ABSTRACT

THE STABILITY OF PLANE POISEUILLE FLOW
SUBJECT TO A TRANSVERSE MAGNETIC FIELD

By

James Anthony Kutchey

The stability of an electrically conducting fluid flow-
ing between parallel planes subject to a transverse magnetic
field is investigated for infinitesimal three-dimensional dis-
turbances. Primary interest is in the effect of the magnetic
field and magnetic fluid parameters on the critical point of
the neutral stability curves. The governing stability equa-
tions include perturbations for both the velocity and magnetic
fields and result in a sixth order coupled set of linear
ordinary differential equations. This set represents an eigen-
value problem that is transformed to an initial value problem
and solved numerically using a fourth order Runge-Kutta integra-
tion scheme with a special filtering technique.

The results indicate a strong dependence of the critical
eigenvalues on both the magnetic field strength and a fluid
property, the magnetic Prandtl number. The effect of both is to
greatly stabilize the flow. Inclusion of the span-wise wave
number does not affect the eigenvalues other thamn in a manner
predicted by Squire's Theorem. The numerical results are also
compared to previous data obtained by asymptotic expansion

techniques.
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CHAPTER I

INTRODUCTION

1.1 Review of Literature

The term "transition" as generally used in the field
of fluid mechanics applies to the observable change in flow
pattern when well-ordered laminar motion becomes turbulent.

The theory of stability using perturbation techniques with an
assumed form of infinitesimal disturbances attempts to predict
the value of the critical Reynolds number or point of insta-
bility for a prescribed main flow.

The earliest work in the area of transition was per-
formed by Reynolds (1883) when he used dye injection for flow
in pipes. Theoretical studies to predict the transition from
laminar to turbulent flow were begun by Lord Rayleigh (1880,
1887) and Lord Kelvin (1887). Based upon this work, independent
studies by Orr (1907) and Sommerfeld (1908) led to the now well
known Orr-Sommerfeld stability equation for two-dimensional

flow, which is given by

(U'C) (¢" - az¢) - U"¢ = -;—E (¢

iv _ 2 02¢" + a4¢)

where U = Velocity
c = Complex wave propagation speed
o = Wave number

¢ = Eigenfunction



R = Reynolds number

This equation is based upon the assumption of infini-
tesimal periodic distrubances.

Neglecting the effects of viscosity, Lord Rayleigh
(1914) was able to show that any velocity profile that possesses
an inflection point is unstable. Much later, Tollmein (1935)
proved that this was not only a necessary but sufficient condi-
tion for the amplification of small disturbances.

Prandtl (1914) postulated the existence of a viscous
boundary layer and was able to define transition, separation
and drag coefficients on bodies. Incorporating the viscous
boundary layer into stability theory, Prandtl (1921) considered
flow over a flat plate and included the effects of the largest
viscous terms near the wall. This work along with calculations
performed by Tietjens (1925) gave the startling result that the
introduction of viscosity into the equations did not produce
damping as was presumed but amplification for sufficiently
large Reynolds numbers for particular wavelengths of the dis-
turbances.

Tollmein (1929) demonstrated that the effect of viscosity
must be taken into account not only near the wall but also in
the critical layer. The critical layer is a narrow region
surrounding the critical point at which the main flow velocity
and the wave propagation velocity are equal, that is, U = c.

In addition, he also showed that the influence of viscosity
leads to instability only if the main flow velocity profile is

other than a straight line.



The method developed by Tollmein, based on Asymptotic
Theory, provided the mathematical basis for later progress in
the stability area. Lin (1945, 1946, 1955) was able to provide
a firm mathematical basis for the asymptotic expansion theory
and was able to explain the nature of the functions near the
critical point. He discussed what he called the inner viscous
layer which includes the critical point, and the outer viscous
layer, a wall viscous layer.

The asymptotic expansion method was used almost exclu-
sively until the advent of modern high-speed digital computers
which permit the use of more accurate numerical techniques.
Even now, however, the asymptotic method can be effectively
used to predict the type of functional behavior to be expected,
prior to obtaining numerical solutions.

The stability of plane Poiseuille flow was investigated
by Thomas (1953) with a numerical scheme. He obtained a value

for the minimum Reynolds number, R for neutral stability

crit’
of 5780, which is based on maximum channel velocity and the
half-width. This value has been shown to be more accurate than
Lin's (1945) value of 5300 or Stuart's (1954) value of 5100
based on asymptotic techniques.

Potter (1965) studied the stability of plane Couette-
Poiseuille flow by asymptotic expansions and later (1967) per-
formed numerical calculations for symmetrical parabolic flows.

The values obtained for R .i¢ Were in close agreement with those

it

of Thomas.



The point of instability as determined theoretically
and the physically observable transition point from laminar to
turbulent flow often differ considerably. An explanation for
these differences was thought by some to be due to the fact that
the derivation of the Orr-Sommerfeld equation is based on the
assumption of two-dimensional disturbances only. Squire (1933)
showed that if three-dimensional disturbances are considered
the flow is more stable, that is, a higher value of Rcrit is
predicted, than for two-dimensional disturbances.

The distance between the point of instability and the
actual transition point depends upon the degree of amplifica-
tion present and the intensity of fluctuations present in the
primary flow. Schlichting (1933) performed calculations for
boundary layer flow over a flat plate and investigated the
parameters in the interior of the neutral stability curve
(Ci > 0) to help explain the actual mechanism of disturbance
amplification. More recently, Shen (1954) repeated Schlichting's
calculations, and Stuart (1956) investigated the amplification
of unstable disturbances by accounting for the effect of the
non-linear terms in the equations. Reynolds and Potter (1967)
considered the instabilities of channel flow for disturbances
of finite amplitude.

Except for early pipe flow measurements by Barnes and
Coker (1905) and Ekman (1910), who succeeded in maintaining
laminar flow for fairly high Reynolds numbers (40,000),
experimental verification of the results of stability theory

was slow in coming. Rosenbrook (1937) found agreement with



the inflexion point theorem due to Rayleigh and Tollmein.

Some of the most significant experimental work was per-
formed by Schubauer and Skramstad (1947) and Dryden (1947) who
performed very precise measurements for boundary layer flow
over a flat plate (with very low free stream fluctuations),
and showed the influence of free stream disturbance intensity
on the critical Reynolds number.

Emmons (1951) observed that any disturbance which trig-
gers transition may be "local in time" and once initiated, the
turbulent spot moves downstream growing steadily in all di-
rections. This phenomenom was studied by Schubauer-Klebanoff
(1956).

Transition from laminar to turbulent flow in a boundary
layer is now believed to take place within 4 stages. At the
first stage, infinitesimal two dimensional waves called Tollmein-
Schlichting waves, begin to amplify and become unstable. The
two dimensional waves become three dimensional and result in
hairpin eddies at the second stage. In the third stage low
speed turbulent streaks or bursts (Emmons' spots) originate
near the wall, and finally in the fourth stage the burst rate
becomes constant and the transition to fully turbulent motion
is completed. Morkovin (1958) reviews some of the recent
advances in the study of transition and discusses the mechanisms
involved in the above mentioned stages.

Stability theory yields a critical Reynolds number that
corresponds to stage one. Since the third stage is the first

point at which large scale variations take place, this is often



considered to be transition by many enginecers. These dif-
ferences along with the slower response times of earlier instru-
mentation serve to explain some of the discrepancies between
theory and experiment.

Stability predictions in channel flow yield critical
Reynolds numbers that also correspond to infinitesimal dis-
turbances but the stages of transition are not as apparent as
in boundary layer flow. Free steam disturbances or distur-
bances which result from wall roughness amplify and lead to
the transition described above but the effect is now propagated
throughout the flow and the entire channel becomes turbulent.

In the area of magnetohydrodynamics (MHD), the velocity
and magnetic field equations for an incompressible, viscous and
electrically conducting fluid moving in the presence of a
magnetic field have been derived by Batchelor (1950). The effect
of a magnetic field on thermal instabilities was investigated
independently by Thompson (1951) and Chandrasekhar (1952). For
a complete discussion of this problem and others in the field
of hydrodynamic and hydromagnetic stability the reader is re-
ferred to Chandrasekhar (1961).

Stuart (1954) considered the stability of viscous flow
between parallel planes in the presence of a co-planar magnetic
field. Lock (1956) investigated a similar problem but con-
sidered the effect of a magnetic field perpendicular to both
the confining parallel planes and the flow direction. Both
Stuart and Lock simplified the resulting sixth order set of

equations and solved the fourth order Orr-Sommerfeld equation



by asymptotic expansions. To simplify the analysis, Lock
utilized Squire's theorem, as detailed by Michael (1953) for

the case of MHD flows.

1.2 Description of the Problem

The purpose of the present study is to investigate the
stability of an electrically conducting fluid flowing between
parallel planes subject to the influence of a transverse mag-
netic field. The coordinate system is oriented with the origin
at the centerline, the x-axis in the direction of the flow and
the y-axis perpendicular to the bounding plates as shown in
figure 1. The planes are assumed to be non-conducting and
located at y = + a.

The governing equations, developed in the next chapter
result in a coupled set of ordinary linear differential equa-
tions, a fourth order equation on §, the velocity perturba-
tion, and a second order equation on ¢ the magnetic field
perturbation.

The above problem was considered by Lock in 1956. He
had to make several simplifying assumptions in order to obtain
a solution by asymptotic expansions. The reduced equation that

he solved was the following modified Orr-Sommerfeld equation:

U-c) (y" - az¢) -u'"y = - ai—g q;i" (1.2.1)

where the only effect of the magnetic field is to modify the

primary velocity profile U(y).



