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ABSTRACT

NORMAL LIGHT INTERIOR FUNCTIONS

DEFINED IN THE UNIT DISK

By

John Henry Mathews

Let f be a light interior function from the unit disk into

the Riemann Sphere. Then f can be factored f = g o h where h

is a homeomorphism and g is a meromorphic function. Although this

factorization is not unique it is shown that there is a unique

factorization type. Conditions are established to determine the

normality of f; and it is shown that boundedness is not sufficient

for a light interior function to be normal.

Several examples are presented which show that the classical

theorems of Fatou, Koebe, Lindelgf and Riesz cannot be extended for

even bounded normal light interior functions in the unit disk. For

example, there exists a bounded normal light interior function in

the unit disk for which the total outer angular cluster set is one

point.

Conditions are established to determine when some of the

classical theorems will hold for light interior functions. It is

shown that several theorems hold for pseudo-meromorphic functions.

For example, Koebe's theorem and Lindelgf's theorem remain true

for normal pseudo-meromorphic functions.



John Henry Mathews

Let f be a light interior function in the unit disk with

factorization f = g o h where h is a homeomorphism of the unit

disk onto the unit disk and g is a non-constant meromorphic

function in the unit disk. Then the asymptotic behavior of f is

shown to be closely related to the asymptotic behavior of its

component factors g and h.
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I. INTRODUCTION

Lehto and Virtanen [15] defined the concept of a normal

meromorphic function as follows: If g is meromorphic in a simply

connected domain G, then g is normal if and only if the family

{g(S(z))}, where S(z) denotes any arbitrary one-one conformal

mapping of G onto G, is normal in the sense of Montel. Mero-

morphic normal functions defined in the unit disk were found by

Lappan [14] to be precisely those which are uniformly continuous

with respect to the non-Euclidean hyperbolic metric in the unit

disk and the chordal metric on the Riemann sphere. We will say

that a function f mapping the unit disk D into the Riemann

sphere W is a normal function in D if and only if f is
 

uniformly continuous with respect to the non-Euclidean hyperbolic

metric in D and the chordal metric in W.

VHisglg proved [21, Theorem 2, p. 17] that if one uses the

Lehto-Virtanen definition of normal then there are no non-constant

normal meromorphic functions in the finite complex plane .0.

Yosida [23, p. 227] has defined the concept of a normal meromorphic

function in Q as follows: If g is a meromorphic function in

0, then g is normal if and only if the family {g(a + z): a E Q}

is normal in the sense of Montel. Recently, Gauthier [10, p. 560]

has proved, using Lappan's technique, that Yosida's definition is

equivalent to the following: A meromorphic function g in Q is



normal if and only if it is uniformly continuous with respect to the

Euclidean metric in Q and the chordal metric in W. This definition

does not exclude all non-constant meromorphic functions and includes,

for example, elliptic functions, periodic functions and rational

functions in. Q [23, p. 227]. We will define the concept of a

normal function in Q as follows: A function f mapping the

finite complex plane 0 into the Riemann sphere W is a normal

function in_ 0 if and only if f is uniformly continuous with

respect to the Euclidean metric in Q and the chordal metric in W.

Normal meromorphic functions in D have been investigated

by Lehto and Virtanen [15], Bagemihl [2], Bagemihl and Seidel [3],

[4], Lappan [l3] and others. The question has been posed: To

what extent do the results depend upon the fact that the functions

are meromorphic? In this dissertation we investigate the behavior

of normal light interior functions. A function f mapping a

domain G into the Riemann sphere W is said to be light if for

every point w E f(G) the set f-1(w) is totally disconnected,

and f is said to be interior if for each open set U<: G the

set f(U) is open in w [22].

The following definitions and conventions will be used. We

shall denote by C the unit circle and by D the open unit disk

in the finite complex plane 0. Let W denote the Riemann Sphere,

and let x(w1,w2) represent the chordal distance between the points

w1,w2 E W. If A and B are sets in W then x(A,B) denotes

the chordal distance between the sets A and B. In the unit disk,

let p(zl,22) denote the non-Euclidean hyperbolic distance between



the points z 22 E D [5, Chapter 2], [12, Chapter 15];
1,

9(zl,zz) = s1n<<1+u>/<1-u>> = tanh'1<u>

where

u = |(zl-zz>/(1-Z;22)|,

alternately

where F ranges over all paths joining 21 to 22. If {2n}

and {2;} are two sequences of points in D with p(zn,z;) a O,

we shall say that {2“} is close to {2;}, or that {2n} and

 

{z'} are close sequences.
n

Let f be a function from D into W and let e19 be a

point of C. We define the cluster set C(f,e) of f ‘25 e19 as
 

follows: C(f,9) is the set of points w E W for which there

exists a sequence {2n} of points in D with zn d e19 and

f(zn) a w. Furthermore, the total cluster set C(f) of f is

given by c(f) =[Jc(f,e), where the union is taken over all e

9

(O s e < 2n). If S is a subset of D and e19 6 [S.fl C],

where S is the closure of S, we define the cluster set CS(f,e)

f f at e19 relative to S as follows: CS(f,9) is the set

 

of points w E W such that there exists a sequence {2n} of points

in S with z a e16 and f(z ) a w.

n n



. 19
By a Stolz domain A 35 e- we mean a set of the form

{2 e D: -n/2 < (251 < arga - 2/819) < (b2 < "/2}:

and by a terminal Stolz domain pg e19 we mean a set of the form

16

A n {2: ‘2 - e l < e} (0 < e < 1)-

. . . i
The function f 18 said to have a Fatou p01nt at e 9 with Fatou

value c, or angplar limit c, if f(z) a c as 2 a e19 from

. . . 16
within each Stolz domain A at e . The outer angular cluster set
 

cA(f,e) ,3: f ‘35 819 is defined as follows:

CA(f,e> a: cA<f,e>

where the union is taken over all Stolz domains A at e19. Using

this notation we see that e19 is a Fatou point with Fatou value

c if and only if CA(f,9) = {c}.

A simple continuous curve F: z(t) (O s t < 1) contained

in D is called a boundary path if ‘z(t)| « l as t a l. The
 

end of a boundary path 1‘ is the set F n c. If a boundary path

i .

F ends at e 6 then P is said to be a Jordan are at e19. A

boundary path P: z(t) (O s t < 1) is an asymptotic path of f
 

for the value c provided f(z(t)) a c as t a l. The point c

is called an asymptotic value, or asymptotic limit, of f if
 

there exists an asymptotic path of f for the value c, and c

is said to be a point apymptotic limit of f if there exists an

asymptotic path of f for the value c whose end consists of a

single point.



Let A be an open subarc of C, possibly C itself. A

Koebe sequence of arcs, relative to A, is a sequence of Jordan

arcs {Jn} in D such that: (a) for every 6 > 0,

Jn<: {z E D: lz - a] < e, for some a E A}

for all but finitely many n, and (b) every open sector A of

D subtending an arc of C that lies strictly interior to A has

the property that, for all but finitely many n, the arc Jn con-

tains a subarc Ln lying wholly in A except for its two end

points which lie on distinct sides of A.

If f is a function in D and if c E W, we say that f

has the limit c along the sequence of arcs {Jn}, provided that,

for every 3 > O,

x<c,f<Jn>> < e

for all but finitely many n. We will write f(Jn) d c. When

{Jn} is a Koebe sequence of arcs we will call c a Koebe limit.
 



