\ 11_ When the work plan for the USDA cooperative, statewide Kentucky Special Resources Study by Major Land Resources Area, was developed, the Soil Conservation Service and Economic Research Service decided to intensify the economic and soil conservation research components for the Jackson Purchase Area, Major Land Resource Area 134. (65) The intent of the intensified research was to utilize an on-going USDA study to begin to identify, assess and analyze in detail the reasons for the high composite erosion rate and to develop economic and soil conservation alternatives to reduce the severity of the erosion problem. Much of the data, information and analyses resulting from the Kentucky Special Resources Study for the JPA were used for this research effort. The JPA encompasses the eight western most counties in Kentucky. The area is bounded by the Ohio River to the north, the Mississippi River to the west, Tennessee on the south and man-made Kentucky Lake and Lake Barkley to the east. JPA is also the Kentucky state-part of USDA's Major Land Resource Area (MLRA) 134, the Southern Mississippi Valley Silty Uplands. The MLRA is used by USDA for statewide and regional agricultural planning. The Purchase Area maintains nearly one million acres of land-in-farms over a total surface area of 1.6 million acres. In 1978, nearly 80 percent (793,000 acres) of the land-in-farms was cropland and nearly 80 percent of cropland (629,000 acres) was harvested. (81) 1981 data shows the predominant crOp use of the land to be soybeans (491,000 acres), corn for grain (155,000 acres) and winter wheat (176,000 acres). (68) Approximately 45 percent of soybean acres are double cropped and winter wheat:is almost exclusively the crop of choice. Tillage surveys indicate that soybean production is split roughly with 42 percent in no-till, 42 percent in conventional tillage and 16 percent in minimum (conservation) tillage. Corn 1’) for grain in the JPA is not generally double cropped (1-2 percent). Corn production in 1981 was split 62 percent in conventional tillage and 19 percent in each of conservation and no-till tillages. In 1983, largely as a result of the PIK program, the tillage distribution shifted dramatically to 37 percent conventional, 30 percent conservation and 33 percent no-till. (31) In short, the Jackson Purchase Area is an intensively cropped area of Kentucky that, in 1978, contributed $84 million in market value to Kentucky's $449 million market value of crops, exclusive of tobacco. Most of the soils in the Purchase Area were formed from wind deposited material and are extremely erosive due to their loose unconsolidated nature and their low clay content. Sixty percent of cropland in production was reported to be eroding at rates greater than the soil tolerance "T" level. (74) CHAPTER 2 -- ECONOMICS AND SOIL CONSERVATION 2.1. INTRODUCTION Conversion from one resource management system (RMS)1 to another has physical and economic dimensions which affect soil conservation policy. For soil conservation policy to be effective, incentives for RMS conversion must be structured to be economically rational and directed to achieve soil conser- vation goals for individuals (farmers) and for society. For development and implementation of Federal soil conservation policy, the Secretary of Agriculture has the authority to contract to provide techni- cal and financial assistance for owners or operators of farms, ranches or other lands to make voluntary changes in their cropping system which are needed to conserve or protect the soil, water and land related resources. The Secretary will share those costs of carrying out conservation practices and measures which are determined necessary and appropriate to effect implementa- tion and maintenance. Primary responsibility for cost-sharing financial assistance is vested with USDA's Agricultural Stabilization and Conservation Service (ASCS) in the Agricultural Conservation Program (ACP). ASCS established the Variable Cost/Share Level Program (VC/SL) to improve the cost—effectiveness of cost-sharing financial assistance through voluntary RMS changes. From the Federal or societal perspective, the VC/SL Program's intent is to cost-share more for RMS conversions which save more soil, which is an economically rational policy for achieving ACP soil conservation goals. From the individual or farmer's perspective, VC/SL may or may not consti- tute sufficient and/or rational incentives for adoption of a more soil 1A resource management system is defined as a crops in a rotation with a specified tillage method and conservation practice on a specified soil or soil group. 13 ”I. l4 conserving RMS. While it is true that greater cost-sharing financial assistance will be made available for RMS conversions which save more soil, the VC/SL Program considers only the cost of the practice or practices and pre and post practice erosion rates. Farmers or farm operators recognize that RMS conversions affect many other factors which in turn influence their management decisions. Two major managerial problems are involved in the conservation and wise use of soil resources. Operators must show care in selecting and timing their production practices so as to secure the maximum practicable return. They also must show comparable care in choosing and timing the conservation investments and practices they use to build up and maintain the productivity of their soils. (2) Gross revenues may change with RMS conversion and/or with long-term pro- ductivity loss attributable to soil erosion. Costs of production may change with RMS conversion for factors other than conservation practices, e.g. machinery purchases, variable inputs and use of inputs, labor requirements, and fuel consumption. In order to develop and evaluate the economic and soil conservation policy and program implications of including measures of economic performance in a variable rate cost sharing arrangement, several aspects of economic theory are necessary. The remainder of this chapter will discuss public intervention in soil conservation and the economics of private choice, eco- nomic methods (partial enterprise budgeting and capitalization and present value theory), and a policy and program format for analyses. 2.2 PUBLIC INTERVENTION IN SOIL CONSERVATION ZIn neo-classical micro-economic theory, the traditional logic behind the rationale for public intervention in soil conservation has been based on the 15 concept of a market failure, a divergence between the way individuals and society value resources. (11,12,38) In selecting and timing soil conservation practices and investments, Crosson et. al. suggest that two types of market failure may occur in the managerial decision-making process. (11) First, market signals to invest may be masked or blocked from the farmer, resulting in underestimating the marginal present value of land in agricultural production. Four typical rea- sons discussed by Crosson et. al. are summarized below. (11, Chapter 1) 1. In the short term, the long-term productivity effect may not be detected by farmers. If so, the value of land in agricultural pro- duction would be underestimated and the future supply of land for production would be overestimated. 2. If the market underestimates future demands for production, future commodity prices will also be underestimated. Since future commodity prices are a reflection of the value of land in production, the value of land in production would be underestimated. 3. If the market overestimates the long-term discount rate used to calculate the present value of returns to land, land value and the value of land in production will be underestimated. 4. If the rate of development and implementation of land substituting technologies is overestimated by the market, the future supply of land for agricultural production would be overestimated. Overesti- mating the future supply of land would underestimate the value of land in production. In the second type of market failure, appropriate market signals to invest may reach the farmer but be inhibited by institutional constraints. Crosson et. a1. cite tenancy arrangements as a prime example of an institu- tional constraint. Since leases are typically short-term, tenants allegedly have no assurance that they will receive long-term benefits of erosion con- trol. A result is that investment in soil conservation may be less than that which would be socially optimal. ‘Both masked or inhibited market signals to invest in soil erosion control indicate that the value of the soil or land resource in agricultural 16 production is underestimated or understated by the farmer. However, the argument that underestimating the value of the soil resource leads to an underinvestment in soil conservation requires the assumption that those who intervene are more able to project or foresee long-term market effects on agricultural land values than are farmers. Crosson et. al. found this argu- ment not compelling. The compelling argument for public intervention in soil conservation seems to rest with the concept of intergenerational equity, the ethical pre- cept which has driven soil conservation for decades. Intergenerational equity defines each generation as the temporary steward or custodian of natural resources and calls for each generation to manage their endowment of resources in a way which would pass that endowment unimpaired to subsequent generations. For soil conservation this is an obligation to manage soil resources such that productivity remains intact from generation to generation. (12) The intergenerational equity argument is based on equitable distribution of income between present and future generations. It does not rely on a case for or against market failure. The logic supporting the intergenerational equity concept can be demonstrated using hypothesis testing from statistical inference. (6,25) The null hypothesis would state that soil conservation from the standpoint of intergenerational equity provides a more "equitable" dis- tribution of income between present and future generations.1 The consequences of rejecting this hypothesis when it is true constitutes Type I error, which is conventionally controlled to very low levels. With the unique nature of soils as a biological resource with both fund and flow characteristics, allow- ing soils to erode and deplete at erosion rates greater than the soil 1'I'he notion of "equitable" in this context means distributing the produc- tive potential of cropland soils unimpaired to future generations. l7 uflerance or 'T" level1 can have devastating permanent/irreversible long-term efihcts on our nation's agricultural productive capacity. Given conditions of tmcertainty about the present and foreseeable future, the social consequences <fi underinvesting in soil conservation seem to far outweigh the social conse- quences of overinvesting. (38) Off-site benefits, especially related to water quality, may play a very important and complex role in evaluating the social risk or consequences of too much or too little soil conservation. (7) Continuing research to estab- lish methods to measure and value off-site benefits will eventually provide additional means for evaluating the social consequences of soil conservation policy. Until such methods are readily applicable and defensible, the social benefits of soil conservation may consistently be underestimated. If so,.then a risk averse society would certainly favor the concept of intergenerational equity. Uncertainty about present and future conditions as well as uncertain- ty about the methods of measurement and accounting of benefits and costs for evaluating off-site benefits would contribute to favoring too much rather than too little soil conservation. On balance, the possibility of overestimating the social benefits and underestimating the social costs of too much soil conservation may lead to overinvestment in or too much erosion control. Overallocation of exhaustible resources for erosion control simply means that some other concern in the social accounts is being underallocated and that some form of social dis- equilibria would likely result. In pursuit of integenerational equity, this research concentrates on resource management system conversions which result in erosion rates which are ]“the T value is defined by the Soil Conservation Service, 0.8. Department Of Agriculture as the maximum rate of annual soil erosion that will permit a high level of crop productivity to be obtained economically and indefinitely. ... r . i ~vae. 1 I 1. .- he .C ' l ‘- : as .... .. ‘CE‘ ‘ I. \‘I ' ‘ - 't... 'v: 9.. ‘- ‘v \ I g: ‘1 A! 18 ator below a soils' 'T' value. By doing so, the farmer operator, at least in terms of the Soil Conservation Services' definition, will satisfy the steward- ship role of integenerational equity by passing their endowment of soil resources unimpaired to subsequent generations. 2.3 ECONOMICS AND PRIVATE CHOICE The decision by a profit maximizing producer to convert from one resource management system to another to achieve soil conservation objectives has many economic dimensions. The economic dimensions are interlinked with personal, managerial, resource and policy factors within which private choice takes place. (3) The profit maximizing producer is assumed to be economically rational when choosing a less erosive management system, i.e. the producer will choose a management system which (24) achieves the desired conservation objective, i.e. erodes at or below a soils' tolerance or 'T' level and (10) improves the net returns position, i.e. results in a larger margin between total revenues and total costs of production, including the costs of conserva- tion practices, when short and long-term economic impacts are considered. The remainder of this section will be directed toward discussions of the relevant economic dimensions in the private choice of a less erosive resource management system where the producer is assumed to be a profit maximizer. Personal, managerial, resource and policy factors are presented. Personal Factors Many personal factors may be involved in the private decision to convert to less erosive resource management systems. These may include personal preference, tradition, ethics, sense of community, pride, etc. The economic dimensions of personal factors may or may not be consistent with profit maximization. For example, some farmers find that allowing farmland to erode l9 excessively is ethically unacceptable and, regardless of the costs imparted or the benefits forgone, they will implement soil conservation practices or land use changes to establish erosion control. A strong ethical commitment to soil conservation could result in adaption of a less profitable resource management system with the farmer bearing the extra costs of erosion control. In such an example, the farmer feels better off by absorbing extra costs while satisfying an ethical principle and could be considered a utility maximizer. In this research, the assumption of profit maximization overrides person- al factors and the farmer always seeks to convert to a more profitable resource management system. While this may not be wholly representative of the decision making process, it reflects a necessary restriction on the scope of this research and allows short and long-term analysis of more readily mea- surable changes in costs and revenues from agricultural production when con- servation management systems are converted. Managerial Factors There are many management factors which may influence the private choice of resource management systems. For this research, the farmers are assumed to be fully knowledgeable of their farming system, from the resource base within which agricultural production takes place to the markets for produced commodi- ties. Farmers are further assumed to be capable of and willing to convert to less erosive resource management systems when it can be demonstrated that a conversion would be beneficial. In the context of this research, a beneficial conversion fulfills the stewardship role inherent in the concept of inter- generational equity and results in increased profits. Sixme agricultural production takes place on soils, the farm manager must first:'be cognizant of the soil resource base. The physical and managerial characteristics of the soils must be known. Physical characteristics such as "w; a. "a... ., ”up. u“: u," u an. ..‘ < 7:... w. “1‘ . \ \ u .4; .." a. . I ‘0 \x n 20 mmdibility, slope and slope length affect the erosion rate and the inherent productivity of soil horizons in the crop rooting zone affect short and long-term expected potential yields. These physical factors are considered exogenous to the farmers control. Substitution of variable inputs like fertilizer to compensate for productivity loss due to erosion or land altering activities (other than terracing) such as leveling are not considered. The managerial factors endogenous to the farmer's control involve the selection of a resource management system, i.e. the crops to be produced in a specified rotational sequence and the tillage method and soil conservation practices to be used. Private choice of the resource management system can affect both erosion rates and expected profit. Choice of the tillage method (conventional, conservation or no till) establishes the amount of crap residue left on the soil surface which is an integral part of erosion rate calcula- tions using the Universal Soil Loss Equation.1 Choice of the soil conserva- tion practice (up and down plowing, contour plowing, contour stripcropping or parallel terracing) for erosive soils establishes a topographic field prepara- tion and planting plan which is also an integral part of erosion rate calcu- lations using the Universal Soil Loss Equation. Expected profits are a function of the resource management system choice. Each tillage method requires a different production system with different sets of machinery and inputs to achieve specified yields on specified soils. Then, each tillage method on each soil incurs a different cost of production. Some tillage methods may also result either in higher or lower expected yields than others, as supported by research. The combination of different costs of production and different expected yield levels by soil results in different levels of expected profit by tillage method. 1The amount of residue is also a function of yield. 21 Implementation of soil conservation practices also incurs costs and benefits. With up and down plowing as the "costless" benchmark, each conservation practice requires an annual establishment, operation and maintenance cost to account for its planning and execution. Contour plowing and contour stripcrOpping require an annual cost by crOp in rotation for operation and maintenance. Parallel terracing and drainage practices require an annual amortized cost for establishment, operation and maintenance for the life of the practice. For soil conservation practices other than drainage, the benefits are derived from sustained productivity through erosion control. For drainage practices, benefits are derived from research supported yield response (improvement) by soil. In considering conversion to a less erosive resource management system, the profit maximizing farm manager must consider the balance of all benefits and costs in the long and short-term. The benefits and costs are a function of the soils on which production will take place and the manager's ability to successfully implement a particular system of management. In this research it is assumed that a manager is capable of successfully implementing any resource management system alternative. The manager will choose a conversion alterna- tive which increases profit, i.e. an alternative for which net returns (gross revenues minus total costs) increase relative to the current management sys- tem. It is noted that many other managerial factors may influence private choice of an alternative resource management system. Other factors may in- clude wealth position, planning horizon, tenure, education, access to informa- tion, etc. While each of these may be a bona fide factor in the private Choice, they are not explicitly considered in this research. The farmer- manager is assumed to be capable and willing and the decision rests with the relative profitability of the resource management systems in production. 5. 'D ~-.! (4| b ‘. W. I... .4, ‘- Resource Factors The general resource factors which contribute to private choice of a resource management system are land, labor, capital and management. This research treats land as a given resource, i.e. the soil resource base is known and understood, in terms of inherent productivity and long and short- term response to management. Farm labor is assumed to be available, either farmer-operator or hired, in an amount sufficient to satisfy the seasonal requirements of alternative resource management systems for an implied farm size. Capital is also assumed to be available through credit for specified borrowing periods. The managerial resource requirements are outlined in the previous section. Policy Factors Public intervention in soil conservation comes in the form of a variety of policies and programs offered by various levels of government. Policies and programs offer a multitude of strategies for effecting soil conservation. Batie states that encouraging or requiring adoption of low cost conservation practices is one strategy which has considerable potential for cost-effective reduction of erosion problems. (3) Encouraging adoption of low cost con- servation practices may be undertaken through educational, technical and financial assistance. The major, responsible Federal agencies are the Soil Conservation Service (SCS) for educational and technical assistance and the Agricultural Stabilization and Conservation Service (ASCS) for financial assistance. I It is the financial assistance offered by ASCS for voluntary conversions to low cost soil conservation practices under the Variable Cost/Share Level Pr°8ranl that is the research target. The variable rate concept for assigning cost sharing rates is intuitively appealing. In practice, with the variable =35 base: s-ue .. .‘ '\ ~nu.s~ .‘ 1 "5 ‘2‘ N .‘ he: 3-... y. -.‘ul m! u... Q‘s . 1 HI“ “I..__ ‘I‘ l ‘ . ~. .5. ”9| . "u 1‘ E. .‘a ‘ s, ‘ " ‘.:V I "I. 23 rates based purely upon physical measures of pre and post erosion rates for a resource management system conversion, the performance of the Program may be less appealing. Although greater financial assistance may be assigned to management system conversions which achieve greater reductions in gross ero- sion, the Program ignores economic principles which are fundamental to the manager, namely the short and long-term costs and revenues of production. This research is not directed to analyzing the Variable Cost/Share Level Program's performance relative to regular cost sharing. It is directed to analyze the relationship among the Program's cost-share rate assignment and amount, the change in short-term net returns which may occur with resource management system conversion, and the economic impact of long-term productiv- ity change (loss) attributable to excessive erosion. Following the analyses, the intent is to use the variable rate concept embodied in the Variable Cost/ Share Level Program to develop a method which integrates economic criteria in the rate assignment. The objective is to devise a method to improve assign- ment and eligibility in financial assistance for encouraging voluntary low cost soil conservation practice conversions. In a broad sense, devising an improved method would enhance the information base used by the farmer/decision maker to make private choice. 2.4 PUBLIC INTERVENTION AND PRIVATE CHOICE Welfare economics and the theory of economic policy can be used to demon- strate the linkage between public intervention and private choice. (23) As a by-product of agricultural production, soil erosion can be thought of as an externality which (a) arises from the farmer-producer's management decision- making process and (b) affects other parties opportunities or preferences. To examine the private choice of output and erosion levels by a profit maximizing farmer, let C(e,y:x1) represent the cost function for producing output level y and erosion level e with all other input variables x1, [Q L\ including market prices, constant. The total cost curve is shown in Figure 1a. At very low levels of erosion, total costs are high due to relatively costly conservation measures. As conservation measures are relaxed and ero- sion rates increase, total production costs initially decrease reaching a minimum at erosion rate e° in producing output level y°. As erosion rates increase beyond e°, the total production costs increase as soil productivity begins to decrease. Given the costs of producing a saleable product at output price p, farm profit (n) is: 1' - py - C(enmq) Figure la - Total Cost Curve by Erosion Rate C(e,y°:x.) _ 1 I I I o e Erosion Rate Figure lb - Marginal Cost of Erosion (MCe) and Marginal Returns (MDe) an Erosion Damage Reduction Subsidy Erosion Rate I ‘i \‘ qoqli. ‘ a saint . . 1‘ Bl. . A“ ‘.-.S\ J ‘ 9 1 ‘ “ my: "IO. ate ‘ 'a use " . l l :I. .‘ ‘0- l ‘P U ‘3’: ' ‘~£ Isa " raw 4 ." ‘1‘.._ I“‘ A ‘73“ ‘1 a. '3 \. u.‘ 4| 1‘ b. H x ,M 25 The profit maximizing levels y° and e° satisfy the first order conditions: p - MC 0 y - -MCe - 0 The first order conditions show the marginal cost of producing y° equals the product price p and the marginal cost of erosion equals zero. As illustrated in Figure la, the profit maximizing farmer chooses erosion rate e° which minimizes the perceived total production costs in producing y°. In Figure 1b, erosion rate e° represents the point at which -MCe equals zero. The profit maximizing choice by the farmer may be imperfect in two dimen- sions. First, the farmer's decision may have been based on poor or partial information on the true production costs of soil erosion. For example, the total cost function may have been derived without knowing of lesser cost op- tions for producing output level y°. More accurate and/or complete informa- tion may shift both the location and shape of the total cost curve and result in a shift of perceived marginal costs to -MCe*. As shown in Figure lb, the profit maximizing farmer would choose erosion rate e* where -MCe* equals zero. Second, the farmer's private choice may ignore or not include off-site damages caused by soil erosion. Typical off-site damages are sediment delivery and chemical runoff which degrade water quality for purposes such as fisheries, recreation and consumption. If off-site damages were known, a subsidy could be offered to the farmer to shift the profit maximizing level of erosion to a Pareto-efficient level.1 To illustrate the subsidy payment approach, let a damage function D(e) be an increasing function of erosion rate e such that the farmer earns a return D(e°)-D(e) by reducing erosion from e° to e. Farm profits become: n a py - C(e,y:x1) + D(e°) - D(e) 1Pareto efficiency is a condition where production, trade and consumption are all organized in a total system or global context such that any additional gains to individuals must come at the expense of other individuals. *! 26 The first order conditions for profit maximization are: p - MCy a 0 -MDe - nce = 0 That is, the marginal cost of producing y° equals the product price p and the marginal return for damage reduction MDe equals the (negative) marginal cost of erosion. Figure 1b illustrates MDe. Assuming that the farmer's perceived marginal cost curve is -MCe*, the marginal cost curve derived with more accurate and/or complete information, the farmer now chooses to produce output level y° at the Pareto-efficient erosion rate e' where MDe - -MCe*. Public action in soil conservation comes in two general forms. First, educational and technical assistance may be provided to improve the farmer's decision making information base. Provision of information in effect is a subsidy which may shift the farmer's marginal cost curve from -MCe to -MCe*. This research effort is directed to this first form of public action. Short and long-term economic analyses of an exhaustive set of management system Options are developed to provide farmers with an improved information base for (on-site) private choice. The second form of public action is financial assistance. It is assumed that farmers exercising private choice may be unwilling to bear some or any costs of implementing soil conservation practices or off-site costs. This research focuses on provision of cost sharing assistance under the Variable Cost/Share Level Program. Program cost sharing is provided as an economic incentive to farmers to voluntarily demonstrate the feasibility of less costly and less erosive options on their farmland soils. The less costly and less erosive Options evolve from provision of improved information for on-site decision making base. A subsidy payment to reduce or arrest off-site erosion induced damages has been discussed as a possible form of financial assistance to achieve a 27 Pareto-efficient level of erosion. Although off-site damage is not a topic for this research, it is the topic of many current research efforts which attempt to measure the marginal benefit to society of erosion reduction. 2.5 ECONOMIC METHODS To analyze the short and long-term economic impacts of resource manage- ment system conversions by soil resource group, economic methods are neces- sary. Partial budgeting and present value and capitalization theory are the methods employed. The remainder of this section presents each method and the reasons for their use. Partial Budgeting The underlying assumption in the partial budgeting process is that the Purchase Area cash grain producer is a profit maximizer attempting operating in Stage 2 of production for any RMS in a SRG. The partial budgets simulate this stage of production through a series of variable input functions which each exhibit diminishing returns to equal successive increments of the variable inputs. The major data and information sources were (a) field interviews with Soil Conservation Service (SCS) and Extension Service personnel and with farm- ers in the Purchase Area, (b) extensive work with an economist, resource con- servationist and agronomist from SCS's State Office (c) University of Kentucky Extension Service guidelines for fertilizer and chemical applications, (d) consultation with elevator operators and equipment dealers, (e) the Federal Enterprise Data System (f) Economic Research Service's current normalized prices and (g) numerable comparisons with partial budgeting systems developed by universities in the states surrounding Kentucky. 28 The budget information was assembled by a preplanting-planting- postplanting-harvest sequence of activities. Individual budgets by crop in a specified rotation were assembled into the following general format: 1. Variable inputs (seed, chemicals, fertilizers, lime) 2. Field operations (per hour costs for machinery use which include fixed costs over machine life plus variable charges for taxes, insur- ance, repairs, lubrication) 3. Charges for custom work (e.g. bulk spreading of fertilizer) 4. Hauling and drying charges (movement of grain from farm to elevator) 5. Labor cost (per hour labor cost times the hours of machine use) 6. Management charges (a specified percentage of total production costs) The budgets are adapted to soils by yields and machinery adjustment factors. Yields by RMS and SRG are determined by the Kentucky SCS State Office agronomist, resource conservationist and economist. The yields vary by SRG, erosion phase, management type and tillage. The machinery adjustment factor (MAP) is an efficiency/speed modifier which SCS also develops. The MAF essentially indexes the ease/difficulty of machinery operations to the SRGs so that, for-example, the field operations for an RMS on a clayey soil would take longer than on a silt loam. The budgets are executed on a per acre basis with the primary outputs being total revenues, total costs and net returns. ApprOpriate interest rates and loan periods are applied to borrowed capital. If an RMS includes a tillage practice which incurs a separable cost to the farmer, it is noted and included in computation of total costs. The base partial budgets by crop and tillage method are provided in Appendix 3. Although not explicitly separated, fixed and variable costs for each partial budget are included. Comparisons of net returns among RMS's in each SRG (total revenue minus total cost) offers one way to begin to investigate the use of economic ....-t 1:, 29 criteria for determining rates of cost-sharing for conservation practices and suggesting alternative policies for more efficient expenditure of Federal dollars for soil conservation in the short run. Present Value and Capitalization Theory Present value theory or discounting provides one method to bring a stream of expected future net returns back to a present measure for evaluation and analysis. (4,22,40) The basic formula for computing present value of future net returns (revenues minus costs) 18: 1'! PV . 2 NR: t-l (1+r)c PV I present value of the stream of net returns from time period 1 to time period n NRt - net returns in time period t r a discount rate t - time period ranging l...n The discount rate (r) is the instrument used to weight the contribution of future net benefits to the present. The choice of the discount rate is a strategic matter which affects the consequences of conservation decisions. (2) The decision between present and future use of the soil resource is like- ly to be different from individual and societal perspectives. Individuals use a twide range of discount rates, depending on numerous factors such as imperfect competition and knowledge, institutional settings, individual goals, etc. As the discount rate (individual rate of time preference) varies, so does the producer's willingness to engage in conservation practices. Lower discount rates weigh the present value of future benefits more heavily and, in a relative sense, can serve to encourage investment in conservation. Higher discount rates may discourage investment in conservation because the present 30 wmlue of a stream of benefits will be lower. The individual producer decides lmsed on his/her individual rate of time preference and planning horizon :flwther disinvestment, maintenance or investment in soil conservation is war- ranted, i.e. economic or uneconomic. Conservation (capital maintenance) is essentially an equalibrum concept and is economic for the individual when further investment or disinvestment is uneconomic. At this point marginal returns from investment equal marginal costs, and marginal returns from disinvestment equal the value of the resource used up. (8, pg. 10) From a societal perspective, conservation of soil resources is an ethical issue grounded in the concept of intergenerational equity. Maintaining or improving the productive capacity of soils by social investment in conserva- tion ordinarily involves both a longer planning horizon and lower discount rates. The effect is to place a higher present value of benefits on soil con- servation practices by discounting future benefits less over a longer time period. As alluded to previously, this argument acknowledges the role and consequences of risk in engaging too little conservation. Maintaining or improving productive capacity shifts the potential use of the soil resource into the future and delays or prevents situations where a farmer might invest in substitutes for soil currently and end up worse-off in the long run. The income-capitalization approach is one method used to derive a market value of land in terms of the present worth of all future incomes. (2) A capitalization rate is used to convert the stream of expected future net returns from land into a current or present market value using the formula: m PV - 2 NR: t-l W PV - present market value of expected future returns NR: - expected net returns in year t r - capitalization rate 31 In the special case where expected net returns are constant, the formula Rn present market value reduces to: ER. PV=r With net returns by RMS computed in the partial budgeting process, the choice of the capitalization rate is the same issue as the choice of a dis- count rate. For this research, the capitalization rate and the discount rate are cons idered equal . Applying Present Value and Capitalization Theory Present value and capitalization theory can be used to derive an economic measure of benefits which a farmer can begin to capture now by controlling soil erosion to a rate less than or equal to a soil's 'T' value. Meeting this soil erosion control objective would arrest any potential long-term produc- tivity loss and yield levels would be sustained in perpetuity. With yield levels sustained in perpetuity and the costs of production and prices assumed constant, net returns to production would be maintained at the current level in perpetuity with conversion to an erosion controlling resource management system. The present value of the sum of net returns with conversion is as follows: PVF/ - 2 NRt-l . NRtal t-l (1+r)c r where PV"/ - present value of net returns with conversion now to a soil erosion controlIing resource management system NRtal current (t a 1) expected net return level r - discount/capitalization rate t a time period 1, 2...co 32 To determine the present value of net returns without conversion to an enmion controlling resource management system, the same basic formula is used: G PvW/O a E NRt t-l (1+r)c where PVw/° - present value of net returns without conversion to a soil erosion controlling resource management system NRt - expected net return level for year t for the pre-conversion, resource management system which does not control soil erosion r = discount/capitalization rate t - time period 1, 2...on Without a soil erosion controlling resource management system, expected net return levels may change (decline) each successive year as soil depletion occurs and long-term productivity decreases for that management system on a specified soil. To approximate PV"/°, a 25 year depletion period is assumed. During the depletion period, net returns decrease as erosion-induced, long-term produc- tivity decreases. The expected net return value for the 25th year is assumed to remain constant from the 25th year into the indefinite future. APV"/°, the approximation for PV"/°, becomes: 24 “ Apv"/° . z NRt + 2 NRt=25 t-l (I+r)c t=25 (l+r)t This simplifies to: 24 APV"/° . 2 NR: + NRt-zs t3]. (1+1')E 1:(H»r)25 33 The economic measure of benefits (RMS Benefits) which a farmer can begin to capture now by controlling soil erosion is: RMS Benefits a PVW/ - APVw/° 24 NRtal - ' 2 NR: - NRt=25 r t=l (1+r)E r(l-+r)23 RMS Benefits is the present value of net returns with conversion now to a soil erosion controlling resource management system minus the (approximate) present value of net returns without the conversion. Figure 2 depicts expected net returns time streams for PV"/, PVV/o, and APV"’/o calculations. RMS Benefits is the present value of the difference between the NRw/ and the ANRw/° curves or the cross-hatched area in Figure 2. Beyond time period 25, the (approxima- tion) ANRw/° curve overestimates the (projected) NR"/° curve. The overesti- mate is small and when these small overestimates are discounted to present value, the difference is negligible. RMS Benefits can be annualized to derive the maximum agricultural expenditure for conservation practices (MAECP). MAECP is the annual amount of money a farmer could begin to invest in soil conservation now and continue Figure 2 - Example Net Returns Time Stream for Ple, Pv“/° and APVw/O Calculations. NR'” Expected ' / /// / Net 1 mi:?' 1-‘2III4i\\\\"\xc“\\\\\‘///i:::::;/:/ ::::: I ANR"° ./ I“-~“‘?nr—————— NR C .1 l V 25 Time Period (t) ‘4. ,f‘! . I, 34 each year in perpetuity to exactly capture RMS Benefits. MAECP is calculated using present value theory as follows: w E MAECP a RMS Benefits t-l ”+5" then, E5193 - RMS Benefits r and MAECP = (RMS Benefits)(r) Stated in different terms, the MAECP annuity represents the annual expen- diture a farmer could make to avert potential loss in productivity. The eXpenditure would be directed to a resource management system conversion which would result in an erosion rate equal to or less than a soils' o'T' value. "ABC? is instrumental in calculating the economics of soil depletion using the Soil Depletion Estimates model. (Chapter 3) 2.6 POLICY AND PROGRAMS Interdependence and complexity of the social and economic structure of agriculture have led to more and more intervention by government to alter and Presumably improve the performance of the agricultural sector. In the context of this research, improved performance of the agricultural sector can be ducer. In this case, policy must address not only the decrease in net income from changing to a nonexploitative soil conservation system but also the effect of exploitation (soil depletion) on the capital value of the land used for production. The question of whether or not conservation practices are economic when capital losses are considered leads to strikingly different P‘Pluicy implications. For example, if soil conservation with capital losses aPl>ears to be uneconomic and this is a relevant concern of the political pt'Ottess, land use reform or legislative intervention may be necessary to athieve societal goals. The third case, in Brunce's words, is as follows: In formulating conservation policies...resources should be directed first of all to those areas where conservation 37 would be uneconomic to the individual at current-market prices. If this policy is not followed, the resources might be used in areas where conservation would be economic at current rates. ...the policy assumes a continuous education process and anticipates the adaption of conservation in those areas where it is economic at current prices. Just as we have made reconnaissance erosion survey maps for each state, so should we make a reconnaissance survey of the economic feasibility of conservation. (8, pg. 164) Bunce's argument in the third case is one of allocation. Basically, he argues that conservation funds should first be directed to areas where it is not economic to the individual but is for society, the whole of Objective 2. Objective 3: To achieve conservation where it is not economic for the individual but desired by society to achieve "intangible" ends. This Objective was labeled by Bunce in the 1940's as "... one of the most widely Published ends of conservation....lt ignores all problems of measurement by Inaking conservation an ethical concept." (8, pp. 167-168) Whether conserva- tion is economic for the individual or for society, the ethical concept (Hintergenerational equity) argument supports social action. For social policy fbrmulation and implementation, the basic problem is how far should social 1titervention impose upon the individual producer to reach intangible social ends and where should the intervention take place. Although this research is not directed toward Objective 3, it may be fOund that the exercise of cost-sharing conservation policies may offer little ‘DCIte than a facade. Expenditure of conservation funding which provides no real benefit to either the individual or society may simply parade the ethical C Oncept of conserva tion . Objective 4: To use the means best suited to attaining the three previ- °u4¥ Objectives when complementary or conflicting relationships to other ends 38 are considered. Appropriate means for achieving conservation require not only a fundamental knowledge of the causal factors involved but also that the state, national or other programs involved be flexible enough to allow a vari- ety of means to be used, dependent upon the situation. Bunce's Objective 4 is very eclectic. It calls for using the best means possible to achieve conservation. Fundamentally, this is what this research project is directed toward, i.e. first, looking at what the VC/SL program does and second, looking for other and better means. It is an issue of adequacy, perhaps better stated as efficiency and effectiveness. Although this research focuses on an eight county area in Kentucky, methods, measures and ideas which evolve from the research may have far more reaching implica- tions. A national program providing incentives for adoption of soil conservation is at hand. In 1982, ASCS's Agricultural Conservation Program paid out $157 million for cost sharing. (53) A better way to allocate the cost sharing dollars would certainly improve the efficiency and effectiveness <>f the national program through reformulation of soil conservation policy. Bunce's framework for investigating the policy implications of investing it: soil conservation is as relevant today as it was forty years ago. He leacked only the data base and the analytical enhancement that computer technology has brought to manage and analyze that data base. Lessons from the 15930s and 1940s when soil conservation came to the forefront of public atten- thion have been and are being rekindled in the 1970s and 1980s. v . 1. v- one. I no... A "reJ-q' . n. . M ‘u-.,vI " he. g. ‘- CHAPTER 3 -- RESEARCH PROCEDURES 3.1. INTRODUCTION The purpose of this research is to evaluate the policy implications of including measurements of economic performance in the Variable Cost/Share Level Program (VC/SL). The broad goal is to look for more economically rational ways to allocate conservation funding, both among the technical, edu- cational and financial types of assistance and within each type of assistance. For this research, an economically rational way to allocate conservation funding would (1) satisfy soil conservation erosion-control objectives, (2) maintain or improve the farmer-participants' net return/wealth position, and (3) provide financial assistance for soil conservation practices which can maintain or improve the participants net return/wealth position for at least the prescribed contractual life of the conservation practices. Getting more needed conservation accomplished is the mutual objective of this research and the VC/SL program. The intent is to exploit the VC/SL program's variable rate COncept in an economic format. Accomplishing this task requires the integration of physical, economic aI'Id policy information in a type of research categorized by Johnson (29) as 8t-Ihject matter research. Subject matter research is multidisciplinary and l’e‘lates to sets of problems about a particular tapic. This research project 18 based on logic and experience and, as a general objective of research, generates synthetic knowledge from the positive, normative and prescriptive. Pbaitive knowledge is information which describes situations, conditions or things without reference to values or the reality of goodness or badness. Normative knowledge is information which places market and/or nonmarket values on descriptions of situations, conditions and things. Prescriptive knowledge relakes normative knowledge to positive knowledge to generate solutions to P roblems. 39 2': ’e M . ‘0... ‘ .~ in ‘h 40 Johnson (27), like Bunce (8) stresses that flexibility and generality are required for decision making and modeling to be credible and useful. This is especially true for an economist conducting subject matter research, the object of which is to prescribe solutions in the multidisciplinary, public domain. The remainder of this chapter will outline the general research proce- dure, provide detailed discussions of each major component, and present a description of expected results. 3.2 GENERAL RESEARCH PROCEDURE To address the soil conservation policy implications of including econom- ic criteria in a variable rate cost-sharing method, short-term and long-term analyses of the economic impacts of Resource Management Systems (RMS) which result in achieving an erosion rate equal to or less than the soil tolerance 0r"T' level must be developed. The basis of the economic analyses is the establishment of Soil Resource r3r’oups (SRG) which are relatively homogeneous with respect to expected produc- trivity and response to Resource Management Systems (Chapter 3.3). Each SRG is cllaracterized by unique Universal Soil Loss Equation rainfall (R), erodibility (l(), slope (L), and slope length (S) factors which, when combined with RMS cOver (C) and practice (P) factors, allow calculation of pre and post conver- sion erosion rates. Pre and post conversion erosion rates are used to compute vC/SL Program cost sharing rates. The VC/SL Program cost sharing rates are aPplied to benchmark cost sharing amounts to derive tvio-year, annual cost s‘haring payments for eligible RMS conversions. If a SRG is fragile, i.e. sub- Ject to long-term productivity change attributable to soil erosion, repre- 8entative soils within a SRG are selected for economic analysis of soil dePletion. To analyze short-term change in net returns which result from RMS conversions, annualized partial enterprise budgets are developed for each RMS in each SRG (Chapter 3.4). Gross returns are computed as sum of the expected SRG yield for each crop by RMS in a RMS times the crop's price and annualized. Total cost of production is computed as the sum of the costs of producing each crop in a RMS at the crop's RMS specified yield level in each SRG and annual- ized. Costs of production include variable and fixed costs in a field prepa- ration, planting, post-planting, harvesting sequence and the cost of any applied conservation practice by SRG. Annual short-term net return change is the post-conversion net returns minus the pre-conversion net returns and is assumed to be incurred each year in perpetuity. Long-term change in productivity attributable to erosion is calculated Using the Soil Depletion Estimates model (Chapter 3.5). Using present value and capitalization theory, long-term yield change for crops in an RMS for representative soils in selected SRGs are converted into a perpetual annuity. The perpetual annuity represents a break-even, annual investment a farm opera- tor could make in soil conservation to avert long-term productivity (net- return) loss by converting to a RMS which erodes at or below a 3011's toler- arice or 'T' level. To integrate the economic (cost sharing) incentive offered by the VC/SL pTrcsgram for conversion to less erosive RMSs, pre and post conversion erosion ra tea by RMS by SRG are computed and used under VC/SL Program rules to deter- mine variable cost share rates (Chaper 3.6). The costshare rates are aPplied to eligible, post conversion RMS conservation practice benchmark a“'lounts to derive a two-year, annual cost sharing payment for a specified con- Version. For RMS conversions to those which erode at or below a SRG's tolerance or 'T' level, the present value of apprOpriate combinations of the annual short- term net return change from partial budgeting, the cost sharing amount for two years from the VC/SL Program, and the long-term perpetual annuity from Soil Depletion Estimates is computed. The present value of appropriate combina- tions is used to evaluate the economic rationality of a set Of conversion options by SRG, where a set of conversion options consists Of creating a matrix Of all RMSs which erode in excess Of a SRG's 'T' value as pre conver- sion options and all RMSs which erode at or below a SRG's 'T' value as post conversion options. The use of the 'T' value to define pre and post conver- sion Options insures temporal achievement of sustained or improved soil pro- ductivity by Soil Conservation Service definitions. Economic rationality is judged by assuming the farm Operator to be a profit maximizer who will either voluntarily or through mandate bring average annual sheet and rill soil erosion on cropland to or below a soil's 'T' level. Tin this "constrained" profit maximization, the rational farm Operator will ooo A o.< on m.~ so» on oeoeooc an m.u m ~.~ so» we weapon ~.a oz on cocoons mo o.< e N.H oz on unease: an o.< o ~.~ wow so wanton ~.n no» men eooeoou NAN o.< m ~.n oz No unease: no o.< o coon x econ x nommnc coumowm cmcuwmum noucomoucmx nouo< 05oz nouo< aeuoh csouwnaw naouu mouesuuom =Ouuo~eoa guom you mdwom o>uueucomoucom mcsouwnsmuasouu ouu30mo¢ guom oou< onezousc consume e.>xosucox you csouu oousomom auom an monogaumm :Ouuoficoc deem you ufiaom o>uueucoaoucom u a canoe .1qu l -.|I|.Inl. IIIIII|||I| \ I .1Ill" \‘I‘/L 48 Soil conservation impacts are analyzed by using the Universal Soil Loss Equation and assigning the apprOpriate R,K,L and S factors for each SRG and C and P factors for each RMS. Economic impacts are analyzed using a partial budgeting process to sys- tematically vary crop yields, production inputs (seeding, fertilizer, herbi- cide, pesticide and lime use), machinery use (pre-planting, planting, post- planting and harvest), labor requirements, fuel use, conservation practice costs, and management costs. Rotations Cash grain farming in Kentucky's Jackson Purchase Area predominantly consists of three crops in four rotations. The crOps are corn for grain, winter wheat and soybeans. The four rotations are: 1. continuous soybeans represented by S-S-S 2. continuous corn represented by C-C-C- or C-C 3. corn followed by double cropped wheat and soybeans represented by C-W/S 4. continuous double crOpping of wheat and soybeans represented by W/S Tillage Methods Conventional, conservation and no-till tillage methods were selected. The level of soil disturbance and corresponding residue requirements meet the Soil Conservation Service's definitions and satisfy the Agricultural Stabilization and Conservation Services requirements for cost sharing. Conservation Practices Conservation/tillage practices were selected by Soil Conservation Service pmrsonnel as the typical practices for analysis. Three non-structural tillage practices include up and down plowing as the benchmark or most erosive practice, and contour plowing and contour plowing with stripcropping. The structural practices chosen are parallel terracing for sloping crOpland and surface and tile drainage for cropland with a wetness condition. Research RMSs For this research, three RMSs representing conventional, conservation and no till tillage methods for the corn followed by double-cropped wheat with soybeans rotation (C-W/S) were selected. They were selected from 32 alterna- tive Resource Management Systems covering the four rotations and three tillage methods being analyzed for the Jackson Purchase Area as a part of the USDA cooperative Kentucky Special Resources Study. The C-W/S rotation is the most prevalent of the four rotations and research analyses have proceeded under the assumption that RMS conversion will occur within a given rotation to prevent any suggestion of significant change in the regional production of agricul- tural commodities which might influence prices. The three selected RMSs by tillage method, chemical complement and plant- er are provided in Table 2. More detailed information on production inputs (fertilizers, chemicals and equipment) and the single crop partial enterprise budgets used to construct RMSs are included in Appendices 2 and 3, respective- ly, for the selected RMSs as part of the 32 alternative RMSs analyzed for the aforementioned USDA Study. Since in the USDA Study there is just one RMS Option for each of conser- vation and no till tillage methods for the C-W/S rotation, the choice of RMS for conventional tillage was made from a variety of Options. First, the selected RMS for conventional tillage involved matching, as closely as possi- ble, the machinery complement of conventional with the apprOpriate conserva- tdon tillage method. Second, a conventional tillage method RMS was selected which required no post-planting field cultivation for weed control. A result 50 Table 2 - Selected Resource Management Systems1 for Economic and Soil Conservation Analyses, in Kentucky's Jackson Purchase Area. Resource Management Tillage System Method Chemicals2 Planter Corn Followed by Double-Cropped Wheat with Soybeans C-W/S 11 Conventional corn Furadan, Aatrex, Princep 18 ft. 6 row wheat 2-4D 16 ft. grain drill soybeans Treflan, Lorox, Basagran 15 ft. 6 row C-W/S 13 Conservation corn Furadan, Aatrex, Princep 18 ft. 6 row wheat 2-4D 16 ft. grain drill soybeans Lasso, Lorox, Basagran 14 ft. 8 row NT c-w/s 14 NO Till corn Furadan, Aatrex, Princep, 18ft. 6 row NT Paraquat, X-77 wheat 2-4D (16 ft. grain drill) soybeans Lasso, Lorax, Paraquat, X-77, Basagran 14 ft. 8 row NT 1See Resource Management Systems, Kentucky Special Resources Study, Jackson Purchase Area-MLRA 134 for full descriptions of resource management systems. (33) 2Spot spraying with Roundup is used for corn and soybeans for all resoruce management systems. 51 is that the chemical (herbicide) complement for all three tillage methods may be different. Further justification for selecting one RMS conventional tillage method resulted from a preliminary examination Of all conventional tillage method RMS options for the C-W/S rotation by SRG. The total costs of production for the options were found to be very tightly clustered. For example, in SRG 7c, the total average annual cost of production for the corn-wheat/soybeans rotation using conventional tillage and contour plowing ranged from approximately $236 to $238 per acre for the 12 conventional RMS Options. For this reason, cost Of production was not a relevant criterion for selection. Since yield levels for each set of conventional RMS options do not vary and market prices for crops are fixed, gross returns for production was also not a relevant criteria for selecting a conventional RMS. 3.5 SOIL DEPLETION ESTIMATES Selection To calculate the long-term economic and productivity effects of soil depletion and relate those effects to the VC/SL Program, a soil depletion model was needed. Model selection and development was a pragmatic process. The major concerns in selection were model availability, data availability, and flexibility in application. EPIC The Erosion-Productivity Impact Calculator (EPIC) model (66,85) was developed to assist in the appraisal Of the status of land and water resources hathe United States, in accordance with the Soil and Water Resource Conservation Act of 1977 (RCA). EPIC is a physical model with components that integrate soil, climate, plant and management crop production processes. It 52 is designed for planning, evaluation and research on conservation prOgrams and policies at the national-level. While EPIC may be useful at a later date for VC/SL research, it was found deficient for several reasons. The major reasons are that the soils groupings are not compatible with those for this research and the non-RCA economics components for analyses of soil depletion are under development. SOILEC The SOILEC model is a long-run simulation model which quantifies onsite physical and economic effects of alternative resource management systems. (15,16,17,l8,l9) Soil productivity changes are a function four erosion phases covering the A and B horizons. The model uses linear interpolations between specified yield estimates and crop production costs by erosion phase. Annual net returns are calculated, discounted to present value and converted into a perpetual annuity for policy and program analyses. While meeting the concerns of this research for model availability and flexibility in application, SOILEC's use of linear interpolations to determine the yield-depth relationship largely ignores the impact which other horizons in the crop rooting zone of the soil profile may have on productivity. Washington State University and University of Idaho The works of Taylor (50,51,52), Young (50,51,52,83,84,86) and Walker (82,83,84), while concentrated on evaluating the impact of technological change in soil conservation adoption, is based on tOpsoil depth-yield response functions in simulation modeling. From a theoretical standpoint, their use of Yield response functions which asymptotically approach maximum yields on deep Unmoils is appealing because, after the depth for effective root penetration is reached, yields would not be expected to continue increasing. 53 The economic analysis Of damages attributable to erosion (82) is a dynamic comparison of net returns between tillage systems. It does not con- sider the loss in agricultural land value. The potentially greater damages incurred by continued erosion in face of technological progress are examined and evaluated, making soil conservation even more important in terms of net farm income. While demonstrating that the economic impacts of soil conservation may be consistently underestimated by failure to consider technological improvements in long-run analysis, the productivity-depth relationship used by Taylor, Young and Walker do not satisfy the needs for this research. Like SOILEC, these models do not consider a full soil profile for the crOp rooting zone. The economic analysis of damages resulting from erosion is dynamic but restricted to the planning period endpoint with no measure of potential per- petual loss in agricultural land value. SLIS The Soil Loss Impact Simulator (SLIS) was developed by U.S. Department of Agriculture, Soil Conservation Service, New York. (20) It uses the top two soil horizons as the 'effective soil layer' and draws from SCS's Soils V Soils Interpretation Records for bulk density to calculate a relationship between soil volume and yield. The erosion rate for a cropping system is applied through a planning horizon to generate yield-soil loss curves. Present values of future benefits are calculated using standard discounting procedures. Costs of production and net returns are computed using SCS's Crop Budget System in a manner consistent with the short-run COSTS program. (44,45,73) Pre-determination of a break-even yield level and a critical depth for rootpmnetration, and consideration of only one physical parameter (bulk density) for the 'effective soil layer' limit the usefulness of SLIS for this 54 research. The economic analyses do not consider the potential loss in agricultural land value. Midwest Natural Technical Center SCS's Midwest Natural Technical Center model (75) for evaluating onsite benefits and costs of conservation measures is based on yield relationships by three erosion classes (depths). Crop yields are specified by erosion class and, based on the erosion rate, a linear interpolation of yield change over time between classes (depths) is derived for alternative resource management systems. SCS's Technical Guide, Section V, is suggested as a "good" source for conservation practice costs. Although the MNTC model does derive a yield depth-time relationship, it only develops a static comparison of yield level, erosion rate and remaining "life" of the present erosion classes (i.e. length of time before transition to other erosion classes) to production costs and practice installation costs. The effects of erosion on production costs (energy, labor, equipment, planting, harvesting, etc.) are noted but no source of data or means for accounting for them is suggested. The MTNC model is inadequate for this research, from physical and economic standpoints. On the physical side, only bulk density is utilized for the topsoil (A horizon) with erosion rates to determine erosion class transitions. On the economic side, present values of future income and agricultural land values are not considered. Pierce/Larson The model conceptualized (41) and applied by Pierce/Larson (36,42,43) is a physical model based on texture, bulk density with adjustment for permeabil- ity, available water capacity, and pH characteristics of the individual soil horizons in the soil profile. A weighted productivity index for a 100 cm. T— 55 rooting zone of a crap is calculated from these characteristics and used to modify the yield level as erosion continues through time. The soil horizon data are readily available from the Soil Conservation Service's Soils-V Soil Interpretations Record. Erosion rates are computed using the Universal Soil Loss Equation. Using present value and capitalization theory, including an economics component in the model is fairly simple. The costs of production, output prices and yield levels necessary to initiate an economic component may be developed in a partial enterprise budgeting process. Present value of bene- fits and perpetual annuity calculations (Chapter 2.5) are straightforward. Since the Pierce/Larson physical model is available, flexible in applica- tion, uses available data, and addition of an economics component is feasible; it was selected for this research. The next section of this chapter describes the Soil Depletion Estimates (SDE) model, an adaptation of the Pierce/Larson physical model to include an economics component. Soil Depletion Estimates Model General The Soil Depletion Estimates (SDE) model was developed to analyze long- term productivity changes due to erosion. The physical component of the model is adapted from Pierce et. a1. (41) The economics component was developed by 0.5. Department of Agriculture, Economic Research Service, Natural Resource Economics Division. The physical/economic SDE model was developed/selected for several reasons. 