The eigenvalues that appear in most stability equations
normally occur in the combinations of (az + 32), oR, and cr,
and thus, Squire's Theorem is applicable. In the govern-
ing coupled equations for this problem  appears in the
magnetic equation as a separate coefficient indicating that
the solutions may be subject to an influence of B, the span-
wise (z-direction) component of the disturbance wave. Chawla
(1969) in studying the effect of rotation on the stability of
flow over a flat plate, found that the rotational effects were
directly coupled to B and Squire's Theorem was not applicable.
Although Lock initially assumed three-dimensional disturbances,
his simplifying assumptions delete the magnetic equation and
he is then justified in applying Squire's Theorem.

This study provides a solution of the complete set of
stability equations for various magnetic quantities and fluid
properties and also provides bounds for which Lock's assump-

tions are justified.



CHAPTER I1

STABILITY EQUATIONS

2.1 Fundamental Equations

Consider first the interaction of the electric and
magnetic fields which are given by Maxwell's equations. These

equations written for a non-relativistic reference frame are

v D = p, (2.1.1)
v.-F = 0 (2.1.2)
UXE =-8 (2.1.3)
vxi = F+0 (2.1.4)

where D = Electric flux density

=)
n

Electric field

il
H

Magnetic flux density
H= Magnetic field
Pe = Space charge density
J = Conduction current density
and the notation (') implies %E » t being time.

In addition to these equations, the current conservation

equation
v-3J + p =0 (2.1.5)

is often used; although, it is not independent of Maxwell's
equations and follows directly from (2.1.1) and (2.1.4).

9



10
The conduction current is given by Ohm's Law

T = GE+V » B) - pe‘_j (2.1.6)

where g is the electrical conductivity, and V is the velocily
vector.

The constitutive equations for a linear medium are

(=]
]

E + P (2.1.7a)

=i

= u(ﬁ+§e) (2.1.7b)

where the polarization P and magnetization ﬁe vectors can

be neglected for conducting fluids; u is the magnetic permea-
bility and ¢ 1is the permittivity, also known as the dielec-

tric constant.

For most materials, and in particular for all conduct-
ing liquids and gases y is that of free space T The assump-
tion that ¢ = €9 however, can be used only for plasmas, but
by using the current conservation equation (2.1.5) this assump-
tion need not be made.

Following the procedure outlined by Chandrasekhar (1961)
some simplifications can now be made to arrive at the equations
generally used to solve MHD flow problems. The assumptions are:

1. The non-relativistic approximation has already been
stated and is consistent with the Newtonian form of the equa-
tions of motion that will be used.

2. Without an externally applied electric field, the
electric fields originate only from the induced effects and

—

are of the same order of magnitude as V x B appearing in
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Ohm's Law.

3. High frequency phenomena are not considered so that
the displacement current 3 is neglected in equation (2.1.4)
compared to 3, the conduction current. 1In fact for metals,
the displacement current is meaningless and need not be
mentioned.

4. 1In Ohm's Law, which determines the conduction
current, the space charge Pe may be neglected. For liquid
conductors and in dense, collision-dominated plasmas, which
may be treated by a continuum model as an ordinary conducting

gas, the space charge effects become unimportant. Ohm's Law

is then written as

— —_

J = o + VxB (2.1.8)

where it is further assumed that the conductivity is constant
with frequency and independent of the magnetic field.

The small electric field and the negligible displacement
current imply the main interaction is between the magnetic field
and the fluid, hence the magnetohydrodynamics.

The Navier-Stokes equations governing the motion of an

incompressible fluid are

— —_ 1 2- 1 =
+ (V'V)V=EVP+VVV+EF (2.1.9)

<.

—

- -—
where the body force term is F = J X B, p 1is the pressure,
p 1is the mass density and v is the kinematic viscosity.

The equation of continuity is

v-V = 0. (2.1.10)



12

The equations now relevant to the problem are:

Maxwell's equations

v-H =0 (2.1.11)
vxH = J (2.1.12)
v xE = -uH (2.1.13)
| >¢
Ohm's law: J = gE +V x ui) (2.1.14) jj
Continuity: ¢ -« Vv =0 (2.1.15) ,
Navier-Stokes: i
. -
- — N VR~ — l 2 '
V@V =t G xE) - Sp+ WV (2.1.16)

-

Eliminating the electric field E between equations
(2.1.13) and (2.1.14), together with (2.1.12) leads to the

magnetic equation

. - - 25
- =L 1.
vx @ xH) = (2.1.17)

This equation along with (2.1.15), (2.1.16) and

(2.1.12) are sufficient to determine all the variables, V, H,

and p.

2.2 Non-Dimensional Variables

To write the equations in non-dimensional form, choose
the average velocity Um,‘the channel half width (a) and the
applied magnetic field strength Ho as reference quantities.

The dimensionless variables will then be
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*
v i
V= 3 T3
m
*
*
Unt _p (2.2.1)
t = p=
a UZ
P m
.}-{.* 3*
i= j-1a
HO H0

where X, = (x, ¥y, z) the cartesian coordinates, and the
asterisks denote the previously used dimensional quantities.

Introducing these in the governing equations yields

. 2
V+(\‘/‘.V)V=-vp+%v2€i+i‘R—(§'xﬁ) (2.2.2)
m
H -9 x (Vxﬁ)=é—v2ﬁ (2.2.3)
m
J = vxH (2.2.4)
v-H =0 (2.2.5)
vV =0 (2.2.6)
Uma
where R = Reynolds number = "
M = Hartmann number = Ha(g"-)}i
pVv
R = Magnetic Reynolds no. = U2 wo

It should be noted here that the above dimensionless
groups are not unique and that others may be formed by multiply-
ing togehter various combinations of the above. One such para-
meter that will be used later is the magnetic Prandtl number

R

= =£
Pm WO = 2.

2.3 The Primary Flow and Magnetic Field Distributions

The solution for steady, two-dimensional motion of a

conducting fluid between parallel planes subjected to a



transverse magnetic field is well known and has been provided

14

by Hartmann and Lazarus (1937). For parallel flows, the

velocity components are (U, O, 0) and for this problem the

magnetic field has the components

of y only.

and

(2.3.2)
also be

tinuity

respect

Equation (2.2.3) yields

(H, H, 0), all functions
X y

2
1 d Hx d
- = - —— (UH ) (2.3.1)
Rm dy2 dy y
d2H ii
—5L =0 (2.3.2)
dy
Since the normal component of pﬁ must be continuous
and have the same value at both walls and since the applied
magnetic field induction is in the y direction, equation
shows that Hy is a constant H. This result can
obtained from equation (2.2.5) which represents con-
of the magnetic field.
Differentiating the x - component of (2.2.2) with
to y yields
2
2 d°H 3
Mo _x - dU (2.3.3)
R 3
m dy dy
Eliminating Hx between (2.3.1) and (2.3.3) results in
3
d 2 d
cy .y (2.3.4)
3 dy
dy
The solution to the above equation is
M(cosh M - cosh My)
U = (2.3.5)

M cosh M - sinh M
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For zero magnetic fields, this equation should reduce
to the standard parabolic profile, U = 1.5 (1-y2). This is
found to be the case when the first two terms of the series
expansions are substituted for the hyperbolic functions.

To determine the induced magnetic field in the direc-
tion of flow, substitute equation (2.3.5) into (2.3.3). The
resulting equation and the boundary conditions that Hx must
be zero at both walls since there is no applied magnetic field
in this direction yields

Rm (sinh My - y sinh M)

Hx - M(cosh M-1)

2.4 The Linearized Equations for Small Disturbances

The primary velocity and magnetic field quantities are
now considered to have superimposed on them three-dimensional

infinitesimal disturbances. They are then written

(2.4.1)

Substituting (2.4.1) into equation (2.2.3), subtracting
off the original equation for the primary flow and neglecting
the squares of all the disturbance quantities yields

h = (ﬁ‘p-v)v + (R-v)Vp - (Vp-v)B' - (V-v)'ﬁp + ;— R (2.4.2)
m
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The pressure gradient term is first eliminated from the

momentum equation by taking the curl of both sides.

The dis-

turbance equation is then found as above, and the vorticity

4

equation for the perturbations results.

4+ @ 9F+G0F = @ -0F+ @ 1%
E+ (V,'WE + (v-9)a (ﬁpv)v+(§v)Vp+Rvg

2
M — - — - — - - —_
+—{H V)] + (h-v)J - J _-v)h - (j-V)H
RRm{(p)j (-3 ROLIRNCEOLN
-
where Qp = vorticity of main flow = ¢y X
§ = vorticity of perturbed flow = v x v
I =@~xH)
P P
7 = @xh

v

P

(2.4.3)

In addition, the following continuity equations result

(2.4.4)

(2.4.5)

Consider further that the assumed three-dimensional

disturbances take the separated form

A QX(y) expli(ax + Bz)

y(y) expli(xx + Bz)

v
y

v, = Qz(y) expli(ox + 8z)

hx = ﬁx(y) expli(ax + Bz)

hy = 3®) expli(ax + Bz)

h, = ﬂz(y) exp[i(ax + pz)

iget]
iget])
iget]
igct]
igct])

ixct)

(2.4.6)

The assumed form of the disturbances implies a spatially

periodic wave with complex amplitudes where

dimensionless wave numbers and are real quantities.

o

are

The complex

W_;h‘ T
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wave speed c¢ is given by

c = cr + ic1

where ¢ is the amplification rate.

i

(2.4.7)

A positive or negative

cy implies growth or decay respectively of the perturbations.

