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ABSTRACT

THE VALUE OF IMPERFECT SAMPLE SEPARATION INFORMATION

IN SWITCHING REGRESSION MODELS

By

Edwina A. Masson

The purpose of this study is to determine the value,

in terms of efficiency gains, of using imperfect sample se-

paration information in switching regression models. The

imperfect information appears in the model as a regime clas-

sification, which is correct only with some probability.

The importance of this study lies in the fact that knowledge

of improvements in the efficiency of parameter estimation

can guide one in determining whether to use sample separation

information, even if it is unreliable.

We determine the value of sample separation informa-

tion by comparing the asymptotic variances of the parameter

estimates, under different assumptions about the available

information. These assumptions range from perfect sample

separation information, at the one extreme, to no such infor-

mation whatever, at the other extreme. The asymptotic var-

iances of the parameter estimates are obtained from the rele-

vant information matrices, which are calculated by simulation

over a very large sample size.

Among our findings, the following are most important.

(1) There are efficiency gains when using imperfect informa-

tion as compared to no information at all, and these can be
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substantial in some cases. (2) Efficiency gains when using

imperfect sample separation information are greatest when

such information is highly reliable; and when the samples

are difficult to disentangle from each other. (3) There

are additional efficiency gains when the switching probabi-

lities are modelled as probit functions of the explanatory

variables. These gains occur in cases when they are most

needed; specifically, when the samples are hardly distinct

from each other, and when the imperfect sample separation

information is not very informative.



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my

adviser, Professor Peter Schmidt, for all the guidance and

encouragement he gave me throughout the course of this thesis.

He was always available with helpful suggestions and was very

patient with me, particularly when the thesis problem had

not yet been explicitly defined. I am also grateful to the

other members of my dissertation committee -- Professors

Christine Amsler, T.C. Anant, and Stephen Martin.

Most of all, I want to thank my family, especially my

parents and my husband, for their support and encouragement

during my years of study at Michigan State.

11



LIST CF

CHAPTER

ONE

TWO

THREE

FOUR

TABLES .......................................... v

Page

INTRODUCTION .................................... l

1.1 Definition of the Problem .................. 1

1.2 Formal Discussion of Switching

Regression Models .......................... 3

1.3 Review of the Literature .................. 12

1.“ Plan of the Study ......................... 20

THE CASE OF CONSTANT REGIME

CLASSIFICATION PROBABILITIES ................... 23

2.1 The Model ................................. 23

2.2 Derivation of Asymptotic Variances ........ 26

2.3 The Value of Imperfect Information ........ 32

2.u Summary ................................... 41

THE CASE OF NON-CONSTANT REGIME

CLASSIFICATION PROBABILITIES ................... U3

. 3.1 Introduction .............................. A3

3.2 The Model ................................. M5

3.3 Derivation of Asymptotic Variances ........ A7

3.A The Value of Imperfect Information ........ 53

3.5 Summary ................................... 72

THE CASE OF NON-CONSTANT REGIME

CLASSIFICATION PROBABILITIES AND NON-CONSTANT

SWITCHING PROBABILITIES ........................ 7H

h.l Introduction .............................. 7H

TABLE OF CONTENTS

111



iv

CHAPTER Page

”.2 The Model ................................. 76

H.3 Derivation of Asymptotic Variances ........ 79

4.A The Value of Imperfect Information ........ 8H

“.5 summary .0.000.00.0000...OOOOOOOOOOOOOOOOO101

FIVE COtJCLUSIONS I.O...OOOOOOOOOOOOOOIOOOO0.0.0.0... 101‘

APPENDIX A. The Second Derivative Components

of the Information Matrix in the

Case of Non-Constant Classification

Probabilities ............................ 111

APPENDIX B. The Second Derivative Components

of the Information Matrix in the

Case of Non—Constant Classification

Probabilities and Non-Constant

Switching Probabilities .................. 117

BIBLIOGRAPHY 0.0.0.0...OOOOOOOOOOOCOOOOOOOOOO00.0.00... l2“



Table

LIST OF TABLES

Tables on Ratios of Asymptotic Variances

Page

Varying p11 and pm when ,ul 0, [.42 = 2,

61. 62.1, )..5 .....0.................... 35

Varying [.12 when [11 - 0, C1 = 62 . 1,

I..5’ p11.p00..8 .C.................OCOCOC 38

Varying X when Iul I 0, p2 - 2,

C1. (281’ pllgpoo- .8 0.0000000000000000. 39

Varying 6'2 when [Ml . 0, [J2 - 2, 6' = l,
1

k - .5. p11 - p00 - .8 ......................... no

Varying h ($2 - h Fl) when F1 - (1, 1)‘,

61 - 62 - 1, >.= .5, ‘6- (1, -1, 1, 1)‘ 57

Varying €22 when fi- (0, 0, 0, pay,

(1 - 62 . 1, ks .5, X- (1, -1, 1, 1)' 59

Varying $21 when F- (0, 0, F21, O)‘, i

61 - 62 - 1, A: .5, X- (1, -1, 1, 1)‘ 60

Varying ‘60 when 6- (O, O, 2, 0)’,

61 - 62 - 1, >.- .5, 151 = (1, -1)' 614

Varying X12 and X02 when fi- (0, O, 2, 0)‘,

(1— 62-1, A- .5,

X - (1, X12, -1, onw 67



Table

10

11

12

13

14

15

16

vi

Page

Varying ‘6 (X1 = X0) when @= (0. 0. 2. 0)‘.

(1-C2=1,>\-.5 ......................... 69

Comparison of F(x"61) - F(x'KO) = .8

and p11 = p00 = .8 when §= (O, O, 2, O)‘,

61=62=1,)\=.5 ......................... 7o

Varying $21 when §= (O, 0, $21, 0)’,

Cl - (2 -= 1, Q= (o, 0)'.

K= (l, -1, 1, 1)‘ ............................ 88

Varying $21 when $= (O, 0, $21, 0)’,

(1 = 62 = 1, Q= (1, -1)',

K= (1, -1, 1, 1)' ............................ 9o

Varying ‘6 (X1 #5 KO) when 6'- (0, 0, 2: O)‘,

(1" €2=1, Q=(o,0)' .................... 9L:

Varying ‘5 (X1 1‘ KO) when 38 (O, O, 2, O)‘,

‘1‘ (2=1, Q=(1,-1)' ................... 96

Varying Q when F = (O, O, 2, O)‘,

€1= Q2=1, X= (1,-1,1,1)' ............. 99



CHAPTER ONE

INTRODUCTION

1.1 Definition of the Problem

Switching regression models, normal mixture models,

and disequilibrium models are systems characterized by dis-

continuous shifts in regression regimes at unknown points in

the data series. The most common formulation hypothesizes

that the system may switch numerous times back and forth

between two particular regimes, or to successive new regimes.

For the sake of simplicity, we shall restrict our discussion

to the case in which it is known a priori that the number of

regimes is two. These models are primarily designed to deal

with samples in which sample separation information is miss-

ing. That is, we do not know whether an observed random var-

iable is generated by one regime (which corresponds to a

distinct regression model) or by another regime (which cor-

responds to another regression model).

An interesting issue here is the loss, measured in

terms of the efficiency of parameter estimation, when sample

separation (alternatively, regime classification) is unknown

or is not observed. A number of papers (Goldfeld and Quandt,

1975; Kiefer, 1978; Schmidt, 1981) have addressed this ques-

tion in the context of disequilibrium models and normal mix-

ture models. All these studies found that sample separation

information does have a positive value, in that estimates

derived are more efficient when there is a priori knowledge



as to which regime each observation belongs to. This con-

firms the need to obtain reliable information about sample

separation, when it is available.

The purpose of this paper is to extend the issue one

more step. Sample separation information may exist, but may

not be entirely reliable. Such a situation may conceivably

arise in models with outliers, or when the available data is

simply not entirely accurate. By how much is efficiency im-

proved when imperfect regime classification information is

used? This paper attempts to answer that question, and is

therefore, an extension of Schmidt's paper, with the addi-

tional use of imperfect sample separation information. We

will address the issue strictly in the context of switching

regression models.

The importance of this extension lies in the fact that

knowledge of improvements in efficiency of parameter estima-

tion can guide one in deciding whether to use sample separa-

tion information, even if it is known that such information

is imperfect or unreliable. In addition, even if imperfect

information is not readily available, knowledge of efficien-

cy gains will aid in determining whether such additional in-

formation is worth obtaining at all.

Before we proceed any further, a formal discussion of

switching regression models is warranted at this point.



1.2 Formal Discussion of Switching Regression Models

The simplest possible formulation is a normal mixture

model (actually, a switching regression model with only a

constant term), where a sample of observations y1, y2,...,

yn is given on a random variable y. It is known that nature

chooses between regimes with probabilities A and 1 - ”A.

That is,

yrx/ N( pl, (12) with probability A (1.1)

(regime 1)

yrv N( “2, (22) with probability (1 - A)

(regime 2)

where the parameters #1, #5, C12, 622, and A are unknown.

A more complicated case arises in the switching regression

model in which observations are given on a random variable y

and on a vector of nonstochastic regressors x. Nature is as-

sumed to generate each yJ from xJ by regime l with probabili-

ty A , and by regime 2 with probability (1 - A ). Therefore,

we have:

= ' IyJ x13 51 + ulj with probability A (1.2)

(regime 1)

8 ' .-yJ x23 52 + 112.1 with probability (1 A)

(regime 2)

2 2
where um!V N(0, (1 ), “23'” N(O, 62 ), and the parameters

Fl, 82, 612, 622, and A are unknown. There are also so-

called disequilibrium models (which we will not discuss in

this paper), in the context of demand and supply equations.



Such models are characterized by a minimum condition, as in

qJ - minimum (DJ, SJ) for an ordinary demand-supply model,

where the observed quantity qJ is the smaller of demand and

supply. They are similar to switching regression models,

since observations can come from two regimes (supply or de-

mand equations), but the probability of an observation coming

from a given regime varies over observations.

In an economic context, applications of such models

are plentiful. Hamermesh (1970) used a switching regression

model to examine the determination of wage bargains from ob-

servations on wage changes, changes in the consumer price in-

dex and unemployment. The dependent variable is the wage

change, w, and he hypothesized that the effect of cost of

living changes, c, on wage changes is significantly positive

only when cost of living changes exceed some critical figure,

which has been selected a priori. There are two wage bargain

equations, each one corresponding to when E is either less

than or greater than and equal to this predetermined criti-

cal figure. This is a case where regime classification is

known.

Quandt and Ramsey (1978) re-estimated Hamermesh's mo-

del where there is no prior information as to the critical

value of 6 below and above which different regression regimes

are at work. They assumed that nature chooses between the two

regressions for any observation, by comparing 6 to a critical

value (known only to nature). If this critical value is F,

and the fraction of observations with c _<_ c- is equal to A ,



then nature chooses one regime with probability ?\, and the

other regime where c) '5' with probability (1 - A ). This is

a case of no sample separation information and the regimes

are unknown.

Lee and Porter (198A) used switching regression tech-

niques to model a supply function for a railroad cartel.

This supply function identifies periods in which firms are

behaving non-cooperatively as opposed to cooperatively, i.e.

whether price wars were occuring or not. The dependent var-

iable is the market price for grain, so that price wars with-

in the cartel shift the supply curve to signal reversions from

collusive (higher prices) to non-collusive (lower prices) be-

havior. They assumed that sample separation information was

available, though not perfectly reliable.

Examples of disequilibrium models can be found in the

watermelon market (Suits, 1955); the market for housing

starts (Fair and Jaffee, 1972); the market for chartered

banks' loans to business firms (Laffont and Garcia, 1977);

the U.S. labor market (Rosen and Quandt, 1978); and credit

rationing in international lending (Eaton and Gersovitz,

1980).

If information on sample separation is known for

switching regression models, then estimation of the parame-

ters in the respective regimes is straightforward and is done

by least squares. If information on sample separation is un-

known, then we are confronted with the problem of regime

classification, and estimation of the parameters is done by



either maximum likelihood, method of moments, moment genera-

ting function, or modified moment generating function. The

choice of the appropriate estimation technique, however, does

not concern us here, and so we will only provide a brief 0-

verview of the issues involved. A more detailed discussion

of the issues may be obtained from the references cited.

We shall restrict ourselves to the basic normal mix-

ture case of equation (1.1), since the extension to equation

(1.2) is fairly straightforward. It should, first of all,

be noted that parameters of finite mixtures of normal densi-

ties are identified, and that there exists no sufficient sta-

tistic for the parameters of a normal mixture (Quandt and

Ramsey, 1978).

Under the assumptions of (1.1), the probability densi-

ty function for yJ (J = l,...,n observations) is:

. 2 2
fJ f(yJ, M1, M2, 61 . 62 . A) (1.3)

hfl(yj) + (1 - )M‘ZUWJ)

  

 
 

2

= A exp [- (yJ - M1) :| +

2

J??? ‘1 2 61

2

(1-)\) exp [- (yj' M2)]

féTo'Z 2 «,2

f1(y3) and f2(yJ) are the normal probability density func-

tions for observations from regime 1 and regime 2, respec-

tively. The likelihood function for the unknown parameters is:



The natural procedure for estimating the parameters using ma-

ximum likelihood is to maximize the likelihood function with

respect to the parameters. This, however, runs into diffi-

culties since as either (1 or (2 goes to zero, f3 increas-

es without bound. It follows that the likelihood function L

is unbounded, and the unboundedness of the likelihood func-

tion means that any attempt to find a global maximum will

produce inconsistent estimates. To avoid this, it is possi-

ble to specify a priori knowledge of the ratio of the varian-

ces 6'12, (22 and to set (12 . h 622, or alternatively, to

specify that 522 2. h (12, where h is known (Goldfeld and

Quandt, 1975; Kiefer, 1978). Another problem with maximum

likelihood estimation is the potential singularity of the mat-

rix of second partials of the log likelihood function, which

is equivalent to a vanishing Jacobian for the set of normal

equations derived from the maximum likelihood approach

(Quandt and Ramsey, 1978; Hartley, 1978).

Kiefer (1978) argues that although the likelihood

function is known to be unbounded at some points on the edge

of the parameter space, the likelihood equations have a root

which is consistent and asymptotically normally distributed.

Therefore, computation of the maximum likelihood estimates

should attempt to find a local maximum in the interior of the

parameter space of the likelihood function. However, the at-

tainment of such a maximum may be difficult in practice so

that alternative estimators may need to be considered.

Quandt and Ramsey (1978) propose using either the



method of moments or the method of the sample moment genera-

ting function (MGF). Under the method of moments, the sample

mean is equated to the theoretical first moment of equation

(1.3) and the second, third, fourth and fifth sample moments

about the mean to the corresponding theoretical central mo-

ments (if there are five parameters). From this, we obtain

five equations from which it is possible to solve for consis-

tent estimates of the five parameters. However, if there are

K (where K '> 1) independent variables in the switching reg-

ression model (in the normal mixture model, K - 1), then the

number of parameters is 2K + 3. It follows that moments of

order even higher than five need to be employed, and the re-

sults are likely to be fairly unstable. While no estimates

of the sampling variances are provided by this technique, it

is well-known that, as a general rule, the sample variances

of higher-order moments are quite large (Kendall and Stuart,

1963). For these reasons, the MGF technique is preferred 0-

ver the method of moments as an estimating procedure.

