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ABSTRACT

RESONANCE LINE FORMATION

IN EXPANDING DECELERATING ATMOSPHERES

BY

Felix Marti

We study the formation of resonance lines in a stellar

atmosphere that is expanding but decelerating, or infalling

and accelerating as it falls in. Spherical geometry is

taken into account, and we assume the supersonic approxima-

tion with complete redistribution over the line profile in

the fluid frame. Various layers in the atmosphere become

radiatively coupled or interconnected, because of Doppler

shifts and effects of the projection of the velocity on the

ray direction. The line profiles show sharper and sharper

peaks as the outer cutoff radius is increased, or the velo-

city law is steepened. It is possible to obtain profiles

with as sharp a drop-off at the blue of the peak as is seen

in the QSO PHL 5200. Some profiles with emission in the

envelope are qualitatively like those found by Walker for

young stars with infalling matter. The profiles disagree

with recent observations by Hutchings for one sample of

P Cygni stars, showing that the decelerating model does not

apply to this sample. The approximate method of Kuan and
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Kuhi, which neglects the coupling between layers, turns out

to be generally acceptable for finding the source function,

as they proposed, but would lead to qualitatively wrong re—

sults if applied to find the radiative acceleration. We

find that their suggested criterion for validity of the ap-

proximation is questionable, and we give better criteria.

We construct "pictures" of what the star would look

like in two dimensions, in anticipation of interferometry

or occultation work, but find that the appearance is annoy-

ingly similar in different wavelength bands.
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CHAPTER I

INTRODUCTION

Previous Work
 

There has been a permanent interest among astronomers

on the problem of spectral line formation in expanding or

contracting media. We have numerous examples of objects

that are apparently expelling material in a steady way or

in bursts: Wolf-Rayet, P Cygni, Be, Of stars, Novae,

Seyfert galaxies, and possibly some QSOS.

The presence of a P Cygni type profile (emission peaked

at the central frequency of the line and a violet displaced

absorption feature) in the spectrum of a star is inter-

preted as an indication of the existence of material around

the star that is moving away from it. Due to the Doppler

shift this material will see radiation emitted at the cen-

tral frequency of the line in the observer's (laboratory)

frame displaced toward the red and will absorb more of the

radiation in the violet wing of the central peak, producing

the absorption dip observed in the high frequency side of

the line.

Milne (1926) was the first one to point out the possi-

bility of ejection of particles by hot stars due to unbal-

anced radiation pressure. He assumed that initially the



atom is in equilibrium with the radiation in the deep part

of the absorption line, then an accidental motion outward

makes the atom absorb in the violet wing where the intensity

is larger, thus accelerating it further.

After Beals (1929,1930,1934) established the model of

an expanding extended atmosphere to explain the spectra of

Wolf-Rayet stars, Gerasimovic (1933), Chandrasekhar (1934,

1945), and McCrea and Mitra (1936), made the first attempts

to develop a theory that could explain quantitatively the

observed profiles. We must notice that both Gerasimovic and

Chandrasekhar considered the case of a decelerating atmo-

sphere as well as the accelerating one. Gerasimovic found a

velocity law of the form r-£ for the expansion of the hydro-

gen shell in Nova Aquilae four days after the maximum. Both

authors assumed complete transparency and that the emission

per unit volume was known, neglecting then the transfer

problem.

The next step toward the solution came when Sobolev

(1958,1960) developed a simple theory applicable in cases

where the macroscopic velocity of the material in the atmo-

sphere is much larger than the mean thermal speed. Rublev

(1961,1963) applied this formulation to the interpretation

of the spectra of Wolf-Rayet stars and also studied the case

of decelerating flows (Rublev 1964). He computed the line

profiles assuming that the emission and absorption compo-

nents of the bright lines are formed in the same spherical

layer of the envelope, and that the corresponding
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coefficients vanished everywhere else.

Kuhi (1964) applied Chandrasekhar's method to T-Tauri

stars considering that after leaving the stellar surface,

the atoms were subjected only to the force of gravity, de-

celerating the flow after the initial thrust. The coeffi-

cient of emission was assumed known.

Castor (1970) gave the first solution that allowed one

to determine the emission coefficient in a self-consistent

way, in the case of an accelerating atmosphere. Castor and

Van Blerkom (1970) applied it to the He II lines in Wolf-

Rayet stars, and Castor and Nussbaumer (1972) to C III in

the same type of stars. Oegerle and Van Blerkom (1976a,b)

have studied the neutral Helium lines in Wolf-Rayet and

P Cygni envelopes using the same formalism.

Our Approach
 

As we see, most of the recent work done using Sobolev

and Castor's escape probability method is restricted to ac-

celerating flows, probably because these flows are by far

the most common and the most relevant to understanding stel-

lar winds and mass loss from stars. Nevertheless, there re-

mains considerable interest in studying other possibilities,

such as outflows that decelerate, inflows that speed up un-

der the influence of gravity as they near the star or cen-

tral object, and more complicated velocity fields. In the

flows just mentioned, and more complex ones, such as ro-

tating flows or those with shocks, there will generally be

fairly distant parts of the flow that are in touch with each
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other rather closely through the radiation field, since the

relevant radiation travels freely through the intervening

material. The reasons for this are shown in some detail in

Chapter II, but rest simply on the fact that Doppler shifts

can cause distant parts of the gas to contribute opacity at

the same laboratory frame frequency, while in simpler mono-

tonically accelerating flows, the radiation at one labora-

tory frequency can interact with the gas only in one small

connected region. The coupling of distant regions has been

emphasized by Hummer (1976).

There are at least three reasons for our interest in

such flows: the decelerating flow has been claimed by Kuan

and Kuhi (1975) to explain the hydrogen profiles in P Cygni

stars better than the standard accelerating flows; there is

evidence for infall of matter in such objects as 61 Ori C

(Conti 1972) and several stars described by Walker (1968,

1972); and finally, systems such as we study here are of in-

termediate complexity between the accelerating outflow and

the cases with rotation or shocks; hence we may gain expe-

rience useful in the harder cases.

Kuan and Kuhi (1975) coupled a multi-level populations

calculation with the escape probability method of Sobolev

and Castor to find the source function S(r). In common with

Kuan and Kuhi, we adopt the supersonic approximation. In

this approximation, assuming complete redistribution over

the line profile, one finds (Castor 1970) that the source

function is frequency independent, and can be related in a
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simple way to the incident stellar continuum IC and the

quantity 3 defined as the mean intensity Jx’ integrated

over the fluid-frame line profile ¢(x)

_ _ m _.l_

J — L)Jx ¢(x)dx, JX — 4n I dew , (I-l)

where x is the frequency in the fluid frame. (In multi-

level problems, 3 and S will have subscripts, usually sup-

pressed here.) An analysis of populations, or a simplify-

ing assumption such as that of the two-level atom (adopted

here), leads to relationships among the various Jij’ S. ,

11

and the continua, but the transfer equation itself must be

applied to close the system of equations, because the local

excitation depends on transfer to and from the region under

study. For an accelerating expanding atmosphere, Castor

(1970) showed that this closure is obtained locally (zone

by zone, i.e. at each radius r in the atmosphere separate—

ly) by the equation

3 = (1 - E)s + BCIC , (1-2)

where 8 is the escape probability and BC the escape proba-

bility in the cone of solid angle occupied by the stellar

photosphere (see Castor (1970) and Chapter 11 below).

Equation (I-Z) shows that the integrated mean intensi-

ty at a point is a weighted combination of the local source

function and a contribution from the photospheric continuum;

i.e. it contains light emitted locally and incident light.

Clearly, when Doppler shifts allow light from one part of

the atmosphere to interact again in another, additional
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terms coupling the layers must be present. In Chapter II,

we show explicitly how a coupled set of linear equations,

relating S(r) in the various layers of different r, re-

placed (I-Z) for a decelerated atmosphere. In a later paper,

Kuan (1975) alluded to this interconnection, but stated that

it was a "justifiable approximation" to ignore it "if the

radiation field in the envelope is weak in comparison with

the photospheric intensity, which is usually the case". We

point out here that this statement is valid insofar as one

has radiation from one part of the envelope adding to the

excitation in other parts; however, one also has parts of

the extended atmosphere masking other parts from the central

continuum.

Our primary thrust is to study the influence of the in-

terlayer radiative coupling, and so verify in what cases the

approximation of Kuan and Kuhi (hereinafter called the "dis-

connected approximation") applies. Furthermore, we evaluate

the radiation force on the material, and comment on the ap-

plicability of decelerating atmospheres to real stars. In

order to test the effect of the "disconnected approximation"

we have arranged our analysis to turn the interlayer radia-

tive coupling on and off at will.

One naturally asks how valid the assumption of the two

level atom is for real stars. We note that in the cases

considered by Kuan and Kuhi as strong candidates for de-

celerating flow, the Balmer lines have large emission, with

small absorption features. Under their assumptions such net
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emission must come from the expanding envelope. No matter

what the excitation process, then for Balmer lines the ra-

diation field due to the envelope is a fortiori strong com-

pared with the photospheric continuum; furthermore, if the

excitation is partly Lyman flouresence, as is likely, the

interlayer coupling for Lyman radiation is also strong, and

could importantly affect the Balmer profiles.

