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ABSTRACT 

 

MEASURING AND MODELING MARKET RISK FOR LIFE INSURANCE COMPANY 

ASSETS:  AN APPLICATION OF EXTREME VALUE STATISTICS 

 

By 

 

Ryan Timmer 

 

Standard deviation and variance have been the default measures of investment risk at 

least since Markowitz’s seminal contribution to portfolio selection in 1952.  Intuitively, though, 

investors may not be symmetric around the mean in their attitude toward risk.  In other words, 

they may be much more concerned about the possibility that realized returns are significantly 

lower than expected (“left tail risk”) than the alternative of returns being significantly higher than 

expected.  We study the asset allocation decision for a life insurance company, which is an 

environment where left tail risk is of utmost concern to the investor.  Due to the long-term nature 

of a life insurance company’s liabilities, the insurer must necessarily select asset portfolios with 

a high premium on avoiding left tail risk for regulatory and long-term profitability reasons.  We 

use extreme value theory, downside risk measures, and copulas to model the market risk of a life 

insurer’s assets for the purpose of selecting an optimal portfolio in such an environment.  We 

find that the current industry allocations to at least one of the primary drivers of life insurer 

market risk (equities) are close to optimal as of 2013.  In addition, we study how the optimal 

General Account corporate bond and equity allocations, which are chosen by the company, are 

affected by policyholder investment decisions in the Separate Account and other allocations in 

the General Account over the past two decades. 
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I. Introduction 

A. Role of Life Insurance in Society 

 Life insurance is an extremely important part of our financial system and economy.  Like 

other financial institutions such as commercial and savings banks, pension funds, investment 

management companies, etc., life insurance companies engage in the economically important 

activities of the financial system.  One can think of finance as being the heart of the economy.  

As the heart pumps blood out to the different parts of the body making sure each part receives 

the oxygen it needs and only what it needs, the financial system pumps the economy’s lifeblood 

to where it is needed.  When functioning properly, it allocates capital from those willing to 

supply it (the savers) to those who need it (the borrowers).  By doing so, it directly benefits the 

savers and the borrowers by bringing them together as well as enabling a well-functioning 

economy. 

 In playing its part in the financial system, the life insurance industry supports two major 

components of the economy.  The products of this industry, which are mainly life insurance and 

annuities, provide financial security and stability to 75 million households in the United States as 

of 2009 (Ernst & Young (2014)).  Ernst & Young has also estimated that of these households 

with life insurance coverage, such coverage would provide sufficient resources to 82% of the 

children in these households to maintain their current standard of living for a year.  In contrast, 

the financial assets of only 4% of the children in households without life insurance coverage 

would be sufficient to maintain their current standard of living for a year.  Annuities can also 

provide significant benefits to the personal finances of retirees by ensuring they will not outlive 

their source of income.  Perhaps these are some of the reasons that at least two life insurers have 

been named systemically important financial institutions by federal regulators. 
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 Life insurance companies pool together significant amounts of capital by collecting 

premiums from their policyholders that must then be invested at stable returns to support the 

terms of the policies.  As a result, this industry also supports the corporate and government 

sectors of the economy by providing much-needed capital.  In fact, the industry collectively 

finances about 20% of the corporate and foreign bond market in the United States and about 

12.5% of the commercial mortgage market as of the end of 2012 (Board of Governors (2014), 

Tables L.212 and L.220).  Clearly, a financial crisis in the life insurance industry would have 

widespread and detrimental effects on many other economic actors.  Households would have a 

weakened safety net when they are at some of their most vulnerable times financially, and many 

businesses would lose a key source of financing. 
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B. Literature Review and Our Contributions 

 In light of the life insurance industry’s importance as a bulwark against financial storms 

for policyholders and as a provider of capital to the economy, it seems pertinent to study the 

asset allocation choice faced by life insurance companies.  In addition, there appears to be great 

importance in studying how this choice ought to be made in light of the dire consequences to 

both the owners and the broader economy should companies fail to have sufficient resources to 

fulfill the long-term promises made to policyholders.  This is the fundamental question we seek 

to study here.  How should this important part of the financial system, which has not thus far 

received much attention in the finance literature, approach its asset allocation decision? 

Asset allocation as a concept is not a novel contribution of modern finance.  We know 

that the importance of how one allocates wealth to individual investments has been recognized in 

some form for many centuries.  The Babylonian Talmud contains the following 1,500-year-old 

advice, “A man should always place his money, one-third into land, a third into merchandise and 

keep a third in hand” (Levy and Duchin (2010)).  Even earlier comes this anecdote about Jacob, 

a patriarch of Israel, “…he divided the people who were with him, as well as his flocks, herds, 

and camels, into two camps.  ‘If Esau should attack and overwhelm one camp,’ he reasoned, ‘the 

remaining camp may still survive’” (Holy Bible, Genesis 32:8b-9).  More recently, Shakespeare 

writes in The Merchant of Venice that Antonio takes comfort in knowing that, “My ventures are 

not in one bottom [ship] trusted, / nor to one place; nor is my whole estate / upon the fortune of 

this present year…” (Shakespeare (1598))  These references exhibit a fundamental principle of 

diversification that it is unwise to place all of one’s “eggs” (wealth) in one “basket” (investment). 

 Still, Markowitz (1952) provided a revolutionary contribution to our understanding of 

asset allocation by systematically solving for an optimal distribution of wealth across one’s 
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portfolio by mathematically optimizing the inherent risk-return tradeoff.  Since his seminal 

papers on this topic, risk measurement for the sake of portfolio construction has largely been 

based on his choice of variance and standard deviation.  However, work by Roy (1952) provides 

an alternative way of thinking about risk.  He approached the asset allocation problem with an 

approach that risk is the potential for disaster or catastrophe to occur.  Thus, it is focused on the 

most extremely negative deviations from expected returns rather than both positive and negative 

deviations.  Hence, his asset allocation approach has been referred to as “safety-first” in the 

sense that an investor utilizing his approach is seeking to maximize return while minimizing the 

chance that ruinous outcomes occur.  This risk is also referred to as tail risk because the left tail 

of the probability distribution of returns is where these outcomes reside.  Although Roy’s work 

has received much less attention over the subsequent decades, his is potentially the more relevant 

in the context of an asset allocation decision for a life insurance company.  Thus, we will study 

the asset allocation problem of a life insurance company in a downside risk framework with 

Roy’s “safety-first” view of risk. 

 Roy’s work has been extended to focus exclusively on the asset allocation decision faced 

by a life insurance company.  Browne (1995), Liu and Yang (2004), Chiu and Li (2009), 

Consiglio, Pecorella, and Zenios (2009) propose optimal investment strategies for an investor 

seeking to minimize their probability of ruin.  This is also in the line of work that has been done 

to develop asset-liability management (“ALM”) models for the case of a life insurance company 

(e.g., Lamm-Tennant (1989), Sharpe and Tint (1990), Sherris (1992), Consiglio, Cocco, and 

Zenios (2008), and Chiu and Li (2009)).  Although some of this work studies the ALM problem 

within a downside risk framework, much of it is theoretical in nature.  The general dearth of data 

on life insurance company liabilities makes empirical analyses of these ALM models difficult.  
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Another limitation of these models is that they often include only one or two asset classes while 

actual life insurance companies invest in a wider range of asset classes including stocks, 

corporate bonds, government bonds, real estate, mortgages and mortgage-backed securities, etc.  

Due to the first point, we are limiting this current study to being focused on the asset allocation 

problem but will address the second point by including many more asset classes in the analysis.  

We are also limiting the current study to focus on the market risk faced by life insurance 

companies rather than the myriad of other risks that could manifest themselves, including 

insurance, credit, liquidity, operational, group, systemic, and regulatory risks. 

 To do this, though, we need to specifically model the tail of the joint distribution of assets 

invested in by life insurance companies.  Under the classical Gaussian assumption, this is not 

necessary, even if you are primarily concerned about tail risk, because the whole distribution, 

including the tail, is fully explained by the mean and variance.  However, several studies have 

provided evidence that this assumption is not supported.  Longin (2005) shows that the tails of 

daily stock returns are generally inconsistent with a Gaussian assumption.  Mandelbrot (1963) 

and Fama (1965) discuss how stock returns are too “peaked” to be normal, which means they 

have tails that are too heavy.  Other studies support the view that the joint dependence across 

asset classes is unique in the left tail region.  For example, Hong, Tu, and Zhou (2007) and 

Junior and De Paula Franca (2012) observe the phenomenon that correlations of many major 

asset classes tend towards one during crisis periods and times of market turmoil. 

 Longin (2005) reviews how one can model the tails of a distribution using extreme value 

theory.  Typically, two approaches may be used to define the tail itself.  The first defines an 

extreme observation (and, thus, located in the tail) to be one that exceeds some threshold, which 

is typically set by the researcher.  For example, the tail may be comprised of all daily returns 
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which are less than the fifth percentile.  This definition leads one to use a Generalized Pareto 

Distribution model.  The second definition is based on local maxima or minima where the tail is 

composed of all observations that are local maxima or minima (e.g., the worst daily return for 

each month).  This definition leads one to use a Generalized Extreme Value Distribution model.  

These probability distributions will be described in further detail in Section V.C. 

 Modeling the joint distribution of several asset classes becomes challenging, though, 

when we move away from a Gaussian assumption.  We will work around this obstacle in two 

ways.  First, we will effectively transform the multivariate problem into a univariate one by 

modeling the tail of portfolios of life insurance company assets.  We will build these portfolios 

by starting with current industry-wide empirical weights and then systematically adjust them to 

create new portfolios.  For each portfolio, the tail will be modeled and the risk-return tradeoff 

will be analyzed. 

Second, we will take advantage of copula theory to model the joint distribution.  Copula 

theory is, in fact, nearly as old as mean-variance optimization given that the key theory was 

developed by Sklar (1959).  His theorem stated that for a set of random variables with 

continuous cumulative distribution functions, there exists a special function (called a copula) that 

transforms the marginal cumulative distribution functions into the joint cumulative distribution 

function.  Standard texts on copula theory include Joe (1997) and Nelsen (2006) that cover much 

of the underlying mathematics and theory.  They also describe the rich variety of bivariate 

copulas that have been developed.  However, the number of multivariate copula functions is 

rather limited.  Work by Joe (1996), Bedford and Cooke (2001, 2002), Kurowicka and Cooke 

(2006), and others outline a method by which this issue can be addressed.  By exploiting the 

recursive decomposition of multivariate density functions into a product of conditional densities, 



7 

 

one can build up to the multivariate copula with a series of bivariate pair copulas, which is called 

a vine copula.  This allows one to make full use of the rich variety of bivariate copula functions 

while dealing with a multivariate problem. 

Our contributions are to focus on expanding the range of asset classes when analyzing the 

asset allocation problem for a life insurance company and utilize a relatively new technique, vine 

copulas, where it has so far received minimal attention.  Typically, the literature on life insurance 

company asset allocation gives the company a choice of investing in a single risky asset like 

stocks or possibly up to two assets such as stocks and a money market fund-like investment.  

However, these fail to cover much of the actual investing activity of the life insurance industry.  

In order to address the challenges involved with studying this as a multivariate problem in a non-

Gaussian world, we also introduce practical applications of vine copula theory to a life insurance 

setting.  



8 

 

II. Life Insurance Companies 

A. Brief History of Insurance on Lives of Persons 

A. 1. Early Forms of Life Insurance 

 Before diving into the actual analysis, though, we find it important to review the nature of 

the subject at hand, which is a life insurance company, and of its business.  Part of understanding 

this comes by reviewing briefly how providing insurance on the lives of persons developed over 

time.  Relative to the analytical and probabilistic nature of life insurance today, early insurance 

contracts covering the lives of persons seems very crude and unsophisticated.  It was during 

Roman times that insurance covering the lives of sailors was in use (Bernstein (1998)).  

However, it was a very different financial product than today.  It was essentially a conditional 

loan.  A sailor who needed funds for a voyage would borrow the funds, and repayment of the 

loan would only occur if the sailor survived the voyage.  Thus, this was premium-free insurance 

and the death benefit, presumably for the benefit of any widow and/or children, took the form of 

debt relief rather than a lump sum cash payment like today.  Nonetheless, the cash flows of the 

contract were contingent on the survival or death of the covered life and hence can properly be 

considered an early example of life insurance.  This form of insurance also did not originate with 

the Romans.  The Sumerian Code of Hammurabi includes references to “bottomry,” which was a 

conditional loan essentially the same in structure as the Roman sailor’s life insurance policy 

(Bernstein (1998)). 

 Another example of early life insurance is the Greco-Roman burial society.  According to 

O’Donnell (1936), burial societies date to the second and third centuries before Christ in Greece, 

and their purpose was to provide for a decent burial as well as the continuing needs of widows 

and orphans.  These burial societies continued into the Roman era where soldiers, nobility, and 
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even the lower classes could join, contribute to a joint pool of funds, and thus provide for a 

proper burial.  In fact, the Romans believed that the soul of the deceased would find no rest 

without a proper burial (O’Donnell (1936)). 

 These early forms of life insurance lacked some key elements that would later facilitate 

the development of life insurance as a stand-alone business.  The providers of life-contingent 

loans did not have any ability to systematically and accurately price the guarantee being 

provided, very likely did not create much of a risk pool to diversify the risk of claims, and lacked 

a broader applicability outside the scenario where an upfront capital investment (hence, the loan) 

is needed.  For example, bottomry would not be useful when the covered life is a young and 

healthy person who is not about to go on a long and perilous maritime journey and requires no 

loan of funds.  In other words, bottomry applied to the risk of death resulting from a specific 

event related to the loan rather than the risk of death at some eventual but indefinite future point 

in time potentially many years out.  Although the burial societies did effectively create a risk 

pool by accepting many members, they could not price the guarantee with much mathematical 

sophistication.  In order for these missing elements in the bottomry and burial society contracts 

to be incorporated, additional theoretical and statistical advances would need to occur in the 

measurement and modeling of human lives. 
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A. 2. Theoretical Contributions to the Development of Insurance
1
 

 There were several theoretical and statistical advances made in the 1600s and 1700s that 

greatly contributed towards the ability to systematically and profitably provide insurance on the 

lives of persons.  Prior to this time, a life insurance contract was essentially a gamble made by 

the provider of insurance.  There was a lack of analytical tools and intellectual understanding to 

approach this problem in any way other than using guesswork.  The first of these intellectual 

breakthroughs was the relationship between the probability of an event occurring and the 

potential consequences of the event should it occur.  This particular insight is attributed to a 

monk at the Port-Royal monastery in Paris by none other than Blaise Pascal.  In the Ars 

Cogitandi (Logic, or the Art of Thinking), a short and simple passage makes it clear that “fear of 

harm ought to be proportional not merely to the gravity of the harm, but also to the probability of 

the event.”  Applying this to the case of life insurance, the French monk was saying that the price 

one would be willing to pay for life insurance is a function of two variables, the probability of 

unexpected death and the monetary consequences of such a death.  Given that a life insurance 

provider is promising to relieve its policyholder of the “fear of harm” where the harm in this case 

is untimely death, the value of such a contract to the policyholder reflects the “fear of harm” felt 

by the person sans insurance.  The value of life insurance to a young, healthy, strapping lad with 

no wife or children is very likely to be significantly smaller than it would be to a middle-aged 

and sickly man with a wife and several children who would have almost no source of labor 

income should the man die.  As a result, the young, single man would be willing to pay much 

less for insurance coverage on his life than the older man with many dependents. 

 Although the intellectual contribution provided by the Port-Royal monk helped specify 

the appropriate relationship between the probability of death, the consequences of death, and the 

                                                 
1
 The information in this section is credited to Bernstein (1998) and Ferguson (2008) unless otherwise cited. 
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value of life insurance, there was still the pesky problem that very little was known about the 

probability of an untimely death.  Obviously, an insurance provider even many centuries ago 

would be able to tell a difference in the probability of death for extreme examples, like the young 

man mentioned above and an elderly man who is practically on his deathbed.  It does not take 

any statistical insight to know that the young man has a relatively low chance of death and the 

elderly man has a relatively high chance of death.  However, there would still be a significant 

lack of precision in these estimates.  Exactly how wide is the range between relatively high and 

relatively low chance of death?  Supposing that the probability for the elderly man is 

approaching one, is the probability for the young man almost zero, 0.10, 0.25, or even as high as 

0.50?  All of those could be considered significantly lower probabilities than 0.99 or one 

depending on the probability distribution of death.  Even so, this provides very little help in 

distinguishing between the probabilities of various men or women that would likely fall 

somewhere in the middle of the distribution. 

 Thus, a life insurance provider for a certain population of people needs to have a 

somewhat sophisticated understanding of the probability distribution of death for many or all of 

the members in the population.  Some of the seminal work on specifying this population 

distribution was done by two members of the Royal Society in England, John Graunt and 

Edmund Halley.  In truth, these men were building upon a foundation laid many years earlier by 

the Roman prefect Domitius Ulpianus, as presented to us by Clendenin (1932) and O’Donnell 

(1936).  For inheritance purposes, Roman authorities needed to value annuities being passed on 

to heirs.  Although the Ulpian life table is the earliest such table known to us, it is unclear how 

much the figures were based on mathematics and statistics.  It “was most probably based on 

recorded observations of the value of annuities rather than on the number of deaths occurring 
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within a given time at various ages” (Clendenin (1932)).  Nonetheless, it would contain the best 

estimates of mortality for centuries until the two Royal Society members took up the challenge. 

Earlier work was provided by Graunt in which he compiled counts of the number of 

deaths and births and the causes of death in London for 1604 to 1661.  To do so, he used the bills 

of mortality that the city started collecting in 1603.  Apparently, this was inspired by some 

concept of what we would now call market research.  Himself a merchant, Graunt noted a benefit 

of his study being “to know how many People there be of each Sex, State, Age, Religion, Trade, 

Rank, or Degree, &c. by the knowing whereof, Trade and Government may be made more 

certaine and Regular; for, if men knew the People, as aforesaid, they might know the 

Consumption they would make, so as Trade might not be hoped for where it is impossible” 

(Graunt (1665)). 

 Graunt’s work also has the benefit of being very detailed in some respects, particularly in 

terms of the causes of death.  For example, on at least one occasion, the bills of mortality 

attribute the cause of one’s death to being “Burnt in his Bed by a Candle at St. Giles 

Cripplegate.” There was also a particular interest in detailing the effect of the Black Plague on 

London.  For each week, the bills of mortality listed the number of deaths due to the Plague, the 

number of Parishes that were clear of the Plague, and the number of Parishes infected by the 

Plague.  In one particularly horrible week, in September 1665, a total of 7,165 people died from 

the Plague and only four of 130 parishes were clear of it.  In contrast, only 344 people died from 

all causes in April of that year and no parishes were infected by the Plague. 

 Such a detailed and long account of the deaths of people in London certainly provides a 

historical record upon which one could base an estimate of the likelihood that a certain number 

of people will die in the city in any given week or year.  However, Graunt attempted to go even 
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farther.  By making some key assumptions, Graunt estimates the likelihood of living to some 

specified age.  Based on his statistical work, he produced the probabilities in Table 2.1 (on the 

following page) that could be used to estimate the likelihood of death for people of various ages. 

Graunt’s work had its limitations, though.  First, he himself admitted that the diagnosis of 

the cause of death was uncertain at best given the limited ability of medicine at that time.  

Second, he used the number of baptisms in a given week to estimate the number of births, but he 

only included the baptisms from the Church of England.  Certainly this would capture most of 

the births in London at this time, but any births occurring among Catholics or others not 

affiliated with either church would have been excluded.  Third, his data did not include the ages 

at death, so he lacked the evidence to more conclusively determine the probabilities of living to 

various ages. 

It would be a fellow member of the Royal Society, Edmund Halley, who would provide 

more definitive evidence on life expectancies.  Halley, who the famously regular comet is named 

after, decided to engage in a similar task of chronicling the births and deaths of a particular 

population in order to better understand the likelihood of death.  In order to extend the work of 

Graunt, Halley chose to study the data from another city that kept better records.  He studied the 

records of the town of Breslaw, now called Wrozlaw in Poland.  The records of Breslaw 

provided significantly more detail on the ages at death, and using this data, Halley was able to 

provide much more precise estimates of life expectancies.  In fact, Halley found that Graunt’s 

estimate of the likelihood of surviving beyond six years from birth (64%) for London to be 

optimistic for Breslaw.  In Breslaw, he found that only about 56% of those born survived at least 

six years.  Halley also realized that his work on the likelihood of death for persons of various 

ages had a very practical application to life insurance products.  He included a discussion of the 
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valuation of annuities in light of his results from the population life expectancies study.  Alas, 

England was not quick to revise their annuity selling practices for quite a while after Halley 

published his results.  It would take nearly a hundred years before the English government 

stopped selling annuities at the same price to everyone regardless of age.  Nonetheless, the work 

of Halley and Graunt laid the foundation for the use of actuarial analysis to estimate the life 

expectancy of a person seeking life insurance coverage, and so, it has been crucial to the 

development of proper and stable pricing of life insurance products.  The tables produced by 

these early forecasters of mortality are re-presented in Table 2.1 below. 

 
Table 2.1. Early Life Tables 

This table contains the life expectancies of persons as given by 

some of the earliest known life tables.  John Graunt, in the 17
th
 

century calculated the likelihood that a person will survive until 

certain ages.  Domitius Ulpianus, in the 2
nd

-3
rd

 centuries, 

estimated the future life expectancy of a person given they have 

already survived to a certain age. 

Graunt Ulpianus 

Age 
Survival 

Probability (%) 
Ages 

Life Expectancy 

(years) 

0 100 0 – 20 30 

6 64 25 – 30 25 

16 40 35 – 40 20 

26 25 41 – 42 18 

36 16 43 – 44 16 

46 10 45 – 46 14 

56 6 47 – 48 12 

66 3 49 – 50 10 

76 1 55 – 60 7 

  60+ 5 

 

A third key theoretical contribution to the development of life insurance was work done 

by Jacob Bernoulli around the turn of the 18
th

 century.  Bernoulli sought to better understand 

how one could develop estimates of the probability that a certain event occur based on a finite 

number of samplings.  When it comes to a game of chance, such as rolling a die, the theory of 
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probability can exactly measure the chance that a certain event will occur.  For example, there is 

exactly a 1/6 probability that a three will be rolled with a fair die.  However, such a precise 

understanding of its own mortality has not been granted to the human mind.  We cannot measure 

with exactness the probability that a particular person will live until next year or even that 95 out 

of every 100 policyholders will live to next year.  In fact, the famous mathematician Gottfried 

Wilhelm Leibniz expressed to Bernoulli his skepticism in improving this state of affairs. 

