
ABSTRACT

EFFECTS OF PSEUDOSONIC AND ELECTROACOUSTIC

WAVES ON ANTENNA RADIATION

BY

Garth Maxam

The purpose of this investigation is to study the

properties of radiating systems immersed in hot lossy

plasma media. Specifically, the dissertation considers

two problems: (1) a spherical antenna coated with a

finite layer of hot lossy plasma, and (2) a cylindrical

antenna immersed in an infinite, hot, lossy plasma.

In the first problem, a spherical antenna, covered

with a layer of plasma described by the linearized hot

electron and ion equations, is studied theoretically. It

is found that in the layer of hot plasma, a pseudosonic

wave, an electroacoustic wave, and an electromagnetic wave

can be excited by the antenna. The effects of these waves

on the radiated power and input admittance of the plasma-

coated antenna are investigated. Significant findings

are the resonances due to the pseudosonic and electro-

acoustic waves and the enhanced radiation phenomenon which

implies that under certain conditions a plasma-coated
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antenna will radiate more power than the same antenna in

free space.

In the second problem, we study theoretically and

experimentally the input impedance of a cylindrical

antenna immersed in an infinite, hot, lossy plasma. The

theoretical development is based on the linearized hot

electron equations and considers the ions to be motion-

less. An integral equation is develOped for the current

on the antenna surface. A zeroth order current distri-

bution is assumed and a zeroth order input impedance is

derived.

An eXperiment is performed to measure the input

impedance of a cylindrical antenna in a laboratory plasma

and the results are found to be in good qualitative agree-

ment with theoretical results.
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PART I

PSEUDOSONIC AND ELECTROACOUSTIC WAVES

EXCITED BY A PLASMA-COATED

SPHERICAL ANTENNA



CHAPTER I

INTRODUCTION AND BASIC EQUATIONS

The research described in this part of the disser-

tation is concerned with the radiation of a spherical

antenna through a concentric layer of a compressible plasma

surrounding the antenna. The antenna is assumed to be

separated from the plasma by a thin sheath region which

is also concentric with the sphere.

In this chapter we motivate the above problem and

give some of the historical background dealing with this

problem. Also, the linearized hydrodynamic equations are

developed and discussed.

1.1 Motivation and Background

The study of an antenna surrounded by a finite layer

of plasma is motivated by two important unsolved problems:

(1) the well—known "blackout" phenomenon which occurs when

a satellite reénters the atmosphere, and (2) the audible

noise generated by power lines when a corona forms on the

conductors of the line.



The conventional approach to solve the blackout

phenomenon is to raise the antenna frequency to a level

above the electron plasma frequency of the surrounding

plasma medium. This approach is usually hampered by the

practical limitation of available high-frequency sources.

In this dissertation it will be shown that under

certain conditions the radiation of a spherical antenna

covered by a concentric spherical layer of plasma can be

enhanced if the antenna frequency is adjusted to be much

lower than the electron plasma frequency.

The phenomenon of enhanced radiation from a small

antenna covered by a cold collisionless plasma layer was

first studied by Messian and Vandenplas [1] in 1967. Lin

[2] and Lin and Chen [3] later studied the same problem

and extended it to include the electroacoustic wave and

collisional losses in the plasma. The electroacoustic wave

consists of a longitudinal compression of the electron

fluid with the ions forming a uniform positive background

necessary for overall charge neutrality.

In this work the same problem is again studied but

this time,effects due to the finite temperature of the

ions are included. It is shown that a psuedosonic wave

may prOpagate in the plasma for antenna frequencies much

less than the electron plasma frequency of the medium.

Pseudosonic waves are longitudinal compression

waves in a plasma which are quite analogous to sound waves



in a gas. The election and ion fluids are constrained to

move very nearly in phase by the requirement that the

plasma remain nearly neutrally charged.

Pseudosonic waves were first predicted theoretically

by Tonks and Langmuir [4] in 1929 and probably first ob-

served experimentally by Revans [5] in 1933. Since 1933

pseudosonic waves have been observed by many other workers

in the area such as Barrett and Little [6] and Alexeff,

Jones, and Lonngren [7].

Cook and Buchanan [8] have shown that a significant

amount of power may be radiated in the pseudosonic wave

into an infinite plasma above a ground plane. The exci-

tation they use is an infinitesimal slot in the ground

plane.

When an antenna on a reéntry vehicle is covered by

a plasma layer and suffers blackout, a possible scheme of

overcoming this problem will be to reduce the antenna fre-

quency to a value which will excite the pseudosonic wave

in plasma. The pseudosonic wave will excite an electro-

magnetic wave at the outer surface of the plasma and, thus,

radio contact with the space vehicle may be maintained.

The second problem stated earlier, that of the audible

noise generated by power lines in the presence of a corona,

is not solved here but the mechanisms discussed may be

those involved in that problem. More needs to be done to

verify this.



The remainder of this chapter is devoted to a dis-

cussion of the basic linearized hydrodynamic equations to

be used later. Chapter II studies the pseudosonic and

the electroacoustic waves in an infinite plasma while

Chapter III applies the results of Chapter II to the

specific problem of a spherical antenna covered by a

spherical layer of compressible plasma. Chapter IV

discusses the techniques used to numerically solve the

problem in Chapter III and discusses some specific

numerical results.

1.2 Linearized Hydrodynamic Equations
 

It is necessary to specify a mathematical model to

describe the antenna and the plasma in order to determine

their interaction. The hydrodynamic model of the plasma

which is used throughout this investigation is presented

in this section. A discussion of the models used for the

spherical antenna is presented in later chapters.

Basically there are two ways of describing a plasma:

a microscopic gas—kinetic treatment using the Boltzmann

equation together with Maxwell's equations of electro-

dynamics: or a macroscopic, hydrodynamic approach using

the momentum transport equations together with Maxwell's

equations. The kinetic theory treatment is generally

much more difficult mathematically and requires serious

physical restrictions be placed on the model to make the



problem tractable. For this reason the hydrodynamic

equations together with Maxwell's equations are used

throughout this investigation. It must be noted that the

hydrodynamic equations do not describe Landau damping

which is included in the more general kinetic theory.

Thus, in following investigation,caution should be exer-

cised when the phase velocity of the waves is nearly equal

to the average thermal velocity of the plasma components

because in this range Landau damping can be significant

[9].

A plasma consists of electrons, ions, and neutral

particles. The neutral particles contribute to the

dynamics of the plasma by collisions with the charged

particles and are considered by including a neutral

particle collision frequency for the electrons and the

ions. Thus, in our investigation, the plasma consists

of two fluids, the electrons and the ions.

The basic equations may be written in such a general

way that both the problem in this part and the problem in

Part II are included as special cases. Gravitational

forces, static electrical and magnetic fields, and macro-

scopic gradients of density and temperature are not in-

cluded in this analysis. The plasma is assumed to be

macroscopically neutral and consists, on the average, of

n electrons per meter3, and of the same number of singly
O

ionized ions.



Let E and H be the time varying electrical and mag-

netic fields and let Ye and Yi represent the average fluid

velocities of the electrons and the ions. The universal

constants are the elementary charge (electron charge: -e):

the electron and ion masses me and mi; the permeability of

free space no: and the permittivity of free space so.

The MKS system of units is used throughout.

The hydrodynamic equations of motion for electrons

and ions are [10]

 

 

_8 . -——e

at Ye + (Ye V)Ye _ meIE + Ye x g]

-1 VP-yv (121)
N m e e ~e ' '

ee

—aV+(V'V)V=—e[E+VxB]
3t ~i ~i ~i m ~ ~ ~

-1 VP-yV (122)
m.N. i i ~i° ' °
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These equations include a damping term proportional to the

velocities where Ye and Yi are termed the mean electron-

neutral particle collision frequency and the mean ion-

neutral particle collision frequency. Pe and P1 are

scalar pressures for electrons and ions. The gradients

of these pressures are discussed in detail later. The

equations of continuity are



N = 0 (1.2.3)

3
%
”

m

V ° (NeYe) +

N. = 0 (1.2.4)

0
)

w
k
”

HV ' (NiYi) +

The Maxwell equations become

3H

V x E = - uo 8? (1.2.5)

S 3E

V x H = g + e(NiYi - NeYe) + 60 3? (1.2.6)

V ° H = 0

where (3S and JS are externally supplied sources and are

related by

5

%fi? + v . J5 = 0 (1.2.7)

Equations (1.2.1) through (1.2.7) are nonlinear and

hence are very difficult to solve exactly. In order to

simplify the equations, a small signal excitation is

assumed. That is, the various field quantities are

assumed to be of the form

§(§,t) = EDC(§) + EAC(§,t) (1.2.8)

Ij(§,t) = IjDChg) + {IAc(§,t) (1.2.9)

Ye(£lt) = YeO(E) + Ye(£rt) (1.2.10)



(
U



Yi(r,t) = Yio(5) + vi (r, t) (1.2.11)

Ne(r,t) = Neo(r) + ne (r, t) (1.2.12)

Ni(r,t) = Nio(r) + ni(r,t) (1.2.13)

where EDC' HDC, Yeo' Yio’ Neo and N10 are the average

electric field intensity, magnetic field intensity,

electron velocity, ion velocity, electron density and ion

density, respectively. These average values may vary with

position but not with time (i.e., they are steady state

values). The small perturbation quantities EAC' HAG,

Ye’ Yi' ne and ni are functions of both position and time.

In this investigation it is assumed that the average

electron and ion densities are equal and do not vary with

position

Neo (5) a no:_ ”10(5’ (1.2.14)

and that the average electron and ion velocities are zero

since allowing Yeo and Yio to be finite introduces no new

physical results but it does seriously complicate the

mathematics [11]. In addition in this investigation

externally applied static fields are not considered and

static electric fields set up in sheath regions are not

considered hence

BBC (5) = EDC (g) = 0. (1.2.15)



In general the ion and the electron fluids can be

considered to act as neutral particle gaseous media with

one main difference. The interactions of particles in an

ion or electron fluid are over much larger distances than

those for neutral particles.

For both fluids we will later be concerned with VP

where P is the pressure of the fluid.

If we are concerned with a static pressure (D.C.

case), the pressure is established by an isothermal pro-

cess. That is, the temperature of the gas is fixed through-

out the volume of interest, then

P = n k T (1.2.17)

where T is the fixed temperature of the fluid, n is the

number density of the fluid and k is Boltzmann's constant.

If an external force disturbs n, such that

n(r,t) = no(r) + nl(r,t) (1.2.18)

and n is a fast function of time such as a high frequency

disturbance, then the temperature of the gas is not fixed

simply due to the fact that there is not enough time for

the exchanging of energies in the gas to keep the tempera-

ture fixed. In this type of problem, the adiabatic law

should be used, that is

Pn-Y = constant (1.2.19)



10

where Y is the ratio of specific heats such that

 

c
y =E£=m+ 2 (1.2.20)

V m

where m is the degrees of freedom of the gas.

For high frequency plasma oscillations, the motion of

the electrons is usually in one direction only, so we can

assume m = 1, so that y = 3.

Now for the case of a small r.f. perturbation, as

in eqn. (1.2.18), the relationship between pressure and

election density is

Pn-Y = PonoaY = constant (1.2.20)

since P Po and n = n0 initially. Then

n'Y

P = P [-—] . (1.2.21)
0110

Remembering that the static pressure is established by an

isothermal process, we have

P = no k T (1.2.22)

Therefore



ll

VP ll

< "
U

0

r
-
—
-
\

5
k
,

H
—
d

.
4

Y Y

9—] VP + P v[—"-]
n O 0 no

Y Y
n1 III

II 0 O n

O 0

 

 

n1 Y n1 Y-l n1
= 1 + H— kTVno + ano Y 1 + H— V H-

o o 0

Y F' Y'1 _
_ n1 n1 noan n1Vno

— l + —— kTVn + an y 1 +1——
n o o n 2

o o n
_ o

y-l

n1 Y n1 n1
= kT l + —— - Y 1 + -— —— Vn

no no no 0

n1 Y-l

+ ykT l + —— an

0

or Since n1 << no

VP = kTVno + ykTan. (1.2.23)

For the case of a uniform average electron density, n ,
o

Vno = 0, (1.2.24)

so that

VP = ykTVn (1.2.25)1.
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For our case of a two fluid gas, we have

VP 3kTeVne(r) (1.2.26)

and

VPi 3kTiVni(r). (1.2.27)

Assuming an e3“)t suppressed time dependence along

with the above assumptions and neglecting products of

small perturbation quantities, the linearized hydrodynamic

equations and Maxwell's equations in a plasma media are

 

 

V x EAC = -quo §AC (1.2.28)

.. S - ..
V x EAC — g + Jweo gAC + enohzi Ye) (1.2.29)

noV ° Ye + jwne = 0 (1.2.30)

noV - Yi + jwni = 0 (1.2.31)

e 3kTe

(3w + ye)ve = - E- E - n m Vne (1.2.32)

e o e

e 3kTi

(3w + Yi)Yi = 57 E - n m. Vni (1.2.33)

1 o 1

Equations (1.2.28) thru (1.2.33) are a complete set of

equations which along with the source continuity equation,

equation (l.2.7),completely describe the fields in a plasma

medium.
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In a study of plasma media, certain characteristic

parameters appear frequently. It is convenient to make

the following symbolic definitions. we, the electron

plasma frequency or simply the electron frequency is

 

 

defined by

2 noe2
me = m 6 (1.2.34)

e 0

while mi, the ion plasma frequency is

2
m n e

w.2=—-e-w2= ° . (1.2.35)
1 m. e m.e

1 1 0

Another pair of parameters, the thermal velocities, of the

electrons Ve and of the ions Vi are defined by

 

 

2 3kTe

Ve = m (1.2.36)

e

2 3kTi

V. = . (1.2.37)
1 mi

The definitions (1.2.36) and (1.2.37) are debatable, but

other commonly used definitions lead to the same order of

magnitude result as long as the linearized equations are

used [11]. Therefore, these definitions are used in this

investigation. Characteristic lengths in a plasma are

often measured in terms of the Debye lengths, which for

the electrons is
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D)e = -———5 (1.2.38)

and for the ions is

2 eokTi

(AD)i = -;-;§ . (1.2.39)

0

Physically the Debye length is range of effectiveness of

any electrostatic fields due either to a surface at some

nonzero potential or to a charge within a plasma.

1.3 Dielectric Sheath

When a conducting solid is placed in an otherwise

homogeneous plasma medium, a transition region between the

main body of the plasma and the solid is formed. If the

potential of the object is allowed to float, the object

will acquire a negative potential and the electrical

neutrality of the plasma will be disturbed in the vicinity

of the object. Due to the high thermal velocity of the

electrons with respect to the ions, the object will become

negatively charged so that at equilibrium,equa1 numbers

of electrons and ions will hit the object per unit time.

The potential distribution in the vicinity of the object

causes a perturbation of the number densities of the

electrons and the ions. The electron density in this

transition region is less than the ion density and,thus,

the transition region for such a situation is called an
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ion sheath region. From an electrical viewpoint, this

sheath behaves as a vacuum sheath, or simply as a

dielectric sheath.

In this investigation, the sheath region will be

considered as an electron depletion layer, or a vacuum

adjacent to the antenna. It is assumed that the outer

boundary of the sheath is rigid to the elections and ions

in the plasma and, thus, it reflects all particles that

come into contact with it. Also, the sheath layer is

taken to be a few Debye lengths in thickness [12].



CHAPTER II

LONGITUDINAL WAVES IN A HOT PLASMA

In this chapter we devote our attention to two

purely longitudinal waves that are excited in an infinite

hot lossy plasma by a source current gs and source charge

density 98. The plasma is considered to be a weakly

ionized gas so that linearized hydrodynamic equations

developed in Chapter I may be used.

2.1 General Relations

The source terms are related by the continuity

equation

S S
v - .3 + jwp = 0 (2.1.1)

From Chapter I the linearized equations of motion for the

electrons are

jwne + noV ° v = 0 (2.1.2)

° — _ ii - ___(3w + Ye)Ye - m E Vn (2.1.3)

16
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and the linearized equations of motion for the ions are

jwni + noV - Y1 = 0 (2.1.4)

e Vi2
(jw + Y1)Yi = + a; E - 1i: Vni (2.1.5)

The fields E and H in the plasma satisfy Maxwell's

equations which from Chapter I are

V x E = -jwuoH (2.1.6)

_ s _ .
V x H - g + eno(vi Ye) + jweoE (2.1.7)

2.2 Differential Equations for the Electron

and Ion Perturbation Densities

Rearranging equations (2.1.2) and (2.1.4), we have

. __...J'£V Ye n ne (2.2.1)

o

. =-i£V vi no ni. (2.2.2)

Taking the divergence of equation (2.1.7) yields

- o S o — 0 ° 0
0 - V g + eno(V Yi V Ye) + jweoV E (2.2.3)

or using equations (2.2.1) and (2.2.2) and rearranging,

V . g = _i. [? . gs - jwe(ni - neg]. (2.2.4)

(DE

0
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Taking the divergences of equations (2.1.3) and (2.1.5)

gives

e Ve2 2

~ e o

and

e V12 2

(jw + Yi)V ' Vi = I-n— V ' 1‘1: - -n— V ni. (2.2.6)

1 0

Putting equations (2.2.1) and (2.2.4) into equation (2.2.5)

and multiplying through by - nO/Ve2 and rearranging yields

 

 

2 ]Y m 2
2 m we e e

Mug-:1“?- T]ne+;_2ni
e e

we2 s
=-j 2 v-J (2.2.7)

Ve em ~

 

where we = /Hoe2/meeo is the electron plasma frequency.

Using the equation of continuity for the sources and

setting

2 w 2 y
2 _ me e . e

e

we get

2 2 wez weZ Bi

V ne 4' Be ne 4’ F ni = " F e (2.2.9)
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-By a similar procedure starting with equations (2.2.2),

(2.2.4), and (2.2.6) we obtain

 

Vn. + 5. n. +—n =——L (2.2.10)
1 1 1 2 e e

V. V.

1 i

where

2 2 y.

2 _ w w . 1

V. w.

1 1

and mi =/£oe2/mi80 is the ion plasma frequency.

Equations (2.2.9) and (2.2.10) are two coupled

differential equations for the electron and ion pertur-

bation densities.

