ABSTRACT

EFFECTS OF PSEUDOSONIC AND ELECTROACOUSTIC
WAVES ON ANTENNA RADIATION

By

Garth Maxam

The purpose of this investigation is to study the
properties of radiating systems immersed in hot lossy
plasma media. Specifically, the dissertation considers
two problems: (1) a spherical antenna coated with a
finite layer of hot lossy plasma, and (2) a cylindrical
antenna immersed in an infinite, hot, lossy plasma.

In the first problem, a spherical antenna, covered
with a layer of plasma described by the linearized hot
electron and ion equations, is studied theoretically. It
is found that in the layer of hot plasma, a pseudosonic
wave, an electroacoustic wave, and an electromagnetic wave
can be excited by the antenna. The effects of these waves
on the radiated power and input admittance of the plasma-
coated antenna are investigated. Significant findings
are the resonances due to the pseudosonic and electro-
acoustic waves and the enhanced radiation phenomenon which

implies that under certain conditions a plasma-coated



Garth Maxam

antenna will radiate more power than the same antenna in
free space.

In the second problem, we study theoretically and
experimentally the input impedance of a cylindrical
antenna immersed in an infinite, hot, lossy plasma. The
theoretical development is based on the linearized hot
electron equations and considers the ions to be motion-
less. An integral equation is developed for the current
on the antenna surface. A zeroth order current distri-
bution is assumed and a zeroth order input impedance is
derived.

An experiment is performed to measure the input
impedance of a cylindrical antenna in a laboratory plasma
and the results are found to be in good qualitative agree-

ment with theoretical results.
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PART I

PSEUDOSONIC AND ELECTROACOUSTIC WAVES
EXCITED BY A PLASMA-COATED

SPHERICAL ANTENNA



CHAPTER 1

INTRODUCTION AND BASIC EQUATIONS

The research described in this part of the disser-
tation is concerned with the radiation of a spherical
antenna through a concentric layer of a compressible plasma
surrounding the antenna. The antenna is assumed to be
separated from the plasma by a thin sheath region which
is also concentric with the sphere.

In this chapter we motivate the above problem and
give some of the historical background dealing with this
problem. Also, the linearized hydrodynamic equations are

developed and discussed.

1.1 Motivation and Background

The study of an antenna surrounded by a finite layer
of plasma is motivated by two important unsolved problems:
(1) the well-known "blackout" phenomenon which occurs when
a satellite reénters the atmosphere, and (2) the audible
noise generated by power lines when a corona forms on the

conductors of the line.



The conventional approach to solve the blackout
phenomenon is to raise the antenna frequency to a level
above the electron plasma frequency of the surrounding
plasma medium. This approach is usually hampered by the
practical limitation of available high-frequency sources.

In this dissertation it will be shown that under
certain conditions the radiation of a spherical antenna
covered by a concentric spherical layer of plasma can be
enhanced if the antenna frequency is adjusted to be much
lower than the electron plasma frequency.

The phenomenon of enhanced radiation from a small
antenna covered by a cold collisionless plasma layer was
first studied by Messian and Vandenplas [l1] in 1967. Lin
[2] and Lin and Chen [3] later studied the same problem
and extended it to include the electroacoustic wave and
collisional losses in the plasma. The electroacoustic wave
consists of a longitudinal compression of the electron
fluid with the ions forming a uniform positive background
necessary for overall charge neutrality.

In this work the same problem is again studied but
this time, effects due to the finite temperature of the
ions are included. It is shown that a psuedosonic wave
may propagate in the plasma for antenna frequencies much
less than the electron plasma frequency of the medium.

Pseudosonic waves are longitudinal compression

waves in a plasma which are quite analogous to sound waves



in a gas. The election and ion fluids are constrained to
move very nearly in phase by the requirement that the
plasma remain nearly neutrally charged.

Pseudosonic waves were first predicted theoretically
by Tonks and Langmuir [4] in 1929 and probably first ob-
served experimentally by Revans [5] in 1933. Since 1933
pseudosonic waves have been observed by many other workers
in the area such as Barrett and Little [6] and Alexeff,
Jones, and Lonngren [7].

Cook and Buchanan [8] have shown that a significant
amount of power may be radiated in the pseudosonic wave
into an infinite plasma above a ground plane. The exci-
tation they use is an infinitesimal slot in the ground
plane.

When an antenna on a reéentry vehicle is covered by
a plasma layer and suffers blackout, a possible scheme of
overcoming this problem will be to reduce the antenna fre-
qguency to a value which will excite the pseudosonic wave
in plasma. The pseudosonic wave will excite an electro-
magnetic wave at the outer surface of the plasma and, thus,
radio contact with the space vehicle may be maintained.

The second problem stated earlier, that of the audible
noise generated by power lines in the presence of a corona,
is not solved here but the mechanisms discussed may be
those involved in that problem. More needs to be done to

verify this.



The remainder of this chapter is devoted to a dis-
cussion of the basic linearized hydrodynamic equations to
be used later. Chapter II studies the pseudosonic and
the electroacoustic waves in an infinite plasma while
Chapter III applies the results of Chapter II to the
specific problem of a spherical antenna covered by a
spherical layer of compressible plasma. Chapter IV
discusses the techniques used to numerically solve the
problem in Chapter III and discusses some specific

numerical results.

1.2 Linearized Hydrodynamic Equations

It is necessary to specify a mathematical model to
describe the antenna and the plasma in order to determine
their interaction. The hydrodynamic model of the plasma
which is used throughout this investigation is presented
in this section. A discussion of the models used for the
spherical antenna is presented in later chapters.

Basically there are two ways of describing a plasma:
a microscopic gas-kinetic treatment using the Boltzmann
equation together with Maxwell's equations of electro-
dynamics; or a macroscopic, hydrodynamic approach using
the momentum transport equations together with Maxwell's
equations. The kinetic theory treatment is generally
much more difficult mathematically and requires serious

physical restrictions be placed on the model to make the



problem tractable. For this reason the hydrodynamic
equations together with Maxwell's equations are used
throughout this investigation. It must be noted that the
hydrodynamic equations do not describe Landau damping
which is included in the more general kinetic theory.
Thus, in following investigation, caution should be exer-
cised when the phase velocity of the waves is nearly equal
to the average thermal velocity of the plasma components
because in this range Landau damping can be significant
(91.

A plasma consists of electrons, ions, and neutral
particles. The neutral particles contribute to the
dynamics of the plasma by collisions with the charged
particles and are considered by including a neutral
particle collision frequency for the electrons and the
ions. Thus, in our investigation, the plasma consists
of two fluids, the electrons and the ions.