“[N]ature has established patterns originating in the return of events, but only for the most part.  

New illnesses flood the human race, so that no matter how many experiments you have done on 

corpses, you have not thereby imposed a limit on the nature of events so that in the future they 

could not vary.”  Bernoulli, though, sought not for absolute certainty but rather sufficient 

certainty in order to make it useful. 

As we discussed before, Graunt and Halley had already done work in estimating the 

likelihood of survival and death based on historical data.  The key contribution provided by 

Bernoulli was in knowing how certain we can be in making these estimates.  After all, there is no 

guarantee that the true probability of an event will be revealed with any sample of data even for 

games of chance.  Out of any six throws of a die, you may not roll a three even once or you may 

do so more than once.  However, if you throw the die enough times and record how often you 

roll a three, the likelihood of rolling a three based on the data will start to converge on the true 

probability of 1/6.  At some point, you could be reasonably certain that the probability of rolling 

a three on any given roll is 1/6.  True, you could not be absolutely certain based only on the data, 

but you could be certain enough in your estimate in order to start making decisions based on it.  

Bernoulli was seeking after what he called “moral certainty” rather than absolute certainty. 
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His quest for moral certainty led Bernoulli to a result that is called the Law of Large 

Numbers.  This is a tremendous result for the purpose of statistical inference because it guides us 

in determining how much confidence we can place in a given estimate based on a sample of data.  

The Law of Large Numbers tells us that it is more likely for an estimate based on a large amount 

of data than for an estimate based on a small amount of data to differ from the true value by less 

than some specified margin.  In other words, we can place more and more confidence in our 

estimate as we increase the amount of sampling.  It allows us to express our degree of moral 

certainty in the estimate by placing a confidence interval around it.  For example, we estimate 

that 97% of an insured population will survive the coming year and we are 95% confident that 

the true probability is somewhere between 96% and 98%. 

Bernoulli’s contribution is as important as the work of Graunt and Halley.  If Graunt and 

Halley provided us with an ability to estimate the likelihood that a certain number of insured 

people will die in the coming year, Bernoulli gives the ability to determine whether or not that 

estimate is worth using.  Insurance providers need estimates they can depend upon to make 

decisions.  They cannot long survive if they unwittingly take on too many bad risks at a low 

price.  Avoiding that requires confidently estimating the true probability of death among those 

they are insuring, as morbid as that may sound, so that they can set a fair price for the risk they 

are taking on.  After all, the risk of untimely death does not vanish when a life insurance policy 

is purchased but is transferred from one party (the insured) to another (the life insurance 

provider).  As a result of Jacob Bernoulli’s work, we can know, with moral certainty at least, that 

our estimate of these risks is sufficiently precise to be useful for making decisions. 
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A. 3. Scottish Origins of Modern Life Insurance 

 Although mathematicians and statisticians like a certain monk of Port-Royal, John 

Graunt, Edmund Halley, and Jacob Bernoulli provided a theoretical bridge to span the gap from 

the unsophisticated and scattered provision of life insurance to its modern form, it would take 

Scottish Presbyterians to actually cross that bridge.  Two ministers, Robert Wallace and 

Alexander Webster, of the Church of Scotland were particularly troubled about the plight of 

widows and children of those ministers who met a premature death (Ferguson (2008)).  

Ultimately, they set up the first life insurance fund that resembles the provision of life insurance 

today.  Instead of paying out claims from the annual premiums paid in by the ministers, they 

decided to build up a fund, invest it, and then pay out claims primarily from the investment 

returns.  In order to properly price the life insurance coverage, they needed to accurately estimate 

the number of beneficiaries of the insurance in the future and the amount of money needed to 

support them.  Drawing on the earlier theoretical contributions provided by Graunt, Halley, and 

Bernoulli, these two ministers were able to make these calculations. 

 The “Fund for a Provision for the Widows and Children of the Ministers of the Church of 

Scotland” got started in 1748 and the scheme quickly caught on.  Similar insurance funds were 

started outside of Scotland (the Presbyterian Ministers’ Fund of Philadelphia in 1761) and by 

those in other professions (the United Incorporations of St. Mary’s Chapel in 1768 for Scottish 

artisans).  Perhaps just as importantly for the development of life insurance, the idea of having 

one’s life insured became ingrained in the culture of thrifty Calvinist Scotland (Ferguson 

(2008)).  As a result, it was shown that size is important to the provision of life insurance.  As 

Bernoulli surmised, it is easier to confidently estimate the claims needing to be paid out in any 
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given year when the size of the insured population is larger.  No longer do the providers of life 

insurance need to be gamblers and testers of fate as before.  
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A. 4. Ensuing Development of Life Insurance as a Business
2
 

 Following the emergence of modern life insurance in the mid-18
th

 century, life insurance 

as a business did not experience sudden and significant growth for some time.  This was due to 

multiple factors including a general apprehension towards life insurance as a concept (it was 

viewed as trying to assign a monetary value on someone’s life), legal restrictions that inhibited 

the ability of a widow to collect the death benefit on her husband’s policy, and insurer policies 

that sought to mitigate their risk by restricting the activities of the policyholders.  This started to 

change, though, when the idea of forming a mutual insurance company caught on following the 

Panic of 1837.  By setting up a mutual company, the life insurer could market the ability of 

policyholders to become owners of the business and share in the profits through either higher 

dividends or reduced premiums.  This helped produce much industry growth but insurers started 

engaging in some fraudulent activities to try to survive the stiff competition.  In response, states 

started regulating the life insurance industry through capital and reserve requirements and some 

consumer-friendly laws and regulations. 

 The resulting increase in consumer confidence regarding the stability of the industry and 

overall economic expansion during the latter part of the 19
th

 century brought a new wave of 

strong growth in life insurance.  Again, this renewed expansion brought with it fresh accusations 

of mismanagement and fraud.  The Armstrong Investigations of 1905 in New York set the stage 

for new regulations that included banning the ownership of common stock and underwriting 

securities by life insurers.  The restriction on common stock ownership appears to have held until 

the beginning of Separate Account policies in the 1950s (Hart (1965)).  As a result of being 

restricted from engaging in many investment-type activities, life insurers competed in the early 

part of the twentieth century by developing new product lines such as group insurance and 

                                                 
2
 The information in this section is credited to NAIC (2013) unless otherwise cited. 
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annuities and key personnel insurance.  Since life insurers could not own common stock, they 

actually did not get hit as hard as some other financial institutions following the stock market 

crash at the onset of the Great Depression.  Only about 6% of life insurers went into receivership 

while more than 15% of banks failed, and even the policyholders of the failed insurers had their 

claims paid in full due to reinsurance agreements while depositors of the failed banks lost about 

$1.3 billion. 

 A new era in life insurance started in the mid-1950s when TIAA-CREF issued the first 

variable annuity products.  By making the rates of return earned by policyholders depend on the 

performance of underlying investments, the variable annuity enabled life insurers to transfer 

some risk from the company to the policyholder and market an ability to better handle the rising 

interest rates of that time.  Competitive pressure from other financial products during a high 

interest rate environment also pushed life insurers to develop other products that are still sold 

today.  These include variable and universal life insurance, which were developed in the 1970s 

and 1980s.  By making rates of return more sensitive to movements in interest rates or the equity 

market with these new products, life insurers could better compete with other financial products 

such as money market funds, mutual funds, and U.S. Treasury securities. 

 In recent years, the biggest trends in the life insurance industry appear to be the 

increasing prominence of investment-type products, such as the variable annuity, and steady 

demutualization.  Demutualization is the process by which an insurance company converts from 

being a mutual company owned by the policyholders to a stock company owned by stockholders.  

A number of major life insurers including John Hancock, MetLife, and Prudential of America 

have undergone this conversion since the beginning of the 21
st
 century.  A big reason for the shift 

towards stock ownership is due to the relative difficulty of a mutual company to raise capital.  
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They are only allowed to do so through retained earnings or by issuing a particular type of debt 

called a surplus note (Viswanathan and Cummins (2003)).  This is also related to a wave of 

consolidation within the broader financial services industry.  By converting to a stock-owned 

company, life insurers can also participate in the merger and acquisition activities happening 

throughout the industry. 
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B. Overview of the Life Insurance Business Today 

B. 1. Life Insurance Products 

 The products sold by modern life insurance companies can be classified into two broad 

groups.  One of the groups is of course life insurance.  They continue to sell insurance on the 

lives of persons as they always have.  The other group includes the various types of annuity 

products that are now sold in addition to traditional life insurance.  In fact, annuities have 

surpassed life insurance products in terms of premiums received (the source of sales revenue for 

the life insurance industry).  According to the American Council of Life Insurers (“ACLI”), the 

net premium receipts from annuity products were about $287.7 billion compared to only $130.6 

billion for life insurance during 2013 (ACLI (2014)). 

 Over time, the life insurance industry has continued to develop its life insurance products 

beyond the basic coverage offered by the Church of Scotland in the 18
th

 century.  In fact, the 

structure of that coverage is essentially nonexistent today as a single product.  That product was 

purely insurance coverage on the lives of any ministers who purchased it, and the coverage lasted 

until they died regardless of how long that took (i.e., the coverage had a for-life term).  Today, 

the only life insurance products that are purely insurance coverage are term life insurance 

policies.  However, these policies will only provide coverage for a set number of years.  The 

products that have a for-life term now come with some type of savings vehicle embedded in 

them.  These include whole life insurance, universal life insurance, and variable life insurance. 

 Term life insurance is purest form of life insurance typically available today.  However, 

the coverage comes for limited term, or length of time.  The policy’s coverage would start at the 

policy’s inception and continue until the earlier of the term’s expiration (e.g., 20 years after 

inception) or the covered person’s death.  If death occurs prior to the term’s expiration, then the 
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corresponding death benefit would go to the beneficiary of the policy.  Beneficiaries are 

determined when the policy start and often include spouses, children, other family members, or 

even a non-profit organization such as the policyholder’s church.  Premiums charged on term life 

insurance are very sensitive to the age of the covered person at inception.  For those desiring 

coverage that are younger and healthier, premiums can be very low indeed since there is a low 

probability that the death benefit will be paid out.  The premiums would progressively rise with 

age at inception and inversely with health of the covered person.  As a result, term life coverage 

for older and sicker applicants could become quite expensive, again reflecting the likelihood that 

the death benefit will be paid out.  In accord with the monk at Port-Royal many years ago, the 

value of the insurance coverage significantly increases as the probability of needing that 

insurance rises. 

 Whole life insurance provides insurance for the full remaining life of the covered person 

and allows them to accumulate savings in the policy (the “cash surrender value”) as well.  Thus, 

premiums on whole life policies for younger and middle-aged policyholders tend to be much 

more expensive than on a term life policy with a similar amount of insurance coverage.  This is 

due to two factors.  First, a covered person is guaranteed to die while the insurance coverage is in 

effect with a whole life policy while he/she is not with a term life policy.  Second, the premium 

must be higher than the cost of providing insurance coverage with a whole life policy in order to 

build up the cash surrender value.  The premiums charged on a whole life policy remain constant 

from year to year although some policies may have the policyholder only pay premiums for a 

fixed number of years (NAIC (2007)). 

 Universal life insurance also provides insurance coverage for the full remaining life of 

the covered person and builds up cash surrender value, but there is more flexibility built in to the 
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premiums charged.  With this type of life insurance, the premiums go into an account on which 

the life insurance company pays interest.  From this account, the company would also deduct the 

periodic cost of insurance and any other charges.  As long as there is sufficient money in their 

account to cover the periodic deductions, policyholders need not pay any additional premiums 

(NAIC (2007)).  Of course, deciding to forgo premium payments will also result in a reduced 

cash surrender value. 

 Variable life insurance is a combination (some might call it an unholy alliance) of a life 

insurance policy and an investment account.  As with whole life and universal life insurance, the 

policyholder pays premiums to the company and builds up cash surrender value.  The defining 

feature of a variable life policy is that the policyholder is able to invest their savings in one or 

more investment options allowed by the policy (NAIC (2007)).  For example, there might be a 

variety of mutual funds available to choose from as in a 401(k)-style retirement plan.  If the 

chosen investments perform well over time, then the policyholder will benefit by having higher 

cash surrender value and higher death benefits than with the other types of for-life policies.  Of 

course, that sensitivity extends to the downside as well.  If the policyholder makes poor 

investment choices, they would be left with less cash surrender value as well as a reduced death 

benefit.  To mitigate some of the effects of the poor performance scenario, the policyholder may 

receive a guaranteed minimum death benefit in exchange for a somewhat higher premium. 

 If the purpose of a life insurance product is to protect the covered person’s beneficiaries 

against the risk of early death, then annuity products seek to protect the covered person against 

the risk that death is overly-mature in some sense.  Persons in a retirement phase of life often 

have a significant exposure to the risk that they will live longer than expected and completely 

draw down their retirement savings prior to death.  Annuity products serve to mitigate this risk 
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by paying out a regular stream of income for either the remaining life of the covered person or 

for a specified number of years.  Obviously, the for-life annuity stream provides the greatest 

protection against the risk of outliving your savings. 

 Annuities are now sold as one of two main types, as either a fixed annuity or a variable 

annuity.  Both of these types have an accumulation phase and an income phase.  During the 

accumulation phase, the policyholder pays premiums to the insurance company and accumulates 

a pool of money within the policy.  When the accumulation phase ends and the income phase 

begins, the insurance company would take the full amount of accumulated savings and promise 

to start making income payments of a certain amount.  The expected present value of the income 

payments, as discounted by some fixed rate of return, would correspond to the savings built up 

during the accumulation phase.  Thus, as the policyholder pays more premiums, the income 

payments that will be paid out during the income phase rise as well.  These income payments 

would then continue for either a guaranteed number of years as stated in the policy or for the 

remaining life of the policyholder.  A variation on this setup is a joint annuity where the income 

payments continue for the longer of the remaining lives of the covered person and his/her spouse. 

With a fixed annuity, the policyholder pays premiums to the insurance company who 

then provides fixed rates of interest with a minimum guarantee.  During the accumulation phase, 

this means that the rates of return earned on the accumulated premiums are fixed rates set 

periodically by the insurance company.  The income payments are then determined based on a 

fixed rate of return corresponding to the general level of interest rates when the income phase 

begins.  When the accumulation phase is drawn out, it is called a deferred fixed annuity because 

there is a time lag between the premiums and the start of the income payments.  Alternatively, 

when the income payments begin immediately, it is called an immediate fixed annuity. 
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Another variation on the basic fixed annuity setup is a fixed index annuity and allows for 

greater rate of return potential while maintaining downside protection.  Like a basic fixed 

annuity, the policyholder pays premiums during the accumulation phase and receives interest on 

the accumulated policy balance.  With a fixed index annuity, though, the interest rate is now tied 

to a benchmark index such as the S&P 500.  This exposure to the equity market provides the 

policyholder with the potential to earn higher interest rates than would otherwise be available on 

a fixed annuity product.  However, the exposure is of a very limited nature through the use of a 

floor and a ceiling on the rate earned.  For example, if the floor is 3.00% and the ceiling is 

5.00%, then the policyholder gains a little bit of upside potential without needing to take on too 

much downside risk. 

A newer, non-traditional type of annuity product is the variable annuity.  This is 

essentially an investment vehicle living within an annuity structure.  It could be considered the 

annuity-version of variable life insurance.  Like other annuities, it has an accumulation phase and 

an income phase.  During the accumulation phase, policyholders pay premiums to the insurance 

company.  Instead of being credited with a fixed interest rate or a rate based on the limited 

performance of a specified index, the policyholder of a variable annuity is allowed to invest their 

accumulated policy balance in a range of investment options.  One option may offer a fixed rate 

of interest guaranteed by the insurance company for certain term.  However, the other options 

allow the policyholder to invest in a wide variety of asset classes including domestic stocks and 

bonds, international stocks and bonds, money market accounts, and alternative investments.  

Thus, a variable annuity policyholder has significantly more upside potential than other annuity 

products.  Variable annuity products often allow policyholders to choose from a range of elective 

guarantees that help protect them against downside risk as well.  These take the form of various 
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types of guaranteed minimum death benefits, guaranteed minimum withdrawal benefits, and 

guaranteed minimum income benefits.  The death benefits would pay out at least a guaranteed 

minimum amount if the covered person dies prior to the income phase.  The withdrawal benefits 

allow the policyholder to withdraw a guaranteed minimum amount on a periodic basis.  In some 

sense, these give the policyholder an ability to “pre-annuitize,” or start receiving regular income 

payments during the accumulation phase.  The income benefits give the policyholder a 

guaranteed minimum annuity payment during the income phase.  The market for variable annuity 

products has been greatly benefitted by the favorable tax treatment of annuities.  Similar to a 

standard 401(k)-type retirement plan, variable annuity policyholders are able to build up account 

value on a tax-deferred basis. 

There are interesting risk implications of the significant increase in annuity business for 

life insurance companies.  Given a particular applicant for either a life insurance product or an 

annuity income stream, the product’s pricing will depend upon the applicant’s expected 

remaining life.  This estimate would likely come from an updated mortality table very similar in 

spirit to those published by Graunt and Halley over 200 years ago.  As with all estimates, though, 

there is uncertainty and some probability distribution extends to the left and right of the 

estimated remaining life.  With life insurance, the policyholder seeks to protect against the risk 

that their true remaining life is in the left tail of this distribution (i.e., their actual remaining life 

is much shorter than they expect).  With annuity payouts, the policyholder seeks to protect 

against the risk that their true remaining life is in the right tail of this distribution (i.e., their 

actual remaining life is much longer than they expect).  The policyholder protects against the 

corresponding risk by purchasing life insurance and/or annuities, and thereby transfers the risk to 

the life insurance company.  Hence, as a greater amount of business for life insurance companies 
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is coming from annuity sales rather than life insurance sales, they are starting to take on the risk 

from not only the left tail but from both the left and the right tail.  In some sense, they are taking 

on a short straddle, or short volatility, position regarding the estimated remaining lives of their 

policyholder population. 
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B. 2. Scale and Scope of Life Insurance Companies 

 Life insurance companies are a major component of and investor in the national 

economy.  First of all, the industry’s products provide financial stability and security to millions 

of households.  In total, 75 million households in the United States have life insurance and 

annuity coverage through life insurance companies, which accounts for 66% of all households 

(Ernst & Young (2014)).  On all life insurance and annuity products, the industry paid out about 

$411.6 billion during 2013 alone (ACLI (2014)).  For life insurance alone, the total face amount 

of in-force life insurance is about $19.7 trillion as of 2013 (ACLI (2014)).  This is comparable to 

the total book value of all domestic corporate bonds and U.S. Treasury securities, which was 

about $21.2 trillion as of 2013 (Board of Governors (2014), Table L.209). 

 Life insurance companies also have a wide scope based on their assets and investment 

activities.  In total, life insurance companies held financial assets totaling almost $6.0 trillion at 

the end of 2013 (Board of Governors (2014), Table L.116).  In addition, these investments often 

fund crucial long-term capital in the economy.  Life insurance companies fund about 20% of the 

corporate and foreign bond market and about 12.5% of the commercial mortgage market as of 

the end of 2012 (Board of Governors (2014), Tables L.212 and L.220). 

 At a company level, life insurance companies can operate on a significant scale.  Some of 

the largest American life insurance companies include Prudential Financial, MetLife, Aegon, 

Jackson National Life Insurance Company, and Lincoln National.  These five companies alone 

account for nearly 28% of the total direct premiums paid to the industry in 2013 (NAIC (2014)), 

and hold assets in the hundreds of billions of dollars.  Although not as large as the biggest banks, 

the big life insurance companies have attained a scale that places them among the major financial 

businesses in the country.  
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B. 3. Ownership of Life Insurance Companies 

 The ownership of a life insurance company generally takes one of two forms.  First, the 

company could be owned by stockholders who each own shares of stock issued by the company.  

Life insurers with this type of ownership structure are called stock life insurance companies.  

This is the same ownership form as publicly traded corporations, and in fact, some of the stock 

life insurance companies trade on the secondary market exchanges themselves.  Of course, the 

usual corporate governance issues of other stock-owned companies come along with this 

structure.  As a result, stock life insurance companies are exposed to potential agency costs due 

to conflicts of interest between the shareholders and the managers. 

The other form is akin to the ownership structure of credit unions in the banking sector.  

In this case, the life insurance company is formally owned by the policyholders and no stock is 

issued to the public.  These life insurers are called mutual life insurance companies.  An 

argument for governing a life insurance company with customer-owners is that the insurer would 

operate for the benefit of the policyholders.  Since the policyholders face potentially extreme 

financial dislocations if the insurer fails, this could be an important consideration.  However, 

mutual life insurance companies are also exposed to potential agency costs, as with the stock life 

insurers, but between managers and policyholders instead. 

Both forms of ownership structure make up significant portions of the life insurance 

industry.  Stock-owned companies comprise 76% of all life insurers in the United States and 

70% of the total life insurance in force as of 2013 (ACLI (2014)).  Mutual companies make up 

13% of the industry and have 27% of the total life insurance in force (ACLI (2014)).  These 

relative market weights have not remained stable over time.  The trend since the middle of the 

last century has definitely been in favor of stock ownership.  In 1947, mutual companies 
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comprised 69% of the life insurance industry, but their share fell to 43% by 1983 and, as 

mentioned recently, is now at 14% (Hansmann (1985)). 

There are multiple arguments related to why particular companies favor one form of 

ownership over another.  Viswanathan and Cummins (2003) provide a good overview of the 

various theories and hypotheses.  They point out that a clear advantage of the stock-owned form 

is access to capital.  Mutual companies must generally rely on retained earnings to fund new 

projects and investments whereas stock companies have access to the deep equity and debt 

markets.  They argue, then, that the recent shift into stock-owned companies is due, in large part, 

to seeking better access to capital.   