II. NORMALCY AND THE S'ro'I'ww FACTORIZATION

l. Stoilow factorization

Let f be a light interior function from the unit disk D

into the complex plane 0. Stoilow [20, p. 121] has shown that

f has the representation f = g o h where h is a homeomorphism

of D onto a Riemann surface R and g is a non-constant analytic

function defined on R. Church [8, p. 86] pointed out that this

result can be extended to light interior functions which map D

into the Riemann sphere W provided g is allowed to be mero-

morphic. In view of the uniformization theorem [1, p. 181] there

exists a conformal mapping of R onto either D or 0. Therefore,

if f is a light interior function from D into W then f has

a StoIlow factorization f = g o h where h is a homeomorphism
 

of D onto D (or Q) and g is a non-constant meromorphic

function in D (or 0). Conversely, if h is a homeomorphism

of D onto D (or Q) and g is a non-constant meromorphic

function in D (or 0) then the function f = g o h is light

interior.

2. Uniqueness of the Stoilow factorization

DEFINITION 1. Let h 23 g homeomopphism pf D onto D
 

(or 0). _f h .ig uniformly continuous with respect £9 the non-

Euclidean hyperbolic metric 13 its domain D and the non-Euclidean
 



hyperbolic metric 22 its range D (25 the Euclidean parabolic metric

‘13 its range 0), then wg_shall say that h 'ig HUC (25 PUC).

DEFINITION 2. Let f ng_§Llight interior function 13’ D

with StoIlow factorization f = g o h where h ‘ig'g homeomorphism
 

2i D onto D Log. 0) and g Eénon-constant meroLm-phic

function _i_r_11 D (g Q). _I_f__ h .i_§_ HUC (pg PUC) then f has

.g'type I factorization; otherwise f has §.type II factorization.
 

THEOREM 1. f f .13 a light interior function i3 D then
—

f '_23 g unigpe factorization 2123,

Proof. Case i. The light interior function f has a

StoIlow factorization f = g o h with h a homeomorphism of D

onto D. Suppose f also has the Stoilow factorization f = G o H

where H is a homeomorphism of D onto D (or 0). Then as

pointed out by Church [8, p. 88] h o H“1 is a conformal homeo-

morphism, hence from Liouville's theorem h o H"1 must be a con-

formal homeomorphism of D onto D. In view of Pick's theorem

[12, Theorem 15.1.3, p. 239] both h o H“1 and h“1 o H are HUC.

Since the composition of two uniformly continuous functions is

uniformly continuous, it follows that h is HUC if and only if

H is HUC.

Eggs ii. The case when f has a Stoilow factorization

f = g o h with h a homeomorphism of D onto 0 is handled

similarly, and the proof of the theorem is complete.

There is an abundance of HUC homeomorphisms, for example,

every conformal homeomorphism of D onto D is HUC. The

existence of a homeomorphism of D onto 0 which is PUC is

established in the following theorem.



THEOREM 2. There exists 2_homeomorphism h _f' D onto

0 we we.

Proof. Define the mapping h in D by

h(z) = z p(O,z).

Then it is easy to verify that h is a homeomorphism of D onto

0. Let An = {z: n s p(0,z) S n+1]. Let n 2 3 be fixed but

arbitrary; the proof will be complete if we can find a constant

K, independent of n, such that |h(zl) - h(zz)‘ s K p(zl,22)

for each pair of points 21, 22 E An with p(zl,zz) < 1.

Let 21, 22 E An’ with p(zl,zz) a l, where n 2 3 is arbitrary

19 192

but fixed. We may assume that 21 = rle and 22 = rze with

r1 s r2. Then we have the following inequalities

|h<zl> - h<22>|= lzlp<o,zl> - 22p<0.22>|

192

e p(0,r1)|I
A

‘zlp(0,zl) - r1

192 162

p(03r1) - r18 9(09r2)|

+ |r1e

19
2

+ ‘rle p(0,r2) 22p(0,zz)‘

I
A - +2nl92 91|p(0,r1) p(zl,z2)

+ ‘rz - rllp(0,r2)

+ + .
P1 P2 P3

Consider the first term P1. Let F be non-Euclidean

161 192

goedesic joining rle to rle . Let R be a real number

(0 < R.< 1) for which p(O,R) = n-l. Then



I62 - elI R S I Idzl

l-R I. 1-|z

191 192

= p(rle arle ) S p(zlazz)~

Also, p(0,r1) s 2 p(O,R) so that we obtain

I
AI92 - ellp<0.r1> ((1 - R2)/R)p(zl,zz)2 p(o,R>

(p(0.R><1 - R2>/R)2 o<21.22>

  

Consider the third term P3. We observe that

r

r - r I r 2

2 l 1 dx
s = .

l - r1 r1 1 - x

Also, p(0,r2) s 2 p(0,r1) so that we obtain

I
A

2

Ir2 - r1Ip(0,r2) ((1 - r1>/r1>p<zl,zz>2 p(0,r1)

= (p(0,r1)(1 - r§)/r1>2 “(21:22)

I
A

2 p(zl,zz).

Finally, combining the estimates for P1, P2 and P3 we

obtain |h(zl) - h(22)I 5 (4n + 3)p(zl,22). We choose

K = (4n +-3) and the proof is complete.
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3. Necessary conditions for both f and g normal

Noshiro [18, p. 154] (or Yosida [23, p. 227]) has divided the

class of normal meromorphic functions in D (or -0) into two

kinds which are defined as follows: A normal meromorphic function

g in D (or O) is of the first kind if the normal family
 

{g(%—E—§;): a E D} (or the normal family {g(a + z): a E 0})

admits no constant limit; otherwise g is of the second kind.
 

THEOREM 3. Let f 23 g_normal light interior function 23

D with Stoilow factorization f = g o h where h i§.2.h°me°'

morphism pf D onto D (or Q) and g is.g non-constant mero-
 

morphic fungtion‘ip_ D (p£_ O). f g ‘ig 3 normal meromorphic

function i2 D (or Q), then h .i§_normal. Furthermore, if g
 

£3 normal meggmorphic function pf the first kind ill D (g Q),
 

Ehgp 'h .ifi HUG (pg PUC).

2E22£3 .ggpg i. The normal light interior function f has

a StoIlow factorization f = g o h with h a homeomorphism of D

onto D. If h is not normal there exist close sequences {Zn}

and {2;} such that h(zn) a ehy and h(zé) a e1B with

0 < B - a < 2n [14]. For each integer n, let Jn be the non-

u
Euclidean geodesic joining zn to zn. Then {h(Jn)} is a

sequence of Jordan arcs such that for every 3 > O,

h(Jn)C{zED:l-e<Izl<l]

for all but finitely many n, and the end points of h(Jn) tend

Dr 18 .
to e and e . Choosing a subsequence of {h(Jn)} if

necessary, we may assume that there exists a Koebe sequence of

arcs {Ln} relative to either the Open arc 01,6) or the open



11

are (B,a +-2n) such that anz h(Jn), and that there exists

a constant e such that f(zn) a c.

From the normality of f we have f(Jn) a c, and it follows

that g(Ln) a c. By a theorem of Bagemihl and Seidel [4, Theorem 1,

p. 10], g E c in violation of our hypothesis. Therefore h is

normal and the proof of the first part is complete.

Now assume that g is a normal meromorphic function of the

first kind in D. If h is not HUC there exists close sequences

{Zn} and {2;} and a 6 > 0 such that p(h(zn),h(z;)) 2 6, and

there exists a constant c such that f(zn) a e.

Let

h(zn) - z

 

Sn(2) =
 

1 - h(zn) z

and let Gn(z) = g(Sn(z)). Then the normal family {on} has a

subsequence which converges uniformly on each compact subset of

D to a meromorphic function G [15, p. 53]. Let Jn be the

non-Euclidean geodesic joining zn to z; and let Ln = h(Jn).