The MGF method solves for the values of the parameters

by minimizing a sum of squared differences between the empi—

rical and theoretical values of the moment generating func—

tion. Define the following expression:

'é (1.14)I

'
I
N
-
o

(
N

Sn(o(, 9)

" 2

61:

u

1
'
4
4

-' 2

(zn(dt) - G(O, 4t))

where:



33 = (El, arm, ET)

... 1 M

Et ‘ H 12 ejt

En(°(t) - gijzziexp (dtyJ)

C(O. dt) = 7\exp [Mldt + .(t2 612] +

2

2 2
(1 - A) exp [fledt + ott 0'2]

___2__

t=1’ooo,T;J=1’ooo,n

T different values of 0‘ are picked (where T Z the number of

parameters, i.e. 5 in this case) and Sn(o(, O) is minimized

between the T estimated MGF values and their theoretical coun-

terparts. The «it (t = l,...,T) are chosen so as to ensure

that the corresponding normal equations derived from the mi-

nimization of Sn(<K, 9) with respect to 0 are nonsingular.

The solution to the five normal equations defines the MGF es-

timate, which is consistent and asymptotically normally dis-

tributed. In choosing cit, the values which need to be a-

voided are those which are either very close to zero or those

which are large enough so that G(0, 0(t) becomes computation-

ally intractable.

Schmidt (1982) improves on this method by postulating

a modified MGF estimator, which is also consistent and where

a generalized sum of squares is minimized rather than an or-

dinary sum of squares. The criterion in (1.“) needs to be
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re-written as:

Sn'(o(, e) - é'fl'lé (1.5)

where:

é'=(€1.é2.....éT)
- 1.,

et "Eff; ejt

fist B G(0, ‘15 + cit) - 6(0, 0(8)G(O, e(t)

s,t £1,000’T; J =1,000’n

The matrix Sl.(of order T x T) has its stth element defined

as above. It comes from the covariance matrix of 0, and is

proportional to the covariance matrix of the Et'

The rationale behind this approach is that the Git

(t = l,...,T) are correlated and have unequal variances, so

that a generalized least squares criterion should be minimized,

by analogy to the ordinary least squares and generalized

least squares regression. When T is equal to the number of

parameters (i.e. 5), the distinction between (1.4) and (1.5)

does not apply because either sum of squares is minimized at

zero, so that either minimization yields the same estimates.

However, when T is greater than five, the estimates obtained

by minimizing the generalized sum of squares are asymptotical-

ly efficient relative to those obtained by minimizing the sim-

ple sum of squares.

In comparison, the asymptotic covariance matrix of the

MGF estimator can be expressed as:

*Pl = (A'A)'1A'_(l Maura)"l
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where A is the T x 5 matrix defined by

A 36(0, ok

89.;

it ' .1)

The asymptotic covariance matrix of the modified MGF estima-

tor is of the form

‘P2 = (A'fl 'lA)'1

where the matrix A is defined as above. When T is equal to

five, therefore,

3 g -1 "1

‘Pl W2 A Il.(A)

so that the modified MGF and MGF estimators are identical.

However, when T is greater than five, the difference (\Pl -

W2) is a positive semi-definite matrix, which implies that

the modified MGF estimator is asymptotically efficient rela—

tive to the MGF estimator.

But, there still remains the problem of the appropriate

choice of T (since asymptotically, more values are preferable

to less). The values of °(t (t 8 l,...,T), given the choice

of T, may be addressed by the asymptotic covariance matrix

of the resulting estimates. A useful criterion would be to

choose the o('s which minimize some measure of the size of the

asymptotic covariance matrix, i.e. its determinant. In addi-

tion, the O‘t values need to be small and need to assume dif-

ferent values -- this latter requirement puts some limit on

how small they all can be.
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1.3 Review of the Literature

Let us now turn our attention to a survey of articles

which are related to this one. It has been previously stat-

ed that some Studies have tried to evaluate the value of sam-

ple separation information in disequilibrium models and nor-

mal mixture models.

Goldfeld and Quandt (1975) worked on a disequilibrium

model of the watermelon market (derived from Suits, 1955)

and did a small sample Monte Carlo experiment based on a set

of estimated parameter values. Their model is of the form:

QJ . f(predetermined variables)

XJ 8 g(PJ, Q1, predetermined variables)

PJ - h(YJ, predetermined variables)

YJ - minimum (QJ, X3)

where QJ’ XJ, PJ and YJ are equal to the crop of watermelons,

the ex-ante or intended harvest, the price, and the actual

harvest of watermelons, respectively. Two specifications

were postulated -- first, where QJ is not observed and sample

separation information is therefore unknown, and second, where

QJ is observed and sample separation is known.

For their experiments, parameter values were chosen so

as to reproduce approximately the levels of the dependent var-

iables observed in the actual data. Since the first specifi-

cation has less information than the second, some parameter

values in the former were varied to examine the effect of the

variations on the value of additional information, but the

fraction of sample points was kept constant (i.e. for
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XJ 3.03 and for XJ 4 QJ, which determines regime classifica-

tion) by a compensating variation in another parameter. 0-

ver a number of cases, Goldfeld and Quandt derived the root

mean-squared error ratios for the parameters (where the mean-

squared error ratios can be interpreted as consistent esti-

mates of the variance ratios) when sample separation was

known relative to when it was unknown. All these ratios were

less than 1.0, although the ratios were naturally larger for

the parameters of the P‘1 equation where QJ does not come in.

A larger ratio simply means that the effect of not knowing

sample separation information is minimal on the efficiency of

the parameter estimates. 0n the whole though, knowledge of

sample separation leads to smaller variances, implying that

using data on QJ has a positive value in terms of more effi-

cient estimates.

When there is no information on QJ’ then the coeffi-

cient of QJ in the XJ equation is zero, or the variable Just

drops out. However, when this coefficient should not be ze-

ro (meaning there is a significant relationship between QJ

and X3), then there is the additional complication of the un—

observable QJ entering the XJ equation. The larger the abso-

lute value of this coefficient, then the more valuable is in-

formation on the QJ data for estimating the XJ equation. It

follows that the larger this coefficient, then the root mean-

squared errors for the parameters in the first specification

with no sample separation information also increase. Experi-

ments were conducted in this regard, where the coefficient
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of QJ was allowed to vary, and the a priori expectations

were confirmed. Therefore, the superiority of the second

specification rises with the value of this coefficient, since

ratios of the root mean-squared errors when sample separation

is known relative to when it is unknown, decline. These ex-

periments show that efficiencies of the estimates are im-

proved when additional information is increasingly provided

to the model.

Kiefer (1979) extended the Goldfeld and Quandt results

by using a large sample for a normal mixture model. The pro-

cedure involves measuring the asymptotic precision of esti-

mates based on a marginal density (limited information esti-

mation) and comparing it with the asymptotic precision of

those based on a Joint density (full information estimation).

He uses the dummy variable DJ to denote regime classification

information, so that the DJ variable indicates the regime

which generated the 3th observation. Therefore, the DJ var-

iable only appears in the full information Joint density func-

tion, which can be written as:

f(yJ, DJ; 9) = A D3f1(y3) + (1 - >~)(1 - DJ)f2(yJ)

where G is the vector of parameters.

The precision of a maximum likelihood estimate based

on the Joint and marginal density is defined, respectively,

as (the subscript J was dropped for simplicity):

-E321n11y,D) and -E321nfm

3939' ' 393w
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By definition, ln f(y, D) - 1n f(y) + 1n f(D/y), so that it

follows that:

-E 321nr(y, D) = -E 321nr(y)

3939' 3939'

- E 92 ln f(D/y)

3999:

The precision of the maximum likelihood estimator based on

the Joint density is equal to the precision of the maximum

likelihood estimator based on the marginal density (here,

f(y) corresponds to the formulation in equation (1.3)), Plus

a positive definite matrix. It follows that the precision of

the estimates based on the former is always greater than that

for the latter. Estimates are naturally more precise when

there is more information.

To confirm this relationship, Monte Carlo experiments

were conducted on a normal mixture model where the only para-

meters being estimated are the means. Precision ratios were

then taken for the full information and limited information

models and converted into asymptotic variance ratios (to fa-

cilitate a comparison with the Goldfeld and Quandt results)

by inversion of the information matrix. Note that the pre-

cisions of the estimates are derived from the information mat-

rix, and that the inverse of the information matrix is a con-

sistent estimate of the asymptotic variance-covariance matrix

of the parameter estimates.

Two types of experiments were conducted -- first, when

only one mean had to be estimated, and second, when two mean
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values had to be estimated. Given fixed variances and the

mixing parameter, the values of the means were allowed to

vary. Over a series of cases, the asymptotic variance ra-

tios for regime known relative to regime unknown were compu-

ted, and were found to be all less than 1.0, consistent with

the results of Goldfeld and Quandt. Efficiency loss from u-

sing the marginal rather than the Joint density could be con-

siderable.

When the means of the samples are close together, ra-

tios tend to be small, so the effects of implicit misclassi-

fication are serious and estimates suffer. As the means be-

come farther apart, the probability of misclassification be-

comes so small, so that estimates become almost as efficient

(the ratios approach a value of 1.0) as estimates based on

known sample separation.

These numbers are generally a little higher than those

obtained by Goldfeld and Quandt, indicating that the value of

information in more complicated models (i.e. disequilibrium

models) is greater than that in simpler models, as seems

plausible (although this must be qualified since the Gold-

feld and Quandt results are for small samples). At any rate,

these results supplement the Monte Carlo evidence of the ear-

lier study by showing that efficiency losses from not observ-

ing sample separation, found in small samples by Goldfeld and

Quandt, persist and can be substantial asymptotically.

In his work, though, Kiefer assumed that the variances

and the mixing parameter are known and only the means in the



17

normal mixture model have to be estimated. Schmidt (1981)

extended Kiefer's results by also working on a normal mix-

ture model and he derived asymptotic variance ratios (again,

from the inverse of the information matrix), this time as-

suming that all parameters have to be estimated. The ra-

tionale behind this is that Kiefer's results understate the

true value of sample separation information for the following

reason. In the unknown regime case, the information matrix

is not diagonal and estimates of the means are improved by

knowledge of the variances and the mixing parameter, so that

sample separation information is less valuable when some of

the parameters are known than when all the parameters have to

be estimated.

A series of experiments were conducted, each done with

100,000 replications. The values of the parameters were va-

ried in each experiment and asymptotic variance ratios of re-

gime unknown relative to regime known were derived. All the

ratios are greater than 1.0, so the importance of having sam-

ple separation information is again verified. Among the con-

clusions in this study are the following: (1) the value of

sample separation information depends strongly on the natural

separation of the two samples, so that as the two distribu-

tions become far apart, the value of sample separation in—

formation goes to zero (ratios go to 1.0); (2) the value of

sample separation information is higher for the parameters of

the regime which is sampled with the lower probability; and

(3) the value of sample separation information is higher
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when all the parameters have to be estimated, which is why

the results here show a larger value of information than in

Kiefer's study, where only the means had to be estimated.

Lee and Porter (198A) also tried to evaluate the im-

portance of sample separation information in a switching reg-

ression model. Their econometric model is different from the

usual switching models in the literature in that there is ad-

ditional imperfect sample separation information available

and this is used as the regime indicator. Lee and Porter

worked on a two-equation model with an application to cartel

stability using a sample size of 328.

The model is composed of demand and supply functions

for a railroad cartel, where an attempt is made to identify

periods in which firms are behaving collusively, as opposed

to non-cooperatively. These different behavioral rules are

reflected by differing supply functions, where the supply

curve can be drawn from one of two possible regimes. The car-

tel arrangements take the form of market share allotments.

Firms then set their rates individually and the actual mar—

ket share of any particular firm would depend on both the

prices charged by all firms as well as on unpredictable sto-

chastic forces. But the index of listed prices (which is

the price variable in the model) is imperfect, so that mem-

ber firms could not know with certainty whether secret price

cutting was occuring. It is in this context that an imper-

fect indicator is needed to determine whether the observed

price wars represent a switch from collusive to non-cooperative
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behavior.

Their model consists of two equations:

PJ - f(IJ, predetermined variables)

Q3 ' g(PJ, predetermined variables)

where PJ, Q3, and IJ are, respectively, the price of grain;

the total quantity of grain shipped; and a latent dichotomous

variable which equals 1, when the industry is in a coopera-

tive regime, and equals 0, otherwise. With no reliable in-

formation on IJ, it is measured possibly with error by W3, a

regime classification indicator. WJ - 1, when a trade maga-

zine reports collusion; and WJ = 0, when this same trade mag-

azine reports that a price war is occuring. This data series

may not be accurate at all, but in the absence of any other

information, this extra information may still help to reduce

the estimated standard errors. After all, a little informa-

tion (even if not entirely accurate) may be better than not

having any information at all to guide in determining regime

classification.

Their model was estimated twice -- first, using the

partial information provided by the WJ’ and second, using no

information on WJ. The estimated standard errors are smaller

for the former compared to the latter. However, for this

particular data set, the gains in asymptotic efficiency from

using the imperfect indicator are small due to the clear se-

paration of the two underlying distributions. This is evident

from the fact that the two distributions of ln P3 are far
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apart, since the difference of the means is 0.48 and the var-

iance is only 0.01. This result complements the Monte Carlo

simulation results of Kiefer and Schmidt that the value of

any information on regime classification becomes smaller

(ratios of asymptotic variances approach 1.0) as the distri-

butions become clearly distinct.

1.“ Plan of the Study
 

Our obJective in this paper is to determine the value,

in terms of efficiency gains, of using imperfect sample se—

paration information, given different assumptions about the

parameters and different specifications of switching regres-

sion models.

We will integrate into our study the framework of Lee

and Porter regarding the use of imperfect sample separation

information in switching regression models. We will also

use the approach of Schmidt (1981) where all the parameters

in the model have to be estimated, so as not to understate

the true value of imperfect sample separation information.

Similar to Kiefer's and Schmidt's procedures, we will con-

duct several experiments over a number of scenarios with dif-

ferent parameter values, each time deriving ratios of asymp-

totic variances, where these variances can be obtained from

the corresponding information matrices. Asymptotic variance

ratios will be derived twice for each experiment -- the first,

showing the loss in efficiency when we have no sample separa-

tion information at all relative to full information, and the
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second, showing the loss in efficiency when we have partial

sample separation information (provided by an imperfect or

unreliable indicator) relative to full information. A com-

parison of both results will show the extent of the advan-

tages of using information even if it is inaccurate, as com-

pared to using no regime classification information at all.

In the Lee and Porter paper, the imperfect information

indicator WJ was incorporated into the switching regression

model through the use of classification probabilities --

that is, the probabilities that the regime classification is

right or wrong, given the true regime that the observation

really belongs to. In their model, these classification prob-

abilities were assumed to be constant for all observations.

