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THE STABILITY OF PLANE POISEUILLE FLOW

SUBJECT TO A TRANSVERSE MAGNETIC FIELD

By

James Anthony Kutchey

The stability of an electrically conducting fluid flow-

ing between parallel planes subject to a transverse magnetic

field is investigated for infinitesimal three-dimensional dis-

turbances. Primary interest is in the effect of the magnetic

field and magnetic fluid parameters on the critical point of

the neutral stability curves. The governing stability equa-

tions include perturbations for both the velocity and magnetic

fields and result in a sixth order coupled set of linear

ordinary differential equations. This set represents an eigen-

value problem that is transformed to an initial value problem

and solved numerically using a fourth order Runge-Kutta integra-

tion scheme with a Special filtering technique.

The results indicate a strong dependence of the critical

eigenvalues on both the magnetic field strength and a fluid

property, the magnetic Prandtl number. The effect of both is to

greatly stabilize the flow. Inclusion of the Span-wise wave

number does not affect the eigenvalues other than in a manner

predicted by Squire's Theorem. The numerical results are also

compared to previous data obtained by asymptotic expansion

techniques.
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CHAPTER I

INTRODUCTION

1.1 Review of Literature

The term "transition" as generally used in the field

of fluid mechanics applies to the observable change in flow

pattern when well-ordered laminar motion becomes turbulent.

The theory of stability using perturbation techniques with an

assumed form of infinitesimal disturbances attempts to predict

the value of the critical Reynolds number or point of insta-

bility for a prescribed main flow.

The earliest work in the area of transition was per-

formed by Reynolds (1883) when he used dye injection for flow

in pipes. Theoretical studies to predict the transition from

laminar to turbulent flow were begun by Lord Rayleigh (1880,

1887) and Lord Kelvin (1887). Based upon this work, independent

studies by Orr (1907) and Sommerfeld (1908) led to the now well

known Orr-Sommerfeld stability equation for two-dimensional

flow, which is given by

iv1

(U-c)(¢" - 02¢) - U"¢ = -aR (m - 2 02¢" + 04¢)

where U Velocity

c B Complex wave prOpagation Speed

Wave numberQ

ll

¢ = Eigenfunction



R = Reynolds number

This equation is based upon the assumption of infini-

tesimal periodic distrubances.

Neglecting the effects of viscosity, Lord Rayleigh

(1914) was able to show that any velocity profile that possesses

an inflection point is unstable. Much later, Tollmein (1935)

proved that this was not only a necessary but sufficient condi-

tion for the amplification of small disturbances.

Prandtl (1914) postulated the existence of a viscous

boundary layer and was able to define transition, separation

and drag coefficients on bodies. Incorporating the viscous

boundary layer into stability theory, Prandtl (1921) considered

flow over a flat plate and included the effects of the largest

viscous terms near the wall. This work along with calculations

performed by Tietjens (1925) gave the startling result that the

introduction of viscosity into the equations did not produce

damping as was presumed but amplification for sufficiently

large Reynolds numbers for particular wavelengths of the dis-

turbances.

Tollmein (1929) demonstrated that the effect of viscosity

must be taken into account not only near the wall but also in

the critical layer. The critical layer is a narrow region

surrounding the critical point at which the main flow velocity

and the wave prepagation velocity are equal, that is, U = c.

In addition, he also showed that the influence of viscosity

leads to instability only if the main flow velocity profile is

other than a straight line.



The method developed by Tollmein, based on Asymptotic

Theory, provided the mathematical basis for later progress in

the stability area. Lin (1945, 1946, 1955) was able to provide

a firm mathematical basis for the asymptotic expansion theory

and was able to explain the nature of the functions near the

critical point. He discussed what he called the inner viscous

layer which includes the critical point, and the outer viscous

layer, a wall viscous layer.

The asymptotic expansion method was used almost exclu-

sively until the advent of modern high-Speed digital computers

which permit the use of more accurate numerical techniques.

Even now, however, the asymptotic method can be effectively

used to predict the type of functional behavior to be expected,

prior to obtaining numerical solutions.

The stability of plane Poiseuille flow was investigated

by Thomas (1953) with a numerical scheme. He obtained a value

for the minimum Reynolds number, Rcr for neutral stability

it’

of 5780, which is based on maximum channel velocity and the

half-width. This value has been shown to be more accurate than

Lin's (1945) value of 5300 or Stuart's (1954) value of 5100

based on asymptotic techniques.

Potter (1965) studied the stability of plane Couette-

Poiseuille flow by asymptotic expansions and later (1967) per-

formed numerical calculations for symmetrical parabolic flows.

The values obtained for RC were in close agreement with those
rit

of Thomas.



The point of instability as determined theoretically

and the physically observable transition point from laminar to

turbulent flow often differ considerably. An explanation for

these differences was thought by some to be due to the fact that

the derivation of the Orr-Sommerfeld equation is based on the

assumption of two-dimensional disturbances only. Squire (1933)

showed that if three-dimensional disturbances are considered

the flow is more stable, that is, a higher value of Rcrit is

predicted,than for two-dimensional disturbances.

The distance between the point of instability and the

actual transition point depends upon the degree of amplifica-

tion present and the intensity of fluctuations present in the

primary flow. Schlichting (1933) performed calculations for

boundary layer flow over a flat plate and investigated the

parameters in the interior of the neutral stability curve

(Ci > 0) to help explain the actual mechanism of disturbance

amplification. More recently, Shen (1954) repeated Schlichting's

calculations, and Stuart (1956) investigated the amplification

of unstable disturbances by accounting for the effect of the

non-linear terms in the equations. Reynolds and Potter (1967)

considered the instabilities of channel flow for disturbances

of finite amplitude.

Except for early pipe flow measurements by Barnes and

Coker (1905) and Ekman (1910), who succeeded in maintaining

laminar flow for fairly high Reynolds numbers (40,000),

experimental verification of the results of stability theory

was slow in coming. Rosenbrook (1937) found agreement with



the inflexion point theorem due to Rayleigh and Tollmein.

Some of the most significant experimental work.was per-

formed by Schubauer and Skramstad (1947) and Dryden (1947) who

performed very precise measurements for boundary layer flow

over a flat plate (with very low free stream fluctuations),

and showed the influence of free stream disturbance intensity

on the critical Reynolds number.

Emmons (1951) observed that any disturbance which trig-

gers transition may be "local in time" and once initiated, the

turbulent Spot moves downstream growing steadily in all di-

rections. This phenomenom was studied by Schubauer-Klebanoff

(1956) .

Transition from laminar to turbulent flow in a boundary

layer is now believed to take place within 4 stages. At the

first stage, infinitesimal two dimensional waves called Tollmein-

Schlichting waves, begin to amplify and become unstable. The

two dimensional waves become three dimensional and result in

hairpin eddies at the second stage. In the third Stage low

Speed turbulent streaks or bursts (Emmons' spots) originate

near the wall, and finally in the fourth stage the burst rate

becomes constant and the transition to fully turbulent motion

is completed. Morkovin (1958) reviews some of the recent

advances in the study of transition and discusses the mechanisms

involved in the above mentioned stages.

Stability theory yields a critical Reynolds number that

corresponds to stage one. Since the third stage is the first

point at which large scale variations take place, this is often



considered to be transition by many engineers. These dif-

ferences along with the slower reSponse times of earlier instru-

mentation serve to explain some of the discrepancies between

theory and experiment.

Stability predictions in channel flow yield critical

Reynolds numbers that also correspond to infinitesimal dis-

turbances but the stages of transition are not as apparent as

in boundary layer flow. Free steam disturbances or distur-

bances which result from wall roughness amplify and lead to

the transition described above but the effect is now propagated

throughout the flow and the entire channel becomes turbulent.

In the area of magnetohydrodynamics (MHD), the velocity

and magnetic field equations for an incompressible, viscous and

electrically conducting fluid moving in the presence of a

magnetic field have been derived by Batchelor (1950). The effect

of a magnetic field on thermal instabilities was investigated

independently by Thompson (1951) and Chandrasekhar (1952). For

a complete discussion of this problem and others in the field

of hydrodynamic and hydromagnetic stability the reader is re-

ferred to Chandrasekhar (1961).

Stuart (1954) considered the stability of viscous flow

between parallel planes in the presence of a co-planar magnetic

field. Lock (1956) investigated a similar problem but con-

sidered the effect of a magnetic field perpendicular to both

the confining parallel planes and the flow direction. Both

Stuart and Lock simplified the resulting sixth order set of

equations and solved the fourth order Orr-Sommerfeld equation



by asymptotic expansions. To simplify the analysis, Lock

utilized Squire's theorem, as detailed by Michael (1953) for

the case of MHD flows.

1.2 Description of the Problem
 

The purpose of the present study is to investigate the

stability of an electrically conducting fluid flowing between

parallel planes Subject to the influence of a transverse mag-

netic field. The coordinate system is oriented with the origin

at the centerline, the x-axis in the direction of the flow and

the y-axis perpendicular to the bounding plates as shown in

figure 1. The planes are assumed to be non-conducting and

located at y = _-l_- a.

The governing equations, developed in the next chapter

result in a coupled set of ordinary linear differential equa-

tions, a fourth order equation on y, the velocity perturba-

tion, and a second order equation on ¢ the magnetic field

perturbation.

The above problem was considered by Lock in 1956. He

had to make several simplifying assumptions in order to obtain

a solution by asymptotic expansions. The reduced equation that

he solved was the following modified Orr-Sommerfeld equation:

(U-c) (1" - azw) - [W = - £1;in (1.2.1)

where the only effect of the magnetic field is to modify the

primary velocity profile U(y).