Then d(Ln) = d(S;1(Ln)) 2 6, where d(E) is the hyperbolic

diameter of the set E<: D. From the normality of f we have

f(Jn) a c, so that g(Ln) a c, and hence Gn(Sn1(Ln)) a c. For

r (0 s r s 6) fixed, there exists a point Zn 6 S;1(Ln) such

that p(0,zn) = r. Let 20 be a cluster point of the sequence

{Zn} on the circle {2: p(O,z) = r}.

Choosing a subsequence of {CH} if necessary, we can assume

that Zn.a Z0 and Gn(zn) a c. A familiar argument (see e.g.

[6, p. 179]) in the theory of continuous convergence shows that

C(Z ) = c. Since r (O s r s 6) was arbitrary, 0 is a limit

0
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point of values for which G assumes c and hence G s c in

violation of our hypothesis. Therefore h is HUC and the proof

of the first case is complete.

§2§g_ii. The normal light interior function f has a

StoIlow factorization f = g o h with h a homeomorphism of D

onto 0. In this case h is always normal and when g is a

normal meromorphic function of the first kind in 0 the proof

is handled similarly to Case i; and the proof of the theorem is

complete.

4. Sufficient conditions for f normal

Every bounded holomorphic function is normal [3], but the

following result shows that boundedness is not sufficient for a

light interior function to be normal.

THEOREM 4. f‘g homeomorphism h ‘pf D onto D lg not
 

HUC, then there exists 3_Blaschke product B 33' D such that the
  

 

bounded light interior function f = B o.h _i§ not normal 12' D.
 

Proof. If h, is not HUC there exist close sequences

I I

{2“} and [2n] and a 5 > 0 such that p(h(zn),h(zn)) 2 6.

Let h(z ) = w and h(z') = w'. Since h is uniformly con-

n n n n

tinuous on compact subsets we necessarily have that Ian a 1,

I .

Izé‘ a l, lwnI « l, and IwnI a 1. Hence, chOOSing a subsequence

of {Wu} if necessary, we may assume that {Wu} is a Blaschke

a:

sequence, i.e. 2 (l - IwnI) < m. We now construct a Blaschke

n l

subsequence {wn ] of {Wu} and a corresponding subsequence

k

[w] ] of {wé}.

k
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= , = . = . I
Let wn w1 and wn1 WI, and let r1 min{Iwn1I,Iwn I}

and R1 = max [Iwn I,Iw;1|}. We can find an integer n2 > 1 such

_ . -l 2
that for r2 - m1n{|wn2I,Iw;2|] we have p(R1,r2) 2 tanh (1-1/2 ).

Let R2 = maxflwn I,Iw; I]. We proceed inductively to obtain

2

I I o

subsequences [wnk] and {wn ] of {Wu} and [wn], respectively,

such that p(Rk-l’rk) 2 tanh-1(1-l/k2) for each integer k 2 2,

where r - min{Iw \,Iw' I] and R = max{‘w |,|w' I].
k nk nk k nk nk

It follows easily that

-l 2 ,

tanh (1-1/(k+l) ) (1 s kt< J)

I

p(wn ,wn ) 2

k j tanh-1(l-l/k2) (1 s j < k),

and hence

, 1 - 1/(k+1)2 (1 s k< j)

 

wn - wn
k j 2

l - wn w' 2

k nj 1 - l/k (1 s j.< k).

  

Recall that p(wn ,w; ) 2 5 > O (k = 1,2,...) so that

  

Set B(z) = H w

k=1 n (l - w z)

k nk

Consider B(w; ) for j 2 l,

l



   

      

j l wn - “d wn - w; wn - w'- . . n.

|B<w'>|=n k J. J 1.3; k 1

nj k=1 1 - wn w; 1 - wn w; k=j+l l - wn w;

R J J' j R J

-1 j‘1 2 “D 2
2 (tanh 5) n (1 - 1/(k+1) ) n (1 - 1/k)

k=l k=j+l

-l_ m

= (tanh 1 6) H (l - l/kz) = £22%———§'> O.

k=2

Let f = B o h. By assumption {2 ] and {z' ] are

“k “k

necessarily close sequences with

II II

lim f(znk) lim B(h(znk)) lim B(wnk) = O

and lim f(z; ) lim B(h(z$ )) lim B(w; ) f O.

k k k

By a theorem of Lappan [14, Theorem 2, p. 156], f is not normal

and the proof is complete.

Let f be a light interior function in D with StoIlow

factorization f = g o h where h is a homeomorphism of D onto

D and g is a non-constant meromorphic function in D. The

previous theorem suggests that the normality of g does not

insure the normality of f. An even stronger statement is the

following result.

THEOREM 5. There exists 5 homeomorphism h f D onto D
  

with the property: f g i§_§_non-constant normal meromorphic
 

function ip_ D, which has two distinct asymptotic limits, then the

 

light interior function f = g o h lg not normal ip_ D.
 

Proof. Construct a sequence {Rn} of real numbers

0 = R.1 < R.2 <...< Rn.<°"< l for which p(Rn’Rn+l) = l/n. Define
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the mapping h in D by

_ is = . . _
h(z) h(re ) r exp(1e +'2n1(r Rn)/(Rn+1 Rn))

for Rn s r<< Rn+ (n = 1,2,...). It is easy to verify that h

l

is a homeomorphism of D onto D.

Since g has two distinct asymptotic limits, a theorem

of Lehto and Virtanen [15, Theorem 2, p. 53] implies that g has

two distinct radial limits. Let Ta and TB be the radii which

terminate at the points eh: and e16, reSpectively, for which

g(rehy) a a and g(reia) « b with b # a.

Now the radii of D are mapped onto spirals by h-l. Let

_ -l

1) 2n and h (re) n [Knew

p(zn,zé) s p(Rn,Rn+1) = l/n with f(zn) = g(h(zn)) a a and

h-1(Ta) n [Rn,Rn+ ) = 2]. Then

f(zé) = g(h(z;)) u b. Hence, by a theorem of Lappan [14], f is

not normal and the theorem is proved.

Since a bounded holomorphic function in D is normal and

possesses uncountably many distinct radial limits [9] we obtain

the following corollary.

COROLLARY. There exists §”homeomorphism h g£_ D onto D
 

with the property: f g ‘ig g non-constant bounded holomogphic

function 32' D, then the bounded light interior function

f = g o h .li not normal i3 D.
 

We now determine conditions on h and g which insure the

normality of f. Since the composition of two uniformly continuous

functions is uniformly continuous the first result in this direction

is obvious.
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THEOREM 6. Let h bg_g,homeomorphism 9f_ D onto D
 

(9.; 0) Mi; HUC (9;; PUC). If g _i_s_gnon-constant

namelmsmmcraliia_a___fuction in. D (at. 0), ___then __the _g_liht

inggzigrhfignggigp, f = g o h i§_norma1 12. D. Furthermore, if_
 

both, h and h"1 fire, HUC, then g I§.Dorma1 ip_ D if_and only
 

if. f lineman D-

DEFINITION 3. Let h be a homeomorphism p£_ D onto D.
  

Define the set F(h) 2§_follows: e16 6 F(h) if there exist
 

 

close sequences [2“] and {zé} and §_ 6 > O for which

16

 

I

p(h(znzh(zn)) 2 6 and h(zn) a e

THEOREM 7. Let h p£_2_normal homeomorphism.2£. D onto D.

If. g $2.2.non-constant normal_meromorphic fupction in D which

is continuous on D U F(h), thgn the light interior function

f = g o h 12 normal in D.