2.3 Uncoupling_the Differential Equations

for nn and ni

Multiplying equation (2.2.9) by Ve/we and equation

(2.2.10) by Vi/wi, we obtain

 

   

 

V V w m V. m S

V2 $2 ne + 8e2 $2 ne + VeV Ki ni = V2 %;
e e e 1 i e

(2.3.1)

and

V V w m. V m S

V2 Ki n1 + 8i2 Hi ni + VeV1 $2 ne = Vi E— '
i i e i e 1. e

  

(2.3.2)
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Equations (2.3.1) and (2.3.2) can be written compactly as

the matrix equation

  

 

 

  

2 S

v§+§§=%§ (2.3.3)

where

R’e ‘1

we

n =

1 V-

.i ni

_“.’i 1

B 2 wewl

9 vv.
e 1

g:

wew1 B 2

Vevi i

__ _J

F u) “

_ .2

Ve

S =

“’1
‘7.- (2.3.4)

L. 1J  

In Appendix A it is shown that equations (2.3.1) and

(2.3.2) can be uncoupled resulting in two differential

equations which describe two new waves n1, an ion wave

and an electron wave denoted by n2. The differential

equations that describe nl and n2 are
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Vzn + k 2 - s 95 (2 3 5)
1 1 n1 ' 1. e ° °

Vzn + k 2n — s 3§ (2 3 6)
2 2 2 - 2 ea ' °

where

2 w 2w.2

2 _ 1 2 2 2 _ 2 e 1

e 1

  

and

 

2w.2

_ 1 2 2 2 2 we 1

e i

and S1 and 82 are defined in Appendix A. nl and n2 are

linear combinations of ne and ni

(.0

- .2
ne — Ve (Tllnl + lenz) (2.3.9)

”1
hi = V_. (T21n1 + T22n2) (2.3.10)

1

where T ,and T11 are given in Appendix A.
22' T12' T21

Equations (2.3.5) thru (2.3.10) provide a complete solution

for the electron perturbation density and the ion pertur-

bation density in an infinite homogeneous plasma.

Figure 2.1 is a plot of the coefficients relating

2 2
ne and n1 to 111 and n2 and of S1 and 52 versus we /w .
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Figure 2.1.
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Plot of various parameters obtained in

uncoupling Equations (2.3.1) and (2.3.2). The plasma (oxygen

atoms) is assumed to be hot (Ve/C - 0.01, Te 8 T1) and lossless

(Ye - Y1 = 0).
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2.4 Physical Interpretation

of nl and n2

In order to discuss n1 and n2

necessary to specialize equations (2.1.2) thru (2.1.5) to

in more detail it is

the specific case of a monochromatic plane wave which pro-

pagates in the positive 2 direction in a cartesian coordi-

nate system. The variables describing the wave are ex-

pressed in the form:

ej(wt-kz)
A = A0 (2.4.1)

where A0 is, in general, a complex coefficient.

We use the following linear Operator:

V = _ j k (2.4.2)

where k is the propagation vector in the z direction.

Equations (2.1.2) and (2.1.4) can be written as

n = nokvez/w (2.4.3)

n. = nokviz/w (2.4.4)

and the 2 components of equations (2.1.3) and (2.1.5) are

2

. e . Ve
(3w + ye)vez = - E— E2 + 3 1r— kne (2.4.5)

e o

e Vi2
(jw + yi)viz = ET Ez + 3 7T_ kni. (2.4.6)

1 O
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Specializing equations (2.4.5) and (2.4.6) to a collision—

 

 

less plasma (Ye = Yi = 0) and solV1ng for vez and viz

yields

. e mV = _ J __ E (2.4.7)

ez me k2V 2 _ w2 z

e

. e w
v. = J — E o

(2.4.8)

12 mi kzviz _ w2 z

The electron and ion average velocities are seen to

be 90° out of phase with the electric field. In addition

the simple theory predicts singularities at k = w/Ve and

k = w/Vi due to the use of the linearized equations.

Two other useful quantities are the phase velocities

of nl and n2

_. U)

Vphl — E: (2.4.9)

: 00
Vph2 — E; (2.4.10)

for a collisionless plasma. Figure 2.2 shows a plot of

V and V versus w 2/w2 for a weakly ionized collision-
phl ph2 e

less hydrogen gas at equilibrium (Te = Ti)“ A study of

Figure 2.2 indicates that n1 propagates at all frequencies

but that n2 propagates only when w > me. It must be noted

that this theory does not include collisionless or Landau
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wi = w we /w

Figure 2.2. Phase velocity of n1 and n2 in a hot lossless

(Ve/C 3 0.01, Te = Ti, e = Yi ' 0.0) plasma as a function Of the

plasma frequency squared over the source frequency squared. The

plasma is assumed to consist of oxygen atoms.
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damping wh1ch damps nl when Vphl : V1 and n2 when

Vph2 = Ve‘

Some physical insight into the nature of n and n
l 2

can be obtained by studying these waves in the high and

low frequency limits. Using the parameter

 

2 2

viz _ me k Ve - w

V_— _ - ET 2 2 45 (2.4.11)

and choosing freely from limit forms of the parameters kl,

k2, T11, T12, T21,and T22 calculated 1n Append1x A, th1s

will now be done.

(a) Electron Waves, 112

In the high frequency limit (w2:>we2 >> wiz)

w we2 k

k2 = V_ l - —-2— (2.4.12)

e w

and

V

n .. - J”: n (2 4 13)
2 ” w e ' '

e

v. m w 2

and —13 = - £- -9— . (2.4.14)
v m. 2
e2 1 w

Result (2.4.14) shows that in the electron wave in the high

frequency limit the ions are essentially immobile. This

agrees with equation (2.4.13) which says that in the high

frequency limit, the electron wave n2 consists only of
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electron oscillations. Equation (2.4.14) also shows that

in the electron wave, the ions and electrons oscillate out

of phase. From equation (2.4.12) it can be seen that Vph ,

2

 

2 2

is always greater than the thermal velocity of the

electrons and that in the very high frequency limit

2
(w >> wez) the phase velocity of n2 tends to Ve'

In the low frequency limit (in fact for all w < we)

k2 is purely imaginary and the electron wave does not

propagate.

(b) Ion Waves, 111

For the ion wave, the phase velocity is always in

the range

Vi < Vphl < VS (2.4.16)

where VS is the low frequency limit of the phase velocity

of the ion wave:

k T + T.
e= 1

VS mi . (2.4.17)
 

On the other hand, the electron temperature is, in

most cases, equal to or greater than the ion temperature.

Hence VS is much smaller than Ve' giving
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V << Ve. (2.4.18)

phl

In the high frequency limit

___, .. (2.4.19)

  

indicating the electron velocity is much smaller than the

ion velocity. In the high frequency limit n1 consists

mainly of the motion of ions justifying calling n1 an ion

wave.

In the low frequency limit

 

 

 

 

2

Ve

m
2 e 2

m mvi+K% 1
12 2 _ _g 1

vez mi V.2

1

m
2 e 2

Vi+I-II.-Ve-l

1

m

2 2 e 2

m Ve - Vi - ET ve

;__e 1

mi V 2 _ V 2 _ TE'V 2

i i m. e
1

v.2 m

:1-1-3

2 m.

Ve 1

I
I [
.
4

(2.4.20)
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and

k1 s m/[vi2 + 1%- vezr (2.4.21)

and

n1 : igfine +¥ni]. (2.4.22)

/2 e 1

 

for an equilibrium plasma (Te = Ti)’

From the above equations we can conclude that in the

low frequency limit the ion waves consist of electrons and

ions moving in phase with approximately equal velocities

and the medium remains practically neutral. However, this

is rigorously true only in limit of w-—+ 0. For finite

values of w there exists a slight deviation from neutral-

ity; the ion oscillations are slightly larger than those

of the electrons. Even though this deviation is weak, an

electric field resulting from the space charge produces a

coupling between the aggregate motion of the elections

and ions.

Hereafter, we shall refer to the electron wave in

the high frequency range as the electroacoustic wave and

the ion wave will be called the pseudosonic wave in the

low frequency range. These are the regions of interest

for the two waves and the prOperties discussed above will

be used later in the solution of a specific problem.



CHAPTER III

RADIATION AND INPUT ADMITTANCE OF A SPHERICAL

ANTENNA SURROUNDED BY A FINITE LAYER

OF HOT, LOSSY PLASMA

In this chapter the radiation and input admittance

of a spherical antenna surrounded by a finite layer of a

hot lossy plasma is studied. In addition to the electro-

magnetic wave, two longitudinal waves, an electroacoustic

wave and a pseudosonic wave, may prOpagate in a hot plasma.

These are included in the following analysis. In addition,

a thin dielectric sheath is assumed to surround the spheri-

cal antenna and separates it from the plasma layer.

3.1 Statement of the Problem

and Method of Analysis

 

The geometrical configuration is shown in Figure 3.1

using a spherical coordinate system (r, 0, 0). A Spherical

antenna of radius a is centered at the origin and is covered

by a thin dielectric sheath of outer radius b. The permit-

tivity of the sheath is ed and the permeability is taken

as the free space permeability, no. The sheath is covered

by spherical layer of hot lossy plasma which has an outer

30
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(00,20)

Figure 3.1. A spherical antenna covered by

a hot, lossy plasma.
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radius of C. The plasma is assumed to be a weakly ionized

gas so that the linearized hydrodynamic equations apply.

It can be regarded as consisting of two fluids, the ions

and the electrons with the neutral particles being taken

into account by assuming finite collision frequencies be-

tween the ions and the neutral particles and between the

electrons and the neutral particles.

As an idealized approximation the sheath is con-

sidered to be a lossless coating which is perfectly rigid

to the inward radial flow of the ions and the electrons.

It is also necessary to impose a boundary condition on the

outward flow of the ions and electrons at the outer sur-

face of the plasma layer. To make the problem tractable

it is assumed that the outer boundary of the plasma is

rigid to the outward radial flow of ions and electrons.

Without these assumptions a solution to this problem would

be very difficult.

The spherical antenna is perfectly conducting except

for a narrow equatorial gap between n/2 - 0 j 0 : n/Z + 01.

Across the gap the antenna is driven by a constant voltage

generator with a voltage, V, and an angular frequency, w.

The total space excluding the antenna is divided into

three regions. Region I is the dielectric coating,

Region II is the hot, lossy plasma layer and Region III

is an infinite free space region.



W}
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We aim to solve for the fields in all three regions

and the ion and electron densities in Region II. The

solutions contain nine arbitrary constants. These con-

stants can be evaluated by matching the tangential electric

field in the dielectric region to that on the antenna, by

matching the tangential electric and magnetic fields across

the boundaries at r = b and r = c,and by requiring that the

radial velocities of the ions and the electrons go to zero

at r = b and r = c as discussed earlier. This procedure

gives us a complete solution to our rather idealized

problem.

In this study rationalized MKS units are used.

Rotational symmetry and an infinitesimal driving gap are

assumed. Furthermore, exp(jwt) time dependence is assumed

for the generator and all the fields.

3.2 Region I: Dielectric

Sheath Region

The basic equations which govern Region I (dielectric

layer, a i r i b) are Maxwell's equations

V x E (g) - jwuo 21(5) (3.2.1)

V x H (r) = jwed E1(r) (3.2.2)

where E1 and H are the electric and magnetic fields, no

is the permeability of free space, and Ed is the permit-

tivity of the dielectric medium. The suppressed time

dependence is exp(jwt).
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From the symmetry of the antenna it can be seen that

there is no variation in the 0 direction and that the mag-

netic field has only a 0 component. Thus equations (3.2.1)

and (3.2.2) can easily be reduced to three scalar equations

 

such as

BE

3 1r _ _ .
§;(rEle) - 39 - jwuorHl¢ (3.2.3)

-—1.——- -3— (sineH ) = jwe E (3 2 4)
r s1n0 30 10 d 1r ' '

-JL (rH ) = jwe rE (3 2 5)
3r 1¢ d 16' ° '

Differentiating equations (3.2.4) and (3.2.5) and substi-

tuting them into equation (3.2.3) leads to a partial differ-

ential equation

 

l 2 l 2 . 2 _
__7 (rHl¢) + :7 §8[sin9 55(s1n0 rH1¢I] + 8d (rHl¢) — 0

(3.2.6)

where B 2 = wzu e . To solve equation (3.2.6), we use the
d o d

method of the separation of variables. Since 81¢ is inde—

pendent of 0 we can assume

rH = R(r)®(8) (3.2.7)
1¢
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where R is a function of r alone and ®is a function of

0 only. The substitution of equation (3.2.7) into equation

(3.2.6) leads to

2 2

r d R 2 2 l. d 1 d .

R dr2 ® d0[:51n0 (19 :l

(3.2.8)

where n(n+1) is the separation constant. Equation (3.2.8)

generates two ordinary differential equations

d l d .

EVE—fr)? ‘5(®Sln9):l + n(n+1) @= 0 (3-2-9)

2 2

€r-g—g + der2 - n(n+1) = 0. (3.2-10)

dr

Let us consider equation (3.2.9) first. Making the

substitutions,

u = cose , V1 - u2 = sine , é%-= - ll - u é%,

equation (3.2.9) can be reduced to

2

(l-u2)§-—@-2ug-@+ n(n+1) -—-—L—®=O
2 du 2

du l - u

(3.2.11)

Equation (3.2.11) is a special case of the associated

Legendre's equation,
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d2 d m2
(1-x ) __X.- 2x _X.+ n(n+1) _ y = o

2 dx 2

dx 1 - x

(3.2.12)

which has a solution, y = an(x),which is called an associ-

ated Legendre function of the first kind of order n and

degree m. h

In order to have finite solutions on the interval

-1 :Ix 3’1 the parameter n must be zero or a positive

integer and m must take on only values -n, -(n-l),...,0,

...,n-1,n, i.e., n :_|m|.

Thus a solution to equation (3.2.11) is

®= Pnl (u) = Pnl(cos9) (3.2.13)

where n must be a positive integer.

Note that only one solution for this second order

differential equation (3.2.11) has been considered. The

other solution diverges on the 0 = 0 and 0 = 180° axes

and so it must be excluded from the solution.

Some other properties of the associated and ordinary

Legendre functions that will be useful to us in later

developments and in the numerical calculations are tabu-

lated in Appendix B.

We must now solve the other differential equation,

equation (3.2.10). With the substitution

R = R ‘3 (3.2.14)
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equation (3.2.10) becomes

d R dR

1 1 1 2 (M8) _

Equation (3.2.15) is a form of Bessel's equation which has

a solution

(2)

R n+3
(Bar) + Bn H(l)(8dr) (3.2.16)

= An H n+81

. (1)
where An and Bn are arb1trary constants and Hn+8(8dr)

(2)
and Hn+k(8dr) are Hankel functions of the first and

second kinds with order n+8, which represent radially

inward and outward traveling waves respectively.

Combining equations (3.2.7), (3.2.13), (3.2.14» and

(3.2.16) we have

1 (2) (l)
1 Pn(cose)[Aan+k(Bdr) + Ban+%(Bdr{].

(3.2.17)

1

H = —-

l¢ /? n "
P
1
8

The r and 0 components of the electric field can now be

found using equations (3.2.4) and (3.2.5).

Substituting equation (3.2.17) into equation (3.2.4)

and using the identities (B-7) and (B-8) from Appendix B

yields
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co

_ ' (2)
E1r _ __l_§7§ £1 n(n+l)Pn(cose)E\n Hn+8(8dr)

wedr n-

+ B 11mm n] (3 2 18)
n n+8 d ' ‘ °

To derive E19, we need two differentiation formulas

for Hankel functions

5 H(1) _, n+k (l) (1)

dx Mn+g(X) - - x Hn+k(x) + Hn-3‘H’ (3.2.19)

§LHHAiL‘X’ = - an Hfif3<x) + H‘2;(x) (3.2.20)

The substitution of equation (3.2.17) into equation (3.2.6)

and using equations (3.2.19) and (3.2.20) leads to

' l (2) _ (2)
E16 = - ———1§7§- E1 Pn(cose) An[§ Hn+3(8dr) 8dr Hn-H(Bdril

(1) r n-

Ed

+ Bn[§ Héi;(8dr) _ 8dr H(1;(Bdr{] . (3-2-21)

The solutions for the fields in Region I can thus

be summarized as follows:

Hn+1:

"
P
1
8

1 Pi(cos€)[§n H(2)(Bdr) + Bn H(1;(Bdr{]

i
h
l
“

10 _
n

(3.2.22)



39

co

._ ' (2)
Elr — ——1V2- El n(n+l)Pn(COSG)E\nHn+k(8dr)

r n—(08d

(1)
+ Bn Hn+15(8dr):] (3.2.23)

' °° (2) _ (2)
E16 - —J-37§ :1 Pn(cose){n Elfin+;§(8dr) 8dr Hn_;§(8dr)]

wedr n

(1) (1)
+ Bn[§ Hn+%(8dr) - 8dr Hn_%(8dnj} (3.2.24)

le = H16 = E1¢ = 0 (3.2.25)

3.3 Region II: Plasma Layer
 

In Region II (plasma layer, by: r 3.9)! the plasma

medium is considered to be a two component, ion-electron

fluid. That is,both the ions and the electrons are allowed

to be mobile. The plasma is also assumed to be a weakly

ionized gas having average number densities of no elec-

trons and n0 singularly ionized atoms which are assumed

to be constant in the plasma layer. The deviation of the

electron density from the mean density, no, is denoted

by ne and the average induced velocity of the electrons is

denoted by Ye' The collision frequency of the electrons

with the neutral particles is denoted by Ye“ Similiarly

defined quantities for the ions are given by n., v. and 71'
1 ~1

Electron-electron, electron-ion and ion-ion collisions are
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assumed to be negligible in a weakly ionized gas and thus

they are ignored.

In its unperturbed state the plasma is assumed to be_

homogeneous and neutrally charged and the perturbation of

the plasma is assumed to be sufficiently small, i.e.,

ne << no and ni << no, so that the linearized hydrodynamic

equations discussed in Chapter I apply. No static electric

or magnetic fields are present.

For a harmonic time dependence of exp(jwt) the basic

equations in the plasma layer are Maxwell's equations

V x E (f) = - jwuo g (5) (3.3.1)

V x H (5) = - enolye(§) - 31(5)] + jweo §2(§) (3.3.2)

7 - g (5) = - g: [ne(r) - ni(r)] (3.3.3)

V ° H2(r) = 0 (3.3.4)

and the linearized continuity and force equations for

electrons

no[V - ve(r)] + jwne(r) = 0 (3.3.5)

e Ve2

(Ye + 3w) ye(§) = - fi;-§2(g) - 7:; Vne(§) (3.3.6)

and the linearized continuity and force equations for

the ions
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\

nOIV ° Yi(r)] + jwni(r) = 0 (3.3.7)

v.2

”1 + jw)Yi(§) = m—e; 132(5) - 31i- V.ni(§) (3.3.8)
1 0

where -e and me are the electronic charge and mass of the

electrons, e and mi are the electronic charge and mass of

the ions, “0 and so are the permeability and permittivity

of free space, and Ve and Vi are the thermal velocities

of the electrons and the ions,respectively.

