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ABSTRACT

NORMAL LIGHT INTERIOR FUNCTIONS
DEFINED IN THE UNIT DISK

By

John Henry Mathews

Let f be a light interior function from the unit disk into
the Riemann sphere. Then f can be factored f =g o h where h
is a homeomorphism and g is a meromorphic function. Although this
factorization is not unique it is shown that there is a unique
factorization type. Conditions are established to determine the
normality of f; and it is shown that boundedness is not sufficient
for a light interior function to be normal.

Several examples are presented which show that the classical
theorems of Fatou, Koebe, Lindelof and Riesz cannot be extended for
even bounded normal light interior functions in the unit disk. For
example, there exists a bounded normal light interior function in
the unit disk for which the total outer angular cluster set is one
point.

Conditions are established to determine when some of the
classical theorems will hold for light interior functions. It is
shown that several theorems hold for pseudo-meromorphic functions.
For example, Koebe's theorem and LindelOf's theorem remain true

for normal pseudo-meromorphic functions.



John Henry Mathews

Let f be a light interior function in the unit disk with
factorization f = g o h where h 1is a homeomorphism of the unit
disk onto the unit disk and g is a non-constant meromorphic
function in the unit disk. Then the asymptotic behavior of f is
shown to be closely related to the asymptotic behavior of its

component factors g and h.
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I. INTRODUCTION

Lehto and Virtanen [15] defined the concept of a normal
meromorphic function as follows: If g is meromorphic in a simply
connected domain G, then g is normal if and only if the family
{g(s(z))}, where S(z) denotes any arbitrary one-one conformal
mapping of G onto G, is normal in the sense of Montel. Mero-
morphic normal functions defined in the unit disk were found by
Lappan [14] to be precisely those which are uniformly continuous
with respect to the non-Euclidean hyperbolic metric in the unit
disk and the chordal metric on the Riemann sphere. We will say
that a function f mapping the unit disk D 1into the Riemann

sphere W 1is a normal function in D if and only if f is

uniformly continuous with respect to the non-Euclidean hyperbolic
metric in D and the chordal metric in W.

Vaisdla proved [21, Theorem 2, p. 17] that if one uses the
Lehto-Virtanen definition of normal then there are no non-constant
normal meromorphic functions in the finite complex plane Q.

Yosida [23, p. 227] has defined the concept of a normal meromorphic
function in (Q as follows: If g 1is a meromorphic function in

Q, then g 1is normal if and only if the family {g(a + z): a € Q}
is normal in the sense of Montel. Recently, Gauthier [10, p. 5607
has proved, using Lappan's technique, that Yosida's definition is

equivalent to the following: A meromorphic function g in Q is



normal if and only if it is uniformly continuous with respect to the
Euclidean metric in Q and the chordal metric in W. This definition
does not exclude all non-constant meromorphic functions and includes,
for example, elliptic functions, periodic functions and rational
functions in Q (23, p. 227]. We will define the concept of a
normal function in ( as follows: A function f mapping the
finite complex plane (} into the Riemann sphere W is a normal
function in (Q if and only if f 1is uniformly continuous with
respect to the Euclidean metric in  and the chordal metric in W.
Normal meromorphic functions in D have been investigated
by Lehto and Virtanen [15], Bagemihl [2], Bagemihl and Seidel [3],
(4], Lappan [13] and others. The question has been posed: To
what extent do the results depend upon the fact that the functions
are meromorphic? In this dissertation we investigate the behavior
of normal light interior functions. A function f mapping a
domain G into the Riemann sphere W is said to be light if for
every point w € f(G) the set f-l(w) is totally disconnected,
and f 1is said to be interior if for each open set U c G the
set f(U) is open in W [22].
The following definitions and conventions will be used. We
shall denote by C the unit circle and by D the open unit disk
in the finite complex plane (}. Let W denote the Riemann sphere,
and let x(wl,wz) represent the chordal distance between the points
WiV, €EW. If A and B are sets in W then ¥x(A,B) denotes
the chordal distance between the sets A and B. In the unit disk,

let p(zl,zz) denote the non-Euclidean hyperbolic distance between



the points z_, z, € D [5, chapter 2], [12, Chapter 15];

1

p(zy>2,) = ¥ln((+u)/(1-v)) = tanh-l(u)
where
u=|(z,-2))/ -z 2,)|,

alternately

where [ ranges over all paths joining z, to z,. If {zn}
and {z;} are two sequences of points in D with p(zn,zé) -0,
we shall say that {zn} is close to {z;}, or that {zn} and

{z;} are close sequences.

ig

Let f be a function from D into W and let e be a
point of C. We define the cluster set C(f,8) of f at ele as

follows: C(f,8) 1is the set of points w € W for which there

. . . i
exists a sequence {zn} of points in D with z =—e ® and

f(zn) - w. Furthermore, the total cluster set C(f) of £ is

given by C(f) = UC (f,8), where the union is taken over all @
0

0O< @< 2n). If S 1is a subset of D and eie € [§.n C),

where S 1is the closure of S, we define the cluster set CS(f,e)

f £ at e16 relative to S as follows: Cs(f,e) is the set

of points w € W such that there exists a sequence {zn} of points

in S with z_ - e19 and f(z ) - w.
n n



By a Stolz domain A at ele we mean a set of the form

{z € D: -n/2< S arg(l - z/eie) < ¢, < n/2},

. . i
and by a terminal Stolz domain at e ® we mean a set of the form

AN {z: |z-eiel<e} O<e< l).

. . . i
The function f is said to have a Fatou point at e ® with Fatou

value c¢, or angular limit c¢, if f(z) - c as z = e19 from

‘i . ig
within each Stolz domain A at e ~. The outer angular cluster set

CA(f,Q) of f at et® is defined as follows:

cA(f,e) = Li CA(f,G)

where the union is taken over all Stolz domains A at ele. Using
this notation we see that ele is a Fatou point with Fatou value
¢ if and only if CA(f,G) = {c}.

A simple continuous curve T: z(t) (0 < t < 1) contained

in D 1is called a boundary path if |z(t)| -1 as t - 1. The

end of a boundary path T is the set F N C. If a boundary path

i i
I' ends at ele then T is said to be a Jordan arc at e 6' A

boundary path T: z(t) (0 <€ t < 1) is an asymptotic path of f

for the value ¢ provided f£f(z(t)) - ¢ as t - 1. The point ¢

is called an asymptotic value, or asymptotic limit, of f if

there exists an asymptotic path of f for the value ¢, and ¢

is said to be a point asymptotic limit of f if there exists an

asymptotic path of f for the value ¢ whose end consists of a

single point.



Let A be an open subarc of C, possibly C itself. A
Koebe sequence of arcs, relative to A, is a sequence of Jordan

arcs {Jn} in D such that: (a) for every ¢ >0,
J c {z €D: |z - a| < ¢, for some a € A}

for all but finitely many n, and (b) every open sector A of
D subtending an arc of C that lies strictly interior to A has
the property that, for all but finitely many n, the arc Jn con-
tains a subarc Ln lying wholly in A except for its two end
points which lie on distinct sides of A.

If f is a function in D and if c € W, we say that f
has the limit ¢ along the sequence of arcs {Jn}, provided that,

for every ¢ > 0,

x(c,f(Jn)) < e

for all but finitely many n. We will write f(Jn) - c. When

{Jn} is a Koebe sequence of arcs we will call ¢ a Koebe limit.