Proof. If f is not normal there exist close sequences
 

I _. d I _.

{2n} and {2n} such that f(zn) a an f(zn) b with

b # a [14]. It follows from the normality of g that [h(zn)}

and {h(z&)} are not close. Choosing a subsequence of {Zn}

and a corresponding subsequence of [2;] if necessary, we may

16 ie 19

assume that h(zn) a e and h(zé) d 6 with e E F(h).

But g is continuous on D U F(h) and hence

= . I = . | = o = . =

b 11m f(zn) lim g(h(zn)) 11m g(h(zn)) lim f(zn) a

which is a contradiction. Therefore f is normal and the proof

is complete.



III. FAILURE OF THE CLASSICAL THEOREMS

We now investigate the boundary behavior of normal light

interior functions and show that the classical theorems cannot

be extended even for bounded normal light interior functions.

1. Fatou's theorem and Koebe's theorem

Fatou's theorem [9] states that a bounded holomorphic function

in D possesses radial limits at almost every point of C. The

following result shows that a bounded normal light interior

function need not possess any point asymptotic limits.

Koebe's theorem [19] states that a non-constant bounded holo-

morphic function in D possesses no Koebe limits. The following

result shows that a bounded normal light interior function can

possess uncountably many distinct Koebe limits relative to C.

THEOREM 8. There exists g_homeomorphism h pf. D onto D
 

with the property: f g is a non-constant normal meromorphic

function ip_ D, then the light interior function f = g o h ig
 

normal and possesses pp point asymptotic limits. Furthermore,
 

if_ g possesses 3 point asymptotic limit, then f possesses

g Koebe limit relative £3 C.

Since a bounded holomorphic function in D is normal and

possesses uncountably many distinct radial limits we obtain the

following corollary.

l7



l8

COROLLARY. There exists-5 homeomorphism h f D onto D

with the property: If g ‘i§.§ non-constant bounded holomorphic
 

function i2, D, then the bounded light interior function f = g o h
 

is pormgl and possesses no point asymptotic limits. Furthermore,
   

f possessgs uncountably many distinct Koebe limits relative £2 C.

Before proving Theorem 8 we establish the following lemma.

LEMMA 1. There exists a homeomorphism h of D onto D
*H‘am—n— 4‘. __

 

 

such that the radii pf. D a£p_mapped onto spirals and h ‘ip HUC.
 

Proof. Construct a sequence {Rn} of real numbers,

= ... ... 10 RO<R1<R2< <Rn< <

for which p(Rn,R ) = 1/(1 - RE) (n = 0,1,...). Define the

n+1

mapping 91 of the interval [0,R2) onto [0,R1) by

61(r) = (rR1)/R2. And define the mapping 6n (n = 2,3,...) of

the interval [Rn,Rn+ ) onto [Rn-l’Rn) as follows: §n(r) IS

1

to be the solution of the equation

p(Rn_1,¢n(r))/o(Rn_1,Rn) = p(Rn,r)/p(Rn,Rn+1).

A straightforward calculation shows that if Rn 3 r1 s r2 < Rn+1

then p(§n(rl),§n(r2)) s p(rl,r2).

Define the mapping Y1(r) of the interval [0,R2) onto

[0,2n) by Y1(r) = 2n p(O,r)/p(O,R2); and define the mapping

Y (n = 2,3,...) of the interval [Rn,Rn+ ) onto [0,2n) by
n l

Yn(r) = 2n p(Rn,r)/p(Rn,Rn+1).

Define the mapping h in D by

' h(z) = h(reie) = §n(r)exp(ie +-iYn(r))
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for O S r < R.2 (n = l), and Rn S r < R (n = 2,3,...). It

n+1

is easy to verify that h is a homeomorphism of D onto D and

that the radii of D are mapped onto spirals.

Let A = [2: R s ‘2‘ < R Let n 2 2 be fixed but
n n n.11-

arbitrary; the proof will be complete if we can find a constant

K, independent of n, such that p(h(Zl)’h(22)) < K p(zl,z2)

for each pair of p01ntS 21, 22 E An With p(zl,zz) < 1. Let

z , z E A , with p(z ,z ) < l, where n 2 2 is arbitrary but

1 2 n l 2 . .
191 192

fixed. We may assume that 21 = rle and 22 = rze with

r1 s r2. Then we have the following inequalities

p(h(zl),h(22)) = p<h(r1exp<iel>>.h<r2exp<iez>>>

s pon<r1>expue1 + il’n(r1)),§n(r1)exp(iez + i‘I’n(r1)))

+ p(§n(r1)6XP(192 +>iwn<rl>mn<r1>exp<ie2 +~iwn(r2)>>

+ p(§n(r1)eXP(192 +~iin<r2>>,¢n<r2>exp<ie2 +-iwn(r2))>

+ .P1 P2 +P3

Consider the first term P1. From the fact that

§n(r1) 3 r1 we obtain

P1 = p(§n(r1)exp(iel),§n(r1)eXP(i92)) s p(rlexp<iel),r1exp(xez>>

s p(zl,zz).

Consider the second term P2. From the facts that

2

= l l -§n(r1) S Rn and 9(Rn:R ) /( Rn) we obtain
n+1
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Y (r )

n 2 4» (r1) de

P2 3 n 2

Yn(r1) 1 - §n(r1)

ZTT r

s tp(Rn,r2) - p(Rn.rl)]
2

(1 - Rn)p(Rn’Rn+l)

= 2n p(r1,r2) s 2n p(z1,zz).

Consider the third term P3. .From the fact that

p(§n(r1),§n(r2)) s p(r1,r2) we obtain

P3 = P(§n(r1):§n(r2)) S p(rlsrz) S p(Zla22)o

1, P2 and P3

we obtain p(h(zl),h(z2)) s (2 + 2n)p(zl,22). We choose

Finally, combining the estimates for P

K = (2 + 2n) and the proof is complete.

‘Egggf pf Theorem 8. Let h be the homeomorphism of Lemma

1. Let g be a non-constant normal meromorphic function in D.

Then by Theorem 6, the light interior function f = g o h is

normal. If f has a point asymptotic limit c along a boundary

path P, then it is easy to verify that h(F) is a spiral

asymptotic path of g for the value c. Construct a Koebe

sequence of arcs {Jn} in D be letting the Jn be the con-

secutive turns of the spiral h(F). Then g(Jn) a c, and by Theorem

1 of [4], g E c in violation of our hypothesis. Therefore f

has no point asymptotic limits.

If g has a point asymptotic limit c along a boundary

path A, then h-1(A) is a spiral asymptotic path of f for the
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value c. Construct a Koebe sequence of arcs {Jn} in D by

letting the Jn be the consecutive turns of the spiral h-1(A).

Then f has the Koebe limit c relative to C and the proof

is complete.

2. Lindelgf's theorem

Lindele's theorem [9] states that if a bounded holo-

morphic function f in D possesses the point asymptotic limit

c at e16, then f possesses the angular limit c at eie.

Consequently, a bounded holomorphic function can possess only one

point asymptotic limit at eie. The first result shows that a

bounded normal light interior function can possess point asymptotic

limits at almost every point of C and possess no radial limits.

The second result shows that a bounded normal light interior

function can possess uncountably many distinct point asymptotic

limits at the point z = l.

THEOREM 9. There exists 3 bounded normal light interior
 

function f 1p. D which possesses point asymptotic limits 35

plmost every point 2:. C but which possesses pp radial limits.
 

Before proving the theorem we establish the following lemma.