It should be noted that the last terms on the right

hand side of equations (3.3.6) and (3.3.8) represent the

force due to a pressure gradient and the definitions given

for Ve and Vi in Chapter I are valid under the assumption

of an adiabatic pressure variation and a one-dimensional

compression.

In our formulation there are fourteen scalar un—

knowns, E2, H2, n , n., v , and vi. We will determine

e l ~e

H2, he, and ni f1rst and then calculate E2, Ye' and Yi'

It has been shown in Chapter II that ne and ni are

solutions to a pair of coupled differential equations

2 2 weZ we2 S

Vn +3 n+——n.=-—E— (3.3.9)
e e e V 2 1 'V e

e e

2 2 wiZ wi2 S

V n. + 8. n. + ——— n = ——— E— (3.3.10)

1 1 1 V 2 e V 2 (a
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where

2 w 2 y
2 _ w _ e _ . e

Be - -—§'l -1r 3 —5] (3.3.11)

V w
e

w.2 y.

2 _ (32 1 - —£— - j —i (3.3.12)
B. _— 2 w

1 V 2 w

i

S
and p is the imposed source charge density. In Appendix A

equations (3.3.9) and (3.3.10) are algebraically uncoupled

to obtain solutions for ne and ni

 

 

 

 

w

= .2ne Ve(T11nl + T12n2) (3.3.13)

“1
hi = T(T21n1 + T22n2) (3.3.14)

where

T11 = l -_ (3.3.15)

V 2V 2

l e i 2

1 + 4 2 ZIBe2 B 2 A ]
w w. 1 o

e 1

2 2

lVV Be - Bi _Ao

T - — _

21 2 w w.

2 2

V V. 2

1+1 3 lIBz-BZ-A]
4 w 2w 2 e 1 o

e i

(3.3.16)
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T = 1 (3.3.17)
12

v 2v 2 2
l e i 2 2

1 +3—2—‘2lee ‘ 31 “‘01
w w.

e 1.

2 2

_ l Vev1 Be - 8i + Ao

T22 ' 2 w w
e 1 J// v 2V 2

l e 1 2 2 2

l + [B - 8 + A l
4 we2w12 e 1 0

(3.3.18)

and

_ 2 _ 2 2 w 2w.2

Ao ‘ //)Be Bi ) + 4 -53—$§- (3.3.19)

v v
e 1

and n1 and n2 are solutions to the differential equations

2 2 Bi
V n1 + kl nl = S1 e (3.3.20)

v2 + k 2n = 5 BE (3 3 21)
n2 2 2 2 e ° °

where

2 _ 1 2 2
kl — 2(Be + Bi + A0) (3.3.22)

2 _ 1 2 2 _

wi -we

81 = V; T12 + ‘7'; T22 (3.3.24)
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(1) (A)

e 1

V— T21 + ‘T- T11] . (3.3.25)

8 1

 

In a sourceless region like Region II under consideration,

equations (3.3.20) and (3.3.21) become

+ k 2n = 0 (3.3.26)
2

V n1 1 1

V n + k n = 0 (3.3.27)

Both equations (3.3.26) and (3.3.27) are of the

form

Vzn + kzn = 0 (3.3.23)

which will now be solved by the method of the separation

of variables.

Due to the rotational symmetry, (no ¢ dependence),

the Laplacian of the scalar field n can be expressed in

spherical coordinates as

2 1. a[ 2 an] 1 a [ a ]

r2 Br I r2 sine 36 6

Since

a 2 an _ 32

51,-[r 'a—r-J - r 327(1'11) (3.3.30)

and using equation (3.3.29), equation (3.3.28) can be

reduced to a partial differential equation



an;

5..
”
T
N
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3 l 3 . a 2
jun) + —— [sine —(rn)] + k (rn) = 0

8r r2 sine 55 39

(3.3.31)

Since n is independent of o, we can assume

rn = R(r)®(e) (3.3.32)

where R is a function r alone and®is a function of. 6

only. The substitution of equation (3.3.32) into equation

(3.3.31) leads to

2 d2

dr

5
!
!

E.

R N

2 _ _ 1 l d . __

+ k r - @5135 “(Sine % — 2(2'1'1) (3.3.33)

where 2 is an integer and £(£+l) is the separation con-

stant. Equation (3.3.33) generates two ordinary differ-

ential equations,

1 d . _
m a—e-(s1n6 3% + £(£+1)®— 0 (303-34)

and

2 dzR 2 2
r ——5 + k r R - £(£+l) R = 0. (3.3.35)

dr

Let us consider equation (3.3.34) first. Making

the substitutions

u = C089: 1 - “2 = Sine, 3% = ' 1 ‘ “2 fi§ r



eq

EqL

Leg

sol

whe)

one

has

axes

cal

as e<

where

equat

ThEIEfI
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equation (3.3.34) and be reduced to

(l - uz) ig- 2u §+ £(£+l) @= 0. (3.3.36)

u

Equation (3.3.36) is the standard form of the ordinary

Legendre's equation. This equation has the standard

solution

®= P£(u) = P£(cos6) (3.3.37)

where 2 is zero or a positive integer. Note that only

one solution for this second-order differential equation

has been considered. The other solution diverges on the

axes and so it can be excluded from the solution on physi-

cal grounds.

Since equation (3.3.35) is in exactly the same form

as equation (3.2.10), its solution can be written as

_ (2) (1)
R — /E[%£H£+a(kr) + D£H£+B(kr{] (3.3.38)

where C2 and Dz are arbitrary constants. Combining

equations (3.3.32), (3.3.37) and (3.3.38), we have

1 °° (2) (1)
n = 7% 2,-5.0 P£(cose) [EILHRA-lsmr) + D£H£+%(kr):|.

(3.3.39)

Therefore nl and n2 can be written as follows:
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1 °° l (2) (1)
:11 = —; 2:0 P£(cose) C1£H£+k(klr) + D12H£+k(klr{]

(3.3.40)

_ _1_ °° (2) (1)

n2 ‘ ,—r 2:0 P2(°°39) Ezznua‘kzr’ + Dzznumkzri

(3.3.41)

nl and n2 are the perturbations due to the pseudosonic and

the electroacoustic waves respectively. Substitution of

equations (3.3.40) and (3.3.41) into equations (3.3.13)

and (3.3.14) yields explicit representations of ne and ni.

We must now determine the magnetic field g in

Region II. Taking the curl of equations (3.3.2), (3.3.6)

and (3.3.8), we obtain

 

 

V x V x g2 = - eno(V x Ye -V x vi) + jweoV x g

(3.3.42)

va=- e . VxE (3343)
~e m (y + 3w) ~2 ' '

e e

and

va.= 3. VxE. (3.3.44)
~1 mi(Yi + 3w) ~2

The substitution of equations (3.3.43), (3.3.44), and

(3.3.1) into equation (3.3.42) giVes
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  V x V x H = wzu e l + . wez T7 + . wiz . H .

~2 0 o Jw(ve + 3w) levi + 3w) ~2

(3.3.45)

Using the vector identity of

v x v x g2 = V(V - 52) - Vzgz (3.3.46)

and equation (3.3.4), equation (3.3.45) can be reduced

to a homogeneous wave equation

2 2 _
(V + ke )gz - 0 (3.3.47)

where ke is the complex propagation constant of the

electromagnetic wave in a two fluid plasma given by

2 _ 2
ke _ w “05 (3.3.48)

where E is the equivalent complex permittivity defined by

  

 

 

wez (1)12

g = e l + . . + . .

o Jw(Ye + 3w) levi + 35)

T

_ e 1 _ weZ _ wiz _ J u’ezYe

o w2 + y i w2 + y 2 w(w2 + yez)

u) . 27 .

+ 1 1 2 . (3.3.49) 

w(w2 + y. )
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From the symmetry of the antenna it can be seen that

there is no variation in the ¢ direction, i.e., 3/3¢ = 0

and the magnetic field has only a ¢ component. Thus the

Laplacian of the vector magnetic field in spherical coordi-

nates takes the form

2 _ A 2 2

v 52 9(VVH2¢ ;§ csc 6H2¢)

3H ‘ 3H
1 8 2 29 l 3 . 2

= ¢ -7-—— r + -— Sine

r J 

where 3 is the unit vector in the ¢ direction. Using
~

equations (3.3.30), (3.3.50) and the following identity

 

3H
1 __a_ . 2g; _ 2 _ _g_ 1 3_ .

sine 36(51n9 as J C“ 6H24> " aeE-Tne' e (“wring

2

3 H ER

_ -——%i + cot6 a: - csczeH2 (3.3-51)

39 ¢

in equation (3.3.47) leads to a partial differential

equation,

32 (rH ) + 1 JL--+l—-JL sinerH +-k 2(rH ) = 0

8r: 2¢ r2 39 s1n6 36 2¢ e 2¢

(3.3.52)
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which is in exactly the same form as equation (3.2.6).

Thus the solution to equation (3.3.52) can be written as

__1_ °° 1 (2)
H2¢(r,6) - /§ nil Pn(cos6)[:En Hn+8(ker)

+ Fn Hriizi(ker):l (3.3.53)

where En and Fn are arbitrary constants.

g2, ne,and ni have been determined explicitly and

are expressed in equations (3.3.13), (3.3.14), (3.3.40),

(3.3.41), and (3.3.53). We now must express g2, Ye' and

vi in terms of these known quantities.
~

From equations (3.3.6) and (3.3.8) we easily get

  

  

2

9 V9 v (3 3 54)V = - r E - I n o o

~e me(ye+3w) ~2 no(ye+jw) e

e Vi2

V. = r E - T VII-o (303.55)

~1 miTYi+Jw) ~2 no(yi+jw) 1

The substitution of equations (3.3.54) and (3.3.55) into

equation (3.3.2) leads to

2 2
1 e V e V.

e 1
= +—— - + .

E2 Jwfi Vx§2 jw£(ye+jw) vne 3w£(yi+jw) vn1

(3.3.56)



where E is given in equation

51

(3.3.49). The substitution

of equation (3.3.56) into equations (3.3.54) and (3.3.55)

 

 

 

 

 

 

 

 

 

 

 

yields

2 2

v = - e . .1 VxH - - eoVe . 1 - mi
-e me(ye+3w) ng ~2 Eno(ye+3w) w2+YiZ

. 2 . 2 2

JYiwi v Jwe e°vi v (3 3 57)- n + . u n. o o

w(w2+YiZ) e no£w(yi+3w)(ye+3w) 1

2 2

v = e —l—»VxH - eoVi 1 - we
-1 mi(yi+3w)3w§ ~2 Eno(yi+3w) wZ+YeZ

. 2 .1 . 2 2

Jyewe v Jwi €°Ve v (3 3 58)- n. + . . n . . .
w<w2+ye2ij 1 nogw(yi+3w)(ye+jw) e

 

Under rotational symmetry the two vector differential

operators in spherical

_ A l

V x g2 — E r sine

and

_ A an A l 3
Vn — 5 3r + g r

coordinates can be expressed as

3

8r

.3.
36(sine H ) (3.3.59)

1
C
D
) 1

2¢) E' (r32¢

“ (3.3.60)

A A I I O I

where r and 6 are unit vectors in the r and 6 directions

respectively.

we obtain

Combining equations (3.3.56) to (3.3.60),
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. 2

1 1 a 3 9 Va ane
 

 

 

  

  

 

 

 

  

 

E:2r g J'wE; r sine 5—6—(Slne HM) + w; (yea-f») 3r

e Vi2 ani

_ 3 6377;1367'337 (3.3.61)

2

_ 1 1 a . 3 Va 1 ane
E - - v—— - ——(rH ) + 3 . — ———
26 JwE r 8r 2¢ w§(ye+jw) r 36

e v.2 3n.

— j 1 l ——1 (3 3 62)
w§(yi+jw) r 66 ‘ °

_ _ e l 1 .§_ .

ver - me(ye+jw) ng r sine 36(31n6 H2¢)

_ m

2 2 2
_ ‘60 Ve . 1 _ wi - j yiwi ane

Eno(ye+3w) w2+Y12 w(w2+yiz) 3r

wezeoVi2 ani

+ j T . (3.3.63)
nOEw (Yi-i-jm (Ye-i-jw) 3r

.. e ,_1 1 2.
ve6 _ me(ye+jw) JwE r 3r(rH2¢)

2 2 y w 2

_ 86 Va 1 _ “i _ j i i 1 ane

Eho(ye+3w) w2+Yiz w(w2+Yi2) r 36

2
2 V.

w e 1 an.

3 ° 1 1 (3.3.64)
+ j noEw(yi+jw)(Ye+jw) E 36
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_ e l 1 3L .

vir - mi(yi+jw) SwE r sine 86mme H2¢)

_ _

2 2 2

_ E:o Vi 1 _ we _ j we Ye ani

Eno(yi+jw) wi-I-yei w(w§+ye2) 3r

2 2

+ j H ::(€°+Y:)T +‘w) 2:? (3'3'65)0 Y1 J Ye J

__ e 111
via _ mi(yi+jw) wa r 3r‘rH2¢)

r' "T

E V 2 w 2 w 2
_ o i l _ e _ j e Ye 1 i

Eno(yi+3w) w2+Ye2 w(w2+Ye2) r 36

2 2

w. s V 3n

+ j 1 ° 8 1'7F2’° (3.3.66) 

no€w(yi+jw)(Ye+jw)

Using equations (3.3.13), (3.3.14), (3.3.40), and (3.3.41)

to express ne and ni explicitly, we obtain

e l m H(2)
n = -—--—- Z P (cose) T C (k1r)
e ve /E n=0 11 In Hn+3,

H(1) (2)

+ D1n Wn+s(k‘1 T12 C2n Hn+k(k21’

H(1)
+ D2n Hn+k(k2r) (3.3.67)
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w on

_ 1 .1 H(2)

“i ‘ 'T'7g n20 Pn(°°3°){%21[%1n“n+a(klr’

(1) (2)

+ Dln Hn+151k11"] + T22E2n H114,1,(1‘2 1’)

(1)
+ D2n Hn+k(k2ré]} (3.3.68)

where T11, T12, T21, and T22 are given by equations (3.3.15)

thru (3.3.18). Using equations (3.2.19), (3.2.20), (3.3.67),

and (3.3.68) we can get

323 - - 22- :1 E P (cose) (n+l)H(2)(klr)
3r " Ve r372 n=0 n T11 C1n n+2

klrflézi(klr{] + T11 Dln[En+l)H(l;(k1r)

7

- klrué1;(klr) + 112 c2n (n+1)néi;(k2r)

_J

-—q

k2rH(2;(k2r) + 112 D2n[}n+1)H(1;(k2r)

*

_ k2rH(l;(k2r£1} (3.3.69)

 

and
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°° (2)
nio Pn(cose) T21 Cln[}n+l)Hn+k(klr)u l

<
|
E

P
r
m 1

. 7,32

- klrnéfimlril + T21 1311r1|:(n+1)nr(h{35 (klr)

1.35;; 0.1”] <2)- k T22 C2n[}n+l)fln+k(k2r)+

- kzrfléfimzri' + T22 DZnIFn+1)Hr(1}_;(k2r)

(1)
kern_k(k2ri]

From the definition of the associated Legendre functions

(3.3.70)

and the ordinary Legendre functions we can derive the

identity

1 __ d

Pn (cose) - 35 Pn (cosG). (3.3.71)

Using equations (3.3.67), (3.3.68), and (3.3.71) we have

1 (2)
Pn (cose) Tll[é1an+k(klr)

(1) ' (2)
+ Dlan+15(klr):| + TIZEZan-ngc2r)

+ D a”) (kzr):| (3.3.72)



56

and

3h. w m

1 1 (2)
-— 2 P (cose) T C H (k r)

i r n=1 n 21|:ln n+1: 1Q
)

m
r
a

<’
l
P
.

(1) (2)

+ Dian+g‘k1r{J + T22[§2nfin+g(k2r’

—

(1)
+ DZan+%(k2r) (3.3.73)

 
because P:(cose) = 0. Equations (3.3.61) thru (3.3.66)

can now be expressed explicitly. The first terms on the

right hand sides of equations (3.3.61) thru (3.3.66) can be

obtained using the same procedures as those used in Section

3.2 and the other terms can be derived using equations

(3.3.69), (3.3.70), (3.3.72), and (3.3.73). Since we are

interested in E26, v , and vir for later development, only
er

equations (3.3.62), (3.3.63), and (3.3.65) are expressed

more explicitly as follows:

_ _ ' w 1 (2) _ (2)
E26 - ;E_%7§ Z Pn(cos6) En[}an+3(ker) kean-k(ker{]

r n=1

+

(l) (1)
En [111111445 (ker) - kean_1§(ker):l

m V e

_ e e (2) (1)

72:35—[%11C1nnn+8(klr) + T1101an+g‘k1r’

+

(2) (l)

T1202nun+a‘k2r’ + TlZDZan+k(k2r{] +
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w.V.e

i i (2) (1)

7:135'T21C1nnn+3(k1r) + T21D1an+g(k1r)

(2) (1)
+ T22C2nfin+8(k2r) + T22D2an+k(k2r)]} (3.3.74)

_ e l 1

Ver - me(?e+jw) ng r375

 

°° (2)
n:1n(n+1)Pn(c°se)[%an+k(ker)

 

Z Pn(cose)

O

(1) 6o 1

+ Fan+k(keri] + no€(ye+jw) r3/2 n

X

(2) (2)
{gln[}n+1)nn+k(klr) - kern-g(klr{]

(1) _ (l)
D1n [(n+1) Hn-I-lg (klr) kern_;5 (kl-fl} {”eVeTllE+

 

2

_ “i _ j Yiwi _ j we 91Vi T

w2+Yi§ w(w2+YiZ) w(yi+3w) 2

+ {%Zn[}n+l)fléi;(k2r) - kzrfié3;(k2r{]

DZDEMM}; (1.2., - 1.2.1.311; (kzrflleveTuE

w 2 w 2 w 2w V
i _ . Y1 i _ . e i i T

2 2 J 2‘ 2) J w(yi+3w) 22
w(w +yi

+

  

(3.3.75)



3.4

spa
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_ _ e 1 (2)
vir - mi (Y1+jw) ng -—7§-n2ln(n+l)Pn(cose)|:I-E:an+;5(ker)

(1) °°
Fan+15(ker) +W —317—n2cup (0089)

 

+

x Cln[En+1)H(i;(klr) - ker(2)(kgr:]

+ o [:(n+l)H(1)(klr) - k an
n n+3 1 iniT21[

2 2

_ we _ j we Ye _ j wizweVe

w +ye w(w2+ye2) wIY(34'3“)ST

+ C n[3n+l)Héi;(k2r) - k2rH(2;)5(k2r{]n

+ D n[(n+l)Hr(li;(k2r) - keré£;(k2r)] “iViTzzE

2 2 2

 

we we Ye weeV

-———--j -j—-(———TT
w2+ye2 w<w2+Ye2) w Ye+jw 12

(3.3.76)

3.4 Region III: Free Space

The basic equations which govern Region III (free

space, r >, c) are Maxwell's equations

V x §3(r) = -3wuoH3(r) (3.4.1)

V x H3(r) = jweog (5). (3.4.2)
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Since Region III is unbounded, no reflected or inward

traveling wave exists in this region. Following an

analysis similar to that in Section 3.2, the solutions

to Maxwell's equations in this region can be written as

.. _1_ °° 1

H3¢ ‘ J— H: Gn Pn(cose) Héi;(80r) (3.4.3)

E3r = ——-i:7§ E Gn n(n+1) Pn(cose) Héi£(80r)

weor n—l

(3.4.4)

E36 - - ___1377. g G P1 (cose) “(3;(8r)

weor n=l n n n

(2)
- Bor Hn_;§(80r)] (3.4.5)

and

H = H = E = 0 (3.4.6)

where Gn is an arbitrary constant, n is a positive

integer, and so = w/uoeo.