II. NORMALCY AND THE STOILOW FACTORIZATION
1. StoYlow factorization

Let f be a light interior function from the unit disk D
into the complex plane Q. Stoilow [20, p. 121] has shown that
f has the representation f =g o h where h is a homeomorphism
of D onto a Riemann surface R and g 1is a non-constant analytic
function defined on R. Church [8, p. 86] pointed out that this
result can be extended to light interior functions which map D
into the Riemann sphere W provided g 1is allowed to be mero-
morphic. In view of the uniformization theorem [1, p. 1817 there
exists a conformal mapping of R onto either D or (). Therefore,
if f 1is a light interior function from D 1into W then £ has

a Stoilow factorization f = g o h where h 1is a homeomorphism

of D onto D (or Q) and g 1is a non-constant meromorphic
function in D (or Q). Conversely, if h is a homeomorphism
of D onto D (or Q) and g 1is a non-constant meromorphic
function in D (or Q) then the function f =g o h 1is light

interior.
2. Uniqueness of the Stoilow factorization

DEFINITION 1. Let h be a homeomorphism of D onto D

(oxr Q). I1f h is uniformly continuous with respect to the non-

Euclidean hyperbolic metric in its domain D and the non-Euclidean




hyperbolic metric in its range D (or the Euclidean parabolic metric

in its range Q), then we shall say that h is HUC (or PUC).

DEFINITION 2. Let f be a light interior function in D

with Stollow factorization f =g o h where h is a homeomorphism

of D onto D (or Q) and g is a non-constant meromorphic

function in D (or Q). If h is HUC (or PUC) then f has

a type I factorization; otherwise f has a type II factorization.

THEOREM 1. f f is a light interior function in D then

— —

f has a unique factorization type,

Proof. Case i. The light interior function f has a

Stoilow factorization £ = g oh with h a homeomorphism of D
onto D. Suppose f also has the Stoilow factorization f =G o H
where H 1is a homeomorphism of D onto D (or Q). Then as
pointed out by Church [8, p. 88] ho H-1 is a conformal homeo-
morphism, hence frovaiouville's theorem h o H-l must be a con-
formal homeomorphism of D onto D. In view of Pick's theorem
(12, Theorem 15.1.3, p. 239] both h o H-l and h.1 o H are HUC.
Since the composition of two uniformly continuous functions is
uniformly continuous, it follows that h 1is HUC if and only if
H 1is HUC.

Case ii. The case when f has a Stoilow factorization
f =goh with h a homeomorphism of D onto Q 1is handled
similarly, and the proof of the theorem is complete.

There is an abundance of HUC homeomorphisms, for example,
every conformal homeomorphism of D onto D 1is HUC. The
existence of a homeomorphism of D onto Q which is PUC is

established in the following theorem.



THEOREM 2. There exists a homeomorphism h f D onto

Q which is PUC.

Proof. Define the mapping h in D by
h(z) =z p(0,2).

Then it is easy to verify that h is a homeomorphism of D onto
Q. Let An ={z: n< p(0,z) £ ntl}. Let n 23 be fixed but
arbitrary; the proof will be complete if we can find a constant
K, independent of n, such that |h(zl) - h(zz)| < K p(zl,zz)

for each pair of points 2 22 € An with p(zl,zz) < 1.

let z.,, z, € A, with p(z.,2_ ) < 1, where n =2 3 1is arbitrary
1 2 n 172 ig ig
but fixed. We may assume that z, = r.e 1 and z, = r,e 2 with

r, < T,- Then we have the following inequalities

|h(z)) - hz)|=|2,p0,2) - 2,0(0,2,)|

i02
< \zlp(O,zl) -re p(O,rl)l

i@ i@

2 2
+ |r e p(O,rl) -re p(O,r2)|

1

i@

+ |r1e 2p(O,rz) - zzp(0,22)|

A

- +
211‘92 el‘p(osrl) 0(21,22)

+ |r2 - rllp(O,rz)

+ P +P..
P+ P+ Py

Consider the first term Pl. Let T be non-Euclidean

i@ ie
goedesic joining r,e to r,e . Let R be a real number

(0 < R« 1) for which p(0,R) = n-1. Then



lo, - ;| ® < I | de|

1-R o1 e|?

iel 192
= p(rle ,rle ) < p(zl,zz).

Also, p(O,rl) < 2 p(0,R) so that we obtain

A

lo, - 6,10 ,r) < (A = R)/R)p(2;52,)2 p(O,R)

(6 OR) (1 - RI/R)2 p(zy»2,)

< 2 p(zl,zz).

Consider the third term P3. We observe that
r
|r -r | r 2
2 1 1 dx
< = .
2 [ 7 T ppry) S ez
1l - rl r, 1l - x

Also, p(0,r2) < 2 p(O,rl) so that we obtain

A

lt, - rylp,r) < (- ri)/rl)p(zl,zz)Z p(0,r;)

(0O, = ¥/ )2 p(z),2,)

A

2 p(zl,zz).

1’ P2 and P3 we

obtain |h(zl) - h(zz)| < (n + 3)p(zl,zz). We choose

Finally, combining the estimates for P

K = (4n + 3) and the proof is complete.
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3. Necessary conditions for both f and g normal

Noshiro (18, p. 154] (or Yosida [23, p. 2277) has divided the

class of normal meromorphic functions in D (or () into two
kinds which are defined as follows: A normal meromorphic function
g in D (or Q) 1is of the first kind if the normal family

a -z .
{g(I-:—gz): a € D} (or the normal family {g(a +2z): a € Q})
admits no constant limit; otherwise g is of the second kind.

THEOREM 3. Let f be a normal light interior function in

D with Stollow factorization f = g o h where h is a homeo-

morphism of D onto D (or Q) and g is a non-constant mero-

morphic function in D (or Q). If g is a normal meromorphic

function in D (or ), then h is normal. Furthermore, if g

is a normal meromorphic function of the first kind in D (or Q),

then h is HUC (or PUC).

Proof. Case i. The normal light interior function £ has

a Stoflow factorization f =g o h with h a homeomorphism of D
onto D. If h 1is not normal there exist close sequences {zn}
and {z;} such that h(zn) - eLa and h(z;) . eif with

0<B -a<2m [14]. For each integer n, let J~ be the non-
Euclidean geodesic joining z_ to zé. Then {h(Jn)} is a

n

sequence of Jordan arcs such that for every ¢ >0,
h(Jn)<: {zeD:1-¢ex< |z| < 1}

for all but finitely many n, and the end points of h(Jn) tend
ia iB .
to e and e ". Choosing a subsequence of {h(J )} if

necessary, we may assume that there exists a Koebe sequence of

arcs {Ln} relative to either the open arc (x,B) or the open
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arc (B, + 2m) such that Ln C:h(Jn), and that there exists
a constant c¢ such that f(zn) - c.

From the normality of f we have f(Jn) - c, and it follows
that g(Ln) - c. By a theorem of Bagemihl and Seidel [4, Theorem 1,
p. 10], g = ¢ in violation of our hypothesis. Therefore h is
normal and the proof of the first part is complete.

Now assume that g is a normal meromorphic function of the
first kind in D. If h 1is not HUC there exists close sequences
{zn} and {z;} and a § > 0 such that p(h(zn),h(z;)) 2§, and
there exists a constant c¢ such that f(zn) - c.