This study is concerned with neutral stability, that is, c, = 0.

i

Introducing the assumed form of the disturbances into

the component form of equations (2.4.2) and (2.4.3) and then

eliminating Ver Voo hx’ and hz with a procedure similar to

that outlined by Chawla or Stuart (1954), yields the following

iy! i
hy - ;i = (U-c)p + ;E;

" - K2¢) (2.4.8)

U-c) (4" - K2y) - Uy + O% &l - 23" + k)

2 2
- P{h(¢" - K (b) _i (¢l||_ K ¢!) - h"¢}

where h=H

(2.4.9)

R, (sinh My - y sinh M)

M (cosh M - cosh My)

U= N cosh M - sinh M

k2 = o2 + g2

MZ

P=c—

RR
m

x M (cosh M - 1)

and primes indicate differentiation with respect to y.

Equations (2.4.8) and (2.4.9) can be solved simulta-

neously or can be combined to form a single sixth order equa-

tion. Combining the equations requires tedious algebra and

the resulting coefficients are extremely long and unwieldy.

No insight or simplification is gained by such a combination
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so that it is better to solve the two equations simultancously.
The necessary boundary conditions result from the no-

slip velocity conditions at the wall and from continuity, namely,

¥=y'=0 @ y=+1
and the nature of the magnetic field perturbations (2.4.10)
¢=O @ y=i]_

The problem is now completely specified.

2.5 Eigenvalue Problem

The system of equations and boundary conditions derived
above, represent an eigenvalue problem with the characteristic
values o, B, ¢, R and M. The wave propagation speed, c as
stated earlier is complex, with the imaginary part being the
exponential growth or decay rate of the assumed disturbances.
Since neutral stability curves are desired 4 is set to zero.

To solve for the characteristic values it is necessary
to specify some of them, say M, B and c. and solve for the
remaining two, namely o and R from equations (2.4.8) and
(2.4.9).

The neutral stability curve (@ vs. R for constant M)
will have a minimum R, called the critical Reynolds number

crit® for which a disturbance is neutrally stable. Reynolds

numbers greater than Rc result in growth for that parti-

rit

cular disturbance and Reynolds numbers smaller than Rcrit

result in decay. Associated with Rcrit there is also a

)

critical wave speed ( ¢ and a critical wave number

c .
r'eri
Yerit’

e



CHAPTER I1I

NUMERICAL SOLUTION OF THE STABILITY EQUATIONS

3.1 Introduction

The numerical solution to equations (2.4.8) and (2.4.9)
will generate three independent solutions because the solutions
are started at one wall with three boundary conditions already
satisfied. These solutions cannot each satisfy all of the
boundary conditions at both walls. However, a proper linear
combination of these functions will yield the total eigen-
function which must then satisfy the three boundary conditions
at the opposite wall.

The integration of the equations is begun at the lower
wall (y = -1) and proceeds step by step across the channel
to the upper wall. A fourth order Runge-Kutta technique, de-
tailed in appendix A is used to solve the equations. The three
independent solutions are each initialized at the lower wall

and integrated simultaneously at each step across the channel.

3.2 Starting Conditions

To use the Runge-Kutta integration scheme to solve a
differential equation of order n the problem must be trans-
formed to an initial value problem where the function and its

n-1 derivatives are initially specified. For equations

19
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(2.4.8) and (2.4.9), the boundary conditions (2.4.10) provide
starting values for y., W; and s (i=1, 2, 3 and repre-
sent the separate solutions) with values for the remaining
derivatives wg, W;" and ¢; somewhat arbitrary. The highest
order derivatives, namely wiv and ¢¥, do not require ini-
tialization since they are determined in terms of the lower
order derivatives.

The "arbitrary" starting conditions mentioned above
must be chosen so as to insure independent functions, at least
at the start of the integration. A purification scheme maintains
independence as the integration proceeds. Assigning a non-zero
value to one of the three unspecified derivatives for each of
the three solutions should help keep the solutions linearly
independent. Specifically ¢g, wi", and ¢i are given non-
zero values.

The purification scheme requires identification of the
fastest growing'solution. This was accomplished by checking
the ratio of L at the first integration step for each of
the independentisolutions. The values obtained for i =1, 2, 3
were approximately 400, 300, and 200 respectively and, as should
be expected, were unaffected by the relative magnitudes of the

starting values assigned to ¢;, ¥, and ¢i.

3.3 Growth of the Eigenfunctions

It is well koown that during the numerical integration
one of the two independent functions for the fourth order prob-

lem and at least one of the three independent functions for the
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sixth order problem grows very rapidly. Kaplan (1964) referred
to these functions as the '"growing solutions' and called the
others the 'well behaved solutions'". The growing solutions
stem from the viscous portion of the stability equations and
the well behaved functions originate from the inviscid portion.

The governing stability equations can be written as
thy - 24" - W-0)g) = == [p" - K%y (3.3.1)
o oR ¢ U

L i
[w-) " - K2 - 0] = = ™Y - 2y + Ky

) - (3.3.2)
1

- iﬁf‘ (h(g" - K'g) - ol R K's") - b))

The terms in the square brackets on the left hand side
represent the inviscid part and those in the brackets on the right
hand side the viscous part.

In this particular problem, for the larger Hartmann
numbers and magnetic Prandtl numbers the three solutions
exhibited three distinct growth rates, which could be termed
the largest growing solution, intermediate growing solution
and the well behaved solution. As an example, for the case of

M=4,0 and Pm = 10-1 the three functions exhibited growths

across the channel on the order of 10280, 10140 and 106 respec-
tively. This extreme growth limited the range of Hartmann
numbers that could be considered in this study as it is apparent
that the limitations of the computer are soon exceeded.

For M =0 (.00l for the computer program) the equa-

tions effectively reduce to fourth order and result in only

one growing solution which exhibited a growth on the order of
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1036 across the channel, which is in agreement with the
observations reported by Reynolds and Potter (1967).

The final combined solution, of course, does not
exhibit this rapid growth which indicates that only a very
small portion of the growing solutions are required to form

the eigenfunctions.

3.4 Purification Scheme

The very rapid growth rate exhibited by some of the
solutions causes some difficulties other than machine over-
flow.

Initially all three solutions are linearly independent
but as the integration proceeds, this independence is observed
to disappear rapidly. Kaplan (1964) states that this loss of
independence, which is impossible for an exact solution, arises
because of the approximate nature of the numerical integration.
Errors are introduced because any numerical method being applied
at small but finite steps has associated with it a truncation
error and in addition a digital computer carries only a fixed
number of digits, resulting in round off error. Kaplan
further concludes that the arbitrary initial conditions for
the well-behaved solution contain a small portion that is also
an initial condition for the growing solutions. As the integra-
tion proceeds it grows much more rapidly than the behaved solu-
tion and soon dominates it. Even if this small portion is not
present initially, it is effectively introduced by truncation

errors.
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Kaplan's conclusions appear justified although the
actual mechanism that causes one solution to "pollute'" the
other may be open to question.

The goal is, therefore, to keep the solutions independent
over as large a range as possible. To reduce the truncation
error associated with any numerical scheme, an obvious answer
is to choose a step size that is as small as possible con-
sistent with the particular limitations of machine storage and
speed. Performing all arithmetic operations in double pre-
cision should greatly reduce the round-off error. This is in
fact, found to be true. However, since all the functions are
complex, adding double precision to the program significantly
increases machine computation time and storage requirements.

Kaplan suggests an alternate approach that does not
require double precision, namely, a filtering technique. His
method consists of subtracting from the well-behaved solution
a portion of the growing solution at every step of the integra-
tion. This procedure called "filtering' prevents the growing
solution from ever dominating the well-behaved solution and
thus maintains the needed functional independence.

Kaplan's shceme was implemented in the computer program
for this problem. The CDC 6500 computer nominally carries
about 15 significant digits in single precision, which is
equivalent to double precision on IBM equipment and in parti-
cular the IBM 7090 used by Kaplan. These computations were in
effect then performed in '"double precision'". 1In fact, for the

cases with Hartmann number equal to zero or one no suppression
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scheme was required. Test cases of M =2 or 3 revealed that
Kaplan's scheme was required. For M > 3 however, the scheme
was no longer sufficient to maintain independence. In this range
the growth becomes very large, and the second solution becomes
an intermediate growing solution which now pollutes the well-
behaved solution. A double suppression scheme suggested by
W. Reynolds of Stanford in a private communication to M. Potter
was used to find the two remaining solutions.

The filter used consisted of a ratio of the inviscid

solutions (left hand side of equation (3.3.2)), namely,

inviscid part of the well-behaved solution
inviscid part of the growing solution

Filter = (3.4.1)

where, (inviscid) m iaR[(U-c)(¢; - K2¢m)- U"wm] (3.4.2)

]

m=1, 2,3

The above ratio determines the fraction of the growing solu-
tion to be "extracted" from the behaved solution, so the
amount subtracted off is the product of this ratio and the
value of the growing solution at the particular integration
step. This product was equal to about 207 of the behaved
solution.

The final scheme consisted of extracting from solutions
two and three a portion of the fastest growing solution (one)
and then extracting from solution three a portion of the inter-
mediate growing solution (two). Once incorporated this method
assured complete independence of the three separate solutions
for all growth rates even to the point of exceeding the over-

flow limits of the machine.
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3.5 Iteration Scheme for the Eigenvalues

Integrating across the channel, three independent solu-
tions are generated at each step. Upon reaching the opposite
wall, the functions are linearly combined to form the total
eigenfunctions that must satisfy the boundary conditions.