3.5 Imposition of Boundary

Conditions at Interfaces

In order to determine the arbitrary constants An,

B , C
n ’ D

, C , D , En’ Fn' and Gn' the boundary con-
ln ln 2n 2n

ditions at r = a, r = b, and r = c are applied.

The voltage across the gap of the spherical antenna

is given by
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g + e “

v = Ele(a,6)ad6 == fEle(a,6)ad6 (3.5.1)

- 9 0

because Ele is zero on the surface of the conducting

sphere except at the gap n/2 - 91‘: 6 i “/2 + 61. Since

the ordinary Legendre functions form a complete set of

orthogonal functions, any function f(x) on the interval

-1‘: x‘: 1 can be expanded in terms of them. Thus the

electric field on the surface of the sphere can be repre-

sented as

00

Ele(a,6) = E an:(cose) (3.5.2)

n—l

where

n

= 2n+l .[ .
bn WT E16(a,6)1’]r"(c036)81n6d6. 3.5.3)

0

If the gap between the two halves of the sphere is

assumed to be small, then

~

1 1
Pn(cose) ~ Pn(0)

(3.5.4)

s1n6 ” 1 61 is small.

Combining equations (3.5.1), (3.5.3), and (3.5.4), we have

(2n+1) Pi‘0’ v

bn = “§E(n+1) a ° (3°5'5’
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From equation (3.2.21)

00

_ _ ' l (2)
Ele(a,6) - -——1§7§) £1 Pn(cose) An[n Hn+g(8da)

_ Bdanrgzgmdafl + BnE 1.335%.)

- Bda Hé£;(8da{] . (3.5.6)

Combining equations (3.5.2), (3.5.5), and (3.5.6) we have

M11 An + M12 Bn = s v (3.5.7)

where

_ (2) _ (2)

M11 ’ “ Hn+k(8da) Baa Hn-k(8da)

_ (1) _ (1)
M12 - n Hn+k(8da) Bda Hn-%(Bda) (3.5.8)

_ . k 1 2n+l

S - Wda Pn(o) m -

The Mij’ i,j = 1,2,...,8,9 refer to position in a matrix

to be set up later.

The continuity of the tangential components of g

and H at the dielectric-plasma interface (r=b) requires

that

E16(b,6) = 329(b,6) (3.5.9)
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6) = H2¢(b,9). (3.5.10)

Using equations (3.2.21) and (3.3.74), equation (3.5.9)

gives

where

M21 n

21

22

23

M24

A + M B + M C + M

22 n 23 In D
C

24 1n + M25 2n

+ M26D2n + M27En + M28Fn = 0 (3.5.11)

_ (2) _ (2)-Eil} Hn+k(8db) Bdb an-;’(Bdb):]

d

53E”!H’E‘l‘zfmdb)
' Bab “fibridbfl

(5%; T11 " gill-319,3 T21] “(135*b)

eEEZ'iT T11 ' gig-5 1.211313%“b)

(3.5.12)

m V w.V.
e e _ 1 1 (2)

elE‘Tj'E T12 y‘i'+"j'w"2T 2])!!!+1: (kzb)

w V m.V. '
e e _ 1 1H(l)

9E7}: "’12 7337; T22] “2w,“1’)

(2) H(2)
-E Hn+35(keb) - kebHn--e35(kbi]
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_ _ (l) _ (1)

M28 " |} Hn-I-ku‘eb) keb Hn-k(keb)] °

From equations (3.2.22) and (3.3.53), equation (3.5.10)

can be expressed as

M31An + 143an + M37En + M38Fn = 0 (3.5.13)

where

M = H”) (B b)
31 Hn+k d

_ n(l)

M32 ‘ Hn+k(8db)

(3.5.14)

_ (2)

M37 ’ Mn+5(kb)

_ (1)

M38 - Mn+k(kb)'

The continuity of the tangential components of the

E and H fields at the plasma-free space interface (r=c)

leads to the boundary conditions

E e(c,e) = E36(c,6) (3.5.15)

H2¢(c,9) = H3¢(c,6). (3.5.16)

Using equations (3.3.74) and (3.4.5), equation (3.5.15)

gives
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M43cm + “4491:: + M45cm: + M46D2n + ”473:;

M‘an + M49Gn = 0 (3.5.17)

where

r _

m V w.V.

_ e e _ 1 1 H(2)

M43 " e —"ye+3w T11 __F-yi-t-jw T21“n+15(k1C)

[E V w.V.

_ e e _ 1 1 H(1)

M44 ‘ e _F'yenw T11 ___Fyi+jw T21Hn+15‘k1‘”

T _

m V w.V.

- e e _ 1 1 (2)

M45 - e ye+3w T12 yi+jw T22 Hn+k(k2C)

I; V w.V.

_ e e _ 1 1 H(1)
M46 - e W T12 W T22 [in-”5%C) (3.5.18)

__ _J

_ H(2) _ (2)
M47 - ”[9+15(kec) kec Hn-k(kec)

(l) (1) .1
M48 = -[§ Hn+k(kec) - kec Hn-k(kec)

 

n+so 8
M49 =.£L[E H(2)(Boc) - 80c HA3;(BOC{].

From equations (3.3.53) and (3.4.3), equation (3.5.16)

can be expressed as

M57En + M58Fn + M59Gn = 0 (3.5.19)



65

where

_. (2)

M57 ' Hn+k(kec)

_ (1)

_ (2)

M59 ' Hn+;,(Bo°"

In the present analysis, it is assumed that the

normal components of the mean electron and ion velocities

vanish at the interfaces at r=b and r=c. These rigid

boundary conditions require that

ver(b,6) = 0 (3.5.21)

ver(c,6) = 0 (3.5.22)

vir(b,9) = 0 (3.5.23)

vir(c,6) = 0. (3.5.24)

Using equation (3.3.75), equations (3.5.21), and (3.5.22)

give

M63C1n + M549m + M55C2n + M66D2n + M67En

F = 0 (3.5.25)
+‘Msa n

and
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M73cm * ”7491:: + M75C2n + M76D2n + M77En

+ M78Fn = 0 (3.5.26)

where

. (2) (2)
63 - Je[}n+l)fin+k(klb) - R1b Hn-k(klb{][§eVeTll l

 

M _-

2 2 2

_ “’1 _ j Yiwi 3. we ”1V1 T

T": ‘7—7 " . 'u1471 w(w +Yi ) w(y1+jd) 21

3

I

64 — jel:(n+l)Hrg‘_3§(k1b) - k1me (k10:] [ave11

  

 

 

2 2
mi. . y.w. j wez iiV T

w2+yi5 w(w2+in) “(7“ $) 21

(3.5.27)

M65 = jeEn+1)n(2}!(k2b) - ksz(2) (k2b:H:eVeT12[l

wiz Yimi 2 we2w.1Vi

_ _ j j T

w2+Yi2 w(:2:yi2 ) Jw(Yi+jw) 22

_ - (l) _ (1)
M66 — jel:(n+l)Hn_._;fi(k2b) k2an 1‘(k2b] EeveT112[

2 2

_ “’1 _ j 71‘”: _j “’e 2"”11V

$2:;;2' 5732:??? w(y.1+jw) T22

w 2

M67 - n(n+1) £- Héiékeb)
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= n(n+1) -—— H(1)(keb)
M68 w Hn+1:

and the expressions for M i = 3,4,5,6,7,8 can be ob-
7i'

tained by replacing b with c in the corresponding M6i'

Using equation (3.3.76), equations (3.5.23), and (3.5.24)

can be represented as

M83C1n + M84D1n + Masczn + M86D2n + M87En

+ M88Fn = 0 (3.5.23)

and

M93C1n + M949111 + M95C2n + M96D2n + M97En

+ M98Fn = 0 (3.5.29)

where

83 - jeI:(n+1)HI:i;(klb) - klbnm (k1b]l:iV'T21[1

 

M _

w 2 w 2y i 2weve

_ ___—e;— ..j e e _. j T

wZ+Ye2 w(w2+ye2) w(ye+jw)

- - (l) _ (1)
M84 - 3e[:(n-!-1)l-ln+;fi(klb) k1an 15(k1b] [:ivlliT21[

wez w”27 i2weeV

— -————— - j —1-—— - j _1_—wa
w2+y2 w(w +ye w Y +3”

e
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85 — je|:(n+l)Hr§i;(k2b) - kzbnm (k213)] [1V1T22[13

l
 

 

2 2
we wHZY j mi weeV T

— — j .—

w +76:i w(w +Ye 2) 3w(Ye+jw) 12

_ . (1) _ (1)
M86 — je[(n-%-1)Hn_*_z~fi(k2b) k2an35(k2b)] [1ViT122[

2 2
_ we _ j we Ye - jwie2weeV T

w2+YeZ w(w2+Ye2) w(ye+jw) 12

(3.5.30)

w.2

M87 = -n(n+l) : Héi;(keb)

w.2

M88 = -n(n+1) 7%— Hrfigfimeb)

and the expressions M91, i = 3,4,5,6,7,8 can be obtained

by replacing b with c in the correSponding M8i' It should

be noted that the summation of the second term on the

right hand side of equations (3.3.75) and (3.3.76) can be

changed from E to ; because the n=0 term makes no

contribution Egothe Ezries. Thus equations (3.3.75) and

(3.3.76) can be written as single summations and the

rigid boundary conditions may be imposed to yield equations

(3.5.25), (3.5.26), (3.5.28), and (3.5.29).

By imposing the above boundary conditions, we obtain

nine algebraic equations for the nine unknown coefficients.
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For convenience these equations may be written as a single

matrix equation:

  _Gn J  )—

SV

0  
where [m is the matrix

M=

FM

M

M

E431”

 [
i
s

11

21

31

M

M

M

0

12

22

32

0

M23

0

M43

 

(3.5.31)

0 o _

M28 0

M38 0

M48 M49

M53 M59

M68 0

M78 0

M88 0

M98 OJ

(3.5.32)
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From equation (3.5.31) we obtain a solution for the

arbitrary constants as

  
where [Mij]

sfl

  L0

(3.3.33)

is the matrix inverse of [Mi.].

Equations (3.2.22) thru (3.2.25),

(3.3.61), (3.3.62), (3.3.67), (3.3.68),

3

(3.3.53),

(3.4.3) thru

(3.4.6), and (3.5.33) completely determine the fields in

Regions I, II, III as functions of r and 6.

Using the first result from Appendix B it is seen

that S = 0 for even n. Thus, from (3.5.33), the arbitrary

constants are all zero when n is even. This means that

the summations for the fields in all three regions may be

changed from

n

I
I
M
S

l

to

co

2

n=1

. The fields in Region III are

n odd



71

of most interest to us and so

here as follows:

__1_°° 1
H3¢ — /F nil Gn Pn(cos

n odd

E = ———l§7— 2 G

3r weor 2 n=1 n

n odd

E = - ———l—7— Z G

36 weor3 2 n=1 n

n odd

(2)

8or Hn-%(Bor{]

and

“3: = “39 = H3¢ = 0

3.6 Radiated Power and Input

Admittance

Two important quantitie

they will be reproduced

(2)
6) Hn+%(80r) (3.5.34)

n(n+1) P (cose) H(2)(B r)

n n+k 0

(3.5.35)

1 (2)
Pn(cos6)[E Hn+%(80r)

(3.5.36)

(3.5.37)

5 that we will use exten-

sively in the next chapter on numerical results are the

power radiated by the spheric

surrounding plasma layer and

spherical antenna. These qua

a1 antenna together with its

the input admittance to the

ntities are derived below

for the specific problem which we are studying.



72

The power radiated from a large sphere is defined

P = lim ReE P - as] (3.6.1)

r+0° S

where Pe is the complex Poynting vector defined by
~

as

(3.6.2)

ll

N
I
H

I
t
!
)

3
:

2
:
: a
-

and d5 is a vector quantity, which points in the outward

radial direction, associated with a differential area on

the spherical surface. The integration is over a large

closed spherical surface.

Thus the radiated power can be written as

1 2n n A 2

P = lim 2Xf Jf Re[E x H* - r] r sine d6d¢.

r+00 o o ” ~ ~

(3.6.3)

In Region III in our problem

* o =

E3 x E3 r E36 H3¢

= - Z Z G G * Pm (cosB)P}(cose)
m n

we r m=l n=l

m odd n odd

[newa - n](33,.”

(3.6.4)
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where a superscripted * denotes complex conjugation. In

the far zone (r+w), the asymptotic expansion for large

argument for the second of Hankel function is

lim Hofz’uc) = E"; e'j(""’°‘"’;‘"). (3.6.5)

x+00

Thus, neglecting terms of the order l/r3 and higher we

get

lim E3 x H3 - f = %’——l—§ ; ; GmGn P;(cosa)

r+w ” ~ we r m=l n=1

m odd n odd

1 J(11'1-2-1‘1)‘IT

X Pn(cose) e . (3.3.6)

Therefore we obtain

00

P = ’1' -l— :30 Z Re[G G *expl:j(m-n)1] Izwalwose)

" weo m=l n=1 m n 2 o o m

m odd n odd

x Plr'l(cose)sin6d6d¢]

co an 1

2 . n l 1

= — )3 Z Re|:G G *expEMm-n) J I P (x)? (x)dx].

”so mgl n=1 m n 7 -l m n

m odd n odd

(3.6.7)
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Using result (B-3) from Appendix B, the radiated power

becomes

2 m 2 2n(n+1)
p =— 2: |c| (3.6.8)

weo n=1 n 2n+ .

n odd

The input admittance is defined [13] as

Y = 2na sin9[H¢] (3.6.9)

r=a

6=n/2

which for our problem is

Y = 2n/E

"
M
8

(2) (1)

n l Pi(0) Aan+k(Bda) + Bn Hn+g(8da{]

(3.6.10)

It is noted that because of the assumption of a delta

function driver only the real part of the series for Y

converges. Infeld [14] has suggested that the imaginary

part be calculated at some angle slightly different from

6 = 90°. He suggests using the angle that a real physical

gap would make with the 6 = 90° axis. In our case this

n
means we must evaluate the susceptance at 6 = 2 - 61.

This is the procedure used in Chapter IV.



CHAPTER IV

NUMERICAL TECHNIQUES AND RESULTS

4.1 Numerical Techniques

In order to complete the solution for the fields in

Regions I, II, and III of Figure 3.1, it is necessary to

solve the matrix equation (3.5.31), i.e.,

PAn q r—SVT

Bn 0

cln o

Dln o

[M] c2n = 0 (4.1.1)

DZn 0

Bn 0

PD 0

_Gn_i Lo_4    
for the arbitrary constants An, Bn' C1 , Dln' C2n' D

n 2n'

En, Fn’ and Gn where the elements of M and S are given

in equations (3.5.8), (3.5.12), (3.5.14), (3.5.18),

75
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(3.5.20), (3.5.27), and (3.5.30) for n = l,3,5,...,~.

This is accomplished using the technique of Gaussian

elimination [1?].

Gaussian elimination is a technique to solve a

matrix equation of the form

PX = Q (4.1.2)

where P is a given square matrix and Q is a given column

matrix and X is the unknown column matrix to be deter-

mined. The technique is based on a theorem which states

that P may be factored into a dot product of a lower

triangularized matrix L and an upper triangularized matrix

up 1060'

p = LU (4.1.3)

where

F' .1Ll’l o . . o o

Ll’z L2'2 . . O 0 O

L = I I I I I I I (4.1.4)

Ln-1,1 Ln-1,2 ' ° ° Ln-1,n-1 °

Ln,1 Ln'z . . . Ln'n_1 Ln'n  
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and

1‘ 7
ulpl 111,2 . . o ul'n-l ul,n

0 u . . . u u
2,2 2,11-1 2,11

U = . . . . (4.1.5)

0 O ' ‘ ' un-l,n-l n-1,n

_O 0 I O O o un'n . 
Defining a new unknown column matrix

y = UX (4.1.6)

equation (4.1.2) may be written as

Ly = Q. (4.1.7)

Equation (4.1.7) is a set of equations that may be solved

simply by back substitution. Once y is determined X may

readily be determined from equation (4.1.6) by a similar

procedure.

In theory the Gaussian elimination technique will

give an exact solution to the set of equations (4.1.2),

but in practice the solution must be obtained by use of

a computer. This leads to errors due to the fact that

the computer carries only a finite number of significant

figures. Errors are obtained whenever the individual

terms in equation (4.1.2) that are to be added together
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differ by more than m orders of magnitude where m is the

number of significant figures carried by the computer

being used.

In our work we found that the solution for the Gn s

to be very accurate in all cases judged on comparison of

our results for spherical antennas in free space with those

of Ramo, Whinnery, and Van Duzer [13]. The solutions for

the An 8 and Bn 8 used in the calculation of the input

admittance were found to be accurate only for antennas

which are of the order of 0.1 wavelengths in radius. For

smaller antennas surrounded by a lossless plasma, the

input conductance calculated from equation (3.6.10)

differed from the conductance calculated from the power

radiated, equation (3.6.8), which is known to be correct

in the limit of the plasma density going to zero. This

was probably due to numerical difficulties because the

matrix M was nearly singular for small antennas. For

larger antennas, we were unable to keep enough terms in

the series (3.6.10) to obtain a reasonable result. For

an antenna radius of 0.1 wavelengths it was found that

only the first term of the series (3.6.10) was needed to

obtain five significant figure agreement with the con-

ductance calculated from the power radiated for a loss-

less plasma layer. The power radiated was calculated

retaining the first five terms, n = l,3,5,7,9, in the

infinite series in all our calculations. The susceptances

for the graphs to be described later were calculated
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keeping the first three terms, n = 1,3,5, which for a

spherical antenna in free space give a result 27% less

than the result given in the above reference [13].