Stock-owned companies potentially face a conflict of interest not only between managers 

and shareholders but also between shareholders and policyholders.  Hence, taking on a mutual 

form of ownership may mitigate the conflicts of interest between the shareholders and 

policyholders since they are one and the same.  As Jeng, Lai, and McNamara (2007) mention, 

though, this may mitigate the shareholder-policyholder conflicts of interest but exacerbate the 

owner-manager agency costs.  They hold that policyholders are less effective monitors of 

managerial decision making then shareholders.  Viswanathan and Cummins (2003) refers to this 

as the expense preference hypothesis as in mutual companies have less effective monitoring 

mechanisms for controlling the expense preferences of managers. 

In the managerial discretion hypothesis, it is argued that the stock-owned form is better 

for business activities that require managers to exercise greater discretion in making decisions 

(Viswanathan and Cummins (2003)).  Again, this is due to stock companies having more 

effective means of mitigating managerial opportunism.  Under the assumption that riskier 

business activities and cash flows with greater uncertainty require more managerial discretion, an 
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implication of this hypothesis is that stock companies would tend to enter riskier lines of 

business and geographic areas than mutual companies.  Lamm-Tennant and Starks (1993) test 

this and find that stock companies are in fact riskier.  Based on the variance of the loss ratio, they 

find that stock companies have higher total risk but also that stock companies do relatively more 

business in riskier lines of business and geographic areas. 

The maturity hypothesis argues that the mutual form fits better when the insurance 

activities have a longer expected duration or contract period.  The reasoning is that owners and 

managers may have more opportunities to effectively extract rents from policyholders under 

longer-term contracts by increasing the riskiness of their asset management, increasing leverage, 

or otherwise taking on more risk (Viswanathan and Cummins (2003)).  By forming a mutual 

company and making the policyholders the owners, these potential conflicts of interest are 

avoided. 

The final hypotheses relates to the fact that the policyholders in a mutual company, as the 

owners, have both a fixed claim on the company’s assets (through their insurance or annuity 

policy) as well as the residual claim.  In the informational hypothesis, policyholders self-select 

into the different forms of ownership based on their risk (Viswanathan and Cummins (2003)).  

Low risks self-select into the mutual companies (since they retain a claim on the remaining 

surplus after benefits are paid) while high risks self-select into the stock companies.  In the risk 

hypothesis, separating the fixed and residual claimants incentivizes the company to engage in 

riskier activities.  Also, taking on a stock form may also incentivize riskier activities since stock 

companies can raise needed capital easier and quicker than a mutual company (Viswanathan and 

Cummins (2003)).  The results from Lamm-Tennant and Starks (1993) provide some support for 

this hypothesis as well.  
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B. 4. Globalization of the Life Insurance Industry 

 As with many industries, the life insurance business has been impacted by economic 

globalization over the past few decades.  This is true operationally and competitively as more 

insurers compete in foreign geographic areas, but it is also the case with regulatory activities.  

Financial and insurance regulation has become more aligned across national borders through 

international accords, greater integration of the European Union, and the creation of bodies such 

as the International Association of Insurance Supervisors (“IAIS”). 

 It could be that greater unification and cooperation of insurance regulation has 

encouraged the competitive globalization by removing some of the cost of entering a new 

market.  When each country developed its own regulatory framework more or less in isolation 

from other jurisdictions, then a multi-national insurer must become knowledgeable in multiple, 

potentially conflicting, regulatory environments.  As insurance regulation is globalized, though, 

the regulatory environments become more uniform, particularly across the developed economic 

markets, and thus easier to enter by foreign firms. 

 Whether or not increasing competition from foreign insurers is the result of regulatory 

globalization, it is apparent that domestic insurers in many countries must compete against 

significantly more foreign firms now.  Figure 2.1 charts the weighted average of foreign insurer 

market share of 31 countries
3
 of the Organisation for Economic Co-operation and Development 

(“OECD”) with the weights based on each country’s market share based on premiums.  Because 

data are not provided for every country-year observation over the chart’s time period (1989 – 

2012), the weighted average for each year includes only those countries with both foreign market 

                                                 
3
 The countries include Australia, Austria, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, Norway, 

Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the 

United States. 
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share and country premium market share data for that year.  Weights are determined in each year 

using only these countries as well. 

Figure 2.1. Foreign Life Insurer Market Share in OECD Countries 
This graph plots the weighted market share average of foreign life insurers from 31 OECD countries from 1989 

through 2012.  The weights used in the average are based on each country’s global market share of premiums.  For 

each year, the average includes only those countries for which both foreign insurer market share and country-level 

premium data are available.  Data are from OECD (1998, 2006, and 2013). 

 
 

 From this chart it is clear that the average market share captured by foreign life insurers 

has dramatically increased over the past 20 to 25 years.  Moreover, this shift occurred entirely 

over roughly a ten-year period starting in 1995. In that year, the average foreign market share 

was 9.24%, and it had risen to a high of nearly 28% in 2006.  Since then, it has receded a bit 

from that height but has largely sustained the higher level. 

 What is the significance of this globalization of the life insurance industry?  For one 

thing, it should increase the competitiveness of each domestic market experiencing this shift as 

more insurers enter.  Since these are multi-national firms, they likely have ample resources and a 

solid capital base, which makes them relatively tough competition.  It may help diversify the 
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foreign insurer’s insurance risks by entering a new geographic area.  The benefit is more limited 

than for non-life insurance, though, because all people everywhere will die and not all cars or 

houses will have insurance claims.  Still, it may help the insurer to move into an area with higher 

(for life insurance) or lower (for annuities) life expectancies than their current market.  However, 

there are challenges for the foreign insurer too.  It may have to establish name recognition and, 

especially for insurers who focus on newer variable policies, manage differing levels of 

policyholder risk aversion than in their domestic market.  Thus, one strategy for a foreign insurer 

to enter a new region is to purchase a company already located in and operating in the new 

market. 

 

 

 

 

 

  



36 

 

B. 5. Assets and Liabilities of Life Insurance Companies 

 The assets of a life insurance company are primarily derived from the premiums paid in 

by policyholders and earnings on prior investments.  Given that the life insurance business 

revolves around the selling of financial contracts, only a small fraction of the company’s total 

assets consists of tangible, physical assets such as buildings, equipment, and supplies.  Most of 

the life insurer’s assets are invested in financial securities such as stocks, bonds, and mortgage 

securities.  As mentioned earlier, the scale and scope of the life insurance industry combined 

with the fact that most of its assets are invested in financial securities allows it to be a major 

participant in these markets and provide significant long-term capital to other sectors of the 

economy.   

These financial assets ultimately support the amounts that will be paid out to 

policyholders or their beneficiaries for life insurance death benefits, annuity payouts, etc.  Thus, 

the assets of a life insurer are classified into one of two accounts based on the nature of the 

contractual obligations they support (ACLI (2014)).  The General Account assets support the 

payouts on fixed-payment products such as life insurance or a fixed annuity.  The Separate 

Account assets support the payouts on products associated with policyholder investment risk 

such as variable life insurance and variable annuities.  Because the policyholders of these 

variable products are given the ability to allocate their premiums among several investment 

choices, the asset allocation of the Separate Account reflects the aggregate investment choices of 

those policyholders whereas the asset allocation of the General Account reflects the investment 

decisions of the company. 

It is very interesting to compare the two sets of asset allocation decisions made in the 

General and Separate Accounts.  The General Account asset allocation reflects traditional life 
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insurance company investment policies, which means it is heavily weighted bonds with much of 

the remainder invested riskier securities (mainly stocks and mortgages) to provide some 

additional upside potential.  In total, there was about $3.8 trillion in the General Accounts of the 

life insurance companies as of 2013 (ACLI (2014)).  Of this, nearly 71.0% is invested in long-

term bonds (including mortgage-backed securities) while direct mortgage investments make up 

about 9.6% and stocks receive a paltry 2.2%.  In contrast, only 12.9% of the nearly $2.35 trillion 

in Separate Account assets is invested in long-term bonds and 81.7% is invested in stocks. 

 
Table 2.2. Aggregate Life Insurer Balance Sheet Composition 

This table shows the aggregate balance sheet asset distribution of the life insurance industry and broken 

down into the “General Account” (assets directly under the control of the company) and the “Separate 

Account” (assets for which policyholders direct investment through certain insurance and annuity 

policies).  It shows the distribution of assets for 1999, 2008, and 2013.  The Other Assets category 

includes short-term investments, cash and cash equivalents, derivatives securities, and accounting assets 

such as premiums owed and interest earned but not yet received.  The 1999 and 2008 data are from 

ACLI (2010) while the 2013 data are from ACLI (2014). 

General Account   

 1999 2008 2013 

Bonds 71.21% 67.76% 70.97% 

Stocks 5.08% 3.60% 2.23% 

Mortgages 11.37% 10.34% 9.56% 

Real Estate 1.28% 0.62% 0.60% 

Policy Loans 4.94% 3.73% 3.46% 

Other Assets 6.12% 13.96% 13.18% 

Separate Account   

 1999 2008 2013 

Bonds 13.28% 15.47% 12.89% 

Stocks 81.15% 73.90% 81.67% 

Mortgages 0.47% 1.06% 0.44% 

Real Estate 1.18% 0.88% 0.37% 

Policy Loans 0.11% 0.04% 0.02% 

Other Assets 3.81% 8.64% 4.62% 

 

These data are shown in Table 2.2 for 2013 as well as corresponding measurements for 

1999 and 2008 to compare the recent allocations with those from a stock market peak and 

trough.  Generally, insurers have been reducing their exposures to certain classes of riskier assets 
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like stocks and mortgages since the turn of the century.  Instead, they have largely re-allocated 

funds to the “Other Assets” category, which includes short-term investments, cash holdings, 

derivatives securities, and accounting assets such as premiums owed to the company and interest 

earned but not yet received.  Policyholders appear to have shifted their equity allocations during 

the financial crisis, the lower allocation in 2008 could be due at least in part to reduced equity 

levels rather than actual transfers of funds to other asset classes.  As of 2013, policyholders have 

reverted back to higher equity allocations while shifting away from bonds and other assets, 

which, again, includes cash and short-term investments. 

 

Figure 2.2. Historical Life Insurer Asset Allocation to Bonds, Stocks, and Mortgages 
This graph plots the historical allocations to three primary asset classes for life insurance companies.  These asset 

classes are long-term bonds (including both public and private bonds), stocks (including both common and 

preferred), and mortgages.  It begins in 1917 and continues through 2012, but the data are only provided in five-

year increments from 1920 to 1980.  To keep the time scale consistent throughout the chart, missing observations 

from 1920 to 1980 were linearly interpolated using the two closest actual observations.  Note that these 

allocations will not sum to 1 due to excluding other assets.  Data are from ACLI (2014). 

 
 

When combining the General and Separate Account assets, we also see an interesting 

long-term shift in the asset allocation of life insurer assets over the past century (shown in Figure 

2.2).  In 1917, life insurers primarily invested in two asset classes:  bonds and mortgages.  In 

fact, both of these could be thought of as being part of the same asset class (fixed income) 

depending on how you classify the investable universe.  Bonds and mortgages received weights 
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of about 43% and 34%, respectively, while less than 2% of all assets were allocated to stocks.  

Considering that the traditional life insurance business involves paying out a fairly regular 

percentage of death benefits each year, focusing on fixed income investments makes sense from 

an asset and liability cash flow matching perspective.  

Following a significant shift into and then back out of bonds around World War II 

(apparently, life insurers provided some much needed capital for the war effort), these 

allocations remained roughly the same in 1965 except life insurers had increased their stock 

proportion somewhat to nearly 6% (largely coming from a reduction in policy loans, which is not 

shown on Figure 2.2).  From 1965, we see two successive long-term shifts in the asset allocation 

of life insurers.  The first, from 1965 to about 1990, was largely a shift from mortgages into 

bonds.  The mortgage allocation went from nearly 38% in 1965 to just less than 20% in 1990.  

Most of this reduction in mortgage investment shifted into bonds, but there was an initial 

increase in stock allocations at the beginning of this period.  The cause for this shift is unclear.  

Perhaps, life insurers pulled back from financing more of the mortgage market as the 

government sponsored enterprises (the Federal National Mortgage Association and Federal 

Home Loan Mortgage Corporation) entered.  Interestingly, it is around 1965 that the data starts 

including Separate Account assets, so it may also reflect the fact that policyholders typically 

invest very little of their Separate Accounts in mortgages.  The second shift, from 1990 to 2000, 

was a large increase in equity exposure.  Stocks went from a relatively small allocation of about 

9% in 1990 to over 30% in 2000.  Given that the General Account assets were still mostly 

invested in bonds and mortgages in 1999 (see Table 2.2), this shift must be largely due to 

policyholder investments.  No doubt policyholders wanted to reap the benefits of the booming 

stock market over this same time period.  The increase in stock allocation largely came from 
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another large reduction in mortgage investments from about 19% in 1990 to about 7% in 2000, 

although the allocation to bonds also decreased somewhat too.  Since then, the allocations for 

these three major life insurer asset classes have largely been in a holding pattern with some 

fluctuation around the two market crashes in 2001 and 2008. 

Life insurance companies invest primarily in investment-grade long-term bonds at least 

partially for regulatory reasons.  Because the General Account assets support guaranteed payouts 

to policyholders, life insurers are restricted in how they can invest those assets to minimize the 

risk of life insurance company failure, in which case the state ultimately becomes responsible for 

the life insurer’s benefit payments up to certain levels.  However, there are rational, risk-based 

reasons for the life insurance companies to continue investing the General Account assets in this 

manner.  It is not uncommon for the policyholders with Separate Account assets to elect certain 

guarantees on their variable products.  Thus, the life insurance company needs to make up the 

difference between the payouts that can be supported by the policyholder’s account and the 

guaranteed levels.  Since the policyholders show an affinity for taking on significant equity risk, 

which is perfectly rational in the presence of guarantees, it is prudent and rational for the life 

insurance companies to minimize the equity risk in the assets directly under their control.  

Otherwise, the company would be inviting a disaster to occur should a significant shock in the 

equity market hit both the Separate and General Account assets at the same time. 

The liabilities of a life insurance company primarily consist of monies held in reserve to 

fund future policy payouts (ACLI (2014)).  In fact, the distinction between assets and liabilities 

here is somewhat abstract as the monies invested in stocks, bonds, and other assets are the same 

monies held in reserve for future payouts.  Life insurers are legally required to maintain reserves 

at certain levels to provide a reasonable assurance that sufficient funds will be available to make 
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all of the promised payouts.  The required levels of reserves are actuarially determined based on 

forecasts of future premiums, investment gains, policyholder behavior, mortality, and other 

factors.  Of approximately $5.8 trillion in total liabilities for the life insurance industry, about 

88.5% consist of these policy reserves.   

The remaining liabilities are mostly comprised of other types of reserves.  These include 

reserves for deposit-like contracts, asset fluctuation reserves, and interest maintenance reserves 

(ACLI (2014)).  Deposit-like contracts are those where the payouts are not contingent on the life, 

death, or disability of the covered person.  For example, some annuities promise to pay a certain 

income benefit every period for a specified number of periods.  As a result, the payout stream of 

cash flows is certain, fixed, and not dependent on the death of the covered person.  If the covered 

person dies unexpectedly prior to the completion of the promised payments, the remaining 

scheduled payments would be paid to the beneficiary instead.  As of 2013, the reserves in place 

supporting deposit-like contracts totaled $450.4 billion, which is 7.8% of total industry liabilities 

(ACLI (2014)). 

In addition to the required policy reserves discussed earlier, life insurance companies are 

also required to set aside a certain amount of reserves specifically for investment gains and 

losses.  These are asset fluctuation reserves and interest maintenance reserves.  Asset fluctuation 

reserves cover potential realized and unrealized losses due to defaults on credit securities and 

equity movements.  Interest maintenance reserves cover realized and interest-related gains and 

losses on credit securities.  As of 2013, the industry’s asset fluctuation reserves totaled $48.4 

billion and interest maintenance reserves totaled $26.5 billion, which are 0.8% and 0.5% of total 

liabilities respectively (ACLI (2014)). 

  



42 

 

C. Key Risks Faced by Life Insurance Companies
4
 

C. 1. Insurance Risk 

 One of the primary risks faced by a life insurance company relates to its key operational 

activity.  Insurance risk is the risk that the company’s underwriting and/or claims policies and 

procedures undermine the company’s profits, capital position, or reserves.  Since selling and 

pricing insurance, which is the company’s underwriting activity, and paying insurance claims are 

essential to the life insurance business, insurance risk is inherent in the life insurance business to 

the deepest levels. 

 Within this risk class, underwriting risk is one of the main components.  Underwriting 

risk is primarily due to the fact that the life insurance company must estimate the risk of and the 

appropriate price charged to an insurance applicant.  First of all, insurance companies face a 

potential adverse selection problem in that the applicant knows their health and the riskiness of 

their behavior than the company does.  This could lead to a self-selection problem where the 

people most likely to purchase life insurance are those that have an above-average probability of 

either premature death (in the case of life insurance) or greater longevity (in the case of 

annuities). 

 Even without the adverse selection problem, the life insurance company still faces the 

risk that their pricing mechanisms do not adequately estimate the inherent risk of selling a life 

insurance or annuity product to a particular applicant.  Without realizing it, the life insurer may 

be insuring a riskier pool than they priced for.  Even creating a less risky pool than they expected 

could be an issue if other life insurers do not make the same error.  In that case, they may be 

charging too high of a price and losing some business to competitors who are using more 

accurate pricing. 

                                                 
4
 Much of the information in this section is credited to IAIS (2003) unless otherwise cited. 
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 Another source of insurance risk is when a life insurance company expands into a new 

geographic area or introduces a new product.  Without any past experience to base their 

underwriting on, the insurer is exposed to the risk that they are not correctly pricing the new 

business due to greater uncertainty about the inherent risk profile of the applicants.  This could 

be a potentially important risk exposure if an insurer is trying to enter a new market that already 

has incumbent firms with prior experience.  One barrier to entry in a new life insurance market, 

then, is greater uncertainty surrounding a company’s pricing of the new business compared to 

competitors who are already entrenched in that market. 

 Related to the risk that the company is not correctly pricing its products is the risk that 

payouts on their products ultimately deviate from the initial expectations.  This is not the case 

where the insurer misestimated the expected life expectancy or risk of the applicant.  Rather, this 

is the case where the actual payouts differ from the expected amounts, even if the company 

accurately estimated the expected amounts given the information available at the policy’s 

inception.  A special case of this claims risk may be called catastrophic risk, and it is the risk that 

some catastrophe, whether it is a natural disaster, terrorist attack, etc., causes an unexpected 

spike in claims.  This catastrophic risk would also be an element of the broader tail risk faced by 

a life insurer. 
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C. 2. Market Risk 

 Given the significant scale of the life insurance industry and the amounts of assets and 

liabilities involved in this line of business, market risk is another very important exposure for a 

typical life insurance company.  Market risk is the risk that movements in the market prices of 

assets, interest rates, foreign exchange rates, etc. have a negative impact on the capital position 

and reserves of the life insurer.   

Suppose there is a shock in the equity market and stock prices suddenly drop by a fairly 

significant amount.  As a result, the value of the assets in the insurer’s Separate Account, which 

tend to be invested primarily in stocks, takes a significant hit, but the company is still liable to 

make sure the corresponding guarantees are met.  In fact, the value of the liability has risen 

because the expected amount that will need to be paid by the company out of its General 

Account has increased.  Thus, an adverse market movement such as this has the effect of 

reducing the total assets, increasing the total liabilities, and eating away at the capital base.  In 

other cases, the effect on the company’s capital may be mixed.  For example, if interest rates 

suddenly drop, then the present value of the guarantees goes up (due to a lower discount rate) but 

the value of the bonds in the company’s General Account should also rise. 

Given the seemingly constant movements in market valuations for stocks, bonds, and 

money, this is a risk exposure that life insurance companies need to be monitoring on a regular 

basis.  Even gradual changes that become a significant market movement over time could pose a 

problem for the financial position of a life insurer if they are not adjusting accordingly along the 

way. 
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C. 3. Credit Risk 

 Life insurance companies conduct business with a number of counterparties that agree to 

fulfill certain obligations with the company just as the company itself agrees to meet obligations 

to its policyholders.  These counterparties include entities such as companies and governments 

that promise to make bond payments to the life insurer, reinsurance companies who promise to 

cover certain claims made on the life insurer, derivative counterparties who agree to take the 

other side of a derivative transaction, and even policyholders who take out loans on their policies 

and agree to repay them with interest.  Credit risk is the risk that any of these counterparties fail 

to honor their side of the agreement with the life insurance company. 

 Credit risk can lead to potentially devastating outcomes for the life insurer.  Traditionally, 

a big source of credit risk is the probability of default on the bonds owned in the insurer’s 

General Account.  If these debtors fail to repay the bonds, then the capital and reserves of the life 

insurer are reduced.  A well-diversified bond portfolio can manage a handful of defaults on 

individual bonds without too much trouble in any given period.  If the risk of default increases in 

a systematic way, such as during a deep recession, then the life insurer’s capital position could 

deteriorate significantly if many defaults occur at approximately the same time.  This is a reason 

that life insurance companies are restricted in the types of bonds they may own.  For example, an 

insurance company would be restricted in its ability to invest in speculative bonds that are rated 

below investment-grade levels. 

 Today, credit risk can have a significant impact due to the much greater use of derivative 

securities over the past few decades.  A life insurance company might purchase certain derivative 

securities to hedge the impact of adverse market movements.  Consider again the earlier example 

where a down shock in the equity market leads to reduced Separate Account values and capital.  
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If the company had purchased put options, which provide a benefit to the owner as the value of 

the underlying asset declines, then the company could depend on a cash inflow from the put 

options to offset the rise in expected liabilities.  However, if the counterparty or counterparties of 

those put options fail to meet the obligations of those contracts, then the insurer could be left 

exposed to the full impact of the equity shock in addition to losing the premiums paid for the put 

options.  Depending on the size of the market shock, this manifestation of credit risk could have 

potentially ruinous consequences. 