The three conditions that must be satisfied are y§ =y' = ¢ = 0.

Consider the following set of combined functions at the wall:

aj¥, + ay, +ajyy =y (3.5.1)
ajy; + oay, +ay =y (3.5.2)
a¥] + oayh +agny = " (3.5.3)
a1¢1 + 32¢2 + 83¢3 = Qw (3.5.4)

Equations (3.5.2-4) are used to solve for the coeffi-
cients a,. Note that there is no specific boundary condition
for y;, hence the choice here is arbitrary. As long as Yy
is non-zero, the value assumed merely changes the normalization

factor and still represents a valid solution. This system can

now be written as

SV N O B
V1 ¥ ¥, a 0
2 P [ > 1

a 0
I ¢ @ ¢3_ | %3 ] |

For functions that are linearly independent the
determinant of the matrix containing known values of ', y"
and ¢ will be non-zero. When the double suppression scheme,

discussed in the previous section, was not used this determinant
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was effectively zero and indicated the functions to be linearly
dependent, that is, one column is a multiple or combination of
the other two.

For independent functions, the a, can be determined
by finding the inverse of this matrix or as was done for the
computer program by simply writing out the solution.

The a;, once determined can now be substituted into
equation (3.5.1). With the correct eigenvalues ¥y will be
zero; hence Yy will serve as the test function (T). If
T X (conjugate T) is less than 10-12 the convergence criteria
is satisfied and the eigenvalues used to generate the functions
are assumed to be the correct ones. If convergence is not
attained let T; = T. Increase o by 1%, recalculate T
and let T, = T. After setting o to its original value,
increase R by 1%, calculate T and let T3 = T. The finite
difference approximations for the change in T with respect

to v and R are

T, - T
T ! )
2‘& ~ ——A-;-—- (3.5.5)
a—az ~ %ﬁ (3.5.6)

These are substituted into the complex equation

ar ar =
el I ROR O+ T 0 (3.5.7)

from which Ay and AR can be calculated. The new values

for the eigenvalues are



27

Ynew = %5 1d + b

(3.5.8)

R

Rnew old

+ AR

It is apparent that for every iteration or new ''guess'
of eigenvalues the equations must be integrated across the
channel three times. It was found that if the initial guesses
are relatively good, convergence is obtained in about three

iterations.

3.6 Criterion for Guessing the Eigenvalues

The initial estimates for some of the eigenvalues were
obtained from the data presented by Lock (1954). Where his
data was not applicable (M > 3, Ph = 10_1), guesses had to
be made with extreme care. Hopefully, the iteration process
would iterate to the correct eigenvalues, although this did
not always occur because of the small radius of convergence.
After a few points were obtained and plotted, the next
estimates could be obtained by extrapolation until the complete

stability curve was generated.

3.7 Range of Parameters Considered

Hartmann numbers in the range of zero to six were run

6 and 10-1. Test

for magnetic Prandtl numbers (Pm) of 10~
cases for magnetic Prandtl numbers less than 10-6 were run with
no change in eigenvalues. Physically, Prandtl numbers in the
range of 10.6 to 10-4 are characteristic of liquid metals and

it was hoped that the study could be extended to Pm = 100,

which is characteristic of ionized gases. At these values,



28

however, the functional growth rates became excessive, result-
ing in machine overflow.

As an example of the large variations associated with
a change in P refer to the case of M = 6 as plotted in
Figure 9. Included on this figure is a neutral stability
curve for Pm = 10“2 in addition to 10-6 and 10-1. The change

-6

in R for P_ =10 ~ to 10-2 is only about one-ninth the

crit m
change from 10-2 to 10-1. It is apparent then that a further
increase of only one order of magnitude with its corresponding
increase in functional growth rates soon puts the values out
of manchine range.

Several values of B were tried at different Hartmann
numbers and magnetic Prandtl numbers but, as will be discussed

in the next chapter, no B-effect was found to exist except

that predicted by Squire's Theorem.

3.8 Special Case of Zero Hartmann Number

The general equations are sixth order, but for the case
of zero magnetic field the equations reduce to the standard
fourth order Orr-Sommerfeld equation. Rather than write a
separate computer program to solve this case it was felt that
if the general program could be used it would provide a better
check on proper program operation.

Hopefully, then, as M approaches zero the program

should yield the known results for plane Poiseuille flow. This
3

was found to be the case when M was set equal to 10-2 or 1077,

with the same eigenvalues resulting for either value. A small
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valuc was necessary since setting M equal to zero exactly

yields an indeterminate result (0/0) 1in the calculation of

the primary velocity profile. It also results in a reduction

in the order of the equations thereby causing an indeterminate

result when satisfying the boundary conditions.




CHAPTER IV

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS FOR FURTHER STUDY

4.1 Numerical Results

Prior to obtaining any points on the stability curves,
the subroutine which calculates the primary velocity profile
and induced magnetic field quantities was run as a separate
program. The non-magnetic case, as was discussed in the
previous chapter was run at M = 10-3. The results of this
run were compared to the parabolic profile for plane
Poiseuille flow and found to agree to within at least five
significant numbers. This profile along with others for
M > 0 are well known, see for example, the original work by
Hartmann and Lazarus (1937) or any current textbook on MHD.
Dimensionless plots of these curves are presented in Figure 2.

The data generated for the neutral stability curves
are presented in Tables 2 through 15 and are also plotted
along with Lock's data in Figures 3 through 9. A summary of
the critical wave numbers and Reynolds numbers from this study
and from Lock's data are presented in Table 1. Typical eigen-
functions are plotted in Figures 10, 11 and 12.

To reduce the equations to a form that could be solved
by asymptotic expansions, Lock, based upon Stuart's paper

(1954), used the assumption that for most conducting liquids,

30
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the magnetic Prandtl number P (= R /R ™ wio) is small.
Provided therefore, that R is not too large, R will be
small compared with unity. He then neglected the magnetic
effects and reduced the sixth order set of equations to the
following fourth order, modified Orr-Sommerfeld equation which

he then solved:

) o
U-c) (4" - o' §) - Uy = - :; v .1.1)

In reducing the problem to this form, the only effect
of the magnetic field is to modify the primary velocity profile.

Comparison of Lock's data as presented along with the
present data is surprisingly good. For P = 10"6 his
critical points are a little high for M = 0 and 1, agree
almost exactly at M =2 and for M =2 3 are low compared to
this study. As M increases the deviations increase, which
indicates a greater dependence of the solutions on the magnetic
terms of equations (2.4.8) and (2.4.9) that were neglected by
Lock.

As discussed in the problem description, an examina-
tion of the equations indicates that @, the spanwise component
of the disturbance wave, should affect the final eigenvalues
such that Squire's Theorem is not applicable. This was not
found to be the case, however. The term i y' in equation
(2.4.8) that leads to this conclusion does not significantly
affect the final solution. This was verified by several runs

for various values for M and Pm with a non-zero (0.5) value

of B, all of which produce the same eigenvalues as the g =0
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case.

The influence of increasing Hartmann number is, of
course, to stabilize the flow. For a given Hartmann number,
a further stabilization of the flow occurs with an increase
in the magnetic Prandtl number. These effects are presented
graphically in Figures 3 through 9. Consider, for example,
the case of M = 5.0 which is depicted in Figure 8. The
critical Reynolds number increases from 132300 to 169400 for
Pm = 10-6 and 10-1 respectively. This increase due to the
change in Pm stems from the fact that the eigenfunctions
for the velocity perturbations ¢§ and the magnetic field
perturbations ¢ at Pm = 10“1 are now of the same order of
magnitude. Hence, for this range the magnetic terms in the
stability equations significantly affect the final eigenvalues.
The magnitudes and behavior of the eigenfunctions for this
case are shown in Figures 11 and 12 where § and ¢ are
plotted respectively. The § curves have been normalized
to 1 + 0i at the centerline as is commonly done in the current
literature.

Figure 9, which presents data for M = 6.0 includes

in addition to the neutral stability curves for Pm = 10-6 and

-1 -
10 a curve for P =10 2. The shift in Rc
m

. for a change
rit

in P, from 10-6 to 10-2 is only about 6000, from 169500 to
175800, but a value of Pm = 10-1 significantly increases
Rcrit to a value of 230700, indicating the large influence

of the magnetic terms in the stability equations.
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As discussed in Chapter III the growth rates of the
independent eigenfunctions increase rapidly with increasing
Hartmann number and magnetic Prandtl number. The growth rates
with this numerical scheme become so large for M > 6 or
Pm > 10-1 that machine overflow occurs and no data could be
obtained. This phenomenon is evidently also due to the ¢

eigenfunctions.

4.2 Conclusions

Based on the results obtained and the preceeding dis-
cussion it can be concluded that for small magnetic Prandtl
numbers (10-6) characteristic of liquid metals the standard
Orr-Sommerfeld equation along with the modified velocity pro-
file gives satisfactory results in determining neutral sta-
bility. For other conducting liquids or gases where the
magnetic Prandtl is larger, the effects of the magnetic field
must be fully accounted for. The effect of an increasing
magnetic field strength is to greatly stabilize the flow and
also to increase the critical wave number causing the in-
stability.

Squire's Theorem is applicable to this problem since
g does not affect the solutions, and K2 which equals

2

2
a +8 can be replaced by qz in equations (2.4.8) and

(2.4.9).