As a conclusion we can say that the results given

for the power radiated and the input conductance should

be very accurate and the results for the input susceptance

are accurate to within an order of magnitude for the

cases plotted.

The Hankel functions required in the matrix M are

calculated for n = 0,1 using the formulas [15]

n

(1) _ 25'.-n-l -1 jz (n+k)! _ . -k
Hn+k(z) - 1T 3 2 e kio ETTE:ETT ( 2J2)

(4.1.8)

(2) _ z .n+l -l -jz (n+k)! . -k

Hn+g‘2) ' /‘7F 3 z e z ETTHIETT"232)

(4.1.9)

and higher order Hankel functions, i.e., n = 2,3,... are

calculated from the results for n = 0 and n = l for a

given complex argument 2 = x + jy by a recurrence

relation [15]

1
fn+1(z) = (2n+1)z' fn(z) - fn_1(z) (4.1.10)

where fn can be Jn722 Héi;(z) or Jw/2z Héi;(z). The

above formulas gave very good results for all values of
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purely real or purely imaginary arguments that could be

checked with Abramowitz and Stegun [15] for order up to

n = 11.

The associated Legendre functions are calculated

using [16]

l .

Pl (cose) = - Sine (4.1.11)

P21(cose) = - 3 sine cose (4.1.12)

and the recurrence relation

l'lP1
_ 1

n+l(cose) - (2n+l) cose Pn(cose)

- (n+1) Pi_l(cose). (4.1.13)

These formulas gave very good numerical results.

All the numerical calculations were carried out on

the CDC 6500 computer using single precision arithmetic

(fifteen significant figures) except the calculation of

the Hankel functions where double precision (twenty-nine

significant figures) arithmetic was used.

The radiated power and the input admittance of a

spherical antenna surrounded by a concentric layer of

hot lossy plasma have been numerically calculated as a

function of the antenna radius and the plasma parameters.

In a realistic situation, the presence of the plasma

sheath is taken into account by the adoption of a con-

centric dielectric layer which separates the plasma from
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the metallic surface of the antenna. This adoption may

also be used to account for an actual dielectric coating

of the antenna. The thickness of a usual plasma sheath

may be of the order of a few Debye lengths. In the

present numerical calculation, the sheath is assumed to

be an electron—free region extending from r = a to r = b.

A convenient parameter to describe the thickness of the

sheath is the dimensionless quantity 5 defined by

b - a = (ve//§me) s. It is to be noted that (ve//§me)

is of the order of a Debye length in the plasma and thus,

5 may be regarded as the "Debye thickness" of the sheath

[12]. The permittivity of the sheath is assumed to be the

same as that of free space, i.e., ed = 80.

4.2 Numerical Results
 

The results of the numerical calculations for various

parameters for a spherical antenna surrounded by a finite

layer of a hot lossy plasma are given in Figures 4.1 thru

4.20. The calculations were performed assuming an oxygen

938 plasma so that m1 = 2.57 x 10’20
kilograms. The

electrons and the ions were assumed to be in thermal

equilibrium so that Te = Ti and the average thermal

velocity of the electrons was assumed to be 0.01 times

the speed of light. The antenna was assumed to be driven

by a one-volt time varying source. Except where otherwise

noted the sheath was assumed to be about one Debye length

thick, i.e., b = a + Ve//3we and the ratio of the
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ion-neutral particle collision frequency to the electron-

neutral particle collision frequency was taken equal to

the ratio of the ion thermal velocity over the electron

thermal velocity, i.e.,

V.

_ _i = ,/_2
Yi - Ye V Ye mi (4.2.1)

Unless otherwise noted we shall state only the electron-

neutral particle collision frequency with the ion-neutral

particle collision frequency being specified by equation

(4.2.1). The values of the susceptance that are plotted

in this chapter are calculated by matching the magnetic

field to the current on the spherical antenna at 61 = 5°

or 6 = 85°. This procedure was suggested by Infeld [14].

It is to be noted that for 1° 1 6 1 7° essentially the
1

same results are obtained.

Figures 4.1, 4.2, and 4.3 plot the radiated power,

the input conductance, and the input susceptance, re-

spectively of a spherical antenna of radius 0.11, where A

is the free space electromagnetic wavelength, surrounded

by a layer of hot plasma 0.031 thick as a function of the

plasma density, i.e., wez/wz. The running parameter in

each figure is the electron-neutral particle collision

frequency. The range of weZ/w2 considered in these

figures is from 0.0 to 2.6 which corresponds to a high

frequency or a low plasma density region. It should be

noted that all plots over this range are actually
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independent of the ion-neutral particle collision fre-

quency because for high frequencies the ions are essenti-

ally immobile. The vertical scales in Figure 4.1 are

10 log (P/Po) where P is the power radiated by the

'spherical antenna surrounded by a plasma layer as a

function of (1162/11)2 and P0 is the power radiated by the

same antenna without a plasma layer. In Figure 4.2 the

vertical scales are 10 log (G/GO) where G is the input

conductance as a function of (1162/41)2 and Go is the con-

ductance of a spherical antenna in free space. Figure 4.3

is a series of plots of the input susceptance in mhos of

a spherical antenna as a function of wez/wz. A study of

these figures indicates that the inclusion of the electro-

acoustic wave in the theory gives rise to effects in all

three figures for (1162/11)2 < 1.0 and ye/w = 0.0 in the form

of troughs and peaks very close together whenever

A

_ I = _S
C b — NW N 2 (4.2.2)

where k2 is the electroacoustic prOpagation constant and

Re is the electroacoustic wavelength. The trough and peak

pairs are labeled with the appropriate N in the plots.

Physically, this says that the electroacoustic wave has

a large effect whenever the parameters of the plasma layer

are such that the electroacoustic wave may set up a stand-

ing wave of length N le/z in the plasma layer. For other
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points the inward and outward traveling electroacoustic

waves are out of phase and thus the total fields due to

the waves are small. When losses are introduced into the

plasma, the effects due to the electroacoustic wave are

smaller because the standing wave pattern set up in the

plasma layer will attenuate as one nears the outer sur-

face. For ye/w = 0.01, effects due to standing waves of

integer order in length are lost but standing waves of

half integer order in length still have an effect. In the

case of ye/w = 0.1 all effects due to the electroacoustic

wave are damped out. It is observed that the regions on

these plots that cannot be related to the electroacoustic

parameters are largely unaffected by the varying collision

frequencies and therefore we assert that these results are

due mainly to the electromagnetic wave. The effect of the

plasma on the electromagnetic wave is to reduce the radi-

ated power, the input conductance, and input susceptance as

the antenna driving frequency, w, is reduced to the

neighborhood of the plasma frequency. After the plasma

frequency exceeds the antenna frequency the radiated power

and the input conductance build up to a value larger than

the corresponding free space value. This phenomenon has

been called enhanced radiation [1, 2, 3]. The input sus-

ceptance for wez/w2 > 1.0 shows some odd effects which we

cannot attribute to any physical phenomena and may well be

due to numerical problems. No further attempt was made to
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find the source of the irregularities. It should be noted

that the curves for the input conductance, which can also

be considered as plots of the relative power radiated by

the spherical antenna by itself, are always greater than

or equal to the power radiated by the spherical antenna

together with the surrounding plasma layer, the difference

being the power absorbed by the lossy plasma due to

collision effects. The losses are large only when the

power radiated is affected by the electroacoustic wave.

Figures 4.4, 4.5, and 4.6 show the power radiated

from progressively larger spherical antennas surrounded

by hot, lossy (ye/w = 0.01) plasmas of varying thicknesses

as a function of weZ/wz. In these plots we again consider

2 i 2.6. Bythe high frequency region, i.e., 0 i wez/w

studying the three figures for one thickness of the plasma

layer it is evident that the effects due to the electro-

acoustic wave become relatively weaker for the larger

antennas. Looking at the plots for varying plasma layer

thicknesses, particularly the a = 0.011 case, we can see

that as the plasma layer becomes thicker the effect of the

electroacoustic wave is observed in more regions and for

large values of N. Also looking at any one figure we can

see that the thickness of the plasma layer affects the

power radiated due to the electromagnetic wave. Particu-

larly for wez/w2 > 1.0 it can be seen that the thicker

plasma layer decreases the power radiated due to the

electromagnetic wave.
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In Figure 4.7 the radiated power from a spherical

antenna of radius 0.11 surrounded by a hot, lossy

(ye/w = 0.01) plasma of thickness 0.031 is plotted as a

function of wez/mz. The region of enhanced radiation is

seen to extend from wez/w2 = 1.3 to about wez/w2 = 40.0

for the parameters chosen. In this figure the effects

due to the electroacoustic wave and to the pseudosonic

wave which will soon be discussed are ignored.

Figures 4.8 and 4.9 are comparisons of our theory with

some experimental results obtained by Lin [2] and Lin and

Chen [3]. Power radiated is plotted as a function of plasma

density for two different size antennas. The outer radius

of the plasma layer is assumed to be nearly constant at

about 7 cm. The electron-neutral particle collision fre-

quency is assumed to be 0.12 GHz in our theory and the

running parameter in each figure is the antenna driving

frequency. Good agreement between the theoretical and

experimental results is observed.

Figure 4.10 shows three curves for the power radiated

by a spherical antenna of radius 0.11 surrounded by a hot

plasma of thickness 0.031 as a function of weZ/wz. The

range of wez/wz, 28400 3 (1162/41)2 3 30400, corresponds to

a high density plasma or a low frequency antenna source.

The running parameter in the figure is the electron-

neutral particle collision frequency with the ion-neutral

particle collision frequency set equal to zero in this
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figure only. The peaks observed in these plots are due to

the excitation of a pseudosonic wave in the plasma as

verified by the fact that peaks occur whenever

c-b=N§E—Tz-k—IT=N232E (4.2.3)

where k1 is the pseudosonic propagation constant and 1p

is the pseudosonic wavelength. It is observed that in-

creasing the electron-neutral particle collision frequency

decreases the maximum amplitude of the peaks indicating

that the electrons contribute significantly to the propa-

gation of the pseudosonic wave. Figure 4.11 differs from

Figure 4.10 only in that the ion-neutral particle collision

is now determined by equation (4.2.1). Comparison of

Figures 4.10 and 4.11 shows that the ions in the plasma

contribute more significantly than the electrons to the

propagation of the pseudosonic wave.

Figures 4.11, 4.12, and 4.13 are identical to

Figures 4.1, 4.2, and 4.3 except that the first mentioned

figures are plots of the power radiated, the input con-

ductance, and the input susceptance for low antenna fre-

quency or high plasma density, i.e., 28400 :.wez/w2 E 30400.

The main point to note is that effects due to the inclusion

of the pseudosonic wave in the theory are observed in all

three figures for values of weZ/w2 that satisfy equation

(4.2.3). Losses in the plasma layer decrease the effect
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of the pseudosonic wave on the plotted quantities. The

physical interpretation here is that the pseudosonic wave

has an effect on the quantities considered whenever the

parameters of the plasma layer are such that a pseudosonic

standing wave of a half integer pseudosonic wavelength in

length may be set up in the plasma layer, i.e., in the

vicinity where equation (4.2.3) holds. At other points

the pseudosonic standing wave is either seriously attenu-

ated or cannot be efficiently excited. Note that the

values of the relative radiated power are always less than

or equal to the values of the relative input conductance for

corresponding loss terms, the difference being the amount

of power absorbed by the plasma layer. The input sus-

ceptance plots in Figure 4.13 show effects that cannot

obviously be related to the electromagnetic wave or the

pseudosonic wave, i.e., the effects at weZ/w2 3 28550,

29900,... . No attempt was made to interpret the effect.

Figure 4.14 is a series of plots of the power radi-

ated by a spherical antenna of radius 0.11, surrounded by

a hot lossy (ye/w = 0.01) plasma of varying thicknesses

as a function of wez/wz. Comparing the upper and center

plots, we notice that there are more peaks due to the

pseudosonic wave for the thicker layer but these peaks

are smaller in amplitude. This trend is continued in the

lower plot. Here the effects due to the pseudosonic wave

are so small that they cannot be seen on the scale used.
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The radiated power from spherical antennas of vary-

ing radiuses surrounded by a hot lossy (Ye/w = 0.01)

plasma which is 0.031 thick as a function of weZ/w2 in

the low frequency region is shown in a series of plots

in Figure 4.15. The only effect to be noted here is that

the relative radiated power is greater for the smaller

antennas.

In Figures 4.16, 4.17, and 4.18 we show the radi-

ated power, the input conductance, and the input sus-

ceptance of a spherical antenna of radius 0.11 surrounded

by a hot lossy (ye/w = 0.01), plasma of thickness 0.031

plotted as a function of the dielectric sheath thickness

in Debye lengths. Plots are given for (1182/11)2 = 0.31,

0.85, and 1.5 in the high frequency region and for

w 2/(1)2 = 29655, 29700, and 29900 in the low frequency

region. w 2/w2 = 0.31 and 29655 represent points where
e

the electroacoustic and the pseudosonic waves, respec-

tively, contribute significantly to the quantities con-

sidered. The other values of wez/w2 plotted are those

where the radiated power is due mostly to the electro-

magnetic wave. These figures indicate that the sheath

thickness has very little effect on the power radiated

and the input conductance for the system that we are

considering. For the input susceptance the high fre-

quency curves also show very little change due to the

varying thickness of the dielectric sheath. The low

frequency plots for the input susceptance do show a
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considerable variance with changing sheath thickness. No

further interpretation of these results will be attempted

at this time.

In Figure 4.19 the radiated power from a very small

antenna is plotted versus wez/wZ. The antenna is assumed

to be of radius 0.000671 and the plasma layer thickness

is 0.000041. The relative radiated power is given for

four collision factors, i.e., ye/w = 0.0, 0.01, 0.1,

and 10.0. This case is of interest if we are Operating

an antenna five meters in radius which is surrounded by a

plasma layer, 20 cm thick, with an electron density

equivalent to fe z 0.3 GHz' In this case, if we operate

the antenna at a frequency f = 6 x 105, Figure 4.19 pre-

dicts that the power radiated will be much greater than

if the same antenna is operated without the plasma layer

around it for all but the highest collisional losses. The

plasma layer in the above described circumstances is

approximately one-half of a pseudosonic wavelength thick.

Figure 4.20 is for the same situation as Figure

4.19 except the antenna is much larger. The result is

that the plasma layer affects the radiated power very

little except where equation (4.2.3) holds for N = l.

4.3 Conclusions

From the discussion of the numerical results we can

draw four conclusions:
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The propagation of a pseudosonic wave through

a plasma layer covering a spherical antenna can,

under proper conditions, strongly affect the

radiated power, the input conductance, and the

input susceptance of the antenna.

The propagation of an electroacoustic wave

through a plasma layer covering a spherical

antenna can, under proper conditions, strongly

affect the radiated power, the input con-

ductance, and the input susceptance of the

antenna.

As has been discussed by others [1, 2, 3], the

prOpagation of the electromagnetic wave through

the plasma layer can, under the prOper con-

ditions, strongly affect the radiated power of

the antenna and, in addition, as we have shown,

the input conductance and susceptance.

The thickness of the dielectric sheath has

little effect on the radiated power and input

conductance of a spherical antenna surrounded

by a layer of hot lossy plasma.
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Figure 4.1. Theoretical power radiated by a
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PART II

RADIATION OF A CYLINDRICAL ANTENNA IN A

COMPRESSIBLE PLASMA INCLUDING THE

EFFECT OF AN ELECTROACOUSTIC

WAVE



CHAPTER V

INTRODUCTION

Advances in space technology in the last few years

have led to an increased utilization of antennas, Operated

in a plasma medium, as ionospheric probes to determine the

state of the plasma, and for communication purposes. Thus

it is important to be able to predict the effect that a

plasma medium will have on the electrical properties of

an antenna. In this part of the dissertation the electri-

cal properties of a cylindrical antenna immersed in a hot

lossy plasma of infinite extent are studied.

5.1 Historical Development

There is an abundance of literature dealing with the

effect of a plasma upon the operating characteristics of a

linear antenna. Varying assumptions have been made in order

to simplify the problem. These assumptions typically in-

volve one or more of the following; neglect the sheath

region entirely [18-32], neglect the temperature effects

of the electrons and ions [28,29], neglect the ions [12,

18, 20-42], neglect losses [18-22, 24-27, 30-32, 34-37,

39, 41], assume a sheath profile [40, 41], replace the

112
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sheath region by an electron free sheath region [22, 32,

12, 34-38], assume a short filamental antenna with either

a sinusoidal or triangular current distribution [19-21,

23, 25, 26, 33].

Prior to 1961, the theoretical considerations of the

influence of a plasma on the characteristics of a linear

antenna neglected collisions and the temperature of the

plasma. Thus the plasma was regarded as a cold, nonlossy

medium, which is equivalent to regarding the plasma medium

as a lossless dielectric.

In 1961, King, Harrison, and Denton [28] solved the

problem of a short, linear antenna immersed in a cold,

lossy plasma. In the same month, Hessel and Shmoys [18],

presented their paper dealing with the behavior of a

Hertzian dipole operated in a warm, lossless plasma. Their

results indicated, for the proper frequency range and

acoustic velocity, a large acoustic wave off the ends of

the antenna, in addition to the usual electromagnetic wave

off the sides of the antenna.

In 1963, Whale [43] observed experimentally a larger

real part of the input impedance of a short antenna used

as an ionospheric probe than predicted by using the cold,

lossless plasma theory. He attributed this to the electro-

acoustic wave.

Chen [23], in 1964, studied the problem of a thin

cylindrical antenna of finite length with a sinusoidal
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current distribution in a hot plasma. Balmain [33]

treated the problem of an electrically short antenna with

a triangular current distribution immersed in a hot

plasma. Both papers gave the antenna resistance only for

we/w < l where we and w are the plasma and antenna fre-

quencies. Later, Kuehl [25, 26] studied the same problem,

but solved the Boltzmann equation instead of using the

simpler linearized hydrodynamic equations. An interesting

result of his work is the existence of an antenna re-

sistance for we/w > 1. The antenna reactance was not

determined in these papers. Meltz, Freyheit and C. D.

Lustig [44] investigated an infinite cylindrical antenna

covered by a set of coaxial plasma layers, based on a

variational formulation. They were able to deduce both

the antenna resistance and the antenna reactance for a

wide range of we/w.