0 The physical component is based on texture, bulk density, permeabil- ity, available water capacity and pH characteristics of individual soil horizons in the soil profile. A weighted productivity index for the rooting zone of a crop is calculated and used to modify the yield level as erosion continues through time. The soils data is readily available from the Soil Conservation Service's Soils V - Soil Interpretations Record. 56 O The economics component uses present value and capitalization theory to compute changes in land value and break even annuities for invest- ment in soil conservation. - o Erosion rates, costs of production, output prices and yield levels used to initiate the model are developed in the partial budgeting process. 0 The Soil Conservation Service in Kentucky approves of the mechanics, the underlying theory and results of the model. (34) The data sources, input format, data item descriptions, results and interpretations of the SDE model are discussed by Kugler. (33) The SDE model computer program is provided in Appendix 5. Output Description The output of the model (Table 3) for Soil Depletion Estimates is divided into three sections. The first section provides the depth, texture, bulk den- sity, available water capacity, pH and drainage class by horizon for a specified representative soil in a Soil Resource Group. Model computations for sufficiencies of bulk density (BS), available water capacity (AS), and pH (P8) are shown just below the actual values. The final computation for this section is the unweighted productivity index (UNWEIGHTED PI BY HORIZON) by horizon which equals BSxASxPS. The second section is a set of conditions for a Resource Management System (RMS) and soil resource group (SRG). These conditions include the rotation, rotation description, tillage method, tillage (conservation) prac- tice, erosion rate, crOp market prices and yield units, the average annual total cost of production and a discount rate. One other option is available: a TECH. ADJ FACTOR to allow for a decimal equivalent of percent annual change in yield attributable to technological improvements. The third section presents seven items computed by the model for each increment of years. The items and their descriptions are: 57 Table 3 - Sample Output Table for the Soil Depletion Estimates Computer Model. SOIL DEPLETION ESTIMATE DATE 10/12/84 ADAPTED PIERCE/LAR ON/DOUDT/ORAHAN NOBEL FRON JSUC JAN/FEB 1983 ECONONIC RESEARCH SERVICE , NATURAL RESOURCE ECONONICS DIVISION NORTHEAST SECTION 2/84 KENTUCNTS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTINATE = GRENADA ON 4.0 PERCENT SLOPE UNVEIOHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON NRHON .DEPTH-CN TEXTURE BULK DENSITY-O/CN3 AVAILAELE UATER-IN/IN REACTION-PH UNVEIOHTED PI BY HORIZON JERSICN l .1 T VALUE = 3.0 I 12.7 FSILT 1.45 .22 5.25 .75 RIFICIENCIES .93 l. 00 .81 3 53.3 FSILT 1.45 .22 5.25 .7 EFFICIENCIES .93 1. 00 .81 3 61.0 PSILT 1.43 .22 5.25 .76 NNTICIENCIES .95 1.00 .81 RESOURCE NANAOENENT SYSTEM DESCRIPTION ROTATION = C-V/S 11 CORN-DOUBLE CROP WHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = UP 3 DOWN ’ EROSION RATE = 2.00 TONS PER ACRE PER YEAR {NAETPRICES CORN 2.94 PER BU. SHEAT 3.83 PER BU. SOY 6.90 PER 3U. n'.‘:RAGE MEAL COST OF PRODUCTION = 248.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T YEAR DEPTH LOST PCT PI YLD l YLD 2 YLD 3 YLD 4 NET PRES VAL NAECP PRES VAL CH CORN WHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 113.90 42.60 29.70 104.54 .00 .00 1286.67 2 .49 99.72 113.58 42.48 29.62 103.55 11.29 .92 1178.70 3 .99 99.43 113.25 42.36 29.53 102.55 21.87 1.78 1079.55 4 1.48 99.14 112.93 42.24 29.45 101.53 31.7 2.58 988.51 § 1.98 98.85 112.59 42.11 29.36 100.49 41.08 3.34 904.93 . 2.97 98.24 111.91 41.86 29.18 98.39 57.94 4.71 757.83 a 3.46 97.93 111.57 41.73 29.09 97.32 65.58 5.33 693.24 .9 3.96 97.62 111.21 41.60 29.00 96.2 72.74 5.91 633.99 .1 4.95 96.97 110.50 41.33 28.81 94.02 85.71 6.96 529.82 12 5.44 96.64 110.14 41.19 28.72 92.89 91.59 7.44 484.13 10 5.94 96.31 109.77 41.05 28.62 91.7 97.08 7.89 442.26 24 6.43 95.97 109.39 40.91 28.53 90.60 102.23 8.31 403.88 15 6.93 95.63 109.02 40.77 28.43 89.43 107.04 3.70 368.72 16 7.42 95.28 108.64 40.63 28.33 88.25 111.54 9.06 336.51 I. 7. 92 94.92 108.25 40.49 28.2 87.05 115.76 9.41 307.01 .8 8.41 94.56 107.86 40.34 28.13 85.85 119.69 9.73 280.00 22 8. 90 94.19 107.47 40.19 28.02 84.63 123.38 10.02 255.27 :{ 9.40 93.90 107.15 40.07 27.94 83.64 126.13 10.25 233.34 5; 9.89 93.52 106.74 39.92 27.83 2.39 129.34 10.51 212.59 g: 10.39 93.14 106.34 39.77 27.73 31.13 132.33 10.75 193.61 44 10.88 92.75 105.93 39.62 27.62 79.86 135.16 10.98 176.26 2‘ 11.38 2.36 105.51 39. 46 27.51 78.58 137.78 11.19 160.39 .5 11.87 91. 96 105.09 39.31 27.40 77.28 140.24 11.39 145.88 .. Damon 1 2 3 .URSIO LOSE 25.6 81.9 15.3 318186870 P1 BY HORIZON : BULK DENSITY SUFFICIENCY Y AVAILABLE HATER SUFFICIENCY x PH SUFFICIENCY. 9:82 a YEAR OF CONVERSION TO RESOURCE HGT. SYSTEM ERODING AT 0R DELOV T VALUE. Swim LOST=CUPULA11VE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. . _ gm P1 = DORPALIZED VEIOHTED PRODUCTIVITY [NIIEX USED FOR INTERNAL CALCULATIONS DP YIELD CHANGE. ID - ESTINATED YIELD FOR YEAR OF CONVERSION. NET Strum = YIELDS : mm PRICES - COST OF PROMOTION. ~ 9E5 VAL BENEFIT = PRESENT VALUE OF DENEFITS LOST: CAPITALIZED VALUE OF .16. LANDWEAR 1) -- £75 YET RETURNSHO YEAR N- 1) - PRESENT CAPITALIZED VALUE OF AG .ARUHEAR m. 3433?: mum 0F PRES VAL BENEFIT. nits VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND: DISCOUNTED NET RETURNSHEAR N) / OPIIALIZMIOMDISCOUNT) RATE. PRESENT VALUE 58 YEAR - the year of conversion to a sustaining system, i.e. a Resource Management System which erodes at or below 'T' value. DEPTH LOST - the cumulative depth of soil lost in centimeters for a specified management system. the percent of (initial) productivity index. An initial weighted productivity index for a 100 cm. rooting zone is calculated and assigned the value of 100 percent. Subsequent percent weighted productivity index computa- tions show change over time as compared to 100 percent. At any point in time the yield level is a function of the rate of change of PCI PI between years. PCI PI YLD - the expected yield level for each specified cr0p in year YEAR NET RETURN the expected average annual net return for a specified rotation (management system). Annualized for a rotation, net return equals market prices multiplied by yield levels minus the total cost of production. PRES VAL - this is an iterative calculation of the economic measure BENEFIT of benefits which a farmer can begin to capture now by controlling erosion to a rate at or below a soil's 'T' level. The economic measure is fully described in Chapter 2.5 where it is labeled "RMS Benefits." The PRES VAL BENEFIT value for YEAR = 25 is used for analyses. MAECP - the annual amount of money a farmer could begin to invest in soil conservation now and continue each year in perpetuity to exactly capture the YEAR 8 25, PRES VAL BENEFIT. MAECP, the maximum agricultural expenditure for conservation prac- tices, is fully described in Chapter 2.5. PRES VAL - this is an intermediate, iterative calculation of the AG. LAND capitalized present value of net returns for any YEAR. It is a component of the PRES VAL BENEFIT calculation. At the end of third section of the Soil Depletion Estimate output, a computation of the number of years to lose each horizon is presented. They are not cumulative, i.e. the years to lose horizon 1 must be added to the years to lose horizon 2 to equal the number of years to lose both horizons. 3.6 VARIABLE COST/SHARE LEVEL PROGRAM 3.6.1 Cost Sharing Rates Under the Variable Cost/Share Level Program, cost-share levels are a function of the erosion rate for the initial RMS and the percent reduction in S9 erosion when a RMS conversion occurs. If the initial RMS erodes at 11 tons per acre per year and the farmer converts an RMS which erodes at 4 tons per acre per year, the percent reduction in erosion is: 11 TIA/Y - AT/A/Y llT7A7Y = .64 or 64 percent As prescribed by ASCS (63), the percent reduction is rounded to the nearest 5 percent, in this case to 65 percent. The initial erosion rate (11 TIA/Y) and rounded percent reduction in erosion (65 percent) are used in "look-up" tables by soil tolerance or 'T' level to find the variable cost/share level rate. In this example, if the conversion from RNSI to RMSZ takes place in SRG 6 where the 'T' level is 5, VC/SL rate is 52 percent. The VC/SL rate tables by initial erosion rate and (rounded) percent reduction in erosion are provided in Appendix 7 for 'T' levels of 5, 4, and 3 tons per acre per year. ASCS's Agricultural Conservation Program guidelines were checked to insure that the RMS tillage method-tillage (conservation) practice were eligible for cost sharing under VCSL. (54) Descriptions of the eligible tillage methods and conservation practices from ASCS's National Office (56) and amended descriptions for Kentucky (57) were checked for compatibility with RMS and SRG descriptions. 3.6.2. Cost Sharing Benchmarks ASCS in Kentucky annually establishes benchmark cost sharing amounts for a variety of soil conservation practices. (60) The benchmarks are a base dollar amount to which cost sharing rates are applied to determine the actual incentive payment a farmer will receive for voluntarily converting to a less erosive farming or resource management system. The benchmark amounts per acre by soil conservation practice are: 6O Contouring $6.00 Contour Stripcropping $12.00 Conservation (Reduced) Tillage Systems $18.00 No Tillage Systems $18.00 Parallel terracing is a soil conservation practice used in the analyses which is eligible for cost sharing but does not have a benchmark amount. It is a technical practice, the design and cost amount of which are deferred by ASCS to the Soil Conservation Service (SCS). In Kentucky's Jackson Purchase Area, SCS set a $21.00 annual amoritized implementation/operation/maintenance cost per acre serviced for a typical terracing system. This cost is used as the benchmark for terracing for this research. ASCS stresses that the benchmark amounts are established at a level sufficient to encourage a farmer to "demonstrate" a conservation practice on their own farm. The amounts are not intended to cover all costs. Cost sharing is authorized for a two year period after which it is presumed that the farmer will have developed expertise in practice application and recog- nized the benefits or potential benefits of maintenance or expansion of the practice. 3.6.3 Cost Sharing Decision Rules To apply the benchmark amounts for resource management system conversions a set of decision rules is necessary. In the set of rules which follow con- ventional, conservation and no-till are referred to as tillage methods and contouring, contour stripcropping and parallel terracing referred to as con- servation practices. 1. If the initial RMS uses terracing, terracing must be maintained and cost sharing is allowed only for tillage method changes. (26) 61 Cost sharing is not allowed for tillage method conversions from conservation to no till or from no till to conservation. (26,56,57) Cost sharing rates are set to a maximum of 75 percent in the Variable Cost/Share Level Program except for terracing which is set to a maximum of 60 percent. (57,60,63) Cost sharing is not allowed for tillage method conversions from conservation or no till to conventional. (26) A conversion from the tillage practice contour—stripcropping to contouring is not eligible for cost—sharing. (26) LI CHAPTER 4 -- RESEARCH RESULTS 4.1 FORMAT FOR PRESENTATION OF RESEARCH RESULTS The research results are presented for interpretation in three ways as indicated in Figure 3 by the three possible paths to arrive at recommending soil conservation policy changes. It is anticipated that each path will lead to distinctly different policy recommendations. Path A When erosion rates and short-term net returns for Resource Management System conversions are calculated and the system conversions are not eligible for Variable Cost/Share Level Program cost sharing, Path A is followed. Path A leads directly to soil conservation policy recommendations based on short-term net returns. Eligibility for the VC/SL Program is precluded when the pre-conversion Resource Management System's erosion rate is at or below the soil tolerance or 'T' level for any given soil resource group. Since all conversion Options for 8863 l, 2, and 3 fall into the Path A category, the format for presentation of research results includes the Soil Resource Group and Subgroup, Resource Management System, Tillage Method- Conservation Practice, Erosion Rate, Cost of Production and Net Returns. Path B When erosion rates and short-term net returns for Resource Management System conversions are calculated and the system conversions are eligible for the Variable Cost/Share Level Program cost sharing, the VC/SL rate and amount of cost sharing are computed. Then a decision is made as to whether long-term soil depletion estimates are warranted. If depletion estimates are not warranted, Path B leads directly to soil conservation policy recommendations. 62 63 Figure 3 - General Research Procedure SOIL RESOURCE GROUP 1 RESOURCE MANAGEMENT SYSTEM CONVERSIONS 1. PRE AND POST CONVERSION EROSION RATES 2. PRE AND POST CONVERSION SHORT-TERM NET RETURNS i +LELIGIBLE FOR VARIABLE COST/SHARE LEVEL PROGRAM? yes ~L COMPUTE VARIABLES COST/SHARE LEVEL RATE AND AMOUNT OF COST SHARING F—EF LONG-TERM SOIL DEPLETION ESTIMATE WARRANTED? r_J__ yes - 'Nfi [: COMPUTE SOIL DEPLETION ESTIMATES ANNUITY L COMPARE VARIABLE COST/SHARE LEVEL PROGRAM WITH NET RETURN CHANGE AND DEPLETION RESULTS Path C 4: DEVELOP AND EVALUATE ALTERNATIVE Path 3 VARIABLE COST-SHARING METHODS WHICH INCLUDE ECONOMIC CRITERIA J RECOMMENDED Path A SOIL CONSERVATION POLICY £1 CHANGES 64 The decision criteria for carrying out soil depletion estimates could be pre-determined by the parameters which characterize the soil horizons in the crap rooting zone Of the soil profile. The need to demonstrate and pass the four tests of truth using the Soil Depletion Estimates computer model obviated the need for such decision criteria for this research. Selection of Soil Resource Groups for soil depletion estimates involved an examination Of short-term net returns under the assumption of a profit maximizing producer. In SRGs 8E, 9C, 98 10C, 11C and 115 the short-term net returns for all Resource Management Systems are negative. Consequently, any Resource Management System conversion in these SRGs, whether net returns increase or decrease, will leave the producer in a situation where the total cOst of production will be greater than total revenues. The magnitude Of net return losses was judged to be sufficient to warrant analyses of the Oppor- tunity cost of retaining these soils in agricultural production using the corn-wheat/soybeans Resource Management Systems. Other grain or hay producing rotations or atlernative land uses such as pasture or forest need to be explored for the profit maximizing producer. The format for presentation of research results for Path B is identical to the format for Path A. Reported result items are Soil Resource Group and Subgroup, Resource Management System, Tillage Method-Conservation Practice, Erosion Rate, Cost of Production and Net Returns. It is noted that while the presentation of results format for Path 3 and Path A are identical, the soil conservation policy recommendations will be quite different. Path C When erosion rates and short-term net returns for resource management system conversions are calculated, the system conversions are eligible for Variable Cost/Share Level Program cost sharing, and long-term soil depletion estimates are warranted, Path C is followed. The format for presentation of research results for Path C involves a number of descriptions and qualifications. Table 4 is an example of the results format for Path C partitioned by section with Roman numerals I, II, III, and IV to key to the descriptions which follow. Section I - Path C Research Results Format Section I provides descriptions Of pre-conversion resource management systems, i.e. systems which erode at a rate greater than the soil tolerance or 'T' level. The five lines of information are described using an example from SRG 5A. C-W/S ll Tillage-Practice Code l-2 Erosion Rate T/A/Y 16 Cost Of Production $/Acre 249 Net Returns $/Acre 103 MAECP (Loring) $/Acre 4 MAECP (Grenada) $/Acre 5 O C-W/S ll - identifies the corn followed by double-cropped wheat with soybeans rotation number ll. The rotation number is a redundant tillage method code which links the rotation to the partial budgeting process analyses. 0 Tillage-Practice Code - identifies a two part tillage method- conservation practice code which, along with the rotation, fully specifies a resource management system. Tillage method codes are: l . conventional, 2 - conservation and 3 - no till. Conservation practice codes are: l - up and down, 2 - contour- ing, 3 - contour stripcrOpping and A - parallel terracing. In the SRG 5A example, the tillage-practice code shows conventional tillage with contouring. o Erosion Rate - using the Universal Soil Loss Equation, the average annual erosion rate for a resource management system on a soil resource group is calculated in tons per acre per year. O Cost of Production - in the partial budgeting process the total average annual cost of production for a resource management system on a soil resource group is calculated. 66 ucNuauuuh NoNN-ucm I c .ucNaaouonNNNm uncucou I n .ucNuaoNcou I N .caoa v:- a: I N NNNF oz I n .cONNs>N0ucoo I ~ .NscoNunc>:ou I N nNcaoao «nun-so Nuoo «NnNuNNo no ncoNumNNu-se new N.c use n.n sways-so oumn Nnovou ouNuusum coNuc>Noocouc ...ooo eoguoz ou.NNNpA occuuaNuouov zu-m NON N.¢ wean-nu coma A omega :oN-ONN I u .N conga GONooum I u .N O-ezm acauouu I < Nnasouu33mN n Ono-x» Aqvecouov nom AN NNNNP «N's coNNoNu A o N AN- oN- e+ N- 9+ AN- .cnauoz No: a. .N=.:u A N-N ovoo .oNNuaum-ouaNNNe NN ANa-o NN cue-N» Agnes-Nov NONN: cN ouoaN» NucNNoNN None: N o A NN+ ¢+ AN+ AN+ NN+ A- oN.NA N.ou A + N24 A AoN sun-N» .cuasoz No: AN AN AN AN AN AN NoauoN oN ouasm Nooo A ANN «No-N» uoNNuaooNN No N.ou AN. AN. AN. AN. AN. AN. «Nae NmNus NA NNNNA .N.¢ coNuoNu a o N AN- NN- N+ q- ¢+ NN- .aaauox an: :N cue-Nu A N-N oaou ooNNo-uN-ou-NNNN NN mNa-u NNN :ONN N oneouuoa oucezu oz ousuuucu causes: as: sN Oceanus: O as nausea oz .oosouunN es ca uNaoos aoNaa Nu N~ ~N «N 0 AN ooNuuaNm nauue>uoocoo I .eONouoscou sou-Am Neon QN oN nN cN mN o vogue. ouONNNu o -.N.a.: .ouao..a No Nos-ax AA AA OA NA SN NN AucNN.N.-N.ou No. .NANNNNN A AN AN NoN NoN ooN so .NoAN» .cuaNox No: NAN ANN oNN NAN NAN NAN .Nu-No coNNuaooNN No N.oo N N N N A A NNN q-A N-N A-A A-N N-A N-N aeoo cuuNNu-NN - AcuoNNNs AN ANn-O AN ANz-u AN ANa-u AN A\:-u AN ANa-u NN ANa-u cos-NA Neon-Nana: oouaoaos ON AN Noncou¢ NNNu oz I n .coNuO>Non:ou I ~ .NscONuao>coo I N chNuuNuonvv :»-~ New N.c uuuaozu oomN n Ooazm coNuouu I u .~ conga :oN-Ouu I o .N onus» coNuoNu I < NaasouunsmN Naovou vogue: ou-NNNPM co.~o «N.5N oo.N~ 40.50 no.mo so.ow on.no en.moN e~.moN n¢.¢NN oq.n~N oo.o~N m~.o~N Nn.NMN no.mnN Nn.onN 05.0nN On.NnN ouu<\» engage: uoz No.nq~ N Nun «N mN3-u Nn.mm~ N N-N nN m\:-o Nc.nm~ a N-N NN wxa-u 0n ao.me~ N N-n «N «\anu oN.Nn~ N N- «N mN3-u -.Nn~ n N-N NN m\:-u nou sou-am unusuaece: couscous I o ONAOP ucNusNNoH NoNNaNam I a .ucNaaoNoaNuum NOONCOU I n .chnsoNcoo I ~ .3309 van a: I N .coNu->uoncou I N .NecoNN:u>=ou I N Aucsosa ”CNN-5n Nuoo oNnNmNNo No acoNunNuunuv HON N.s ten n.n aneumcnu sown NNNP 02 I n n onszm cONnOuu I u .~ sauna coNoon I u .N onusm cONoon I 4 unevou quuunum =ONNO>Noncouq "novou vogue: ouaNNNNA acoNNaNNunov zuqm NON N.o uoNaocu cumN NnmsouwasmN N o N n o n N o n e o n N o N a N n N o N n o n Ousouuon owcszu Oz unsouucw acuauoa go: ON coacuuua a NO omzszo oz .saquuucN c4 =N uNsnsa NONNJ ocoNnuu>sou swunxm acoa nuances woNsoaoz No Nonsaz ~N+ an no. «N. N. no. nNc ~N+ n5. «NI oN+ o~ n5. oNo N~ QN ¢n c~N nan N cum «N mxzuu nN mxzuu 4N M\3uu 0+ s~ no. mN- 0+ ON an. o~u 4+ cu nu. -u NN ”N on ANN QmN N su~ oN+ no. n+ oN+ no. ~+ m~+ AN. AT oN+ nu. N+ «N mN an NnN 0mm N nun NN+ NN+ AN AN AA. NA. N+ N+ A+ N+ A A AA. NA. N- A+ AN+ AN+ AN AN AN. AN. o A+ NN+ NN+ AN AN AN. AN. N- A+ NN A AN AN AN AN AAN NAN NAN ANN N A A-N N-A nN m\3-U «N mxa-U Oh ‘I «N NN- <2 0. nN as. oN- ml nN nN. Nno NN o N~ nNN sm~ n e-N oN+ an. ~+ N+ mm. d- oN+ nN. oN+ «N. NI 0 mN an «MN no~ c N-N qN+ «Noam unou + uzn o n usage“ as ouszm uuou » n~. vuaz Nm\u> o+ unusuom No2 AN owcczo A 0+ ou-nw 9.00 + :24 o o NosN-u ON cuogm Nnou » m~. 09nd meu> e+ unusuox uoz cN Owcasu oN+ ou-sm “now + :24 0 AN Loan-N oN «LANA NNoO A h+ nauauoz 902 Cu owcdzu o oN+ Ouazm Noou » + ¢z< » AN NosN-m ON cqum uqou o nu. flung Nm\u> n+ «ensues go: ON cunezu » o ”N QN NqN ~m~ n N-n NN ANz-u AN AN3-O AN m\:-o o oNuANA NaNcaeozv Nouu0n=Ou o vozuofl ounNNNu I nueNNONN-Noou NON anNuNNu w vuoo\w manages no: annex» eoNuusvoum no unou »\<\P can: cONaOuu ovou couNuosum I now-NNNP sauaxm Nausea-ca: consenuz NN ANa-o nN m\3-U NN mxzuu NN m\3-u No AAAN ANNANNA u NA Ncou EON-mm Nausea-con couscoo¢ I N oNnaP N o n n 9 ~ N o n QJ q/ a o N N o n s o n ooaouooa oucazu oz oqaouunn n=usuo¢ No: cN announce a No oucozu oz .ouoouocN :- sN uNsawu :ONgz ocoNnuo>cou Inuuxm use. nausea: cousvoa uo Nonaaz no wout oaezuusm couxuan -.uxo:u=ox NI n— Nu. QNI nN+ ou nu. nNI NN+ o~ nu. nNI NN ”N on ca uo~ N «In nN «u. N~I 0+ oN nu. GNI A+ AN AN. NN- NN cN on an on~ N «Ia ~N+ ~u. n+ u~+ nu. ¢+ n~+ nu. ~+ ~N ”N an ucN Ou~ N nun «N muaIu nN mun-U «N mus-U ~N wN On NoN «nu N nIN muaIu «N muaIu Oh Q+ Nn. n+ «N nu. e+ N~+ nu. ¢+ Nun nucsoao ueNNANA uooo oNnNuNNO uo acoNuaNuo-ov no» N.c an. n.n nu0unasu sown n omega coNuONm I m .N onesm eoN-ouu I u .N omega coNoonn I < <2 N~ o N~ an won n «IN NN m\3Io unazm uooo + 1:6 » uueNAL o» ouasm uoou A sung Nmuu> acuausx uoz cN own-nu ouqzm Nooo + man A uoeuom Ou ou-zm uoou » coax Nmuo> ashsuox uoz aN oucqzo w «NINA N.oo A + 12A A noeN-m ON ouazm Noou o suqz Nm\u> ocuauoa no: :N own-Nu w suam Aru:ou I N NIN NN 0N noN wQN NIN caucuo ONO-um Ono-u» duo-u» ~uuuoa=OU¢ ...Aou vogue: «NANNNPA acoNNaNuunov zoom NON N.e Nauaogu nom~ unassuwasmN Nae-couov momuuncoo I cosmos ouaNNNa I nchu-tunuooo uoN ONANuNNu » ONO-u» one-u» >ucou sounuw Nassau-cs: cannon-z I a oNneP nN mxaIu NN mun-u NN mun-U nucsosc ucNNozo uaou ONNNMNNO no acoNNaNuuoov NON N.o one n.n mucum-su oomn chunuuoH NONNIqu I a .chaaouoaNNNm usoucou I n .meNusoNcou I N .nxoa van a: I N Nnovou eoNuuaum coNun>Noocooq NNNP oz I n .coNuo>uoncou I N .NccoNuco>=ou I N Nuvvou vozuo: ow-NNNN.n ocoNuaNNOnov Noam New N.c uoNaazu oom~ n wanna coNnon I m .N omega coNeon I u .N wanna coN-ouu I < NnasouwaamN 7/4 N INA-NA Nav.ccuov NONAz N onuINA ANANNANV NONN: N o A N- A- oN+ N+ A+ Assam N.ou + qu A AcN ANAINA Nessaox No2 NN NN o A o nonuqm ON ouogm N-ou » OAN ouuauw eoNuosvoum no Noou an. An. mn. nn. mN. <2 ONO; Nmuu> q »\<\H cuss coNooNu n c N AN- oNI A+ a. 0+ acuzuow Noz cN oucocu A ~I~ ovou ouNuu-umIouoNNNh AN nun-u N .No-NA NIANAINOA mom A »\ m >uuoocoo I ocoNuuo>nou Iouqum use: wN QN mN mN oN o . vogue! ouoNNNu I Ion-cs: ouu:an¢ No nonlaz nn on on on «N N~ nucNuacnIu-oo uoN oNnNnNNu » oo no uoN NoN ocN so ONO-u» census: no: NAN NAN ANN NAN NAN NAN .NuaNA aoNNoavouN No N.oo N N N N n A (<2. 3 as 3:95 «In c-N n-n n-N «In AIN ovou cooNuooum I non-NNNH AN ANA-u AN ANa-u AN ANz-o AN Axa-u AN ANa-u NN A\:-o IoN.NA Nacuouoeaz .ouso..u OF NO Nuqm N»Ncou soNoum acosouecaz couscous I .vuu o ONNnk nuc=oac ucNu-sn Noou oNANuNNo No ocoNuaNuonoa you N.A we: A.A nuouaqzu oomA uaNuauuoP NuNNoNam I A .ucNaaouumNNum usoucou I A .chuaoucou I N .5300 an. a: I N ”novou ooNuuaum :cNuq>qucOUA NNNF 02 I A .coNuo>uvacou I N .NccoNuco>cou I N unevou vozuo: ownNNNPA AcoNuaNuonov :N-m ace N.A noumcnu oomN A wanna :oN-aum I u .N un-zm :oNaon I u .N wanna coNaouu I < ”unsouunamN A AAAANA Nev-couov muu<= A ouoaNA NAANuoNA AAAA: N o A N- m- NN+ A+ A+ ouazm unou + zzc A AA ouuaxA ncnauoz 902 AN AN A N A Noah-u cu cunnm u-ou A NAN nun-\A coNuuquNm no unou NA. NA. NA. 0A. NA. <2 oqu Nm\u> A »\<\P wand coNuoum A o N AN- NN- A+ A: A+ ocusuox no: :N «mango N-N ovou uoNNoauanu-NNNP AN m\3-u A AAAANA Angus-AAA mum AN >\<\H ouoz uoNoon A o N AN- AN- A+ A- 0+ oN- Acusuoz ucz cN cwcanu A N-N ovou ooNNuaum-QAANNNP NN mxz-u AN ouuch Ana‘s-Nov mum NA >\<\H cane coNoouu A c N AN- NN- A+ AI A+ NN- Acuauoz uoz cN qua-Au A N-N ocou ouNuuqum-ouaNNNP NN m\3-u :ozm wasvuoan «mango oz oasouoaN QCHNNJ 0: u 02 AN concuuun a Na owaazu oz .onaouucN :- aN NNsaos AUNA: NN NN NN NN A NN ouNuuaum aoNN¢>uoucoo I scoNnus>nou sounxm Anon AN AN AN AN AN o vonuoa ounNNNu I nonacat nou29oo¢ no Nessaz on on oA oA AN NN AacNuazn-u-ou non oNANuNNu A AN AA AA AA NA AA AAA-NA AcuaAoz A»: oAN NAN NAN AAN OAN NAN uuoq\A coNNuav0um no unou N N N N A A »\<\P can: uoNoouu A-A A-N A-A A-N N-A A-N ovou AAANAAAAN - Asa-NNNP AN Axauu AN mxn-u AN m\:-u AN m\3-u AN mxnuo NN m\3-u Iouasm acoaou-cqx consanoa OP Nu AAAN NNNANAA I FA NuA anouo AAAAAAAA NNoA :0 acu< oaczouam conga-n ..xxuaucox :N coNNqNox acconxomxucosnacuou no. ocoNnuo>cou log-Am u¢020uchx ouuzonon I o oNAAP 76 nuance. ucNuacn unou oNprNNo no acoNuaNuuaov Nam N.A can A-A nuouaazu uumA ucNuauuoH NoNNauam I A .chAQONUQNNNm uncucou I A .ucNuaoNcou I N .:309 as. a: I N NNNP oz I A .coNuc>uoocoo I N .N-coNu:o>:ou I N A onazm coNu0uu I u .N conga coNnouu I u .N ocean aoNuouu I < Nnovou ooNuoaum :oNua>qu:ouA Naouoo vague: ouaNNNbA ncoNuaNuunuv seam nan N.A Nounnzu oomN unavoNunamN N A A N- A- NN+ N+ N+ AAAAA AAAU + A2A A NN NN A A A .oaAAA A. IAAAA AAAA A AA. AA. AA. AA. AN. «2 AAAA AANAA A A N NN- AN- A+ N- N+ AAAAAAA No2 AN «Acagu A N N A- AN- A+ A- A AAAAA AAAA + AzA A NN NN N A N AcaAAN AA AAAAA AAAA A AA. AA. AA. NA. AN. <2 «AAA AANAA A A A NN- AN- A- NN- N- AcAAAAA Aoz AN AAAAAA A N A A AN+ A+ AN+ NN+ NN+ A- «Aegm u.oo A + A24 A AN AN AN NN NN NN .oeAAN oA AAAAA A.ou A NN. NN. NN. AA. NA. NA. AAAA AANAA A N N AN- NN- N+ A A+ NN- AAAAAAA AI: AN AAA.Au A announce cwsacu oz onoouuun Acuauox no: cN unsouuoa - No cue-=0 oz .c-acuuaN c. 6N uNsnod :oNas NN NN NN NN A NN qcoN-Ns>cou Iouuxm neon AN AN AN AN AN 0 Inaccut ouu20no¢ no uoaiaz on AA 0A 0A AN NN AA AA oo Am No AA omN NAN NAN AAN oNN NAN N N N N A A A-A A-N AIA A-N N-A A-N AN mxnnu AN m\3IU AN mxaIu AN mxaIu AN m\a-U NN m\=IU men Ao moN NIA Am AAN A-N qua-NA cuuo\A ouoaxA ouuaxA ANANA unou qua-\A ouu~\A ouuch ouuaxo NNANP ovou unuc\A ouoq\A ouunxo ouunxA »\<\P ovou Navacouov mumuansoo I aonuoa cu-NNNN I AuaNquun-ou you oNpNuNNu A ouuaxA emu-\A »\<\P ovou acuauoa uoz :oNuuavoum no unou Cu I“ 60“ DOB” AouNuuqum I AouaNNNh Iva-Am uculouaca: couscous AN m\3-U AN M\3-U NN mxzuu Nu AAAA NNNcou IoNnxm acoaouocoz cou30aoz I .vuo a QNAQP 77 o o A N o N o o A N o N o o A N o N unsouuuo omcogu oz onoonucN acusuom no: :N oaoouuuo a we ou=ozu oz .onauNocN no cN uNaoox :uNza naoNnuo>cou Iva-Am N:oa nausea: cannon»: no Hones: AN+ AA. #I AN+ AA. ANI AN+ AN AN. AN- NN wN AA em mmN N can AN m\3IU AN m+ 0N nA. mNI A+ AN AN. AN- N+ AA. NNI oN+ AA. 0+ AN+ AA. A+ AN+ AA. N+ NN mN NoN ANAAA “Aou + «24 A “canon cu «Noam 9.09 w can: Nm\u> acusNox uoz oN own-£9 ouazm Naou + A24 A uoENAA ou ouazm unoo o wand Nm\o> ncNANom no: :N owe-nu » chasm Anou A + «24 A uoauam cu chasm uwou w ouoz meu> «casuum uoz oN «mango o AnN AN AIN A¢ NAN A4 NIN we o¢N AA NIN A «Aazm coNaoum I m .N onoam :oNaoum I u .N quash :oNnoun I < ouuaxo ouun\w qua-Aw »\<\h ocou ouuaxo ouoaxn ouua\w NNANA ovou UNUQA» ouuo\w ouon\w »\<\p ovou nuance: ucNuana unou oNnNmNNo uo acoNumNuonou you N.o v:- A.A quouaagu comm ucNunuuuH NoNNauom I c .chmmoNumNuuw uncucou I A .ucNu20ucou I N .caoo can a: I N NNNH 02 I A .coNun>uoa:ou I N .NocoNuco>cou I N "novou ouNuuoum coNua>uoncouq “Aooou vogue: «NANNNPA AcoNNmNNonuu :uom you N.¢ nouannu oomN NoaaouunomN NANAAaAzA AUAA: cause»: no: coNquvon No unou «and :oNAONu ooNuunumIom-NNNP NANAAAAAV Nom<= Acuouom uoz coNuuovoum no unou ouag ooNnouu ouNuuqumIouoNNNh AaNsaaoxv NANA: unusuoz no: coNuoacoum No uoou ouom coNnouu ooNuo-umIouoNNNP team ooNuuoua ooNNo>uoqcou I vozuua ou-NNNN I nuoNuosnIuooo uou oNnNuNNu w ouunxw ouooxw ANANP ovou unbound uoz ooNuuov0um no uoou nuns :oNooNu cooNuoaum I AouaNNNh sou-Am vacuum-:1: consenox NN ANA-o NN mstU NN m\3uu Nu AA-N NANANAA I AN NAA AAAAA AANAoAAa NNoA co ouu< uoq:uusm conxuan n.5xusucox :N :oNuauoa acqopxomxuaugaacuou uou nooNnuo>cou Sou-Am ucoaouqco: couscoou I oN «Noah 78 nucooeo ucNngo unOu oNnNuNNo No acoNuaNuuAuu uoN N.c cc: A.A nuouqozu comm chuauNoP NoNNquam I c .ucNamouomNNNm usoucou I A .ucNuooucoo I N .czoo can a: I N unavoo ooNuoaum NSC-59380.N NNNP oz I A .coNNo>uoa=ou I N .NocoNu:o>cou I N Nnosou vozuoz onaNNNHA acoNNaNuonov :uom you N.a nouaazu oomN A onqzm :oNnoum I m .N onucm :oNnouu I u .N onozm coNuoNu I < NaaoouwnamN A oNuANA 22935 .83: N A N N+ A- NN+ ANAAA A.oo + AAA A NA AAAANA . .ANANAA Noz AN «N A uoaucu oN ouosm Nuou A NAN dquAA :oNuoavoum No uuou AA. AA. AA. ouqa Nm\u> NN »\<\p «an: coNAon N o N AN- AN. 4+ Aauauum uoz cN owcucu N-N ovou ouNNuauqumoNNNP AN mxa-u o one-Aw AnNamauxv mum<= N A N A- AN- A+ ANAAA NAou + A24 A AAN ANAANA AAAAAAA No: AN AN m Noeu-h o» ouozm uooo o ooN ouunxo ooNuosvoum no uuou AN. AN. AA. «AAA NANA» AN ANANP oNqA coNAANu A A A NN- AN- A- Acuauox No: AN AAAAAA A N-A vou .uNNuANA-AAANNNA AN ANA-o o ouuo\» AnNsaaozv mum oN »\<\k oN-m :oNoon N A N AN- NN- A+ AANANAA Noz AN AAAAAA A N-N «AAA .oNAoAAN-ANANNNA AN ANa-u zoxm oA-ouuoa «mango oz ouauuucN AcuaNox Noz oN ooqouuoo o no oucanu oz .onaouucN co oN NNAon guNgz NN NN NN ouNuooun ooNNo>uouooo I acoNouo>oou sounxw use: ”N AN AN tonuoa ouuNNNu I -omaoax ouuoonoa No Nagasz AA AA oA nunNuqzquooo oou oNaNuNNu w «A AA NoN oqu\» ocuauoz uoz AAN NAN NAN ouuoxw ooNuuavoum no uuou N N A AAcou souaam acosuuocoz ouuaoaoa I .uuo oN oNnaP 79 Aucaoao McNuosn Nnoo oNnNuNNo no acoNuaNuonov uON N.o can A.A nuounozu uva ucNuAuqu NANNeuem I o .ucNaaouuaNuum uaoucou I A .ucNusoucou I N .caoa van a: I N Naoaou ouNNuoum :oNNo>uvn:ouq NNNP oz I A .coNNo>Non:ou I N .N-coNu:o>:ou I N "novou vonuot omaNNNPA AcoNNaNuunvv zuom you N.¢ uouaacu vomN A onazm coNAoum I m .N oaazm :oNaouu I u .N onusm ooNAouw I < NuasoumaamN A 324A NAN—.935 33:. N A N N- A- NN+ oA-AA NAAA + AzA A AA .NAANA .A.:Nox “oz ON ON n uoEuch Du Cue—Nm 0.00 w HnN UHUI\0 BOuuUNN—NOHA.» HO uQOU AA. AA. AN. ANA: Nm\o> A >A A >A AN >Auoocoo I AaoNquo>aou Iouaxm Nous AN AN wN vogue! ouoNNNu I Iowans: couscous No uosaaz AA AA AA AucNu~£AIquo you oNnNuNNu » AA NA NAN Aug-NA .AAANIA No2 AAN NAN NAN onuAAA coNuoavoum No unou N N o >\<\h onus :oNoouu a-A AIN A-A ovou cooNNoaum I Ava-NNNF AN ANA-A AN A\:-u AN A\:-u ecu-NA AcoIoA.=a= cause... NA ANIA NANANAA I AN NAA AAAAA .uuao.cz NNoA oo aou< oncsuusm conxuan n.xxu:Ncox :N coNquox naoonxomANIosaIauoo you AcoNuuo>aou Ion-Am Ncoaoachz oouao-on I .auo oN uNnoP 80 N o N A o o o o A A o o o o A A o o ooqouooa oncozu oz oncouu=N unusuox uoz AN announce a No owcnzu oz .on-ouocN cu oN uNanos guNna AAoNANo>=ou aoNnAm ago-ounce: oouaonoz No nonenz NANAANNAP NoNNaNnm I e .chQAONUANuNm uaoucou I A .ucNuzoucou I N .czon ecu an I N NNNP oz I A .coNuo>uoncou I N .NocoNuco>coo I N OI AN AA. ¢NI A+ AN AN. AN- A+ AN AA. @NI NN wN an AA NAN N eIA «N mxnIu AN AN AA. NNI 0+ AN AA. oNI n+ 0N AA. NNI nucsoa- ucNuazn NAoo oNANuNNo No ocoNNANuunov now N.o we. A.A nuouaqzu oomA A wanna coNaoum I m .N conch coNoon I u .N Awash coNcouu I < ego-AA ouooAA oNo-AA ouunAA ANANA «AAA one-AA cue-AA oNuAAA one-AA NNuoucouo ”.9Aou segue: IAANNNAA AcoNNnNuunov :uom you N.¢ noun-go oomN AnaaouunamN Acoecqunv mumuoocoo I vozuoa ouoNNNu I AunNuacnIunoo you oNaNuNNu A AcuANox uuz coNuoovoum No unou can: coNAouu qouNNoaum coNuo>uoacoo I Acosuoz ouoNNNh N A A+ ouosqunou A + NZQ AA 0 Noah-h 0N ouonquoou m aAN AA. ou-N NmAU> oN NI «Anna-z Noz cN owoozo NIN a o NN+ vuazquoou A + ¢z< 4A AN Noah-h o» ou-zquuou » CAN AA. ouqx Nm\u> NA NI Acusuuz No2 oN oucozu NIN m 0N NN+ ou.AA-N.oo A + A24 AN AN hash-L ou oposqu-ou A oAN AA. can“ Nm\u> Ac NI usuauox uoz :N oucozo NIN NN mN oA AA ouuuxm AAN oNAANA A >AAxu:ucox 6N :oNuaaos ncoonxomxuooancuou you acoNnuo>cou sou-Aw NcoEAunco: ouuzonoz I NN oNnoh 8]. N o N N N o N c N A c o o o A N o N vacuuuoo cue-cu oz unsouucN nausea: no: :N undouuuo a uo ouaczu oz .onqouoaN an cN uNano¢ :uNza naoNuuo>coo aounxm goo-nuaoq: ouuaonoz no nonasz uaNonuuoH NoNNauam I a .udNaaouuaNuum u90u=ou I A .chu30ucoU I N .caoo v:- a: I N NNNH 02 I A .ooNuo>uoucou I N .NccoNuco>:ou I N 0" AN ANI ml AA. NNI NN+ oN AA. ANI Na oN on on ~A~ N «In «N m\=.u OI AN 00. aNI oNI AN AA. ANI 0N AA. ANI NN 0N @A 4A ch N «IN AN mxauu Oh nucaoan ucNuqzn unOu oNpNaNNo no acoNumNuooov ho» N.¢ can A.A nuouaugu oowA A onucm coNnouu I u .N wanna coNnONw I u .N oaa;a coNaoum I < q+ oA. QVII oN+ «N AA. N+ NN wN oA AA AAN A AIA oN m\3IU ou-ngN-ou A + mzq uwsuou ou ouasquoou » can: meu> unusuom no: :N qua-cu ouazm-».oo w + zzq wean-m ou ouqzmuu-ou A ou-x meu> acusuox uoz cN owsnsu quangu-ou A + :24 uaEqu ou chanqu-oo A cu-u meu> acuauoz uoz cN owcc;u «hoax» ago-Am »\<\P NIA NA NcN AIN ooua\w ouoaxw ouuo\w ouonxo »\<\~ ovou ouuaxw OHUQAA ouuaxw ouonAA »\<\p ovou ouuax» cue-x» you-x» ouuaxo »\<\p ovou ”novoo ooNuuaum ..oNuzrzacou.V unvvou aosuox qua—Nan ocoNuuNuonoe seam uoN N.¢ youannc ova "auscumnsmN Acoecounv mumuoocou I vogue: ouaNNNu I AucNu-anuuou uou oNaNuNNu A ochsuox no: coNuusvoum uo unou can: coNoouu ovou couNuuaum coNua>uoocou I Aaosuoz ou-NNNP Sou-Am acoevuoco: consonox n. m\a-u «N m\a-u u nuqm NNN¢NPn I pv N:oU Ion-Am ucoeouncaz couscoou I .vNo NN ONAIP 82 chouuuoe NoNNauam I a .waNmaouumNuum unoucoo I A .chuaoucou I N .czoo can a: I N NNNP oz I A .coNua>uva=ou I N .NocoNu:o>:ou I N nucaoeo chuacn uooo oNpNuNNo No ocoNuaNuoaoe you N.c as. A.A abouaosu oowA ”novoo ooNuuaua coNuc>uoncoco unocou cacao: IMINNNAA ocoNuaNuunov :uqm non N.c uuuaozu oomN A conga :oNooum I m .N ouunm coNnouu I u .N wanna coNnouu I < unasouwnomN N o N N o N N o N A o o o o N o N N vaqouuua oucozo oz coconuCN nousuom no: cN announce a we cue-:0 oz .oououoaN no :N uNsnos coNna anoNnuo>=ou sounxm uaoaouchz oouaonom no nonaaz .Vl AA. ANI NN AA. oNI NN+ Ac. N+ NN AN AA AA NAN N «IA cN m\3IU oNI AA. ANI oc. NN oN 0A «A coN N cIN AN m\3IU MN... N+ AN. N+ N+ AN. N- <2 NN AN oA AA AAN A AIA cN mszU ou-zqunou A + xzq uoEuqm oN ouasmnuaou A anon Nm\u> acuauom uuz cN owcqzu ouqzm-u.ou A + :24 nosuom ou unasquooo A ouaz Nm\u> acuauoz uuz cN oucosu «IangUIou » + axe yeah-A oa onusqu-ou A can: Nm\u> nausuoz no: :N ouca£u «Hoax» ouuo\A »\<\A N N NA NeN e AIN oAN «IN duo-A» onoaxw cue-AA auunxw >AAuoocou I vozuos oquNNu I AucNuo;nquoo you oNanNNu A oeuauoz uoz :oNuuavoub no uuou onus ooN-oun ovou eouNuuaum :oNu¢>uo-cou I Avotuoz ouaNNNh sou-AA ucoauwcc-z ouuaonou AN m\3IU «N m\:-u NN mABIM mzm u no.» N»\cou sounAm anaconda-t oousonox I .vuo NN oNnnP 823 N o N A o o a o A N N o o c A A c o ooqouuoo duo-:0 oz vac-nocN ocuauox no: :N unsouuuo o no oaaozu o: .onaouuaN an =N uNaaoa coNz: acoNnuo>oou aoamxw u=9aouncon oouooaog no bones: acNuauuoP NoNNnuam I a .chmaouuaNuum uooucou I A .chuaoucou I N .czoo can a: I N NNNP oz I A .coNua>uoncou I N .NccoNu:o>cou I N NI AN AA. oNI m+ AN AA. ANI A+ AN AA. oNI NN AN AA AN NAN N AIA AN mxnIU QC AA. NNI A+ AN AA. oNI A+ AN AA. NNI NN AN oA AN aAN N AIN AN m\3IU mm aucaoao ucNuqzu uaoo oNnNmNNo No ocoNunNuunov uou N.A we. A.A auouoagu oumA A oaazm coNoONN I m .N onozm coNnoum I u .N ouqzm :oNoouu I < ouoaAA ago-AA ouuaxA coo-\A >Auon:oua “auvou vague: owq__an ucoNuaNuunoe :uam you N.A uuuaazo uumN "na=ouucamN Ncovcaunv mumuoncoo I vozuoa cquNNN I AucNuasnquou non oNnNuNNu A acuauoz no: coNuunvoum No uaou can: :oNooum cooNuonua coNuo>uoncou I Avenue: ou-NNNH N A NN+ oququaou A + «24 «a AN hush-w on ouqnquaoo A AAN AA. van: meo> AN NI asuauoa uoz aN oncogu NIN A ON AN+ chasm-u.ou A + mac No AN wean-m ou ouazqu-ou A OAN AA. o..¢ Nm\o> NA c usuauux uoz cN omcasu NIN NN oN NN+ ouasqu.ou A + xzq ac AN nosuqm ou uuachunou A AAN AA. vans meu> AA NI nauauoz uoz cN oucasu NIN NN AN oA ~¢ ouo.\w AAN own-AA n >Ncou log-Am unused-ca: cousoaoz I NN oNnah 84+ N o N N N c N o N A o o o o A N o N vascuuuo oucocu oz caucuunu ccuauoa uoz cN ouaouooa a no one-:0 oz .oocouocN co oN uNaqoc :uNza ocoNouo>cou counxm acolowacoz ouuao-ox No uoaaaz ucNuquuok NvNNcuam I A .chanouoaNuNm uaoucoo I A .ucNuaoucou I N .csoo can a: I N NNNP oz I A .coNua>uon=ou I N .N-coNuco>=ou I N “I AN NA. ANI OI AA. NNI oN+ AA. ANI mszU AN 0. AN 0A. oNI ¢I AN AA. NNI AA. ANI «acacia ucNu-zn unou oNnNuNNo no ocoNuaNuuuou uou N.A ecu A.A ououaosu oomA A conga coNaouw I u .N oucnm coN-ouu I u .N ouazm coN-oum I A A+ NA. A+ OA. nI NN AN oA NA AAN A AIA AN AASIU ouqsquoou A + :24 Awaken cu ouasquuou A can: Nm\u> ocusuoa uoz aN vac-Au ouanquuou A + «24 quuom cu ounzqu-ou A ouaa meu> acusuum uuz cN vac-:0 ouqzqunou A + :24 yuan-m ou ohozmnunoo A «yam NAAUD ocuauuz uuz cN oucasu coo-AA uuuaxA NNuoucOUA "novou vozuoz omaNNNPA acoNumNuuuov :u-m you N.A nouaesu oomN unaaouwnamN Ncovcaunv acuuoo¢oo I vozuus oucNNNu I AucNucsquooo you oNaNuNNm A acuouoz uoz ooNuuovoum no uuou can: coN-ouu ovou AooNuuaum coNua>uoncou I Avoguoz ouoNNNP Iouuxm acolowucoz couscous AN m\=IU AN mxan NN m\mnw was Nu g..~ NNNcou luuosm acoEouacqz ouuooaas I .090 NN oNth 855 aaNoouuuP NoNNquam I A .ucNaaOuuaNuum nooucou I A .ucNuooucoo I N .:300 can a: I N NNNP oz I A .coNuo>uoncou I N .NocoNuco>coo I N uncooao ucNuosn unou oNnNMNNo no acoNuaNuooov you N.A we. A.A nuouaozu oomA A onozm coNnouu I m .N omega :oNuouu I u .N onocm :oNoouu I < «noeou ouNuuaum :oNuo>uon:oUA “novoo vogue: ouoNNNPA ocoNuoNuunou :uom uON N.A nouaocu oumN unmoouunomN N o N N o N N o N A o o o o N c N N onaouooc oucozu oz oooouucu ocuauva uoz cN onoouooo a no oucoau oz .onqouucN co cN uNoooz :uNza nooNnuo>ooo avg-Na acoaouocqx conga-ox uo nonlaz nl NN AA. oNI ”0 0A. oNI NN+ NN oo. N+ NN 0N AA AN NNN N AIA AN m\3IU AN oNI AA. NNI NNI NA. NNI 0+ AA. NN QN 0A AN AAN N AIN m\:Io OH N+ mN. N+ <2 NN AN cA NA AAN A AIA AN mszu ouosqunou A + :24 noun-L ou ouqzquoou A ou-x Nm\o> acuouoz no: :N omcozu ouqcm-u.ou » + azo uoEuom o» ouasqunou A «you meu> usuauoz uoz cN oucosu o..sm-».ou » + :24 uoauam ou ouosmINoou A can: Nm\u> acusuo¢ uoz oN oncogu ouuu\A ouuu\A N\¢\p N N cA NAN A AIN d AA NAN NIA AN oAN AIN euuo\A ouuo\A cue-NA ouoaxA >\<\k ovou cue-\A gnu-x» ouuoxA ouuo\A >N\<\P ovou Aconcaunv mumuoocoo I voguol o...NoNNNu I AucNquunoou you oNANuNNu A ocuauox uoz coNuuaaoum mo u-ou can: coN-ouu uvou AouNuuqum coNuo>uoncou I Avozuoz ouoNNNP Ion-Nu noon-uncut oousoooz AN m\3IU AN m\3IU N. m\un~ mxx Nu :uom N»\<\PA I PN NuN moouo oouaonoz NNom o0 oou< ooosuusm ceaxuafi o.xxuaucoz aN ooNuQuom acoonxom\uoozanauou you ucoNauo>=ou Eounxm acolouaco: ouuao-om I .vuu NN oanP 86 nuance. chN-sn Nnoo oNanNNo no ncoNumNNunov you N.A vco A.A nuuuaozu oomn ucNoouuoP NoNNIuam I A .u=Na;oNomNuuw vacucou I A .chuaoucou I N .caoo can a: I N «novou ooNuooua coNua>NuncoUA NNNP oz I A .coNua>uoo=ou I N .NocoNN:o>cou I N «novou vogue: oucNNNPA ocoNNnNNunoo zuom new N.A Noumozu oowN A conga coNnoum I m .N ooozm coNooum I u .N ouozm coNoouu I < NunaouugomN A ouunxA Nova:0ucv mum A NN NN NN AA >\<\e oqu coNooNu A o o oN- NN- NN- A- oN- NN- acpnuoz Nu: =N oucono N-N ocou ouNNoaum-ouoNNNp NN ANDHM mam roam oaoouuvo oncozu oz oo-ouuoN nououoz uoz aN caucuuoo I no cue-cu oz .oaaouoaN ooNuoaua ooNuq>uoo=oo I c. aN “Nana: coNza .coNuuo>=oo NN NN NN NN A NN segues oucNNNu - auuuxm consensus: ouuoonoa No uoaaoz AN AN AN AN AN 0 on An on ON AN NN AucNN.;.-N.oo no. oNNNuNNN A AN- A- A NN A A- one-NA .cuaNox Noz AAN AAN NAN NAN AAN AAN qua-NA coNNoavoum No Nnoo N N N A N »\<\p «Nam coNnoNu A-A A-N N-A n-N N-A A-N ovoo AouNNu.NN coNua>Noncou - Auosuoz I”SN; AN m\:-u AN m\:-o AN A\:-u AN m\:-o AN m\:-o NN «Na-u auNoxm Ncoauu.c-= ouuzoaox mm No cash N»\<\FA I by Now unauc ouuoonoz NNom no oou< onozuusm canxuafi o.xxu=u:o¥ :N coNuauoz acooazomxuoosaIcuou you o:oNnuo>:ou leunzm ucoaouocoz 00u30a0¢ I AN ONAIP €37 woNuauuoH NoNNousm I A .chaaouumNuNw u:0ucoo I A .chu30ucou I N .caoa can a: I N NNNH oz I A .coNNa>uuocou I N .NucoNu=o>:ou I N nucaoea ucNuasn Noou oNnNuNNo No ocoNNaNNuuov uoN N.A v:- A.A nuouaozu oumA "novou ooNNuaum coNuo>uon:OUA "novou vosuox own—NNPA ncoNNaNuunov nuom you N.A nounozu oumN A onozm coNooum I u .N onazm coNnouu I u .N conga coNooum I < NuazouuaamN N oNuINA Navocouov Nom A »\<\P oNoa ooNnoum A o c ANI oNI NNI NI on unusuoz uoz cN ems-£0 NIN vvou ouNuonumIvmoNNNe AN m\3-u N ego-\A Acvocouov mum A »\<\P ouoz :oNoouu A o N NNI ANI A- A+ NI nanouox uoz cN owcasu NIA ovoo ouNuuauquw-NNNH AN «\3-0 N cuunxA Navooouov mom A »\<\P ouox :oNnouu A N o ANI ANI A. o NI ANI acuoNoz uoz cN owcasu AIN ovou ouNuo-umIouaNNNk NN m\bhw mzm zczm onoouooo omcazu oz onoouocN . nfluaudfl ac: oN oocvuuon o no «wanna oz .oooouu=N ouNuu-un aoNua>nuocou I =- :N NNsnox :oan ocoN-uo>=ou NN NN NN NN A NN vozuoa ouoNNNu I zouoxm uaoaouaco: oouaooos uo Nonsoz AN AN AN AN AN o AA on on AN AN NN AucNN.;.-N.ou .oN oNpNuNNm A AN- A- A NN A A- oNooNA .cuach No2 AAN AAN NAN AAN AAN AAN ouu-xA BoNuuoeoum No unou N N N A A NNANN Auqx coN.o.N AIA AIN AIA AIN NIA AIN ovou AouNuuaum coNuo>uoo=ou I Avoguoz ouoNNNp AN mxaou AN mxzuu AN m\3Iu AN mxz-u AN mszu NN m\3Iu couuam acoaowoooz oouoouoa OH co oou< amazousm consoon o.zxu:N:ox cN coNuouoz acoonzomxuoozchuoo now No ANAN N>Ncou ecuozm ucoauunco: ouu:0noz I .vuo AN oNnoP 88 chuvuuoe NoNNeNam I A .chamouuaNuum u50ucou I A .chNaoucou I N .caoo can a: I N NNNN oz I A .coNuu>uvo:ou I N .NocoNN=o>coo I N ocoNuaNuuuuv seam new N.A uouaqnu vomN A o-azm coNaoNu I u .N «wasp ooNnouu I u .N ononm coN-ouu I < unmaouunamN Naovou ouNuu-um :oNuo>uuncOUA N.oeou vogue: ouaNNNeN ooI AAI oAI oAI oAI AAI NAI NAI CAI AAI mnn mAI ouo=ou lounhm unoeumacaz ouuoonoz I AN oNnaP 89 chusuuoh NoNNeuam I A .ucNaaouuQNuum uncucou I A .chN30ucou I N .zzoa use a: I N “novou ooNuoaum :oNu->NonaOUA NNNu oz I A .coNua>Noacou I N .NocoNuco>=oo I N ocoNunNNunvv gnaw you N.A noumczu oomN A ouozm coNnONM I m .N oaocm coNnoum I U .N onqzm coNaoum I A NqaoouwnomN ”novou vogue: owaNNNkA NCNI AAI OOI AwI AmI le oNI oNI NNI ANI ANI ANI CAI CAI CAI NAI CNI NNI ANI ANI NNI NNI oNI oNI suuxo=ucox cN :oNuauox nanoaxom\uou:3Icuou uou acoN-uo>=ou flounxm unoaouocoz oouooaom I AN oNnoP a:- l-Ilua‘ 'II...-aa.< I...I.1Il.- '.Il.u.I..li III ..I-IIIII..‘ II.1.IIII..~.~II.I.-u 1.1... I..I I... IIIII ..... I I.II1.II IIIIIIIIIIIII-I 1,1II.I.III: I .‘u '-.-‘LI 9O maNoquuok NoNNsuIm I A .chamouquuum uaouoou I A .chu50ucou I N .czoo 3:. a: I N NNNP oz I A .coNuo>uon=ou I N .NocoNuco>oou I N «Nazca: ucNuoza uuoo oNaNuNNo No ucoNquNUIov you N.A vc- A.A auouaozu oomA Nauvou ouNuuanm :oNu->uoncoUA Noueoo vozuuz cum—NNPA ucoNuaNuunvv zuam uoN N.A nouaacu cumN A ouqnm coNa0uu I u .N onozm :oNoouu I u .N onozm coNnoum I < NnaooumpsmN N N N A C N N C a a N C oaavuuva owczcu unsouuzN oz azuouox no: :N unsouuua a no owcocu oz .onauuuaN :1 :N uNonoz zusz acoN- Iuo>:ov saunxm ucQvao Icsz vouaoaom No uoaaaz AN mxaIU AN m\:IU AN mszu AN mszU AN nl CNI CAI n.. 5N on. NAI NN ”N oN oN- NAN o A-N A+ AN CN. CNI A+ AN AN. NNI NN 0N AA CNI AAN C AIN so IonA o+ AN NNI CN+ AN. ANI NN ”N CA N0 CAN N AIA AN+ 00. HI AN+ AN. ow- NN AN CA N CNN N AIN N+ Co. CNI N+ AN AN. NNI 0 CN AN C NNN N NIA m\:Iu Oh No cash A»\<\9A I By N acuauoz uoz 6N owccsu ouonquoou A + mzc uoau-L ou ouozquoou A can: Nm\o> sauna-x uoz oN own-:0 ouuc\A ouuoxA >\<\h 0500 CN ANN NIN NN ANN AN NIN ouua\A duo-\A ouoaxA >\<\H «woo one-x» nun-\A cue-x» »\ouuv mumouuv mumuoucoo I vogue: ININNNN I AucNu-zuounou you oNaNuNNu A nausuux uoz coNuu2voum No Naou can: coNuouu AouNuoaum coNuq>uoncoU I Avozuoz omuNNNh caczuuam :oaxoaa q.xxuaucox =N :oNu-Nox nccopxomxuaosaIcuou uou acoNuuo>coo souoxw ucoaouncqz wouaoaoz I AN oNAoP lounxw uaououaco: wou50no¢ 91. ucNuauuok NoNNauam I A .chaaouumNNum uncucou I A .ucNusoNcou I N .czoo can a: I N Nnovou ouNuonum :oNuu>uon:OUA NNNN oz I A .chNq>uon:oo I N .NocoNuco>cou I N acoNuoNuuoov :Ncm you N.A uuun-nu oomN A onozm coNooum I u .N onczm coNaouu I u .N sauna coNaoum I < “unsouuaomN Noovou vogue: oquNNPA NAI AAI oAI NNI ANI ANI oNI ANI NNI oNI ANI ANI ouucou flouoxm ucoSouccaz ouuaonua I NN oNnok chusuuoH NoNNnu-m I A .ucNQQOuuaNuuw uaoucou I A .ucNuscacou I N .czbn van a: I N NNN» 02 I A .uoNu¢>uon:ou I N .NccoNu:o>:oo I N azoNunNuonov zuvm hay N.A neuaanu oomN A unacm coNa0um I u .N enasm coNQOuu I U .N onusm :oNnouu I < "amaouupsz ”nuaou ouNuuaum :oNuu>uoacooA "noeou vocuor vwaNNNPA on» AA: AA: an Nmu own om- ANI ANI AA- 0A: 9A: AA- AA- NAI NA: NA: NAI ono<\» nausuuz uoz AAN AAN NAN oAN AAN AAN AAN AAN AAN AAN AAN NAN NNN NNN ANN ANN ANN ANN cuu<\w coNuuav0um no unoo AA AIN AN mxauu AA NIN AN w\3ou AA NIN AN m\:-u NNN AIN NN mxsuu AA AqN AN m\:nu NNN NIN NN mxzuu AA NIN AN mxaou NNN NIN NN «Nacu AA NoN AN mxzsu mNN AA AIA AN m\3-u AA N-A AN m\3Iu AA N-A AN mxauo AA AIN AN mxaau NNN AIN NN mszo AA NIN AN mxauu NNN NIN NN mxzou AA NIN AN w\:ou NNN NIN NN mxaIu UNN Na20uuanmua30uu y\<\h couscous NNom can: coNQOHn AuuNuu-umuAunaNNNk sounam nevi-uncut ouu:0no¢ A>\<\PA I by nNN can UNN umaouo couscous NNom so nuu< una50u=m coaxucn ..xxusucox cN coNuquox acnunxomxu-osaucuou nan acoNouo>cou sounam acoaowcca: ou»90no¢ I AN oNn-P 93 4.3 INTERPRETATION OF RESULTS AND POLICY IMPLICATIONS 4.3.1 Path A Interpretations Resource management system conversions for soil resource group-subgroups 1A, 1C, 2A, 2C, 3A and 3C are not eligible for cost sharing under ASCS's Variable Cost/Share Level Program. The conversions are not eligible because all systems erode at a rate equal to or less than the soil tolerance in 'T' value for each soil resource group. A farmer exercising rational economic behavior, all other factors affecting conservation practice adoption being equal, would be expected to select the resource management system with the highest or maximum net returns (Table 6). For each soil resource group-subgroup, the C-W/S rotation under a conventional system eroding at 1 ton per acre per year, the conservation sys- tem may produce off-site benefits for society which would offset the net returns difference. From an ethical standpoint, Bunce's Objective 2 becomes pertinent (Chapter 2). In Objective 2 - First Case, conservation is established where it is not economic for the individual but is for society as a whole where the social costs of exploitation or the benefits of conservation are not borne by the producer. Flexible methods of compensating for imposing the societal per- spective or the producer are suggested by Bunce. In this research for the Path A soil resource groups and resource management systems, financial compen- sation is not prescribed to achieve soil conservation objectives. Financial compensation can be directed to areas where conservation is truly uneconomic for the individual producer in accordance with Bunce's Objective 2 - Case 3. Compensation in the form of educational programs and technical assistance is the appropriate policy and best suited means to attaining soil conservation objectives (Bunce's Objective 4). 9A Policy Implications The Path A interpretations for the noted soil resource groups fall into Bunce's Objective 1 for an effective program of soil conservation. (Chapter 2) Erosion is not an on-site problem and consequently educational programs and technical assistance should be considered sufficient and suitable vehicles for encouraging farmers to adopt the most profitable resource management sys- tems. Although the soils in these soil resource groups are not fragile and the resource management systems do not erode in excess of the 'T' value, the expectation of absolute profit maximization can be tempered through educa- tional program and technical assistance policy. Given the results of the par- tial budgeting process where the difference in net returns under conventional and conservation systems is negligible, educational program and technical assistance policy should be directed to encourage and promote farmer adoption of conservation tillage systems. Justification for this policy recommendation is both pragmatic and ethical. We know that erosion results in nonpoint agri- cultural pollution and that off-site benefits for abatement can be derived or at least discussed. With a negligible difference in net returns between a conventional system eroding at 5 tons per acre per year and a conservation system eroding at 1 ton per acre per year, it simply makes good sense to encourage conversion to the lesser erosive, conservation system and capture/ avert offsite benefits/damages. 4.3.2. Path B Interpretations Resource management system conversions for soil resource group-subgroups 8B, 9C, 9E, 10C, 11C and llE are eligible for cost sharing under ASCS's 95 Variable Cost/Share Level Program. However, all systems in each group—subgroup have negative net returns and are very unprofitable for cash grain production in the C-V/S rotation (Tables 14, 15, 17 and 18). Given the magnitude of the losses shown through the short-term partial budgeting process, a farmer would be expected to convert to a different non-C-W/S resource management system or undertake a land-use change. In either case, the farmer should explore a full range of possible options to assess Opportunity costs, i.e. to analyze and evaluate other options for use Of the cropland and production inputs relative to the most profitable alterna- tive among the resource management systems analyzed in this research. The Opportunity cost analyses must consider soil conservation objectives to assess both relative profitability and erosion rates among alternatives. Policy Implications Since analyses of the Opportunity cost of conversion to different non-C-W/S resource management systems or of land-use change are beyond the “0Pe Of this research, general policy implications cannot be drawn. 4.3.3 Path C General Many resource management system conversions on soil resource group- mlb8f<>umz 4A, 4c, 5A, 5c, 6A, 6C, 7A, 7c, 8C and 10A are eligible for cost sharing under ASCS's Variable Cost/Share Level Program. The conversions which are eligible and analyzed are those from resource management systems which er°d° at 8 rate greater than the 'T' value to systems which erode at a rate equal t° or less than the 'T' value. The number of analyzed conversions Varies by 8011 resource group. Erosion rates, short-term net returns, long- term depletion estimates and Variable Cost/Share Level Program rates and Einno nuts are components of the analyses. 96 Path C results fall into two categories; results where the representative soil for the soil resource group exhibits a long-term productivity change using the Soil Depletion Estimates model and results which exhibit no long- term productivity change. The two categories of results are discussed sepa- rate 1y. Path C Interpretations - No Depletion Effect Soil Resource Groups 4A, 4C, 6A and 6C are represented by the Memphis 3°11 series for Soil Depletion Estimates model anlayses for long-term produc- tivity change attributable to erosion. The Memphis soil series is a deep, “Oderately well to well drained fine-silty loam upland soil. In soil reSource groups 4A and 4C1, the Memphis soil is characterized by 2-6 percent SIOpes and corn yields which range from 127-137 bushels per acre depending on e11‘0sion phase and tillage method (Appendix 1). In soil resource groups 6A and 6C, the Memphis soil is characterized by 6-12 percent slapes and corn Yields which range from 105-116 bushels per acre depending on erosion phase and tillage method (Appendix 1). The Memphis soil series consists of three horizons. The parameters used in the Soil Depletion Estimate model (texture, bulk density, permeability, available water capacity, and pH are virtually identical for each horizon. The virtually identical horizon parameters coupled with the soil series depth results in no long-term productivity change even for the most erosive situ- 6tion (79 tons per acre per year for resource management system C-W/S 11 with c0uventional tillage and 'up and down' conservation practice in soil resource g"Humps 6A and 6C). With no on-site effect from the Soil Depletion Estimates model, interpretations for soil resource groups 4A, 4C, 6A and 6C rely on short-term net return changes and Variable Cost/Share Level Program cost sharing amounts. 97 Interpretations focus on the number and types of resource management systems which improve a farmer's net return position and the impact of the VC/SL Program. Analyses, interpretations and policy impacts for SRG 4C and 6C have been eliminated due to an inconsistency. When the data and information for the Partial budgeting process were assembled, the Soil Conservation Service in Kentucky was asked for and provided crOp yields by soil resource groups, till- age method, and erosion phase. At a later date, input information for the 8°11 Depletion Estimates model was assembled and analyses were conducted. Since the model demonstrates no long-term productivity change for the Memphis 3011 for all resource management systems, the use of different yields by ero- 31011 phase as initially assigned by Kentucky's Soil Conservation Service for the partial budgeting process is not justified. Consequently, Path C inter- pt'etations under the condition that no depletion effect occurs are limited to erOaion phase 1 results, i.e. SRGs AA and 6A. Soil Resource Group 4A (Table 7): Four resource management systems e>cceed the soil group's 'T' level (ET systems) and there are eight systems to ¢Onvert to which are at or below the 'T' Level (BT systems). For every ET BYatem, there are at least three BT systems which increase netreturns without vC/SL cost sharing.1 The BT no till systems with up and down, contouring or cOntour stripcropping conservation practices always increase net returns. Converting from C-W/S 11 (conventional-contouring) to C-W/S l3 (Conservation-contouring or conservation-contour stripcropping) in 4A also increases net returns without cost sharing. All BT systems using terracing reSult in large net return decreases because of the cost of the practice. \ 1Partially attributable to higher assigned yields for no till system ( Appendix 1). 98 When cost sharing under the VC/SL Program is included, all BT systems which: had increased net returns with conversion generally show further increases. The number of BT systems which change from decreased or stable net returns to increased net returns under the Program varies by ET system. Conversions to BT conservation tillage systems always result in net returns at 16881: equal to the ET system and, in many cases, the short-term net returns are increased substantially, e.g. in hA converting from ET C-W/S ll (COTrventional-up and down) to ET C-W/S 13 (conservation-contouring) changes thatnet return position from $-2 per acre to $+16 per acre after $18 in cost 8hairing under the VC/SL Program. Although the VC/SL cost sharing is authorized for just two years, the mafinitude of the positive change in net returns when cost sharing is included ‘nadf justify system conversion for the farmer even when the long-term net l‘eturn change without cost sharing is small and negative. Using capital 1trvestment theory (41) and an 8.125 percent discount rate (the same rate used f13r Soil Depletion Estimates), the number of years (t) it would take for a B (LOIIar per year net return loss to equal an A dollar cost sharing gain for two Years is ca lcula ted: Set discount rate - r a .08125 In present values, set: two years of cost sharing benefits + t years of net return losses - O $A l 2 $3 1 t then, —; [l-(fi) ] +7 [l-(m) ] - O (1) where A - annual, authorized cost sharing amount B - annual net return loss 99 ln[1 + (Ai'B) x .14464] and t a (2) -.07812 When the net return losses are small relative to cost sharing benefits, equation 2 will not hold. As a quick check, the present value of an infinite sum of the net returns loss (equation 3) should be compared to the present value of two years of cost sharing. Sum”- In (A) for re turns 811d the In this Offsets SB .17 (3) the previous example, a farmer would receive a total of $18 per acre a two year period of cost sharing a conversion which decreases net by $-2 per acre per year (B). Using the quick check (equation 3) S-2 Sum °° - m '3 $-24.62 present value of two years of cost sharing is: $18 1 2 .08125 [1'<1+.08125) I 532'04 case, the relatively large two-year Program cost sharing indefinitely the small annual loss in net returns which results from this example System convers ion. Conversion to the C-W/S l3 (conservation-terracing) system presents a less attractive situation. Conversions from the example ET system (C-W/S 11 Conventional-up and down) results in $26 in Program cost sharing for the two- Year authorized period and $-22 in annual net return losses. Using equation 29 t - 2.4 years and the conversion system is unprofitable beginning in the third year, i.e. the first year following termination of Program cost sharing. 100 Soil Resource Group 6A (Table 10): Nine resource management systems exceed the soil group's 'T' level (ET systems) and there are three systems to convert to which are at or below the 'T' level (BT systems). Excepting no till. ET systems with up and down or contouring conservation practices and the conventional-terracing system, all other ET systems (6 total) have one BT system to convert to which improves net returns without cost sharing, the no til l-contour stripcropping system. In SRG 6A, conversion from all ET Options except no till systems to the no till-contour stripcrOpping system increases net returns without cost shar- ing. Without cost sharing, all ET system conversions except from the conventional-terracing option result is large net return decreases. When cost-sharing under the Variable Cost/Share Level Program is included for SRG 6A conversions all BT systems net returns are increased during the authorized two year Program period. All conversions to the no till-contour s'Z‘l'ipcropping BT system remain more profitable than conversions to the BT conservation or no till systems with terracing. Conversion in SRG 6A to the BT systems with terracing from many of the ET systems show increased net returns when the two years of authorized Program cost sharing is included. However, the situation is identical to the SRG 4A interpretations, i.e. the Present value of the net returns decrease from the system conversion plus the two years of Program cost sharing must be calculated for a farmer's planning h‘Z’I‘izon and considered along with other financial, cultural and ethical fac- tor, before a farmer's conversion decision should be made and implemented. Path C Policy Implications - No Depletion Effect The Variable Cost/Share Level Program was established to improve the cost effectiveness of cost sharing financial assistance through voluntary resource ma“agement system conversions. The Program assigns higher cost sharing rates 101 to resource management system conversions which are characterized by higher pre-conversion system erosion rates and by the greater the percent reduction in the erosion rate resulting with a post-conversion system. Cost effective- ness is based on "physical" measures of pre and post-conversion erosion rates. Other considerations for cost sharing financial assistance, such as economic criteria, are not used. To discuss the policy implications of the Program, several questions need to be addressed. 1. Is financial assistance necessary to promote and achieve erosion control at or below a soil's 'T' level? 2. What does the Program encourage/discourage? 