The eigenvalues that appear in most stability equations

normally occur in the combinations of (a2 + 82), aR, and cr’

and thus, Squire's Theorem is applicable. In the govern-

ing coupled equations for this problem 0 appears in the

magnetic equation as a separate coefficient indicating that

the Solutions may be subject to an influence of B: the Span-

wise (z-direction) component of the disturbance wave. Chawla

(1969) in studying the effect of rotation on the stability of

flow over a flat plate, found that the rotational effects were

directly coupled to a and Squire's Theorem was not applicable.

Although Lock initially assumed three-dimensional disturbances,

his simplifying assumptions delete the magnetic equation and

he is then justified in applying Squire's Theorem.

This study provides a solution of the complete set of

stability equations for various magnetic quantities and fluid

prOperties and also provides bounds for which Lock's assump-

tions are justified.



CHAPTER II

STABILITY EQUATIONS

2.1 Fundamental Equations
 

Consider first the interaction of the electric and

magnetic fields which are given by Maxwell's equations. These

equations written for a non-relativistic reference frame are

v - D = pe (2.1.1)

V -B’ = 0 (2.1.2)

v x E = - "13’ (2.1.3)

v xfi = 3+5 (2.1.4)

(
.
7
1

IIwhere Electric flux density

m
l

ll Electric field

o
n

II Magnetic flux density

H = Magnetic field

p8 = Space charge density

3 = Conduction current density

and the notation (°) implies if , t being time.

In addition to these equations, the current conservation

equation

v-If +5, = 0 (2.1.5)

is often used; although, it is not independent of Maxwell's

equations and follows directly from (2.1.1) and (2.1.4).

9
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The conduction current is given by Ohm's Law

3’ = 065 +\7 x1?) - peV (2.1.6)

where g is the electrical conductivity, and V is the velocity

vector.

The constitutive equations for a linear medium are

—0

as + '13 (2.1.7a)6
1

ll

W
1

II 1161' + fie) (2.1.7b)

where the polarization P and magnetization. M; vectors can

be neglected for conducting fluids; n is the magnetic permea-

bility and e is the permittivity, also known as the dielec-

tric constant.

For most materials, and in particular for all conduct-

ing liquids and gases u is that of free Space no. The assump-

tion that e = so, however, can be used only for plasmas, but

by using the current conservation equation (2.1.5) this assump-

tion need not be made.

Following the procedure outlined by Chandrasekhar (1961)

some simplifications can now be made to arrive at the equations

generally used to solve MHD flow problems. The assumptions are:

1. The non-relativistic approximation has already been

stated and is consistent with the Newtonian form of the equa-

tions of motion that will be used.

2. Without an externally applied electric field, the

electric fields originate only from the induced effects and

-o

are of the same order of magnitude as ‘V X B appearing in



ll

Ohm's Law.

3. High frequency phenomena are not considered so that

the displacement current D is neglected in equation (2.1.4)

compared to 3, the conduction current. In fact for metals,

the displacement current is meaningless and need not be

mentioned.

4. In Ohm's Law, which determines the conduction

current, the Space charge pe may be neglected. For liquid

conductors and in dense, collision-dominated plasmas, which

may be treated by a continuum model as an ordinary conducting

gas, the Space charge effects become unimportant. Ohm's Law

is then written as

-o

3’ = U(E + vx'fs’) (2.1.8)

where it is further assumed that the conductivity is constant

with frequency and independent of the magnetic field.

The small electric field and the negligible diSplacement

current imply the main interaction is between the magnetic field

and the fluid, hence the magnetohydrodynamics.

The Navier-Stokes equations governing the motion of an

incompressible fluid are

L a a 1 2w 1 a

V + (V - v)V = E'Vp + v V V + E'F (2.1.9)

-—~O

where the body force term is F = J X B, p is the pressure,

p is the mass density and v is the kinematic viscosity.

The equation of continuity is

v - V = o . (2.1.10)
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The equations now relevant to the problem are:

Maxwell's equations

v - fi' = 0 (2.1.11)

v xfi = 3 (2.1.12)

v xE = nil (2.1.13)

Ohm's law: 3' = 063 +1} x L{13) (2.1.14)

Continuity: V . V = 0 (2.1.15)

Navier-Stokes:

2
V+(V-V)V=‘£(3xfi)- Vp+wx7 (2.1

l

P P

Eliminating the electric field E between equations

(2.1.13) and (2.1.14), together with (2.1.12) leads to the

magnetic equation

. —o --0 2—0

V (V x H) #0

This equation along with (2.1.15), (2.1.16) and

(2.1.12) are sufficient to determine all the variables, V, H,

and p.

2.2 Non-Dimensional Variables

To write the equations in non-dimensional form, choose

the average velocity Um, the channel half width (a) and the

applied magnetic field strength Ho as reference quantities.

The dimensionless variables will then be

.16)

V H (2.1.17)

 



l3

 

at

17* X1
v =6... Xi =2._

m

7t

*

Umt __R_ (2.2.1)

t = p -
a U2

p m

...-k «at

if = E. 3 = Ls

H H
O 0

where xi = (x, y, z) the cartesian coordinates, and the

asterisks denote the previously used dimensional quantities.

Introducing these in the governing equations yields

. 2

V+N-v)U=-vp+%VZV+'EE-(3XH) (2.2.2)

m

H-vx (Vxfi)=%—v2fi (2.2.3)

In

3 = v x ii (2.2.4)

v ~11 = 0 (2.2.5)

v - \7’ = 0 (2.2.6)

Uma

where R = Reynolds number = —;-

M = Hartmann number = u Ha(SZ~-)15

pv

Rm = Magnetic Reynolds no. = Uma pg

It should be noted here that the above dimensionless

groups are not unique and that others may be formed by multiply-

ing togehter various combinations of the above. One Such para-

meter that will be used later is the magnetic Prandtl number

R

-.JE
Pm vuc R .

2.3 The Primary Flow and Magnetic Field Distributions

The solution for steady, two-dimensional motion of a

conducting fluid between parallel planes subjected to a



transverse magnetic field is well known and has been provided

14

by Hartmann and Lazarus (1937). For parallel flows, the

velocity components are (U, 0, 0) and for this problem the

magnetic field has the components

of y

and

only.

Equation (2.2.3) yields

2

l d Hx d
— = - —-—

. .1'-“ dy (UHy) (2 3 )

Rm dyz

(H , H , 0), all functions

X y

 

———l=0
(2.3.2)

Since the normal component of pH must be continuous

and have the same value at both walls and since the applied

magnetic field induction is in the y direction, equation

(2.3.2)

also be

tinuity

reSpect

shows that Hy is a constant H. This result can

obtained from equation (2.2.5) which represents con-

of the magnetic field.

Differentiating the x -component of (2.2.2) with

to y yields

 

2
2 d H 3

'E‘ "235- - 1% (2.3.3)

m dy dy

Eliminating Hx between (2.3.1) and (2.3.3) results in

d3U 2 dU

"j; = M a; (2.3.4)

dy

The solution to the above equation is

M(cosh M - cosh My)

U = (2.3.5)
M cosh M - sinh_M
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For zero magnetic fields, this equation should reduce

to the standard parabolic profile, U = 1.5 (l-yz). This is

found to be the case when the first two terms of the series

expansions are substituted for the hyperbolic functions.

To determine the induced magnetic field in the direc-

tion of flow, substitute equation (2.3.5) into (2.3.3). The

resulting equation and the boundary conditions that Hx must

be zero at both walls since there is no applied magnetic field

in this direction yields

Rm (Sinh My - y sinh M)

Hx = M(cosh M-l)
 

2.4 The Linearized Equations for Small Disturbances

The primary velocity and magnetic field quantities are

now considered to have superimposed on them three-dimensional

infinitesimal disturbances. They are then written

V=V +3

i 4p i (2.4.1)

H = H + h
p

where tha (U, 0, 0)

<
1

:
1

U
U

2
?

B
x

x
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:r

:

<:
o

N
V

V

:
1

u 9 :
J
‘

:
3
“

Substituting (2.4.1) into equation (2.2.3), Subtracting

off the original equation for the primary flow and neglecting

the squares of all the disturbance quantities yields

3' = dip-v)? + (fi-vfip - (VP-ml? - ('v’-v)ifp + 11— 23 (2.4.2)
In
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The pressure gradient term is first eliminated from the

momentum equation by taking the curl of both sides. The dis-

turbance equation is then found as above, and the vorticity

\

equation for the perturbations results.

:0 -o -b —+ a _ v-o . -—b -0. l 2-0

5 + (VP-WE + (v-vmp - (op v)v + (g va + R v s

2

+L

RRm

where 6p = vorticity of main flow = v X

§ = vorticity of perturbed flow = v X v

3=(VXH)

P P

'5 =(vx'fi)

V

p
-—1

~*.'-‘ “2"-”.‘°-“-‘."' 2.4.3{(Hp v)J+(h v)Jp (Jp v)h (J <1)le ( )

In addition, the following continuity equations result

v o 3 = O

:
7
1

II

C

v 0

(2.4.4)

(2.4.5)

Consider further that the assumed three-dimensional

disturbances take the separated form

vX = Vx(y) exp[i(ax + 82)

vy =10) exp[i(m< + 82)

v2 °z(y) exp[i(ax + 32)

hx = hx(y) exp[i(ax + 82)

h " (My) exp[i(orx + 82)

3
‘ II

3
"
?

