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ABSTRACT

PROBABILITY MEASURES ON REAL SEPARABLE BANACH SPACES

By

John Mathieson

Two fundamental problems are considered in this thesis, they

can be described as follows. In Chapter I the problem of characteriz-

ing the characteristic functions of probability measures is examined.

When the probability measures are defined on a real Banach space

with a Schauder basis we obtain general results which are applied

to various sequence Spaces.

In Chapter II we introduce the notion of covariance form for

a Gaussian probability measure. We obtain several representation

theorems for the covariance form when the Gaussian measures are de-

fined on real separable Banach Space. We then apply them to sequence

spaces and Spaces of continuous functions.
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CHAPTER 0

INTRODUCTION

In the development of the classical theory of probability,

the concept of characteristic function has played a powerful and

central role. As a consequence this concept has been extended,

initally by Kolmogorov, to the study of probability measures on in-

finite dimensional linear Spaces, the aim being to duplicate the

results of probability theory on finite dimensional Spaces. The

impetus behind this is,the fact that much of the study of stochastic

processes is equivalent to the study of measures on Suitably chosen

infinite dimensional linear function Spaces.

In this thesis we shall consider two fundamental problems

concerning characteristic functions, they can be described in the

following general terms.

1. The General Bochner Problem.

It is well known, see for example [4], that the characteristic

functions of probability distributions can be characterized as the

continuous positive definite functions on the real line. The general

Bochner problem is to find analogous characterizations for the char-

acteristic functions of probability measures on infinite dimensional

spaces.

In chapter one we shall consider initially the problem of

determining sufficient conditions for a given function to be a

l



characteristic function. Some general theorems are derived in this

direction when the Spaces under consideration are Banach Spaces with

Schauder bases. Our general theorems allow us to derive the Bochner

theorems of Gross [6], Sazonov [18] and to extend the theorems of

A. de Acosta [2].

A general Bochner theorem is obtained utilizing the concept

of x-families of measures, first introduced in Kuelbs and Mandrekar

L9], [10]. The reSults of [9] and [10] are extended to Orlicz Spaces

and the hypotheses are weakened. As an illustration of the power of

the techniques developed in chapter one we conclude with a derivation

of the Bochner theorem of Kuelbs [8].

The methods of chapter one differ substantially from those

that have hitherto been employed in the solution of the Bochner

problem. In all previous papers mentioned, the methods employed

center on establishing the existence of a probability measure by

showing that it is a limit of a compact set of probability measures.

We shall establish the existence of our measure by first finding a

measure on too large a Space and then finding conditions for its

support to be suitable.

2. Representation Theorems for the Characteristic Functions of

Gaussian MeaSures.
 

In [11], Kumar and Mandrekar have Shown that the only possible

limiting distributions of normalized Sums of independent identically

distributed Banach space valued random variables are the so called

stable distributions. That is to say, only the stable distributions

have non empty domains of attraction. The most important stable



distributions are those that are Gaussian and it is these that are

studied in chapter two. An attempt to characterize the domain of

attraction of a Gaussian distribution should begin by obtaining a

representation of its characteristic function. Using a result of

X. Fernique tin we define the concept of the covariance function for

Gaussian distributions, extending the concept first introduced by

Vakhania [19]. A general representation for the characteristic

function of a Gaussian distribution is obtained which includes as

Special cases the results of Vakhania [19], A. de Acosta [2] and

Kuelbs and Mandrekar [10].



CHAPTER 1

BOCHNER THEOREMS ON BANACH SPACES WITH SCHAUDER BASIS

§l. Preliminaries.

Let X and Y be real vector Spaces in duality with respect

to some bilinear form <-,-> on X X Y. For any y1,...,yn in Y

and any Borel set B in the n-dimensional Euclidean Space R“, a

sub-set of X of the form {x E X : (<x,y1>,...,<x,yn>) E B] is

called a cylinder set in X based in the finite SubSpace generated

by y1,...,yn. The class of all cylinder sets in X forms an

algebra, and the class of those based on a fixed finite Subspace of

Y forms a o-algebra. We shall denote by BKX,Y) the smallest

o-algebra containing the algebra of cylinder sets in X.

(1.1) Definition. Let u be a finite measure on
 

(X, 51X,Y)). Then the complex valued function a defined on Y by

fi(y) = £exp[i<x,y>}du(x) for all y E Y

is called the characteristic function g£_ &, #

We shall mainly be interested in the case where X is some

separable Banach Space and Y is the topological dual of X.

In this case the o-algebra .B(X,Y) has some important properties

summarized in the following lemma.

(1.2) £2992: Let E be a separable Banach Space and let

E' be its topological dual. Then

4



(i) IG(E,E') is the Smallest o-algebra containing the (norm)

open sets in E.

(ii) If 9 = fi on E', where u and v are finite measures

on (E, B(E,E')), then v = u.

(iii) Every finite positive measure u on (E, 5KE,E')) is

gighg in the sense that if e > 0 there exists a (norm) COWPaCt S€t

K in E such that u(E\K) < e. #

We shall not prove these statements, proofs of (i) and (ii)

can be found in Ito and Nisio [7], proposition 2.2, and a proof of

(iii) can be found in Parthasarathy [14], theorem 3.2.

In this chapter we Shall consider the question of when a

function on E' is the characteristic function of a finite positive

meaSure on (E, EKE,E')). We shall first demonstrate some algebraic

and topological properties of characteristic functions.

(1.3) £2291: Let E be a separable Banach Space with

tOpological dual E' and let u be a finite positive measure on

(E,48(E,E')). Then the characteristic function a satisfies the

following properties:

(i) Let y1,...,yn be any finite subset of E' and let

a1,...,an be any finite Subset of the complex numbers, then

n

jEk ajékfi(yj ‘ yk) Z 0

(ii) a is ¢S(E',E) continuous at the origin.

Proof. (i) can be proved by direct computation, observing

that

n n
- 2

E a a “(y - y) = \2 a. eXp{i<X,y >}\ dMX)
ij k“L j k [i=1 J j



and the fact that u is a positive measure.

(ii) Since by lemma (1.2) part (iii) the measure u is

tight there exists, given 6 > 0, a norm compact subset K Such

that u(E\R) < e- Let {ya} be a net converging to O in the

TS(E',E) topology. Then

lim \1 - fi(ya)] $23 + lim L‘exp[i<x,ya>} - I‘du(x) =26

a a

Hence since e is arbitrary the result follows. #

The property (1) that u satisfies, is of Special interest.