Let

h(z ) - 2z
Sn(z) = D

1 - h(zn) z

and let Gn(z) = g(Sn(z)). Then the normal family {Gn} has a
subsequence which converges uniformly on each compact subset of
D to a meromorphic function G [15, p. 53]. Let J~ be the
non-Euclidean geodesic joining z to z; and let Ln = h(Jn).
Then d(Ln) = d(S;l(Ln)) > 8§, where d(E) 1is the hyperbolic
diameter of the set E C D. From the normality of f we have
f(Jn) - ¢, so that g(Ln) - ¢, and hence Gn(S;l(Ln)) - c. For
r (0 <r<8) fixed, there exists a point Zn € S;I(Ln) such
that p(O,Zn) =r. Let Zo be a cluster point of the sequence
{Zn} on the circle {z: p(0,z) = r}.

Choosing a subsequence of {Gn} if necessary, we can assume
that z - Zo and Gn(zn) - c. A familiar argument (see e.g.

(6, p. 179]) in the theory of continuous convergence shows that

G(Zo) =¢c. Since r (0 <r s §) was arbitrary, 0 1is a limit
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point of values for which G assumes ¢ and hence G = c¢ in
violation of our hypothesis. Therefore h 1is HUC and the proof
of the first case is complete.

Case ii. The normal light interior function £ has a
Stoflow factorization f = g oh with h a homeomorphism of D
onto (. In this case h is always normal and when g is a
normal meromorphic function of the first kind in Q the proof
is handled similarly to Case i; and the proof of the theorem is

complete.
4. Sufficient conditions for f normal

Every bounded holomorphic function is normal {3], but the
following result shows that boundedness is not sufficient for a
light interior function to be normal.

THEOREM 4. f a homeomorphism h f D onto D is not

HUC, then there exists a Blaschke product B in D such that the

bounded light interior function f =B o h is not normal in D.

Proof. If h is not HUC there exist close sequences
] d |} .

{zn} and [zn} and a § > 0 such that p(h(zn),h(zn)) 26
let h(z ) =w_ and h(z') =w'. Since h is uniformly con-

n n n n
tinuous on compact subsets we necessarily have that |zn| -1,
|z$| -1, |wn| - 1, and |w;| - 1. Hence, choosing a subsequence
of {wn} if necessary, we may assume that {wn} is a Blaschke

(-]

sequence, i.e. T @1 - |wn|) < ®, We now construct a Blaschke

n=1
subsequence {wn } of {wn} and a corresponding subsequence
|3

{w; } of {w;}.
k
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= LI |
Let v v, and wn1 Wi

. and let r, = min{\wn1|,|w;1|}
and R, = max {\wn1|,‘w;1|}. We can find an integer n_ > 1 such

2

= mi -1 2
that for r, = mln{‘wnz‘,‘wézl} we have p(Rl,rz) 2 tanh “(1-1/27).

Let R, = max{[wn ‘,lw; |}. We proceed inductively to obtain

! )
subsequences {wnk} and [wnk} of {wn} and [wn}, respectively,

such that p(Rk_l,rk) -3 tanh-l(l-l/kz) for each integer k 2 2,

where rk = min{ |wnk‘ s ‘ w;‘k| } and Rk = ma.X{ ‘wnk| > | wr"k| } .

It follows easily that

canh'1(1-1/(k+1)2) 1<k< j)

1]
p(wn ’wn.) =

ko3 tanh ™1 (1-1/k%) (1<j<k),
and hence
1-1/&1)2 (1skeq)
w -w'
n n,
S B
1 -w w' 2
"k Ty 1-1/k (1 <j<k).

Recall that p(wn ,w; y28>0 (k=12,...) so that

|wn \(wn - z)

.-}
Set B(z) =  —=—K

= w -——
k=1 nk(l wn z)

Consider B(w; ) for j =21,

]



w - w' w =W w - w'

j=1] n n, n n n n,
|B(w; )| = n 5__~ il. j___. il. ﬁ K___ i
j k=1|1 - v w; 1 - v w; k=j+1 |1 - W w;
k ] i 3 k j
a1 3-t 2. 2
2 (tanh " 8) m (1 -1/(ktl)") @m (1 - 1/k")
k=1 k=j+1
-1
-1 ®
= (tanh™l §) T @ - 1/K0) =B
k=2
Let f =B o h. By assumption {z_ 1} and {z' } are
"k "k
necessarily close sequences with
lim £(z ) = lim B(h(z )) = 1limB(w ) =0
"k "k "k
and lim £(z' ) = lim B(h(z' )) = lim B(w' ) # 0.
"k "k "k

By a theorem of Lappan [14, Theorem 2, p. 156], f is not normal
and the proof is complete.

Let f be a light interior function in D with Stollow
factorization f =g o h where h 1is a homeomorphism of D onto
D and g 1is a non-constant meromorphic function in D. The
previous theorem suggests that the normality of g does not
insure the normality of f. An even stronger statement is the
following result.

THEOREM 5. There exists a homeomorphism h of D onto D

with the property: f g 1is a non-constant normal meromorphic

— O cm—

function in D, which has two distinct asymptotic limits, then the

light interior function f =g o h is not normal in D.

Proof. Construct a sequence {Rn} of real numbers

0 =R/ <R,<...< R <...< 1 for which p(R ;R /n. Define

1< Ry atl) =L



15
the mapping h in D by

e

h(z) = h(rei ) =r exp(i§ + 2mi(r - Rn)/(Rn+1 - Rn))

for Rn <£rc Rn+ (n =1,2,...). It is easy to verify that h

1

is a homeomorphism of D onto D.
Since g has two distinct asymptotic limits, a theorem
of Lehto and Virtanen [15, Theorem 2, p. 53] implies that g has

two distinct radial limits. Let To and TB be the radii which
terminate at the points e® and elB, respectively, for which
g(reLw) - a and g(reia) - b with b # a.

Now the radii of D are mapped onto spirals by h-l. Let

- -1

p(zn,z;) < p(Rn,Rn+1) = 1/n with f(zn) = g(h(zn)) - a and

h"le ) n (R ,R ) =z'. Then
o n n n
f(z;) = g(h(z;)) - b. Hence, by a theorem of Lappan [14], f is
not normal and the theorem is proved.
Since a bounded holomorphic function in D 1is normal and
possesses uncountably many distinct radial limits [9] we obtain
the following corollary.

COROLLIARY. There exists a homeomorphism h of D onto D

with the property: f g is a non-constant bounded holomorphic

function in D, then the bounded light interior function
f =goh is not normal in D.

We now determine conditions on h and g which insure the
normality of f. Since the composition of two uniformly continuous
functions is uniformly continuous the first result in this direction

is obvious.
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THEOREM 6. Let h be a homeomorphism of D onto D

(or Q) _which is HUC (or PUC). If g is a non-constant
normal meromorphic function in D (er Q), then the light
interior fupction f =g o h is normal in D. Furthermore, if
both h and ol are HUC, then g is normal in D if and only

if f is pormal in D.

DEFINITION 3. 1Llet h be a homeomorphism of D onto D.
eie

Define the set F(h) as follows: € F(h) 1if there exist

close sequences {z } and {z;} and a § >0 for which
1 ig
p(h(znxp(zn)) 2§ and h(zn) - e 7,

THEOREM 7. Let h be a normal homeomorphism of D onto D.