A "
C

v

exp[i(ax + 52)

iact]

iact]

iact]

iact]

iact]

iact]

(2.4.6)

The assumed form of the disturbances implies a Spatially

periodic wave with complex amplitudes where a and a are

dimensionless wave numbers and are real quantities. The complex
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wave speed c is given by

C = Cr 4. “1 (2.4.7)

where c1 is the amplification rate. A positive or negative

ci implies growth or decay respectively of the perturbations.

This study is concerned with neutral stability, that is, ci 8 0.

Introducing the assumed form of the disturbances into

the component form of equations (2.4.2) and (2.4.3) and then

eliminating vx, vz, hx’ and b2 with a procedure similar to

that outlined by Chawla or Stuart (1954), yields the following

1 v 1 ,, 2
11¢ - 34’- - (U-c)¢ WT“: (¢ - K ¢) (2.4.8)

(U-c) (1);" - K211) - UN + i: “iv - 2K2¢" + KW)

(2. .9)

2 4

' P{h(¢" ' K20) - “i (0"'- K 0') - h"¢}

Rm (sinh My - y sinh M)

M (cosh M - l)

 where h - H B

x

M (cosh M - cosh My)

U a M coshM - sinh Mk

 

K2gmz+az

M2

P-—
RR
m

and primes indicate differentiation with respect to y.

Equations (2.4.8) and (2.4.9) can be solved simulta-

neously or can be combined to form a single sixth order equa-

tion. Combining the equations requires tedious algebra and

the resulting coefficients are extremely long and unwieldy.

No insight or simplification is gained by such a combination
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so that it is better to solve the two equations simultaneously.

The necessary boundary conditions result from the no-

slip velocity conditions at the wall and from continuity, namely,

€
- 0

€
- n c
>

(
a

'
< n

l
+

H

and the nature of the magnetic field perturbations (2.4.10)

The problem is now completely Specified.

2.5 Eigenvalue Problem

The system of equations and boundary conditions derived

above, represent an eigenvalue problem with the characteristic

values a, B, c, R and M. The wave propagation Speed, c as

stated earlier is complex, with the imaginary part being the

exponential growth or decay rate of the assumed disturbances.

Since neutral stability curves are desired ci is set to zero.

To solve for the characteristic values it is necessary

to Specify some of them, say M, B and cr and solve for the

remaining two, namely a and R from equations (2.4.8) and

(2.4.9).

The neutral stability curve (0 vs. R for constant M)

will have a minimum R, called the critical Reynolds number

crit’ for which a disturbance is neutrally stable. Reynolds

numbers greater than Rc result in growth for that parti-

rit

cular disturbance and Reynolds numbers smaller than Rcrit

result in decay. Associated with Rcrit there is also a

)critical wave Speed (cr crit’ and a critical wave number

’1’ . '

CI'LC

 

J
I



CHAPTER III

NUMERICAL SOLUTION OF THE STABILITY EQUATIONS

3.1 Introduction
 

The numerical solution to equations (2.4.8) and (2.4.9)

will generate three independent solutions because the solutions

are started at one wall with three boundary conditions already

satisfied. These solutions cannot each satisfy all of the

boundary conditions at both walls. However, a prOper linear

combination of these functions will yield the total eigen-

function which must then satisfy the three boundary conditions

at the opposite wall.

The integration of the equations is begun at the lower

wall (y = -l) and proceeds Step by step across the channel

to the upper wall. A fourth order Runge-Kutta technique, de-

tailed in appendix A is used to solve the equations. The three

independent solutions are each initialized at the lower wall

and integrated simultaneously at each step across the channel.

3.2 Starting Conditions

To use the Runge-Kutta integration scheme to solve a

differential equation of order n the problem must be trans-

formed to an initial value problem where the function and its

n-l derivatives are initially specified. For equations

19
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(2.4.8) and (2.4.9), the boundary conditions (2.4.10) provide

starting values for 'i’ w; and $1 (i = l, 2, 3 and repre-

sent the separate solutions) with values for the remaining

derivatives $2, ¢;" and ¢i somewhat arbitrary. The highest

order derivatives, namely 11v and ¢;, do not require ini-

tialization since they are determined in terms of the lower

order derivatives.

The "arbitrary" starting conditions mentioned above

must be chosen so as to insure independent functions, at least

at the start of the integration. A purification scheme maintains

independence as the integration proceeds. Assigning a non-zero

value to one of the three unSpecified derivatives for each of

the three solutions should help keep the solutions linearly

independent. Specifically $3, 45", and $1 are given non-

zero values.

The purification scheme requires identification of the

fastest growing'solution. This was accomplished by checking

the ratio of -l at the first integration step for each of

the independentisolutions. The values obtained for i = 1, 2, 3

were approximately 400, 300, and 200 respectively and, as Should

be expected, were unaffected by the relative magnitudes of the

starting values assigned to $3, V3 and ¢i.

3.3 Growth of the Eigenfunctions
 

It is well known that during the numerical integration

one of the two independent functions for the fourth order prob-

lem and at least one of the three independent functions for the
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sixth order problem grows very rapidly. Kaplan (1964) referred

to these functions as the "growing solutions" and called the

others the "well behaved solutions". The growing solutions

stem from the viscous portion of the stability equations and

the well behaved functions originate from the inviscid portion.

The governing stability equations can be written as

[hi - i’i' - (U-c)¢] = —£- [¢" - K2 3 (3 3 1)
a aRm ¢ ° °

2 ' - 2 4
[(U-c)(¢" - K W) - u"¢] = if [11V - 2K 1" + K ¢

2 (3.3.2)

- 3:31" 01(4)" - K20) - 5; (0m ' K205 - Mel]
m

The terms in the square brackets on the left hand side

represent the inviscid part and those in the brackets on the right

hand side the viscous part.

In this particular problem, for the larger Hartmann

numbers and magnetic Prandtl numbers the three solutions

exhibited three distinct growth rates, which could be termed

the largest growing solution, intermediate growing solution

and the well behaved solution. As an example, for the case of

M = 4.0 and Ptn = 10‘.1 the three functions exhibited growths

across the channel on the order of 10280, 10140 and 106 respec-

tively. This extreme growth limited the range of Hartmann

numbers that could be considered in this Study as it is apparent

that the limitations of the computer are Soon exceeded.

For M = 0 (.001 for the computer program) the equa-

tions effectively reduce to fourth order and result in only

one growing solution which exhibited a growth on the order of
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1036 across the channel, which is in agreement with the

observations reported by Reynolds and Potter (1967).

The final combined solution, of course, does not

exhibit this rapid growth which indicates that only a very

small portion of the growing solutions are required to form

the eigenfunctions.

3.4 Purification Scheme
 

The very rapid growth rate exhibited by some of the

solutions causes some difficulties other than machine over-

flow.

Initially all three solutions are linearly independent

but as the integration proceeds, this independence is observed

to disappear rapidly. Kaplan (1964) States that this loss of

independence, which is impossible for an exact solution, arises

because of the approximate nature of the numerical integration.

Errors are introduced because any numerical method being applied

at small but finite steps has associated with it a truncation

error and in addition a digital computer carries only a fixed

number of digits, resulting in round off error. Kaplan

further concludes that the arbitrary initial conditions for

the well-behaved solution contain a small portion that is also

an initial condition for the growing solutions. As the integra-

tion proceeds it grows much more rapidly than the behaved solu-

tion and soon dominates it. Even if this small portion is not

present initially, it is effectively introduced by truncation

errors .
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Kaplan's conclusions appear justified although the

actual mechanism that causes one solution to "pollute" the

other may be open to question.

The goal is, therefore, to keep the solutions independent

over as large a range as possible. To reduce the truncation

error associated with any numerical scheme, an obvious answer

is to choose a step size that is as small as possible con-

sistent with the particular limitations of machine storage and

speed. Performing all arithmetic operations in double pre-

cision should greatly reduce the round-off error. This is in

fact, found to be true. However, since all the functions are

complex, adding double precision to the program significantly

increases machine computation time and storage requirements.

Kaplan suggests an alternate approach that does not

require double precision, namely, a filtering technique. His

method consists of subtracting from the well-behaved solution

a portion of the growing solution at every step of the integra-

tion. This procedure called "filtering" prevents the growing

solution from ever dominating the well-behaved solution and

thus maintains the needed functional independence.

Kaplan's shceme was implemented in the computer program

for this problem. The CDC 6500 computer nominally carries

about 15 significant digits in single precision, which is

equivalent to double precision on IBM equipment and in parti-

cular the IBM 7090 used by Kaplan. These computations were in

effect then performed in "double precision". In fact, for the

cases with Hartmann number equal to zero or one no suppression
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scheme was required. Test cases of M = 2 or 3 revealed that

Kaplan's scheme was required. For M > 3 however, the Scheme

was no longer sufficient to maintain independence. In this range

the growth becomes very large, and the second solution becomes

an intermediate growing solution which now pollutes the well-

behaved solution. A double Suppression scheme Suggested by

W. Reynolds of Stanford in a private communication to M. Potter

was used to find the two remaining solutions.

The filter used consisted of a ratio of the inviscid

solutions (left hand side of equation (3.3.2)), namely,

inviscid part of the well-behaved solution
Filter = , , _ , ,

1nV1sc1d part of the growing solution

 (3.4.1)

where, (inviscid) m icyR[ (1mm); - K2111?" u'wm] (3.4.2)

m 1, 2, 3

The above ratio determines the fraction of the growing solu-

tion to be "extracted" from the behaved solution, so the

amount subtracted off is the product of this ratio and the

value of the growing solution at the particular integration

step. This product was equal to about 20% of the behaved

solution.