34

4.3 Recommendations for Further Study

This study could be further generalized to include

conducting non-newtonian fluids which would include liquid

metal amalgams, uranium slurries, seeded polymers, and others.

The effects of geometry changes such as a finite channel with
conducting side walls that would lead to different boundary
conditions on the magnetic field could also be studied. Also
of interest would be an investigation to compare the results

of this study with stability curves obtained for c; # 0.

o

e
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Table 1. Comparison of Critical Eigenvalues

M Lock Present Study
gggig Rcrit Pm B 10-6 E__i_ig-l
o R o4 R
0 1.03 4000. 1.02 3847. - -
1 0.98 6960. 0.97 6782. 1.00 6926.
2 0.93 20000. 0.925 20160. 0.90 21180.
3 0.96 46000. 0.9 48230. 0.95 54600.
4 1.04 79400. 1.04 86340. 1.00 105100.
5 1.15 116700. 1.20 132300. 1.10 169400.
6 - - 1.30 169500. 1.20 230700.

Note: Lock's original data has been converted to correspond
to the same non-dimensional variables as used in this
study, that is, R based on average velocity rather

than centerline velocity.
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Table 2. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=0.001, P = 10-6

c

o R r Remarks
0.9780 26050. 0.2750 Upper Branch
1.0710 10050. 0.3400

1.0980 5772. 0.3800

1.0500 3924, 0.3997

1.0200 3847. 0.3960 Critical Point
0.9500 4138. 0.3783

0.8500 5426. 0.3417

0.7500 8305. 0.2975

0.6500 14620. 0.2500

0.5756 26190. 0.2100 Lower Branch

Table 3. Eigenvalues for the Stability Equations
for the Case of Neutral Stability

= = = '6
(c; =0.0) M=1.0, P =10

C

o R r Remarks
1.0190 19580. 0.2900 Upper Branch
1.0480 10530. 0.3300
1.0340 7866. 0.3470
1.0000 6920. 0.3506
0.9700 6782. 0.3474 Critical Point
0.9500 6853. 0.3436
0.9000 7365. 0.3310
0.8500 8388. 0.3148
0.7500 12320. 0.2757
0.6700 19250. 0.2400 Lower Branch
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Table 4. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=1.0, P =107}

(o

a R r Remarks
1.0330 15910. 0.3040 Upper Branch
1.0300 7641. 0.3490
1.0000 6926. 0.3510 Critical Point
0.9000 7369. 0.3310
0.8500 8388. 0.3152
0.7500 12410. 0.2760
0.6500 21920. 0.2311 Lower Branch

Table 5. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(cy =0.0) M=20,P = 10-6

[+

o R o r Remarks
1.0070 40070. 0.2440 Upper Branch
0.9900 22830 0.2719
0.9500 20380. 0.2741
0.9250 20160. 0.2720 Critical Point
0.9000 20440. 0.2685
0.8000 25630. 0.2446

0.6500 53040. 0.1931 Lower Branch
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Table 6. Eigenvalues for the Stability Eauations
for the Case of Neutral Stability
(c; =0.0) M=2.0,P = 10-1
o R cr Remarks
0.9726 66050. 0.2200 Upper Branch
0.9986 40240. 0.2450
0.9900 25510. 0.2676
0.9500 21430. 0.2730
0.9000 21180. 0.2679 Critical Point
0.8500 22870. 0.2579
0.7500 31716. 0.2291
0.6500 53850. 0.1932 Lower Branch
Table 7. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=3.0, P =106
o R °r Remarks
1.0380 134200. 0.1880 Upper Branch
1.0560 74400. 0.2140
1.0300 54770. 0.2267
1.0000 49650. 0.229
0.9500 48230, 0.2271 Critical Point
0.8600 54680. 0.2138
0.7500 79570. 0.1878
0.6500 136500. 0.1584 Lower Branch
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Table 8. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=3.0,P = 10-1

C

o R r Remarks
1.0140 143400. 0.1870 Upper Branch
1.0280 105600. 0.2000 F“I
1.0170 66980. 0.2190
0.9900 57850. 0.2238
0.9500 54600. 0.2235 Critical Point -
0.9000 55550. 0.2185 %’
0.8500 60540. 0.2102
0.7500 84930. 0.1867
0.6500 143900. 0.1577 Lower Branch

Table 9. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(¢; =0.0) M=4.0, P = 10-6

c

o R r Remarks
1.1570 178500. 0.1800 Upper Branch
1.1490 117900. 0.1970
1.0900 88910. 0.2069
1.0400 86340. 0.2057 Critical Point
0.9500 93620. 0.1969
0.9000 104100. 0.1892

0.8000 143800. 0.1697 Lower Branch
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Table 10. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=4.0, P = 10-1

[

o4 R r Remarks
1.1120 186000. 0.1800 Upper Branch
1.0900 132200. 0.1930
1.0400 108000. 0.1986
1.0000 105100. 0.1975 Critical Point
0.9500 108900. 0.1930
0.9000 119000. 0.1865
0.8000 159700. 0.1676 Lower Branch

Table 11. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=5.0,P = 10-6

C

a R r Remarks
1.2980 188100. 0.1820 Upper Branch
1.2540 148900. 0.1910
1.2400 141400. 0.1928
1.2300 140800. 0.1926
1.2000 132300. 0.1945
1.1500 127400 0.1944 Critical Point
1.1000 131000. 0.1912
1.0000 148900. 0.1813

0.9000 190200. 0.1666 Lower Branch
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Table 12, Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c; =0.0) M=5.0,P = 10-!

(o

o R r Remarks
1.1900 195700. 0.1810 Upper Branch
1.1700 184700. 0.1827
1.1500 175400. 0.1840
1.1000 169400. 0.1834 Critical Point
1.0500 175000. 0.1799
1,0300 174600. 0.1789
0.9820 186600. 0.1740 Lower Branch

Table 13, Eigenvalues for the Stability Eaquations
for the Case of Neutral Stability
(c; =0.0) M=6.0,P = 10-6

c

a R r Remarks
1.466 199030. 0.1840 Upper Branch
1.378 176800. 0.1880
1.350 171700. 0.1885
1.300 169500. 0.1881 Critical Point
1.250 171300. 0.1865
1.200 172800. 0.1844
1.150 179300. 0.1813
1.100 196400. 0.1758

1.050 216000. 0.1701 Lower Branch
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Table 14. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c, =0.0) M= 6.0, P =102
1 m
c
o R r Remarks
1.450 211000. 0.1810 Upper Branch
1.380 185700. 0.1855
1.300 175800. 0.1863 Critical Point
1.250 179200. 0.1843
1.150 188400. 0.1791
1.100 199700. 0.1752
1.050 220600. 0.1692 Lower Branch
Table 15. Eigenvalues for the Stability Equations
for the Case of Neutral Stability
(c. =0.0) M=6.0, P =10-1
i m
c
o R r Remar ks

1.280 237400. 0.1765 Upper Branch
1.250 230800. 0.1771
1.200 230700. 0.1756 Critical Point
1.150 234500. 0.1734
1.111 245000. 0.1700 Lower Branch

NPTV e u'
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Figure 2. Dimensionless Primary Velocity Profiles
for Various Hartmann Numbers
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APPENDIX A

Numerical Technique to Solve the Governing Stability Equations

A standard fourth order Runge-Kutta integration scheme
was chosen in preference to a predictor-corrector scheme to
simultaneously integrate the coupled second order and fourth
order equations. The predictor-corrector scheme calculates
the value of the highest order derivative based on a curve
passed through the values at the previous three steps. All
lower order derivatives are then calculated from this. Because
of the large growth found to exist for some of the eigenfunctions
and the suppression scheme used, variations in the highest
order derivative (in particular, the fourth derivative) caused
significant changes in the final eigenvalues. The Runge-Kutta
method is not subject to this since each derivative is essentially
calculated separately at each step. 1In fact, the fourth derivative
at each step need not be calculated, so to save time and machine
storage this derivative was eliminated from the computer program.
The accuracy of the results were verified by running the
non-magnetic plane Poiseuille case and comparing the results
against Thomas (1958) and Reynolds and Potter (1967). Rather
than write a separate program for the single fourth order equa-
tion the present program was run for a Hartmann number of 10’3.

This was effectively zero and gave excellent results, which

agreed to three significant figures to the presently accepted
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values.

Several runs were made for various step sizes, with
0.01 chosen as the optimum. Doubling this value resulted in
eigenvalues that were in error by about four percent, while
halving this value resulted in a change in eigenvalues of only
0.4%. Based upon these results, a step size of 0.0l provided
accurate values without excessive computatioa time or machine
storage requirements. For this step size, the truncation error

10

associated with the Runge-Kutta scheme is of the order of 10 .