The basic equations may be written in such a general
way that both the problem in this part and the problem in
Part II are included as special cases. Gravitational
forces, static electrical and magnetic fields, and macro-
scopic gradients of density and temperature are not in-
cluded in this analysis. The plasma is assumed to be
macroscopically neutral and consists, on the average, of
n_ electrons per meter3, and of the same number of singly

(o)

ionized ions.



Let E and H be the time varying electrical and mag-
netic fields and let Ye and Yi represent the average fluid
velocities of the electrons and the ions. The universal
constants are the elementary charge (electron charge: -e);
the electron and ion masses mg and m,; the permeability of
free space Mgi and the permittivity of free space €5°
The MKS system of units is used throughout.

The hydrodynamic equations of motion for electrons

and ions are [10]

9 . = - &
ot Ye + (Ye V)Ye me[§ + Ye x §]
-1 v -y v (1.2.1)
N m e e ~e tee
e e
2V, + (V.*V)V, = £[E + V. x B]
5t Vi ViV, = o lE+ YV B
-1 __vp. - y. V (1.2.2)
m.N. 'Fi ivit <l
1l 1

These equations include a damping term proportional to the
velocities where Ye and Y; are termed the mean electron-
neutral particle collision frequency and the mean ion-
neutral particle collision frequency. Pe and Pi are
scalar pressures for electrons and ions. The gradients

of these pressures are discussed in detail later. The

equations of continuity are



N =0 (1.2.3)

e
o

vV (NeYe) +

N. =0 (1.2.4)

Q|
ﬁh’
.-l

v . (NiYi) +

The Maxwell equations become

J:
V x E: = =- uo ﬁ (1.2.5)
S oE
V x I;I = q + e(NiYi - NeYe) + So 3T (1.2.6)
Ve H=0

where pS and JS are externally supplied sources and are

related by

s
%"? + v - 35 =0 (1.2.7)

Equations (1.2.1) through (1.2.7) are nonlinear and
hence are very difficult to solve exactly. In order to
simplify the equations, a small signal excitation is
assumed. That is, the various field quantities are

assumed to be of the form

H(r,t) = {IDc(g) + l}Ac(g,t) (1.2.9)
ye(g,t) = Yeo(g) + ye(g.t) (1.2.10)



Ty



Vi (E,t) = Vv, (x) + v, (r,t) (1.2.11)
Ne(g,t) = eo(1:) + ng (r t) (1.2.12)
Ni(g,t) = Nio(g) + ni(g,t) (1.2.13)

where EDC' gDC' Yeo' Yio' Neo and Nio are the average
electric field intensity, magnetic field intensity,
electron velocity, ion velocity, electron density and ion
density, respectively. These average values may vary with
position but not with time (i.e., they are steady state
values). The small perturbation quantities EAC' ~AC'

v_, Vi' n_ and n; are functions of both position and time.

~€ e

In this investigation it is assumed that the average
electron and ion densities are equal and do not vary with

position

No, (£) = n_ = N, (x) (1.2.14)

and that the average electron and ion velocities are zero
since allowing Veo and Vio to be finite introduces no new
physical results but it does seriously complicate the
mathematics [11]. In addition in this investigation
externally applied static fields are not considered and
static electric fields set up in sheath regions are not

considered hence

Hyo (£) = Epo (£) = 0. (1.2.15)



In general the ion and the electron fluids can be
considered to act as neutral particle gaseous media with
one main difference. The interactions of particles in an
ion or electron fluid are over much larger distances than
those for neutral particles.

For both fluids we will later be concerned with VP
where P is the pressure of the fluid.

If we are concerned with a static pressure (D.C.
case), the pressure is established by an isothermal pro-
cess. That is, the temperature of the gas is fixed through-

out the volume of interest, then
P=nkT T (1.2.17)

where T is the fixed temperature of the fluid, n is the
number density of the fluid and k is Boltzmann's constant.

If an external force disturbs n, such that

n(E,t) = no(E) + nl(g,t) (1.2.18)

and n is a fast function of time such as a high frequency
disturbance, then the temperature of the gas is not fixed
simply due to the fact that there is not enough time for
the exchanging of energies in the gas to keep the tempera-
ture fixed. 1In this type of problem, the adiabatic law

should be used, that is

Pn~ ' = constant (1.2.19)



10

where y is the ratio of specific heats such that

_ _P_m+ 2

where m is the degrees of freedom of the gas.

For high frequency plasma oscillations, the motion of
the electrons is usually in one direction only, so we can
assume m = 1, so that y = 3.

Now for the case of a small r.f. perturbation, as
in egn. (1.2.18), the relationship between pressure and
election density is

Pn Y = Pono_Y = constant (1.2.20)

since P Po and n = n initially. Then

n)Y
P = Po{ﬁ;] . (1.2.21)

Remembering that the static pressure is established by an

isothermal process, we have

P = ng kT (1.2.22)

Therefore



VP =

or since

vp

For the case of a uniform average

Vn

so that

vp

11

Y
n
= V|P_|—
( Y Y
n n
= |=—| VP_ + P V|—
( 1Y Y
nl n1
=11 +—] VP_ + P V|1l + —
n o o n
{ o) o
( nl~ Y r
= |1 + o kTVno + ano Y|l +
\ OJ \
( nl* 'Y (
= |1 + —| kKTVn_ + kTn _|y|1l +
n o o
\ OJ L
JY1
N Y N
= kT||1 + — - Y|l + —
n
o o)
n1 v-1
+ YkT|1 + — Vn
n 1l
o
nl << no

= kTVno + YkTan.

=0'

= YkTan.