(1.4) Definition. Let 6 be a complex valued function on
 

E'. If for every choice of y1,...,yn on E' and every choice of

,...,c we have that

l n

n n _

Z 2c.c¢(y.-y)20

j=1 k=1 3 k 3 k

complex numbers c

then we say that ¢ is Positive Definite. #

With this terminology, lemma 1.3 can be summarized as: every

characteristic function on E' is positive definite and TS(E',E)

continuous at the origin.

Bochner has shown, [4], that if E is of finite dimension,

then every complex valued function on E' that is positive definite

and continuous at the origin is necessarily a characteristic function.

It is well known, Prohorov [16], that this cannot be true

for all Banach Spaces of infinite dimension. The following question

naturally occurs. If E is a Banach Space of infinite dimension

then does there exist a topology 6 on E' such that a complex

valued function on E' is a characteristic function if and only if

it is 6-continuous at the origin and positive definite? Clearly if

such an 6 exists then 6 is coarser than TS(E',E).



In [13], Mfistari has determined the Spaces for which the

above question may be answered in the affirmative. Most spaces of

interest do gg£_have such an 6. As a consequence, characteristic

functions on E' cannot in general be characterized as the complex

valued positive definite functions on E' that are continuous at

the origin in some Special topology.

In sections 2 and 3 we shall consider the problem of finding

a topology 2. on E' such that a complex valued positive definite

function that is z-continuous at the origin is necessarily a char-

acteristic function. In order for our results to be of interest we

shall want 2, to be as fine as possible and compatible with the

algebraic structure of E'. Dudley has shown in [3] that o(E',E)

continuous positive definite functions are necessarily characteristic

functions and hence we should naturally seek topologies, 24 finer

than o(E',E) and, of course, coarser than TS(E',E), that is to

say, topologies of the dual pair (E',E) coarser than TS(E',E).

The following theorem will prove to be extremely useful.

(1.5) Theorem. Let X be a real linear Space with

algebraic dual X*. If ¢ is a complex valued function on X then

¢ is the characteristic function of a positive measure on

(X*, 8(X*,X)) if and only if q) is positive definite and continuous

on finite dimensional subspaces of X. #

This theorem is well known, a reference for it is Dudley [3],

theorem 1.4. As a consequence, if E is a separable Banach space

with dual E' and if ¢ is a positive definite function on E'

continuous in agy_topology of the dual pair (E',E), then there exists

A
* *

a finite positive measure u on (E' , BKE' ,E')) such that ¢ = u.



The linear Space E'* contains an identification of E as a proper

SubSpace, so that it is clear that our aim should be to find con-

ditions for u to give all its mass to E. In the following sections

we shall consider the measure Space (E'*,13(E'*,E'),u) and establish

estimates for the support of u in terms of prOpertieS of fl.



§2. Topologies on Vector Spaces.

In this chapter the topologies to be considered on vector

spaces are those determined by families of semi-norms. We know,

[17], theorem 3, p. 15, that if F is a family of semi-norms on the

vector Space E, then there is a coarsest topology on E compatible

with the algebraic structure in which every semi-norm in F is

continuous. We call this topology, the tOpology determined by_ E,
 

Under this topology, E is a locally convex topological vector space

and a base of closed neighborhoods of the origin is formed by the

sets {x E E : sup p (x) S e} where e > O and p, E F.

lSan j J

We shall mainly be concerned with families of semi-norms

satisfying the following property.

(2.1) Definition. The family of semi-norms, F, on a vector
 

Space E, is said to be sequentially dominated,if given any countable
 

subfamily A, there exists p E P such that for all q 6 A there

exists 0 < c(q) < a satisfying

q(x) s c(q)p(x) for all x E E . #

Clearly if P is sequentially dominated and A is any

countable subfamily then there exists p E P such that the topology

on E determined by A is coarser than that determined by p.

This observation allows us to establish a useful property of such

families.

(2.2) LEEEE: Let V be a real valued function on the vector

space E that is continuous at the origin in the topology determined

by a sequentially dominated family of semi-norms P. Then there

exists a semi-norm p E P such that y is continuous at the origin
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in the topology on E determined by the Single semi-norm p.

Proof. For all n 6 2+ there exists a finite family

Tn<2 P such that {x: \¢(x) - ¢(O)\ < n‘l] contains a neighborhood

of 0 in the topology on E determined by P“. Hence y is con-

00

tinuous at the origin in the topology determined by U P“. Since

n=l

F is sequentially dominated there exists p E T such that the

co

topology determined by U Fn is coarser than that determined by p

n=1

and hence W is continuous at the origin in the t0pology determined

by p. #

We now introduce the notion of Gaussian summability of a

semi-norm. It is well known that there exists a probability Space

(0,3,?) on which we may define a sequence of independent random

variables {X(j) : j E 2+} which are all normally distributed with

mean zero and unit variance.

(2.3) Definition. Let F be a vector space. Let
 

+

B = {ej : j 6 Z } be a subset of F. Then a semi-norm p on F

is said to be Gaussian summable of order k_ with respect t 11 £29  

+

16; if

1( N

SUP E p { E i(j)X(j)e.} < w

N21 j=l 3

where E is the expected value taken with respect to P. # It should

N

be observed that p[ 2 1(j)X(j)ej} is necessarily a random variable

i=1 N

on (0,3,P) since the map (y ,...,y ) a p( 2 y e
1 N j=1 j j

map on Rn into R with the usual topologies.

is a continuous

(2.4) Lemma. Let {E, (-,-)} be an inner product space

and let p(x) = (x,x)% for all x E E. Then p is Gaussian summable

+

of order 2 with respect to the countable set B = {ej : j E Z ] and
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k E L+ Such that E 12(j)(ej,ej) < m.

j=l

Proof.

2N NN

p ( z i<j>x<j)ej) = z x i<j>x<k>X(j>X<k)<ej.ek>

i=1 j=1 k=1

and

2N N2
E P ( Z k(j)X(j)ej) = 2 A (j)(e.,e.)

i=1 j=1 J J

and hence

2 N m 2

SUP E P ( 2 k(j)X(j)e.) S E k (j)(e..e.) < w - #

N21 3:1 J j=1 J J

(2.5) LEEEE: Let E be a vector Space. Let B =

{ej : j E Z+} be a subset of E. Let H be a probability measure

on (E*,,5(E*,E)) such that fl is continuous at the origin in the

topology on E defined by a Single semi-norm p. If p Gaussian

summable of order k with respect to B and A (E L+) then

31‘

u{x

"
M
B

i2(j)\<e.,x*>\2 < a} = 1.

j 1 3

Proof. From the assumption of Gaussian summability,

Z

(1) Epk( z k(j)x(j)ej) 5 M

j 1

for some M and all. N. From the continuity of S, if e is a

positive number then there is a C such that

x k
(2) 1 - Real p(x) < e + C p (x) for all x.