The final Scheme consisted of extracting from solutions

two and three a portion of the fastest growing solution (one)

and then extracting from solution three a portion of the inter-

mediate growing solution (two). Once incorporated this method

assured complete independence of the three separate solutions

for all growth rates even to the point of exceeding the over-

flow limits of the machine.
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3.5 Iteration Scheme for the Eigenvalues

Integrating across the channel, three independent solu-

tions are generated at each step. Upon reaching the opposite

wall, the functions are linearly combined to form the total

eigenfunctions that must satisfy the boundary conditions.

The three conditions that must be satisfied are W = W. = ¢ = 0.

Consider the following set of combined functions at the wall:

alwl +- a2¢2 + a3¢3 = (V (3.5.1)

all; '+ 8215 + 8315 = t; (3.5.2)

alt; +- azyg +-a3¢g - 13 (3.5.3)

a1¢1 + a2¢2 +a3¢3 = Qw (3.5.4)

Equations (3.5.2-4) are used to solve for the coeffi-

cients a1. Note that there is no Specific boundary condition

for '3’ hence the choice here is arbitrary. As long as 'w

is non-zero, the value assumed merely changes the normalization

factor and still represents a valid solution. This system can

now be written as

     

" . '1 r 1 F 1

*1 '2 *3 a1 0

*1 '2 '3 a2 ' 1

H1 ('2 '31 183. 1°. 
For functions that are linearly independent the

determinant of the matrix containing known values of v', V"

and ¢ will be non-zero. When the double suppression scheme,

discussed in the previous section, was not used this determinant
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was effectively zero and indicated the functions to be linearly

dependent, that is, one column is a multiple or combination of

the other two.

For independent functions, the Si can be determined

by finding the inverse of this matrix or as was done for the

computer program by simply writing out the solution.

The ai, once determined can now be substituted into

equation (3.5.1). With the correct eigenvalues Ww will be

zero; hence ww will serve as the test function (T). If

T)<(conjugate T) is less than 10-12 the convergence criteria

is satisfied and the eigenvalues used to generate the functions

are assumed to be the correct ones. If convergence is not

attained let T1 = T. Increase a by T1, recalculate T

and let T = T. After setting a to its original value,
2

increase R by 1%, calculate T and let T3 = T. The finite

difference approximations for the change in T with respect

to y and R are

 a-T— .. 2 i 3 5 r
Ad Ad ( ' '3)

T - T

AT- ~ 3 1 (3.5.6)
6R AR

These are substituted into the complex equation

5361 + SEAR + T = 0 (3.5.7)
as 5R 1

from which Ag and AR can be calculated. The new values

for the eigenvalues are
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0[new - Gold + AU

(3.5.8)

R
new old + AR

R

It is apparent that for every iteration or new "guess"

of eigenvalues the equations must be integrated across the

channel three times. It was found that if the initial guesses

are relatively good, convergence is obtained in about three

iterations.

3.6 Criterion for Guessing the Eigenvalues

The initial estimates for some of the eigenvalues were

obtained from the data presented by Lock (1954). Where his

data was not applicable (M > 3, Ph I 10.1), guesses had to

be made with extreme care. Hopefully, the iteration process

would iterate to the correct eigenvalues, although this did

not always occur because of the small radius of convergence.

After a few points were obtained and plotted, the next

estimates could be obtained by extrapolation until the complete

stability curve was generated.

3.7 Range of Parameters Considered
 

Hartmann numbers in the range of zero to six were run

6 and 10-1. Testfor magnetic Prandtl numbers (Pm) of 10-

cases for magnetic Prandtl numbers less than 10-6 were run with

no change in eigenvalues. Physically, Prandtl numbers in the

range of 10-6 to 10“4 are characteristic of liquid metals and

it was hoped that the study could be extended to Pm = 100,

which is characteristic of ionized gases. At these values,



28

however, the functional growth rates became excessive, result-

ing in machine overflow.

As an example of the large variations associated with

a change in Pm refer to the case of M = 6 as plotted in

Figure 9. Included on this figure is a neutral stability

curve for Pm = 10..2 in addition to 10-6 and 10-1. The change

-6
for P = 10 to 10-2 is only about one-ninth the

in Rcrit m

change from 10"2 to 10-1. It is apparent then that a further

increase of only one order of magnitude with its corresponding

increase in functional growth rates soon puts the values out

of manchine range.

Several values of B were tried at different Hartmann

numbers and magnetic Prandtl numbers but, as will be discussed

in the next chapter, no B-effect was found to exist except

that predicted by Squire's Theorem.

3.8 Special Case of Zero Hartmann Number

The general equations are sixth order, but for the case

of zero magnetic field the equations reduce to the standard

fourth order Orr-Sommerfeld equation. Rather than write a

separate computer program to solve this case it was felt that

if the general program could be used it would provide a better

check on proper program operation.

Hopefully, then, as M approaches zero the program

Should yield the known results for plane Poiseuille flow. This

was found to be the case when M was set equal to 10-2 or 10.3,

with the same eigenvalues resulting for either value. A small
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value was necessary since setting M equal to zero exactly

yields an indeterminate result (0/0) in the calculation of

the primary velocity profile. It also results in a reduction

in the order of the equations thereby causing an indeterminate

result when satisfying the boundary conditions.

 



CHAPTER IV

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS FOR FURTHER STUDY

4.1 Numerical Results
 

Prior to obtaining any points on the stability curves,

the subroutine which calculates the primary velocity profile

and induced magnetic field quantities was run as a separate

program. The non-magnetic case, as was discussed in the

previous chapter was run at M = 10-3. The results of this

run were compared to the parabolic profile for plane

Poiseuille flow and found to agree to within at least five

significant numbers. This profile along with others for

M > 0 are well known, see for example, the original work by

Hartmann and Lazarus (1937) or any current textbook on MHD.

Dimensionless plots of these curves are presented in Figure 2.

The data generated for the neutral stability curves

are presented in Tables 2 through 15 and are also plotted

along with Lock's data in Figures 3 through 9. A summary of

the critical wave numbers and Reynolds numbers from this study

and from Lock's data are presented in Table 1. Typical eigen-

functions are plotted in Figures 10, 11 and 12.

To reduce the equations to a form that could be solved

by asymptotic expansions, Lock, based upon Stuart's paper

(1954), used the assumption that for most conducting liquids,

3O
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the magnetic Prandtl number Pm ( Rm/R R Vuo) is small.

Provided therefore, that R is not too large, Rm will be

small compared with unity. He then neglected the magnetic

effects and reduced the sixth order set of equations to the

following fourth order, modified Orr-Sommerfeld equation which

he then solved:

2 . .

(II-cm)" - a1) - u") = - :1; 11" (4.1.1)

In reducing the problem to this form, the only effect

of the magnetic field is to modify the primary velocity profile.

Comparison of Lock's data as presented along with the

present data is surprisingly good. For Pm = 10-6 his

critical points are a little high for M = 0 and 1, agree

almost exactly at M = 2 and for M 2 3 are low compared to

this study. As M increases the deviations increase, which

indicates a greater dependence of the solutions on the magnetic

terms of equations (2.4.8) and (2.4.9) that were neglected by

Lock.

As discussed in the problem description, an examina-

tion of the equations indicates that B, the spanwise component

of the disturbance wave.should affect the final eigenvalues

such that Squire's Theorem is not applicable. This was not

found to be the case, however. The term 4' in equation

Q
l
r
-
I
-

(2.4.8) that leads to this conclusion does not Significantly

affect the final solution. This was verified by several runs

for various values for M and Pm with a non-zero (0.5) value

of 3, all of which produCe the same eigenvalues as the B = 0
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case.

The influence of increasing Hartmann number is, of

course, to stabilize the flow. For a given Hartmann number,

a further stabilization of the flow occurs with an increase

in the magnetic Prandtl number. These effects are presented

graphically in Figures 3 through 9. Consider, for example,

the case of M = 5.0 which is depicted in Figure 8. The

critical Reynolds number increases from 132300 to 169400 for

-6 -l

P = 10 and 10 respectively. This increase due to the
m

change in Pm stems from the fact that the eigenfunctions

for the velocity perturbations W and the magnetic field

perturbations ¢ at PIII = 10-1 are now of the same order of

magnitude. Hence, for this range the magnetic terms in the

stability equations significantly affect the final eigenvalues.

The magnitudes and behavior of the eigenfunctions for this

case are shown in Figures 11 and 12 where V and ¢ are

plotted reSpectively. The 4 curves have been normalized

to 1 + 0i at the centerline as is commonly done in the current

literature.

Figure 9, which presents data for M = 6.0 includes

in addition to the neutral stability curves for Pm = 10”6 and

-1 -

10 a curve for P = 10 2. The shift in RC

m

, for a change

1711:

in Pm from 10-6 to 10.2 is only about 6000, from 169500 to

175800, but a value of Pm = 10-1 Significantly increases

Rcrit to a value of 230700, indicating the large influence

of the magnetic terms in the stability equations.



33

As discussed in Chapter III the growth rates of the

independent eigenfunctions increase rapidly with increasing

Hartmann number and magnetic Prandtl number. The growth rates

with this numerical scheme become so large for M > 6 or

Pm > 10.1 that machine overflow occurs and no data could be

obtained. This phenomenon is evidently also due to the ¢

eigenfunctions.