 Life insurers can hedge credit risk by being discerning and cautious in the choice of 

counterparties to deal with.   For example, the insurer could choose to only invest in bonds with a 

credit rating of A or higher.  In addition, they can hedge credit risk by being well-diversified in 

their choice of counterparties.  An example of this would be limiting the asset allocation in any 

one security to be no more than some level such as 5% or by buying derivatives from several 

counterparties instead of only one. 
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C. 4. Liquidity Risk 

 The assets and liabilities of a life insurance company involve many cash flows both 

coming into the company and going out of the company.  A potential source of problems for the 

company is that these cash flows and additional premiums are not necessarily harmonized 

together.  Liquidity risk is uncertainty related to the timing of the cash flows and the possibility 

that the company may not have sufficient cash on hand to meet the required policy payments 

when they need to be paid.  It is not an issue of being technically insolvent where the value of the 

assets is less than the value of the liabilities.  The insurer may have ample assets to cover all of 

their expected liabilities.  Rather, it is a problem of having the ability to pay cash out to 

policyholders on time. 

 Another meaning of the term liquidity risk is related to this inability to cover payments to 

policyholders.  The alternative type of liquidity risk is the risk that one cannot sell assets quickly 

except at a steep discount.  This can be related to the prior meaning because if a company finds 

itself in a situation where significantly more claims are being made at a particular time than 

expected, the company may need to liquidate assets to cover the payments.  Thus, it could lead to 

somewhat of a fire sale situation where unloading a lot of assets on a market at good price could 

be difficult. 

 As a result, life insurers may sensibly make asset allocation decisions while monitoring 

any potential cash flow timing mismatches between the assets and the liabilities.  For example, 

the company may not want to invest only in long-term bonds but diversify across a range of 

maturities.  In addition, the company may want to avoid investing a significant amount of assets 

in relatively illiquid markets, such as small capitalization stocks in frontier markets, even if they 

offer a great risk-reward profile.  Precautionary actions such as these enable a life insurance 
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company to minimize the probability of finding itself in a tight situation of being asset-rich but 

cash-poor.  
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C. 5. Operational Risk 

 Although the inherent nature of the life insurance business involves promising to pay out 

certain payments in the future under certain states of the world in return for receiving premiums 

from policyholders, putting this business into practice necessitates the use of certain internal 

systems, procedures, and labor services of employees.  This creates the potential for these 

aspects of a life insurer’s operations to fail and negatively impact the company’s financial 

position.  This is referred to as operational risk. 

 Operational risk can become manifest in a number of ways.  Certain employees could 

engage in activities such as embezzling company funds, over-promising to potential 

policyholders, or failing to follow underwriting and other policies.  The computerized technology 

that many of the modern administrative and processing systems rely upon could be undermined 

by power outages, technological failure, or cyber-attacks.  The company’s business continuity or 

disaster recovery plans could be found wanting or inadequate when a triggering event actually 

occurs.  If the life insurer outsources any aspects of the business, then those third party providers, 

who the life insurer may not have as much control over, may fail to follow the obligations laid 

out in the outsourcing agreement. 

 The financial consequences of operational risk can be significant.  There may be direct 

impacts resulting from financial losses due to the actual manifestation of operational risk.  For 

example, if the company’s disaster recovery plans are inadequate, then the insurer may lose 

several days or weeks of normal business operations, revenues, and profits as a result.  The 

financial losses may also stem from any regulatory or legal actions that occur in response to the 

operational failure.  This could be particularly relevant when the operational failure has an 

adverse impact on all or a group of policyholders. 
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These consequences are also potentially long-lasting because operational failures can 

damage the life insurer’s reputation and brand.  Like many financial institutions, life insurers 

seek to create a perception that they are financially strong, stable, and prudent.  An operational 

failure can easily undermine such a perception from the public’s viewpoint, and it can take years 

for a company to rebuild their reputation.  Thus, operational risk could have a financial impact 

far beyond the direct financial losses caused by the action itself. 

  



51 

 

C. 6. Group Risk 

 Similar to the rest of the broader financial services industry, there has been a fairly 

significant amount of consolidation activity within the life insurance industry over the past few 

decades.  As a result, many life insurers now must operate within a group setting.  This is to say 

that either the life insurer is owned by a parent holding company that also owns other divisions 

or lines of business or the life insurer has acquired a one or more subsidiaries that may or may 

not be engaged in the life insurance business.  To be sure, this arrangement can certainly be a 

source of strength to the life insurer.  When the life insurance business is suffering or even finds 

itself in a financial crisis, it may have access to cheap emergency capital through the parent 

company.  If the life insurer is the parent company, then it may still benefit when it is struggling 

and non-insurance subsidiaries have strong performance and support the financial results of the 

overall group.  However, a group setting poses risks for the life insurer as well. 

 The potential for group support can provide a benefit to a life insurer, but it can also be a 

source of danger.  Although the parent company is generally understood to stand ready to 

support any of the subsidiary businesses in case of need, there may be some discretion involved 

as well.  It could be the case that the parent company is unwilling to support a struggling 

subsidiary when it finds itself in trouble.  Instead, the parent company may prefer to let that 

subsidiary fail and retain more capital and resources for the remaining lines of business.  Also, a 

group setting increases the risk of contagion as the troubles of one member of the group start to 

“infect” the other members.  One of the life insurer’s non-insurance subsidiaries could start 

underperforming and divert resources away from the insurance businesses. 

Joining a group of businesses exposes a life insurance company to the risk of 

relinquishing some control over its business.  The parent company ultimately sets many policies 
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and manages resource allocation across the whole group.  Thus, resources and capital may end 

up being diverted away from the life insurer and toward other members of the group.  

Management of the life insurer will likely not have full control over setting its own strategies and 

policies.  Instead, management may be constrained by group-wide policies or even somewhat 

distracted by attending to group initiatives established by the parent company.  When the life 

insurer operates in another jurisdiction from the rest of the group or the parent company, the life 

insurance company’s operations may be affected by the regulatory framework of the rest of the 

group. 
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C. 7. Systemic Risk 

 Like many industries, issues that become evident in one area have the potential to 

reverberate throughout the whole industry.  Although a particular life insurer may not have any 

responsibility for the original problems, the consequences could have a very adverse effect on its 

own operations and financial position.  Systemic risk refers to these potential spillover effects 

that are due to a company being one element in a broader system.  This risk exposure was 

particularly acute during the financial crisis of 2007 – 2008.  Whole swaths of the financial 

services industry were avoided for some time simply due to the fact that they were a financial 

institution and fears about financial institutions were very high. 

 For life insurance companies, systemic risk could be felt in a few different ways.  If a 

sufficiently significant life insurer falls into financial straits or even fails, that could have an 

impact on the broader industry.  Potential customers may decide to avoid otherwise perfectly 

healthy insurance companies out of fear that a similar fate may befall them too.  Or, the whole 

industry may start to receive extra regulatory attention as a result of trouble in some areas of the 

industry.  Given that life insurance companies are also included in the broader financial services 

industry, there could be spillover effects if other financial institutions, such as banks in 2007 – 

2008, have significant problems.   
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C. 8. Regulatory Risk 

 Like all private enterprises, life insurance companies are under the supervision and 

monitoring of a number of regulatory agencies and governing bodies.  At times, the regulatory 

authorities may pass down new statutes or rulings that pose unexpected challenges to some or all 

of the industry’s members.  The costs associated with these regulatory challenges comprise what 

we will call regulatory risk. 

 Although the rule of law, rather than arbitrary bureaucratic power, is important for 

effective governing in a free society, regulatory actions sometimes produce unexpected costs on 

private businesses that can upend prior strategies and financial forecasts.  A regulator may 

interpret a legal statute differently than the company expected.  New laws, solvency rules, or 

regulations may be passed that will require life insurers to adjust their plans for growth or 

investment in new products and lines of business.  These are only a couple of examples but there 

are many ways in which regulation and legal issues can have negative effects on life insurers. 

 The trend over the history of the life insurance industry has been for regulatory activity to 

increase with each new crisis leading to a bevy of new agencies, laws, and policies seeking to 

protect policyholders or maintain stable insurance companies.  A recent example of this is the 

threat of being classified a systemically important financial institution (“SIFI”), which brings 

with it enhanced monitoring and regulatory attention.  Naturally, the response of the industry, 

like many other industries, is to increase its lobbying activities in an attempt to influence the 

shape of the regulations it will operate under.  Although this opens up the possibility of 

corruption, there are some rational reasons for the industry to have this influence.  Legislators 

and regulators may not always have the intimate details of the industry or of the insurance 

companies as the industry itself does, especially given the complexity of many large financial 
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institutions today.  If a proposed law or regulation is going to have a particularly damaging 

impact on the industry or is misguided in its application, then it is reasonable for the industry to 

seek to influence it toward a better or at least a more palatable alternative.  
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D. Dependency among the Key Risks 

 All of these key risks (insurance, market, credit, liquidity, operational, group, systemic, 

and regulatory) are important sources of uncertainty and potential financial loss for a life 

insurance company on their own.  However, there are interactions and connections between these 

key risks such that they are not completely independent of each other.  The manifestation of one 

type of risk could lead to consequences of another risk class. 

 Insurance risks are certainly related to operational and liquidity risks.  An operational 

failure to meet company-wide underwriting standards could result in a riskier pool of 

policyholders than expected or in larger claims than expected.  Or, a technical glitch in the 

company’s pricing software could result in a whole group of policies being mispriced for the true 

risk being covered.  Larger-than-expected claims could lead to a liquidity crisis at the life insurer 

if the spike in claims is sufficiently severe. 

 There are also important relationships between market, credit, and liquidity risks.  A 

shock to the credit risk of a company’s bond portfolio could also lead to a corresponding shock 

in the value of the life insurer’s bonds and/or stocks.  A shock to interest rates could result in 

larger-than-expected defaults on mortgages similar to the financial crisis of 2007 – 2008.  A 

severe shock to the equity or bond markets could undermine the ability of derivative 

counterparties to satisfy their contractual obligations with the life insurer.  Ultimately, credit and 

market shocks could result in a sharp reduction in the insurer’s capital and possibly lead to a 

liquidity crisis. 

 Insurance risks could also be related to group and systemic risks.  If the company’s 

underwriting and pricing policies turn out to be particularly poor, a parent company may decide 

that the issues are deeper than can be fixed by simply providing some additional capital.  In turn, 
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the parent company may decide to wind down or divest the insurer as a result.  Certain 

underwriting or pricing practices may become established across an industry such that most or all 

insurers adopt the industry standard practice.  If it turns out that the industry standard was flawed 

in some key respects, this could be both a systemic and an insurance risk for the insurer. 

 Regulatory risks could be related to many of these key risks too.  If an individual 

company pursues overly aggressive investment policies or has shoddy underwriting, then it could 

result in unwanted regulatory action and extra scrutiny.  If these risks in become severe and 

prevalent across the industry, then regulators and/or legislators may develop new solvency 

standards or otherwise constrain the industry’s activities in an attempt to protect policyholders 

and the industry from current or future crisis. 

 Undoubtedly, these are not the only connections between these key risks.  However, these 

examples provide insight into how these key risks cannot be treated in isolation from each other.  

When managing the risks being acquired as a result of insuring the lives of persons, a prudent 

insurer must consider the potential ramifications that one risk has on other types of risk and the 

relationships that exist between them. 
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E. The Ultimate Risk – Individual Life Insurance Company Failure 

 These key risks can and do create uncertainty and financial problems for life insurers.  

Typically, manifestations of these risks produce slow growth, reduced returns to owners, or extra 

regulatory scrutiny.  They do not frequently result in the ultimate risk of the life insurance 

business, and that is the risk that an individual life insurance company fails.  Very few interested 

parties benefit when a life insurer collapses.  Shareholders will likely sustain significant financial 

losses, creditors may not receive full repayment on debt, policyholders may not be able to 

receive the full payments promised to them, and managers may lose their jobs.  However, 

company failure has happened in the past and will likely happen again. 

 Just as each state has an insurance commission or department that regulates the life 

insurers, the states have also established guaranty associations that help protect policyholders 

should an insurance company become insolvent.  In 1983, a voluntary organization called the 

National Organization of Life and Health Insurance Guaranty Associations (“NOLHGA”) was 

created by the various state-level associations to assist them with multi-state insolvencies 

(NOLHGA (2014)).  Similar to how the Federal Deposit Insurance Corporation guarantees the 

account values of bank depositors up to a certain level, the guaranty associations ensure that 

policyholders will be able to receive their promised benefits up to a certain amount.  The levels 

vary by each state but they all ensure a certain minimum amount.  As of 2014, all state guaranty 

associations protect at least $100,000 in annuity benefits and $300,000 in life insurance death 

benefits (NOLHGA (2014)). 

 Since its creation, the NOLHGA has tracked the actual insolvencies that have occurred in 

the life insurance industry.  In total, the NOLHGA has participated in 70 cases where an 

insurance company has been put into receivership.  In spite of two recessions, including a 
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financial crisis, the decade from 2000 – 2009 actually saw a reduction in the number of multi-

state insolvencies compared to the 1990s.  There were only 14 insolvencies from 2000 – 2009 

but 25 from 1991 – 1994, with ten of those coming in 1994 alone.  The insolvency time series for 

the multi-state failures is presented in Figure 2.3 Panel A (on next page), which shows both the 

raw number series and the insolvency ratio series.  The insolvency ratio is simply the number of 

insolvencies in a given year divided by the number of life insurers in the industry in the prior 

year from ACLI (2014). 

This variation seems to be due at least in part to the relative number of insurers in 

business at each time.  The average number of stock and mutual life insurers was 1,883 from 

1991 – 1994 and about 1,037 from 2000 – 2009, so about 1.3% – 1.4% of the total failed in each 

time period (ACLI (2014)).  The multi-state insolvencies are also not evenly spread out 

geographically based on the state of domicile for the failed insurers and presented in Table 2.3.  

For reasons not explored in further detail here, Pennsylvania has experienced the most multi-

state insolvencies with seven cases, but Alabama and Indiana are not far behind with five each. 

Table 2.3 Life Insurance Company Failures by State 

This table lists the states with the most cases of insolvency by life insurers both in 

terms of multi-state failures only (from 1991 through 2013) and all failures (from 

1979 through 2013).  Data are from the National Organization of Life and Health 

Insurance Guaranty Associations. 

Multi-State Insolvencies All Insolvencies 

State 
Number of 

Insolvencies 
State 

Number of 

Insolvencies 

PA 7 TX 65 

AL 5 OK 20 

IN 5 IL 19 

MS 4 FL 18 

TX 4 PA 18 

CA 3 IN 14 

IL 3 AL 12 

OK 3 AZ 12 

AZ, DE, FL, GA, ID, 

LA, MO, NC, NJ 
2 each 

CA 8 

NM 7 
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Figure 2.3 Time Series of Life Insurance Company Failures 
These graphs track the year-by-year insolvency activity of life insurance companies.  The multi-state insolvencies 

(those involving more than one state guaranty association) are in Panel A while Panel B contains the data for all 

insolvencies.  For dataset, the graph includes a series for the raw number of insolvencies in each year (“Insolvency 

Number” on left vertical axis) from the National Organization of Life and Health Insurance Guaranty Associations 

and a series for the percentage of life insurers that fail in each year (“Insolvency Ratio” on right vertical axis).  The 

percentage is the ratio of Insolvency Number and the number of companies in the life insurance industry at the end 

of the prior year from ACLI (2014).  Note that the Insolvency Ratio for 1979 and 1980 in Panel B is based on the 

average number of life insurers from 1975 and 1980 as ACLI (2014) does not start providing annual figures until 

1980. 

Panel A – Multi-State Insurers Only 

 
Panel B – All Insurers 
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The NOLHGA also provides a more complete list of insolvencies that includes those 

involving only one state guaranty association and is presented graphically in Figure 2.3 Panel B.  

Surveying this list, which starts in 1979 compared with 1991 for the multi-state list, we derive 

similar conclusions.  The 1991 – 1994 time period following the savings and loan crisis is again 

characterized by an elevated number of insolvencies with 83 cases out of 190 in total for all 

years.  In contrast, there are only 20 insolvencies listed from 2008 – 2013, which is the period 

following an even greater financial crisis.  In addition, we can now see that the early 1990s 

experienced a marked increase in insurer insolvencies as the insolvencies from 1979 through 

1988, both in number and percentage terms, were much lower. 

Once we include the smaller insolvencies, the state-by-state comparisons are somewhat 

different, though.  Texas, which was tied for fourth in the multi-state list, is now the big winner 

(or loser) with 65 insolvencies occurring in that state alone followed by Oklahoma (20 

insolvencies), Illinois (19), Florida (18), and Pennsylvania (18).  Since 1979, there have been 

five states (Alaska, Maine, Nevada, Rhode Island, and Vermont) without any cases of 

insolvency.  Interestingly, Connecticut has had only a single insolvency over this time period 

according to the NOLHGA in spite of being the traditional home of the “Insurance Capital of the 

World” (Hartford, from The Courant (2014)).  Apparently, a large concentration of insurance 

business does not necessarily lead to a greater risk of insolvency, even in raw number terms. 
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F. Systemic Considerations
5
 

 The broader financial system has shown itself to be prone to occasional bouts of systemic 

problems that contagiously spread throughout the system.  The 1800s experienced multiple 

financial crises, there was a financial crisis in 1907 that required the assistance of J.P. Morgan 

and his bank to stem the tide of banking failures in New York, the Great Depression involved 

bank runs that led to many bank closures and a subsequent reduction in available credit, and the 

recent financial crisis had ramifications across the global economy.  There are several reasons 

that systemic risk in the financial system has the potential to inflict some wide-ranging and deep 

damage.  Due to this destructive potential, financial regulators have started officially classifying 

certain financial institutions as being systemically important.  The plan is to provide extra 

regulatory attention to these firms in order to minimize their systemic risk. 

 Traditionally, the financial system was very bank-based.  Banks typically featured liquid 

short-term liabilities (deposits) and relatively illiquid long-term assets (loans).  Although this 

maturity and liquidity transformation provides benefits to the economy, this also creates potential 

fragility.  When a bank would experience a run on its deposits, it would need to call in loans, 

liquidate its loans at fire sale prices, or simply close.  The contagion occurs because a run at one 

bank could incite runs at other banks as fears rise or as debtors of the first bank must withdraw 

their deposits elsewhere to meet the call-in of loans.  Another source of risk is the fractional 

reserve nature of banking.  By only holding a fraction of the deposits in reserve, the bank has 

created the potential of running through its reserves before it can meet all of the deposit 

demands. 

 Over time and especially in the past few decades, the financial system has become more 

market-based.  Banks are still major financial institutions but others such as hedge funds, mutual 

                                                 
5
 The information in this section is credited to FRBNY (2006) unless otherwise cited. 
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funds, other asset managers, and brokers/dealers are now responsible for a greater proportion of 

the movement of funds throughout the economy.  As a result, systemic risk has moved to the 

market as a whole rather than being focused on the health of specific institutions.  In other 

words, systemic risk in a market-based system reveals itself more often through market-wide 

disruptions as opposed to being triggered by the demise of a specific entity.  One benefit of the 

market-based system is that investment risk is more dispersed across many types of investors and 

institutions, rather than being concentrated in the savings and commercial banks.   

However, it also has its own areas of weakness that enable systemic problems.  The 

proper functioning of the financial markets depends on market marking and arbitrage activity.  A 

market-based systemic event is often triggered by the significant decline, possibly unwarranted, 

in the price of some asset.  The decline sustains itself when arbitrageurs, who would normally 

provide necessary balance to the market, are unable or unwilling to enter the market.  As a result, 

market participants start selling this and other risky assets, which perpetuates the drop in asset 

market value.  Hence, “market-based crises are often characterized by a coordination failure in 

which a wide cross section of participants in financial markets, including market makers and 

arbitrageurs, simultaneously decide to reduce risk taking and effectively pull back from 

financing activities.”  Although doing so helps each participant retain liquidity and capital, the 

aggregate effect on the market is sharp reduction in market activity and capital. 

In either type of system, whether it is bank-based or the market-based, leverage is a factor 

that increases systemic risk.  As financial institutions become more highly levered, the relative 

amount of capital available to cushion any unexpected losses dwindles.  As a result, a relatively 

small decrease in the asset values could have a big impact on the capital base of a highly levered 

firm.  If high leverage is widespread, it could lead to a broad sell-off of assets following a decline 
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in prices and a systemic crisis. The widespread use of derivatives, even as a hedging strategy, 

could also increase the systemic risk of the financial system.  The sensitivity of a derivative’s 

value to underlying asset price can change as that underlying price changes.  If selling the 

underlying asset is a reasonable response to the increased sensitivity, then systemic issues could 

result if many other market participants are trying to reduce their own risk in the same way. 
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III. Regulatory Framework for Life Insurance Companies 

A. Purpose of Life Insurance Regulation 

 The purpose of life insurance regulation in the United States is stated clearly in a paper 

by the National Association of Insurance Commissioners (“NAIC”). 

 

US Insurance Regulatory Mission:  To protect the interests of the 

policyholder and those who rely on the insurance coverage provided to the 

policyholder first and foremost, while also facilitating an effective and 

efficient market place for insurance products (NAIC (2010)). 

 

The NAIC is an association of the state-level insurance commissioners and has 

significant influence in the direction and shape of insurance regulation in the United States.  

Thus, the perspective of this important regulatory body is fixed squarely on the end user of 

insurance, which is the policyholder.  In other words, the purpose of regulation, from the 

regulator’s perspective, is not to maintain a steady and stable insurance market for its own sake 

but rather for the sake of protecting the persons who are depending upon the industry’s products 

for their own financial security and stability.  This mission provides the foundation for all of the 

regulations and policies proposed by the NAIC and other regulatory bodies.  
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B. United States Life Insurance Solvency Framework
6
 

B. 1. The Uniqueness of the United States Solvency Framework 

 Life insurance regulation in the United States is somewhat unique because it has 

traditionally relied so heavily on state-level, rather than national or federal-level, regulation.  