3. Is there a better way? The first two of these questions will be addressed in this chapter. The third question, "Is there a better way?", will be addressed in Chapter 5. The interpretation of results for SRG 4A showed that for each resource mat'tagement system eroding in excess of the 'T' value, there are at least three Systems eroding at or below 'T' which can be converted to with increased net returns and no cost sharing. In SRG 6A, seven out of nine systems eroding in excess of 'T' have one below 'T' system to convert to which increases net l'e'iurns without cost sharing. Then, is financial assistance necessary? The answer is yes but most likely not in the VC/SL Program manner. The principle behind ASCS's program is that of demonstration. ASCS feels that if financial assistance is provided in an amount sufficient to encourage implementing a demonstration system for a tw° year period without defraying all costs of conversion, the system will [31-on its worth and be maintained. In part, the results from SRG 4A and 6A contest this demonstration 1)rihciple. First, from a policy standpoint the demonstration principle seems 102 proper when the system being converted to provides equal or increased net returns for the farmer. The farmer's profit maximization goal and Federal erosion control goals are simultaneously met. However, a method to vary cost- sharing rate based on net returns change seems more appropriate. For example, a method to assign higher cost sharing rates to the systems with higher net return increases would still satisfy the demonstration principle and promote conversion to the more profitable of the conversion system options. Second, if net returns are shown to decrease with a system conversion, the VC/SL Program method of cost sharing does not consider the trap which a farmer may be promoted into. The two examples from SRG 4A merit further discussion. Case 1: Converting from C-W/S ll (conventional - up and down) to C-W/S l3 (conservation - contouring) Case 2: Converting from C-W/S ll (conventional - up and down) to C-S/ ll (conservation - terracing) In Case 1, it was shown that the farmer can sustain the small net return 1088 indefinitely when Program cost sharing is included. In Case 2, the con- vetaion system becomes unprofitable in the third year when Program cost is ineluded. Case 2 exemplifies the trap, i.e. offering a large cost sharing amount for two years may induce conversion to a system which is so unprofit- ab1e during the 10 year terracing life-span that the farmer may be driven out °E production. The VC/SL Program does not address the consequence of this sh<>rt-term incentive/long- term effect. Path C Interpretations - With Depletion Effect Soil Resource Groups 5A, 5C, 7A, 7C, 8C and 10A are eligible for cost shat-ing under ASCS's Variable Cost/Share Level Program. The conversions which are eligible and analyzed are those from resource management systems which er‘Ode at a rate in excess of the 'T' value (ET systems) to systems which erode at or below the 'T' value (BT systems). Representative soils were chosen for 103 each Soil Resource Group for computations of long-term productivity change vattributable to erosion using the Soil Depletion Estimates model (Chapter 3). Consideration of the Soil Depletion Estimates model perpetual annuity for break-even investment in soil conservation practices is an additional factor to consider when weighing resource management system conversion options. In order to analyze the combined impact of cost sharing under VC/SL, net returns change and the Soil Depletion Estimates annuity, equation 1 from the previous section requires a slight modification. Set discount factor = r = .08125 In present values set: two years of cost sharing benefits + t years of (net returns change + depletion annuity) - 0 5A 1. 2 $B+$C 1 t then, r;- [l-(m) ] +—';—' [l-(m) ] = 0 (4) where A = annual, authorized cost sharing amount B 8 annual net return loss (change) C = Soil Depletion Model perpetual annuity (MAECP) 1n{1 + [A : (3+c) x .14464]} and (5) -.07812 when the sum of net return change and the depletion annuity are small relative t" the cost sharing benefits, equation 5 will not hold. To check for this cotldition, the present value of an infinite sum of net returns change plus the depletion annuity (B+C) using equation 6 should be compared to the value from the left-hand side of equation 4. ., m (6) 1' 104 A note of caution is necessary to properly interpret equations 4, 5 and 6. The value of annual net return change (B) will ordinarily be negative indicating a long-term productivity loss. The value of the depletion annuity will. be positive indicating a long-term accrual of benefits from erosion con- trol. If the sum (B+C) is negative, net return losses are greater than ero- sion control benefits and the economic impact of including cost sharing should be evaluated. If the sum (B+C) is positive erosion control benefits are greater than net return losses and the farmer is better off in the long run even without receiving a cost sharing subsidy for the resource management SYstem conversion. Larger depletion annuities are associated with more highly erosive ET 3Yatems. This means that the potential for offsetting net return losses is generally higher for the more erosive ET systems. Soil Resource Groups SA and 5C (Tables 8 and 9). SRGs 5A and 5C have 6 ET systems and 6 BT systems. With the exception of the ET C-W/S 14 (no till- “P and down) system, each ET system has two BT systems to convert to which 1t"irease net returns.1 Those two BT systems are C-W/S 14 (no till-contouring) and C-W/S 14 (no till-contour stripcrOpping). All conversions to BT systems with terracing result in large net return decreases. When cost sharing under the VC/SL Program is included, all BT systems with one exception show an improved net return position. Although the net return position improves with cost sharing, many conversion options, especial- ly for options which include terracing, still appear unprofitable. To par-V hia11y examine the economic impact of VC/SL cost sharing and net return change, conversion from the C-W/S ll (conventional-up and down) ET system are \ (A lPartially attributable to higher assigned yields for no till systems pBendix l). 105 analyzed using equations 1, 2 and 3 for SRG 5A (Table 8). Conversions to BT systems 047/5 14 no till-contouring and no till-contour stripcropping result in increased net returns and the VC/SL Program encourages conversion by cost sharing an amount which varies by the BT tillage method and conservation prac- tice. Conversion to C-W/S 13 conservation-contour stripcrOpping results in an annual $-4 loss in net returns which, under the conditions specified by equa- tion 2, can be borne for approximately 15 years by the farmer before the present value of the net returns loss becomes less than the present value of benefits of two years of cost sharing. For system conversions to any tillage method Option which employs terracing as the conservation practice, the period of time for which the BT system can be economically justified for the farmer '5 Very short. The best terracing conversion option (C-W/S 14 no till- tertacing) results in a loss for the farmer after the third year of production (Equation 2). When compared to the ASCS mandatory ten year terracing life, in the Short-run the VC/SL Program falsely encourages conversion to a resource mamage‘uent system which leads to a long-term loss and may adversely affect the farmer ' s entire farming system. when the interpretations also include the estimated depletion annuity for ET sysitem conversions, the long-term economic impacts are calculated using equations 4, 5 and 6. In the example from the previous paragraph, the Soil Depletion Estimates perpetual annuity (MAECP) are $10 for the Loring soil gel-tea and $11 for the Grenada soil series.1 Conversions from the C-W/S ll conventional-up and down ET system to no till with either contouring or con- tour stripcrOpping provides the farmer with a triple economic benefit while ach 1eving erosion control, i.e. (1) net returns increase, (2) the conversion \ 1 Both soil series have a fragipan which restrict root penetration. 106 is cost shared and (3) a large potential long-term productivity loss is averted. For conversion to the conservation-contour stripcropping BT system, the farmer can expect a double economic benefit, i.e. (l) the conversion is cost shared for two years and (2) the long-term annuity benefit from averting soil depletion for either soil series ($10 for Loring, $11 for Grenada) more than Offsets the $-4 annual loss in net returns resulting from the conversion. For conversion on the Grenada soil series to the three system options which have terracing as the conservation practice: Conversion To Number of Years Present Value Benefits > Present Value Losses CrW/S ll conventional- 3 (equation 5) terracing C'W/S l3 conservation- 5 (equation 5) terracing C-W/s 14 NO 1111- 36 ' (equation 5) terracing Then 9 only the terracing practice using no till tillage can be economically justified as a viable long-term conversion option. Soil Resource Groups 7A and 7C (Tables 11 and 12). SRGs 7A and 7C have 9 ET 8)'stems and 3 BT systems. Very few of the erosion controlling BT systems res“It in higher net returns than the ET systems. With generally lower net returns upon conversion, the importance of considering the depletion annuity and long-term impacts is more obvious. In these SRGs, the soil series also has a significant impact. The Loring s 011 series with a fragipan and Brandon soil series without a fragipan I) 0th show a depletion effect. The Loring soil series' fragipan causes a much rapid long-term yield effect because the crap rooting zone depth is e st31’1cted whereas the Brandon soil series' subsurface horizons are simply e 88 inherently productive than the A horizon. The example conversion in SRG 107 7A from C-W/S ll conventional-up and down to C-W/S l3 conservation-terracing is a good example of the difference between the soil series. For the fragipan Loring soil series, the depletion annuity is $18 per acre per year, the net return change is $-21 per acre each year, and the VC/SL Program provides $26 per year for two years. Using equation 6, this example conversion system can be maintained indefinitely without adverse economic impact upon the farmer- producer. However, for the non-fragipan Brandon soil series the depletion annuity is $8 per acre per year and, using equation 5, the same conversion can be maintained for only 4 years before the present value of net benefit becomes negative. In SRG 7C, where the soil series are in the moderately eroded erosion Phase 2, the depletion annuities are much larger than in 7A. Although the yield levels and net returns for resource management systems in erosion phase 2 are lower than those for erosion phase 1, many more system conversions may be Considered economically rational because of higher depletion annuities. §oil Resource Group 8C (Table 13). SRG 8C has 6 ET systems and 6 BT ”3 teIns. There is just one system conversion which increases net returns (from C-W/S 14 no till-up and down to C-W/S 13 conservation-contour strip- cropping). The Grenada soil series with a fragipan restricting the crop rooting zone depth demonstrates a long-term productivity effect with depletion annui ties which range from $12 for the most erosive ET system to $2 for the leas': erosive ET system. Including the depletion annuity in computations of the long-term economic impact of system conversions again is critical to 1naul‘e that a farmer is not being promoted into converting to a profit losing 3Ystem. ‘Vith a $12 depletion annuity, converting from C-W/S ll conventional-up and down to any of the non-terracing Options can be economically justified 108 because the annuity is greater than or equal to the annual net return loss. For the best of the terracing conversion system options (C-W/S l3 conservation-terracing), the conversion can be economically justified for five years before the present value of net benefits becomes negative (equation 5). Soil Resource Group 10A (Table 16). SRG 10A has 2 ET systems and 10 BT systems. There is just one system conversion which results in increased net re turns and one system which leaves net returns unchanged (conversion to C-W/S 13 conservation-up and down). The Crevasse soil series has less inherently Productive subsurface horizons and shows a long-term productivity loss attributable to erosion. Conversion from either ET system to non-terracing conventional or conservation tillage BT systems can be economically justified betense the depletion annuity is equal to or greater than the annual net return loss caused by conversion. Conversion to no till systems and systems with terracing generally result in Short periods of time before the present value of benefits becomes less than the present value of losses. The best case results in a seven year Period for conversion from C-W/S ll conventional-up and down to C-W/S 14 no 1: 111‘up and down. Most BT systems' net present value become negative in the l to 4 year range. Path C Policy Implications - With Depletion Effect Discussion of the policy implications of the Variable Cost/Share Level Pr°8ram with depletion effects must address the same three questions as the discussion without depletion effects: 1. Is financial assistance necessary to promote and achieve erosion control at or below a soils' 'T' level? 2. What does the Program encourage/discourage? 3. Is there a better way? A ga in, the third question will be the tOpic of Chapter 5. 109 The interpretations of results has shown, to varying degrees, that that erosion can be controlled to or below a fragile soils' 'T' level by resource management system conversions. There are four possible ways to achieve control in an economically rational manner. The four ways are: 1. The net return change may be positive. 2. The demonstration principle authorizing Program cost sharing may produce two-years of benefits which offsets a long-term, annual net return loss (in present value terms). 3. The depletion annuity benefit may be greater than the annual net return loss. 4». In present value terms, the depletion annuity benefit plus the two- year Program cost sharing benefit may be greater than the long-term, annual net return loss. fieelating these four methods for achieving economically rational erosion control to Bunce's four objectives for an effective program of soil conserva- t1°n ' (Chapter 2), the Variable Cost/Share Level Program is deficient in dis- t1“guishing between Objective 1 and Objective 2. Objective 1 prOposes to achieve soil conservation where it is economic for the producer while Objec tive 2 proposes to establish soil conservation where it is not economic for the producer but is for society as a whole. Just as the results have demot'tstrated four ways to achieve economically rational erosion control, the resul ts have also demonstrated that the Program may actually encourage resource management systems conversions which do not achieve economically TauZlonal erosion control. In a situation where economically rational conver- 31°ns exist, a policy which may promote uneconomic conversions creates a problem which requires reform. The problem will be detrimental for the aruler-«producer and for society. For the farmer, the problem manifests over time as a loss in profitability which may threaten the 11V€11h°°d 0f the en tire farm operation. For society, the problem manifests as a potentially 110 poor allocation of soil conservation funding pool, which is in direct contravention with Bunce's Objective 2-Case 3 (Chapter 2). In situations where the results demonstrate that economically rational system conversion Options are not feasible, the Program policy should pre- scribe that analyses of the opportunity cost of conversion to non-C-W/S sys- tems or alternative land uses be undertaken. Opportunity cost analyses are beyond the scope of this research. 5. INTEGRATING ECONOMIC CRITERIA IN ASCS'S VARIABLE COST/SHARING LEVEL PROGRAM 5 . 1 INTRODUCTION The Variable Cost/Share Level Program initiated by U.S. Department of Agriculture's Agricultural Stabilization and Conservation Service was designed to achieve the greatest amount of soil saved with available funding through changes in soil conservation practices. The vehicle for implementing the Program is a method of assigning cost sharing rates which varies by the pre- PI'ACtice erosion rate and the percent reduction in the erosion rate from pre- Pl'aCtice to post-practice. By assigning cost sharing rates on a variable b3318, this method also influences the allocation of soil conservation funding. The primary objective of this research is to develop alternative cost s"ml-"Lug arrangements which integrate or incorporate economic criteria. In pursuing this, the question introduced in Chapter 4, "Is there a better way?", "'11 be explored and recommendations for policy change in the Variable Cost/ 3 hate Level Program will be made. 5.2 WHAT HAS BEEN LEARNED? This research has attempted to carry out a systematic analysis of several e"unlolnic factors which may influence a farmer to convert to soil conservation practices or resource management systems which erode at or below a soils tole‘l'ance or 'T' level for a corn followed by double-cropped wheat with soy- been: rotation in Kentucky's Jackson Purchase Area. The economic £86110“ used 1 n the analysis are the change in net returns resulting from system conver- 81°“. the the Variable Cost/Share Level Program cost sharing rate and amount, and Soil depletion annuity based upon an estimate of the long-term soil 111 112 productivity loss attributable to erosion. The results, interpretations and policy implications in Chapter 4 suggest that these economic factors can lead to a variety of conclusions regarding the cost-effectiveness of the VC/SL Program for the farmer or for society. This leads to the following lesson from Bunce: Lesson 1 - Just as we have made reconnaissance erosion survey maps for each state, so should we make a reconnaissance survey of the economic feasibility of conservation. (8, pg. 165) A reconnaissance survey of the economic feasibility of conservation can serve b0 th the farmer-producer and society by exposing shortcomings of more partial interpretations and implementation of soil conservation policies. In the course of the research, it was found that the analyses fall into 8e‘reral categories. Each category can be characterized by complementary yet different sets of economic criteria which are used to analyze and interpret the economic feasibility or rationality of resource management system conver- 81one. The categories are directly related to analysis Paths A, B and C, as outlined in Chapter 3. Table 19 summarizes each category by research proce- dure Path and relevant economic factors: Table 19 - Analysis Categories by Research Procedure Path and Relevant Economic Factors \ Category 1 2 3 4 \ R Rzaearch Procedure Path A B C C event Economic Factors Variable Cost/Share Program X X Net Returns Change X X X X Depletion Annuity X \ 113 When reconnaissance survey of the economic feasibility of conservation is proposed, knowledge of analysis categories which pertain to the given situ- ation may predispose the necessity of considering some economic factors. Lesson 2 - An attempt should be made to categorize the prevailing circum- stances in an analysis or survey of the economic feasibility of conservation to curtail unnecessary data and information collection and assembly and, thereby, reduce the reconnais- sance to essential elements. Lesson 2 is an attempt to economize and control the analysis to fit only those elements which are pertinent and essential. All research analyses are con- Strained, whether by time, by funding, by available personnel, etc. Correctly Predisposing analyses to categories can be far more efficient, both in terms of accomplishing the objectives of the research and allowing the researcher to move on to other issues. Depletion of a soil's surface and subsurface horizons from continued, e3‘C'l-iessive erosion is a long-term problem which usually decreases productivity. ftti <>rder to evaluate the long-term physical and economic impacts of soil dePletion, a Soil Depletion Estimates computer model was developed. One out- Plat of the model is calculation of a perpetual depletion annuity, the annual ambunt of money a farmer-producer could invest in soil conservation to convert from a resource management system eroding in excess of a soil's 'T' value to a 8Yatzem which erodes at or below the 'T' value. Using present value theory, the depletion annuity was combined with short-term net return change from the l>£‘lrtial budgeting process and the authorized two year Variable Cost/Share Level Programs amount to perform an analysis and evaluation of the period of time which a conversion resource management system could be expected to remain ‘!<:‘3tlomically rational. For the aforementioned Category 4 for Path C, the 1‘ e8\allts of integrating the short-term and long-term in many situations proved t Q be a critical determinant of sustained economic feasibility. 114 Lesson 3 - When planning and executing a survey of economic feasibility of soil conservation and categorizing the analyses to be performed by relevant economic factors, the researcher must be aware of the long-term and short-term benefits and costs and, where appropriate, devise a method to evaluate the combined effects. In many situations, consideration of the long-term impact of erosion on productivity resulted in different conclusions about the economic feasibility of resource management system conversions than consideration of only the short-term impacts. In the long-term some system conversions were shown to be economically feasible where they were not in the short-term and vice versa. Off-site benefits was one other condition mentioned in places throughout the research. Although considerable research has been performed to attempt to value off-site benefits, the issue was deferred as beyond the scope of the research project. The method of dealing with off-site benefits or benefits for control of nonpoint agricultural pollution in this research follows the course of most research, namely trying to cope with the issue through on-site programs and policies. Although cardinal measures of off-site benefits are the subject of many research projects, the ordinal relationships are best known. In an ordinal sense, reduction of erosion from farmland is viewed as a cost by some and a benefit by others. The issue of who bears the benefits and costs is of major concern. If the cost of abatement is borne by the farmer- producer, then the farmers net return position will be affected and results from research like this project will require modification of analyses and interpretations of results and policy implications. Lesson 4 - The researcher working in the field of soil conservation economics must be cognizant of the potential impact which consideration of off-site benefits and costs may have on results and the inferences drawn from those results. 5.3 WHAT CAN BE DONE? It seems that the Variable Cost/Share Level Program and concept can benefit with applications from the field of economics. Although it may be the 115 case for cost sharing in general, the VC/SL Program seems over-eager to allocate cost sharing rates and amounts and over optimistic in assuming that cost-effectiveness will improve. This seems to be the result of restricting the Program's variable rate concept to purely physical measures of erosion rates. Given the results of this research and especially the Lessons from the previous section, variable assignment of cost sharing rates would be more apprOpriately done after a reconnaissance survey of the economic feasibility of soil conservation has been conducted. In this research, resource management systems which erode at or below a soil's 'T' or tolerance level have been surveyed. This obviates the Program necessity for computing cost sharing rates on the basis of pre-practice ero- sion rates and percent erosion reduction. The pre-practice and post-practice erosion rates can be used to determine system Options to convert from and to convert to depending upon the soils 'T' value. With a reconnaissance survey of the economic feasibility of soil conser- vation and pre and post-practice erosion rates in hand, a variable rate cost sharing procedure can be preposed which integrates economic and physical criteria. Steps to develop the variable rate under the Proposed Procedure and to compare the proposed variable rate with the VC/SL rate are: 1. Rank conversion system options from highest to lowest net return change. (Net Return Change) 2. Index net return changes with the highest and lowest net return changes set equal to 1.00 and 0.00, respectively. 3. Multiply the Index numbers by .75, the maximum authorized VC/SL Program cost sharing rate. (Rate) 4. Convert the VC/SL Program cost share "look-up" tables (Appendix 7) to assign up to a maximum .10 or 10 percent bonus to the Proposed Rate by pre-practice erosion rate and percent reduction in erosion. (Bonus) This can be accomplished with a simple formula for each conversion Option: . 116 VC/SL Rate x 2 -.05 10 Bonus 3 If the computed Bonus is less than zero, it is set equal to zero. 5. Add the Bonus and the Rate. (Sum) 6. Multiply the Proposed Procedure cost sharing rate (Sum) by the appropriate dollar amounts eligible for cost-sharing in Tables 6-18. (Proposed Amount) 7. Display the appropriate dollar cost share amount to farmer from Tables 6-18 for the VC/SL Program. (VC/SL Amount) 8. Use equations 1, 2, and 3 or a, 5, and 6 as appropriate to calculate the number of years the post-conversion system would be expected to remain more profitable than the pre- conversion system under the VC/SL Program (YEARS:VC/SL) and under the Proposed Procedure (Years: Proposed). 9. Display the prescribed ASCS minimum practice life for the post- conversion system. Use these practice lifes as minimum acceptable number of years a post-conversion system must maintain increased wealth and, under the Proposed Procedure, eliminate cost sharing for systems which do not satisfy this minimum. The results from applying the PrOposed Procedure and a comparison with the VC/SL Program results for examples in SRGs 4A and 5A are provided in Tables 20 and 21, respectively. The comparison of the Proposed Procedure and the VC/SL Program results for SRGs AA and 5A show similar and consistent impacts. The Proposed Procedure generally assigns higher cost sharing rates and amounts to conver- sion system options with higher, more positive net return changes. The VC/SL Program assigns some of the highest cost sharing rates and the highest amounts to the conversion systems with the lowest, most negative net return changes. Using the implied rule in Step 9 of the Proposed Procedure, cost sharing for all terracing options in both examples would not be authorized because the systems do not satisfy the minimum acceptable number of years a post- conversion system must maintain increased wealth. This may avoid the 1lfi7 .zadeos concouoc— cueucuae dud: soaa>o co_uuo>coo anon a ones» we uoaasz~ .ucoouvo no u:0—¢>u:co —ee_uo:— c. N o s~ n no. we. we. cc. cc. c.- uc.u.ruop-=o..a>se.=ou c. c c p_ _ Na. 0:. me. me. cc. Na- u:.oc.sok-.c:o.s=o>=ou cs e o s~ e. no. “N. we. as. NN. Na- acaucuuup-__.s oz a a a c. c. am. No. cc. on. «A. ~+ u:.aaouoe..»m usoucoo-=o_so>.u.=oo a a s s c_ an. an. Ne. on. as. ~+ «cauaozcoo-ce_uostes=co n s a __ n. no. Na. me. as. me. n+ u=_aao.ua.sum usaseoo-__ap oz m s a as n. ~s. «a. no. as. no. 5+ ucauaoscco-.__p oz . s a n as c~. as. ac. ma. cc.a a+ czoc as. a=-__.e oz Auueo>v eu_4 w m _:=m unaron ~0us= o oo_uoeumuoua__uh oo_uoeum ~4m\u> Nvoooaoum ucsos< accos< _ous¢ ouseoooum owe-so >3 saun>m wuw< «when» amuse» am\u> eonoaous am\o> venomoue renew chauox uoz acoaomccez ouuacnoz cOAuhUaoun— =O«IHO>——OU .ouseoooum venomoum .e> Isquum uo>oa euegmxaaou ode-«ue> .=oov _~ «\auu Iouu ecououo>coc wen eucaol< are noun: acuuesm uuou no can—usaeou I c~ o—nak 1Ql8 .uO—uoa .uon cvecouc 0:» new cc.no I mum=cunuooa a muse» uo weasaz~ .ucoouom no u:0—¢>~::c ~csuoocu c. o c n“ ~ as. oo. oc. oo. oo. -n wc_ue~wohaco—ue>uou:ou c. ~ c a. o «a. aN. ac. cN. aw. a_- wo_oooooa-___a oz m 8 9 s s Co. on. no. No. om. nu wc—eoouuouuum macarocscouue>uoacou a s a a a «a. ma. ac. ac. Na. a+ soaoooooo_oom ooouooc-___a c: a s a n a Na. cc. ac. ma. =c.. a+ w=_oooococ-___a oz Auueorv ow“; w m diam dassoc ~ou-z Amy oouuocumnowe___k oo—uueum ~4w\u> NcoaoaOum ucsoi< u==o5< ~ouex ousroUOue owceso a; elouuam mom< .oueur .aueo> ;m\o> vonoaoum amxu> voooeoue woven ensue: uoz acoiouece: ouusanx voa_uouuuc couauo>coo .owscoooum rooodouc .us neumouc —o>o; ouc:m\uaoo o—ae.u.> -Om ee—uom ceccouc eta uou uoocoov n. wxzuu eouu eco_nuo>cou you acacs< ec- eou-x usuucxm ueou no coo—ceasoo a - o~aea 119 short-term exploitation which might occur in the VC/SL Program, i.e., converting for the short period of profitability and then opting for another resource management system. The Proposed Procedure for assigning variable rate cost sharing demon- strates that economic and physical criteria for rate determination can be integrated. Some of the characteristic results of applying the Procedure may be desirable, e.g. (l) the Bonus which carries forth the spirit of the VC/SL Program, (2) the implied intertemporal rule that a post-conversion system op- tion maintain increased wealth for at least the life of the soil conservation practice as an eligibility requirement for cost sharing, and (3) the targeting 0f cost sharing financial assistance incentives to post-conversion systems Which increase net returns/wealth. Some characteristics Of the Procedure may not be desirable, e.g. (l) the amount of time and funding necessary to gener- ate the input data and information to apply the procedure may be prohibitive, (2) assigning higher cost sharing rates and more financial assistance to post- COHVersion system Options which are most profitable may contradict the philos- °PhY' behind and principles of technical and educational assistance provided by the Federal government, and (3) the Procedure may be difficult to apply and/or exPlain at the field level. Given its desirable and undesirable attributes, the Proposed Procedure shows that conversion decisions made by farmers may be affected by a broad range of economic factors, including the ASCS rules for cost sharing. A more holistic approach to assigning cost sharing rates, e.g. the Proposed Procedure, may lead to a different distribution of conservation funding. The conversion systems being cost shared may be different, the amount of funds eXpended may be different, the number of farms and farm acres being reached by Elnaneial assistance may be different, and the soil conservation funding allocations among technical, educational and financial types of assistance may become different. The Proposed Procedure is just one possible way to integrate economic and physical criteria in a variable rate cost sharing format. It is suggested that discussion of the Proposed Procedure or the concept of the Proposed Procedure be opened to involved Federal agencies, farm organizations, univer- sities, farmers and others to solicit modifications or additional rules per- suant to new or revised policy for cost sharing financial assistance. Exhaustive testing of any new or revised policy which may evolve would be necessary to insure that it is rational and practicable. 6. SUMMARY, CONCLUSIONS, LIMITATIONS AND SUGGESTIONS FOR FURTHER RESEARCH 6.1 SUMMARY This research has been directed to looking for a way to incorporate economic criteria in a procedure to assign variable rates of cost sharing. Resource management system conversions which achieve a soil's tolerance or 'T' level for the corn followed by double-cropped wheat with soybeans rotation in Kentucky's Jackson Purchase were analyzed. Net return changes from a partial budgeting process, depletion annuities by representative soil in Soil Resource Groups from a Soil Depletion Estimates computer model, and cost sharing rates and amounts from the U.S. Department of Agriculture, Agricultural Stabiliza- tion and Conservation Service's Variable Cost/Share Level Program were the predominant factors analyzed. Capitalization and present value theory were used to integrate long-term economic impacts with short-term economic impacts. The results of the analyses demonstrated that economic criteria can be included in assigning variable cost sharing rates, that the design and use of a proposed procedure using economic criteria is relatively simple and prac- liical, and that the proposed procedure may lead to a different distribution of 8011.1 conservation funding for educational, technical and financial assistance 11‘) farmers. 6.2 CONCLUSIONS This research has been conducted in two parts. Part One developed, analyzed and interpreted the short and long-term economic impacts of resource mnagement system conversions. Part Two used the results of Part One to assist in designing and applying an alternative cost sharing procedure which integrates economic and physical criteria in the determination of variable rates. Conclusions are presented by part. 121 Part One Economic Impacts of Resource Management System Conversions The value of a reconnaissance survey of the economic feasibility of conservation suggested by Bunce became apparent. (8) After partitioning resource management system Options by those which erode in excess of 'T' and those which erode at or below 'T' for appropriate soil resource groups, it was found in the majority of cases that conversion options are available which result in either unchanged or increased net returns for the farmer. These UnChanged or increased net returns do not include potential benefits from cost Sharing or from arresting long-term productivity loss. The impact of soil erosion induced long-term productivity loss varies by 301 1 and by resource management system. Soil resource groups which would Potentially exhibit long-term productivity loss were easily separated. MAECP values, the analyzed economic measure of the benefits of controlling erosion no“, ranged $0-$l8. In many cases, the MAECP value was greater than the anallal loss in net returns resulting from a management system conversion. The Variable Cost/Share Level Program rate structure is a function of 'T' Value, pre-practice erosion rate and percent reduction in erosion. The dollar all“:"Int of cost sharing for a management system conversion depends on the VC/SL variable rate and eligibility of the conversion system's conservation prac- tic-Ga for benchmark cost sharing amounts. VC/SL annual cost sharing subsidy an"o‘lnts paid to farmers ranged from $0-$26 for a two year authorized period. without exception, every resource management system's set of conversion op- tions had at least one option for which the change in net returns plus the vc/SL amount was positive. This conclusion only applies to the two year Peri—0d for authorized cost sharing. The longer term impact of the cost shar- i “3 amount and time period are discussed in Part Two. 123 Part Two Proposed and VC/SL Variable Rate Cost Sharing Procedures The VC/SL Program procedure for determining cost sharing rates often assigns high cost share rates and amounts to resource management system con- versions which result large net return decreases. This may result from the Program's exclusive reliance on erosion rate calculations as the single factor determining VC/SL rates. Federal dollars for cost sharing may be misallocated 1 f the cost sharing economic incentive leads a farmer to convert to a high cost share rate, large net return decreasing management system. Since all conversion Option sets meet the soil conservation Objective of achieving 'T' Ya lue, less costly (in terms of Federal dollars) and net return improving (for the farmer) options are available. The VC/SL Program offers a two year cost sharing payment for eligible 8°11 conservation practices to farmers as an economic incentive to promote conversion to less erosive resource management systems. Present value theory was used to evaluate the combined impact of net returns change, the MAECP annuity and the VC/SL cost sharing amount. It was concluded that the VC/SL c°8t sharing incentive may be sufficient to encourage conversion but insuffi- cient to mintain a wealth increase for a period of time equal to or greater than the ASCS prescribed conservation practice life. To comply with the ASCS eon tract, a farmer may be forced to continue farming with a post conversion res'caurce management system beyond the period of time for which the system can demonstrate and maintain increased wealth. when this occurs, both the farmer and the involved Federal agencies are compromised. Although the Federal agen- the post-conversion e 1‘8 offered and the farmer accepted financial assistance, 8 ya tam begins to decrease the farmer's wealth before the end of the contrac- 1: “Q1 period. The farmer's long term wealth, and possibly the economic 124 viability of the entire farm operation, may be jeOpardized. The Federal agencies may lose credibility from the farmer's perspective and, certainly, conservation funds have been misallocated. In developing and applying a Proposed Procedure for variable rate cost sharing, it was concluded that economic and physical criteria for rate deter- mination can be integrated. The Proposed Procedure demonstrates that conver- sion decisions made by farmers may be affected by a broad range of economic fac tors, including the ASCS rules for cost sharing. It is suggested that dis- cussion of the Proposed Procedure or the concept of the PrOposed Procedure be Opened to solicit modifications or additional rules persuant to new or revised Policy for cost sharing financial assistance. 6.3 LIMITATIONS At every stage of this research project assumptions have been made about whic}: variables to use, the way in which the variables are used, and the Values which the variables may take. It must be acknowledged that the results and conclusions drawn from the research are predicated by layer upon layer of a3$umptions. The results and conclusions can be different when different assumptions are made. To illustrate this point, consider the following exam- ple! of assumption changes and the possible impact of the changes: 0 In the partial budgeting process, assume that the cost per hour of labor is judged to be too low. Since the labor cost is applied to all self-prOpelled machines, total production costs would be more greatly underestimated for management systems which are more labor intensive. This would cause a conventional tillage system's cost of production to be more greatly underestimated than that of the less labor intensive no till system. Depending on the magnitude Of the labor cost increase, it is possible that the relative profitability of the two tillage systems may change. Any change would necessitate re-evaluating the results at each stage of the research. <3 In the Soil Depletion Estimate model, consider the impact of a lower or higher discount/capitalization rate. A higher discount rate would re- sult in a reduced MAECP annuity because shorter term benefits are con- sidered more desirable than longer term benefits. A reduced or lower 125 MAECP would result in fewer economically rational resource management system conversion Options. If the number of conversion Options is too tightly constrained, land may shift out Of grain production to other, perhaps less profitable, land uses. 0 In the Variable Cost/Share Level Program, consider the impact of changing the rules to make a conversion from conservation tillage to no till eligible for cost sharing. Any conversion of this sort would add (VC/SL rate)($18) to the VC/SL cost sharing amount. The new cost shar- ing amount may be sufficient to change the relative profitability of no till systems or to allow the practice to become economically rational for at least the minimum acceptable prescribed life of the practice. This research has been conducted under the assumption that the apprOpri- ate unit for analysis is the whole farm, i.e. machinery complements are apprOpriate for any of the analyzed management systems and other rotations or Opera tions in the farming system. The analyses were conducted in 1983 real dollars using an 8.125 percent dis<:<>unt rate, the rate prescribed for evaluation of water and land related resOurce projects for fiscal year 1983. With the real interest rate equal to the money interest rate minus the anticipated rate of price-level inflation, it can be shown that the 8.125 percent rate historically is a very high rate °f time preference. It is implicit in this research that the farmer is in a position to con- Vert management systems and, in a general sense, that there are strong incen- tiVes to convert. No administrative, management or transactions costs are ass“med in a conversion. From the examples, it is obvious that one must be careful using the par- tlcular results of this research and drawing broad and definitive generaliza- tions. If the research assumptions are reasonable, then conditional recommen- d at110113 may be made to suggest directions for policy change or adjustment. 6.4 SUGGESTIONS FOR FURTHER RESEARCH Throughout this research effort many ideas and suggestions for further re Beali'ch have evolved. Some Of them are: 126 O A comparison and evaluation of the performance of the Variable Cost/ Share Level Program versus regular cost sharing. 0 Analyses Of alternative investment strategies for soil conservation practice implementation - investigate intertemporal strategies which would (a) accumulate necessary practice installation costs and (b) incur an Operation and maintenance cost beyond installation. O Analyze the sensitivity of the partial budgets for Resource Management Systems to input costs, output prices, and interest rates on borrowed capital. O Analyze the sensitivity of the Soil Depletion Estimates model to alternative discount rates and, within the value ranges in the Soils V Soil Interpretations Records, to different physical/chemical input values by soil horizon in the soil profile. O Investigate additions or improvements to the Soil Depletion Estimates model such as: - intertemporal cost of production adjustments. - use of real rather than nominal costs and prices. - sufficiency factors for drainage condition and organic matter content. - weighting of sufficiency factors to indicate relative contributions to long-term productivity. - direct comparison this model with other depletion models. - expansion of the number of texture categories to match the Soil Conservation Service's standard texture classes. - use of actual field data. 0 Analyze conversion options to other Resource Management Systems, i.e. to other predominant rotation systems. O Analyze area or regional impacts of the application of Variable Cost/ Share Level Program and the PrOposed Procedure to assess cost- effectiveness. 0 Evaluate the implications of this research for re-allocating the pool of assistance among the educational, technical and financial types. 0 Develop a farm model to intertemporally Optimize soil conservation practice adoption by soil. \ 011:; 1An organic matter sufficiency was attempted in this research but ruled eon because (a) Soils V Soil Interpretations Record data for organic matter dentent includes only the A horizon, (b) organic matter content is interdepen- re t with bulk density, permeability and the USLE K factor, and (c) modeling quires additional data not found in the Soils V Records. (39,67) W —A..u...—.»-. o Analyze the economic impact Of including measures of Off-site benefits in the private choice among Resource Management System conversion options. 0 Analyze the impact of factor substitutions as Opposed to management system conversions, i.e. the economic impact of using different machinery complements with different machine sizes by tillage method and soil. LIST OF REFERENCES 2. 3. 10. ll. 12. l3. 14. 15. LIST OF REFERENCES Agriculture and Food Act of 1981, 95 Stat. 1213 (1981). Raleigh Barlowe. Land Resource Economics - The Economics of Real Property. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1972. Sandra 5. Batie. Soil Erosion - Crisis in America's Croplands2. Washington, D.C.: The Conservation Foundation, 1983. William J. Baumol. Economic Theory and Operations Analysis. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1977. Hugh H. Bennett. Elements of Soil Conservation. New York, New York: McGraw-Hill Book Co., Inc., 1947. Gouri K. Bhattacharyya and Richard A. Johnson. Statistical Concepts and Methods. New York, New York: John Wiley and Sons, 1977. Alfred L. Birch. "Off-Site Benefits from Soil Conservation: A Methodological and Distributional Investigation." Ph.D dissertation, Michigan State University, 1981. Arthur C. Bunce. Economics 2: Soil Conservation. Ames, Iowa: Iowa State College Press, 1942. Stuart Calvert. Resource Conservationist, Soil Conservation Service, Lexington, Kentucky. Interview, April 1984. Jimmy Carter. Memorandum for the Secretary of Agriculture, August 3, 1977. Pierre Crosson. Chairman. An American Agricultural Economics Association Task Force. "Soil Erosion and Soil Conservation Policy in the United States." Ames, Iowa: AAEA, forthcoming 1984. Pierre Crosson. "A Perspective on the Appropriate Role of the Public Sector in Dealing with the Uncertainties of the Impacts of Soil Loss." In Perspectives in the Vulnerability of U. S. ‘Agriculture_ to Soil Erosion, pp. 33-42. Edited by Lee A. Christensen. USDA- ERS NRE Staff Report No. AGES 830315. Washington, D. C.: GPO, March 1983. Tim Denley. Agricultural Program Specialist, Agricultural Stabilization and Conservation Service, Washington, D.C. Interview, December 22, 1983. Tim Denley. "How to Best Use a Scarce Resource (Money) to Prevent Productive Land from also Becoming a Scarce ResourceY." Soil Conservation Society of America, 37th Annual Meeting, 1982. Robert G. Dumsday. "Interactive and Batch Formats for a Soil Conser- vation Economics Model (SOILEC)." Urbana-Champaign, Illinois: Depart- ment of Agricultural Economics, University of Illinois, May 1982. 128 l6. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 129 Robert G. Dumsday. "Parameter Identification for a Soil Conservation Economics Model (SOILEC)." Urbana-Champaign, Illinois: Department of Agricultural Economics, University of Illinois, April 1982. Robert G. Dumsday and Wesley D. Seitz. "A System for Improving Efficiency of Soil Conservation Incentive Programs." Urbana-Champaign, Illinois: Department of Agricultural Economics, University of Illinois, 1982. Bartlet Eleveld et al. "SOILEC - Simulating the Economics of Soil Conservation." Journal of Soil and Water Conservation 38 (September- October 1983):387-389. Bartlet Eleveld et al. "SOILEC Users Guide - Version 1.0." Urbana- Champaign, Illinois: Department of Agricultural Economics, University of Illinois, September 1983. F. Gilbert et a1. "Soil Loss Impact Model." Presentation to Northeast State Conservationists Meeting, U.S. Department of Agriculture, Soil Conservation Service. Syracuse, N.Y.: December 1, 1982. Richard T. Gill. Economics and the Public Interest. Pacific Palisades, California: Goodyear Publishing Company, Inc., 1972. James M. Henderson and Richard E. Quandt. Microeconomic TheoryfiA Mathematical Approach. New York, New York: McGraw-Hill Book Company, 1980. Jack Hirshleifer. Price Theory and Applications. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1980. Howard W. Hjort (Director of Economics, Policy Analysis and Budget). "Studies Related to Conservation Cost-Sharing Program." Letter to M. Rupert Cutler and Dale Hathaway (Assistant Secretary for Natural Resources and Environment and Under Secretary for International Affairs and Commodity Programs, respectively). January 3, 1978. Robert V. Hogg and Elliot A. Tannis. Probability and Statistical Inference. New York, New York: Macmillan Publishing CO., Inc., 1977. Tom Howard. U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service, Agricultural Conservation Programs Director, Lexington, Kentucky. Interview, June 29, 1984. Glenn L. Johnson. "Contributions of Economists to a Rational- Decision-Making Process in the Field of Agricultural Policy." In Decision Making and Agriculture. Edited by Theodor Dams and Kenneth E. Hunt. Oxford England: Oxford Agricultural Economists for International Association of Agricultural Economists, 1977. Glenn L. Johnson. Research Methodology for Economists. New York, New York: Macmillan Publishing CO., Inc., forthcoming 1984. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 130 Glenn L. Johnson and George E. Rossmiller. "Improving Agricultural Decision Making: A Conceptual Framework." In Agricultural Sector Planning, pp. 23-51. Edited by George E. Rossmi er. East Lansing, MI: Department of Agricultural Economics, Michigan State University, 1978. Harold Jolley. Agricultural Economist, Soil Conservation Service, Lexington, Kentucky. Interview, March 1984. Kentucky Department of Agriculture-Kentucky CrOpland Livestock Reporting Service. Agri-News 2 (July 5, 1983). Daniel E. Kugler. "Resource Management Systems-Jackson Purchase Area, MLRA 134." U.S. Department of Agriculture, Soil Conservation Service, Kentucky State office. Lexington, Kentucky:l984. Daniel E. Kugler. Soil Depletion Estimates, Frederick Series Soil-VA 0059, Pitman Creek Watershed, szlor County, Kentucky. U.S. Department of Agriculture, Economic Research Service, Natural Resource Economics Division. East Lansing, MI:l984. Daniel E. Kugler. "Soil Depletion Estimates." Presentation to State Conservationist, Deputy State Conservationist, State Soil Scientist, Acting State Resource Conservationist, and the Party Leader and Economist for Small Watersheds and River Basins Studies. U.S. Department of Agri- culture, Soil Conservation Service, Kentucky State Office. Lexington, Kentucky:November 3, 1983. Daniel E. Kugler. Soil Resource Groups for Analyses of Economic and Soil Conservation Impacts 2£_Resource Management Systems - Jackson Pur- chase Area. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State Office. Lexington, Kentucky:l984. W. E. Larson et al. "The Threat of Soil Erosion to Long-Term Crop Production." Science 219 (February l983):458-465. ChristOpher K. Leman and R. H. Nelson. "Ten Commandments for Policy Economists." Journal 2£_Policy Analysis and Management (Jan. 1981): 97-117. Lawrence W. Libby. "Public Policy Issues Influencing Directions in Conservation Tillage." Staff Paper 84-21. East Lansing, Michigan: Department of Agricultural Economics, Michigan State University, February 1984. R. E. Lucas and M. L. Vitosh. "Soil Organic Matter Dynamics." Farm Science Research Report No. 358. East Lansing, Michigan: Michigan State University, Department of Crop and Soil Sciences, Agricultural Experiment Station, November 1978. E. J. Mishan. Economics for Social Decisions. New York, New York: Praeger Publishers, 1974} 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 131 F. J. Pierce et al. "Productivity of Soils: Assessing Long-Term Changes Due to Erosion." Journal p£_Soil and Water Conservation 38 (January-February 1983):39-44. F. J. Pierce et al. "Soil Loss Tolerance: Maintenance of Long-Term Soil Productivity. Journal pf Soil and Water Conservation 39 (March- April 1984):l36-138. F. J. Pierce et al. "Soil Productivity in the Corn Belt: An Assess- ment of Erosions Long-Term Effect." Journal pg Soil and Water Conserva- tion 39 (March-April 1984):l31-136. Daryll D. Raitt. ‘A Computerized System for Estimating and Displaying Shortrun Costs of Soil Conservation Practices. Technical Billetin No. 1659: U.S.-Department of Agriculture, Natural Resource Economics Division, Economic Research Service. Washington, D.C.: Government Printing Office, August 1981. Daryll D. Raitt. "COSTS - Selecting Cost-Effective Soil Conservation Practices." Journal 2; Soil and Water Conservation 38 (September- 0ctober):384-386. Wayne D. Rasmussen. "History of Soil Conservation, Institutions and Incentives." In Soil Conservation Policies, Institutions and Incentives, pp. 3-18. Edited by Harold G. Halcrow, et al. Ankeny, Iowa: Soil Conservation Society of America, 1982. R. Neil Sampson. Farmland or Watershed-A Time to Choose. Emmaus, Pennsylvania: Rodale Press, 1981. W. Donald Shurley. "1984 Machinery Cost Estimates and Custom Rate Guide." Kentucky-Agri Business News, NO. 32. Lexington, Kentucky: Department of Agricultural Economics, University of Kentucky, College of Agriculture and Cooperative Extension Service, May 1984. Earl A. Spiller. Financial Accounting. Homewood, Illinois: Richard D. Irwin, Inc., 1971. Daniel Taylor et al. "Physical-Economic Evaluation of Tillage Systems." Proceedings pf the Symposium 22 Watershed Management '80, 80ASCE, pp. 985-997. Boise, Idaho: July 21-23, 1980. Daniel Taylor, et al. "The Influence of Technological Progress on the Long-Run Social (Economic) Returns to Soil Conservation." Selected paper presented at AAEA Annual Meetings. Clemson, South Carolina: July 26-27, 1981. Daniel Taylor and Douglas Young. "The Development of a Model to Assess the Long-Run Impact of Technical Progress and Topsoil Erosion on Future Crop Yields." Selected paper presented at WAEA Annual Meetings. Lincoln, Nebraska: July 19-21, l981. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 132 U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service. Agricultural Conservation Program—1982 Fiscal Year Statistical Summary. Washington, D.C.: Government Printing Office, March, 1983. U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service, Kentucky State office. Conservation Measures Authorized for Cost-Share in Kentucky. l-ACP, Exhibit 3, KY Amend. 5. Lexington, Kentucky: March 24,1983. U.S. Department of Agriculture, Agricultural Conservation and Stabiliza- tion Service, Kentucky State office. Conversation with State Office personnel. Lexington, Kentucky:l984. U.S. Department of Agriculture, Agricultural Stabilization and Conserva- tion Service. Descriptions of SL3- -Stripcroppi ng Systems, SL4- Terrace Systems, SL13- Contour Farming, SL14- Reduced Tillag_ Systems, _and SL15- No-Till Systems. 1- ACP (Rev. 1): Exhibit 3, Amendments 1, 3, 7 and 11. Washington, D.C.: Government Printing Office, August 1980, February 1982, and November 1982, and May 1984 respectively. U. S. Department of Agriculture, Agricultural Stabilization and Conserva- tion Service, Kentucky State office. Description_ Of SL3- -Stripcropping Systems,_ SL4-Terrace Systems, SLl3- Contour Farming, -SL14- Reduced Tillag_ §y_tems, SLlS-No-Till Systems. 1- ACP (Rev. 1), Exhibit 3, KY Amendments 3 and 5. Lexington, Kentucky: February 1983 and March 1983, respec- tively. U.S. Department of Agriculture, Agricultural Stabilization and Conserva- tion Service. Miscellaneous Agricultural Conservation Programs - Part .5 - Pilot Variable C/S Level Program. 3 ACP- Part 5. Washington, D. C.: Government Printing Office, February 22, 1982. U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service. National Summary Evaluation of the Agricultural Conservation Program Phase 1. Washington, D. C.: Government Printing Office: January 1981. U.S. Department of Agriculture, Agricultural Stabilization and Conserva- tion Service, Kentucky State Office. Revised ACP Practice Worksheets for SL3, SL4, SL13, SL14, and SL15. Lexington, Kentucky: not dated. U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service, Kentucky State Office. STC Policy Revised for SL14 and SL15. Lexington, Kentucky: August 1, 1984. U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service. Variable Cost-Share Level Program (VC/SL). Administrators Memo No. 21. Washington, D.C., Government Printing Office, December 8, 1983. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 133 U.S. Department of Agriculture, Agricultural Stabilization and Conserva- tion Service. Variable Cost/Share Levels. 3 ACP, Part 5, Exhibit 10, Amendment 13. Washington, D.C.: Government Printing Office, October 16, 1983. U.S. Department of Agriculture, Agricultural Stabilization and Conserva- tion Service. VC/SL Program Eipansion. Notice ACP-82. Washington, D.C.: Government Printing Office, March 1, 1984. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State office, and Kentucky Department for Natural Resources and Environmental Protection. Plan of Work- -Kentucky Special Resources. Lexington, Kentucky:Nay 1981.— U.S. Department of Agriculture, Resource Systems Branch, Natural Resources Economic Division, Economic Research Service and Agricultural Research Service. Erosion Productivigy Impact Calculator (EPIC): A Demonstration of Process Modeling for Policy Analysis. Working Paper No. 3. Washington, DC: Government Printing Office, April 20,1982. U. S. Department of Agriculture, Science and Education Administration. Predicting Rainfall Erosion Losses - A Guide to Conservation Planning. Agricultural Handbook No. 537. Washington, D. C.: Government Printing Office, December 1978. U.S. Department of Agriculture, Statistical Reporting Service and Kentucky Department of Agriculture-Kentucky Crap and Livestock Reporting Service. 1981-82 Annual Agricultural Statistics. Louisville, Kentucky: 1982. U. S. Department of Agriculture. Soil and Water Resources Conservation Ac t: A National Program_ for Soil and Water Conservation. Washington, D. .: Government Printing Office, September 1982. U.S. Department of Agriculture. Soil and Water Resources Conservation Act. 1980 Appraisal, Part I and Part II. Washington, D.C.: Government Printing Office, March and August, 1981. U.S. Department of Agriculture, Soil Conservation Service. Econ-Current Normalized Prices and Discount Rate for Fiscal Year 1984 Water Resource Plans. National Bulletin No. 200-4-1. Washington, D.C.: Government Printing Office, January 25, 1984. U.S. Department of Agriculture, Soil Conservation Service. Econ- Incremental Analysis 3E Land Treatment. National Bulletin No. 200- 4- 3. Washington, D.C.: Government Printing Office, February 28, 1984. U. S. Department of Agriculture, Soil Conservation Service. Econ-Use of ERS- USDA Technical Bulletin No. 1659, 'A Computerized System‘f3?'— '-— Estimatin and Dis la in Shortrun Costs of Soil Conservation Practices.‘ National Bulletin No. 200- 2- 3. Washington, D.C.: Government Printing Office, December 22, 1981. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 134 U.S. Department of Agriculture, Soil Conservation Service, Kentucky State office. Jackson Purchase Area Erosion Control Area. Lexington, KentuckyzApril 1982. U.S. Department of Agriculture, Soil Conservation Service, Midwest National Technical Center. Land Treatment-Procedure for Evaluation of Onsite Sheet ggg'kill Erosion Control. Technical Note, Series No. 365- LI-l. Lincoln, Nebraska:September 1982. U.S. Department of Agriculture, Soil Conservation Service. Land Treatment Program - Agricultural Conservation Program (ACP). National Bulletin No. 300-2-10. Washington, D.C.: Government Printing Office, February 12, 1982. U.S. Department of Agriculture, Soil Conservation Service. National Soil Survey Manual. Washington, D.C.: Government Printing Office, May 1981. U.S. Department of Agriculture, Soil Conservation Service. 1984 Soil and Water Conservation Research and Education Progress and Needs. Washington, D.C.: Government Printing Office, January 1984. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State office. Predicting Soil Loss Using the Universal Soil Loss Equation TP- 4. Lexington, Kentucky:May 1978. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State office. Soil Survey 2i Ballard and McCracken Counties, Kentucky. Lexington, Kentucky:February 1976. U.S. Department of Commerce. Bureau of the Census. 1978 Census 2f Agriculture. Vol. 1, Kentucky State and County Data, pt. 17, Kentucky. David J. Walker. "A Damage Function to Evaluate Erosion Control Economics." American Journal 22 Agricultural Economics 64 (November 1982):690-698. David J. Walker and Douglas L. Young. "Technical Progress in Yields-No Substitute for Soil Conservation." Current Information Series No. 671. Boise, Idaho: University of Idaho, College of Agriculture, 1984. David J. Walker and Douglas L. Young. "The Effect of Technical Progress on Erosion Damage and Economic Incentives for Soil Conservation." Unpublished manuscript submitted to Land Economics, 1982. J. R. Williams, et al. "EPIC-A New Method for Assessing Erosion's Effect on Soil Productivity." Journal 2: Soil and Water Conservation 38 (September-October 1983):381-383. Douglas Young. "A Practical Mathematical Model for Projecting Long Run Crop Yield and Farm Income Consequences of Soil Conserving Farming Systems." Paper presented at SCS Conservation Economics Workshop. Lincoln, Nebraska:April 26-30, 1982. APPENDICES APPENDIX I SOIL RESOURCE GROUP INFORMATION FOR KENTUCKY'S JACKSON PURCHASE AREA Appendix 1 Soil Resource Group Information for Kentucky's Jackson Purchase Area Page 1-1 Soil Resource Groups by Soil Name, Land Capability Unit, Texture, Slope, Productivity Index, T/K Factor, and Acreage . . . . . . . . . . . . . . . . . . . . . . . . . 135 1-2 Weighted Average, T, K, L, and S Universal Soil Loss Equation 0 O O O C O O O O O O O O O O O O O C O O O O O 140 1—3 G Factors for Universal Soil Loss Equation Computations . . 141 1—4 P Factors for Universal Soil Loss Equation Computations . . 142 1-5 Subgroup Suffixes by Erosion Phase and Management Type . . . 153 1-6 Subgroups Used for Analysis of Economic and Soil Conser- vation Impacts . . . . . . . . . . . . . . . . . . . . . 144 1-7 Expected Corn, Wheat and Soybean Yields by Group-Subgroup and Tillage Method . . . . . . . . . . . . . . . . . . 146 1-8 Machinery Adjustment Factors by Soil Resource Group and Subgroup . . . . . . . . . . . . . . . . . . . . . . . . 149 Source: All information in Appendix 1 was developed in conjunction with the U.S. Department of Agriculture Cooperative Kentucky Special Resources Study. (35) 135 .mna. muescew .hs>.:m —.om I No :52 "xxoaucmx :3... H.322 .333 23...... NCOuwGwad .UUHMMO UUQUm NAXUDUGOM «QUfiNwhwm GOHUQ>Hmm~uOU .33 .meofiaii 25oz couun>uumcov§m a o o a HHOm QHDUHSUHHw< m0 ucwEuHmn—wm m D mmu< wmQSUH—am Somv—Umfi .2: .3553: .35....» :omxm I mamumxm ucmewmcmz ouusommm mo muommEH :oHum>Nmmcoo Hwom ;:N.N.2:afl..Ns:=m..2¢m ..m no a. a . v N ocoom mo mmmxamc< mow masouu noncommm afiom umfiwsx .azsms..c.a.x92: hzsrzarza 8.4: £3ok..1fi .m Haficmo Eouu mmusvouamu m maamk ma HIH xfimcwma< "muusomx .::a t;.: 5%:.N:>mZ=E:anoT¢.sees-.m%arc.:a\m ..n.eq mam.. mno.. Nca.N. aNn.m nNn.a was... omo.. mao.e .=omc.aox NNN Noe ANN e «a N-o ...m NuN agate. ANS «Ne N. no m-c ..u.m N1m.. saw“ mom.o. sam.n ANN.o. ch.N N. «N N-c ...m n.. mucosesu .e... .e... q. we N-o ...m mu. mass: mmN NwN N. am N-o ...m n.. .~.u< can oN. o.. a. as a-o ..m. on. mu.>«;o .s..sN cec.N a.a.a. meo.q a. co N-o sac. «u. .eoaNz .muoeamv ax:— maN.ma ooN.N NNN.M. mam.a. NAN .N..N. oNa.a N. ca N-o ...m n-. we...ou . .N mNc.no. 3N..N coa.c. one.c Nno.ms woo.o NNN.. noo.n na..m. 4~ nan.a. .oa.a o.o.a «Ne.. a. as. Nxc ...m NsN o.N.>=om=«ao¢ nNo.N can.. mma.n e. cc. N-o ...m .-. o...> IfiOWCua—ozlcnqoz m.n N.A a. as. N-c ...m .-. so.N=.s=:= man.N mam.N N. ac. N-c ...m .-. «N.Nu.cu .. .<=c azcse=a xx.m..=.NL==c¢. Ne...a<.J.:. 2...; 52— 7.12:5; 1136 ooN$— >Lmu—hflaq‘ N.A.o>h:mb. —.—:V.\M .nmo_ >.=:=:m .>9>N=m ..am\m .Nca. .>.:.:u>:_ 273;: :o_.e>.om:cu\w .aczamn; .3. a. xumc‘ xu_>.uu:aoN; un_-c_ Nazca: __:m .¢o@_ umzwz< .>a>u:m —.sm\m .nmo. Nassacsc .>a>.:m ~_cm\m .:.:a .c. a. x91:« >UN>uuc=von uo_le_ tam mn- aazcuc _*:n\fl .NN.oN. NN..N. NN..N. nN=.N. NNN.NN NNN.N NNN.N NNN.N =N¢.N. .NchNNN NsN.NN NNNAN. cmw.N N NN N.-N ..u.N ..-a>N .eueotN .>amv um; NNN.. NNN.. N NN c.-N .Nu.m .>_ .eueotu .>amv au:0$—>aua N.NH. N.N.. N as N.-N ...N N:u>. ..ce NNc NN NNN.N NNN.N. NNN.NN NNN.N NN..N NNN.N N ca N.-N .Nu.N.NNN ..-a>_ .NueasN .>omv acNuoa NNo.N NNN NNN.. N.... NNN.. NNN.N NNN o. :N N.-N ..u.N N-o>. .NasatN .>omv au:=saz o.N o.N N.N. NN N.-N ..u.m N-s>_ Aeneatm .>umv a:.~au:3 NNN.. NNN :No.. N No N.-N ..u.N N.-u>. .eueoLN .>omv csdw=_xua NNN.NN NNN NNN.N NNN.. :NN NNq.N NNN NN NNN.N N cN N.-N .No.N...N ..-o>. .eu==.N .>am~ mumsauu .N NNo.NN NNN.N. NNN... NNN.. NNN NN... NNN o.N.NN as..=. .umv a:—.oa .NN on CNN c. NNN... NNN.. NNo :.N.NN NN..N. N NN NuN ..u.N...N N.-a... .cueotm .>umv meccmuo .N NNN.NN NNN... NNN NNN.N .N..NN NNN.N NNN.N NNN.NN _ NNN .NNCNNNN N.NHN . N.N«N N cN N-N ...N a... auzaea>ota NNN... NNN.N . N.N.N N No N.-N ...N Nun... Na. NNN N NNN N N.N.N N cN N.:N ...N ..-o... N.;.aa: . lacuuoaucopceua NNc.c. NNN . NaN.N N oN N.:N ...N ..-o... ccezasN NNN.N. NNN. . NNe.c N.N.N NNN.N NNN.N NNN N o. N.-N ...N «no... assess: NNN.NN NNN N NNN NN..N NNN.cN .Nc.. NNN.N NNN.N NNN N NN N.:N ...N N's... Ncqsa. NNN . NNN Nac.. N NN N.-N ...N .-u... :osN=.x.. .N NNN.N. oNc.. c.N c.N.N NNN.. .NN NNN.N ch o.N.N .NscNN=N NNN. NNN NN. :NN NN. N.N. NN N.-N ...N .-o... Nz..uu;: NNN N. NSN NNN N.N.N NNN.. .NN NNN.N NNN NNN.N o. NN N.-N ...N .