The specific cases we study are the velocity laws

v(r) = +v (r M)" (1-3)
‘ o c ’

where rC is the radius of the opaque core (photosphere), v0

the largest velocity in the atmosphere, and the two choices

R = l and t = i were considered. The case 1 = i and v nega-

tive, corresponds to free fall from rest at infinity. Note

that all our computations were done with expanding atmo-

spheres, and if we want to apply them to contracting ones

(minus sign in equation I-3) we just have to change the sign

in the abscissa in our profile graphs, where the red side

will now be the blue and vice versa.

In all cases, mass conservation

2 _
Nir v(r) — const., (1-4)

was assumed, where Ni is the number density. (This fails to

allow for changes in the state of ionization, since Ni ac-

tually will represent a specific ion.)

According to equations (1-3) and (I-4) the material

does not thin out as fast with increasing radius as in an

accelerating flow. For computational reasons, a cutoff is
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introduced at some radius rm. This cutoff, which seems ar-

tificial, has considerable influence on the resonance line

profiles, in contrast to Kuan and Kuhi's case of subordinate

lines. Typical times to traverse an atmosphere of radius

1013 cm at a thousand km/s are of the order of a day.

Therefore, the true radius is much larger than what is used,

and we must regard the cutoff as due to a change in state of

ionization. If the velocities accelerated again past rm

this could help thin out the material and so reduce the in-

fluence of the cutoff.

In summary, we will be studying the formation of reso-

nance lines in expanding or contracting atmospheres with

velocity fields given by equation (I—3). We assume the

photospheric core where the continuum (with no limb darken—

ing) is formed to have radius re, and the expanding envelope

extends from rC up to rm. We will use the two level atom

approximation of the source function. The absorption pro-

file is taken to be extremely sharp (the macroscopic velo-

cities are much larger than the thermal velocities). We

tried to express our results in such a way that allows us to

use them with different sets of parameters that satisfy cer-

tain scaling laws. The atomic data we use correspond to the

C IV A1550 resonance line.



CHAPTER II

SOLUTION OF THE EQUATION OF TRANSFER

Fluid Frame Picture
 

In this work we will assume that the thermal width of

the line is negligible and take it as practically zero.

This assumption allows us to study the formidable problem

of transfer of radiation in a simple formulation similar to

Sobolev and Castor's.

Several papers have been published on the problem of an

accelerating atmosphere using a more accurate formulation

than ours, without making the assumption of zero thermal

width. In such a case it is convenient to solve the equa-

tion of transfer in the frame co-moving with the fluid as

was indicated already by McCrea and Mitra (1936). Consider

for example (Hummer 1976) the integrated mean intensity

J = 4? [madx LJ-dw ¢(x - u-n)IX(n), (II-l)

where x is a dimensionless frequency referred to the line

center (see formula A-17), u is the fluid velocity in units

of the thermal velocity (formula A-20), and 6-3 = ulul.

Even if ¢(y) is different from zero in a small region about

y = 0, in the observer's frame we have to consider a large

region in the (x,u) plane that will contribute to the inte-

gral for large u. The size of the mesh of points required

9
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to solve the equation of transfer is therefore much larger

in the observer's frame than in the co-moving frame.

The differential equation in the co-moving frame (see

equation A-30) is significantly more complicated than the

corresponding one in the observer's frame (in the stationary

frame, the frequency derivative, BIX,/ax', is absent). An

additional difficulty appears when we try to find the inten-

sity emitted by the envelope at a fixed observer's frequency,
 

because the solution was obtained in principle with the co-

moving frequency as a variable.

Noerdlinger and Rybicki (1974) gave the first stable

scheme for the numerical solution in the co-moving frame for

the case of a plane parallel atmosphere, that was developed

later to the spherically symmetric case by Mihalas, Kunasz,

and Hummer (1975,1976a,1976b).

Consider an observer carried outward in a spherically

symmetric velocity field v(r). He observes his neighbors

located a distance ds away in the radial direction to have

velocity relative to him dg = (dv/dr)ds, while neighbors at

the same distance from the center are departing at a rate

dn = (v/r)ds. If dv/dr > 0, then dg and dn have the same

Sign, and the fluid expands in all directions. If not, the

fluid is compressed in one dimension and it expands in the

other; for some intermediate directions neighboring parti-

cles maintain constant separation to first order. These two

possibilities lead to vast differences in radiative transfer.

In the former case, a light quantum repeatedly absorbed and
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emitted in a region will constantly encounter fluid moving

away from it; hence it must eventually escape in the red

wing of the line in the fluid frame (if it does not escape

due to density gradients, or become buried back in the cen-

tral source). (If dg and dn are both negative, replace

"away" by "toward" and "red" by "blue" in the foregoing.)

Figure 1 shows the loci of points that have zero velo-

city of approach with respect to the moving points A, B, C.

The velocity law is given by equation (I-3) with l = 1.

Consider a set of observers that are moving with the fluid,

like the ones sitting on points A, B, and C. If they can

detect light only through a narrow band filter centered at

the line frequency v they will see light from that transi-0’

tion coming only from points in the atmosphere that have

zero relative velocity in the direction that joins them with

the emitting points. Figure 1 shows the surfaces a, b, c,

of zero relative velocity in the connecting direction with

respect to observers A, B, and C respectively. The velocity

law is given by equation (1-3) with L = 1.

In the case of an accelerated atmOSphere the picture is

completely different. The observers will see light coming

only from a small region around them, they will not be

"connected" to the rest of the atmosphere, and the excita-

tion at each point can be found locally (it will also depend

on the continuum intensity Ic)'

Our next step will be to find an integral equation for

the source function, but before, assuming S(r) as known we



12

Figure l. a, b, and c, are the surfaces able to interact

with the atoms at A, B, and C respectively. The velocity

law is v = v0(rC/r).
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Figure 1
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find an expression for the specific intensity I, the so

called "formal integral".

The Formal Integral
 

Following Castor's (1970) notation, we use a cylindri-

cal coordinate system (p, e, z) where the z axis is the line

joining the center of symmetry of the atmOSphere and the ob-

server, with the positive direction away from the observer

and the origin at the center of the star. Note that p is

the impact parameter. We define

r = p + z . (II-2)

That is, r is the radial distance measured from the center

of the star. If the absorption and emission of radiation

within the line are uncorrelated both in angle and frequency

(complete redistribution) in the fluid frame, the source

function will be independent of frequency. The equation of

transfer takes the form (Castor 1970)

 “(317,27 = k(v,p,Z)II(v,P,Z) - S(r)]. (II-3)

where I is the specific intensity directed toward the ob-

server as seen at the point with impact parameter p and ab-

scissa z. This equation is a simple modification of our

(A-7).

The photosphere lies at r = rC and is supposed to radi-

ate a continuous spectrum IC with no limb darkening. Then

the formal solution of the transfer equation is
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r(m)
’e-T(V’p’Z)I(V,p,Z) =

1(2)

ice .

I S[(p‘7‘+z'27‘1’1e‘T9’4”Z )dT(v,P,Z'), (II-4)
1(2)

where the integral is done at constant v and p, and

dr(o, p, z) = k(O, p, 2) dz.

If p > rC, or z > 0 the integration path will not in-

tersect the core and we get

1(Vspsz) =

I S[(p2+2'2)*] eprrIv,p.Z)-r(v,p.2'
)1dr. (II-5)

2

But if p < rC and z < 0

1(v,p,Z) =

C 2 .2 i . .
I S[(p +2 ) TeXP[r(v,p,2)-r(v,p.z )IdTCv,p,z )
Z

+ IC eXpIT(V9paz)'T(VspszC)]9 (II-6)

where zC = -(rCZ - p2)%. (II~7)

The optical depth along a line of constant impact parameter

p, from the location 2 to the observer is given by

Z

T(v.p.2) = I k(v,p,z') dz'. (II-8)
-00

where the absorption coefficient is

1

k(v,p,Z) = k£(r) ¢[v-v0+v08(r) z r- ]- (II-9)

Note that the zr-1 term comes from the projection of the
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radial velocity in the observer's direction. Here,

B(r) = v(r)/c, and ¢ is the line profile in the fluid frame,

normalized as

I ¢(x) dx = l ; x = v - v + v 8 z r , (II—10)

and kg, the line absorption coefficient between levels 1

(lower) and 2 (upper), depends on r only:

h\) N N h\)
N B 1 2

B12 2 21) 1hr g2 B21(g1 g2)Zn-’
k = (Ng (II-ll)

l

where the B's are the Einstein's coefficients and the g's

the statistical weights of the respective levels. Intro—

ducing the absorption oscillator strength f12 (Mihalas 1970)

2 2
4n e _

f12 hvomc ’ (II 12)

 

and finally

n62 N N

_ __ _1 - __2_ _
k, - me (gmgl g2). (II 13)

We shall assume that the line profile is extremely sharply

peaked at x = 0 (frequency = v0 in the rest frame of the

gas), so that r is essentially a combination of step func-

tions. The number of "steps” to the step function is the

number of intersections of the line of sight with the sur-

face of constant 2 velocity.