In Chapter 2, we will deal with the simplest formula-

tion of a switching regression model -- that of the normal

mixture model. We will adopt Lee and Porter's approach of

using constant probabilities of correct regime classification

by our imperfect sample separation information.

In Chapter 3, we extend the previous chapter to the

case where we have two explanatory variables in our switch—

ing regression model. In addition, we consider the case when

the probabilities of regime classification are non-constant,

and in fact, can be modelled as probit functions of the.e-

xogenous variables.

In Chapter A, we keep the assumptions of the previous

chapter but we also postulate that the mixing parameter is

non-constant, so that we have varying switching probabilities.
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The mixing parameter will also be modelled as a probit func-

tion of the explanatory variables.

Chapter 5 summarizes the findings of the preceding

three chapters and presents the conclusions we have derived

based on the series of experiments conducted.



CHAPTER TWO
 

THE CASE OF CONSTANT

REGIME CLASSIFICATION PROBABILITIES

2.1 The Model
 

The first specification which we consider is the sim-

ple normal mixture model, in which a random variable yJ is

drawn from N( M1, 612) with probability A , and from

N(742, 622) with probability (1 - A.). It can also be ex-

pressed as a switching regression model, where the only ex-

planatory variable corresponds to the constant term. There-

fore, we have the following:

yJ I x1.j fil + ulJ with probability A (2.1)

(regime l)

yJ -- x2J $2 + U23 with probability (1 - A)

(regime 2)

For the normal mixture case, le I x2J I l, and 31 I “1

and 6 2 I (‘2 are scalars. We assume that 1.11:} and uz.j are

independently distributed, where “1.1"“ 11(0, (12) and

uZJN MO, 622). The vector of parameters 9' I (,ul, M2,

(12, (22, A ) needs to be estimated from a sample of ob-

servations on yd. There are n observations with n1 from re-

gime i (i I 1,2; J I l,...,n).

Suppose that there is an observed dichotomous indica-

tor wJ for each J, which provides sample separation informa-

tion. In addition, for each observation J, we define a latent

dichotomous variable IJ where:

23
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IJ I 1 if yJ is generated from regime 1

IJ I 0 otherwise

Therefore, wJ is a measure of 13’ possibly with error. The

relationship between wJ and IJ can be described by the tran-

sition probability matrix given by:

 

 

wJ I 1 wJ I 0

I: ‘ 1 p11 p10

13 g 0 p01 p00

That is,

p11 = Pr0b(wd '3 l/IJ 3 1)

P01 = Prob(wJ = l/IJ = 0)

P10 = Prob(wJ I O/IJ I 1)

p00 . Prob(wJ = O/IJ = 0)

It follows that p10 I 1 — p11 and p00 I 1 - p01. Now, let

p = Prob(wj . 1). Since A = Prob(I 1) and (1 - A) I
J

Prob(IJ I 0), then:

p I Prob(I I 1)Prob(w I l/I 1) +

J

Prob(I

J

I 0)Prob(w

J

= l/I I O)

J J J

The density function f(yJ) for yJ when we have a mixture of

two normal distributions is given in equation (1.3) as:

f(yj) . Prob(IJ - 1)r1(y3) + (2.2)

Prob(IJ - °)f2(yd)
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f(yj) I >\fl(yJ) + (1 - A)f2(yJ)

When imperfect sample separation information using the ob-

served indicator, "3’ is incorporated into the model, then

the Joint density function for yJ and wJ is:

f(st wd) = fl(yJ)Pr°b(WJ: 1:] B 1) + (2-3)

f2(yJ)Prob(wJ, IJ . 0)

f2(yJ)(wJ (1 ' A )p01 +

(1 - wJ><1 - A )(1 - p01»

(1 - ) )f2(yJ)(WJP01 + (l - WJ)(1 ' 1301))

A 1E‘1(yJ)(wJp11 + (1 - wJ)(l - p11» +

(1 - A )f2(y3)(wj(1 - p00) + (1 - “3)1’00)

where:

- (y - )2
f (y ) I 1 exp J "i
i J :§——-

./21r C 2 g
i i

i I 1,2; J I l,...,n

The regime classification indicator wJ contains some

information on sample separation if p11 is not equal to p01.

When p11 I p01, or alternatively, when pll I l - p00’ then

the Prob(wJ/IJ) I Prob(wJ) and the Joint density function is:

My. WJ) I (Af1(yJ) + (1 - A)f2(y3)) x

(wJp + (1 - wJ)(1 - p))

so that the indicator wJ does not contain any information on
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sample separation. This is equivalent to having no informa-

tion at all, as in equation (2.2). This is, in fact, Schmidt's

model and also Kiefer's marginal density function (limited

information model). On the other hand, when p11 I l and

p01 I 0 (alternatively, p00 I 1), the indicator wJ provides

perfect sample separation information and the Joint density

function is expressed as:

f(st W3) ‘ )‘f1(yJ)WJ + (1 ‘ A )f2(yJ)(1 - WJ)

This is equivalent to Kiefer's Joint density or full informa-

tion model, where our W3 is his DJ, the indicator of perfect

information on regime classification.

2.2 Derivation of Asymptotic Variances
 

We adopt the approach of Schmidt here. When the re-

gime is known or when perfect sample separation information

is available, the asymptotic variances of frT( '31 - M1),

- A - A 2 2 - r 2 2
/n(#2- M2), Jn( (1 - 61 )g and /n( 62 - (2)81'8,

respectively:

 

2‘1 Band
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They are derived from the diagonal elements of the inverse

of the information matrices from the corresponding likeli-

hood functions of the respective known densities, f1(y3)

and f2(yJ). The terms A and (1 - A) appear in the above

expressions since they adJust for the correct sample size

in each regime (nl or n2), relative to the total number of

observations n. This follows from the implicit relationship

that nl I An and n2 I (l - A )n. A has a binomial distrib-

ution, so the asymptotic variance of /H( A - A) is

A(l- A).

When the regime is either completely unknown or is

partly known (due to the partial sample separation informa-

tion available), the asymptotic variances are derived in the

same manner. Therefore, the asymptotic variances of ./H(5 - 0)

come from the diagonal elements of the inverse of the corres-

ponding information matrices. That is, ./H(8 - O) approaches

the distribution specified by N (0, lim (i—3A-l) .

The Fisher information matrix is defined as:

3=-E[221nL]

399w

where:

t
I . f

L b‘zl J

In L I 15 In f

Stt J

When the regime is completely unknown, f corresponds to the

density function laid out in (2.2) as:
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0 is a (5 x 1) vector of parameters, defined by 0 I ([A1,

#2, (12, 622, A )’. When the regime is partly known, f

corresponds to the density function in (2.3):

f(yj. W3; 0) I A 1E‘1(y3)(wdpll + (1 - wJ)(1 - 1911)) +

(1 - A )f2(yJ)(wJp01 +

(1 - wJ)(l - p01))

0 is a (7 x 1) vector of parameters, defined by 0 I (‘51,

”2' 512’ ‘22, A ’ pll’ p01)"

The expected value of the expression that denotes the

information matrix was intractable analytically, so that we

calculate the information matrix instead by simulation tech-

1/
niques- using the following expansion:

3=_E£fl[a lnfj]
(2.1-l)

" 8959'

2

[44.2. '1 (fin-AM]l" rJ 8989' :37 39 30

The model we have here when there is no sample sepa-

ration information is actually Schmidt's model, so we do not

need to simulate the information matrix corresponding to the

density function of (2.2) since that was done in his work;

we will Just adopt his results. All we need to simulate is

 

l/From the definition of the information matrix, we

know that (1/n35) has a limit. We therefore simulate

lim (l/n 3) by calculating (1/n3) for some finite though

large n.
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the information matrix when we have imperfect sample separa-

tion information. In order to facilitate a comparison between

the results, we use Schmidt's approach in our experiments.

The information matrix was evaluated by a simulation

of 100,000 trials derived from a normal or Gaussian random

variable generator. For any set of values assigned to 0,

draws were made from the appropriate normal mixture distribu-

tion. The first and second derivatives were calculated in ac-

cordance with the expression in (2.4). The resulting 100,000

matrices were then averaged to obtain the information matrix,

and the asymptotic variances are the corresponding diagonal

elements of the inverse of the information matrix.

When we have imperfect sample separation information,

the expressions in (2.4) are laid out below, where f comes

from the density function defined by (2.3). The first deriv-

atives of f(y, w; 0) with respect to G are (we drop the sub-

script J for simplicity):

91' I AQl Bfl

aul 3M1

Br I (1 - A )<;22 312

3M2 8M2

2r .. A Q1 ”1

3612 3612

or = (l - A )Q2 312

""‘"2 2
K, 362

a: - lel - £262,

3A
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Dr -- Af1(w- (l-w))

3p11

91‘ . (1 - A)f2(w - (l -w))

3p01

where:

Q1 . Wpll + (1 - W)(l - p11)

02 = Wp01 + (1 - w)(1 - p01)

Bfi . f1 (y "' M1)

 

 

2*

2

Uri :- f1 [‘1 + (y " Mi) 1

61 J

The non-zero second derivatives of f(y, w; 0) with respect to

 

  

 

0 are:

2 2r
a r IAQ 3 1

3M2 1 3M2
1 1

2 2r
3 r -)\ol 3 1

2 2

3M1 3‘1. ”‘1 9‘1

Der -Ql 9f1

DMIDA 3A1

92f = A(w-(1-w))3f1

3“13911 ”‘1

2

32r=(l-A)QZ 9 f2

2 2
due 3M2
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32f I(1-A)Qz 321‘;

9.442 962? 374, 3622

32f I—QZ 3‘2

Buzay 3A2

32: =(1-A)(w-(1-w>>3_f_g_

3”231301 3"‘2

321' = A621 321‘1

N512)? emf)?

92: =Ql af1

BKIZEA -_SE:§

32f IA(w-(1-w))3f1

asleep“ 961

321‘ I(l—A)Q2 3212

3(622)2 maze)?

321‘ =-Q2 9‘2

96223A 962:

Bar I(1—A)(w-(1-w)) 3"2

9(223901 952

32: I(w-(1-w))f1

map11

921' I-(w-(l-w))f2

”2901

 

where:
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22 f1 . r, [-1 + (y - 7.92]

 

22f, . at, [(y- p1)2

 

   

M615)? 23615 251 2(1

r1[ 1 _(y-h1)2]

2&1; €16

921‘1 B Bfi (y-u1)_f1(Y-M1)

aw, as? 3612 of of

i=1,2

When there is no sample separation information, such

that regime is unknown, 0 is of dimension (5 x l) or (2K + 3)

x 1 where K is the total number of explanatory variables

(i.e. K I 1 in this case). It follows that 3 is of dimen-

sion (2K + 3) x (2K + 3). When there is partial sample se-

paration information, such that regime is partly known, 0

is of dimension (7 x 1) or (4K + 3) x 1, where K is still e-

qual to 1. Therefore, S-is of dimension (4K + 3) x (4K + 3).

2.3 The Value of Imperfect Information

We derive here one set of ratios -- asymptotic var-

iances with regime partly known relative to regime known. We

also need the asymptotic variance ratios with regime unknown.

relative to regime known, but these will be simply adopted

from Schmidt's study. The results are comparable, since the

same simulation techniques have been employed in evaluating

the information matrix.
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All the results are presented in Tables 1 through 4,

for a variety of cases. It is to be noted that asymptotic

variance ratios are not given for the parameters p11 and

p01, since these parameters are not estimated at all, when

the regime is known. All the figures in the tables are great-

er than or equal to one, and the extent to which they differ

from one measures the value of imperfect sample separation

information or Just sample separation information as the case

may be. That is, they measure how much we lose on efficien-

cy grounds in parameter estimation, when we use imperfect in-

formation, or no information at all, as compared to perfect

information when assigning regime classification.

The main interest here concerns the effects of the pa-

rameters p11 and p01, which represent the level of reliability

or accuracy of the available information. In Schmidt's study,

when there is no sample separation information at all, only

the first five parameters were used. With the partial infor-

mation provided by our additional parameters p11 and p01, we

expect our asymptotic variance ratios to be less than or e-

qual to his asymptotic variance ratios. After all, any piece

of information on sample separability, even if not entirely

accurate, may facilitate identification of regime membership

for the observations, and thereby improve the efficiency of

the parameter estimates, as compared to when no information

is used at all. For purposes of comparison, we present

Schmidt's figures in parentheses underneath the figures we

derived.
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We conduct four types of experiments here. First, for

a given set of parameter values, we vary our probabilities

of regime classificationg/. The different values assigned

to p11 and p01 values represent the range from highly im-

perfect information to almost perfect information on regime

classification. In the other three types of experiments, we

choose a particular p11 and p01 mix, and allow the following

to vary -— the difference between the means, the variances,

and the mixing parameter.

Table 1 presents the results when we couple different

regime classification probabilities with fixed values of the

other parameters -- “l I 0, 712 I 2, 61 I 62 I 1, and

A I .5. The values assigned to the means and variances are

not as restrictive as they might seem, in the sense that they

are invariant to translation (#1 I 0, 1.42 I 2, 61 I 52 I 1

give the same results as “1 I -6, M2 I -4, 61 I (2 I l)

and to scale (ill I 0, 1A2 I 2, Si I C: I 1 give the same

2 g L" G1 " ‘2

When p11 is equal to p01, then we have the special case

results as (Al I 0, A1 I 2).

of there being no sample separation information at all, and

the ratios derived here should be the same as Schmidt's.

The difference (i.e. 41.7 versus 41.1 for "1) is presumable

due to randomness in the simulation of the information matrix.

When p11 is equal to p00 (where p00 I 1 - p01), that is, when

__7__

- These regime classification probabilities are as-

sumed constant for all observations in each case, and can be

estimated (as Lee and Porter did) by maximum likelihood.
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there are equal probabilities of correct classification into

each regime, then the ratios diminish considerably, with the

figures being lowest (efficiency is highest) when there is

greater certainty about rightly or wrongly assigning the

observation into each regime. The ratios approach one when

pll goes to zero, and p01 goes to one (alternatively, when

pll goes to one, and p01 goes to zero); that is, when there

is almost perfect sample separation information. In this

sense, the use of imperfect sample separation information

leads to estimates which are almost as efficient as those

derived when regime classification is completely known.

An interesting observation here is that the value of

information is unchanged when p11 and p01 are symmetric

(i.e. pll I .2, p01 I .8 give the same results as p11 I .8,

p01 I .2; alternatively, p11 I pOO I .2 give the same results

as p11 I pOO I .8). This is a consequence of the identifica-

tion issue referred to in Lee and Porter, such that when

xlJ I x‘?‘j for all J, as they are here (they are both equal to

one), then the names of the two regimes can simply be inter-

changed, and this holds true when there is no sample separa-

tion information and even when there is imperfect sample se-

paration information. This does not really come as a sur-

prise since in the normal mixture model, the only parameters

being estimated in a regression sense are the means; there-

fore, it makes no difference at all about having the same

probabilities for right or wrong regime classification, since

we can merely switch the names of the regimes.
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Additional results show different p11 and p01 values

paired together. When p11 and p01 are close together but

are in the intermediate range (.4 to .6), then the ratios

are highest. This occurs when uncertainty about regime clas-

sification is at its peak, since the imperfect information

indicates that there are almost equal chances of misclassi-

fication into both regimes (p11 and p01 are close to .5).