-o.._ N.;aazz .c NNN.NNN NNN.NN NNN..N NNN.NN NNN..N NNN.N. NNN.N. NNN.NN NNN.NN .NNoNNNN NN.. . . . N:. N NN N-N ...N N-uNN :oecatN No..NN. NNN.NN NNc.N. NNN N. cSN.NN NNN.N. NNN.N N.N.NN NNN.N. N NN NuN ...N N.Nua._ anaestc NNN NN NNN N c.N N NNN.N. NNN..N NNN.N NNN.N N.c.c. NNN.N N NN N-N ...N N.N.N-o.~ N:..:. .N ..so==ce. >9.._N<.u>..:m :3“ ... .mca_ .heogco>:— mace: :omum>uon:cu\m .c~a_ >Nr:.;;; .>L>N:x __:u\m .o.:.nee to. m. xomsu NNN>NNusmoNa "m—-c_ a::c.c ~_om .Nca_ umsmz< .>o>.:m _«:m“m .msm. Nosacou: .>a>u=m ~Nom\N .:Noo so. mu xomc. zuv>udu:uoNa ”c.nw_ acm ar- mason: m—o.\M NNN..N NNN... NNN.N .N NNN.NN NN..N NNN.NN NcN.N .NNoNNNN NNN.N NNN.N NN-N. ..u N..> NoNNN.N NNN.o. NNN.c. N NN-N...NNN...N N..: voozs<-=a.N=.xu. NNN.. NNN N.N N. oN.oN ...N N-o..> so.N -aeo..-..a..am NNN.. NN NNN.. N NN-NN ..u.N .-o..> N.Naauz-=oN=N.N NNN.N NNN.N N cN anus. ..u.N a..> .xo.:uu=ae.>¢.. .NN.N .NN.N N NN oNuo. ...N o.> .No.-uu=u:.>o.. NNN.N NNN.N N o« N.-c...u.N...N ~.> aucua.>o.. N.. N.. N.N NN N.-: ..N N-N>. N.o_ NNN.N NNN.N NNN.N N. NN NN-cN ..u .-N..> ==.=N-..o..NN NNN.N NN... NNN.N .. on chcN ..c N-N..> Nu.aeco =:.=N ..N.N. N.N.N .N NNN.N Nc. c.N N NN oNua. .NN.N N39..> NNN=NNN N.N.N. N...N NNN.. NNN.N NNN.. NNN.N coN N NN onuoN ...N N-a..> :oNNNNN N.N.N NNN.. NNN NNN.N N NN N.-N ..u.N N.-»N. coNNN.N .N. NNN.NN NN...N N.N NNN.N Nco.N nNN.N. NNNoNNNN NNN.N oan. NNN.. N. NN oN-N. ..N .-N.> :c.:o-..o.NaN NNN.N NNN.. N.N.N N. NN cN-cN NNLNNN .-N..> a:.N:N NNN.. N.N oNc.. N. cN cN-N. --- .1»..> .xu.-=:.a:N co... co. NNN.. N. NN oN-oN ..NN .-o..> scams: NNN.N NNN NN..N N cN onuN. .Nu.N N-u_.> :NNNNNNu. .NN.N =.N NNN.N Ncc.N o. oN NN-NN ...N N-o..> N.;Naoz NNN.NN NNN.N. NN..N N o. NN-N. .NuNN N-o..> coucatN .N. N...NN NNN..N NNN.N NNN.N. .NN.N NNN.N NN.... NNN.N. NNN... NNNoNNNN NNN.cN N.N.oN NN... NN. .NN.N N.N.N. NN N a. NN-N. ...N N-o.> soNNNNN NNN N NN. N. cN NN-N. NN.NNN .-a.> N=.NoN NNN.N. NNN.. Nco.. NNN.. NNN.N NN..N N. cN chN. ..u.N N-e.> .NaeasN .>~mv musasuz NNN.N .NN.N NNN NNN.. NNN o. oN oN-N. .Nu.N N-u.> .NuNoNN .>amv m—sasaz N.N.N NNN N_N .NN NNN NNc.N NNN.N o. oo oN-N. ...N .-~.> N.;aasz NN.... .NN.N NN... .NN.. ca... N cN NN-N. ..u.N N-u.> Nc.so. NNN.N. NNc.N NNN.. NNN.. N.N NNN NNN.N N NN NN-N. ...N .-s.> Nc.to. NNN NN NNN N. o. NN-N. ..N. N-u.> sasm=N NNN.. NNN NcN.. N NN oN-N. ..NN N-o_> eoNN=NNNN ... NN..N N.N NNN NNN NNN.N NNN NNo.N N. NNNNNNN NNN NNN cN .. NN N.-N ..N .-N>. ==.:u NNN NN. NNN N. cN N.-N ..N .-a>. c:.=c-..a..NN NNo.. Na. NNN N. NN N-N ..N. N... acasN NNN.. N. cNN.. N. NN N-c ..N. a... Nea.ox Nac.N NNN NNN.N N. c. N-o .... .-N... NNNN>NNN .N. .<3c..N.>.Nu=:czm NN...N=— mmsuz co..a3.uaeou .me— Nassauao .>o>urm ~«om .cno. xuesunum .>a>usm .Nom .uussaaa Now on xuuc— suu>_uu:csue "n_1c. masouo dqom .:.3o .3. a. xsmeu NNN>NNuamo.: uo_ne_ use 31. mascsc ..om III N. NNN.NN NNN.N N.N.NN N.N.N NNN.N NNN.N. NNN.N NNN.N NNN.N NNNNNNNN .NNJN. NNN NNm.N NNN.c. Nm~.N c.c.m11. N. =N 111 NN.N..N.N N13... NNNNNNN cN. NN. N nN 111 ...N N13... Nsaeuz .NN .NN N NN 111 ...N N133. ..ottuc NN..N NN..N N cN 111 ...N N13>. 3a.: NN..NN NN..N NNN.N_ NNN.. NNN.N .NN.. so... NNN.N NNN.N N NN 111 ...N .133. N==:;.auN N.N»: NNN.N NNN.. Ncc.. cN N. NN 111 ...N .133. N.NNNNuso. .N. NN...N. N.N.N. NNN.NN .NN.N. NnN.cN .NN.N. .NN.N. NNN.NN NNN..N .NNceNNN NNN.N NNN NNN mma.. NNN N. NN 111 ..u.N N13.. uuN==N NNN NNN N. cN 111 ace. 3... a..oN NNN.NN NNN.N c...N NNN.N NNN.N NNN.N NNN.N. N...N N NN N-N ...N N13... NN33..NN NC... No... N NN 111 ...N N13... N.NN NNN N.N N.N N. NN 111 ..u.N N13... .oNaN...< N.N.N N.N.N N. cN 111 ...N N13... NNN.N.1N..9353 N.N..N NNN.N NNN.N. .N=.. NNN.N ..N.N NNN NNN.N. NNN.N N oN N1o ...N N13... Na3o..ac NNN.NN Nco.o. NNN.N NNN.N. .cN.N. .NN.N N.N.N cNN.N N. NN 111 ...N .13... .NNuauN .uuxav >~uv>m2 NNo.N cNN NNN.. N. NN 111 ...N .13... NN.N N.N.N NNN.N NNN.N N NN 111 ...N .13... soo.NuNcN .NN.. .NN.. N. NN 111 ...N .13... NN..N .N. NNN.NN. NNN.N. NNN.N. NNN.N. N.N... NNN.NN NNN..N N.N.NN NNN.NN .NNNNN:N NNN.N NN..N NNN.N N. NN 111 ...N .13.. goes: N.N.N NNN NN..N NNN N. NN 111 Na.o N13... NN.:3N NNN NNN N. NN 111 ...N .13... =.>.u: NN..N N.N NNN.N N. cN 111 ..u.N .13.. ou.m=..1..a3~z NN..NN NNN.N. NNN.N. N. NN 111 ...N .13.. NN...3N1NNN.NN NNN.N oNc.N NNN.. N. NN 111 ...N .13.. N.NNNa..< NNN.N NNN.N N. NN 111 ...N .13.. NNN.NNN3 NNN.N NNN.N N. cN 111 ..u.N .13.. assuaaao NNN.N NNN.. NNN.N N. NN 111 ...N .13.. e.guaacoz NNN..N N.N.N NNN.N .N N.N... NN... N.N NNN.N. NNN.N N cN 111 ...N N13.. ANNNN torumv nam:auo NNN.NN NNN.N. .cc.c. mNN.N NNN.N. N.N.N. N. cN 111 ...N .13.. .Na.a. NNN.N NNN.N N. NN 111 ...N N13.. eoNNNN N...N N...N N. NN 111 ass. N13.. Notwesco NNN NNN N. nN 111 ...N .13.. ..a3oz .N. NNNNN 1..<=NN<: 12NNN<=N 1chNz. :NNN.N=<3c..N.>.Nu::cz. NN.N.N<.cm muse: coNsa>usmeoo .mma— humacmfi .xo>N:m ~«om\m .cca— uuaws< .>0>N=m Huomxm NM .Mnmq HOABOUQQ .th’h-Nm H«0m\1nc .NNN. N.NNNNNN .NN>.3N ..oNNm .a.:ummn New mu xen:« zua>Nuusmoua ”n.19— measuc Nuom .:NOu no. mu nova“ >uu>~uosvon "cute. use an— mascuo aaom\d Anun._v an~.~_n.— enn.na_ omc.cqn nmq.cn_ mmo.e¢_ NNN.N Jumm coaum>ummcou HHom .muauaaoauw< mo unmauumaoa .m.= .mmu< mmmsuuam comxomh I mEmumzm uaoawwmcmz mousomox mo muommaH :ofium>uomcou Hwom mam afiaocoom mo mmmhamcm NON mmmouo mousommm Hwom .uoawsx .m amazon Eouu moosvoummu c magma ma NIH xfimcoaa< "monsomN .owmmuom Haom Hmu0u m.UMm may on .mcofiusnauucoo mwmouom HNom Hmzma>amca co momma mum mmwmum>m mounwfimz .NNNN N.N NNN NNN NN Noses. N NNN .mmcmH yoguo mam 0HH> .mHH> .mH> HOH mcofiumuHENH mm: No\msm Haom cu mam 5H mam ma .NH mcxm New momsaoxm mum coaumuzaaoo :oamoum mam cowuoavoua Hmuzuaauauw< m.o 0mm NN. N NH m.o mmm cc. N ma m.o mmm mq. N NH o.cH mum NN. N NH o.m OmH ma. m CH o.m cow NN. m w o.« omm mq. m m o.N CON ow. m m 0.x CON me. n o N.N NNN a... N N o.« 0mm Ne. m N m.o mNN mm. m m m.o can mm. m N m.o can mm. m H omoam unmoumm N uomm N " ummw\muo<\m:09 . mwouo Nauomm m . acuomm A . acuomm M u uouomm a M mousommm Haom .qma N=N N NNN .. .N .N NNNNN>N NmanNQN11N .N.NN 141 *Table 5--C factors for Universal Soil Loss Equation erosion rate computations by tillage and rotation, Kentucky's Jackson Purchase Area - MLRA 134 Tillage Method Rotation Conventional Conservation No Till Continuous soybeans .459 .130 .070 Continuous corn .345 .077 .030 Corn followed by .471 .121 .076 doubled-cropped wheat and soybeans Continuous double- .389 .112 .081 cropped wheat and soybeans *Source: Appendix 1-3 is Table 5 reproduced from Daniel E. Kugler. Soil Resource Groupgfor Analyses of Economic and Soil Conservation Impgcts of Resource Management Systems - Jackson Purchase Area. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State Office. Lexington, Kentucky: 1984. 142 Revised 8/84 *Iable 64-P factors for Universal Soil Loss Equation erosion rate computations by soil resource group and tillage (conservation) practice for Kentucky's Jackson Purchase Area-MLRA 134 Tillage (conservation) Practice Soil Resource Groups Up and Down Contour Contour Plowing Plowing Stripcropping l, 2, 3 1.00 NA NA 4, 5, 7, 8, 10 1.00 .50 .25 6,9 1.00 .60 .30 11 1.00 1.00 1.00 14, 15, 16 1.00 NA NA Agricultural production and erosion computations 12, 13 and 17 due to soil and/or use limitations and other lands. NA - not applicable Parallel Terracing NA .10 .12 NA NA are excluded for SRGs for VIs, VIIs, VIIe, *Source: Appendix 1-4 is Table 6 reproduced from Daniel E. Kugler. Soil Resource Groups for Analyses of Economic and Soil Conservation Impacts of Resource Management Systems - Jackson Purchase Area. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State Office. Lexington, Kentucky: 1984. 143 *Table 7--Subgroup suffixes for soil resource groups by erosion phase and management type, Kentucky's Jackson Purchase Area Soil Resource Group- Subgroup Suffix Erosion Phase Management Type A slight basic 3 slight high G moderate basic D moderate high E severe basic F ' severe high *Source: Appendix 1-5 is Table 7 reproduced from Daniel E. Kugler. Soil Resource Groups for Analyses of Economic and Soil Conservation Impacts of Resource Management Systems - Jackson Purchase Area.‘ U.S. Department of Agriculture, Soil Conservation Service, Kentucky State Office. Lexington, Kentucky: 1984. 144 *Table 8--Subgroups of soil resource groups used for analysis of economic and soil conservation impacts, Kentucky's Jackson Purchase Area 8011 Resource Group 1 2 10 ll 14 15 16 Subgroup A B C D E F x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x no subgroups are used for w soils no subgroups are used for w soils no subgroups are used for w soils Agricultural production and erosion computations are scheduled for SRGs 12, 13 and 17 due to soil and/or use limitations for VIs, VIIs, VIIe and other lands. *Source: Appendix 1-6 is Table 8 reproduced from Daniel E. Kugler. Soil Resource Groups for Analyses of Economic and Soil Conservation Impacts of Resource Manggement Systems - Jackson Purchase Area. U.S. Department of Agriculture, Soil Conservation Service, Kentucky State Office. Lexington, Kentucky: 1984. 145 Procedure for Developing Crop Yields by Soil Resource Group, Subgroup, and Tillage Method for Erosive Soils Crop yields were developed by U.S. Department of Agriculture, Soil Conservation Service, Lexington, Kentucky. Yield indices for corn, wheat and soybeans for each soil in each Soil Resource Group were obtained from the Soil Conservation Service's Technical Guide for Kentucky. A weighted average index for each crop by Soil Resource Group was calculated using the percent contribution of each soil to the total SRG acreage. Bench- mark yields for the most productive soil in the Purchase Area (Huntington silt loam) were set at 140 bushels per acre for corn, 50 bushels for wheat and 37 bushels per acre for soybeans. The weighted average indicies by crop for each SRG were multiplied by the appropriate benchmark yields to derive estimated yields by erosion phase by SRG. Percent reductions in estimated yields by erosion phase by SRG were developed in a Delphi process by considering the inherent productive capacity of the topsoil, characteristics of the subsoil, and the capacity of the soil to respond to management. In a second Delphi process, estimated yields by SRG and erosion phase subgroup were adjusted to reflect research-supportable differentials by tillage method. Source: Author correspondence with the River Basin and Small Watershed Planning Staff economist, Soil Conservation Service, U.S. Depart~ ment of Agriculture, Lexington, Kentucky. May-July, 1983. .Non Nzxoaucmz .couwcaxmq .ooNqu mumum zxoaucmx .muw>umm coaum>uomaoo aqom .musufiaoauw< mo ucmauummoa .m.: .mmu< ommconsm somxomh I maoumwm acmEmwmcmz ouusommm mo muommEH coaum>ummcoo HNom was oNeocoom uo mmmzamc< you mmsouo mousomom Haom .umawax .m amazon Eouw couscouamu CH new a nuance ma RIH xaccmaa< "mousomx muscfiucou m.cm N.mu o.NN N.NN N.NNH w.¢oa a m.~m ~.w~ H.mN N.oe o.o~H m.moa o o.mm o.om o.mN c.mq o.NHH o.~HH m N.Nm N.m~ n.5N N.NN m.m~a a.oHH < N m.Nm N.NN o.NN N.NN N.NHH N.NHH a m.mm muwm e.mN m.oc o.NHH m.mOH o o.mm o.om o.mN o.mq o.o~H o.mHH m N.Nm N.mN n.NN N.NN m.mHH m.mHH < m N.Nm n.~m a.Hm o.NN ~.mma n.0mH a m.cm N.Hm 3.0m N.NN m.~mH N.NNH o o.wm o.mm o.mm o.mq c.me o.mMH m N.Nm N.Nm m.~m m.NN N.NmH N.Hma < N N.NN N.NN N.NN N.NN N.ooa N.ooa a m.m~ «.mm N.NN N.AN m.~¢ m.nm o ,o o.m~ o.w~. o.mN c.mq c.coH o.oo~ m “w N.NN N.NN N.NN N.NN N.NOH m.NOH < m o.Hm o.Hm N.NN N.AN n.H~H m.HNH a H.om H.om N.oq N.oq m.NHH m.NHH o o.~m o.~m o.me o.mN o.m~H o.m~H m N.Nm N.Hm N.NN N.NN w.m- w.m~H < N o.Nm o.em N.NN N.NN N.NmH m.NmH a m.~m a.~m H.mN H.mq N.oma N.0MH u o.mm o.mm o.mN o.mN , o.mmH o.ama m N.Nn . N.Nm m.NN m.n< N.Nma N.NMH < H I muom you maocman HHNH . coaum>ummaoo m HHNH . mofium>ummcoo m Haas N coaum>ummcoo m oz "cam Hmcowuco>coo H oz "mam Hmcoauco>=oo H oz "mam Hmaoaucm>cou H monumz omeHHH H mozumz ommaafia H mocumz ommfifiae H msonmnsm qaouu mammnzom . News: . auoo . mouaommm Haom .Nma ummcoo H HHNH N .cowum>uomcou H Haas N coaum>uomcou m . oz "can Hm:o«u6o>coo H oz "mam Hmcoausm>coo H 02 "was Hmcoaumo>=oo . mosuoz ommaauh H monumz mmmHHHH H. monumz owmaafie m daoumnsm maouo mammnzom . amass . choc mouaowom Hwom All Acmacwucoov .NMH «quImou4 ummnounm monsoon m.zxu=ucmx .mosuma owmaaqu mam mnaouwnsm >9 HHIH maaouw mousommu HNom you mvaowz mcmoamom vcm umo£3 .cuoo wouuoaxMIIo manna .Nme Nzxoaucmz .:0umcaxm4 .oofiuuo oumum zxosucmx .moH>umm :oHum>umm:oo HHom .musuHsoHuw< mo unmauumama .m.= .mmu< ommcuuam momxomh I mamumzw ucmsmwmcmz mouaommm mo muoszH coNum>Nmmcoo HHom can UHEomoom mo mommHmc< How mmwouo mouaomom Haom .umeaz .m Hchma aouw moosmoudmu 0H man a mmHnma mfi mIH Navcmaa< "mouaomk N.N. N.N. N.N. N.NN mammNNoN N.NN N.NN N.NN N.NN swans N.NN N.NN N.NN N.NN asoo N. N.N. N.NN N.NN N.NN NamwNNoN m N.NN N.NN N.NN N.NN Name. N.NN N.NN N.NN N.NN choc N. N.NN N.NN N.NN N.NN mammNNoN N.NN N.NN N.NN N.NN swan: N.NN N.NN N.NNN N.N.N :sou NN III whom non mHmsman .I HHNH oz N :oHum>Nmmcoo . HHHH oz " coaum>uomaoo N " mam HmcoHuco>coo N mam Hmcofiuam>coo " “ Nessa: uNNNNNN . Nessa: NNNNNNN . . mmcfimua zHoumswmmmcH N mmaHmua zHoummmum< u " :OHUHmcoo mwmcfimpo N . azouo . mono " mouaommm Hdmm NNH umm coaum>ummcoo HHom .mNSuHSUNNw4 wo acmeuummma .m.= .mmu< mmmnouam comxumh I mamumzw uamawwmcmz mousommz mo muummEH :oNum>umm:oo HHom mam UHEocoom mo mmmzwoc< pow masons mousommm Hfiom .umesx .m HmHmmn Eouw couscouamu HH mHan ma wIH vacmaa< "mousome com. owm. NH Cum. sew. mH ooa. cmm. NH mmchNo mmcamun szumawmmmcH szumsvmm< omo. com. «um. HH «Hm. mmm. mom. oH mmo. «Hm. <2 @ oao. com. <2 w «Hm. mmm. mom. m mmw. mom. 0 Cum. mmm. m mom. «mm. N mmm. coo.H m Nma. coo.H N coo.H coo.H H N New N . a New 0 . N New N H aaoso mackwmam . mouaommz HNom mou< mmmsuunm :omxomw m.>xo:ucwx .dzouwnam mam aaouw mouaommu HHom zn mucuumw acmeumaflmm hummwsumzllHH mHnmhg APPENDIX 2 FERTILIZER, CHEMICAL AND EQUIPMENT COMPLEMENTS AND TILLAGE METHODS FOR KENTUCKY'S JACKSON PURCHASE AREA RESOURCE MANAGEMENT SYSTEMS .mou< mmmnousm somxumh I mEmumzm ucmEmwmcmz wuusomwm .COuwcmeH .qme .monmo mumum xxosucmx .moH>umm :oHum>ummcoo HHom .munuHDUHuw< mo acmsuumama .m.= .pmesx .m Hchmm Eouw wwosvouamu H mHan mH N vacwam<« "mxoaucmz .qu ;:< was: 2.39 3:. e acuam ezca .uu on #2 ICE c .d. a. 3:_: _;m_:u .u. __nx_ ::1=.:; :zachu_z x_:= ::_d=>u:=::c H 0.2:: =====32 aw: uzxabzm acam xa_v 391:6“ .u. w_lx~ aau=_u; mONL 1:;g =.=u ask ¢ xaham 53:: .u. cm 3:. c ... ad 3:_: _;:_:u ..u. ..ux_ xau.:< a:c51>;:< :xtshzm zuxcuu_z 4.:a H=:c_g=;>:ou N atunu amx as: noxuuam “can xx_s Sasccu .uu @— xN ==s==3z mzouvx;:< 1:0; cucu 3c. e heac>_u—:u me .uu amrxm 30a o .u. a. 33.; Ham—:0 .uu dHuxH :atchzm couched: x~=a ~c=o_u=o>:ou H Uuulu 75 aacczoz Nu cauucmc: uuxauan “can xOCO; :Nx van: :Han .6. m— xauam soon .uu on #2 no» a .uu cH scan; mam; HHHH 02 e mlmum zavczoz :mhxamaa buxmuaa uoam nape; cm: saw; cucuw .uu nH xmumm Econ .uu on #2 30k a .u. ¢H xmuv Eaten“ .uu m~ux. swan; nONL :o_ua>umm:ou n mumnm Qaflzaom :cuwsmza auawugm Hose xauQ_ ace: =Hauw .u. wH anuam econ .uu on 33C o .u_ «H xm—v 39::au .uu wHIxN :n_uoub new; Hazouucu>coo N mnmam 95:33. noxeuam “can x0u34 oNx was; =.c.u ... n_ he.a>.u~=u go .uu o~-x_ 3;“ S .8. n. xm.= 591:5“ .uu m~-x~ sang. mama daso.u=a>=ou a m-m-m m:_unu>ue= " saunmxcoHua>HuHau wcHucaHm ouaHHHh " mucuHEozo ” abouHHHuuom vague: " soun>m ucoa . . " owuHHHP “ Iowans: ouuaouo: acusauaem " u u oaouaam acoauuuca: «unsouua ¢0u< omazuuam coaxuan a.>xu=ucux new vozuuz own—HHH new mucoaoHaaou ucoaaHacm use Hwowaazu .uuuqduuuom--~ oases « 153 2.5.53. Coxauam acam :suxamza 2.2. 5....» .z 2 :2; .25.. .3 on :8 o .5 2 V1.2. .525 .3 3;: .83.. av. 33.; .am_;u .uu Hdlx_ :=—uvuk new; Haonu=a>sau mzsuaxam . um eukam was: sqauw .uu «H unuaa econ .uu on uw_.=h. .u. an smut Eavznu .uu aanN scum accuvx::< choHuca>cou Haas: oNx menu u9>au=m uoam mea saazau .uu QHIXN a:3:=ox accuvxzc< show any; :uou 30m c hoga>HuHsu ma .9. amnxn 30“ o .uu ad 39—a Ham‘su .uu HHax_ cavau:m caucuuuz Juan HacoHuco>cou N m\3no 53:53. .. cauwaaan noxausm uomm mev aovsau .uu «HIxH. xouoa cm: was: cuuum .uu nH amusm noon .uu an sou o .uu mH 30H; Hwaugu .uu HHIxH :uHuwuh no~m Haonuco>cou azamaxom saw; cqaum .uu «H sauna soon .uu on HHHus =Hauw .quH mev Betsey .uu can~ aclu m39uvazcc HacoHuco>cou yaw:3 oNx mama “vacuum “can smut saucau .uu wdan azzsaox maouvxzs< any: :uou 3o» c Ecun>HUHau so .uu emuxn ask 0 .ua a~ 39Ha Homusu .uu HHIxH :nkuzm camouqu xHan Ha:oHuco>:ou cuou H mxzno cascaox usauuawusm NNIx unscauaa cm: ..35: «2 A uoxaunu uaam xouum< m=0uv>zc< .52. 53 :3 e :3... .32 .3 on .5 :8 e .5 2 Canoe :38 .3 N: 52.5.; 59:32 is: :2 oz oé mauuma>un= u xaummxcoHun>HuHau n nauuanm u owaHHHH " aduuHsuso " muvnuHHuuom a vague: u flauaxm ucma u u " owaHHHH u Iowacw: 00u30mux .. usoaaHacm u u u u AvuzzHucouv aaouaam acuaouaca: couscous sou< amazuusu comxumw u.>xu:u=ux new soggy: owaHHHh van mucasuHmaou acoaaHaum vac Haguamzu .uuuHHHuuoman oHnah Lu 5 1L hexaumu acne a:v::az acuBQHacm xOCO; awx any: cuauw .uu n~ u0u6>_uuau no .uu o_ux~ 30a c .uu nH xmua Euflzau .uu c—Ix~ omm=4 mama Hc:cHu=u>cou manunxom say; can.» .uu n— >5»:n econ .uu on HHHHv :Hauw .uHo_ xadv 591:6“ .uu o~xx~ aenw mzo.sa;:< Hacouu=u>sou uses: aw: mama hexauaa uoma xaHv Eavzzu .uu e~rx~ a:=::3= accuvx::< sea: :uou 3°..e gaua>HUH=u so .uu cwuxn Jan 0 .uu a~ Jc_: H:=_;u .u. __:x. :ztzuz; :2u0uuuz x~=: Hz:3.u:a>:au cuou n m\3oo 35:33: :auasmca auscuam Seam 43H: 391:5. .uu a—wx— gage; o~x any; :_nuw .u. n— sauna eooa .uu on Jan o .uu nH Jada Howugu .uu HHde caHuuuh new; HacoHu=o>coo aceunxom . any: :Hauw .uu nH sauna soon .uu on uw «wM%w .ua an suds eaves“ .uu «Huxw QQIN mzoua>z=< HacoHucu>=ou anus: a:u:=oz c~x auquu; mONm uuxuuam uoam xm—s auvzmu .uu QHIXN x0uun< m30uvx:=< was: :.ou Jo» ¢ xauma soon .uu on 33a o .uu mH 3:.a medzu .uu H—Ix_ :ccauam coaohqu tzm HacoHuzo>=ou :uou q m\3uu :av::oz :cuxnac= uoxwunm uosm mea aoczuu .uu anxH xOCOA oNx emu: :Hauw .uu mH sauna Boon .uu on 30a o .uu nH 30H; Ham—:0 .uu HquH :a_uwuk no~m HmcoHu=o>=ou m:mon>om .52. 52.... .3 2 .32... .53 .3 an :3. E...» .32 .32. 53.5: .3 aza EA 383...: 35:52.8 23.3 a:v:=ox . aux noxaumm uoam :9Q:Hu; MON; . 0 Jo» sauna scan .uu on 30» o .u« ad mea auszmu .uu anyN xuuuu< mach: zc< any: .uo a 30H; Ham—sq .uu HHux~ ==1=p3m :quHqu xHam HccoHucu>cou cuou n mxzau wcuumu>um= “ ashamxuoHua>HUH=u u wcHucaHm omaHHHH mHnuHeosu " mumnuHHuuum " . vogue: " auunam uses “ u owuHHHh u quacmz ouuaouom mawuaam ucosoaaamz uuuaomom uuu< unusuusm :Omxuan n.axu:u:ox you vogue: omsHHHH 1cm mucasuHaaoo ucoaauzvm van HauHaazu .uuuHHHuuaunnH wdnah 155 .3353. uuxauam uoam raga; oNx tau: sauna .uu nH usua>HuHau ac .uu oH-xH :ou o .uu nH xaHs Havana .uu mst~ cams; nan; Ha=oHu=a>=oo acuoaxom gnu; can.» .u. n“ x..aa saga .u. on .wwawmnw .u. an 4nd: sauce“ ..u m~-x~ ae-~ assua>5=< decouu=o>=oo gagza ::3::c= ON; auucdum no~m uwxanzm uoan xadv 590:5“ .uu wHuxN xuuu=< m30uvxzz< any: snag :0. c gaps» Eco; .uu on 30“ o .4“ 3H 33.; dumusu .uu HHuxH csszuam :umouqu x_:= HazaHuzu>=ou show a mxzuo hoaauaa Hana antenna any; c_ahw .uu mg neua>uuuau so .uu oan~ 30h o .uu nH xa—s Euvczu .uu mHIXN wane; ON: cams; nGNm accunaom can: sauna .uu mH sauna Econ .uu on HHHua :Heuw .uuoH xmdv Baccau .uu mHlxN :cIN aneuv>::< HacoHuza>coo uaozz azezaox amx sawed“; noNA auxauam “can swan aavzmu .uu wHux~ xuuuu< mucus>sc< vac: choU 30“ e manna soon .uu on aau o .uu ad 30—: Hamdzu .uu HHuxH casausm CowOCUHz stn choHuco>cou auco m m\3uu mavcaom uuxauaa uaam acne; oNx 1am; camp» .uu mH neua>uu~au ac .9. c—rxH 39a o .uu n. mev avucwu .uu mHux~ Oman; ncNm Hmsouu=o>=ou asaoaxam use; cgmuu .uu mH xuuan soon .uu an uwwwwmmw .uu an xmdv aovzuu .uu mHIXN :cnm mac~1xz=< HacoHu=o>=ou umuzz cwx new; uvzauaa uaam xmuv Eauscu .uu mHIxN 231::ox asauvxsc< any; :uou ash e Co.c>Hu_:u so .uu c~lxn 33C 9 .uu a. nod; Hem.:u .u. H-Ix_ :zcauzm :QmOCUHz xdam Assauusu>cou :uou o m\3uo w:_umw>uc= " aquachoHuc>HuHau " wcHuzaHm owaHHHp mHnuHEo:o muoNHHHuuum " vogue: auuuhm uses u uwaHHHH nausea: uuuaowux u:02aH:cm " msaumam unusuwacn: uuuacaum mou< umuzuuam comxuuw a.>xuaucwx new vogue: ewaHHHH van mucmewHano geneaaaem use HuuHEugo ..uufiflfiuuoh--~ udpap 15€5 9:55;. :auxcmca uwxauaa acan xcuog aux 5am; :.aum .uu mH sauna soon .uu on 3c“ 0 .uu a. xmuv autzcu .uu aduxa :=~u9uh new; Haonu:u>cou acaonxom sac: =_aum .uu wH Aguaa soon .uu an H—Hus :_eum .uuod xm_v e;1:=u .uu a—Ix~ :enw a:0u$x:=< HanoHucu>=ao anus: 33:33. 63. =3u=..g na~a umxcuza Scam sad: 5:1:ca .uu aHIx~ xuuuc< aneuc>zz< any: show 30y q xauzm 50:; .uu on 30» o .uu w— 33—5 ~:m_:u .uu HHIxH savshzm :aaOHqu x~== Haonu=u>cou :uoo HH m\3nu anvsaoz :nuwnmaa uuxauma uoam xaxoa cwx anus :Hahw .uw nH xnuaa Boon .uu on 30» c .uu «H mev eu=:au .uu mHuxw :aHuouP mama HacoHu=u>cou mznuaxom was: sueuw .uu mH henna sooa .uu on uw.mwvmw .uu an gnu: auvcau .uu mHIxN scum manuvxzc< HacoHucu>cou gays: o~x newm noxauaa uoam xaHu Susana .uu mHlxN mavcaox maouvxzc< use: :uou no» a uOua>HuHau mo .uu Ouuxn no» 0 .uu mH JoHa Humasu .uu HHIxH :cwauam camouuuz tzm Hacouuzo>aou :uou oH m\=|o anvcaox anywaman uuxauam uoam xenoa ON: so»; can.» .u. ma xa.aa scan .uu cm son 9 .uu ad xmds saves“ .uu aquxw ca_.oua newm dusofiuco>=oo mzmoaxom use: :«agw .uu mH xahgm econ .uu on HHHha :«auw .uuoH smut auzcau .uu mHIxN aqu~ m30uv>5c< gang: oNx . mama buxsuam nozm an1 393:5u .uu w~ux~ mavssom m30uv>sc< sac; cuou :3» c Ecuc>HUH=u mo .uu cwuxm 30g o .uu ”H 3oHa Haaqzu .uu HHIxH cavauam :ww0uqu xH=m HacoHuso>cou show a mxzno mcuumu>ua= u aaummxcoHua>Huaau mauusmdm omeHHp mHauHsuzo " muoNHHHuuum vosuuz " nounam ucua . u . oquHHh u nausea: ouu30mom usuanHavm aaouuam usuaomaca: uuuaoaum uou< amasuuam comxuan a.»xu=u:ug no“ vogue: «wuHHHa can aucuauHaeoo usuanHacm can HQUHaosu .uuuHHHuuomuuH «Hash 157 maflczaz :zuazmmaa uuxauam “cam xouo; oNu 1cm: =_a.w .u_ «H zauam Essa .u. on #2 sou a .uu ed xauv 501=au .uu w_ux_ came; mo~m :a_uw>uom:ou acaaaxom vac; :_a.w .uu nH sauna Boon .uu on HHHuv sauna .uuoH xa—s aouzau .uu oanH acIN a:Ou1xz=< :oHuu>u0m:oo uuwzz . mavcacz aux auucHum mama uwxauaa yoga xouum< aneuaxzc< use: c.9u aou q ununa aooa .uu on a: sea a .uu mH xm_w Banana .uu mHIxN savanna caucuqu dds: :aHua>u~m:ou :uou nH mx3-u aavzzom cauwccmcm buxaaam ucan xeno; o~x emu: c_a.m .uu «H sauna loos .uu on Jay c .u_ ma xmqs eov:au .uu aHlxw caHuuuh news acaun>0m a can; :Hauw .u. nH aauaa soon .uu on uwwwwMEM .uu an Jada amscau .uu oanN aqua n:o~a>:=< Haonuco>coo uses: :31::ox ON! avu:uua noun uvxauaa uoaa mev awacau .uu mHIxN nauua< mucuvxscc van: snag 39“ e asuna soc: .uu on Jan ¢ .Eu om 30‘s .9a«:u .uu HHIxH :ueauzm :vwouqu xHan HacoHu:o>:ou :uou ~H m\3uu a=.umo>.a= " xauamxcouua>HuHau u mzaucaHm umuHHHh u aHmuHEozu " auouHHHuuum " vegan: u luuaxm guns n n " owuHHHh u uumacm: «easemox usuEaHscm nauuaam ucuaumacaz ouu30mux auu< ommzuuam comxuaw u.»xu:ucou you vozuoz awaHHHh van 3520338 “533:5 can H3329 ....«Aduuum--a can.” 158 2:2:acz :cuucama: uvxaham uoam xohoq oNz vac: :_aum .uu mH aauma Sosa .Uu on Hz zsu a .uu «H mev Banzmu .uu QHIXH Oman; mewm :oHua>uum:ou mcava>0m can; :_a_w .uu nu xuuam soon .uu on HHHus :Haum .uucH mea Eovzau .uu manH neaN msouaasc< :oHun>uumcou gays: . mavcsoz cwx noocuum no~m uuxcuaa uoma xuuua< aneusxzc< veg: :COU 30a 4 human Eco; .uu @n 82 30g 0 .uu wH xmdv Eavznu .uu QHIXN :cvcusm caucuqu tzn :oHua>uua:OU :uou ma m\2-u asscsaz cuuwuwmc: uuamuam uaaa xenoa aux van: :_auw .UH nH aauaa Boon .uu an non o .uu nH xmqv 301:5“ .uu w_lx~ :aHuuuP mew; accunxom a. amen cash» .uu nH hauau soon .uu on uwwmwmuw .uu an mev Havana .uu QerN scum m:0u1>::< HacoHuca>cau nausz azfisaoz aux nousHum nc~m uuxmuaa Scan me1 amvzau .uu wHaxm xauum< a:o»va::¢ any: :.Ou 39» q xauam soc: .uu cm 33a 0 .uu mH sod: Hem—:0 .uu HHIxH savnuam :uwouqu xHan HasoHuso>cou :uou NH m\3-u acuuao>ha= ” xauam\couua>HUH:U u acuuzaHm omaHHHP " aHuoaaazo " nuouHHHuuom ” vozuo: " asunxm use: " u " owaHHHH " nausea: «unnamum ucoaaHacm nauumxm unosomacaa consume: nou< omanuuam ccuxuaw m.%xu:ucox you soggy: owaHHHH van nucoeaHaaoo ascendacm can HauHauso .uuuHHHuuumnsH aHnaw sew; =_a.u .u. «— xauaa “can sauna soon on a:1==o= ==~x=z=c= u:cuuauu=c Naux ue.:.:u_:. #2 30k a .uu «— xcuo; o~x cams; me~a ~.«a oz acaugxom any: cue.» ... m— acumm Eco: .u. an Heucuma hdav ccuw m:0uw>;c< HHHH oz uaozz 952:0: uznuuauuam HHux ua:rmuag aux auu=..; mc~= guanunm uoam xohuc< a30ue>sc< 01 any; :uou :ou e amuaa Econ .uu ¢n #2 30C o .uu w- ===nuzm newOCUHz x—zn HHHH :2 :uau :; nu m\3-u 1 9:.fl~:.3x . :aux...mm:m acauunhusm anx uanccuaa vac: =_auw .u. mH manna 3:03 on Hz sch m .uu «H xouoq oNx ammz; new; HHHH oz acaoaxom Au;mfiuv use: :.nuw .uw n“ aqua: soc: .uu on HHHuv :.e.w .u_o_ sad: Butane .uu manH aqu~ a:o~=>;:< ccHu~>uumcou “was: $2353. uscguauuzm Naux ucsrzucm cmx =2u=_.m mam; uoxauaa uasc xwuuc< aaouexzc< saw; zucu 33C e anus: soc; .uu em #2 Jsu c .u. «H asacu:m cowauauz x~=n HHHH oz :uou «H mxzuu wcquma>ua= " xauam\:o.ua>HUH:o " mauucmHm " umaHHHh u m~au.aocu auouHHHuuom u vegan: u louaxm as»: . . " owaHHHh " :uwaca: oouaomux usuanuacm . u . . manumam ucoauaacux ouuzouom uo~< unaccusm cowsuua a.>xu=u:ox you vogue: umaHHHh vac mucueodgaou unusadscm as: Hauusozu .uuaudduuom--~ «flack asvzaox ==Cw=zcn uoaaunm uoaa gags; on: flag: :3qu nH magma Boos .uu on .uu n— :33: saczau .ua mfluxN ==Huuuh nc~m Haonu=u>cou mcaonxom any: such» m. sauna soon .uu on HH_.s :_auw .uuoH ans Eazzsu .uu «Huxm acua m:o~1>;=< HzcoHu==>=ou anus: m mxz 3:1zacx noxcuam “can xcuo; :Nx any; cunuw nH ucua>HuHau zc .uu cHuxH .uu n— ans Eavzau .uu aann cman; new; .e:ouu:u>cou mzcaaxam was; :«auw nH sauna Eooa .uu on kw.mwmmw .uu an :33: Eaczcu .uu m_ux~ scum maohvxzz< Hszodu=9>cou gays: e mxa mauczoz uuxauna gem» . xOEOJ cmz . can: :Hmum nH ucuu>HuHau so .uu oHuxH .uu nH xmdv Havana .uu aanN ommaa new; HucoHuco>cou asaonxom «J [W v59; :Haum mH xaugm Booa .uu on HHHuc =3auw .uuoH xaHv auscuu .uu oHuxm acuN m:0~1>::< anoHuco>=ou uses: 1; n m\3 asvcaox uwxcham aesn :nuwumam 2.2. 5....» 2 $2.... .52. .3 2 .3 2 .....z. 5.53 .3 3-3: x83 98. 3:.a Homage .uu .HuxH :mHuuuh mama HmsoHu=o>:oo acaon>0m 3...... 3....» 2 it: soon .3 on .... .3 2 .....z. 32.3 .3 2;: 3A 381...... 3:325:33 3.25 N m3 asucnox :uhmamaa nuauuma nagm xaHs Sufi=au .uu aHIxH acne; oNx 2.2. 52» 2 >33 .52. .3 on .3 2 33.. 7.2.3 .3 2;: 5.333. 32 3232258 33%.... vac: :Huum nH sauna Icon .uu on HHHuv :Huuw .uugH xa_v lassau .uu aHuxN acnm m:0ufl>::< HacoHucu>cou anon: H ax: wcHgmu>ua= aquam\=oHua>HuH:o " ucHuzuHm mmnHHHa m‘auHsmzu " muuuHHHuuam " vogue: u auuuxm ucua . u u " 0333. u ...owacu: 03:33. . . acoaaHscw u n u u Aeaacducouv namuaxm “cosoaucnx ouuzouoz quu< onusuuam :Omxuafi a.>xo:ucox Haw vo:.v: owuHHHh as: mucosuHaaou usuaaHavm use HuUHauzu .uouHHHuuomllH uHAnh 161 azccsoz schwemcm accuuawb:m “six amuse yoga “cavaua; vcw: =3mha .uu human Boo; .uu an #2 Job a .uu c— take; em: omuca new; aquh oz mammaxcm was; :.c.w .uu xauan soon .uu @n u~uuu c—mhw .abo~ avuw w:o.s>;:< -«h oz uses: a. mxa I aavcswx cauwnman acmuumuuam ~s|x henna uomm unacmhaa use: 33auw .uu sauna secs .uu on H: :9» a .uu «a naked oNx Oman; nomm “duh oz mcwunaom an»: easy» .uu aqua- Ioon .uu on Auovuau u—av aqua m30uvasc< daah oz anus: a m\: naacaom anywammn >auaa yoga . x030; cwx van; cuauw .uu sauna Icon .uu on #2 30k a .uu en xmqv auvsau .uu wulxd Oman; new; =ouuo>uomaou manuaaom can: sauna .uu sauna Boon .uu en uaquv c—auw .uuou xuuv aovcau .uu culxa ovum naouvxzc< cauua>uou=oo ones: a m\: maccaox cauwumma hexauma uoan xOuQa Caz can; :dauw .uu zuunn loos .uu on 30» o .uu ma smut Buccau .uu onlxm ca~uouh new; ma:o«u=o>=ou mcaunxom uowcauaw can; cucuw .uu sauna Boon .uu on u ~«cu. .uu an xaufi Sauce» .uu omuxm aqua a30uvasc< aascqu=o>coo “was: 0 «‘3 acquao>uu= unnumuh " aaqu.auzu " .uouumuuuuu u vogue: " nouuxm use: aquamxcouua>«.~:o u _ unassascu oquuuh u. Ioachx nounoooz anon-am ace-oucca: couscous nou< coaguuam coaxuan -.axu:u:ux uou vague: omu-uh van nucuau—maou ucoamuavu use Acouaoau .uouzzuouué .2: APPENDIX 3 BASE PARTIAL ENTERPRISE BUDGETS They Several components remain fixed for all resource management systems. are: 1. An 80 h.p., two-wheel drive tractor is used for planting, culti- vating and spraying operations. 2. A 130 h.p., two-wheel drive tractor is used for land preparation (chisel plowing and disking operations). 3. A 140 h.p., self-propelled combine is used for all harvesting. 4. Anhydrous ammonia is custom applied (knifed) at a cost of $4.75 per acre. 5. Air seeded costs $3.50 per acre for wheat. 6. Bulk nitrogen, phosphorus and potassium are custom applied at a cost of $3.75 per acre. 7. Three tons of lime are applied every 5 years per acre to equal 0.6 tons per year per acre. The cost includes liming material but not the cost of the application. 8. For corn, 75 percent is assumed to be dryed from an average of 22.5 percent moisture to 15.5 percent moisture using LP (propane) gas at $0.021 per cubic foot. 9. Labor for machinery and field operations costs are $4.00 per hour. 10. Diesel and gasoline costs are $1.10 and $1.25 per gallon, respectively. ll. Market prices per bushel are $3.88 for wheat, $6.90 for soybeans and $2.94 for corn. ‘(ERS Normalized Prices October 24, 1983) 12. Hauling/marketing of harvested grain (field to elevator) costs are $0.18 per bushel. l3. Harvesting time and costs per acre increase when critical level 'harvest yields' are exceeded. The harvest yields are set at 30 bushels per acre for wheat and soybeans and 90 bushels per acre for corn. 14. Management costs are computes as 10 percent of total production cost. 15. A 12 percent interest charge is made against borrowed capital for purchased production inputs. The borrowing periods are 6 months for soybean production and 9 months for corn and wheat production. 1133 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA 05/11/84 EXAHPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS UHEAT-DRILLED CONVENTIONAL FALL TILLAGE I N P U T S UNIT PRICE COST FOR Y I E L O L E V E L S ITEN 30.0 40.0 50.0 EU /ACRE 30.0 BU 40.0 BU 50.0 BU SEED 2.00 2.00 2.00 BU/ACRE 6.85 13.70 13.70 13.70 FERTILIZERS AND CHENICALS NITROGEN ANHYDROUS 59.2 75.3 91.4 LB /ACRE .15 8.89 11.30 13.71 HERBICIDE 24D .5X .8 .8 .8 PT /ACRE 1.98 1.49 1.49 1.4 INTEREST ON OPERATING CAPITAL FOR 9. NONTHS 12.00 PERCENT 2.17 2.38 2.60 SUBTOTAL 26.24 28.87 31.50 FIELD OPERATIONS (MACHINERY ADJUSTNENT FACTOR OF 1.00 ) 18 FT DISK-TANDEN 2X .25 .25 .25 HOURS/ACRE 9.94 2.53 2.53 2.53 16 FT GRAIN DRILL .17 .17 .17 HOURS/ACRE 22.70 3.90 3.90 3.90 36 FT BOON SPRAYER .5X .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 2 TON TRUCK-EQUIPMENT .11 .16 .21 HOURS/ACRE 14.47 1.64 2.32 3.00 15 FT GRAIN HEAD .26 .37 .48 HOURS/ACRE 14.72 3.86 5.45 7.04 140 HP SP CONBINE .26 .37 .48 HOURS/ACRE 67.81 17.76 25.10 32.44 TRACTOR 80 HP 200 .23 .2 .23 HOURS/ACRE 9.84 2.2 2.2 2.27 TRACTOR 130 HP ZOO .25 .25 .25 HOURS/ACRE 16.09 4.10 4.10 4.10 3/4 TON PICKUP .65 .65 .65 HOURS/ACRE 7.23 4.70 4.70 4.70 2 TON TRUCK‘FUEL E OIL 011 016 021 HOURS/AERE 4088 055 078 1001 CUSTOM HACHINERY AND LABOR COSTS 4.75 4.75 4.75 HAULING AND DRYING CHARGES .18 5.40 .20 9.00 LABOR 1.81 2.00 2.18 HOURS/ACRE 4.00 7.25 7.99 8.74 SUBTOTAL 39.17 71.55 83.94 TOTAL PER ACRE PRODUCTION COST 85.40 100.42 115.43 TOTAL PER ACRE VALUE 116.40 155.20 194.00 RETURN PER ACRE OVER PRODUCTION COST 31.00 54.78 78.57 NANAGENENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 8.54 10.04 11.54 TOTAL PER ACRE COST 93.94 110.46 126.98 TOTAL PER ACRE VALUE 116.40 155.20 194.00 TOTAL RETURN PER ACRE 22.46 44.74 67.02 COST PER BU 3.13 2.76 2.54 VALUE PER BU 3.88 3.88 3.88 GASOLINE 2.08 2.27 2.45 GALS./ACRE 1.25 2.60 2.83 3.07 DIESEL 3.77 4.26 4.75 GALS./ACRE 1.10 4.15 4.69 5.22 1154 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA 05/11/84 EXANPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS VHEAT-BROADCAST CONVENTIONAL FALL TILLAGE I N P U T 9 UNIT PRICE COST FOR Y I E L O L E V E L S ITEM 30.0 40.0 50.0 EU IACRE 30.0 BU 40.0 BU 50.0 BU SEED 2.50 2.50 2.50 BU/ACRE 6.85 17.13 17.13 17.13 FERTILIZERS AND CHEMICALS NITROGEN ANHYDROUS 59.2 75.3 91.4 LB /ACRE .15 8.89 11.30 13.71 HERBICIDE 24D .5X .8 .8 .8 PT /ACRE 1.98 1.49 1.49 1.49 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 12.00 PERCENT 2.47 2.69 2.91 SUBTOTAL 29.97 32.60 35.23 FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 18 FT DISK-TANDEM .13 .13 .13 HOURS/ACRE 9.94 1.27 1.27 1.27 33 FT TRLR SPREADER .09 .09 .09 HOURS/ACRE 16.30 1.52 1.52 1.52 13 FT DISK-TANDEM .13 .13 .13 HOURS/ACRE 9.94 1.27 1.27 1.27 36 FT BOON SPRAYER .5X .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 2 TON TRUCK-EOUIPNENT .11 .16 .21 HOURS/ACRE 14. 47 1.64 2.32 3.00 140 HP SP CONBINE .26 .37 .48 HOURS/ACRE 67. 81 17.76 25.10 32.44 TRACTOR 80 HP 280 .15 .15 .15 HOURS/ACRE 9.84 1.50 1.50 1.50 TRACTOR 130 HP 290 .25 .25 .25 HOURS/ACRE 16 09 4.10 4.10 4.10 3/4 TON PICKUP .65 .65 .65 HOURS/ACRE 7.23 4.70 4.70 4.70 2 TON TRUCK- -FUEL 1 OIL .11 .16 .21 HOURS/ACRE 4. 88 .55 .78 1.01 CUSTON NACHINERY AND LABOR COSTS 4.75 4.75 4.75 HAULING AND DRYING CHARGES .18 5.40 7.20 9.00 LABOR 1.72 1.90 2.09 HOURS/ACRE 4.00 6.87 7.62 8.36 SUBTOTAL 55.63 68.02 80.40 TOTAL PER ACRE PRODUCTION COST 85.61 100.62 115.64 TOTAL PER ACRE VALUE 116.40 155.20 194.00 RETIRN PER ACRE OVER PRODUCTION COST 30.79 54.58 78.36 MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 8.56 10.06 11.56 TOTAL PER ACRE COST 94.17 110.68 127.20 TOTAL PER ACRE VALUE 116. 40 155.20 194.00 TOTAL RETURN PER ACRE 22.23 44.52 66.80 COST PER BU 3.14 2.77 2.54 VALUE PER BU 3.88 3.88 3.88 GASOLINE 2.08 2.27 2.45 GALS./ACRE 1.25 2.60 2.83 3.07 DIESEL 3.45 3.94 4.43 GALS./ACRE 1.10 3.80 4.33 4.87 1155 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXANPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS AIR SEEDING UHEAT-AIR SEEDED I N P U T 5 UNIT PRICE ITEM 30.0 40.0 50.0 BU IACRE SEED 3.00 3.00 3.00 BU/ACRE 6.85 FERTILIZERS AND CHENICALS NITROGEN ANHYDROUS 59.2 75.3 91.4 LB /ACRE .15 HERBICIDE 240 .5X .8 .8 .8 PT /ACRE 1.98 INTEREST ON OPERATING CAPITAL FOR 9. HONTHS 12.00 PERCENT SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTNENT FACTOR OF 1.00 1 36 FT BOOM SPRAYER .5X .06 .06 .06 HOURS/ACRE 2 TON TRUCK-EOUIPNENT .11 .16 .21 HOURS/ACRE 15 FT GRAIN HEAD .26 .37 .48 HOURS/ACRE 140 HP SP COHBINE .2 .37 - .48 HOURS/ACRE TRACTOR 80 HP ZUD .06 .06 .06 HOURS/ACRE 3/4 TON PICKUP .65 .65 .65 HOURS/ACRE 2 TON TRUCK-FUEL 8 OIL .11 .16 .21 HOURS/ACRE CUSTON MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES LABOR 1.30 1.49 SUBTOTAL 1.67 HOURS/ACRE TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST HANAGEHENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER BU VALUE PER BU GASOLINE 2.08 2.27 2.45 GALS./ACRE DIESEL 1.42 1.91 2.40 GALS./ACRE COST FOR 30.0 BU 20.55 8.89 1.49 2.78 33.71 Y I E L D 40.0 BU 20.55 11.30 1.49 3.00 36.33 05/11/84 L E V E L S 50.0 BU 20.55 13.71 1.49 3.22 38.96 1156 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA 05/11/84 EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS HHEAT-DRILLED CONSERVATION TILLAGE I N P U T 5 UNIT PRICE COST FOR Y I E L D L E V E L S ITEM 30.0 40.0 50.0 BU /ACRE 30.0 BU 40.0 BU 50.0 BU SEED 2.00 2.00 2.00 BU/ACRE 6.85 13.70 13.70 13.70 FERTILIZERS AND CHEMICALS NITROGEN ANHYDROUS 59.2 75.3 91.4 LB /ACRE .15 8.89 11.30 13.71 HERBICIDE :40 .5X .8 . .8 PT /ACRE 1.98 1.49 1.49 1.49 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 12.00 PERCENT 2.17 2.38 2.60 SUBTOTAL 26.24 28.87 31.50 FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 18 FT DISK-TANDEM LIGHT .13 .13 .13 HOURS/ACRE 9.94 1.27 1.27 1.27 16 FT GRAIN DRILL .17 .17 .17 HOURS/ACRE 22.70 3.90 3.90 3.90 36 FT BOOM SPRAYER .5X .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 2 TON TRUCK-EQUIPMENT .11 .16 .21 HOURS/ACRE 14.47 1.64 2.32 3.00 15 FT GRAIN HEAD .26 .37 .48 HOURS/ACRE 14.72 3.86 5.45 7.04 140 HP SP COMBINE .26 .37 .48 HOURS/ACRE 67.81 17.76 25.10 32.44 TRACTOR 80 HP ZHO .23 .23 .23 HOURS/ACRE 9.84 2.27 2.27 2.27 TRACTOR 130 HP ONO .13 .13 .13 HOURS/ACRE 16.09 2.05 2.05 2.05 3/4 TON PICKUP .65 .65 .65 HOURS/ACRE 7.2 4.70 4.70 4.70 2 TON TRUCK-FUEL 8 OIL .11 .16 .21 HOURS/ACRE 4.88 .55 .78 1.01 CUSTOM MACHINERY AND LABOR COSTS 4.75 4.75 4.75 HAULING AND DRYING CHARGES .18 5.40 7.20 9.00 LABOR 1.66 1.85 2.03 HOURS/ACRE 4.00 6.64 7.38 8.13 SUBTOTAL 55.24 67.63 80.01 TOTAL PER ACRE PRODUCTION COST 81.48 96.49 111.51 TOTAL PER ACRE VALUE 116.40 155.20 194.00 RETURN PER ACRE OVER PRODUCTION COST 34.92 58.71 82.49 HANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 8.15 9.65 11.15 TOTAL PER ACRE COST 89.63 106.14 122.66 TOTAL PER ACRE VALUE 116.40 155.20 194.00 TOTAL RETURN PER ACRE 26.77 49.06 71.34 COST PER BU 2.99 2.65 2.45 VALUE PER BU 3.88 3.88 3.88 GASOLINE 2.08 2.27 2.45 GALS./ACRE 1.25 2.60 2.83 3.07 DIESEL 2.95 3.44 3.92 GALS./ACRE 1.10 3.24 3.78 4.32 1157 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXAMPLE OF AVERAGE YEAF.LY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS NH? -AT-NO TILL I N P U T 5 ITEM 30.0 40.0 SEED 2.00 2.00 FERTILIZERS AND CHEMICALS NITROGEN ANHYDROUS 59.2 75.3 HERBICIDE 24D .5X .8 .8 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS N0 TILLAGE UNIT PRICE 50.0 BU /ACRE 2.00 BU/ACRE 91.4 LB /ACRE .8 PT IACRE 6.85 .15 1.98 12.00 PERCENT .17 HOURS/ACRE .06 HOURS/ACRE .21 HOURS/ACRE .48 HOURS/ACRE .48 HOURS/ACRE .23 HOURS/ACRE .65 HOURS/ACRE SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 16 FT GRAIN DRILL .17 .17 36 FT BOOM SPRAYER .5X .06 .06 2 TON TRUCK-EQUIPMENT .11 .16 15 FT GRAIN HEAD .26 .37 140 HP SP COMBINEII .2 .37 TRACTOR 80 HP ”H .23 .23 3/4 TON PICKUP .65 .65 2 TON TRUCK-FUEL 8 OIL .11 .16 CUSTOM MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES LABOR 1.51 1.69 SUBTOTAL TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER BU VALUE PER BU GASOLINE 2.08 2.27 DIESEL 2.12 2.61 .21 HOURS/ACRE 1.88 HOURS/ACRE 2.45 GALS./ACRE 3.10 GALS./ACRE 22.70 7.81 14.47 14.72 67.81 9.84 4:53 .18 4.00 v. h‘FJ CDLn COST FOR 30.0 BU 13.70 8.89 1.49 2.17 2 .24 3.90 .46 1.64 3. 86 17. 76 20. 4.72 4.75 5.40 6.03 51.32 77.55 116.40 38.85 7.76 85.31 116.40 31.09 2.84 3.88 2.60 LOU Y I E L D 40.0 BU 13.70 11.30 1.49 2.38 28.87 3.90 .46 2.32 5.45 25.10 4.70 .78 4.75 7.20 6.77 63.70 92.57 155.20 62.63 9.26 101.83 175520 53.37 2.55 3.88 2.83 2.87 05/11/84 L E V E L S 50.0 BU 13.70 13.71 1.49 2.60 31.50 3.90 .46 3.00 7.04 2.44 2.27 4.70 1.01 4.75 9.00 7.52 76.09 107.58 194.00 86.42 10.76 118.34 194.00 75.66 2.37 3.88 3.07 3.41 1158 KENTUCKY SPECIAL RESOUF.CES STLTDY - E.(AMF‘LE OF AVERAGE YEARLY DUZGET FOR T825 EYSCIL SO. FERNS HIS! II-H/E ' ‘IFVT’CNA' J 1 N P U T S ITEN 27.0 32.0 SEED 60.00 60.00 FERTILIZERS AND CHEMICALS PHOSPHORUS P205 35.0 45.0 POTASSIUM K20 50.0 60.0 HERBICIDE TREFLAN 1.5 1.5 HERBICIDE LGROX 1.5 1.5 HERBICIDE BASAGRAN 1.0 1.0 HERBICIDE ROUNDUP 2.5 2.5 LINE .6 .6 INTEREST ON OPERATING CAPITAL FOR 6. HCNTHS SUBTOTAL FIELD OPERATIONS (NACHINERY ADJOSTNENT FACTOR CF 11 FT CHISEL PLOH .19 .19 18 FT DISK-TANDEH .16 .16 5FT 6R FLANTER .18 .18 36 FT DOOM SPRAYER mg .06 SPOT SPRA YER .12 .12 2 TON TRUCK- EOUIPMENT .05 .05 15 FT GRAIN HEAD .26 .2 140 HP SP COHDINE .26 .2 TRACTOR 80 HP 280 .36 .36 TRACTOR 130 HP 2ND .35 .35 3/4 TON PICKUP .84 .84 2 TON TRUCK-FUEL K OIL .05 .05 CUSTOM NACHINERY AND LAIOR COSTS HAULING AND DRYING CHARGES LABOR 2.23 2.26 SUBTOTAL TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST 3 60 IA .‘V :0?! PL; UNIT PRICE 7.0 BO /ACRE .00 LB/ACRE 5.0 L8 /ACRE 0.0 L8 /ACRE 1.5 PT /ACRE 1.5 L8 /ACRE 1.0 PT /ACRE 2.5 OZ IACRE .6 TONS/ACRE .19 .12 4.38 5.5 8.44 .63 10.50 12.00 PERCENT 1.00 1 .19 HOCRS/ACRE .16 POORS/ACFE .19 HOORSEACRE .06 HOURS/ACRE .12 HJORS.A1RE .06 HOURS /ACRE .34 HOURS -/ACRE .34 HOURS/ACRE .36 HOURS/ACRE .35 HOURS/ACRE .84 HOURS/ACRE .06 HOURS/ACRE 2.34 HOURS/ACRE MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER DU VALUE PER BU GASOLINE 30 2.32 DIESEL 4.89 4.99 2.36 GALS./ACRE 5 .23 GALS./ACRE 1.25 1.10 999. .- .995 9. FF GTICT 1W TY GF’OUPS .HG TILLHGF scar :99 I 1 E L n 27.9 90 32...) E20 9.48 9.48 6.65 8.55 6.00 7.2 6.57 6.57 8.39 8.W 8. 44 8. 44. 1058 1.058 60 3') 6030 J.20 3.39 56.60 59.89 .64 .64 1.58 1.58 ”.37 2.37 .36 .46 .46 .46 .72 .78 3.96 4.17 17.79 ‘°.33 3.53 1.53 .."3 5.59 6.6. 6.07 ’ .26 3.75 3.75 4086 SOq‘s 8.91 9.04 0 80 67.69 117.40 123.58 186.30 220.80 68.90 97.22 11... 12.36 129.15 135.94 186.30 220.80 57.15 84.86 4.78 4.25 6.90 6.90 2.38 2.90 5.38 5.49 05/11/3‘ L E V E L S 37.0 BU 9.48 146.02 255.30 109.28 3.95 6.90 2.95 5.76 1138 KENTUCKY SPECIAL RESOURCES STUDY - “”‘ON r” PI4A'3E AREA 05/1133‘ EXAMPLE OF AVERAGE IEAFLY BUi GET FOR TH’: E SCIL FEOI C SO’I‘EA NS 8.3. I3-u/E CC6CEITICNAI JCS IIIO TILLACF I N P U T 8 UNIT PRICE CCST 50R 1 I E L D L E V E L S ITEM 27.0 32.0 37.0 EU /ACRE 27.0 PU 32.0 EU 37.0 BU SEED 60.00 60.00 60.00 LB/ACRE .16 9.48 9.48 9.48 FERTILIZERS AND CHEMICALS [PHOSPHORUS P205 35.0 45.0 55.0 LB /ACRE .19 6.65 -.55 10.45 FROTASSIUN K20 50.0 60.0 70.0 LB IACRE .12 6. 00 7.2I 8.40 14ERBICIDE TREFLAN 1.5 1.5 1.5 PT /ACRE 4.38 6.57 6.57 5 57 :iERBICIDE LOROX 1.5 1.5 1.5 L8 lACRE 5.59 8.39 8.39 8.39 IiERBICIDE BASAGRAN 1.0 1.0 1.0 PT /ACRE 8.44 8.44 8.44 8.44 1.1NE .6 .6 .6 TONS/ACRE 10.50 6.30 6.30 6.30 INTEREST ON OPERATING CAPITAL FOR 6. HONTHS 12.00 PERCENT 3.20 3.39 3.58 SUBTOTAL 56.60 59.89 63.18 FIELD OPERATIONS (NACHINERY ADJUSTNENT FACTCR CF 1. 00 I 11 FT CHISEL PLON .19 . 9 .19 AOIPS/A RE 3.41 .64 .64 .64 18 FT DISK-TANDEM .16 .16 16 POUF‘S/ACS E 9. 94 1.58 1.5 1.58 15 FT 6R FLANTER .18 .18 .1? PO“ '8 AIIRE 13.01 2.37 2.37 2.37 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 SPOT SPRAYER .12 .12 .12 HOURS ACRE ' 9‘ .46 .46 .46 2 TON TRUCK-EOUIPMENT .05 .05 .06 HOURS/ACRE 14.4 .72 .78 .93 15 FT GRAIN HEAD .26 .23 .34 HOURS/ACRE 14.72 3.8 3.17 4.97 140 HP SP COHBINE .26 .2 .34 HOURS/ACRE 67.9 .1 17.79 19.23 22.70 TRACTOR 80 HP 280 .36 .36 .36 HOURS/ACRE 9.84 3.53 3.56 3.53 TRACTOR 130 HP 2ND .35 .35 .35 HOURS/ACRE 16 09 5..'3 5.58 ‘ .58 3/4 TON PICKUP .84 ‘ .84 .84 HOURS/ACRE 7.2 6,£7 5.07 6.6? 2 TON TRUCK-FUEL I OIL .05 .05 .06 HOURS/ACRE 4.88 .24 .26 .3‘ CUSTON MACHINERY AND LABOR COSTS 3.75 3.75 .75 HAULING AND DRYING CHARGES .18 4.86 5.76 6. 6 LABOR 2.23 2.26 2.34 HOURS/ACRE 4.C0 8.91 9.04 9.35 SUBTOTAL 60.80 63.69 69.57 'TOTAL PER ACRE PRODUCTION COST 117.40 123.58 132.74 TOTAL PER ACRE VALUE 186.30 220.80 255. :0 RETURN PER ACRE OVER PRODUCTION COST 68.90 97.22 172.36 HANAGEHENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 11.74 12.36 13.2 TOTAL PER ACRE COST 129.15 135.94 146.02 TOTAL PER ACRE VALUE 186.30 220.80 255.30 TOTAL RETURN PER ACRE 57.15 84.86 109.28 COST PER BU 4.78 4.25 3.95 VALUE PER BU 6.90 6.90 6.90 GASOLINE 2.30 2.32 2.36 GALS./ACRE .25 2.38 2.90 2.95 DIESEL 4.89 4.99 .23 GALS./ACRE 1.10 5.38 5.49 5.76 1159 KENTUCKY SPECIAL RESOURCES STUDY - JACRSON PUFICHASE AREA 05/11/84 EXAMPLE OF AVERACE YEARLY BUDGET FOR TFrEE SOIL RODUCTIVITY TROOPS SOYBEANS U/Sr C-U/S CONVENTIONAI SEE INS TILLAC-r. I N P U T 5 UNIT PRICE COST FOR I I E L D L E V E L 5 ITEM 27.0 32.0 37.0 EU /ACRE 27.0 EU 72.0 BU 37.0 BU SEED 60.00 60.00 60.00 LB/ACRE .16 9.48 9.48 9.48 FERTILIZERS AND CHENICALS PHOSPHORUS P205 35.0 45.0 55.0 LB /ACRE .19 6.65 8.55 10.45 POTASSIUN K20 50.0 60.0 70.0 LB /ACRE .12 6.00 7.20 8.40 HERBICIDE LASS 1.5 1.5 1.5 OT /ACRE 5.28 7.92 7. 92 7.92 HERBICIDE LOROX 2.0 2.0 2.0 L8 /ACRE 5.59 11.18 11.18 11.18 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 1.58 1.58 1.58 LINE .6 .6 .6 TONS/ACRE 10.50 6.30 6.30 6.30 INTEREST ON OPERATING CAPITAL FOR 6. NONTHS 12.00 PERCENT 2.95 3.13 3.32 SUBTOTAL 52.05 55.34 58.62 FIELD OPERATIONS (NACHINERY ADJUSTPENT FACTOR OF 1.00 ) 18 FT UISK‘TANUEH .14 014 014 HOURS/GCRE 9094 1939 1039 1039 18 FT DISK-TANDEM .17 .17 .17 HOURSXACRE 9.94 1.73 1.73 1.73 15 FT 6R PLANTER .19 .19 .19 HOURS/ACRE 13.01 2.48 2.48 2.48 16 FTc 6R CULTIVATOR .2 .20 .20 HOURSEACRE 3.75 .76 ..6 .76 SPOTS AER .12 .12 .12 HOURSKACPE 3.91 .46 .46 .46 2 TON TRUCK EOUIPNENT .05 .05 .06 HOURS/ACRE 14.47 .72 .78 .93 15 FT GRAIN HEAD .2 .2 .34 HOURS/ACRE 14.72 3.86 4.17 4.97 140 HP SP COMBINE .26 .2 .34 HOURS/ACRE 67.81 17.7 19.23 22.90 TRACTOR 80 HP 280 .51 .51 .51 HOURSXACRE 9.84 5.02 5.02 5.02 TRACTOR 130 HP 28D .31 .31 .31 HOURS/ACRE 16.09 5. 4 5.04 5.04 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 6.07 6.07 6.C7 2 TON TRUCK-FUEL 1 OIL .05 .05 .06 HOURS/ACRE 4.88 .24 .26 .31 CUSTON NACHINERY AND LABOR COSTS 3.75 3.75 .75 HAULING AND DRYING CHARGES .18 4.86 5.x6 5.66 LABOR 2.37 2.40 2.43 HOURS/ACRE 4.00 9.48 9.60 9.91 SUBTOTAL 63.62 66.5 '2.38 TOTAL PER ACRE PRODUCTION COST 115.67 121.85 131.01 TOT AL PER AC RE LUE 186.30 220.80 255.30 RETURN PER ACRE OVER PRODUCTION COST 70.63 98.95 124.29 MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 11.57 12.18 13.10 TOTAL PER ACRE COST 127.24 134.03 144.11 TOTAL PER ACRE VALUE 186.30 220.80 255.2 TOTAL RETURN PER ACRE 59.06 86.77 111.19 COST PER BU 4.71 4.19 3.89 VALUE PER BU 6.90 .90 6.90 GASOLINE 2.30 2.32 2.36 GALS./ACRE 1.25 2.88 2.90 2.95 DIESEL 5.29 5.39 5.63 GALS./ACRE 1.10 3.82 5.93 6.20 REC'TUCTY SPECIAL RESOURCES STUDY - JACKSON . QnNrLE OF AVERAGE YEARLY BUDGET FOR THREE ‘ SOYBEANS SSS I N P U T S ITEN 27.0 32.0 SEED 60.00 60.00 FERTILIZERS AND CHEMICALS PHOSPHORUS P205 35.0 45.0 POTASSIUN K20 50.0 60.0 HERBICIDE LASSO 1.5 1.5 HERBICIDE LOROX 2.0 2.0 HERBICIDE ROUNDUP 2.5 2.5 LINE .6 .6 INTEREST ON OPERATING CAPITAL FOR 6. NONTHS l7() CONVENTIONAL UNIT PRICE 37.0 PU .ACRE 60.00 LB/ACRE 0 LB /ACRE 0 LB /ACRE 5 OT /ACRE 0 LB IACRE 5 DZ /ACRE 6 TONE/ACRE .19 0.5— c .1 Jo; 5.59 .63 10.50 12.00 PERCENT .13 HOURS/ACRE .16 HOURS/ACRE .13 HOURS/ACRE .20 HOURS/ACRE .12 HOURS/ACRE .06 HOLRS/ACRE .34 HOURS/ACRE .34 HOURSXACRE .50 HOURS/ACRE .29 HOURS/ACRE .84 HOURS/ACRE SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTHENT FACTOR OF 1.00 ) 18 FT DISK'TANDEH 01 013 18 FT DISK-TANDEM .16 .16 15 FT 6R PLANTER .18 .13 16 FT 6R CULTIVATOR .20 .20 SPOT SPRAYER .12 .12 2 TON TRUCK-EOUIPHENT ..5 . 5 15 FT GRAIN HEAD .26 .28 140 HP SP COHBINE .26 .2 TRACTOR 80 HP 2ND .50 .5 TRACTOR 130 HP 290 .29 .29 3/4 TON PICKUP .84 .84 2 TON TRUCK-FUEL 1 OIL .05 .05 CUSTON MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES LABOR 2.3 SUBTOTAL 01 DJ 04 0‘ TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST HANAGENENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER BU VALUE PER BU GASOLINE 2.3 2.32 DIESEL 5. 08 5.18 .06 HOURS/ACRE 2.44 HOURS/ACRE 2.36 GALS./ACRE 5.42 GALS./ACRE 9.94 9.94 13.01 3.75 3.71 14.47 14.7? 67.81 9.34 ‘.6.09 7.3 4. 33 .13 4.C0 0 A: .10-J 1.10 PURE UH:E AREA -RO“1“TT.-. 5.x}:n .Il: ccs‘ FOR 27.0 RU 7.48 6.65 6.00 114.61 186.30 71.69 11.46 126.07 186.30 60.23 4.67 6.90 2.88 5.59 1 I E L D '.;'.01.‘ F.” 9.48 ,. 5 O~F*r“u~qco 0 O 1' o o o 0401'.“ u.) (\JLH C>G3¢3FngLn 120.7 220.80 100.02 12.08 132.86 220.80 87.94 4.15 6.90 2.70 5. 70 L E U E L 3 37.0 EU 9.48 14.45 7.?2 4" i 0;; 1.5 6.30 3.32 53.52 1.2 1058 2037 .76 .46 .93 .1 97 22.90 4.93 4.61 5.07 11 we 3. J DOhL 9.74 71.32 129.94 “CE '2 51:0: A.)0u'15 12.99 142.94 255.30 112.36 3.86 6.90 n : OJ 5.97 171. kENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE ARE A EXAHPLE OF AVERAGE ’EARLY BUDGET FOR T4F‘EE SOIL FRODUCTIVITY SOTBEANS H/S! C Nz’S 3.11EN IONAL SFRINu TILT.ACE I N P U T 5 UNIT PRICE COST FOR ITEH 27.0 32.0 37.0 BU /ACRE ./.0 ET SEED 60.00 60.00 60.00 LB/ACRE .16 9.48 FERTILIZERS AND CHENICALS PHOSPHORUS P205 35.0 45.0 55.0 LB /ACRE .1 6.65 POTASSIUH N20 50.0 60.0 70.0 LB /ACRE .12 6.00 HERBICIDE TREFLAN 1.5 1.5 1.5 PT /ACRE 4.38 6.57 HERBICIDE LOROX 1.5 1.5 1.5 LB /ACRE 5.59 8.39 HERBICIDE BASAGRAN 1.0 1.0 1.0 PT /ACRE 8.44 8.44 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 1.5 LINE .6 .6 .6 TONS/ACRE 10.50 6.30 INTEREST ON OPERATING CAPITAL FOR 6. HONTHS 2.00 PERCENT .20 SUBTOTAL :6.60 FIELD OPERATIONS (HACHINERY ADJUSTMENT FACTOR OF 1.00 ) 18 ET DISK-TANDEH .14 .14 .14 HOURS/ACRE 9.94 1.39 18 FT DISK-TANDEH .17 .17 .17 HOURS/ACRE 9.94 1. 3 15 FT 6R PLANTE .19 .19 .19 HOURS/ACRE 13.01 2.48 36 FT BOON SPRAYER .06 .06 .06 HOURS/ACRE 7.81 .46 SPOT SPRAYER .12 .12 .12 HOURS/ACR 3.91 .46 2 TON TRUCK-EOUIPHENT .05 .05 .06 HOURS/ACRE 14.47 .72 15 ET GRAIN HEAD .26 28 .34 HOURS/ACRE 14.72 3.86 140 HP SP CONBINE .26 .28 .34 HOURS/ACRE 67.81 17.76 TRACTOR 80 HP 2ND .37 .37 .37 HOURS/ACRE 9. 84 ..61 TRACTOR 130 HP 2ND .31 .31 .31 HOURS/ACRE 16. 09 5.04 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 6.07 2 TON TRUCK- -FUEL 8 OIL .05 .05 .06 HOURS/ACRE 4.88 .2 CUSTOH NACHINERY AND LABOR COSTS .75 HAULING AND DRYING CHARGES .18 4.3 LABOR 2.20 2.23 2.31 HOURS/ACRE 4.00 8.30 SUBTOTAL 61.2 TOTAL PER ACRE PRODUCTION COST 117.84 TOTAL PER ACRE VALUE 136.30 RETURN PER ACRE OVER PRODUCTION COST 68.46 HANAGENENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 11.78 TOTAL PER ACRE COST 129.62 TOTAL PER ACRE VALUE 186.30 TOTAL RETURN PER ACRE 56.68 COST PER BU 4.80 VALUE PER BU 6.90 GASOLINE 2.30 2.32 2.36 GALS./ACRE .25 2.88 Y I E L D 32.0 BU 9.48 12.40 136.42 220.80 84.38 4.26 6.90 2.90 5.29 05/11/34 L E V E L S 37.0 BU 9.48 I r_f' »~ \. O O O O O o . cum». 01:111....- 0:035 "1‘ J Ow v“ 0:) tin fr- 122 {13 13.32 146.49 255.30 108.81 3.96 6.90 n: 29 7d 5.56 172! KENTUCKY SPECIAL RESOURCES ST'ID’ - ‘A W'SO FURCHA 3E AREA EXAnPLE 3F AVERAGE YEARLY ETD CET FDR TrFEE SOIL PRODUCTIVITY 693093 SOYBEANS SSS C'“2¢NTI””aL :.F‘IJG TILLAGE 05111724 I N P U T S UNIT PRICE CT TFCR Y I E L D L E V E L 3 ITEM 27.0 32.0 37.0 EJ iACRE 27.0 SC 32.0 BU 37.0 BU SEED 60.00 60.00 60.00 LB/ACRE .16 9.48 9.48 9.48 FERTILIZERS AND CHENICALS PHOSPHORUS P205 35.0 45.0 55.0 LB /ACRE .19 6.65 8.55 10. 45 POTASSIUM K20 50.0 60.0 70.0 LB /ACRE .12 6 )0 7.20 8.40 HERBICIDE TREFLAN 1.5 1.5 1.5 PT /ACRE 4.38 6.57 6.57 6.57 HERBICIDE LOROX 1.5 1.5 1.5 LB /ACRE 5.59 8.39 8.6? 8.39 HERBICIDE BASAGRAN 1.0 1.0 1.0 PT /ACRE 8.44 8.44 8.44 8. 44 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 1.58 1.5 1.5 LIME .6 .6 .6 TONS/ACRE 10.50 6.30 6.30 6.30 INTEREST ON OPERATING CAPITAL FOR 6. NONTHS 12.00 PERCENT 3.20 3.39 3.58 SUBTOTAL 56.60 59.89 63.18 FIELD OPERATIONS (MACHINERY AD‘USTNENT FACTOR OF 1. 00 1 18 FT DISK-TANDEM .13 .13 .13 HGURS’ACRE 9.94 .27 1.27 1.2 18 FT DISK-TANDEM .16 .16 .16 HOURS/ACRE 9.94 1.58 1.58 1.58 15 FT 6R PLANTER .18 .18 .18 HOURS/ACRE 1 .01 -.37 2.37 2 77 SPOT SPRAYER .12 .12 .12 0“RS.A1RE 3.91 .46 .46 .46 2 TON TRUCK’EOUIPNENT .05 .05 .06 HOU MACFE 14. 47 .72 .78 .93 15 FT GRAIN HEAD .26 .28 .34 HOURS/ACRE 14.3 3.36 4.17 4.97 140 HP SP CONBINE .2 .2 .34 HOURS/ACRE 67.81 17.76 19.23 22.90 TRACTOR 80 HP 2ND .36 .36 .36 HOURS/ACRE 9. 84 3.53 3.52 3.5 TRACTOR 130 HP 2H0 .2 .2 .29 HOURS/ACRE 16. 09 4.61 4.61 4.61 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE ..23 6.07 6.07 6.07 2 TON TRUCK'FUEL 8 OIL .05 .05 .06 HOURS/ACRE 4.88 .24 .26 .31 CUSTON MACHINERY AND LABOR COSTS 3.75 3.75 3.75 HAULING AND DRYING CHARGES .18 4.86 5.76 6.66 LABOR 2.16 2.19 2.26 HOURS/ACRE 4.00 8.63 8.75 9.06 SUBTOTAL 60.17 63.06 68.9 TOTAL PER ACRE PRODUCTION COST 116.77 122.95 132.11 TOTAL PER ACRE VALUE 186.30 220.80 255.30 RETURN PER ACRE OVER PRODUCTION COST 69.53 97.85 123.19 NANAGENENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 11.68 12.30 13.21 TOTAL PER ACRE COST 128.45 135.25 145.32 TOTAL PER ACRE VALUE 186.30 220.80 255.30 TOTAL RETURN PER ACRE 57.85 85.55 109.98 COST PER BU 4.76 4.23 3.93 VALUE PER BU 6.90 6.90 6.90 GASOLINE 2.30 2.32 2.36 GALS./ACRE 1.25 2.88 2.90 2.95 DIESEL 4.50 4.60 4.84 GALS./ACRE 1.10 4.95 5.06 5.33 1723 KENTUCKY SPECIAL RESOURCES STUDY - JACKS ON PURCHASE A? EA 35/11/84 EXANPLE 0F AVERAGE YEARLY BUCGET F2R THREE SOIL F'F'CBU‘ITIVITY GROUPS SOYBEANS U/S: C-U/S CONSERVATI CN TILLAGE I N P U T S UNIT PRICE COST FOR L B L E V E L S SEED 60.00 60.00 60.00 LB/ACRE .16 9.48 9.48 9.48 FERTILIZERS AND CHENICALS PHOSPHORUS P205 35.0 45.0 55.0 LB /ACRE .19 6. 5 8.5. 10.45 POTASSIUN K20 50.0 60.0 70.0 LB /ACRE .12 6.00 .20 8.40 HERBICIDE LASSO 1.5 1.5 1.5 0T /ACRE 5.2 7.92 7.92 7.92 HERBICIDE LOROX 2.0 2.0 2.0 L8 /ACRE .5 11.18 11.18 11.18 HERBICIDE BASAGRAN 1.0 1.0 1.0 PT /ACRE 8.44 8.44 8. 44 8.44 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 1.58 1.58 1.53 LINE .6 .6 .6 TONS/ACRE 10.50 6.30 .30 6.30 INTEREST ON OPERATING CAPITAL FOR 6. HONTHS 12.00 PERCENT 3.45 3.64 3.82 SUBTOTAL 61.00 64.28 67.57 FIELD OPERATIONS (NACHINERY ADJUSTNENT FACTOR OF 1.00 ) 18 FT DISK-TANDEH .14 .14 .14 HOURS/ACRE 9.94 1.39 1.39 1.39 36 FT BOON SPRAYER .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 14 FT 88 NT PLANT .2 .26 .26 HOURS/ACRE 26.82 6.68 6.68 6.68 36 FT BOON SPRAYER .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 2 TON TRUCK-EQUIPMENT .05 .05 .06 HOURS/ACRE 14.47 .72 .78 .93 15 FT GRAIN HEAD .26 .28 .34 HOURS/ACRE 14.72 3.86 4.17 4.97 140 HP SP COMBINE .26 .2 .34 HOURS/ACRE 67.81 17.76 19.23 22.90 TRACTOR 80 HP 2ND .49 .49 .49 HOURS/ACRE 9.84 4.86 .86 4.86 TRACTOR 130 HP 280 .14 .14 .14 HOURS/ACRE 16.09 2.25 2.25 2.25 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.2 .07 6.C 6.07 2 TON TRUCK'FUEL 4 OIL .05 .05 .06 HOURS/ACRE 4.38 6.24 .26 .31 CUSTOH HACHINERY AND LABOR COSTS 3.75 3 75 3.75 HAULING AND DRYING CHARGES .18 4. 86 5. 76 6.66 LABOR 2.14 2.17 2.25 HOURS/ACRE 4.00 ' 57 8.69 9 .00 SUBTOTAL 62.39 65.28 71.15 TOTAL PER ACRE PRODUCTION COST 123.39 129.56 13 8. 72 TOTAL PER ACRE VALUE 186.30 220.80 255.30 RETURN PER ACRE OVER PRODUCTION COST 62.91 91.24 116.58 HANAGENENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 12.34 12.96 13.87 ‘TOTAL PER ACRE COST 135.72 142.52 152.60 'TOTAL PER ACRE VALUE 186.30 220.80 255.30 TOTAL RETURN PER ACRE 50.58 78.28 102.70 COST PER BU 5.03 4.45 4.12 VALUE PER BU 6.90 6.90 6.90 GASOLINE 2.30 2.32 2.36 GALS./ACRE 1.25 2.88 2.90 2.95 DIESEL 4.10 4.20 4.44 GALS./ACRE 1.10 4.51 4.62 4.39 171% KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SCIL PRODUCTIVITY GROUPS SOYDEANS SSS I N P U T S UNIT PRICE ITEN 27.0 32.0 37.0 BU IACRE SEED 60 . 00 60 . 00 60 . 00 LD/ACRE . 16 FERTILIZERS AND CHENICALS PHOSPHORUS P205 35.0 45.0 55.0 LB /ACRE .19 POTASSIUM K20 50.0 60.0 70.0 LB /ACRE .12 HERBICIDE LASSO 1.5 1.5 1.5 OT /ACRE 5.28 HERBICIDE LOROX 2.0 2.0 2.0 L8 /ACRE 5.59 HERBICIDE DASAGRAN 1.0 1.0 1.0 PT /AC RE 8.44 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 LIME .6 .6 .6 TONS/ACRE 10.50 INTEREST ON OPERATING CAPITAL FOR 6. MONTHS 12.00 PERCENT SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1. 00 ) 18 FT DISK-TANDEM .13 .13 .13 HOURS/ACRE °.94 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.81 14 FT 8R NT PLANT .24 .24 .24 HOURS/ACRE 25.32 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.81 SPOT SPRAYER .12 .12 .12 HOURSXACRE 3.91 2 TON TRUCK-EOUIPMENT .05 .05 .06 HOURS/ACRE 14.47 15 FT GRAIN HEAD .26 .2 .34 HOURS/ACRE 14.72 140 HP SP COMBINE .26 .2 .34 HOURS/ACRE 67.81 TRACTOR 80 HP 2ND .48 .48 .48 HOURS/ACRE 9.84 TRACTOR 130 HP 2ND .13 .13 .13 HOURS/ACRE 16.09 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 2 TON TRUCK- FUEL I OIL .05 .05 .06 HOURS/ACRE 4.38 CUSTOM MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES .18 LABOR 2.11 2.14 2.22 HOURS/ACRE 4. 00 SUBTOTAL TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER DU VALUE PER BU GASOLINE 2.30 2.32 2.36 GALS./ACRE 1.25 DIESEL 3.96 4.06 4.30 GALS./ACRE 1.10 CONSERVATION TILLAGE COST FOR 27.0 BU 9.48 17.76 4.72 2.05 6.07 .24 3.75 4.86 8.44 61.42 122.42 186.30 63.88 12.24 134.66 186.30 51.64 4.99 6.90 2.88 4.36 Y I E L n 32.0 EU 9.48 128.60 220. 80 92.20 12.86 141.46 220.80 79.34 4.42 6.90 2.90 4.47 05/11/84 L E V E L S 37.0 BU 9.48 10.45 8.40 7.92 11.18 8.44 1.5 6.30 3.82 67.57 13/070 .55. 30 117.54 13.78 151.54 255.30 103.76 4.10 6.90 2.95 4.73 1J75 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS SOYBEANS U/S: C-U/S NO TILLAGE 75 ooo~ NH Prat-‘00 UNIT PRICE 37.0 BU /ACRE .00 LB/ACRE LB /ACRE LB /ACRE OT /ACRE LB /ACRE PT /ACRE PT /ACRE PT /ACRE OZ /ACRE TONS/ACRE . O. O 0 .0 muomoomoo O .16 .19 .12 5.2 5.59 5.38 1.88 8.44 .63 10.50 12.00 PERCENT .06 HOURS/ACRE .29 HOURS/ACRE .06 HOURS/ACRE .12 HOURS/ACRE .06 HOURS/ACRE .34 HOURS/ACRE .34 HOURS/ACRE .53 HOURS/ACRE .84 HOURS/ACRE I N P U T 5 ITEM 27.0 32.0 SEED 75.00 75.00 FERTILIZERS AND CHEMICALS PHOSPHORUS P205 40.0 50.0 POTASSIUM K20 60.0 70.0 HERBICIDE LASSO 1.5 1.5 HERBICIDE LOROX 2.0 2.0 HERBICIDE PARAGUAT 1.0 1.0 HERBICIDE X-77 SURF .5 .5 HERBICIDE BASAGRAN 1.0 1.0 HERBICIDE ROUNDUP 2.5 2.5 LIME .6 .6 INTEREST ON OPERATING CAPITAL FOR 6. MONTHS SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 36 FT BOOM SPRAYER .06 .06 14 FT 8R NT PLANT .29 .2 36 FT BOOM SPRAYER .06 .06 SPOT SPRAYER .12 .12 2 TON TRUCK-EQUIPMENT .05 .05 15 FT GRAIN HEAD .26 .28 140 HP SP COMBINE .26 .2 TRACTOR 80 HP 2ND .53 .53 3/4 TON PICKUP .84 .84 2 TON TRUCK-FUEL 8 OIL .05 .05 CUSTOM MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES LABOR 2.02 2.05 SUBTOTAL TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST I, I. .06 HOURS/ACRE .12 HOURS/ACRE 7.31 25.82 7.81 3.91 14.47 14.72 67.81 9.84 7.2 4.38 .18 4.00 MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER BU VALUE PER BU GASOLINE 2.30 2.32 DIESEL 3.34 3.43 2 3 .36 GALS./ACRE .68 GALS./ACRE 1.25 1.10 CSST FUR 27.0 EU 11.85 7.60 7.20 7.92 11.18 5.38 . 4 8.44 1.58 6.30 4.10 72.49 Y I E L D 32.0 BU 11.85 9.50 8.40 7.92 11.18 5.38 .94 8.44 1.58 6.30 4.29 .46 7.57 .46 .46 .78 4.17 19.23 ..20 6.07 .26 3.75 5.76 8.19 62.37 133.14 220.80 82.66 13.81 151.95 220.80 68.85 4.75 6.90 2.90 3.78 05/11/84 L E U E L S 37.0 BU 11.85 11.40 9.60 7.?2 11.13 5.38 .94 8.44 1.58 6.30 4.48 79.06 .46 w (:7 .I .\)IV .46 .46 .93 4.97 22.90 .20 6.07 .31 .75 6.66 8.50 68.24 147.30 255.30 108.00 14.73 162.03 255.30 93.27 4.38 6.90 2.95 4.05 1765 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS SOYBEANS SSS I N P U T S ITEM 27.0 32.0 SEED 75.00 75.00 FERTILIZERS AND CHEMICALS 3 75 NO TILLAGE UNIT PRICE 7.0 BU /ACRE .00 LB/ACRE 0 LB /ACRE 0 LB /ACRE 5 0T /ACRE 0 LB /ACRE 0 PT /ACRE 5 PT IACRE 0 PT /ACRE 5 OZ /ACRE 6 TONS/ACRE 12.00 .06 HOURS/ACRE .27 HOURS/ACRE .06 HOURS/ACRE .12 HOURS/ACRE .06 HOURS/ACRE .34 HOURS/ACRE .34 HOURS/ACRE .51 HOURS/ACRE .84 HOURS/ACRE PHOSPHORUS P205 40.0 50.0 POTASSIUM K20 60.0 70.0 HERBICIDE LASSO 1.5 1.5 HERBICIDE LOROX 2.0 2.0 HERBICIDE PARAOUAT 1.0 1.0 HERBICIDE X-77 SURF .5 .5 HERBICIDE BASAGRAN 1.0 1.0 HERBICIDE ROUNDUP 2.5 2.5 LIME .6 .6 INTEREST ON OPERATING CAPITAL FOR 6. MONTHS SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 36 FT BOOM SPRAYER .06 .06 14 FT 8R NT PLANT .27 .2 36 FT BOOM SPRAYER .06 .06 SPOT SPRAYER .12 .12 2 TON TRUCK-EQUIPMENT .05 .05 15 FT GRAIN HEAD .26 .28 140 HP SP COMBINE ».26 .28 TRACTOR 80 HP 2ND .51 .51 3/4 TON PICKUP .84 .84 2 TON TRUCK-FUEL I OIL .05 .05 CUSTOM MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES LABOR 1.99 2.03 SUBTOTAL TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER BU VALUE PER BU GASOLINE 2.30 2.32 DIESEL 3.26 3.36 ’9 L 2 3 .06 HOURS/ACRE .10 HOURS/ACRE .36 GALS./ACRE .60 GALS./ACRE .16 .19 . 2 5.28 5.59 5.38 1.88 8.44 .63 10.50 (PERCENT 7.31 25.82 7.81 3.91 14.47 14.72 67.81 9.84 7.23 4.88 .18 4.00 1.25 1.10 COST FOR 27.0 BU 11.35 7.60 7.2 7.92 11.18 .38 .94 8.44 1.58 6.30 4.10 2.49 Y I E L D 32.0 BU 11.85 9.50 8.40 7.92 11.18 5.38 .94 8.44 1.58 6.30 .29 we 1 Id. I 61.62 137.40 220.80 83.40 13.74 151.14 220.80 69.66 4.72 6.90 2.90 3.70 05/11784 L E V E L S 37.0 BU 11.85 11.40 9.60 7.92 11.18 5.38 .94 8.44 1.58 6.30 4.43 79.06 6.66 8.41 67.50 146.56 255.30 108.74 14.66 161.22 255.30 94.08 4.36 6.90 2.95 3.96 1I77 KENTUCKY SPECIAL RESOURCES STUDY - JACT SON PURCHASE AREA 05511/84 EXAMPLE OF AVERAGE YEARLY BUDGET FOR THFEE SOIL PRODU 'CTIVITY GROUPS CORN--CULTIVATED CONVENTIONAL S2 rRING TILLAGE I N P U T S UNIT PRICE COST FOR Y I E L D L E V E L S ITEM 80.0 110.0 140.0 BU 7ACRE 80.0 BU 110.0 BU 140.0 BU SEED 16.00 16.00 16.00 LB/ACRE 1.12 17.92 17.92 17.92 FERTILIZERS AND CHEMICALS NITROGEN NITROGEN 55.9 81.8 119.6 LB /ACRE .25 13.98 20.44 29.91 NITROGEN ANHYDROUS 37.3 53.9 77.8 LB /ACRE .15 5.60 8.09 11.67 PHOSPHORUS P205 70.0 80.0 90.0 LB /ACRE .19 13.30 15.20 17.10 POTASSIUM K20 71.6 95.0 _118.3 LB /ACRE .12 8.60 11.40 14.20 INSECTICID FURADAN.4X 4.0 4.0 4.0 LB fACRE .96 3. 84 3.84 3.84 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ IACRE .63 l. 58 1.58 .38 LIME .6 .6 .6 TONS/ACRE 10.50 6. 30 6.30 6.30 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 2.00 PERCENT 6.40 7.63 .2 SUBTOTAL 77.51 92.39 111.74 FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 11 FT CHISEL PLOH .19 .19 .19 HOURS/ACRE 3.41 .64 .64 .64 18 FT DISK-TANDEM 2X .2 .2 .25 HOURS/ACRE 9.94 2.53 2.5 2.5 18 FT 6R PLANT/PERT .15 .15 .15 HOURS/ACRE 19.92 3.03 3.03 3.03 20 FT 6R CULTIVATOR 3X .48 .43 .48 HOURS/ACRE 4.69 2.2 2.27 2.2 SPOT SPRAYER .12 .12 .12 HOURS/ACRE 3. 91 .46 . .46 2 TON TRUCK-EQUIPMENT .15 .16 .18 HOURS/ACRE 14. 47 2.17 2.32 2.53 4 RON CORN HEAD .30 .32 .35 HOURS/ACRE 16.64 5.03 5.36 5.87 140 HP SP COMBINE .30 .32 .35 HOURS/ACRE 67. 81 20.49 21.86 23.91 TRACTOR 80 HP 2ND .75 .75 .75 HOURS/ACRE 9.84 7.41 7.41 7.41 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 6. 07 6.07 6.07 2 TON TRUCK- -FUEL I OIL .15 .16 .18 HOURS/ACRE 4.88 .73 .78 .85 CUSTOM MACHINERY AND LABOR COSTS 8. 50 3.50 8.50 HAULING AND DRYING CHARGES .24 19. 48 26.78 34.09 LABOR 2.98 3.02 3.08 HOURS/ACRE 4.00 11.94 12.08 12.30 SUBTOTAL 97.86 107.20 117.57 TOTAL PER ACRE PRODUCTION COST 175.37 199.59 229.30 TOTAL PER ACRE VALUE 235.20 23.40 411.60 RETURN PER ACRE OVER PRODUCTION COST 59.83 123.81 182.30 MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 17.54 19.96 22.93 TOTAL PER ACRE COST 192.91 219.55 252.23 TOTAL PER ACRE VALUE 235.20 323.40 411.60 TOTAL RETURN PER ACRE 42.29 103.85 159.37 COST PER BU 2.41 2.00 1.80 VALUE PER BU 2.94 2.94 2.94 GASOLINE 2.70 2.74 2.80 GALS./ACRE 1.25 3.38 3.43 3.50 DIESEL 7.30 7.39 7.53 GALS./ACRE 1.10 8.03 8.13 8.28 1I78 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA 05/11/34 EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY EROUPS CORN--CHEMICALS CONVENTIONAL SPRING TILLAGE I N P U T 5 UNIT PRICE COST FOR Y I E L D L E V E L S ITEM 80.0 110.0 140.0 BU /ACRE 80.0 30 110.0 BU 140.0 BU SEED 16.00 16.00 16.00 LB/ACRE 1.12 17.92 17.92 17.92 FERTILIZERS AND CHEMICALS NITROGEN NITROGEN 55.9 81.8 119.6 LB /ACRE .25 13.98 20.44 29.91 NITROGEN ANHYDROUS 37.3 53.9 77.8 LB /ACRE .15 5.60 8.09 11.67 PHOSPHORUS P205 70.0 80.0 90.0 LB /ACRE .19 13.30 15.20 17.10 POTASSIUM K20 71.6 95.0 118.3 LB /ACRE .12 8.60 11.40 14.20 INSECTICID FURADAN.4X 4.0 4.0 4.0 L8 /ACRE .96 3.84 3.84 3.84 HERBICIDE AATREX 2.5 2.5 2.5 PT /ACRE 1.36 3.40 3.40 3.40 HERBICIDE PRINCEP 3.0 3.0 3.0 PT [ACRE 2.44 7.32 7.32 7.32 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ IACRE .63 1.58 1.58 1.58 LIME .6 .6 .6 TONS/ACRE 10.50 6.30 6.30 6.30 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 12.00 PERCENT 7.36 8.59 10.19 SUBTOTAL 89.19 104.07 123.42 FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 11 FT CHISEL PLOH .19 .19 .19 HOURS/ACRE 3.41 .64 .64 .64 18 FT DISK-TANDEM 2X .2 .25 .25 HOURS/ACRE 9.94 2.53 2.53 2.5 18 FT 6R PLANT/PERT .15 .15 .15 HOURS/ACRE 19.92 3.03 3.03 3.03 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 SPOT SPRAYER .12 .12 .12 HOURS/ACRE 3.91 .46 .46 .46 2 TON TRUCK-EOUIPMENT .15 .16 .18 HOURS/ACRE 14.47 2.17 2.32 2.53 4 ROU CORN HEAD .30 .32 .35 HOURS/ACRE 16.64 5.03 5.36 5.87 140 HP SP COMBINE .30 .32 .35 HOURS/ACRE 67.81 20.49 21.86 23.91 TRACTOR 80 HP 280 .33 .33 .33 HOURS/ACRE 9.84 3.2 3.23 3.23 TRACTOR 130 HP 2ND .44 .44 .44 HOURS/ACRE 16.09 7.11 7.11 7.11 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 6.07 6.07 6.07 2 TON TRUCK-FUEL I OIL .15 .16 .18 HOURS/ACRE 4.38 .73 .78 .85 CUSTOM MACHINERY AND LABOR COSTS 8.50 8.50 8.50 HAULING AND DRYING CHARGES .24 19.48 2 .78 34.09 LABOR 2.48 2.51 2.57 HOURS/ACRE 4.00 9.90 10.05 10.26 SUBTOTAL 39.84 99.18 109.54 TOTAL PER ACRE PRODUCTION COST 179.03 203.25 232.96 TOTAL PER ACRE VALUE 235.20 323.40 411.60 RETURN PER ACRE OVER PRODUCTION COST 56.17 120.15 178.64 MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 17.90 20.33 23.30 TOTAL PER ACRE COST 196.93 223.58 256.26 TOTAL PER ACRE VALUE 235.2 323.40 411.60 TOTAL RETURN PER ACRE 38.27 99.82 155.34 COST PER BU 2.46 2.03 1.83 VALUE PER BU 2.94 2.94 2.94 GASOLINE 2.70 2.74 2.80 GALS./ACRE 1.25 3.38 3.43 3.50 DIESEL 5.57 5.66 5.79 GALS./ACRE 1.10 6.12 6.22 6.37 17$? KENTUCKY SPECIAL RESOURCES STUDY - NCKSON PURCHASE AREA EXAMPLE OF AVERAGE YEARLY BUTGET FOR THREE SOIL PRODUCTIVITY GROUPS 05/11/84 CORN C U/S CONSERVATION TILLAGE I N P U T S UNIT PRICE COST FOR Y I E L O L E V E L S ITEH 8000 11000 14000 BU /ACRE 10.0 EU 110.0 EU 14000 BU SEED 16.00 16.00 16.00 LB/ACRE 1.12 17.92 17.92 17.92 FERTILIZERS AND CHEMICALS NITROGEN NITROGEN 55.9 81.8 119.6 LB IACRE .25 13.98 20.44 29.91 NITROGEN ANHYDROUS 37.3 53.9 77.8 LB /ACRE .15 5.60 . 