Compared to the wealth of theoretical papers pro-

duced, only a few reports have presented experimental re-

sults dealing with the electrical properties of linear

antennas in plasmas. Some have measured the impedance

of short dipoles in the ionosphere [43, 45, 46] and in a

laboratory plasma [47]. More recently, impedance measure-

ments of relatively long antennas in laboratory DC impulse

discharges [48, 49, 52] and in an RF discharge [50] have

been reported. Also, measurements of the current distri-

bution on relatively long monOpoles in sustained laboratory

plasmas has been reported [51, 59].
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5.2 Outline of the Investigation

To the best of our knowledge, no theoretical paper

which accurately determines the complete input impedance

of a cylindrical antenna of finite length in a hot lossy

plasma has been published.

In Chapter VI, an integral equation for the current

on a linear antenna in a hot lossy plasma is formulated.

The antenna is assumed to support a two-dimensional sur-

face current so that antennas of diameters comparable to

the electroacoustic wavelength may be considered. An

assumed form for the current distribution is introduced

and then knowing the impressed voltage, the zeroth order

input impedance is derived. The sheath is not considered.

In Chapter VII, numerical solutions for the zeroth

order input impedance and current distribution are calcu—

lated and compared to experimental results. These

solutions are also compared to theoretical and experi-

mental results obtained by other workers.



CHAPTER VI

THEORETICAL DEVELOPMENT OF THE INTEGRAL EQUATION

FOR THE CURRENT ON A LINEAR ANTENNA IN A HOT

LOSSY PLASMA AND THE ZEROTH ORDER SOLUTION

FOR THE CURRENT DISTRIBUTION AND

INPUT IMPEDANCE

The objective of this chapter is to derive an

integral equation for the current distribution on a gap-

excited linear antenna immersed in an infinite, isotrOpic,

homogeneous, compressible plasma. The known function in

the integral equation will be the tangential electric

field intensity on the surface of the antenna. This

function is known from the boundary condition on the

tangential electric field on the surface of a perfect

conductor and the idealization of the excitation (an

assumed constant electric field in the gap). A zeroth

order current distribution is proposed and a zeroth order

input impedance is obtained.

6.1 Geometry and Basic Equations

The geometry of the linear cylindrical antenna is

shown in Figure 6.1. The antenna is taken to have a

116
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Figure 6.1 . A cylindrical antenna of radius a and

half length h immersed in an unbounded hot lossy plasma.
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half length h and radius a. It is assumed to lie along

the z axis of a cylindrical coordinate system and to be

excited at its center (2 = 0) by a harmonic voltage V with

angular frequency w. The gap of width 2A in the cylinder

at z = 0 is assumed to be very small so that 2A-+0,

corresponding to a point (or, what is termed, a slice)

generator with rotational symmetry. The antenna is

assumed to be constructed of a perfectly conducting screen

or mesh-like material, with the spacing of the conductors

being much less than the smallest characteristic dimensions

of the system, so that the surface is penetrable to

electrons and ions. This assumption eliminates the need

to consider the formation of a sheath and to impose a

boundary condition on the particle velocities at the sur-

face of the antenna making the problem tractable.

The antenna is immersed in an unbounded weakly

ionized gas which consists of equal numbers of free

electrons and singly ionized positive atoms and a much

larger number of neutral atoms. It is assumed that the

generator frequency w is sufficiently high to neglect ion

motion so that the ions act as a uniform background of

positive charge.

The basic equations that govern this system (source

and plasma) are Maxwell's equations and the linearized

hydrodynamic equations (see Chapter I),
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V x §(r) = -jwuo§(§)

V x §(r) = gs(r) - enov(r) + jweo§(§)

EOIV ° E({)] = 05(5) - en(§)

V - H(r) = 0

nOIV ° y(§)] + jwn(§) = 0

(jw + Y)y(§) II I

E
l
m

(
1
'
1
1

5
? I '
0

< :
3

H

v - 95(5) + jwos(§) = o

where

electric field

magnetic field

permeability of free space

permittivity of free space

charge on the electron

mass of the electron

equilibrium electron density

perturbed electron density

source current density

source charge density

average perturbed electron density

electron-neutral particle collision

frequency

(6.1.1)

(6.1.2)

(6.1.3)

(6.1.4)

(6.1.5)

(6.1.6)

(6.1.7)
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v = )/§£E-= average thermal velocity of the
o m

electrons

where k is Boltzmann's constant and T is the average

temperature of the electrons. The suppressed time

jwt
dependence is assumed to be of the form e and

rationalized MKS units have been used throughout.

6.2 Integral Equation Formulation

The curl of equation (6.1.2) is

V x V x H = V x J - enO V x v + jwt»:o V x E. (6.2.1)

Using the vector identity V x V x R = V(V-R) - V23,

equation (6.2.1) becomes

V(V°H) — VZH = V x J8 - enOV x v + jweOV x E. (6.2.2)

Substituting the curl of equation (6.1.6) and equations

(6.1.1) and (6.1.4) into equation (6.2.2) gives after

 

simplification,

w 2 w 2y

VZH + wzeopo l - 2e 2 - j -—27——§— H = - V x gs

~ w +y w(w +y ) ”

(6.2.3)

where we2 = ezno/meo. If we define a complex permittivity

as



2 2

we . “’e 7
5:601‘7—7’3—77, (6.2.4)

w +7 w(w +y )

equation (6.2.3) can be written as an inhomogeneous wave

equation of the form

VZH + keZH = - V x gs (6.2.5)

where

kez = 02005. (6.2.6)

Consider the equation

(v2 + ke2)§(§) = - 05(5). (6.2.7)

It can be shown (by straight-forward, but tedious,

vector manipulations) that

(72 + kez) v x g = — v x gs. (6.2.8)

Comparing equation (6.2.8) with equation (6.2.5) and

recalling that equation (6.1.4) holds for all space, we

can say that H must be the curl of some vector field A or

H = V x A. (6.2.9)
~

The solution for the inhomogeneous wave equation,

equation (6.2.7), may be obtained using standard pro-

cedures [53, 54, 55]. Thus
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A(r) = 4" f JS(r')Ge(r,r')dV' (6.2.10)
.... V2 .. ..

where

-jke|5-§'|

G (r,r') = 6 (6.2.11)

9"” IE‘E'I

and r is a vector from the origin to the field point,

r' is a vector from the origin to the source point, and
~

the integration is over all source points. Finally

3 (r')Ge(r,r')dV'. (6.2.12)

Taking the divergence of equation (6.1.6) and

solving for V - E yields

V

v - E = - m(jw+y)v - v - 3 -9— V2n. (6.2.13)
~ 6 ~ mno

Substituting equation (6.2.13) into equation (6.1.3) and

using equation (6.1.5) yields upon rearrangement

 

 

2 w2 we2 I we2 S

V n(r) + -—§ 1 ‘ .7? - w n(E) = ' 20 (E)

v w ev
o 0

(6.2.14)

or

w 2

Vzn + kpzn = - e2 pS (6.2.15)
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where

2

2 w

2.1» __e_--1
kp -;71 (DZ 3 (.0 . (6.2.16)

0

Equation (6.2.15) is an inhomogeneous wave equation for

the average perturned electron density n(r) which has a

standard solution

 

2

(A)

n(r) = -—E——§ f pS(r')G (r,r')dV' (6.2.17)

~ 4nev V ~ p ~ ~
0

where

-3k lr-r'l

e p ” ~
G (r,r') = (6.2.18)

P“ lr-r'l

where r and r' and the range of integration are the same

as in equation (6.2.10). Using the continuity equation

for the sources, equation (6.1.7), equation (6.2.17) can

be written as

jwez
n(r) = —————5— IV' - gs(§')cp(§,§')dv' (6.2.19)

~ 4nev w
o

where V' - 95(5') is the divergence of gs with respect to

the source coordinates.

The electric field E(r) at any non-source point can

be derived by eliminating y from equations (6.1.2) and

(6.1.6) and rearranging to give
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6V2

0

w€(w-jy) Vn. (6.2.20)
 

E=-.-];—VXH+

~ ng ~

V x H can be calculated by taking the curl of

equation (6.2.9)

x v x A = V(V°A) - 72A. (6.2.21)
~

<
1

X

I
C
E ll

<

Equation (6.2.7) in a source free region implies that

-V A = k A (6.2.22)

so equation (6.2.21) becomes

7 x H = V(V°A) + kez A. (6.2.23)
~

Using this result, equation (6.2.20) can be rewritten as

2
ev

_ _ _1_ . 2 0
E w€[V(V 1}) + ke 1}] +mVn (6.2.24)

where the vector field A(r), the perturbed electron

density n(r), and the complex permittivity 5 are given

by equations (6.2.10), (6.2.17), and (6.2.4), respectively.

The current density on the surface of the cylindri-

cal antenna can be represented as

J (r) = 26(r-a)12(z)/2na (6.2.25)

where 2 is the unit vector in the z direction and 6(x) is

the Dirac delta function. Very near the antenna surface
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the tangential component of E(r) can then be written as

Ez(z)§ where

2 2
. a A (z) ev

Z 2 o 3n(z)= - + + -————Ez(z) wE -—;;7—— Re Az(z) w€(w-jy) 32

(6.2.26)

where using equation (6.2.25)

1 h 1 " e-JkeR
= — ' __ ___—.— I I

Az(z,¢) 4" i Iz(z ) 20a f R ad¢ dz

- -n

(6.2.27)

and

jwez h 312(2') 1 w e'JkpR

MM) - 2 f 37' 27a ’ Tad°' d2"
41revo w -h -N

(6.2.28)

where R is the distance between the source point r‘ and

the field point r. From Figure 6.2 it can be seen that R

can be expressed as

R = If - r'l = {2a2[l-cos(¢-¢')] + (2-2')2}°

(6.2.29)

where the primed coordinates are the source points on the

antenna surface and the unprimed coordinates are the field

points very near the surface of the antenna. Since the

antenna is rotationally symmetric, A(r) and n(r) cannot



126

 

    

 
Figure 6.2. Source and field points on or near

the surface of the antenna.
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depend on 0, so we can arbitrarily set 0 equal to zero.

Therefore,

R = [2a2(1-cos¢')2 + (z-z')2]%

[(2a sin 9%)2 + (z—z')2]l”1 . (6.2.30)

On the conducting surface of the antenna, the

electric field is zero and in the gap at z = 0, E2 = -V/2A

or, in general, on the cylindrical surface, from

-h i z i h and at r = a we can say that

Ez(z) = -V0(z). (6.2.31)

Combining equations (6.2.26) and (6.2.31) gives an

integral differential equation of the form

 

 

32Az(z) 2 evo2 3n(z)

_v0(z) = - 3% ——;;§—— + ke Az(z) + wE(w-jy) 32

(6.2.32)

or

2

—————aAZ(Z) + k 2A (z) - f(Z) (6 7- 33)
8 2 e z — ‘ °
2

where

2

f _ - . evo 3n(z)
(Z) - -J(U€VO(Z) " J w-jY 32 (6.2.34)
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which is valid on the surface of the antenna. The

solution to the inhomogeneous differential equation,

equation (6.2.33) is given by

PC

142(2) = AZ (2) + AZ (2) (6.2.35)

where Azc(z) in the complementary function and AZP(z) is

the particular integral. The complementary function is

the solution to the homogeneous differential equation and

is

A c(z) = B sin k z + C cos k 2. (6.2.36)

2 e e

From symmetry requirements, i.e., 12(2) = Iz(-z), B must

equal to zero. By the method of the variation of param-

eters, the particular integral for an equation of the form

of equation (6.2.33) is given by

A P(z) = 1L [2 f(z') sin k (z-z')dz' (6 2 37)
z ke 0 e ° °

Thus

2

A (z) = l; f f(z') sin k (z-z')dz' + C cos k z
z ke 0 e e

(6.2.38)

where f(z) is given by equation (6.2.34) and C is an

arbitrary constant yet to be calculated.

Writing equation (6.2.37) out gives
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Z

AZ (2) = — j “Li-‘5 I 6(2')sin ke(z-z')dz'

e 0

2
ev z

_ - 0 8n(2') - ..- .

J kezw-JY)
é azT— Sln ke(2 2 )dz

. V .

= -j gé; Sln ke |z|

ev 2 z ,

- j o f EEIETL sin k (z-z')dz'.
ke(w-jy) 0 32 e

(6.2.39)

The integral on the right—hand side of equation (6.2.39)

can be integrated by parts to give

2

f

0

3n(z') . _ | I = I ° _ '.__§ET— Sln ke(z 2 )dz n(z )31n ke(z Z )

z

I _ I I
+ Re 3 n(z )cos ke(z 2 )dz

2

— _ ° I _ I I
- n(0)31n kez + ke g n(z )cos ke(z 2 )dz .

(6.2.40)

I I

But if we define R' = [z 2 + (2a sin $—)2]k

wez h 312(2') 1 " e-jkpR'

. _ ' '

n(0) J I 32, 20a f ‘——§T—- ad¢ dz

“'1T

 

= 0 (6.2.41)
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since the integrand is an odd function over the interval

integrated. Thus

P _ _ . w V .
AZ (2) - J 3%; Sln ke |z|

2

evo z

- j 5:3? 3 n(z')cos ke(z-z’)dz' (6.2.42)

Substituting n(z) from equation (6.2.19) into the integral

on the right-hand side of equation (6.2.42) yields

2

f n(29cos k (z-z')dz'
0 e

we2 2
1'! 312(2")

= j __T f COS ke(z-z') f T

41Ievo w 0 -h

X GP'(z',z")dz"dz' (6.2.43)

where

1 " e-jkpR

I I II _ _ II

where

II 2 l:

R" = [(z'-z")2 + (2a sin %—)] .

Noting that
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11 312(2") z"=h

f TGP'(Z'IZ")dZ' = Iz(zII)GPI(zI'zII)

-h z"=-h

h a_ II I I II II

_fi Iz(z ) 33w GP (2 ,2 )dz

h a
_ _ II I I II II

based on the assumption that Iz(z"=:h) = 0. Equation

(6.2.43) can be rewritten as

2

f n(z')cos k (z—z')dz'
0 e

2
we 2 h

= — j ——————— f cos ke(z-z') f 12(2")

471evO w 0 “h

x'E‘“ GP'(z',z")dz"dz'

w h z

. e

= - 3 -—————— f I (2") f cos k (z-z')

4wev02w -h z 0 e

x g—w-GP'(Z',Z")dz'dz" (6.2.46)

The interchange of the order of integration of equation

(6.2.46) is legal because Iz(z"), cos ke(z-z'), and

GP'(z',z") are continuous functions of z' and z" in the

range of integration. Since
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3 g u a I II

537 GP (z',z ) = - 557 GP (z',z ) (6.2-47)

equation (6.2.46) can be expressed as

2

f n(z')cos k (z—z')dz'
0 e

2

 

we h z

= 3 f 12(2") f cos ke(z-z')

41revo w -h 0

X a I I II II I

32. GP (2 ,2 )dz dz

we2 h z

= j I 12(2') f cos ke(z-z")

4nev w -h 0
o

337 GP'(z",z')dz'dz". (6.2-48)

Then Az(z) can be written as

= _ . w§V .

Az(z) 3 2ke Sln ke |z| + C cos kez

w 2 h

e I I I I

+ 4flw(w-jy) _g 12(2 )K (2.2 )dz (6.2.49) 

where

z

I I _. _ II a I II I II

K (z,z ) - f cos ke(z z ) 53"GP (z ,2 )dz (6.2.50)

0

Combining equations (6.2.27) and (6.2.49) and re-

arranging yields an integral equation for 12(2) as follows
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h

f I (z')K(z,z')dz' = - j 9E! sin k Izl
-h 2 2k e

e

+ C cos kez (6.2.51)

where

2

I.__1_ I I_ e I I
K(2,z ) — 4" Ge (2,2 ) 5T5:§7T K (2,2 ) (6.2.52)

where

1 -n e-jkeR

I I____ I
e (2,2 ) - Zn i R d¢ (6.2.53)

where R = [(z-z')2 + (2a sin ¢'/2)2]% and K'(z,z') is

given by equation (6.2.50).

Now we must solve for the arbitrary constant C.

Evaluating equation (6.2.51) at z = h and solving for C

yields

h

C = sec keh I Iz(z')K(h,z')dz'

-h

+ j 2kg tan keh

(6.2.54)

Substituting equation (6.2.54) back into equation

(6.2.51) and rearranging gives us the final form for a

Hallén type integral equation for the current 12(2) as

follows:
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h

f I (z')[cos k h K(z,z') - cos k z K(h,z')]dz'
-h z e e

= j g—E‘l sin ke(h-IZI) (6.2.55)

e

where

2

. _ l . . we 2 ..
K(Z,Z ) — EGG (2,2 ) - mil.) COS ke(z-z)

x 3 G I(z" zl)dz"

32" P '

2

_ 1 I I we k II_ 4? Ge (z,z ) - 575:3;7 cos e(z-z )

z"=z

X G I(zII'zl)

P z"=0

z

__ ° _ II I II I II

ke é Sln ke(z 2 )GP (2 ,2 )dz

or

- cos kez GP'(0,2')

z

_ ' _ II II I II

ke g Sln ke(z z )GP(2 ,2 )dz .

(6.2.56)
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6.3 Zeroth Order Current and

Input Impedance

 

 

The results of Section 6.2 can be summarized as

follows: the integral equation for the antenna current is

h

—£ Iz(z')[cos keh K(z,z') - cos kez K(h,z')]dz'

= j Y§£ sin ke(h-|zl) (6.3.1)

e

N

where

2
w
eI _ 1 I I _ I I

K(z,z ) — fiGe (2,2) W613 (2:2)

2

_ I I _ ° _ II
cos kez GP (0,2 ) ke g Sln ke(z z )

x GP'(2",2')dz€] (6.3.2)

where

l n e-JkeRI I _. __ I

-jk R

G'(z z')—--1—fTre p 614' (634)
P I _ TI -11, R

o o

where

. k

R = [32-2') + (2a sin %r)€] (6.3.5)
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w 2 w 2y
2 2 e

k = w u e l - - 3 (6.3.6)
e o o w2+Y2 w(w2+y )

2
2 w

k2=—9—1--£—- . (6.3.7)
p v 2 w2 w

o

The right-hand side of equation (6.3.1) varies with

sin ke(h-|z|) so a reasonable zeroth order current distri-

bution on the surface of the antenna which also varies with

wave number k8 is

I sin ke(h-I2I) -h{: z i h

Iz(z) = (6.3.8)

0 otherwise

It is noted that equation (6.3.8) for the assumed current

distribution satisfies the required boundary conditions,

i.e., 12(Ih) = 0 and 12(2) = Iz(-z).