1f g 1is a non-constant normal meromorphic function in D which

is continuous on D U F(h), then the light interior function

f=goh is normal in D;

Proof. If f is not normal there exist close sequences
{zn} and {z;} such that f(z ) - a and f(z;) - b with
b # a [14]. 1t follows from the normality of g that {h(zn)}
and {h(z&)} are not close. Choosing a subsequence of {zn}
and a corresponding subsequence of {z&] if necessary, we may

ie ig ig

assume that h(zn) - e and h(zé) - e with e” " € F(h).

But g 1is continuous on D U F(h) and hence
= 1i "y = 14 ' = 1i = 11 =
b lim f(zn) lim g(h(zn)) lim g(h(zn)) lim f(zn) a

which is a contradiction. Therefore £ is normal and the proof

is complete.



III. FAILURE OF THE CLASSICAL THEOREMS

We now investigate the boundary behavior of normal light
interior functions and show that the classical theorems cannot

be extended even for bounded normal light interior functions.
1. Fatou's theorem and Koebe's theorem

Fatou's theorem [9] states that a bounded holomorphic function
in D possesses radial limits at almost every point of C. The
following result shows that a bounded normal light interior
function need not possess any point asymptotic limits.

Koebe's theorem [19] states that a non-constant bounded holo-
morphic function in D possesses no Koebe limits. The following
result shows that a bounded normal light interior function can
possess uncountably many distinct Koebe limits relative to C.

THEOREM 8. There exists a homeomorphism h f D onto D

with the property: f g 1is a non-constant normal meromorphic

function in D, then the light interior function f =g o h is

normal and possesses no point asymptotic limits. Furthermore,

if g possesses a point asymptotic limit, then f possesses

a Koebe limit relative to C.

Since a bounded holomorphic function in D is normal and
possesses uncountably many distinct radial limits we obtain the

following corollary.

17
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COROLLARY. There exists a homeomorphism h of D onto D

with the property: If g 1is a non-constant bounded holomorphic

function in D, then the bounded light interior function f =g o h

is normal and possesses no point asymptotic limits. Furthermore,
—hbe ———

f possesses uncountably many distinct Koebe limits relative to C.

Before proving Theorem 8 we establish the following lemma.

LEMMA 1. There exists a homeomorphism h of D onto D

such that the radii of D are mapped onto spirals and h is HUC.

Proof. Construct a sequence {Rn} of real numbers,

0= R0 < R1 < R2 <. . Rn <...<1

, _ 2 _ ,
for which p(Rn,Rn+1) 1/Q1 Rn) (n = 0,1,...). Define the
mapping &, of the interval [O,Rz) onto [O,Rl) by
§1(r) = (rRl)/RZ. And define the mapping Qn (n =2,3,...) of

the interval [Rn,R ) onto [Rn_l,Rn) as follows: Qn(r) is

n+l

to be the solution of the equation
p (Rn_].:Qn(r))/p (Rn-l’Rn) = D(Rn,r) /p (Rn>Rn+1) .

A straightforward calculation shows that if Rn < r,sr, < Rn+1
then p(Qn(rl),Qn(rZ)) < p(rl,rz).

Define the mapping ?l(r) of the interval [O,Rz) onto
(0,2rr) by Yl(r) = 2n p(O,r)/p(O,RZ); and define the mapping

¥ (n = 2,3,...) of the interval [Rn,R ) onto [0,2n) by

n+l

\yn(r) = 2 p(Rn,r)/p(Rn,R ).

n+1

Define the mapping h in D by

h(z) = h(reie) = Qn(r)exp(ie + iYn(r))
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for 0 < rc« R2 (n = 1), and Rn < r<R (n =2,3,...). It

n+l
is easy to verify that h is a homeomorphism of D onto D and
that the radii of D are mapped onto spirals.

Let A = {z: R < |z| < Rn+1}. Let n > 2 be fixed but
arbitrary; the proof will be complete if we can find a constant
K, independent of n, such that p(h(zl),h(zz)) < K p(zl,zz)
for each pair of points 215 2, € An with p(zl,zz) < 1. Let
z,, z, € A, with p(z,,z,) < 1, where n 2> 2 1is arbitrary but

1° =2 n 1°72 .
191 iez

fixed. We may assume that zy = r,e and z, = r2e with

r < I, Then we have the following inequalities

p(h(z)),h(2)) = p(h(r exp(i8))),h(r exp(i0,)))
< p@ (c)exp(io) +1¥ (r)),8_(r)exp(is, + i¥ (r)))
+p@, (r)exp(10, + i¥ (r))),8_(r)exp(i8, + i¥ (r,)))

+p (@ (r))exp(i8, + i¥ (r,)),% (r))exp(if, + i\yn(rz)))

]

+ .
P1 P2 + P3

Consider the first term Pl. From the fact that

Qn(rl) < r, we obtain

P, = p(@_(r))exp(i8]),8_(r )exp(i8,)) < p(r exp(i8,),r exp(18,))
< p(zl,zz).
Consider the second term P.. From the facts that

2
_ 2
Qn(rl) < Rn and p(Rn’Rn+1) =1/ Rn) we obtain
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¥ (r.)
nt2 (r)) do
P, < 2 5
Yn(rl) 1 - Qn(rl)
2m r
< Lp(Rn,rz) - p(Rn,rl)]

2
a - Rn)p (Rn,Rn+1)

= 2 p(rl,rz) < 2 p(zl,zz).

Consider the third term P3. From the fact that

D(Qn(rl),Qn(rz)) < p(rl,rz) we obtain
Py = p(@n(rl),Qn(rz)) < p(rl,rz) < °(z1’22)'

Finally, combining the estimates for Pl’ P2 and P3
we obtain p(h(zl),h(zz)) < (2 + Zn)p(zl,zz). We choose
K= (2 + 2n) and the proof is complete.

Proof of Theorem 8. Let h be the homeomorphism of Lemma

1. Let g be a non-constant normal meromorphic function in D.
Then by Theorem 6, the light interior function f =g o h is
normal. If £ has a point asymptotic limit ¢ along a boundary
path T, then it is easy to verify that h(') 1is a spiral
asymptotic path of g for the value c¢. Construct a Koebe
sequence of arcs {Jn} in D be letting the J be the con-
secutive turns of the spiral h(). Then g(Jn) - ¢, and by Theorem
1 of (4], g = c in violation of our hypothesis. Therefore f
has no point asymptotic limits.

If g has a point asymptotic limit ¢ along a boundary

path A, then h-l(A) is a spiral asymptotic path of f for the
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value c. Construct a Koebe sequence of arcs {Jn} in D by
letting the Jn be the consecutive turns of the spiral h-l(A).
Then £ has the Koebe limit c¢ relative to C and the proof

is complete.
2. LindelOf's theorem

Lindel8f's theorem [9] states that if a bounded holo-
morphic function f 1in D possesses the point asymptotic limit
c at eie, then f possesses the angular limit ¢ at eie.
Consequently, a bounded holomorphic function can possess only one
point asymptotic limit at eie. The first result shows that a
bounded normal light interior function can possess point asymptotic
limits at almost every point of C and possess no radial limits.
The second result shows that a bounded normal light interior
function can possess uncountably many distinct point asymptotic

limits at the point =z = 1.