4.2 Conclusions
 

Based on the results obtained and the preceeding dis-

cussion it can be concluded that for small magnetic Prandtl

numbers (10-6) characteristic of liquid metals the standard

Orr-Sommerfeld equation along with the modified velocity pro-

file gives satisfactory results in determining neutral sta-

bility. For other conducting liquids or gases where the

magnetic Prandtl is larger, the effects of the magnetic field

must be fully accounted for. The effect of an increasing

magnetic field strength is to greatly stabilize the flow and

also to increase the critical wave number causing the in-

stability.

Squire's Theorem is applicable to this problem since

6 does not affect the solutions, and K2 which equals

2 2

a + B can be replaced by q2 in equations (2.4.8) and

(2.4.9).
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4.3 Recommendations for Further Study
 

This study could be further generalized to include

conducting non-newtonian fluids which would include liquid

metal amalgams, uranium slurries, seeded polymers, and others.

The effects of geometry changes such as a finite channel with

conducting side walls that would lead to different boundary

conditions on the magnetic field could also be studied. Also

of interest would be an investigation to compare the results

of this study with stability curves obtained for ci # O.
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Table 1. Comparison of Critical Eigenvalues

 

 

 

M? ngk Present Study

3.2.212 22.2.1.2 Pm = 10-6 :13 1

a R a R

0 1.03 4000. 1.02 3847. - -

l 0.98 6960. 0.97 6782. 1.00 6926.

2 0.93 20000. 0.925 20160. 0.90 21180.

3 0.96 46000. 0.95 48230. 0.95 54600.

4 1.04 79400. 1.04 86340. 1.00 105100.

5 1.15 116700. 1.20 132300. 1.10 169400.

6 - - 1.30 169500. 1.20 230700.

 

Note: Lock's original data has been converted to corre5pond

to the same non-dimensional variables as used in this

study, that is, R based on average velocity rather

than centerline velocity.
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Table 2. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c. = 0.0) M = 0.001, p = 10-6
1 m

c

a R r Remarks

0.9780 26050. 0.2750 Upper Branch

1.0710 10050. 0.3400

1.0980 5772. 0.3800

1.0500 3924. 0.3997

1.0200 3847. 0.3960 Critical Point

0.9500 4138. 0.3783

0.8500 5426. 0.3417

0.7500 8305. 0.2975

0.6500 14620. 0.2500

0.5756 26190. 0.2100 Lower Branch

Table 3. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c = 0.0) M = 1.0, P - 10'6
i m

c

a R r Remarks

1.0190 19580. 0.2900 Upper Branch

1.0480 10530. 0.3300

1.0340 7866. 0.3470

1.0000 6920. 0.3506

0.9700 6782. 0.3474 Critical Point

0.9500 6853. 0.3436

0.9000 7365. 0.3310

0.8500 8388. 0.3148

0.7500 12320. 0.2757

0.6700 19250. 0.2400 Lower Branch
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Table 4. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c1 = 0.0) M = 1.0, Pm = 10'1

c
a R r Remarks

1.0330 15910. 0.3040 Upper Branch

1.0300 7641. 0.3490

1.0000 6926. 0.3510 Critical Point

0.9000 7369. 0.3310

0.8500 8388. 0.3152

0.7500 12410. 0.2760

0.6500 21920. 0.2311 Lower Branch

Table 5. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c1 = 0.0) M = 2.0, PM - 10-6

c

a R __ r Remarks

1.0070 40070. 0.2440 Upper Branch

0.9900 22830 0.2719

0.9500 20380. 0.2741

0.9250 20160. 0.2720 Critical Point

0.9000 20440. 0.2685

0.8000 25630. 0.2446

0.6500 53040. 0.1931 Lower Branch
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Table 6. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c. = 0.0) M = 2.0, P = 10'1
1 m

c

a R r Remarks

0.9726 66050. 0.2200 Upper Branch

0.9986 40240. 0.2450

0.9900 25510. 0.2676

0.9500 21430. 0.2730

0.9000 21180. 0.2679 Critical Point

0.8500 22870. 0.2579

0.7500 31716. 0.2291

0.6500 53850. 0.1932 Lower Branch

Table 7. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(ci = 0.0) M = 3.0, Pm -= 10-6

c
a R r Remarks

1.0380 134200. 0.1880 Upper Branch

1.0560 74400. 0.2140

1.0300 54770. 0.2267

1.0000 49650. 0.2294

0.9500 48230. 0.2271 Critical Point

0.8600 54680. 0.2138

0.7500 79570. 0.1878

0.6500 136500. 0.1584 Lower Branch

 

 



 

CI. 1t 1C8]. P011111: .....s:

 

 

 

Table 8. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c. = 0.0) M = 3.0, p = 10-1
1 m

_ c

a R r Remarks

1.0140 143400. 0.1870 Upper Branch

1.0280 105600. 0.2000

1.0170 66980. 0.2190

0.9900 57850. 0.2238

0.9500 54600. 0.2235

0.9000 55550. 0.2185

0.8500 60540. 0.2102

0.7500 84930. 0.1867

0.6500 143900. 0.1577 Lower Branch

Table 9. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c, = 0.0) M = 4.0, p = 10-6
1 m

c
a R r Remarks

1.1570 178500. 0.1800 Upper Branch

1.1490 117900. 0.1970

1.0900 88910. 0.2069

1.0400 86340. 0.2057 Critical Point

0.9500 93620. 0.1969

0.9000 104100. 0.1892

0.8000 143800. 0.1697 Lower Branch
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Table 10. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(Ci = 0.0) M = 4.0, Pi = 10-1

C

 

 

a R r Remarks

1.1120 186000. 0.1800 Upper Branch

1.0900 132200. 0.1930

1.0400 108000. 0.1986

1.0000 105100. 0.1975 Critical Point

0.9500 108900. 0.1930

0.9000 119000. 0.1865

0.8000 159700. 0.1676 Lower Branch

Table 11. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(ai = 0.0) M a 5.0, PM - 10-6

C

 

a R r Remarks

1.2980 188100. 0.1820 Upper Branch

1.2540 148900. 0.1910

1.2400 141400. 0.1928

1.2300 140800. 0.1926

1.2000 132300. 0.1945

1.1500 127400 0.1944 Critical Point

1.1000 131000. 0.1912

1.0000 148900. 0.1813

0.9000 190200. 0.1666 Lower Branch
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Table 12. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c, = 0.0) M = 5.0, P = 10‘1
1 m

c
a R r Remarks

1.1900 195700. 0.1810 Upper Branch

1.1700 184700. 0.1827

1.1500 175400. 0.1840

1.1000 169400. 0.1834 Critical Point

1.0500 175000. 0.1799

1.0300 174600. 0.1789

0.9820 186600. 0.1740 Lower Branch

Table 13. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c, - 0.0) M = 6.0, p - 10"6
1 m

c
a R r Remarks

1.466 199030. 0.1840 Upper Branch

1.378 176800. 0.1880

1.350 171700. 0.1885

1.300 169500. 0.1881 Critical Point

1.250 171300. 0.1865

1.200 172800. 0.1844

1.150 179300. 0.1813

1.100 196400. 0.1758

1.050 216000. 0.1701 Lower Branch

 



45

 

 

 

Table 14. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c. = 0.0) M = 6.0, P. = 10"2
1. m

c
a R r Remarks

1.450 211000. 0.1810 Upper Branch

1.380 185700. 0.1855

1.300 175800. 0.1863 Critical Point

1.250 179200. 0.1843

1.150 188400. 0.1791

1.100 199700. 0.1752

1.050 220600. 0.1692 Lower Branch

Table 15. Eigenvalues for the Stability Equations

for the Case of Neutral Stability

(c. = 0.0) M = 6.0, p = 10-1
1 m

c
a R r Remarks

1.280 237400. 0.1765 Upper Branch

1.250 230800. 0.1771

1.200 230700. 0.1756 Critical Point

1.150 234500. 0.1734

1.111 245000. 0.1700 Lower Branch

 

“
h
a
n
g
a
r

1
,

E

_
I



>5-

§\
\

 

 

F
i
g
u
r
e

1
.

M
\

\
&

 

—
U
(
y
)

   
‘
R

 
P
r
i
m
a
r
y

F
l
o
w

C
o
n
f
i
g
u
r
a
t
i
o
n

 

\
‘

 

46



1.6

0.8

0.6

0.4

M = 0

47

(Parabolic)

 

 

  

  
 

L

P 1 l l

0.0 0.2 0.4 0.6 0.8 1.0

Y

Figure 2. Dimensionless Primary Velocity Profiles

for Various Hartmann Numbers
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APPENDICES



APPENDIX A

Numerical Technique to Solve the Governing Stability_Equations

A standard fourth order Runge-Kutta integration scheme

was chosen in preference to a predictor-corrector scheme to

simultaneously integrate the coupled second order and fourth

order equations. The predictor-corrector scheme calculates

the value of the highest order derivative based on a curve

passed through the values at the previous three steps. All

lower order derivatives are then calculated from this. Because

of the large growth found to exist for some of the eigenfunctions

and the suppression scheme used, variations in the highest

order derivative (in particular, the fourth derivative) caused

significant changes in the final eigenvalues. The Runge-Kutta

method is not subject to this since each derivative is essentially

calculated separately at each step. In fact, the fourth derivative

at each step need not be calculated, so to save time and machine

storage this derivative was eliminated from the computer program.

The accuracy of the results were verified by running the

non-magnetic plane Poiseuille case and comparing the results

against Thomas (1958) and Reynolds and Potter (1967). Rather

than write a separate program for the single fourth order equa-

tion the present program was run for a Hartmann number of 10'3.

This was effectively zero and gave excellent results, which

agreed to three significant figures to the presently accepted
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values.