Note that at the extreme, when pll I p01 I .5, we have no

information at all. When p11 and p01 are close together but

are out of the intermediate range, then the ratios go down.

This means that when there is greater certainty of correct

regime classification into the two regimes, or when the par-

tial sample separation information is quite reliable for both

regimes, then the ratios decline and efficiency improves.

Tables 2, 3 and 4 illustrate the case of a particular

p11, p01 mix -- we choose pll I .8, p01 I .2. In Table 2,

ha is allowed to vary. The results are similar to Schmidt's

findings that the value of sample separation information de-

pends on the natural separation of the two regimes. As the

distributions become far apart (112 increases while [41 is

constant), the ratios diminish and tend to approach one.

When the means are very close together, the resulting ratios

show the substantial gains in efficiency when information is

quite accurate as compared to using no information at all.

Table 3 takes the cases where A I .2 and A I .5.

The results are again similar to the earlier findings that

when the distributions are fairly close to each other
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( “l = 0, [A2 = 2) and the imperfect information is quite

reliable (p11 = p00 = .8), then there are large efficiency

gains in using partial information relative to using no in-

formation at all. In addition, we observe that the value of

sample separation information is higher for the parameters

of the regime which is observed with the lower probability,

in this case, regime 1.

Table A gives results when the variances are not e-

qual. The larger the difference between the variances of

the two samples, the lower the ratios become. It is apparent

that not only does mean disparity between the regimes contri-

bute to distinct sample separation, but also disparity of the

variances. Another observation here is that the ratios are

higher for the variance parameter of the sample which has

the smaller variance and the reason behind this is fairly in-

tuitive. A surprising finding here though, is that the dec-

line in the ratios as the difference between the variances

widens is not monotonic for the mixing parameter when partial

information is available, and the reason for this is not

clear.

2.A Summary
 

We have studied the value of imperfect sample separa-

tion information in a simple normal mixture model, where all

the parameters have to be estimated. This was done under

different values for the probabilities of correct regime

classification. The ratios of asymptotic variances for
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regime partly known relative to the asymptotic variances for

regime known were computed. These ratios are highest when

there is greater uncertainty about regime classification (p11

and p00 are in the intermediate range) and the ratios are

lowest when there is almost perfect certainty about right or

wrong classification for both regimes (p11 and p00 are in

the extreme range). In between is a continuum of values de—

pending on the reliability of the sample separation informa-

tion for each regime.

A variety of experiments were also conducted and these

show that the value of sample separation information largely

depends on how much alike the two samples are. When the sam-

ples are hard to distinguish from one another, then the value

of information is highest. At any rate, the presence of the

partial sample separation information tends to diminish the

value of any other additional information, since the figures

derived are considerably lower than those when there is no

sample separation information at all.

These results suggest that any information should be

used, even if there is uncertainty about its reliability or

accuracy, since even imperfect sample separation information

improves the efficiency of the estimates. Of course, the

more reliable the imperfect sample separation information,

the greater the gains in efficiency.



CHAPTER THREE
 

THE CASE OF NON-CONSTANT

REGIME CLASSIFICATION PROBABILITIES

3.1 Introduction
 

In the previous chapter, we considered and evaluated

the value of imperfect sample separation information in a

normal mixture model, where the imperfect information is re-

flected through constant probabilities of regime classifica-

tion. We concluded that the more reliable the imperfect in-

formation, the greater the gains in efficiency, since there

is greater certainty of right or wrong regime classification.

We now extend that model to a switching regression

case where there are at least two independent variables -- a

constant term and one or more other explanatory variables.

In addition, we consider the case when the classification

probabilities are non-constant, and in fact, can be modelled

as probit functions of the exogenous variables. The rationale

behind this is that the values of the explanatory variables

are highly likely to affect the regime classification of the

dependent variable, increasing the reliability of the imper-

fect information indicator. Consequently, treatment of the

probabilities as non-constant for each observation adds more

reliable information to the model and will hopefully improve

the efficiency of estimation.

The framework for the use of imperfect sample separa-

tion information was derived from Lee and Porter who used

“3
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switching regression techniques to model a supply function

for a railroad cartel. In their model, the observed regime

classifications were obtained from data from a trade magazine

(presumably reported with error) on whether there were price

wars or not. The probabilities that these regime classifica-

tions were in fact, correct were assumed constant, and there-

fore independent of the exogenous variables.

Their model can be improved upon by postulating that

the classification probabilities are dependent on the exoge-

nous variables and will differ for each time period. Taking

the Lee and Porter application as a case in point, we note

that their explanatory variables include a Great Lakes dummy

variable and several dummy variables on structural changes.

The Great Lakes dummy variable documents when the Great Lakes

were made open to navigation so that the cartel faced its main

source of competition. The structural changes dummy variables

are used to proxy changes caused by the entry, acquisitions

or additions to existing networks in the railroad industry.

When the Great Lakes were made open to navigation, or when

there were instances of entry and new acquisitions, we expect

that there will be price cutting or non-cooperative behavior

among the firms in the cartel, due to the presence of other

competitors in the industry, and this will be reflected in the

imperfect indicators of information -- data from the trade

magazine.

Using this information during each time period adds to

the certainty on regime classification, as to whether’there
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were indeed price wars or not. This raises the probabilities

of correct classification and also leads to higher efficien-

cies of parameter estimation, as opposed to the case when

constant probabilities are applied for each time period as

Lee and Porter did. Our suggested treatment of the derivation

of classification probabilities as non-constant seems to be a

plausible alternative to theirs in the sense that we use more

information (at no extra cost of obtaining this information)

in solving for these probabilities, which presumably improves

efficiency. Also, their model is a special case of ours, so

we can test the adequacy of their model against the alterna-

tive of our model.

3.2 The Model
 

We extend the model of the previous chapter to the case

when there are at least two explanatory variables, and when

the probabilities of regime classification (i.e. p11 and p00)

are not fixed. Suppose for simplicity that le 8 x23; we

call it xJ so the basic switching regression model is:

= 1
yJ xJ 81 + ulj with probability A (3.1)

(regime l)

= I -
yJ xJ $2 + u2:! with probability (1 A )

(regime 2)

$1 and $2 are vectors of parameters. The error terms u

1J

and 112.1 are assumed to be independently and normally distri-

buted with means 0 and variances (12 and (22, respectively.
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When there is imperfect sample separation information

or the regime is partly known, we can then consider an ob-

servability model on probability classification like:

pllj ‘ F(XJ"K1) where p11.1 = Prob(wJ = l/IJ = 1)

for each J

= F(xJ"X0) where pOOJ = Prob(wJ = O/IJ 8 0)
p003

for each J

p10,1 ' 1 ' p11,1

‘ 1 ’ p003p013

where F( ) is a standard normal cumulative distribution

function, and X1 and X0 are vectors of parameters. is

”1

the observed dichotomous indicator which provides sample se-

paration information, while I is the latent dichotomous in-

J

dicatcr of the actual regime classification. In essence,

the regime classification probabilities are probit models

of observability. This contains the Lee and Porter model as

a special case, that is, all the elements of ‘K1 and ‘X0 are

zero, except for those corresponding to the constant term.

The Joint density function for yJ and wJ is then re-written

from (2.3) and given as:

rJ = f(yJ, wJ; 0) (3.2)

- )\f1(yd)(wdp113 + (l - wJ)(1 - p113)) +

(l - )\)f'2(yd)(wjpoL1 + (l - wJ)(1 - p013))

= Ar1(y3)(wJF(xJ' x1) + (1 - wJ)F(-xj"(1)) +

(1 - Mr,(y3>(wJF(-x3' 70) + (1 - wJ>F(xJ' ‘60))
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where:

, 2

fi(yj) = 1 exp [:- (y; - x3 $1) ]

JET-61 2612

x "x _ 2

pllj EX 3 1 :- exp [:4]va

-ob ./ 1t 2

x "X 2

pOOJ = X J O 1 exp [:- v1 ] va

-.b Jfi' 2

i = 1,2; 3 B l,...,n

That is, f1(yJ) and f2(yJ) are normal probability density

functions with means and variances given by N(xJ' F1, 612)

2
I ' o

and r.(xJ 52, ((2 ), respectively, and p113 and p00;] are

probabilities of correct regime classification denoted as

probit models.

3.3 Derivation of Asymptotic Variances

When the regime is known, the asymptotic variances

_ l‘ .. " ._ A 2 2

or \/n( $1 - Fl), Jn(pz - F2), /n( 61 " ‘1),

JR 822 - £22), and JE( A). - ).) are, respectively:

512. (11m £173? xjxd') '1;
 

 

“-7.0

A

2 li‘ v '1.

_§.£_ 333 n “1%) ’

1-A I4

2361 3

>1

252u3and

1->\

Ml- A).
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As in the previous chapter, there are no asymptotic var-

iances for the parameters ‘X1 and X0 (which enter the p113

and p003 probability functions of regime classification) since

these parameters are irrelevant when regimes are completely

known. The above expressions for the asymptotic variances

of B1, ’62, 212 and £22 are derived from the inverse of

the information matrices from the corresponding likelihood

functions of the known densities associated with the respec-

tive regimes. The asymptotic variance of 3. comes from that

of the binomial distribution.

For cases when the regime is either completely unknown

or is partly known, the asymptotic variances of x/HKB - O)

are derived in the same way -- from the diagonal elements of

the inverse of the Fisher information matrix. Therefore,

./H(6 - O) approaches the distribution specified by the fol-

lowing expression -- N (0, lim(%- 3)-l) .

The information matrix is defined as:

 

§=-E 221nL

3939'

where:

at

leg‘rj

M

1nL=21nr
J" J

Therefore, when the regime is completely unknown, f corres-

ponds to the density function of (2.2) given as:

f(y,; 0) = M1<yJ> + (1 - A new”) (3.3)
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0 is a (2K + 3) x 1 vector of parameters, where K is the

number of explanatory variables. In particular, 0 8 ( pl',

2 2

$2" ‘1 ’ ‘2 ’ 3" "here “1 ‘ ($11: 812...” 51x"

I: v .v
and 32 ( F21, $22,..., F2K) . khen the regime is

partly known, f corresponds to the density function in (3.2):

f(y,. wJ; 0) -- A rl(y3)(wJF(xJ"61> +

(l - wJ)(l - F(xJ"61))) +

(1 - Mrzwjiju - chJ'xon +

(1 — wJ)F(xJ'XO))

O is a (“K + 3) x 1 vector of parameters given by ( 51"

52', 612, (22, A, I61', 30')' where $1 and fizare

defined as previously; and ‘X1 = ( 311, 'K12,..., ‘XlK)' and

X0 = (K01, X02,..., XOKV are additional parameters.

As in the earlier chapter, the expected value of the

expression that represents the information matrix was analy-

tically intractable so that we instead calculate the informa-

tion matrix by simulation techniques in either of two ways:

n 2

(1) 3 ,
. JSI

II I

t
!
)

M

r
-
—
'
—
I

I»
. Q
) “
J

I

ll

t
r
]

M
3

r
—
—
—
-
v
h

Q
) :
3

"
9

V A

Q
) H :
3

\
—
/

.
_
_
L

(2) 3

ll

:
1
1

5
M
:

r
—
—
—
"
1

""
IH

N

A

Q
) “
J

V A

Q
) *
5

v L
.
_
_
_
_
I



50

The second method of calculation follows from the first

method, in the sense that, in the limit, the expression

, 2

- E Z [ l 3 fj] goes to zero. In addition, the second
J" — a

039'
%

method has the added advantage of being positive definite

always, and not Just in the limit. For this reason, we choose

the second method of calculation, and throughout the experi-

ments we will be conducting, the information matrixi/ is to

be calculated as follows:

>=E%[;L(23)LEE)J
1" r2 30 39

J

For the case where regime classification is complete-

ly unknown or when there is no sample separation information

at all, the first derivatives of f(y, 9) (we drop the sub-

script J for simplicity) with respect to 0 are:

21' = y 3f1

3[‘11: 351k

ar =<1- 1) 3f2

2F2k 362k

21' = A 3‘1

3‘12 3612

—_T—

— The expressions for the elements of the information

matrix when the first method of calculation is used are also

derived and are given in Appendix A.



Since

§ is

known

tion,

are:

51

21' -(1->.) 3f2

—'—2

arr-r -r

where:

311 = 1‘1 (y‘x'f’i)xk

 

8% = f1 [(y’x'91)2-1]

72

51

1 = 1,2; k = l,2,...,K

G is of dimension (2K + 3) x 1, then it follows that

of dimension (2K + 3) x (2K + 3).

For the case where regime classification is partly

or when there is imperfect sample separation informa-

the first derivatives of f(y, w; G) with respect to 0

91‘ = )Q1 Bfl

3""11: 3‘31k

21‘ :=(1-)()c;22 31‘2

232k a§2k

3r = le 3f1

@612 3&1:

3r -=(1->()c.22 3f2
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9f I f

2A

- f
1Q1 2Q2

Bf - “‘1‘" - (1 - w)) NW“ 1)

9x11: 31‘11:

 

9: - - (1 - k >f2(w - (1 - w)) “W" o)

aka aA501:

 

where:

Ql I wF(x"61) + (1 - w)(1 - FUNK 1))

Q2 I w(1 - F(x'\S 0)) + (1 - W)F(X"6 0)

  

af1 I 1‘i (y - x' 61) xk

28.1k 61

3f1 3 f1 [(y'X' 61)2_1]

3‘1 2612 612

aF(X'XS) g E(X"6 s) X

3% sk

 k

1 = 1,2; k = 1,2,...,K; s = 0,1

where fl(x'x 8) is a standard normal probability density

function. Since 0 here is of dimension (4x + 3) x 1, it

follows that 3- is of dimension (AK + 3) x (“K + 3).

The simulation involves a large number of trials de-

rived from a normal random variable generator. For any set

of O values, draws were made from the switching regression

model and the information matrix was obtained by averaging

the expressions derived from the first derivative components

of the density function over the number of replications,
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given that the regime is either unknown or partly known.

The asymptotic variances are the corresponding diagonal ele-

ments of the inverse of the information matrix.

3.A The Value of Imperfect Information
 

We derive here two sets of ratios -— asymptotic var-

iances with regime unknown relative to regime known; and

asymptotic variances with regime partly known relative to

regime known. The ratios in the former are greater than or

equal to those in the latter, since the presence of informa-

tion, even if imperfect, improves the efficiency of parameter

estimation. In addition, all the figures we will be deriving

are greater than or equal to one, and the extent to which

they differ from one measures the value of information, or

imperfect information, as the case may be. These ratios il-

lustrate how close to full information efficiency our esti-

mates will be when we are faced either with no information

at all or with unreliable information.