THEOREM 9. There exists a bounded normal light interior

function f in D which possesses point asymptotic limits at

almost every point of C but which possesses no radial limits.

Before proving the theorem we establish the following lemma.

LEMMA 2. There exists a homeomorphism h f D onto D

with the following properties: (a) the radius T at z =1

is mapped onto an arc Fe, where FO is a Jordan arc lying in

DU {1} internally tangent to C at z = 1, with one end point

0, (b) if Fe denotes the image of I’ under a rotation

— 0
through an angle 6 about the origin, then the radius To at
i

e is mapped onto Fe, (c) the restriction of h to C 1is the

identity and (d) h is HUC in D.
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Proof. Let {Rn} be the sequence of real numbers constructed
in Lemma 1. Define the mapping §, of the interval [0,R3) onto
[O,RZ) by Qz(r) = (rRZ)/R3. And define the mapping Qn

(n = 3,4,...) of the interval [Rn,R ) onto [Rn_l,Rn) as in

n+1
Lemma 1. Define the mapping ¥, of the interval [O,RB) onto

(0,1) by Yz(r) = p(O,r)/p(O,RB); and define the mapping Y¥_

(n =3,4,...) of the interval [Rn,R ) onto [0,1) by

n+1

\yn = D(Rnsr)/p(Rn’Rn+1)'
*
Let C ={z: Imz>0, |z - ¥ =%} and let
c ={z: |z| =R }. Let C* nNAC =w and let o = arg(w )
n n n n n n

(n =1,2,...) and @ = 0. Define the mapping h in D by

h(z) = h(re'®) =3 (exp(i6 + la_, + il | - o ¥ ()

-2 -1

for 0<r<Ry (n =2), and R sr<R (n =3,4,...); and

1
h(eie) = eie. It is easy to verify that h 1is homeomorphism of
D onto D. By reasoning similar to that in Lemma 1 it is easy
to verify that h is HUC in D. Setting FO = h(TO) it
follows that h possesses all the desired properties and the

proof is complete.

Proof of Theorem 9. Let h be the homeomorphism and FO

be the Jordan arc of Lemma 2. By a theorem of Lohwater and
Piranian [16, Theorem 9, p. 157, there exists a bounded holo-
morphic function g in D which does not approach a limit as
z approaches eie along Pe (0 € 8§ < 21). Hence the bounded

light interior function f = g o h possesses no radial limits.

By Theorem 6, f is normal.
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Since g 1is bounded, g possesses radial limits at almost
every point of C. Let re be the radius terminating at eie.
It follows easily that f has point asymptotic limits at almost
every point of C along the paths h-l(Te); and the proof is
complete.

THEOREM 10. There exists a bounded normal light interior

function f in D which possesses a continuum of distinct point

asymptotic limits at the point z = 1.

Proof. Define the mapping f in D by

f(z) = f(x +iy) =x + iy/(1 - xz)%.

It is easy to verify that f is a homeomorphism of D onto

the unit square Q = {z = x + iy: max{|x|,|y|} < 1}.

Let z, z' €D, z =x + iy, z' =x' + iy' with z # z'.

From the fact that |y| < (1 - xz)% we obtain
HENEE IO S 1] 5% - ya - xBE
z' -z ! x' + iy’ - x - iy '
1 y' -y |

Sl+(1-x'2)*"""+i>7'-x-iy‘

+ Lyl a - xz)!i - (1 - x'z)%t

[a-xha-xHyr | X oxo

1
<l +—"
a-x%E
N 1 . 2
Qa - x'z)% a - x'z)!5 + (1 - xz)l5

And it follows that
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' -
M(£(z)) = lim sup |EE—£@) 3
' z -z 2
z' -z 1 - |z|
MEG)) 3
1+ |f(z)|2 1- |z|2
of Lappan [14, Theorem 3, p. 156], f is normal.

*
And we obtain p (f(2)) = By a theorem

For ¢ (-l< o< 1) fixed, the Jordan arc

%

2
z(t) =t +ig(l - t)® (0O<t<l) in D is a point asymptotic
path at z =1 for the value 1 + iy. Therefore f has a con-

tinuum of distinct point asymptotic limits at the point 2z =1

and the proof is complete.
3. Riesz's theorem

Riesz's theorem [9] states that if f is a non-constant
bounded holomorphic function in D and ¢ 1is a fixed value in
Q, then the set of points on C for which CA(f,e) = {c} cannot
have positive measure on C. The following theorem shows that
there exists a bounded normal light interior function £ in D
with cA(f,e) = {1} for every o € [0,2m).

THEOREM 11. There exists a bounded normal light interior

function f in D such that CA(f,e) = {1} for every

e € [0,2m).
Proof. Let h be the homeomorphism of D onto the unit

square Q which was constructed in Theorem 10, i.e.

h(z) = h(x + iy) = x + iy/(1 - xz)%.

Define the mapping H in Q by

H(z) = HGx + 1y) = x(L - yO) % + iy.
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It is easy to verify that H 1is a homeomorphism of Q onto D,
and that H 1is uniformly continuous with respect to the chordal

metric in both Q and D. Since h is normal it follows easily

that the homeomorphism
H(z) = x[@ - %2 - yD /@ - xD7F + iy/@ - xDF

is a normal homeomorphism of D onto D.
It is easy to verify that C(H o h, §) = {i} for all
@ € (O,m) and that C(H o h, 8) = {-i} for all @ € (m,2m).

For ¢ (~o < o < ®) fixed, the segment

z(t) =t + ia(l - t)
in D terminating at the point 2z =1 1is mapped onto
H(h(z(t))) = t[1 - az(l -t)/1 + t)]% +io[ (1 - t)/(1 + t)]%,

so that H(h(z(t))) - 1 as t - 1. Hence, it is easy to verify
that CA(H o h, 0) = {1} and similarly that CA(H oh, m) ={-1].
Therefore C,(H o h, §) € {1, -1, i, -i} for @ € [0,2m).

Let g(z) = 24’ then g is continuous on D U C and by
Theorem 7 the light interior function f =g o h is normal in D.
But g was choosen so that CA(f,e) = {1} for every 8 € [0,2m)
and the theorem is proved.

The previous theorem shows that the total outer angular
cluster set of a light interior function can be a single point.

I1f we consider the total cluster set instead of the total outer

angular cluster set we are able to establish the following result.
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THEOREM 12. Let f be a light interior function in D

which omits the value . f C(f) = {c], then ¢ = =.

Proof. Suppose C(f) = {c}] and c# ® then we have two
cases:

Case i. f =g o h where h is a homeomorphism of D
onto D, and g 1is a non-constant holomorphic function in D.

Then C(g) = {c}, hence by a theorem of Lusin and
Privalof [19, p. 72], g = ¢ which is a contradiction.

Case ii. f =g o h where h is a homeomorphism of D
onto , and g is a non-constant holomorphic function in Q.
Now g holomorphic in Q and g(z) = c #® as z —- o implies
g 1is bounded in Q. By Liouville's theorem, g = ¢ which is a
contradiction.

Therefore we cannot have C(f) = {c} for c # o and
the theorem is established.

A homeomorphism h of D onto (Q 1is a normal light
interior function in D which omits the value & and
C(f) = {w}. Therefore the hypothesis c¢ # » was necessary for
the previous theorem. The previous theorem is sharp as shown
by the following result.