Chandrasekhar (1934) seems to have been the first one

to construct surfaces of constant line of sight velocities

as seen by an external observer looking at a monotonically

accelerating atmosphere, Figure 2. Note that a line paral-

lel to the line of sight intersects such a surface just at
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Figure 2. Constant velocity surfaces for an accelerating

atmosphere. The velocity law is v(r) = vm(l-rC/r)I. The

numbers indicate the ratio vz/v0° for each curve.
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one point. If the flow is a decelerating expansion, the

constant velocity surfaces appear as in Figures 3 and 4. We

see that in this case there can be 0, 1, or 2 intersections.

In the region close to each intersection, the contribu-

tion to the integral in equation (II-8) is

zi+5

ri(p.v) = I kcv.p.z')dz' =
Zi'O

z.+6

1

kg[(p2+ziz)II I ¢(v'v0+v08(r)zr'l)
dz =

21-6

k,[(p2+ziz)i1
I(%§)p,vIz=zi I ¢(x) dx = I(%§Jp,v

where 6 is selected to pick up all the contribution to the

i=1,2 , (II-l4)  

 

opacity from each intersection. The derivative in the de-

nominator is the Jacobian of the change of variables from 2

to X.

Figure 5 shows the definition of some unit step func-

tions Yi’ that we find useful in describing the variation of

optical depth with 2. When some of the intersections are

absent, the corresponding T should not be included, and in

the following formulae this should be done by setting the

corresponding r equal to zero. When there are two intersec-

tions, T has the form

TIVspaz) = T1(p:V) Y1(Z) + T2(p,V) Y2(Z). (11'15)

Note that v(z) stands for y[x(z)] where x is the argument of

O, that is the frequency in the fluid frame. The behavior
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Figure 3. Constant velocity surfaces for a decelerating

atmosphere. The velocity law is v(r) = v0(rC/r). The

numbers indicate vz/vo. A line parallel to the observing

direction intersects these surfaces once, twice, or not

at all.
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Figure 4. The straight line defined by the observer and the

center of the star is the z axis, with its origin at the

center of the star and the positive direction away from the

observer. The intersection of the photospheric radius rC

and the line with impact parameter p has abscissa 2C. For

each sphere of radius r, there are two surfaces of constant

line of sight velocity, equal to ivz, that have tangents at

the intersection points parallel to the z axis; those inter-

sections have abscissas z'd and z"d. 26 is the abscissa of

the intersection of the line with impact parameter rC and

the sphere of radius r on the negative side of the z axis.
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Figure 5. The star core, and a constant velocity surface

and its intersection with a constant p line (horizontal

dashed) are shown. The intersection closest to the observer

has abscissa 21, the farthest, ZZ' On top there is a graph

showing the optical depth as a function of z. The values of

the auxiliary functions Y1 and Y2 in the different regions

are given.
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of r for a case with two intersections of equal T1 is shown

in Figure 5. Evaluating the derivative in equation (II-l4)

along a line of constant p gives

V V

(3925mm = :9 fitvf.“ 2] = 29W”) + ztl 91’- - 3111151 =  

 
 

v ( ) + 2 d )29W r (g) v _ v(r )]
V

r (a? r = _9[(1-u2)1§£l + “2 dV]. (II-l6)
C

In evaluating the different ri's in equation (II-l4) for use

in equation (II-15), we can consider two extreme cases in

equation (II-l6). If our line of constant p passes through

the center of the star, the optical depth that we will be

determining is the optical depth in the radial direction.

 

For p = 0, z = -r, U = 1

k (r)

T = 1 , r = -z (II-l7)

r :9 dv(r)

c dr

 

Note that it is the optical depth as measured at location r

toward the external observer in the radial direction. If

instead, we take v = Vo’ the intersection of the p = constant

line with the surface of constant vz (= 0), will be on the

z = 0 axis (p = 0), giving the optical depth in the tangen-

tial direction, perpendicular to r

 

I'

k

T = '(r) (II-l8)

" :9 v(r)
C I‘

  

The optical depth in the direction 8, making an angle

1
a = cos- p with the radial direction is then
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A k2(r)

T(n) = v 2 ( ) 2 d . (II-l9)

0 V r v

1? (l-u )‘j:— + U a;

 

Note that these r's were derived using the observer's direc—

tion as a preferred direction, but due to the symmetry of

the problem they are completely general. For a power law

velocity field like ours, (equation 1-3), (II-17), (II-18),

and (II-19) can be expressed as

 

 

k£(r) riIl

r = , (II-20)
r

V0 2

v —— L r

o c: c

It — R: Tr , (II-21)

L r

T = r . (II-22)

Il-u2(1+l)

The probability of a single emitted photon being in the

solid angle dw about n, with frequency in the range x to

x+dx is

99 ¢(x) dx (II-23)
4n '

Only the fraction exp[-T(n,x)] of those emitted will escape

the surrounding region. Therefore the net escape probabil-

ity is (Rybicki 1970)

k2(r) Ix . .
¢(X )dX ], (II-24) g = £% Ide::dx ¢(x) exp[- I

 

(%§)p.v

where we have used the value of r from equation (II-l4), and
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then

3

a 1 Id NIIIP’VI [1 ( kw) 1 (II 25)=—— r — exp — ’ -

4Ir k

’ 8(r) I(%§)p.vI

or simply

l 1 1-expfrr)
B(r) = 7 I d l I, (II-26)

1-1 T

where T is given by equation (II-22). In the following, we

shall often suppress the frequency v and impact parameter p,

which are always fixed during formal integration of S to ob-

tain 1, (although not when I is integrated to get the mean

intensity 3). Also we may denote, for example, (p2+z'2)I

2 2 i
+21 ) as r1, etc.as r', (p

Substituting expression (II-15) into equation (II-5),

we find for the case p > rC

1(2) = S(r1){l - exp[-T1 71 (z)T}

+ S(rz) epr'Tl -Y-1 (2)1{1'epr'T2 TY-2(Z)]}, (11'27)

where 71 = 1 - Yi'

One must remember that either term in equation (II-27)

may vanish if the intersection of the ray with the surface

of constant 2 velocity falls outside the assumed outer radi-

us of the atmosphere, rm. For frequencies to the blue of

line center, Ile may be so large that rl exceeds rm, in

which case T1 is defined to be zero. For frequencies to the
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red of line center (left half of Figure 3), 2 may fall out-

2

side the atmosphere, and the term in S(rz) will be zero.

(22 is always to the left, i.e. larger than 2 by defini-
1

tion, as shown in Figure 5.)

For the case p < rC, the cases 2 > 0 and z < 0 must be

handled separately. In the former, there is no contribution

from the photosphere, and the ray does not reach the observ-

er, but is intercepted by the star. Such rays are perceived

indirectly by the observer, because they affect the source

function, however. For the case 2 > 0, the same equation

(II-27) applies, with T2 still set equal to zero if r2 > rm;

however, must be set equal to zero, causing omission of
T1

the S(rl) term, 1f r < rC
1

Finally, in the case p < re, 2 < 0, we have

1(2) = S(rl) {l-eXPI-Tl 71 (2)]}

+ sag) epr-T, 71 (2)] {I-epr-TZ 72 (2m

+ IC eXp[-r1 71 (Z) - 12 72 (2)] . (II-28)

with the understanding that T2 vanishes if r2 < rC or

r >1‘ and r vanishes if r > r

2 1 mm’ 1

Mean Intensity and Source Function
 

The mean intensity itself is, of course, frequency de-

pendent, and this dependence can differ considerably in the

laboratory and fluid frames. From the work of Castor (1970)

however, one expects the integral of the mean intensity over
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the line profile,

3(r) = 5% Ir dzIm ¢(x) I[O, (r2-22)I, z] dO , (II-29)

-r 0

where x is defined in equation (II-10), to have an especial-

ly simple relationship to S. The integration over 2 in

equation (II-29) actually represents an integral over p;

spherical symmetry has been used to rotate rays that would

ordinarily pass through a common point on the shell of radi-

us r so that they are instead parallel. We wish to manipu-

late equation (II-29) into an integral equation relating j

in the various layers and IC. It can then be combined with

the excitation law for the two-level atom:

S(r) = e B(T) + (l - e) 3(r) , (II-30)

where B is the Planck function evaluated at the line fre-

quency and depends on the temperature T at radius r; e is

the ratio of collisional de-excitation rate to total de-

excitation rate. The term in 3 corresponds to the scatter-

ing contribution to the source function, while the term in B

is produced by collisional excitation followed by radiative

de-excitation (Mihalas 1970).

Returning to equation (II-29), the integration over V

is done first, leading to 6-functions that select the chosen

layer at r and all other layers that couple to it radiative-

1y. The results are best described in terms of Figure 4.