This is largely due to the tradition of federalism in the United States.  This was codified with the 

passage of the U.S. Constitution in 1787 and its subsequent amendments, particularly the tenth 

amendment.  As a result, the federal government was given the power and authority to govern in 

specific areas largely related to handling issues between the various states and the country’s 

foreign policy.  Much of the remaining governing authority was delegated to the states.  Thus, 

each state became responsible for regulating the insurance companies doing business within their 

particular jurisdiction. 

 Although “ultimate regulatory responsibility for insurer solvency rests with each state 

insurance department and the state insurance Commissioner,” some degree of uniformity and 

consistency has developed over time through the activities of groups such as the NAIC.  The 

NAIC offers “financial, actuarial, legal, computer, research, market conduct, and economic 

expertise to state regulators” and proposes model laws and regulations for state legislators and 

regulators to adopt.  It has developed a solvency framework for insurance regulation in the 

United States that describes the regulatory system used in the United States and the core 

principles underlying it. 

 The NAIC describes ways in which the regulatory system in the United States is unique 

as a consequence of being state-based.  It features “extensive systems of peer review, 

communication and collaborative effort that produce checks and balances in regulatory 

oversight” and a “diversity of perspectives with compromise that leads to centrist solutions.”  

                                                 
6
 The information in this section is from NAIC (2010) unless otherwise cited. 
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Another feature of the solvency framework in the United States is that it is risk-focused.  This 

means that regulatory “attention is paid to the greatest risks faced by insurers and the insurance 

market.” 

Naturally, the first of these features likely is a result of the state-based system.  With 

regulators residing in each state, as opposed to one primary regulatory body for the whole 

country, an opportunity is created for more collaboration and peer review to occur because there 

are many regulators operating across the whole country at any given time.  This is also an 

important feature for a state-based system to remain effective as the life insurance industry has 

become more consolidated and as company operations cross more state lines.  It does not require 

that all of the states craft the same regulations, but it is certainly helpful if the regulators of each 

state in which a particular company conducts business are able to collaborate when needed. 

Regarding the second of these features, the NAIC believes that the U.S. system includes 

such a diversity of regulatory perspectives that, through compromise, it is able to avoid both of 

the regulatory extremes.  These extremes are over-regulation, which “can impose unnecessary 

costs on consumers,” and under-regulation, which “can allow unnecessary harm to consumers 

and taxpayers.”  Although the boundaries of each of these extremes is left vague, the NAIC 

undoubtedly believes that its model laws and regulations reflect a center-point between them 

since it is an association of the chief state regulatory officials who presumably fall along the full 

continuum of opinions on regulatory matters. 
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B. 2. Core Principles of the United States Solvency Framework 

 The NAIC lays out seven core principles of financial solvency that build on the 

regulatory mission to guide insurance laws and regulations.  The first of these principles is 

regulatory reporting, disclosure, and transparency.  This principle requires that “US regulators 

receive required financial reports from insurers on a regular basis that are the baseline for 

continual assessment of the insurer’s risk and financial condition.”  This principle allows 

regulators to have information needed to measure the severity of a particular company’s risk 

profile and its degree of financial distress.  As such, it supports the regulator’s monitoring role 

and gives it a signal for any potential regulatory action. 

 The second principle is off-site monitoring and analysis, which simply means that the 

“US regulators and the NAIC conduct off-site risk-focused analysis of insurers.”  There is where 

the regulators use the information provided by the first principle to conduct on-going analysis 

and monitoring of the key risks faced by life insurers.  In addition to the information provided by 

the company, the regulator may use other publicly-available information, such as SEC filings, or 

information collected by the regulator in prior examinations. 

 The third principle is on-site risk-focused examinations where “[i]nsurers are subject to 

full-scope financial examination at least once every [five] years.”  In the second principle, 

regulators conduct on-going and high level monitoring of the insurer and its key risks.  In the 

third principle, the regulator periodically conducts a detailed examination that analyzes many 

aspects of the insurer’s business including corporate governance, management oversight, 

financial strength, risk identification and monitoring, and compliance with legal requirements.  If 

the off-site monitoring indicates the need, then regulators may conduct these on-site 

examinations more frequently than five years or may do an on-site examination focused on a 
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specific risk.  At a minimum, though, regulators are required to do a full-scope on-site 

examination at least once every five years for each insurer in their jurisdiction. 

 The fourth principle is reserves, capital adequacy, and solvency where “insurers are 

required to maintain reserves and capital and surplus at all times and in such forms so as to 

provide an adequate margin of safety.”  As mentioned earlier, various types of reserves are the 

primary liability for a life insurance company, and these actuarially-determined reserves relate to 

the insurer’s expected future payments to policyholders.  Capital, or surplus, is essentially the 

difference between the value of an insurer’s assets and its liabilities.  Capital adequacy 

requirements seek to ensure that life insurers have a sufficient capital base to act as a cushion 

should the company experience unexpectedly high claims.  In that case, the capital base 

“cushions” the hit to assets so that, hopefully, the company will not become insolvent. 

 In the United States, the primary set of capital adequacy requirements for life insurers is 

the risk-based capital (“RBC”) system.  It uses a standardized formula that “provides for higher 

RBC charges for riskier assets or for riskier lines of business so that more capital is needed as a 

result.”  There are certain thresholds that the risk-based capital base for each insurer is compared 

with to determine if the insurer is weakly capitalized and that regulatory action is required.  One 

potential issue with the risk-based capital system is that it depends upon the charges to 

adequately measure the risk of each type of asset.  For example, government debt is traditionally 

viewed as being very safe and so would receive a low risk-based charge.  However, the European 

sovereign debt issues of the past several years cast into doubt the universality of that assumption 

across time and location.  Unless the risk-based charges are updated in a timely and accurate 

fashion, it could actually result in insurers becoming more, not less, risky. 
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 In addition to capital adequacy requirements, states also set minimum reserve 

requirements that ensure the insurer has the funds available to meet their obligations to 

policyholders under normal circumstances.  The NAIC argues that setting minimum 

requirements on both reserves and capital bolsters the financial solvency of insurers in the United 

States by assuring that “policyholder obligations are covered by enough resources to meet most 

future economic scenarios and there are enough resources so that an adverse trend can be 

detected in time for the regulator to suggest/take corrective action.” 

 The fifth principle is regulatory control of significant, broad-based risk-related 

transactions and activities so that “certain…transactions/activities affecting policyholders’ 

interests must receive regulatory approval.”  In other words, insurers may be barred from taking 

certain actions that fall outside the scope of routine underwriting and insurance issuance 

activities without first receiving explicit regulatory approval.  The types of activities that merit 

such special scrutiny include licensing requirements, change of control, the amounts of dividends 

paid, transactions with affiliates, and reinsurance.  Like other industries, major mergers and 

acquisitions may require regulatory approval that the transaction would not significantly impair 

the competitiveness of the industry or the welfare of policyholders.  However, even dividends 

may be restricted although some states only require that extraordinary dividends require 

regulatory approval. 

 The sixth principle is preventive and corrective measures, including enforcement, where 

“the regulatory authority takes preventive and corrective measures that are timely, suitable and 

necessary to reduce the impact of risks identified during on-site and off-site regulatory 

monitoring.”  The first four principles work to help the regulator identify and monitor the key 

risks that could potentially endanger the solvency of a particular insurer.  This principle gives the 
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regulator the authority to take actions that may be necessary to reduce the probability of 

insolvency.  Of course, these actions are only necessary if the insurer itself has failed to properly 

mitigate them or take preventive measures on their own.  The actions that could be taken include 

“requiring the insurer to provide an updated business plan in order to continue to transact 

business in the state; requiring the insurer to file interim financial reports; limiting or 

withdrawing the insurer from certain investments or investment practices; reducing, suspending 

or restricting the volume of business being accepted or renewed by the insurer; ordering an 

increase in the insurer’s capital and surplus; ordering the insurer to correct corporate governance 

practice deficiencies; requiring a replacement of senior management; and seeking a court order 

to place the company under conservation, rehabilitation, or liquidation.” 

 The seventh principle is exiting the market and receivership where the “framework 

defines a range of options for the orderly exit of insurers from the marketplace” if the insolvency 

occurs in spite of the best efforts of the company and/or the regulators.  These options seek to 

minimize the damage of insurance company insolvency to policyholders and other creditors.  

These options include “mergers, acquisitions, reinsurance arrangements, non-renewal of part or 

all of the insurer’s book of business, and…allowing the insurer to be placed in run-off mode 

under its own management.” 
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C. Life Insurance Regulatory Framework Globally
7
 

 Just as the NAIC is a voluntary association of the insurance commissioners from the 

various states in this country, there is an international voluntary association of insurance 

regulators, the International Association of Insurance Supervisors (“IAIS”).  It is an organization 

of insurance regulators from about 140 countries so it much if not nearly all of the global 

insurance market is influenced by this organization.  Also similar to the NAIC, the IAIS’s 

mission is “to develop and maintain fair, safe and stable insurance markets for the benefit and 

protection of policyholders and to contribute to global financial stability.”  So, it is clear that the 

regulators, at least officially, are on the side of the policyholders, which implies that regulatory 

risk is at least potentially one of the more important risks faced by life insurers.  Given such a 

mission, regulators appear to be primarily concerned about the welfare of policyholders 

suggesting that the long-term prospects of any individual insurer are important only to the extent 

it furthers that primary concern. 

 The IAIS also propose core principles to support its regulatory guidance and activities, 

but in this case, it has 26 principles compared to seven for the NAIC.  So, we will not go through 

them in much detail but will review them and highlight how they are similar and different than 

those of the NAIC.  Principles one through three relate to the insurance supervisor in a particular 

regulatory jurisdiction.  “The authority (or authorities) responsible for insurance supervision and 

the objectives of insurance supervision [must be] clearly defined” and the supervisor meets 

certain qualifications such as operating in an “independent, accountable and transparent” way 

and protects confidential information.  The NAIC does expect these conditions as well, but it 

took them to be a precondition for effective regulation rather than core principles.  The third 

principle sets an expectation that the regulators will exchange “information with other relevant 

                                                 
7
 The information in this section is credited to IAIS (2013) unless otherwise cited. 
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supervisors and authorities subject to confidentiality, purpose and use requirements.”  Principles 

25 and 26 relate to this expectation that the local regulator will cooperate with other regulators 

and regulators in other jurisdictions when necessary.  Recall that a unique feature the U.S. 

insurance regulatory system is the collaboration between the various state-level regulators, so 

this principle is naturally met without the need of the NAIC to explicitly state it. 

 The fourth principle simply states that insurers must be licensed prior to commencing 

insurance operations and that the licensing requirements must be “clear, objective, public, and be 

consistently applied.”  This principle is covered in this country with the NAIC’s fifth principle 

which includes licensing requirements as one type of a significant, broad-based risk-related 

transaction or activity that requires regulatory approval.  The IAIS sees this principle as an initial 

layer of policyholder protection, “a jurisdiction controls through licensing which entities are 

allowed to conduct insurance activities within its jurisdiction.”  In addition, the thirteenth 

principle of the IAIS, which discusses setting standards for reinsurance and other types of risk 

transfer, is covered by the NAIC’s fifth principle as the NAIC includes reinsurance as another 

activity that is subject to regulatory review and approval. 

 Principles five through eight all relate to the upper-level management and governance of 

an insurance company.  Although the NAIC’s on-site examinations include reviewing the 

insurance company’s corporate governance, it appears that the IAIS principles could be taking it 

a step further.  The fifth principle requires that the regulator ensure that senior management, 

directors, other key persons, and even significant owners are and remain to be suitable.  This 

principle could be either relatively innocuous or restricting depending on how the regulator 

interprets and defines suitability in each of these roles.  Thus, it opens up an opportunity for 

bureaucratic decision-making in insurance regulation.  The seventh principle also lays out in 
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much more detail than the corresponding NAIC principle the necessary elements of an insurer’s 

corporate governance framework, even proposing the necessary duties of board members and 

how boards should delegate some of its activities.  One possibility for the greater detail in 

regulatory guidance is that corruption in corporate management is a bigger issue internationally 

than has traditionally been the case in the United States.  Otherwise, principles six and eight 

simply require that transactions that involve significant changes in control receive regulatory 

approval, similar to the NAIC, and that insurers must have effective risk management systems 

and internal controls in place, which the NAIC would review with its periodic examinations. 

 Principles nine through 12 and 20 relate more directly to the actions of the regulator as it 

conducts insurance supervision.  Many of these principles closely correspond to certain NAIC 

principles.  The ninth and twentieth principles express the need for the regulator to take a risk-

based approach, conduct both off-site monitoring and on-site examinations, and collect the 

information needed for these supervisory activities, which match up well with the first three core 

principles of the NAIC.  In the event that supervisory activities uncover areas of concern, the 

tenth and eleventh principles charge the regulator with imposing and enforcing any necessary 

preventative and corrective measures, which corresponds to the NAIC’s sixth principle.  

Ultimately, if actions by the insurance company and the regulator are insufficient to save the 

insurer, the twelfth principle, which corresponds to the NAIC’s seventh principle, addresses the 

need for insurers to exit from the market and wind-down their insurance operations.  This must 

be done in a way that “gives priority to the protection of policyholders and aims at minimising 

disruption to the timely provision of benefits to policyholders.”  Principles 23 and 24 elaborate 

further on these guidelines by stating that supervision should occur on a group-wide basis when 
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the insurance company operates within a corporate group and that market-wide or economic 

environment factors should be utilized when monitoring and examining an individual insurer. 

 Principles 14 through 17 address issues of solvency and capital adequacy, on which 

NAIC’s fourth principle is built.  In this case, the NAIC adds more detail to the guidelines 

proposed by the IAIS.  The IAIS proposes that regulators establish requirements for the valuation 

of assets and liabilities (principle 14), the investment activities of insurers (principle 15), 

enterprise risk management (principle 16), and capital adequacy (principle 17).  Although the 

NAIC does not necessarily expand on these principles greatly in the statement of their own 

principles, the NAIC adds specific guidelines, such as risk-based capital calculations, to put the 

IAIS’s relatively broad guidelines into practice.  At a minimum, though, the IAIS does require 

that assets and liabilities be treated from an economic, rather than accounting, perspective for 

solvency and capital adequacy purposes.  This means that the valuation of assets and liabilities 

must reflect the risk-adjusted present values of their cash flows and off-balance sheet 

investments may need to be included in the analysis. 

 The remaining principles relate to certain activities of the insurance company.  Principle 

18 requires regulators to also supervise insurance intermediaries, such as brokers who sell the 

insurer’s products to customers, “to ensure that they conduct business in a professional and 

transparent manner.”  Principles 19 and 21 simply require that regulators ensure insurers treat 

policyholders fairly and effectively work to “deter, prevent, detect, report and remedy” fraud.  

Principle 22 requires that insurance companies put in place measures that will combat money 

laundering. 
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D. Banking Regulation vs. Life Insurance Regulation 

 In some ways, banking regulation and life insurance regulation are similar.  Both have a 

large focus on the capital adequacy of the regulated institution, examine and monitor financial 

institutions on a regular basis, and take a risk-focused approach.  For example, the Office of the 

Comptroller of the Currency (“OCC”), the primary regulator of banks operating with a federal 

charter, takes an integrated risk-based approach in which “the most significant risks to the bank 

will receive the most supervisory attention” (OCC (2008)).  However, there are very important 

distinctions that must be made when discussing the regulation of insurers and banks. 

 Banks operate under a regulatory framework with a different structure than do insurance 

companies.  While insurance regulation in the United States is state-based, banks operate under a 

dual banking system.  It is a dual system in the sense that some banks operate with a state charter 

and are regulated by the corresponding state banking regulatory authority and other banks 

operate with a federal charter and are regulated by federal regulators.  Thus, banking regulation 

is definitely more nationalized in the sense that federal agencies directly regulate a significant 

portion of the industry while another part of the industry is more directly regulated by the states. 

 Bank regulation also differs because the nature of banking is different than selling 

insurance products.  A bank’s traditional business model is to collect deposits from many diverse 

individuals and institutions who could demand to withdraw their full deposited amount at any 

time and then to make loans (many of which are long-term) using those deposits.  Thus, it is 

inherently more susceptible to bank runs than insurers are to policyholder runs.  Although 

policyholders may be building up an annuity account value or cash surrender value in an 

insurance policy, they may not be able to withdraw their funds at any time without paying a 

surrender charge.  Even if they could, insurance policyholders are not as likely to run on an 
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insurer as depositors.  Bank runs occur because of a depositor’s fear that others will withdraw 

their money from a failing institution first and then the money will run out.  With life insurance 

products, though, the primary concern of the policyholder is that the insurer is capable of paying 

the scheduled annuity benefits and promised death benefits.  Policyholders are not going to try to 

beat each other in line to face the grim reaper in order to get their money first when an insurer’s 

finances are looking wobbly.  Even if they did, insurers primarily invest in assets such as equities 

and investment-grade bonds, which are typically much more liquid than bank loans. 

 Another distinction between banking regulation and insurance regulation is related to the 

relative risk exposures of banks and life insurers.  Banks can be very exposed to broad economic 

risk.  When the economy goes into a recession, a bank’s borrowers may start falling behind in 

their loan payments as a result of the poor economic conditions.  This undermines the capital 

position of a bank.  In contrast, poor economic conditions have no effect on a promised death 

benefit amount or on guaranteed annuity payments.  In fact, if policyholders must cancel their 

insurance policies because they can no longer afford the premium payments, then the insurance 

company’s capital position may actually be improved.  They get to keep all of the premiums to 

date and no longer need to fund a future policy payout.  That being said, some of the newest 

insurance products, those of the variable annuity and variable life insurance variety, do have 

exposure to the equity market and broader economic conditions.  Although any promised payouts 

remain the same if the stock market falls, the amount that can be funded by the policyholder’s 

account value likely does fall meaning the company itself must pick up the slack.  Still, the shock 

mainly hits the insurer on a time value of money basis rather than creating an urgent liquidity 

crisis.  The actual payments affected may be years in the future whereas a bank is losing cash 

flow now when economic conditions deteriorate.  
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E. Macro-Prudential Issues
8
 

 Macro-prudential regulation is becoming vastly more important now for financial 

regulation than in the past.  The Dodd-Frank Wall Street Reform and Consumer Protection Act 

(“Dodd-Frank Act”) of 2010 included a requirement that financial regulators adopt a macro-

prudential approach.  So, it is important to understand what macro-prudential regulation is and 

what some of the tools used by regulators are as this may have an impact on the regulation of and 

the management of risk by life insurers. 

 Financial regulation, both of banks and insurance companies, has traditionally focused on 

the health and stability of individual institutions or markets.  Macro-prudential regulation instead 

focuses on systemic risk and minimizing the risk that financial disruptions drag down the broader 

economy.  It builds this aggregate level perspective on top of the foundation achieved by 

traditional micro-prudential regulation.  Acharya (2011) argues that traditional regulation may be 

insufficient to the extent that a particular institution’s systemic risk is not internalized by that 

institution and the costs borne by other parties.  In other words, systemic risk becomes a negative 

externality that is not factored in the decision-making of the entity causing the risk.  Macro-

prudential regulation focuses on the risks to the financial system in aggregate and whether 

certain risks are building up dangerously in the financial system. 

 There are several ways in which regulation has changed to identify systemic risks in the 

financial system.  Institutionally, the Dodd-Frank Act has created the Financial Stability 

Oversight Council to identify risks to the financial system’s stability, the Office of Financial 

Research to improve the quality of the information and data available to regulators for measuring 

and managing systemic risks, and other countries have created similar regulatory bodies to 

                                                 
8
 The information in this section is credited to Acharya (2011), Bernanke (2011), and Tarullo (2013) unless 

otherwise cited. 
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monitor systemic risks in their own financial systems.  One of the powers of the new Financial 

Stability Oversight Council is the aforementioned practice of naming certain financial 

institutions as systemically important.  These are firms that could supposedly cause significant 

turmoil in the financial system and/or broader economy should any of them fail.  As a result, 

firms that receive this designation become subject to extra regulatory attention and scrutiny. 

 There are a range of potential macro-prudential tools available to regulators.  Tarullo 

(2013) gives some broad classifications of macro-prudential tools.  Some may be termed “lean-

against-the-wind” measures because their intent is to prevent systemic risks from building up in 

the financial system while others are called resiliency measures because they seek to make firms 

and the system more resilient if systemic risk accumulates and manifests itself anyway.  Another 

classification given by Tarullo (2013) is time-varying and time-invariant where the distinction 

depends on whether a measure is “turned-on” based on an increase in systemic risk or is always 

on regardless of the risk levels seen throughout the system. 

 It appears that federal financial regulators plan on focusing their macro-prudential 

regulatory efforts on the resiliency and time-invariant class of tools.  Daniel Tarullo, a member 

of the Board of Governors of the Federal Reserve System, has stated that “building greater 

resiliency is central to the macro-prudential regulation of large financial institutions” and time-

varying measures will have a more limited role.  He also mentions some examples of the 

resiliency measures used already or at the disposal of the Federal Reserve and other regulators.  

Stress testing the largest banks, initially conducted in 2009, was one of the first macro-prudential 

tools used by the Federal Reserve after the financial crisis.  This is one example of a resiliency 

measure that can be both time-varying and time-invariant.  A stress test is time-invariant to the 

extent that it is done on a regular basis regardless of the systemic risk conditions in the financial 
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system.  However, the hypothetical scenarios used or the risk weights of various asset classes 

could be time-varying to reflect experience and new conditions from one year to the next.  For 

example, the Federal Reserve modified the market shock scenario in the 2011 round of stress 

tests to account for the European sovereign debt crisis.  Also, knowing that the risk weights 

would reflect their relative exposure in some hypothetical scenarios can create some “lean-

against-the-wind” disincentives that encourage firms to avoid loading up too much in assets 

particularly exposed to stress conditions. 

Another resiliency measure being used by the regulators is identifying certain bank and 

non-bank financial institutions as being systemically important and then subjecting them to extra 

scrutiny.  These systemically important institutions are those that could inflict great damage to 

the financial system or the broader economy should they fail.  The extra capital requirements for 

these systemically important firms will be macro-prudential by building in extra buffers for the 

negative externalities that would result if any of the other systemically important firms failed.  