LEMMA 2. There exists 5 homeomorphism h f D. onto D
 

with the following properties: (a) the radius To ‘35 z = l

ip_mapped onto 2p are re, where F0 i§_g_Jordan arc lying 13

D U {1] internally tangent pp C at z

 

 

l, with one end point
 

 

0, (b) .ifi Fe denotes the image pf F0 under §_rotation

through 2p angle 6 about the origin, then the radius T9 ‘33

i
e 6 ip_mapped onto F (c) the restriction pf h to C is the
 

e,

identipy and (d) h .35 HUC ‘ip D.
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Proof. Let {Rn} be the sequence of real numbers constructed

in Lemmaln Define the mapping 02 of the interval [0,R3) onto

[0,R2) by §2(r) = (rR2)/R3. And define the mapping 9n

(n = 3,4,...) of the interval [Rn,R onto [Rn-I’Rn) as in
n+1)

Lemma 1. Define the mapping Y of the interval [0,R3) onto
2

[0,1) by Y2(r) = p(0,r)/p(O,R3); and define the mapping Tn

(n = 3,4,...) of the interval [Rn,Rn+1) onto [0,1) by

Wu = p(Rnar)/D(Rn,Rn+1)-

*

Let C ={z: Im z>O, Iz -%\ =%] and let

c- -| “R Lt c* 0- d1 -n {2. 2| n]. e n n wn an et an arg(wn)

(n = 1,2,...) and a0 = 0. Define the mapping h in D by

h(z) h(reie) = §n(r)eXP(iG + mm, + i(ozn_1 - an_2)‘i’n(r))

for O S r < R (n = 3,4,...); and

3

e16. It is easy to verify that h is homeomorphism of

(n = 2), and RD s r < Rn+1

h(eie)

D. onto D: By reasoning similar to that in Lemma 1 it is easy

to verify that h is HUC in D. Setting To = h(TO) it

follows that h possesses all the desired properties and the

proof is complete.

Egppf pf Theorem 9. Let h be the homeomorphism and To

be the Jordan arc of Lemma 2. By a theorem of Lohwater and

Piranian [16, Theorem 9, p. 15], there exists a bounded holo-

morphic function g in D which does not approach a limit as

2 approaches eie along Fe (O s 9 < 2n). Hence the bounded

light interior function f = g o h possesses no radial limits.

By Theorem 6, f is normal.
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Since g is bounded, g possesses radial limits at almost

every point of C. Let T9 be the radius terminating at eie.

It follows easily that f has point asymptotic limits at almost

every point of C along the paths h-1(¢e); and the proof is

complete.

THEOREM 10. There exists 5 bounded normal light interior
  

function f 1p. D which possesses chontinuum pf distinct point
 

asymptotic limits pp the point z = l.
 

Proof. Define the mapping f in D by

f(2) = f(x + iy) = x + iy/(l - 23);:-

It is easy to verify that f is a homeomorphism of D onto

the unit square Q = {z = x + iy: max{lxl,|y|] < 1].

Let 2, z' E D, z = x + iy, z' = x' + iy' with z # z'.

35
we obtain

‘f(z') - f(§)] = lx' + iy'KLl - x'z)25

2

From the fact that Iy‘ < (l - x )

- x - iy/(l - x2)%]
  

  

  

x + iy' - x - iy

z - z x + iy' - x - iy

1 . y' - y I

S 1 + (1 _ x'2)% ‘x' +-iy' - x - iy I

+ M ,‘ t1 - x2)” - <1 - x'zifl

[(1 - x'2)<1 - x2)?

1

< 1 + 2 %

(1-X')

 

l 2

+ 21; 2%

(1-X').(1-X') E+ (l - x2)

And it follows that
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M(f(z)) = lim sup Isz;% : :(Z)I < 2 .

z' a z 1 - ‘zl

 

And we obtain p*(f(z)) = M(f(z)) 2 --;;--§ .

1+|f(z)| 1- |z|

of Lappan [14, Theorem 3, p. 156], f is normal.

By a theorem

For a (-l < a < 1) fixed, the Jordan arc

2

z(t) = t + ia(l - t )8 (O s t < l) in D is a point asymptotic

path at z = l for the value 1 +-ia. Therefore f has a con-

tinuum of distinct point asymptotic limits at the point z = l

and the proof is complete.

3. Riesz's theorem

Riesz's theorem [9] states that if f is a non-constant

bounded holomorphic function in D and c is a fixed value in

Q, then the set of points on C for which cA(£,e) = {a} cannot

have positive measure on C. The following theorem shows that

there exists a bounded normal light interior function f in D

with CA(f,e) = {1] for every 9 6 [0,2n).

THEOREM 11. There exists 3 bounded normal light interior
 

function f ip D such that CA(f,9) = {1] for every

9 6 [0,2TT)'

Proof. Let h be the homeomorphism of D onto the unit

square Q which was constructed in Theorem 10, i.e.

h(z) = h(x + iy) = x + iy/(l - x2)%.

Define the mapping H in Q by

H(z) = H(x + iy) = x(l - yz)!5 + iy.
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It is easy to verify that H is a homeomorphism of Q onto D,

and that H is uniformly continuous with respect to the chordal

metric in both Q and .D. Since h is normal it follows easily

that the homeomorphism

H(h(z)) = x[(1 - x2 - y2)/(l - x2)]25 + iy/(l - x2)35

is a normal homeomorphism of D onto D.

It is easy to verify that C(H o h, e) = {i} for all

e E (0,n) and that C(H o h, e) = {-i] for all e E (n,2n).

For a (-m < a < a) fixed, the segment

z(t) = t + ia(l - t)

in D terminating at the point z = l is mapped onto

H(h(2(t))) = t[1 - 02(1 - t)/(1 + t)]25 + ia[(1 - t)/(1 + t)]%,

so that H(h(z(t))) a l as t a 1. Hence, it is easy to verify

that CA(H 0 h, 0) = [1} and similarly that CA(H o h, n) = {-1}.

Therefore CA(H o h, 9) 6 {1, -l, i, -i] for 9 E [0,2n).

Let g(z) = zh, then g is continuous on D U C and by

Theorem 7 the light interior function f = g o h is normal in D.

But g was choosen So that CA(f,e) = {1] for every 6 E [0,2n)

and the theorem is proved.

The previous theorem shows that the total outer angular

cluster set of a light interior function can be a single point.

If we consider the total cluster set instead of the total outer

angular cluster set we are able to establish the following result.
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THEOREM 12. Let f b ‘5 light interior function ip D
 

which omits the value a. _f_ C(f) = {c}, 5322' c ==m.

.EEEEE- Suppose C(f) = [c] and c¥=m then we have two

cases:

‘Qggg i. f = g o h where h is a homeomorphism of D

onto D, and g is a non-constant holomorphic function in D.

Then C(g) = {c}, hence by a theorem of Lusin and

Privalof [19, p. 72], g a c which is a contradiction.

Eggs ii. f = g o h where h is a homeomorphism of D

onto 0, and g is a non-constant holomorphic function in 0.

Now g holomorphic in Q and g(z) a c #=a as 2 d a implies

g is bounded in 0. By Liouville's theorem, g E c which is a

contradiction.

Therefore we cannot have C(f) = {c} for c # m and

the theorem is established.

A homeomorphism h of D onto 0 is a normal light

interior function in D which omits the value a and

C(f) = {a}. Therefore the hypothesis c # a was necessary for

the previous theorem. The previous theorem is sharp as shown

by the following result.

THEOREM 13. There exists 2 bounded normal light interior
 

function f ip D such that C(f,e) = {0] for every

9 E (0,2n).

Proof. Let h be the homeomorphism of Theorem 11, i.e.

h(z) = h(x + iy) = x[(1 - x2 - y2)/(l - x2)]% + iy/(l - x2)%.