11.67 PHOSPHORUS P205 70.0 80.0 90. 0 LB /ACRE .19 13.30 15.20 17.10 POTASSIUM K20 71.6 95.0 118.3 LB /ACRE .12 8.60 11.40 14.20 INSECTICID FURADAN.4X 4.0 4.0 4. 0 LB /ACRE .96 3.34 3.84 3.84 HERBICIDE AATREX 2.5 2.5 2.5 PT IACRE 1.36 3.40 3.40 3.40 HERBICIDE PRINCEP 3.0 3.0 3.0 PT /ACRE 2.44 7. 2 7.32 7.32 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 1.58 1.58 1.58 LINE .6 .6 06 TONS/ACRE 10050 6030 6030 6030 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 12.00 PERCENT 7.36 8.59 10.19 SUBTOTAL 89.19 104.07 123.4 FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 I 18 FT DISK-TANDEM 2X .25 .25 .25 HOURS/ACRE 9.94 2.53 2.53 2.53 18 FT 6R NT PLANT .19 .19 .19 HOURS/ACRE 0 33.61 6.39 6.39 6.39 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.31 .46 .46 .46 SPOT SPRAYER .12 .12 .12 HOURS/ACRE 3. 91 .46 .46 .46 2 TON TRUCK-EQUIPMENT .15 .16 .18 HOURS/ACRE 14. 47 2.17 2.32 2.53 4 RON CORN HEAD .30 .32 .35 HOURS/ACRE 16.64 5.03 5.36 5.87 140 HP SP COMBINE .30 .32 .35 HOURS/ACRE 67.81 20.49 21.86 23.91 TRACTOR 80 HP 2ND .37 .37 .37 HOURS/ACRE 9 .84 3.60 3.60 3.60 TRACTOR 130 HP 2ND .25 .25 .25 HOURS/ACRE 16. 09 4.10 4.10 4.10 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 6.07 6.07 6.07 2 TON TRUCK-FUEL I OIL .15 .16 .18 HOURS/ACRE 4.88 .73 .78 .85 CUSTOM MACHINERY AND LABOR COSTS 8.50 8.50 8.50 HAULING AND DRYING CHARGES .24 19.48 26.78 34.09 LABOR 2.30 2.33 2.39 HOURS/ACRE 4.00 9.18 9.33 9.54 SUBTOTAL 89.19 98.54 108.90 TOTAL PER ACRE PRODUCTION COST 178.39 202.61 232.32 TOTAL PER ACRE VALUE 235.20 323.40 411.60 RETURN PER ACRE OVER PRODUCTION COST 56.81 120.79 179.28 NANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 17.84 20.26 23.23 TOTAL PER ACRE COST 196.23 222.87 255.55 TOTAL PER ACRE VALUE 235.20 323.40 411.60 TOTAL RETURN PER ACRE 38.97 100.53 156.05 COST PER BU 2.45 2.03 1.83 VALUE PER BU 2.94 2.94 2.94 GASOLINE 2.70 2.74 2.80 GALS./ACRE 1.25 3.38 3.43 3.50 DIESEL 4.51 4.60 4.73 GALS./ACRE 1.10 4.96 5.06 5.21 18() KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS CORN I N P U T S ITEM 80.0 110.0 SEED 16.00 16.00 FERTILIZERS AND CHEMICALS NITROGEN NITROGEN 55.9 81.8 NITROGEN ANHYDROUS 37.3 53.9 PHOSPHORUS P205 70.0 80.0 POTASSIUM K20 71.6 95.0 INSECTICID FURADAN.4X 4.0 4.0 HERBICIDE AATREX 2.5 2.5 HERBICIDE PRINCEP 3.0 3.0 HERBICIDE ROUNDUP 2.5 2.5 LINE .6 .6 CCC CONSERVATION TILLAGE UNIT PRICE 140.0 BU IACRE 16.00 LB/ACRE 1.12 119.6 LB /ACRE .25 77.8 LB /ACRE .15 90.0 LB /ACRE .19 118.3 L8 /ACRE .12 4.0 L8 /ACRE .96 2.5 PT /ACRE 1.36 3.0 PT /ACRE 2.44 2.5 OZ /ACRE .63 .6 TONS/ACRE 10.50 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS SUBTOTAL 12.00 PERCENT FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 11 FT CHISEL PLOU 18 FT DISK-TANDEM 18 FT 6R NT PLANT 36 FT BOOM SPRAYER SPOT SPRAYER 2 TON TRUCK-EQUIPMENT 4 R08 CORN HEAD 140 HP SP COMBINE TRACTOR 80 HP ZHD TRACTOR 130 HP 28D 3/4 TON PICKUP 2 TON TRUCK-FUEL 1 OIL .19 .15 CUSTOM MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES LABOR SUBTOTAL 2.37 TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE .19 .13 .19 .06 .12 .16 .32 .32 .37 .31 .84 .16 2.40 RETURN PER ACRE OVER PRODUCTION COST MANAGENENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS TOTAL PER ACRE COST TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER 8U VALUE PER BU GASOLINE DIESEL 2.70 4.90 2.74 4.99 1|, 1'. 2 5 .19 HOURS/ACRE .13 HOURS/ACRE .19 HOURS/ACRE .06 HOURS/ACRE .12 HOURS/ACRE .18 HOURS/ACRE .35 HOURS/ACRE .35 HOURS/ACRE .37 HOURS/ACRE .31 HOURS/ACRE .84 HOURS/ACRE .18 HOURS/ACRE .46 HOURS/ACRE .80 GALS./ACRE .12 GALS./ACRE 3.41 9.94 33.61 7.81 3.91 14.47 16.64 67.81 9.84 16.09 4.88 .2 4.00 1.25 1.10 COST FOR 80.0 BU 17.92 13.98 5.60 13.30 8.60 3.84 3.40 7.32 1.58 6.30 .36 89.19 .64 1.2 6.39 .46 .46 2.17 5.03 20.49 3.60 5.07 6.07 .73 8.50 19.48 9.47 89.83 179.02 235.20 56.18 17.90 196.92 235.20 38.28 2.46 2.94 3.38 5.39 Y I E L D 110.0 BU 17.92 20.44 8.09 15.20 11.40 3.84 3.40 7.32 1.58 6.30 8.59 104.07 .64 1.2 6.39 .46 .46 2.32 5.36 21.86 3.60 5.07 6.07 .78 8.50 26.78 9.62 99.17 203.24 323.40 120.16 20.32 223.57 323.40 99.83 2.03 2.94 3.43 5.49 95/11/84 L E V E L S 140.0 3U 17.92 29.91 11.67 17.10 14.20 3.84 3.40 7.32 1.58 6.30 10.19 123.42 .64 1.27 6.39 .46 .46 2.53 5.87 23.91 3.60 5.07 6.07 .85 8.50 34.09 9.83 109.53 2 2.95 411.60 178.65 23.30 256.25 411.60 155.35 1.83 2.94 3.50 5.64 1131 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA EXAYPLEONR AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS C-H/S NO TILLAGE I N P U T 5 UNIT PRICE ITEM 80.0 110.0 140.0 BU /ACRE SEED 20.00 20.00 20.00 LB/ACRE 1.12 FERTILIZERS AND CHEMICALS NITROGEN NITROGEN 62.8 91.2 132.3 LB /ACRE .25 NITROGEN ANHYDROUS 40.6 59. 87.8 LB IACRE .15 PHOSPHORUS P205 80.0 90. 0 100.0 LB /ACRE .19 POTASSIUM K2O 81.6 105.0 128.3 LB /ACRE .12 INSECTICID FURADAN.4X 4.0 4.0 4.0 LB /ACRE .96 HERBICIDE AATREX 2.5 2.5 2.5 PT /ACRE 1.36 HERBICIDE PRINCEP 3.0 3.0 3.0 PT IACRE 2.44 HERBICIDE PARAGUAT 1.0 1.0 1.0 PT IACRE 5.38 HERBICIDE X-77 SURF .5 .5 .5 PT /ACRE 1.88 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 LIME .6 .6 .6 TONS/ACRE 10.50 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 2.00 PERCENT SUBTOTAL FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1. 00 ) 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.81 18 FT 6R NT PLANT .19 .19 .19 HOURS/ACRE 33.61 SPOT SPRAYER .12 .12 .12 HOURS/ACRE 3.91 2 TON TRUCK-EQUIPMENT .15 .16 .18 HOURS/ACRE 14. 47 4 R08 CORN HEAD .30 .32 .35 HOURS/ACRE 16. 64 140 HP SP COMBINE .30 .32 .35 HOURS/ACRE 67. 81 TRACTOR 80 HP 28D .37 .37 .37 HOURS/ACRE 9. 84 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 2 TON TRUCK-FUEL 8 OIL .15 .16 .18 HOURS/ACRE 4. 88 CUSTOM MACHINERY AND LABOR COSTS HAULING AND DRYING CHARGES .24 LABOR 1.99 2.03 2.08 HOURS/ACRE 4.00 SUBTOTAL TOTAL PER ACRE PRODUCTION COST TOTAL PER ACRE VALUE RETURN PER ACRE OVER PRODUCTION COST MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 'TOTAL PER ACRE COST 'TOTAL PER ACRE VALUE TOTAL RETURN PER ACRE COST PER BU VALUE PER BU GASOLINE 2.70 2.74 2.80 GALS./ACRE 1.25 DIESEL 2.86 2.95 3.08 GALS./ACRE 1.10 COST FOR 80.0 BU 22.40 15.71 6.09 15.20 2.17 5.03 20.49 3.60 6.07 8.50 19.48 7.96 81.34 188.12 235.2 47.08 18.81 206.93 235.20 28.27 2.59 2.94 3.38 3.14 Y I E L D 0.0 BU 22.40 22.79 8.96 7.10 12.60 3.84 3.40 7.32 5.38 .94 1.58 6.30 10.13 213.43 323.40 109.97 21.34 234.77 323.40 88.63 2.13 2.94 3.43 .24 5/11/84 L E V E L S 140.0 BU 22.40 33.07 13.17 19.00 15.40 3.84 3.40 7.32 5.38 .94 1.58 6.30 11.86 143.66 3.56 34. 09 3 32 101.05 244.71 411.60 166.89 24.47 269.18 411. .60 1. 92 2. 94 3. 50 3. 39 1132 KENTUCKY SPECIAL RESOURCES STUDY - JACKSON PURCHASE AREA 05/11/84 EXAMPLE OF AVERAGE YEARLY BUDGET FOR THREE SOIL PRODUCTIVITY GROUPS CORN CC NO TILLAGE I N P U T S UNIT PRICE COST FOR Y I E L D L E V E L 8 ITEM 80.0 110.0 140.0 BU /ACRE 80.0 BU 110.0 BU 140.0 BU SEED 20.00 20.00 20.00 LB/ACRE 1.12 22.40 22.40 22.40 FERTILIZERS AND CHEMICALS NITROGEN NITROGEN 62.8 91.2 132.3 LB IACRE .25 15.71 22.79 33.07 NITROGEN ANHYDROUS 40.6 59.7 87.8 LB /ACRE .15 6.09 8.96 13.17 PHOSPHORUS P205 80.0 90.0 100.0 LB /ACRE .19 15.2 17.10 19.00 POTASSIUM K2O 81.6 105.0 128.3 LB /ACRE .12 9.80 12.60 15.40 INSECTICID FURADAN.4X 4.0 4.0 4.0 LB /ACRE .96 3.84 3.84 3.84 HERBICIDE AATREX 2.5 2.5 2.5 PT /ACRE 1.36 3.40 3.40 3.40 HERBICIDE PRINCEP 3.0 3.0 3.0 PT /ACRE 2.44 7.32 7.32 7.32 HERBICIDE PARAGUAT 1.0 1.0 1.0 PT IACRE 5.38 5.38 5.38 5.38 HERBICIDE X-77 SURF .5 .5 .5 PT /ACRE 1.88 .94 .94 .94 HERBICIDE ROUNDUP 2.5 2.5 2.5 OZ /ACRE .63 1.58 1.58 1.58 LIME .6 .6 .6 TONS/ACRE 10.50 6.30 6.30 6.30 INTEREST ON OPERATING CAPITAL FOR 9. MONTHS 12.00 PERCENT 8.82 10.13 11.86 SUBTOTAL 106.77 122.74 143.66 FIELD OPERATIONS (MACHINERY ADJUSTMENT FACTOR OF 1.00 ) 12 FT ROTARY MOUER .17 .17 .17 HOURS/ACRE 5.37 .92 .92 .92 36 FT BOOM SPRAYER .06 .06 .06 HOURS/ACRE 7.81 .46 .46 .46 18 FT 6R NT PLANT .19 .19 .19 HOURS/ACRE 33.61 6.39 6.39 6.39 SPOT SPRAYER .12 .12 .12 HOURS/ACRE 3.91 .46 .46 .46 2 TON TRUCK-EQUIPMENT .15 .16 .18 HOURS/ACRE 14.47 2.17 2.32 2.53 4 R08 CORN HEAD .30 ' .32 .35 HOURS/ACRE 16.64 5.03 5.36 5.87 140 HP SP COMBINE .30 .32 .35 HOURS/ACRE 67.81 20.49 21.86 23.91 TRACTOR 80 HP 2ND .54 .54 .54 HOURS/ACRE 9.84 5.30 5.30 5.30 3/4 TON PICKUP .84 .84 .84 HOURS/ACRE 7.23 6.07 6.07 6.07 2 TON TRUCK-FUEL 1 OIL .15 .16 .18 HOURS/ACRE 4.88 .73 .78 .85 CUSTOM MACHINERY AND LABOR COSTS 8.50 8.50 8.50 HAULING AND DRYING CHARGES .24 19.48 26.78 34.09 I.ABOR 2.20 2.23 2.29 HOURS/ACRE 4.00 8.79 3.93 9.15 SUBTOTAL 84.78 94.13 104.49 TOTAL PER ACRE PRODUCTION COST 191.56 216.87 248.15 'TOTAL PER ACRE VALUE 235.20 323.40 411.60 RETURN PER ACRE OVER PRODUCTION COST 43.64 106.53 163.45 MANAGEMENT COSTS BASED ON 10.00 PERCENT OF TOTAL PRODUCTION COSTS 19.16 21.69 24.81 TOTAL PER ACRE COST 210.71 238.55 272.96 TOTAL PER ACRE VALUE 235.20 323.40 411.60 TOTAL RETURN PER ACRE 24.49 84.85 138.64 COST PER BU 2.63 2.17 1.95 VALUE PER BU 2.94 2.94 2.94 GASOLINE 2.70 2.74 2.80 GALS./ACRE 1.25 3.38 3.43 3.50 DIESEL 3.56 3.65 3.79 GALS./ACRE 1.10 3.91 4.01 4.16 APPENDIX 4 ECONOMIC AND SOIL CONSERVATION IMPACT CALCULATIONS FOR KENTUCKY'S JACKSON PURCHASE AREA: PARTIAL BUDGETING AND EROSION RESULTS BY SOIL RESOURCE GROUP-SUBGROUP 1133 TANE 1-—-EROSION. YIELDS. CU5T5. ANU RETURNS BY 5UTL RESOURCE CRUUP FDR KENTUCKY’S JACKSON PURCHASE AREA UATE: 05/1718‘ 5R8 = 11 1A. R = 250.. K = .38. L = 300.. s = .5. L5 = .119. T = 5.0 PAGE: 1 RUTATTUN 1/ TTLLAUE PRACTICE C P ERUSTUN Y I E L U 5 WE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y UHEAT SDYBEAN CURN . VALUE OF PRUUUCTTUN NET RETURN BU 8U 8U PRUU/ACRE COST/ACRE TU LANU 2/ -s-s - 1 CUNv UP - UUNN .43 1.000 5.19 .0 34.7 .0 239.43 138.30 101.13 -1s-35 - 2 CUNU UP - DOUN .43 1.000 5.19 .o 34.7 .0 239.43 140.39 98.74 - 5-35 - 3 CUNSER UP - UUNN .13 1.000 1.47 .o 34.7 .0 239.43 143.90 92.53 -s-s - 4 NUTTL UP - UUNN .07 1.000 .79 .o 34.7 .0 239.43 153.58 82.85 -C-c - 1 CUNV UP - UUNN .35 1.000 3.90 .0 .0 137.3 404.54 249.39 155.15 - C-C - 2 CUNU UP - UUNN .35 1.000 3.90 .o .0 137.3 404.54 253.42 151.12 -c - c - 3 CUN5ER UP - DOUN .08 1.000 .87 .o .0 137.3 404.54 253.40 151.14 --8 / 5 - 1 CUNU UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 230.59 153.55 -N / 5 - 2 CUNV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 230.70 153.44 - 4.15 - 3 CONV UP - UUUN .47 1.000 5.32 47.5 34.7 137.3 414.14 232.30 151.54 - 8.15 - 4 CDNV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 232.71 151.43 - 9.15 - 5 CDNV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 259.33 154.51 - 0.15 - 3 CDNV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 259.74 154.40 - N715 - 7 CONV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 . 414.14 231.35 152.49 - 9.15 - 8 CUNU UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 231.73 152.38 -0 7 51- 9 CUNv UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 230.83 153.31 - N715 - 10 CONV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 230.94 153.20 --1 7 s - 11 CONV UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 232.84 151.30 - VI'S - 12 CUNU UP - UUNN .47 1.000 5.32 47.5 34.7 137.3 414.14 232.95 151.19 - T715 - 13 CUNSER UP - UUNN .12 1.000 1.37 47.5 34.7 137.3 414.14 233.38 150.73 - 8.15 - 14 NUTTL UP - UUNN .08 1.000 .83 47.5 34.7 137.3 414.14 274.83 139.31 1-1 7 5 - 15 NUTTL UP - UUNN .08 1.000 .83 47.5 34.7 137.3 414.14 275.17 138.97 I s-1 CONV UP - DOUN .39 1.000 4.40 47.5 34.7 .0 423.73 271.78 151.95 / s-2 CUNv UP - UUUN .39 1.000 4.40 47.5 34.7 .0 423.73 272.00 151.73 / s-3 CONV UP - UUNN .39 1.000 4.40 47.5 34.7 .0 423.73 239.87 153.83 1/ ROTATIDNS - C = CORN FOR GRAIN. S = SOYBEANSTAND U = UHEAT PRICES: CORN = $2.949 SOYBEANS = 46.909 UHEAT = 43.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING 15 ASSUMED. COSTS ARE A5 EULLUN5: PRACTICE TUTAL ANNUAL CUST UP AND UUNN s .00 ' CUNTUUR s 1.00 CONTOUR/STRIP 1 2.50 PARALLEL TERRACE 421.00 184. 7481 1- EROSION. TTELUs. COSTS. ANU RETURNS BY 5011 RESOURCE URUUP EUR KENTUCKY'S JACKSON PURCHASE AREA UATE: 05717784 5R8 = K 1A. R = 250.. x = .38. L = 300.. 5 = .5. LS = .119. T = 5.0 PAGE: 2 RUTATTUN 17 TTLLAUE PRACTICE C P 8105on Y I E L U s AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y UNEAT SDYBEAN CURN VALUE 0E PRUUUCTTUN NET RETURN 8U 8U BU PRUU/ACRE COST/ACRE TU LANU 27 /s-4 CUNU UP - UUUN .39 1.000 4.40 47.5 34.7 .0 423.73 270.09 153.34 7s-5 CDNV UP - UUUN .39 1.000 4.40 47.5 34.7 .0 423.73 272.23 151.47 715- 3 CUNU UP - UUUN .39 1.000 4.40 47.5 34.7 .0 423.73 272.48 151.25 ./S-8 CONSER UP - UUUN .11 1.000 1.27 47.5 34.7 .0 423.73 274.04 149.39 7 5-79 NUTTL UP - UUNN .08 1.000 .92 47.5 34.7 .0 423.73 284.17 139.53 7 5-10 NUTTL UP - UUUN .08 1.000 .92 47.5 34.7 .0 423.73 279.17 144.53 -C NUTTL UP - UUNN .03 1.000 .34 .0 .0 137.3 404.54 239.95 134.59 17 RUTATIUNs - C = CURN EUR CRATN. 5 = EUTUEAN5.ANU U = NNEAT PRICES: CORN = $2.94. SOYBEANS = $6.90. UHEAT = 43.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND UUNN 1 .00 ' CUNTUUR s 1.00 CONTOUR/STRIP 4 2.50 PARALLEL TERRACE $21.00 185 TANII11“-EROSION9 YIELDST COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/17/84 SRG = K 1C1 R = 250.1 K = .381 L = 300.. S = .5. L5 = .1191 T = 5.0 PAGE: 1 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ -S-S - 1 CONV UP - DOUN .46 1.000 5.19 .0 32.9 .0 227.01 134.67 92.34 -S-S1-2 CONV UP - DOHN .46 1.000 5.19 .0 32.9 .0 227.01 137.06 89.95 - S -S - 3 CONSER UP - DOUN .13 1.000 1.47 .0 32.9 .0 227.01 143.27 83.74 -S-'S-4 NOTIL UP - DOUN .07 1.000 .79 .0 32.9 .0 227.01 152.95 74.06 °C-C - 1 CONV UP - DOHN .35 1.000 3.90 .0 .0 130.7 384.26 241.46 142.80 - C-C - 2 CONV UP - DOHN .35 1.000 3.90 .0 .0 130.7 384.26 245.48 138.78 - C-C - 3 CONSER UP - DOHN .08 1.000 .87 .0 .0 130.7 384.26 245.47 138.79 - V / S - 1 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 252.83 140.30 - U115 - 2 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 252.94 140.19 - V7’S - 3 CONV UP - DOVN .47 1.000 5.32 45.1 32.9 130.7 393.13 254.84 138.29 - V7’S - 4 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 254.95 138.18 '-U / S - 5 CONV UP - DOHN .47 1.000 5.32 45.1 32.9 130.7 393.13 251.87 141.26 - UI'S - 6 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 251.98 141.15 - VT’S - 7 CONV UP - DOHN .47 1.000 5.32 45.1 32.9 130.7 393.13 253.88 139.25 - NI’S - 8 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 . 253.99 139.14 - U7’S - 9 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 253.07 140.06 - U7’S - 10 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 253.18 139.95 ' HI’S - 11 CONV UP - DOHN .47 1.000 5.32 45.1 32.9 130.7 393.13 255.08 138.05 ~11 / S - 12 CONV UP - DOUN .47 1.000 5.32 45.1 32.9 130.7 393.13 255.19 137.94 "N / S - 13 CONSER UP - DOHN .12 1.000 1.37 45.1 32.9 130.7 393.13 255.62 137.51 "U / S - 14 NOTIL UP - DUNN .08 1.000 .86 45.1 32.9 130.7 393.13 266.85 126.28 "U / S - 15 NOTIL UP - DOUN .08 1.000 .86 45.1 32.9 130.7 393.13 267.19 125.94 / S'-1 CONV UP - DOHN .39 1.000 4.40 45.1 32.9 .0 402.00 264.19 137.81 / S-2 CONV UP - DOHN .39 1.000 4.40 45.1 32.9 .0 402.00 264.41 137.59 13 - 3 CONV UP - DOUN .39 1.000 4.40 45.1 32.9 .0 402.00 262.28 139.72 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANSTAND U = UHEAT PRICES: CORN = 42.949 SOYBEANS = 46.909 NHEAT = 43.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS A55U14EU. COSTS ARE As EULLUus: PRACTICE TUTAL ANNUAL COST UP AND UUNN 5 .oo ' CUNTUUR 4 1.00 CONTOUR/STRIP 4 2.50 121.00 PARALLEL TERRACE 1136 TABLE 11-- ERUSIUN. TIELUS. CUSTS. ANU RETURNS BY SUIL RESUURCE URUUP EUR KENTUCKY’S JACKSON PURCHASE AREA UATE: 05717784 m8=xm.R=xm.x= 3&1: mm.s= .mLS= aw.T=Sm mm: 2 RUTATIUN 17 TILLAGE PRACTICE C P ERUSIUN T I E L U s AUE ANNUAL AVE ANNUAL AVE ANNUAL T7A7T UNEAT SUTUEAN CURN VALUE UE PRUUUCTIUN NET RETURN BU 8U 8U PRUU/ACRE CUST/ACRE TU LANU 27 1 S - 4 CONV UP - UUUN .39 1.000 4.40 45.1 32.9 .0 402.00 232.50 139.50 1 5 - 5; CONV UP - UUUN .39 1.000 4.40 45.1 32.9 .0 402.00 234.37 137.33 7 S - 3‘ CONV UP - UUUN .39 1.000 4.40 45.1 32.9 .0 402.00 234.89 137.11 7 S - 8 CUNSER UP - UUNN .11 1.000 1.27 45.1 32.9 .0 402.00 233.45 135.55 7 S - 9 NUTTL UP - UUUN .08 1.000 .92 45.1 32.9 .0 402.00 273.58 125.42 7 S -10 NUTTL UP - UUUN .08 1.000 .92 45.1 32.9 .0 402.00 271.57 130.43 ll ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANSPAND U = HHEAT PRICES: CORN = $2.949 SOYBEANS = $6.909 VHEAT = 43.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLORS: PRACTICE TUTAL ANNUAL CUST ‘ UP AND UUNN 5 .00 ' CUNTUUR 1 1.00 CUNTUUR/STRIP 1 2.50 PARALLEL TERRACE $21.00 1137 TARE 1-"-EROSION1 TIELUS. CUSTS. ANU RETURNS BY SUIL RESUURCE URUUP EUR KENTUCKY’S JACKSON PURCHASE AREA UATE: 05718784 SR5 = K 2A. - = 250.. K = .38. L = 300.. s = .5. L5 = .119. T = 5.0 PACE: 1 RUTATIUN 17 TILLAGE PRACTICE C P ERUSIUN T I E L U 5 AVE ANNUAL AVE ANNUAL AVE ANNUAL T7A7T UNEAT SOYBEAN CURN VALUE OF PRUUUCTIUN NET RETURN BU 8U 8U PRUU/ACRE COST/ACRE TU LANU 27 a- 5-5 - 1 CUNU UP - UUUN .43 1.000 5.19 .o 31.7 .0 218.73 132.23 83.47 ;. S-gs - 2 CUNU UP — UUNN .43 1.000 5.19 .0 31.7 .0 218.73 134.34 84.09 ;- S-5 - 3 CUN5ER UP - UUNN .13 1.000 1.47 .o 31.7 .0 218.73 140.85 77.88 3- 5-5 - 4 NUTTL UP - UUUN .07 1.000 .79 .o 31.7 .0 218.73 150.53 38.20 :- C-C - 1 CUNU UP - DOHN .35 1.000 3.90 .o .0 123.8 333.97 233.83 130.11 -- C-C - 2 CONV UP - UUUN .35 1.000 3.90 .o .0 123.8 333.97 237.88 123.09 - £-C - 3 CUNSER UP - DUNN .08 1.000 .87 .o .0 123.8 333.97 237.87 123.10 .1-H 7 s-1 CONV UP - UUNN .47 1.000 5.32 42.3 31.7 123.8 374.00 245.75 128.25 -117 5 - 2 CONV UP - DOUN .47 1.000 5.32 42.3 31.7 123.8 374.00 245.83 128.14 :- U715 - 3 CONV UP - UUNN .47 1.000 5.32 42.3 31.7 123.8 374.00 247.73 123.24 .- 4.15 - 4 CUNU UP - UUUN .47 1.000 5.32 42.3 31.7 123.8 374.00 247.87 123.13 .- U715 - S CUNU UP - UUUN .47 1.000 5.32 42.3 31.7 123.8 374.00 244.80 129.20 .- B7’S - 3 CUNU UP - UUUN .47 1.000 5. 2 42.3 31.7 123.8 374.00 244.91 129.09 :- 1.15 - 7 CUNU UP - DOHN .47 1.000 5.32 42.3 31.7 123.8 374.00 243.81 127.19 .- 0.15 - 8 CUNU UP - UUUN .47 1.000 5.32 42.3 31.7 123.8 374.00 243.92 127.08 r-117 5 - 9 CUNU UP - UUNN .47 1.000 .32 42.3 31.7 123.8 374.00 245.99 128.01 :- 8.15 - 10 CUNU UP - UUUN .47 1.000 5. 2 42.3 31.7 123.8 374.00 243.10 127.90 .- v.15 - 11 CUNN UP - UUNN .47 1.000 5.32 42.3 31.7 123.8 374.00 248.00 123.00 :-147 5 - 12 CUNU UP - UUNN .47 1.000 5.32 42.3 31.7 123.8 374.00 248.11 125.89 :-N 7 S - 13 CUNSER UP - UUUN .12 1.000 1.37 42.3 31.7 123.8 374.00 248.54 125.43 r-N 7 5 - 14 NUTTL UP - UUNN .08 1.000 .83 42.3 31.7 123.8 374.00 259.57 114.43 ;-U 7 5 - 15 NOTIL UP - UUNN .08 1.000 .83 42.3 31.7 123.8 374.00 259.91 114.09 1 15 - 1 CUNU UP - UUNN .39 1.000 4.40 42.3 31.7 .0 384.02 257.34 123.38 '1 s-2 CUNU UP - UUNN .39 1.000 4.40 42.3 31.7 .0 384.02 257.83 123.13 1 15 - 3 CUNU UP - UUUN .39 1.000 4.40 42.3 31.7 .0 384.02 255.74 128.28 17 RUTATIUNS - c = CURN FOR GRAIN. 5 = SOYBEANS9AND N = UNEAT PRICES: CORN = $2.949 SOYBEANS = $6.909 RHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING 15 ASSUMED. CUSTS ARE A5 FOLLOHS: PRACTICE TUTAL ANNUAL CUST UP ANU UUUN 4 .00 ' CUNTUUR 4 1.00 CUNTUUR/STRIP 4 2.50 PARALLEL TERRACE. 421.00 1138 TARE 1- -ERUSIUN. TIELUS. CUSTS. ANU RETURNS 8T SUIL RESUURCE URUUP EUR KENTUCKY’S JACKSON PURCHASE AREA UATE: 05718784 588 = K 24. = 250.. K = .38. L = 300.. S = .5. L5 = .119. T = 5.0 PACE: 2 TUTATIUN 17 TILLAGE PRACTICE C P ERUSIUN T I E L U S AVE ANNUAL AVE ANNUAL AUE ANNUAL T7A7T UHEAT SOYBEAN CURN VALUE UE PRUUUCTIUN NET RETURN BU 8U 8U PRUU/ACRE CUST/ACRE TU LANU 27 .15 - 4 CONV UP - UUNN .39 1.000 4.40 42.3 ‘ 31.7 .0 384.02 255.93 128.03 7 s-5 CUNN UP - UUUN .39 1.000 4.40 42.3 31.7 .0 384.02 258.12 125.90 7 S-3 CONV UP - UUNN .39 1.000 4.40 42.3 31.7 .0 384.02 258.34 125.38 7 5-8 CUNSER UP — UUUN .11 1.000 1.27 42.3 31.7 .0 384.02 259.90 124.12 7 s-9 NUTTL UP - UUUN .08 1.000 .92 42.3 31.7 .0 384.02 270.03 113.99 7 5-10 NOTIL UP - UUHN .08 1.000 .92 42.3 31.7 .0 384.02 235.02 119.00 - C NUTTL UP - UUNN .03 1.000 .34 .0 .0 123.8 333.97 253.58 110.39 17 RUTATIUNS - C = CURN EUR URAIN. 5 = SUTREANS.ANU N = UHEAT PRICES: CORN = $2.949 SOYBEANS = $6.909 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. IS ASSUMED. COSTS ARE AS FOLLOUS: NO COST SHARING PRACTICE TUTAL ANNUAL CUST UP AND UUNN 4 .00 ° CUNTUUR 4 1.00 CUNTUUR/STRIP 4 2.50 PARALLEL TERRACE 421.00 1139 TARI T "-EROSION. YIELDS: COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/18/84 SRG = R 2C9 R = 250.9 K = .389 L = 300.9 S = .59 LS = .1199 T = 5.0 PAGE: 1 ROTATION 1/ TI'LASE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ -- S-S - 1 CONV UP - DOUN .46 1.000 5.19 .0 30.1 .0 207.69 132.03 75.66 3-39 - 2 CONV UP - DOUN .46 1.000 5.19 .0 30.1 .0 207.69 134.28 73.41 3'35 - 3 CONSER UP - DOUN .13 1.000 1.47 .0 30.1 .0 207.69 140.56 67.13 4 NOTIL UP - DOUN .07 1.000 .79 .0 30.1 .0 207.69 150.09 57.60 1 CONV UP - DOUN .35 1.000 . 3.90 .0 .0 117.5 345.45 231.22 114.23 2 CONV UP - DOUN .35 1.000 3.90 .0 .0 117.5 345.45 234.80 110.65 3 CONSER UP - DOUN .08 1.000 .87 .0 .0 117.5 345.45 234.79 110.66 1 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 244.12 110.83 2 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 244.13 110.82 3 CONV UP - DOUN .47 1.000 5. 2 40.4 30.1 117.5 354.95 245.91 109.04 4 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 245.92 109.03 5 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 243.24 111.71 6 CONV UP - DOVN .47 1.000 5.32 40.4 30.1 117.5 354.95 243.26 111.69 7 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 245.03 109.92 8 CONV UP - DOUN .47 1.000 5. 2 40.4 30.1 117.5 354.95 245.05 109.90 9 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 244.37 110.58 CONV UP - DOHN .47 1.000 5.32 40.4 30.1 117.5 354.95 244.38 110.57 CONV UP - DOUN .47 1.000 5.32 40.4 30.1 117.5 354.95 246.16 108.79 CONV UP - DOVN .47 1.000 5.32 40.4 30.1 117.5 354.95 246.17 108.78 CONSER UP - DOUN .12 1.000 1.37 40.4 30.1 117.5 354.95 246.61 108.34 NOTIL UP - DONN .08 1.000 .86 40.4 30.1 117.5 354.95 257.16 97.79 NOTIL UP - DOUN .08 1.000 .86 40.4 30.1 117.5 354.95 257.22 97.73 CONV UP - DOUN .39 1.000 4.40 40.4 30.1 .0 364.44 257.01 107.43 CONV UP - DOUN .39 1.000 4.40 40.4 30.1 .0 364.44 257.04 107.40 CONV UP - DOUN .39 1.000 4.40 40.4 30.1 .0 364.44 255.26 109.18 1/ ROTATIONS - C = CORN FDR GRAIN9 S = SOYBEANS9AND U = NHEAT PRICES: CORN = 42.949 SOYBEANS = $6.909 UHEAT 8 $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE TUTAL ANNUAL CUST UP ANU UUNN 4 .00 ° CUNTUUR 4 1.00 CUNTUUR/STRIP : 2.50 421.00 PARALLEL TERRACE TAHE 1- EROSION9 YIELDS9 COSTS9 AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA ROTATION 1/ CONV CONV CONV CONSER NOTIL NOTIL NOTIL SRG = K 259 N = 250.9 K = TILLAGE PRACTICE UP - DOUN UP - DOHN UP - DOHN UP - DOUN UP - DOUN UP - DOUN UP - DOHN p \n .39 .39 .39 .11 .08 .08 .03 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 191) .38. L = .. 5 = .5. L5 = .119. T = 5.0 ERUSIUN T I E L U S AVE ANNUAL T7A7T NHEAT SOYBEAN CURN VALUE UE 8U BU PU PRUU/ACRE 4.40 40.4 30.1 .0 334.44 4.40 40.4 30.1 .0 334.44 4.40 40.4 30.1 .0 334.44 1.27 40.4 30.1 .0 334.44 .92 40.4 30.1 .0 334.44 .92 40.4 30.1 .0 334.44 .34 .0 .0 117.5 345.45 5 = 5UTUEAN5.ANU N = UHEAT 1/ ROTATIONS - C = CORN FOR GRAIN9 PRICES: CORN = $2.949 SOYBEANS = $6.909 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE UP AND OOHN CONTOUR CONTOUR/STRIP PARALLEL TERRACE TOTAL ANNUAL COST $ .00 $ 1.00 $ 2.50 $21.00 NO COST SHARING 05/é8/84 ' DATE: PAGE: AVE ANNUAL AVE ANNUAL PRODUCTION NET RETURN COST/ACRE TO LAND 2/ 255.29 109.15 257.51 106.93 257.54 106.90 259.15 105.29 268.53 95.91 263.88 100.56 249.87 95.58 191. TABLE 1 -- ERUSIUN. TIELUS. CUSTS. ANU RETURNS 8T SUIL RESUURCE URUUP EUR KENTUCKY’S JACKSON PURCHASE AREA UATE: 0571878: SR8 = K 3A. R = 250.. K = .39. L = 225.. S = .5. LS = .112. T = 5.0 - PACE: 1 RUTATIUN I7 TILLACE PRACTICE C P ERUSIUN T I E L n S AUE ANNUAL AVE ANNUAL AUE ANNUAL T7A7T UHEAT SUTUEAN CURN VALUE OF PRUUUCTIUN NET RETURN Ru BU UU PRUU/ACRE CUST/ACRE TU LANU 27 - S - s - 1 CONV UP - UUUN .43 1.000 5.01 .0 27.7 .0 191.13 123.71 34.42 - s -;S - 2 CONV UP - UUUN .43 1.000 5.01 .o 27.7 .0 191.13 129.10 32.03 - 5 -55 - 3 CUNSER UP - UUUN .13 1.000 1.42 .0 27.7 .0 191.13 135.31 55.82 ~15 - S - 4 NOTIL UP - DOUN .07 1.000 .73 .0 27.7 .0 191.13 144.99 43.14 - C - C - I CONV UP - UUUN .35 1.000 3.77 .o .0 104.9 308.41 214.54 93.87 - C - C - 2 CONV UP - UUNN .35 1.000 3.77 .o .0 104.9 308.41 218.53 89.85 -1C - C - 3 CUNSER UP - UUUN .08 1.000 .84 .o .0 104.9 308.41 218.55 89.83 — u 7 S - 1 CONV UP - DOUN .47 1.000 5.14 44.3 27.7 104.9 333.29 234.97 101.32 - U 7 5 - 2 CONV UP - UUNN .47 1.000 5.14 44.3 27.7 104.9 333.29 235.08 101.21 - N 7 S - 3 CONV UP - UUNN .47 1.000 5.14 44.3 27.7 104.9 333.29 233.98 99.31 - N 7 S - 4 CUNv UP - UUUN .47 1.000 5.14 44.3 27.7 104.9 333.29 237.09 99.20 - u 7 S - 5 CONV UP - UUHN .47 1.000 5.14 44.3 27.7 104.9 333.29 234.02 102.2 - U 7 5 - 3 CUNU UP - UUUN .47 1.000 5.14 44.3 27.7 104.9 333.29 234.13 102.17 - U 7 S - 7 CONV UP - UUUN .47 1.000 5.14 44.3 27.7 104.9 333.29 233.03 100.27 - U 7 S - 8 CONV UP - UUUN .47 1.000 5.14 44.3 27.7 104.9 333.29 233.14 100.13 - U 7 5 - 9 CONV UP - UUNN .47 1.000 5.14 44.3 27.7 104.9 333.29 235.21 101.08 - N 7 S - 10 CUNU UP - UUUN .47 1.000 5.14 44.3 27.7 104.9 333.29 235.32 100.97 - N 7 5 - 11 CONV UP - UUUN .47 1.000 5.14 44.3 27.7 104.9 333.29 237.22 99.07 - U 7 5 - 12 CUNU UP - UUNN .47 1.000 5.14 44.3 27.7 104.9 333.29 237.33 98.93 - U 7 S - 13 CUNSER UP - UUHN .12 1.000 1.32 44.3 27.7 104.9 333.29 237.73 98.53 - U 7 5 - 14 NOTIL UP - UUUN .08 1.000 .83 44.3 27.7 104.9 333.29 248.31 87.99 - U 7 s - 15 NUTTL UP - UUUN .08 1.000 .83 44.3 27.7 104.9 333.29 248.35 87.34 7 5 - 1 CONV UP - UUUN .39 1.000 4.25 44.3 27.7 .0 334.18 255.40 108.78 7 S - 2 CONV UP - UUUN .39 1.000 4.25 44.3 27.7 .0 334.18 255.32 108.53 7 5 - 3 CONV UP - UUNN .39 1.000 4.25 44.3 27.7 .0 334.18 253.49 110.39 URmmmm-C=CMNmRmmm s=wmmmmm u=umm PRICES: CORN = $2.949 SOYBEANS = 46.909 HHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING Is ASSUHEU. CUSTS ARE AS EULLUTTs: PRACTICE TUTAL ANNUAL CUST UP ANU UUUN 4 .oo ' CUNTUUR 4 1.00 CUNTUUR/STRIP 4 2.50 PARALLEL TERRACE 421.00 TABLE 1 -- EROSION9 YIELDST COSTST AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’ S JACKSON PURCHASE AREA ROTATION 1/ 75-4 75-5 75-2 75-8 75-9 7540 1592 SR G = K 3A9 R = 250.9 K = .399 L = 225.9 S = .5 LS = .1129 T = 5.0 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF BU BU BU PROD/ACRE CONV UP - DONN .39 1.000 4.25 44.6 27.7 .0 364.18 CONV UP - DOUN .39 1.000 4.25 44.6 27.7 .0 364.18 CONV UP - DOUN .39 1.000 4.25 44.6 27.7 .0 364.18 CONSER UP - DOHN .11 1.000 1.22 44.6 27.7 .0 364.18 NOTIL ' UP - DOUN .08 1.000 .88 44.6 27.7 .0 364.18 NOTIL . UP - DOUN .08 1.000 .88 44.6 27.7 .0 364.18 NOTIL UP - DONN .03 1.000 .33 .0 .0 104.9 308.41 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANS9AND H = UHEAT PRICES: CORN = $2.949 SOYBEANS = $6.909 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOUN 3 .00 CONTOUR 8 1.00 CONTOUR/STRIP $ 2.50 PARALLEL TERRACE $21.00 DATE: 05/18/84 PAGE: 2 AVE ANNUAL AVE ANNUAL PRODUCTION NET RETURN COST/ACRE TO LAND 2/ 253.71 110.47 255.88 108.30 256.10 108.08 257.66 106.52 267.78 96.40 262.78 101.40 233.30 75.11 1533 TAKE 1- ERUSIUN. TIELUS. CUSTS. ANU RETURNS BY SUIL RESUURCE URUUP FOR KENTUCKY 5 JACKSON PURCHASE AREA UATE: 05718784 ° SC=Nm.R=mm.H= .39.L= um.s= .mLs= an.T=5C ma: 1 HHATTUN 17 TILLAGE PRACTICE C P ERUSIUN T 1 E L n s AVE ANNUAL A8E ANNUAL AVE ANNUAL T/A/T UHEAT SUTREAN CURN VALUE UE PRODUCTION NET RETURN 8U BU BU PRUU/ACRE CUST/ACRE TU LANU 27 5-s - I CONV UP - DUNN .43 1.000 5.01 .o 25.8 .0 178.02 127.95 50.07 5-15 - 2 CUN8 UP - UUUN .43 1.000 5.01 .o 25.8 .0 178.02 130.21 47.81 s-.§-3 CUNSER UP - DOHN .13 1.000 1.42 .o 25.8 .0 178.02 133.49 41.53 s-s - 4 NUTIL UP - UUUN .07 1.000 .73 .o 25.8 .0 178.02 143.02 32.00 - C - 1 CUN8 UP - UUUN .35 1.000 3.77 .o .0 97.5 283.35 211.41 75.24 C-C - 2 CONV UP - UUNN .35 1.000 3.77 .o .0 97.5 283.35 214.99 71.33 C-C - 3 CUNSER UP - UUNN .08 1.000 .84 .o .0 97.5 283.35 214.97 71.38 8.15 - 1 CUN8 UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 233.03 79.33 8.15 - 2 CUN8 UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 233.04 79.31 8 7 S - 3 CONV UP - 0888 .47 1.000 5.14 41.4 25.8 97.5 312.35 234.82 77.84 87 S - 4 CONV UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 234.83 77.82 8 7 5 - 5 CUN8 UP - 0088 .47 1.000 5.14 41.4 25.8 97.5 312.35 232.15 80.50 1.1 5 - 3 C888 UP - UU8N .47 1.000 5.14 41.4 25.8 97.5 312.35 232.17 80.49 81's - 7 CONV UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 233.94 78.71 8 7 5 - 8 CUN8 UP ~ UU8N .47 1.000 5.14 41.4 25.8 97.5 312.35 233.93 78.70 8 7 S.- 9 CONV UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 233.28 79.38 8.15 - 10 CUN8 UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 233.29 79.33 87's - 11 CUN8 UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 235.07 77.59 8 7 5 - 12 CUN8 UP - UUUN .47 1.000 5.14 41.4 25.8 97.5 312.35 235.08 77.57 8 7 S - 13 CUNSER UP — UUUN .12 1.000 1.32 41.4 25.8 97.5 312.35 235.51 77.14 8 7 S - 14 NUTIL UP - UUHN .08 1.000 .83 41.4 25.8 97.5 312.35 245.31 37.04 8 7 s - 15 NUTIL UP - UUNN .08 1.000 .83 41.4 25.8 97.5 312.35 245.37 33.99 5-- 1 CONV UP - UUNN .39 1.000 4.25 41.4 25.8 .0 338.35 254.34 84.01 S - 2 CONV UP - DOUN .39 1.000 4.25 41.4 25.8 .0 338.35 254.37 83.98 5 - 3 CUN8 UP - UUUN .39 1.000 4.25 41.4 25.8 .0 338.35 252.89 85.73 17 RUTATIUNS - C = CORN FOR CRAIN. 5 = SOYBEANS.AND 8 = NHEAT PRICES: CORN = 52.949 SOYBEANS = $6.909 UHEAT = 43.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING 15 ASSUHEU. CUSTs ARE As FOLLOUS: PRACTICE TUTAL ANNUAL CUST UP AND UUNN 4 .00 ' CUNTUUR 4 1.00 CUNTUUR/STRIP 4 2.50 PARALLEL TERRACE 421.00 TABLE 1 -- EROSION9 YIEL£S9 COSTS9 AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’ S JACKSON PURCHASE AREA ROTATION 1/ 75-4 7535 7533 75-8 75-9 7s-m I534 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANS9AND U = UHEAT PRICES: CORN = 32.949 SOYBEANS = 46.909 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOUN $ .00 CONTOUR S 1.00 CONTOUR/STRIP $ 2.50 PARALLEL TERRACE $21.00 DATE: 05/é8/84 GS = K 3C9 R = 250.9 K = .399 L = 225.9 5 = .59 L8 = .1129 T = 5. 0 PAGE: TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ UP - DOUN .39 1.000 4.25 41.4 25.8 .0 338.65 252.92 85.73 UP - DOUN .39 1.000 4.25 41.4 25.8 .0 338.65 255.14 83.51 UP - DOUN .39 1.000 4.25 41.4 25.8 .0 338.65 255.17 83.48 CONSER UP - DOHN .11 1.000 1.22 41.4 25.8 .0 338.65 256.78 81.87 UP - DOHN .08 1.000 .88 41.4 25.8 .0 338.65 266.17 72.48 UP - DOUN .08 1.000 .88 41.4 25.8 .0 338.65 261.52 77.13 UP - DOUN .03 1.000 .33 .0 .0 97.5 286.65 229.13 57.52 . T. 1. 14 I. 19. I I11 I I I C O I O I I I I o O .. u 948...... .. . . ... 1.....9. . ..... 8 9| a a n I a . . 4 4 u u 4 u o .- u ........ . . . 5... .. . . . .-.} V4. 195 49999999999999999999991999999410.... TAMI 1 -- EROSION9 YIELDS9 COSTST AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05318’83 SRG = K 4A9 R = 250.9 K = .479 L = 250.9 S = 4.09 L3 = .5779 T = 5.0 PAGE: 1 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL 0V5 ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S - S - 1 CONV UP - DOUN .46 1.000 31.12 .0 2.7 .0 225.63 137.41 88.22 S ‘.S'- 1 CONV CONTOUR .46 .500 15.56 .0 32.7 . .0 225.63 137.41 87.22 S ~iS - 1 CONV CONT/STRIP .46 .250 7.78 .0 32.7 .0 225.63 137.41 85.72 S -‘S - 1 CONV TERRACE .46 .100 3.11 .0 32.7 .0 225.63 137.41 67.22 S - S - 2 CONV CONTOUR .46 .500 15.56 .0 32.7 .0 225.63 139.66 84.97 51-5 - 2 CONV CONT/STRIP .46 .250 7.78 .0 32.7 .0 225.63 139.66 83.47 S-S - 2 CONV TERRACE .46 .100 3.11 .0 32.7 .0 225.63 139.66 64.97 S - S - 3 CONSER UP - DOVN .13 1.000 8.81 .0 32.7 .0 225.63 145.95 79.68 5 - S - 3 CONSER CONTOUR .13 .500 4.41 .0 32.7 .0 225.63 145.95 78.68 S-S - 3 CONSER CONT/STRIP .13 .250 2.20 .0 32.7 .0 225.63 145.95 77.18 5-S - 3 CONSER TERRACE .13 .100 .88 .0 32.7 .0 225.63 145.95 58.68 E - S - 4 NOTIL UP - DOHN .07 1.000 4.75 .0 37.6 .0 259.44 165.63 93.81 3 ~ S - 4 NOTIL CONTOUR .07 .500 2.37 .0 37.6 .0 259.44 165.63 92.81 S - S - 4 NOTIL CONT/STRIP .07 .250 1.19 .0 37.6 .0 259.44 165.63 91.31 S - S - 4 NOTIL TERRACE .07 .100 .47 .0 37.6 .0 259.44 165.63 72.81 C - C - 1 CONV CONTOUR .35 .500 11.70 ' .0 .0 131.7 387.20 246.70 139.50 C - C - 1 CONV CONT/STRIP . 5 .250 5.85 .0 .0 131.7 387.20 246.70 138.00 C - C - 1 CONV TERRACE .35 .100 2.34 .0 .0 131.7 387.20 246.70 119.50 C - C1- 2 CONV UP - DOVN .35 1.000 23.39 .0 ' .0 131.7 387.20 250.28 136.92 §'-C - 2 CONV CONTOUR .35 .500 11.70 .0 .0 131.7 387.20 250.28 135.92 L - C - 2 CONV CONT/STRIP .35 .250 5.85 .0 .0 131.7 387.20 250.28 134.42 C-C - 2 CONV TERRACE .35 .100 2.34 .0 .0 131.7 387.20 250.28 115.92 C - C - 3 CONSER UP - DOVN .08 1.000 5.22 .O .0 131.7 387.20 250.27 136.93 C - C - 3 CONSER CONTOUR .08 .500 2.61 .0 .0 131.7 387.20 250.27 135.93 C-C - 3 CONSER CONT/STRIP .08 .250 1.31 .0 .0 131.7 387.20 250.27 134.43 C ° C - 3 CONSER TERRACE .08 .100 .52 .0 .0 131.7 387.2 250.27 115.93 V / S - 1 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 260.62 136.44 0 / S - 1 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 260.62 134.19 U / S - 1 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 260.62 116.94 HITS - 2 CONV UP - DOUN .47 1.000 31.93 47.5 32.7 131.7 398.56 260.63 137.93 11 / S - 2 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 260.63 136.43 11 / S - 2 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 260.63 134.18 N»! S - 2 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 260.63 116.93 NI’S - 3 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 , 262.41 134.65 B l S - 3 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 262.41 132.40 9715 - 3 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 262.41 115.15 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANS9AND H = UHEAT PRICES: CORN = $2.949 SOYBEANS = 46.909 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOHN 3 .00 CONTOUR $ 1.00 CONTOUR/STRIP $ 2.50 PARALLEL TERRACE $21.00 I576 -- EROSION9 YIELDS9 COSTS9 AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY' S JACKSON PURCHASE AREA DATE: 05/18/84 . SR 5: K 4A! R = 2509! K = 9879 L = 25049 S = 4909 1.539577! T = 540 PH 3 2 FOT“’ION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL . T/A/Y VHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN RU BU BU PRUU/ACRE CUST/ACRE TU LANU 27 V/ Sj-4 CONV UP - DOUN .47 1.000 31.93 47.5 32. 131.7 398.56 262.42 136.14 H/ S-4 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 262.42 134.64 VI'S - 4 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 262.42 132.39 U/ S-4 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 262.42 115.14 11/ S - 5 CONV UP - DOUN .47 1.000 31.93 47.5 32.7 131.7 398.56 259.75 138.82 U/ S-5 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 259.75 137.32 HI'S - 5 CONV CONT/STRIP .47 .250 7.98 '47.5 32.7 131.7 398.56 259.75 135.07 U/ S-5 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 259.75 117.82 VI'S - 6 CONV UP - DOHN .47 1.000 31.93 47.5 32 .7 131.7 398.56 259.76 138.81 U./S - 6 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 259.76 137.31 97's - 6 CONV CONT/STRIP .47 .250 7.98 47.5 32. 7 131.7 398.56 259.76 135.06 14/ S - 6 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 259.76 117.81 V.’S - 7 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 261.54 133.28 97’s - 7 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 261.54 116.03 N.’S - 8 CONV UP - DOUN .47 1.000 31.93 47.5 32 7 131.7 398.56 261.55 137.02 P,'S - 8 CONV CONTOUR .47 .500 15.97 47.5 3 131.7 398.56 261.55 135.52 8./S - 8 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 261.55 133.27 8 7 5 - 8 CURN TERRACE .47 .100 3.19 47. 32.7 131.7 398.53 231.55 113.02 5:7 S - 9 CONV UP - DOUN .47 1.000 31.93 47.5 32 7 131.7 398.56 260.87 137.69 F.’S - 9 CONV «CONTOUR .47 .500 15.97 47.5 32.7 131.7 , 398.56 260.87 136.19 4’/ S - 9 CONV CONT/STRIP .47 .250 7.98 47.5 32 7 131.7 398.56 260.87 133.94 37’s - 9 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 260.87 116.69 V7’S - 10 CONV UP - DOVN .47 1.000 31.93 47.5 32.7 131.7 398.56 260.88 137.68 V7’S - 10 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 260.88 136.18 9'! S - 10 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 260.88 133.93 R / S - 10 CONV TERRACE .47 .100 3.19 47.5 2.7 131.7 398.56 260.88 116.68 VI'S - 11 CONV UP - DOUN .47 1.000 31.93 47.5 32.7 131.7 398.56 262.66. 135.90 U / S - 11 CONV CONTOUR .47 .500 15.97 47.5 32.7 131.7 398.56 262.66 134.40 R / S - 11 CONV CONT/STRIP .47 .250 7.98 47.5 2.7 131.7 398.56 262.66 132.15 N / S - 11 CONV TERRACE .47 .100 3.19 47.5 32 7 131.7 398.56 262.66 114.90 U / S - 12 CONV UP - DOHN .47 1.000 31.93 47.5 32 7 131.7 398.56 262.67 135.89 V / S - 12 CONV CONTOUR .47 .500 15.97 47.5 32 7 131.7 398.56 262.67 134.39 9 / S - 12 CONV CONT/STRIP .47 .250 7.98 47.5 32.7 131.7 398.56 262.67 132.14 0 / S - 12 CONV TERRACE .47 .100 3.19 47.5 32.7 131.7 398.56 262.67 114.89 UI'S - 13 CONSER UP - DOUN .12 1.000 8.20 47.5 32 7 131.7 398.56 263.11 135.46 B l S - 13 CONSER CONTOUR .12 .500 4.10 47.5 32 7 131.7 398.56 263.11 133.96 11/ S - 13 CONSER CONT/STRIP .12 .250 2.05 47.5 32 7 131.7 398.56 263.11 131.71 B / S - 13 CONSER TERRACE .12 .100 .82 47.5 32 7 131.7 398.56 263.11 114.46 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANS9AND U = NHEAT PRICES: CORN = $2.949 SOYBEANS = $6.909 HHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOVS: PRACTICE TOTAL ANNUAL COST UP AND DOUN $ .00 CONTOUR $ 1.00 CONTOUR/STRIP $ 2.50 PARALLEL TERRACE $21.00 1S97 E1 -- ERUSIUN. YIELBS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKV’S JACKSON PURCHASE AREA DATE: 05/18/84 SRG = N 4A. R = 250.. K = .47. L = 250.. s = 4. 0. LS = .577. T = 5.0 PAGE: 3 NATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y VHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN DU DU BU PROD/ACRE COST/ACRE TO LAND 2/ l S - 14 NOTIL UP - DOUN .08 1.000 5.15 47.5 37.6 136.6 422.67 282.13 140.55 / S - 14 NOTIL CONTOUR .08 .500 2. 47.5 37.6 136.6 422. 67 282.13 139.05 / S.- 14 NOTIL CONT/STRIP .08 .250 1.29 47.5 37.6 136.6 422.67 282.13 136.80 / sg- 14 NOTIL TERRACE .03 .100 .52 47.5 37.3 133.3 422.37 282.13 119.55 / S - 15 NOTIL UP - DOUN .08 1.000 5.15 52.5 37.6 136.6 432.37 286.46 145.91 / S 5 15 NOTIL CONTOUR .08 .500 2.58 52.5 37.6 136.6 432.37 286.46 144.41 / S - 15 NOTIL CONT/STRIP .08 .250 1.29 52.5 37.6 136.6 432.37 286.46 142.16 / S - 15 NOTIL TERRACE .08 .100 .52 52.5 37.6 136.6 432.37 286.46 124.91 ‘ 1 CONV UP ’ DON" 039 10000 26037 4705 3207 .0 409093 274054 135039 - 1 CONV CONTOUR .39 .500 13.19 47.5 32.7 .0 409.93 274.54 133.39 - 2 CONV CONT/STRIP .39 .250 6.59 47.5 32.7 .0 409.93 274.54 130.39 - 1 CONV TERRACE .39 .100 2.64 47.5 32.7 .0 409.93 274.54 114.39 - 2 CONV UP - DOUN .39 1.000 26.37 47.5 32.7 .0 409.93 274.56 135.37 ' 2 CONV CONTOUR 039 0500 13119 4705 3217 .0 409193 274056 133137 - 2 CONV CONT/STRIP .39 .250 6.59 47.5 32.7 .0 409.93 274.56 130.37 ‘ 2 CONV TERRACE 039 0100 2064 4705 3217 00 409093 274156 114037 - 3 CONV UP - DONN .39 1.000 26.37 47.5 32.7 .0 409.93 272.79 137.14 ‘ 3 CONV CONTOUR 139 0500 13119 4705 321 00 409093 272079 135014 - 3 CONV CONT/STRIP .39 .250 .59 47.5 32.7 .0 409.93 272.79 132.14 ‘ 3 CONV TERRACE 039 0100 2064 4705 3207 00 409193 2/2079 116014 - 4 CONV UP - DOUN .39 1.000 26.37 47.5 32.7 .0 409.93 272.81 137.12 ' S CDNV CONTOUR 039 1500 13019 4715 207 00 409193 272181 135012 - 4 CONV CONT/STRIP .39 .250 6.59 47.5 32.7 .0 409.93 272.81 132.12 - 4 CONV TERRACE .39 .100 2.64 47.5 3 7 .0 409.93 272.81 116.12 ’ 5 CONV UP ‘ D09" 039 10000 26037 4705 3217 00 409093 275004 134089 - 5 CONV CONTOUR .39 .500 13.19 47.5 32.7 .0 409.93 275.04 132.89 - 5 CONV CONT/STRIP .39 .250 6.59 47.5 32.7 .0 409.93 275.04 129.89 - 5 CONV TERRACE .39 .100 2.64 47.5 32 7 .0 409.93 275.04 113.89 - 6 CONV UP - DOUN .39 1.000 26.37 47.5 2.7 .0 409.93 275.06 134.87 - 6 CONV CONTOUR .39 .500 13.19 47.5 32.7 .0 409.93 275.06 132.87 - 6 CONV CONT/STRIP .39 .250 6.59 47.5 2.7 .0 409.93 275.06 129.87 - 6 CONV TERRACE .39 .100 2.64 47.5 32 7 .0 409.93 275.06 113.87 - 8 CONSER UP 4 DUNN .11 1.000 7.59 47.5 32.7 .0 409.93 276.67 133.26 - 8 CONSER CONTOUR .11 .500 3.80 47.5 32.7 .0 409.93 276.67 131.26 - 8 CONSER CONT/STRIP .11 .250 1.90 47.5 32 7 .0 409.93 276.67 128.26 - 8 CONSER TERRACE .11 .100 .76 47.5 32 7 .0 409.93 276.67 112.26 ‘ ° 9 NOTIL UP - DOUN .08 1.000 5.49 52.5 37 6 .0 463.14 - 304.76 158.38 - 9 NOTIL CONTOUR .08 .500 2.75 52.5 37 6 .0 463.14 304.76 156.38 - 9 NOTIL CONT/STRIP .08 .250 1.37 52.5 37.6 .0 463.14 304.76 153.38 - 9 NOTIL TERRACE .08 .100 .55 52.5 37 6 .0 463.14 304.76 137.38 1/ ROTATIONS - C = CORN FOR GRAIN, S = SOYBEANSvAND N = UHEAT PRICES: CORN = 82.941 SOYBEANS = 36.901 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL CUST UP AND RUUN 1 .oo ' CONTOUR 1 1.00 CONTOUR/STRIP s 2.50 PARALLEL TERRACE 121.00 1598 \\\\ 1/ ROTATIONS - C = CORN FOR GRAIN! S = SOYBEANS.AND N = HHEAT PRICES: CORN = 52.941 SOYBEANS = 36.901 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOHN S .00 CONTOUR S 1.00 CONTOUR/STRIP S 2.50 PARALLEL TERRACE $21.00 TANEI -- EROSIONo YIELDS. COSTS. AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’ S JACKSON PURCHASE AREA DATE: 05/18/84 SRO = A 4A. R = 250.1 K = .471 L = 250.1 S = 4.01 LS = .5771 T = 5. 0 PAGE: 4 RNAUON 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S NOTIL UP - DONN .08 1.000 5.49 47.5 37.6 .0 443.74 291.56 152.18 S NOTIL CONTOUR .08 .500 2.75 47.5 37.6 .0 443.74 291.56 150.18 5 NUTIL CONT/STRIP .08 .250 1.37 47.5 37.3 .0 443.74 291.53 147.18 8 NOTIL TERRACE .08 .100 .55 47.5 37.3 .0 443.74 291.53 110.18 C NOTIL CONTOUR .03 .500 1.02 .0 .0 136.6 401.60 272.13 128.47 C NOTIL CONT/STRIP .03 .250 .51 .0 .0 136.6 401.60 272.13 126.97 C NOTIL TERRACE .03 .100 .20 .0 .0 136.6 401.60 272.13 108.47 0 III '10 III nur‘llil‘l I D O a ‘01- ~11- QAV I. 5' .1! 4.0 I n . \Ii ‘1.- V IV...- I 6 I .‘ 81L .1... AN... 0 vi.- Q. (Rab?)- Q 0 Q q 1599 scat: etc: etc: (’3an nmram TAMI 1'" EROSION1 YIELDSv COSTS1 AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/18/81 SRG = K 5A. R = 250.. K = .49. L = 225.. s = 4.0. L5 = .553. T = 3.0 . PAGE: 1 “NATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN 8U DU DU PROD/ACRE COST/ACRE TO LAND 2! S-'S - 1 CONV CONTOUR .46 .500 15.55 .0 29.7 .0 204.93 132.68 71.25 5"8 - 1 CONV CONT/STRIP .46 .250 7.77 .0 29.7 .0 204.93 132.68 69.75 S' S ' 2 CONV UP ‘ MUN 046 10000 31009 00 2907 .0 204093 134088 70005 S-S - 2 CONV CONTOUR .46 .500 15.55 .0 29.7 .0 204.93 134.88 69.05 S‘-S - 2 CONV CONT/STRIP .46 .250 7.77 .0 29.7 .0 204.93 134.88 67.55 S-S ° 2 CONV TERRACE .46 .100 3.11 .0 29.7 .0 204.93 134.88 49.05 S-S - 3 CONSER UP - DONN .13 1.000 8.81 .0 29.7 .0 204.93 141.19 63.74 S-S - 3 CONSER CONTOUR .13 .500 4.40 .0 29.7 .0 204.93 141.19 62.74 S-S ° 3 CONSER CONT/STRIP .13 .250 2.2 .0 29.7 .0 204.93 141.19 61.24 S-S - 4 NOTIL UP - DOHN .07 1.000 4.74 .0 34.7 .0 239.43 160.77 78.66 S-'S - 4 NOTIL CONTOUR .07 .500 2.37 .0 34.7 .0 239.43 160.77 77.66 S-S - 4 NOTIL CONT/STRIP .07 .250 1.19 .0 34.7 .0 239.43 160.77 76.16 S-S - 4 NOTIL TERRACE .07 .100 .47 .0 34.7 .0 239.43 160.77 57.66 C-C - 1 CONV UP - DOHN .35 1.000 23.37 .0 .0 113.9 334.87 229.01 105.86 C-C - 1 CONV CONTOUR .35 .500 11.69 .0 .0 113.9 334.87 229.01 ° 104.86 E'-C - 1 CONV CONT/STRIP .35 .25 5.84 .0 .0 113.9 334.87 229.01 103.36 "C - 2 CONV UP - DOHN .35 1.000 23.37 .0 .0 113.9 334.87 232.43 102.44 7 C - 2 CONV CONTOUR .35 .500 11.69 .0 .0 113.9 334.87 232.43 101.44 -'C - 2 CONV CONT/STRIP .35 .250 5.84 .0 .0 113.9 334.87 232.43 99.94 ' C - 2 CONV TERRACE .35 .100 2.34 .0 .0 113.9 334.87 232.43 81.44 ' C - 3 CONSER UP - DOHN .08 1.000 5.22 .0 .0 113.9 334.87 232.41 102.46 - C - 3 CONSER CONTOUR .08 .500 2.61 .0 .0 113.9 334.87 232.41 101.46 7 C - 3 CONSER CONT/STRIP .08 .250 1.30 .0 .0 113.9 334.87 232.41 99.96 ' C - 3 CONSER TERRACE .08 .100 .52 .0 .0 113.9 334.87 232.41 81.46 / S - 1 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 352.54 245.86 106.69 / S - 1 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.5 245.86 105.19 / S - 1 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 245.86 102.94 /8 - 1 CONV TERRACE .47 .100 3.19 42.3 29.7 113.9 352.54 245.86 85.39 / S - 2 CONV UP - DONN .47 1.000 31.91 42.6 29.7 113.9 352.54 245.83 106.71 / S - 2 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 245.83 105.21 / S - 2 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 245.83 102.96 / S - 2 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 245.83 85.71 / S - 3 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 352.54 247.57 104.98 / S - 3 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 247.57 103.48 / S - 3 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 247.57 101.23 / S - 3 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 247.57 83.98 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANSyAND N = NHEAT PRICES: CORN = 02.941 SOYBEANS = $6.90. UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOUN S .00 CONTOUR S 1.00 CONTOUR/STRIP S 2.50 PARALLEL TERRACE $21.00 200 TABLE 1 -- EROSION. YIELDS1 COSTS1 AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 5718/84 SRG = K 5A. R = 250.. K = .49. L = 225.. S = 4.0. L5 = .553. T = 3.0 PAGE: 2 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN ‘ CORN VALUE OF PRODUCTION NET RETURN BU DU BU PROD/ACRE COST/ACRE TO LAND 2/ HT'S - 4 CONV UP - DOHN .47 1.000 31.91 42.6 29.7 113.9 352.54 247.54 105.00 R / S - 4 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 247.54 103.50 U / S - 4 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 247.54 101.25 N /§S — 4 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 247.54 84.00 H /.S - 5 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 352.54 245.01 107.53 UTIS - 5 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 245.01 103.78 U / S - 5 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 245.01 86.53 - NTTS - 6 CONV UP - DOHN .47 1.000 31.91 42.6 29.. 113.9 352.54 244.99 107.56 - UI'S - 6 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 244.99 106.06 - NTTS - 6 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 244.99 103.81 - UI'S - 6 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 244.99 86.56 - UT’S - 7 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 352.54 246.72 105.82 '-U / S - 7 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 246.72 104.32 -U / S - 7 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 246.72 102.07 -H / S - 7 CONV TERRACE .47 .100 3.19 2.6 29.7 113.9 352.54 246.72 84.82 9.18 - 8 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 52.54 246.70 105.85 HI’S - 8 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 246.70 104.35 UT'S - 8 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 246.70 102.1 UI'S - 8 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 246.70 84.85 UI'S - 9 CONV UP - DOUN .47 1.000 31.91 2.6 29.7 113.9 352.54 246.11 106.43 UI'S - 9 CONV CONTOUR .47 .500 15.95 2.6 29.7 113.9 352.54 246.11 104.93 U / S - 9 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 246.11 102.68 U / S - 9 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 246.11 85.43 8.15 - 10 CONV UP - DONN .47 1.000 31.91 42.6 ‘ 29.7 113.9 352.54 246.09 106.46 UT’S - 10 CONV CONTOUR .47 .500 5.95 42.6 29.7 113.9 352.54 246.09 104.96 VJ'S - 10 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 246.09 102.71 HJ'S - 11 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 352.54 247.82 104.72 VI'S - 11 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 247.82 103.22 NT’S - 11 CONV CONT/STRIP .47 .250 7.98 2.6 29.7 113.9 352.54 . 247.82 100.97 Ul'S-12 CONV UP - DOUN .47 1.000 31.91 42.6 29.7 113.9 352.54 247.80 104.75 U/’S-12 CONV CONTOUR .47 .500 15.95 42.6 29.7 113.9 352.54 247.80 103.25 Ul’S-12 CONV CONT/STRIP .47 .250 7.98 42.6 29.7 113.9 352.54 247.80 101.00 Ul’S-12 CONV TERRACE .47 .100 3.19 42.6 29.7 113.9 352.54 247.80 83.75 "I S-13 CONSER CONTOUR .12 .500 4.10 42.6 29.7 113.9 352.54 248.23 102.82 Ul’S-13 CONSER CONT/STRIP .12 .250 2.05 42.6 29.7 113.9 352.54 248.23 100.57 “I S-13 CONSER TERRACE .12 .100 .82 42.6 29.7 113.9 352.54 248.23 83.32 1/ ROTATIONS - C = CORN FOR GRAIN1 S = SOYBEAN51AND N = UHEAT PRICES: CORN = 32.941 SOYBEANS = 36.901 NHEAT = 83.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING Inmm.mmmwmmm PRACTICE TOTAL ANNUAL COST UP AND BURN 1 .00 ° CONTOUR 1 1.00 CONTOUR/STRIP 1 2.50 PARALLEL TERRACE 121.00 0'“! 'e“ TAKE 1 -- EROSION. YIELDS1 COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR P.ENTUCKY' S JACP.SON PURCHASE AREA ROTATION 1/ 14 14 14 14 15 15 15 15 \\\\ \\\\ FJMNN HMO-OH comma: 11503010) § a uzuauacn unaaancn usuaunco 0:030:03 uao1unuo uaauuocn ancncncn unuauacn I:I:‘:I= c:t:¢:I: llll I'll Ill. 5.54.51.00.11...“ “‘ ‘ ‘ I I I l \‘N‘\\ \\“ ~O~O‘O‘O 00000000 O~O~O~O~ LflLflLflLfl \\\\ 2()l 588 = K 5A1 R: 750.1 K = .491 L = 225.1 5 = 4. 01 L5 = .5531 . = 3. 0 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF BU BU BU PROD/ACRE NOTIL UP - DOUN .08 1.000 5.15 42.6 34.7 118.8 377.00 NOTIL CONTOUR .08 .500 2.57 42.6 34.7 118.8 377.00 NOTIL CONT/STRIP .08 .250 1.29 42.6 34.7 118.8 377.00 NOTIL TERRACE .08 .100 .51 42.6 34.7 118.8 377.00 NOTIL UP - 008R .08 1.000 5.15 47.5 34.7 118.8 ' 383.50 NOTIL CONTOUR .08 .500 2.57 47.5 34.7 118.8 386.50 NOTIL CONT/STRIP .08 .250 .2 47.5 34.7 118.8 386.50 NOTIL TERRACE .08 .100 .51 47.5 34.7 118.8 386.50 CONV UP ‘ 00"" 039 10000 26035 4206 2907 00 370022 CONV CONTOUR .39 .500 13.18 42 6 29.7 .0 370. 22 CONV CONT/STRIP .39 .250 6.59 42 6 29.7 .0 370.22 CONV TERRACE .39 .100 2. 42 6 29.7 .0 370. 22 CONV UP - DOUN .39 1.000 26.35 42.6 29.7 .0 370.22 CONV CONTOUR .39 .500 13.18 42 6 29.7 .0 370.22 CONV CONT/STRIP 039 0250 6059 42 6 2907 00 370022 CONV TERRACE .39 .100 2.64 42 6 29.7 .0 370.22 CONV UP - DOUN .39 1.000 26.35 42.6 29.7 .0 370.22 CONV CONTOUR .39 .500 13.18 42.6 29.7 .0 370.22 CONV CONT/STRIP .39 .250 .5 42.6 29.7 .0 370.22 CONV TERRACE .39 .100 2.64 42.6 29.7 .0 370.22 CONV UP ‘ DOHN 039 10000 26035 4216 2907 .0 37 022 CONV CONTOUR .39 .500 13.18 42.6 29.7 .0 370.22 CONV CONT/STRIP .39 .25 6.59 42.6 29.7 .0 370.22 CONV - TERRACE .39 .100 2.64 42.6 29.7 .0 370.22 CONV UP - DOVN .39 1.000 26.35 42.6 29.7 .0 370.22 CONV CONTOUR .39 .500 13.18 42.6 29.7 .0 370.22 CONV CONT/STRIP .39 .250 6.59 42.6 29.7 .0 370.22 CONV TERRACE .39 .100 2.64 42.6 29.7 .0 370.22 CONV UP - DONN .39 1.000 26.35 42.6 29.7 .0 370.22 CONV CONTOUR .39 .500 13.18 42.6 29.7 .0 370.22 CONV CONT/STRIP 039 0250 6059 4206 2907 00 370022 CONV TERRACE .39 .100 2.34 42.3 29.7 .0 370.22 CONSER UP ’ 80"" 011 10000 7059 4206 2907 00 370022 CONSER CONTOUR .11 .500 3.79 42.6 29.7 .0 370.22 CONSER CONT/STRIP .11 .250 1.90 42.6 29.7 .0 370.22 CONSER TERRACE .11 .100 .76 42.6 29.7 .0 370.22 NOTIL UP ‘ 00"" 008 10000 5049 4705 3407 00 423073 NOTIL CONTOUR .08 .500 2.74 47.5 34.7 .0 423.73 NOTIL CONT/STRIP .08 .250 1.37 47.5 34.7 .0 423.73 NOTIL TERRACE .08 .100 .55 47.5 34.7 .0 423.73 1/ ROTATIONS - C = CORN FOR GRAIN. S = SOYBEANS1AND U = HHEAT PRICES: CORN = 32.941 SOYBEANS = 46.901 HHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOHN 8 .00 CONTOUR S 1.00 - CONTOUR/STRIP S 2.50 PARALLEL TERRACE $21.00 DATE: 05/18/84 PAGE: 3 AVE ANNURL AVE ANN'A' PRODUCTION NET RETURN COST/ACRE TO LAND 2/ 266.31 ’ 110.69 266.31 109.19 266.31 106.94 266.31 89.69 270.50 116.01 270.50 114.51 270.50 112.26 270.50 95.01 262.70 107.52 262.70 105.52 262.70 102.53 262.70 86.52 262.65 107.57 262.65 105.57 262.65 102.57 262.65 86.57 261.01 109.21 261001 107021 261.01 104.21 231.01 . 88.21 260.96 109.26 260.96 107.26 260.96 104.26 260.96 88.26 263.21 107.01 263.21 105.01 263.21 102.01 263.21 86.01 263.16 107.06 263.16 105.06 263.16 102.06 263.16 86.06 264.78 105.44 264.78 103.44 264.78 100.44 264.78 84.44 292.48 131.25 292.48 129.25 292.48 126.25 292.48 110.25 202 TABLEE 1 -- EROSION. YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/18/84 SRG = K 5A. R = 250.. K = .49. L = 225.. S = 4.0. L5 = .553. T = 3.0 PAGE: 4 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN DU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S -10 NOTIL UP - DOUN .08 1.000 5.49 42.6 34.7 .0 404.72 279.48 125.24 S -10 NOTIL CONTOUR .08 .500 2.74 42.6 34.7 .0 404.72 279.48 123.24 S -i10 NOTIL CONT/STRIP .08 .250 1.37 42.6 34.7 .0 404.72 279.48 120.24 S -fl10 NOTIL TERRACE .08 .100 .5 42.6 34.7 .0 404.72 279.48 83.24 C NOTIL UP - DOUN .03 1.000 2.03 .0 .0 118.8 349.27 252.56 96.71 C NOTIL CONTOUR .03 .500 1.02 .0 .0 118.8 349.27 252.56 95.71 C NOTIL CONT/STRIP .03 .250 .51 .0 .0 118.8 349.27 252.56 94.21 C NOTIL TERRACE .03 .100 .20 .0 .0 118.8 349.27 252.56 75.71 1/ ROTATIONS - C = CORN FOR GRAIN. S = SOYBEAN89AND N = NHEAT PRICES: CORN = $2.94. SOYBEANS = $6.90. UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. 00315 ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST OF AND noun 3 .00 ° CONTOUR s 1.oo CONTOUR/STRIP 2.50 3 PARALLEL TERRACE $21.00 2()3 ABLE 1 -- EROSION: YIELDST COSTS: AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/18/84 . SRG = K 5C1 R = 250.9 K = .491 L = 225.9 S = 4.0: L5 = .5531 T = 3.0 PAGE: 1 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y HHEAT SOYBEAN CORN VALUE OF PROBUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S - S - 1 CONV CONTOUR .46 .500 15.55 .0 28.5 .0 196.65 136.31 59.34 1»- s;- 1 CONV TERRACE .43 .100 3.11 .o 28.5 .0 193.35 133.31 39.34 3 - s‘- 2 conv up - noun .43 1.000 31.09 .0 28.5 .0 193.35 138.31 53.34 5.- S * 2 CONV CONT/STRIP .46 .250 7.77 .0 28.5 .0 196.65 138.31 55.84 3 - S - 3 CONSER UP - DOUN .13 1.000 8.81 .0 28.5 .0 196.65 144.73 51.92 3 --S - 3 CONSER CONTOUR .13 .500 4.40 .0 28.5 .0 196.65 144.73 50.92 E - S - 3 CONSER CONT/STRIP .13 .250 2.20 .0 28.5 .0 196.65 144.73 49.42 1 - S - 3 CONSER TERRACE .13 .100 .88 .0 28.5 .0 196.65 144.73 30.92 3'- S - 4 NOTIL UP - DONN .07 1.000 4.74 .0 33.3 .0 229.77 162.54 67.23 i - S - 4 NOTIL CONTOUR .07 .500 2.37 .0 33.3 .0 229.77 162.54 66.23 i - S - 4 NOTIL CONT/STRIP .07 .250 1.19 .0 33.3 .0 229.77 162.5 64.73 - C - 1 CONV UP - DOUN .35 1.000 23.37 .0 .0 109.3 321.34 230.67 90.67 - C - 1 CONV CONTOUR .35 .500 11.69 .0 .0 109.3 321.34 230.67 89.67 - C - 1 CONV CONT/STRIP .35 .250 5.84 .0 .0 109.3 321.34 230.67 88.17 - C - 1 CONV TERRACE .35 .100 2.34 .0 .0 109.3 321.34 230.67 69.67 - C - 2 CONV UP ° DOUN .35 1.000 23.37 .0 .0 109.3 321.34 233.37 87.97 - C - 2 CONV CONTOUR .35 .500 11.69 .0 .0 109.3 321.34 233.37 86.97 - C - 2 CONV CONT/STRIP .35 .250 5.84 .0 .0 109.3 321.34 233.37 85.47 .- C - 3 CONSER UP - DONN .08 1.000 5.22 .0 .0 109.3 321.34 233.36 87.98 - C - 3 CONSER CONTOUR .08 .500 2.61 .0 .0 109.3 321.34 233.36 86.98 ‘~~C - 3 CONSER CONT/STRIP .08 .250 1.30 .0 .0 109.3 321.34 233.36 85.48 It/ 8 - 1 CONV UP - DOOR .47 1.000 31.91 40.9 28.5 109.3 338.34 249.61 88.73 1./ S - 1 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 249.61 87.23 L/ S - 1 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 249.61 84.98 h/ S ~ 1 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 249.61 67.73 L/ S - 2 CONV UP - DONN .47 1.000 31.91 40.9 28.5 109.3 338.34 249.44 88.91 ./ S - 2 CONV CONTOUR. .47 .500 15.95 40.9 28.5 109.3 338.34 249.44 87.41 ’/ S - 2 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 249.44 85.16 I./ S - 2 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 249.44 67.91 Pl 5 - 3 CONV UP - DOUN .47 1.000 31.91 40.9 28.5 109.3 338.34 250.96 87.38 Al 3 - 3 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 250.96 85.88 i/ S - 3 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 250.96 83.63 -/ S - 3 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 250.96 66.38 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANSTAND U = NNEAT PRICES: CORN = $2.94: SOYBEANS = 36.909 "NEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING 15 AssunEn. COSTS ARE As ECLLous: PRACTICE TOTAL ANNUAL COST UP AND noun 1 .oo ' CONTOUR s 1.00 CONTOUR/STRIP s 2.50 PARALLEL TERRACE 121.00 2(16 TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY‘S JACKSON PURCHASE AREA DATE: 05118/84 SRG = K 5C1 R = 250.. K = .49. L = 225.. S = 4.0. L5 = .5531 T = 3.0 PAGE: 2 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ -'H / S - 4 CONV UP - DOUN .47 1.000 31.91 40.9 28.5 109.3 338.34 250.79 87.56 -H / S - 4 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 250.79 86.06 - U / S - 4 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 250.79 83.81 - H / S - 4 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 250.79 66.56 - 81/ S - 5 CONV UP - DONN .47 1.000 31.91 40.9 28.5 109.3 338.34 248.89 89.45 -V / S - 5 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 248.89 87.95 - U / S - 5 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 248.89 85.70 - V / S - 5 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 248.89 68.45 -V / S - 6 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 248.72 88.13 V / S - 6 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 248.72 85.88 V / S - 6 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 248.72 68.63 V / S - 7 CONV UP - DONN .47 1.000 31.91 40.9 28.5 109.3 338.34 250.24 88.10 H / S - 7 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 250.24 86.60 V / S - 7 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 250.24 84.35 V / S - 7 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 250.24 67.10 V / S - 8 CONV UP - DOUN .47 1.000 31.91 40.9 28.5 109.3 338.34 250.07 88.28 H / S - 8 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 250.07 86.78 V / S - 8 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 250.07 84.53 8 /‘S - 8 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 250.07 67.28 'V / S - 9 CONV UP - DOUN .47 1.000 31.91 40.9 28.5 109.3 338.34 249.89 88.46 'V / S - 9 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 249.89 86.96 'V / S - 9 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 249.89 84.71 '8 / S - 9 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 249.89 67.46 ‘H / S - 10 CONV UP - DOUN .47 1.000 31.91 40.9 28.5 109.3 338.34 249.71 88.63 H / S - 10 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 249.71 7.13 V / S - 10 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34’ 249.71 84.88 V / S - 10 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 249.71 67.63 H / S - 11 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 251.24 85.61 H / S - 11 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 251.24 83.36 V / S - 11 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 251.24 66.11 V / S - 12 CONV UP - DOUN .47 1.000 31.91 40.9 28.5 109.3 338.34 251.06 87.28 H l S - 12 CONV CONTOUR .47 .500 15.95 40.9 28.5 109.3 338.34 251.06 85.78 H / S - 12 CONV CONT/STRIP .47 .250 7.98 40.9 28.5 109.3 338.34 251.06 83.53 H / 5 - 12 CONV TERRACE .47 .100 3.19 40.9 28.5 109.3 338.34 251.06 66.28 V / S - 13 CONSER UP - DOUN .12 1.000 8.20 40.9 28.5 109.3 338.34 251.50 86.85 8 / S - 13 CONSER CONTOUR .12 .500 4.10 40.9 28.5 109.3 338.34 251.50 85.35 8 / S - 13 CONSER CONT/STRIP .12 .250 2.05 40.9 28.5 109.3 338.34 251.50 83.10 1/ ROTATIONS - C = CORN FOR BRAIN. S = SOYBEANSTAND V = NHEAT PRICES: CORN = 32.949 SOYBEANS = $6.909 UNEAT = 93.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND noun 1 .oo ' CONTOUR 1 1.00 CONTOUR/STRIP 1 2.50 PARALLEL TERRACE 121.00 TANE 1 - EROSION9 YIELDST COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY'S JACKSON PURCHASE AREA ROTATION 1/ \\\\ \\\\ mmmm cammmm ‘0‘0‘070 mmmm o~o~o~o~ ummu .5455.» 04240424 ”NNN. Hg“... h-hou-ua 15.5.5.5 kah‘h‘h‘ Lfltfltfltfl TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF BU BU BU PROD/ACRE NOTIL UP - DONN .08 1.000 5.15 40.9 33.3 114.0 361.81 NOTIL CONTOUR .08 .500 2.57 40.9 33.3 114.0 361.81 NOTIL CONT/STRIP .08 .250 1.29 40.9 33.3 114.0 361.81 NOTIL TERRACE .08 .100 .51 40.9 33.3 114.0 361.81 NOTIL UP - DOUN .08 1.000 5.15 45.6 33.3 114.0 370.93 NOTIL CONTOUR .08 .500 2.57 45.6 33.3 114.0 370.93 NOTIL CONT/STRIP .08 .250 1.29 5.6 33.3 114.0 370.93 NOTIL TERRACE .08 .100 .51 45.3 33.3 114.0 370.93 CONV UP - DOUN .39 1.000 26.35 40.9 28.5 .0 355.34 CONV CONTOUR .39 .500 13.18 40.9 28.5 .0 355.34 CONV CONT/STRIP .39 .250 6.59 40.9 .5 .0 355.34 CONV TERRACE .39 .100 2.64 40.9 28.5 .0 355.34 CONV UP - DOUN .39 1.000 26. 5 40.9 28.5 .0 355.34 CONV CONTOUR .39 .500 13.18 40.9 28.5 .0 355.34 CONV CONT/STRIP .39 .250 6.59 40.9 28.5 .0 355.34 CONV TERRACE .39 .100 2.64 40.9 28.5 .0 355.34 CONV UP - DOHN .39 1.000 26. 5 40.9 28.5 .0 355.34 CONV CONTOUR .39 .500 13.18 40.9 28.5 .0 355.34 CONV CONT/STRIP .39 .250 6.59 40.9 28.5 .0 355.34 CONV TERRACE .39 .100 2.64 40.9 28.5 .0 355.34 CONV UP - DOUN .39 1.000 26.35 40.9 28.5 .0 355.34 CONV CONTOUR .39 .500 13.18 40.9 28.5 .0 355.34 CONV CONT/STRIP .39 .250 6.59 40.9 28.5 .0 355.34 CONV TERRACE .39 .100 2.64 40.9 28.5 .0 355.34 CONV UP - DONN .39 1.000 26.35 40.9 28.5 .0 355.34 CONV CONTOUR .39 .500 13.18 40.9 28.5 .0 355.34 CONV CONT/STRIP .39 .250 6.59 40.9 28.5 .0 355.34“ CONV TERRACE .39 .100 2.64 40.9 28.5 .0 355.34 CONV UP ' BORN 039 10000 26035 4009 2805 00 355034 CONV CONTOUR .39 .500 13.18 40.9 28.5 .0 355.34 CONV CONT/STRIP .39 .250 6.59 40.9 28.5 .0 355.34 CONV TERRACE .39 .100 2.64 40.9 28.5 .0 355.34 CONSER UP - DOUN .11 1.000 7.59 40.9 28.5 .0 355.34 CONSER CONTOUR .11 .500 3.79 40.9 28.5 .0 355.34 CONSER CONT/STRIP .11 .250 1.90 40.9 28.5 .0 355.34 CONSER TERRACE .11 .100 .76 40.9 28.5 .0 355.34 NOTIL UP - DONN .08 1.000 5.49 45.6 33.3 .0 406.70 NOTIL CONTOUR .08 .500 2.74 45.6 33.3 .0 406.70 NOTIL CONT/STRIP .08 .250 1.37 45.6 33.3 .0 406.70 NOTIL TERRACE .08 .100 .5 45.6 33.3 .0 406.70 2(75 SRG 3 K 589 R = 25009 K : 0499 L = 2250! S = 4009 L5 = 4553! T = 300 1/ ROTATIONS - C = CORN FOR GRAIN: S = SOYBEANSTAND N = NHEAT PRICES: CORN = 82.949 SOYBEANS = $6.904 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DONN S .00 CONTOUR S 1.00 CONTOUR/STRIP 2.50 PARALLEL TERRACE $21.00 DATE: 05/18/84 PAGE: 3 AVE ANNUAL AVE 4088 L PRODUCTION NET RETURN COST/ACRE- T0 LAND 27 238.07 93.75 238.07 92.25 238.07 90.00 238.07 72.75 271.85 99.08 271.85 97.58 271.85 95.33 271.85 78.08 238.55 83.79 268.55 84.79 238.55 81.79 238.55 35.79 238.20 87.14 238.20 85.14 238.20 2.14 238.20 33.14 237.11 88.23 237.11 83.23 237.11 83.23 237.11 37.23 233.73 88.58 233.73 83.58 233.73 83.58 233.73 37.58 239.10 83.24 239.10 84.24 239.10 81.24 239.10 35.24 238.75 83.59 238.75 84.59 238.75 81.59 238.75 35.59 270.43 84.91 270.43 82.91 270.43 79.91 270.43 33.91 295.53 111.17 295.53 109.17 295.53 103.17 295.53 90.17 2(76 \\\\ TABLE 1 -- EROSION9 YIELDST COSTS! AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/18/84 SRG = K 5C1 R = 250.1 K = .491 L = 225.9 5 = 4.01 L8 = .5539 T = 3.0 PAGE: 4 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNTAL T/A/Y VHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU DU BU PROD/ACRE COST/ACRE TO LAND 2/ S -10 NOTIL UP - DOUN .08 1.000 5.49 40.9 33.3 .0 388.46 283.00 105.46 S -10 NOTIL CONTOUR .08 .500 2.74 40.9 33.3 .0 388.46 283.00 103.46 S '10 NOTIL CONT/STRIP .08 .250 1.37 40.9 33.3 .0 388.46 283.00 100.46 S fiiO NOTIL TERRACE .08 .100 .55 40.9 33.3 .0 388.46 283.00 63.46 C NOTIL UP - DUNN .03 1.000 2.03 .0 .0 114.0 335.16 252.52 82.64 C NOTIL CONTOUR .03 .500 1.02 .0 .0 114.0 335.16 252.52 81.64 C NOTIL CONT/STRIP .03 .250 .51 .0 .0 114.0 335.16 252.52 80.14 C NOTIL TERRACE .03 .100 .20 .0 .0 114.0 335.16 252.52 61.64 I/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANSvAND U = HHEAT PRICES: CORN = 32.949 SOYBEANS = $6.90: UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DONN s .00 ' CONTOUR 1 1.00 CONTOUR/STRIP s 2.50 PARALLEL TERRACE $21.00 Lnrnm m I I I I I I I I 'J" (I) In If) I I I I rant-1r) I I I I I I I I 12.2.38: ctCt ta‘lt I I I I tnmmm (1301an TABLE 1 -- EROSION: YIELDSI COSTS, ROTATION 1/ 0 0 0 0 5.5.5.3» “04041-0 0904.009” HHI—AH I I I I C)n(7m mmmm (nu-3mm wmmm mmmm (firm-1r) (Ararat-3 I I I I I I I I 54HHpA Fit???