For a t > 0 and a positive integer n, set

n

X = X = t E A X e,

n.t j=1 J J J



12

and notice that by (l) and (2), with K = CMS and all \t\ S Kl/k

(3) E(1 - Real Q(X)) S 23

But

* * *

Efi(X) = E] exp{i<x,x >}du(x ) = f E{exp i<X,x >}dp(x)

it at

E E

* *

by the Fubini theorem. For a fixed x , <X,x > is a Gaussian

random variable with mean zero and variance

2 2 2 * 2 n 2 * 2

(4) o=to(X)=t le<e,,x>\
n j=1 J

* 2

Thus E{exp i<X,x >} = exp{-% 0 } and so (3) can be rewritten as

2 2 * *

(5) j eXP{-% t o (x )}dp(x ) 2 1 - 28
‘k n

E

Take the limit of the left hand side, first for n a m, and then

for t a 0. By the Lebesgue dominated convergence theorem the limit

is the integral of the limit of the integrand, which is l on the

set A = {x* : lim C§(X*) < m} and zero outside of A. It follows

n—m

then that

p.(A)21-2€.

Since 6 was arbitrary, p(A) = l, which is the assertion of the

theorem. #

We may now combine lemma (2.5) with the concept of a

sequentially dominated family of semi-norms to obtain the main result

of this section.

(2.6) Theorem. Let E be a vector space. Let B =

+

{ej : j E Z ] be a subset of E. Let u be a probability measure
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* *

on (E , [3(E ,E)) such that f), is continuous at the origin of E

in the topology determined by a sequentially dominated family of

semi-norms P. Then there exists p E P such that if p is Gaussian

+

summable of order k with reSpect to B and X E e then

*

u{x* 12(j)\<ej,x >\2«< m] = l.

u
i
m

8

J 1

Proof. The proof follows directly from lemmas (2.2) and

(2.5). #

We may now apply theorem (2.6) to obtain Bochner's theorem

on some sequence Spaces.
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§3. Bochner's Theorem on Sequence Spaces.

Let A and L be as in the appendix and let

{uj E j 6 2+} = B be the canonical basis for A. We shall derive

a Bochner theorem for positive definite functions on A and extend

it to Spaces of type p.

(3.1) Definition. A real finite bilinear form Y on
 

A X A is said to b of trace class k if
 

(1) Y is symmetric. That is to say, for all x,y E A

we have Y(x,y) = Y(y,X)-

(ii) Y is positive definite. That is to say, for all
 

X E N\[0), Y(x,x) > O.

(m) 2 r”2(u,,u,) <00 . #

j=1 J J

We may define for any positive definite bilinear form Y

a semi-norm pY by pY(X) = Y%(x,x) for x E A. Let

Tk be the topology on A determined by the family of semi-norms

{pY : Y is of trace class k].

(3.2) LEEEE: Let k S 2. Then {pY : Y is of trace class k}

-is a sequentially dominated family.

Proof, Let [Yn : n 6 2+] be a countable set of bilinear

forms of trace class k. There exists c E L such that

Z ck/2(n) E Y“, (uj,u.) < w .

n=1 j=l 3

Let q = pY where

Y(x,y) = E C(n)Yn(x,y)

n=1

Since 2 c(n)Y (u,,u,) s { E ck/2(n)Yk/2(u.,u )}2/k for all j

n=1 “ J J n=1 “ J j

we have that Y is of trace class k for all n.
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p (x) s 9é¥l-. #

Yn c (n)

We may now apply theorem (2.6) to obtain:

(3.3) Lemma. Let k s 2. Let u be a probability measure

on (L, 5%L,A)) such that fl is continuous at the origin.

Tk

Then ”(Lk) = 1.

Proof. By lemma (3.2) and theorem (2.6) there exists pY

such that if pY is Gaussian summable with respect to A E L+ and

B then

i2(j)x2(j) < w} = 1.

1

u{x E L :

I
I
M
B

3

By lemma (2.4) we then have p(A) = 1 where

co

k/2-l 2

A = {x e L = 2 {t(j)} x (j) < m}

i=1

+

and where t(j) = Y(uj,uj) for all j E Z .

If we now Show that ACZLk then the result follows. Let

k > 2 and r = 2/k > 1 and r' = 2(2 - k)-1. Then l/r + l/r' = l

and by Halder's inequality

co co 2_ 0° _ _ t t

2 lx(j)\k S { z ‘X(j)t%(k/ l)(j)‘kr}l/r{ z \t(j) %(k/2 l)kr )1/r

j=1 j=1
j=1

a) - (I) 2

s { 2 x2<j>tk/2 1<j))1/r{ 2 tk/ <j>} -
i=1 1:1

Hence if x E A then 2 ‘X(j)\k < m that is to say x E Lk.

i=1

If k = 2 then A = L since t(j) = l for all j. #

k

(3.4) Corollary. Let ¢ be a positive definite function

on A such that ¢(0) = l and ¢ is continuous at the origin.
Tk

Then there exists a unique probability measure u on (LknB(Lk,A))

such that S = d on A.
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Proof. The proof follows directly from theorem 1.5 and

lemma (3.3). #

We may now extend this result to Spaces that generalize

L Spaces.

P

(3.5) Definition. A Banach space X with a Schauder basis
 

+

{ej : j E 2+} and coordinate functional {e3 : j E Z } is said to

+

be of type B if for all x E X and n E Z we have that

H :1. <x,e.'>e.Hp s Ela,e'>\p . #

3:1 J J j=1 J

This definition is less restrictive than that of A. de Acosta

[ ], the motivation behind our definition is the fact, initially

observed in [ ], that such Spaces contain isomorphs of LP. More

precisely we have:

(3.6) Lemma. Let X be'a Banach Space of type p. Then

there exists a continuous linear map S from LP into X.

a.)

Proof. Define S for all x E LP by 8x = 2 x(j)ej- S

3:1

is clearly a continuous linear map of LP into X. #

(3.7) Definition. Let A(X) be the linear SubSpace of

X' spanned by the coordinate functionals and let Tk(X) be the

topology on A(X) determined by the bilinear functionals on

A(X) X A(X) of trace class k. #

Clearly the map tS : (A,Tk) a (A(X),Tk(X)) is continuous,

allowing us to prove the main theorem of this section.

(3.8) Theorem. Let X be a Banach space of type p s 2.

Let ¢ be a positive definite function on A(X) with ¢(0) = 1.