N Y—l -

2l noan _anno
n 2

OJ no
n

1
—|Vn
no (e}
(1.2.23)

electron density, n_,

o

(1.2.24)

(1.2.25)
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For our case of a two fluid gas, we have

23

3kT _Vn, (x) (1.2.26)

and

Assuming an eJut suppressed time dependence along
with the above assumptions and neglecting products of
small perturbation quantities, the linearized hydrodynamic

equations and Maxwell's equations in a plasma media are

V x Eyc = —Jwug §AC (1.2.28)
- )

V x Hag = 37 + jue_ E, . + eno(yi ) (1.2.29)

nOV * Ve t jun_ = 0 (1.2.30)

noV * vy + Jjung = 0 (1.2.31)

e 3kTe

(jw + Yy )v_ = - —E - Vn (1.2.32)

e’ ~e m, ~ nm, e
e 3kTi

(jw + y.)Vv, = — E - Vn, (1.2.33)

i’si m, ~ n m. i

Equations (1.2.28) thru (1.2.33) are a complete set of
equations which along with the source continuity equation,
equation (1.2.7), completely describe the fields in a plasma

medium.
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In a study of plasma media, certain characteristic
parameters appear frequently. It is convenient to make
the following symbolic definitions. We s the electron

plasma frequency or simply the electron frequency is

defined by
2 noe2
w = (1.2.34)
e m.E,
while w,, the ion plasma frequency is
2
m n_e
i i7o

Another pair of parameters, the thermal velocities, of the

electrons Ve and of the ions Vi are defined by

2 3kTe
V - (102036)
e m
e
2 3kTi
v," = m . (1.2.37)

The definitions (1.2.36) and (1.2.37) are debatable, but
other commonly used definitions lead to the same order of
magnitude result as long as the linearized equations are
used [1l1l]. Therefore, these definitions are used in this
investigation. Characteristic lengths in a plasma are
often measured in terms of the Debye lengths, which for

the electrons is
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2 _ EokTe
(AD)e = — (1.2.38)

noe

and for the ions is

€ kT.
2 _ oi
(o)

Physically the Debye length is range of effectiveness of
any electrostatic fields due either to a surface at some

nonzero potential or to a charge within a plasma.

1.3 Dielectric Sheath

When a conducting solid is placed in an otherwise
homogeneous plasma medium, a transition region between the
main body of the plasma and the solid is formed. If the
potential of the object is allowed to float, the object
will acquire a negative potential and the electrical
neutrality of the plasma will be disturbed in the vicinity
of the object. Due to the high thermal velocity of the
electrons with respect to the ions, the object will become
negatively charged so that at equilibrium, equal numbers
of electrons and ions will hit the object per unit time.
The potential distribution in the vicinity of the object
causes a perturbation of the number densities of the
electrons and the ions. The electron density in this
transition region is less than the ion density and, thus,

the transition region for such a situation is called an
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ion sheath region. From an electrical viewpoint, this
sheath behaves as a vacuum sheath, or simply as a
dielectric sheath.

In this investigation, the sheath region will be
considered as an electron depletion layer, or a vacuum
adjacent to the antenna. It is assumed that the outer
boundary of the sheath is rigid to the elections and ions
in the plasma and, thus, it reflects all particles that
come into contact with it. Also, the sheath layer is

taken to be a few Debye lengths in thickness [12].



CHAPTER 1I

LONGITUDINAL WAVES IN A HOT PLASMA

In this chapter we devote our attention to two
purely longitudinal waves that are excited in an infinite
hot lossy plasma by a source current gs and source charge
density pS. The plasma is considered to be a weakly
ionized gas so that linearized hydrodynamic equations

developed in Chapter I may be used.

2.1 General Relations

The source terms are related by the continuity

equation

S S

v..gJgT o+ jwp™ =0 (2.1.1)

From Chapter I the linearized equations of motion for the

electrons are

jwne + nOV v =0 (2.1.2)

(Gu + vy, = - I-ni E - -f— Vn (2.1.3)

16
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and the linearized equations of motion for the ions are

juwn, + nOV cV, = 0 (2.1.4)
e vi2
(jw + Yi)Yi = + ﬁ; E - 12: Vni (2.1.5)

The fields E and H in the plasma satisfy Maxwell's

equations which from Chapter I are
VxXxE-= -jquH (2.1.6)

_ .S _ :
VxH=J" + eno(Yi Ye) + jwe E (2.1.7)

2.2 Differential Equations for the Electron
and Ion Perturbation Densities

Rearranging equations (2.1.2) and (2.1.4), we have

. = - A
Vo-v, 1= n, (2.2.1)

o

. L]
Ve, he i (2.2.2)

Taking the divergence of equation (2.1.7) yields

= . S . - . 1 .
0=V Jo + eno(V v v Ye) + JweoV E (2.2.3)

or using equations (2.2.1) and (2.2.2) and rearranging,

w
EO

vV.E-= g [v . ‘IS - juel(n; - ne):|. (2.2.4)
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Taking the divergences of equations (2.1.3) and (2.1.5)

gives
. e Ve2 2
(jw + ye)V Ve = T o VeE- T v n, (2.2.5)
e o)
and
e V12 2
(jw + Yi)V C vy = o v e E - o v n; . (2.2.6)
i o

Putting equations (2.2.1) and (2.2.4) into equation (2.2.5)

and multiplying through by - no/Ve2 and rearranging yields

2 2 3y w2
2 w we e e
Vne+—z[1'—z—'Tne+—7ni
v w v
e e
w_ 2
=-3—5—v-3° (2.2.7)
Ve ew -

where wg = /noez/mee:o is the electron plasma frequency.

Using the equation of continuity for the sources and

setting
w_ 2 w_2 Y
2 __e|;._e _; _e
Be = " 1 wz j w]' (2.2.8)
e
we get
w_2 w2 S
Vzn + B 2n + S-n, =-S5 (2.2.9)
e v 2 i v 2 e
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- By a similar procedure starting with equations (2.2.2),

(2.2.4), and (2.2.6) we obtain

2 2 wi2 w.2 S
V°n. + B.“n, + == n_ = =2 B_ (2.2.10)
i i1 2 e e
V. V.
i i
where
2 2 Y
2 _ w w A
Bi = ——7-1 -5 - - (2.2.11)
Vi wi

and w, = /noez/mieo is the ion plasma frequency.

Equations (2.2.9) and (2.2.10) are two coupled
differential equations for the electron and ion pertur-
bation densities.

2.3 Uncoupling the Differential Equations

for n and n.