“ (7th mmmm mmmm mmwm \\\\ \\\\ \“\‘s Volt-JOIN NNI‘JI‘J “NNN NI-JNI-J HHI-‘F‘ TILLAG CONV CONV CONV CONV CONV CONV CONV CONV CONSER CONSER CONSER CONSER NOTIL NOTIL NOTIL NOTIL CONV CONV CONV CONV CONV CONV CONV CONV CONSER CONSER CONSER CONSER CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV 2()7 AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA SR6 = K 3A. R = 250.. K = .48. L = 200.. s = 8.0. L5 = 1.402. T = 5.0 E PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF BU BU 8U PROD/ACRE CONTOUR .46 .600 46.33 .0 29.7 .0 204.93 CONT/STRIP .46 .300 23.17 .0 29.7 .0 204.93 TERRACE .46 .120 9.2 .0 29.7 .0 204.93 UP " DOUN 046 10000 77022 00 2907 00 204093 CONTOUR .46 .600 46.33 .0 29.7 .0 204.93 CONT/STRIP .46 .300 23.17 .0 29.7 .0 204.93 TERRACE .46 .120 9.27 .0 29.7 .0 204.93 UP - DOHN .13 1.000 21.87 .0 29.7 .0 204.93 CONTOUR .13 .600 13.12 .0 29.7 .0 204.93 CONT/STRIP .13 .300 6.56 .0 29.7 .0 204.93 TERRACE .13 .120 2.62 .0 29.7 .0 204.93 UP - DOUN .07 1.000 11.78 .0 34.7 .0 239.43 CONTOUR .07 .600 7.07 .0 34.7 .0 239.43 CONT/STRIP .07 .300 3.53 .0 34.7 .0 239.43 TERRACE .07 .120 1.41 .0 34.7 .0 239.43 CONTOUR .35 .600 34.83 .0 .0 110.9 326.05 CONT/STRIP .35 .300 17.41 .0 .0 110.9 326.05 TERRACE .35 .120 6.97 .0 .0 110.9 326.05 UP - DOUN .35 1.000 58.04 .0 .0 110.9 326.05 CONTOUR . 5 .600 34.83 '.0 .0 110.9 326.05 CONT/STRIP .35 .300 17.41 .0 .0 110.9 326.05 TERRACE .35 .120 6.97 .0 .0 110.9 326.05 CONTOUR .08 .600 7.77 .0 .0 110.9 326.05 CONT/STRIP .08 .300 3.89 .0 .0 110.9 326.05 TERRACE .08 .120 1. 5 .0 .0 110.9 326.05 UP - DOUN .47 1.000 79.24 42.6 29.7 110.9 348.13 CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 CONT/STRIP .47 .300 23.77 42.6 2 .7 110.9 348.13 TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 UP - DONN .47 1.000 79.24 42.6 29.7 110.9 348.13 CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 UP - DONN .47 1.000 79.24 42.6 29.7 110.9 348.13 CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 TERRACE .47 .120 9.5 42.6 29.7 110.9 348.13 1/ ROTATIONS - C = CORN FOR GRAIN, S = SOYBEANS: AND N = NHEAT PRICES: CORN = 52.941 SOYBEANS = 06.900 UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND HAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DOHN I .00 CONTOUR I 1.00 CONTOUR/STRIP I 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. DATE: 05’21/84 PAGE: 1 AVE ANNUAL AVE ANNUAL PROOUCTTON NET RETURN COST/ACRE TO LAND 21 134.49 70.44 134.49 39.44 134.49 37.94 134.49 49.44 133.32 38.31 133.32 37.31 133.32 35.81 133.32 47.31 142.97 31.93 142.97 30.93 142.97 59.43 142.97 40.93 132.32 73.81 132.32 75.81 132.32 74.31 132.32 55.81 228.38 97.37 228.38 93.37 228.38 95.17 228.38 73.37 231.52 94.53 231.52 93.53 231.52 92.03 231.52 73.53 231.51 94.54 231.51 93.54 231.51 92.04 231.51 73.54 247.47 100.33 247.47 99.13 247.47 93.91 247.47 79.33 247.39 100.75 247.39 99.25 247.39 97.00 247.39 79.75 249.04 99.09 249.04 97.59 249.04 95.34 249.04 78.09 2()8 TAMI 1 -- EROSION. YIELD51 COSTS1 AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 . SRG = K 6A1 R = 250.1 K = .481 = 200.1 S = 8.01 LS = 1.4021 T = 5.0 PAGE: 2 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN DU BU BU PROD/ACRE COST/ACRE TO LAND 2/ - 81’s - 4 CONV UP - DOUN .47 1.000 79.24 42.6 29.7 110.9 348.13 248.96 99.18 -H./S - 4 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 248.96 97.68 - 81's - 4 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 248.96 95.43 - NI'S - 4 CONV TERRACE .47 . 20 9.51 42.6 29.7 110.9 348.13 248.96 78.18 8/ S-5 CONV UP - DUNN .47 1.000 79.24 42.6 29.7 110.9 348.13 246.67 101.46 - UI'S - 5 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 246.67 99.96 -V.’S - 5 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 246.67. 97.71 ' NI'S - 5 CONV TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 246.67 80.46 ~81/S - 6 CONV UP - DONN .47 1.000 79.24 42.6 29.7 110.9 348.13 246.59 101.55 - V7’S - 6 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 246.59 100.05 -H./S - 6 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 246.59 97.80 '8 / S'- 7 CONV UP - DUNN .47 1.000 79.24 42.6 29.7 110.9 348.13 248.24 99.89 -I / S - 7 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 248.24 98.39 -N / S - 7 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 248.24 96.14 ‘V / S - 7 CONV TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 248.24 78.89 V / 51- 8 CONV UP - DUNN .47 1.000 79.24 42.6 29.7 110.9 348.13 248.16 99.98 V / S - 8 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 248.16 98.48 '11/ S - 8 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 248.16 96.23 I / S - 8 CONV TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 248.16 78.98 H l S - 9 CONU UP - DUNN .47 1.000 79.24 2.6 29.7 110.9 348.13 247.73 100.40 N / S - 9 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 247.73 98.90 - 81’8 - 9 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 247.73 96.65 'V / s.— 9 CONV TERRACE .47 .120 9.51 42.3 29.7 110.9 348.13 247.73 79.40 - 01's - 10 CONV UP - DOUN .47 1.000 79.24 42.6 29.7 110.9 348.13 247.65 100.49 - 81’s - 10 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 247.65 98.99 - HI'S - 10 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 247.65 96.74 -H / s - 10 CONV TERRACE .47 .120 9.51 42.3 29.7 110.9 348.13 247.35 79.49 H / S - 11 CONV UP - DUNN .47 1.000 79.24 42.6, 29.7 110.9 348.13 249.30 98.83 I / S - 11 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 249.30 97.33 V l S - 11 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 249.30 95.08 V / S - 11 CONV TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 249.30 77.83 I / S - 12 CONV CONTOUR .47 .600 47.54 42.6 29.7 110.9 348.13 249.22 97.42 V / S - 12 CONV CONT/STRIP .47 .300 23.77 42.6 29.7 110.9 348.13 249.22 95.17 N / S - 2 CONV TERRACE .47 .120 9.51 42.6 29.7 110.9 348.13 249.22 77.92 94'8 - 13 CONSER UP - DUNN .12 1.000 20.36 42.6 29.7 110.9 348.13 249.66 98.48 N / S - 13 CONSER CONTOUR .12 .600 12.21 42.6 29.7 110.9 348.13 249.66 96.98 N / S - 13 CONSER CONT/STRIP .12 .300 6.11 42.6 29.7 110.9 348.13 249.66 94.73 N / S - 13 CONSER TERRACE .12 .120 2.44 42.6 29.7 110.9 348.13 249.66 77.48 1/ ROTATIONS - C = CORN FOR GRAIN1 = SOYBEANS1 AND N = NHEAT PRICES: CORN = 32.941 SOYBEANS = $6.901 NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOVN 1 .00 ' CONTOUR 1 1.00 CONTOUR/STRIP 1 2.50 PARALLEL TERRACE 121.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. 2(39 ‘\\\\ ‘\\\\ \\-\\ \\\\ \\\\ ‘\\\\ \\\‘\ \\\“‘ PRICES: CORN = I2.941 SOYBEANS = I6.90. UHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOUN I .00 CONTOUR I 1.00 CONTOUR/STRIP I 2.50 PARALLEL TERRACE I21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 SEC = K 6A. R = 250.. K = .481 L = 200.. S = 8.0. L5 = 1.402. T = 5.0 PAGE: 3 RTATTON 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y VHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ U / S - 14 NOTIL UP - DOVN .08 1.000 12.79 42.6 34.7 115.8 372.59 267.52 105.07 8 / S - 14 NOTIL CONTOUR .08 .600 7.67 42.6 34.7 115.8 372.59 267.52 103.57 H.’S - 14 NOTIL CONT/STRIP .08 .300 3.84 42.6 34.7 115.8 372.59 267.52 101.32 IT’S - 14 NOTIL TERRACE .08 .120 1.53 42.6 34.7 115.8 372.59 267.52 84.06 V liS - 15 NOTIL UP - DOUN .08 1.000 12.79 47.5 34.7 115.8 382.09 271.63 110.47 II'S - 15 NOTIL CONTOUR .08 .600 7.67 47.5 34.7 115.8 382.09 271.63 108.97 0.75 - 15 NOTIL CONT/STRIP .08 .300 3.84 47.5 34.7 115.8 382.09 271.63 106.72 IT'S - 15 NOTIL TERRACE .08 .120 1.53 47.5 34.7 115.8 382.09 271.63 89.47 s - 1 CONV UP - DOUN .39 1.000 35.45 42.3 29.7 .0 370.22 233.53 103.33 S - 1 CONV CONTOUR .39 .600 39.27 . 42.6 29.7 .0 370.22 266.56 101.66 8 ~ 1 CONV CONT/STRIP .39 .300 19.63 42.6 29.7 .0 370.22 266.56 98.66 S - 2 CONV UP - DOUN .39 1.000 65.45 42.6 29.7 .0 370.22 266.39 103.83 S - 2 CONV CONTOUR .39 .600 39.27 42.6 29.7 .0 370.22 266.39 101.83 S - 2 CONV CONT/STRIP .39 .300 19.63 42.6 29.7 .0 370.22 266.39 98.83 S - 2 CONV TERRACE .39 .120 7.85 42.6 29.7 .0 370.22 266.39 82.83 S - 3 CONV CONTOUR .39 .600 39.27 42.6 29.7 .0 370.22 264.96 103.26 3 - g CONV CONT/STRIP .39 .300 19.63 42.6 29.7 .0 370.22 264.96 100.26 5 - 3 CONV TERRACE .39 .120 7.85 42.6 29.7 .0 370.22 264.96 84.26 S - 4 CONV UP - DOUN .39 1.000 65.45 42.6 29.7 .0 370.22 264.79 105.43 S - 4 CONV CONTOUR .39 .600 39.27 42.6 29.7 .0 370.22 264.79 103.43 S - 4 CONV CONT/STRIP .39 .300 19.63 42.6 29.7 .0 370.22 264.79 100.43 S - 4 - CONV TERRACE .39 .120 7.85 42.6 29.7 .0 370.22 264.79 84.43 8 ~ 5 CONV UP - DOVN .39 1.000 65.45 42.6 29.7 .0 370.22 267.08 103.14 S - 5 CONV CONTOUR .39 .600 39.27 42.6 29.7 .0 370.22 267.08 101.14 S - 5 CONV CONT/STRIP .39 .300 19.63 42.6 29.7 .0 370.22 267.08 98.14 S - 5 CONV TERRACE .39 .120 7.85 4256 29.7 .0 370.22 267.08 82.14 S - 6 CONV UP - DOUN .39 1.000 65.45 42.6 29.7 .0 370.22 266.91 103.31 S - 6 CONV CONT/STRIP .39 .300 19.63 42.6 29.7 .0 370.22 266.91 98.31 S - 8 CONSER UP - DOUN .11 1.000 18.84 2.6 29.7 .0 370.22 268.56 101.66 S - 8 CONSER CONTOUR .11 .600 11.31 42.6 29.7 .0 370.22 268.56 99.66 S - 8 CONSER CONT/STRIP .11 .300 5.65 42.6 29.7 .0 370.22 268.56 96.66 S - 8 CONSER TERRACE .11 .120 2.26 42.6 29.7 .0 370.22 268.56 80.66 5 ~ 9 NOTIL UP - DONN .08 1.000 13.63 47.5 34.7 .0 423.73 296.15 127.58 S - 9 NOTIL CONTOUR .08 .600 8.18 47.5 34.7 .0 423.73 296.15 125.58 S - 9 NOTIL CONT/STRIP .08 .300 4.09 47.5 34.7 .0 423.73 296.15 122.58 S - 9 NOTIL TERRACE .08 .120 1.64 47.5 - 34.7 .0 423.73 296.15 106.58 1/ ROTATIONS - C = CORN FOR GRAIN. S = SOYBEANS. AND = UHEAT 211) TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 SRG = K 6A. R = 250.1 K = .481 L = 200.. S = 8.01 L5 = 1.4021 T = 5.0 PAGE: 4 ROTATION 1/ TILLAGE PRACTICE C P EROSION T I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TU LAND 2/ / S -10 NOTIL UP - DUNN .08 1.000 13.63 42.6 34.7 .0 404.72 283.19 121.53 / S -10 NOTIL CONTOUR .08 .600 8.18 42.6 34.7 .0 404.72 283.19 119.53 / S -10 NOTIL CONT/STRIP .08 .300 4.09 42.6 34.7 .0 404.72 283.19 116.53 / S '10 NOTIL TERRACE .08 . 20 1.64 42.6 34.7 .0 404.72 283.19 79.53 - C I NOTIL UP - DUNN .03 1.000 5.05 , .0 .0 115.8 340.45 251.26 89.19 ' C NOTIL CONTOUR .03 .600 3.03 .0 .0 115.8 340.45 251.26 88.19 - C NOTIL CONT/STRIP .03 .300 1.51 .0 .0 115.8 340.45 251.26 86.69 -'C NOTIL TERRACE .03 .120 .61 .0 .0 115.8 340.45 251.26 68.19 1/ ROTATIONS - C = CORN FOR GRAIN1 S = SOYBEANS. AND H = UHEAT PRICES: CORN = $2.94. SOYBEANS = I6.901 UHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOHS: PRACTICE TOTAL ANNUAL COST UP AND OOUN 1 .00 ' CONTOUR 1 1.00 CONTOUR/STRIP 1 2.50 PARALLEL TERRACE 121.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. 0" - A . - u u n n n v o 0 - - I C D O I I I I I I I I I I CCC: cccc cccc (TIC—Jr)“ rant-3n fififih comma) mmmm mwmm mmmm TABLE 1-"'EROSION1 YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA ROTATION 1/ I"). I I I I I I I-JI‘JFJFJ HHHH 5.5.5.» 00040004 N’JNN HHHH comma: comma) wwmm rant-5r“) rumor-1 nruwn comma) mmmm comma) comma) I I I I I I I I II I I 0404““ NNFJN HMO-OH “(AWN \\\\ \\\\ \\\\ 21.1 SRG : K 79! 3 2500! K 3 046! L = 20009 S = 700’ L5 = 10166! T = 300 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y HHEAT SOYBEAN CORN VALUE OF BU BU BU PROD/ACRE CONV UP ‘ DOUN 046 10000 61055 00 2700 .0 186030 CONV -CONTOUR .46 .500 30.77 .0 27.0 .0 186.30 CONV CONT/STRIP .46 .250 15.39 .0 27.0 .0 186.30 CONV TERRACE .46 .100 6.15 .0 27.0 .0 186.30 CONV UP ' 00"" 046 10000 61055 .0 270° 10 186030 CONV CONTOUR .46 .500 30.77 .0 27.0 .0 186.30 CONV CONT/STRIP .46 .250 15.39 .0 27.0 .0 186.30 CONV TERRACE .46 .100 6.15 .0 27.0 .0 186.30 CONSER UP ' DOHN 013 10000 17043 .0 270° 00 186030 CONSER CONTOUR .13 .500 8.72 .0 27.0 .0 186.30 CONSER CONT/STRIP .13 .250 4.36 .0 27.0 .0 186.30 CONSER TERRACE .13 .100 1.74 .0 27.0 .0 186.30 NOTIL CONTOUR .07 .500 4.69 .0 30.0 .0 207.00 NOTIL CONT/STRIP .07 .250 2.35 .0 30.0 .0 207.C0 NOTIL TERRACE .07 .100 .94 .0 30.0 .0 207.00 CONV UP - DUNN .35 1.000 46.26 .0 .0 101.0 296.94 CONV CONTOUR .35 .500 23.13 .0 .0 101.0 296.94 CONV CONT/STRIP .35 .250 11.57 .0 .0 101.0 296.94 CONV TERRACE .35 .100 4.63 .0 .0 101.0 296.94 CONU UP ' DUNN 035 10000 46026 00 .0 101.0 296094 CONV CONTOUR .35 .500 23.13 .0 .0 101.0 296.94 CONV CONT/STRIP .35 .250 11.57 .0 .0 101.0 296.94 CONV TERRACE .35 .100 4.63 .0 .0 101.0 296.94 CONSER UP ' DUUN 008 10000 10032 .0 00 10100 296094 CONSER CONTOUR .08 .500 5.16 .0 .0 101.0 296.94 CONSER CONT/STRIP .08 .250 2.58 .0 .0 101.0 296.94 CUNSER TERRACE .08 .100 1.03 .0 .0 101.0 296.94 CONV UP - DUNN .47 1.000 63.16 37.0 27.0 101.0 313.40 CONV CONTOUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONV CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 CONV TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 CONV UP - DUNN .47 1.000 63.16 37.0 27.0 101.0 313.40 CONV CONTOUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONV CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 CONV TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 CONV UP - DUNN .47 1.000 63.16 37.0 27.0 101.0 313.40 CONV CONTOUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONV CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 CONV TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 1/ ROTATIONS - C = CORN FOR GRAIN1 S = SOYBEANS. AND N = NHEAT PRICES: CORN = I2.94. SOYBEANS = $6.90. NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DOUN I .00 CONTOUR I 1.00 CONTOUR/STRIP I 2.50 PARALLEL TERRACE I21.CO 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. DATE: 5/21/84 PAGE: I AVE ANNUAL AVE ANNUAL PRODUCTION NET RETURN COST/ACRE TO LAND 2/ 132.01 54.29 132.01 53.29 132.01 51.79 132.01 33.29 134.13 52.17 134.13 51.17 134.13 49.67 134.13 31.17 140.48 45.82 140.48 44.82 140.48 43.32 140.48 24.82 152.63 54.37 152.63 53.37 152.63 51.87 152.63 33.37 218.61 78.33 218.61 77.33 218.61 75.87 218.61 57.33 221.75 75.19 221.75 74.19 221.75 2.69 221.75 54.19 221.74 75.20 221.74 74.20 221074 72070 221.74 54.2 236.39 77.01 236.39 75.51 236.39 73.26 236.39 56.01 236.31 77.09 236.31 75.59 236.31 73.34 236.31 56.09 237.96 75.44 237.96 73.94 237.96 71.69 237.96 54.44 TABLE 1 -- EROSION9 YIEéDSI COSTS: AND RETURNS BY SUIL RESOURCE GROUP FOR KENTUCKY‘S JACKSON PURCHASE AREA RUTATIUN 1/ . . . . . . . . c . o o o o o 0 I u 0 o 0 0 o o o I u u u I I a 0 I I I o 0 net: C.:.ZIZ ccct: .28-27.2: acct: CCC: (cc: CCC: CCC—1.: cccc ‘O~O~O‘O OOUDOOCD \J\J\J\J O~O~O~Ch LflLflLflLfl JbeJbe I I I I H \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ mwmm mmmm manna: wanna) mmmm mmmm comma) mwmm mmmmwu‘hmmm IIII p... <3 I I I I ..A H I I I I ... 04 TILLAG CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONV CONSER CUNSER CONSER CONSER 21:2 RC = K 7A9 R = 250.9 N = .469 L = 200.: S = 7.09 Lc = 1.1669 T = 3.0 E PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y NHEAT SOYBEAN CURN VALUE OF BU BU 8U PROD/ACRE UP - DUNN .47 1.000 63.16 37.0 27.0 101.0 313.40 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP ‘ DOUN 047 10000 63016 3700 2700 10100 313040 CONTOUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP ’ DDUN 047 10000 63016 370° 2700 10100 313040 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP - DUNN .47 1.000 63.16 3720 27.0 101.0 313.40 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP ‘ DOUN 047 10000 63016 3700 2700 10100 313140 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.43 UP ' DOUN 047 10000 63016 7.0 2700 10100 313040 CONTOUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP ‘ DDUN 047 10000 63016 3700 2700 10100 313040 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP - DUNN .47 1.000 63.16 37.0 27.0 101.0 313.40 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 5.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP ' DUNN 047 10000 63016 3700 2700 10100 313040 CUNTUUR .47 .500 31.58 37.0 27.0 101.0 313.40 CONT/STRIP .47 .250 15.79 37.0 27.0 101.0 313.40 TERRACE .47 .100 6.32 37.0 27.0 101.0 313.40 UP - DUNN .12 1.000 16.22 37.0 27.0 101.0 313.40 CUNTUUR .12 .500 8.11 37.0 27.0 101.0 313.40 CONT/STRIP .12 .250 4.06 37.0 27.0 101.0 313.40 TERRACE .12 .100 ‘ 1.62 37.0 27.0 101.0 313.40 1/ ROTATIONS - C = CURN FDR GRAIN9 S = SOYBEANS! AND N = NHEAT PRICES: CORN = $2.94; SOYBEANS = $6.90: NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIzEO INSTALLATION COSTS ANO THE ANNUAL COST OF OPERATION AND NAINTENANCE 0F CONSERVATION PRACTICES. NO COST SHARING IS ASSUNEO. COSTS ARE AS FDLLONS: PRACTICE TOTAL ANNUAL COST UP AND DUNN 4 .oo CONTOUR 1 1.08 CONTOUR/STRIP s 2.50 PARALLEL TERRACE $21.00 3/ TERRACINS IS APPLICABLE FOR SLUPES LESS THAN UR ERUAL T0 8 PERCETT. IATE: 05/21/84 PAGE: 2 AVE ANNUAL AVE ANNUAL PRODUCTION NET RETOR4 COST/ACRE TO LAND 27 237.88 75.52 237.88 74.02 237.88 71.77 237.88 54.52 235.59 77.81 235.59 76.31 235.59 74.08 235.59 58.81 235.51 77.89 235.51 76.39 235.51 74.14 235.51 58.89 237.16 78.24 237.18 74.74 237.16 72.49 237.18 55.24 237.08 76.32 237.08 74.82 237.08 72.57 237.08 55.32 238.85 78.75 238.85 75.25 238.85 73.00 236.65 55.7 236.57 76.83 236.57 75.83 236.57 73.08 236.57 55.83 238.22 75.18 238.22 73.68 238.22 71.43 238.22 54.18 238.14 75.28 238.14 73.76 238.14 71.51 238.14 54.26 238.57 74.83 238.57 73.33 238.57 71.03 238.57 53.83 TABLE 1 -- EROSION9 YIELDS» COSTS: AND RETURNS BY SOIL RESOURCE GROUP FOR NENTUCK?’S ROTATION 1/ \\\~\ mmmm mmmm mmmm cct‘: cccc JbJ>J.J> DJOJOJLA \\\\ IIII FJFJRJFJ \\\\ \‘~\\ \\\\ I I I I (nu-2mm mwmm mcnmm mcomm warm“) ‘5 ‘ \ ~O~O~O~O 00000000 O‘DsONCh LnLflLflLfl “~ ‘ \“‘ \\\\ \\\\ I I I I HHHH HMO-‘0‘ ...b‘Jb anncncn 21L} JACKSON PURCHASE AREA SRG = K 7A: R = 250.9 K = .46, L = 200.9 5 = 7.0: L3 = 1.166; T = 3.0 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF DU DU BU PROD/ACRE NOTIL UP - DOUN .08 1.000 10.19 37.0 30.0 104.0 328.16 NOTIL CONTOUR .08 .500 5.10 37.0 30.0 104.0 328.16 NOTIL CONT/STRIP .08 .250 2.55 37.0 30.0 104.0 328.16 NOTIL TERRACE .08 .100 1.02 37.0 30.0 104.0 328.16 NOTIL UP - DOUN .08 1.000 10.19 40.0 30.0 104.0 333.98 NOTIL CONTOUR .08 .500 5.10 40.0 30.0 104.0 333.98 NOTIL CONT/STRIP .08 .250 2.55 40.0 30.0 104.0 333.98 NOTIL TERRACE .08 .100 1.02 40.0 30.0 104.0 333.98 CONU UP - DOUN .39 1.000 52.16 37.0 27.0 .0 329.86 CONV CONTOUR .39 .500 26.08 37.0 27.0 .0 329.86 CONV CONT/STRIP .39 .250 13.04 37.0 ~27.0 .0 329.86 CONV TERRACE .39 .100 .22 37.0 27.0 .0 329.86 CONV UP ' BORN .39 10000 2016 37.0 2700 00 329986 CONV CONTOUR .39 .500 26.08 37.0 27.0 .0 329.86 CONU CONT/STRIP .39 .250 13.04 37.0 27.0 .' 329.86 CONV TERRACE .39 .100 5.22 37.0 27.0 .0 329.86 CONU UP - DONN .39 1.000 52.16 37.0 27.0 .0 329.86 CONU CONTOUR .39 .500 26.08 37.0 27.0 .0 329.86 CONU CONT/STRIP .39 .250 13.04 37.0 27.0 .0 329.86 CONU TERRACE .39 .100 5.22 37.0 27.0 .0 329.86 CONV UP - DOUN .39 1.000 52.16 37.0 27.0 .0 _ 329.86 CONU CONTOUR .39 .500 26.08 37.0 27.0 .0 329.86 CONU CONT/STRIP .39 .250 13.04 37.0 27.0 .0 329.86 CONV TERRACE .39 .100 5.22 37.0 27.0 .0 329.86 CONV UP - DOUN .39 1.000 52.16 37.0 27.0 .0 329.86 CONV CONTOUR .39 .500 26.08 37.0 27.0 .0 329.86 CONV CONT/STRIP .39 .250 13.04 37.0 27.0 .0 329.86 CONV TERRACE .39 .100 5.22 37.0 27.0 .0 329.86 CONV UP - DOUN .39 1.000 52.16 37.0 27.0 .0 329.86 CONV CONTOUR .39 .500 26.08 37.0 27.0 .0 329.86 CONU CONT/STRIP .39 .25 13.04 37.0 27.0 .0 329.86 CONU TERRACE .39 .100 5.22 37.0 27.0 .0 329.86 CONSER UP - DOHN .11 1.000 15.02 37.0 27.0 .0 329.86 CONSER CONTOUR .11 .500 7.51 .37.0 27.0 .0 329.86 CONSER CONT/STRIP .11 .250 3.75 37.0 27.0 .0 329.86 CONSER TERRACE .11 .100 1.50 37.0 27.0 .0 329.86 NOTIL UP - DOUN .08 1.000 10.86 40.0 30.0 .0 362.2 NOTIL CONTOUR .08 .500 5.43 40.0 30.0 .0 362.20 NOTIL CONT/STRIP .08 .250 2.72 40.0 30.0 .0 362.20 NOTIL TERRACE .08 .100 1.09 40.0 30.0 .0 362.20 1/ ROTATIONS - C = CORN FOR BRAIN: S = SOYBEANS: AND H = UHEAT PRICES: CORN = $2.94: SOYBEANS = $6.90: UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLOUS: PRACTICE TOTAL ANNUAL COST UP AND DOUN I .00 CONTOUR I 1.0 CONTOUR/STRIP 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. DA PA AUE AN1UAL PRODUCTICN COST/ACRE 251.34 251.34 251.34 251.34 253.77 253.77 253.77 253.77 254.16 254.16 254.16 254.16 254.00 254.00 254.00 254.00 C 2520J6 252.56 252.56 252.40 252.40 252.40 252.40 254.69 254.69 254.69 254.69 254.53 254.53 254.53 254.53 256.17 256.17 256.17 256.17 272.90 272.90 272.90 272.90 TE GE 05/21/84 3 3 AVE ANNUAL NET RETURN TO LAND 25 TABLE 1 -- EROSION: YIELDS: COSTS. AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCRY’ S JACKSONF SR LS = 1.166: T = 3.0 \\\\ (7(3C5f3 01030000 ROTATION 1/ '10 -10 ‘10 -19 O = K 7A R: 250.9 K = TILLAGE PRACTICE C P NOTIL NOTIL NOTIL NOTIL NOTIL NOTIL NOTIL NOTIL UP - DOUN .08 1.000 CONTOUR .08 .500 CONT/STRIP .08 .250 TERRACE .08 .100 UP - DOUN .03 1.000 CONTOUR .03 .500 CONT/STRIP .03 .250 TERRACE .03 .100 ZIJR 046! L = 20 II S = o EROSION T/A/Y 10.86 5.43 2.72 1.09 4.02 2.01 1.01 .40 1/ ROTATIONS - C = CORN FOR GRAIN9 PRICES: CORN = $2.94: SOYBEANS = $6.90, UHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLOUS: PRACTICE UP AND DOUN CONTOUR CONTOUR/STRIP PARALLEL TERRACE 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. 9 Y I E L D S AUE ANNUAL UHEAT SOYBEAN CORN UALUE OF BU BU BU PROD/ACRE 37.0 30.0 .0 350.56 37.0 30.0 .0 350.56 37.0 30.0 .0 350.56 37.0 30.0 .0 350.56 .0 .0 104.0 305.76 .0 .0 104.0 305.76 .0 .0 104.0 305.76 .0 .0 104.0 305.76 S = SOYBEANS: AND N = HHEAT TOTAL ANNUAL COST I .00 I 1. 00 I 2.50 $21.00 UF'CHASE AREA r. L’A C AUE ANNUAL PF‘OI‘UC TION COST/ACRE 263.29 263.29 263.29 263.29 238.80 238.80 238.80 238.80 AT AC E1 05/21/84 E‘ 4 AVE ANNUAL NET RETURN TO LAND 2/ 37027 85027 82.2 45027 66.96 65.96 64.46 45.96 I I I I HHHH b-bbb uuuu FJNNN HHHH . - 4 o u o I o I I 03mm” mmwm mmmm comma: mmmm I I I I I I I I I I I I I I I I I I I I I I I I IJIJIJIJ mmmm mmmm mmmm nnnn nnnn nnnn mmwm mmmm mmwm...mmmm acct: CCC: CCC: nnnr‘: nor-3n \\\\ \\\\ \\\\ OJOJOJCH thJhJPJ *‘Ffifi‘h‘ 04040404 2155 TAleI -- EROSION9 YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA SRG = K 7C7 R = 250.9 K = .469 L = 200.9 5 = 7.09 L5 = 1.166! T = 3.0 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL TIA/Y UHEAT SOYBEAN CORN UALUE 0F BU BU BU PROD/ACRE CONV UP - DUNN .46 1.000 61.55 .0 24.3 .0 167.67 CONV CUNTUUR .46 .500 30.77 .0 24.3 .0 167.67 CONV CONT/STRIP .46 .250 15.39 .0 24.3 .0 167.67 CONV TERRACE .46 .100 6.15 .0 24.3 .0 167.67 CONV UP - DUNN .46 1.000 61.55 .0 24.3 .0 167.67 CONV CUNTUUR .46 .500 30.77 .0 24.3 .0 167.67 conv CONT/STRIP .48 .250 15.39 .0 24.3 .0 167.67 0080 TERRACE .46 .100 8.15 .0 24.3 .0 187.87 CUNSER UP - DUNN .13 1.000 17.43 .0 24.3 .0 167.67 CUNSER CUNTUUR .13 .500 8.72 .0 24.3 .0 167.67 CUNSER CONT/STRIP .13 .250 4.36 .0 24.3 .0 167.67 CUNSER TERRACE .13 .100 1.74 .0 24.3 .0 167.67 NUTIL UP - DUNN .07 1.000 9.39 .0 27.0 .0 136.30 NUTIL CONTOUR .07 .500 4.69 .0 27.0 .0 186.30 NUTIL CONT/STRIP .07 .250 2.35 .0 27.0 .0 186.30 NUTIL TERRACE .07 .100 .94 .0 27.0 .0 186.30 CUNU UP - DUNN .35 1.000 46.26 .0 .0 90.9 267.25 CUNU CONTOUR .35 .500 23.13 .0 .0 90.9 267.25 CONV CONT/STRIP .35 .25 11.57 .0 .0 90.9 267.25 CONV TERRACE .35 .100 4.63 .0 .0 90.9 267.25 CONV UP - DUNN .35 1.000 46.26 .0 .0 90.9 267.25 CUNU CUNTUUR .35 .500 23.13 .0 .0 90.9 267.25 CUNU CONT/STRIP .35 .250 11.57 .0 .0 90.9 267.25 CUNU TERRACE .35 .100 4.63 .0 .0 90.9 267.25 CONSER UP ' DUUN 008 1.000 I°I32 .0 IO 9009 267025 CUNSER CUNTUUR .08 .500 5.16 .0 .0 90.9 267.25 CUNSER CONT/STRIP .08 .250 2.58 .0 .0 90.9 267.25 CUNSER TERRACE .08 .100 1.03 .0 .0 90.9 267.25 CUNU UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 CUNU CUNTUUR .47 .500 31.58 33.3 24.3 90.9 282.06 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 CUNU TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 CUNU UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 CUNU CUNTUUR .47 .500 31.58 33.3 24.3 90.9 282.06 CONN CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 CONV UP ‘ DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 CONV CUNTUUR .47 .500 31.58 33.3 24.3 90.9 282.06 CUNU CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 PRICES: 1/ ROTATIONS - C = CORN FOR GRAIN1 S = SOYBEANS. AND N = NHEAT CORN = $2.94. SOYBEANS = $6.90. NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OE OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FULLUNS: PRACTICE TOTAL ANNUAL COST UP AND DUNN I .00 CONTOUR I 1.00 CONTOUR/STRIP 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. DATE: 05/21/84 ° 9482: 1 AUE ANNUAL AUE ANNUAL PRODUCTION ~51 RETURN COST/ACRE 10 LAND 2' 135.48 32.19 135.48 31.19 135.48 29.89 135.48 11.19 137.33 30.34 137.33 29.34 137.33 27.84 137.33 9.34 143.82 23.85 143.82 22.85 143.82 21.35 143.82 2.85 155.40 30.90 155.40 29.90 155.40 28.40 155.40 9.90 218.85 50.40 218.85 49.40 218.85 47.90 216085 29040 219.10 48.15 219.10 47.15 219.10 45.85 219.10 . 27.15 219.09 48.18 219.09 47.18 219.09 45.88 219.09 27.18 238.78 45.28 238.78 43.78 238.78 41.53 238.78 24.28 238.50 5.58 236.50 44.08 236.50 41.81 238.50 24.58 237.90 44.18 237.90 42.88 237.90 40.41 237.90 23.18 216 ABLE 1 -- EROSION9 YIELDS. COSTS, AND RETURNS BY SUIL RESOURCE GROUP FOR KENTUCRY'S JACKSON PURCHASE AREA DATE: 05/21/84 SRG = K 7C. R = 250.1 K = .461 L = 200.. S = 7.01 LS = 1.166. T = 3.0 PAGE: 2 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CURN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TU LAND 2/ NI’S - 4 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 237.62 44.44 NI'S - 4 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 282.06 237.62 42.94 NT’S - 4 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 237.62 40.69 919- 4 cow TERRACE f .47 .100 8.32 33.3 24.3 90.9 282.08 237.82 23.44 N/ S - 5 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 236.13 45.93 N / S ‘- 5 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 282.06 236.13 44.43 NI 5 - 5 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 236.13 42.18 N / S - 5 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 236.13 24.93 NI’S ' 6 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 235.85 46.21 N7/S - 6 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 235.85 42.46 NT’S - 7 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 237.26 44.80 N / S - 7 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 2 2.06 237.26 43.30 N / S - 7 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 237.26 41.05 N / S - 7 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 237.26 23.80 NT'S - 8 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 236.98 45.08 I / S‘- 8 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 282.06 236.98 43.58 N.’S - 8 CONV CONT/STRIP .47 .25 15.79 33.3 24.3 90.9 282.06 236.98 41.33 N / S - 8 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 236.98 24.08 NI’S - 9 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 237.06 45.00 N / S - 9 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 282.06 237.06 43.50 NI'S - 9 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 237.06 41.25 NI'S - 9 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 237.06 24.00 NI'S - 10 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 236.78 45.28 N / S1- 10 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 282.06 236.78 43.78 N / S‘- 10 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 236.78 41.53 N / S'— 10 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 236.78 24.28 N1/S - 11 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 238.19 43.87 NI'S - 11 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 282.06 238.19 42.37 NI'S - 11 CONV CONT/STRIP .47 .25 15.79 33.3 24.3 90.9 282.06 238.19 40.12 NI’S - 11 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 238.19 22.87 NI'S - 12 CONV UP - DUNN .47 1.000 63.16 33.3 24.3 90.9 282.06 237.91 44.15 NI'S - 12 CONV CONTOUR .47 .500 31.58 33.3 24.3 90.9 2 2.06 237.91 42.65 NI’S - 12 CONV CONT/STRIP .47 .250 15.79 33.3 24.3 90.9 282.06 237.91 40.40 NI'S - 12 CONV TERRACE .47 .100 6.32 33.3 24.3 90.9 282.06 237.91 23.15 N/ S - 13 CONSER UP - DUNN .12 1.000 16.22 33.3 24.3 90.9 282.06 238.35 43.71 NI’S - 13 CONSER CUNTUUR .12 .500 8.11 33.3 24.3 90.9 282.06 238.35 42.21 NI’S - 13 CONSER CONT/STRIP .12 .250 4 4.06 33.3 24.3 90.9 282.06 238.35 39.96 NI'S - 13 CONSER TERRACE .12 .100 1.62 33.3 24.3 90.9 2 2.06 238.35 22.71 1/ ROTATIONS - C = CORN FUR GRAIN9 S = SUYBEANSI AND N = NHEAT PRICES: CORN = $2.94. SOYBEANS = $6.90. NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING 15 ASSUMED. COSTS ARE As FOLLOUS: PRACTICE TUTAL ANNUAL COST UP AND DUNN I .00 ° CONTOUR I 1.00 CONTOUR/STRIP s 2.50 PARALLEL TERRACE 921.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EUUAL TO 8 PERCENT. ..|,yf 7'11” 0 0 a I III! Ian-III!- l O O 0 Air ARIN! E- v 2137 \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\‘\\ \\\\\ TABLE 1 -- EROSION9 YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCNY’S JACKSON PURCHASE AREA DATE: 05/21/94 R8 = K 7C9 R = 250.9 K = .469 L = 200.9 5 = 7.09 L3 = 1.1669 T = 3.0 PAGE: 3 TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y UHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ UI'S - NOTIL UP - DOUN .08 1.000 10.19 33.3 27.0 93.6 295.34 249.99 45.36 H / S - NOTIL CONTOUR .08 .500 5.10 33.3 27.0 93.6 295.34 249.99 43.86 N / S - NOTIL CONT/STRIP .08 .250 2.55 33.3 27.0 93.6 295.34 249.99 41.61 I lgS - NOTIL TERRACE .08 .100 1.02 33.3 27.0 93.6 295.34 249.99 24.36 N / S - NOTIL UP - DONN .08 1.000 10.19 36.0 27.0 93.6 300.58 251.73 48.85 I l S - NOTIL CONTOUR .08 .500 5.10 36.0 27.0 93.6 300.58 251.73 47.35 N / S - NOTIL CONT/STRIP .08 .250 2.55 36.0 27.0 93.6 300.58 251.73 45.10 I / S - NOTIL TERRACE .08 .100 1.02 -36.0 27.0 93.6 300.58 251.73 27.85 S - 1 CONV CONTOUR .39 .500 26.08 33.3 24.3 .0 296.87 256.70 38.17 S - 1 CONV CONT/STRIP .39 .250 13.04 33.3 24.3 .0 296.87 256.70 35.17 S - 1 CONV TERRACE .39 .100 5.22 33.3 24.3 .0 296.87 256.70 19.17 S - 2 CONV UP - DONN .39 1.000 52.16 33.3 24.3 .0 296.87 256.14 40.73 S - 2 CONV CONTOUR .39 .500 26.08 33.3 24.3 .0 296.87 256.14 38.73 S - 2 CONV CONT/STRIP .39 .250 13.04 33.3 24.3 .0 296.87 256.14 35.73 S - 2 CONV TERRACE .39 .100 5.22 33.3 24.3 .0 296.87 56.14 19.73 S - 3 CONV UP - DUNN .39 1.000 52.16 33.3 24.3 .0 296.87 255.41 41.46 S - 3 CONV CONTOUR .39 .500 26.08 33.3 24.3 .0 296.87 255.41 39.46 S - 3 CONV CONT/STRIP .39 .250 13.04 33.3 24.3 .0 296.87 255.41 36.46 S --4 CONV UP - DOVN .39 1.000 52.16 33.3 24.3 .0 296.87 254.85 42.02 S - 4 CONV CONTOUR .39 .500 26.08 33.3 24.3 .0 296.87 254.85 40.02 S - 4 CONV CONT/STRIP .39 .250 13.04 33.3 24.3 .0 296.87 254.85 37.02 5 - 4 CONV TERRACE .39 .100 5.22 33.3 24.3 .0 296.87 254.85 21.02 S - 5 CONV UP - DONN .39 1.000 52.16 33.3 24.3 .0 296.87 257.27 39.60 S - 5 CONV CONTOUR .39 .500 26.08 33.3 24.3 .0 296.87 257.27 37.60 a - 5 CONV CONT/STRIP .39 .250 13.04 33.3 24.3 .0 296.87 257.27 34.60 5 - 5 CONV TERRACE .39 .100 22 33.3 24.3 .0 296.87 257.27 18.60 S - 6 CONV CONT/STRIP .39 .250 13.04 33.3 24.3 .0 296.87 256.71 35.16 S - 6 CONV TERRACE .39 .100 5.22 33.3 24.3 .0 296.87 256.71 19.16 S - 8 CONSER UP - DUNN .11 1.000 15.02 33.3 24.3 .0 296.87 258.45 38.42 S - 8 CONSER CONTOUR .11 .500 7.51 33.3 24.3 .0 296.87 258.45 36.42 S - 8 CONSER CONT/STRIP .11 .250 3.75 33.3 24.3 .0 296.87 258.45 33.42 5 ' 8 CONSER TERRACE .11 .100 1.50 33.3 24.3 .0 296.87 258.45 17.42 S - 9 NOTIL CONTOUR .08 .500 5.43 36.0 27.0 .0 325.98 273.22 50.76 S - 9 NOTIL CONT/STRIP .08 .250 2.72 36.0 27.0 .0 325.98 273.22 47.76 S - 9 NOTIL TERRACE .08 .100 1.09 36.0 27.0 .0 325.98 273.22 31.76 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANS9 AND N = HHEAT PRICES: CORN = 42.949 SOYBEANS = 56.909 NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING 15 ASSUHED. COSTS ARE As TOLLous: PRACTICE TOTAL ANNUAL COST UP AND DUNN I .00 ' CONTOUR I 1.00 CONTOUR/STRIP I 2.50 PARALLEL TERRACE 921.00 3/ TERRACING IS APPLICABLE FUR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. 2153 TABLE 1 - EROSION9 YIELDS9 COSTS. AND RETURNS BY SOIL RESUURCE GROUP FOR KENTUCKY’S JACRSON PURCHASE AREA DATE: 5721/84 SRG = K 7C1 R = 250.9 N = .469 L = 200.9 S = 7.09 LS = 1.166. T = 3.0 PAGE: ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 27 5'40 NOTIL CONTOUR .08 .500 5.43 33.3 27.0 .0 315.50 264.54 48.96 5'10 NUTIL TERRACE .08 .100 1.09 33.3 27.0 .0 315.50 264.54 8.96 c ' NOTIL UP - 001m .03 1.000 4.02 .o .0 93.8 275.18 234.78 40.40 C NOTIL CONTOUR .03 .500 2.01 .0 .0 93.6 275.18 234.78 39.40 C NOTIL CONT/STRIP .03 .250 1.01 .0 .0 93.6 275.18 234.78 37.90 C NOTIL TERRACE .03 .100 .40 .0 .0 93.6 275.18 234.78 19.40 1/ ROTATIONS - C = CORN FOR GRAIN9 = SOYBEANS. AND N = UHEAT PRICES: CORN = I2.949 SOYBEANS = I6.909 NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DUNN I .00 CONTOUR I 1.00 9 CONTOUR/STRIP I 2.50 PARALLEL TERRACE I21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. 2169 TABLE 1 -' EROSION. YIELDS9 COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR NENTUCKY‘S JACKSON PURCHASE AREA DATE: 05/20/84 SRG = K 8C. R = 250.9 K = .49. L = 250.9 S = 4.09 LS = .5779 T = 3.0 PAGE: 1 R TATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL - T/A/Y UHEAT SOYBEAN CURN VALUE OF PRODUCTION NET RETURN _ BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ s -‘s - 1 CONV UP - 00.04 .46 1.000 32.44 .0 21.8 .0 150.42 138.11 14.31 S - S - 1 CONV CONTOUR .46 .500 16.22 .0 21.8 .0 150.42 136.11 13.31 S - S - 1 CONV CONT/STRIP .46 .250 8.11 .0 21.8 .0 150.42 136.11 11.81 S - S - 1 CONV TERRACE .46 .100 3.24 .0 21.8 .0 150.42 136.11 -6.69 S - S - 2 CONV UP - DUNN .46 1.000 32.44 .0 21.8 .0 150.42 137.84 12.58 S --S - 2 CONV CONTOUR .46 .500 16.22 .0 21.8 .0 150.42 137.84 11.58 S - S - 2 CONV CONT/STRIP .46 .250 8.11 .0 21.8 .0 150.42 137.84 10.08 S 7 S ' 2 CONV TERRACE .46 .100 3.24 .0 21.8 .0 150.42 137.84 -8.42 S - S - 3 CUNSER UP - DUNN .13 1.000 9.19 .0 21.8 .0 150.42 144.40 6.02 S - S - 3 CONSER CONTOUR .13 .500 4.59 .0 21.8 .0 150.42 144.40 5. 2 S - S - 3 CONSER CONT/STRIP .13 .250 2.30 .0 21.8 .0 150.42 144.40 3.52 E - S - 3 CONSER TERRACE .13 .100 .92 .0 21.8 .0 150.42 144.40 -14.98 5 ‘ S ‘ 4 NOTIL UP. "' DUNN I07 39000 4I9S I0 2108 .0 150042 153034 ’2I92 S - S - 4 NUTIL CONTOUR .07 .500 2.47 .0 21.8 .0 150.42 153.34 -3.92 S - S - 4 NUTIL CONT/STRIP .07 .25 1.24 .0 21.8 .0 150.42 153.34 -5.42 s - s - 4 NOTIL TERRACE .07 .100 .49 .0 21.8 .0 150.42 153.34 -23.92 C - C - 1 CCTV UP - DUNN .33 1.000 24.39 .0 .0 82.8 243.43 214.24 29.19 C - C - 1 CONV CONTOUR . 5 .500 12.19 .0 .0 82.8 243.43 214.24 28.19 C - C - 1 CONV CONT/STRIP .35 .250 6.10 .0 .0 82.8 243.43 214.24 26.69 L - C - 1 CONV TERRACE .35 .100 ‘ 2.44 .0 .0 2.8 243.43 214.24 8.19 C - C - 2 CCNV UP - DUNN .35 1.000 24.39 .0 .0 2.8 243.43 216.06 27.37 C - C - 2 CONV CONTOUR . 5 .500 12.19 .0 .0 82.8 243.43 216.06 26.37 L - C - 2 CONV TERRACE .35 .100 2.44 .0 .0 2.8 243.43 216.06 6.37 C - C - 3 CONSER UP - DUNN .08 1.000 5.44 .0 .0 82.8 243.43 216.04 27.39 C - C - 3 CONSER CONTOUR .08 .500 2.72 .0 .0 2.8 243.43 216.04 26.39 C - C - 3 CONSER CONT/STRIP .08 .250 1.36 .0 .0 82.8 243.43 216.04 24.89 C - C - 3 CONSER TERRACE .08 .100 .54 .0 .0 82.8 243.43 216.04 6.39 N / S - 1 CONV UP - DUNN .47 1.000 33.29 27.3 21.8 82.8 249.89 233.31 16.58 N / S - 1 CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 233.31 15.08 N / S - 1 CONV CONT/STRIP .47 .250 3.32 27.3 21.8 82.8 249.89 233.31 12.83 N / S - 2 CONV UP - DUNN .47 1.000 33.29 27.3 21.8 82.8 249.89 232.93 16.96 N / S - 2 CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 232.93 15.46 N / S - 2 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.89 232.93 13.21 N / S - 2 CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.89 232.93 -4.04 N / S - 3 CONV UP - DUNN .47 1.000 33.29 27.3 21.8 82.8 249.89 234.22 15.67 N / S - 3 CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 234.22 14.17 N / S - 3 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.89 234.22 11.92 I / S - 3 CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.89 234.22 -5.33 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANS9AND N = NHEAT PRICES: CORN = I2.949 SOYBEANS = I6.909 NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DUNN I .00 CONTOUR I 1.00 CONTOUR/STRIP I 2.50 PARALLEL TERRACE I21.00 2220 1/ ROTATIONS - C = CORN FOR GRAIN9 S = SOYBEANSyAND N = HHEAT PRICES: CURN = I2.949 SOYBEANS = I6.90: HHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLOHS: PRACTICE TUTAL ANNUAL CUST UP AND DUNN I .00 CUNTUUR ‘ I 1.00 CONTOUR/STRIP I 2.50 PARALLEL TERRACE I21.00 TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/20/84 sac = x BC. R = 250.. K = .49. L = 250.. s = 4.0. L5 = .577. T = 3.0 PAGE: 2 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y HHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN _ BU BU BU PROD/ACRE COST/ACRE TU LAND 2/ U / S - 4 CONV UP - DUNN .47 1.000 33.29 27.3 21.8 2.8 249.39 233.84 16.05 K / S - 4 CONV CONTOUR .47 .500 16.65 27.3 21.8 2.8 249.89 233.84 14.55 H / S - 4 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 32.8 249.89 233.84 12.30 H / S ' 4 CONV TERRACE .47 .100 3.33 27.3 21. 2.8 249.89 233.84 -4.95 U / S - 5 CONV UP - DUNN .47 1.000 33.29 27.3 21.8 82.8 249.89 232.74 17.15 H / S - 5 CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 232.74 15.65 H / S - 5 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.89 232.74 13.40 H / S - 5 CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.39 232.74 -3.85 U / S - 6 CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 232.36 16.03 H / S - 6 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.89 232.36 13.78 H / S - 6 CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.39 232.36 -3.47 U / S - 7 CONV UP — DUNN .47 1.000 33.29 27.3 21.8 82.8 249.89 233.65 16.24 R / S - 7 CONV CONTOUR .47 .500 16.65 27.3 21.8 2.8 249.89 233.65 14.74 N / S - 7 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.89 233.65 12.49 H / S - 7 CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.89 233.65 -4.76 H / S - 8 CONV UP - DOUN .47 1.000 33.29 27.3 21.8 2.8 249.89 233.27 16.62 N / S - 8 CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.39 1 233.27 15.12 N f S - 8 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 2.8 249.89 233.27 12.87 L / S - 8 CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.89 233.27 -4.38 H I S - 9 CONV UP - DUNN .47 1.000 33.29 27.3 21.8 2.8 249.89 233.60 16.29 R I S - 9 CONV CONTOUR .47 .500 16.65 27.3 21.8 2.8 249.89 233.60 14.79 N / S - 9 CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.89 233.60 2.54 N / S - 9 CONV TERRACE .47 .100 3.33 27.3 21.8 2.8 249.89 233.60 -4.71 H / 8 - CONV CONT/STRIP .47 .250 8.32 27.3 21.8 2.8 249.89 233.23 12.91 N / S - CONV TERRACE .47 .100 3.33 27.3 21.8 2.8 249.89 233.23 -4.34 U / S - CONV UP - DOUN .47 1.000 33.29 27.3 21.8 82.8 249.89 234.51 15.38 N / S - CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 234.51 13.88 H / S - CONV CONT/STRIP .47 .250 8.32 27.3 21.8 82.8 249.39 234.51 11.63 H / S - CONV TERRACE .47 .100 3.33 27.3 21.8 82.8 249.89 234.51 -5.62 U / S - CONV UP - DUNN .47 1.000 33.29 27.3 21.8 82.8 249.89 234.14 15.75 H / S - CONV CONTOUR .47 .500 16.65 27.3 21.8 82.8 249.89 234.14 14.25 H / S - CONV TERRACE .47 .100 3.33 27.3 21.8 2.8 249.89 234.14 -5.25 U l S - CONSER UP - DUNN .12 1.000 8.55 27.3 21.8 82.8 249.89 234.59 15.30 H./ S - CONSER CONTOUR .12 .500 4.28 27.3 21.8 82.8 249.89 234.59 13.80 H / S - CONSER CONT/STRIP .12 .250 2.14 27.3 21.8 82.8 249.89 234.59 11.55 H / S - CONSER TERRACE .12 .100 .86 27.3 21.8 82.8 249.89 234.59 -5.70 2111 TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCRY’S JACKSON PURCHASE AREA DATE: 05/20/84 SRG = N 8C. R = 250.. N = .49. L = 250.. S = 4.0. L9 = .577. T = 3.0 PAGE: 3 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN . BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ N / S NOTIL UP - DUNN .08 1.000 5.37 27.3 21.8 82.8 249.89 243.23 6.66 U / S NOTIL CONTOUR .08 .500 2.69 27.3 21.8 82.8 249.89 243.23 5.16 N./ S NOTIL CONT/STRIP .08 .250 1.34 27.3 21.8 2.8 249.39 243.23 2.91 N / S NOTIL TERRACE .08 .100 .54 27.3 21.8 2.8 249.89 243.23 ~14.34 N / S NOTIL UP - DUNN .08 1.000 5.37 27.3 21.8 82.8 249.39 242.15 7.74 U / S NOTIL CONTOUR .08 .500 2.69 27.3 21.8 82.8 249.89 242.15 6.24 N / S NOTIL CONT/STRIP .08 .250 1.34 27.3 21.8 82.8 249.89 242.15 3.99 N / S NOTIL TERRACE .08 .100 .54 27.3 21.8 82.8 249.89 242.15 -13.26 S - 1 CONV UP - DUNN .39 1.000 27.50 27.3 21.8 .0 256.34 252.37 3.97 S - 1 CONV CONTOUR .39 .500 13.75 27.3 21.8 .0 256.34 252.37 1.97 S - 1 CONV CONT/STRIP .39 .250 6.87 27.3 21.8 .0 256.34 252.37 -1.03 S - 1 CONV TERRACE .39 .100 2.75 27.3 21.8 .0 256.34 252.37 -17.03 5 ~ 2 CONV CONTOUR .39 .500 13.75 27.3 21.8 .0 256.34 251.62 2.72 S - 2 ONV CONT/STRIP .39 .250 6.87 27.3 21.8 .0 256.34 251.62 -.2- S - 2 CONV TERRACE .39 .100 2.75 27.3 21.8 .0 256.34 251.62 -16.28 S - Z CONV CONTOUR .39 .500 13.75 2 .3 21.8 .0 256.34 251.23 3.11 S - 3 CONV CONT/STRIP .39 .250 6.87 27.3 21.8 .0 256.34 251.23 .11 S ‘ 3 CONV TERRACE .39 .100 2.75 27.3 21.8 .0 256.34 251.23 -15.89 S - 4 CONV CONTOUR .39 .500 13.75 27.3 21.8 .0 256.34 250.48 3.86 § - 4 CONV CONT/STRIP .39 .250 6.87 27.3 21.8 .0 256.34 250.48 .86 a - 4 CONV TERRACE .39 .100 2. 5 27.3 21.8 .0 256.34 250.48 -15.14 S - 5 CONV UP - DUNN .39 1.000 27.50 27.3 21.8 .0 256.34 252.96 3.38 S - 5 CONV CUNTUUR .39 .500 13.75 27.3 21.8 .0 256.34 252.96 1.38 S - 5 CONV CONT/STRIP .39 .250 6.87 27.3 21.8 .0 256.34 252.96 -1.62 a - 5 CONV TERRACE .39 .100 2.75 27.3 21.8 .0 256.34 252.96 -17.62 S - 6 CONV UP - DUNN .39 1.000 27.50 27.3 21.8 .0 256.34 252.21 4.13 S - 6 CONV CONTOUR .39 .500 13.75 27.3 21.8 .0 256.34 252.21 2.13 S - 6 CONV CONT/STRIP .39 .250 6.87 27.3 21.8 .0 256.34 252.21 -.87 S - 6 CONV TERRACE .39 .100 2.75 27.3 21.8 .0 256.34 252.21 -16.87 S - 8 CONSER UP - DUNN .11 1.000 7.92 27.3 21.8 .0 256.34 253.99 2.35 S - 8 CONSER CONTOUR .11 .500 3.96 27.3 21.8 .0 256.34 253.99 .35 S - 8 CONSER CONT/STRIP .11 .250 1.98 27.3 21.8 .0 256.34 253.99 -2.65 S - 8 CONSER TERRACE .11 .100 .79 27.3 21.8 .0 256.34 253.99 -18.65 S - 9 NUTIL UP - DUNN .08 1.000 5.73 27.3 21.8 .0 256.34 260.47 -4.13 S - 9 NOTIL CONTOUR .08 .500 2.86 27.3 21.8 .0 256.34 260.47 -6.13 S - 9 NOTIL CONT/STRIP .08 .250 1.43 27.3 21.8 .0 256.34 260.47 -9.13 S - 9 NOTIL TERRACE .08 .100 .57 27.3 21.8 .0 256.34 260.47 -25.13 1/ ROTATIONS - C = CORN FOR GRAIN. S = SOYBEANS.AND N = NHEAT PRICES: CURN = I2.94. SOYBEANS = I6.90. NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST up AND noun 1 .oo ' CONTOUR s 1.oo CONTOUR/STRIP 1 2.50 PARALLEL TERRACE 121.00 2222 TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/20/34 SRG = K 8C. R = 250.. K = .49. L = 250.. S = 4.0. LS = .577. T = 3.0 PAGE: 4 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN . BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S -10 NOTIL CONTOUR .08 .500 2.36 27.3 21.8 .0 256.34 257.23 ~2.89 S -10 NOTIL CONT/STRIP .08 .250 1.43 27.3 21.8 .0 256.34 257.23 -5.89 5 ~10 NOTIL TERRACE .08 .100 .57 27.3 21.8 .0 256.34 257.23 -42.89 C NOTIL UP - DUNN .03 1.000 2. 2 .0 .0 82.8 243.43 228.54 14.89 C NOTIL CONTOUR .03 .500 1.06 .0 .0 82.8 243.43 228.54 13.89 C NOTIL CONT/STRIP .03 .250 .53 .0 .0 2.8 243.43 228.54 12.39 C HOTIL TERRACE .03 .100 .21 .0 .0 82.8 243.43 228.54 -6.11 1/ ROTATIONS - C = CORN FOR GRAIN. S = cOYBEANS.AND = NHEAT PRICES: CORN = I2.94. SOYBEANS = I6.90. NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLO 3: PRACTICE TOTAL ANNUAL ccsr - UP AND noun 1 .00 ° CONTOUR s 1.00 CONTOUR/STRIP s 2.5 PARALLEL TERRACE I21.00 2123 TABLE 1 -- EROSION. YIELDS. COSTS. AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/20/84 SRG = K 8E9 R = 2500' K : 049, L = 25009 5 = 400! LS : 05779 T = 300 PAGE: 3 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN . DU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S -:S - 1 CONV UP - DUNN .46 1.000 32.44 .0 18.0 .0 124.20 144.44 ~20.24 S - S - 1 CONV CONTOUR .46 .500 16.22 .0 18.0 .0 124.20 144.44 ~21.24 S ' S ‘ I CONV CONT/STRIP 046 0250 8033 .0 1800 00 124020 144044 ‘22074 S - S - 1 CONV TERRACE .46 .100 3.24 .0 18.0 .0 124.20 144.44 ~41.24 S ' S ' 2 CONU UP ’ ”DU" 046 10000 32.44 .0 3800 00 324020 145064 '23044 S - S - 2 CONV CONTOUR .46 .500 16.22 .0 18.0 .0 124.20 145.64 -22.44 S ' S ' 2 CONV CONT/STRIP 046 0250 8011 00 3800 .0 324020 145064 ’23098 S - S - 2 CONV TERRACE .46 .100 3.24 .0 18.0 .0 124.20 145.64 -42.44 S - S - 3 CONSER UP - DUNN .13 1.000 9.19 .0 18.0 .0 124.20 152.48 -28.28 S - S - 3 CONSER CONTOUR .13 .500 4.59 .0 18.0 .0 124.20 152.48 -29.28 S - S - 3 CONSER CONT/STRIP .13 .250 2.30 .0 18.0 .0 124.20 152.48 -30.78 S - S - 3 CONSER TERRACE .13 .100 .92 .0 18.0 .0 124.20 152.48 -49.28 S - S - 4 NOTIL UP - DUNN .07 1.000 4.95 .0 18.0 .0 124.20 160.83 -36.63 S - S - 4 NOTIL CONTOUR .07 .500 2.47 .0 18.0 .0 124.20 160.83 -37.63 S - S - 4 NOTIL CONT/STRIP .07 .25 1.24 .0 18.0 .0 124.20 160.83 -39.13 S ' S ' 4 NOTIL TERRACE 007 0100 049 .0 1800 00 124.20 160.83 -5706} C - C - 1 CONV UP - DUNN .35 1.000 24.39 .0 .0 68.3 200.80 218.90 -18.10 C - C - 1 CONV CONTOUR .35 .500 12.19 .0 .0 68.3 200.80 218.90 -19.10 A - C - 1 CONV CONT/STRIP .35 .250 6.10 .0 .0 68.3 200.80 218.90 -20.60 C - C - 1 CONV TERRACE .35 .100 2.44 .0 .0 68.3 200.80 218.90 -39.10 C - C - 2 CONV CONTOUR .35 .500 12.19 .0 .0 68.3 200.80 218.96 -19.16 C - C - 2 CONV CONT/STRIP .35 .25 6.10 .0 .0 68.3 200.80 218.96 -20.66 C - C - 2 CONV TERRACE .35 .100 2.44 .0 .0 68.3 200.80 218.96 -39.16 C - C - 3 CONSER UP - DUNN .08 1.000 5.44 .0 .0 68.3 200.80 218.95 -18.15 E ‘ C ' 3 CONSER CUNTUUR .08 0500 2072 00 00 6803 200080 218095 '19015 E - C - 3 CONSER CONT/STRIP .08 .250 1.36 .0 .0 68.3 200.80 218.95 -20.65 L - C - 3 CONSER TERRACE .08 .100 .54 .0 .0 68.3 200.80 218.95 -39.15 N l S - 1 CONV UP - DUNN .47 1.000 _ 33.29 22.5 18.0 68.3 206.15 243.81 -37.66 N / S - 1 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.81 -39.16 N / S - 1 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.81 -41.41 N l S - 1 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 243.81 -58.66 N / S - 2 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 243.05 '36.89 N / S - 2 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.05 '38.39 N l S - 2 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.05 -40.64 H I S ‘ 2 CONV TERRACE 047 0100 3033 220 1800 6303 206035 243005 ’57089 N / S - 3 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 243.84 -37.69 H I s ‘ 3 CONV CONTOUR 047 0500 16065 2205 1800 6303 206015 243084 '39019 N / S - 3 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.84 -41.44 N I S - 3 CONV TERRACE .47 .100 3.33 2.5 18.0 68.3 206.15 243.84 -58.69 1/ ROTATIONS - C = CORN FOR GRAIN. S = SOYBEANS.AND N = NHEAT PRICES: CURN = I2.94. SOYBEANS = $6.90. NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLONs: PRACTICE TOTAL ANNUAL COST UP AND noun 1 .00 ° CONTOUR s 1.oo CONTOUR/STRIP s 2.50 PARALLEL TERRACE 121.00 2134 TABLE 1 °- EROSION. YIELDS. COSTS. AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/20/84 SR3 = R 8E. R = 250.. K = .49. L = 250.. S = 4.0. L8 = .577. T = 3.0 PAGE: 2 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN _ 8U BU DU PROD/ACRE COST/ACRE TO LAND 2/ N / S - 4 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.08 -38.42 N / S - 4 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.08 -40.67 N / S - 5 CONV UP - DUNN .47 1.000 33.29 2215 18.0 68.3 206.15 243.55 -37.40 NI'S - 5 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.55 -38.90 N / S - 5 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.55 -41.15 N / S - 5 CONV TERRACE _ .47 .100 3.33 22.5 18.0 68.3 206.15 243.55 -58.40 N / S - 6 CONV UP - DUNN .47 1.000 33.29 2.5 18.0 68.3 206.15 242.79 -36.63 N / S - 6 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 242.79 -38.13 N / S - 6 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 242.79 -40.38 N / S - 7 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 243.58 -37.43 N / S - 7 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.58 -38.93 T./ S - 7 CONV CONT/STRIP .47 .25 8.32 22.5 18.0 68.3 206.15 243.58 -41.18 N.’a - 7 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 243.58 -58.43 N l S - 8 CONV UP - DUNN .47 1.000 33.2 22.5 18.0 68.3 206.15 242.82 -36.66 N / S - 8 CONV CUNTUUR .47 .500 16.65 22. 18.0 68.3 206.15 242.82 ~38.16 k l S - 8 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 242.82 -40.41 N / S - 8 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 242.82 -57.66 N / S - 9 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 244.16 -38.00 N / S - 9 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 244.16 -39.50 N / S - 9 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 244.16 -41.75 N / S - 9 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 244.16 -59.00 N / S - 10 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 243.39 -37.24 N / S ° 10 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.39 -38.74 N / S - 10 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.39 ~40.99 N l S - 10 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 243.39 -58.24 N l S - 11 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 244.19 -38.03 N l S - 11 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 244.19 -39.53 N / S - 11 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 244.19 -41.78 N / S - 11 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 244.19 -59.03 N / S - 12 CONV UP - DUNN .47 1.000 33.29 22.5 18.0 68.3 206.15 243.42 -37.27 N / S - 12 CONV CONTOUR .47 .500 16.65 22.5 18.0 68.3 206.15 243.42 -38.77 N / S - 12 CONV CONT/STRIP .47 .250 8.32 22.5 18.0 68.3 206.15 243.42 -41.02 N / S - 12 CONV TERRACE .47 .100 3.33 22.5 18.0 68.3 206.15 243.42 -58.27 N / S - 13 CONSER UP - DUNN .12 1.000 8.55 22.5 18.0 68.3 206.15 243.88 -37.73 N / S - 13 CONSER CONTOUR .12 .500 4.28 22.5 18.0 68.3 206.15 243.88 -39.23 N l S - 13 CUNSER CONT/STRIP .12 .250 2.14 22.5 18.0 68.3 206.15 243.88 -41.48 N l S - 13 CONSER TERRACE .12 .100 .86 22.5 18.0 68.3 206.15 243.88 ~58.73 1/ ROTATIONS - C = CORN FUR GRAIN. S = SOYBEANS.AND N = NHEAT PRICES: CORN = $2.94. SOYBEANS = I6.90. NHEAT = I3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND noun 3 .oo ' CONTOUR s 1.00 CUNTUUR/STRIP 0 2.50 PARALLEL TERRACE $21.00 TABL. 1 -- ERUSIUN: YIELDS: COSTS: AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/20/84 SRG = K 8E, R = 250., K = .49: L = 250.9 3 = 4.0: L3 = .577» T = 3.0 PAGE: 3 RUTATIUN 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ '-N /:S - 14 NOTIL UP - DUNN .08 1.000 5.37 22.5 18.0 68.3 206.15 251.12 -44.96 '-N / S - 14 NUTIL CUNTUUR .08 .500 2.69 22.5 18.0 68.3 206.15 251.12 -46.46 -N / S - 14 NOTIL CONT/STRIP .08 .250 1.34 22.5 18.0 68.3 206.15 251.12 -48.71 -N / S - 14 NUTIL TERRACE .08 .100 .54 22.5 18.0 68.3 206.15 251.12 -65.96 '-N / S - 15 NUTIL UP - DUNN .08 1.000 5.37 22.5 18.0 68.3 206.15 248.91 -42.75 "N / S - 15 NOTIL CONTOUR .08 .500 2.69 22.5 18.0 68.3 206.15 248.91 -44.25 ‘-N / S - 15 NUTIL CONT/STRIP .08 .250 1.34 22.5 18.0 68.3 206.15 248.91 -46.50 /S - 1 CONV CONTOUR .39 .500 13.75 22.5 18.0 .0 211.50 268.72 -59.22 T’S - 1 CONV TERRACE ' .39 .100 2.75 22.5 18.0 .0 211.50 268.72 -78.22 /S - 2 CONV UP - DUNN .39 1.000 27.50 22.5 18.0 .0 211.50 267.19 -55.69 / §-2 CONV CUNTUUR .39 .500 13.75 22. 18.0 .0 211.50 267.19 -57.69 4/3 - 2 CONV CONT/STRIP .39 .25 6.87 22. 18.0 .0 211.50 267.19 -60.69 T’: - 2 CONV TERRACE .39 .100 2.75 22. 18.0 .0 211.50 267.19 -76.69 /5 ' 3 CONV UP - DUNN .39 1.000 27.50 22. 18.0 .0 211.50 268.20 -56.70 / 3"3 CONV CONTOUR .39 .500 13.75 22.5 18.0 .0 211.50 268.20 -58.70 .’§ ' 3 CONV CONT/STRIP .39 .250 6.87 22.5 18.0 .0 211.50 268.20 '61.70 ,/a ’ 3 CONV TERRACE .39 .100 2.75 2.5 18.0 .0 211.50 268.20 -77.70 / S - 4 CONV UP - DUNN .39 1.000 27.50 22. 18.0 .0 211.50 266.67 -55.17 1’2 ' 4 CONV CONT/STRIP .39 .250 6.87 22. 18.0 .0 211.50 266.67 -60.17 / 3"4 CONV TERRACE .39 .100 2.75 22.5 18.0 .0 211.50 266.67 -76.17 .’S - 5 CONV UP - DUNN .39 1.000 27.50 22.5 18.0 .0 211.50 269.41 '57.91 / 5"5 CONV CONTOUR .39 .500 13.75 22.5 18.0 .0 211.50 269.41 -59.91 /'3 ' 5 CONV CONT/STRIP .39 .250 6.87 22.5 18.0 .0 211.50 269.41 '62.91 .’5 - 5 CONV TERRACE .39 .100 2.75 22.5 18.0 .0 211.50 269.41 '78.91 / 5 - 6 CONV UP - DUNN .39 1.000 27.50 22.5 18.0 .0 211.50 267.88 -56.38 .’S ’ 6 CONV CONTOUR .39 .500 13.75 22.5 18.0 .0 211.50 267.88 -58.38 / 5 ' 6 CONV CONT/STRIP .39 .250 6.87 22.5 18.0 .0 211.50 267.88 -61.38 / 5"6 CONV TERRACE .39 .100 2.75 22.5 18.0 .0 211.50 267.88 -77.38 / 5"8 CONSER UP - DUNN .11 1.000 7.92 22.5 18.0 .0 211.50 269.82 ~58.32 / 5"8 CONSER CUNTUUR .11 .500 3.96 22.5 18.0 .0 211.50 269.82 -60.32 /'5 - 8 CONSER CONT/STRIP .11 .250 1.98 22.5 18.0 .0 211.50 269.82 -63.32 4’5 ' 8 CONSER TERRACE .11 .100 .79 22.5 18.0 .0 211.50 269.82 -79.32 /'5 ° 9 NUTIL CUNTUUR .08 .500 2.86 22.5 18.0 .0 211.50 273.40 -63.90 55 - 9 NUTIL CONT/STRIP .08 .250 1.43 22.5 18.0 .0 211.50 273.40 -66.90 5 ‘ 9 NUTIL TERRACE .08 .100 .57 2 .5 18.0 .0 211.50 273.40 -82.90 1/ ROTATIONS - C = CURN FOR GRAIN9 S = SOYBEANSvAND N = NHEAT PRICES: CORN = $2.94: SOYBEANS = $6.90: NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANURTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE TUTAL ANNUAL CUST UP AND noun s .00 ' CUNTUUR s 1.00 CUNTUUR/STRIP 2.50 PARALLEL TERRACE $21.00 2126 TABLE I - EROSION9 YIELDSy COSTS. AND RETURNS BY SUIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/20/84 SRG = K 8E: R = 250.: K = .499 L = 250.: S = 4.0: LS = .5771 T = 3.0 PAGE: 4 RUTATIUN 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN . BU BU BU PROD/ACRE CUST/ACRE TO LAND 2/ S '10 NUTIL UP - DUNN .08 1.000 5.73 22.5 18.0 .0 211.50 271.56 -60.06 S '10 NUTIL CONTOUR .08 .500 2.86 22.5 18.0 .0 211.50 271.56 '62.06 S -10 NUTIL CONT/STRIP .08 .250 1.43 22.5 18.0 .0 211.50 271.56 -65.06 a '10 NUTIL TERRACE .08 .100 .57 22.5 18.0 .0 211.50 271.56 '102.06 C NUTIL UP - DUNN .03 1.000 2.12 .0 .0 68.3 200.80 229.89 ‘29.09 C NUTIL CUNTUUR .03 .500 1.06 .0 .0 68.3 200.80 229.89 -30.09 C NOTIL CONT/STRIP .03 .250 .53 .0 .0 68.3 200.80 229.89 -31.59 C NUTIL TERRACE .03 .100 .2 .0 .0 68.3 200.80 229.89 -50.09 1/ ROTATIONS - C = CURN FOR GRAIN1 S = SOYBEANSTAND N = NHEAT PRICES: CURN = $2.94: SOYBEANS = $6.90: NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE OP CONSERVATION PRACTICES. NO COST SHARING IS ASSUMED. COSTS ARE AS FOLLONS: PRACTICE TUTAL ANNUAL CUST UP AND DUNN 3 .oo ' CCNTUUR s 1.00 CUNTUUR/STRIP s 2.5 PARALLEL TERRACE $21.00 500 LINE=612 SEC=1 2227 ABLE 1 -- ERUSIUN: YIELDS. COSTS. AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05121194 SRG = K 96. R = 250.. K = .47. L = 200.. s = 8.0. L5 = 1.402. T = 3.0 PAGE: 1 RUTATIUN 1/ TILLAGE PRACTICE C P ERUSIUN Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CURN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TU LAND 2/ 5"ST- 1 CONV CUNTUUR .46 .600 45.37 .0 19.1 .0 131.79 142.56 '11.77 S'-S - 1 CONV CONT/STRIP .46 .300 22.68 .0 19.1 .0 131.79 142.56 '13.27 S-S - 1 CONV TERRACE .46 .120 9.07 .0 19.1 .0 131.79 142.56 -31.77 5"5 - 2 CONV UP - DUNN .46 1.000 75.61 .0 19.1 .0 131.79 143.89 '12.10 S ' S‘- 2 CONV CUNTUUR .46 .600 45.37 .0 19.1 .0 131.79 143.89 -13.10 S - S - 2 CONV TERRACE .46 .120 9.07 .0 19.1 .0 131.79 143.89 -33.10 S - S - 3 CONSER CUNTUUR .13 .600 12.85 .0 19.1 .0 131.79 150.66 -19.87 S - S - 3 CUNSER CONT/STRIP .13 .300 6.42 .0 19.1 .0 131.79 150.66 -21.37 S - S - 3 CONSER TERRACE .13 .120 2.57 .0 19.1 .0 131.79 150.66 -39.87 S - S - 4 NOTIL UP - DUNN .07 1.000 11.53 .0 19.1 .0 131.79 159.15 -27.36 S - S - 4 NUTIL CUNTUUR .07 .600 6.92 .0 19.1 .0 131.79 159.15 -28.36 S - S ‘ 4 NUTIL CONT/STRIP .07 .300 3.46 .0 19.1 .0 131.79 159.15 -29.86 S - S - 4 NUTIL TERRACE .07 .120 1.38 .0 19.1 .0 131.79 159.15 -48.36 C - C - 1 CONV UP - DUNN .35 1.000 56.83 .0 .0 76.4 224.62 221.02 3.60 C - C - 1 CONV CUNTUUR .35 .600 34.10 .0 .0 76.4 224.62 221.02 2.60 C - C - 1 CONV CONT/STRIP .35 .300 17.05 .0 .0 76.4 224.62 221.02 1.10 C - C - 1 CONV TERRACE .35 .120 6.82 .0 .0 76.4 224.62 221.02 -17.40 C ‘ C - 2 CONV UP - DUNN .35 1.000 56.83 .0 .0 76.4 224.62 221.51 3.11 C - C - 2 CONV CUNTUUR .35 .600 34.10 .0 .0 76.4 224.62 221.51 2.11 C - C ' 2 CONV TERRACE .35 .120 6.82 .0 .0 76.4 224.62 221.51 -17.89 C - C - 3 CONSER UP - DUNN .08 1.000 12.68 .0 .0 76.4 224.62 221.49 3.13 C-C - 3 CUNSER CUNTUUR A .08 .600 7.61 .0 2,.0 -7 76.4 224.62 - 221.49 2.13 :C'- C‘- 3 CONSER. CONT/STRIP .08 .300 3.81 .0 .0 76.4’ 224.62 221.49 .63 .C - C - 3 CONSER TERRACE .08 .120 1.52 .0 .0 76.4 224.62 221.49 -17.87 NI'S - 1 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 242.96 -18.78 N i S - 1 CONV CONTOUR .47 .600 46.55 23.7 19.1 76.4 224.18 242.96 -20.28 N / S‘- 1 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 242.96 -22.53 N / S - 1 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 242.96 '39.78 NT'S - 2 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 242.29 -18.11 N / S - 2 CUNV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 242.29 -39.11 NI'S - 3 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 243.21 -19.02 NI'S - 3 CONV CUNTUUR .47 .600 46.55 23.7 , 19.1 76.4 224.18 243.21 ~20.§2 NI'S - 3 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 243.21 -22.17 N l S - 3 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 243.21 -40.02 1/ ROTATIONS - C = CORN FUR GRAIN! S = SOYBEANS. AND N = NHEAT PRICES: CURN = $2.94. SOYBEANS = $6.90. NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANURTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TUTAL ANNUAL CUST UP ANU DUNN s .00 ' CUNTUUR s 1.00 CUNTUUR/STRIP s 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. 'ABLE 1 -- ERUSIUN. YIELDS. COSTS. AND RETURNS DY SOIL RESUURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA RUTATIUN 1/ ‘\‘\\\ \\\\ \\\\ xuquq~q o-o~o~c> cncncnnn JuJanJs tnmmm mmmm mmmm mmmm IIIIIIIN ~o~o~o~o aboaoocn “&oudbwcn ancncnan uncanny) 0 H C> “S - 11 C.:-:cn: cccc ('2‘: cccu: ctct .Zl'ict: C.:CTI: CCC: ‘Z‘cc act: ututuaco unamuncn 0000 O—. b: 2128 SRG = K 9C! R = 250.0 K = .479 L = 200.0 5 = 8.00 L5 = 1.4020 T = 3.0 TILLAGE PRACTICE C P ERUSIUN Y I E L D S AVE ANNUAL TIA/Y NHEAT SOYBEAN CURN VALUE OF BU DU BU PROD/ACRE CONV UP ‘ DUNN 047 10000 77059 2307 1901 7604 224018 CONV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CON” UP ' DUNN 047 10000 77059 2307 1901 7604 224018 CONV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 CUNU CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 CONV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CUNV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 CCNU CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CONV UP ' DOUN 047 10000 77059 2307 1901 7604 224018 CONV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 CUNV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV .‘CUNT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 ‘ 9.31, 23.7 19.1 76.4 224.18 CONV UP ' DOB” 047 10000 77059 2307 1901 7604 224018 CONV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 76.4 224.18 CONV UP - DUNN .47 1.000 77.59 23.7 19.1 76.4 224.18 CONV CUNTUUR .47 .600 46.55 23.7 19.1 76.4 224.18 CONV CONT/STRIP .47 .300 23.28 23.7 19.1 76.4 224.18 CONV TERRACE .47 .120 9.31 23.7 19.1 70.4 224.18 CUNSER ' UP - DUNN .12 1.000 19.93 23.7 19.1 76.4 224.18 CUNSER CUNTUUR .12 .600 11.96 23.7 19.1 76.4 224.18 CUNSER CONT/STRIP .12 .300 5.98 23.7 19.1 76.4 224.18 CUNSER TERRACE .12 .120 2.39 23.7 19.1 76.4 224.18 1/ ROTATIONS - C = CORN FUR GRAIN. S = SOYBEANS. AND N = NHEAT PRICES: CURN = 02.940 SOYBEANS = 06.900 NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE UP CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DUNN 3 .00 CONTOUR 4 1.00 CUNTUUR/STRIP S 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FUR SLOPES LESS THAN UR EOUAL TO 8 PERCENT. DATE: 05/21/84 PAGE: 2 AVE ANNUAL AVE ANNUAL PRODUCTION NET RETURN CUST/ACRE TO LAND 2/ 242.54 '18.35 242054 ”19085 242.54 -22.10 242054 ’39035 242.63 -18.44 242.63 -19.94 242.63 -22.19 242.63 '39.44 2‘1096 -17077 241.96 '19.27 241.96 -21.52 241.96 '38.77 242.87 -18.69 242.87 -20.19 242.87 ‘22.44 242.87 -39.69 242.20 -I0.02 242.20 '19.52 242.20 -21.77 242.20 -39.02 243.29 -19.11 243.29 '20.61 243.29 -22.86 243.29 '40.11 242.62 -18.44 242062 “19094 242.62 -22.19 242.62 -39.44 243.54 -19.35 243.54 -20.85 243.54 -23.10 243.54 -40.35 242.87 -18.68 242.87 -20.18 242.87 '22.43 242.87 ’39.68 243.32 ’19.14 243.32 '20.64 243.32 -.2.89 243032 -40014 2229 1/ ROTATIONS - C = CORN FUR GRAIN: S = SOYBEAN50 AND N = NHEAT PRICES: CURN = $2.94: SOYBEANS = 66.900 NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLONS: PRACTICE TUTAL ANNUAL COST UP AND DUNN S .00 CUNTUUR S 1.00 CONTOUR/STRIP S 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN UR EUUAL TO 8 PERCENT. ABLE 1 -- ERUSIUN. YIEL.S. COSTS. AND RETURNS BY SUIL RESUURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 SRG = K 9C. R = 250.. K = .47. L = 200.. S = 8.0. L5 = 1.4020 T = 3.0 PAGE: 3 FJTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CURN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE CUST/ACRE TO LAND 2/ N / S - 14 NUTIL UP - DUNN .08 1.000 12.52 23.7 19.1 76.4 224.18 250.97 -26.78 N / S - 14 NUTIL CUNTUUR .08 .600 7.51 23.7 19.1 76.4 224.18 250.97 -28.28 N / S - 14 NUTIL CONT/STRIP .08 .300 3.76 23.7 19.1 76.4 224.18 250.97 -30.53 N/ s - 14 NUTIL TERRACE .08 .120 1.50 23.7 19.1 76.4 224.18 250.97 -47.78 N / S - 15 NOTIL UP - DUNN .08 1.000 12.52 23.7 19.1 76.4 224.18 249.03 -24.85 H l S ’ 15 HOTIL CONTOUR 008 0600 7051 2307 1901 7604 226018 249003 “26035 N / S - 15 NUTIL CONT/STRIP .08 .300 3.76 23.7 19.1 76.4 224.18 249.03 -28.60 N / S - 15 NUTIL TERRACE .08 .120 1.50 23.7 19.1 76.4 224.18 249.03 -45.85 S - 1 CONV UP - DUNN .39 1.000 64.08 23.7 19.1 .0 223.75 264.90 -41.15 S - 1 CONV CUNTUUR .39 .600 38.45 23.7 19.1 .0 223.75 264.90 -43.15 S ' 1 CONV CONT/STRIP 039 0300 19022 2307 1901 .0 223075 264090 “46015 S ’ 1 CONV TERRACE 039 0120 7069 2307 1901 00 223075 264090 ‘62015 S ' 2 CDNU UP ’ DUNN 039 10000 64008 2307 1901 .0 223075 263056 “39081 S - 2 CONV CUNTUUR .39 .600 38.45 23.7 19.1 .0 223.75 263.56 -41.81 S - 2 CONV CONT/STRIP .39 .300 19.22 23.7 19.1 .0 223.75 263.56 -44.81 S - 2 CONV TERRACE .39 .120 7.69 23.7 19.1 .0 223.75 263.56 -60.81 S - 3 CONV UP - DUNN .39 1.000 64.08 23.7 19.1 .0 223.75 264.23 -40.48 S - 3 CONV CUNTUUR .39 .600 38.45 23.7 19.1 .0 223.75 264.23 -42.48 S ' 3 CONV CONT/STRIP 039 0300 19022 2307 1901 00 223075 264023 ’45048 S - 3 CUNV TERRACE .39 .120 7.69 23.7 19.1 .0 223.75 264.23 -61.48 S - 4 CONV UP - DUNN .39 1.000 64.08 23.7 19.1 .0 223.75 262.89 -39.14 S - 4 CONV CUNTUUR .39 .600 38.45 23.7 19.1 .0 223.75 262.89. -41.14 S ' 4 CGNU CONT/STRIP 039 0300 19022 2307 1901 00 223075 262089 ‘44014 S - 4 CONV TERRACE .39 .120 7.69 23.7 19.1 .0 223.75 262.89 -60.14 S - 5 CONV UP - DUNN .39 1.000 64.08 23.7 19.1 .0 223.75 265.56 -41.81 S - 5 CONV CUNTUUR .39 .600 38.45 23.7 19.1 .0 223.75 265.56 -43.81 S - 5 CONV CONT/STRIP .39 .300 19.22 23.7 19.1 .0 223.75 265.56 -46.81 SS-S CONV TERRACE .39 ‘T120 7.69 23.7 19.1 .0 223.75 265.56 ‘ ~62.81 S - 6 CONV UP - DUNN .39 1.000 64.08 23.7 19.1 .0 223.75 264.22 -40.47 S - 6 CONV CUNTUUR .39 .600 38.45 23.7 19.1 .0 223.75 264.22 -42.47 S - 6 CONV CONT/STRIP .39 .300 19.22 23.7 19.1 .0 223.75 264.22 -45.47 S - 6 CONV TERRACE .39 .120 7.69 23.7 19.1 .0 223.75 264.22 -61.47 5 ‘ 8 CONSER UP ' 00"" 011 10000 18045 2307 1901 00 223075 266012 -42037 S - 8 CUNSER CUNTUUR .11 .600 11.07 23.7 19.1 .0 223.75 266.12 -44.37 5 - 8 CUNSER CONT/STRIP .11 .300 5.54 23.7 19.1 .0 223.75 266.12 -47.37 S-B CUNSER TERRACE .11 .120 2.21 23.7 19.1 .0 223.75 266.12 -63.37 S ‘ 9 NOTIL UP ' DOUN 008 10000 13034 2307 1901 00 223075 270061 -46066 S - 9 NUTIL CUNTUUR .08 .600 8.01 23.7 19.1 .0 223.75 270.41 -48.66 S - 9 NOTIL CONT/STRIP .08 .300 4.00 23.7 19.1 .0 223.75 270.41 -51.66 5 ' 9 NUTIL TERRACE .08 .120 1.60 23.7 19.1 .0 223.75 270.41 -67.66 2130 TABLE 1 -- EROSION: YIELDS. COSTS. AND RETURNS BY SUIL RESUURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 SRO = K 9C0 R = 250.: K = .470 L = 200.0 5 = 8.00 LS = 1.402: T = 3.0 PAGE: 4 RUTATIUN 1/ TILLAGE PRACTICE C P ERUSIUN T I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TU LAND 2/ 'S -10 NOTIL UP - DUNN .08 1.000 13.34 23.7 19.1 .0 223.75 268.23 -44.48 'S -10 NUTIL CUNTUUR .08 .600 8.01 23.7 19.1 .0 223.75 268.23 -46.48 'S -10 NUTIL CONT/STRIP .08 .300 4.00 23.7 19.1 .0 223.75 268.23 -49.48 ’5 -10 NUTIL TERRACE .08 .120 1.60 23.7 19.1 .0 223.75 268.23 -86.48 - C NOTIL CUNTUUR .03 .600 2.97 .0 .0 76.4 224.62 232.95 -9.33 ' C NUTIL CONT/STRIP .03 .300 1.48 .0 .0 76.4 224.62 232.95 -10.83 1/ ROTATIONS - C = CORN FOR BRAIN: S = SOYBEANS: AND N = NHEAT PRICES: CORN = 32.940 SOYBEANS = $6.909 NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND HAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DUNN 3 .00 CUNTUUR S 1.00 CONTOUR/STRIP 8 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN UR EOUAL TO 8 PERCENT. {.1‘ 0 l 1!! 