If ¢ is TP(X) continuous at the origin then there exists a

probability measure v on (X,;6(X,X')) such that D = ¢ on A(X).



l7

Pgoof, The function ¢ 0 CS on A is positive definite

and Tp continuous at the origin. By corollary (3.4) there exists

a probability measure A on (LP,IBCLP,A)) such that B = ¢ 0 tS

on A. It can be trivially verified that if v = u o (tS)-1 then

9 = ¢ on A. #
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§4. Probability Measures of A, Type.

Let E be a Banach Space with Schauder basis {ej : j 6 2+}

and coordinate functionals {e3 : j E 2+]. If ¢ is a positive

definite function on E', continuous in some topology compatible

with the algebraic structure and ¢(0) = 1 then we have by theorem 1.5

that there exists a unique probability measure A on

(E'*, 5(E'*,E')) such that (id) = (b- In this section we shall con-

sider the problem of representing ¢ by a measure on E by putting

certain conditions on A

(4.1) LSEEE: Let E and ¢ be as above. Then there

exists a unique probability measure v on (E, 5KE,E')) such that

6 = S if and only if

(i) ¢ is continuous at the origin in the topology of

uniform convergence on compacta.

(ii) For all A > 0

m
* * *

lim sup A {X E E' : H 2 <e',x >e.“ > A} = 0

new m>n ¢ j=n+1 j J

Proof. Suppose that conditions (i) and (ii) hold. Let

* * m

F = {x E E' : Z <ef,x*>e, E E]. Since E is complete we have

1:1 J J

that

* * m *

F={x EE' :lim sup“ 2: <ej,x>e,\\=0}

n—ooo m>n j=n+1 J J

on a co * * m * .-

= n U D [x 613' z“ 2‘. <ef,x>e,“$k1}.

k=1 n=1 m=n+1 j=n+1 J J

*

As a consequence F E BKE' ,E') and moreover

* m * * m *

A (E' - F) S 2 lim sup A [x E E' : H E <ef,x >e \

¢ k=l ndm m>n ¢ j=n+1 J j
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That is to say, A¢(F) = 1.

We may now consider the measurable transformation

* m *

Y : (F, /3(F,E')) _. (E, B(E,E')) given by ¢(x ) = 23 <ej',x >ej

*
j=1

for all x E F. By the transformation theorem we have that for

all y E E' and n 2 O

m(tnny) = s<bnny>

Since tnny converges uniformly to y on compacta, we have

by condition (1) of the lemma and condition (ii) of lemma 1.

that ¢(y) = $(Y) for all y E E'.

Conversely suppose that there exists v on (E, B(E,E'))

*

such that 9 = ¢. Let us define the canonical map q : E a E' by

<x,y> = <y,q(x)> for all x E E, y E E'.

Clearly q : (E, B(E,E')) -+ (E'*, B(E'*,E')) is a measurable

transform and by the transformation theorem and the uniqueness of

A¢, we have that v o q“1 = A¢. Since q-1(F) = E we have that

A¢(F) = l and this clearly implies that condition (ii) holds. #

Condition (ii) of lemma 4.1 suggests that we introduce the

following concept of x-measure.

(4.2) Definition. Let E be a Banach Space with Schauder

basis [ej : j E Z+} and coordinate functionals {e5 : j 6 2+}.

Let A E.A+ and let P be a probability measure on (E'*, BKE'*,E')).

If there exists a real valued strictly increasing function on [0,m)

with h(0) = 0 such that
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m
* * *

lim sup P{x E E' : H 2 <e3,x >ej“ 2 h(6)}

new m>n j=n+l

* * m , * 2
5 lim sup P{x E E' : Z x(j)l<e ,x >\ 2 6]

11—10:) m>n "n+1 J

then we say that P. _o_§_L-measure or 2_ io of L-tyoe.

If ¢ is positive definite on E' and A¢ is a x-measure

then condition (ii) of lemma (4.1) will hold if for all 6 > O

* '* m , * 2

lim sup A [X E E : Z A(j)<e,,x > 2 6] = O .

n-oco m>n (D j=n+l J

This latter condition can be shown to hold if 6 has some continuity

prOperties. The continuity of ¢ will be defined with respect to

a topology on E' determined by a family of bilinear forms.

(4.3) Definition. Let E be as in lemma 4.1. Let Q
 

be a family of bilinear forms on E X E' such that for all

Y E Q

(i) Y is symmetric and positive definite.

(ii) For all y E E' : 2 YLi

j=1

(€3.ef)\<e ,Y>\ < m-

J J J

We define T(Q) to be the topology on E' determined by the

family of semi-norms {pY : Y E Q}. #

The condition (ii) implies that t11n(y) converges to y in

the T(Q)—topology.

(4.4) Theorem. Let E be a Banach Space with a Schauder

basis {ej : j E 2+] and coordinate functionals {e5 : j E 2+}.

Let ¢ be a positive definite function on E' satisfying the follow-

ing conditions

(1) ¢ is T(Q) continuous at the origin, ¢(O) = 1.

(ii) The measure Ag) on (E'*,B(E'*,E')) isa A measure

+

when A E L and for all Y E Q,
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I
I
M
B

1K(j)Y(e5393) < m °

J

Then there exists a unique probability measure v Such

that D = ¢.

Pooof. Clearly by lemma (4.1) and definition (4.2) we need

only show that for all 6 > 0

* * m

1im sup A {x E E' : Z A(J)\<ej ,XH>\ = O

n-m m>n (b j=n+l

Let s > 0 be arbitrary. Since A is T(Q) continuous

there exist {Yj : 1 s j s p} CZQ and C < m such that for all

yGE'

1 - Real ¢(y) S e + C Sup Y,(y,y).

lSj Sp

+

Let {X(k) : k E Z } be independent identically distributed standard

normal random variables and let y = E 1%(k)X(k)ek Then

k=n+l

m m g g

l - Real ¢(y) s e + C sup 2 E A (RJA (L)X(k)X(L)Yj (e'k’eL)

ISjSp k=n+l {En-+1

On taking expected values we obtain

j*1 - exp{--% 2 A(k)\<ek ,x*>\ 2}du¢(X*)

 

E'* k=n+l

m

S e + C sup 2 x(k)Y. (8k 8k)

1$j$p k=n+l j

Hence by the Markov inequality m

m *2 6 + SUP E A(S)Yj(e§3eé)

* * _

A {x E E' : 2 A(S)<es ,x > 2 6} S 1515p S-n+l

W S=n+1 (1 " exP("255))
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By condition (ii) of the theorem and noting that s was arbitrary

we obtain the required result. #

We shall now apply lemma (4.4) to the case where E is an

Orlicz sequence Space. Let a and B be complementary functions in

the sense of Young and let La and L8 be the Orlicz Spaces defined

in the appendix such that L; = L8.