Several runs were made for various step sizes, with

0.01 chosen as the optiuunn Doubling this value resulted in

eigenvalues that were in error by about four percent, while

halving this value resulted in a change in eigenvalues of only

0.4%. Based upon these results, a step size of 0.01 provided

accurate values without excessive computation time or machine

storage requirements. For this step size, the truncation error

10

associated with the Runge-Kutta scheme is of the order of 10-

The scheme as illustrated by Collatz (1951) is outlined

below:

At Y VOO=I(Y)

v10 = A I'(y)

AZ ..
V20=TI (y)

3

v30=%-I"'(y)

U00 = ¢(y)

U10 = A ¢'(y)

Using equations (2.4.8) and (2.4.9)

2 V

_ A_. .19

2
2 .

g— {[i a Rm(U-c) + K 195' - i 0’ Rmhxy - me'}

n
: l
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4 2 V

- L f (——V20 —10 V ——U10 U )1 24 A2 3 A 3 00, A 9 00’ y

C
) I

4

_ g: {[1 a R(U-c) + 2K2 +M2M" + 2 i QMZH y'

2
- [1 an K (U-c) + 1 ozRu"+1<4 +02M2h2 - i aMZh'II‘

- i a M2(U-c)¢' +-[q2M2h(U-C) - i a M2(U'-h"/Rm)]¢}

where A = AY = step size

Values at Y + g!

v =v +lv +lv +lv +£-
01 00 2 10 4 20 8 30 16 Cl

11 10 20 4 30 2 Cl

3 3
= +— + --

V21 V20 2 V30 2 GI

V31 = V3o + 2 Cl

1 1
a . — + —

U01 U00 + 2 U10 4 F1

U11 g U10 + F1

As before

2 v

- A. _1_

F2 2 “A ’V01’”01’Y)

__ 2“ 2"21 V11 U11

6
) l

2 2;qu ’—A—’V01’ A ’U01’Y)

Values at Y +-AY

V02 =V00 +V10 +V20 +V30 +62

v12=v10+2v20+3v30+462

v22=v20+3v30+6c2

v32=v30+4c2

U02 =U00 +U10 +F2

0 =0 +2F
12 10 2
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Again as before

F3 - 3: “1:2. ’ V02’ ”02’ Y)

(; IRA4f(2V22 :1—2—,V ,E-l—g,U ,Y)

3 24 A2 ' A 02 A 02

and F = %-(F1 + 2 F2)

F' = 3L0?1 +14 F2 + F3)

c=%§(801+8c2-03)

G' ='% (9 G1 + 12 02 - G3)

G"=2(Gl+202)

G"'= §'(Gl +-4 02 + G3)

Thus the functions and their derivatives at Y + AY are

W(y + Ay) V00 + V10 + V20 + V3O + G

 

 

. =.l_ .
4 (y + Ay) Ay (v10 + 2 v20 +-3 v3o + G )

2
I"(y + Ay) = 2 (V20 +-3 v30 + G")

(Ay)

I"'(y +Ay) = 6 3 030 +0'“)
(by)

and ¢(y + by) = ”00 +~U10 + F

. =.1_ .
¢ (y + Ay) Ay (010 + F )

Now, if desired, 0""(y + AV) and ¢"(y + Ay) can be

calculated from the above.

Implementing the formulas in the sequence given, the

integration is started at one wall and proceeds across the

channel to the other wall where the combined functions are formed.



APPENDIX B

COMPUTER PROGRAM

B-l Description of the Computer Program

The program initially reads the required values for -,

100p sizes, internal program counters, step size, convergence

criteria, the initial guesses for the eigenvalues, and also ~ -4

 sets boundary conditions at the wall.

Subroutine RUNGE is now called which in turn calls

Subroutine VCA1 to calculate the value of the mean velocity

and induced magnetic field and their derivatives which are

known inputs to Runge. The equations are now integrated to

determine the value of the function and its derivatives at the

next step.

Returning to the main program, the number one solution

which is the growing solution is filtered from solutions two

and three. To further insure independency, solution number two

is filtered from number three.

The above procedure is repeated until the filtered solu-

tions are obtained across the entire channel.

At the next stage the filtered solutions are corrected

to account for the portion filtered out and then printed out if

this option has been selected. Next the growing solution is

modified to compress the magnitude range of the functions.
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The three independent solutions are now combined

linearly to find the total function and the derivatives at the

opposite wall. A test function based on 1w is checked to see

if the boundary condition namely 0w = 0, is satisfied. If not,

the eigenvalues are each incremented by a small amount and a

new guess is made for the eigenvalues. The process is repeated

until convergence is achieved or the iteration counter exceeds

its present value.

The program incorporates a printout monitor which allows

the selection of 3 levels of printout. The value of the monitor

is read in and can be assigned values from one to three. A

value of one provides express runs and gives the eigenvalues

and values of the test function at the end of each iteration;

two prints out the above plus the final combined eigenfunctions;

and a value of three prints out all the eigenfunctions. When

using the two or three option an additional parameter is read

fin that Specifies the number of increments between printout

points.

Explanation of the Input Cards for the Main Program

 

Card Program

Number Column Item Format Designation

1 1-10 Printout monitor I 10 MON

11-20 No. of data cards I 10 KP

21-30 Max. No. of iterations I 10 IT

31-40 Steps between printout pts. I 10 JJ

41-50 Step size F 10.5 DEL!

2 1-10 Percent change in cr F 10.5 PAL

11-20 Percent change in R F 10.5 PCR

21-30 Maximum change in cr or R F 10.5 PCH

31-40 Convergence criteria E 10.5 TIP



 

Card Program

Number 991393_ .lEEE Format Designation

3 1-10 Alpha F 10.5 AL

11-20 Reynolds number F 10.5 R

21-30 cr F 10.5 CR

31-40 ci F 10.5 CI

41-50 Beta F 10.5 BE

51-60 Hartmann No. F 10.5 HM

61-70 Magnetic Prandtl No. E 10.3 PM

Any number of data cards as shown by card number 3 above

may be added.

B-2 Listing of the Computer Program
 

The program developed to compute the eigenvalues for

any given case is listed in the next section. Actually two

versions of this program were used to obtain the data points

used in plotting the curves presented. They differed only in

regard to which of the eigenvalues was held fixed while iterat-

ing on the other two. The program listed here is called MHDA

which holds a constant and iterates on cr and R. This

program was used on the lower leg of the stability curve up to

and slightly beyond the critical point. Since the upper leg

of the curve is relatively flat the second version was used which

fixed cr and iterated on a and R. This procedure minimized

the number of "bad guesses" which result in no convergence and

also to conserve computer time by more evenly distributing the

points along the curve.
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The programs were run on the CDC 6500 and took a little

over 4 secondsper pass (one third of an iteration) with con-

vergence obtained in normally three to four iterations.

In the program that follows, the dollar sign statement

separator and multiple replacement statements are used to reduce

the size of the source deck.



Inn

(‘00

101

598

59‘)

601

()0?

179

179

17.8

173

66

PROGRAM HHDAI INPUT,OUTPUT,TAPE2=INPUT,TAPE3=OUTPUTI

THIS PROGRAM ITERAIFS 0N CR AND RFY N0 WITH ALPHA CUNSTANT

DIMFNSIUN RRI20193192170119013IoGI3IoRSI3)9AI393IoBI39319NI3).

IXIBIqTI3191ESII3I

CIIMMUN P(20103)00PI20193’907P12019319039120193)9VI20193IgnVI20193)

l9C1,C29C39C49UOI3IoALofifgCflgRJIFLchoKoXM

CIIMPLFX ngIP9DZP'DBPngDVyU1'U29UO.RR,R59A98,81032.I‘.391909Xo

IHQDTIoIIIZQCNQAl.A29A39A‘09A5'A69A79A89CI9C29C39C4

RFAI I"

READ IN PR'IGRAM PARAMETERS AND INITIAL GUESSES

IRE/1017,9400) MnNnglegJJoDFLY

RFADIZoLOII PALoPCR99CH9'IIP

N=2.0001/DFLY+1 3 NM=N-1 3 KK=0 $ C=DELY

KK=KK01 $ IP=MD=KL=0 S ITF=I

IFIKK-HH 600.600.250

LI'INTINIIE

RFAFI?,40?) AL.R.CN.BE.HM.PM

CF=REALICHI S CI=AINAGICHI S XM=HN3€1HN

WRITFI398IQI HMQPMQCIQBEQDFLY

MD=ML+I

IFIIP-O) 598,598,599

1011153139801} ITF

II'IMIVI‘II) (50396029601

HPITFI39803) 3 C“ In 100

HRITFI3yHOPI R'ALOCR

K=AI-"A1+BF*HF 5 Y="I.0 5 lIII=-1.0 1 RM=PN$R

CH=CR

9.0 INUARY CUNT‘ITIIINS ----- P=DP=V=U AT Y=+"1

V=PHI=VACNFIIC pFRIHRBATIIINSQ P=P§I=VFLIICIIY PFRIUKHATIHNS

$11 QTI-RTING CONDITIHNQ

I’II'II=PI1.71:1"1931:0131IolI=I)PIIy?I=IIpII,3I=IO.U.U.UI

VII.I)=VII.2I=VII,FI=I0.0.0.0I

I‘VIIQI1711.1"13091ot-13(H 3‘ DVIlp7l=IIVIIq'5I=I().OgU.OI

HVPII,3)=II.O9I.0) 3 D791IoII=HPPIIo7.)‘-‘I”.UoUoOI

‘1‘5I’I1121=II.091.0) S I'3PII9II=lJE-P(Ig3)=(“.0oUoOI

C!=I‘I.nolon) $ C7=C1*AL”‘RM 5 C3=CI*AI’=R $ L4=ILI*AL*XM

HS .300 J=IoNM $ I.L=.I

CFNHIATF 3 SOLUIIUNS AT EACH STFP

CAIL QIINGFILlonHMgRMI

L=I+I 5 ZILI=ZIJI+IIELY

FXT'UICI THE GRUHINI‘, SHIUTIIJN (Nib!) FRIIM SULNS 2 ANN 4.