THEOREM 13. There exists a bounded normal light interior

function f in D such that C(f,8) = {0} for every
e € (0,2m).

Proof. Let h be the homeomorphism of Theorem 11, i.e.

h@) = hex +1y) =0 - x - v/ - xD1F + 170 - xH 2,

Then h is a normal homeomorphism of D onto D for which
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c(h,8) < (n/2,3n/2] for 6 € (0,2m).

There exists a conformal mapping S, of D onto the square

1
Q =f{z: 0<x< 2, -1<y< 1}, such that the arc [n/2,3n/2)]

of C is mapped onto the side L = {z € Q: x = 0} of Q. The
mapping Sz(z) = x + ixy/2 is a homeomorphism of Q onto the
triangle T = {z: 0<x< 2, |y] <x/2} such that the side L

of 6 is collapsed to the point 0. The function 82 o S1 is
continuous on C U D, and by Theorem 7 the bounded light interior
function f = S2 o S1 oh 1is normal in D. By construction we

have C(f,p) = {0} for every © € (0,2n) and the proof is

complete.



IV. GENERALIZATIONS AND APPLICATIONS TO K-PM FUNCTIONS

1. Quasiconformal functions and pseudo-meromorphic functions

We now investigate the behavior of a light interior
function f with Stoilow factorization f = goh when h Iis
a quasiconformal homeomorphism of D onto D and g 1is a
non-constant meromorphic function in D. Let Q be a simply
connected region in {3 bounded by a Jordan curve, and let
215 255 2q5 2, be four distinct boundary points of Q, which
lie in this order on the positively oriented boundary curve.

We call such a configuration a quadrilateral, and denote it by

Q(zl,zz,z3,za). An orientation preserving homeomorphism of the
plane transforms quadrilaterals into quadrilaterals. Map the
region Q <conformally onto a rectangle R: O < u< 1,
O<v<t, in the w =u + iv plane, in such a manner that

Z1s 29 2g; z4 correspond to the vertices w =0, 1, 1 + it, it

respectively. We call the positive number t the modulus of

the quadrilateral Q(zl,zz,z3,z4), and denote it by
mOdQ(zl’22’23’24)'

A homeomorphism h of D onto D 1is called K-quasi-
conformal or simply K-QC, if i) h preserves orientation of
the plane, and 1ii) for any quadrilateral Q(zl,zz,z3,za)

contained in D together with its boundary,

mod h(Q(zl,zz,z3,z4)) < K mon(zl,zz,z3,24),

28
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where K 1is a constant, K2 1. If f 1is a light interior
function in D with Stoilow factorization f = g o h with

h a K-QC homeomorphism of D onto D and g a non-constant
meromorphic function in D, then we shall call f a K-pseudo-

meromorphic function, or simply K-PM.
2. Normality

If f 1is a K-pseudo-meromorphic function in D with
Stoilow factorization f = g o h, then we show that f is normal
in D if and only if g is normal in D. This result was proved
by vdisdald [21, Theorem 5, p. 20] whose proof is considerably

different.

THEOREM 14. f h is a K-QC homeomorphism of D onto
-1

D, then both h and h HUC.

are
be

THEOREM 15. Let f a K-pseudo-meromorphic function

in D with Stoilow factorization £ = goh where h is a

K-QC homeomorphism of D onto D and g is a non-constant

meromorphic function in D. Then f is normal in D if and

only if g is normal in D.

Proof of Theorem 14. Since h is K-QC, by a theorem of

Mori [17] hlois also K-QC. Hersch and Pfluger [11] have shown
that if h is K-QC then p(h(z),h(z")) < YK(p(z,z')) where

Y is continuous and strictly increasing and defined for all

K
x 2 0 with YK(O) = 0. It follows easily that h 1is HUC.
Similarly h-'1 is HUC and the theorem is proved.

-1
Proof of Theorem 15. From Theorem 14 both h and h

are HUC. By Theorem 6, £ is normal in D if and only if g

is normal in D and the theorem is proved.
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3. Preservation of Stolz domains

Let h be a homeomorphism of D onto D. If for every
i@ . ie .
e € C and every Stolz domain A at e the image of some

terminal Stolz domain of A is contained in a Stolz domain,

then we shall say that h weakly preserves Stolz domains.

If h weakly preserves Stolz domains then we note that h has
radial limits everywhere, and that CA(h,e) = CT (h,8) for

)
.every @ € C, where Te is the radius at eie. The following

result is a generalization of Lindelof's theorem [9].

THEOREM 16. Let f be a light interior function in D

"
with Stoilow factorization f =g o h where h is a homeo-

-

morphism of D onto D for which both h and h-1 weakly

preserve Stolz domains and g 1is a non-constant normal mero-

morphic function in D. If £ has the point asymptotic limit

i i
c at ele, then f has the angular limit c at e 9,

Before we prove the theorem we establish the following lemma.

IEMMA 3. If h is a homeomorphism of D onto D for

which both h and h“1 weakly preserve Stolz domains, then h

can be extended to a homeomorphism of D onto D.

Proof. Suppose h cannot be extended to be continuous

in D. Then there exists a point eie € C such that

C(h,9) = [al,azj, with 0 < @, - o, S 2. There exist two radii

ig ig

™1 and 72 terminating at e 1 and e , respectively, with
i

cuch that b~ l(re °1 18 and
oy < @91 < ¢ < az uc (re ) - e an

-1, 1o, 0 . e
h “(re ) - e . Since h has only one non-tangential limit

at eie either h-l(Tl) or h-l(Tz) is a non-tangential boundary

path. But then h-1 does not weakly preserve Stolz domains which
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contradicts our hypothesis. Therefore h can be extended to
be continuous in D and similarly h-1 can be extended to be
continuous in D. By considering h o h.1 and h“1 oh it is
easy to see that h can be extended to a homeomorphism of D
onto 3; and the lemma is proved.

Proof of Theorem 16. By Lemma 3 h can be extended to

a homeomorphism of D ont D. Let f have the point asymptotic
i
limit ¢ along an asymptotic path [ terminating at e e. Then

h() 1is an asymptotic path terminating at h(e19

) along which
g has the asymptotic limit c. By a theorem of Lehto and

Virtanen [15, Theorem 2, p. 53], g has the angular limit c at
ig

h(e ”). Since h weakly preserves Stolz domains it follows

easily that f has the angular limit c¢ at eio and the proof
is complete.

The function f in Theorem 9 shows that h merely being
a homeomorphism of D onto D is not sufficient for the previous
theorem. By a theorem of Mori [17, Theorem 6, p. 69], if h is
a K-QC homeomorphism of D onto D, then both h and h-1
weakly preserve Stolz domains. Thus we obtain the following

"o

result which was first proved by Vaisala [21, Theorem 8, p. 22].

COROLLARY. Let f be a normal K-pseudo-meromorphic

function in D. If f has the point asymptotic limit ¢ at
i@ i@
e ", then f has the angular limit c at e ".

4. Preservation of Koebe arcs

Let h be a homeomorphism of D onto D. If for every

Keobe sequence of arcs {Jn} in D the sequence {h(Jn)} is
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a Koebe sequence of arcs in D, then we shall say that h
preserves Koebe sequences of arcs. The following result is a

generalization of Koebe's theorem.