The scheme as illustrated by Collatz (1951) is outlined

below:
At Y Vog = V()
V].O = A ‘?'(Y)
a2 .,
Voo =72~ ¥

3
Syt

V3o ©
Uoo = ¢(Y)
Ujg =8 0"

Using equations (2.4.8) and (2.4.9)

2 v
- A_ .10
1= 27 £ Voor Yoo V)

2
2 ,
%— {lia R_(U-c) +K 1¢' - i« R hy - me'}
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Y Y

4 v
=& f—20 _10 10
G, = 57 £¢ 2 0Ty Voo 3 Yoo’ V)
4

2

= %Z {{i o R(U-c) + 2K° + MZ]W“ +2 i MH v

-[iaR KZ(U-c) +igRU"+K* +o2n? - i o Mzh']w

- i MZ(U-c)Q)' + [szzh(U-c) - i M?'(U'-h"/Rm)]@}

where A = AY = step size

values at Y + g—Y

1 1 1 1
Vo1 Voo Y2 V10 t4 Voo Y8 V30 T 16 C1
=V, +V. +3v. +1ig
Vi1 " V10 " V20 Y4 V30 T2 64
3 3
= +3 +3
Var T V20t 2930 Y326
V3p V3 26
1 1
Uo1 "VYs0o *2%0 %4 Fy
Ujp U0+t Hy
As before
2 v
4L 11
Fo = £, 5 Vopr Ugpr ¥
G, = s f(zzgl 1o R Y)
2 24 A2 A 7701 Ao 2 Tor
Values at Y + AY
Voz " Vo0 Y V1o t Vo t V30 6,
Vipg = Vip t2Vpo +3Vy 46,
= +
Vyy =V, +3 Vg, + 66,
Vay = Vao + 46,
= + +
Upa " Y0 V10 * Fy
Uy, =Upo + 2 F,
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Again as before

2 v
=b .12
Fy = 27 807 5 Voo Ugys YD

3 2 KR ’

12 v,

¢ 02° “a 02

and F = (F1 + 2 F2)

(F1 +4 F2 + F3)

(8 cl + 8 G, - G3)

U | \Hnl'_‘ W= W

(96, +12¢6, - Gy)

Q
]
N

((;1 + 2 G2)

2
G'"'= ~ (G1 +4G

3 + c3)

2

Thus the functions and their derivatives at Y + AY are

Vv (y + by) =V00 +V10 +V20+V30+G

V' o+ by) = %— My + 2V,  +3V, +6")

y
2
*"(y + Ay) = ) (V20 +3 V30 + G")
(by)
6 X
V' tay) =—— (,, + 6"
2
and p(y +4y) = UOO + U10 +F
' = 1 '
PO H ) = W+ Y

Now, if desired, y""(y + Ay) and ¢"(y + Ay) can be
calculated from the above.

Implementing the formulas in the sequence given, the
integration is started at one wall and proceeds across the

channel to the other wall where the combined functions are formed.



APPENDIX B

COMPUTER PROGRAM

B-1 Description of the Computer Program

The program initially reads the required values for
loop sizes, internal program counters, step size, convergence
criteria, the initial guesses for the eigenvalues, and also
sets boundary conditions at the wall.

Subroutine RUNGE is now called which in turn calls
Subroutine VCAl to calculate the value of the mean velocity
and induced magnetic field and their derivatives which are
kanown inputs to Runge. The equations are now integrated to
determine the value of the function and its derivatives at the
next step.

Returning to the main program, the number one solution
which is the growing solution is filtered from solutions two
and three. To further insure independency, solution number two
is filtered from number three.

The above procedure is repeated until the filtered solu-
tions are obtained across the entire channel.

At the next stage the filtered solutions are corrected
to account for the portion filtered out and then printed out if
this option has been selected. Next the growing solution is

modified to compress the magnitude range of the functions.
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The three independent solutions are now combined
linearly to find the total function and the derivatives at the
opposite wall. A test function based on *w is checked to see
if the boundary condition namely ww = 0, is satisfied. If not,
the eigenvalues are each incremented by a small amount and a
new guess is made for the eigenvalues. The process is repeated
until convergence is achieved or the iteration counter exceeds
its present value.

The program incorporates a printout monitor which allows
the selection of 3 levels of printout. The value of the monitor
is read in and can be assigned values from one to three. A
value of one provides express runs and gives the eigenvalues
and values of the test function at the end of each iteration;
two prints out the above plus the final combined eigenfunctions;
and a value of three prints out all the eigenfunctions. When
using the two or three option an additional parameter is read
in that specifies the number of increments between printout
points.

Explanation of the Input Cards for the Main Program

Card Program
Number Column Item Format Designation
1 1-10 Printout monitor 110 MON

11-20 No. of data cards 110 KP
21-30 Max. No. of iterations 110 1T
31-40 Steps between printout pts. 1 10 JJ
41-50 Step size F 10.5 DELY
2 1-10 Percent change in c. F 10.5 PAL
11-20 Percent change in R F 10.5 PCR
21-30 Maximum change in ¢ or R F 10.5 PCH

31-40 Convergence criteria E 10.5 TIP



Card Program
Number  Column Item Format Designation
3 1-10 Alpha F 10.5 AL
11-20 Reynolds number F 10.5 R
21-30 cr F 10.5 CR
31-40 <, F 10.5 CI
41-50 Beta F 10.5 BE
51-60 Hartmann No. F 10.5 HM
61-70 Magnetic Prandtl No. E 10.3 PM

Any number of data cards as shown by card number 3 above

may be added.

B-2 Listing of the Computer Program

The program developed to compute the eigenvalues for
any given case is listed in the next section. Actually two
versions of this program were used to obtain the data points
used in plotting the curves presented. They differed only in
regard to which of the eigenvalues was held fixed while iterat-
ing on the other two. The program listed here is called MHDA
which holds o constant and iterates on . and R. This
program was used on the lower leg of the stability curve up to
and slightly beyond the critical point. Since the upper leg
of the curve is relatively flat the second version was used which
fixed c. and iterated on o and R. This procedure minimized
the number of "bad guesses'" which result in no convergence and
also to conserve computer time by more evenly distributing the

points along the curve.
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The programs were run on the CDC 6500 and took a little
over 4 seconds per pass (one third of an iteration) with con-
vergence obtained in normally three to four itérationms.

In the program that follows, the dollar sign statement
separator and multiple replacement statements are used to reduce

the size of the source deck.
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PROGRAM MHDA( INPUT,OUTPUT , TAPEZ2=INPUT,TAPE3=0UTPUT)

THIS PROGRAM JTERATFS ON CR AND RFY NO WITH ALPHA CUNSTANT
DIMENSTUN RR(20193),2(201)90(3),G(3),RS(3)yA13,3),B(3,3),N(3),
IX(3) 4 TU3)WyIESTUI)

COMMUN P(20143),DP(201,3),D2P(20143),D3P1201,3),V(201,43),NV(201,3)
19C14C24,C3,C4,U0(3) AL REZCWIRGyDELY yC oK XM

COMPLEX PoDPsD2P4D3P 4 VoDV, UL ylI2 U0, RRyRS,AyByB1,B2,B3,T4Q,X,
IWeDT1,NT2,CWeALgAZ24yA3,A4,A5,A6,AT4yARB,C1,(2,C3,C&

RE-AL K-

REAND IN PRNGRAM PARAMETERS AND [INITIAL GUESSES
READ(24400) MONJKPy 1T ¢dJdyDFLY
READ(24y401) PALJPCRWPCH,TIP
N=2,0001/DFLY+]1 & NM=N-]1 & KK=0 & C=DELY

100 KK=KK+1 & [P=MD=KL=0 $& [TF=1
[FIKK=<KP) 60N,600,250

00 CONTINUE
KEAT(2,602) ALJRCWyBE,HM,PM
CF=REAL(CW) 8 CI=AIMAG(CW) $ XMz=HMHM
WRITF(2,819) HM,PM,CI4RE,DFELY

191 MD=M[+]
IF(IP-0) 598,598,599

598 WRITF(3,H801: ITF

569 [FIMD=]T) (02,602,601

601 WRITEF(2,803) ¢ GO TN 100

602 WKITF(34H02) RyAL,HCR
K=A)LZAL+BF=HF § Y==1,0 & Z2())==1,0 & RM=PM:xK
CW=CR

00 INDARY CONDITJONS ===~ P=DP=V=0 AT Y=+-]

V=PH[=MAGNFTIC PFRTIRBATIONS, P=PSI=VFLUCITY PERTUKHATIUNS

SET STARTING COMDIT HONS
PUlel)=P U1y 2)=P(143)=0P(1431)=DP(1,2)=DP(1,43)=(0.0,40.0)
VIE1431)=2V1,42)=VI1420=2(0,0,0,0)

DVITg 1) (1at=13041et=13N0) & NDVI1,2)=0V(],43)=(0.0,0.0)
ND7P (1 42)=20160916e0) & D2P(141)=12P(1,42)=(0,0,0,0)
BAP(1432)=(1e0D91.0) S 13P(1y 1) =L2P({93)=(0,0,40.0)
Cl=(0Ne)eN) & C2=CYI®ALXRM & (C3=C12A1 "R ¢ (Co=C1FALXXM
NS 3200 J=1yNM & LL=

GFMNERATF 3 SOLUTIONS AT FACH STFP
CALL RIINGHILL Y yHMyRM)

L=J+1 b ZtL)=2(M)+DELY

FXTRACT THE GROWING SOHUTION (NOGY) FROM SULNS ¢ AND 4
VU=ABSIKEALIUO(Y)))