The locus of the points in the constant line of sight velo-

city surfaces that have tangent parallel to the z axis can



31

be found from

3v
8

T: = 52- [v(r) g] = o (II-31)

z dv zv dr v _

(;3;-;7)g;+;-0. (II-32)

substituting dr/dz = z/r, and dv/dr = -£ v/r gives

.127: :(2 + 1)-I. (II-33)

For a given r, the intersections with the locus are then

n=_v= ’2' -
z d z d r(£ + 1) . (II 34)

Also, clearly,

-_2_ 2% _
ze - (r rC ) . (II 35)

The integration in equation (II-29) is thus broken up at ze,

for the core cutoff, i.e. for z < 28 p is smaller than rc,

while for z > ze, p > rC or z > 0. We also separate the

integration at z'd and z"d to distinguish the cases where

the intersections are single or double. The results are:

for z' > z

d e
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1 r

lT(r) = S(r) [l - §;-I C(T) dz]

-r

2e

+ 1c §%-Ifirdz exp(-T2) G(r)

1 Z'd
+ 7?.Ifr dz S(rz) S(r) [1 - exp(-T2)]

znd

+ g? I) dz S(rz) G(T) [1 - eXp(-rz)], (II-36)

and for z' < 2

d e

l I‘

3(r) = S(r) (I - 7; I 6(1) dz]
'1'

Z

+ IC [%; Ir dz eXp("T2) GIT) + f%‘I f dz G(T)]

1 ZHd—I. Z d+ 7; I) dz S(rz) G(T) [1 - epr-r271

Z'd
+ %% I.r dz S(rz) S(r) [1 - epr-rz)] , (11‘37)

where G(T) is given by

 G(T(u)] = 1 ‘ :XPI'T) . (II-38)

In equations (II—36) and (II-37), unsubscripted r's are

evaluated at radius r and at u = -z/r, while quantities

with subscript 2 must be evaluated by finding the other

intersection of the ray with a surface of the same line of

sight velocity, as in Figure 5. It should be noted that

d8 = C(T) %% , (II-39)
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is the increment of escape probability.

When equations (II-30), (II-36) and (II-37) are com-

bined, there follows an integral equation for S(r) of the

 

form

1 Z'd
S(r)(1§€ + B(T)] - 7; I dz S(rZ) G(T)II-exp(-T2)1

'I'

z"

--l— I d dx S(r ) G( )[1-ex (- )]

2r ,0 2 T P T2

= e B/(l - e) + H(r) IC , (II-40)

where H(r) has different expressions, depending on z'd and

z for a given r. For z'd > z
e e

Z

1 e

H(r) = 7; I dz G(T) exp(-r2) . (II-41)

‘1'

and for z'd < z
e

zId Ze

H(r) = 4L—[ dz C(T) exp(-T ) + dz G(r)]. (II-42)

2r r 2 z'

' d

If we ignore the interconnections, letting T = O in equa-
2

tions (II-40), (II—41) and (II—42), we obtain

 
S(r)[l‘_:E + B(r)] = e B/(1 - 6) + Bc(r) 1C , (II-43)

where

1 Ze

ec(r) = 7; I dz G(T) . (II-44)
'1‘
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and can be approximated by

1 -(r2-rc2)if

ec(r) = 7; Ir dz 6(T) = W(r) B(T) , (II-45)

where W(r) is the dilution factor

[I - (I - rCZ/rz)*], (II-46)

N
I
T
—
l

W(r) =

that is the probability of a ray emitted in a random direc-

tion striking the core. We must notice that in this approx-

imation (12 = 0), we recover in our equations (II-30) and

(II-43) Castor's (1970) result.

The description of the method of solution of the inte-

gral equation (II-40) is outlined in Appendix B, and some

approximations useful in limiting cases are discussed in

Appendix C.

Radiation Force
 

If the density is p(r), the absorption coefficient may

be written

k(V,P,Z) = k2(r) OIX) = 0(r) 0(r) ¢(X), (II-47)

which defines the cross section per unit mass, 0. Then the

radiation force per gram is

(X)
1

a(r) = 319 uduI ¢(x) 1(v,p,Z) dd. (II-48)

C -1 J0

where x = v - v + 8 z r-1 and u = -z/r, and I(v,p,z) is
0

given by equations (II-27) and (II-28). Castor (1974) has
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derived higher order corrections to equation (II—48) em-

bodying the effects of sphericity and finite thermal line

width, but he recovers the intuitive result (II-48) in the

extreme supersonic limit. For resonance lines we approxi-

mate (see equation II-l3)

2 N

k,(r) = IE; (gf) g; . (11-49)

and set p = N mav where N is the number density of all ions

and m their average mass in grams. If X10 then stands
av n

for the fraction by number of all ions in the state under
 

consideration, we write

X2 .

o = k /p = IITf'c— (gf) E431— . (II-50)

i 1 av

Substituting I into equation (II-48) we get

for z' > 2

d e

Z!

d

a(r) = 31% [I 2 dz S(r) [l-exp(-r2)] S(rZ)
CI‘ ~r

an

+ I 2 dz G(r) [l-exp(-r2)] S(rz)

0

+ IC I{: z dz exp(-rz) G(r)], (II-51)

f r z' < Zand o d e
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d

acr) = 319 [I 2 dz GIT) II-exp(-T,)] S(rz)

Z"

d

I 2 dz GIT) II-exp(-T2)1 S(rz)

0
+

z'd

+ IC I 2 dz G(T) exp(-T2)

'1”

Z

+ IC I f 2 dz C(T) . (II-52)

Z d

Fortunately, the coefficients needed for the acceleration a

may be calculated in a similar manner and at the same time

as those needed to formulate integral equation (II~40).

When we considered the disconnected approximation we also

omitted terms in S(rz) for the force, so that both the

source function and the algorithm for obtaining the force

from it were different. This is not intended as representa-

tive of Kuan and Kuhi's approach, because they did not con-

sider the force; also they took into account the possibility

for double absorptions once S was found in the disconnected
 

approximation. Here it would likewise be possible to use an

approximate S but then perform the integrals in equations

(II—51) and (II-52) exactly. This is not particularly more

consistent than what we used for the disconnected case.

Furthermore, the labor of finding the second intersection in

a rigorous integration for the force is tantamount to doing

the labor for the whole calculation. We therefore assume

anyone considering this kind of calculation of the force

would solve the whole transfer problem rigorously, and thus
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our "disconnected approximation" for the force is appropri-

ate as an example of leaving out interconnections.

Line Profile
 

The power emitted by the star plus envelope, per unit

frequency is

r
m

Fv = 4n I) 2n p dp I(u,p,-w) . (II-53)

In the case rC < p < rm, we have

I(v,p,-w) = S(r1)[1-eXR(-T1)I

+ S(rz) eXP(-rl)[1-eXP(-I2)] , (II-54)

and in the case 0 < p < rC the result is;

I(v.p.-m) = S(rlitl-exp(-Tl)1

+ S(rZ) exp(-T1)I1-exp(-Tz)]

+ IC exp (-r1 - T2) 9 (11'55)

where, as usual, either r is set equal to zero if that in-

tersection is absent. If we combine these and normalize by

the unattenuated continuum intensity

I‘

C

F = IC 4"I Zn p dp = 4n r I (II-S6)

o
C

we obtain
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2 -1 rC
Fv/Fc = (IC rC ) I) (S(r1)[I-exp(-Tl)1

+ S(rz) exp(-r1)[1-exp(‘T2)I

+ IC exp(-T1 - 12)} 2 p dp

r

m

+ (IC rczi‘l I) (S(r1)[1-exp(-T1)

+ S(rz) eXPI‘T1)I1’eXp('T2)I} 2 p d p . (II-57)



CHAPTER III

RESULTS OF THE COMPUTATIONS AND

COMPARISON WITH OBSERVATIONS

The Model Parameters
 

We have carried out the calculations with some atten-

tion to actual dimensional quantities relevant to stars and

QSOs, but will express most of our results in terms of the

following dimensionless parameters: the exponent 2 already

defined, the ratio RR = rm/rC (outer envelope radius)/(core

radius), the maximum integrated optical depth To in the ra-

dial direction, and the values of e and B/Ic' As the line

opacity is proportional to the number of ions in the state

under consideration, combining equations (I-4), (II-l3),

and (II-20) we obtain

T a r . (III-1)

t
h

In the case 2 = , rr(r) is constant and equal to its maxi-

mum, To' In the case 2 = l, rr(r) is linear in r, and

hence attains its maximum T0 at r = rm. This points up the

tendency of decelerated flows to be more dependent on cut-

offs at large r than accelerated ones. Almost all the runs

were done with RR = 10, the choice of Kuan and Kuhi, and an

economical one computationally. A few were done, however

with RR = 3 and with RR = 15, so we can comment on the

39
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effect of the cutoff. All our envelope models start right

at the photosphere, where v = v0.