IHJ=AHSH¢EALHNHIIII

IFIHH-I.F17‘)I 178,179,179

IIOIII=UIHIIJIloL-IOOI

H0 20” 1:703

IFIUU-IoEIZ'DI 1719172917?

”RILQIIfiIOIII/UUIII

CU Tn 173

RR‘LoII=IUOIII/IIOIIII*II.F-100)

911.91): PILgII-RPILQII’3 pILvI)

IJPILvII': anLoII-RRILQII” (IPIL'II

“291101I=D?PILQII-RRILQII‘DZPILOII



299

300

632

303

431

507

311

344

319

503

174

178

307

505

310

345

506
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O3PIL9II=O3PIL9II-RRIchI*O3PIL91I

VIL91I3 VIL!II‘RRIL9II* VILOII

OVILoII8 OVILoII-RRILQII‘ DVILOII

CONTINUE

FXIRACI SOLUTION 2 FROM 3

RRILoII=U013IIUOIZI

PIL93I=PILv3I‘RRIL9II’PIchI 3 DPIL93I=DPIL93I-RR(L9II‘DPILQZI

DPPIL93I=DZPIL93I’RRILQII*OZPIL92I

D3PIL93I=O3PIL03I‘RRIL91I‘O3PILIZ)

VIL93I=VIL93I'RRILoII‘VILoZI 3 OVIL93I=DVIL93I-RRIL9II‘OVILvZ)

CONTINUE °

REPAIR IHF EXTRACTIONS

IFIHON-II 50895089632

J=N 3 NN=N~2 3 RSI2I=RRIJ92I 3 RSI3I=RRIJ93I

DO 303 HH=IoNN 3 J'J-I 3 DO 303 13293

PIJQII’PIJoII-RSIII’PIJOII 3 O3PIJ0II=O3PIJQII‘RSIII‘U3PIJ91I

DPIJoII=OPIJoII-RSIII‘OPIJolI 3 OZPIJQII=DZPIJ9II-RSIII‘DZPIJQII

VIJoII=VIJ91I'RSIII‘VIJQII 3 OVIJoII=OVIJ0II‘RSIII*OVIJQII

PSIII‘RSIII+RFIJ9II

J=N 3 RSIII=RRIJ91I 3 I=3

DU 631 HM=19NN 3 J=J‘I

PIJoII=PIJoII-RSIII*PIJ02I 3 O3PIJ9I1:03PIJ91I‘RSIII’U3PIJ92)

OPIJoII=UPIJ91)-RSIII*0PIJ9?I 3 DZPIJyII=DZPIJ91I‘R$III‘QZPIJoZI

VIJ,II=V(J'I)-RSIII*VIJ921 3 OVIJ9II=I)VIJ'II’KSI1I‘OVIJ021

RSIII=RSIII+RRIJ91I

PRINT OUT THE INDEPFNDENI EIGENFUNCTIONS IF DESIRED

GO TO (50395089507I9N0N

HPITFI39807I 3 DO 319 I=Io3 3 HRIIEI30805I I 3 OO 3II J=IQN9JJ

NRIIFI5,806I ZIJIgPIJvlIvOPIJoIIQOZPIJoIIoU3PIJ,II

HRITFI39816I 3 00 344 J=10~9JJ

HPIIFI39806I ZIJI'VIJQIIODVIJOII

CONIINHE

CONTINUE 3 NCSN/2+I 3 J=N

MODIFY IHF GROWING SOLUIION

IFIHU-IoEIZSI I75oI749I74

A8=PIN,1I‘II.E'IUOI 3 A5=PIN,PI/A8*II.F-IOUI 3 GU TU [76

A5=PIN92IIPINOII

DO 307 KJ=19NM

PIJ'II: PIJ,2I-A5* PIJplI 3 IIPIJle= IwIJ.2I-Ass DPIngI

DZPIJ,II=DZPIJ97I’A5*0?PIJ9II 3 03PIJ91I=O3PIJ92I‘A5#U3PIJ9II

VIJoII=VIJ92I-A5‘VIJ91I 3 OVIJ91I=DVIJ92I-A5‘UVIJ9II

J=J~I

GO TO (50695069505I9HON

HRIIEI3980“) 3 I31 3 HPITEI39805I I 3 DO 310 J=19N7JJ

HRIIEI39806I ZIJIoPIngIpanJolI,O?PIJ0II903PIJQII

HRITEI39816) 3 DO 345 J=19N9JJ

HRITEI39806I ZIJIQVIJQII90VIJ91I

CONTINUE

UFIERHINE THE TOTAL SOLUTION AI OPPOSITE HALL

AIIQII=VINQII 3 AIIozI=VIN92I 3 AII93I=VIN93I

442.1): UPIN'II 3 A1292I= OPIszI 3 AI293I= UPIN93I

AI3qII=02PIN91I 3 AI312I=OZPIN,2I 3 AI3,3I=OZPIN.3I



692

691

694

693

305

609

610

612

613

614

525

502

503

504

615

616

611

509

511

315
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OI=PIN91I 3 82=PIN.2I 3 O3=PIN93I

CALCULATE IHE COEFFICIENTS NEEDED TO COMBINE IHE FUNCTIONS

CI’AI39II*IAII92I9A1293I'AI292I’AII93II-AI392I‘IAII9IItAI293I

I'A129II3AI193II‘AI393I‘IAII92ItAI29II‘AII9II*AIZ92II

IEIUU‘IcEIZSI 69196929692

CI=CI¢IIoE-100I

XIII3'IAIZ9ZI'AIIQ3I’AII92I‘AI293II/CI

XIZI3-IAII91I‘AIZ93I’AI29II*AI193II/C1

XI3I=QIAII92I*A129II‘AII9II*AI292II/CI

IEIOU'IoE1251 69396949694

XIII=XIIIPI19E'IOOI 3 XI7I=XIZI*IIoE-IOOI 3 XI3I=XI3I3II.E-IUUI

CHECK IOIAL SOLUTIONS AT THE HALL

HIII=XIIIPAII9II+XI2IPAI1921*XI3I‘AII93I

NI2I=XIII*AI?9II*XI2I*AI292I+XI3I3AIZ93I

HI3I=XI1I*AI39II+XI2IPA1392I+XI3I’AI393I-I1.090.0I

HRT=0o0 3 DO 305 13193

HRI=HRI+ABSIREALIHIIIII+ABSIAIHAGIHIIIII

HRIIEI39HIII HRI

IEIHRT'IoE-IOI 61096109609

HRIIEI39HORI HIII9NIZI9HI3I 3 HRITEI39813I 3 GO TO 509

IP‘IP+1

COMPUIE TEST FUNCTION

IIIPI=XIII*81+XIZI*82+XI3I#O3

TESIIIPI=PEALIIIIPI*CONJGITIIPIII

IFITESIIIPI-IIPI 61196119612

IEIKL‘I) 61496139613

HRIIEI39BI7I IIIPI9IESTIIPI

WRIIEI39814I 3 KL‘O

IIFPAIION OE EIGENVALUES

GO TO I50295039504I9IP

OCR=PALPCR 3 CR=CR+OCR 3 GO TO IOI

CR=CR-OCR 3 RDngR*R 3 R=R+RO 3 GO IO 10]

OII=ITIZI-IIIII/OCR 3 P=R-RO

l)I2=ITI3I-TI III/R‘O

OEN=AIHAGIICONJGIOTII1*OT2I

OCR=AIHAGITIII‘CUNJGI017II/OEN

RO=AIMAGIICONJGITIIIII*OIII/OFN

IEIAHSIOCRI.GE.IPCH*CRII OCR=PCHVCR*LCR/AUSIUCRI

IFIABSIRUI'IPCH*RII 616,616,615

PO=PCH*R*RI/AHSIROI

R=R+RO 3 CR=CR+OCR 3 IP=O 3 ITE=IIF*I 3 KL=I 3 CU TO 101

NRIIEI39815I S HRIIFI398I?) TIIPI9IFSIIIPI

PRINT OUT THE FINAL COMBINED FUNCTIONS IE OESIREO

IFIMON-ZI 10095119511

NRIIEI39809I 3 HRIIEI39810I 3 DO 315 J=I9N9JJ

AI=XIII*PIJ9II+XIZI*PIJ92I+XI3IPPIJ93I

A7=XIIIP9PIJ9II‘XIPI‘OPIJ9?I+XI3I‘OPIJ93I

ggzxgl)sD?PIJ.lI+XI2Ivn2PIJ.2I+XI3I¢OPPIJ.3)

A4=XIII*O3PIJ9II+XI2I*O3PIJ92I+XI3I*O3PIJ93)

HRITEI39820I ZIJI9AI9A79A39A4

HRITEI39BZII 3 00 316 J=I9N9JJ

A6=XIII‘VIJ9II*XI2IPVIJ92I+XI3IPVIJ93I
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A78X111*DV1J911+X121‘DV1J921+X(31‘DV1J93)