Multiplying equation (2.2.9) by Ve/we and equation

(2.2.10) by Vi/wi, we obtain

v v w V. w S
v? Gg LN Be2 Gg n |+ VeVl Gl Nl = Vs %;
e e e il i e
(2.3.1)
and
v v ww, |V w S
A T I M P e o B A
i i e il e i ©

(2.3.2)
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Equations (2.3.1) and (2.3.2) can be written compactly as

the matrix equation

S
v’n+gn=Ls (2.3.3)
where
-
r-\.’e
We
£l=
Vi o
“1
B 2 Wa 4
e Vv
e i
§=
Wely 8 2
vV V. i
e'i
| _
[_w—
- &
Ve
S =
2 w,
v (2.3.4)
L 1]

In Appendix A it is shown that equations (2.3.1) and
(2.3.2) can be uncoupled resulting in two differential
equations which describe two new waves n;, an ion wave
and an electron wave denoted by n,. The differential

eguations that describe nl and n, are
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v2n. + k.2n. = 5. Bo (2.3.5)
1 1™ T °1 ¢ i
2 2. Ps
V n2 + kz n2 - Sz ?; (203.6)
where
2 w 2w.2
2 _ 1, 2 2 2 _ .2 e i
kl =3 Be + Bl + /(Bi Be ] + 4 " 2V 5 (2.3.7)
e i
and
2w, 2
2 _1f, 2 2 2 2 Yoy
k2 —iee +Bi -'/(Bl -Be]+4—§——2- (2.3.8)
Ve Vi

and Sl and 82 are defined in Appendix A. n, and n, are

linear combinations of n, and n,

w
= -

n, = Ve (Tllnl + lenz) (2.3.9)
9

ni = VT (T21nl + T22n2) (2.3010)

1

where T22’ le, Tzl,and Tll are given in Appendix A.
Equations (2.3.5) thru (2.3.10) provide a complete solution
for the electron perturbation density and the ion pertur-
bation density in an infinite homogeneous plasma.

Figure 2.1 is a plot of the coefficients relating

2, 2
ne and ni to nl and n2 and of Sl and S2 versus we /W .
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Figure 2.1. Plot of various parameters obtained in
uncoupling Equations (2.3.1) and (2.3.2). The plasma (oxygen
atoms) is assumed to be hot (Ve/c = 0.01, Te = Ti) and lossless
(v = Yy = 0).
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2.4 Physical Interpretation
of n, and n,

In order to discuss n, and n, in more detail it is
necessary to specialize equations (2.1.2) thru (2.1.5) to
the specific case of a monochromatic plane wave which pro-
pagates in the positive z direction in a cartesian coordi-

nate system. The variables describing the wave are ex-

pressed in the form:

ej(wt-kz)

A = Qo (2.4.1)
where Ao is, in general, a complex coefficient.

We use the following linear operator:

V=-73k (2.4.2)

where k is the propagation vector in the z direction.

Equations (2.1.2) and (2.1.4) can be written as

n = nokvez/w (2.4.3)
n, = nokviz/w (2.4.4)

and the z components of equations (2.1.3) and (2.1.5) are

2
. e . Ve
(ju + Ye)vez = - = Ez + 3 - kne (2.4.5)
e o
e Vi2
(u + yy)v,, = —=E, + 3 54— kn, . (2.4.6)
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Specializing equations (2.4.5) and (2.4.6) to a collision-
less plasma (Ye =v; = 0) and solving for Vez and Viz

yields

Y -3 w
Vag = Jj me 5> 5 Ez (2.4.7)

(2.4.8)

. e
v . —_— J — .
iz mi kZViz _ w2 z

The electron and ion average velocities are seen to
be 90° out of phase with the electric field. In addition
the simple theory predicts singularities at k = w/Ve and
k = w/Vi due to the use of the linearized equations.

Two other useful quantities are the phase velocities

of nl and n2

- w

Vphl = E-I (2.4.9)
- W

Vph2 = E; (2.4.10)

for a collisionless plasma. Figure 2.2 shows a plot of

v and V versus w 2/w2 for a weakly ionized collision-
phl ph2 e

less hydrogen gas at equilibrium (Te = Ti). A study of
Figure 2.2 indicates that n, propagates at all frequencies

but that n, propagates only when w > wg - It must be noted

that this theory does not include collisionless or Landau
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10 ¢

ph

1074

R i

Figure 2.2. Phase velocity of n; and n; in a hot lossless
(Ve/C = 0.01, Te = Tj, ye = Y4 = 0.0) plasma as a function of the
plasma frequency squares over the source frequency squared. The
plasma is assumed to consist of oxygen atoms.
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damping which damps n, when Vphl ~ Vi and n, when
Vph2 = Ve.
Some physical insight into the nature of n, and n,

can be obtained by studying these waves in the high and

low frequency limits. Using the parameter

viz me k2Ve2 - w2
ez ik Vi -w

and choosing freely from limit forms of the parameters kl,
k2, Tll' le, T21,and T22 calculated in Appendix A, this

will now be done.

(a) Electron Waves, n,

In the high frequency limit (w2 >we2 >> wiz)
w 2|
= W - &
e w
and

n - XE n (2.4.13)

2 = w e ' e

e

V. m w2

ez i w

Result (2.4.14) shows that in the electron wave in the high
frequency limit the ions are essentially immobile. This
agrees with equation (2.4.13) which says that in the high

frequency limit, the electron wave n, consists only of
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electron oscillations. Equation (2.4.14) also shows that
in the electron wave, the ions and electrons oscillate out

of phase. From equation (2.4.12) it can be seen that Vph ’
2

2, 2
is always greater than the thermal velocity of the
electrons and that in the very high frequency limit

(w2

>> mez) the phase velocity of n, tends to Ve
In the low frequency limit (in fact for all w < we)
k2 is purely imaginary and the electron wave does not

propagate.

(b) Ion Waves, n,
For the ion wave, the phase velocity is always in

the range

Vi < Vphl < Vs (2.4.16)

where VS is the low frequency limit of the phase velocity
of the ion wave:
k T, + T,
Vo = 2. . (2.4.17)

S mi

On the other hand, the electron temperature is, in
most cases, equal to or greater than the ion temperature.

Hence V. is much smaller than Ve, giving

S
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v << Ve. (2.4.18)

ph,

In the high frequency limit

—_— ® (2.4.19)

indicating the electron velocity is much smaller than the
ion velocity. In the high frequency limit n, consists
mainly of the motion of ions justifying calling n, an ion
wave.

In the low frequency limit

2
Ve
m
2 e 2
V. + — V -1
Via . TE i m, ‘e
v m, 2
ez 1 Vi
m
2 e 2
Vi +Irve-l
i
m
2 2 e 2
m Ve Vi “m Ve
= . € 1
m. m
i 2 2 e 2
Vi V5 " m Ve
i
2
:]_-Vi-rig
2 m
Ve i

b4
[

(2.4.20)
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and
K, = m/[vi2 + 2—?— v’ * (2.4.21)
and
n, = —l-Z-Ene +;L]:-'-ni]. (2.4.22)
2| %e i

for an equilibrium plasma (Te = Ti)‘

From the above equations we can conclude that in the
low frequency limit the ion waves consist of electrons and
ions moving in phase with approximately equal velocities
and the medium remains practically neutral. However, this
is rigorously true only in limit of w— 0. For finite
values of w there exists a slight deviation from neutral-
ity; the ion oscillations are slightly larger than those
of the electrons. Even though this deviation is weak, an
electric field resulting from the space charge produces a
coupling between the aggregate motion of the elections
and ions.