Kuan and Kuhi (1975) applied their model to the case

of P Cygni. They took the photospheric radius rc equal to

10 R0 with an effective temperature of 30000 K and an abso-

lute bolometric magnitude of -7.4. This value is probably

too low, with the correct value closer to -10.4. The visu-

al magnitude Mv is about -7.4 (DeGroot 1973), and the bolo-

metric correction -3 (Allen 1973). Consequently the radius

should be larger than 10 R0. We took this last value for

most of our runs, but it is possible to use the results

given in the graphs for sets of stellar dimensions and

rates that differ from the ones we used in computing them,

provided the new sets keep constant the fundamental para-

meters like To, which is given by

T = nez f. Xion M c(RR)2£-1

o :mc 1j 4n mav v 2 v z r ’

o o c

 (III-2)

where M is the mass loss rate. In all our computations we

used N = 1.06 10‘7 solar masses/year and v0 = 3000 km/s.

The scaling law for the radiative acceleration is given

below.

Source Function
 

The source function generally exhibits a sever attenu-

ation with radius, as is appropriate for a very extended

atmosphere, unless e and B are large. When arc is large,

then S 2 B. In the disconnected approximation, it is easy
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to show that (see Appendix C) for Tr << 1

s g as + W(l - 8) IC , (III-3)

while, in the optically thick limit we have

for Tr >> 1 and r >> rC

  

  

2

r

1.177 1 C B . 1
_—€_— N L = —. -

SII—e + Tr I - IT;'tr2 I l-e ’ 1f 2 2 (III 4)

r 2

6 0.6095 1 C EB = _

The foregoing approximations support the idea that S falls

rapidly with increasing radius, unless 5B is large. These

l/rZ effects tend to dominate any of the finer differences

that could be caused by the disconnected approximation, and

they make graphs of the source function itself rather dull.

Therefore we choose to exhibit only a few of the most sig-

nificant cases. In Figure 6 we show the source function

for the worst example we constructed for failure of the

disconnected approximation. The difference in S is at most

0.28 in the logarithm, although it is still growing at rm

0n the basis of Kuan and Kuhi's remark that the approxima-

tion is good when the intensity from the core exceeds that

from the envelope, one might expect to construct worse

cases by making B large. However, we found in that case

that if the envelope is thick the local B value dominates S
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Figure 6. Comparison between the exact solution and the

disconnected approximation for a star with RR = 10,

rC = 10 R0, To = 5, e = 0, l = 1. In general, "exact

solution" refers to including interconnections; the super-

sonic approximation is always used.
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(but not in the force), while if it is thin, interconnec-

tions are obviously unimportant. It appears that cases

with e = 0 and intermediate optical depths are the worst;

also we expect more discrepancy if rm is increased. The

reader should not consider that small changes in S where it

is small are of no consequence at all, because there is a

lot of volume and material out at large radius.

In Several runs (not shown) with RR = 3, we found that

toward the outer portion of the envelope the source func-

tion fell below that in the disconnected approximation. We

traced this effect (which ran as high as 15%) to the dis—

carding of absorption in inner layers in the disconnected

approximation. (Note, however, that Kuan and Kuhi included

such absorption in the underlying layer in their formal in-

tegration.)

The fact that the interconnections become more impor-

tant at large RR suggests a bit of caution about the subor-

dinate lines being independent of RR as long as it exceeds

10 (Kuan and Kuhi 1975). A change in S for resonance lines

far out raises the ground state population for the subordi-

nate lines.

In Figure 7 we Show the effect of the outer cutoff on

the source function in the exaCt solution. The three cases

differ only in the value of RR, that is, we have added more

material beyond r We see that when we increase rm, them.

value of the source function in the region common with the

previous case increases. This is due to the fact that the
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Figure 7. Effect of the outer radius on the source

function.
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inner layers receive light from the outer ones, which in-

creases the excitation. Remember that in the disconnected

case the solution is completely local, i.e. for each layer

it does not depend on how much material there is beyond

that layer, (see equation II-43).

How does the optical depth affect the source function?

We compare in Figure 8 three different cases, where all the

parameters but the mass loss rate were kept constant,

giving maximum optical depths of 0.1, l, and 5.

In the region close to the core, the thinner the atmo-

sphere the higher the value of the source function. If we

refer to Figure l, we see that in the case of point A, the

surface able to interact with the atom at A, covers a large

portion of the core, decreasing the amount of light re-

ceived by the atom, and lowering the excitation. This ef-

fect may also be presented in the following fashion. Let

us be reminded that the material on curve a, connecting

point A in Figure l to the stellar surface has zero velo-

city of approach as seen by the material at A. Consider

'now a straight line from A to the stellar surface. If that

line crosses the surface a, the optical depth will be

large, resulting in a greatly diminished stellar intensity.

It is obvious that making the atmosphere thicker will de-

crease S even more. When we are far from the core (point C

in Figure l) the interacting surface does not cover much of

the core, but instead emits (in the case of Figure 8 scat-

ters, e = 0) light toward C, increasing the excitation.
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Figure 8. Effect of the optical depth on the source

function.
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Radiative acceleration
 

2 de-We found it convenient to take out the strong r-

pendence in the radiative acceleration by dividing by the

acceleration of gravity GM/rz. For this purpose we chose

physical parameters listed in the caption of Figure 9. It

is possible to alter the combination in any way that pre-

serves To and the product

2

CF = Ic fik Xion rc /M ’
(III-6)

where M is the mass of the star and Xion the fraction of

all ions in the gas in the form of the chosen ion. (We

took mean ionic weight 1.2.) In all cases, we chose para-

meters corresponding to the C IV resonance line at 1550 A,

fik = 0.286, IC = 5.05 x 10-3 erg cm-2, and Xion in the

range 10-3 to 10-7. The value of IC corresponds to a

30000 K black body intensity at the C IV resonance line

wavelength.

It is easy to convert to any case through equation

(III-6). (The mass loss rate also enters the problem, but

only in fixing To.)

The curious structure in the force law between the

photosphere and 25 R0 is present in both the disconnected

and regular cases. The dip is approximately where the cone

of light from the core is tangent to one of the cones of

maximum optical depth given by
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Figure 9. The ratio of the radiative acceleration to that

of gravity for the case shown in Figure 6. We assume a star

of 10 solar masses, effective temperature 30000 K, To = 5,

corresponding to Xion = 10-6, and other parameters as de-

scribed in the text.
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u = i —i—. (III-7)

(2 + DI

If the Optical depth were independent of u, we should ob—

tain a r-2 dependence, that after dividing by the gravita-

tional acceleration gives a flat curve. The drop for large

r values is due to the increase of Tr (remember that Tr is

linear in r for 2 = 1).

The force in most of the atmosphere is highly altered

in the disconnected approximation.

Figure 10 compares the force for atmospheres of var-

ious thicknesses. As expected, the force behaves essential-

ly as r-2 in the optically thin case, although some of the

peculiar structure due to the variation of r with u is pre-

sent. Note that even in this case, the radiation force is

much larger than the gravity force. Some saturation is

present as 1 increases beyond 1. It is worth noting that

the mass loss rate or overall density was not changed in

these runs, only the abundance of the ion with the reso-

nance line. If, instead, the relative abundance were fixed

and the total density increased, the average force would

remain constant at very small optical depths, and then

gradually drop as saturation was reached.

In Figures 11 and 12 we compare atmospheres with the

same RR, 2, 5, density, and B, with two choices of Xian and

also with the interconnections turned off. In the first

case, since er is only 0.1, the Planck function is not able
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Figure 10. Force law for the case RR = 10, rC = 10 R0,

8 - 0, 2 = 0.5, and three values of To, as shown. In runs

-6 -6 -7
ion was 5 x 10 , 10 and 10

’
a, b, and c, X respectively.
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Figure 11. Comparison between the exact solution (solid

curve) and the disconnected approximation of the force for

a star with RR = 10, r = 10 R0, To = 100, e = 0.001,

_ - = -4
B - 5 I 2 — 0.5, and X10 10 .
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Figure 12. Comparison between the exact solution (solid

curve) and the disconnected approximation of the force for

a star with RR = 10, rC = 10 R0, To = 1000, e = 0.001,

_ _ = -3
B - 5 I 2 - 0.5, and xion 10
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to do its maximum at pumping up excitation in the outer

parts, while the second case is fairly extreme in that re-

gard. In Figure 11, there is already evidence of some in-

ward force on the inner layers due to radiation scattered

and emitted in the outer layers. This is seen from the fact

that near the star the force in the exact case falls below

that in the disconnected case (although it is mostly out-

ward). Evidently, the force from IC still overcomes the in-

ward force in this case.

In Figure 12 the inward force has actually dominated

the outward near the star, and the disruptive effect of the

interconnections is evident.

Line Profile
 

We studied a wide selection of cases with a view to

determining: (a) how resonance lines behave as compared

with the subordinate lines of Kuan and Kuhi, and (b) what

the effect is on line profiles of making the disconnected

approximation. We also tried to investigate what charac-

teristic features of the line profiles could be used when

fitting an observed profile with a synthetic one, to deter-

mine the parameters defining the velocity law, the condi-

tions in the atmosphere and its dimensions.