If the zeroth order current distribution, equation

(6.3.8), is substituted into equation (6.3.1), the

following result is obtained

h

° _ I I

10-; sin ke(h Iz I)[cos keh K(z,z )

- cos kez K(h,z')]dz'

= j ‘-’—}“:-§-sin ke(h-I2I). (6.3.9)

3

N
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Evaluating equation (6.3.9) at z = 0 and solving for ID

yields

sin k h

I=j e
0 2k h

I sin ke(h—|z'|)[cos keh K(O,z') - K(h,z')]dz'

(6.3.10)

so now equation (6.3.8) for the assumed current distri-

bution is completely specified.

The input impedance of an antenna is defined as the

driving point voltage divided by the driving point current,

 

i.e.,

_ V

Therefore

2 = V
in I sin k h

0 e

no 2 h

_ _ ' ° _ I

- 3 if ——-——-- f Sln ke(h Iz I)[cos keh

sin2 k h -h

e

x K(0,z') - K(h,z')]dz' (6.3.12)

Equation (6.3.12) is the result that we require and will

be solved numerically in Chapter VII.



CHAPTER VII

NUMERICAL AND EXPERIMENTAL RESULTS

In this chapter, numerical solutions to equations

(6.3.12) and (6.3.8) for the input impedance and current

distribution of a cylindrical antenna immersed in a hot,

lossy plasma of infinite extent are displayed for various

plasma and antenna parameters. The numerical results are

compared to values obtained for a cylindrical monopole

immersed in DC laboratory plasma. Also, the numerical

results are compared to experiments performed by Graf and

Jassby [48] and with the theoretical results of Lin and

Mei [56], and Wunsch [58] for very small antennas. It is

also shown that this theory under appropriate approxi-

mations agrees with that of Chen (23) who calculated the

input resistance by a Poynting vector method.

7.1 Numerical Techniques
 

The equation to be numerically solved is from

Chapter VI

138
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/“° 2 h l |z. =-j ——-——-—f sink(h-z')

1“ 5 sin2 keh -h e

x [cos keh K(0,z') - K(h,z')]dz' (7.1.1)

where

. _ l . . _ we .
K(z,z ) - .4—1rGe (2,2) W GP(Z,Z)

- ' I

cos kez GP (0.2 )

z

... ' _ u I n u n
ke é Sln ke(z 2 )GP (2 ,2 )dz:]

(7.1.2)

where

I I e I
Ge (z,z ) 2n f '—————— d¢ (7.1.3)

(7.1.4)ll

:
1 S

(
D

w

0
.
:

'
9

GP'(z,z')

and where no, a, ke’ h, we, w, y, and R are defined in

Chapter VI. Equation (7.1.1) can be separated into five

integrals each of which must be integrated numerically.

These integrals are

h

I = f sin ke(h-|z'|)Ge'(O,z')dz' (7.1.5)
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h

12 = -fi sin ke(h-|z'l)Ge'(h,z')dz' (7.1.6)

h

I3 = _g Sin ke(h-|z I)GP (h,z )dz (7.1.7)

h

14 = _g sin ke(h-|z'I)GP'(O,z')dz' (7.1.8)

and

h h

I5 = -£ sin ke(h—|z'l)[g sin ke(h-z")

X GP'(z",z')dz{]dz'. (7.1.9)

Numerical integration is accomplished using a Simpson's

rule formulation which insures that the numerical result

approximates the true value by successive iteration until

the difference between two succeeding results is within

some prescribed limits. The limit in all cases except

one to be noted later is taken to be 5%.

It was found by actually performing the numerical

integration on the computer that the integral, equation

(7.1.3), could very accurately be approximated by

-jkeR'

Ge'(z,z') = E—§7—— (7.1.10)

where

R' = [(z-z')2 + a2]Li (7.1.11)
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for the plasma and antenna parameters of interest. Using

equation (7.1.10), integrals 11’ and I reduce to single
2

integrations of a continuous function over the interval

considered. These integrals are thus evaluated directly

using the Simpson's rule technique.

The last three integrals, I3, 14, and I are not
5

handled as simply because the integration in equation

(7.1.4) must be retained in all three cases.

By a change of variables,y = h - z', I becomes
3

1 2h fl e-JkpR

13 = -- f sin k (h-Ih—y|)f ——..— dcb'dy (7.1.12)
n 0 e 0 R

where

R"

[E2 + (2a sin %%)€]k. (7.1.13)

I3 in the form given in equation (7.1.12) is easily inte-

grated using a nested Simpson's rule technique where the

inner integral over ¢' is integrated for each value of y

required in the outer integration. It is found numerically

that I3 is always four or five orders of magnitude smaller

 

than I4.

I4 can be rewritten as

_ijlll

I-th'kh'fflep d'd'4 - F 0 Sln e( -z ) 0 Runs ¢ 2

(7.1.14)
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where

R"' = [2'2 + (2a sin QZL)2]%. (7.1.15)

Note that at z' = O and ¢' = 0 the integrand is singular.

I4 can be evaluated by the method of the auxiliary

integral described in Appendix C. Using this method we

can write I4 as

_ i . h . -1 2a . -1 h
I4 - fl Sln keh[%- Sinh TT»+ Slnh —{]

 

a 2a

_jk Rlll '

2 h n sin ke(h-z')e p - sin k h cos $—

+Ff f Rlll e 2 d¢'d2'

O 0

(7.1.16)

where the second integral is well behaved at z' = 0 and

¢' = 0. Thus, the integral I4 can be easily be evaluated

on the computer.

The integral I is the most difficult to evaluate
5

on the computer because it involves a triple integral that

requires a lot of computer time. The procedures for evalu-

ating I5 are similar to those used in evaluating the first

four integrals, namely the method of the auxiliary integral

is used to remove the singularity that occurs in the

integral over 2" and the Simpson's rule integrations are

nested to obtain the required result. For IS the con-

vergence limit is required to be only 10% in order to

save computer time.
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All numerical calculations were carried out on the

CDC 6500 computer.

7.2 Numerical Results

Except where noted, the electron velocity, Ve' is

assumed to be one one-hundredth of the speed of light, c,

and the antenna dimensions are measured in terms of the

free space electromagnetic wavelength Ao' where X0 =

2flc/w and w is the angular driving frequency. All calcu-

lations have been made for a one volt gap voltage.

The input impedance and current distribution of a

cylindrical dipole antenna as expressed in equations

(6.3.12) and (6.3.8) have been numerically calculated as

a function of the antenna dimensions and plasma parameters.

The theoretical results on the input impedances of cylindri-

cal monopole antennas of various lengths and diameters are

taken to be Zin/2 and are graphically shown in Figures

7.2, 7.4, 7.6, and 7.8. The input impedance is plotted

2 with y/w as the running parameter.as a function of wez/w

The value of wez/w2 is directly proportional to the

plasma density when the antenna frequency is kept con-

stant and y/w is the ratio between electron collision

frequency and the antenna frequency. The current distri-

butions given by equation (6.3.8) are plotted in Figures

7.3, 7.5, 7.7, and 7.9 as a function of position along

the antenna for various values of weZ/w2 and y/w. The
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phase, ¢, of each current distribution which is very

nearly constant along the length of the antennas con-

sidered is also given in these figures.

In the figures depicting the antenna impedances,

the solid lines represent the antenna input resistances

while the dashed lines stand for the antenna input

reactances. From these figures, the effects of the

collision frequency on the antenna input impedance can

be summarized as follows:

1. For low plasma density (weZ/w2 < 0.4), the

antenna input resistance remains nearly con-

stant while the input reactance becomes slightly

more negative. There is little effect due to

the varying collision frequencies.

For 0.4 < wez/w2 < 0.8, the input resistance

increases monotonically as the plasma density

is increased. The antenna reactance decreases

at a faster rate than in case (1) as the plasma

density is increased. Over this range a larger

collision frequency causes a larger input

resistance and makes the input reactance less

negative.

In the range of 0.8 < wez/w2 < 1.2, there are

sharp peaks in the antenna resistance and a

change from capacitive to inductive for the

antenna reactance when the plasma frequency
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approaches the antenna driving frequency. The

maximum value of the antenna resistance is

reduced considerably by larger collision fre-

quencies.

4. For wez/w2 > 1.2, both antenna resistance

and reactance decrease as the plasma density

is increased.

The significant findings are that: (l) the peaking

of the antenna input resistance at w ~ we, and (2) the

change in sign of the reactance at w ~ we.

The main observation to be noted from a study of the

antenna current distributions is that the amplitude of the

current is larger for greater collision frequencies, this

effect being more evident in the vicinity of w ~ we.

This result can also be determined from the impedance

plots. For weZ/wz = 0.6 and 1.2 the magnitude of the

input current depends mainly on the magnitude of the

reactance which is smaller for larger values of the

collision frequency. At wez/w2 = 0.95 the magnitude of

the input current is determined largely by the magnitude

of the input resistance which is smaller for larger

values of the collision frequency.

In Appendix D it is shown that the antenna input

resistance from equation (6.3.12) under the assumptions

of a line current flowing down the center of a very thin

(a+0) antenna immersed in a hot lossless plasma reduces
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to precisely the result obtained by Chen [23] using a

poynting vector method. Further, the resistance under

the above limitations may be broken into a part denoted

by Re due to the excitation of an electromagnetic wave

in the plasma medium and a second part, call it R due
PI

to the excitation of an electroacoustic wave in the

plasma. Re in our theory is derived from the integrals

I and I of Section 7.1 while R arises from integrals
l 2 P

I3, 14, and IS. Figure 7.10 is a plot of Re' RP' and

Rin = Re + RP evaluated using equation (6.3.12) for a

one-dimensional current distribution. In addition to

equation (7.1.10), it is assumed that

-ij
e p

GP'(Z,Z') = ___-fi— (7.2.1)

where

1

R = [(z-z')2 + a2]1, (7.2.2)

for an antenna of half length h = 0.25).O and radius

a = 0.001).o immersed in a hot lossless plasma. Also

plotted are resistances calculated using Chen's results.

The agreement between the two theories is almost exact.

, whichFigure 7.11 is a plot of Xe, X and xin = Xe + X
PI

are defined analogously to Re' R

P

P' and Rin’ calculated

using our theory for the same parameters used in Figure

7.10. It is noted that Chen was unable to calculate

reactances using his poynting vector method.
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Figure 7.12 is a comparison of current distributions

calculated using our theory and those measured by Judson,

Chen, and Lundquist [51] in a finite DC laboratory plasma

for an antenna of half length, h = 5.9 cm and radius,

a = 0.615 cm, driven with a frequency of 1.25 GHZ. The

collision frequency in the theory is assumed to be

y/w = 0.12. The agreement between our theory and their

experiment is good.

Figures 7.13 and 7.14 are comparisons of our theo-

retical input impedances with experimental values measured

by Graf and Jossby [48] for two different size cylindrical

antennas immersed in a hot lossy (y/w = 0.2) plasma. Our

theory is found to give much better agreement with their

experimental values than the cold lossy plasma theory

that Graf and Jossby used.

In Figures 7.15 and 7.16 we compare our theory to

that of Lin and Mei [36] which is limited to very short

antennas on the order of an electroacoustic wavelength

long. For these two figures the plasma is considered to

be hot (Ve/C = 0.001) and lossless. In Figure 7.15 our

theory predicts impedances very close to the values calcu-

lated by Lin and Mei for an antenna of half length

h = Ae/4 and radius a = Ae/75 where

Ve wez -%
1e = 2n 73-1 - —7? . (7.2.3)
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Also plotted is the input impedance of an antenna of

dimensions h = lea/4 and a = lea/75 where Aeo = vae/w

which do not vary with plasma density. This is a more

physical case to consider because the actual dimensions

of a real antenna do not change as wez/w2 is varied.

Figure 7.16 is a comparison of the two theories for an

antenna of dimensions h = 3.84).D and a = 0.2041D, where

1D is on the order of a Debye length. In both figures

excellent agreement between the two different theories

is observed. It is noted that Lin and Mei's theory is

restricted to an extremely short antenna while our theory

can be used to calculate the input impedance and current

distribution of longer antennas with practical dimensions.

The reason is that our theory is based on a much simpler

formulation.

Figure 7.17 compares the input admittance of a

dipole of half length h = 9fl/2, Ve//3we and radius

a a h/60 calculated by Wunsch [58] using Balmain's theory

[33] with the input admittance calculated using our theory.

The plasma is considered to be hot (Ve/C = 0.001) and

lossless. Fair agreement between the two theories is

observed.

7.3 Experimental Results

The radiation of a cylindrical antenna in a plasma

medium has been studied theoretically by many researchers.

As mentioned before, only a few workers have attempted to
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measure the properties of antennas in plasmas experi-

mentally. Because of the availability of a large volume

of a stable, high density plasma in our laboratory [60],

we have performed an experiment that measured the input

impedances of cylindrical antennas in a plasma medium.

The schematic diagram of the experimental setup for

the antenna impedance is shown in Figure 7.1. The plasma

tube is made of an open-end Pyrex bell jar with dimensions

14 inches in diameter and 18 inches in length. The upper

end of the tube is a circular metal plate used as an

anode in the excitation of the plasma and as a ground

plane for a cylindrical monopole antenna feeding through

the center of the plate. The lower end of the tube is

the cathode which consists of a pool of mercury contained

in a metal dish. A floating metallic ring is placed at

the center of the mercury pool to fix the moving hot spots

of the mercury arc discharge. An ignition circuit is

installed in the mercury pool for the purpose of starting

the plasma. A DC power supply circuit is connected be-

tween the anode and the cathode of the tube. Under normal

Operating conditions the discharge currents range from 0

to 120 amperes which corresponds to a range of from DC to

3GHZ for the plasma frequency, we/Zn. The vacuum pumping

system consists of a mechanical pump and a mercury dif-

fusion pump. The tube is continuously pumped during the

experiment and the pressure in the tube is maintained at
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about 10-3 mm Hg. The antenna input impedance is mea-

sured by using the standard SWR method.

The experimental results for the input impedance of

various size cylindrical antennas are shown in Figures

7.18 to 7.26. In each figure we have also plotted theo-

retical results calculated from equation (6.3.12) for the

input impedance for the corresponding size antenna and for

a hot (Ve/C = 0.01), lossy (y/w = 0.12) plasma. The

antennas actually used in the experiments were 2.2 cm,

3.2 cm, and 4.7 cm in length and 0.12 cm in radius. The

driving frequencies were l.GGHZ, 1.8GHz, and 2.0GHz for

each antenna size yielding experimental results for

antennas of nine different electrical lengths. In each

figure the solid lines and the circular points are the

theoretical and experimental resistances respectively,

while the dashed lines and square points are the theo-

retical and experimental reactances, respectively.

A study of Figures 7.18 to 7.26 yields the follow-

ing observations:

1. For low plasma density (weZ/w2 < 0.6) the

theoretical and experimental resistances are

nearly constant and in good agreement. The

experimental reactance tends to become more

negative faster than the theoretical values

as the plasma density is increased.
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2. For 0.6 < wez/w2 < 1.0 the antenna resistances

increases monotonically and reaches a peak at

w ~ we for both the experimental and theoretical

curves and the reactances reach a large negative

value and then increase in value until the

reactances are nearly zero at w ~ we.

3. In the range 1.0 < wez/w2 s 1.6 the antenna

resistances both experimentally and theoreti-

cally decrease monotonically with the theoretical

values decreasing at a faster rate than the

experimental values. The antenna reactances are

inductive in this range and reach a maximum and

then begin to decrease as the plasma density

is increased.

In general good qualitative agreement between theory

and experiment is observed with the resistances reaching

a maximum at w ~ we and the reactances changing from

capacitative to inductive at w ~ we.

7.4 Conclusions

A theory has been developed and an experiment per-

formed to evaluate the input impedance of a cylindrical

antenna immersed in a hot lossy plasma. Good qualitative

agreement between theory and experiment was observed.

To the best of our knowledge our theory is the first that

is able to predict the input resistance for wez/w2 > 1.0
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and the input reactance over the entire range (0 < wez/

w2 < 2.6) for an antenna on the order of a free space

wavelength in length immersed in a hot lossy plasma.

The theoretical effect of collisional losses on the

input impedances has been demonstrated.

Further, it has been shown that our theory is com-

patible with that of Chen [23] who used a poynting vector

method and with the theories of Lin and Mei [56] and Wunsch

[58] whose solutions were limited to antennas on the order

of an electroacoustic wavelength in length. It has been

shown that our theory is in good agreement with the

experimental results of Graf and Jassby [48] and it has

been demonstrated that the form of our assumed current

distribution, equation (6.3.8) is in good agreement with

experimentally measured current distributions of Judson,

Chen, and Lundquist [52].
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Figure 7.3. Current distributions on a dipole with

h/Ao = 0.147 and a/lo==0.0072 for various values of wez/w2

and y/w as a function of z/h.
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Figure 7.9. Current distributions for a dipole with

h/lo==0.313 and a/Ao==0.008 for various values of weZ/w2 and

y/w as a function of z/h.
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Figure 7.12. Comparison of theoretical and eXperi-

mental current distributions on a monopols with son = 1.54

and a = 0.615 cm for various values of we /w2. The driving

frequency in the experiment was 1.25 GHZ.
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Figure 7.13. Input impedance of a dipole of half

length h/Ao==0225 normalized to 1000. Normalized electron

density (wez/w ) values are indicated.
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Figure 7.14. Input impedance of a dipole of half

length h/lo§=0.12 normalized to 1000. Normalized electron

density (we /w2) values are indicated.
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a monopole (h/Ao==0.ll7, a/Xo:=0.0064) in a hot lossy plasma as a

function of plasma density.
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APPENDIX A

UNCOUPLING THE DIFFERENTIAL EQUATIONS

FOR THE ELECTRONS AND THE IONS

From Chapter II the differential equations to be

considered are
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The objective of this section is to uncouple

equations (A-1) and (A-2) and obtain two independent linear

differential equations for the variables nl and n2 which

are linear combinations of ne and ni. This can be accom—

plished by using eigenvalue techniques. The uncoupled

equations, the relationship between the variables ne and

ni, and the variables n1 and n2, and the high and low fre—

quency limits of all pertinent coefficients will be

developed and presented in this section.

 I
r
-

2
‘

Equations (A—1) and (A-2) can be written compactly

as a matrix equation
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Define a new vector N such that

(A-7)
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#
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where T is specified to be an orthonormal transformation.

8  
The substitution of equation (A-7) into equation (A-S)

gives

2 s

v T N + B T N = s 9— . (A-8)

At this point it is assumed that the determinant of T,

denoted by det T, is not zero (this is verified later).