Hereafter, we shall refer to the electron wave in
the high frequency range as the electroacoustic wave and
the ion wave will be called the pseudosonic wave in the
low frequency range. These are the regions of interest

for the two waves and the properties discussed above will

be used later in the solution of a specific problem.



CHAPTER III

RADIATION AND INPUT ADMITTANCE OF A SPHERICAL
ANTENNA SURROUNDED BY A FINITE LAYER

OF HOT, LOSSY PLASMA

In this chapter the radiation and input admittance
of a spherical antenna surrounded by a finite layer of a
hot lossy plasma is studied. In addition to the electro-
magnetic wave, two longitudinal waves, an electroacoustic
wave and a pseudosonic wave, may propagate in a hot plasma.
These are included in the following analysis. In addition,
a thin dielectric sheath is assumed to surround the spheri-
cal antenna and separates it from the plasma layer.

3.1 sStatement of the Problem
and Method of Analysis

The geometrical configuration is shown in Figure 3.1
using a spherical coordinate system (r, 6, ¢). A spherical
antenna of radius a is centered at the origin and is covered
by a thin dielectric sheath of outer radius b. The permit-
tivity of the sheath is €4 and the permeability is taken
as the free space permeability, Moo The sheath is covered

by spherical layer of hot lossy plasma which has an outer

30



Figure 3.1.
a hot, lossy plasma.
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radius of C. The plasma is assumed to be a weakly ionized
gas so that the linearized hydrodynamic equations apply.
It can be regarded as consisting of two fluids, the ions
and the electrons with the neutral particles being taken
into account by assuming finite collision frequencies be-
tween the ions and the neutral particles and between the
electrons and the neutral particles.

As an idealized approximation the sheath is con-
sidered to be a lossless coating which is perfectly rigid
to the inward radial flow of the ions and the electrons.
It is also necessary to impose a boundary condition on the
outward flow of the ions and electrons at the outer sur-
face of the plasma layer. To make the problem tractable
it is assumed that the outer boundary of the plasma is
rigid to the outward radial flow of ions and electrons.
Without these assumptions a solution to this problem would
be very difficult.

The spherical antenna is perfectly conducting except
for a narrow equatorial gap between w/2 - 6 < G < /2 + 6
Across the gap the antenna is driven by a constant voltage
generator with a voltage, V, and an angular frequency, w.
The total space excluding the antenna is divided into
three regions. Region I is the dielectric coating,

Region II is the hot, lossy plasma layer and Region III

is an infinite free space region.

lo
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We aim to solve for the fields in all three regions
and the ion and electron densities in Region II. The
solutions contain nine arbitrary constants. These con-
stants can be evaluated by matching the tangential electric
field in the dielectric region to that on the antenna, by
matching the tangential electric and magnetic fields across
the boundaries at r = b and r = ¢,and by requiring that the
radial velocities of the ions and the electrons go to zero
at r = b and r = ¢ as discussed earlier. This procedure
gives us a complete solution to our rather idealized
problem.

In this study rationalized MKS units are used.
Rotational symmetry and an infinitesimal driving gap are
assumed. Furthermore, exp(jwt) time dependence is assumed
for the generator and all the fields.

3.2 Region I: Dielectric
Sheath Region

The basic equations which govern Region I (dielectric

layer, a < r < b) are Maxwell's equations

V x E;(r) = - juu, H,(r) (3.2.1)
VxH (5) = jwed §1(£) (3.2.2)
where E1 and H, are the electric and magnetic fields, Mo

is the permeability of free space, and €4 is the permit-
tivity of the dielectric medium. The suppressed time

dependence is exp(jwt).
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From the symmetry of the antenna it can be seen that
there is no variation in the ¢ direction and that the mag-
netic field has only a ¢ component. Thus equations (3.2.1)

and (3.2.2) can easily be reduced to three scalar equations

such as
J°E

9 lr _ _ .

g;(rEle) - =5 = quorH1¢ (3.2.3)
2 .2 (sinfH.,) = juwe E (3.2.4)
r sinO 96 1¢ d 1r e
2 (rH, ,) = jwe,rE (3.2.5)
or 1¢ d "1le° cer

Differentiating equations (3.2.4) and (3.2.5) and substi-
tuting them into equation (3.2.3) leads to a partial differ-

ential equation

2
) 1 2 1 2( . 2 _
;;7 (rHl¢) + ;5 _5[;in6 56(51n6 rHl¢1] + Bd (rHl¢) =0

(3.2.6)

where de = wzuoed. To solve equation (3.2.6), we use the

method of the separation of variables. Since Hl¢ is inde-

pendent of ¢ we can assume

rH,, = R(r) @ (8) (3.2.7)

1¢



N}

fql
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where R is a function of r alone and @) is a function of
8 only. The substitution of equation (3.2.7) into equation

(3.2.6) leads to

2 .2 I l
r® d"R 2.2 1l d 1 d .
—_— a4 krc = - ———.——-—-(®51n6) = n(n+l)
R dr2 C)de sinb6 d6

(3.2.8)

where n(n+l) is the separation constant. Equation (3.2.8)

generates two ordinary differential equations

%E‘iln_e %(@sine)] + n(n+l) @ = 0 (3.2.9)

2 .2

L2484 8.%% - n(n+1) = 0. (3.2.10)
dr

Let us consider equation (3.2.9) first. Making the

substitutions,

u = cosf ' /1 - u2 = sin6 ’ é% = - /1 - ui é%,
equation (3.2.9) can be reduced to
2
- L@ 5, 4@, [me1) - —L | @= o0
2 du 2
du l ~-u
(3.2.11)

Equation (3.2.11) is a special case of the associated

Legendre's equation,
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a? d m?
(1-x°) &X - 2x X 4+ [n(n+1) - y =0
d dx 2
X l - x

(3.2.12)

which has a solution, y = an(x),which is called an associ-
ated Legendre function of the first kind of order n and
degree m. |

In order to have finite solutions on the interval
-1 < x < 1 the parameter n must be zero or a positive
integer and m must take on only values -n, -(n-1),...,0,
.e.yn-1,n, i.e., n > |m|.