1 l ‘T‘ I. .‘N.‘ 1! Ikfl 4 0 Alb 7.! AI." VlvBQIUQJ 0.: ‘14... IA 1.0106 IT§H§AILIIL TH fiyqd‘Iu‘Ih . , , . u . o o o 0 o o . 0 c u c . ~ . . o . n o c . . . . . n . . . n u n . s s w. I..I.I't~lriv In" I . .u ..I 6 0 0 0 - III! PbIIII All liilhIn-i n.II-\000-AII '0 In 0 v 0 00 II 0. I 1.1 II-I in I Cab III-illinl INN l‘l.|ll\l I0|I~cl0|00i . u.. . .-.---I... .. - ... . 0 . . . . . . . . . . . . 4 . . . . . . , I - TILT-.- -.....V-.- I , . .. - .- . . I I I I I I I I I I I III -III 2131 TABLE ; -- EROETON. YIELDS. COSTS. AND RETURNS BI SUIL RESUURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 5R8 = R 9E. R = 250.. K = .47. L = 200.. s = 8.0. L5 = 1.402. T = 3.0 PAGE: 1 ROTATION 17 TILLAGE RRACTTCE C P EROSION Y I E L O s AVE ANNUAL AVE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN VALUE OF RROOUCTTON NET RETURN BU BU BU RROO/ACRE COST/ACRE TO LAND 2/ -s - s - 1 CONV UP - DUNN .40 1.000 75.01 .0 15.1 .0 104.19 150.71 -40.52 -s - s - 1 CONV CONTOUR .40 .000 45.37 .0 15.1 .0 104.19 150.71 -47.52 -s - s - 1 CONV CONT/STRIP .40 .300 22.08 .0 15.1 .0 104.19 150.71 -49.02 -s - s - 1 CONV TERRACE .40 .120 9.07 .o 15.1 .0 104.19 150.71 -07.52 -5'- s - 2 CONV UP - DUNN .40 1.000 75.01 .0 15.1 .0 104.19 151.52 -47.33 -s - s - 2 CONV CONTOUR .40 .000 45.57 .0 15.1 .0 104.19 151.52 -48.33 -s - S - 2 CONV CONT/STRIP .40 .300 22.68 .0 15.1 .0 104.19 151.52 -49.83 -s - s - 2 CONV TERRACE .40 .120 9.07 .0 15.1 .0 104.19 151.52 -68.33 -s.- s - 3 CONSER UP - DUNN .13 1.000 21.42 .0 15.1 .0 104.19 158.50 -54.37 -§ - s - 3 CUNSER CONTOUR .13 .000 12.85 .0 15.1 .0 104.19 158.50 -55.37 -; - s — 3 CUNSER CONT/STRIP .13 .300 0.42 .o 15.1 .0 104.19 158.50 -50.87 -..- s - 3 CUNSER TERRACE .13 .120 2.57 .o 15.1 .0 104.19 1 . -75.37 -s - s - 4 NOTIL UP - DUNN .07 1.000 11.55 .0 15.1 .0 104.19 100.47 -02.28 -s - § - 4 NUTIL CONTOUR .07 .000 0.92 .0 15.1 .0 104.19 100.47 -63.28 -s - 5 - 4 NOTIL CONT/STRIP .07 .300 3.40 .o 15.1 .0 104.19 100.47 -04.78 -s - s - 4 NUTIL TERRACE .07 .120 1.38 .0 15.1 .0 104.19 100.47 -83.28 -C_- C - 1 CONV UP - DUNN .35 1.000 56.83 .0 .o 00.5 177.87 225.05 -47.18 -C - C - 1 CONV CONTOUR .35 .000 34.10 .0 .0 00.5 177.87 225.05 -48.18 -c — C — 1 CUNU CONT/STRIP .35 .300 17.05 .0 .0 00.5 177.87 225.05 -49.08 -C - C - 1 CONU TERRACE .35 .120 6.82 .0 .o 00.5 177.87 225.05 -08.18 £-C - 2 CONV UP - DUNN .55 1.000 56.83 .0 .o 00.5 177.87 223.78 -45.91 -C - C - 2 CONU CONTOUR .35 .000 34.10 .0 .0 00.5 177.87 223.78 -40.91 ’C.* C - 2 CONV CONT/STRIP .35 .300 17.05 .0 .0 00.5 177.87 223.78 -48.41 - C-C - 2 CONV TERRACE .35 .120 0.82 .o .o 00.5 177.87 223.78 -00.91 . E T C ‘ 3 CUNSER UP ' DUNN 008 30000 12068 .0 00 6005 177087 223076 ".5089 : C-c - 3 CUNSER CONTOUR .08 .000 7.01 .0 .0 00.5 177.87 223.70 -40.89 .C - c - 3 CUNSER CONT/STRIP .08 .300 3.81 .o .o 00.5 177.87 223.70 ~48.39 C -.c - 3 CUNSER TERRACE .08 .120 1.52 .0 .o 00.5 177.87 223.70 -00.89 '"4*8 - 1 CONV UP - DUNN .47 1.000 77.59 18.7 15.1 00.5 177.51 253.01 -75.70 g"-/ s - 1 CONU CONTOUR .47 .000 40.55 18.7 15.1 00.5 177.31 253.01 -77.20 I / s - 1 CONV - CONT/STRIP .47 .300 23.28 18.7 15.1 00.5 177.31 253.01 -79.45 'U I s - 2 CONV UP - DUNN .47 1.000 77.59 18.7 15.1 00.5 177.31 251.90 -74.05 '3 / s - 2 CONV CONTOUR .47 .000 40.55 18.7 15.1 00.5 177.31 251.90 ~70.15 '3 / s - 2 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 00.5 177.31 251.90 -78.40 'V I s - 2 CONV TERRACE .47 .120 9.31 18.7 15.1 00.5 177.31 251.90 -95.05 'VIIS - 3 CONV UP - DUNN .47 1.000 77.59 18.7 15.1 00.5 177.31 252.38 -75.07 :I'/ s - 3 CONv CONTOUR .47 .000 40.55 18.7 ' 15.1 00.5 177.31 252.38 -70.57 _ II I s - 3 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 00.5 177.31 252.38 -78.82 “1's - 3 CONV TERRACE .47 .120 9.31 18.7 15.1 00.5 177.31 252.38 -90.07 1/ ROTATIONS - C = CORN FUR CRATN. s = SOYBEANS. AND 0 = NHEAT PRICES: CORN = $2.949 SOYBEANS = 46.900 NHEAT = $3.88 2/ NET RETURN INCLUDES THE ANNUAL AMORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND HAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL CUST UP AND DUNN s .00 ' CONTOUR s 1.00 CUNTUUR/STRIP 0 2.50 PARALLEL TERRACE 021.00 3! TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. TABLE 1 -- EROSION0 YIELDS0 COSTS0 AND RETURNS BY SOIL RESOURCE GROUP FOR KENTUCKY'S JACKSON PURCHASE AREA ROTATION 1/ 'pl0000000000 1 O I. uao4nncu thJhobJ h‘h‘:::: E;E;E;Z§ ‘° °“'“° °°°°°°°° ~I TILLAGE PRACTICE C P EROSION Y I E L O S AVE ANNUAL TIA/Y NHEAT SOYBEAN CORN VALUE OF 8U nu BU PROD/ACRE CONV UP - DOVN .47 1.000 77.59 18.7 15.1 60.5 177.31 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONN TERRACE .47 .120 9.31 18.7 15.1 00.5 177.31 CONV UP - DOUN .47 1.000 77.59 18.7 15.1 60.5 177.31 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV TERRACE .47 .120 9.31 18.7 15.1 60.5 177.31 CONV UP - DOUN .47 1.000 77.59 18.7 15.1 60.5 177.31 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV TERRACE .47 .120 9.31 ~ 18.7 15.1 60.5 177.31 CONV UP - DOUN .47 1.000 77.59 18.7 15.1 60.5 177.31 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV TERRACE ..47 .120 9.31 18.7 15.1 60.5 177.31 CONV UP “ DOUN 047 10000 77059 1807 1501 6005 177031 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV TERRACE .47 .120 9.31 18.7 15.1 60.5 177.31 CONV UP - DOUN .47 1.000 77.59 18.7 15.1 60.5 177.31 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31. CONV TERRACE .47 .120 9.31 18.7 15.1 60.5 177.31 CONV UP ‘ DOUN 047 10000 77059 1807 1501 6005 172031 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV .IERRACE ..47 .120 9.31 18.7 15.1 60.5 177.31 CONV UP ' DOUN 047 10000 77059 1807 1501 6005 177031 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV TERRACE .47 .120 9.31 18.7 15.1. 60.5 177.31 CONV UP - DOUN .47 1.000 77.59 18.7 15.1 60.5 177.31 CONV CONTOUR .47 .600 46.55 18.7 15.1 60.5 177.31 CONV CONT/STRIP .47 .300 23.28 18.7 15.1 60.5 177.31 CONV TERRACE .47 .120 9.31 18.7 15.1 60.5 177.31 CONSER UP - OOUN .12 1.000 19.93 18.7 15.1 60.5 177.31 CONSER CONTOUR .12 .600 11.96 18.7 15.1 60.5 177.31 CONSER CONT/STRIP .12 .300 5.98 18.7 15.1 60.5 177.31 CONSER TERRACE .12 .120 2.39 18.7 15.1 60.5 177. 1/ ROTATIONS - C = CORN FOR GRAIN0 S = SOYBEANS0 AND V = NHEAT 2332 SRO = K 9E0 R = 250.0 K = .470 L = 200.0 5 = 8.00 LS = 1.4020 T = 3.0 PRICES: COR” 3 $2098! SOYBEANS 3 ‘60909 "HEAT 3 ‘3088 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND HAINTENANCE OF CONSERVATION PRACTICES. NO COST SNARINO IS ASSUNED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND OONN 3 .00 CONT OUR 5 1.00 CONTOUR/STRIP 5 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. DATE: 05/21/ PAGE: 2 AVE ANNUAL AVE ANNUAL PRODUCTION NET RETURN COST/ACRE TO LAND 2/ 251032 '74001 251.32 -75.51 251.32. -77.70 251.32 -95.01 252099 '75068 252099 '77018 252099 '79083 252.99 -90.03 251.93 -74.62 251.93 -76.12 251.93 ~78.37 251.93 -95.02 252.35 -75.04 252.35 -76.54 252.35 -73.79 252035 '96004 251.30 -73.99 251.30 -75.49 251.30 -77.74 251.30 594.99 253.39 -70.08 253.39 ~77.58 253.39 -79.83 253.39 -97.08 252034 '75003 252.34 -76.53 252.34 ~78.78 252.34 -90.03 252076 ’750‘5 252.76 ~76.95 252.76 -79.20 252.76 -96.45 251.70 -74.39 251.70 -75.89 251.70 -78.14 251.70 -95.39 252.18 -74.87 252.18 -76.37 252.18 -78.62 252018 '95087 q: 0 .0 a o. n o a o o n 0 Phi 9"...) ‘0' INI 0‘! I\ \I T A '0 l 0010 I 0 I: h 0‘ 10 ll 00 '0 I 0‘10 0. V00 .0 A? Al bl TI 0.I..v NI 4‘0 0'] 0‘- IT 00.001 «1.. . ,, -1 f..- . . . . . . . . . . . . . . . . . .. . I. 00 I ..I II I | I P u n D n . 2:33 1/ ROTATIONS - C = CORN FOR SRAIN0 S = SOYBEANS0 AND U = NHEAT PRICES: CORN = 32.940 SOYBEANS = 86.900 NHEAT = 83.88 2/ NET RETURN INCLUDES THE ANNUAL AHORTIZED INSTALLATION COSTS AND THE ANNUAL ' COST OF OPERATION AND HAINTENANCE OF CONSERVATION PRACTICES. NO COST SHARING IS ASSUHED. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND DOUN 3 .00 CONTOUR 0 1.00 CONTOUR/STRIP 1 2.50 PARALLEL TERRACE $21.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. ABLE 1 -- EROSION0 YIELDS0 COSTS0 AND RETURNS DY SOIL RESOURCE GROUP FOR KENTUCKY’S JACKSON PURCHASE AREA DATE: 05/21/84 SRO = K 9E0 R = 250.0 K = .470 L = 200.0 5 = 8.00 L5 = 1.4020 T = 3.0 PAGE: 3 NNATION 1/ TILLAGE PRACTICE C P EROSION T I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU DU 8U PROD/ACRE COST/ACRE TO LAND 2/ J NOTIL UP - DOUN .08 1.000 12.52 18.7 15.1 60.5 177.31 258.41 -81.10 H NOTIL CONTOUR .08 .600 7.51 18.7 15.1 60.5 177.31 258.41 -82.60 H NOTIL CONT/STRIP .08 .300 3.76 18.7 15.1 60.5 177.31 258.41 -84.85 H NOTIL TERRACE .08 .120 1.50 18.7 15.1 60.5 177.31 258.41 -102.10 N NOTIL UP - CONN .08 1.000 12.52 13.7 15.1 00.5 177.31 255.33 -78.02 N NOTIL CONTOUR 008 0600 7051 1807 1501 6005 177031 255033 ’79052 N NUTIL CONT/STRIP 008 0300 076 1807 1501 6005 177031 255033 “81077 N NOTIL TERRACE 008 0120 1050 1807 1501 6005 177031 255033 -99002 5 - CONV UP - OOUN .39 1.000 64.08 18.7 15.1 .0 176.75 280.97 -104.22 S ‘ CONV CONTOUR 039 0600 38045 1807 1501 00 176075 280097 ’106022 § ' CONV CONT/STRIP .39 .300 19.22 18.7 15.1 .0 176.75 280.97 ~109.22 : - CONV TERRACE .39 .120 7.69 18.7 15.1 .0 176.75 280.97 -125.22 é ' CONV UP ‘ DUNN 039 10000 64008 -1807 1501 .0 176075 278086 ‘102011 3 - CONV CONTOUR .39 .600 38.45 18.7 15.1 .0 176.75 278.86 -104.11 3 ‘ CONV CONT/STRIP .39 .300 19.22 18.7 15.1 .0 176.75 278.86 -107.11 3 ‘ CONN TERRACE 039 0120 7069 1807 1501 00 176075 278086 ’123011 5 - 3 CONV UP - OOVN .39 1.000 64.08 18.7 15.1 .0 176.75 280.92 -104.17 S - 3 CONV CONTOUR .39 .600 38.45 18.7 15.1 .0 176.75 280.92 -106.17 S - 3 CONV CONT/STRIP .39 .300 19.22 18.7 15.1 .0 176.75 280.92 -109.17 s - 3 CONN TERRACE .39 .120 7.09 18.7 15.1 .0 170.75 280.92 -125.17 S ‘ 4 CONV UP ‘ DOUN 039 10000 64008 1807 1501 00 176075 278081 '102006 5 ‘ 4 CONV CONTOUR 039 0600 38.45 1807 1501 00 176075 278081 '104006 5 - 4 CONV CONT/STRIP .39 .300 19.22 18.7 15.1 .0 176.75 278.81 -107.06 S - 4 CONV TERRACE .39 .120 7.69 18.7 15.1 .0 176.75 278.81 -123.06 S - 5 CONV UP - OOUN .39 1.000 64.08 18.7 15.1 .0 176.75 281.73 -104.98 3 - 5 CONV CONTOUR .39 .600 38.45 18.7 15.1 .0 176.75 281.73 -106.98 §‘~.5 CONV -CONTZSTRIP .39 .300 19.22 18.7 15.1 .0 176.75 281.73 -109.98 1 ’ 6 CONV‘ TERRACE 039 0120 7069 1807 1501 .0 176075 281073 '125098 T - 6 CONV UP - DOUN .39 1.000 64.08 18.7 15.1 .0 176.75 279.62 -102.87 3 - 6 CONV CONTOUR .39 .600 38.45 18.7 15.1 .0 176.75 279.62 -104.87 3 - 6 CONV CONT/STRIP .39 .300 19.22 18.7 15.1 .0 176.75 279.62 -107.87 1 ’ 6 CONV TERRACE 039 0120 7069 1807 1501 .0 176075 279062 ’123087 1 ’ 8 CO"SER UP ‘ DOUN 011 10000 18045 1807 1501 00 176075 281070 ‘104095 3 - 8 CONSER CONTOUR .11 .600 11.07 18.7 15.1 .0 176.75 281.70 -106.95 5 - 8 CONSER CONT/STRIP .11 .300 5.54 18.7 15.1 .0 176.75 281.70 -109.95 5 ’ 8 CONSER TERRACE 011 0120 2021 1807 1501 00 176075 281070 ‘125095 3 - 9 NOTIL UP - DOUN .08 1.000 13.34 18.7 15.1 .0 176.75 283.06 -106.31 3 - 9 NOTIL CONTOUR .08 .600 8.01 18.7 15.1 .0 176.75 283.06 -108.31 T -.9 NOTIL CONT/STRIP .08 .300 4.00 18.7 15.1 .0 ‘176.75 283.06 -111.31 T --9 NOTIL TERRACE .08 .120 1.60 18.7 15.1 .0 176.75 283.06 -127.31 2134 'LE 1"‘EFOSION0 YIELDS0 COSTS0 AND RETURNS 8T SOIL RESOURCE GROUP FOR KENTUCKY' S JACKSON PURCHASE AREA DATE: 05/21/84 0 SR 5 = K 9E0 R = 250.0 K = .470 L = 200.0 5 = 8. 00 LS = I. 4020 = 3. 0 PAGE: 4 NATION I/ TILLAGE PRACTICE C P EROSION T I E L D S AVE ANNUAL AVE ANNUAL AVE ANNUAL TIA/Y NHEAT SOYBEAN CORN VALUE OF PRODUCTION NET RETURN BU DU DU PROD/ACRE COST/ACRE TO LAND 2/ '10 NOTIL ‘ UP - DOUN .08 1.000 13.34 18.7 15.1 .0 176.75 282.30 '105.55 '10: NOTIL CONTOUR .08 .600 8.01 18.7 15.1 .0 176.75 282.30 ‘107.55 '10: NOTIL CONT/STRIP .08 .300 4.00 18.7 15.1 .0 176.75 282.30 -110.55 -10 NOTIL TERRACE .08 .120 1.60 18.7 15.1 .0 176.75 282.30 '147.55 NOTIL UP - DUNN .03 1.000 4.94 .0 .0 60.5 177.87 233.65 '55.78 NOTIL CONT/STRIP .03 .300 1.48 .0 .O 60.5 177.87 233.65 '58.28 NOTIL TERRACE .03 .120 .59 .0 .0 60.5 177.87 233.65 ‘76.78 I/ ROTATIONS - C = CORN FOR GRAIN0 S = SOYBEANS0 AND V = NHEAT PRICES: CORN = 82.940 SOYBEANS = 66.900 NHEAT = 63.88 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZED INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND MAINTENANCE Of CONSERVATION PRACTICES. NO COST SHARING IS ASSUNED. COSTS ARE AS FOLLOfls: PRACTICE TOTAL ANNUAL COST UP AND noun 1 .00 ° CONTOUR 0 1.00 CONTOUR/STRIP 0 2.50 PARALLEL TERRACE 021.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT. I l 1 .I ll I..I§UD§T_I c.I . : u u n u a . Pb. Pix-FIJ- fl‘va-dqai A.~4A\.n- n.4-nu..- I an. o . . c . . . o . . . ~ q . - ~ . ~ c n - ~ 0 I O I I I A a V II I run II I I It 6‘! lnul‘uu-I|~d I~‘|.~duo.ulul Quo‘.c..-out --5-n\-I!n '\n!~I d o 0 ~ . . a u a . u n u . l‘ n.. nu-qsi..c In: I)»: .... ...... I. ...... . .. . . .. , l u n. ‘ ‘ ‘ | .I . . . . o . . . . . . . .. .I c 1 III 'hIIE FIIIO‘I II... llalib E E I I 1 u .I TABLE 1 - EROSION0 YIELD50 COST80 AND RETLRNS BY SOIL RESOURCET‘TROUP FOR KENTUCXY’S JACKSON PURCHASE AREA . . I I 0 I ' ' a:u:a:u: t:u:a:ac rarurfi rfirfi‘” DATE: 11/07/84 SR8 = K10A0 R = 250.0 K = .180 L = 150.0 8 = 5.00 L8 = .6550 T = 5.0 PAGE: 1 ROTATION 1/ TILLAGE PRACTICE C P EROSION Y I E L D S AUE ANNUAL AUE ANNUAL AVE ANNUAL T/A/Y NHEAT SOYBEAN CORN UALUE OF PRODUCTION NET RETURN BU BU BU PROD/ACRE COST/ACRE TO LAND 2/ S - S - 1 CONV UP - DONN .46 1.000 13.53 .0 19.6 .0 135.24 125.19 10.05 S - S - 1 CONV CONTOUR .46 .500 6.76 .0 19.6 .0 135.24 125.19 9.05 S ‘ S ’ 1 CONV TERRACE 046 0100 1035 00 1906 00 135024 125019 '10095 S - S - 2 CONV UP - DUNN .46 1.000 13.53 .0 19.6 .0 135.24 127.31 7.93 S - S - 2 CONV CONTOUR .46 .500 6.76 .0 19.6 .0 135.24 127.31 6.93 ~ S-S - 2 CONV TERRACE .46 .100 1.35 .0 19.6 .0 135.24 127.31 -13.07 -S - S - 3 CONSER UP - DONN .13 1.000 3.83 .0 19.6 .0 135.24 133.66 1.58 S - S - 3 CONSER CONTOUR .13 .500 1.92 .0 19.6 .0 135.24 133.66 .58 -S ‘ S - 3 CONSER TERRACE .13 .100 . .0 19.6 .0 135.24 133.66 -19.42 S ‘ S ' 4 NOTIL UP ‘ DUNN 007 10000 2006 .0 1906 00 135025 143005 ‘708! § * S - 4 NOTIL CONTOUR .07 .500 1.03 .0 19.6 .0 135.24 143.05 -8.81 5 ‘ S ’ 4 NUTIL TERRACE 007 0100 021 .0 1906 00 135024 143005 “28081 C - C - 1 CONV UP - DOHN .35 1.000 10.17 .0 .0 72.5 213.15 195.07 18.08 -C - C - 1 CONV CONTOUR .35 .500 5.08 .0 .0 72.5 213.15 195.07 17.08 C - C - 1 CONV TERRACE .35 .100 1.02 .0 . 72.5 213.15 195.07 -2. ' C ‘ 2 CONV UP ' DUNN 035 10000 10017 00 00 7205 213015 198022 14093 - C - 2 CONV CONTOUR .35 .500 5.08 .0 .0 72.5 213.15 198.22 13.93 - C - 2 CONV TERRACE .35 .100 1.02 .0 .0 72.5 213.15 198.22 -6.07 - C - 3 CONSER UP - DONN .08 1.000 2.27 .0 .0 72.5 213.15 198.20 14.95 - C - 3 CONSER CONTOUR .08 .500 1.13 .0 .0 72.5 213.15 198.20 13.95 - C - 3 CONSER TERRACE .08 .100 .23 .0 .0 72.5 213.15 198.20 -6.05 / S ' 1 CONV UP ’ DUNN 047 10000 13088 2704 1906 7205 227035 234039 12096 / S - 1 CONV CONTOUR .47 .500 6.94 27.4 19.6 72.5 227.35 214.39 11.46 / S - 1 CONV CONT/STRIP .47 .250 3.47 27.4 19.6 72.5 227.35 214.39 9.21 / S - 1 CONV TERRACE .47 .100 1.39 27.4 19.6 72.5 227.35 214.39 -8.04 / 5 - 2 CONV UP - DONN .47 1.000 13.88 27.4 19.6 72.5 227.35 214.31 13.05 / 8 ° 2 CONV CONTOUR .47 .500 6.94 27.4 19.6 72.5 227.35 214.31 11.55 / S - 2 CONU CONT/STRIP .47 .250 3.47 27.4 19.6 72.5 227.35 214.31 9.30 / S - 2 CONV TERRACE .47 .100 1.39 27.4 19.6 72.5 227.35 214.31 -7.95 H / S - 3 CONV UP - DONN .47 1.000 13.88 27.4 19.6 72.5 227.35 215.97 11.39 H / 3 - 3 CONV CONTOUR .47 .500 6.94 27.4 19.6 72.5 227.35 215.97 9.89 U / S - 3 CONV CONT/STRIP .47 .250 3.47 27.4 19.6 72.5 227.35 215.97 7.64 H / S - 3 CONV TERRACE .47 .100 1.39 27.4 19.6 72.5 227.35 215.97 -9.61 H / S - 4 CONV UP - DOHN .47 1.000 13.88 27.4 19.6 72.5 227.35 215.88 11.47 H/’S ‘ 4 CONV CONTOUR 047 0500 6074 2704 1906 72.5 227035 215088 9097 H / S - 4 CONV CONT/STRIP .47 .250 3.47 27.4 19.6 72.5 227.35 215.88 7.72 BI'S - 4 CONV TERRACE .47 .100 1.39 27.4 19.6 72.5 227.35 215.88 -9.53 Ul’S ~ 5 CONV UP - DOUN .47 1.000 13.88 27.4 19.6 72.5 227.35 213.59 13.76 UT’S - 5 CONV CONTOUR .47 .500 6.94 27.4 19.6 72.5 227.35 213.59 12.26 HI’S - 5 CONV CONT/STRIP .47 .250 3.47 27.4 19.6 72.5 227.35 213.59 10.01 “1’3 - 5 CONV TERRACE .47 .100 1.39 27.4 19.6 72.5 227.35 213.59 -7.24 1/ ROTATIONS - C = CORN FOR GRAIN: S = SOYBEANS: AND U = NHEAT PRICES: CORN = 02.94. SOYBEANS = 46.900 NHEAT = 03.38 2/ NET RETURN INCLUDES THE ANNUAL ANORTIZEO INSTALLATION COSTS AND THE ANNUAL COST OF OPERATION AND NAINTENANCE 0F CONSERVATION PRACTICES. NO COST SHARING IS ASSUNEO. COSTS ARE AS FOLLONS: PRACTICE TOTAL ANNUAL COST UP AND OOUN 0 .oo ' CONTOUR 0 1.00 CONTOUR/STRIP 0 2.50 PARALLEL TERRACE 021.00 3/ TERRACING IS APPLICABLE FOR SLOPES LESS THAN OR EOUAL TO 8 PERCENT T A q ...,sa hAh I iw 1.15 99.43 113.31 42.33 29.55 102.71 15.75 1.23 625.83 I 1.2 99.43 113.26 42.36 29.53 102.55 16.63 1.35 577.92 3 1.41 99.35 113.16 42.32 29.51 102.24 13.26 1.43 532.36 1 1.54 99.30 113.11 42.30 29.49 102.03 19.02 1.55 492.06 3 1.67 99.26 113.05 42.23 29.43 101.93 19.73 1.60 454.33 1 1.79 99.21 113.00 42.26 29.47 101.77 20.33 1.66 419.53 . 1.92 99.12 112.90 42.23 29.44 101.45 21.60 1.75 386.84 ' 2.05 99.07 112.35 42.21 29.43 101.29 2.17 1.30 357.20 1 2.13 99.03 112.30 42.19 29.41 101.13 22.69 1.34 329.33 ' 2.31 93.93 112.69 42.15 29.33 100.30 23.67 1.92 304.07 . 2.43 93.39 112.64 42.13 29.37 100.64 24.12 1.96 230. 77 2.56 93.34 112.59 42.11 29.36 100.43 24.54 1.99 259. 25 2.69 93.79 112.53 2.09 29.34 100.31 24.93 2.03 239.33 2.32 93.70 112.43 42.05 29.32 100.00 25.62 2.03 220.70 2.95 93.65 112.37 42.03 29.30 99.32 25.99 2.11 203.74 3 07 93.60 112.31 42.01 29. 9 99.63 26.34 2.14 133.03 HORIZON 1 2 RS TO LOSE 133.7 430.0 NVEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 1 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT 08 BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. ST PI = NORMALIZED NEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN= YIELDS 4 MARKET PRICES - COST OF PRODUCTION. (ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST= CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N- 1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). 4ECP= ANNUITY OF PRES VAL BET {EFIT. 1E8 VAL AG. LAND = CAF'ITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / .PITALIZATION(DISCOUNT) RATE. (SEEN 1.1 UZON DEPTH-CM TEXTURE BULN DENSITY-G/CM3 AVAILABLE UATER-IN/IN REACTION-PH KENTUCKYS JACKSON PURCHASE AREA REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING 2658 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOVDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 EP 1 ON SOIL RESOURCE GROUP 4.0 5 A PERCENT SLOPE UNUEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON DATE 10/15/84 T VALUE = 3.0 UNUEIOHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES . 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C‘H/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE = 8.00 TONS PER ACRE PER YEAR KET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER 8U. RAGE ANNUAL COST OF PRODUCTION = 252.00 DISCOUNT RATE 3 8.125 PERCENT TECH ADJ FACTOR = .000 AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT A5.LAND .13 99.91 113.80 42.56 29.67 100.24 3.41 .28 1141.04 .2 99.87 113.75 42.55 29.66 100.09 5.00 .41 1053.71 .38 99.83 113.71 42.53 29.65 99.94 6.47 .53 973.06 .51 99.74 113.61 42.49 29.62 99.64 9.21 .75 897.20 .64 99.70 113.56 42.47 29.61 99.48 10.48 .85 828.51 .77 99.66 113.51 42.45 29.60 99.33 11.67 .95 765.07 .90 99.61 113.46 42.43 29.58 99.18 12.76 1.04 706.48 1.02 99.52 113.36 42.40 29.56 98.87 14.80 1.20 651.35 1.15 99.48 113.31 42.38 29.55 98.71 15.75 1.28 601.46 1.28 99.43 113.26 42.36 29.53 98.55 16.63 1.35 555.38 1.41 99.35 113.16 42.32 29.51 98.24 18.26 1.48 512.01 1.54 99.30 113.11 42.30 29.49 98.08 19.02 1.55 472.78 1.67 99.26 113.05 42.28 29.48 97.93 19.73 1.60 436. 55 1.79 99.21 113.00 42.26 29.47 97.77 20.38 1.66 403. 09 1.92 99.12 112.90 42.23 29.44 97.45 21.60 1.75 371. 58 2.05 99.07 112.85 42.21 29.43 97. 29 22.17 1.80 343.09 2.18 99.03 112.80 42.19 29.41 7.13 22.69 1.84 316.79 2.31 98.93 112.69 42.15 29.38 96.80 23.67 1.92 292.01 2.43 98.89 112.64 42.13 29.37 96.64 24.12 1.96 269.61 2.56 98.84 112.59 42.11 29.36 96.48 24.54 1.99 248.93 2.69 98.79 112. 42. . 96.31 24.93 2.03 229.84 2.82 98.70 112.43 42.05 29.32 96.00 25.62 2.08 211.88 2.95 98.65 112.37 42.03 29.30 95.82 25.99 2.11 195.58 3.07 98.60 112.31 42.01 29.29 95.63 26.34 2.14 180.53 HORIZON 1 2 IS TO LOSE 138.7 430.0 TNEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. ZPTH LOST T P1 = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. .D = ESTIMATED YIELD FOR YEAR OF CONVERSION N. ET RETURN= IES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST= YIELDS 4 MARKET PRICES- COST OF PRODUCTION. CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N-I) - FRESENT CAPITALIZED VALUE OF A6 LAND(YEAR N). ECP = ANNUITY OF PRES VAL BENEFIT. 'ES VAL AG. LAND = CAF’ITALIZED PRESENT VALUE OF AS. LAND= DISCOUNTED NET RETURNS(YEAR N) / :PITALIZATIONIDISCOUNT) RATE. T 2S9 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSUC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUC‘YYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTI.“ ATE '-' LORINO EP 1 ON 4.0 PERCENT SLOPE UNHEIOHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON TEXTURE BULK DENSITY-O/CM3 AVAILABLE UATER-IN/IN REACTION-PH UNUEIOHTED PI BY HORIZON T VALUE = 3.0 RIZON DEPTH-CM 17.3 FSILT 1.40 .22 5.25 .7 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-U/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = CONTOURINS EROSION RATE = 4.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER 8U. Tame ANNUAL COST OF Paonucnon = 250.00 nxscoum ME = 8.125 PERCENT TECH 00.: mm = .000 EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 NET PRES VAL MAECP PRES VAL CM CORN UHEAT SOY RETURN BENEFIT AG.LAND 1 .00 130.00 113.90 42.60 29.70 102.54 .00 .00 1262.06 2 .00 99.96 113.85 20.) 29.69 102.39 1070 014 1165052 3 .13 99.91 113.80 42.56 29.67 102.24 3.28 .27 1076.35 3 .19 99.91 113.80 42.56 29.67 102.24 3.28 .27 995.47 5 .26 99.87 113.75 42.55 29.66 102.09 4.64 .38 919.31 6 .32 99.83 113.71 42.53 29.65 101.94 5.90 .48 848.97 T .38 99.83 113.71 42.53 29.65 101.94 5.90 .48 785.17 8 .45 99.79 113.66 42.51 29.64 101.79 6.98 .57 725.09 7 .51 99.74 113.61 42.49 29.62 101.64 7.99 .65 669.60 10 .58 99.74 113.61 42.49 29.62 101.64 7.99 .65 619.28 11 .64 99.70 113.56 42.47 29.61 101.48 8.85 .72 571.89 12 .70 99.66 113.51 42.45 29.60 101.33 9.65 .78 528.11 13 .77 99.66 113.51 42.45 29.60 101.33 9.65 .78 488.43 14 .83 99.61 113.46 42.43 29.58 101.18 10.33 .84 451.04 15 .90 99.61 113.46 42.43 29.58 101.18 10.33 .84 417.15 17 1.02 99.52 113.36 42.40 29.56 100.87 11.47 .93 355.72 T? 1.09 99.52 113.36 42.40 29.56 100.87 11.47 .93 328.99 19 1.15 99.48 113.31 42.38 29.55 100.71 11.94 .97 303.80 IO .22 99.43 113.26 42.36 29.53 100.56 12.37 1.01 280.53 31 1.28 99.43 113.2 42.36 29.53 100.56 12.37 1.01 259.45 33 1.35 99.39 113.21 42.34 29.52 100.40 2.75 1.04 239.58 33 1.41 99.35 113.16 42.32 29.51 100.24 13.09 1.06 221.23 34 1.47 99.35 113.16 42.32 29.51 100.24 13.09 1.06 204.61 35 1.54 99.30 113.11 42. 30 29.49 100.08 13.39 1.09 188.94 HORIZON 1 2 EARS TO LOSE 277.3 860.1 .L’NUEIGHTED P1 BY HORIZON = BULK DENSITY SUFFICIENCY 1 AVAILABLE HATER SUFFICIENCY 4 PH SUFFICIENCY. .YEAR == YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. .I-EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. .PCT PI == NORMALIZED VEIOHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. ....II : ESTIMATED YIELD FOR YEAR OF CONVERSION. .451: RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. PRES VAL BENEFIT = FRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AS. LAND(YEAR I) - PRESENT VALUE OF NET RETURNS(TO YEAR N- -1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). 4AECP= ANNUITY OF FRES VAL BENEFIT. PRES VAL A8. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / CAF ITALIZATIONTDISCOUNT) RAT E. 260 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON TRIZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE UATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON , -r 533516.“ 1.1 T VALUE = 3.0 17.8 FSILT 1.40 .22 .25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-N/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = UP AND DOHN EROSION RATE = 5.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. ERAGE ANNUAL COST OF PRODUCTION = 266.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 N EAR DEPTH LOST PCT P1 YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND I .00 100.00 118.80 42.60 34.70 111.00 .00 .00 1366.09 3 .16 99.91 118.70 42.56 34.67 110.67 3.51 .29 1165.12 T .24 99.87 118.65 42.55 34.66 110.51 5.08 .41 1076.00 3 .32 99.83 118.60 42.53 34.64 110.35 6.54 .53 993.69 . .40 99.79 118.55 42.51 34.63 110.19 7.89 .64 917.67 ' .48 99.79 118.55 42.51 34.63 110.19 7.89 .64 848.71 I .5 99.74 118.49 42.49 34.61 110.03 9.05 .74 783.77 .64 99.70 118.44 42.47 34.60 109.86 10.13 .82 723.80 .72 99.66 118.39 42.45 34.58 109.70 11.13 .90 668.41 .80 99.61 118.34 42.43 34.57 109.53 12.05 .98 617.26 .88 99.61 118.34 42.43 34.57 109.53 12.05 .98 570.87 .96 99.57 118.29 42.42 34.55 109.37 12.85 1.04 527.18 .1.04 99.52 113.24 42.40 34.54 109.20 13.59 1.10 486.83 1.12 99.48 118.18 42.38 34.52 109.04 14.27 1.16 449.56 1.20 99.43 118.13 42.36 34.50 108.87 14.91 1.2 415.14 1.28 99.43 118.13 42.36 34.50 108.87 14.91 1.21 383.94 1.36 99.39 118.08 42.34 34.49 108.70 15.46 1.26 354.55 1.44 99.35 118.02 42.32 34.47 108.53 15.96 1.30 327.40 1.52 99.30 117.97 42.30 34.46 108.37 16.43 1.34 302.33 1.60 99.26 117.92 42.28 34.44 108.20 16.87 1.37 279.17 1.68 99.26 117.92 42.28 34.44 108.20 16.87 1.37 258.19 1.76 99.21 117.86 42.26 34.43 108.03 17.24 1.40 238.42 1..84 99.16 117.81 42.25 34.41 107.86 17.59 1.43 220.15 1..92 99.12 117.76 42.23 34.40 107.69 17.91 1.46 203.29 HORIZON 1 2 5 TO LOSE 221.9 688.1 JEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY ! AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. NR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT 0R BELOH T VALUE. ’TH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. 1’ PI = NORMALIZED l.JEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. T = ESTIHATED YIELD FOR YEAR OF CONVERSION. ' RETURN = Y IELDS X MARKET PRICES - COST OF PRODUCTION. ZS VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNSUO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). C? = ANNUITY OF PRES VAL BENEFIT. C VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / H ITALIZATIOMDISCDUNT) RATE. 2651 ERSIDN 1.1 SOIL DEPLETION E538MATE DATE 10/12/84 ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSNC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION . NORTHEAST SECTION 2/84 KENTUCNYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTILATE = GRENADA ON 4.0 PERCENT SLOPE T VALUE = 3.0 UNUEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON ORIZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNNEIOHTED PI BY HORIZON 12.7 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 53.3 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 61.0 FSILT 1.43 .22 5.25 .76 SUFFICIENCIES .95 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C'H/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = UP 1 DOUN EROSION RATE = 32.00 TONS PER ACRE PER YEAR ARKET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER DU. SOY 6.90 PER BU. VERAGE ANNUAL COST OF PRODUCTION = 248.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 YEAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 113.90 42.60 29.70 104.54 .00 .00 1286.67 2 .49 99.72 113.58 42.48 29.62 103.55 11.29 .92 1178.70 3 .99 99.43 113.25 42.36 29.53 102.55 21.87 1.78 1079.55 4 1.48 99.14 112.93 42.24 29.45 101.53 31.78 2.58 988.51 S 1.98 98.85 112.59 42.11 29.36 100.49 41.08 3.34 904.93 6 2.47 98.55 112.25 41.98 29.27 99.45 49.78 4.04 828.22 7 2.97 98.24 111.91 41.86 29.18 98.39 57.94 4.71 757.83 8 3.46 97.93 111.57 41.73 29.09 97.32 65.58 5.33 693.24 9 3.96 97.62 111.21 41.60 29.00 96.23 72.74 5.91 633.99 10 4.45 97.30 110.86 41.46 28.91 95.13 79.44 6.45 579.65 11 4.95 96.97 110.50 41.33 28.81 94.02 85.71 6.96 529.82 12 5.44 96.64 110.14 41.19 28.72 92.89 91.59 7.44 484.13 13 5.94 96.31 109.77 41.05 28.62 91.75 97.08 7.89 442.26 14 6.43 95.97 109.39 40.91 28.53 90.60 102.23 8.31 403.88 15 6.93 95.63 109.02 40.77 28.43 89.43 107.04 8.70 368.72 16 7.42 95.28 108.64 40.63 28.33 88.25 111.54 9.06 336.51 17 7.92 94.92 108.25 40.49 28.23 87.05 115.76 9.41 307.01 .8 8.41 94.56 107. 40.34 28.13 85.85 119.69 9.73 280.00 .9 8.90 94.19 107.47 40.19 28.02 84.63 123.38 10.02 255.27 30 9.40 93.90 107.15 40.07 27.94 83.64 126.13 10.25 233.34 3 9.89 93.52 106.74 39.92 27.83 82.39 129.34 10.51 212.59 '2 10.39 93.14 106.34 39.77 27.73 81.13 132.35 10.75 193.61 f3 10.88 92.75 105.93 39.62 27.62 79.86 135.16 10.98 176.26 ‘4 11.38 92.36 105.51 39.46 27.51 78.58 137.78 11.19 160.39 5 11.87 91.96 105.09 39.31 27.40 77.28 140.24 11.39 145.88 HORIZON 1 2 3 A85 TO LOSE 25.6 81.9 15.3 UNUEIGHTED PI BY HORIZON 8 BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 4 PH SUFFICIENCY. YEAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODINS AT OR DELOU T VALUE. DEPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. PCT P1 = NORMALIZED NEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. YLD = ESTIMATED YIELD FOR YEAR OF CONVERSION. NET RETURN = YIELDS 1 MARKET PRICES - COST OF PRODUCTION. PRES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A8. LAND(YEAR 1) - PRESENT VALUE OF NET RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). MAECP = ANNUITY OF PRES VAL BENEFIT. PRES VAL A6. LAND = CAPITALIZED PRESENT VALUE OF A8. LAND = DISCOUNTED NET RETURNSTYEAR N) / 3APITALIZATION(DISCOUNT) RATE. 262 ERSION1.1 SOIL DEPLETION ESTIMATE DATE 10/12/84 ADAPTED PIERCE/LARSON/OOUDY/ORAHAM MODEL FROM JSVC JAN/FEB 1983 ECONONIC RESEARCH SERVICE v NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL rm DEPLETION ESTIMATE = GRENADA ON 4.0 PERCENT SLOPE T VALUE = 3.0 UNUEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IRIZON DEPTH-CM TEXTURE BULK DENSITY-O/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNNEIGHTED PI BY HORIZON 12.7 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 53.3 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 61.0 FSILT 1.43 .22 5.25 .76 SUFFICIENCIES .95 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-U/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOURING EROSION RATE = 16.00 TONS PER ACRE PER YEAR AKET PRICES CORN 2.94 PER DU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. ERAOE ANNUAL COST OF PRODUCTION = 249.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 113.90 42.60 29.70 103.54 .00 .00 1274.36 2 .2 99.83 113.71 42.53 29.65 102.95 6.75 .55 1171.85 3 .49 99.72 113.58 42.48 29.62 102.55 10.94 .89 1079.61 4 .74 99.55 113.39 42.41 29.57 101.95 16.79 1.36 992.63 5 .99 99.43 113.26 42.36 29.53 101.55 20.42 1.66 914.41 6 1.24 99.26 113.06 42.29 29.48 100.94 25.49 2.07 840.62 7 1.48 99.14 112.93 42.24 29.45 100.53 28.64 2.33 774.30 8 1.73 98.97 112.73 42.16 29.39 99.91 33.04 2.68 711.72 9 1.98 98.85 112.59 42.11 29.36 99.50 35.77 2.91 655.51 0 2.23 98.67 112.39 42.04 29.31 98.87 39.58 3.22 602.44 1 2.47 98.55 112.26 41.99 29.27 98.45 41.94 3.41 554.81 2 2.72 98.36 112.05 41.91 29.22 97.82 45.24 3.68 509.82 J 2.97 98.24 111.91 41.86 29.18 97.39 47.29 3.84 469.46 4 3522 98.06 111.71 41.78 29.13 96.75 50.15 4.07 431.32 5 .3.46 97.93 111.57 41.73 29.09 96.32 51.93 4.22 397.14 7 3.96 97.62 111.22 41.60 29.00 95.24 55.94 4.55 335.87 8 4.21 97.43 111.00 41.52 28.94 94.58 58.09 4.72 308.48 9 4.45 97.30 110.86 41.46 28.91 94.14 59.42 4.83 283.97 0 4.70 97.17 110.72 41.41 28.87 93.69 60.65 4.93 261.39 1 4.95 96.97 110.50 41.33 28.81 93.03 62.38 5.07 240.03 2 5.19 96.84 110.36 41.28 28.78 92.58 63.45 5.16 220.92 3 5.44 96.64 110.14 41.19 28.72 91.90 64.94 5.28 202.82 4 5.69 96.51 109.99 41.14 28.68 91.45 65.87 5.35 186.66 5 5.94 96.31 109.77 41.06 28.62 90.76 67.17 5.46 171.34 HORIZINT 1 2 3 YRS TO LOSE 51.2 163.8 30.6 INHEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 1 AVAILABLE HATER SLFFICIENCY 3 PH STFFICIENCY. 'EAR 8 YEAR W COWERSION TO RESOURCE MOT. SYSTEM ERODINS AT OR BELOH T VPLUE. 'EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. “CT PI == NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. ID = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS ! MARKET PRICES - COST OF PRODUCTION. RES 4H8. BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A6. LAND(YEAR 1) - PRESENT VALUE F NET RETURNSUO YEAR N-l) - PRESENT WITALIZED VALUE OF A6 LAND(YEAR N). AECP = ANNUITY OF PRES VAL BENEFIT. RES VAL A6. LAND = CAPITALIZED PRESENT VALLE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITKIZATIOMDISCOWT) RATE. 263 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSVC JAN/FEB 1983 ECONONIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTLNIXYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = GRENADA ON 4.0 PERCENT SLOPE UNHEIGHTED PROWCTIVITY INDEX-PPCALCULATIONS BY SOIL HORIZON )RIZCN DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE NATER-IN/IN REACTION-PH UNHEIGHTED PI BY AORIZCN LRSION 1.1 DATE 10/12/84 I VALUE = 3.0 12.7 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1. 00 .81 53.3 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 61.0 FSILT 1.43 .22 5.25 .76 SUFFICIENCIES .95 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-N/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = UP 1 DOUN EROSION RATE 8 8.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. ERAGE ANNUAL COST OF PRODUCTION = 248.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 113.90 42.60 29.70 104.54 .00 .00 1286.67 2 .12 99.89 113.77 42.55 29.67 104.15 4.49 .36 1185.49 3 .25 99.83 113.71 42.53 29.65 103.95 6.58 .53 1094.32 4 .37 99.78 113.64 42.50 29.63 103.75 8.51 .69 1010.16 5 .49 99.72 113.58 42.48 29.62 103.55 10.30 .84 932.46 6 .62 99.60 113.45 42.43 29.58 103.15 13.64 1.11 859.06 7 .74 99.55 113.39 42.41 29.57 102.95 15.18 1.23 792.96 3 .87 99.49 113.32 42.38 29.55 102.75 16.62 1.35 731.94 9 .99 99.43 113.26 42.36 29.53 102.55 17.95 1.46 675.61 0 1.11 99.32 113.12 42.31 29.50 102.14 20.42 1.66 622.37 1 1.24 99.26 113.06 42.29 29.48 101.94 21.56 1.75 574.45 2 1.36 99.20 112.99 42.26 29.46 101.73 22.63 1.84 530.22 3 1.48 99.14 112.93 42.24 29.45 101.53 23.61 1.92 489.39 T 1.61 99.02 112.79 42.19 29.41 101.12 25.44 2.07 450.79 5 1.73 98.97 112.73 42.16 29.39 100.91 26.29 2.14 416.06 . 1.86 98.91 112.66 42.14 29.38 100.71 27.08 2. 384.01 ' 1.98 98.85 112.59 42.11 29.36 100.50 27.81 2.2 354.42 ) 2.10 98.73 112.46 2.06 29.32 100.08 29.17 2.37 326.43 ’ 2.23 98.67 112.39 42.04 29.31 99.87 29.30 2.42 301.2 ' 2.35 98.61 112.32 42.01 29.29 99.66 30.39 2.47 278.05 2.47 98.55 112.26 41.99 29.27 99.45 30.93 2.51 256.61 2.60 98.49 112.19 41.96 29.25 99.24 31.43 2.55 236.83 2.72 98.36 112.05 41.91 29.22 98.82 32.36 2.63 218.10 2.84 98.30 111.98 41.88 29.20 98.61 32.80 2.66 201.28 2.97 98.24 111.91 41.86 29.18 98.40 33.20 2.70 185.75 TNIRIZINI 1 2 3 RS TO LOSE 102.5 327.6 61.3 NHEISHTED PI BY WIZINI 8 BILK DENSITY SUFFICIENCY 4 AVAILABLE HATER SLFFICIENCY 8 PH SUFFICIENCY. = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMllATITE IIPTH OF SOIL LOST PRIOR TO YEAR CF CONVERSION. CT PI == NORNALIZED NEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS 1 HARKET PRICES - COST OF PRODUCTION. 3E5 VAL BENEFIT = PRESENT VALUE N BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). YECP= ANNUITY OF PRES VAL BENEFIT. ‘ES VAL AG. LAND= CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS1YEAR N) / PITALIZATIOMDISCOUNT) RATE. 264 ZRSION 1.1 SOIL DEPLETION ESTIMATE DATE 10/12/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GFIOJP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = GRENADA ON 4.0 PERCENT SLOPE T VALUE = 3.0 UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON ERIZON DEPTH-CM TEXTURE BLLK DENSITY-G/CM3 AVAILABLE NATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 12.7 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 53.3 FSILT 1.45 .22 5.25 .7 SUFFICIENCIES .93 1.00 .81 61.0 FSILT 1.43 .22 5.25 .76 SUFFICIENCIES .95 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN~DOUBLE CROP HHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE = 8.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER BU. ERAGE ANNUAL COST OF PRODUCTION = 252.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN HHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 113.90 42.60 29.70 100.54 .00 .00 1237.44 2 .12 99.89 113.77 42.55 29.67 100.15 4.49 .36 1139.96 3 .25 99.83 113.71 42.53 29.65 99.95 6.58 .53 1052.21 4 .37 99.78 113.64 42.50 29.63 99.75 8.51 .69 971.21 5 .49 99.72 113.58 42.48 29.62 ' 99.55 10.30 .84 896.44 6 .62 99.60 113.45 42.43 29.58 99.15 13.64 1.11 825.74 7 .74 99.55 113.39 42.41 29.57 98.95 15.18 1.23 762.15 3 .87 99.49 113.32 42.38 29.55 98.75 16.62 1.35 703.44 9 .99 99.43 113.26 42.36 29.53 98.55 17.95 1.46 649.25 7 1.11 99. 113.12 42.31 29.50 98.14 20.42 1.66 597.99 1 1.24 99.26 113.06 42.29 29.48 97.94 21.56 1.75 551.91 2 1.36 99.20 112.99 42.26 29.46 97.73 22.63 1.84 509.38 3 1.48 99.14 112.93 42.24 29.45 97.53 23.61 1.92 470.11 4 1.61 99.02 112.79 42.19 29.41 97.12 25.44 2.07 432.95 3 1.73 98.97 112.73 42.16 29.39 96.91 26.29 2.14 399.57 S 1.86 98.91 112.66 42.14 29.38 96.71 27.08 2.2 368.76 7 1.98 98.85 112.59 42.11 29.36 96.50 27.81 2.26 340.32 3 2.10 98.73 112.46 42.06 29.32 96.08 29.17 2.37 313.39 I 2.23 98.67 112.39 42.04 29.31 95.87 29.80 2.42 289.21 ) 2.35 98.61 112.32 42.01 29.29 95.66 30.39 2.47 266.89 1 2.47 98.55 112.26 41.99 29.27 95.45 30.93 2.51 246.29 3 2.60 98.49 112.19 41.96 29.25 95.24 31.43 2.55 227.28 I 2.72 98.36 112.05 41.91 29.22 94.82 32.36 2.63 209.27 T 2.84 98.30 111.98 41.88 29.20 94.61 32.80 2.66 193.11 3 2.97 98.24 111.91 41.86 29.18 94.40 33.20 2.70 178.20 FNHRIZIHI 1 2 3 RS TO LOSE 102.5 327.6 61.3 NHEIGITED PI BY MIZON '-‘ BILN IENSITY SIIFICIENCY 3 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. EAR: YEAR OF CONVERSION TO RESOURCE MST. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI - NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETIRN = YIELDS t MARKET PRICES - COST OF PRODUCTION. RES VAL BEKFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE F NET RETURNSUO YEAR N-1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP= ANNUITY 0F PRES VAL BENEFIT. RES VAL A8. LAND= CAPITALIZED PRESENT VALUE (N: AG. LAND = DISCOUNTED NET RETURNS1YEAR N) / APITALIZATIOMDISCOUNT) RATE. Pd 265 ZRSION1.1 SOIL DEPLETION ESTIMATE DATE 10/12/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSUC JAN/FE81983 ECONOMIC RESEARCH SERVICE 7 NATURAL RESOURCE ECONOMICS DIVISION , NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = GRENADA ON 4.0 PERCENT SLOPE T VALUE = 3.0 UNHEIGHTED PRODUCTIVITY INDEX‘PI°CALCULATIONS BY SOIL HORIZON )RIZON DEPTH-CM 'TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HGRIZO 12.7 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 53.3 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 61.0 FSILT 1.43 .22 5.25 .76 SUFFICIENCIES .95 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = CONTOURING EROSION RATE = 4.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER BU. ERAGE ANNUAL COST OF PRODUCTION = 250.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN HHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 113.90 42.60 29.70 102.54 .00 .00 1262.06 2 .06 99.94 113.84 42.58 29.68 102.35 2.24 .18 1164.98 3 .12 99.89 113.77 42.55 29.67 102.15 4.32 .35 1075.36 4 .19 99.89 113.77 42.55 29.67 102.15 4.32 .35 994.55 5 .25 99.83 113.71 42.53 29.65 101.95 6.11 .50 918.03 6 .31 99.78 113.64 42.50 29.63 101.75 7.76 .63 847.39 7 .37 99.78 113.64 42.50 29.63 101.75 7.76 .63 783.71 8 .43 99.72 113.58 42.48 29.62 101.55 9.18 .75 723.40 9 .49 99.72 113.58 42.48 29.62 101.55 9.18 .75 669.04 0 .56 99.66 113.52 42.46 29.60 101.35 10.40 .84 617.55 1 .62 99.60 113.45 42.43 29.58 101.15 11.52 .94 570.02 2 .68 99.60 113.45 42.43 29.58 101.15 11.52 .94 527.18 3 .74 99.55 113.39 42.41 29.57 100.95 12.49 1.01 486.60 4 .80 99.49 113.32 42.38 29.55 100.75 13.39 1.09 449.14 5 .87 99.49 113.32 42.38 29.55 100.75 13.39 1.09 415.39 6 .93 99.43 113.26 42.36 29.53 100.55 14.16 1.15 383.40 7 .99 99.43 113.26 2.36 29.53 100.55 14.16 1.15 354.59 3 1.05 99.38 113.19 42.33 29.51 100.35 14.82 1.20 327.29 7 1.11 99.32 113.12 42.31 29.50 100.14 15.43 1.25 302.08 ) 1.17 99.32 113.12 42.31 29.50 100.14 15.43 1.25 279.38 1 1.24 99.26 113.06 42.29 29.48 99.94 15.96 1.30 257.86 2 1.30 99.26 113.06 42.29 29.48 99.94 15.96 1.30 238.49 I 1.36 99.20 112.99 42.26 29.46 99.73 16.41 1.33 220.11 T 1.42 99.14 112.93 42.24 29.45 99.53 16.82 1.37 203.16 T 1.48 99.14 112.93 42.24 29.45 99.53 16.82 1.37 187.89 FHNRIZIN' 1 2 3 RS TO LOSE 204.9 655.1 122.5 NHEIGHTED PI BY HMIZON = BLLK IENSITY SLFFICIETEY 8 AVAILABLE HATER SLFFICIENCY 8 PH SLFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI == NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS ! MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE CN' AG. LAND(YEAR 1) — PRESENT VALUE -' NET RETURNSUO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). REC? = ANNUITY OF PRES VAL BENEFIT. RES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / EPITALIZATIOMDISCOUNT) RATE. 266 ERSION 1.1 SOIL DEPLETION ESTIMATE DATE 10/12’84 ADAPTED PIERCE/LARSON/DOHOY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE . NATURAL RESOURCE ECONOMICS DIVISION 1 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 A REPRESENTATIVE SOIL FOR TIPLETION ESTIMATE = GRENADA ON 4.0 PERCENT SLOPE T VALUE = 3.0 UNHEIGHTED PRODUCTIVITY INDEX-PI‘CALCULATIONS BY SOIL HORIZON ZRIZON [ERIN-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 12.7 FSILT 1.45 .2 5.25 .75 SUFFICIENCIES .93 1.00 .81 53.3 FSILT 1.45 .22 5.25 .75 SUFFICIENCIES .93 1.00 .81 61.0 FSILT 1.43 .22 5.25 .76 SUFFICIENCIES .95 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = UP 1 DOHN EROSION RATE = 5.00 TONS PER ACRE PER YEAR \RKET PRICES CORN 2.94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER BU. ERASE ANNUAL COST OF PRODUCTION = 266.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN HHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 118.80 42.60 34.70 111.00 .00 .00 1366.09 2 .08 99.94 118.73 42.58 34.68 110.78 2.40 .19 261.04 3 .15 99.89 118.67 42.55 34.66 110.57 4.62 .38 1164.06 4 .23 99.83 118.60 42.53 34.64 110.36 6.68 .54 1074.52 5 .31 99.78 118.53 42.50 34.62 110.15 8.60 .70 991.86 7 .46 99.72 118.47 42.48 34.60 109.94 10.24 .83 846.76 B .54 99.66 118.40 42.46 34.58 109.72 11.76 .96 781.61 9 .62 99.60 118.33 42.43 34.56 109.51 13.17 1.07 721.46 0 .70 99.60 118.33 42.43 34.56 109.51 13.17 1.07 667.25 1 .77 99.55 118.26 42.41 34.54 109.29 14.38 1.17 615.90 2 .85 99.49 118.20 42.38 34.52 109.08 15.50 1.26 568.50 3 .93 99.43 118.13 42.36 34.50 108.86 16.54 1.34 524.74 4 1.00 99.38 118.06 42.33 34.48 108.65 17.51 1.42 484.34 5 1.08 99.38 118.06 42.33 34.48 108.65 17.51 1.42 447.95 5 1.16 99.32 117.99 42.31 34.46 108.43 18.33 1.49 413.46 7 1.24 99.26 117.92 42.29 34.44 108.21 19.10 1.55 331.62 T 1.31 99.20 117.85 42.26 34.42 107.99 19.81 1.61 352.23 I 1.39 99.20 117.85 42.26 34.42 107.99 19.81 1.61 325.76 ) 1.47 99.14 117.79 42.24 34.40 107.77 20.42 1.66 300.67 . 1.55 99.08 117.72 42.21 34.38 107.56 20.99 1.71 277.51 I 1.62 99.02 117.65 42.19 34.36 107.34 21.51 1.75 256.14 I 1.70 98.97 117.58 42.16 34.34 107.11 22.00 1.79 236.40 ; 1.78 98.97 117.58 42.16 34.34 107.11 22.00 1.79 218.64 I 1.86 98.91 117.51 42.14 34.32 106.89 22.42 1.82 201.79 HORIZIHI 1 2 3 RS TO LOSE 163.9 524.1 98.0 WEIGHTED PI BY HORIZON = BULK DENSITY SLFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOLRCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LB = ESTIMTED YIELD FIR YEAR 1N: CONVERSION. ET RETLIUV = YIELDS t MARKET PRICES - COST OF PRODUCTION. RES VN. BEKFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE F NET RETURNSUO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). 4ECP = ANWITY OF PRES VAL BENEFIT. L‘ES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS1YEAR N) / 5.PITAIJZATIOMDISCOUNT) RATE. 267 .‘SICN 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 C REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORINO EP 2 ON 4.0 PERCENT SLOPE T VALUE = 3.0 UNUEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-O/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI BY HCRIZON 8.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-U/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = UP 1 DOUN EROSION RATE = 32.00 TONS PER ACRE PER YEAR KET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. TRACE ANNUAL COST OF PRODUCTION = 251.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 .AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 109.30 40.90 28.50 87.34 .00 .00 1074.98 .51 99.63 108.89 40.75 28.39 86.08 14.32 1.16 979.88 1.02 99.30 108.54 40.62 28.30 84.99 25.80 2.10 894.77 1.54 98.98 108.19 40.48 28.21 83.89 36.52 2.97 816.81 2.05 98.64 107.83 40.35 28.12 82.78 46.55 3.78 745.40 2.56 98.31 107.46 40.21 28.02 81.65 55.92 4.54 680.02 3.07 97.97 107.10 40.07 27.93 80.52 64.68 5.25 620.16 1 3.59 97.62 106.72 39.94 27.83 79.37 72.86 5.92 565.38 ' 4.10 97.27 106.35 39.80 27.73 78.21 80.50 6.54 515.25 ' 4.61 96.85 105.91 39.63 27.61 76.83 88.87 7.22 468.16 5.12 96.49 105.52 39.49 27.51 75.65 95.56 7.76 426.30 5.64 96.12 105.14 39.34 27.41 74.45 101.80 8.27 388.02 . 6.15 95.75 104.75 39.20 27.31 73.24 107.62 8.74 353.04 6.66 95.37 104.35 39.05 27.21 72.02 113.06 9.19 321.07 7.17 94.99 103.95 38.90 27.11 70.79 118.14 9.60 291.86 7.69 94.61 103.55 38.75 27.00 69.55 122.88 9.98 265.19 8.20 94.22 103.15 38.60 26.90 68.29 127.31 10.34 240.84 8.71 93.75 102.66 38.42 26.77 66.80 132.17 10.74 217.88 .21 93.38 102.28 38.27 26.67 65.62 135.72 11.03 197.95 9.71 93.02 101.92 38.14 26.58 64.49 138.88 11.28 179.92 10.20 92.66 101.55 38.00 26.48 63.35 141.83 11.52 163.45 10.70 92.36 101.25 37.89 26.40 62.42 144.04 11.70 148.96 11.19 91.99 100.87 37.75 26.30 61.26 146.61 11.91 135.19 11.68 91.61 100.49 37.60 26.20 60.08 149.02 12.11 122.63 12.18 91.23 100.11 37.46 26.10 58.88 151.27 12.29 111.16 HORIZON 1 2 RS TO LOSE 17.3 107.5 NUEIOHTED PI BY HORIZON = BULK DENSITY SWFICIENCY 3 AVAILABLE HATER SII'FICIENCY 8 PH SIFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODINO AT OR BELOH T VALUE. EF’TH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED NEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHAMIE. LII = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS ! MARKET PRICES - COST OF PRODUCTION. RES IJAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AS. LAND(YEAR 1) - PRESENT VALUE E NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AO LAND(YEAR N). 4ECF’ = ANNUITY OF PRES VAL BENEFIT. 2E5 TJAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS1YEAR N) / 4FITALIZATION(DISCOUNT) RATE. 268 R510)! 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSNC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 C REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 2 ON 4.0 PERCENT SLOPE T VALUE 8 3.0 UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON RIZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON 8.9 FSILT 1.40 .22 .25 .78 SUFFICIENCIES .96 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE 3 CONTOURING EROSION RATE = 16.00 TONS PER ACRE PER YEAR MET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. RAGE ANNUAL COST OF PRODUCTION = 253.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 109.30 40.90 28.50 85.34 .00 .00 1050.36 T .26 99.81 109.10 40.82 28.45 84.72 7.13 .58 964.30 T .51 99.63 108.89 40.75 28.39 84.08 13.77 1.12 885.20 ; .77 99.49 103.75 40.69 28.36 83.63 18.16 1.48 814.29 . 1. 2 99.30 108.54 40.62 28.3 83.00 23.91 1.94 747.36 I 1.2 99.17 108.39 40.56 28.26 82.54 27.71 2.25 687.40 1.54 98.98 108.19 40.48 28.21 81.89 32.67 2.65 630.78 1.79 98.84 108.04 40.43 28.17 81.43 35.95 2.92 580.10 2.05 98.64 107.83 40.35 28.12 80.78 40.25 3.27 532.21 2.31 98.45 107.62 40.27 28.06 80.13 44.25 3.60 488.22 2.56 98.31 107.46 40.21 28.02 79.66 46.88 3.81 448.90 2.82 98.11 107.25 40.13 27.97 78.99 50.34 4.09 411.71 3.07 97.97 107.10 40.08 27.93 78.52 52.62 4.28 378.49 3.33 97.76 106.88 39.99 27.87 77.85 55.61 4.52 347.06 3.5 97.62 106.73 39.94 27.83 77.38 57.57 4.68 319.02 3.84 97.41 106.51 39.86 27.77 76.70 60.16 4.89 292.46 4.10 97.27 106.35 39.80 27.73 76.22 61.86 5.03 268.78 .36 97.06 106.13 39.71 27.67 75.53 64.09 5.21 246.35 4.61 96.85 105.91 39.63 27.62 74.84 66.16 5.38 225.77 4.87 96.70 105.75 39.57 27.57 74.35 67.53 5.49 207.44 5.12 96.49 105.53 39.49 27.52 73.66 69.32 5.63 190.05 5.38 96.34 105.37 39.43 27.47 73.16 70.50 5.73 174.59 5.64. 96.12 105.14 39.34 27.42 72.46 72.05 5.85 159.92 5.89 95.97 104.98 39.28 27.37 71.96 73.07 5.94 146.89 6.15 95.75 104.75 39.20 27.31 71.25 74.41 6.05 134.51 HORIZON 1 2 :8 TO LOSE 34.7 215.0 HEIGHTE]! PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. AR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. PTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CMVERSION. T P1 = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. D = ESTIMATED YIELD FOR YEAR OF CONVERSION. T RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNSTTO YEAR N-1) - PRESENT CAPITALIZED VALIE OF AG LAND(YEAR N). ECP = ANNUITY OF PRES VAL BENEFIT. ES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED )ET RETURNSIYEAR N) / ’ITALIZATIOMDISCOUNT) RATE. T 269 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSUC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION v NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 5 C REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 2 ON 4.0 PERCENT SLOPE UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-GI’CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON SIGN 1.1 8.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1. 00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = UP 1 DOHN EROSION RATE = 8.00 TONS PER ACRE PER YEAR SET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. .96 100.00 110.90 42.60 29.70 97.13 .00 .00 808.93 ' 1. 5 100.00 110.90 42.60 29.70 97.13 .00 .00 748.14 1.35 ' 100.00 110.90 42.60 29.70 97.13 .00 .00 691.92 1.54 100.00 110.90 42.60 29.70 97.13 .00 .00 639.93 1.73 100.00 110.90 42.60 29.70 97.13 .00 .00 591.84 1.92 100.00 110.90 42.60 29.70 97.13 .00 .00 547.37 2.11 100.00 110.90 42.60 29.70 97.13 .00 .00 506.23 2. 1 100.00 110.90 42.60 29.70 97.13 .00 .00 468.19 2.5 100.00 110.90 42.60 29.70 97.13 .00 .00 433.01 2.69 100.00 110.90 42.60 29.70 97.13 .00 .00 400.47 2.88 100.00 110.90 42.60 29.70 97.13 .00 .00 370.38 3.07 100.00 110.90 42.60 29.70 97.13 .00 .00 342.55 3.2. 100.00 110.90 42.60 29.70 97.13 .00 .00 316.81 3.46 100.00 110.90 42.60 29.70 97.13 .00 .00 293.00 3.65 100.00 110.90 42.60 29.70 97.13 .00 .00 270.98 3.84 100.00 110.90 42.60 29.70 97.13 .00 .00 250.62 4.04 100.00 110.90 42.60 29.70 97.13 .00 .00 231.79 4.2 100.00 110.90 42.60 29.70 97.13 .00 .00 214.37 4.42 100.00 110.90 42.60 29.70 97.13 .00 .00 198.26 4.61 100.00 110.90 42.60 29.70 97.13 .00 .00 183.36 HORIZON 1 2 3 IS TO LOSE 118.9 184.4 712.5 THEIGHTED P1 BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. AR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. PTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. T P1 = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. D = ESTIMATED YIELD FOR YEAR OF CONVERSION. T RETURN = YIELDS B MARKET PRICES - COST OF PRODUCTION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). ECP = ANNUITY OF PRES VAL BENEFIT. = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / FITALIZATION(DISCOUNT) RATE. ES VAL AG. LAND T T. 0-4 .14 TH 0‘ 54m 7A... ... 2235 VERSION 1.1 SOIL DEPLETION ESTIMATE DATE: 5/28/85 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION I NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 6 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = MEMPHIS-EPI ON 8.0 PERCENT SLOPE T VALUE = 5.0 UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON HORIZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 1 22.9 FSILT 1.400 0.220 5.250 0.78 SUFFICIENCIES 0.96 1.00 0.81 2 58.4 FSILT 1.400 0.210 5.250 0.78 SUFFICIENCIES 0.96 1.00 0.81 3 195.6 FSILT 1.400 0.220 5.250 0.78 SUFFICIENCIES 0.96 1.00 0.81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN-DOUBLE CROP HHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = PAR. TERRACE EROSION RATE = 10.00 TONS PER ACRE PER YEAR MARKET PRICES CORN 2.94 PER BU. CHEAT 3.88 PER BU. SOY 0.90 PER 8U. 0959005 ANNUAL COST or PRODUCTION = 270.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR =0.000 T YEAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 0.00 100.00 110.9 42.0 29.7 78.13 0.00 0.00 901.02 2 0.10 100.00 110.9 42.0 29.7 78.13 0.00 0.00 889.30 3 0.32 100.00 110.9 42.0 29.7 78.13 0.00 0.00 822.53 4 0.48 100.00 110.9 42.0 29.7 78.13 0.00 0.00 700.72 5 0.04 100.00 110.9 42.0 29.7 78.13 0.00 0.00 703.50 0 0.80 100.00 110.9 42.0 29.7 78.13 0.00 0.00 050.09 7 0.90 100.00 110.9 42.0 29.7 78.13 0.00 0.00 001.80 8 1.12 100.00 110.9 42.0 29.7 78.13 0.00 0.00 550.57 9 1.28 100.00 110.9 42.0 29.7 78.13 0.00 0.00 514.75 10 1.44 100.00 110.9 42.0 29.7 78.13 0.00 0.00 470.07 11 1.00 100.00 110.9 42.0 29.7 78.13 0.00 0.00 440.30 12 1.70 100.00 110.9 42.0 29.7 78.13 0.00 0.00 407.21 13 1.92 100.00 110.9 42.0 29.7 78.13 0.00 0.00 370.01 14 2.08 100.00 110.9 42.0 29.7 78.13 0.00 0.00 348.31 15 2.24 100.00 110.9 42.0 29.7 78.13 0.00 0.00 322.14 10 2.40 100.00 110.9 42.0 29.7 78.13 0.00 0.00 297.93 17 2.50 100.00 110.9 42.0 29.7 78.13 0.00 0.00 275.54 18 2.72 100.00 110.9 42.0 29.7 78.13 0.00 0.00 254.84 19 2.88 100.00 110.9 42.0 29.7 78.13 0.00 0.00 235.09 20 3.04 100.00 110.9 42.0 29.7 78.13 0.00 0.00 217.98 21 3.20 100.00 110.9 42.0 29.7 78.13 0.00 0.00 201.00 22 3.30 100.00 110.9 42.0 29.7 78.13 0.00 0.00 180.45 23 3.52 100.00 110.9 42.0 29.7 78.13 0.00 0.00 172.44 24 3.08 100.00 110.9 42.0 29.7 78.13 0.00 0.00 159.48 25 3.84 100.00 110.9 42.0 29.7 78.13 0.00 0.00 147.50 HORIZON 1 2 3 YEARS TO LOSE 142.7 221.2 855.0 1.UNHEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY ! PH SUFFICIENCY. 2.YEAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. 3.DEPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. 4.PCT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. 5.YLD = ESTIMATED YIELD FOR YEAR OF CONVERSION. 6.NET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. 7.PRES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE OF NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). 8.MAECP = ANNUITY OF PRES VAL BENEFIT. 9.PRES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / CAPITALIZATION(DISCOUNT) RATE. [J 2536 VERSION 1.1 SOIL DEPLETION ESTIMATE BATE: 5/28/85 ADAPTED PIERCE/LARSONIDONDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 1 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 6 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = MEMPHIS-EPI ON 8.0 PERCENT SLOPE T VALUE = 5.0 UNUEIGNTED PRODUCTIVITY INOEX-PI-CALCULATIONS BY SOIL HORIZON HORIZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNVEIGHTED PI BY HORIZON 1 22.9 FSILT 1.400 0.220 5.250 0.78 SUFFICIENCIES 0.96 1.00 0.81 2 58.4 FSILT 1.400 0.210 5.250 0.78 SUFFICIENCIES 0.96 1.00 0.81 3 195.6 FSILT 1.400 0.220 5.250 0.78 SUFFICIENCIES 0.96 1.00 0.81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-N/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = CONTOURING EROSION RATE = 8.00 TONS PER ACRE PER YEAR MARKET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. AVERAGE ANNUAL COST OF PRODUCTION = 269.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR =0.000 N YEAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 0.00 100.00 115.8 42.6 34.7 103.59 0.00 0.00 1274.89 2 0.13 100.00 115.8 42.6 34.7 103.59 0.00 0.00 1179.09 3 0.26 100.00 115.8 42.6 34.7 103.59 0.00 0.00 1090.49 4 0.38 100.00 115.8 42.6 34.7 103.59 0.00 0.00 1008.54 5 0.51 100.00 115.8 42.6 34.7 103.59 0.00 0.00 932.76 6 0.64 100.00 115.8 42.6 34.7 103.59 0.00 0.00 862.67 7 0.77 100.00 115.8 42.6 34.7 103.59 0.00 0.00 797.84 8 0.90 100.00 115.8 42.6 34.7 103.59 0.00 0.00 737.89 9 1.02 100.00 115.8 42.6 34.7 103.59 0.00 0.00 682.44 10 1.15 100.00 115.8 42.6 34.7 103.59 0.00 0.00 631.16 11 1.28 100.00 115.8 42.6 34.7 103.59 0.00 0.00 583.73 12 1.41 100.00 115.8 42.6 34.7 103.59 0.00 0.00 539.87 13 1.54 100.00 115.8 42.6 34.7 103.59 0.00 0.00 499.30 14 1.67 100.00 115.8 42.6 34.7 103.59 0.00 0.00 461.78 15 1.79 100.00 115.8 42.6 34.7 103.59 0.00 0.00 427.08 16 1.92 100.00 115.8 42.6 34.7 103.59 0.00 0.00 394.99 17 2.05 100.00 115.8 42.6 34.7 103.59 0.00 0.00 365.31 18 2.18 100.00 115.8 42.6 34.7 103.59 0.00 0.00 337.85 19 2.31 100.00 115.8 42.6 34.7 103.59 ' 0.00 0.00 312.47 20 2.43 100.00 115.8 42.6 34.7 103.59 0.00 0.00 288.99 21 2.56 100.00 115.8 9 42.6 34.7 103.59 0.00 0.00 267.27 22 2.69 100.00 115.8 42.6 34.7 103.59 0.00 0.00 247.19 23 2.82 100.00 115.8 42.6 34.7 103.59 0.00 0.00 228.61 24 2.95 100.00 115.8 42.6 34.7 103.59 0.00 0.00 211.43 25 3.07 100.00 115.8 42.6 34.7 103.58 0.00 0.00 195.54 HORIZON 1 2 3 ‘YEARS TO LOSE 178.4 276.5 1068.8 1.UNHEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. 2.YEAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. 3.DEPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. 4.PCT PI = NORMALIZED UEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELO CHANGE. 5.YLD = ESTIMATED YIELD FOR YEAR OF CONVERSION. 6.NET RETURN = YIELDS ! MARKET PRICES - COST OF PRODUCTION. 7.PRES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE OF NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). 8.MAECP = ANNUITY OF PRES VAL BENEFIT. 9.PRES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / CAPITALIZATION(DISCOUNT) RATE. 00.5 1.1 287 RSION 1.1 SOIL DEPLET ION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 6 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = MEMPHIS ON 8.0 PERCENT SLOPE T VALUE = 5.0 UNUEIGHTED PRODUCTIVITY INDEX- PI-CALCULATIONS BY SOIL HORIZON RIZON DEPTH-CH TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/ IN REACTION-PH UNUEIGHTED P78" HIRIZON 22. FSILT 1.40.22 5. SUFFICIENCIES .96 l. 00 .81 58.4 FSILT 1.40 .21 .2 .78 SUFFICIENCIES .96 1.00 .81 195.6 FSILT 1.40.22 5.25 .78 SUFFICIENCIES .96 1.00.81 RESGJRCE MANAOEIENT SYSTEM DESCRIPTION ROTATION= C-V/S 13 CORN-DOUBLE CROP NEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE = 6.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER 80. (RAGE ANNUAL COST OF PRODUCTION = 253.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MECP PRES VAL CM CORN INEAT SOY RETURN BENEFIT A.8 LAND 1 .00 100.00 110.90 42.60 29.70 95.13 .00 .00 1170.86 2 .10 100.00 110.90 42.60 29.70 95.13 .00 .00 1082. 87 3 .19 100.00 110.90 42.60 29.70 95.13 .00 .00 1001.50 4 .29 100.00 110.90 42.60 29.70 95.13 .00 .00 926.24 5 .38 100.00 110.90 42.60 29.70 95.13 .00 .00 856.64 6 .48 100.00 110.90 42.60 29.70 95.13 .00 .00 792.27 7- .58 100.00 110.90 42.60 29.70 95.13 .00 .00 732.73 8 .67 100.00 110.90 42.60 29.70 95.13 .00 .00 677.67 9 .77 100.00 110.90 42.60 29.70 95.13 .00 .00 626.75 .0 .86 100.00 110.90 42.60 29.70 95.13 .00 .00 579.65 .1 .96 100.00 110.90 42.60 29.70 95.13 .00 .00 536.10 '42 1.06 100.00 110.90 42.60 29.70 95.13 .00 .00 495.81 .3 1.15 100.00 110.90 42.60 29.70 95.13 .00 .00 458.55 :4 1.25 100.00 110.90 42.60 29.70 95.13 .00 .00 424.10 15 1.35 100.00 110.90 42.60 29.70 95.13 .00 .00 392.23 )6 1.44 100.00 110.90 42.60 29.70 95.13 .00 .00 362.75 .7 1.54 100.00 110.90 42.60 29.70 95.13 .00 .00 335.49 .8 4 1.63 100.00 110.90 42.60 29.70 95.13 .00 .00 310.28 g 1.73 100.00 110.90 42.60 29.70 95.13 .00 .00 286.97 '-0 1083 100000 110090 92060 29070 95013 000 000 265040 31 1.92 100.00 110.90 42.60 29.70 95.13 .00 .00 245.46 32 2.02 100.00 110.90 42.60 29.70 95.13 .00 .00 227.02 33 2.11 100.00 110.90 42.60 29.70 95.13 .00 .00 209.96 34 2.21 100.00 110.90 42.60 29.70 95.13 .00 .00 194.18 5 2.31 100.00 110.90 42.60 29.70 95.13 .00 .00 179.59 . HORIZON I 2 3 M TO LOSE 237. 9 368. 7 14 425. 0 .UNNEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 3 PH SIFFICIENCY. YEAR = YEAR OF CONVERSION TO RESOURCE HGT. SYSTEM ERODING AT OR BELOH T VALLE. .IPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. .PCT PI = NORMALIZED UEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCILATIONS OF YIELD CHANGE. .YLD= ESTIMATED YIELD FOR YEAR OF CONVERSION. JET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. .PRES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AS. LAND(YEAR 1) - PRESENT VALUE W MAE,“ RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF A6 LAND(YEAR N). =NAN UITY OF PRES VAL BENEFIT. MSCP VAL AG. LAND= CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / CAPITALIZATIOMDISCOUNT) RATE. 2138 SION 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/ORAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 0 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNVEIGHTED PRODUCTIVITY INOEX-PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 .25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = UP AND DOHN EROSION RATE = 63.00 TONS PER ACRE PER YEAR KET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. RAGE ANNUAL COST OF PRODUCTION = 238.