1
Then the inverse of T, denoted by T— , is defined by

T’1 = T'1 (A-9)

2
2

t
-
J

ll

2
2
H

N

where I is a 2 x 2 unit matrix. Premultiplying equation

(A-8) by T"1 gives

5

T 1 v2 N + '1 = l s %; . (A-10)
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]

Assuming that T is independent of space coordinates, it

follows that

T"1 v2 T N = T"1 T v2 N = VZN . (A-ll)
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Therefore equation (A—10) becomes

5

va + 1 3 N = l s %; . (A-12)

R
H

2
2
0
-
]

2
2
2
-
3

Equation (A-12) reduces to two uncoupled differential

equations for nl and n2 if g is an orthonormal trans-

formation that transforms B into a diagonalized form.

The procedure associated with determining T is the

subject of the next few paragraphs.

The eigenvalues of B are solutions to character-
~

~

istic equation of B

2
2

A - (B + 312” + BeZB' - —2——-2- = o (A-13)

or

 

(A-14)

The problem now is to find the transformation T such that

~

(A-16)
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From the theory of matrix algebra
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ll 12

T- _ E1 T21
~ T21 T22 “

where T1 and T2 are the eigenvectors associated with Al

and A2, respectively. T1 and T2 are solutions to the F“*

matrix equations

1
(8 - XII) T = 0 (A-16)

and

2

(g - AZI) T = 0 . (A-l7)

Equations (A-16) and (A-l7) reduce to one relationship

1 and T2,each for the two unknowns of the eigenvectors T

respectively. In order to completely specify the trans-

formation we choose to normalize the eigenvectors, i.e.,

i_ 2 2_ ._ _
T T — T1i + TZi — 1, 1 — 1,2 . (A 18)

In what follows a commonly reoccurring term will be

Specified by A0 where

2 2

_ / 2 2 2 we “’1 _
A0 - (Bi - 8e ) + 4 —2-‘-’-§ . (A 19)

 

The matrix equation (A-16) reduces to the single

relationship

_ _ l e i 2 _ 2 _
 11 (A-ZO)
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which together with equation (A-18) defines T11 and T
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as follows

T = l (A-21)
11

V 2V 2

1 + l e i 8 2 _ B 2 _ A 2

4 w 2w 2 e 1 o

e i

2 2

T _-lVV Be-Bi -A0

21 2 w w. '

V 2V 2

l e i 2 2 2

1+2? 22|:Be-81_A(3:|
w w

e 1

(A-22)

Similarly, equations (A—l7) and (A-18) define T12 and

T22 as follows

T12 = 1 (A-23)

2 2

V V. 2 2 2

l e 1

1+? ZZEe-B1+Ac;l
w w.

e 1

2 2

_ 1 V V1 Be - 8i + Ao
T -— .

22 2 w m.

V 2V 2

l e 1 2 2 2

1*? 22|:Be-Bl +Ac;l
w w.

e 1

(A-24)

For this development it is necessary that det T # 0

as assumed earlier. We are now able to calculate det T

as follows:
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det T

T = T11 T
- T12 T12 = -1 (A-ZS)

22

Therefore T exists and can be written as

-T T

22 12

(A-26)

R
e I

T21 "T11

ne and ni can now be written in terms of nl and n2

and visa versa as follows

0)

_ _E _
ne — Ve (Tllnl + lenz) (A 27)

”i
ni = v: (T21nl + T22n2) (IX-'28)

and

Ve Vi

n1 = ’ 6"T22ne + ET leni (A’Zg)
e 1

Ve Vi

n2 = a; T21ne - “T; Tllni (IX-'30)

Equation (A-12) can now be written as two linear uncoupled

differential equations

N

+ w

M

s u m

o
r
}
,

V n (A-31)

2 2 S
v n + k s %; (A-32)

"
—
“
7
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where

2 - 1 2 2 _

k1 - §[Be + Bi + A0], (A 33)

2 _ 1 2 2 _
_

k2 " 2[Be + 81 A0]: (A 34)

:3

Te Ti r
S]. = + T22 ‘7— + T12 ‘7.— , (A‘35)

e l 1

and

we (Di

S2 = " T21 V; " T11 x7: “’36)  
Equations (A-27), (A-28), (A-31), (A-32), (A-33),

(A-34), (A-35), and (A-36) are a tractable set of equations

whose solutions specify the electron and ion perturbations

in an infinite homogeneous plasma due to charge density

source pS immersed in the plasma. The conclusion is that

two independent particle waves are able to propagate in

an infinite plasma.

Let us look at the forms of T11, T12, T21, T22,

klz, and k22 in the high frequency and in the low fre-

quency limits. For simplicity, let the ion- and electron-

neutral particle collision frequencies equal zero, i.e.,

Ye=Yi=0-

(a) High Frequency Limit (2»2 > we2 >> wiz)

2
2 w 2

2 w e 2 w

e V 2 (”2 1 v2

e l
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In this limit

 

   

(A-37)

 

(A-38)

 
 

Hence

T11:o
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R

I

H

21

T12 z

T22 2

From equations (A-29) and (A-30)

 

Vi I

n1 2 ET “1 (“'39) :
1 ‘1

ve ..

n2 3 - a; he (A-40)

So in the high frequency limit n is wave consisting of
1

ion motion only and propagates with a phase velocity Vi

which is the thermal velocity of the ions. Similarly, n2

is an electron wave which propagates with the thermal

velocity of the electrons.

(b) Low Frequency Limit (to2 << wiz << wez)

2 _ l 2 _ 2 2 _ l 2 _ 2
Be " V 2“” we) Bi "' V 2(0) (”1)

e i

2 2 2 _ 4 _ 2 2 2
(Bl - 8e ) - Be ZBe 81 + 81

= —lE[w - 2w2w 2 + we4] - 3 2[§4

V V V.



1

2 2 2 w 2 w 2 + w 2 w 2

_ we ml 2 e e 1 1

- V 2 - V 2 - 2w V 4 - V 2V 2 + V 4
e 1 e e 1 i 111

+214 1 _ 1 2

4 4
V V.
e 1

  

V
"
_
,

‘5 ‘
F
'
V
‘
B
A
'
L
.
.
.

where the first term on the right hand side is of the

zeroth order in w, the second term is of the 2nd order

in w, and the third term is of 4th order in w.

Noting that we2 >> wiz and dropping 4th order terms in w

yields

w 2 w 2 2 w 2 2 w 2

2 2 2 e i 2 e e i

(e.-e)T—-—— -2w —-—+—
1 e V 2 V 2 V 4 V 2V 2 V 4

e i e e i 1

Therefore

(
I
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2 2 me

Te - TiTe + Ti 1T-

w 2v 4 _ w 2V 2V 2 + w 2v 4 i

e i e e i i e _ 1 ---

2472 2 2 2 - 2 2

(we Vi + mi Ve ) mi (Te + Ti)

|
A

where the underlined term is small and therefore it is

drOpped in the remaining calculations. By definition

(112/mi2 << 1, so using the binomial expansion and keeping

only the first two terms

 

 

 

 

2 2 2 2 2 4 2 2 2 2 4
A z we V + wi Ve 1 _ wz w Vi we ngl + mi Ve +

o 2 2 2 2 2 '°°
V6 V1 (we Vi + w12Ve )

Then

2 2 2 2
2 w 2 w. .

kzélL—e+w __l._+(:§_+w_§l_

l 2 2 V 2 V 2 V 2 V 2 V 2

e e i i e 1

2 4 2 2 2 2 4

- w2 m V1 - e Ve V. + wl Ve

2 2 2 2 27I2

Ve V1 we Vi + 1 V

or

2 2 2 2 2 2 2 2

2 w m. V V. + we vizve + we Ve Vi

k1 = 2 2 2 2 2
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or dropping the small underlined term

 

2 2

2 .. w we _ 2 2 “’1 2

k1 2 2 2 2 ' “’ Vi + “2' Ve ”‘41)
m V. + m. V w

e 1 1 e e

So the phase velocity of the nl wave is "“

 

<
.
.
a

ll

'
<
\

.
.
.
.

N

4
.

8
'
8 P

N
N

<

(
D

N

  
 

 

 

ph

e

3k(T. + T’)

= /// l e (A-42)
m.

1

2 2 2 2

1.221 .93.-“_’;e_+_<2.__“.’_1_-‘fs__“_’_1_

2 2 V 2 V 2 V. v.2 V 2 V 2

e e 1 1 e 1

W W

2 m 2V 4 - m 2V 2V 2 + w.2V.2V 4
+ w 1 e e 1 1 e

VeZVi2 wezv 2 + w.2Ve2

2 2

k2 - :e—Tuwi (A-43)
2 x V 2 V 2

e i

where the underlined terms are small and again they are

drOpped. k2 is purely imaginary and hence the n

will not propagate in the low frequency limit.

wave
2



 

2

2 2 “’1

Be - B1 +Aoz 2 7
V.

1

w 2

2 2 e

Be " Bi "Aoz " 2 ‘7—2-

e

T _1_Vew1

11 ~ [2- weVl

T12 = ./1_
2

l
T g —"

21 /§

T~_1Efi
22 f:- we Vi

In an equilibrium plasma (Te = Ti)

1 V: Vi
r11 = -— —— n + —— n. (A-44)

V V.

5‘”. e “’1 1

 

From equations (A-4l), (A-43), (A-44), and (A-45)

we see that in the low frequency limit only the n1 wave

exists and it consists of both electron and ion motion.
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APPENDIX B

SOME PROPERTIES OF LEGENDRE FUNCTIONS

Some properties of the associated and ordinary

Legendre functions that are useful in this thesis are

 

listed below.

(1) Pi (cosB) is zero at 6 = % if n is even.

(2) P: (cose) is maximum at 9 = % if n is odd and the

value of this maximum is given by

/ 1‘03“» 1)

1,5,9,...for n

2
h
!
”

I‘(§-+ 1:)

1 -- _

an) -( (B 1)

1“(§+ 1)

—r';——— 3,7,11,000

P(§ + 8)

for n

2
M
”

 
or

I'(-+1)

[P:(0)]2 = for n odd (B-2)

a
r
e

N948)

where F(x) is the Gamma function with argument x.
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(3) The associated Legendre functions have orthogonality

properties,

r

0 for n # m

+1 1 1

3E Pn(x) Pm(x)dx =< (B-3)

3%%2%£L for n = m.

 
K

(4) A recurrence formula for the ordinary Legendre

functions is

agi- Pn+l(X) - X ad?" Pn(X) "' (n+l)Pn(X) = 0 (3‘4)

and a relationship between associated Legendre functions

and ordinary Legendre functions is

m/2 de (x)
m m 2 n

Pn (x) = (-l) (l-x ) ____—37 ° (B-5)

dx

For m = 1, equation (B-S) becomes

1 __ d _
Pn (cose) - 35 Pn (cose). (B 6)

Combining equations (B-4) and (B-6) we obtain

1 1 1 _

EIK§[E°SBPn(c°se) - Pn+l(cosei] — (n+1)Pn(cose).

(B-7)
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(5) A differentiation formula for the associated

Legendre functions is

d1 _1 1 _ 155 pn(cosei] - EIE§[§ Pn+l(cose) (n+l)cosePn(cosei].

(B-8)
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APPENDIX C

METHOD OF THE AUXILIARY INTEGRAL [56] T”

In the numerical solution of input impedance Z in

Chapter 7, singular integrals of the form

 
 

n h e-ij

I = j] cos¢ dzdcb (C-1)
0 R

-w 0

where

R = [z2 + 4a2 sin2 5%]15 (C-Z)

are often encountered. Integrals of this form can be

handled using the method of the auxiliary integral.

Consider the result from an integration table

In h cos%

11‘ f “Tr—am
-n 0

2a . -l 11

= 4|:2% sinh l T + Sinh Ta] (C-3)
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which is called the auxiliary integral. Equation (C-l)

can be rewritten as

 

Io = 11 + (Io - 11) = I]. + 12 (CI-4)

where

n h e-JkR cos¢ - cos %

12 = I f R dzdd) (C-S)

-n 0

The integrand of 12 is nonsingular since

e-JkR cos¢ - cos %

R20

Therefore the numerical integration of I2, hence IO, can

readily be carried out on the computer. Other singular

integrals encountered in Chapters VI and VII are handled

in the same manner.
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APPENDIX D

THE INPUT RESISTANCE OF A VERY THIN

CYLINDRICAL ANTENNA IN A HOT

LOSSLESS PLASMA

In this appendix, we consider the solution for the

zeroth order input resistance to a cylindrical antenna

immersed in an infinite plasma. It is shown that, under

appropriate assumptions, this resistance is the same as

that derived by Chen [23] using a poynting vector method.

The resistance can, under these assumptions, be broken

into a component due to the electromagnetic wave and a

component due to the electroacoustic wave.

From Chapter VI

h

_ _ ' _9. 2 f ' _ I
Rin - Real 3 a —-2-— 8111 Real '2 I)

Sin keh —h

x [cos keh K(0,z') - K(h,z')]dz' (D-l)

where

199
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2
0.)

K(2.2') = 41—1: e(2:2') -m [Guam

- cos kezGP(O,z')

z

- ke ‘4 sin ke(z-z")GP(z",z')d{j} (D-2)

where

 

 

 

n .

1 exP[‘3k R] '

Ge(z.z') = 5;] R e a- 64» (Ia-3)

fl ex [-’k R ]

cp'<z.z') =§gf p; 9‘3ch (1)-4)
-n a

where

T

Ra = /Qz-z')2+ (2a sin #7): (D-S)

2 2

k 2 = wzu e l - —22—— - j we Y (D-6)
e o o w2+y2 w(w§+yi)

kz-wzl-ie-i-'l (1)-7)
P - 5 2 3 w '

Vo w

An assumption that we will make is that the antenna

is very thin so that a line current is assumed to flow

along the axis and the radius of the antenna, a, goes to

zero. A second assumption is that the plasma is lossless,

i.e., Y = 0.
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With these assumptions, equations (D-2) through

(D-7) become

1 (”e

K(2.2') = I? e(Z.Z') - -7r[§P(z.2')

w

- cos kezGP(O,z')

z

- ke j; sin ke(z-z")GP(z",z')dzi] (D—8)

exp[-jkeRa]

 

 

 

I _ .—

Ge(2.z ) - R (D 9)

a

exp(-jk R )

G (2.2') = P a
P R (D-lO)

a

Ra = [2 - z'I (D-ll)

2

2 we

ke = w “060 l - —7?- (D-12)

w

2 (92 “63

k]? = —7 1 - '—2- , (ID-13)

V w

o

and the input resistance, Rin' may be written as

h

__ __2 2 f ' _ c I n
Rin — J g -jf1r———- s1n ke(h Iz |)T(z )dz

Sin keh -h

(D-l4)

where
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1 sin Re 2' sin ke(h-z')

I .. _ ..
T(z ) - 4n cos keh zrii h_zu

(be? sin kP(h-z') sin RF 2'

+ 13?. h-z' - cos keh 2'

h sin kP(z"-z')

" ke‘fo sin ke (11'2")Wd2" .

(D-15)

Let us rewirte Rin in terms of five separate

integrals and then examine each of the integrals separately.

  

  

 

 

With 7 = 0

Ho _ ' uoleo _ 120w
73 _ _ 2 , (D-lS)

2 2 2

/1 we/w /1 we /w

so

we2 k l

Rin = 60 l - —1f -T_§_—__' - cos keh I1 + 12

w Sin keh

2

we

- (”2 E23 - cos keh I4 - ke IS] (D-16)

where

h sin Re 2'

I1 = 1’ sin ke(h-|z'|) iT** dz' (D-l7)

-h
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h sin ke(h-z')

_ ' _ l ' ..
12 - 2L Sln ke(h I2 I) h-z' dz (D 18)

I11 sin kP(h-z')

= ' _ v I _
I3 _h Sin ke(h |z I) h_z. dz (D 19)

h sin sz'

I4 = sin k (h - Iz'l) ——.—— dz' (1)-20)
-h e 2

h h

I = 1’ sin k (h Iz'I)j’ sin k (h-z")

-h e o 8

sin kP(z"-z')

x dz"dz'. (D-Zl)
lz"-z'$

First, let us look at 11' Using trigometric

identities and making some changes of integration vari-

ables, Il becomes

I1 = Sln keh Si(2ker) - cos keh Cin (Zkeh) (D—22)

where the Si and Cin functions are defined as

 

R .

_ Sln x _

O

and

c (R) =fR 1 ’ °°S x dx (1)-24)
in '
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Similarly, it can be shown that

...1.- _I - 2 Sln Zkeh[Si(4keh) Si(2keh{]

l
+ 5(1 + cos 2keh) Cin(2keh)

- % cos Zkeh Cin(4keh),

13 = % sin 2kehEsi(2kPh) - Si(kPh):l

I4 = 2 sin keh Si(kPh),

and

15 = Si(kPh)[: - i: sin Zkeh + h cos 2ken]

1 .
+ Si(2kph) 2k; Sln Zkeh h cos Zkeé]

where we have assumed that kP >> ke and kP >> 1.

Therefore

N
I
H

+ [1 + cos Zkeh] Cin(2keh)

+ 1
3 sin Zkeh[Si(4krh) - 28i(2keh)]

(D-ZS)

(D-26)

(D-27)

(D-28)

cos Zkeh Cin(4keh)
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2

w
e l . .

+ 2F? 5 Sin Zkeh[Si(2kPh) - Si(kPhi]

. . 1 .
+ Sln 2keh Si(kPh) + keSi(kPh) h - k; s1n Zkeh

l .
+ h cos Zkeé] + keSi(2kPh)[%E; Sln Zkerx

h cos 2keh:| (D-29)

For the system we are discussing, i.e., antennas of

the order of wuoeoh = 1, kPh is a very large number. By

definition

_ 1 _

so we can reasonably use the approximation

~ w

Si(kph) 5 (D 31)

With this approximation, equation (D-29) becomes

-%
w

1
R. =3o[--ij -cos2th.(4kh)
1n 2 sin: keh e 1n e

+ 2[E + cos Zkeh] Cin(2keh) + Sin 2keh

w

_ .2. 1 -
X [Si(4keh) 28i(2keh£] + “,2 2 [sin 2keh

+ Zkeh] . (D-32)
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Comparing equation (D-32) with the results of Chen

[23] we can identify an electromagnetic component of the

input resistance of a cylindrical dipole antenna as

2 '3:
w

- - _e 1 ..
Re - 30 l 2 __T— COS Zkeh Cin(4keh)

w Sln keh

+ 2E. + cos ZkelEl Cin(2keh) + $111 Zkeh

x EiMkeh) - 2 sicken] (D-33)

and a plasma component of the input resistance as

2'1:
(A) w

- —e— - i 1 .

RP - 15w 2 1 2 -T—2_—_—'2keh + Sln Zkegl'

w w Sin keh

(D-34)

Equations (D-33) and (D-34) are exactly the form of the

corresponding radiation resistances derived by Chen [23].
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