We assume we have two exogenous variables x1 and x2,

where x1 is a unit vector and x2 is defined as exp (- x3),

where x3 is a standard normal random variable, which we also

derive from the normal random variable generator. We essen-

tially conduct experiments of two types here. First, for a

given set of X values which denote some information, we

vary the F parameters to find out the effects of the same

amount of information on the estimation efficiencies of dif-

ferent regime distributions. Second, for a given set of F
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values, we vary the ‘6 parameters to find out the effects of

different levels of information observability about regime

classification on the estimation efficiencies of a particular

sample distribution.

Given arbitrary values for G I ( 911, $12, $21:

F22’ 612’ ‘22: >\a $11, $12, ‘601, ‘02). (we chose

0 I (1, l, 2, 2, l, 1, .5, l, -l, 1, l)' for regime partly

known), we initially compare results for the ratios of asymp-

totic variances when we have n I 5000 and n I 20000. Although

there are differences in the absolute magnitudes of the fi-

gures which range from .1 to .7 for both regime partly known

and unknown, the difference in computer costs makes us opt for

the smaller sample size, since the relationship among the

relative magnitudes prevails.fl/ We therefore made use of a

sample size of 5000 for all our experiments.

We first need to establish the non-informative case.

In the previous chapter, we had discussed an implicit "infor-

mativeness" condition in the model. When pllJ I l and

pOOJ I 1, then the indicator wJ provides perfect sample

 

i/F’or the same 9 values, we also compare results under

both methods of solving for the information matrix. There

are differences in absolute magnitudes that become smaller

as the sample size increases from 5000 to 20000. Under the

first method, the differences in the ratios between the two

sample sizes range from .1 to .4, while under the second me-

thod, it is from .1 to .7. It is expected that as the sam-

ple size increases some more, the absolute difference between

the two methods will decline. Although the absolute magni-

tude differences persist, the relationships among the relative

magnitudes are fairly constant. This at least partially Jus-

tifies our choice of method 2 for calculating the information

matrix and a sample size of 5000.
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separation information. Partial sample separation informa-

tion is given by wJ when p11.j is not equal to p01J, which is

equivalent to the condition that p113 I l - p003, or that

pllJ + p003 # 1. This implies that wJ provides no sample

separation information at all when p11, I l - p00 , or

a J

p113 + P003 ‘ 1'

In terms of our model, where p , and p are denoted
ll.J 003

as probit functions, then the "informativeness" condition can

be expressed as a simple restriction on the parameters le

and ‘KO, which enter our probit models of information obser-

vability. Information is not provided when ‘Kl I - X 0 since

= . 1 ' athen, p113 + p003 1, that is, F(xJ X1) + F(xJ ‘60)

I 13' _ ' 3 'F(xJ ‘X1) + 1( xJ X1) 1, for any xJ , where F( ) is a

standard normal cumulative distribution function. Combina-

tions of parameter values where K 1 I - ‘K 0 can be illustra-

ted by any number of examples. A case in point where no in-

formation is provided is when ‘Kl I ‘Ko I 0. This implies

II a: ' a a: a ' =that p111 F(xJ ‘61) F(0) .5 and pooJ F(xJ ‘60)

F(0) I .5. This was the non-informative case we had in the

previous chapter where the probabilities of regime classifica-

tion were assumed constant, i.e. p11 I p00 I .5.

We now proceed with the first type of experiments we

have to conduct, where for given K values, we vary our F pa-

rameters. We choose XI (1, -l, 1, 1)‘ where there is some

information provided, i.e. 'Xl # -‘XO. The first case is

when we allow the 6 parameters of regime 2 to deviate
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uniformly from regime 1, such that $2 I h 51 (h I 1,2,“).

We hold 612 I 622 I 1 and )v I .5. The results are pre-

sented in Table 5. Figures in parentheses are the ratios

when the regime is unknown relative to when regime is known.

When $1 I F 2 so that the regression equations are

the same for both regimes, the presence of information given

by X 1 and ‘60 greatly improves the efficiency of the esti-

mates. With no information at all, the ratios go to d»,

since the samples are impossible to disentangle while the ra-

tios are finite with some information available. An interest-

ing observation here is that the value of sample separation

information is much greater for the slopes than for the in-

tercepts when the regime is partly known. For the case of

the estimated mixing parameter,)\, the value of information

for regime partly known is so , and for regime unknown is 0.

There is no meaning that can be attached to this parameter

in this instance, since the samples are difficult to distin-

guish from each other anyway.

The choices for $1 and (32 are of course restrictive.

However, note that the results are invariant with regards to

location and scale, as long as $1 I B 2 and 612 I (22.

61.‘ (1, 0)‘, $2 I (1, 0)’ gives the same results as

91 - (1, mu 9, . (1. 1)'.

When $2 I h ‘51 (h f 1), so that the intercept and

slope of one equation move away from the intercept and slope

of the other equation by the same proportion, then the value

of sample separation information decreases monotonically as
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h increases. Note the large decline in the ratios of var-

iances for the estimated slopes as soon as the samples be-

come distinct from each other. When the intercepts and

slopes of the two equations are sufficiently far apart, the

ratios when the regime is partly known or is completely un-

known tend to approach one. In addition, the ratios tend

to equal each other in both cases of observability so there

is very little value in obtaining sample separation informa-

tion or using imperfect information (when available), when

the regression equations are clearly distinguishable.

The second case we consider is when the regression

equations are made distinct from each other by moving the

slopes away, but keeping the intercepts constant. The re-

sults are presented in Table 6. The value of sample separa-

tion information decreases monotonically, as $22 increases

with $12 I 0. Again, the decline in the ratios is very

steep as soon as the samples are made distinguishable, i.e.

6 - (0, 0, 0, 0). and fi - (0, 0, 0, 1)'. As the slopes

move farther away, the decline in the ratios is not very

great, or is rather slow. As before, there is very little

value in obtaining sample separation information or using

imperfect information when the samples are clearly distinct,

since the ratios with partial information and with no infor-

mation at all tend to equalize.

The third case is when the regression equations are

made distinct by moving the intercepts farther away, but

keeping the slopes constant. The results are in Table 7.
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Here, the value of sample separation information declines

but the decline is not monotonic for the estimated intercepts

and variances; the decline is monotonic for the slopes

though. This same observation was also found in Kiefer's

study (1979) of a normal mixture model. When the intercepts

are close together (in this case, they are equal), wrong

classification does not seriously affect the quality of the

estimates. Then, as the intercepts move farther away, the

effects of misclassification become more serious and the es-

timates suffer. When the intercepts become still farther a-

part, the probability of misclassification becomes so small

so that the estimates become almost as efficient as estimates

based on known sample separation. As the intercepts move a-

way from each other, the decline in the ratios is more sub-

stantial, or faster as compared to the case when the inter-

cepts are held constant, but the slopes are moved farther a-

part. Again, there is very little value to obtaining infor-

mation when the regression equations are clearly distinct,

(since the ratios with partial information and with no infor-

mation at all tend to equalize.

The very large values of the variance ratios for the

estimated intercepts, variances and mixing parameter, when

the samples are sufficiently close and when there is no in-

formation at all, seem to suggest that the intercept is a more

important component of the regression equation in determining

separability of the two distributions, as compared to the

slope. It is more difficult to distinguish one sample from
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the other when the intercepts are close together rather than

when the slopes are. Compare the cases of' BI=(0, 0, 0, 1)‘

and fl I (0, 0, 0, 2)‘ in Table 6 as against the cases of

(3- (0, 0, 1, 0): and (3- (0, 0, 2, 0)' in Table 7.

Note that our values for $1 and $2 are restrictive,

but they are invariant with regards to translation, as long

as the other parameters in 0 are not changed. 31 I (1, 1)‘,

62 I (2, 1)‘ gives the same results as. 91.. (0, 0)‘, F2 I

(l, 0)‘. A related observation is that $1 I (0, 0)‘, (2 I

(2, 0)‘ gives almost the same results as $1 I (0), 92 I (2)

where the latter comes from a normal mixture model. The ra-

tios in the former are slightly bigger than the ratios in the

latter, since there are more parameters to estimate in the

former, even if $12 I I 0.§/ When we estimate a nor-
(22

mal mixture model, the ratios corresponding to ‘311’ $21,

212, 222 and a are 4.1 (50.4), 4.9 (50.5), 2.6 (14.9),

3.7 (16.2) and 7.0 (98.9), respectively. When regime is un-

known, the ratios Schmidt (1981) derived in an earlier paper

are very similar to the above figures in parentheses. The

only difference is that Schmidt's ratios are smaller (i.e.

 

57
— Note that when a row and column corresponding to a

certain parameter is deleted, this implies that either the

model does not contain this parameter, or that the parameter

is part of the model but is known a priori and need not be

estimated at all. In the former case, the value of infor-

mation is more important when the model is more complicated,

or when 0 has more parameters even if both models are pre-

sented with the same amount of information in X and ‘6’ .

In the latter case, when some parameters are known a priori

and need not be estimated, resulting ratios are lower since

they understate the true value of information.
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41.1, 40.4, 12.7. 12.6 and 78.8 as presented in Table l of

the previous chapter) presumably due to a larger sample size

(n I 100000) so that the results are much tighter.

We now turn to the second type of experiments we

will be conducting,§/ that of varying the X parameters given

particular 8 values to find out the effects of different le-

vels of observability on the efficiency of parameter estima-

tion with fixed regression parameters.

We had earlier established that the intercept terms

are more important than the slope coefficients in determining

regime classification since ratios tend to be higher (the va-

lue of sample separation information is more important) when

the intercepts are moved farther away, rather than when the

slopes are moved apart. For this reason, we choose a 9 set

equal to (0, 0, 2, 0)‘ where the slopes are equal but the

intercepts are different. Note that 6" (0, 0, 2, 0)‘ is in-

variant with regards to transformation to some other F forms,

i.e. (5: (2, 2, 4, 2)' and (3- (2, o, 4, or.

Our first case is presented in Table 8. Given ‘61,

the X 0 combinations are arranged from highest ratios (least

information so most inefficient) to lowest ratios (most in-

formation so most efficient). When X1 I - ‘6 0’ this is

 

élThis is the extent of our experimentation in this

chapter. We will not attempt to change the variances nor

the mixing parameter, since the earlier chapter had already

established the results for these cases; that is, the value

of sample separation information is higher for the parameters

of the regime which is observed with the lower probability,

and higher for the variance parameter of the sample which

has the smaller variance.
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the case of no information and when ‘61 I X 0’ this is the

case of the most information.

Given XI, the value of information is higher when

we change the slope of the probit model, [02 (keeping 601

I 0) rather than the intercept of the probit model, X01

(keeping ‘6 02 - 0). This implies that the intercept term in

the probit function is more important in increasing the ef-

ficiency of the parameter estimates given the available in-

formation. Given X 02 and ‘61, ratios are lower when ‘01

is higher so that there is more efficiency here, and ratios

are higher when X01 is lower so that there is less efficien-

cy. The transition from least information (smaller X01) to

most information (larger X01) improves efficiency when K0

is closer to X1 values. The most efficient estimates occur

when X1 I ‘0' This implies that the quality of estimates

is best when there is equal certainty for the sample separa-

tion to be correct for both regimes.

X1 I (l, -1)', ‘60 I (1, —l)' is invariant to ‘61 I

(-1, 1)', (0 I (-1, 1)'. This reflects the fact that ‘(1'

I - ‘6 1 and to“ I - ‘6 0 result in the same value of sample

separation information as did ‘6 1 and X0. This follows from

the "non-informativeness" condition on ‘1 and ‘6 0 when X 1

I - K0. By the same reasoning, the information reflected

in $1 is no different from that in {1* (and likewise for

K0 and ‘60“) when KfI-‘éland K00... X0, when‘élI

‘0' This follows from the relationship that: p11* + p11 I 1

and p00. + p0O I 1. 0n the other hand, 6 1 I (1, -1)',
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$0 I (1, l)‘ is not invariant to ‘61 I (l, 1)‘, ‘60 I (1,

-1)'. That is, X1“ - ‘6 0 and 150' - ‘61 do not imply the

same value of sample separation information, when ‘6 1 I ‘6 0'

We examine next the case when \‘11 I - 0 01, so that

the intercept terms imply no information, and we vary the

slope terms. The results are presented in Table 9. The ra-

tios are again arranged from highest (no information) to low-

est (most information). The classification probabilities im-

plied by the ‘5 1 and ‘3 0 parameters become higher (so that

ratios become lower and efficiency improves) as $12 and ‘6 02

assume non-zero values. Lower ratios result when ‘602 is

non-zero (keeping {12 I 0) than when ‘612 is non-zero (keep-

ing ‘6 02 I 0), since the probabilities implied by ‘61 I

(l, 1)', $0 I (-l, 0)‘ represent a wider divergence in pro-

babilities p11 and p00 than that given by the combination

'61 I (1, 0)‘, ‘80 I (-1, l)' due to the fact that the pro-

bability associated with ‘Kl I (l, 1)‘ is higher than that of

to I (-l, 1)'. It is to be noted that the wider the differ-

ence in probabilities p11 and p00 (particularly in the inter-

mediate range of probability values), the less the certainty.

there is on information about regime classification, and it

follows that the estimates will be less efficient. The ex-

ception here is the non-informative case of p11 I poo I .5,

where there is no difference in the probabilities but effi-

ciency is lowest (since it is non-informative).

The additional information provided by the non-zero

‘12 and 6 02 parameters improves the efficiency of the
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estimates as Opposed to the case when only ‘611 and ‘601 are

assigned non-zero values (and ‘612 I ‘6 02 I 0). In effect,

this implies that modelling the classification probabilities

in such a way that they are not constant for every observa-

tion increases the quality of the estimates, compared to the

case in which these classification probabilities are fixed

for all observations ($12 I ‘6 02 I 0).

We have earlier shown that when X 1 I 6 0’ so that

the classification probabilities are equal, the ratios of a-

symptotic variances are lowest. This is the next case we

consider, the results of which are shown in Table 10. Again,

we start with the non-informative case, where 61 I ‘6 0 I 0.

As the ‘61 and ‘60 values increase in magnitude, the classi-

fication probabilities associated with them increase too, and

there is more information as the implied probabilities get

higher (i.e. p11 I pOO approach one). The ratios decline mo-

notonically as the implied probabilities rise, and when these

probabilities are sufficiently high, the quality of the es-

timates approximates that when there is perfect information,

and the corresponding regimes are fully known.

The last case we evaluate is when we try to approximate

the X 1 and ‘6 0 values that will duplicate our results in the

previous chapter, where classification probabilities were

fixed. We test our model with non-constant p11 and p00 a-

gainst the alternative of constant p11 and p00’ which is ac-

tually a special case of our specification. The results are

in Table 11. In particular, we have F(.84l6) I p11 I p00
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I .8; in terms of our probit models, 612 I X02 I 0, so

that p11 and p00 are now constant for all observations.