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 75.40 .00 .00 928.00 1.01 99.52 100.52 36.82 26.87 73.91 16.99 1.38 841.28 2.02 99.07 100.07 36.66 26.75 72.50 31.80 2.58 763.25 . 3.03 98.60 99.60 36.49 26.62 71.05 45.96 3.73 691.73 1 4.04 98012 99011 36031 26050 69054 59050 4083 626022 1 5.04 97.61 98.61 36.13 26.36 67.99 72.42 5.88 566.24 ' 6.05 97.09 98.10 35.94 26.22 66.39 84.75 6.89 511.35 3 7.06 96.55 97.56 35.74 26.08 64.74 96.52 7.84 461.17 I 8.07 95.99 97.02 35.54 25.93 63.04 107.73 8.75 415.30 ) 9.08 95.40 96.45 35.33 25.78 61.28 118.41 9.62 373.41 I 10.09 94.80 95.87 35.12 25.63 59.48 128.58 4 10.45 335.18 3 11.10 94.18 95.27 34.90 25.47 57.62 138.27 11.23 300.31 I 12.11 93.46 94.59 34.65 25.29 55.51 148.43 12.06 267.58 E 13.11 92.79 93.95 34.42 25.12 53.54 157.24 12.78 238.66 3 14.12 92.09 93.30 34.18 24.94 51.50 165.63 13.46 212.34 5 15.13 91.37 92.62 33.93 24.76 49.40 173.62 14.11 188.39 7 16.14 90.61 91.93 33.68 24.57 47.24 181.25 14.73 166.60 3 17.15 89.83 91.21 33.41 24.38 45.01 188.54 15.32 146.80 9 13.14 89.08 90.52 33.16 24.20 42.87 194.98 15.84 129.32 ) 19.12 88.39 89.90 32.93 24.03 40.94 200.36 16.28 114.22 I 20.09 32.75 89.32 32.72 23.88 39.17 204.94 16.65 101.06 ; 21.07 3/.03 88.68 32.49 23.71 37.16 209.74 17.04 88.67 I 22.04 86.28 88.01 32.24 23.53 35.10 214.28 17.41 77.47 1 23.01 85.51 87.34 31.99 23.35 33.00 218.56 17.76 67.36 7 23.99 84.80 86.72 31.77 23.18 31.08 222.20 18.05 58.66 . HORIZON 1 2 IRS TO LOSE 17.6 54.6 .MNEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. {EAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. .EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. ’CT P1 = NORMALIZED UEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. YLD = ESTIMATED YIELD FOR YEAR OF CONVERSION. {ET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. -RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AS. LAND(YEAR 1) - PRESENT VALUE )F NET RETURNS(TO YEAR N- 1) - PRESENT CAPITALIZED VALUE OF AS LAND(YEAR N). YAECP = ANNUITY OF PRES VAL BENEFIT. ES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITALIZATION1DISCOUNT) RATE. {P a. '. t.- -x 0‘1 .. u. 0" $50 sl C.:: l.- .l I‘ - A A" I I). 2239 I 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 7 NATURAL RESOURCE ECONOMICS DIVISION 0 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON 9 DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 JFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 IFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN-DOUBLE CROP HHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOURING EROSION RATE = 32.00 TONS PER ACRE PER YEAR PRICES CORN 2.94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER BU. E ANNUAL COST OF PRODUCTION = 240.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 73.40 .00 .00 903.38 .51 99.74 100.74 36.90 26.93 2.59 9.18 .75 826.32 1.02 99.52 100.52 36.82 26.87 71.91 16.38 1.33 757.02 1.54 99.30 100.30 36.74 26.81 71.21 23.17 1.88 693.35 2.05 99.07 100.07 36.66 26.75 70.50 29.55 2.40 634.87 2.56 98.84 99.83 36.57 26.69 69.78 35.55 2.89 581.16 3.07 98.60 99.60 36.49 26.63 69.05 41.19 3.35 531.85 3.59 98.36 99.36 36.40 26.56 68.31 46.49 3.78 486.58 4.10 98.12 99.11 36.31 26.50 67.55 51.48 4.18 445.03 4.61 97.82 98.82 36.20 26.42 66.63 57.11 4.64 405.96 5.12 97.56 98.56 36.11 26.35 65.84 61.53 5.00 371.04 5.64 97.30 98.31 36.01 26.28 65.05 65.67 5.34 339.01 6.15 97.04 98.05 35.92 26.21 64.24 69.57 5.65 309.64 6.66 96.77 97.78 35.82 26.14 63.42 73.23 5.95 282. 7.17 96.49 97.51 35.72 26.07 62.58 76.66 6.23 258.03 7.69 96.21 97.24 35.62 26.00 61.74 79.89 6.49 235.42 .20 95.93 96.96 35.52 25.92 60.88 82. 2 6.74 214.70 8.71 95.58 96.63 35.40 25.83 59.83 86.33 7.01 195.15 9.22 95.28 96.34 5.29 25.75 58.94 89.01 7.23 177.81 9.74 94.98 96.05 35.19 25.68 58.04 91.52 7.44 161.94 10.25 94.68 95.76 35.08 25.60 57.13 93.88 7.63 147.41 10.76 94.36 95.46 34.97 25.52 56.21 96.09 7.81 134.12 11.27 94.05 95.16 34.86 25.44 55.27 98.16 7.98 121.97 11.78 93.72 94.85 34.75 25.36 54.31 100.11 8.13 110.86 12.30 93.40 94.54 34.63 25.27 53.34 101.94 8.28 100.70 )RIZON 1 2 TO LOSE 34.7 107.5 .IGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 1 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. ! = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. ‘H LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. = ESTIMATED YIELD FOR YEAR OF CONVERSION. RETURN = YIELDS I MARKET PRICES - COST OF PRODUCTION. : VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE SET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). IP = ANNUITY OF PRES VAL BENEFIT. 3 VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / ITALIZATION(DISCOUNT) RATE. 2690 EIDN 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSVC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE v NATURAL RESOURCE ECONOMICS DIVISION , NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNVEIGHTED PRODUCTIVITY INDEX-PI‘CALCULATIONS BY SOIL HORIZON UZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-V/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = UP AND DUNN EROSION RATE = 16.00 TONS PER ACRE PER YEAR NET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. .RAEE ANNUAL COST OF PRODUCTION = 239.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T 3R DEPTH LOST PCT P1 YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 .CO 100.00 101.00 37.00 27.00 74.40 .00 .00 915.69 2 .2 99.87 100.87 36.95 26.97 74.00 4.56 .37 842.32 ; .51 99.74 100.74 36.90 26.93 73.59 8.82 .72 774.76 E .77 99.66 100.65 36.87 26.91 73.32 11.48 .93 713.89 1 1.02 99.52 100.52 36.82 26.87 2.91 15.19 1.2 656.54 3 1.23 99.43 100.43 36.79 26.85 72.63 17.49 1.42 604.89 1 1.54 99.30 100.30 36.74 26.81 72.21 20.72 1.68 556.21 7 2.05 99.07 100.07 36.66 26.75 71.51 25.54 2.07 471.09 ) 2.31 98.93 99.93 36.61 26.71 71.08 28.16 2.29 433.07 1 2.56 98.84 99.84 36.57 26.69 70.79 29.79 2.42 398.90 2 2.82 98.70 99.69 36.52 26.65 70.35 32.07 2.61 366.64 3 3.07 98.60 99.60 36.49 26.63 70.05 33.49 2.72 337.67 4 3.33 98.46 99.46 36.43 26.59 69.61 35.48 2.88 310.31 5 3.59 98.36 99.36 36.40 26.56 69.31 36.71 2.98 285.76 5 3.84 98.22 99.2 36.35 26.52 68.86 38.43 3.12 262.56 7 4.10 98.12 99.12 36.31 26.50 68.55 39.51 3.21 241.76 3 4.36 97.97 98.97 36.26 26.46 68.09 41.01 3.33 222.09 I 4.61 97.82 98.82 36.20 26.42 67.63 42.41 3.45 204.01 > 4.87 97.72 98.72 36.16 26.39 67.32 43.27 3.52 187.81 1 5.12 97.56 98.57 36.11 26.35 66.85 44.49 3.61 172.48 I .38 97.46 98.46 36.07 26.32 66.53 45.25 3.68 158.76 1 5.64 97.30 98.31 36.01 2 .2 66.05 46.30 3.76 145.77 1 5.89 97.20 98.21 35.98 26.25 65.73 46.96 3.82 134.16 . 6.15 97.04 98.05 35.92 26.21 65.24 47.88 3.89 123.16 HORIZON 1 2 RS TO LOSE 69.3 215.0 NNEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT P1 = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS 3 MARKET PRICES - COST OF PRODUCTION. ‘ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE F NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP = ANNUITY OF PRES VAL BENEFIT. FES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITALIZATION1DISCOUNT) RATE. HON 1.1 IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING 2991 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION , NORTHEAST SECTION 2/84 EP 1 ON 7.0 7 A PERCENT SLOPE UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON DATE 10/15/84 T VALUE = 3.0 UNVEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES . 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN-DOUBLE CROP HHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE = 16.00 TONS PER ACRE PER YEAR ET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. ABE ANNUAL COST OF PRODUCTION = 242.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 R DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 71.40 .00 .00 878.77 .26 99.87 100.87 36.95 26.97 71.00 4.56 .37 808.17 .51 99.74 100.74 36.90 26.93 70.59 8.82 .72 743.18 .77 99.66 100.65 36.87 26.91 70.32 11.48 .93 684.68 1.02 99.52 100.52 36.82 26.87 69.91 15.19 1.23 629.52 1.23 99.43 100.43 36.79 26.85 69.63 17.49 1.42 579.91 1. 54 99.30 100.30 36.74 26.81 69.21 20.72 1.68 533.10 1.79 99.21 100.20 36.71 26.79 68.93 22.73 1.85 491.04 2.05 99.07 100.07 36.66 26.75 68.51 25.54 2.07 451.33 2.31 98.93 99.93 36.61 26.71 68.08 28.16 2.29 414.79 2956 98084 99984 36057 26069 67079 29079 2952 381099 2.82 98.70 99.69 36.52 26.65 67.35 32.07 2.61 351.00 3.07 98.60 99.60 36.49 26.63 67.05 33.49 2.72 323.21 3.33 98.46 99.46 36.43 26.59 66.61 35.48 2.88 296.94 3.59 98.36 99.36 36.40 26.56 66.31 36.71 2.98 273.3 3.84 98.22 99.21 36.35 26.52 65.86 38.43 3.12 251.12 4.10 98.12 99.12 36.31 26.50 65.55 39.51 3.21 231.18 4.36 97.97 98.97 36.26 26.46 65.09 41.01 3. 33 212. 31 4.61 97.82 98.82 36.20 26.42 64.63 42.41 3. 45 194.96 4.37 97.72 98.72 36.16 26.39 64.32 43.27 3.52 179.44 5.12 97.56 98.57 36.11 26.35 63.85 44.49 3.61 164.74 5.38 97.46 98.46 36.07 26.32 63.53 45.25 3.68 151. 5.64 97.30 98.31 36.01 26.28 63.05 46.30 3.76 139.15 5.89 97.20 98.21 35.98 26.25 62.73 46.96 3.82 128.04 6.15 97.04 98.05 35.92 26.21 62.24 47.88 3.89 117.50 HORIZON 1 2 3 TO LOSE 69.3 215.0 WEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. AR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. PTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. T PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. ¥ EEgfiggMATED YIELD FOR YEAR OF CONVERSION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N 1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). ECP = ANNUITY OF PRES VAL BENEFIT ES VAL AG. LAND= YIELDS 8 MARKET PRICES - COST OF PRODUCTION. CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / PITALIZATIONYDISCOUNT) RATE. T urog- ..nL ' 'UA'. .f. 1 , . 0"! HON 1.1 ZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING 2€)2 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE , NATURAL RESOURCE ECONOMICS DIVISION r NORTHEAST SECTION 2/84 EP 1 ON 7.0 7 A PERCENT SLOPE UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON DATE 10/15/84 I VALUE = 3.0 UNHEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = UP AND DOHN EROSION RATE = 10.00 TONS PER ACRE PER YEAR ET PRICES CORN 2 .94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER BU. 'AGE ANNUAL COST OF PRODUCTI ON= 251. 00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 R DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN HHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 104.00 37.00 30.00 77.16 .00 .00 949.66 .16 99.91 103.91 36.97 29.97 76.88 3.18 .26 875.12 .32 99.83 103.82 36.94 29.95 76.60 6.14 .50 806.40 .48 99.79 103.78 36.92 29.94 76.46 7.51 .61 744.43 .64 99.70 103.69 36.89 29.91 76.17 10.07 .82 685.93 .80 99.61 103.60 36.86 29.88 75.89 2.45 1.01 632.00 .96 99.57 103.55 36.84 29.87 75.74 13.56 1.10 583.41 1.12 99.48 103.46 36.81 29.84 75.46 15.62 1.27 537.51 1.28 99.43 103.41 36.79 29.83 75.31 16.58 1.35 496.16 1.44 99.35 103.32 36.76 29.80 .02 18.36 1.49 457.10 1.60 99.26 103.23 36.73 29.78 74.72 20.01 1.63 421.09 1.7 99.21 103.18 36.71 29.76 74.58 20.78 1.69 388.68 1.92 99.12 103.09 36.68 29.74 74.28 22.22 1.81 358.04 2. 08 99.07 103.04 36.66 29.72 74.13 22.88 1.86 330.47 2.24 98.98 102.94 36.62 29.70 73.83 24.12 1.96 304.40 2.40 98.89 102.85 36.59 29.67 73.53 25.27 2.05 280.37 2.56 98.34 102.80 36.57 29.65 73.38 25.81 2.10 258.77 2.72 98.75 102.70 36.54 29.63 73.07 26.80 2.18 238.33 2.88 98.70 102.66 36.52 29.61 72.92 27.26 .2 219.96 3.04 98.60 102.56 36.49 29.58 72.61 28.12 2.28 202.57 .20 98.51 102.46 36.45 29.56 72.30 28.92 2.35 186.55 3.36 98.46 102.41 36.43 29.54 72.14 29.29 2.38 172.16 3.52 98.36 102.31 36.40 29.51 71.83 29.98 2. 44 158.53 3.68 98.31 102.26 36.38 29.50 71.67 30.31 2. 46 146.30 3. 84 98.22 102.16 36.35 29.47 71.36 30.90 2.51 134.71 HORIZON 1 2 5 TO LOSE 110. 9 344.0 NEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. PTH LOST= CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. J PI= 3 RETURN = YIELDS I MARKET PRICES - COST OF PRODUCTION. NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. D= ESTIMATED YIELD FOR YEAR OF CONVERSION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE NET RETURNS< TO YEAR N- 1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). ECP = ANNUITY OF PRES VAL BENEFIT ES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / PITALIZATIONIDISCOUNT) RATE. N 2€)3 ?SION 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION , NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IIZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = CONTOURING EROSION RATE = 8.00 TONS PER ACRE PER YEAR RKET PRICES CORN 2.94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER BU. {RAGE ANNUAL COST OF PRODUCTION = 240.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T EAR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 1 .00 100.00 101.00 37.00 27.00 73.40 .00 .00 903.38 2 .13 99.91 100.91 36.97 26.98 73.13 3.03 .25 832.47 3 .26 99.87 100.87 36.95 26.97 73.00 4.45 .36 768.50 3 .38 99.83 100.83 36.94 26.95 72.86 5.75 .47 709.44 5 .51 99.74 100.74 36.90 26.93 72.59 8.19 .67 653.70 3 .64 99.70 100.70 36.89 26.92 72.46 9.32 .76 603.44 x .7 99.66 100.65 36.87 26.91 72.32 10.37 .84 557.05 3 .90 99.61 100.61 36.86 26.90 72.19 11.35 .92 514.21 9 1.02 99.52 100.52 36.82 26.87 71.91 13.16 1.07 473.76 0 1.15 99.48 100.48 36.81 26.86 71.77 4. 1. 437.32 I .28 99.43 100.43 36.79 26.85 71.63 14.78 1.20 403.67 2 1.41 99.35 100.34 36.76 26.82 71.35 16.24 1.32 371.89 3 1.54 99.30 100.30 36.74 26.81 71.21 16.91 1.37 343.27 4 1.67 99.26 100.25 36.73 26.80 71.07 17.54 1.42 316.84 5 1.79 99.21 100.20 36.71 26.79 70.93 18.12 1.47 292.45 5 1.92 99.12 100.11 36.68 26.76 70.65 19.20 1.56 269.40 7 2.05 99.07 100.07 36.66 26.75 70.51 19.70 1.60 248.65 8 2.18 99.03 100.02 36.64 26.74 70.36 20.17 1.64 229.50 9 2.31 98.93 99.93 36.61 26.71 70.08 21.04 .71 211.39 0 2.43 98.89 99.88 36.59 26.70 69.93 21.44 1.74 195.10 1 2.56 98.84 99.84 36.57 26.69 69.79 21.81 1.77 180.06 2 2.69 98.79 99.79 36.56 26.68 69.64 2.16 1.80 166.19 3 2.82 98.70 99.69 36.52 26.65 69.35 22.81 1.85 153.05 4 2.95 98.65 99.65 36.50 26.64 69.20 23.11 1.88 141.25 5 3.07 98.60 99.60 36.49 26.63 69.05 23.38 1.90 130.36 HORIZON 1 2 ARS TO LOSE 138.7 430.0 UNVEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. YEAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. IEPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. PCT PI = NORMALIZED NEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. YLD = ESTIMATED YIELD FOR YEAR OF CONVERSION. NET RETURN = YIELDS X MARKET PRICES - COST OF PRODUCTION. PRES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR I) - PRESENT VALUE OF NET RETURNS(TO YEAR N-1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). MAECP = ANNUITY OF PRES VAL BENEFIT. PRES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF A8. LAND = DISCOUNTED NET RETURNS(YEAR N) / CAPITALIZATIONYDISCOUNT) RATE. .vaI- i 4 LINN 1'4 '9-1 ’ ‘I DIN I Ar.- {p-h 'up!) '|- .U '7“ .- l- I .. TS 7":UC' d I hobwu. 71.1 ‘= '0 1? M .f. [4. . . .’ o onukl HEAL C; 2514 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON ZWI DEPTH-CM TEXTURE BULK DENSITY‘G/CM3 AVAILABLE UATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON JEN 1.1 T VALUE = 3.0 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-u/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = PAR. TERRACE EROSION RATE = 6.00 TONS PER ACRE PER YEAR ET PRICES CORN 2.94 PER BU. RNEAT 3.33 PER DU. SOY 6.90 PER 3U. :szANNOAL COST OF PRODUCTION = 259.00 DISCOUNT RATE = 3.125 PERCENT TECN ADJ FACTOR = .000 .R DEPTN LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AD.LAND .00 100.00 101.00 37.00 27.00 54.40 .00 .00 669.54 .10 99.96 100.96 36.93 26.99 54.27 1.51 .12 617.71 .19 99.91 100.91 36.97 26.93 54.13 2.92 .24 569.39 .29 99.37 100.37 36.95 26.97 54.00 4.22 .34 525.76 .3 99.33 100.33 36.94 26.95 53.37 5.44 .44 435.04 .43 99.79 100.73 36.92 26.94 53.73 6.56 .53 447.47 .53 99.74 100.74 36.90 26.93 53.59 7.60 .62 412.30 .67 99.70 100.70 36.39 26.92 53.46 3.57 .70 330.31 .77 99.66 100.65 36.37 26.91 53.32 9.47 .77 351.30 .36 99.61 100.61 36.36 26.90 53.19 10.30 .34 324.07 .96 99.57 100.56 36.34 26.33 53.05 11.03 .90 293.94 1.06 99. 2 100.52 36.32 26.37 2.91 11.79 .96 275.76 1.15 99.43 100.43 36.31 26.36 52.77 12.46 1.01 254.3 .25 99.43 100.43 36.79 26.35 52.63 13.03 1.06 234.64 1.35 99.39 100.39 36.73 26.34 52.49 13.65 1.11 216.43 1.44 99.35 100.34 36.76 26.32 52.35 14.13 1.15 199.64 1.54 99.30 100.30 36.74 26.31 2.21 14.63 1.19 134.14 1.63 99.26 100.25 36.73 26.30 52.07 15.14 1.23 169.35 1.73 99.21 100.20 36.71 26.79 51.93 15.56 1.26 156.66 1.33 99.16 100.16 36.69 26.73 51.79 15.96 1.30 144.49 1.92 99.12 100.11 36.63 26.76 51.65 16.32 1.33 133.27 2.02 99.07 100.07 36.66 26.75 51.51 16.66 1.35 122.91 2.11 99.03 100.02 36.64 26.74 51.36 16.93 1.33 113.36 .21 93.93 99.93 36.62 26.73 51.22 17.27 1.40 104.55 ' 2.31 93.93 99.93 36.61 26.71 51.03 17.54 1.43 96.42 HORIZON 1 2 R510 LOSE 134.9 573.4 gERIDNTED PI DY HORIZON = BULK DENSITY SUFFICIENCY t AVAILABLE HATER SITFTICIENCY t PH SUFFICIENCY. W: YEAR OF CONVERSION TO RESOURCE HGT. SYSTEM ERODING AT OR DELON T VALUE. CTT>L98T = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. Ln TE- NDRNALIZED HEIGHTED PRODUCTIVITY INDEX USED POR INTERNAL CALCULATIONS OF YIELD CHANGE. U EETBAMAEDJIELD FOR YEAR OF CONVERSION. RES. m g = YIELDS x RARRET PRICES - COST OF PRODUCTION. FTET REvENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE 0? AS. LAND(YEAR 1) - PRESENT VALUE W _ ATUFNSTTO YEAR N-l) - PRESENT CAPITALIZED VALUE OF A6 LAND(YEAR N). RES m YéNUITY 0F PRES VAL BENEFIT. mm , 3. LAND = CAPITALIZED PRESENT VALUE OF AB. LAND = DISCOUNTED NET RETURNS(YEAR N) / IIATIONTDISCOUNTT RATE. T 11;“? 'I‘rg lib '1 1‘1; 15.3-1'. u '1 I-.. ‘I d ‘. 4‘, I‘ .'. 4 '6 . .. Q .3 44 u I? E . 'JT I .3. 1: . C ..I a? ... II ’- 1;. q, 91 .'d T C9 14)- ' IA A... 1 a. L ”~- 4 .P v ar._ ’ Q A 61‘. . '4 OI‘Q 1:. 55.1.. ‘ '\ 143': I 4- 49.3 T u. ‘- 11 ‘ 1 I . ;‘ do:~ J .-v ' v 4 N.. A x. 31: h D ‘ I u ' ‘ ' L9. .51. .4115: ‘ , {N :‘ . “!I..‘ EION 1.1 IZON DEPTH~CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE UATER-IN/IN REACTION-PH 17.8 FSILT SUFFICIENCIES 71.1 FSILT SUFFICIENCIES KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING TILLAGE METHOD = (ET PRICES CORN TAGE ANNUAL COST OF PRODUCTION = 4R DEPTH LOST PCT PI CM .00 100.00 .08 99.96 .16 99.91 02‘! 99987 432 99083 940 99479 .48 99.79 056 99474 .64 99.70 .72 99.66 .30 99.61 .88 99.61 .96 99.57 1.04 99.52 1.12 99.48 1.20 99.43 1.28 99.43 1.36 99.39 1.44 99.35 1.52 99.30 1.60 99.26 1.68 99.26 1.76 99.21 1.84 99.16 1.92 99.12 HORIZON 1 RS TO LOSE 221.9 2595 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 EP 1 ON 7.0 7 A PERCENT SLOPE UNUEIGHTED PRODUCTIVITY INDEX‘PI-CALCULATIONS BY SOIL HORIZON DATE 10/15/84 I VALUE 3 300 UNVEIGHTED PI BY HORIZON 1.40 .22 5.25 .78 . 1.00 .81 1.45 .21 5.25 .75 . 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-U/S 14 CORN-DOUBLE CROP NHEAT/SOY NO TILL CONSERVATION PRACTICE = CONTOURING EROSION RATE = 5.00 TONS PER ACRE PER YEAR 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. 253.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CORN NHEAT SOY RETURN BENEFIT AG.LAND 104.00 37.00 30.00 75.16 .00 .00 925.05 103.96 36.98 29.99 75.02 1.59 .13 853.95 103.91 36.97 29.97 74.88 3.06 .2 788.31 103.87 36.95 29.96 74.74 4.42 .36 727.70 103.82 36.94 29.95 74.60 5.69 .46 671.75 103.78 36.92 29.94 74.46 6.87 .56 620.10 103.78 36.92 29.94 74.46 6.87 .56 573.50 103.73 36.90 29.92 74.32 7.88 .64 529.40 103.69 36.89 29.91 74.17 8.82 .72 488.68 103.64 36.87 29.90 74.03 9.69 .79 451.09 103.60 36.86 29.88 73.89 10.49 .85 416.38 103.60 36.86 29.88 73.89 10.49 .85 385.09 103.55 36.84 29.87 73.74 11.19 .91 355.46 103.51 36.82 29.86 73.60 11.83 .96 328.11 103.46 36.81 29.84 73.46 12.43 1.01 302.86 103.41 36.79 29.83 73.31 12.98 1.05 279.54 103.41 36.79 29.83 73.31 12.98 1.05 258.54 103.37 36.78 29.82 73.16 13.45 1.09 238.63 103.32 36.76 29.80 73.02 13.90 1.13 220.26 103.27 36.74 29.79 72.87 14.30 1.16 203.30 103.23 36.73 29.78 72.72 14.68 1.19 187.64 103.23 36.73 29.78 72.72 14.68 1.19 173.54 103.18 36.71 29.76 72.58 15.01 1.22 160.18 103.13 36.69 29.75 72.43 15. 31 1.24 147.84 103.0; 36.68 29.74 72.28 15.59 1.27 136.45 688.1 NVEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. EPTH LOST = CT PI = NORMALIZED UEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS X NARNET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE E NET RETURNS(TO YEAR N-11) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP = ANNUITY OF PRES VAL BENEFIT. RES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / 4FITALIZATION(DISCOUNT) RATE. 2576 IION 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOVDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 1 ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNVEIGHTED PRODUCTIVITY INDEX'PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON 17.8 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 71.1 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-V/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE = 4.00 TONS PER ACRE PER YEAR (ET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. RAGE ANNUAL COST OF PRODUCTION = 242.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 IR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 71.40 .00 .00 878.77 .06 99.96 100.96 36.98 26.99 71.27 1.51 .12 811.22 .13 99.91 100.91 36.97 26.98 71.13 2.92 .24 748.86 .19 99.91 100.91 36.97 26.98 71.13 2.92 .24 692.58 .26 99.87 100.87 36.95 26.97 71.00 4.13 .34 639.33 .32 99.83 100.83 36.94 26.95 70.87 5.25 .43 590.17 .38 99.83 100.83 36.94 26.95 70.87 5.25 .43 545.82 .45 99.79 100.78 36.92 26.94 70.73 6.21 .50 503.85 .51 99.74 100.74 36.90 26.93 70.59 7.10 .58 465.09 .58 99.74 100.74 36.90 26.93 70.59 7.10 .58 430.14 .64 99.70 100.70 36.89 26.92 70.46 7.87 .64 397.05 .70 99.66 100.65 36.87 26.91 70.32 8.58 .70 366.51 .77 99.66 100.65 36.87 26.91 70.32 8.58 .70 338.97 .83 99.61 100.61 36.86 26.90 70.19 9.19 .75 312.89 .90 99.61 100.61 36.86 26.90 70.19 9.19 .75 289.37 .96 99.57 100.56 36.84 26.88 70.05 9.71 .79 267.11 1.02 99.52 100.52 36.82 26.87 69.91 10.20 .83 246.55 1.09 99.52 100.52 36.32 26.87 69.91 10.20 .83 228.02 1.15 99.48 100.48 36.31 26.86 69.77 10.61 .86 210.47 1.22 99.43 100.43 36.79 26.85 69.63 11.00 .89 194.27 1.28 99.43 100.43 36.79 26.85 69.63 11.00 .89 179.67 1.35 99.39 100.39 36.78 26.84 69.49 11.33 .92 165.84 1.41 99.35 100.34 36.76 26.82 69.35 11.64 .95 153.07 1.47 99.35 100.34 36.76 26.82 69.35 11.64 .95 141.56 1.54 99.30 100.30 36.74 26.81 69.21 11.90 .97 130.66 HORIZON 1 2 RS TO LOSE 277.3 860.1 NVEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 1 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. 3T PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. L8 = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS I MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE E NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP = ANNUITY OF PRES VAL BENEFIT. RES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITALIZATIONIDISCOUNT) RATE. T 5.. ~ In I . 6 ERIC It :5; FOR} .25-'- ET: T‘g_..‘ATE PL”: V jCN-p" r P a": 'Nt.‘ . .‘ Eli-‘T' \ i 7"! 2597 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/BOBBY/GRAHAM MODEL FROM JSUC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON ON 7.0 PERCENT SLOPE UNUEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON BULK DENSITY-G/CM3 AVAILABLE UATER-IN/IN REACTION-PH UNVEIGHTED PI BY HORIZON TN 1.1 DATE 10/15/84 SECTION 2/84 T VALUE = 3 3 TN DEPTH-CM TEXTURE 22.9 FSILT 1. 3o .21 5.00 .70 sUFFICIENCIES 1.00 1.00 .70 76.2 FSILT 1. 33 .21 5.00 .70 SUFFICIENCIES 1. 00 1.00 .70 152.4 CLOAM 1.33 .09 5.00 .31 TOFFTCIENCIES 1.00 .45 .70 RESOURCE NANAOENENT SYSTEN DESCRIPTION ROTATION = C-V/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = UP 1 DOVN mmmNmm= QCOTMSKRMMPRYMR ' PRICES CORN 2.94 PER BU. NHEAT 3.33 PER BU. SOY 6.90 PER 3U. iE ANNUAL COST OF PRODUCTION = 233.00 DISCOUNT RATE = 3.125 PERCENT TECH ADJ FACTOR = .000 DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 75.40 .00 .00 23.00 1.09 99.32 100.32 36.93 26.95 74.34 6.34 .52 351.92 2.17 99.64 100.63 36.37 26.90 74.26 12.50 1.02 731.75 3.26 99.44 100.43 36.79 26.35 73.64 13.47 1.50 717.03 4.35 99.23 100.23 36.72 26.79 73.00 24.25 1.97 657.37 5.43 99.02 100.01 36.64 26.74 72.33 29.33 2.42 602.39 6.52 93.79 99.79 36.56 26.68 71.63 35.22 2.36 551.74 7.60 93.56 99.55 36.47 26.61 70.90 40.41 3.23 505.09 3.69 93.33 99.33 36.39 26.55 70.22 44.94 3.65 462.60 9.73 93.03 99.03 36.30 26.49 69.43 49.73 4.04 423.05 10.36 97.31 93.31 36.20 26.42 63.62 54.32 4.41 336.67 11.95 97.54 93.54 36.10 26.34 67.77 53.73 4.77 353.20 13.04 97.25 93.26 36.00 26.27 66.39 62.96 5.12 322.44 14.12 96.95 97.97 35.39 26.19 65.99 67.00 .44 . 2 4.1 15.21 .65 97.66 35.73 26.11 65.05 70.37 5.76 263.19 16.30 96.35 97.33 35.67 26.03 64.17 74.23 6.03 244.63 17.33 96.02 97.06 35.56 25.95 63.17 77.75 6.32 222.77 13.47 95.63 96.73 35.43 25.36 2.14 31.12 6.59 202.66 19.55 95.33 96.33 35.31 25.77 61.07 34.33 6.35 134.23 20.64 94.96 96.03 35.13 25.67 59.93 37.39 7.10 167.32 21.73 94.53 95.67 35.05 25.57 53.35 90.30 7.34 151.33 22.31 94.19 95.2 34.91 25.47 57.63 93.03 7.56 137.65 23.33 93.32 94.94 34.73 25.33 56.60 95.43 7.76 124.91 24.95 93.40 94.54 34.63 25.27 55.37 97.93 7.96 113.01 26.01 92.97 94.14 34.49 25.17 54.10 100.37 3.15 102.14 JRIZON 1 2 3 TO LOSE 21.0 49.9 71.3 EIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. I = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. TH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. PI = NORMALIZED NEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. = ESTIMATED YIELD FOR YEAR OF CONVERSION. RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. i VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE IET RETURNS(TO YEAR N-1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). 28 = ANNUITY OF PRES VAL BENEFIT 3 VAL AG. LAND= CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / ITALIZATION(DISCOUNT) RATE. 1398 SION 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOUDY/ORAHAM MODEL FROM JSUC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/34 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNNEIOHTED PRODUCTIVITY INDEX PI CALCULATIONS BY SOIL HORIL ON IZON DEPTH-CM TEXTURE BULK DENSITY-G/CMS AVAILABLE HATER- IN/IN REACTION- PH UNVEICHTED PI BY HORIZON 22.9 FSILT 1.30 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 76.2 FSILT 1.33 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 152.4 CLDAM 1.33 .09 5.00 .31 SUFFICIENCIES 1.00 .45 .70 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-U/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = COUNTOURINO EROSION RATE = 32.00 TONS PER ACRE PER YEAR KET PRICES CORN 2.94 PER DU. NHEAT 3.88 PER BU. SOY 6.90 PER 8U. RAGE ANNUAL COST OF PRODUCTION = 240.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 73.40 .00 .00 903.38 .55 99.90 100.90 36.96 26.97 73.10 3.42 .2 832.08 1.10 99.81 100.80 36.93 26.95 72.79 6.67 .54 766.31 1.66 99.72 100.72 36.90 26.92 72.53 9.23 .75 706.16 . 2.21 99.62 100.61 36.86 26.90 72.20 12.15 .99 650.18 2.76 99.53 100.53 36.83 26.87 71.93 14.45 1.17 599.02 ' 3.31 99.42 100.42 36.79 26.84 71.59 17.06 1.39 551.39 3 3.86 99.33 100.32 36.75 26.82 71.30 19.12 1.55 507.90 ’ 4.41 99.21 100.21 36.71 26.79 70.94 21.46 1.74 467.39 ) 4.97 99.12 100.11 36.67 26.76 70.64 23.30 1.89 430.43 5.52 99.00 99.99 36.63 26.73 70.27 25.39 2.06 396.00 ’ 6.07 98.90 99.89 36.59 26.70 69.96 27.03 .2 364.60 S 6.62 98.77 99.77 36.55 26.67 69.57 28.90 2.35 335.34 1 7.17 98.66 99.66 36.51 26.64 69.24 30.36 2.47 308.68 5 7.73 98.53 99.53 36.46 26.61 68.84 32.02 2.60 283.82 3 8.28 98.42 99.42 36.42 26.58 68.50 33.32 2.71 261.19 ' 8.83 98.29 99.29 36.37 26.54 68.08 34.80 2.83 240.09 1 9.38 98.17 99.17 36.33 26.51 67.72 35.96 2.92 220.89 ’ 9.93 98.03 99.03 .28 26.47 67.29 37.27 3.03 202.98 ) 10.48 97.91 98.91 36.23 26.44 66.92 38.30 3.11 186.69 . 11.04 97.76 98.77 36.18 26.40 66.47 39.46 .21 171.50 E 11.59 97.64 98.64 36.14 26.37 66.09 40.38 3.28 157.70 1 12.14 97.49 98.49 36.08 26.33 65.62 41.41 3.36 144.82 13.24 97.20 98.21 35.98 26.25 64.74 43.13 3.50 122.21 HORIZON 1 2 3 RS TO LOSE 41.4 98.2 140.4 NNEISNTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED UEIOHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR I) - PRESENT VALUE F NET RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP= ANNUITY OF PRESV VAL BENEFIT. RES VAL A6. LAND= CAPITALIZED PRESENT VALUE OF A6. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITALIZATION(DISCOUNT) RATE. ISION 1.1 ECONOMIC RESEARCH UZON DEPTH-CM TEXTURE BULK DENSITY-B/CM3 AVAILABLE HATER-IN/IN REACTION-PH 22.9 FSILT 1.30 5.00 .7 SUFFICIENCIES 1.00 .7 76.2 FSILT 1.33 5.00 .70 SUFFICIENCIES 1.00 .70 152.4 CLOAM 1.33 5.00 .31 SUFFICIENCIES 1.00 .70 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 13 CORN-DOUBLE CROP NHEAT/SOY TILLASE NETHOD = CONSERVATION CONSERVATION PRACTICE = UP I DOHN EROSION RATE = 16.00 TONS PER ACRE PER YEAR NET PRICES CORN 2.94 PER BU. NHEAT 3.33 PER BU. SOY 6.90 PER BU. RACE ANNUAL COST OF PRODUCTION = 239.00 DISCOUNT RATE = 3.125 PERCENT TECH ADJ FACTOR = .000 AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND . .00 100.00 101.00 37.00 27.00 74.40 .00 .00 915.69 1 .23 99.95 100.95 36.93 26.99 74.25 1.70 .14 345.19 1 .55 99.90 100.90 36.96 26.97 74.10 .29 .27 730.03 1 .33 99.86 100.35 36.95 26.96 73.95 4.73 .39 719.97 1 1.10 99.31 100.30 36.93 26.95 73.79 6.13 .50 664.47 . 1.33 99.77 100.77 36.92 26.94 73.69 7.05 .57 613.67 7 1.66 99.72 100.72 36.90 26.92 73.53 3.27 .67 566.33 I 1.93 99.67 100.67 36.33 26.91 73.37 9.42 .77 522.63 9 2.21 99.62 100.61 36.86 26.90 73.20 10.49 .35 432.23 I 2.43 99.53 100.53 36.85 26.39 73.09 11.16 .91 445.37 1 2.76 99.53 100.53 36.33 26.87 72.93 12.10 .93 410.97 2 3.03 99.43 100.47 36.81 26.36 72.76 12.93 1.05 379.21 I 3.31 99.42 100.42 36.79 26.84 72.59 13.30 1.12 349.39 1 3.59 99.33 100.33 36.77 26.33 72.47 14.31 1.16 323.03 5 3.86 99.33 100.32 36.75 26.32 72.30 15.03 1.22 293.09 1 4.14 99.27 100.27 36.73 26.30 72.12 15.70 1.23 275.02 I 4.41 99.21 100.21 36.71 26.79 71.94 16.33 1.33 253.72 1 4.69 99.13 100.17 36.70 26.73 71.32 16.73 1.36 234.26 . 4.97 99.12 100.11 36.67 26.76 71.64 17.27 1.40 216.11 ? 5.2 99.06 100.05 36.65 26.75 71.46 17.79 1.45 199.36 . 5.52 99.00 99.99 36.63 26.73 71.27 13.27 1.43 133.90 2 .79 93.96 99.95 36.62 26.72 71.15 13.57 1.51 169.73 I 6.07 93.90 99.39 36.59 26.70 70.96 13.99 1.54 156.60 E 6.35 93.33 99.33 36.57 26.69 70.76 19.33 1.57 144.44 1 6.62 93.77 99.77 36.55 26.67 70.57 19.74 1.60 133.22 HORIZON 1 2 3 IRS TO LOSE 32.3 196.5 230.9 HNEIOHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY ! AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. YEAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. 2599 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOHDY/ORAHAM MODEL FROM JSHC JAN/FEB 1933 7.0 EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. ’CT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. RD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS l MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE F NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). NECP = ANNUITY OF PRES VAL BENEFIT. RES VAL A8. LAND = CAPITALIZED PRESENT VALUE OF AS. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITMIZATIOMDISCOUNT) RATE . 7 A PERCENT SLOPE UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON UNHEIGHTED PI BY HORIZON DATE 10/15/84 SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON T VALUE = 3.0 T 3'1 1 . - ,- Rf... - 3 -..... . I. m. L .N.... .1 .. . 1.4.. .N ‘54: a. h». .. .N.~H . I .NIIEIILITIAI 1 II II I I I I 4. I 4 .4 . I. .I. I O II.OVIO ‘.A|..7Il!..AI...6Q4'NIHOUHII ‘. N. ‘ 6‘ I‘IIIK,'§TIN K 3PM) SION 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/ORAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION I NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-O/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 22.9 FSILT 1.30 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 76.2 FSILT 1.33 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 152.4 CLOAM 1.33 .09 5.00 .31 SUFFICIENCIES 1.00 .45 .70 RESOURCE NANASENENT SYSTEM DESCRIPTION ROTATION = C-H/S 11 CORN-DOUBLE CRDP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOUR/STRIP EWMMRME= 13m mumAmEflRmm YET PRICES CORN 2.94 PER BU. NHEAT 3.33 PER DU. SOY 6.90 PER 311. MEmeCMTNmeUmN=2nmo DmmMTmm= SHSPmmm TEHMJMUM=.W0 T AR DEPTH LOST PCT PI - YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL HAECP PRES VAL CM CORN VHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 101.00 37.00 27.00 71.40 .00 .00 373.77 .23 99.95 100.95 36.93 26.99 71.2 1.70 .14 311.04 .55 99.90 100.90 36.96 26.97 71.10 3.29 .27 743.50 .33 99.86 100.35 36.95 26.96 70.95 4.73 .39 690.76 1.10 99.31 100.30 36.93 26.95 70.79 6.13 .50 637.46 1.33 99.77 100.77 36.92 26.94 70.69 7.05 .57 533.63 1.66 99.72 100.72 36.90 26.92 70.53 3.27 .67 543.22 1.93 99.67 100.67 36.88 26.91 70.37 9.42 .77 501.26 2.21 99.62 100.61 36.36 26.90 70.20 10.49 .35 462.52 2.43 99.53 100.53 36.35 26.39 -70.09 11.16 .91 427.09 2.76 99.53 100.53 36.83 26.87 69.93 12.10 .93 394.06 3.03 99.43 100.47 36.31 26.86 69.76 12.93 1.05 363.57 3.31 99.42 100.42 36.79 26.34 69.59 13.30 1.12 335.43 3.59 99.33 100.33 36.77 26.83 69.47 14.31 1.16 309.71 3.36 99.33 100.32 36.75 26.82 69.30 15.03 1.22 235.72 4.14 99.27 100.27 36.73 26.30 69.12 15.70 1.23 263.53 4.41 99.21 100.21 36.71 26.79 63.94 16.33 1.33 243.14 4.69 99.13 100.17 36.70 26.78 63.32 16.73 1.36 224.43 4.97 99.12 100.11 36.67 26.76 63.64 17.27 1.40 207.06 5.24 99.06 100.05 36.65 26.75 63.46 17.79 1.45 190.99 5.52 99.00 99.99 36.63 26.73 63.27 13.27 1.43 176.16 5.79 93.96 99.95 36.62 26.72 63.15 13.57 1.51 162.62 6.07 93.90 99.39 36.59 26.70 67.96 13.99 1.54 149.93 6.35 93.33 99.33 36.57 26.69 67.76 19.33 1.57 133.32 6.62 93.77 99.77 36.55 26.67 67.57 19.74 1.60 127.56 HORIZON 1 2 3 RS TO LOSE 32.3 196.5 230.9 NHEIEHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE HGT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AO. LAND(YEAR I) - PRESENT VALUE F NET RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP = ANNUITY OF PRES VAL BENEFIT. RES VAL A6. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS(YEAR N) / APITALIZATIOMDISCOUNT) RATE. SION 1.1 IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON 3C)I SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 7.0 7 A PERCENT SLOPE UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON DATE 10/15/34 SECTION 2/84 I VALUE = 3.0 UNHEIGHTED PI BY HORIZON 22.9 FSILT 1.30 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 76.2 FSILT 1.33 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 152.4 CLOAM 1.33 .09 5.00 .31 SUFFICIENCIES 1.00 .45 .70 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = UP I DOHN EROSION RATE = 10.00 TONS PER ACRE PER YEAR KET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. RAGE ANNUAL COST OF PRODUCTION = 251.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 104.00 37.00 30.00 77.16 .00 .00 949.66 .17 99.97 103.97 36.99 29.99 77.06 1.18 .10 877.12 .34 99.94 103.93 36.98 29.98 76.95 2.29 .19 810.10 .52 99.90 103.90 36.96 29.97 76.85 3.32 .2 748.20 .69 99.89 103.88 36.96 29.97 76.79 3.79 .31 691.50 .86 99.86 103.85 36.95 29.96 76.69 4.69 .38 638.64 1.03 99.82 103.82 36.93 29.95 76.58 5.52 .45 589.82 1.21 99.79 103.78 36.92 29.94 76.47 6.30 .51 544.72 1.38 99.77 103.76 36.92 29.93 76.41 6.66 .54 503.42 1.55 99.74 103.73 36.90 29.92 76.30 7.33 .60 464.92 1.72 99.70 103.69 36.89 29.91 76.19 7.96 .65 429.36 1.90 99.69 103.68 36.88 29.91 76.13 8.25 .67 396.80 2.07 99.65 103.64 36.87 29.90 76.02 8.80 .71 366.44 2.24 99.62 103.60 36.86 29.89 75.91 9.31 .76 338.39 2.41 99.58 103.57 36.85 29.88 75.79 9.78 .79 312.49 2.59 99.56 103.55 36.84 29.87 75.73 10.00 .81 288.79 2.76 99.53 103.51 36.83 29.86 75.62 10.41 .85 266.68 2.93 99.49 103.47 36.81 29.85 75.50 10.80 .88 246.26 3.10 99.46 103.44 36.80 29.84 75.38 11.15 .91 227.39 3.28 99.44 103.42 36.79 29.83 75.32 11.32 .92 210.14 3.45 99.40 103.38 36.78 29.82 75.20 11.63 .94 194.04 3.62 99.37 103.34 36.77 29.81 75.08 11.92 .97 179.17 3.79 99.35 103.32 36.76 29.80 75.02 12.05 .98 165.57 3.97 99.31 103.28 36.75 29.79 74.90 12.30 1.00 152.88 4.14 99.27 103.24 . 29.78 74.78 12.53 1.02 141.16 HORIZON 1 2 3 RS TO LOSE 132.5 314.4 449.4 NHEISHTEO PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 3 PH SUFFICIENCY. EM: YEAR OF CONVERSION TO RESOURCE MST. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LDA= ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS 3 MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AO. LAND(YEAR 1) - PRESENT VALUE F NET RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AEOP-= Y OF PRES VAL BENEFIT MIT IES VAL A6. LAND= CAPITALIZED PRESENT VALUE OF A8. LAND= DISCOUNTED NET RETURNS(YEAR N) / \PITALIZATIOMDISCOUNT) RATE. N 302 SOIL DEPLETION ESTINATE ADAPTED PIERCE/LARSON/DOHDY/GRAHAM NODEL FROM JSHC JAN/FEB 1983 SION 1.1 DATE 10.15/84 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 1 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI RY HORIZON 22.9 FSILT 1. 3o .21 5.00 .70 SUFFICIENCIES 1. 00 1.00 .70 73.2 FSILT 1. 33 .21 5.00 .7 SUFFICIENCIES 1. 00 1.00 .70 152.4 CLOAN L 33 .09 5.00 .31 SUFFICIENCIES L 00 .45 .70 RESOURCE NANACENENT SYSTEM DESCRIPTION ROTATION = (HI/S 13 CORN-DOUBLE CROP NHEAT/SOT TILLAGE NETNOD = CONSERVATION CONSERVATION PRACTICE = CONTOURTNC EROSION RATE = 8.00 TONS PER ACRE PER YEAR KET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 3.90 PER DU. RARE ANNUAL COST OF PRODUCTION = 240.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL NAECP PRES VAL CM CORN NHEAT SOY RETURN RENEETT AG.LAND .00 100.00 101.00 37.00 27.00 73.40 .00 .00 903.38 .14 99.97 100.97 33.99 23.99 73.30 1.13 .09 834.37 .28 99.95 100.95 33.98 23.99 73.25 1.35 .13 771.15 .41 99.92 100.92 33.97 23.98 73.15 2.33 .21 712.22 .55 99.90 100.90 33.93 23.97 73.10 3.09 .25 358.25 .39 99.89 100.89 33.93 23.97 73.05 3.51 .29 308.33 .83 99.83 100.85 33.95 23.93 72.95 4.30 .35 531.83 .97 99.84 100.84 33.94 23.93 72.89 4.37 .38 519.27 1.10 99.81 100.80 33.93 23.95 72.79 5.35 .43 479.53 1.24 99.79 100.79 33.92 23.94 72.74 5.37 .43 443.21 1.38 99.77 100. .92 23.94 72.39 5.97 .48 409.31 1.52 99.74 100.74 33.90 23.93 72.58 3.52 .53 378.28 1.33 99.72 100.72 33.90 23.92 72.53 3.77 .55 349.30 1.79 99.70 100.70 33.89 23.92 72.47 7.01 .57 323.09 1.93 99.37 100.37 33.88 23.91 72.37 7.45 .31 298.37 2.07 99.35 100.35 33.87 23.91 72.31 7.33 .32 275.74 2.21 99.32 100.31 33. 83 23.90 72.20 8.04 .35 254.34 2.35 99.30 100.30 33. 85 23.89 72.15 8.22 .37 235.32 2.48 99.58 100.58 33.85 23.89 72.09 8.39 .38 217.47 2.32 99.55 100.54 33.83 23.88 71.98 8.70 .71 200.82 2.73 99.53 100.53 33.83 23.87 71.93 8.84 . 2 185.59 2.90 99.51 100.51 33.82 23.87 71.87 8.97 .73 171.51 3.03 99.48 100.47 33.81 23.83 71.73 9.22 .75 158.37 3.17 99.43 100.45 33.80 23.85 71.70 9.34 .73 143.33 3.31 99.42 100.42 .79 23.84 71.59 9.55 .78 135.14 HORIZON 1 2 3 15 TO LOSE 135.3 393.0 531.8 MISHTED PI BY WIZON 8 m DENSITY SWFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH STIFICIENCY. EAR 3 YEAR (HP CONVERSION TO RESOURCE INST. SYSTEM ERODING AT OR BELOH T VALIE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED UEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. RES VAL BEIEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A6. LAND(YEAR 1) - PRESENT VALUE FNET RETURNS(TO YEAR N-1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). ECP= ANNUITY OF PRES VAL BENEFIT. ES VPL A8. LAND= CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / ’PITALIZATIOMDISCIMINT) RATE. i 85. .- V 9 D 0. 0. D D 1181111141 .I.AII-I I.1ICI§Q..§ ‘59 .8. 9 R 6 I. .0. IA ITTA I A I AIT. 5‘. ARMANI U1 .. 303 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOUDY/GRAHAM MODEL FROM JSHC JAN/FEB1983 .SION 1.1 DATE 107’15/84 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 1 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNUEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON {IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE UATER-IN/IN REACTION-PH L'NUEIGHTED PI BY HORIZON 22.9 FSILT 1.30 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 73.2 FSILT 1.33 .21 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 152.4 CLOAM 1.33 .09 5.00 .31 SUFFICIENCIES 1.00 .45 .70 RESOURCE NANAOENENT SYSTEM DESCRIPTION ROTATION = c-H/S 11 CORN-DOUBLE CROP NHEAT/SUI TILLAGE NETHOD = CONVENTIONAL CONSERVATION PRACTICE = PAR. TERRACE EROSION RATE = 3.00 TONS PER ACRE PER YEAR KIT PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 3.90 PER BU. RAGE ANNUAL COST OF PRODUCTION = 259.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 T AR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL NAECP PRES VAL . CM CORN NHEAT SOY RETURN BENEFIT AG.LAND ; .00 100.00 101.00 37.00 27.00 54.40 .00 .00 339.54 .10 99.97 100.97 33.99 23.99 54.30 1.13 .09 318.10 .21 99.95 100.95 33.98 23.99 54.25 1.35 .13 571.13 .31 99.94 100.94 33.98 23.98 54.20 2.14 .17 527.72 .41 99.92 100.92 33.97 23.98 54.15 2.30 .21 487.31 .52 99.90 100.90 33.93 23.97 54.10 3.02 .25 450.55 .32 99.89 100.89 33.93 23.97 54.05 3.41 .2 413.30 .72 99.87 100.87 33.95 23.97 54.00 3.77 .31 384.35 .83 99.83 100.85 33.95 23.93 53.95 4.11 .33 355.41 .93 99.84 100.84 .94 3. 53.89 4.43 .33 328.39 1.03 99.82 100.82 33.93 23.95 53.84 4.72 .38 303.42 1.14 99.81 100.80 33.93 23.95 53.79 4.99 .41 280.35 1.24 99.79 100.79 33.92 23.94 53.74 5.24 .43 259.03 1.35 99.77 100.77 33.92 23.94 53.39 5.47 .44 239.33 . 1.45 99.73 100.75 33.91 23.93 53.33 5.39 .43 221.13 1.55 99.74 100.74 33.90 23.93 53.58 5.89 .48 204.31 1.33 99.72 100.72 33.90 23.92 53.53 3.08 .49 188.77 1.73 99.70 100.70 33.89 23.92 53.47 3.25 .51 174.41 1.83 99.39 100.38 .88 23.92 53.42 3.42 .52 131.15 1.97 99.37 100.37 33.88 23.91 53.37 3.57 . 7 148.89 2.07 99.35 100.35 33.87 23.91 53.31 3.71 .54 137.53 2.17 99.34 100.33 33.87 23.90 53.23 3.84 .53 127.09 2.28 99.32 100.31 33.83 23.90 53.20 3.93 .57 117.42 2.38 99.30 100.30 33.85 23.89 53.15 7.07 .57 108.49 ' 2.48 99.58 100.58 33.85 23.89 53.09 7.17 .58 100.23 HORIZON 1 2 3 RS TO LOSE 220.9 523.9 749.1 MIGHTED PI DY HINTIZINT = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SIM-'FICIENCY 3 PH SUFFICIENCY. = YEAR OF CONVERSION TO RESOURCE MT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A8. LAND(YEAR 1) - PRESENT VALUE F NET RETURNS(TO YEAR N- -1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). ECP= ANNUITY OF PRES VAL BENEFIT. RES SVPL A6. LAND= CAPITALIZED PRESENT VALUE OF AG. LAND = DISCOUNTED NET RETURNS( YEAR N) / IPITALIZATIONWISCOUNT) RATE. [$31.1 ION 1.1 IZON DEPTH-CM TEXTLRE 22.9 FSILT 1.30 5.00 .70 SUFFICIENCIES 1.00 .70 76.2 FSILT 1.33 5.00 .70 SUFFICIENCIES 1.00 .70 152.4 CLOAM 1.33 5.00 .31 SUFFICIENCIES 1.00 .70 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = CONTOURING EROSION RATE 3 5.00 TONS PER ACRE PER YEAR (ET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. OWE ANNUAL COST OF PRODUCTION = 253.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 IR DEPTH LOST PCT PI M 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 104.00 37.00 30.00 75.16 .00 .00 925.05 .09 9 .98 103.98 36.99 30.00 75.11 .59 .05 854.94 .17 99.97 103.97 36.99 29.99 75.06 1.14 .09 790.15 .2 99.95 103.95 36.98 29.99 75.00 1.65 .13 730.27 .34 99.94 103.93 36.98 29.98 74.95 2.12 .17 674.92 .43 . 103.92 36.97 29.98 74.90 .56 .21 623.76 .52 99.90 103.90 36.96 29.97 74.85 2.97 .24 576.48 .60 99.89 103.88 36.96 29.97 74.79 3.35 .27 532.78 .69 99.89 103.88 36.96 29.97 74.79 3.35 .27 492.75 .78 99.87 103.87 . 29.96 74.74 3.67 .30 455.39 .86 99.86 103.85 36.95 29.96 74.69 3.97 .32 420.87 .95 99.84 103.83 36.94 29.95 74.63 4.26 .35 388.96 1.03 99.82 103.82 36.93 29.95 74.58 4.52 .37 359.47 1.12 99.81 103.80 36.93 29.94 74.52 4.76 .39 332.22 1.21 99.79 103.78 36.92 29.94 74.47 4.99 .41 307.03 1.29 99.79 103.78 36.92 29.94 74.47 4.99 .41 283.96 1.38 99.77 103.76 36.92 29.93 74.41 5.18 .42 262.43 1.47 99.76 103.75 36.91 29.93 74.36 5.36 .44 242.53 1.55 99.74 103.73 36.90 29.92 74.30 5.53 .45 224.13 1.64 99.72 103.71 36.90 29.92 74.25 5.68 .46 207.14 1.72 99.70 103.69 36.89 29.91 74.19 5.83 .47 191.43 1.81 .69 103.68 36.88 29.91 74.13 5.96 .48 176.91 1.90 99.69 103.68 36.88 29.91 74.13 5.96 .48 163.62 . 1.98 99.67 103.66 36.88 29.90 74.08 6.07 .49 151.21 1 2.07 9.65 103.64 36.87 29.90 74.02 6.18 .50 139.74 HORIZON 1 2 3 RS TO LOSE 265.0 628.7 898.9 HICHTED PI BY HMIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SLFFICIENCY 3 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. ADAPTED PIERCE/LARSON/DOUDY/GRAHAM ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION I NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON BULK DENSITY-S/CM3 AVAILABLE HATER-IN/IN REACTION-PH 304 SOIL DEPLETION ESTIMATE MODEL FROM JSHC JAN/FEB 1983 ON 7.0 EPTH LOST = CUMLlATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. g= ESTIMATED YIELD FOR YEAR OF CONVERSION. RETLRN = YIELDS X MARKET PRICES - COST OF PRODUCTION. RES VAL BEKFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A8. LAND(YEAR 1) - PRESENT VALLE F NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AO LAND(YEAR N). AECP = ANNUITY OF PRES VAL BENEFIT. RES VAL A6. LAND = CAPITALIZED PRESENT VALUE OF A8. LAND = DISCOUNTED NET RETURNS( YEAR N) / APITALIZATION1DISCOUNT) RATE. 7A PERCENT SLOPE UNUEIOHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON UNHEIGHTED PI BY HORIZON DATE 10/15/84 I VALUE = 3.0 N 3()5 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROCP 7 A REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = BRANDON ON 7.0 PERCENT SLOPE UNHEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON IZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UHHEIGHTED PI BY HORIZON SION 1.1 T VALUE = 3.0 22.9 FSILT 1.30 .21 5.00 .7 SUFFICIENCIES 1.00 1.00 .70 76.2 FSILT 1.33 .2 5.00 .70 SUFFICIENCIES 1.00 1.00 .70 152.4 CLOAM 1.33 .09 5.00 .31 SUFFICIENCIES 1.00 .45 .70 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 13 CORN‘DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE 3 4.00 TONS PER ACRE PER YEAR (ET PRICES CORN 2.94 PER BU. HHEAT 3.88 PER BU. SOY 6.90 PER 8U. RAGE ANNUAL COST OF PRODUCTION = 742.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 IR DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN HHEAT SOY RETURN BENEFIT AG.LAND 000 100000 101000 37000 27000 71040 000 000 878077 .07 99.98 100.98 36.99 27.00 71.35 .56 .05 812.17 .14 99.97 100.97 36.99 26.99 71.30 1.09 .09 750.62 .21 99.95 100.95 36.98 26.99 71.25 1.57 .13 693.73 .28 99.95 100.95 36.98 26.99 71.25 1.57 .13 641.60 .34 99.94 100.94 36.98 26.98 71.20 1.99 .16 592.97 .41 99.92 100.92 36.97 26.98 71.15 2.38 .19 548.02 .48 99.92 100.92 36.97 26.98 71.15 2.7 .19 506.84 .55 99.90 100.90 36.96 26.97 71.10 2.71 .22 468.42 .62 99.89 100.89 36.96 26.97 71.05 .02 .25 432.91 .69 99.89 100.89 36.96 26.97 71.05 3.02 .25 400.38 .76 99.87 100.87 36.95 26.97 71.00 3.29 .27 370.03 .83 99.86 100.85 36.95 26.96 70.95 3.54 .29 341.97 .90 99.86 100.85 36.95 26.96 70.95 3.54 .29 316.28 .97 99.84 100.84 36.94 26.96 70.89 3.75 .30 292.30 1.03 99.82 100.82 36.93 26.95 70.84 3.94 .32 270.14 1.10 99.81 100.80 36.93 26.95 70.79 4.13 .34 249.65 1.17 99.81 100.80 36.93 26.95 70.79 4.13 .34 230.89 1.24 99.79 100.79 36.92 26.94 70.74 4.29 .35 213.39 1.31 99.77 100.77 36.92 26.94 70.69 4.43 .36 197.2 1.38 99.77 100.77 36.92 26.94 70.69 4.43 .36 182.39 1.45 99. 100.75 36.91 26.93 70.63 4.56 .37 168.55 1.52 99.74 100.74 36.90 26.93 70.58 4.67 .38 155.77 1.2 44444 4144 4444 44 44° 0 0 0 0 4. 0 I 40 0 1 014 HORIZON 1 2 3 RS TO LOSE 331.3 785.9 1123.6 NHEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. CT P1 = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. LD = ESTIMATED YIELD FOR YEAR OF CONVERSION. ET RETURN = YIELDS 4 MARKET PRICES - COST OF PRODUCTION. RES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AG. LAND(YEAR 1) - PRESENT VALUE F NET RETURNS(TO YEAR N-1) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). AECP= ANNUITY OF PRES VAL MNEFI RES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / APITALIZATION(DISCOUNT) RATE. 3N 1.1 3(36 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOVDY/ORAHAM MODEL FROM JSHC JAN/FEB 1983 DATE 10/15/84 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 (ENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 C REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 2 N 7.0 PERCENT SLOPE T VALUE = 3.0 ON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON UNUEIGHTED PI BY HORIZON 8.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES . 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-N/S 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = UP 1 DOOR EROSION RATE = 63.00 TONS PER ACRE PER YEAR T PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. 8E ANNUAL COST OF PRODUCTION = 238.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 I DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 90.90 3.30 24.30 44.06 .00 .00 542.28 1.01 99.31 90.27 33.07 24.13 42.11 22.18 1.80 479.34 2.02 98.66 89.68 32.85 23.97 40.29 41.41 3.36 424.10 4.04 97.28 88.45 32.40 23.65 36.47 77.11 6.27 328.43 5.04 96.56 87.81 32.17 23.47 34.48 93.69 7.61 287.17 6.05 95.80 87.15 31.93 23.30 32.43 109.48 8.90 249.80 7.06 95.02 86.47 31.68 23.12 30.32 124.55 10.12 215.96 8.07 94.21 85.77 31.42 22.93 28.13 138.92 11.29 185.36 9.07 93.39 85.07 31.16 22.74 25.96 152.15 12.36 158. 10.05 92.68 84.46 30.94 2. 24.08 162.78 13.23 135.68 11.02 91.94 83.84 30.71 22.41 22.15 172.84 14.04 115.43 11.99 91.26 83.27 30.50 22.26 20.38 181.38 14.74 98.22 12.97 90.48 2.62 30.27 22.09 18.37 190.34 15.46 81.88 13.94 89.68 81.96 30.02 21.91 16.32 198.79 16.15 67.27 14.92 88.86 81.2 29.78 21.73 14.22 206.77 16.80 54.23 15.39 88.10 80.67 29.55 21.56 12.30 213.54 17.35 43.39 16.86 87.23 79.97 29.29 21.38 10.13 220.63 17.93 33.04 17.84 86.34 79.25 29.03 21.19 7.92 227.31 18.47 23.88 18.31 85.42 78.52 28.77 20.99 5.66 233.60 18.98 15.79 19.79 34.57 77.86 28.52 20.81 3.59 238.93 19.41 9.27 20.76 83.61 77.11 28.25 20.61 1.26 244.50 19.87 3.01 21.73 82.61 76.34 27.97 20.41 -1.12 247.28 20.09 .00 22.71 81.59 75.56 27.68 20.20 -3.53 247.47 20.11 .00 23.68 80.65 74.85 27.42 20.01 -5.74 248.01 20.15 .00 HORIZON 1 2 8 TO LOSE 8.8 54.6 VEIGHTED PI BY HORIZON = BULK DENSITY SLFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 3 PH SIFFICIEINIY. AR = YEAR OF CONVERSION TO RESOURCE MGT. SYSTEM ERODING AT OR BELOH T VALUE. PIN LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. T PI = NORMALIZED VEIGNTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. D = ESTIMATED YIELD FOR YEAR OF CONVERSION. T RETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AB. LAND(YEAR I) - PRESENT VALUE NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AS LAND(YEAR N). 5E? = ANNUITY OF PRES VAL BENEFIT. ESIML AG. LAND = CAPITALIZED PRESENT VALUE OF A8. LAND = DISCOUNTED NET RETURNS(YEAR N) / PITALIZATION1DISCOUNT) RATE. 307 SOIL DEPLET ION ESTIMATE DATE 10/ 15/ 84 ADAPTED PIERCE/LARSON/DOHDY/ORAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION 1 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 C REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 2 ON 7.0 PERCENT SLOPE UNVEIOHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON JN DEPTH-CM TEXTURE BULK DENSITY-C/CMII AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 1N1.1 T VALUE = 3.0 8.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-u/s 11 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOURING EROSION RATE = 32.00 TONS PER ACRE PER YEAR T PRICES CORN 2.94 PER BU. NHEAT 3.88 PER 80. SOY 6.90 PER 80. 8E ANNUAL COST OF PRODUCTION = 240.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT 501 RETURN BENEFIT AG.LAND .00 100.00 90.90 33.30 24.30 42.06 .00 .00 517.66 .51 99.63 90.56 33.18 24.21 41.01 11.99 .97 466.77 1. 2 99.31 90.27 33.07 24.13 40.11 21.38 1.74 422.30 1.54 98.99 89.98 32.96 24.05 39.21 30.19 2.45 381.76 2.05 98.66 89.69 32.86 23.98 38.29 38.46 3.12 344.81 2.56 98.32 89.39 32.75 23.90 37.36 46.21 .75 311.14 3.07 97.98 89.08 32.63 23.81 36.42 53.49 4.35 280.49 3.59 97.64 88.77 2.52 23.73 35.46 60.32 4.90 252.58 4.10 97.28 88.46 32.41 23.65 34.49 66.72 5.42 227.20 4.61 96.85 88.08 32.27 23.55 . . 6.01 2 2. 5.12 96.48 87.75 32.15 23.46 32.30 79.60 6.47 182.00 5.64 96.11 87.42 32.03 23.37 31.28 84.91 6.90 163.01 6.15 95.73 87.09 31.90 23.28 30.24 89.90 7.30 145.78 6.66 95.34 86.75 31.78 23.19 29.19 94.58 7.68 130.14 7.17 94.94 86.41 31.65 23.10 28.13 98.98 8.04 115.96 7.69 94.54 86.06 31.53 23.01 27.04 103.11 8.38 103.12 8.20 94.13 85.71 31.40 22.91 25.94 106.99 8.69 91.48 8.71 93.62 85.27 31.24 22.80 24.59 111.39 9.05 80.22 9.21 93.25 84.96 31.12 22.71 23.62 114.32 9.29 71.26 9.71 92.90 84.65 31.01 22.63 22.68 116.94 9.50 63.28 10.20 92.53 84.35 30.90 22.55 21.73 119.40 9.70 56.07 10.70 92.24 84.10 30.81 22.48 20.96 121.23 9.85 50.02 11.19 91.87 83.79 30.69 22.40 19.99 123.37 10.02 44.12 11.68 91.49 83.47 30.58 22.31 19.01 125.38 10.19 38.80 12.18 91.11 83.15 30.46 22.23 18.02 ' 127.25 10.34 34.02 4081200 1 2 . TO LOSE 17.3 107.5 HEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 1 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. AR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. PTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. T PI = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. D = ESTIMATED YIELD FOR YEAR OF CONVERSION. TRETURN = YIELDS t MARKET PRICES - COST OF PRODUCTION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALlE OF A6. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N-I) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). ECP = ANNUITY OF PRES VAL BENEFIT. ES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF A6. LAND = DISCWNTED NET RETURNS(YEAR N) / PITALIZATION(DISCOUNT) RATE. T ON 1.1 SOIL 3CD! DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOHDY/ORAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION 1 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 2 ON 7.0 PERCENT SLOPE 7 C T VALUE 3 300 UNHEICHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON ION DEPTH-CM TEXTURE BULK DENSITY-S/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEIGHTED PI BY HORIZON 3.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C‘H/S 13 CORN'DOUDLE CROP NHEAT/SOY TILLAGE METHOD = CONSERVATION CONSERVATION PRACTICE 3 UP 3 DOHN EROSION RATE 3 16.00 TONS PER ACRE PER YEAR 5T PRICES CORN 2.94 PER 8U. NHEAT 3.88 PER DU. SOY 6.90 PER DU. 48: ANNUAL COST OF PRODUCTION = 238.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 I DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND 000 100000 90.90 33030 24030 44006 000 000 542028 .26 99.81 90.73 33.24 24.25 43.54 5.97 .48 495.56 .51 99.63 90.56 33.18 24.21 43.01 11.53 .94 452.76 .77 99.50 90.45 33.13 24.18 42.65 14.99 1.22 415.28 1.02 99.31 90.27 33.07 24.13 42.12 19.82 1.61 379.24 1.- 99.18 90.16 33.03 24.10 41.76 22.81 1.85 347. 1.54 98.99 89.98 32.96 24.05 41.21 27.01 2.19 317.43 1.79 98.86 89.86 32.92 24.02 40.85 29.61 2.41 290.97 2.05 98.66 89.69 32.86 23.98 40.29 33.24 2.70 265.47 2.31 98.46 89.51 32.79 23.93 39.74 36.64 2.98 242.13 2.56 98.32 89.39 32.75 23.90 39.36 38.74 3.15 221.83 2.82 98.12 89.20 32.68 23.85 38.80 41. 69 3.39 202.22 3.07 97.98 89.08 32. 23.81 38.42 43. 51 3.54 185.19 3.33 97.77 88.90 32.57 23.76 37.85 46.07 3.74 168. 72 3.59 97.64 88.77 32.52 23.73 37.46 47. 65 3.87 154.46 3.34 97.42 88.59 32.45 23.68 36.88 49. 87 4.05 140. 64 4.10 97.28 88.46 32.41 23.65 36.49 51.24 4.16 128.69 4.36 97.07 88.27 32.34 23.60 35.90 53.17 4.32 117.10 4.61 96.85 88.08 32.27 23.55 35.31 54.96 4.47 106.50 4.87 96.70 87.95 2. 23.51 34. 91 56.08 4.5 97.39 5.12 96.48 87.76 32.15 23.46 34.30 57.63 4.68 88.51 5.38 96.33 87.63 . 23.42 33.90 58.60 4.76 80.89 5.64 96.11 87.43 32.03 23.37 33.29 59.95 4.87 73.46 5.89 95.96 87.30 31.98 23.34 32.87 60.79 4.94 67.10 6.15 95.73 87.09 31.91 23.28 32.25 61.97 5.03 60.89 HORIZON 1 2 3 TO LOSE 34.7 215.0 HEIGHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 3 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. IAR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. 3 P1 = NORMALIZED HEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANGE. .D = ESTIMATED YIELD FOR YEAR OF CONVERSION. 3 RETURN = YIELDS X MARKET PRICES - COST OF PRODUCTION. ES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF AS. LAND(YEAR 1) - PRESENT VALUE NET RETURNS(TO YEAR N- 1) - PRESENT CAPITALIZED VALUE OF A6 LAND(YEAR N). EC? = ANNUITY OF PRES VAL BENEFIT. ES VAL AG. LAND = CAPI TALIZED PRESENT VALUE OF AG. LAND= DISCOUNTED NET RETURNS(YEAR N) / PITALIZATION1DISCOUNT) RATE. T {pf rm: 3'5. I It": "'1! r - r! o'- 1 1‘1) [III-Au .- ...»: I o '4! 1..» o u: I. 'It.>a<_ 0.. x». I -.. g. 1-1»4- In: U o 1:)! II 'I I 'I I " I 1' ._.- (.AL- AJ~ . In. Tc: w. 3f)9 SOIL DEPLETION ESTIMATE ADAPTED PIERCE/LARSON/DOVDY/GRAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 1 NATURAL RESOURCE ECONOMICS DIVISION . NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 C REPRESENTATIVE SOIL FOR DEPLETION ESTIMATE = LORING EP 2 ON 7.0 PERCENT SLOPE UNVEIGHTED PRODUCTIVITY INDEX-PIPCALCULATTONS BY SOIL HORIZON ZON DEPTH-CM TEXTURE BULK DENSITY-G/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNUEIGHTED PI BY HORIZON ION 1.1 T VALUE = 3.0 8.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-u/S 11 CORN-DOUBLE CROP NHEAT/SOT TILLAGE HETHOD = CONVENTIONAL CONSERVATION PRACTICE = CONTOUR/STRIP EROSION RATE = 16.00 TONS PER ACRE PER YEAR :ET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. :ASE ANNUAL COST OF PRODUCTION = 242.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 IN DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CM CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 90.90 33.30 24.30 40.06 .00 .00 493.05 .26 99.81 90.73 33.24 24.25 39.54 5.97 .48 450.03 .51 99.63 90.56 33.18 24.21 39.01 11.53 .94 410.65 .77 99.50 90.45 33.13 24.18 38.65 14.99 1.22 376.33 1.02 99.31 90.27 33.07 24.13 38.12 19.82 1.61 343.23 1.2 99.18 90.16 33.03 24.10 37.76 22.81 1.85 314.44 1.54 98.99 39.98 32.96 24.05 37.21 27.01 2.19 286.62 1.79 98.86 89.86 32.92 24.02 36.85 29.61 2.41 262.48 2.05 98.66 89.69 32.86 23.98 36.29 33.24 2.70 239.12 2.31 98.46 89.51 2.79 23. 35.74 36.64 2.98 217.76 2.56 98.32 89.39 32.75 23.90 35.36 38.74 3.15 199.29 2.82 98.12 89.20 32.68 23.85 34.80 41.69 3.39 181.37 3.07 97.98 89.08 32.63 23.81 34.42 43.51 3.54 165.91 3.33 7.77 88.90 32.57 23.76 33.85 46.07 3.74 150.89 3.59 97.64 88.77 32.52 23.73 33.46 47.65 3.87 137.97 3.84 97.42 88.59 32.45 23.68 32.88 49.87 4.05 125.38 4.10 97.28 88.46 32.41 23.65 32.49 51.24 4.16 114.59 4.36 97.07 88.27 32.34 23.60 31.90 53.17 4.32 104.05 4.61 96.85 88.08 32.27 23.55 31.31 54.96 4.47 94.44 4.87 96.70 87.95 32.22 23.51 30.91 56.08 4.56 86.23 5.12 96.48 87.76 2.15 23.46 30.30 57.63 4.68 78.19 5.38 96.33 87.63 32.10 23.42 29.90 58. 4.76 71.35 5.64 96.11 87.43 32.03 23.37 29.29 59.95 4.87 64.63 5.39 95.96 87.30 31.98 23.34 28.87 60.79 4.94 58.94 6.15 95.73 87.09 31.91 23.28 28.25 61.97 5.03 53.34 HORIZON 1 2 as TO LOSE 34.7 215.0 NUEIBHTED PI BY HORIZON = BILK DENSITY SUFFICIENCY S AVAILABLE HATER SIFFICIENCY 3 PH SIFFICIENCY. EAR = YEAR OF CONVERSION TO RESOURCE MST. SYSTEM ERODING AT OR BELOH T VALUE. EPTH LOST = CUMULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. 3T PI = NORMALIZED VEIOHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. :D = ESTIMATED YIELD FOR YEAR OF CONVERSION. :T RETURN = YIELDS 3 MARKET PRICES - COST OF PRODUCTION. RS VAL BENEFIT = FRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A6. LAND(YEAR I) - PRESENT VALUE ' NET RETURNS(TO YEAR N-l) - PRESENT CAPITALIZED VALUE OF AG LAND(YEAR N). )ECP = ANNUITY OF PRES VAL BENEFIT. (ES VAL AG. LAND = CAPITALIZED PRESENT VALUE OF A6. LAND = DISCOUNTED NET RETURNS(YEAR N) / SITALIZATION(DISCOUNT) RATE. DATE 10/15/84 T ("1‘ I ..1-‘ T3 I”. O L}. . i I... A: . . Ni 4:1. -- :‘13’. 541::- i I a. ".‘é _ 1 n A 31C) ION 1.1 SOIL DEPLETION ESTIMATE DATE 10/15/84 ADAPTED PIERCE/LARSON/DOVDY/ORAHAM MODEL FROM JSHC JAN/FEB 1983 ECONOMIC RESEARCH SERVICE 9 NATURAL RESOURCE ECONOMICS DIVISION 9 NORTHEAST SECTION 2/84 KENTUCKYS JACKSON PURCHASE AREA SOIL RESOURCE GROUP 7 C REPRESENTATIVE SOIL FOR DEPLETION ESTIHATE = LORING EP 2 ON 7.0 PERCENT SLOPE T VALUE = 3.0 UNVEIGHTED PRODUCTIVITY INDEX-PI-CALCULATIONS BY SOIL HORIZON ZON DEPTH‘CM TEXTURE BULK DENSITY-O/CM3 AVAILABLE HATER-IN/IN REACTION-PH UNHEISHTED PT BY HORIZON 8.9 FSILT 1.40 .22 5.25 .78 SUFFICIENCIES .96 1.00 .81 62.2 FSILT 1.45 .21 5.25 .75 SUFFICIENCIES .93 1.00 .81 RESOURCE MANAGEMENT SYSTEM DESCRIPTION ROTATION = C-H/S 14 CORN-DOUBLE CROP NHEAT/SOY TILLAGE METHOD = NO TILL CONSERVATION PRACTICE = UP 8 DOUN EROSION RATE = 10.00 TONS PER ACRE PER YEAR ET PRICES CORN 2.94 PER BU. NHEAT 3.88 PER BU. SOY 6.90 PER BU. ASE ANNUAL COST OF PRODUCTION = 250.00 DISCOUNT RATE = 8.125 PERCENT TECH ADJ FACTOR = .000 R DEPTH LOST PCT PI YLD 1 YLD 2 YLD 3 YLD 4 NET PRES VAL MAECP PRES VAL CH CORN NHEAT SOY RETURN BENEFIT AG.LAND .00 100.00 93.60 33.30 27.00 45.34 .00 .00 558.08 .16 99.88 93.48 33.26 26.97 44.98 4.16 .34 511.99 .32 99.75 93.37 33.22 26.93 44.61 8.02 .65 469.65 .48 99.69 93.31 33.20 26.92 44.43 9.82 .80 432.56 .64 99.56 93.19 33.15 26.88 44.06 13.16 1.07 396.72 .80 99.44 93.07 33.11 26.85 43.68 16.26 1.32 363.80 .96 99.37 93.01 33.09 26.83 43.50 17.70 1.44 335.02 1.12 99.24 92.90 33.05 26.80 43.12 20.38 1.66 307.17 1.28 99.18 92.84 33.03 26.78 42.93 21.62 1.76 282.85 1.44 99.05 92.72 32.99 26.74 42.55 23.93 1.94 259.28 1.60 98.92 92.59 32.94 26.71 42.17 26.08 2.12 237.65 1.76 98.86 92.53 32.92 26.69 41.98 27.08 2.20 218.79 1.92 98.72 92.41 32.88 26.66 41.60 28.93 2.35 200.50 2.08 98.66 92.35 32.86 26.64 41.40 29.79 2.42 184.57 2.24 98.52 92.23 32.81 26.60 41.01 31.39 2.55 169.10 2.40 98.39 92.10 32.77 26.57 40.62 32.88 2.67 154.91 2.56 98.32 92.04 32.75 26.55 40.43 33.57 2.73 142.58 2.7 98.19 91.92 32.70 26.51 40.03 34.85 2.83 130.58 2.88 98.12 91.85 32.68 26.50 39.84 35.45 2.88 120.17 3.04 97.98 91.73 32.63 26.46 39.44 36.56 2.97 110.03 .20 97.84 91.60 32.59 26.42 39.04 37.59 3.05 100.73 3.36 97.77 91.54 32.57 26.41 38.84 38.07 3.09 92.69 3.52 97.64 91.41 32.52 26.37 38.44 38.96 3.17 84.83 3.68 97.57 91.35 32.50 26.35 38.24 39.37 3.20 78.05 3.84 97.42 91.22 32.45 26.31 37.83 40.13 3.26 71.41 HORIZON 1 2 IS TO LOSE 55.5 344.0 THEIOHTED PI BY HORIZON = BULK DENSITY SUFFICIENCY 8 AVAILABLE HATER SUFFICIENCY 8 PH SUFFICIENCY. §AR = YEAR OF CONVERSION TO RESOURCE MOT. SYSTEM ERODING AT OR BELOH T VALUE. 33H LOST = CUHULATIVE DEPTH OF SOIL LOST PRIOR TO YEAR OF CONVERSION. IT PI = NORMALIZED UEIGHTED PRODUCTIVITY INDEX USED FOR INTERNAL CALCULATIONS OF YIELD CHANCE. :D = ESTIMATED YIELD FOR YEAR OF CONVERSION. :T RETURN = YIELDS X MARKET PRICES - COST OF PRODUCTION. EES VAL BENEFIT = PRESENT VALUE OF BENEFITS LOST = CAPITALIZED VALUE OF A8. LAND(YEAR 1) - PRESENT VALUE 'NET RETURNS(TO YEAR N-1) - PRESENT CAPITALIZED VALUE OF A8 LAND(YEAR N). TECP = ANNUITY OF PRES VAL BENEFIT. IE5 VAL AG. LAND = CAPITALIZED PRESENT VALUE OF A8. LAND = DISCOUNTED NET RETURNS(YEAR N) / PITALIZATION