(4.5) Definition. Let {uj : j E Z} be the canonical basis

for La and L8. Let Qa be the set of all symmetric, positive

definite, bilinear forms Y on LB X LB such that

j’uj)) < co. Let Ta = 7(Qa). #

(4.6) Theorem. Let La be an Orlicz Space with topological

Z a(Y%(u

j=1

dual LB. Let 6 be a complex valued function on LB such that

(i) 6(0) = l and 6 is positive definite,

(ii) 6 is Ta-continuous at the origin, and

on

(iii) u¢ is a x-measure where x E Lf and 2 a(]t%(j)\) < m

implies that E A(j)‘t(j)‘ < m. j=1

Then thEie exists a unique probability measure v on

(La, 5(La,LB)) such that Q) = 6.

In the case when a6/-) is a convex function on [0,m) we

have (i), (ii) and (iii) holding for every characteristic function of

a probability measure on (La, 5(LG,LB)) .

Pooof, If 6 satisfies (1), (ii) and (iii) then by theorem

(4.4) there exists v Such that D = 6.

Conversely, let us suppose that 6 = % where v is a

probability measure on (La, 6(La,.(, )).

B
Q

m Let Kn = [x E La : j§16(\x(j)\) < n] for all n. Since

U K.n = La given 6 > 0, there exists n such that v(Kn) 2 l - e-
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If Y is defined by

Y(z,y) = i <x,z><x,y>dv(x) for all z,y E LB

n

we have that \1 - 6(2)] s %Y(z,z) + 6- Since aG/') is convex

we may use Jensen inequality to Show that Y is in Qa’ and hence

since 6 was arbitrary 6 is Ta-continuous at 0, and condition

(ii) of the theorem follows.

By lemma (4.1) condition (ii) we have that H¢ is a A'

measure for all A E 6+. Hence condition (iii) of the theorem will

’5
hold by choosing A such that Z 8(A (j)) < m. #

If q(x) = xp we obtainjEEe following result of Mandrekar

and Kuelbs.

(4.7) Corollary. If 2 S p < m and 6 is defined on Lg,

then 6 is the characteristic function of a probability measure on

LP if and only if

(i) 6 is positive definite, 6(0) = 1,

(ii) 6 is Tp-continuous,

(iii) A¢ is a x-measure for some A E (Lg/2)+

REESE: The Sufficiency of conditions (i), (ii) and (iii)

follow: by the first part of Theorem 4.6 and the fact that x E (Lg/2)+

and Z \t(j)\p/2 < m imply that ; x(j)‘t(j)‘ < m. The necessity

3:1 / j=1
2

follows since ag/a) = xp is a convex function for p 2 2.
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§5. Banach Spaces with Schauder Basis and Accessible Norm.

For the purpose of this section E will be a real Banach

+ .
space with Schauder basis {ej : j E Z } and coordinate luncllonnls

+

{e} : j E Z ].

(5.1) Definition. Let 6 be a real continuous positive
 

definite function on E and let c : (O,m) a (0,m) be any strictly

increasing function. Then if for all x E E, 6(0) - 6(x) 2 c(“xH) we

say, following Kuelbs, that the norm of E is accessible withreSpect to 6.

Since 6 is positive definite and continuous there exists

*

a positive measure P4? defined on [303 ,E) such that {>(x) =

* *

I exp i<X,x >dP (x ).

* Q

E (5.2) Theorem. Let E and Q be as above and let the

norm of E be accessible with reSpect to 6. Then a complex valued

function 6 on E' is the Fourier-Stieltjes transform of a unique

probability measure on (E, BKE)) if and only if

(i) 6 is positive definite, 6(0) = 1

(ii) 6 is TS(E',E) continuous.

t 7‘: t ~k *

(iii) lim sup I l — 6( nm(x ) - nn(x ))dPQ(x ) = 0.

ham m>n *
E

Proof. Suppose that conditions (i), (ii) and (iii) hold

*

for 6. By theorem (1.5) there exists a A@ on E' such that

for all x' E E'

' * *

6(x') = I exp{i<x ,x >]dA (x )

* m
E'

If J(m,n) denotes the integral in condition (iii) we then have

that
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m

J(m,n) = g I l - exp{i 2 <ej,x'><ef,x*>}du (x*)dPQ(x').

IE'* j=n+1 J ¢

By Fubini's theorem we may change the order of integration above,

noting that the required measurability of the integrand is trivally

m * *

satisfied. Hence J(m,n) = I 6(0) - §( 2 <e3,x >ej)du¢(x ).

*

 

E' j=n+l

{* \g<'* \\> s {* M0) an; '*'>><>}x : e.,x >e, x : - ,x >e c

U¢ ‘j=n+1 J J e} Um j=n+1<ej j e

1
S C(e) J(m,n).

By condition (iii) we now have that for all e > O

* m *

lim sup u {x : H 2 <ef,x >e,H > e] = O

mam ¢ j=n+1 J J

Hence by lemma (4.1) the result follows.

As a simple application of this theorem we shall give a proof

that positive definite functions on L2 that are Tl-continuous are

necessarily Fourier-Stieltjes transforms. Suppose ¢ : L2 ~»C is

positive definite, ¢(O) = 1, and ¢ is Tl-continuous. For any

a > 0 there exists a symmetric, positive definite bilinear form

Y on L2 X L such that for x E L2

2

\1 - ¢(x)\ < e + Y(x,X)

+

We let (un : n 6 Z ) be the usual complete orthonormal basis for

2

L2. Let §(x) = exp{-%Hx“ }, then Q is a real valued continuous

positive definite function on L2 and the norm of L2 is clearly

accessible with respect to Q. Moreover if P is the corresponding

Q

we have that I <ej,x'><eadditive measure on L5 = L

L
2

n I =
2 k,x >dPQ(x )

5k . Hence

J
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m m

{I ' ¢( 2 <e..X>ej)dP§(X') S e + E ‘1’(J,j)

2 j=n+1 J j=“+1

m

Now 2 Y(j,j) < m since Y is of trace class 1 and hence

i=1

m

lim sup I 1 - ¢( 2 <8.,X>ej)dP®(x') S e .

n-aao m>n {,2 j=n+1 J

But 6 was arbitrary and the conditions of the theorem are satisfied.

Hence the function ¢ is a Fourier-Stieltjes transform.

We may similarly obtain the results of §3 by careful choice

of Q, we shall not, however, include the details here.



CHAPTER 11

GAUSSIAN MEASURES ON BANACH SPACES

§l. Introduction.

There are many possible equivalent definitions of Gaussian mea-

sures on vector Spaces; in this chapter we will use that of X. Fernique [5].

(1.1) Definition. Let E be a real vector space and let
 

B be a o-algebra of Subsets of E. We say that Q _i_s_ compatible

with the algebraic structure of. E_ if

(i) The map (x,y) _. x+y of (E X E, [3 X5) into

(E,EO is measurable.