Then h is a normal homeomorphism of D onto D for which
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C(h,e) c[n/2,311/2] for e e (0,2n).

There exists a conformal mapping S1 of D onto the square

Q = {2: O < x < 2, -1 < y < 1}, such that the arc [n/2,3n/2]

of C is mapped onto the side L = {z E Q} x = 0] of Q: The

mapping 82(2) = x + ixy/2 is a homeomorphism of Q onto the

triangle T = [2: O < x < 2, IyI < x/2] such that the side L

of Q. is collapsed to the point 0. The function 82 0 S1 is

continuous on C U D, and by Theorem 7 the bounded light interior

function f = S2 0 S1 0 h is normal in D. By construction we

have C(f,9) = {O} for every 9 E (0,2n) and the proof is

complete.



IV. GENERALIZATIONS AND APPLICATIONS TO K-PM FUNCTIONS

l. Quasiconformal functions and pseudo-meromorphic functions

We now investigate the behavior of a light interior

function f with StoIlow factorization f = g o h when h is

a quasiconformal homeomorphism of D onto D and g is a

non-constant meromorphic function in D. Let Q be a simply

connected region in 0 bounded by a Jordan curve, and let

21, 22, 23, 24 be four distinct boundary points of Q, which

lie in this order on the positively oriented boundary curve.

We call such a configuration a quadrilateral, and denote it by

Q(zl,22,23,24). An orientation preserving homeomorphism of the

plane transforms quadrilaterals into quadrilaterals. Map the

region Q conformally onto a rectangle R: 0 < u < l,

O < V‘< t, in the w = u + iv plane, in such a manner that

21, 22, 23, 24 correspond to the vertices w = O, l, l + it, it

respectively. We call the positive number t the modulus pf.

the quadrilateral Q(z and denote it by
1,22,23,24),

mon(z1,zz,23,z4).

A homeomorphism h of D onto D is called K-guasi-

conformal or simply KrQC, if i) h preserves orientation of

the plane, and ii) for any quadrilateral Q(zl’22’23’z4)

contained in D together with its boundary,

mod h(Q(zl,zz,z3,z4)) S K mon(zl,zz,Z3,24)a

28
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where K is a constant, K 2 1. If f is a light interior

function in D with StoIlow factorization f = g o h with

h a KEQC homeomorphism of D onto D and g a non-constant

meromorphic function in D, then we shall call f a K-pseudo-

meromorphic function, or simply K-PM.
 

2. Normality

If f is a K-pseudo-meromorphic function in D with

Stoilow factorization f = g o h, then we show that f is normal

in D if and only if g is normal in D. This result was proved

by Vgisala [21, Theorem 5, p. 20] whose proof is considerably

different.

THEOREM 14. f h is‘g KrQC homeomopphism pf D onto

-1
D, then both h and h are HUC.

eTHEOREM 15. Let f .g‘Kspseudo-meromorphic function
 

II

12. D with Stoilow factorization f = g o h where h is'p
 

KrQC homeomorphism of D onto D and g i g non-constant
  

meromorphic function ip_ D. .ngp_ f ‘i§_normal i2. D 'if‘gpg

29.11.!- g _'_s_normal_i_p D.

_§£gp£ pf Theorem 14. Since h is KéQC, by a theorem of

Mori [17] h.1 is also 'KEQC. Hersch and Pfluger [11] have shown

that if h is KEQC then p(h(z),h(z')) s YK(p(z,z')) where

YR is continuous and strictly increasing and defined for all

x 2 O with YK‘O) = 0. It follows easily that h is HUC.

Similarly h"1 is HUC and the theorem is proved.

2599;,gf_Theorem 15. From Theorem 14 both h and h“1

are HUC. By Theorem 6, f is normal in D if and only if g

is normal in D and the theorem is proved.
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3. Preservation of Stolz domains

Let h be a homeomorphism of D onto D. If for every

6 C and every Stolz domain A at e19 the image of someeie

terminal Stolz domain of A is contained in a Stolz domain,

then we shall say that h weakly_preserves Stolz domains.

If h weakly preserves Stolz domains then we note that h has

radial limits everywhere, and that CA(h,9) = CT (h,e) for

.every 9 E C, where Te is the radius at 619. 6The following

result is a generalization of Lindelgf's theorem [9].

THEOREM 16. Let f ,pglg light interior function i3, D

II

with Stoilow factorization f = g o h where h i§'§_homeo—
 

1'

morphism pf. D onto D for which both h and h.1 weakly

preserve Stolz domains and g is‘g mop-constant normal mero-
  

morppic function ip, D. ‘lf f has the point apymptotic limit

i i9 e 0.
c pp. e , then f has the angular limit c [pp

 

 

Before we prove the theorem we establish the following lemma.

LEMMA 3. _I_f h igphomeomorphismpi D onto D for

which both h and h"1 weakly preserve Stolz domains, then h

can pp_extended t ‘3 h_me9morphism‘p£ D onto D.

Proof. Suppose h cannot be extended to be continuous

in DI Then there exists a point e19 6.6 such that

C(h,e) = [a1,a2], with O < a2 - a1 s 2n. There exist two radii

id i¢

$1 and T2 terminating at e 1 and e , respectively, with

3 ch that h’1( i¢1 19 da1<¢1<¢2<a2 u re )-oe an

id
~l 2 ie . . . .

h (re ) a e . Since h has only one non-tangential limit

at eis either h—1(T1) or h-1(T2) is a non-tangential boundary

path. But then h.1 does not weakly preserve Stolz domains which
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contradicts our hypothesis. Therefore h can be extended to

be continuous in D. and similarly h.1 can be extended to be

continuous in D: By considering h o hm1 and h-1 o h it is

easy to see that h can be extended to a homeomorphism.of D

onto D; and the lemma is proved.

£3222 pf Theorem 16. By Lemma 3 h can be extended to

a homeomorphism of D. ont DI Let f have the point asymptotic

limit c along an asymptotic path P terminating at e10. Then

h(F) is an asymptotic path terminating at h(eie) along which

g has the asymptotic limit c. By a theorem of Lehto and

Virtanen [15, Theorem 2, p. 53], g has the angular limit c at

19
h(e ). Since h weakly preserves Stolz domains it follows

easily that f has the angular limit c at eie and the proof

is complete.

The function f in Theorem 9 shows that h merely being

a homeomorphism of D. onto DI is not sufficient for the previous

theorem. By a theorem of Mori [17, Theorem 6, p. 69], if h is‘

a KEQC homeomorphism of D onto D, then both h and h-1

weakly preserve Stolz domains. Thus we obtain the following

result which was first proved by Vgisglg [21, Theorem 8, p. 22].

COROLLARY. ‘Lgp f ‘pg 3 normal Kepseudo-meromorphic

function ip| D. .lf f has the ppint asymptotic limit c 2E

i . . i
e a, then f has the angular limit c pp e 9.

 

4. Preservation of Koebe arcs

Let h be a homeomorphism of D onto D. If for every

Keobe sequence of arcs {Jn} in D the sequence {h(Jn)] is
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a Koebe sequence of arcs in D, then we shall say that h

preserves Koebe sequences of arcs. The following result is a

generalization of Koebe's theorem.

THEOREM 17. Let f E 3 1:1th interior function _i_r_1_ D
 

with StoIlow factorization f = g o h EBEEE. h i§.2.22922'

morphism pf D ‘pppp, D which preserves Koebe sequences pf grgg

52g g is a nppippnstant normal meromorphic function 12. D. I222

f possesses EEfiEQEEE limits.