THEOREM 17. Let f be a light interior function in D

with Stoilow factorization £ = g oh where h is a homeo-

morphism of D onto D which preserves Koebe seguences of arcs

and g is a non-constant normal meromorphic function in D. Then

f possesses no Koebe limits.

Proof. Suppose f(Jn) - ¢ along the Koebe sequence of
arcs {Jn}. Then g(h(Jn)) - ¢ along the Koebe sequence of
arcs {h(Jn)}. By a theorem of Bagemihl and Seidel [4], g = ¢
which contradicts our hypothesis; and the theorem is proved.

COROLLARY. Let f be a non-constant normal K-pseudo-

meromorphic function in D. Then f possesses no Koebe limits.
Before we prove the corollary we establish the following
lemma.

LEMMA 4. Let h be a homeomorphism of D onto D. Then

o & homeomorphism of D onto D if and only

h can be extended

-1
if Koebe sequences of arcs are preserved by both h and h .

Proof. Necessity. Assume h is a homeomorphism of D

onto D. Let {Jn} be a Koebe sequence of arcs in D relative
to the open arc (y,B) of C. It is easy to verify that
{h(Jn)} is a Koebe sequence of arcs relative to the open arc
h((x,8)) of C. Thus h preserves Koebe sequences of arcs, and
similarly h-l preserves Koebe sequences of arcs.

Sufficiency. Assume Koebe sequences of arcs are preserved

by both h and h-l. Suppose h cannot be extended to be
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continuous in D. Then there exists a point ele € ¢ and two
ig 1 i

sequences {zn} and {z;} such that z = and z' = e

io ' ig
and h(zn) - e and h(zn) - e with 0< B - o < 2r. Let Jn
be the Euclidean geodesic joining z to z;. Then [h(Jn)} is a

sequence of Jordan arcs in D such that for every ¢ > 0,
h@)c{z: 1-e< lz| < 1}

for all but finitely many n, and the end points of h(Jn) tend
to e® and e Choosing a subsequence of [h(Jn)] if
necessary, we may assume that there exists a Koebe sequence of
arcs {Ln} relative to either the open arc (x,B) or the open
arc (B, + 2rr) such that Ln c h(Jn). But h-l(Ln) c Jn so
that {h-l(Ln)} is not a Koebe sequence of arcs in D, which
contradicts our hypothesis that h™ preserves Koebe sequences
of arcs.

Therefore h can be extended to be continuous in D and
similarly h-1 can be extended to be continuous in D. By
considering h o h.1 and h-1 oh it is easy to see that h
can be extended to a homeomorphism of D onto D and the lemma

is proved.

Proof of the Corollary. Since f is a non-constant normal

K-pseudo-meromorphic function in D, f has the Stollow
factorization f =g oh where h is a K-QC homeomorphism of
D onto D and g 1is a non-constant meromorphic function in

D. By Theorem 15 g 1is a normal meromorphic function in D.

By a theorem of Mori [17, Theorem 4, p. 67], if h is a K-QC

homeomorphism of D onto D, then h can be extended to a
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homeomorphism of D onto D. Thus by Lemma 4 both h and h-1

preserve Koebe sequences of arcs. From Theorem 17, f possesses

no Koebe limits and the proof is complete.



V. ASYMPTOTIC BEHAVIOR

The asymptotic behavior of a light interior function £
in D with Stoilow factorization f = g o h 1is closely related
to the asymptotic behavior of its component factors g and h.
DEFINITION 4. Llet f be a function in D. We define the

set A(f) as follows: ei'e € A(f) if there exists an asymptotic

path of f in D with end E and eleGE. We also define the

set Ap(f) as follows: el® € Ap(f) if there exists a point

asymptotic path of f in D terminating at ele.

DEFINITION 5. Let h be a homeomorphism of D onto D.

We define the set B(h) as follows: ele € B(h) if there exists

an arc asymptotic path of h in D with end E and
10 '

e € int E, where int E is the interior of E.

THEOREM 18. Let f be a light interior function in D

with Sto{low factorization f = g o h where h is a homeomorphism

of D onto D and g is a non-constant meromorphic function on

D with A(g) dense on C. Then A(f) U B(h) is dense in C.
Proof. Suppose A(f) is not dense on C. Let
(¢1>6,) © C - A(f) be arbitrary and let ‘[91,92] < (9,5¢,)> with

0 < 92 - 91< 2rm.  Let 1"1 and l"2 be Jordan arcs in D at

191 162
e and e °, respectively, with _1"1 n 1"2 = {0}. Consider

the domain A bounded by I"lu 1"2 and the arc [91,92] of C.

35
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Then h maps A onto a domain R in D.

Case 1i. th,8.) N (h,8,) # and
gase 1 G 6 crz ) T
(Rnc] = cl.l(h,el) U Cl‘z(h’ez)‘

iy .
Let e € (h,8.) N (h,8_ ). There exist sequences
% Crz 2

{zn} and {z;} in Fl and FZ, respectively, such that

h(z ) - e and h(z') = el Let A be a Jordan arc at e
which passes consecutively through the points
h(zl),h(zi),h(zz),h(zé),... . By a lemma of Collingwood and
Cartwrighc'[], Lemma 1, p. 93], either [01,62] C:CA(h-l,a) or
[92,91 + 2] CA(h-l,a). Hence, either (91,92) c B() or
(92,91 + 2rm) € B(h).

case ii. (h,6.) N C. (h,8,) # ¢ and
Case Crl 1 °r2 2
Rn C (h,8,) U C. (h,8.).
Z Crl 1 r, %

Then E = [E necl - [cr (h,el) U Cr (h,ez)] is a non-empty
. 1 2

open subarc of C. Let ela € E with el € A(g). Then ela

is in the end of an asymptotic path A of g. But
C(h-l,a) C;[Ql,ez], and hence h-l(A) is an asymptotic path of £
whose end intersects [01,92]. Thus [91,02] N A(E) #¢ in
violation of our assumption.

Case iii. Cl“l(h’el) n Cr‘z(h’ez) = ¢-

Then E = [E'ﬂ c] - chl(h,el) U Crz(h,ez)] is a non-empty
open subarc of C and by arguing as in Case ii we arrive at a

contradiction.
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Therefore, from the above considerations, if
(¢1,¢2) C C - A(f), then (¢1,¢2) N B(t) # . Since (¢1,¢2)
was arbitrary it follows that A(f) U B(h) is dense on C and

the proof is complete.

THEOREM 19. JLet f be a light interior function in D

"
with Stoilow factorization f =g o h where h is a homeo-

morphism of D onto D with Ap(h) dense on D, and g 1is a

non-constant meromorphic function in D with Ap(g) dense on

C. Then Ap(f) U B(h) 1is dense on C.

Proof. Suppose B(h) is not dense on C. Let

- i 1 <
(¢1,¢2) € C -B() be arbltrazg andi;et [61,02] (¢1,¢2)
l e 2¢a (h). Let T'_ and
P g, 1
2 be two asymptotic paths of h terminating at e 1 and
iez
e , respectively, with Fl n Tz =_{O}. Consider the domain

with Q< 92 - 91 < 2 and e

r

A bounded by Fl U FZ and the arc [91,32] of C. Then h
maps A onto a domain R in D.