Extending this designation to non-bank financial institutions is apparently one way of increasing 

the coverage of the macro-prudential regulation.  However, there is not a full consensus on how 

this is being implemented, even within the regulatory community.  For example, Prudential 

Financial and MetLife, two major American life insurers, were designated as systemically 

important financial institutions in September 2013 and December 2014, respectively.  In both 

cases, the insurance-specific members of the council opposed the designation essentially arguing 

that the other council members failed to understand the distinctions between banking and 

insurance (FSOC (2013) and FSOC (2014)).  They argued that insurers are not subject to the 

same run risk as banks for similar reasons as those outlined in Section III.D.  Nonetheless, the 

council decided to go ahead and subject an insurance company to direct federal regulation, which 
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itself is unprecedented in the United States.  In response, MetLife has sought judicial review by a 

federal court to have the designation rescinded (Business Wire (2015)). 

Time-varying macro-prudential measures may have limited efficacy due to some 

practical difficulties.  As of now, there is no consensus on a reliable systemic risk measure or set 

of measures.  Acharya (2011) outlines some of the possibilities, but the literature has not 

coalesced around one that could be used for regulatory purposes.  Even if there was a clear 

method of measuring systemic risk, there may be timing issues.  For example, Tarullo (2013) 

cites how the Basel III framework includes a countercyclical capital buffer of up to 2.5% that 

could be “turned on” when systemic risk is building but also gives banks up to a year to meet the 

revised capital requirement.  Given the one-year waiting period, the build-up in systemic risk 

could result in a crisis situation before the bank has changed behavior or acquired extra capital. 
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IV. Risk Management Tools and Strategies for Life Insurance Companies 

A. Traditional Asset Allocation 

 The oldest method used to manage the inherent risks of the life insurance business is 

through traditional asset allocation.  By allocating their assets appropriately, life insurers seek to 

maximize their returns while minimizing the probability that their reserves and capital surplus 

will be insufficient to fund the benefit payments.  The typical asset classes that have been used in 

this risk management strategy are stocks, bonds (especially government bonds and long-term 

corporate bonds), mortgages, and real estate.  Although policy loans used to comprise a more 

significant percentage of total assets (nearly 12% in 1920 according to ACLI (2014)), this would 

not be considered an investable asset class in this context because the amount that gets 

“invested” in policy loans is driven by policyholder borrowing decisions rather than the 

investment policies of the insurer. 

 As we have mentioned earlier, life insurers use traditional asset allocation to manage their 

risks by investing primarily in long-term investment-grade bonds.  This investment provides 

better duration and cash flow matching with the long-term insurance guarantees than other types 

of investments.  Investing in mortgages and real estate can also support this long-term 

investment policy.  Insurers have traditionally avoided giving significant allocations to the equity 

market as this asset class features significantly more market price volatility than fixed income 

investments.   

Basically, life insurers are looking to sell long-term financial stability and bonds provide 

more asset stability than stocks do, so life insurers invest in bonds and avoid stocks.  The equity 

market is not avoided entirely as it has higher expected returns than bonds, but the allocation has 

been kept to a limited level to minimize the equity market risk.  An interesting challenge for life 
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insurers in recent decades as investment-type policies (such as variable annuities and variable 

life insurance) have grown in popularity has been managing the risk of their Separate Account 

assets.  If the insurers seek to minimize their exposure to equity market risk, policyholders seem 

to flock to it.  We saw earlier how 80% or more of the Separate Account assets have been 

invested in stocks in recent decades.  Because these policies may come with certain guarantees, 

the life insurer ultimately takes on at least some of this equity market risk even though they have 

limited control over the initial investment decision.  We will discuss in more detail how insurers 

can manage this additional exposure to equity market risk in the next section. 

In addition to focusing their investments in certain asset classes with favorable risk 

characteristics, life insurers are selective in how they allocate their monies within an asset class 

to better manage their risk.  For example, life insurers do not put all of their bond investment into 

the lowest-rated tier of investment-grade bonds even though that would increase their expected 

returns.  Instead, they seek to optimize their risk-return profile by investing across a mix of rating 

tiers.   

Table 4.1 analyzes the credit profile of the life insurance industry’s bond and mortgage 

investments for the same years shown in the asset distribution of Table 2.2.  The NAIC classifies 

the credit risk of bonds into several classes with bonds of the highest quality going into Class 1 

and those of the lowest quality going into Class 6 (this allows them to include both publicly-

traded and privately placed bonds).  Life insurers almost exclusively invest in bonds of the 

highest qualities with only 5.75% of investments in 2013 going to bonds in medium or low 

quality classes.  Comparing this with 1999 and 2008 suggests that this behavior has been 

consistent over recent history, although the percentage in bonds of less than high quality has 

been trending down.  As with stocks, life insurers focus most of their investing activity in lower 
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risk investments but still look for some opportunity to enhance expected returns by not 

completely avoiding the riskier choices. 

Table 4.1 Credit Profile of Life Insurer Bond and Mortgage Holdings 

This table classifies the aggregate bond and mortgage holdings of life insurance companies into various 

credit risk categories.  The bond profile is in Panel A while the mortgage profile is in Panel B.  For 

bonds, the risk categories correspond to the various classes defined by the NAIC.  Classes 1 and 2 are 

deemed to be “High Quality,” Class 3 is of “Medium Quality,” and Classes 4, 5, and 6 are of “Low 

Quality.”  For mortgages, the categories are defined according to the current status of the mortgage.  The 

data for 1999 and 2008 are from ACLI (2010), and the data for 2013 are from ACLI (2014). 

Panel A - Bonds 

 1999 2008 2013 

High Quality    

Class 1 64.58% 67.68% 62.61% 

Class 2 28.08% 26.01% 31.62% 

Medium Quality    

Class 3 4.15% 3.62% 3.63% 

Low Quality    

Class 4 2.67% 1.72% 1.56% 

Class 5 0.43% 0.78% 0.42% 

Class 6 0.10% 0.19% 0.14% 

Panel B – Mortgages 

 1999 2008 2013 

In Good Standing 97.89% 99.84% 99.46% 

Restructured 1.80% 0.06% 0.46% 

Overdue 0.18% 0.04% 0.05% 

Foreclosed 0.14% 0.06% 0.04% 

 

Life insurers appear to be even more concerned about credit quality in their mortgage 

portfolios.  Since the height of the internet boom of the late 1990s, nearly all of their mortgages 

have consistently been paying in full and on time.  Even during the recent financial crisis (when 

concerns about the credit quality of mortgages underlying mortgage-backed securities 

contributed to market-wide stresses) and several years later, a very small percentage (0.10% in 

2008 and 0.09% in 2013) of their mortgage investments are either in “overdue” or “foreclosed” 

status.  This appears to be largely due to the risk characteristics of the mortgages chosen for 

investment.  For example, nearly 96% of the mortgage investments have loan-to-value ratios of 

80% or less and over 86% of all mortgages have loan-to-value ratios below 71%.  Hence, life 
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insurers apparently seek to manage their credit risk by focusing almost all of their mortgage 

investments in mortgages of very low credit risk.  
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B. Hedging Programs 

 As more of a life insurer’s asset allocation decision-making is transferred to 

policyholders (through the Separate Account assets), the need arises for the company to use 

methods other than traditional asset allocation to manage risk.  Because the insurer only has 

indirect control over the asset allocation decisions of policyholders, it cannot simply adjust its 

weights to various asset classes to reduce its exposure to certain risks such as equity market risk.  

In theory, the company could eliminate stock investment options from its Separate Account 

policies, but based on the revealed preferences of policyholders, that would likely be very 

unpopular.  One method of managing the company’s exposure to increased risk as a result of 

these policyholder allocation decisions is to implement a hedging program. 

 Hedging programs make use of derivative securities to achieve a desirable risk profile 

without placing too many constraints on the policyholder investment options.  Life insurers 

would naturally be exposed to a sudden down shock in the equity market given the high 

proportion of Separate Account assets invested in stocks and the presence of certain guarantees 

on those policies.  If the equity market returns are high, or even just mediocre, then the 

policyholder’s account value can fund most or all of the guaranteed benefits.  However, if equity 

market declines, then the account values may no longer be sufficient to fund benefits payments 

and creating a liability for the company in expected present value terms.  To offset or hedge this 

risk exposure to equity market declines, a life insurer could short equity futures contracts or 

purchase equity put options, so that the hedge program produces profits at the same time policy 

liabilities increase.  Of course, hedging programs are not cost-free.  When no such shocks to the 

equity market occur, the put option premiums paid or the losses on futures contracts produce a 

real cash outflow from the company.   
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As with many financial decisions, there is a trade-off between hedging away the 

additional equity market risk and “self-insuring,” or building up extra reserves within the 

company to protect against any adverse equity market movements.  Of course, life insurers need 

not choose one option to the exclusion of the other.  They can certainly use a mixed strategy that 

protects against adverse equity shocks up to a certain level such as 20% and then hedges away 

the exposure to worse shocks using derivatives.  One benefit of this is that it cheapens the 

hedging program by using derivatives that are significantly out-of-the-money when the trades are 

executed. 
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C. Reinsurance
9
 

 Traditional asset allocation and hedging programs focus on the asset side of the insurance 

company’s balance sheet.  They take the insurance liability risks as a given and seek to manage 

them by investing in a mix of assets that is expected to generate cash inflows that match up well 

with the expected liability cash outflows and maximize profit without undermining the insurer’s 

long-term stability.  In contrast, reinsurance seeks to manage the liability risks by transferring at 

least some of the risk to another party.  Although reinsurance may show up as an asset on an 

accounting balance sheet, the life insurer is effectively reducing its potential liability by 

purchasing its own insurance policy.  This risk management strategy is also very common.  As of 

2013, 89% of life insurers receiving life insurance premiums purchased at least some reinsurance 

to better manage their risks. 

Reinsurance is insurance for an insurance company whereby risk is transferred from a 

cedant (the insurance company) to a reinsurer.  Reinsurers tend to be multi-national firms so 

global diversification of life insurance risks occurs through reinsurance.  Life insurers essentially 

guarantee a certain portion of their policyholders’ tail risk (where the tail refers to either the left 

(traditional life insurance) or the right (life annuities) tail of the policyholders’ remaining life 

probability distribution), and reinsurers then guarantee a certain portion of the life insurer’s tail 

risk.  Thus, the reinsurer is the ultimate guarantor of the policyholder’s benefits corresponding to 

the portion of the life insurer’s business covered by reinsurance.  As a result, managing risk 

through reinsurance may increase the life insurer’s counterparty risk but with the benefit of 

adding greater certainty to the expected cash outflows.  Another benefit is that reinsurance may 

reduce the life insurer’s regulatory reserve or capital surplus requirement. 

                                                 
9
 The information in this section is credited to Wehrhahn (2008) and ACLI (2014) unless otherwise cited. 
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Reinsurance serves multiple potential purposes for the life insurer seeking coverage.  By 

transferring some of the risk to the reinsurer, the life insurer can increase the amount of 

insurance coverage provided than would otherwise be possible based on their own financial 

strength.  Or, it allows the insurer to cover a particularly unique and/or large risk that would not 

be prudent to take on in isolation.  An expanded capacity to underwrite insurance also allows the 

insurer to diversify the risks acquired by using their additional capacity to enter new markets, 

lines of business, or regions. 

Another use of reinsurance is akin to the role that the life insurer itself plays for the 

policyholders.  By seeking insurance coverage, policyholders are often trying to protect 

themselves and their families from a low-probability but catastrophic event.  Similarly, the life 

insurer can manage the risk of a catastrophic event by transferring it to a reinsurer.  In general, 

this is probably less of a concern to the life insurance industry since it is very rare for even 

natural disasters to result in mass loss of life.  Nonetheless, an insurer with operations focused in 

a place such as Florida may seek some protection from the possibility that an event such as a 

hurricane leads to an unexpectedly high number of claims.  This also shows how reinsurance can 

serve the purpose of allocating work to those with the competitive advantage to handle it.  

Reinsurers end up covering the risk of various potential catastrophes across many different areas 

of the world.  As a result, they tend to build up a high level of expertise in pricing, forecasting, 

and underwriting the risk of such events.  By transferring it to the reinsurer, the life insurer is 

effectively utilizing the reinsurer’s relative expertise in covering this risk. 

Insurance companies can even use reinsurance as a source of financing for a new line of 

business.  A reinsurance agreement could be made where the reinsurer provides the insurance 

company with future expected profits of the new business as a reinsurance commission.  The 



90 

 

insurance company must then pay the reinsurer out of the actual profits of the new business over 

time.  Since reinsurers have more insurance-specific expertise and understand the nature of the 

risks better, this form of financing may be cheaper and more effective than using other forms of 

financing such as a bank loan. 

Reinsurance agreements between the cedant and the reinsurer can also take several 

different forms.  The general classification is between proportional and non-proportional 

reinsurance.  Proportional is the case where the reinsurer and the insurance company each cover 

some specified percentages of the risk (and corresponding premiums, expenses, reserves, etc.) 

under consideration.  This includes a quota share arrangement where the same percentage is 

transferred for each risk included in the agreement or surplus/excess of retention reinsurance 

where each risk is shared in different proportions.  Even if the covered risks have different 

sharing proportions, each of them would include a certain risk level (called the retention or 

surplus line) that the insurance company is willing to cover on its own and then the reinsurer 

would cover the proportion above this threshold up to a maximum amount (called the capacity).  

Risk amounts in excess of the capacity are not insured in such an arrangement. 

Non-proportional reinsurance is used when insurance companies are looking to protect 

themselves from adverse impacts resulting from a spike in actual claims (as opposed to the ex-

ante amounts at risk).  One example of this type of reinsurance is excess of loss or stop loss 

reinsurance, which is similar to the surplus proportional agreement except now we are dealing 

with actual losses sustained by the insurance company.  The cedant will cover losses up to some 

threshold (called the priority in this case), the reinsurer will cover losses up to the capacity, and 

losses above the capacity are uncovered by the agreement.  These thresholds can be determined 

on the basis of actual dollar amounts or percentages of premiums (e.g., the priority is 80% of the 
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total premiums, the capacity is 40% of the total premiums, and anything above 120% of the total 

premiums is not insured).  These agreements could potentially include a feature where the cedant 

must pay a copayment for losses in excess of the priority.   

The remaining types of non-proportional reinsurance are excess of time and catastrophe 

agreements.  An excess of time agreement is related to the excess of loss type but is more 

conducive to certain insurance policies (such as disability or long-term care insurance) that 

require the insurer to pay out recurring payments for potentially an extended period of time.  The 

reinsurance arrangement allows for the life insurer to manage the risk of making payments much 

longer than expected by having the reinsurance cover some or all of the payments after some 

specified period of time.  Catastrophe agreements are similar to the excess of loss type in that the 

actual losses must exceed the priority for it to be covered by reinsurance.  The distinguishing 

feature of catastrophe agreements is that the losses are due to some specified catastrophic event 

as opposed to the insurer experiencing an unexpected amount of potentially unrelated claims 

over a time period. 
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D. Catastrophe Bonds 

 If an insurance company is particularly exposed to catastrophe risk, which is the risk that 

some catastrophic event could conceivably produce a spike in claims, then issuing catastrophe 

bonds can be a method of managing the financial implications of that risk.  They do this by 

freeing up funds for benefit payments that would otherwise be paid out to creditors. 

 The advantage for risk management provided by catastrophe bonds comes from the 

conditional nature of its cash flows.  At issuance, lenders purchase bonds from the insurance 

company as with any other bond.  The key distinction is that the bond payments to creditors are 

contractually dependent on whether or not a specified catastrophe has occurred.  If the 

catastrophe has occurred, then the company is no longer obligated to re-pay the creditors.  If no 

catastrophe occurs, then the bond payments continue until maturity just like any other standard 

corporate bond.  In this way, the insurer has managed its exposure to this risk by transferring it to 

the broader capital markets.  Obviously, the catastrophic event that triggers nullification of the 

remaining bond payments is precisely specified in the bond contract.  Although it introduces a 

type of basis risk for the insurer where a catastrophe could occur that generates a lot of claims 

but does not qualify for the bond trigger, it also enables a deeper market for the catastrophe bond 

(creditors would be less willing to take on a vague catastrophe risk when natural disasters occur 

somewhere on a regular basis). 

  Although this risk management tool is used by life insurers much less than the tools 

mentioned thus far, it could conceivably be useful to a life insurer under certain situations.  If a 

life insurer is operating in a region that is particularly exposed to a recurring risk of potentially 

deadly disasters (such as Florida for hurricanes, certain areas of the Midwest for tornados, 

California for earthquakes, and certain Asia-Pacific areas for tsunamis), then catastrophe bonds 
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could help mitigate even a low probability of financial distress should catastrophe occur and 

result in a widespread loss of life.  They could even help protect the company against the 

relatively new risk of terrorist attacks in North America and Europe. 
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E. Government Regulations 

 Although ultimately outside the control and certainly not often welcomed by the life 

insurer, government regulations are a method by which the insurance company’s risks could be 

managed or mitigated.  In fact, regulations of financial firms often have risk mitigation as their 

primary goal.  Although we already engaged in a more detailed discussion of insurance 

regulation, some key points are relevant here as well. 

 For life insurers, the major regulations related to risk are the reserves and capital 

regulations governing the necessary funds that firms need to have on hand to maintain long-term 

solvency.  Ensuring long-term financial stability flows from the regulatory mission covered 

earlier of protecting the policyholders since insolvency can cause major disruptions for 

policyholders even if the state guaranty association ultimately makes them whole.  Recall that 

the state guarantees cover insurance benefits only up to a certain level, though.  As a result, some 

policyholders may lose benefits if the insurance company fails even if they have paid all of the 

required premiums.  To minimize these liquidity and insolvency risks, states and nations require 

that insurers meet certain regulatory thresholds on reserves and capital surplus.  Since the state 

has decided to guaranty at least some of policyholders’ benefits, the state also has a vested 

interest in reducing the cost of such a guaranty program by increasing the solvency of life 

insurers. 

 Regulations also seek to manage other risks than the risk that insurance companies are 

failing to keep sufficient funds on reserve.  They also try to mitigate risks arising from how 

insurers might invest those funds.  Insurers do not invest primarily in investment-grade bonds 

entirely on their account.  State insurance regulations often restrict the amount of weight that can 

be given to higher risk asset classes such as equities and high-yield (“junk”) bonds.  These 
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investment constraints serve to manage the insurance company’s market and credit risk by not 

allowing it to load up their investment allocations in financial securities highly exposed to these 

risks. 

 To be sure, government regulations are not an infallible risk management tool.  At times, 

they can actually generate greater risk of financial distress.  By relying on the wisdom of 

supposedly prudential regulations, private enterprises (including life insurers) can develop an 

attitude of taking advantage of any opportunity to boost profits within the boundaries of the 

regulations.  For example, the risk charges of various assets for risk-based capital calculations 

may not always keep pace with the inherent riskiness of the corresponding assets.  Insurers will 

naturally prefer to invest in a bond with higher yield but the same risk charge as another.  As a 

result, insurers may end up exposing themselves to assets (e.g., mortgage-backed securities in 

2007 or European sovereign debt in 2008-2009) that appeared to be safe according to bond 

ratings and regulatory risk charges but were ultimately revealed to be much riskier.  Thus, a 

potential weakness of using government regulations as a risk management tool is the possibility 

that they will encourage firms to sacrifice their own due diligence in order to maximize potential 

profits (i.e., moral hazard).  
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F. Interrelationships among the Various Tools 

 Perhaps unsurprisingly, an insurance company’s use of one or more of these risk 

management tools can impact the need or effectiveness of another tool.  This is due, at least in 

part, to an overlap in the risks being addressed by the various risk management strategies.  Asset 

allocation, hedging programs, and government regulations are all focused on managing the 

market risk of the company’s investments.  Credit risk is also managed primarily by asset 

allocation and government regulations.  Insurance risks are addressed by reinsurance agreements 

and catastrophe bonds.  Systemic risks are increasingly being managed through government 

regulations, particularly for any life insurers who become designated as systemically important 

financial institutions. 

 One example of the linkages between the various tools is the following relationship 

between asset allocation and hedging programs.  Life insurers have increased their exposure to 

the equity market largely by granting certain policyholders the ability to make their own 

investments using the policy’s account value.  As we have described earlier, the historical 

experience thus far has been that policyholders with these Separate Account assets tend to give 

large asset allocation weights to stock-related investments.  The company could manage this 

increased equity exposure by re-adjusting its own allocations to traditional asset classes within 

the General Account.  It could increase even higher its allocation to safer and more stable bond 

investments, or it could avoid purchasing any speculative debt as these bonds may be exposed 

some of the same residual claim risks as equities.  However, by implementing a hedging 

program, the company can minimize the need to alter its own General Account asset allocations 

to balance the increased equity exposure from the Separate Account.  It can largely offset this 

exposure with a hedging program that generates payoffs from derivative securities at the same 
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time as equity market risks increase Separate Account-related liabilities.  Although a hedging 

program is not cost-free (e.g., the premiums required to purchase put options), it can help the 

company avoid needing to reduce its General Account market risk (and thereby reducing the 

expected returns) as a result of greater Separate Account market risk. 

 We already alluded to another potential linkage between government regulations and 

asset allocation as risk management tools.  As governments take some responsibility for 

maintaining the long-term safety and soundness of life insurers, a natural tendency is for the 

companies themselves to start relaxing their own prudential asset allocation practices in order to 

maximize expected returns and profits while still meeting the regulatory requirements.  

Government regulations can also reduce the need to use the other tools.  As we have discussed 

earlier, a significant component of the life insurance regulatory framework focuses on the 

capitalization of life insurers.  As regulations require insurers to maintain larger capital buffers, 

the probability falls of an insolvency-inducing spike in claims or market value movement.  As a 

result, insurance companies may have less incentive to purchase reinsurance, issue catastrophe 

bonds, and implement hedging programs.  Thus, the relationships between these tools are not 

always self-reinforcing. 