EEEEE; Suppose f(Jn) a c along the Koebe sequence of

arcs {Jn}. Then g(h(Jn)) a c along the Koebe sequence of

arcs {h(Jn)]. By a theorem of Bagemihl and Seidel [4], g a c

which contradicts our hypothesis; and the theorem is proved.

COROLLARY. Let f pg g_non-constant normal K-pgeudo-
 

 

meromorphic function ip D. Then f possesses pp Koebe limits.

Before we prove the corollary we establish the following

lemma.

LEMMA 4. Let h .EEHE homeomorphism pf D onto D. Then
 

h can be extended to a homeomorphism f D’ onto ’D if and only
—-——-*——-~ ‘-

 

1; Koebe sequences pf arcs are preserVed‘py both h and h-l.
  

‘Prppf, Necessity. Assume h is a homeomorphism of ‘5

onto D; Let {Jn} be a Koebe sequence of arcs in D relative

to the open arc 61,6) of C. It is easy to verify that

{h(Jn)} is a Koebe sequence of arcs relative to the open arc

h(Qy,e)) of C. Thus h preserves Koebe sequences of arcs, and

similarly h.1 preserves Koebe sequences of arcs.

Sufficiency. Assume Koebe sequences of arcs are preserved
 

by both h and h-1. Suppose h cannot be extended to be
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. . -' . . 1
continuous in D. Then there exists a pOint e 9 E c and two

I _. 19 | 19

sequences {2n} and {2“} such that zn e and 2H d e

and h(zn) .. em and h(zr'l) .. e18 with o < a - o < 211'. Let Jn

be the Euclidean geodesic joining zn to 2]. Then [h(Jn)] is a

sequence of Jordan arcs in D such that for every 6 > 0,

h(Jn)c{z: 1 - e< I2] < 1]

for all but finitely many n, and the end points of h(Jn) tend

to en: and eiB. Choosing a subsequence of {h(Jn)} if

necessary, we may assume that there exists a Koebe sequence of

arcs {Ln} relative to either the open arc (0,6) or the open

arc (B:a + 2n) such that Ln<: h(Jn). But h-1(Ln)<: Jn so

that {h-1(Ln)} is not a Koebe sequence of arcs in D, which

contradicts our hypothesis that h- preserves Koebe sequences

of arcs.

Therefore h can be extended to be continuous in D“ and

similarly h.1 can be extended to be continuous in D: By

considering h o h.1 and h.1 o h it is easy to see that h

can be extended to a homeomorphism of D. onto D. and the lemma

is proved.

Proof pf the Corollary. Since f is a non-constant normal
 

K-pseudo-meromorphic function in D, f has the StoIlow

factorization f = g o h where h is a KrQC homeomorphism of

D onto D and g is'a non-constant meromorphic function in

D. By Theorem 15 g is a normal meromorphic function in D.

By a theorem of Mori [17, Theorem 4, p. 67], if h is a KEQC

homeomorphism of D onto D, then h can be extended to a
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homeomorphism of D onto D: Thus by Lemma 4 both h and h-1

preserve Koebe sequences of arcs. From Theorem 17, f possesses

no Koebe limits and the proof is complete.



V. ASYMPI‘OTIC BEHAVIOR

The asymptotic behavior of a light interior function f

in D with StoIlow factorization f = g o h is closely related

to the asymptotic behavior of its component factors 3 and h.

DEFINITION 4. Let f 29.5 function 22, D. e define the

set A(f) ‘gp follows: ei9 E A(f) i£_there exists pp asymptotic

path f f .23 D with end E and e19 6 E. Wg_also define the

set Ap(f) .51 follows: e19 E Ap(f) .li there exists 5 point

i6
asymptotic path pf f .lfl D terminating pp e

DEFINITION 5. Let h ppmg homeomorphism pf D onto D.

Wp_define the set B(h) ‘gp follows: e19 6 B(h) .i£ there exists

 

 

pp grp,a§ymptotic path p£_ h .22. D ‘yipp.gpd E 33g

e19 E int E, yhgrg! int E lg the interior pf E.

THEOREM 18. ‘Lpp f 'pg 3 light interior function ip‘ D

High StoIlow fpgtorization f = g o h ypgrg h is p_homeomorphism

‘2: D onto D and g i_flg non-constant meromorphic function pp

D with A(g) dense pp C. Then A(f) U B(h) ip dense ip C.

Proof. Suppose A(f) is not dense on C. Let

(¢l,¢2)<: C - A(f) be arbitrary and let ,[91,92]<: (¢1,¢2), with

O < 92 - 614< 2n. Let F1 and F2 be Jordan arcs in D at

i9 i9

e 1 and e , respectively, with [F1 n F2 = [0}. Consider

the domain A bounded by FI’U P2 and the arc [91,92] of C.

35
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Then h maps A onto a domain R in D.

Case i. CF (h,61) 0 CF (h,92) # ¢ and

1 2

[in a] = 01.101.91) U Cr2(h’92)'

Let end 6 CF (h,el) n CF (h,92). There exist sequences

1 2

{2n} and {2;} in F1 and F2, respectively, Such that

h(zn) ‘ fit“ and h(zé) * eia. Let A be a Jordan arc at eia

which passes consecutively through the points

h(zl),h(zi),h(zz),h(zé),... . By a lemma of Collingwood and

Cartwright [7, Lemma 1, p. 93], either [01,92]<: CA(h-1,a) or

[62,91 + 211] C CA(h-1,or). Hence, either (01,92) C B(h) or

(92.91 + 2n) :2 B(h).

Case ii. (h,6 ) n (h,e ) # ¢ and

—— Crl 1 Crz 2

[in c] 01.9 ) u c (M >.
i Crl 1 1‘2 2

Then E = [RIO C] - [CF (h,el) U CF (h,92)] is a non-empty

. 1 2

open subarc of C. Let ela E E with ehy E A(g). Then ela

is in the end of an asymptotic path A of g. But

C(h-1,a)<: [91,92], and hence h-1(A) is an asymptotic path of f

whose end intersects [01,62]. Thus [91,02] n A(f) # ¢ in

violation of our assumption.

Lass, iii. cr1(h’°1) n 3301,92) = d.

Then E = [R:n C] - [CP1(h,91) U Cr2(h,02)] is a non-empty

open subarc of C and by arguing as in Case ii we arrive at a

contradiction.
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Therefore, from.the above considerations, if

c - , . ' ,(¢1,¢2) C A(f), then (¢1 ¢2) n B(h) # ¢ Since (¢1 ¢2)

was arbitrary it follows that A(f) U B(h) is dense on C and

the proof is complete.

THEOREM l9. .Lg; f ,hg.g.ligh; interior function ip D

II

with Stoilow factorization f = g o h where h 'ip p homeo-
 

morphism pf, D onto D with Ap(h) dense pp D, and g is a

 

non-constant meromorphic function 1p. D with Ap(g) dense pp

C. Then Ap(f) U B(h) 1p dense pp C.

Proof. Suppose B(h) is not dense on C. Let

(¢1,¢2) C C - B(h) be arbitrary and let [61,92] C (¢1,¢2)

161 i6

with °<°2"°1<2” and e ,e 2€Ap(h). Let I" and
l

101

F2 be two asymptotic paths of h terminating at e and

i9

e 2, respectively, with F1 n F2 = [0}. Consider the domain

A bounded by F1 U P2 and the arc [61,92] of C. Then h

maps A onto a domain R in D.

We have [Rim C] # [ely], since [61,62] fl B(h) = ¢.