(ii) The map (x,)() _. )(x of (E X R, B X B(R)) into

(E,B) is measurable.

Let (0,3,P) be a probability Space and X a measurable

map from (0,?) into (E98), we say that X is a random variable

with values _ig E. The law Q_f_ )_(_ is the measure P o X_1 induced
 

on (E ,6) by X. The concept of independence of random variables

with values in E may be defined as for real valued random variables

with 6 replacing 6(R).

We shall say that X is a Gaussian random variable with

values _11 E_ if the following condition is satisfied:

For all pairs (X1,X2) of independent random variables

with the same law as X and for all pairs (s,t) of real numbers

with 82 + t2 = l, the random variables (sX1 + th) and (tX1 - 3X2)

27.
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are independent and have the same law as X.

A measure u on (EMS) is said to be Gaussian if there

exists a probability Space (0,3,?) and a Gaussian random variable

X with values in E such that u is the law of X. #

The following result of X. Fernique generalizes a well known

result for Gaussian measures on R and is of fundamental importance

in this chapter.

(1.2) Theorem (X. Fernique [5]). Let (EnB) be as above

and let u. be a Gaussian measure on (E,B). If “u is a B-

measurable norm on (EnB) then there exists a > 0 such that

£exp[aux“2}du(x) < m. #

It is clear that for such u the integral of any power of

u-“ is finite, this is the property that will prove to be most

useful. In this chapter we shall extend the results of Vakhania

[19] to arbitrary separable Banach Spaces and hence we must Show

that our definition of Gaussian measure is equivalent to the

definition of [19].

It is well known, for example [4], theorem 2, p. 526, that

a Egal_valued random variable is Gaussian in the sense of definition

(1.1) if and only if it has a normal distribution with zero mean.

It is this fact that allows us to establish the equivalence of

definition (1.1) and the definition of Gaussian measures to be found

in [ ].

(1.3) Lemma, Let E be a Banach Space. Then

(i) B(E,E') is a o-algebra, compatible with the algebraic

structure, for which the norm of E is measurable.
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(ii) A probability measure u on (E, 6KE,E')) is Gaussian

if and only if for all x' E E there exists c(x') 2 0 such that

x' is a real valued random variable on the probability Space

(E, B(E,E') ,p) with distribution N(O,c52(x')) .

M. (i) Since B(E,E') is generated by sets of the

form {x : <x,x'>~< a} in order to prove (i) of definition (1.1)

we need only Show that {(x,y) :<x + y,x'> < a} E /3(E,E') X B(E,E').

Let Q = {r E R : r is rational]. Then we have

{(x,y) : <x +'y,x'>‘< a} = U {x : <x,x'> < r} X {y : <y,x'> < a-r}

rEQ

e B<E.E') x B<E.E ')

Condition (ii) of definition (1.1) is trivially satisfied.

(ii) It suffices to show that X is a Gaussian random

variable with values in E if and only if the real valued random

variables <X,x'> are Gaussian for all x' E E'.

Suppose that for all x' E E' the random variable

w q<X(w),x'> is Gaussian with values in R. Let X1 and X2

be independent and have the same law as X and let (s,t) be real

2 2 .

with s +'t = 1. Then clearly <X1,x'>. and <X ,x'> are

2

independent and have the same law as <X,x'> for all x' E E'.

Hence the real valued random variables <sX1 + tX2,x'>’ and

<tXl - st,x'> are independent and have the same law as <X,x'>

for all x' E E'. Now since B(E,E‘) is generated by sets of the

form {x : <x,x'> E B} where B E 6(R) we have that 5X1 + tX2

and tX1 - 5X2 are independent with the same law as X.
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Conversely suppose that X is Gaussian with values in E.

Let X1 and X2 be independent random variables with values in E

having the same law as X. Then for all (s,t) with 32 + t2 = l

and any x' E E' we have that (S<X1,X'>’+ t<X2,x'>) and

(t<X1,x'> - s<X2,x'>) are independent. Hence by [ ], theorem 2,

p. 526 <X1,x'> has a normal distribution and hence <X,x'> has

a normal distribution. The mean of <X,x'> is clearly zero. #

Gaussian measures on finite dimensional Spaces are uniquely

determined by their covariance matrices. We may extend this result

to infinite dimensional Spaces by introducing the notion, following

Vakhania, of the covariance

(1.4) Definition. Let p be a Gaussian measure on the Banach

Space E. For x',y',I,E' we define Y by

u

vu<x',y'> = j«,x'><x,y'>du<x)

E

Y is called the covariance form of n. The integral exists since

u

<°,x'> is a real Gaussian random variable on the probability Space

(E, 5KE,E'),H), moreover it is easily seen that

A

p(x') = exp{-% Yu(x',x')} for all x' E E'

In this chapter we shall determine properties that a covariance

form must have and for some special case we shall characterize such

covariance forms by means of operators.
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§2. Representation of the Characteristic Function of a Gaussian

Measure.

In this section we shall proceed to an operator type repre-

sentation of fl by means of an initial Lévy-Khinchine type repre-

sentation.

Let E be a separable Banach Space, and let S =

{x E E : “X“ = l}, S will be a complete separable metric Space

under the induced norm topology. Let 5K8) be the o-algebra of

subsets of 3 generated by the open sets.

(2.1) LEEEE. (Lévy-Khinchine type representation of a).

Let E be a real separable Banach Space and let u be a Gaussian

measure on (E, 5KE,E')) with covariance operator T. Then there

exists a unique positive, finite, symmetric measure P on

(S, 6(5)) such that for all x',y' E E'

<Tx',y'> = i<X,x'><x,y'>dI‘(x)

2322;. By lemma (1.4) we have that for all x',y' E E'

<Tx',y'> = £<x,x'><x,y'>dp(x).

Let k be the finite measure on (E, 5KE,E')) defined by dx(x) =

Hxnzdp(x) and let j : E {0] a S by the continuous map j(x) =

x/nx“. By the transformation theorem we have that for all

xI’yI 6 El

I£<x,x'>.<x,y'>dp(x) = i<X,x'XX,y'>dF(X)

where F = A o j-1. The result then follows since F is clearly

finite and Symmetric.
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In order to verify that F is unique, it suffices to Show

that if F is a finite, symmetric measure on (S,.6(S)) such that

 

2

(l) £\<x,x'>‘ dF(x) = O for all x' E E'.