 Ultimately, an interrelationship between all of these risk management strategies that they 

are trying to manage the ultimate risk of insurance company failure, and a life insurer fails when 

it cannot pay the promised benefits to policyholders at the scheduled times.  Thus, all of these 

tools seek to minimize liquidity risk while balancing the need to provide required rates of return 

to owners.  Asset allocation and hedging programs do this by protecting the company’s assets 

from debilitating losses in market values.  Reinsurance and catastrophe bonds do this by 

providing for additional financing or risk sharing when realized claims exceed the resources 
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provided by the company’s insurance pricing and forecasting models and start to undermine the 

capital buffers.  Government regulations do this by ensuring that the company is sufficiently 

capitalized to weather some unexpected losses, has sufficient funds in reserve for scheduled 

payouts, and is managing their assets appropriately. 

  



99 

 

V. Measuring and Modeling Life Insurance Market Risk 

A. Statistical Measures of Risk 

 The notion that many human activities are exposed to uncertainty and risk is certainly not 

new.  The earlier discussion about the early history of life insurance makes this clear.  The 

existence of ancient burial societies and conditional loans to sailors would not make sense unless 

sailors and soldiers were aware that undesirable events might occur to them.  However, the 

concept of quantifying and mathematically measuring our risk exposure is not so old. 

 Although we are not going to argue that no statistical measures of risk were being used 

prior to Markowitz (1952), that paper has certainly had a large impact on our measurement of 

risk, especially in the context of forming investment portfolios.  The measure of risk used in that 

paper was the variance, or standard deviation, of returns.  Given a sample of returns for any 

asset, the variance is calculated as a weighted average of squared deviations from the mean.  

Unfortunately, the variance is not easily interpreted given that it is measured in percent-squared.  

The standard deviation, which is simply the square root of the variance, is much easier to 

interpret and has often been used to measure portfolio risk since Markowitz (1952). 

 The implicit assumption in using variance and standard deviation, though, is that risk is 

any volatility in potential outcomes relative to the expected outcome.  In other words, returns 

both 1% above and 1% below the expected return contribute equally to an asset’s variance.  

Naturally, investor attitudes about both of these possibilities are not so symmetrical.  Investors 

are much more concerned about the possibility that returns will be below the expectation and 

may not even consider volatility on the other side to be risk at all.  So, a number of risk measures 

have been developed that focus on measuring “downside risk,” or the likelihood that one will be 

left disappointed by an especially poor outcome. 
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 One of these downside risk measures is called the second lower partial moment and has a 

similar calculation as the standard variance except for one key thing.  Only returns that are below 

some target rate set by the practitioner contribute to the lower partial moment.  The remaining 

returns do not count for the risk calculation.  We can then calculate the square root of the lower 

partial moment if we desire to have a risk measure with the same units as our returns. 

By considering only returns below some threshold, we are focusing our risk measure on 

the left tail of the probability distribution of returns.  Other risk measures that focus on the left 

tail include conditional tail expectations, which estimate the expected outcome conditional on 

being in the left tail (i.e., when things go bad, how bad exactly do we expect it to get) and value-

at-risk, which estimates the minimum amount of loss should we find ourselves in the left tail.  

One can also fully model the distribution of returns conditional on being in the tail by fitting a 

probability distribution the returns in the left tail.  Doing so may provide one with a fuller picture 

of an asset’s downside risk by trying to capture more of the return behavior in the left tail than a 

single risk measure. 
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B. Importance of Tail Risk 

 Focusing on tail risk is especially important in the context of this study in managing 

market risk for a life insurance company.  As we discussed earlier, life insurers must focus on 

their own long-term strength and stability given the long-term nature of their liabilities.  Thus, 

life insurers need to be keenly aware of their exposure to tail risk.  Such risk can be much more 

ruinous to the solvency of the company than the normal day-to-day market volatility.  If not 

managed well, the manifestation of tail risk can quickly wipe out much or all of a company’s 

surplus capital, at which point the regulatory authorities will likely require corrective action up to 

and including the termination of the company as a going concern.  Given that even a single 

manifestation of tail risk has the potential to produce these consequences, life insurance 

companies tend to invest conservatively and sacrifice some expected return by focusing on bonds 

rather than stocks in their General Account investments. 

 Traditional diversification strategies may be insufficient for the purpose of managing tail 

risk, though.  This is because the financial markets have a tendency to “behave as one” in the 

words of Junior and De Paula Franca (2012).  They and others have observed that correlations of 

asset returns across a number of asset classes are appreciably higher during crisis periods than 

during other periods.  Unfortunately, these markets are correlating in the exactly the wrong 

direction from the investor’s perspective.  In other words, when a crisis hits, many of the markets 

go down together.  As a result, increasing one’s allocation to a normally safe asset class such as 

high-grade corporate debt may not be enough to avoid trouble when tail risk rears its ugly head.  

An exception may be investing in U.S. Treasury securities to the extent they are perceived to be 

a safe haven during distress.  For example, U.S. Treasury bonds, as tracked by the Bank of 

America/Merrill Lynch U.S. Treasury indices, provided returns of over 10% from September 
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2008 through March 2009 whereas corporate bonds lost nearly 8%, commercial mortgage-

backed securities lost over 18%, and stock investors saw nearly half of the value of their 

holdings wiped out. 

 This shows that it is both vital and difficult for a long-term investor such as a life 

insurance company to measure and manage its exposure to tail risk.  Not doing so puts at risk the 

financial security of numerous policyholders who are also the company’s owners if it is a mutual 

insurer.  As a result, this study will analyze the asset allocation decision from a “downside risk” 

perspective and will base this decision on returns adjusted for downside risk.  This will be done 

by making use of the Sortino Ratio, which was developed by Brian Rom of Investment 

Technologies according to Booth and Broussard (2015).  This ratio is similar to the commonly 

used Sharpe Ratio, with a couple of key exceptions.  The numerator is the difference between the 

return of the asset under study and a target or minimum acceptable rate determined by the 

researcher or practitioner.  The denominator is a measure of downside risk, which measures the 

volatility of the returns below the minimum acceptable rate. 

 The measure of downside risk used in this study is the second lower partial moment.  As 

mentioned earlier, this risk measure is calculated similarly to variance except only observations 

below some threshold or target rate of return count towards the measurement.  Thus, it is based 

on a philosophy that risk is the potential for significant losses to occur rather than volatility on 

either side of an expectation.  This fits the perspective of an investor like a life insurance 

company that may sustain significant hits to capital from adverse financial market movements 

but will not be affected so much by the opposite. 
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C. Probability Distributions to Model Tail Risk 

C. 1. Generalized Pareto Distribution 

 One of the probability distributions often considered to model the tail returns of an asset 

(see Castillo and Hadi (1997), Longin (2005), and Booth and Broussard (2015)) is the 

Generalized Pareto Distribution (“GPD”).  Using this distribution implies one makes a certain 

assumption about the nature of the tail.  Namely, it assumes that the tail returns are all of the 

returns below some threshold set by the researcher regardless of which time period they come 

from.  As a result, if one’s dataset includes a time period with particularly poor returns, such as 

the September 2008 – March 2009 time period for many risky assets, then many of those returns 

will be included in the tail even if they were not relatively worse than other returns from the 

same time period.  This lends the GPD to be useful in many downside risk frameworks where 

one’s risk measure is based on returns below some minimum acceptable rate. 

 Fitting the GPD to data requires the estimation of three parameters.  One of which, the 

location parameter (𝜆) or the threshold, is set by the researcher.  The other parameters model the 

scale (𝜎) and tail shape (𝜏) of the distribution.  The threshold and shape parameters have 

(−∞, ∞) as their support while the scale parameter is non-negative.  In the context of this study, 

though, the threshold will be chosen in order to focus on the left tail of asset returns.   

Depending on the value of 𝜏, the GPD may simplify into either the exponential or the 

continuous uniform distribution.  If 𝜏 = 0, then it is equivalent to an exponential distribution with 

a mean equal to 𝜎, and if 𝜏 = 1, then it is equivalent to a uniform distribution on the range [0, 𝜎].  

In addition, 𝜏 > 0 corresponds to a fat-tailed distribution and 𝜏 < 0 corresponds to a finite 

distribution without a tail (see Longin (2005)).  Otherwise, the cumulative distribution function 

F(R) of the GPD given return R is 
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𝐹(𝑅) = 1 − [1 + 𝜏 (
𝑅 − 𝜆

𝜎
)]

−
1
𝜏
 

and the probability distribution function f(R) is 

𝑓(𝑅) =
1

𝜎
[1 + 𝜏 (

𝑅 − 𝜆

𝜎
)]

−(
1
𝜏

+1)

 

Because the distribution is defined is terms of observations above a threshold, 𝑅 − 𝜆, the returns 

used in this analysis are all multiplied by -1 so that the left tail will be the portion of the sample 

above the threshold. 

 The GPD theory, however, does not definitely give an estimate for the location of the tail 

(𝜆).  Following Booth and Broussard (2015) who base their threshold selection method on 

Loretan and Phillips (1994), we will base our estimate of the threshold on the empirical rule that 

𝑘 = 𝑛2 3⁄ / ln [ln (𝑛)] where k is the number of observations included in the tail and n is the 

sample size.  We will then estimate the GPD under four cases, which include having k / 2, k, 2k, 

and 4k observations in the tail, and select the threshold producing the best fit. 

 Using the GPD to model tail risk enables one to calculate the lower partial moment with a 

probabilistic and ex ante approach (see Booth and Broussard (2015)).  This makes our estimate 

of downside risk more conducive to a portfolio allocation problem where the focus is on what 

may happen rather than explaining what did happen from an ex post perspective.  Rather than 

calculating it as 

𝐿𝑃𝑀 =
1

𝑇
∑(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑅𝑖)

2
𝑇

𝑖=1

, ∀ 𝑅𝑖 ≤ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 

where T denotes the number of observations in the left tail as defined by 𝑅𝑡𝑎𝑟𝑔𝑒𝑡, we can make 

use of the theoretical distribution of R.  Therefore, we will calculate the lower partial moment to 

be 
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𝐿𝑃𝑀 = ∫ (𝑅𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑅)
2

𝑑[𝑓(𝑅)]
𝑅𝑡𝑎𝑟𝑔𝑒𝑡

−∞

 

where 𝑓(𝑅) corresponds to the probability distribution function of the estimated GPD model. 
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C. 2. Generalized Extreme Value Distribution 

 According to Castillo and Hadi (1997), the traditional alternative to the GPD approach is 

to model tail observations with a Generalized Extreme Value Distribution (“GEVD”).  The 

GEVD also includes an implicit assumption about the nature of the tail, but it is a different one 

than that of the GPD.  The GEVD assumes that the tail is defined in relativistic terms by 

including only the most extreme observations from each block of observations or time period.  In 

other words, the tail is the set of block maxima (or minima) where the size of the block is set by 

the researcher.  This ensures that the tail used for the analysis equally represents each time period 

of the sample.  However, it also means that the tail could include observations that would not 

appear to be very extreme in the context of the full sample. 

 Like the GPD, the GEVD is based on the location, shape, and scale parameters (see Singh 

(1998)).  The cumulative distribution function F(R) is given as 

𝐹(𝑅) = exp (− [1 − 𝜏 (
𝑅 − 𝜆

𝜎
)]

1
𝜏
) 

and the probability distribution function f(R) is given as 

𝑓(𝑅) =
1

𝜎
[1 − 𝜏 (

𝑅 − 𝜆

𝜎
)]

1−𝜏
𝜏

exp (− [1 − 𝜏 (
𝑅 − 𝜆

𝜎
)]

1
𝜏
) 

As with the GPD, returns that are modeled with the GEVD are multiplied by -1 in order to fit 

within the block maxima approach.  We can also estimate the lower partial moment with the 

GEVD by replacing the 𝑓(𝑅) in the probabilistic calculation with the probability distribution 

function of the estimated GEVD model. 
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D. Models to Manage Tail Risk 

D. 1. Risk Hyperplane 

 Ultimately, in order to say something meaningful about the tail risk borne by a life 

insurer as a result of their asset allocation decisions, we need a method by which to analyze the 

risk of the company’s whole portfolio of assets.  To do this requires us to model the joint 

distribution of the life insurance company’s assets.  Under the Gaussian assumption for each of 

the individual assets, the process of modeling the joint distribution is relatively straightforward.  

However, it has been observed by many (e.g., Mandelbrot (1963), Fama (1965), Cont (2001), 

Longin (2005)) that this assumption fails to be robustly supported by the actual returns of these 

assets.  Given the inherent difficulties of directly estimating a joint probability distribution when 

the underlying marginal distributions are not Gaussian, we will use alternative methods of 

modeling the joint behavior. 

 One of these methods will be a risk hyperplane approach.  Given a set of asset allocation 

weights and time series returns for individual assets typically owned by life insurance 

companies, one can calculate a time series of joint portfolio returns and model the representative 

company’s tail risk conditional on the initial weights.  Instead of choosing between the two 

definitions of a tail, both the GPD and GEVD probability models are used to model the portfolio 

tail risk in this approach.  By repeating this process for a whole range of initial weights, one can 

build a hyperplane based on the expected portfolio returns and tail risk across a set of feasible 

asset allocation choices for a life insurance company.  The hyperplane created by this approach 

can then guide us in determining which one of these portfolio weight sets is optimal for the 

purpose of maximizing portfolio return while also placing a high premium on managing tail risk.  

The Sortino Ratio will be used to measure this trade-off and determine the optimal portfolio. 
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 In order to define the feasible set of asset allocation choices for a representative life 

insurance company, we will make use of both the historical industry-wide asset allocation 

weights found in the ACLI Fact Books for various years and the regulatory constraints within 

which life insurers must make their decision.  As a starting point, the portfolio weights will be 

based on the industry weights for the most recent year available, which is 2013.  These weights 

vary from year to year and the full range of historical industry weights will be used to determine 

the set of feasible asset allocation choices.  Some of the regulatory constraints that are 

particularly relevant for this exercise include restrictions on the proportion of General Account 

assets invested in equities and other “high-risk” securities. 
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D. 2. Copulas 

 Copulas will be a second method utilized to estimate the joint probability distribution of a 

life insurer’s investment portfolio.  Copula theory goes back to Sklar (1959), which lays forth the 

following theorem.  Suppose one has random variables R1, …, Rd that have continuous 

cumulative distribution functions F1, …, Fd and a joint cumulative distribution function F.  Sklar 

argues that there exists a unique copula C such that F(r1, …, rd) = C(F(r1), …, F(rd)).  In other 

words, the copula function transforms the marginal cumulative distribution functions into the 

joint function F.  Note that C is a distribution function on [0, 1]
d
 with uniform marginal 

distributions, which allows one to use the distribution functions of R1, …, Rd as the functional 

inputs.  As a result, copulas hold out the promise of being able to estimate the joint probability 

distribution of returns from several asset classes even when returns are not Gaussian. 

 In practice, though, most of the copula functions that have been identified involve pairs 

of random variables.  This poses a challenge for the joint analysis of three or more random 

variables.  Work by Joe (1996), Bedford and Cooke (2001, 2002), and Kurowicka and Cooke 

(2006) makes clear a handy method of skirting this limitation as outlined in Brechmann and 

Schepsmeier (2013).  These authors propose using vine copulas, which decompose a multivariate 

copula into a series of conditional bivariate pairs.    This allows one to make use of the available 

bivariate copula functions for modeling a multivariate problem. 

 In order to make use of copulas for this study, we base our approach on similar copula-

based portfolio modeling work done by others including Deng, Ma, and Yang (2011), 

Brechmann and Czado (2013), Allen, McAleer, and Singh (2014), and Carmona (2014).  We 

first need to prepare our raw data to be useful as inputs into a copula function.  To do this, we 

will estimate a GPD model for each of the life insurer asset classes in order to model their 
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marginal distributions.  In this case, we will use a two-tailed GPD model because we are using 

the vine copula to model the joint dependence between the asset classes across the full 

distribution.  We will focus on the left tail at a later stage when we are dealing with the returns of 

a prospective portfolio.  We have chosen to use the GPD model in our vine copula analysis, 

rather than the GEVD, since this is more consistent with the prior vine copula literature.  The 

copula data are formed by taking the cumulative distribution function, F(ri), for each return r in 

asset class i based on i’s GPD-based marginal distribution. 

Next, an appropriate conditioning path is chosen based on the dependence structure of 

these assets, and an appropriate bivariate copula function is chosen for each “twist” of the vine. 

The structure selection criteria proposed in Czado (2010) and Czado, Schepsmeier, and Min 

(2012) are utilized for this purpose.  The structure selection depends not only on the joint 

dependence of various bivariate pairs of the individual asset classes but also on the underlying 

structure of the vine copula.  In particular, vine copulas can take on multiple structures that 

determine how the variables are paired together.  One structure, called a canonical vine copula 

(“C-vine copula”), is one where each level of the vine (called a tree) has a single root variable 

and all pairs are built on this root (e.g., if we have random variables R1, R2, R3, and R4 and 1 is 

the root, then the pairs for the first tree would be 1-2, 1-3, and 1-4).  Naturally, this is chosen 

when there is a variable in each tree of vine that drives a lot of the joint dependence.  Another 

structure, called a drawable vine copula (“D-vine copula”), is one where no single variable drives 

the joint dependence throughout the vine or in each tree (e.g., if we have random variables R1, 

R2, R3, and R4 and 1, 2, 3, and 4 is selected to be the correct order for the first tree, then the pairs 

for the first tree would be 1-2, 2-3, and 3-4).  For this dissertation, we will model the joint 
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dependence of a representative life insurer’s assets using both a C-vine copula and a D-vine 

copula structure and compare the results. 

In the C-vine copula, the root variable for each tree is the variable that has the greatest 

joint dependence across the other variables.  To do this, we estimate Kendall’s tau for each pair 

of variables in our dataset and keep the absolute value of the estimate.  Then, we sum up the 

absolute tau estimates for each variables, and the one with the greatest sum is chosen to be the 

root variable for this tree.  After the first tree, the Kendall’s tau estimates and bivariate copula 

selection is conditional on any root variables from prior trees, which are otherwise excluded 

from the analysis in this level of the vine. 

In the D-vine copula, we are not looking for a root variable that drives the joint 

dependence in each tree but are instead looking for the variable order that will maximize the joint 

dependence of the first tree.  The later trees are naturally built based on the order of the first tree 

(e.g., if we have random variables R1, R2, R3, and R4 and the pairs making up the first tree are 1-

2, 2-3, and 3-4, then the pairs for the second tree are 1-3|2 (from 1-2 and 2-3) and 2-4|3 (from 2-3 

and 3-4)).  Again, we use Kendall’s tau to measure the joint dependence for the purpose of 

selecting the correct variable order for the first tree.  The variable order that produces the highest 

sum of tau estimates (using the absolute value of each estimate) for the first tree determines the 

correct variable order for estimating the vine copula. 

To estimate the canonical and D-vine copulas, we use the CDVine package for the 

statistical software R.  This package contains many functions useful for statistical inference, 

estimation, and analysis of canonical and D-vine copulas.  Given the vine copula structure 

selected by the researcher, the software package selects the best choice of bivariate copula 

function for each pair in the vine and estimates the parameters of the copula function.  It does 
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this by estimating the parameters of each possible copula function choice for each pair and using 

the Akaike information criterion to select the best one.  Prior to selecting the copula function, it 

will also test that the two variables are statistically independent, given the appropriate 

conditioning set if necessary.  If the null hypothesis of independence cannot be rejected at the 

significance level chosen by the researcher, then the independence copula is chosen, which 

assumes no joint dependence at all at this point in the vine.  For this dissertation, we use a 

significance level of 5% to test for independence. 

After estimating a vine copula, we simulate returns for a typical life insurer’s investable 

assets that reflect the joint dependence modeled in the vine copula and the GPD marginal 

distributions.  To build portfolios of these returns, we use the same weights as in the risk 

hyperplane analysis.  The difference here is that we are modeling the joint dependence 

theoretically using the vine copula rather than estimating the portfolio characteristics directly 

from the historical data.  To compare the simulated portfolios, we estimate the Conditional 

Value-at-Risk, or expected shortfall, based on various threshold points as well as the Sortino 

Ratio from the risk hyperplane analysis.  The expected shortfall is the first lower partial moment 

of the portfolio’s asset return distribution while our measure of tail risk used to estimate the 

Sortino Ratio is the second lower partial moment.  Ultimately, the Sortino Ratio will guide our 

selection of the optimal asset allocation for the General Account of our representative life 

insurance company. 
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E. Data 

E. 1. Data Sources and Preparation 

 The historical asset allocation weights for the life insurance industry come from the 

ACLI Fact Books, which are published on an annual basis.  We have access to Fact Books 

published in 2005 and 2008-2014 which gives us weights for 1994, 1997-2004, and 2006-2013.  

We are able to get data for years prior to 2004 because certain tables within the Fact Books 

categorize assets not only for the most recent year but also for the prior year and ten years prior 

for comparison purposes.   

The 2014 Fact Book classifies the assets held by life insurers into the following asset 

classes:  U.S. government bonds, non-U.S. government bonds, corporate bonds, mortgage-

backed bonds, common stocks, preferred stocks, farm mortgages, residential mortgages, 

commercial mortgages, real estate, policy loans, short-term investments, cash and cash 

equivalents, derivatives, other invested assets, and non-invested assets.  Those last two categories 

include assets such as premiums or investment income due to the company but not yet received.  

All of these categories were reviewed in light of needing to define a readily available proxy 

investment with sufficient historical data to merit inclusion in the study.  As a result, not all of 

these categories will be included but a very significant portion of life insurer assets will be 

covered.  In particular, U.S. government bonds, non-U.S. government bonds, corporate bonds, 

mortgage-backed bonds, common stocks, residential mortgages, commercial mortgages, short-

term investments, and cash and cash equivalents will be included in the study.  As of 2013, this 

accounts for nearly 84.6% of the General Account, 96.5% of the Separate Account, and 89.2% of 

the combined assets.  The categories with the largest allocations that are not included are policy 

loans, other invested assets, and non-invested assets. 
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Table 5.1. Proxies and Data Availability for Includible Life Insurer Assets 

Asset Proxy 
Data Availability 

Date 
Abbreviation 

U.S. Treasury Bonds 
The BofA Merrill Lynch U.S. 