Thus a solution to equation (3.2.11) is

® = Pnl(u) = Pnl(cose) (3.2.13)

where n must be a positive integer.

Note that only one solution for this second order
differential equation (3.2.11) has been considered. The
other solution diverges on the 6 = 0 and 6 = 180° axes
and so it must be excluded from the solution.

Some other properties of the associated and ordinary
Legendre functions that will be useful to us in later
developments and in the numerical calculations are tabu-
lated in Appendix B.

We must now solve the other differential equation,

equation (3.2.10). With the substitution

R =R & (3.2.14)
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equation (3.2.10) becomes

2
a’r dr

1,171 2 (n+) -
_—2'+FHF+E3d __Ti_.]gl_o. (3.2.15)

Equation (3.2.15) is a form of Bessel's equation which has

a solution

= (2) (1)
Rl =A_ Hn+%(8dr) + Bn Hn+%(6dr) (3.2.16)
. (1)
where An and Bn are arbitrary constants and Hn+%(8dr)

(2)
n+s

second kinds with order n+%, which represent radially

and H (Bdr) are Hankel functions of the first and

inward and outward traveling waves respectively.
Combining equations (3.2.7), (3.2.13), (3.2.14), and

(3.2.16) we have

1 (2) (1)
. Pn(cose)[§nﬂn+%(8dr) + Ban+%(Bdr{]-

(3.2.17)

1
H -
1¢ /T n

™ 8

The r and 6 components of the electric field can now be
found using equations (3.2.4) and (3.2.5).

Substituting equation (3.2.17) into equation (3.2.4)
and using the identities (B-7) and (B-8) from Appendix B

yields



38

- ' (2)
E, = -_1_375 El n(n+l)Pn(cose)[:n n+k(8dr)

we 4¥ n=
(1)
+ B Hn+%(6dr{]° (3.2.18)

To derive Ele' we need two differentiation formulas

for Hankel functions

da .. (1) _ _ n#s (1) (1)
ax Hnagy (X)) = = 55 Hp () + H7y (%) (3.2.19)
d%? ngl)s(x) =" —;ci r(h%s),(") + H(zl)i(X) (3.2.20)

The substitution of equation (3.2.17) into equation (3.2.6)

and using equations (3.2.19) and (3.2.20) leads to

; 1 (2) - (2)
Ele - - _:,73 il pn(cose) AnE'l Hn+3§(6dr) B r H %(Bdri‘

r n

The solutions for the fields in Region I can thus

be summarized as follows:

Z P (cose)[: éi;(ﬂdr) + B H(iL(Bdr{]
n=1

ﬁl"‘

1¢

(3.2.22)
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= ] (2)
Elr = ———1375 il n(n+l)Pn(cose)[%an+g(Bdr)

(1)
+ B Hn+%(8dr{] (3.2.23)

_ j s ol (2) _ (2)
Ejg = - ———1375 z Pn(cose){%n[% Hn+%(6dr) Bdr Hn_%(Bdr{]

wedr n=1
(1) (1)
+ Bn[% Hn+%(6dr) - Bdr Hn-k(Bdgj} (3.2.24)
H = H = E =0 (3.2.25)

1r 16 1¢

3.3 Region II: Plasma Layer

In Region II (plasma layer, b < r < ¢), the plasma
medium is considered to be a two component, ion-electron
fluid. That is,both the ions and the electrons are allowed
to be mobile. The plasma is also assumed to be a weakly
ionized gas having average number densities of ng elec-
trons and n, singularly ionized atoms which are assumed
to be constant in the plasma layer. The deviation of the
electron density from the mean density, n,, is denoted
by ng and the average induced velocity of the electrons is
denoted by Ver The collision frequency of the electrons
with the neutral particles is denoted by Yoo Similiarly

defined quantities for the ions are given by n.

v. and Y..
i’ - Y

i
Electron-electron, electron-ion and ion-ion collisions are
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assumed to be negligible in a weakly ionized gas and thus
they are ignored.

In its unperturbed state the plasma is assumed to be
homogeneous and neutrally charged and the perturbation of
the plasma is assumed to be sufficiently small, i.e.,
ng << ng and n; << n,, so that the linearized hydrodynamic
equations discussed in Chapter I apply. No static electric
or magnetic fields are present.

For a harmonic time dependence of exp(jwt) the basic

equations in the plasma layer are Maxwell's equations

V x E,(r) = - Jwu  H,(r) (3.3.1)
V x Hy(r) = - eno[Ye(E) - Yi(g)] + jwso gz(g) (3.3.2)
V.E,(r) = - % [n (x) - n, ()] (3.3.3)
V. Hy(r) =0 (3.3.4)

and the linearized continuity and force equations for

electrons
no[V . Ye(g)] + Jmne(g) =0 (3.3.5)
e ve2
(Ye + jw) Ye(f) = - ﬁ; gz(f) - ?;; Vne(f) (3.3.6)

and the linearized continuity and force equations for

the ions
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.

n [V + v, (r)] + Jun, (r) = 0 (3.3.7)
2
. e Vi
(vi + 3wy (x) = g= Ep (1) = =~ Vny (¥) (3.3.8)
1 o

where -e and m, are the electronic charge and mass of the
electrons, e and m, are the electronic charge and mass of
the ions, Mo and €, are the permeability and permittivity
of free space, and Ve and vV, are the thermal velocities
of the electrons and the ions, respectively.

It should be noted that the last terms on the right
hand side of equations (3.3.6) and (3.3.8) represent the
force due to a pressure gradient and the definitions given
for Ve and vy in Chapter I are valid under the assumption
of an adiabatic pressure variation and a one-dimensional
compression.