There exists k > 0 such that for all b E R, (l - cos br)r-3dr =

2 a)

k‘b‘ and hence if (1) holds, i 81 - cos r<x,x‘>drdg(x) = 0. If

r

we define the meaSure Q by

0(A) = I j l - cos<rx,x'>r-3dr dF(x)

U NA

k>0

we obtain that

(2) £1 - exp[i<x,x'>}dn(x) for all x' e E'

By using exactly the method of Parthasarthy [14], p.

we see that (2) implies that 0 = 0 and hence that F = O. #

It is not clear whether a can be characterized

in terms of measures on S, however in §4 we shall see that in some

special cases (Orlicz and LP Spaces), such a characterization is

possible. We shall now use lemma (2.1) to obtain an operator repre-

sentation of a that directly generalizes the results for Hilbert

Spaces. In the Hilbert space case fl is represented in terms of

Hilbert-Schmidt (for definition see [6]) operators, such operators

are generalized by the following:

(2.2) Definition. Let X and Y be normed Spaces and
 

let T : X a'Y be a linear map. T i§_said t b absolutely p
 

+

summing if there exists a constant C such that for any N E Z

and (x1,...,xN) CZE we have that
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N p N

2 “Tx.“ S C sup{ 2 \<x.,x'>\p : x' E X', Hx'“ s l} . #
-= J -_ J

J 1 3-1

Such operators were first introduced by Pietch [153 who

showed that if X and Y are Hilbert Spaces then T is absolutely

p summing if and only if T is Hilbert—Schmidt.

(2.3) Theorem. Let E be a real Banach space and H a

Gaussian probability measure on (E, B(E,E')) . There exists an

absolutely 2-summing operator, A, on E' into L2(S,T) such that

Yu(x',y') = <AtAx',y'>. The transpose map, tA, is a map on L2(S,F)

into E defined by the Bochner integral

tAf =£xf(x)d1"(x) for all f e L2(s,r).

Proof. Define the bounded linear operator A : E' a L2(S,F)

by Ax' = <-,x'>. If we define B on L2(S,F) by

Bf = £xf(x)df(x) V f E L2(S,F)

then since £“Xf(X)HdF(X) = £\f(X)\dF(x) < m we have that Bf E E.

Moreover

<Bf,x'> = t£<x,x'>f(x)dr(x) = <Ax',f>L = <tAf,x '> .

2

Hence B = tA.

For any x',y' E E' we have that

‘i’(x',y') = i<X,x'><x,y'>du(x) =£<X,x'>ooc,y'>d1"(x) =

<Ax',Ay'>L = (AtAx',y'> .

2

The proof is now completed by observing that A is absolutely

2-summing as a consequence of corollary l, p. 187 of Wong [20].
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§3. Some Applications to Sequence Spaces.

In this section we shall characterize the covariance operators

of Gaussian measures on various sequence Spaces, in particular we

shall consider the Orlicz space La defined in the appendix. The

basic theorem, from which we will derive some Special cases, is the

following:

(3.1) Theorem. (a) The covariance operator of a Gaussian

probability measure on La is a bounded linear operator T : L; a La

satisfying:

(i) T is symmetric and positive.

00

(ii) 2 a(<.Tuj

j=1

(b) Conversely, if 0 satisfies condition (2) of the appendix

,Uj>%) < co .

then a bounded linear Operator T on L' into L satisfying con-

a/ (Y

ditions (i) and (ii) is the covariance operator of a Gaussian measure

on L .

a

Proof. (a) In order to prove (ii) it suffices (see appendix)

to Show that for all y E L;

00 . %

(1) E A(J)<I'u.,u,> < co .

j=1 J J

+

For all d E Z the real valued function x(j) defined on

the probability Space (L ,p) (where p is Gaussian) is a normally

a

2

distributed random variable with mean zero and variance Oj =

<Tuj,uj>. As a consequence

{ \x(j)\dp. =/Z71; O'j =/§-/-n. «<I‘uj,uj>;é

d

Then if y E LB
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N

).(j)<1‘u.,u,>$5 s/n/Zj‘ 2: ‘x(j)y(j)\dp.(x)

1 J 3 La d=lu
t
n
t
z

s x175 M, { uxuadm

Since the latter term is finite and independent of N the condition

a:

1 holds, imply that Z a(<Tuj,Uj>%) < m.

j=1
(b) Let T : L' «.L be a bounded linear operator satisfying

a 0!

conditions (i) and (ii). If ¢ is defined on A by ¢(x) =

exp{-% <Tx,x>}, then, by theorem 1.5, chapter one, there exists a

probability measure u on (L, 61L,A)) Such that fi(x) = ¢ for all

x E A.

,uj> and as a consequence

J

of condition ( ) in the appendix there exists C < a such that

For all j 6 2+, {\x(j)\2du(x) = <Tu

’5
£0(\X(j)\)du(X) S C a(<Tuj,uj> )-

Utilizing condition (ii) we obtain that

N

sup I E a(\X(j)\) < m

N21 L j=1

and by the monotone convergence theorem

on

J“ 2 a(\X(j)\)du(X) < co .

4, j=1

This implies that u(Lq) = l. The proof is completed by observing

that u is Gaussian with covariance operator T.

Corollary (A). A bounded linear operator T : L; a Lp

(l s p < m) is the covariance operator of a Gaussian probability

measure on Lp if and only if

(i) T is symmetric and positive.
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(ii) 2 <,Tuj,uj>p < m .

j=1

Egggf. For p > 1 the proof follows directly from theorem

(3.1) on taking q(x) = xp/p. For p = l the proof is essentially

of the same form as the proof of theorem (4.1) and will hence be

omitted.

Corollary (Bl, Let E be a Banach Space of type p where

l S p < m. A bounded linear Operator T : E' a E is the covariance

operator of a Gaussian probability measure on E if

(i) T is symmetric and positive.

2

>p/

m

(ii) 2de3,ej' (CD .

j=1

Proof. Let A E L6. Using Hfilder's inequality and the fact

. kI t I i '

that drej,ek> s <Tej,ej> dek,ek> we obtain that

°° °° , 2 °° , /2 2

2 \ I: x(j)<Te!,ek>\P/ :2 mm 1: <Te',e.>p } < co

k=l j=1 J j=1 j 3

As a consequence we may define the map C : L' a Lp by

P

C(X)(k) = E A(j)T<e3,eé> .

j=1

Noting that C clearly satisfies conditions (i) and (ii) of corollary

(A) and we see that there exists a Gaussian measure p on LP with

covariance operator C.

If S is the map from Lp into E defined in chapter one

we may trivially verify that u o 8-1 is a Gaussian measure on E

with covariance operator T.
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§4. Gaussian Measures on a Space of Continuous Functions.