We have [RN C] # {eiY}, since LOI,OZJ N B() = ¢.
Hence, E = [R N c] - [Crl(h’el) U Crz(h,ez)] is a non-empty
open subarc of C. Since Ap(g) is dense on C there exists a
point eLy € E and an asymptotic path A of g terminating
at e, But c(h-l,a)vc:[jl,ezj, hence h™Y(A) is an
asymptotic path of f whose end intersects [91,92]. 1f
h-l(A) ends in a subarc [31,32] of [91,92], then our
assumption that [01,62] N B(h) = ¢ is violated. Thus,
h-l(A) ends at a point eie € [91,62] N Ap(f).

Therefore, if (¢1,¢2) c C - B(h), then (¢1,¢2) N Ap(f) * o

Since (¢1,¢2) was arbitrary we have that Ap(f) U Bt) is
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dense on C and the proof is complete.

COROLLARY. Llet f be a light interior function in D

with Stollow factorization f =g o h where h is a homeomorphism

2£ D onto D for which both h and h-l are HUC, and g is

a non-constant meromorphic function in D with Ap(g) dense on

C. Then Ap(f) U B(h) 1is dense on C.

The corollary will follow immediately from the previous
theorem when we establish that Ap(h) is dense on C. The proof
of the corollary will be complete when we establish Lemma 6.

LEMMA 5. Let h be a homeomorphism of D onto D which

is HUC. Then, for any & > 0 there corresponds a constant

K >0 such that p(h(z)),h(z')) < Kp(z,2') for every pair of

points z, z' € D with p(z,2') = 6.
Proof. Suppose that the lemma is false. Then there exist
d ! ! d
two sequences {zn} an {zn} such that p(zn,zn) 2§ an
] ]
p(h(zn),h(zn)) 2 n p(zn,zn). Let 1/2N < § and let Tn be the
non-Euclidean geodesic joining z to z; (n =N, N+1,...).

Partition Fn by points z G = 1,2,...,mn) such that

n,j
(-

z =z and z' =z and 1/2n < pz
3

) < 1/n
n n,l n n,m

) 3°%n, 341
G = 1,2,...,mn-1). There exists an integer kn 1 < kn < mn)

. h
such that p(h(zn’k )’h(zn,k +1)) 2n p(zn’k ’zn,k +1) Then
n n n n
and z are close sequences with
{Zn,kn} { n,kn+1} d

1 . . 1 t .
p(h(zn,kn)’h(zn,kn+1)) 2n p(zn,kn’zn,kn+l) > 1/2 1in violation
of our hypothesis that h is HUC. Therefore, the lemma is true.

LEMMA 6. Let h be a homeomorphism of D onto D for

which both h and h-1 are HUC. Then both h and h-1 have

radial limits everywhere.
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Proof. It will suffice to show that h has radial limits
everywhere. Without loss of generality we may assume that

h(0) = 0, for otherwise we may consider the homeomorphism

Ry = PO - h()
1 - h(0) h(z)
where both H and H-l are HUC. From Lemma 5 we can find a

smallest integer K for which p(h(z),h(z')) < K p(z,2') and
p(h-l(z),h-l(z')) < K p(z,2') whenever p(z,z') 2 1. Construct

a sequence {Rn} of real numbers, 0 =R, < R; < R, <...< R <...< 1,

such that p(O Rn) =n. let A = {z: R < |z| < Rn+1}' Then

(A ) c U A., for some integer N. Since h(0) = 0 we have

i’
K p(0,2) < p(O,h(z)) < K p(,z) for all z € An

(n = N+1,N+2,...).

Notation convention. The subscript Kn in RKn is the
integer j = Kn, and is not to be confused with double subscripts.
let B (0 €8 < 2m) be fixed but arbitrary. Set
M = max{N+1, K2 + 2}. Then
- Xa = i8 ig
p(O,Ry ) =Kn =1/Kp(0,R , ™) < p(0,;hR 5 ™))
Kn Kn
(n = M, M*+l,...), and we obtain the inequality
ig ia
(1) < |h@® , e *)| and < |h@®R )|
Rkn 2 "k < Fx(arn) < "R 2 1)
(n =M, MHL,...).
ig

Set o =arg hR ,e”) (n =M, Ml,...). Then
Kn
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i i ; .
PRee HRee TH e, e e, Py

Kn K (n+l)
R. <KpR 9 ,R 2 ), and
t . Kn K (ntl)
5‘ (2) p(RKnem“,RKnem““) 'S
= KZp(R 3 R 3)

b
Kn - K - K Kn - K

(n =M, MHL,...).

i
Let Fn be the non-Euclidean geodesic joining RKne n

iy
to RKne n+1. Then from (1) and (2) it is easy to see that

PR
3 e e S, i

3) min {|z|; ze€l}=2R .
n Kn - Ko

T IR

Using (3) we obtain the inequality

e e a— i aa oln . i . a

—ax

e

i

i
(%) p(Ry e “,RKne ntly | g _ldz|

=]
—
]
N
N

P S
P

R 3
Kn-K
> 1 2 |O'n+1 B an‘
-R 3
Kn-K
Using (4) and (2) it follows that
iy io
2 n n+1
o 1 -] s (@-R ) /R )p(R, e ,R e )
mtl o n ko ke XS K

2
< x4 - &? PR 5 LR /R4
Kn-K Kn-K"-K Kn-K Kn-K

< K2(R 3 - R )/R 3
Kn-K K(n-1)-K Kn-K
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Therefore we obtain the inequality

- -] @ 2
6) Tla,,-ol|l< TK® - R ) /R
a0 T TRaK K@D -K KooK

< K2(1 -R 5 )R 4.
KM-K"-K  KM-K
Now |h(R 2 ele)| - 1 and from inequality (5) it follows
Kn

that arg h(R 2 eiB) - o, hence hR 2 eiB) - eid. Suppose that
Kn Kn

. i . . .
lim h(re B) does not exist, then there exists a sequence of points

r—1
EX

such that h(rnela) - e1e with 6 # . Then for

each integer n we can choose an integer jn such that

lc< p(rneiB,R s ele) < Kz. But then for n sufficiently large

K Jn

et e®yne, ey 2 ko e®r, P

K Jn Kij

which contradicts our choice of K from Lemma 5. Therefore
lim h(rele) exists for every f and the proof is complete.
r-1
The following result shows that the dense set Ap(f) U B()

of Theorem 19 need not have positive measure.

THEOREM 20. There exists a bounded normal light interior

function f in D with Stoilow factorization f = g o h where

h is a homeomorphism of D onto D with Ap(h) dense on C

and g 1is a non-constant bounded holomorphic function in D with

Ap(g) dense on C, but Ap(f) U B(h) is of measure zero.

Proof. By a theorem of Beurling and Ahlfors [19, p. 119]
for each K> 1 there exists a K-quasi-conformal homeomorphism
h of D onto D such that a certain set E of linear measure

zero on C 1is mapped onto a set F of linear measure 2m on C.
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By a theorem of Lohwater and Piranian [16, Theorem 4, p. 11],
there exists a bounded holomorphic function g that has no
radial limits at points of the set S =C - F. By a theorem of
Lehto and Virtanen [15, Theorem 2, p. 53], g has no point
asymptotic limits at points of S. By Theorem 15, f =g o h is
a normal light interior function. But Ap(f)t: E, hence

meas Ap(f) = 0. Since h 1is a homeomorphism of D onto D we

have B(h) = ¢ and the proof is complete.
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