As we said before, the agreement of the disconnected

approximation with the exact solution for the line profile

was good. Only in a few cases was the error in the equiva-

lent width larger than a factor of 2.

We show in Figure 13 the line profiles obtained with
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Figure 13. Comparison of the line profile in the exact

solution (solid curve) and the disconnected approximation.

The r given is To. The abscissa is (v-vo)/Avm where

Avm = (vo/c)vo.
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the disconnected approximation superimposed on the exact

solution. This was one of the cases where we found impor-

tant differences between the two line profiles.

As Kuan and Kuhi (1975) pointed out, the displacement

of the shortward edge (point with frequency +1.0 in Figure

13) is determined by v0, the velocity at the photospheric

radius. If v0 is the central frequency, the maximum dis-

placement in frequency is Avm = (vO/c)vo. The displacement

of the longward edge is given by their equation (14)

_ 2/2 .1,
Avl - -[2/(I+1)] [1/(2+1)] Avm . (III-8)

from which we can determine the exponent L. This is the

largest frequency for which the constant velocity surface

is completely occulted by the star.

We observed, in most of our profiles, an absorption

trough on the shortward side with very well defined limit-

ing frequencies. When we move from the central frequency

toward the blue side, a sudden drop occurs that we inter-

preted as reaching the frequency that corresponds to the

first velocity surface completely contained within the cut-

off radius rm. It can be shown that the frequency of the

intensity minimum associated with this sudden drop is given

by

— 2’ -

sz — (re/rm) Avm , (III 9)
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from which we can determine the ratio rm/rc. When we are

at this frequency or beyond, the light from the core will

be absorbed by at least one layer of material.

The blue edge of this trough appears when we reach the

frequency that corresponds to the velocity surface that

starts to uncover the star core, that is Av3 = -Avl.

In Figure 14 we see how strongly the profile depends

on the value of the cutoff radius rm. A run (not shown)

with RR = 15 gave a peak of 5.39, and an equivalent width

of -0.655. The equivalent widths given here and in the

figure captions are defined as

v +Av
_1 o m FC - Fv

EW = (ZAum) I —'—F—— (IV , (III-10)

vo-Avm c

One might think that rm = 10 rC is a reasonably large value

and it is then possible to neglect the existence of materi-

al beyond that radius. From our results it appears that

the effect of this additional material in the source func-

tion up to 10 rC is small, but that it modifies the line

profile, raising in some cases the peak value by a factor

1.5, and increasing the equivalent width (see Figure 14).

We must note that Kuan and Kuhi (1975) did not find a simi-

lar effect for the subordinate lines.

Figure 15 shows two profiles calculated with different

2. For both curves, the velocity at the star surface and

the opacity at the outer radius were the same. It appears
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Figure 14. Comparison of two line profiles for atmospheres

with To = so, a = 0.001, B(r) = IC(rC/r)I, and I = 0.5.

Curve 3 corresponds to an atmosphere with RR = 10, (equiva—

lent width (EW) = -O.410); curve b has RR = 3, (EW =

-0.0739). Note that the case 2 = l is expected to be more

sensitive to the value of RR (see text).
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Figure 15. Effect of the exponent 2 in the velocity law on

the profile. Curve a: 2 = 0.5 (EW = 0.0086), curve b:

2 = 1 (EW = 0.0053). In both cases RR = 10, T = l, e = 0.
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that larger 2 gives a sharper emission peak.

Figure 16 shows three atmospheres with different opac-

ities. For To larger than 5 the saturation was so high

that increasing T did not have any effect on the profiles
a

(remember that in this case a = 0).

Unfortunately, most of the resonance lines have fre-

quencies in the ultraviolet, which makes it impossible to

observe them from ground based observatories. The recent

access to rocket and satellite borne telescopes will ease

this limitation.

We reproduce here some of the few available spectra

from stars that are apparently ejecting mass, to see if the

observational profiles resemble our synthetic ones.

Snow and Marlborough (1976) have obtained intermediate

resolution (0.2 A) UV spectra with the Capernicus satellite

of 12 stars classified as Be or shell stars and several ad-

ditional B stars. They found important assymetries in some

resonance lines (especially the Si IV doublet at 1400 A).

We reproduce one of their figures in our Figure 17, that

shows the Si IV A 1400 profiles for several stars. The two

vertical lines indicate the rest positions of the line cen-

ters. The error bars shown at the left represent the 20

rms noise at the continuum level due to photon statistics.

These profiles do not show the sharp drop-off that charac-

terizes our synthetic profiles nor the flat bottomed ab-

sorption region.

Really, we cannot discard completely the decelerating
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Profiles for three atmospheres with RR

0.5, and To as indicated. Curve 3: EW

EW = 0.0086, curve c: EW = 0.0028.

10,

0.0050,
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Figure 17. The Si IV A 1400 profiles for several stars.

After Snow and Marlborough (1976). By permission of The

University of Chicago Press.



\
l

M
I
3
9
3
7
5
5

(
A
)

l
4
0
2
.
7
6
9

(
A
)

7 005

I I VI 59 Cyg

 

 
 

I y HD 28497

  _
}

 

  

III

1

 

  
l J

I392 I400 :08

WAVELENGTH (A)

Figure 17

I384



74

atmosphere model for this type of star, due to the possi-

bility of rotational distortion of the profile. Snow and

Marlborough (1976) studied the correlation between mass

loss, temperature, and projected rotational velocity, and

found that the stars showing mass ejection usually had high

temperature and high rotational velocity. This indicates

that the ultraviolet flux from the high temperature stars

was not enough to accelerate the mass unless the rotation

reduces the escape velocity. If the flow is not directed

radially outward we cannot use our simple theory of the

profiles.

Another set of observations with the Copernicus satel-

lite are those of Hutchings' (1976). He studied several OB

supergiants. We reproduce in our Figure 18 some of his

scans of individual stars between 1165 and 1255 A smoothed

over 1 A. They show the Si 111 A 1206, Ly a, and the N V

A 1238,42 resonance lines. The C III A 1175 is not a reso-

nance line, but as the excitation potential is quite large

(10.5 eV) and the lower level is a metastable one, our ap-

proximations are also valid for it.

None of the resonance lines Show the features previous-

ly noted in our synthetic profiles. The C III line is

closest to ours, especially in the star HD 188001. The ap-

parent dissimilarity among the lines could be explained

with a model in which groups of lines are formed in regions

that are expanding at a different rate.

Hutchings computed the velocity excitation slope,
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Figure 18. Upper: Copernicus scans of individual stars

from 1165 to 1255 A, smoothed over 1 A. Center: unsmoothed

mean spectrum of all stars in upper section, with continuum

drawn in. Lower: mean of 11 scans of C III A 1175 for

P Cyg and El Sco.

After Hutchings (1976). By permission of The University of

Chicago Press.
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i.e. the slope of the velocity versus excitation potential

curve, where each point is determined from a line in the

spectrum. For HD 188001, he obtained a positive slope

(taking velocities toward the observer as positive), that

is: higher velocities in the regions of high excitation.

This relation is not what he expected under his assumption

that the velocity increased with radius, and he interpreted

it as indicative of a large departure from Local Thermody-

namic Equilibrium (LTE). But it could be explained simply

by assuming a decelerating atmosphere as in our model.

Lamers and Morton (1976) studied the 04 star Zeta

Puppis. They tried to explain the resonance line profiles

with an accelerating atmosphere model. We reproduce the

observed profiles in our Figure 19. The dotted lines are

the observed intensities for different ions normalized to a

maximum velocity vw = 2660 km/s, i.e. the maximum displace-

ment in frequency from the line center is (Vm/C)Vo' The

solid lines are their synthetic profiles. Just by inspec-

tion we see no similarities between the observed and our

synthetic profiles. Apparently, this star does not have a

decelerating atmosphere, at least in the region where the

resonance lines are formed.

Finally, a strong candidate to apply our model is the

QSO PHL 5200. We show in Figure 20 the C IV A 1550 reso-

nance line, based on the tracings from Scargle, Caroff and

Noerdlinger (1970). Unfortunately there is no calibration

available to allow us to determine the different
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Figure 19. The dots represent the observed profiles of the

resonance lines (normalized to voo = 2660 km/s) of Zeta

Puppis.

After Lamers and Morton (1976). By permission of The

University of Chicago Press.
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Figure 20. The C IV A 1550 resonance line profile observed

for the QSO PHL 5200.
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characteristic frequencies and from them the velocity law

and dimensions. But it is obvious that the sharp drop and

the absorption trough are quite similar to ours. The Si IV

A 1397 line shows a similar behavior. The secondary peak

on the red side (left of Figure 20) corresponds to the Fe

II A 1608 line.

After this work was completed we became aware of the

work of Grachev and Grinin (1976), who solved the expanding

decelerating case for a somewhat different velocity field

and only for e = 0. They arrived at conclusions like ours

about the QSO PHL 5200.