In our formulation there are fourteen scalar un-

knowns, E2, HZ' ngs Ny Vo, and MK We will determine

e
§2' ne, and ni first and then calculate §2, Ve' and Yi'

~

It has been shown in Chapter II that ng and n, are

solutions to a pair of coupled differential equations

2 2 we2 we2 QE
v ne + Be ne + F ni = - ‘—I— P (3.3.9)
e e
w,.2 w.2 _S
v2n. + 8.%n, + —=-n = 1_ 2 (3.3.10)
i i i V.2 e v 2 e



where

and ps is
equations

to obtain

n.
1

where

11
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r LN
w2 wez Ye
e . w s
2. ;2 Y;)
w2 -3 2 (3.3.12)
= = 2 wJ
v. 2\ w
1

the imposed source charyge density. In Appendix A
(3.3.9) and (3.3.10) are algebraically uncoupled

solutions for ng and n,

w
e
= V;(Tllnl + T12n2) (3.3.13)
95
V;(TZInl + T22n2) (3.3.14)
= 1 — (3.3.15)
1+ L vezviz[s 2 _ B2 2
4 2 2'Fe A ]
w w. 1 o)
e 1
2 2
2 W W
€ v 2v.2 2
1 +2 e 31 g2_52_4a]
4 2 2'"e i (o)

(3.3.16)
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T, = 1 (3.3.17)
12
v %y.2 2
1l "e i 2 2
1+7 -2 3l8e - By * A
e i
2 2
T - _ 1 Be By~ + Ao
22 2 w_w
v v, 2 2 2
l e "1
1+7 we2w12[6e - By * Al
(3.3.18)
and
_ 2 _ . 2.2 W 2w, 2
A, = /(Be BiT) " 4+ 4 Lt (3.3.19)
vV _“v
e 1

and n, and n, are solutions to the differential equations

2 2 pS
v n, + kl n, = Sl S (3.3.20)
20, + k.2n. = 5,20 (3.3.21
n, 2 By = S5 -3.21)
where
2 _ l 2 2
kl = 2(Be + Bi + Ao) (3.3.22)
2 _1,, 2 2 _

w. w
= L &



44

w,
1

In a sourceless region like Region II under consideration,

equations (3.3.20) and (3.3.21) become

2 2 _
Von, + k;“n) = 0 (3.3.26)

1

V'n, + k,”’n, = 0 (3.3.27)

Both equations (3.3.26) and (3.3.27) are of the

form

v2n + k%n = 0 (3.3.28)

which will now be solved by the method of the separation
of variables.

Due to the rotational symmetry, (no ¢ dependence),
the Laplacian of the scalar field n can be expressed in

spherical coordinates as

2 1 a[ 2 anJ 1 ) [ . anJ
V°n = =|rc &=| + = |sin <=|. (3.3.29)
ri or r ri siné 26 ¢}
Since
3 (.2 an) _ _ &

and using equation (3.3.29), equation (3.3.28) can be

reduced to a partial differential equation
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9 1 ) . 9 2
j(rn) + —_— [81n9 —(rn):| + k" (rn) =0
or r2 sin® 98 90
(3.3.31)
Since n is independent of ¢, we can assume
rn = R(r) @ (8) (3.3.32)

where R is a function r alone and @) is a function of 6
only. The substitution of equation (3.3.32) into equation

(3.3.31) leads to

2 .2
r- d°R 2 _ _ 11 a,. . _
® ;27 k'r = - @ sino o (5in® a% = £(2+1) (3.3.33)

where £ is an integer and 2 (%+1) is the separation con-
stant. Equation (3.3.33) generates two ordinary differ-

ential equations,

1 d, . _
Sing 3o (sind 5@ + 2(2+1) @=0 (3.3.34)
and
2 a%r | 2.2
r® =5 + k“r“R - 2(2+1) R = 0. (3.3.35)
dr

Let us consider equation (3.3.34) first. Making

the substitutions

u = cosd, vl - u2 = ginb, é% = - /1 - u2 é% '
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equation (3.3.34) and be reduced to

1 - u?) :@- 2u §+ L(2+1) @ = o. (3.3.36)
u

Equation (3.3.36) is the standard form of the ordinary
Legendre's equation. This equation has the standard

solution

® = P, (u) = P, (cosb) (3.3.37)

where £ is zero or a positive integer. Note that only
one solution for this second-order differential equation
has been considered. The other solution diverges on the
axes and so it can be excluded from the solution on physi-
cal grounds.

Since equation (3.3.35) is in exactly the same form

as equation (3.2.10), its solution can be written as
= (2) (1)
R = E[CQH“}’(M) + Dzn“!!(kr)J (3.3.38)

where C, and D, are arbitrary constants. Combining

L L
equations (3.3.32), (3.3.37) and (3.3.38), we have

(2) (1)
n = Fr 220 Pl(cose) |E2H£+;§(kr) + D2H£+8(kr):|.

(3.3.39)

Therefore nl and n, can be written as follows:
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1 o (2) (1)
(3.3.40)
I U (2) (1)

(3.3.41)

n, and n, are the perturbations due to the pseudosonic and
the electroacoustic waves respectively. Substitution of
equations (3.3.40) and (3.3.41) into equations (3.3.13)
and (3.3.14) yields explicit representations of n, and n,.
We must now determine the magnetic field H in
Region II. Taking the curl of equations (3.3.2), (3.3.6)

and (3.3.8), we obtain

VxV x H, = - eno(V X Vg -V x Yi) + jweov X E
(3.3.42)
_ e
e''e
and
Vxv, = £ V x E.. (3.3.44)
~1 mi(Yi + jw) ~2

The substitution of equations (3.3.43), (3.3.44), and

(3.3.1) into equation (3.3.42) gives
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VvV xV x H, = wzu € |1 + = wez ; + = wiz x H,.
~2 oo Jw(ye + Jjw) Jw(yi + jw) [~2
(3.3.45)
Using the vector identity of
VxVxH =V( - H) - 72, (3.3.46)

and equation (3.3.4), equation (3.3.45) can be reduced

to a homogeneous wave equation
(v2 + k %)H, = 0 (3.3.47)

where ke is the complex propagation constant of the

electromagnetic wave in a two fluid plasma given by

2 _ 2
ko® = wu g (3.3.48)

where § is the equivalent complex permittivity defined by

E=c¢ |1 + < we? —t wi? :
o Jw(ye + Jjw) Jw(yi + Jjw)
B
_ wez wiz . wezYe
=% 1- 2 2 - 2 2 ")
w” + vy w® 4 vy w(w”™ + Ye )
w2y
+ || - (3.3.49)
wlw® + v.7)
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From the symmetry of the antenna it can be seen that
there is no variation in the ¢ direction, i.e., 3/3¢ = 0
and the magnetic field has only a ¢ component. Thus the
Laplacian of the vector magnetic field in spherical coordi-

nates takes the form

2. _ 2 D! 2
V'H, = ?(VMH2¢ ;7 csc 6H2¢)
3H,, | oH
l 39 2 2¢ 1 9 2
= § —|r + =—|sing
< ri or &'J r2 sind 30 96
1 2
_

where 5 is the unit vector in the ¢ direction. Using

~

equations (3.3.30), (3.3.50) and the following identity

9H
1 o . 20| _ 2 3| 1 a .
Sino ae[s“‘e 36 ] csc OH,, = _ae|:s'TrW 36 (smeﬂw)]

32H oH
= —2% + cote —2% - cscen, (3.3.51)

20 ¢

in equation (3.3.47) leads to a partial differential

equation,
32 1 3| 1 2
;;7 (rHy,) + ;7 36|5Tne 55[51n6rH2¢] +k, (rH2¢) =0

(3.3.52)
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which is in exactly the same form as equation (3.2.6).