IFIMI-1,F12%) 178,179,179
176 GOEIY=U0(1)*{1e%=-100)
179 N0 299 [=2,14
TF(UL=]1,E125) 171,172,172
171 ?RiLy)=000C1)/0U0(])
GO 70 173
172 RR(Ly1)=(UO(T)/0U0(1))%=(1.F=-100)
173 PlLel)d= PlLyI)=RP (LI PlLyl)
LP{LyI)= NDPULyI)I=RR(LyI)= DP(L,1)
DZ2P (L1 )=D2P(LyI)=RR(L,y1)=D2P(Ly1)
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D3PILyI)=D3P(Ly1)=RR(L,I)%D3P(L,y1)
VILyI)=s V(LyI)=RRIL,1)* V(L,yl)
DV(LyI)= DVILeI)=RR(LyI)* DV(L,1)
CONTINUE
EXTRACT SOLUTION 2 FROM 3
RR(Ls1)=U0(3)/U0(2)
PlLe3)=P(Ly3)=RRI(Ly1)I*P(Ly2) & DP(Ly3)=DP(Ly3)-RR(Ly1)*DP(L,2)
D2P(L93)=D2P(Ly3)=RR(L,1)%D2P(L,2)
D3P(Ly3)=D3P(Ly3)-RR(Ly1)*D3P(L,y2)
VILs3)=VILy3)=RR(Ly1)*VILy2) $ DVILy3)=DVILy3)=-RRIL,1)%DV(L,2)
CONTINUE :
REPAIR THF EXTRACTIONS
IF(MON-1) 508,508,632
J=N $ NN=N=-2 $ RS(2)=RRI(Jy2) 8 RS(3)=RR(J,3)
DO 303 MM=1,NN $ JU=J-1 8 DO 303 1=2,3
PlIeyI)=PEUy1)=RS(1)2P(Js]1) 8 D3P(JyIV=D3P(Jy1)=-RS(I)*D3P(J,1])
DP(Je1)=DP(Jy 1) =RSIIIZDP(Jp1l) 8 D2P(JyI)=D2P(Js1)=RS(1)2D2P(J,1)
VIJy )=V I)=RSETDIEV(Jp1) 8 DVEI eI )=DV(JIy1)=RS(I)2DV(J,y1)
RSUIDI=RSEII+RE(J,y 1)
J=N 8 RS(1)=RR(Jy1) 8§ [=3
DY 431 MM=]1,NN § JU=J-1
PlIs1)=P(JsI)-RSEL1IZP(Jy2) & D3P(Jy]1)=D3P(Je})=RS(1)%D3P(J,2)
DPLIy1)=DP(Jy1)=RS(EL1)IZNP(Jy2) $ D2P(Js1)2D2P(Jy]1)=RS(1)202P(J,2)
VIJy )=V 1)=RSEL1IXV(Us2) 8 CVIJ I )=DVIJeI1)=RS(1)2DV(J,2)
RS(1)=RS(1)+RR I,y 1)
PRINT OUT THE INDEPFNDENT EIGENFUNCTIONS [1F DESIRED
GO TN (508,508,507 ) yMON
WPITF(3,807) 8 DO 319 1=1,3 $ WRITE(3,805) 1 8 DO 311 J=1,N,JJ
WRITE(3,806) Z(J)yP (Il )eDP(Js])4N2P(I,1),D3P(Uy1)
WRITF(32,816) & DO 344 J=1,NyJJ
WRITF(3,806) 2(J)eVIJel)eDVII,1)
CONTINUE
CONTINUE & NC=N/2+1 $ J=N
MODIFY THE GROWING SOLUTION
IF(HU=1,E125) 175,174,174
AB=P(N,1)*(1.F=100) $ AS=P(N,?2)/AB%(1.F=-100) & GU TO 176
AS=P(Ny2)/P(Ny1l)
DO 207 K= 1,NM
PlJlel)dz P(Jy2)=AS% PlUyl) & DP(JIy1)= DP(Jy2)=AS% NDP(J, 1)
D2P{Jy 1)=D2P(Js?2)-AS=D2P(Jy1) 8 D3P (Jy1)=03P(J,2)=A5203P(J, 1)
VIJel)=VIJy2)-A52V(Jyl) & DVEJy1)=0V(Jy2)=-A52V(J, 1)
J=J-1
GO TN (506,506,505) yMON
WRITE(3,804) 8 I=]1 & WRITE(3,805) 1 ¢ DO 310 J=1,N,JJ
WRITE(3,806) Z2(J)ePlJel)eDP(Jg])yD2P(Jy1),0D3P(Jy1)
WRITE(3,816) $ DO 345 J=1,NyJJ
WRITE(3,806) Z(J)eVIJyI)yDV(J,l)
CONTINUF
DFTERMINE THE TOTAL SOLUTION AT OPPOSITE WwALL
Allye1)=VINgl) 8 A(1,2)=VINy2) & A(),43)=VI(N,3)
A(251)= DPINyl) 8 A(242)= DP(Ny2) 8 A(2,3)= DPIN,3)
A(3,1)=D2P(Ny1) 8 A(3,2)=D2P(Ny2) $ A(3,3)=D2P(N,3)
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A1=P(N,1) $ B2=P(Ny2) § B3=P(N,3)

C CALCULATE THE COFFFICIENTS NEEDED TO COMBINE THE FUNCTIONS
Cl=2A(3,1)%(Al142)5A02,3)-A(2,2)%A(1,3))~-A(3,2)8(A(1,1)%A(2,3)
1-A02,1)2A( 1931 )=A03,3)%(AL1,2)%A(2,1)-A(1,1)%A(242))
IF(UI=-1.E125) 6919692,692

692 C1=C1%(1.F-100)

691 X(1)==(A(2,2)%A(1,3)=A(1,2)%A(2,3))/C1
X(2)==(Al1,)1)1%A(2,3)-A12,1)%A(1,3))/C1
X(2)==(A(1,2)%A(2,1)-A(1,1)%A(2,2))/Cl
IF(LUU=1.E125) 693,694,694

696 X(1)=X(1)2(1,E-100) $ X(2)=X(2)%{1.E-100) & X{(3)=x(3)*(1.E-100)

C CHECK TOTAL SOLUTIONS AT THE WALL

693 WEI)=X(1)8A(1,1)4X{2)%A(1,2)+X{3)%A(],3)
W(2)=X11)%A12,1)4X(2)%A(2,2)+X(3)%A(2,3)
W(3)=X(1)%A(3,1)4X(2)%A(2,2)+X(2)*A(3,3)-(1.0,0.0)
WRT=0.0 $ DO 305 I=1,3

305 WRT=WRT+ABS(REAL(W(I)))I+ABSIAIMAG(WIT)))
WRITE(3,811) WRY
IF(WRT=1,F=-10) 610,610,609

609 WRITE(3,80R) W(1),W(2),W(3) & WRITE(3,813) &8 GO TO 509

610 1P=1P+1

C COMPUTE TFST FUNCTION
TCIP)=X(1)*B1+X(2)¢HB2+4X(3)*R3
TEST(IP)=REAL(TIIPIZCONJIGITIIPY))

IFITESTIIP)=TIP) 61146114612

612 IF(KL-1) 614,613,613

613 WRITF(3,812) T(IP),TEST(IP)

614 WRITF(3,816) $ KL=0

C ITERATION OF EIGENVALUES

525 GO TO (502,503,504),1P

502 DCR=PAL*CR % CR=CR+NDCR $ GO TO 101}

503 CR=CR-NCR $ RP=PCR*R $ R=R+RD & GO TN 101

504 NDT1=(TE2)=-T(1))/DCR $ R=R=-RD
NT2=(T13)=T(1))/RD
DEN=ATMAG{(CONJG(DTL) )=NT2)

DCR=AIMAG(T(1)2CONJIGINT2))/DEN
RD=ATMAG(ICHNJGITIL)))I=NTL)/DFN

IFLABS(DCR) ¢GELIPCH®CR)) DCR=PCHxCR%(CR/ABS(DCR)
IF(ARSIRD)-(PLHER)) 614,616,615

615 RD=PUH=RERI JARS(RD)

616 R=R+RD & CR=CR+DCR $ 1P=0 8 ITE=ITF+1 % KL=1 & GU TO 101

611 ARITE(23,815) § WRITH(3,8)2) TUIP),THST(]IP)

« PRINT OUT THF FIMAL COMRINED FUNCTIONS I+ DESIRED

“N9 JF(MON=Z) 100,511,%11

S11 WRITE(3,809) $ WRITE(3,810) 8 DO 31% J=1,N,JJ
AL=X(1)2P(Jy 1) +X(2)2P(Jy32)+X(3)%P (J,3)
A2=X(1)RP( Iy 1) 4X(2)EDP(Jy2) +X(3)%DP(J,y3)
Ad=X(1)1202P(Jy 1) +X(2)12N2P1J,2)+X(3)=N2P(Jy3)

AG=X(1)%N3P (Jy1)+X(2)%N3P(Jy2) +X(3)%N3P(J,3)

315 WRITE(3,820) Z(J)sAl,A2,A3,A4
WRITE(3,821) $ DO 316 J=1yNyJJ
AG=X(1)®VIJp 1) #XI2)3V(J,2)+X(3)8V(J,3)
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AT=X(1)%DV(Jpl)+X(2)%DVIJ,2)+X(3)%0V(J,3)

316 WRITE(3,820) Z2(J)4Ab,AT

510 CONTINUE $ GO TO 100

400 FORMAT(4110, F10.5)

401 FORMAT(3F10.59E10.5)

“02 FORMAT(6F10.59 E10.3)

801 FORMAT(14HOITERATION ND.,12)

802 FORMAT(15HOREYNOLDS NOo =9F20,13910X,THALPHA =,FB.4,410X,
14HCR =3F20.14) .

803 FORMAT{Z0HOEXCESSIVE TTERATION)

804 FORMAT(?27THOCORRECTED GROWING SOLUTION}

80> FORMAT (14HOSOLUTION N0, 41297 91HOp3Xo1HY g 1OXg6HP(Jy]1) 918X 7THDP(J,
11)e16XoBHN2P(Je 1) 916X BHD3P(Jy1)916Xs8HDGP(Jp1))

BO6 FORMATULIH ¢F5.245(E13.3,E12.3))

807 FORMAT(24HOREPAIRED EIGENFUNCTIONS)

808 FORMAT(1IHO y3HVW=yE15:.5¢E15.59/ ¢y THODPSIW=yE15,54E15.5,/,
18HON2PSIW=9E15.59E15,5)

B0O9 FORMAT(25H1FINAL COMBINED FUNCTIONS)

810 FORMAT(SXgLlHY 912X e 4HP(J) 919X o5HDP(J) 918Xy 6HD2P(J)18X46HD3P(J),
1 18X ,6HD4P(J))

311 FORMAT(27HOCUMULATIVE ERROR AT WALL =,E15.5)

Al12 FORMAT(1HO,11HP AT WALL =42E15.5,10X915HTEST FUNCTION =,E15.%)

RB13 FORMAT(30HOFUNCTIONS DO NOT SATISFY R.C.)