Image

Figures 21 to 24 show the products p It0t(p,-w) and

p Ir(p,-m) (curves with R's) versus p/rm, where

vO+Avm

Itot(p.-«>) = A) m I(v.p.-oo) dv (III-II)

v

o

Ir(p,-m) = I I(v,p,-w) dv . (III-12)

vo-Av

These are intended to show the brightness variations

one could attempt to look for with interferometry, speckle

interferometry, or occultation by a companion or by the

Moon. We choose wavelength bands intended to capture a

reasonable amount of light and yet present as much contrast

as possible for observation. We show only the few cases in
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Figure 21. p Itot and p Ir versus p/rIn for a star with

RR = 3, To = 50, e = 0.001, B = Ic’ and 2 = 0.5.
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Figure 22. p Itot and p II. for a star with RR

100, e = 0.001, B = 5 IC, and I = 0.5.
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Figure 23.

1000, e =

87

p Itot and p Ir for a star w1th RR

0.001, B = 5 1C, and I = 0.5.
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Figure 24. p Itot and p Ir for a star with RR = 10, r =

1000, e = 0.001, B(r) = S(rC/r)IC, and 2 = 0.5. Note that

all the parameters but B coincide with the parameters in

Figure 23.
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which the results were moderately interesting; in a majori-

ty of the cases, even with the factor p adding weight to

the curves at large impact parameter, most of the light was

concentrated centrally (see Figures 21 and 22).

The curve p Ir for p < r is a straight line, under
c

the assumption that IC is constant. Observe that in the

case of the infalling matter, we should change the inter-

pretation of Ir’ that now becomes the integral over the

high frequency side of the line.

When 510 << 1, most of the light comes from the core,

with only a small contribution from the p > rC region. If

arc is increased to approximately 1, the contribution from

the core becomes comparatively small, see Figure 23.

The appearance of the stars in the two wavelength

bands chosen tend to parallel each other in a way that sug-

gests there is little observational information to be ob-

tained by interferometry in selected bands. On the other

hand, we see that the image shown on Figure 23 is very dif-

ferent from the one on Figure 24, due to variation of exci-

tation with radius, and both contrast strongly with Figures

21 and 22. Thus some hope is offered of utility. While we

unfortunately did not construct similar plots for acceler-

ating outflows, we may expect that in such cases, when the

excitation in the atmosphere is small, one would observe

a smaller image in emission near line center and larger

ones far from line center. This is due to the concentra-

tion of low velocity material near the star core, and to
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the large extension far from the star core of the high

velocity material, in contrast with our decelerating flow

case (see Figures 2 and 3).



CHAPTER IV

CONCLUSIONS AND FUTURE WORK

Conclusions
 

In summary, we come to the following conclusions:

1. The value of the source function is not very sensitive

to the disconnected approximation, except at large radius.

We found that the larger the value of at the better the
o,

agreement between the approximate and the exact solution.

2. The whole analysis is rather sensitive to the outer

cutoff radius. The line profile is the most sensitive

part, and can develop an infinitely steep drop at the fre—

quency corresponding to the first velocity surface on the

near side contained entirely within the cutoff radius.

This kind of behavior is hidden, evidently, for subordinate

lines (Kuan and Kuhi 1975), and provides a crucial test of

the decelerating models. The resonance profiles of N V,

observed for several P Cygni stars by Hutchings (1976) do

not exhibit the steep slope at the blue edge of emission

that is present inall our calculated profiles. We con-

clude that insofar as this sample represents P Cygni stars,

the model of Kuan and Kuhi does not seem to apply to such

stars .

93
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3. The extremely steep drop observed for large RR is

highly suggestive of the C IV profile in the QSO PHL 5200,

which Scargle, Caroff and Noerdlinger (1972) could not fit

with any of their models. There is still a problem with

the large equivalent width of C IV (when C III shows much

symmetry), but an envelope somewhat elongated toward and

away from the observer could handle that, by diverting C IV

radiation to the side. The worst problem has always been

the steep dropoff in C IV to the blue of line center. In

the present model, this would occur somewhat to the blue of

true line center, but we have verified that for a reason-

able RR, such as 100, the dropoff can come right at the

edge of the QSO rest frequency within the tolerance of the

observations. If this model can be further filled in, it

could provide important evidence for the masses of QSOs, or

the density of the intergalactic medium, whichever caused

the deceleration.

4. The force is highly sensitive to any simplifying as-

sumption, such as the disconnections.

5. The appearance of the star as could be observed inter-

ferometrically is not very exciting. Unless one adds a lot

of emission from the envelope, it will be very faint, and

the differences among different models are not likely to be

decisive observationally.

A final point is that our models all apply equally
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well to the case of accelerating infall. Hopefully, when

better observations are available, we can compare profiles

with observations of the stars discussed by Walker (1968,

1972). In the case of infall, we may expect more radical

changes in ionization conditions at the place identified

as r so the cutoff seems more plausible. Furthermore,m’

in the case of infall, the mechanism (gravity) for acceler-

ation seems readily comprehensible, while in the case of

outflow, we have seen that for most reasonable combinations

of parameters, gravity is insufficient to produce required

deceleration, due to the much greater luminosity of these

stars .

Future Work
 

One of the drawbacks of our formulation is the assump-

tion that the population of the lower level of the transi-

tion is much higher than the population of the upper one

(see equation II-49). This is a good approximation for

resonance lines or for lines like the C III A 1175, where

the lower level is a metastable one. These kinds of lines

are usually in the ultraviolet region of the spectrum,

which limits tremendously the observing possibilities. Our

next step will then be to extend our formulation to the

case of subordinate lines. We must find the populations of

the upper and lower levels under conditions of Non Local

Thermodynamic Equilibrium (NLTE).

We have to consider all the processes that tend to
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populate or depopulate each level and solve simultaneously

the rate equations and the transfer equation. Our equa-

tions will now be (II-27), (II-28), (II-29), and instead of

the two—level atom excitation law (II-30), we will have a

system of equations with the populations as unknowns.

Following Mihalas, Heasley, and Auer (1975) we consi—

der an atmosphere composed of hydrogen and helium. The

atomic model for hydrogen assumes 16 levels, allowing de-

partures from equilibrium for the first five levels. For

helium we assume a 16 level He I atom and a 32 level He 11

ion, with the possibility of having the first two levels of

each ion under NLTE conditions.

The computation of the rate matrix involves the deter-

mination of the collisional excitation and de-excitation

rates as well as the radiative transition rates for each

pair of levels. Obviously, the fact that we must solve the

equations for the whole atmosphere simultaneously, demands

a very large storage capability.
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APPENDIX A

Let da be an infinitesimal element of area, and P a

point on it (in this Appendix we follow closely Cox and

Giuli (1968) and Rybicki (1970)). The unit vector perpen-

dicular to the surface is 0', and 0 is another vector that

makes an angle 0 with 0'. If dEv is the energy that flows

through da in time dt inside the solid angle dm about the

direction of 0 with frequency between v and v + dv, we de-

fine the specific intensity Iv as

dEv = Iv dv da cose dm dt . (A-l)

A

Iv will be a function of frequency 0, position I, angle n

and time t.

When the beam of radiation passes through an element

of mass dm, the energy in the beam with frequencies be-

tween 0 and v + dv contained in the solid angle dw will in-

crease due to emission in the element of mass by the amount

dE'v during the time dt, and it will be given by

dE'V = jv dv dm dw dt , (A-2)

jv being the mass emission coefficient. Note that it in-

cludes true emission as well as photon scattering into the

beam from other directions. Similarly, we have an

97
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absorption coefficient Kv (true absorption and scattering

out of the beam). If no emission occurs, the change in the

specific intensity Iv of a beam traveling a distance ds

through a medium of density p is given by

d1\) = 'Kv p Iv ds , (A‘3)

where Kv is the mass absorption coefficient. The corre-

sponding change in energy is

dE" = -I K 9 ds d0 da cose dm dt . (A—4)
v v 0

But p ds da cose = dm, thus

dE'v = jv dv p ds da cose dw dt . (A-5)

The change in energy in the beam allowing for emission and

absorption is then

dlvdvda case dwdt = (jV-KvIv)p dvdsda c050 dwdt , (A-6)

or equivalently

(4-7)

this being the general expression of the equation of trans-

fer.

Let us consider now a frequency V0 corresponding to

the transition j + i in a given atom. The mass absorption

coefficient KV will be a sharply peaked function with its

maximum at the frequency corresponding to the line center
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v0. The line opacity in the rest frame of the material is

k = p K , (A-8)

and the integrated line opacity

Riff) = IO kvfi?) d0. (A-9)

The normalized profile function is defined by

, k (1*)

dIr,v) = X g . (A-10)

k,(r)

 

If the material that is absorbing and emitting is

moving at high velocities with respect to the observer, we

have to include the effect of the velocity field on the

frequency. Different parts of the material will see the

same photon at different frequencies. The normalized pro-

file will now depend on the direction 0. Considering the

Doppler effect to lowest order in v/c

¢(¥,fi,v) = (mi, \7 - 3’59}; - em) . (A-ll)

Due to the sharpness of the absorption profile, this shift

in frequency can produce a substantial change in the opti-

cal depth along the ray path in a moving atmosphere.