Thus the solution to equation (3.3.52) can be written as

1 3T (2)
H2¢(r,9) = = nil Pn(cose)E‘Jn Hn+%(ker)
+F, Hl&_;)i(ker):l (3.3.53)

where En and Fn are arbitrary constants.

Hy, ne,and n, have been determined explicitly and
are expressed in equations (3.3.13), (3.3.14), (3.3.40),
(3.3.41), and (3.3.53). We now must express Eyr Var and
Vs in terms of these known quantities.

From equations (3.3.6) and (3.3.8) we easily get

2
\"4
_ e _ e
Ve © m_ (Y +Jw §2 n, (Y +iw Vne (3.3.54)
e Vi2

The substitution of equations (3.3.54) and (3.3.55) into

equation (3.3.2) leads to

eV 2 e V.2

= 1 - e 1
E, = JwE Vx§2 iw&(ye+jw$ Vne + imi(yi+jw) Vni

(3.3.56)
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where £ is given in equation (3.3.49). The substitution

of equation (3.3.56) into equations (3.3.54) and (3.3.55)

yields
2 2
eV w,
Ye =~ mg (Ye+3w) Jof VX8 - Eq oye+3w) 1 - —f_i_f
o'le Wy
. 2 2 2
i S 10 oY v (3.3.57)
- — == |Vn + — ' n. .3.
w(w2+yiz) e " n twly;+jw) (Y +jw) i
eoVi2 me2
m; (v. +3m$ JwE VX, - En (v.+jw) 1-=—
o''i w +Ye
. 2
_31§fsi§_ v e " o'e v 3.3.58
) wlw+y ) "1 —-Ew(y +Jw)(Y etIv) Pe (3:3-59)
e

Under rotational symmetry the two vector differential

operators in spherical coordinates can be expressed as

—1 3
ine 236

P>

2 (rHy,) (3.3.59)

(sin6 H 3T 26

29)

and

Q

n

36 (3.3.60)

where g and 8 are unit vectors in the r and 6 directions
respectively. Combining equations (3.3.56) to (3.3.60),

we obtain
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. 2
1 1 ) . J e Ve ane
Ey)r = Jof T sind 3¢ (sind H2¢) + wE (y_+jw) or
e Vi2 ani
- (3.3.61)

) o (y;+Jw) or

2
eV on
- _ .1 1 9 . e 1l e
Exe = JwE r ar(rH2¢) 3 wg(ye+jw) r 36
2
e V., on.
. i 1 i
"3 ey £ 70 (3.3.62)
_ . e 1 1 3
Ver © melye+3m$ JwE r sind 5p (sind H2¢)
2 2 2
) €o Ve ) wy - Y94 ane
Eno Yetiuw w +'yii w(w2+yii; or
2 2
w_ "€V, an,
. e o'i i
+ 3 : : (3.3.63)
nogw(yi+3m)(ye+3w) or
. __ e 113
Veo = me(ye+jw) JwE r ar(rn2¢)
2 2 Yy w 2
__% Ve 1 - “i j ii 1 ang
Eﬁo(ye+3w) m2+yi2 w(w§+Yi2) r 9
2
2 V.
Je ‘o - 120 (3.3.64)

+ 3 H;Ew(yi+jm)77e+jw) T 06
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e 1 1 9 .
Vir milyi+3w$ JwE r 8ind 3¢ (8ind H2¢)

e Vi ) Ve Ye Yo an,
Eno(yi+jw) WY w (w +g ) or
2 2
w, €V an
*3 H_E;(Yo+jg)Ty +jw) are (3.3.65)
(o] i e
= - = 1 1 3
Vie T T m (y;¥30) Jwf r 3r “hze)
2 2 2
) €6 Vi 1 - _22___ - 5 We Ve 1 ani
En (v ;+jw) N +Ye2 w_(w—2+7e2) r 30
2 2
w, €_V 3n
+ ) TR £ e - (3.3.66)
08w (Y +Jw) (Y +Jw) r 238

Using equations (3.3.13), (3.3.14), (3.3.40), and (3.3.41)

to express ng and n, explicitly, we obtain

(2)
Cln n+!g,(k r)

=3
"
<qm€

Pn(cose) Tll

||M 8

1
- =

)
— —

+ D n‘”(klr) + 1. le. 52 (x ,¥)

1n "n+k 12| 72n n+k

(1)
+ Dy n+k(k r) (3.3.67)

—



-
(2)
Cin Hpyy (kyT)

-
-_ ~—

(1) (2)
+ Dln n+%(k r)| + T C2n n+;ﬁ(k r)

—

(1)
+ D,y n+k(k2r) (3.3.68)

where Tll’ le, T21' and T22 are given by equations (3.3.15)
thru (3.3.18). Using equations (3.2.19), (3.2.20), (3.3.67),

and (3.3.68) we can get

a_nS.—_u..’.E 1 ; P ( 8)<{T (+1)H(2)(k )
3r V. _3/2 _“ Fplcos 11 C1n| n+k %1%
er n=0
- [
(2) (1)
- k an %(klr) + T11 Dln (n+l)Hn+k(klr)
— -
- % rHélL(k r)| + T, Cp (n+l)Héi;(k r)
-k rnézi(k r)| + T, D, (n+1)H(1L(k r)
(1)
- k,rH 7} (k,r) (3.3.69)

and



55

ani Wy (2)

l [¢ ]
= - I P_(cosd){T C (n+1)H (k,x)
or Vi g n=0 P 21 ln|: n+k 1

- —

ril2) (k)| + T, Dy ey E(E) (k) r)

-k n+
a L

1

L

(2)

-k n+k%

i aon |+, oo e {2) (k)

—

—— e

(n+1)H(1)(k2r)

(2)
- k,rH nti

2 n_%(kzr) + T

22 “2n

K rH(l)(kzr) i (3.3.70)

2" 'n-%

From the definition of the associated Legendre functions
and the ordinary Legendre functions we can derive the
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