814 FORMAT(//)

815 FORMAT(27HOCONVERGENCE TEST SATISFIED)

816 FORMATI1IHO 33Xy 1HY g 10X 6HVIJ 9 1) 918X o THDV(J 9] )9 16X48HD2VIJy1))

819 FORMAT(26H]I THE FOLLOWING CASF [S FOR,/.16H HARTMANN NO.=,F7,.3,
15Xy 18HMAGNFTIC PRANNTL =9F12.3¢5Xg4HAT =,F6,395Xy6HBETA 3,F6,3,
2 /912H STEP SIZE =yF6.34///)

820 FORMATILIXyF5,295(E12.3,E12.3))

H21 FORMAT(1HO 4X o 1HY 312X ¢&HVIJ) 919X ,5HDV(J), 18X y6HD2V(J))

250 CONTINUE
END

SUBROUTINE RUNGE (JyYyHM,RM)
THIS SURROUTIMF 1JSES A FOURTH ORDER RUNGE=KUTTA SCHEME
DIMENSION GI(2)
COMMON P(20143),0P(201432),02P(20143),03P(20143),V(201,3),NV(201,3)
19C14C2yC3,CayUN(3) yAL BE,CWyRJDELY 4C oK oXM
COMPLEX VOO,V104V20,V30,100,U10,FK14GK19yVO1l,V11yV2]1,V31,U01,U11,
1 FK2,GK2,V02,V]124V22,V32,U02,U12,FK3,GK34FK 6K ¢FKP4GKP 4GK2P,(K3P,
2 PyliPy 2Py N3Py VyDVyULl4U24U0sCHyClyC24C3,Co9AlsA2,A3,A4,Ah,AT, A9
REAL X
CALCULATE THE REQUIRED VELOCITY AND MAGNETIC QUANTITIFS
CALL VCAL (Yo HM4RM Wy WP WPP,T,TP,TPP)
Y=Y+DFLY/2.0
CALL VCAL (Y HMyRM32,2P42PPyS4SP,SPP)
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Y=Y+DELY/2.0
CALL VCAL (YoHMeRMyUyUPUPP yHyHP 4HPP)
DO 301 1=1,3

FUNCTIONS AT Y
vVoO=P{JsI) 8 V10O=C2DP(J,1) $ V20=CeC*D2P(J,1)/2.
V30=C2C*C*D3P(Jy1)/6. $ VOO=VI(Jyl) $ UL0=CoOVIJ,I)
FK1=((C2®(W=-CW)+K)*UOO-C2*T*V0O-RM*V10/C)*C*C/2.0
GK1=((C33(W=CW)+2,8K+XM)%2,8V20/(CeC)+C4*T*2,2V]10/C-(CI*Ke(W-CW)

L4C3*WPP+KEKIALRALXTATEXM=C4*TP ) SVOO-Ca*(W~-CW)*ULO/CH{ALSALSXM=T
2% (H=-CW)-CL*(WP-TPP/RM) ) *U00 ) *C*%4/24,

FUNCTIONS AT Y+DELY/2,.
V01=V00+0.5%V10+0.25%V20+0.125%V30+0.0625*GK1
Vi1=V104V2040,75#V30+0.5%GK1 $ V21=V20+1.5%V30+1,.5%GK1
V31=V3042,0%GK1 $ U01=U0040.5*U10+0.25%FK1 $ Ul1l=Ul10+FK1
FK2=((C2*(2-CW)+K)*01-C2+S*VO1-RM*V]11/C)*C*C/2,0
GK2=((C38(I~CW)+2,2K+XM)*2,%2V2]1/(C*C)+Co*S*2,%V]11/C-(C3*K*(Z~CW)

14C3%2PP4+KEK+ALRALSSHSEXM-C43SP)SVOL-Co*(2-CH)*ULL/CH+(AL*ALXXM*S
2*(2-CW)=Can(Z2P-SPP/RM) )*U01)*C*%x4/24,

FUNGTIONS AT Y+DELY
V02=V00+V10+4V204V30+4GK2 $ V12=V10+2.,0*V20+3,.0*V30+4,0*GK2
V22=V2043.0%V30+6.0%GK2 $ V32=V30+4,0%GK2
U02=U00+U10+FK2 $ U12=0110+42,0%FK2
FK3=((C2%(U-CW)+K)*U02-C2*H*V02~-RM*V]12/C)*C*C/2.0
GK3=({C3%(U~CW)+2.2K+XM) %22,%V22/(C*C)+C4L=H*2,8V]12/C-(C3#K%*(U-CW)

1+C3=UPP+KEK+ALSALRHEHEXM-C4*HP ) *V02-C4* (U~CW)*UL2/C+(AL*AL*XM=H
24 (U-CW)-C42(UP-HPP/RM) ) *J02 ) *C*%4 /24,

FK=(FK1+2.0%FK2) /3,0 $ FKP=(FK1+44,0*FK24+FK3)/3.0
GK='B.*GK1+48,%GK2-GK3) /15, $ GKP=(9.%GK1+12.%GK2-GK3)/5,
CK2P=22,%GK1+4.*GK2 $ GK3P={GK144,%GK2+GK3)%2,/3, § L=J+1]

VALUES OF FUNCTION AND ITS DFRIVATIVES AT YeC
P{Ly1)=VO0+V10+V204V30+4GK $ DP{Ls1)2(V1042,%V20+3,%V30+GKP)/C
D2P(Ly1)=2(V20+43,%V304GK2P)22,/(C*C)ISN3P(L,y] )= (V30+GK3P)*6,/(CxC2C)
VIiLy1)=UOO+UL0+FK & DV(L,1)=(UL0+FKP)/C

CALCULATE SOLUTION TO INVISID EQON TO RE USED FOR FILTERING
UOCTD)=((U=CWIR(D2P(J+19]1)-K*P(J+1,1))-UPP%P(J+]1,1))*AL®C1=R

DFTERMINE GROWING SCLUTION
IF(J=~1) 604,603,604

603 IF(1-3) 604,599,604
599 CONTINUE
DO 302 M=1,3
AA=REAL(DP(L M)®(CONJG(DPILyM))))
BB=REAL(P(LyM)IS®(CONJIG(P(LyM))))
302 G(M)=SQORT(AA/BB)
Gl=AMAX1(G(1)9G(2),G(3))
IF(G1.EQ.G(1)) GO TO 604 8 IF(GL1-G(2)) 606,605,606
605 M=z $ GO TO 607
606 M=3
607 NO 608 N=J,yL
Al=P(NyM) $ P(NyM)=P(Nys1) $ P(N,1)=Al
A2=DP(NyM) & DPINyM)=DP(Ny1l) $ DPI(N,1)=A2
A3=D2P(NyM) $ D2P(NyM)=D2P(Ny1) $ D2P(Ny1)=A3
A4=D3P(Ny,M) 8 D3P(NyM)=D3P(N,1) § D3P(N,1)=A4
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A6=V(NyM) $ V(NyM)=V(N,1) $ VIN,1)=A6
A7=DV(NyM) $ DVIN,M)=DVINy1) S DV(Ny1)=AT7
IF(N-J) 400,400,608

A9=U0(M) $ UO(MI=UO(1) $ UO(L)=A9
CONTINUE :

CONTINUE

CONT INUE

RETURN

END

SUBROUTINE VCAL (Y,HMRM, UyUPUPP H,HP ,HPP)
THIS. SURROUTINE CALCULATES THE VELOCITY AND INDUCED
MAGNETIC FIELD QUANTITIES AND THEIR DERIVATIVES AT
THE REQUIRED Y STATIONS
COSH(X)=(EXP(X)+EXP(-X))/2.0
SINHIX)=(EXP(X)-EXP(=-X))/2.0
C=COSH(HM) $ S=SINH{HM)
IFLY) 32,31,31
Y==Y $ CY=COSH(HM=Y) 8§ SY=-SINH(HM2Y) § Y=-Y § GO TO 30
CY=COSH(HM*Y) $ SY=SINH(HM=Y)
CONTINUE
DsHM2C-S § U=HM2(C-CY)/D $ UP=-HM®HM%SY/D $ UPP=—-HM2#3xCY /D)
H=RM/HMR(SY-Y%*S) /(C=-1s) ¢ HP=RM/HME(HMRCY=S)/{(C~-1,.)
HPP =RM=(HMESY) /(C~1,)

RE TURN
ENO
DATA CARDS
1 1 13 10 0,01
01 0.01 0.2 1.E~12
«15 190000. o178 0.0 0.0 6.0 l.€-2