We can now write the transfer equation as

A

n-VI,(?.3) = p m?) - m?) 1,623) , (A-12)
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\) A A

Con-I(¥))[S(?)-IV(?.n)]. (71-13)
 

A +A + +

n-VIv(r,n) - k£(r) ¢(r,v-

where the source function 8 is defined as
 

° + N (+ A
S(r) = J\)(r) = + 2 r) 21+ , (71-14)

Kv(r) N1(r) B12 - N2(r) B21

  

where N2(;) and Nl(f) are the number density of atoms in

the upper and lower level respectively of the transition we

are con51der1ng, and A21, B21, and B12 are the E1nste1n co-

efficients.

If T is a characteristic temperature in the atmo-

sphere, we can define a typical Doppler velocity

2kT ‘
Vth = [T]I’ (A'lS)

and a Doppler shift

0 V
_ 0 th -A0 _ _—77__’ . (A 16)

Normalizing with this Doppler shift our frequency, referred

to the line center, we obtain the dimensionless variable

x = ————° , (A-17)

and the line profile
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76.x) = —__—l— epr-xZ/aZIrII , (A—18)

/n S(r)

where

v (T)

Mr) = -t—I‘:—-— - (Ix-19)

Vth

Using Vth as the unit for velocities,

do?) = (I) . (II-20)

th

<
~
I

 

<
1

the equation of transfer becomes

fi-v1x(¥,fi) = kg ¢(f,x-fi-fi(f))[8(f) - Ix] . (A-21)

Notice that

X' = X-fi-fi(?) = [v - v - v (A-ZZ)
J;

2

o 0 A0

is the frequency seen by the material in the co-moving

frame, measured from the line center in units of the ther-

mal width. Using x' as independent variable instead of x,

the mathematical identity for the gradient becomes

  

3
31 A A -+ BI

“ A A l x' 11° Bu x'
n-VI (I n) - n-[ 2 H‘ e - (2 H‘ -—-) I

, C O 3 O

x J=1 J r1 3 J J r1 3X'

+ BIX

= n-VI , - Q(r,n) , (A-23) 
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with

(I A) - I :13- 33 A-24)
Q r,n ' h. 3r_ 1 I

J J J

and

_ 3x 2 3y 2 32 2 I .

hj _ [(ar. + (31.) + (31.) ] ' (A 25)

J J

In spherical coordinates, and with 0 = u(r) er

5% = u 66 , 5% = u sine e¢ , 5% = u' er , (A-26)

A 2 2 2 u 2 2

Q(r,n) ‘ n U'+ne % + n¢ ; = u U' + (l-u )% . (A-27)

being hr = l, h6 = r, h¢ = r sin 9, and nr = u. The gra-

dient, keeping x' constant is:

A A BI , 2 I 31

. - X - (l-u ) x'

n VIx,(r,n) — U 3r r 80

31 , 2 81

_ (l-u ) X' -

0 3r + r 3p ' (A 28)

Collecting our results together
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. = __5_ (1-u ) x'

n VIX(r,n) N Br + r Bu

 

aI ,

“IUZU'(T)+(l-u2)%l§;)f— , (H9)

and finally

BI 2 81 , 2 2 u 81X,

'I u'(r)+(l-u );I§§T— =
 

C

“—r

k2 ¢(r, v - 7? n-v(r))[S(r) - Iv(r,0)] . (A-30)



APPENDIX B

To solve equation (II—40) we approximated it by a sys-

tem of linear equations in the n unknowns S(rl), S(rz),

., S(rn), where

r1 = rC + (1-l)(rm - rn)/(n-l) . (B-l)

For each r = r1 we obtain an integral equation that we dis-

cretize, substituting for each integral a sum, obtaining an

equation of the form

n

Z1 aij S(rj) = H(ri) IC + €B(Ti)/(1 - e) . (B-2)

To obtain the weights aij we performed the integrals over z

using trapezoidal rule, dividing the interval of integra—

tion in 250 steps. Given now the point (r,z) there is a

constant vZ curve that passes through that point. ~Once

this curve is determined we must find its other intersec-

tion with the p = constant line, where p = (r2-22)I. This

new intersection will be at r2, and r2 is computed from

equation (II-22) with p = —(r22 - p2)I/r2. In obtaining r2

we must solve a cubic equation in the L = case, and a

N
l
l
—
I

quadratic equation in the 2 = 1 case.
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line of sight velocity is determined by

reg 2 re2 22

z = Vo £+l = vo 2+1 ’ (B-B)
r r

2

impact parameter is

= (r2 - ZZ)I = (r22 - 2221i . (B-4)

se two equations we obtain

r
2 _ 22 = r22 _ (_2)2(£+1) Z2 . (B-S)

r

= 1 case, taking u = (rZ/r)2, (B-5) reduces to

z 2 2 z 2 _ _

;) U ' U + 1 ‘ I?) ‘ 0 9 (B 6)

utions u = 1 and

= (g)2 - 1 . (B-7)

= % case, with w = rZ/r, equation (B-S) becomes

17:.)2 W3 - w2 + 1 - ($2 = 0 . (B-8)

ow that w = 1 (known intersection) is a solution,

educe (B-8) to a quadratic equation. The positive



 

 
kn— -——_.-
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w = I ((g)2 - I + I(§)2-IIiI(§)2+inI . (13-9)

Once r2 was found, we determine the two "zones" that

comprise this second intersection, i.e. rk < r2 < rk+1. If

we are solving the equation corresponding to r = ri, we

then have contributions to the terms aik’ and a1 k+l’ that

are determined by assigning linear weights depending on how

close r2 is to the zones rk and rk+1.

In the disconnected case, all terms in equation

(II-40) containing a quantity subscripted 2 are discarded,

then aij becomes diagonal, and the surviving terms are

actually only integrals over 0 = -z/r at fixed r; hence no

interpolation procedure is needed. The trapezoidal rule

with 100 steps was used.

We constructed the aij matrix a row at a time, and at

the same time corresponding coefficients for equations

(II-51) and (II-52) were computed and stored, later to be

folded into the vector of S values, after it is found. A

standard IMSL routine, LEQTZF, was used to solve the system

of equations. Occasionally, fluctuations were encountered

in S(r) and a(r) due to finite zoning, and these decreased

slowly but steadily as the zoning was refined.



APPENDIX C

In the disconnected approximation, equation (II-43)

yields

2

EB I
I‘ e

S(r)[—1—E_:—E + 71; I amaz] = LE + .251,— I G(r)dz , (C-1)

-1‘ -I‘

 

where C(T) is defined in equation (II-38) and r is evalu-

ated at r, with direction cosine u, given by u = -z/r. If

r << 1, G = l and the integrals are trivial, leading to

 
€ _ e Ze + r

SIT)I1_€ + 1] - ITE B + Ic(__7F__) , (C'Z)

or simply

S(r) = eB(r) + IC W(r)(l - a) , (C-3)

where W(r) is the dilution factor given by (II~46). If

T >> 1, 0(1) 2 T-1 = Tr-l 2-1 |l-uz(£+l)I, (see equation

II-22). In this case
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B(r) = 1’ Ir “(I'dz = 1 I1 II-u2(z+1)ldu =
.2—1: ‘I‘ ZlTr J_1

1 {I-(MIYIr [ 2(2+1) 11d +I(2+1)—I [1 2(I+1)]d +2———- u - u 'u u

2Tr J-1 -(g+1)'I

1 2
I ,, [u (z+1)-11du}. (c-4)

(2+1)

Carrying out the integration gives:

B(r) = 1 [§3 (1 - 3L - 1 + 3 (C-5)
Err 3 83 S ’

where S = (£+1)I. Defining pc = rC/r, the other integral

is

- - 2 I
1 I (1 MC )

22.131. J_1

Il-uz(2+1)Idu . (C-6)

If r/rC > [(2+l)/L]I, the integral becomes

2 I

 

 

 

277 I (l-UC ) [02(£+1)-1Idu =

r J-1

{7;1 II-(I-uC213/2+(I-ucz)i-II x 75:; . (c-7)

For “c small, it is approximately

3%; NC2 = 4A. (2912. (c-8)

Combining equations (C-l), (C-5), and (C-8), we obtain for
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T >> 1 and r >> rC

    

 

 

 

2

1.177 1 r B . 1

S[1fe + r 1 ”'E?‘ (E +'1.€-e If g = 7 (C'g)
I‘ 1‘ I‘

and

r 2

8 0.6095 ~ 1 c 8B . = _
Slim + T] — 4Tr r2 + 1_€ , 1f 2, 1. (C 10)

We can obtain an approximate formula for the source

function at the surface (r = rc), due to the fact that

 

  

ze = O and the integral in the right hand side of equation

(C-l) is just B(r)/2. We have then for r = rC

e 1 177 ~ 1.177 SE = 1 _

Sc[l-e + Tr ] ‘ ‘7?;‘ + 1 ’ If g 7 ’ (C 11)

and

8 0.6095 N 0.6095 eB . _ _

Sc[TTE*—?;*1——2—§‘—*1-e’1f“'l (C12)
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