316 HR11E1398201 Z1J19‘69AT

510 CONYINUE 8 GD 10 100

400 FORMAT161109 F10.5|

601 F0RHAT13F10.59EIO.51

402 FORMAT16F10.59 £10.31

801 FORMATIIQHOITERATION Nn..12)

802 FORMA1115HOREYNDtDS ND. =9F20.13910X97HALPHA =.F8.4,10X,

14HCR =9F20.161 ‘

803 FOHMAT120HOEXCFSSIVE [TERAT10N1

806 FURMAT(27HOCORRECTED GRDHING SOLUTION)

80> FORMAT (IQHOSDLUTIUN N0. 9129/91H093X91HY.10X96HP1J911918x97HDth,

111916X98H02P1J91)916X,RH03P1J911916X98H04P1J9111

806 anvattlu .F5.2.5t613.3.612.3))

807 FORMAT124HOREPA1RED ElGENFUNCTIDNS)

808 FORMAT‘1H093HVW=9515959E15059I'7HODP51H=9E15059515059/9

18HODZPSIH=9E15o59615.51

809 FORMAT125H1F1NAL COMBINED FUNCTIONSD

810 FURNAT‘5X91HY912X94H91J1919X,5HDP¢J1918X,6HDZP(J1918X96H03P1J19

1 18X96HD¢PIJ11

811 FORNAT(27HOCUHULATIVE ERROR AT HALL 89515.51

612 FORMA111H0911HP AT HALL 892515.5910X915HTEST FUNCTION =,E15.5)

813 FORMAI(30HOFUNCTIDNS 00 NOT SATISFY B.C.1

814 FORNAT1/l1

815 FORMAT127HOCDNVERGENCE TESI SATISFIEDD

816 FORMAT11H093X91HY910X96HV1J911918X,7HDV1J911916X98HDZVIJ9111

819 FORMATQZleTHE FOLLOWING CASF IS F0R9/916H HARYHANN N0.=,F7.3.

15X918HVAGNFTIC PRANDTt 395129395X94HC1 =9F6o39SX96HBEIA 3,Fb.3,

2 I912H STEP SIZE =9F6.39///1

620 FORMAT!1X,F5.2951£12.39E12.311

821 FORMAT!1H094X91HY912X94HV1J1919X95HDV1J1918X96HDZV1J11

750 CONTINUE

END

SUBROUTlNE RUNGE 1J9Y9HM9RM1

THIS SUBRUUI1NF USES A FOURTH ORDER RUNGt-KUTIA SCHEME

D1MENSIDN G131

COMMON 9(20193190Pl2019319UZP120193).!)39120193).V(201.3).!)V1201.3)

19C19C29C39C99U01319AL9BF9CN9R9DELY9C9K9XM

COMPLEX V009V109V209V3091100911109FK19GK19V019V119V219V319l101911119

1 FK29GK29V079V17.9V229V329U029U129FK39GK39FK9GK9FKP9GKP96KZpobK3p9

2 991199112P911399V9DV9U19U29U09CV19C19C29C39C’09619029A39A‘99A‘19A7OA9

REAL K

CALCULATE THE REOU1RED VELUC1TY AND HAGNET1C QUANTITlFS

CALL VCA1 (Y9HH9RM9H9HP9HPP9T9TP91pp1

Y=Y+DFLYIZOO

CALL VCAL (Y9HM9RH.Z.ZP,ZPP9$9SP,SPP1



603

599

302

605

606

607
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Y-Y+DELY/2.o

CALL VCAL IY,HH,RM,U,UP,UPP,H,HP,HPPI

DO 301 I=l,3

FUNCIIONS A1 Y

voo=PIJ,II 9 VlOsCtoPIJ,II s V20-C¢C#DZPIJ,II/2.

v30=ctc*c*DBP(J,I)/6. s UOO=VIJ,II s UlOsC‘DVIJ,II

FKlsI(£20!H-CHI9KItuoo-cztttvoo-RH9VIOICItc*C/2.O

GKIsI(CBtIH-CHI9Z.9K+XHI#2.9V20/(etc)+C991#2.tv10/C-IC3*K91H-CH)

l9c3thP+KtK+ALtlLt19ItXH~C4tTP)tvoo-CatIH-CH)9U10/C+IALtlttxntT

2*(H-CNI-ChtIHP-TPP/RHI)9U0019C994/24.

FUNCTIONS A1 VooeLYIZ.

v01=voo+o.59v10+o.zstvzo+o.1259v30+o.0625*cxl

v11-v10+v20+o.759v30+o.Stcxl s v21=v20+l.59v30+l.5*GKl

V31=V30+2.0#GK1 s UOlsUOO+0.5#Ulo+O.2S#FKl s UllsUlo+FKl

FK2=I1C2?!z-CH)+K)#UOl-CztstVOI-Rntv1llCI*c*C/2.o

GKZ=¢IC3¥Iz-CHI+2.*K+XM)*2.#VZII(th)9C6*S*2.#v11/C-Ic3*K*IZ-CH)

1+CB92PP+K0K+AL9AL959stXM-catspItVOI-C491Z-CHItUll/C+IALtnttxnts

Ztiz-CHI-cattzp—SPOIRM))*UOl)-C#*4/24.

FUNCTIONS AT v+nELv ‘

vnz=vooov10+v209v30+cn2 s v12-v10+2.o*v20+3.09v30+4.0*GK2

V22=V20+3.0*V30+6.096K2 s V32=V30+k.0tGKZ

U02=UOO+UIO+FK2 s UlZ=UIO+2.0*FK2

FK3=I«czacu-cu)+x)*uoz-C2*H*voz-Rntv12/C)tC9C/2.0

GK3=IIC3*IU-CH)+2.*K+XMI#2.#V22/ICVCI+Ch#H#2,‘V12/C-IC3*K*IU-Cw)

1+C3*UPP+K#K+AL‘AL#H*H*XM-C4#HP1*V02-C6*IU-CHI*U12/C+IAL*AL*XH#H

2uIU-CHI-C4¢(UP-HPPIRMII*UOZ)*C**6/2¢,

FK=IFK1+2.0*FK2)/3.0 s FKP=(FKl+6.0#FK2+FK3)/3.o

GK:€8.*GK1+8,'GK2-GK3)/15, s GKP=I9.*GK1+12.*GK2-GK31/5.

GK2P=2.*GK1+4.*GK2 s GK3P=IGK1+4.*GK2+GK31#2./3. S L=J+1

VALUES 0F FUNCTION AND ITS DERIVATIVES A1 Y+C

PIL,11=V00+V10+V20+V30+GK s DPIL,I)2IV10+2.*V20+3.¢V30+GKP)lc

DZPIL,II:Iv20+3.#v30+GKZPI*2./(C*c)sDBPIL,I)=(v3o+GK3PI#6./IC#C*C)

VIL9II=UOO+UIO+FK s DVIL,II=IUIO+FKP)/C

CALCULATE SOLUTION To INVISID EON To BE USED FOR FILTERING

00¢!I=((U-CH)*(02PIJ+1,I)-K*PIJ+1,I)I-UPP#P(J+I,III#AL*C1*R

DFIERHINE GROWING SOLUTION

IFIJ-l) 604,603,604

IFtI-B) 604,599,604

CONTINUE

DO 302 H8193

AA=REALIDPIL9M1*ICDNJG(DPIL9HIII)

BBsREALIPIL9MI‘ICDNJGIPIL9H1111

GIMI=SORTIAAIBBI

GI=AMAXIIGIII,GIZI,G(3)I

IF!GI.E0.GI1)I GO TO 604 s IFIGl-GIZII 60696059606

M=2 9 GO TO 607

M23

00 608 N=J9L

Al=P(N,M) s PIN,H)=PIN,II s PIN,I)=A1

AZ=DPIN,M) s DP!N.H)=DPIN,II s DP!N.1)=AZ

A3=OZPIN,H1 s DZPIN.M)=02PIN,II s DZPIN,II=A3

AbenspIN,M) s D3PIN,M)=03PIN,II S 03°IN,1)=A4



n
o
n

600

604

301

0

1

71

A6IVIN,NI 3 VIN9N18VIN911 3 VIN9118A6

A7-DVIN,HI 3 DVIN9NI=UVIN911 3 DVIN9118A7

IFIN-JI 60094009608

A9=UOIHI 3 UOTNIIUOIII S UOIIIIA9

CONTINUE '

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE VCAL IV.HN,RN.U.UR,UPP,N,NR,NRPI

THIS.SUBROUTINE CALCULATES THE VELOCITY AND INDUCED

MAGNETIC FIELD QUANTITIES AND THEIR DERIVATIVES AT

THE REQUIRED v STATIUNS

CDSHIXI=IExPTXI+Expt-XII/2.o

SINHIX)=IEXPIXI-EXPI-XI)/2.0

C=CDSHTHMI s S=SINHIHMI

IFIYI 32.31.31

=-v s CV=COSHIHM8YI s SY=-SINHIHM*YI s v=-v s 60 TO 30

CY=COSHIHM*YI s SY=SINHIHN9YI

CONTINUE

08HM*C-S s U=HM*IC-CY)/D s UPz-HMtHMtsvln s UPP=-HM#*3*CYIU

H:RMIHM*ISY-Y*S)/(C-l.1 s HP=RMIHH*IHM#CY-SIIIC-1.1

HPP=RM$IHM*SY)/IC-l,)

RETURN

END

DATA CARDS

1 1 13 10 0,01

001 0.01. 002 1.5-12

015 190000. 0178 0.0 090 6.0 lee-2
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