Hence, E = [Rim C] - [Cr1(h’91) U Cr2(h,62)] is a non-empty

open subarc of C. Since Ap(g) is dense on C there exists a

point ehy E E and an asymptotic path A of g terminating

at eh”. But C(h-1,a)'C:[31,62], hence h-1(A) is an

asymptotic path of f whose end intersects [91,92]. If

h- (A) ends in a subarc [31,32] of [91,62], then our

assumption that [01.92] h B(h) = ¢ is violated. Thus,

h-1(A) ends at a point e19 6 [91,92] n Ap(f).

Therefore, if (¢I,¢2)<: C - B(h), then (¢1,¢2) n Ap(f) # ¢.

Since (¢1,¢2) was arbitrary we have that Ap(f) U B(h) is
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dense on C and the proof is complete.

COROLLARY. Let f .23.2 light interior function 1p D
 

with StoYlowfpctorization f g o h where h lp'p homeomorphism
  

‘pg D onto D for which both h and h.1 are HUC, and g .pp
  

 

.p mpg-constant meromorphic function ip D .EEEH Ap(g) ‘ppppp pp

C. ,3233 Ap(f) U B(h) .EE.EEE§S.EE C.

The corollary will follow immediately from the previous

theorem when we establish that Ap(h) is dense on C. The proof

of the corollary will be complete when we establish Lemma 6.

LEMMA 5. Let h ‘pp p homeomorphism pf D onto D which
 

is HUC. Thpn, for any 6 > 0 there corresponds p constant
  

K > 0 such that p(h(z)),h(z')) < K.p(z,z') for every pair pf
 

points. z, z' E D with p(z,z') 2 6.

Proof. Suppose that the lemma is false. Then there exist
 

d ' ' dtwo sequences {2“} an {2“} such that p(zn,zn) 2 6 an

p(h(z ),h(z')) 2 n p(z ,z'). Let l/ZN < 6 and let P be the

n n n n n

non-Euclidean geodesic joining zn to z; (n = N, N+l,...).

Partition F by points z , (j = l,2,...,m ) such that

n n,j n

I

z = z and z = z and l/2n < p(zn z
n n,l n n,mn ,j’ n,j+l

(j = l,2,...,m -l). There exists an integer k (l s k .< m )

n n n n

) < l/n

. hsuch that p(h(zn,kh)’h(zn,kn+1)) 2 n p(zn ) T en

,k ’zn,k +1
n n

and {z are close sequences with
{zn,k } n,k +1}

n n

p(h(zn
9

k )3h(zn,kn+1)) 2 n p(zn,kn’zn,kn+1) > 1/2 in Violation

of our hypothesis that h is HUC. Therefore, the lemma is true.

LEMMA 6. Let h be‘a homeomorphism pf D onto D for
 

which both h and h”1 are HUC. Then both h and h"1 have
  

 

radial limits everywhere.
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Proof. It will suffice to show that b has radial limits

everywhere. Without loss of generality we may assume that

h(O) = 0, for otherwise we may consider the homeomorphism

h (0) - h(z)

l - h(O) h(z)

H(Z) =

where both H and H"1 are HUC. From Lemma 5 we can find a

smallest integer K for which p(h(z),h(z')) < K.p(z,z') and

p(h-1(z),h-1(z')) < K p(z,z') whenever p(z,z') 2 1. Construct

a sequence {Rn} of real numbers, 0 = R < R. < R. <...< R.n <...< l,
0 l 2

such that p(O, Rn) = n. Let An = {2: RH s [z] s Rn+l}' Then

H(A.) CZ U Aj’ for some integer N. Since h(O) = O we have

j=O

l/K p(O,z) < p(0,h(2))‘< K p(0,z) for all z E An

(n = N+1,N+2,...).

Notation convention. The subscript Kn in RKn is the

integer j = Kn, and is not to be confused with double subscripts.

Let B (0 s B < 2n) be fixed but arbitrary. Set

M = max[N+l, K2 + 2]. Then

p(O,RKn) = Kn = UK p(O,R 2 e18) < p(O,h(R 2 e18»

K n K n

(n = M, M+l,...), and we obtain the inequality

(1) RKn< |h(RK2neIB)‘ and RKn< Rxm+1) <|h(1iK2 (MI) 616)‘

(n =‘M, M+1,...).

18
Set an = arg h(R 2 e ) (n = M, M+l,...). Then

K n



4O

p(RKnemnaK eflan+1) s p(h(R 2 eiB>.h<R 2 eifi>>
“ K n K (n+1)

I

I < K.p(R 2 ,R 2 ), and

K n K (n+1)

I id 3n m’n-i-l

~ a) pan; ,gme )<:K

2

= K p(R .R 3)

Kn - K - K Kn - K

 (n = M, M+l,...).

id

Let Fn be the non-Euclidean geodesic joining RKne n

fly

to RKne n+1. Then from (1) and (2) it is easy to see that

 

 

 

(3) min [‘2]: 2 E F ]‘2 R 3.

“ Kn - K

Using (3) we obtain the inequality

by by
n n+1 _ d2

<4> wee > - I 4—1—2
F 1 - ‘2‘

n

R 3

M l I> O’ " 0’

1 _ R2 3 n+1 n

Kn-K

Using (4) and (2) it follows that

. fly fly,

2 n n+1

Ia - a I s (<1 - R >/R )p( e , e )
n+1 n Kn-K; Kn-K3 RKn RKn

2 2

Kn-K Kn-K -K Kn-K Kn-K

s K2(R 3 - R )/R
3

Kn-K K(n-1)-K Kn-K3
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Therefore we obtain the inequality

m «:2

(5) 2‘6! -aI<EK(R -R )/R

n=M n+1 n n=M Kn-K3 K(n-l)-K3 Kn-K3

2

<K(1-R )/R 3.

KM-K -K KM-K

Now Ih(R 2 618)] 4 l and from inequality (5) it follows

K n

that arg h(R 2 e15) a a, hence h(R 2 e16) a ela. Suppose that

K n K n

. i . . .
lim h(re B) does not eXist, then there eXists a sequence of pOints

r41

13} i3

[rue such that h(rne ).4 e16 with e f d. Then for

each integer n we can choose an integer jn such that

B is
e,R s

K .

Jn

1 s p(rnel ) s K2. But then for n sufficiently large

p<h(rnei5),h<R 2. em» 2 K h(x-mei ,R 2 e )

KJH an

which contradicts our choice of K from Lemma 5. Therefore

lim h(reiB) exists for every 3 and the proof is complete.

rdl The following result shows that the dense set Ap(f) U B(h)

of Theorem 19 need not have positive measure.

THEOREM 20. There exists p bounded normal light interior

function f pp D with Stoglow factorization f = g o h ppppp

h ipphomeomorphismpf D ppgp D gipp ApCh) $63.1pr C

ppp g .ip p non-constant bounded holomorphic function ip D pipp

Ap(g) pptpsp pp C, pg]; Ap(f) U B(h) _i_§_ pg measure zero.

.2E22£° By a theorem of Beurling and Ahlfors [19, p. 119]

for each K.> l there-exists a K-quasi-conformal homeomorphism

h of D. onto D, such that a certain set E of linear measure

zero on C is mapped onto a set F of linear measure Zn on C.
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By a theorem of Lohwater and Piranian [16, Theorem 4, p. 11],

there exists a bounded holomorphic function g that has no

radial limits at points of the set S = C - F. By a theorem of

Lehto and Virtanen [15, Theorem 2, p. 53], g has no point

asymptotic limits at points of S. By Theorem 15, f = g o h is

a normal light interior function. But Ap(f)<: E, hence

0. Since h is a homeomorphism of D. onto D. wemeas A fp( )

have B(h) ¢ and the proof is complete.
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