We have two basic experiments here -- when we delete

and do not delete 1'12 and X 02 from the model. When they

are not deleted, they are set equal to zero, but implicitly

still estimated. Both results as well as the non-informative

case are reported here, and we compare these figures to our

earlier results patterned after the Lee and Porter model

where p11 and p00 are fixed at .8 using a sample size of

n I 100000.

As Table 11 shows, when ‘6 12 and ‘6 02 are not deleted,

the resulting figures are slightly larger due most probably

to the fact that we estimate more parameters in the model so

that efficiencies may suffer. When we compare our model with

the deleted ‘6 parameters to our fixed probabilities specifi-

cation of the earlier chapter, we observe that the ratios we

derive now are larger than those we derived before. This

could be due to a number of reasons. First, we now have more

parameters to estimate in B, i.e. 8 I ( 311, 312, 821,

$22)' as against P I ( 811, K 21)’ in the earlier chapter.

Second, we now use a smaller sample size so that the resul-

ting figures may be less tight. Lastly, we employed diffe-

rent methods of evaluating the information matrix in both

cases. All these reasons could account for the differences

in the absolute magnitudes of our ratios, although the rela-

tionships among the relative magnitudes are quite similar.

This second set of experiments we have Just conducted
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on varying X for a given set of f has highlighted two main

observations. First, invariance in the ratios occurs when

(1* I - $1 and $0” I - to for 61 I 60; and when X1“

I - 6 0 and ‘60‘ I - ‘61 for ‘61 f 60. There does not seem

to exist any form of multiplicative or additive transforma-

tion for X where invariance may result in the derived ratios,

since any other change introduced to the Y 1 and ‘6 0 parame—

ters will lead to probability changes reflected in F(x"61)

and F(x' ‘5 0). Second, when evaluating the X 1 and ‘6 0 pa-

rameters, it is to be remembered that when ‘6 1 and ‘6 0 are

closer to each other, it follows that the probabilities

F(x"61) and F(x"XO) are also closer. This means that there

is almost equal certainty of proper sample separation into

the two regimes, so that the information is quite reliable

and efficiency improves. At the extreme, 61 I 6 0 and ef-

ficiency gains are highest, particularly when the probabili-

ties implied by these parameters belong to the extreme range.

At the other extreme, when 6 1 I - ‘6 0 there is no informa-

tion at all in the regime classification information.

3.5 Summary
 

We have improved our earlier model on the value of im-

perfect sample separation information by allowing more exo—

genous variables in the switching regression model and by

postulating that the classification probabilities are non-

constant. As in the earlier model, all the parameters have

to be estimated. The latter extension where the classification
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probabilities can be modelled as probit functions is aimed

at providing more information and flexibility to the model

since the probabilities cf regime classification are de-

pendent on the exogenous variables at each observation.

Two basic types of experiments were conducted using

simulation techniques applied on a large sample size. First,

we vary the 8 parameters for a given information level (de-

noted by the 6 parameters) to find out the effects on effi-

ciency of estimation of varying the degree to which the sam-

ples are separate. Second, we vary the 6 parameters for a

given set of 0 parameters to evaluate the effects of diffe-

rent levels of information observability, given a particular

sample distribution.

Among our findings, the following two are most impor-

tant. (l) The use of information, even if imperfect, still

presents large gains relative to when there is no information

at all. Naturally, the more reliable the imperfect sample

separation information, the greater the gains in efficiency,

where the reliability of the information can be evaluated by

the ‘61 and X 0 parameters. (2) The value of imperfect sam-

ple separation information largely depends on how much alike

the two samples are. When the samples are hard to distinguish

from one another, then the value of any information is high-

est. If we consider the 8 parameters as denoting sample se-

parability, the intercept parameters are more important than

the slope parameters in determining how distinct the samples

are from each other.



CHAPTER POUR

THE CASE OF NON-CONSTANT

REGIME CLASSIFICATION PROBABILITIES

AND NON-CONSTANT SWITCHING PROBABILITIES

4.1 Introduction

In the preceding chapter, we evaluated the value of

imperfect sample separation information in a switching reg-

ression model with two exogenous variables, where the pro-

babilities of regime classification are non-constant. We

argued that such a specification has its merits in the fact

that more reliable information on sample separation is pro-

vided at each observation. This implies that the values of

the exogenous variables do affect the chances of prOper re-

gime membership given the actual regime, so that the observed

imperfect indicator of sample separation is a more accurate

measure of the latent perfect indicator at each observation,

when the regime classification probabilities are non-constant.

However, we assumed then that the switching probabi-

lities were constant for all observations. That is, the pro-

bability that each observation is generated by a particular

regime is fixed. We now re-formulate this assumption to take

into account that the switching probabilities are non-con-

stant, and can also be modelled as probit functions of the

exogenous variables. The rationale behind this is fairly

intuitive -- certain values of the exogenous variables have

higher chances of being associated with observations which

74
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are generated by a particular regime, while other values of

the exogenous variables are better associated with observa-

tions generated by another regime. Therefore, the values

of the explanatory variables affect the probabilities of

actual regime classification ()\), and not Just the proba-

bilities of presumed regime classification given the actual

regimes (p11 and poo). While the preceding chapter explored

the latter approach, we now deal with the former possibility

as well as the latter.

In terms of the Lee and Porter railroad cartel stabi-

lity model, the explanatory variables include: (1) a Great

Lakes dummy variable which represents when the Great Lakes

were made open to navigation so that the cartel faced its

chief source of competition; and (2) several structural

changes dummy variables which represent the entry, acquisi-

tions and additions to existing networks in the railroad in-

dustry. When the cartel faced its main source of competition

or when there were significant structural changes in the

industry, we expect these events to affect the occurence of

either collusive or non-collusive behavior within the cartel.

This implies that these explanatory variables affect not only

the probabilities of prOper regime classification given the

true regime (i.e. whether price wars were probably occuring

or not), but also the probabilities of actual regime classi-

fication (i.e. whether price wars were really occuring or

not).

We postulate here that switching probabilities or
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probabilities of actual regime membership assume non-constant

values for all observations, which introduces more flexibili-

ty to the model and improves the model's ability to classify

observations based on the values of the explanatory varia-

bles. Our model here on non-constant switching probabilities

can also be extended to consider our past models with a con-

stant mixing parameter as a special case, so we can compare

the performance of those models against the alternative of

our present model.

4.2 The Model

We still maintain the basic switching regression model

of the previous chapter but we now designate the switching

probabilities as non-constant. Therefore, our model can be

expressed as:

yd = XJ' 81 + :11.3 with probability )\ (4.1)
J

for observation J

(regime 1)

a ' + -yJ xJ $2 “23 with probability Cl Ad)

for observation J

(regime 2)

91 and 82 are (K x l) vectors of parameters corresponding

to the explanatory variables of the (K x n) matrix x. The

error terms ul‘1 and 1.12.j are assumed to be independently and

normally distributed with means 0 and variances Ciz and

62?, respectively. The non-constant switching probabilities
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can be modelled as probit functions of the exogenous varia-

bles. That is,

>‘J '3 F(XJ'Q)

l - )‘J I l -F(x3'5¢) I F(-xJ'G,)

where F( ) is a standard normal cumulative distribution

function, and Q is a (K x 1) vector of parameters. This con-

tains the constant switching probabilities model as a special

case where all the elements of Q; are zero, except for that

corresponding to the constant term. In the present model, we

still retain the assumption of the previous chapter regarding

the treatment of the regime classification probabilities as

non-constant. Therefore, we have the following probit models

on probability classification:

pllJ I F(xd"61) where p113 I Prob(wJ I l/IJ I l)

for each observation J

p00.j I F(xJ'XO) where p00J I Prob(wJ I 0/IJ I 0)

for each observation J

where F( ) is again the standard normal cumulative distribu-

tion function, and 6 1 and ‘60 are (K x l) vectors of para-

meters. wJ is the observed dichotomous indicator which pro-

vides sample separation information, while IJ is the unob-

served dichotomous indicator of actual regime classification.

When there is imperfect sample separation information,

the Joint density function for yJ and wJ can be re-written

from (3.2) as:



78

f.j I f(y,. wJ; 0) (4.2)

AJI‘IWJHWJPHJ + (l - wJ)(1 - 9113)) +

 

- F(xJ'Q )fl(yd)(wJF(xJ'61) +

(l " WJ)F(-XJ'XI)) +

F('XJ'Q )f2(yJ)(WJF(-XJ' XO) +

(1 "' WJ)F(XJ'XO))

where

, 2

13103) I 1 em I? (y: ' xi 31) ]

fan, 25,2

 

 

 

x3"Xc) _ v 2

0.0. -§ 3_ [—0—] av.
-:fi ./21'

i I 1,2; J I l,...,n

f1(yJ) and f2(yJ) are normal probability density functions

with means and variances given by N(xJ' 81’ 612) and

N(xJ' 62, 622), respectively. k3 is represented by a

probit model of the actual switching probabilities; and pllJ

and p00J are represented by probit models of the presumed

classification probabilities given the actual regimes.
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4;§ Derivation of Asymptotic Variances

When the regime is known, the asymptotic variances

_ A — A — p 2 2

Of Jn($1- $1), Jn< 62- B2): s/n(€1 - 61),

_ _ A

Jn(’@22 - 622), and ./n(Q - Q ) are, respectively:

2 l “ -1 ,

‘1 (3.333 a}? JXJ‘J') ’

u

262

12" (1 - )3)

; and
 

n

c 2 v “1

11m 12 (NJ:J 0)) (xij ) .

MI ’” F(xJ'QHl-NXJ'QD

The asymptotic variances for 81, ’82, 812, and 1&22 will

reduce to the corresponding asymptotic variances given in the

previous chapter if )s were constant. However, our switch-

ing probabilities are no longer constant in our present spe-

cification so that we have different values of )\J for each

observation. Since Ad I F(xJ' 0,) which is a probit model,

then the asymptotic variance ofe, corresponds to the asymp-

totic variance of the parameters in a standard probit model.

The above expression was derived from Judge et. al. (1980),

and Ashford and Sowden (1970), where 0( ) is a standard

normal probability density function and F( ) is a standard



80

normal cumulative distribution function. There are no a-

symptotic variances for the estimated parameters 71 and

'%0 since these parameters are not relevant at all when the

regimes are fully known. As in the previous chapter, the

above expressions for the asymptotic variances of 81, 82,

R12, and 822 are derived from the inverse of the informa-

tion matrix, where this information matrix corresponds to

the likelihood function for the case of known regimes.

For the models where the regime is either completely

unknown or is partly known, the asymptotic variances of

(/H(3 — 0) are derived in the same manner -- from the diago-

nal elements of the inverse of the information matrix. It

follows that \/H(0 - G) approaches the distribution designa-

ted by the expression N (0, lim(}-3) -1) .

a-veo n

The information matrix is defined by the following

expression:

_ 2
3 - - E 29 In L

3030'

where:

.irL J“ a

1n L I 35 1n f
1:! 3

Therefore, when the regime is completely unknown, f corres-

ponds to the density function of (3.3) given as:

f(y,; 9) I )(Jf1(y3)+ (1 - BJM'ZWJ) (4.3)

0 is a (3K + 2) x 1 vector of parameters, where K is the
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number of explanatory variables. Therefore, 9 I ( $14, 62',

2 2

‘1 ’ 62 ’ 4'" "he” 91 " (711’ 712“”: 21x)" (‘2 g

t g I
($21, 622,000, 92K) and Q (£1, €2,000’ 6K) c

When the regime is partly known, f corresponds to the densi-

ty function in (4.2) given as:

f(yJ. WJ; 9) I F(xJ'Q)fl(yJ)(wJF(xJ'X1) +

(1 - wjm - F(xj'xlm +

(l - F(XJ'G. ))f2(yJ)(wJ(l - F(xd' ‘60)) +

(1 - WJ)F(XJ'XO))

0 is a (5K + 2) x 1 vector of parameters given by ( 61', F 2',

612: 622, 6', 61', XO')' where the vectors (’51, 62, and

Q have been defined as previously; and 61 I (611, 612“.”

1110' and ‘60 g (101’ X02""’ X0K)"

To facilitate comparison of the results here with those

of the preceding chapter, we calculate the information mat-

rix in the same manner using similar simulation techniques.

The information matrix will be evaluated in the following way:

.. 2
»._Ez[a lan]

:18:

aeuac'

=22 1 2:1 21H

‘ [37(39)(90

We therefore need to derive the first derivative ex-

pressions of f when regime is either unknown or partly known.

For the case when regime classification is completely un-

known (there is no sample separation information at all),

the first derivatives of f(y; 0) (we omit the subscript J
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for simplicity) with respect to 0 are:

a: =ch'4.)

381k

31‘

2)52k

a:
2

961

a:
2

262

qu

331k

1 31'
I (1 - F(x Q )) 2

252k

I F(x'Q) afl

351

<1 - F(x't )> 2325

an,

21‘ = (r1 - r2) amx'é)

ask 32k

where:

—EE:;-‘-i:§ “” X'Fi)ih<

951k 61

_2______ [I ”“622
3612 2612 (12

 

 

BF(X'Q) = {25(1c'(2)1<k

Eek

i =1,2;k:=1,.u,x

where E(

‘1]

) is a standard normal probability density function.

Since 0 is of dimension (3K + 2) x 1, then 3 is of dimen-

sion (3K + 2) x (3K + 2).

For the case when regime classification is partly

known due to the presence of imperfect sample separation in-

formation, the first derivatives of f(y, w; G) with respect
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to 0 are:

21‘ a song )01 Dfl

a51k 381k

21‘ =(1-F(x'€t))02 3f2

252k 252k

2: = F(x'Q )01 31'1

9612 2615

Br = (1-1='(x'€))Q2 3‘2

9622 962:

Br I (1‘10l - £20,) 02626)

80k 80k

a: = F(x'Q )rlm - (1 - w)) 31““"1’

361k 931k

”at = - (1 - F(x'G, ))f2(w - (1 - 24)) 37""(""‘0)

360k 360k

where:

Q1 I wF(x"Xl) + (1 - w)(1 - F(x"Xl))

02 I w(1 - F(X'XOH + (1 - W)F(X' ‘60)

afi I 1.i (y--x'81)xk

251k 61

afi a fi [(y’x'51)2-1]

—'2' "—2 2

261 2‘1 61

amx'Q) = 0(x'Q) xk

22k
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’aF(x'%s) I 0(x'Xs) "k

268k

1 I 1,2; k I l,...,K; s I 0,1

where 0( ) denotes a standard normal probability density

function. 0 is of dimension (5K + 2) x 1, so that it fol-

lows that 9 is of dimension (5K + 2) x (5K + 2).

We follow the simulation techniques of the preceding

chapter.1/ Using a sample size of n I 5000, and faced with

specific parameter values, we draw observations from the

switching regression model using a normal random variable

generator. We evaluate the information matrix by averaging

the expressions derived from the first derivative components

of the density functions, when regime is either unknown or

is partly known. The asymptotic variances are the corres-

ponding diagonal elements of the inverse of the information

matrix.