Let C be the space of real valued continuous functions on

[0,1]. Under the usual uniform norm, C[0,l] becomes a Banach Space

with a Schauder basis that we shall exhibit later. As observed by

de Acosta [ ], lemma 8.3, Gaussian measures on C are the measures

induced by continuous Gaussian processes. Our main representation

theorem is essentially that of [ ], theorem 8.4; we repeat it here,

with proof, Since the proof given in [ ] is incomplete.

(4.1) Theorem. Let P be a Gaussian measure on C. Then

there exists a continuous map K : [0,1]2 a R such that

(i) K(s,t) = K(t,s) for all s,t E [0,1].

(ii) K is positive definite, that is to say for all

n

E [0,1] we have 2 CiCjK(Si’Sj) 2 0.,cn E R and

1,1

51,...,s

(iii) For all v E C'

. l l

P(v) = exp{-%g g K(s,t)dv(s)dv(t)]

Egggf, We define K directly by %K(s,t) = gx(t)x(s)dP(x)

for all s, t E [0,1]. K is well defined since g\X(t)X(S)\dP(X) <

guxuzdP(x) < m and clearly is continuous. Conditions (i) and (ii)

are trivial to verify.

Since P(v) = exp{-% i]<x, v>‘2dP(x)} and <x,v> =

1

&x(s)dv(s) we observe that:

1 1

-2 log P(\)) = g {E £x(s)x(t)dv(s)dv(t)dP(x).

Since

1 l

H[WWW\dv<s>dv<t>dp<x>
s No, 1]}WWdP(x) < o,
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we may use Fubini's theorem to obtain

A l l

-2 log P(v) = & £K(s,t)dv(s)dv(t)

and the result follows. #

A partial converse of theorem (4.1) is possible.

(4.2) Theorem. Let K be a real continuous function on

[0,1]2 satisfying condition (1) and (ii) of theorem 4.2. If for

some a > 2, K satisfies a Lipshitz condition Of order a in each

of its variables then the operator T from C' into C defined

by (Tv)(s) = $K(s,t)dv(t) is the covariance operator of a Gaussian

measure on C.

2393;. 'Let {uj : j E 2+] be the coordinate functionals

correSponding to the Schauder basis for C constructed in [ ],

p. 69. The following conditions are satisfied

<x,vn> = x(b<n)> - Mano) - wan» u > 2

where

a(n) < b(n) < c(n) and \c(n) - a(n)‘ = 0(l/n).

Let ¢(v) = exp{-% <Tv,v>]. m is positive definite by con-

dition (ii) Of theorem 4.1 and using the fact that K satisfies

Lipshitz condition we obtain by direct computation that <Tvn,vn> =

0(n-a). Since a > 2 we have that T is an Operator of trace

class 1 and hence by theorem (3.8), chapter one, there exists a

measure P on C such that P = ¢ on the SubSpace of C' spanned

by the coordinate functionals. The result then follows.



APPENDIX



APPENDIX

List Of symbols

R The real numbers.

+ . .
Z The p081t1ve integers.

Z+

L = R The space of real valued functions on Z

+ +

L The space of positive real valued functions on Z .

L 0 < p < m The subset Of L consisting of the functions A

with z \i(n)\p < m .

n=1

A The subset of L consisting Of the functions that

+

are zero except at a finite number of elements of Z .

L The Orlicz Space {x E L : Z a(\x(j)\) < m}.

j=1

(1) Vector Spaces. Our basic reference throughout this thesis will
 

be Robertson and Robertson [17]. We will only be considering vector

Spaces Over the scalor field of real numbers. If E is such a

vector space we will denote its algebraic dual by E* and define

it to be the set of all real linear forms on E. If E has a topology

then we shall denote its topological dual by E'.

The concept of duality may be found in [17], p. 31, definitions

Of the polar topologies may be found on p. 46. Of particular interest

are the weak (c(E,E')) topology and the topology of uniform con-

vergence on strongly compact subsets of E. We denote this latter

topology TS(E',E) and note that if E is a Banach space then the

strongly compact sets are the norm compact sets.
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(2) Banach spaces with Schauder basis.

If B is a real Banach Space ([ l], p. 60), a Schauder

+

basis {ej : j E Z } is a sequence of elements in B such that

for each x E B there is a unique sequence of real numbers x(j)

n

such that lim “x - E x(j)e,“ = 0. The mappings x « x(j) are

n—coo i=1 J

continuous real linear forms on x and hence there exists a sequence

+

[e5 : j E Z } of elements in B' such that x(j) = <x,e5>. These

are called the coordinate functionals of the basis. We shall use

n

n for all n to denote the maps given by n (x) = 2 <x,ef>e,
n

n j=1 J J

and observe that “x - nn(x)“ « 0. The transpose map tnn may

n

similarly be defined by tn (x') = 21<e ,x'>e'.

n j=1 j j

It is known, [8], §l, that nh(x) converges uniformly to

t

x on norm compact subsets Of B and hence nn(x') converges to

x in the TS(B',B) topology.

(3) Sequence Spaces.

Let uj E L be the map uj(k) = 1 if j = k, uj(k) = 0 if

k # j. The set [uj : j E 2+} will be called the canonical basis

for subSpaces Of L.

If p 2 l the space Lp becomes a Banach Space with

Schauder basis {uj : j E 2+} under the norm “A“ = ( El‘x(n)\p)1/p.

If p < l, Lp can be topologies with the invariant metric

oo

d(11.12) = z \x1(n) - x2(n)\p .

n=1

(4) Orlicz Spaces.

We take as our basic reference Zaanen [21].

Definition. If the non-decreasing functions v = ¢(u) and

u = w(v) are inverse to each other then the functions on [0,m)
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x x

q(x) = £¢(x)dx and a(x) = g¢(x)dx

are termed complementary in the sense of Young.

We know that x,y S a(x) + a(y), a most useful inequality.

We shall assume that there exists an M such that

a(2x) S Ma(x) and 5(2x) S MB(x) for all x > 0. We define La

to be [2

La={XEL: Ea(\x(j)\)<oo}. i

j=1

La may be normed by

 i
f
.
»

M, = 8M; \x<j>y<j>\ : fawn-n s 1} .

j=1 j=1

Under this norm. LG is a Banach space with dual L .

{uj : j E Z+] will be a Schauder basis for La since

m

“x - finxua = n§1a(\x(j)\) a 0 .

It is sometimes Of interest to know when an element 2 E L

is an element Of La, and the uniform boundedness principle establishes

a useful criteria.

m Criteria l. 2 E L is in La if for all y E L; the Sum

j21\y(j)z(j)| is finite.

The function a is said to satisfy condition (2) if there

exists a constant C such that for any Gaussian distribution v

on R

jq(\x\)dv(x) s c a({Ixzdv(x)}%)
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