4.4 The Value of Imperfect Information

We again derive here two sets of asymptotic variance

ratios for each experiment -- one, with regime partly known

relative to regime known; and two, with regime unknown

 

Z/In the preceding chapter, we showed that the infor-

mation matrix can be evaluated in two ways. We evaluated it

by the second method, using first derivative components of

the appropriate density functions. In our present model, we

followed the same method in order to facilitate a comparison

of the simulation results. However, we can also evaluate

the information matrix using the second derivative components

(although we did not do this) as we did in Chapter 2. For

the reader's interest, the expressions are shown in Appendix B.
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relative to regime known. A comparison of these two ra-

tios will show how much more efficient our estimates will

be when we use partial information as compared to no infor-

mation at all in determining sample separability. Under-

standably, the ratios in the former case will all be less

than or equal to those in the latter case (they are equal

when the partial information is not informative at all).

All the ratios will, however, be greater than or equal to

one (they are equal when the estimates derived are as effi-

cient as full information estimates), and the extent to

which they differ from one indicates the value of informa-

tion or imperfect information, as the case may be.

We maintain the use of two exogenous variables x1

and x2, where x1 is a unit vector and x2 is equal to

exp (- x3), where components of x3 are distributed as N(0, 1).

x3, like our dependent variable y, is derived from the nor-

mal random variable generator. The sample size is set at

n I 5000. We retain the experimental conditions of the pre-

ceding chapter, in order to make comparisons later with the

resulting ratios.

We conduct three sets of experiments. In the first

set, for given 612, G 22, and ‘6 parameters which denote some

information, we vary our E parameters in order to make sam-

ple separation more distinct. We do this twice -- first, u-

sing Q, values which imply constant switching probabilities

(i.e. 6,2 I 0 but estimated) and second, using Q values

which indicate non-constant switching probabilities (i.e.
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$2 I 0 and also estimated). In the second set of experi—

ments, for given 612: 622 , and 6 parameters which denote

a distinct sample distribution, we vary our 6 parameters to

show different levels of information observability. Again,

we do this twice —- where our chosen 6 values imply both

constant and non-constant switching probabilities. In the

last set of experiments, we vary our 6 parameters given

fixed 8, 612, C 22, and ‘6 values. The purpose of this

last set of experiments is to find out the effects of dif-

ferent Q values (all of which imply non-constant switching

probabilities) on parameter estimation efficiencies.

For the first experiment, we vary the F values given

612 = «22 = 1, and ‘6 I (1, -1, 1, 1)' which is informa-

tive. Since we had earlier established that the intercept

term is more important in determining sample separability

than the slope term, we vary our intercept term 621, hold-

ing the other intercept term fixed; therefore, we have P I

(0, 0, 821, 0)’ where the two distributions are made in-

creasingly distinct from each other as 821 increases. We

choose Q,I (O, 0)‘ which essentially implies constant

switching probabilities of .5, even if A. is modelled as a

probit. This particular choice of Q values enables us to

test our model with non-constant switching probabilities,

A I F(x'Q) I .5 where G I (0, 0)‘ but estimated, against

the alternative of constant )\ (implicitly, A I F(x'€ ) I

.5, where QI (0, 0)‘ but not estimated), which is actually

a special case of our present specification. The results
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are presented in Table 12, and the ratios here can be com-

pared with the ratios in Table 7 of the previous chapter,

where, for fixed )\, we perform the same eXperiments. We

call this Case 1.

‘6 has some information, i.e. ‘61 I -Xo, so that the

variance ratios when regime is partly known are less than or

equal to the variance ratios when regime is unknown. They

become more equal as the two regimes become distinctly se-

parate, meaning that there is little value in obtaining more

information on sample separation when the two distributions

are clearly far apart.

Compared to fixed A , where Q is not estimated (as in

Table 7), the ratios we derive now are slightly larger (par-

ticularly for [812, $22, and la ) probably due to the fact

that more parameters are estimated here, or maybe simply due

to randomness. But as the regimes become clearly separate,

i.e. F I (0, 0, 4, 0)’, the ratios now are almost equal to

those derived when X was fixed.

The &,1 and E,2 variance ratios are higher than the

A) ratios even when both imply that Q. I 0. The reason behind

this is that parameter values for Q now have to be estimated,

thereby introducing more randomness in the process, compared

to the case when Q.I 0, but not estimated.

When regimes are quite close to each other, i.e. P I

A A

(0, 0, l, 0)‘, 812 and 822 variance ratios are larger than

r A

the 811 and. $21 variance ratios, a pattern very unlike

that when A was fixed. However, this observation only holds
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when regime is partly known. When regimes are completely

unknown, 812 and $22 ratios are much smaller than the

‘811 and ‘821 ratios, a pattern evident when A was fixed.

The same pattern holds, but on a smaller scale when 5 I

(0, 0, 2, 0)‘. This implies that when regimes are very

close, and there is partly known information on regime clas-

sification, then there is a larger value of sample separation

information when A is not fixed, as compared to when A is

fixed.

We now repeat the previous experiment, this time

choosing non-zero Q parameters -- call this Case 2. The

results are presented in Table 13. We set Q»I (1, -l)'

so that the implied probability for each observation is no

longer constant at .5. The mean value of the (different)

x3 is .438. This implies that there is a slightly larger

probability that an observation is generated from regime 2

rather than regime l. Consistent with the findings of past

experiments, the ratios which reflect the value of sample

separation information are larger for the regime which is

sampled with the lower probability. Since regime l is sam-

pled with the lower probability on the average, then the

variance ratios of 811, $12, and 612 are all larger than

the corresponding estimated parameter ratios of regime 2.

The only difference between Case 1 and Case 2 is in

the value of the Q parameters. In Case 1, the choice of

the Q; values assure that for each observation, A I .5;

in Case 2, the choice of the Q values assure that for each
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observation, A assumes different values, depending on the

magnitude of the independent variables x that determine the

value of X , i.e. A I F(x'Q ). A comparison of the ratios

between Case 1 and Case 2 shows that, in the latter, the

value of sample separation information varies less. That

is, when the two regimes are fairly close and the value of

sample separation information is important (or the ratios

are high) in Case 1, the value of sample separation infor-

mation is less important (or the ratios are lower) in Case

2. On the other hand, when the regimes become farther apart,

the value of sample separation information in Case 1 becomes

lower or the ratios of asymptotic variances tend to approach

one as they should. For Case 2, the decline in the ratios

is slower, so that ratios in Case 2 are higher than those ob-

tained in Case 1, when regimes are distinctly separate. To

illustrate, take the ratios for 811. In Case 1, they range

from 17.5 to 2.0 (as the distributions become farther apart)

when the regimes are partly known, and from 6831.4 to 2.3

when the regimes are unknown. In Case 2, they range from

14.8 to 3.5 when the regimes are partly known, and from 25.6

to 3.7 when the regimes are unknown. The same pattern holds

for all the other variance ratios of the estimated parameters.

There does seem to be an advantage in postulating that

the switching probabilities be non-constant rather than con-

stant (even if the‘Q parameters have to be estimated in both

cases), so that the probability that an observation is gene-

rated by a particular distribution depends on the values of
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the exogenous variables. However, this advantage only holds

when {,2 I 0.-8-/ This is supported by the observation that

the efficiency of the estimates does not suffer as much

(variance ratios are lower) when A is non-constant (Q I 0),

as compared to when X is constant ( Q I 0), when the re-

gimes are very close to each other and are hardly distinct,

i.e. B I (0, 0, 1, 0)’. It is evident when regime is either

partly known or unknown. As the regimes become separate,

the decline in the ratios is quite slow, so that the variance

ratios are actually lower when A is constant.

Among all the ratios, the highest values belong to the

estimated 6. parameters, Just as in Case 1. This means that

among all the parameters to be estimated, the largest effi-

ciency losses originate from the parameters that determine

the switching probabilities. This is fairly intuitive, since

the efficiency of the estimates for the parameters in the two

regimes are affected by the initial probability of switching

regimes or of correctly matching the observations with the

proper regimes; therefore, the greater burden of efficiency

losses correspond to the 0. parameters, which enter the

switching probability probit function. These are applicable

only when regimes are difficult to distinguish from one

 

life 7‘ 0 basically implies that X I F(x'Q) is non-

constant fog all observations, while Q, I 0 implies that

A I F(x'Q,) is constant, since the effects of the variable

x are wiped out and are not reflected in the resulting values

of A . In our experiments, we adopted the special case of

). I F(x'fi) I .5, where QI (0, 0)‘ but estimated.
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another. When the regimes are sufficiently apart, then the

ratios of the 6 parameters are comparable in magnitude to

the other ratios. Consistent with the observation in Case

1, the decline in the variance ratios is monotonic for all

estimated parameters as the distributions become far apart.

2 . ($22

I 1 and also choose a particular sample mix, i.e. 8 I (0,

In our second set of experiments, we fix 61

0, 2, 0)‘. We vary our ‘6 parameters to reflect different

observability levels. We do this set of experiments twice --

Case 1, where Q,I (0, 0)’ and Case 2, where Q I (l, -1)'.

The results are presented in Tables 14 and 15, respectively.

Let us start with Case 1. In the first experiment,

61 I - X 0, that is, the ‘6 parameters imply that no infor-

mation is provided at all, and the ratios derived here are

very similar to those derived when.) is fixed for all obser-

vations, but 6, I 0 is not estimated (as seen in Table 8 of

the previous chapter). Ratios when regime is partly known

are exactly equal to those derived when regime is unknown.

The only difference between the ratios derived here and those

derived when QI 0 but not estimated is that the 812, 822,

and 2 ratios are much higher when the regimes are close to-

gether, i.e. B = (0, 0, 2, 0)'.

When information is now introduced into the K parame-

ters (61 I-Ko), as in XI (1, -1, 1, l)‘ and 6 I (1, 1,

-1, 1)‘, then the ratios when regime is partly known are

less than the ratios when regime is completely unknown.

That is, the presence of sample separation information
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presents efficiency gains as reflected in the decline of the

ratios as compared to when there is no information at all.

The results here can be compared to the ratios in Table 8

and Table 9 for the same parameter values of 612, 6 22, 8 ,

'6, and A I .5 where ‘Q I 0 but not estimated.

4 I (l, -l, l, l)’ presents a wider divergence in re-

gime classification probabilities p11 and p00, as compared to

X I (l, l, -1, l)‘. That is why, ratios are lower or effi—

ciency gains are higher when p11 is close to p00 as in '3 I

(l, 1, -l, l)‘. The observation of the previous experiment

also applies here. That is, the ratios derived when )( is

fixed and Q I 0 but not estimated are close, but slightly

less than the ratios derived here where )\ is also fixed and

Q ==C, but estimated. Again, the difference may be due to

randomness or to the fact that more parameters have to be

estimated this time.

We now explore Case 2, which is shown in Table 15.

The Q values are set differently, where Q I (l, -1)' so

that the switching probabilities vary for all observations.

This results in an average value of 'A I .438, meaning that

there is a slightly larger probability on the average that

an observation is generated from regime 2 rather than regime

1. Consequently, the ratios are larger for the estimated pa-

rameters of the regime which is observed with the lower pro—

bability.

The first experiment illustrates a non-informative

case, where 6 I (1, -1, -1, 1)‘. Therefore, ratios when
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regime is partly known are equal to the ratios when regime

is completely unknown. The next two experiments provide

informative 6 choices, which essentially duplicate those in

Case 1, so that the variance ratios decline when information

is not denied from the model.

When the Q, values ensure that the switching probabi-

lities are non-constant for all observations, the ratios in

Case 2 vary less than those in Case 1. Even when the ‘6 pa-

rameters are non-informative, variance ratios in Case 2 are

lower than the corresponding variance ratios of Case 1.

This re-enforces our earlier findings in the first set of ex-

periments that there are efficiency advantages when we pos-

tulate that the switching probabilities be modelled as non-

constant (6,2 I 0). However, as information is provided on

sample separation, the decline in the variance ratios is

very slow or is quite minimal in Case 2. To illustrate this

point, consider the?ll ratios -- in Case 1, the decline in

the values ranges from 52.4 to 4.6 when information is pro-

vided, while in Case 2, the decline in the values ranges from

7.7 to 6.8 when the same 6 information is provided. A si-

milar pattern is evident for the ratios of the other parame-

ters. Therefore, the advantages of improved efficiency asso-

ciated with non-constant switching probabilities seems to oc-

cur only within that range of parameter values where informa—

tion is very valuable in determining sample separability --

in this instance, when the 6' parameters are non-informative.

Since ‘6 I (1, 1, -1, 1)‘ provides less divergence
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in the p11 and p00 regime classification probabilities as

compared to 6 I (l, -1, 1, 1)‘, we would expect that the

ratios in the latter should be consistently higher than the

ratios in the former. However, this does not hold, parti-

cularly in the case of the 511’ ,6 12, and 9.1 variance ra-

tios, where the decline in the ratios is not monotonic as we

vary the “ values from the least informative to the more

informative.

Another effect of the non-constant A values is seen

in the fact that among all the derived ratios of asymptotic

variances, it is the 9: ratios which are always the highest.

This implies that as information is provided on regime clas-

sification, efficiency losses associated with the G parame-

ters remain quite substantial when )1 is not constant for

all observations. When X is constant for all observations,

but ‘4 parameters still have to be estimated (as in Case 1),

then the ratios are much lower (when information is provided

to the model) and the decline in the values of the asymptotic

variance ratios is monotonic as more information is provided

on sample separation.

The last set of experiments we conduct involves vary-

ing the values assumed by the ‘0 parameters given fixed va-

lues for 612, 6‘ 22, 8 , and X . The results are presented

in Table 16. For these experiments, ‘6 1 I - ‘6 0’ so we have

informative cases. Ratios when information is partly avail-

able are less than ratios derived when there is no information

available at all.
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The different C, values suggest different average

values for A, and (l - ‘)). The resulting variance ratios

are consistent with the expectations that the ratios asso-

ciated with the parmaters of the regime observed with the

lower probability assume higher values. Therefore, as the

average value of )\ goes up, the ratios associated with re-

gime 1, i.e. 811, 812, and 812 all go down.

Regarding the ratios corresponding to the Q. parame-

ters, the lowest ratios occur when k I l - 'X I .5; this

means that the efficiency of the estimates on the parameters

of the )5 model is highest when there are equal probabilities

for an observation to be generated by either regime. As the

switching probabilities increase for any one regime, i.e. as

the Q, parameter values increase absolutely, then g, ratios

also increase monotonically, implying that the efficiency of

the estimates declines substantially when the switching pro-

babilities become biased in favor of any one regime.

When QI (l, -1)' and 6* I (-1, l)‘, then Q* I - Q ,

so that F(x'Q) I l - F(-x'€) I l - F(x'Q'). Therefore,

A I l - )\*. This transformation is a similar action to

simply interchanging the names of the regimes. Consequently,

81 ratios for A are simply equal to 82 ratios for l - )\ *;

2 ratios when -'Q. is equal to5‘12 ratios are similar to 82

Q“; and so on. Any difference in the values of the variance

ratios may be attributed to randomness, and to differences in

the information provided by the 6' parameters to both regimes.
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4.5 Summary

This chapter has focused on the possibility of model-

ling the switching probabilities as probit functions of the

exogenous variables in a switching regression model. It

has, however, retained the other features of the preceding

chapter -- two exogenous variables, and modelling the regime

classification probabilities given the true regime also as

probit functions of the explanatory variables. In addition,

all the parameters will have to be estimated. This expanded

model is aimed at improving on the previous specification

since using all the available observations on the dependent

and independent variables may increase the chances of correct

switching between regimes. It also serves as a better indi-

cation of the model's ability to classify observations based

on the values of the exogenous variables.

Different types of experiments were conducted here.

In the first two sets -- vary F given K, and vary 6 given

8 —- we apply both constant ( Q I O) and non-constant (Q, 7‘

0) switching probabilities, where the 6 parameters are esti-

mated in both instances. When 0 I O, we have the special

case of our former model with fixed A (implicitly, 6 I 0

but not estimated) and the ratios we derived previously can

be compared with our present results. When‘Q # 0, we can e-

valuate the merits of our probit model when the resulting

switching probabilities are either constant (16 I 0) or

non-constant (Q 7‘ O). In the last set of experiments, we

vary our 4, parameters, all 9, I O, to find out the effects
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of such an action on the resulting parameter efficiencies.

We come up with the following important findings.

First, there are advantages when the switching probabilities

are modelled as non-constant (62 I 0) as compared to con-

stant switching probabilities (42 I 0 but still estimated).

These advantages are in terms of greatly improved efficien—

cy of the estimates of the parameters. However, these gains

only occur during instances where information is most valu-

able -- when samples are hardly distinct from each other,

and when the information provided by the X parameters is

not informative at all. Under these circumstances, we get

smaller variance ratios when the switching probabilities are

not fixed for all observations. Second, since there are more

parameters to estimate in this model, a lot of randomness and

variability is introduced. This may account for the fact

that the ratios we derive here are slightly larger than those

derived when h was fixed.(‘Q I 0 but not estimated). In ad-

dition, the slope variance ratios in the regression model are

now larger than the intercept variance ratios in instances

when the value of information is most important (as mentioned

above) and for the sample which is observed with the lower

probability on the average. This was not evident at all

when we had a constant mixing parameter X.. Third, when we

vary the Q parameters to yield various average levels of

switching probabilities, the variance ratios of the estimated

parameters which correspond to the sample observed with the

A

lower average probability are generally higher. The Q
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variance ratios also increase as the probability of ob-

serving a particular regime diverges from .5. Last, the

value of imperfect sample separation information is still

largely dependent on the natural separation of the two

samples. Variance ratios are higher when the samples are

more difficult to distinguish from each other, and they

are lower when samples are far apart. Also, the use of im-

perfect information improves parameter estimates as compared

to when no information is used at all. Naturally, the more

reliable the imperfect information (as evident from the 6

parameters), the better our estimates will be.



CHAPTER FIVE

CONCLUSIONS
 

We set out in this study with the purpose of asses—

sing the value or importance of imperfect sample separation

information in a switching regression model, where all the

parameters have to be estimated, so as not to understate

the true value of such information. We accomplished this

by evaluating information matrices using simulation experi-

ments over a large sample size (i.e. 100000 and 5000) in or-

der to derive the asymptotic variances of the estimated pa-

rameters when regime is either unknown (no available sample

separation information) or partly known (the available in-

formation is imperfect). These asymptotic variances are

simply the corresponding diagonal elements of the inverse of

the information matrix. We then solved for asymptotic var-

iance ratios when regime is either partly known or completely

unknown, relative to when regime is completely known (full

sample separation information). A comparison of these two

sets of ratios shows the advantage of using imperfect regime

classification information relative to no information at all.

All these ratios are greater than or equal to one, and

the extent to which they differ from one measures the value

of information, or imperfect information, as the case may be.

The higher these variance ratios, the greater is the value

of regime classification information. On the other hand,

variance ratios which approach the lower bound of 1.0 imply

104
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that information is not very valuable to the model.

In the past three chapters, where we evaluated the

value of imperfect sample separation information, we made

variations on the basic switching regression model by pos-

tulating different assumptions about the parameter values.

In Chapter 2, we examined a normal mixture model with im-

perfect regime classification information, where the proba-

bilities of correct regime classification (given actual re-

gime classification) are constant over observations. This

is a straightforward extension of Schmidt's work to the Lee

and Porter model with constant regime classification pro-

babilities, p11 and p00. Our experiments consisted of vary-

ing the regime classification probabilities, the difference

between the means of the two samples, the difference between

the variances of the two samples, and the mixing parameter

-- each time holding the other parameter values fixed.

In Chapter 3, we added another explanatory variable

into our switching regression model and further assumed that

the presumed regime classification probabilities (p11 and

p00) are non-constant over observations, but are in fact,

probit functions of the exogenous variables. This extension

is aimed at improving the flexibility of the model and is

plausible since it is highly likely that the imperfect re-

gime classification probabilities vary from one observation

to another, and that their values are affected by the exo-

genous variables. Our experiments consisted of varying the

probit parameters of the regime classification probabilities
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for a particular sample mix, and varying the sample mixes

for a particular set of imperfect indicators -- each time

holding the other parameter values constant.

In Chapter 4, we maintained the features of Chapter

3 but added another assumption, namely, that the switching

probabilities, formerly assumed to be a constant mixing pa-

rameter for all observations, are now non-constant and can

be modelled as a probit function of the explanatory varia-

bles. This extension is aimed at providing the model with a

better ability to classify observations into the two regimes,

by using as much information as possible at each observation.

Therefore, actual regime classification probabilities as

well as imperfect regime classification probabilities are

modelled here as probit functions of the explanatory varia-

bles. There are three sets of experiments here: varying the

probit parameters of the imperfect regime classification

probabilities for a particular sample mix, and varying the

sample mixes for a particular set of imperfect regime clas-

sification probabilities, each time using non-constant

switching probabilities; and varying the parameters in the

switching probabilities probit model given fixed values of

the other parameters.

We have discussed the results of our experiments

in detail already, so here we will discuss only a few of

the more important findings. First, there are advantages

in terms of efficiency gains when using imperfect sample

separation information, as compared to no information at
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all. These efficiency gains can be substantial in some cases.

This is especially so when the two samples are not very dis-

tinct, so that there is not much sample separation informa-

tion in the sample itself.

Our second important finding follows from the first

one. There are two cases in which imperfect sample separa-

tion information does not improve efficiency of estimation:

(1) The imperfect sample separation information is

not informative. This occurs when the probability of a par-

ticular observed regime classification does not depend on

the true regime classification; that is, when pll I l — p00.

In terms of the model of Chapter 3, where these probabili-

ties are modelled as probit functions, this occurs when

unto.

(2) The samples are very distinct. The two distrib-

utions are sufficiently far apart so that there is a very

small probability of misclassification for any observation.

Therefore, there is hardly any need for information (im-

perfect or otherwise) in determining sample separability.

This occurs when the means of the two distributions in the

sample are clearly separate ([11 distinct from.,uz; 81 dis-

tinct from 82).

Our third conclusion again follows from the first.

The value of imperfect sample separation information is high-

est, or the gains in efficiency in using unreliable informa-

tion are greatest, under the following circumstances:

(1) The imperfect sample separation information is
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highly informative. In the extreme case, p11 I p00 I 1

so that the imperfect indicators are perfect indicators, and

the regime is fully identifiable based on the available in-

formation. The more reliable the imperfect indicators, the

more efficient the estimates are. This occurs when p11 I

p00 or p11 near p00 in the extreme ranges of probability,

where there is great certainty and confidence that both re-

gime classifications are right.

(2) The samples are not very distinct. It is here

where information (even if imperfect) is most helpful in

determining sample separability and improving the efficien-

cy of the estimates. This agrees with the findings of pre-

vious studies (Kiefer, 1979; Schmidt, 1981; Lee and Porter,

1984) that the value of sample separation information is

largely dependent on the natural separation of the two sam-

ples. The closer the distributions in the sample (141

close to #2; 81 close to 82) and the closer the variances

are, the more important is information in assigning regime

membership.

Fourth, it is the intercept term rather than the

slope term in a switching regression model which mostly de-

termines sample separability. It is more difficult to dis-

tinguish one sample from the other when the intercepts are

close together rather than when the slopes are. Therefore,

the efficiency losses in using no information or using par-

tial information are far greater for the parameter estimates

when the intercepts are hardly distinct from each other as
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compared to when the slopes are hardly distinct from one

another.

Fifth, the value of sample separation information is

highest for the estimates corresponding to the mixing para-

meter or to the parameters of the switching probabilities.

Sixth, there are definite efficiency gains when we

model our switching probabilities as non-constant probit

functions of the explanatory variables. These gains occur

in circumstances where information is most valuable; that

is, when samples are hardly distinct from each other and

when the imperfect regime classification information is not

very informative.

Seventh, as we continually expand on our basic switch-

ing regression model, we find that regime classification

information becomes more valuable. The value of sample se-

paration information is more important for complicated models,

as Kiefer (1979) suggested. This is due to the fact that as

we try to estimate more parameters, more variability is in-

troduced to the estimates, which is naturally reflected in

larger variances. This notion of more variability in the

model is also evident in other situations -- when the 6 pa-

rameters are not very informative, when samples are diffi-

cult to disentangle, and when a particular regime is observed

with a lower probability.

Eighth, in accordance with the findings of Schmidt

(1981), the value of information, imperfect or otherwise,

is higher for the regime which is observed with the lower
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probability.

In light of these findings, a final word is warranted.

Sample separation information, even if imperfect or unrelia-

ble, can be used to improve the efficiency of parameter es-

timates in switching regression models. Its use is most

valuable when the samples are hard to disentangle from each

other, and when the imperfect information is informative and

fairly reliable. Under these conditions, it may also be ad-

visable to model the switching probabilities as non-constant,

since this action can further increase the efficiency of the

estimates, particularly when the samples are difficult to

distinguish from one another. Presumed regime classification

probabilities given the actual regimes may also be modelled

as non-constant to further improve the model's flexibility.

However, when the imperfect information is highly unreliable

or when the samples are clearly separate, there is little

point in using imperfect information, since only small effi-

ciency gains are possible. In addition, one must consider

the trade-off implied when adding more parameters to the model

(like imperfect regime indicator functions with probit para-

meters) since such an action gives the model more variability

and tends to increase the variance estimates. Therefore,

gains achieved by improving the model's plausibility may be

lost or at least partially offset by introducing more varia-

bility into the model when additional parameters have to be

estimated.
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APPENDIX A

THE SECOND DERIVATIVE COMPONENTS OF THE

INFORMATION MATRIX IN THE CASE OF

NON-CONSTANT CLASSIFICATION PROBABILITIES

The density function (we drop the subscript J for

simplicity) when the regime is unknown is:

f(y; 0) I Afl(y) + (1 - ))f2(y)

where:
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The first derivatives of f with respect to O are given in

the text of Chapter 3. The non-zero second derivatives of

f with respect to 0 are:
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for simplicity) when the regime is partly known is:

32% - Bf1[(y-x'$1)2- 1]+emf)?- 3612

i . 1,2; k,m = 1,2,...,K

The Joint density function (we omit the subscript J
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F( ) . standard normal cumulative distribution function

The information matrix is given by:
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APPENDIX B

THE SECOND DERIVATIVE COMPONENTS OF THE

INFORMATION MATRIX IN THE CASE OF

NON-CONSTANT CLASSIFICATION PROBABILITIES

AND NON-CONSTANT SWITCHING PROBABILITIES

The density function (we drop the subscript J for

simplicity) when the regime is unknown is:

f(y; 9) = \flw) + (1 - l)f2(y)

where:
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F() standard normal cumulative distribution function
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The first derivatives of f with respect to 0 are given in

the text of Chapter A. The non-zero second derivatives of

f with respect to G are:
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fl( ) = standard normal probability density function

The Joint density function (we omit the subscript J
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text of Chapter 4. The non-zero second derivatives of f with

respect to O are:

  

  

2

32f -F(x'&)Ql 3 f1

351k 951m 351k 351m

2

Bar j=F(x'Q)Ql 3 f1

951k 3512 951k 2612

3 2 f - Q1 afl 3F(x'4)

321k 96m 331k 9Qn:



121

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 r a F(x'c, )(w - (1 - w)) 3‘1 BFWXN

3311: 9‘film a51k 3film

2

3 2 r = (1 - F(x'fi. m2 3 f2

95 2k 8(92le 352}: 352m

2

32: fi=(1-F(X'Q))Q2 3 f2

a32k 3‘ 22 33 2k 9‘2?

92f =-Q2 3f2 3F(x'fil

afigkagm 322k 3Q”)

32: -=-(1-F(x'Q,))(w-(l-w)) Bra 9F("'7‘0)

3‘5 2k ax0m a(52k BXOm

2

BZr =F(x'Q)Q 3 f1

2fi2’ 1"""""""'22
3(61) 9(61)

321‘ 2Q Bf]. amx'Q)

2 1""""‘2

361 ”'1: 351 36k

Bar =F(x'Q)(w- (l-w)) bfl 3“""1’

3412 axlk “12 axlk

2

32 r a (1 - F(x'Q ))Q2 3 f2

9(622)2
3(62 )

_B_E?t;__= - Q2 1:2? apnea!

362 36k ace 2%

22 r = - (1 — F(x'a, ))(w - (1 - w)) 312 amx'xo)

2 2

’a 2 r = (rlol - f2Q2) 92 F(x'Q)

9% 36m aakaam



122

3 2f =f1(w- (l-w)) 3F(x'&) BF(X'X1)

 

 

 

 

 

 

3Q}: 2K 1m Balk 21‘1m

3 2 r = 220,: - (1 - w)) DFu'Q) BM“! 0)

254k axOm 3Q): 3)‘0m

2 :

3 2 r = F(x'Q)f1(w - (1 - w)) 3 F“ 1‘1)

91‘1k ”11:: 2“1k 2x111:

2 t

32f =— (1-F(x'Q,))f2(w- (l-w)) a F“ ‘0)

3x01: BKOm 5x01: 210m

where:

Q1 = wF(x"61) + (1 - w)(l - F(x'X1))

Q2 = w(l - F(x' 1(0)) + (1 - W)F(X' X0)

2

 

 

 

 

 
 

 

9 f1 = i‘1 (- xkxm) + afi xk (y - x'fii)

“—2 ”'7

251k 281m ‘1 351m ‘1

2 v

3 f1 =(y'x51)xk[3f1 1-f1]

2 fl“? —'&'

251k 351 2‘1 C1 ‘1

2 . 2

a fi,= 2f1 [(y'x 51) - 1 ]+

3(512)2 3512 261“ 2612

f1[ 1 -(y'x'$1)2]"—1 6

2‘1 ‘1

22 F(x'fz) = mx'QH- x'Q. )xkxm

22 k, m

2
3 F(x'Xs) . my XSH- x' xs)xkxm

axSk
axsm



123

i I 1,23 s 8 0,1; k,m = l,2,...,K

F( ) = standard normal cumulative distribution function

E( ) - standard normal probability density function
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