Treasury Composite Index 
10/31/1986 trbd 

Non-U.S. Treasury 

Bonds 

The BofA Merrill Lynch Global 

Government Excluding the U.S. 

Composite Index 

9/30/1993 fnbd 

Corporate Bonds 
The BofA Merrill Lynch U.S. 

Corporate Composite Index 
10/31/1986 corp 

Mortgage-Backed 

Bonds 

The BofA Merrill Lynch US 

Mortgage Backed Securities Index 
1/6/1989 rmbs 

Common Stocks 
CRSP Value-Weighted Index (with 

distributions) 
10/31/1986 vwst 

Residential Mortgages 
The BofA Merrill Lynch US 

Mortgage Backed Securities Index 
1/6/1989 rmbs 

Commercial Mortgages 
The BofA Merrill Lynch US Fixed 

Rate CMBS Index 
12/31/1997 cmbs 

Short-Term Investments 
The BofA Merrill Lynch US 6-

Month Treasury Bill Index 
3/31/1992 trbd6 

Cash and Cash 

Equivalents 

The BofA Merrill Lynch US 3-

Month Treasury Bill Index 
3/31/1992 trbd3 

  

Proxies were determined for each of the asset classes to be included in the study, and they 

are listed in Table 5.1.  Daily index values for the Bank of American/Merrill Lynch indices are 

from Bloomberg.  The daily value-weighted stock index total returns are from the Center for 

Research in Security Prices (“CRSP”).  Daily index values were determined based on the total 

returns provided by CRSP.  Although stock return data are available prior to October 31, 1986, 

this date corresponds to when data becomes available for asset classes that traditionally receive 

much greater allocations.  As a result, only stock returns following this date are used.  Also note 

that the composite indices for U.S. Treasury bonds, non-U.S. Treasury bonds, and corporate 

bonds are weighted averages of the individual Bank of America Merrill Lynch indices covering 

the following maturity ranges:  one to five years, five to ten years, ten to fifteen years, and fifteen 

or more years.  The weights for these averages are based on the maturity distribution for life 
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insurers as of 2013 according to the 2014 ACLI Fact Book.  This Fact Book provides industry 

allocations for the following maturity ranges:  one to five years, five to ten years, ten to twenty 

years, and twenty or more years.  Thus, the weights for the one to five year and five to ten year 

indices were set equal to those provided in the 2014 Fact Book.  The weight for the ten to fifteen 

year index was assumed to be equal to half of the ten to twenty year allocation in the 2014 Fact 

Book.  The weight for the fifteen or more year index was the other half of the ten to twenty year 

allocation plus the allocation of the twenty or more year range. 

For all of the proxies, daily log prices were calculated based on the index values, and then 

log returns were calculated by taking first differences of the log prices.  Descriptive statistics of 

these proxies are given in Table 5.2.  Panel A includes the statistics for the full sample time 

period available for each variable, and Panel B includes the same statistics but on a common date 

range available to all variables (i.e., December 31, 1997 to December 31, 2014).  The mean daily 

return, minimum daily return, and maximum daily return statistics are in percentage terms as a 

result of being multiplied by 100 (i.e., a mean of 0.025 for corp means that corporate bonds 

return 0.025% each day on average).  Note that cmbs only has 4,234 observations over the 

common date range (rather than 4,236 observations as with the other variables) due to missing 

observations for two days during this time period. 

Generally, a normal distribution would fail to precisely model these asset classes.  Other 

than a few exceptions (trbd and trbd6 in the full date range and trbd6 in the common date range), 

they exhibit skewness significantly different from zero.  Interestingly, they do not all exhibit 

skewness in the same direction.  We find negative skewness for trbd, corp, vwst, and cmbs and 

positive skewness for fnbd, rmbs, trbd3, and trbd6.  All of them are “heavy-tailed” since they 

have excess kurtosis that is significantly different from zero.  Based on the Lagrange Multiplier 
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test, these assets exhibit GARCH effects as all but fnbd in the common date range (p-value of 

0.0117) are significantly different from zero at least at the p = 0.0007 level. 

 

Table 5.2. Descriptive Statistics of Daily Data 

Column headings correspond to an individual asset class.  The point estimates for skewness and excess kurtosis are 

augmented with t-statistics based on the null hypothesis of zero skewness and excess kurtosis.  The Ljung-Box and 

Lagrange Multiplier statistics are based on the null hypothesis of no linear dependence and GARCH effects, 

respectively.   The statistics contained in Panel A correspond to the full data available for each individual asset class 

where as those in Panel B correspond to the date range that is common to all asset classes (12/31/1997 – 

12/31/2014). 

Panel A – Full Date Ranges 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

Mean (× 100) 0.027 0.025 0.029 0.038 0.026 0.024 0.012 0.013 

Variance (× 100) 0.0022 0.0032 0.0010 0.0129 0.0004 0.0022 0.0000 0.0000 

Skewness 
-0.03 

(-1.17) 

0.17 

(4.93) 

-0.29 

(-9.79) 

-1.00 

(-34.27) 

-0.13 

(-4.11) 

-3.14 

(-83.35) 

0.74 

(22.92) 

0.07 

(2.10) 

Excess Kurtosis 
3.35 

(57.30) 

3.25 

(48.29) 

3.32 

(56.90) 

18.98 

(325.54) 

5.42 

(88.84) 

80.56 

(1070.07) 

26.18 

(403.20) 

43.14 

(664.31) 

         

Minimum (× 100) -2.737 -3.211 -2.492 -18.796 -1.850 -9.358 -0.255 -0.414 

Maximum (× 100) 4.575 5.142 2.583 10.876 1.757 4.812 0.192 0.284 

Ljung-Box 17.07 7.56 12.38 17.91 98.27 200.37 2973.79 914.36 

Lagrange Multiplier 52.11 11.41 125.93 122.75 65.19 495.81 66.38 81.86 

         

Observations 7,039 5,311 7,041 7,059 6,459 4,234 5,691 5,691 

Panel B – Common Date Range 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

Mean (× 100) 0.024 0.023 0.025 0.026 0.021 0.024 0.009 0.010 

Variance (× 100) 0.0025 0.0035 0.0012 0.0163 0.0004 0.0022 0.0000 0.0000 

Skewness 
-0.12 

(-3.22) 

0.21 

(5.49) 

-0.34 

(-9.07) 

-0.28 

(-7.46) 

0.11 

(2.80) 

-3.14 

(-83.35) 

0.89 

(23.73) 

0.04 

(1.07) 

Excess Kurtosis 
1.83 

(24.32) 

3.18 

(42.27) 

2.21 

(29.39) 

7.00 

(93.01) 

5.42 

(72.01) 

80.56 

(1070.07) 

34.32 

(455.97) 

56.87 

(755.50) 

         

Minimum (× 100) -2.737 -3.211 -2.492 -9.405 -1.362 -9.358 -0.255 -0.414 

Maximum (× 100) 3.145 5.142 2.117 10.876 1.757 4.812 0.192 0.284 

Ljung-Box 10.73 6.14 4.38 26.60 61.71 200.37 2144.47 726.84 

Lagrange Multiplier 80.18 6.36 108.29 179.78 90.96 495.81 54.42 62.80 

         

Observations 4,236 4,236 4,236 4,236 4,236 4,234 4,236 4,236 

 

 Given that we are concerned with the tail risk of a portfolio of assets in this study, we 

will also describe the data in terms of joint dependence.  To do these we will use the concept of 
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an exceedance correlation.  As described by Patton (2004), an exceedance correlation of asset 

returns measures the correlation between two sets of returns conditional on both returns 

exceeding a certain percentile.  For the downside case, this is expressed mathematically as 

𝑐𝑜𝑟𝑟[𝑋, 𝑌|𝑋 ≤ 𝑄𝑋(𝑞), 𝑌 ≤ 𝑄𝑌(𝑞)] 

where X and Y are the returns for two assets, QX(q) is the qth percentile of asset X, QY(q) is the 

qth percentile of asset Y, and q is less than or equal to 0.5. 

For the sake of brevity, we will show the exceedance correlations with only the equity 

returns, but the concept could be applied to any pair of asset classes.  We will also show how the 

joint dependence varies across time in our data sample by calculating the exceedance 

correlations for each year.  To do so, we find each day within the year where both daily returns 

exceed their respective thresholds.  In order to ensure there are sufficient observations within 

each year to calculate the correlation, we will use a fairly wide tail based on q = 0.3, or the 

thirtieth percentile. 

These exceedance correlations are plotted in Figure 5.1.  To provide a benchmark, we 

also plot an average of the full correlations (“Overall” on Figure 5.1) between equities and each 

fixed income asset class.  To calculate this average, we first measure the correlation between 

equities and each fixed income asset class using all daily returns in the data sample.  We then 

average these correlations in order to derive an average level of overall dependence between 

equities and the fixed income asset classes.  In our data sample from January 1998 through 

October 2014, this overall correlation is about -0.14.  From reviewing Figure 5.1, we can see that 

correlation between equities and various types of fixed income securities tends to increase as you 

move to the left tail of returns.  This is not always the case, of course, as certain years and asset 

classes, especially corporate bonds in 2011, actually exhibit less joint dependence in the left tail 
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than overall.  The time period from 2000 to 2003 also has generally less joint dependence 

between equities and fixed income in the left tail than in the rest of the data sample.  Still, it is 

clear that joint dependence with equities is generally higher during periods of tail risk events.  

Although this generally coincides with the observations of Hong, Tu, and Zhou (2007) and 

Junior and De Paula Franca (2012) cited earlier, it is interesting to note that these exceedance 

correlations do not seem to be particularly high during years of known market stress such as 

2002 or 2008. 

Figure 5.1. Exceedance Correlations with Equity Returns 
This graph plots the exceedance correlations of the fixed income asset classes with equity returns.  They are 

calculated for each year shown on the horizontal axis.  An exceedance observation is a day on which the asset’s 

return is more negative than that same asset’s thirtieth percentile for that year.  Given each fixed income class, the 

exceedance correlation is calculated as the correlation between the returns from all days where both equities and 

the fixed income asset have an exceedance.  The “Overall” measurement is an average of the full correlations 

between equities and each fixed income asset class. 
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E. 2. Unit Root and KPSS Tests 

 Before we estimate the marginal distributions of the includible life insurer assets, we test 

for the presence of unit roots in the prices and returns of these assets.  Log prices and returns are 

used for these tests to correspond to the data that will be used to estimate the marginal 

distributions.  A unit root is a time series concept and relates to the autocorrelation of one 

observation with the observation from the prior time period.  In general, the relationship between 

two time series observations of successive time periods can be expressed as 

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑢𝑡 

where 𝑦𝑡 is the observation at time t, 𝜌 is the one-lag autocorrelation in this time series, and 𝑢𝑡 is 

the error at time t.  Testing for a unit root in this time series is equivalent to testing the null 

hypothesis that 𝜌 = 1. 

We transform the basic setup as Dickey and Fuller (1979) by subtracting 𝑦𝑡−1 from both 

sides to get 

Δ𝑦𝑡 = 𝛾𝑦𝑡−1 + 𝜀𝑡 

where 𝑦𝑡 is the log price or log return at time t and 𝛾 = 𝜌 – 1.  Now, testing for a unit root is 

equivalent to testing the null hypothesis that 𝛾 = 0.  Failing to reject this null hypothesis suggests 

the presence of a unit root in 𝑦 while rejecting the null hypothesis means that no unit root is 

present. 

Our results of this unit root test are presented in Table 5.3.  According to Hamilton 

(1994), the critical values to reject the null hypothesis at the 10% and 1% levels of significance 

are -5.7 and -13.8.  Reviewing the t-statistics for the regression in prices, we certainly fail to 

reject the null hypothesis of a unit root in log prices for every asset class.  When testing returns, 

though, the point estimates become significantly negative with t-statistics much greater in 
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magnitude than even the critical value for the 1% level of significance.  These results suggest the 

presence of unit roots in log prices but not in log returns.  Given that log returns are the first 

differences of log prices, this indicates that the prices are I(1) variables and the returns become 

I(0) after differencing. 

  

Table 5.3. Unit Root Test Results 

For each asset class listed in the column headings, daily changes in log prices or log returns are regressed against the 

prior day’s observation.  The coefficient on the prior day’s observation (𝛾) is given below for each asset class and 

type of data (prices or returns).  The t-statistics are in parentheses. 

𝑦 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

𝛾𝑝𝑟𝑖𝑐𝑒𝑠 
0.000 

(4.84) 

0.000 

(3.15) 

0.000 

(7.52) 

0.000 

(2.66) 

0.000 

(9.76) 

0.000 

(3.34) 

0.000 

(55.03) 

0.000 

(43.83) 

𝛾𝑟𝑒𝑡𝑢𝑟𝑛𝑠 
-0.985 

(-82.60) 

-0.981 

(-71.48) 

-0.953 

(-79.97) 

-1.006 

(-84.52) 

-0.915 

(-73.83) 

-0.847 

(-55.74) 

-0.456 

(-40.99) 

-0.591 

(-48.88) 

 

 In addition to testing for unit roots in our data, we also conduct a Kwiatkowski, Phillips, 

Schmidt, and Shin (1992) (“KPSS”) test on the log asset returns for stationarity.  This test uses a 

null hypothesis that a particular time series is stationary around a deterministic trend rather than 

a null of a unit root as in the Dickey-Fuller tests.  It uses a Lagrange Multiplier statistic to test 

this null hypothesis. 

The test is conducted by regressing 𝑦𝑡, t = 1, 2, …, T, on an intercept term and a time 

trend.  The residuals 𝑒𝑡 from this regression are saved and used to calculate two numbers.  The 

first, 𝑆𝑡, is the sum of the residuals from time 1 through time t.  The second, 𝜎̂𝜀
2, is an estimate of 

the error variance for y, and it is equal to the sum of squared residuals divided by T.  The LM test 

statistic is equal to 

𝐿𝑀 = ∑ 𝑆𝑡
2 𝜎̂𝜀

2⁄

𝑇

𝑡=1

 

Asymptotically, this becomes 
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𝜂̂ = 𝑇−2 ∑ 𝑆𝑡
2 𝑠2(𝑙)⁄  

where 𝑠2(𝑙) is a consistent estimator of the long-run variance 𝜎2. 

 

Table 5.4. KPSS Stationarity Test Results 

For each asset class listed in the column headings, a Kwiatkowski, Phillips, Schmidt, and Shin (1992) (“KPSS”) test 

is conducted.  This test relies on a Lagrange Multiplier statistic (𝜂̂) calculated with the residuals from a regression of 

𝑦 on an intercept and time trend.  Point estimates are provided below, and the p-values are in parentheses. 

𝑦 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

𝜂̂ 
0.018 

(0.9886) 

0.043 

(0.6780) 

0.031 

(0.8582) 

0.060 

(0.4523) 

0.067 

(0.3782) 

0.059 

(0.4641) 

0.905 

(<0.0001) 

0.775 

(<0.001) 

 

 The results of the KPSS stationarity tests are provided in Table 5.4.  With the exception 

of the short-term U.S. Treasury Bills, we clearly fail to reject the null hypothesis of stationarity 

around a time trend for each of these asset classes.  Again, the Dickey-Fuller tests for trbd3 and 

trbd6 strongly suggested the lack of a unit root in these daily log returns, so we are confident that 

all of these time series variables are suitable for the subsequent analysis. 
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F. Estimation of Marginal Distributions 

F. 1. Full Date Range Available 

 To better understand the behavior of left tail returns for the set of includible life insurer 

assets, we model the marginal distribution of each asset class with both a GPD model and a 

GEVD model.  We first fit these models to the asset classes over the entire time series available 

for each asset and then repeat the estimation for the pared-down date range that is common to all 

assets.  The “evir” package in R was used to fit the GPD and GEVD models to these time series 

variables. 

 Fitting these models requires the researcher to set a particular threshold (for the GPD 

model) or block size (for the GEVD model).  This is not entirely objective as the relevant 

definition of the tail can vary by application and researcher.  Using the Loretan and Phillips 

(1994) method for the GPD, though, provides with a more systematic way of selecting an 

appropriate threshold. 

 For the GEVD estimations, we estimate the model four times using various block sizes 

related to different time periods.  In particular, we estimate the model using a block size of five 

(a week), 21 (a month), 126 (half of a year), or 252 (a full year).  That being said, some of the 

variables were not estimable at lower block sizes, so the set of block sizes was adjusted for these 

cases on a case-by-case basis.  The variables for which the estimations were adjusted in this way 

include trbd3 (used ten observations instead of five), trbd6 (used ten observations instead of 

five), rmbs (used 75, 126, and 189 observations instead of five, 21, and 126), and cmbs (used 21 

and 63 observations instead of five and 21). 
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Table 5.5. Marginal Distribution Estimation over Full Date Range 

The table contains the marginal point estimates and observation counts for the includible life insurer asset classes.  

The GPD estimates are in Panel A, and the GEVD estimates are in Panel B.  The t-statistics are included in 

parentheses.  The number of extreme observations or the block size chosen for each asset class is also included.  The 

GPD and GEVD models were estimated several times for each asset class with a varying number of tail observations 

or block sizes.  The particular set of tail observations used is based on the number of total observations in the series 

(from Loretan and Phillips (1994)) and thus depends on the individual asset class.  The block sizes were chosen 

from a set of five, 21, 126, and 252 observations.  Some of the variables, such as rmbs, used alternative block sizes 

if one or more of the standard set produced erroneous estimates. 

Panel A – Generalized Pareto Distribution Estimates 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

𝜆̂ -0.0054 -0.0061 -0.0035 -0.0119 -0.0021 -0.0031 -0.0000 -0.0001 

𝜏̂ 
0.0020 

(0.05) 

-0.0124 

(-0.31) 

0.0545 

(1.69) 

0.2034 

(4.76) 

0.1080 

(3.33) 

0.4415 

(8.61) 

0.5030 

(4.89) 

0.3356 

(5.43) 

𝜎̂ 
0.0031 

(27.96) 

0.0036 

(22.84) 

0.0021 

(68.17) 

0.0074 

(18.38) 

0.0014 

(694.28) 

0.0019 

(946.68) 

0.0001 

(32.79) 

0.0001 

(55.02) 

         

Tail Observations 672 568 672 672 640 496 148 296 

Total Observations 7,039 5,311 7,041 7,059 6,459 4,234 5,691 5,691 

Panel B – Generalized Extreme Value Distribution Estimates 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

𝜆̂ 
-0.0066 

(-38.64) 

-0.0042 

(-36.42) 

-0.0043 

(-37.59) 

-0.0128 

(-29.08) 

-0.0040 

(-20.33) 

-0.0036 

(-22.03) 

-0.0001 

(-27.47) 

-0.0002 

(-106.37) 

𝜏̂ 
0.0496 

(1.22) 

0.0015 

(0.07) 

0.0967 

(2.17) 

0.2494 

(5.47) 

0.1293 

(1.42) 

0.3028 

(4.14) 

0.6619 

(5.42) 

0.4661 

(3.18) 

𝜎̂ 
0.0030 

(72.35) 

0.0034 

(78.34) 

0.0021 

(1049.46) 

0.0072 

(23.23) 

0.0018 

(906.83) 

0.0026 

(1280.92) 

0.0001 

(38.39) 

0.0002 

(88.10) 

         

Block Size 21 5 21 21 75 21 126 126 

Total Observations 7,039 5,311 7,041 7,059 6,459 4,234 5,691 5,691 

 

The GPD and GEVD models chosen for each variable are presented in Table 5.5.  Panel 

A contains the location (𝜆), shape (𝜏), and scale (𝜎) parameter estimates along with t-statistics 

for the relevant estimates for the GPD models while Panel B contains this information for the 

GEVD models.  Reviewing these results, we see that there is a range of threshold and scale 

estimates as a result of variability in the daily volatilities of these asset classes.  For example, 

vwst and fnbd have tails that are located relatively farther from zero while those of U.S. Treasury 

bills are very close to zero.  The tail shape parameters for some of the asset classes, especially 

trbd, fnbd, corp, and rmbs, are either not significantly different from zero or only marginally so.  



124 

 

This suggests that the tail risk of these variables may be modeled appropriately by an exponential 

distribution with mean 𝜎̂.  In contrast, the scale parameters are always very significantly different 

from zero in a statistical sense and generally in the range of 0.0015 to 0.0035.  However, vwst, 

trbd3, and trbd6 are notable exceptions with vwst having a much larger scale estimate and the 

U.S. Treasury bills having much lower estimates. 
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F. 2. Common Date Range 

 Due to differences in data availability across the set of includible asset classes, we also 

estimate the marginal distributions on a pared-down date range that is common to all assets, 

which is January 2, 1998, through October 31, 2014.  This common date range includes 4,236 

trading days for all assets, although cmbs is missing observations on two occasions.   

When estimating the GPD models, the number of observations to include in the left tail is 

based on the model chosen for that variable on the full date range.  For example, Table 5.5 shows 

that the left tail for corp includes 672 observations over the full date range out of 7,041 

observations in the full time series.  Thus, the left tail over the common date range was chosen to 

include the 4,236 × (672 / 7,041) ≈ 404 most extreme observations from this date range.   

When estimating the GEVD models, the block size was chosen to be the same as the 

model selected for that variable over the full date range.  The only exception to this is rmbs, 

which had a block size of 75 observations as shown in Table 5.5.  Over the smaller date range, 

this particular choice of block size actually led to an inability to calculate a standard error for one 

of the parameters.  So, the closest block size to 75 observations that did produce a tractable result 

(77 observations) was chosen for this variable on the common date range. 

The GPD and GEVD parameter estimates for each variable are shown in Table 5.6.  The 

general observations from estimating the marginal distributions over the full date ranges remain 

largely the same.  We still see a wide variability in tail locations in accord with differences in the 

overall daily volatility of each asset, the tail shape parameters for certain assets are either 

statistically insignificant or only marginally significant at the typical levels, and the scale 

parameters are very statistically significant and generally in the 0.0015 – 0.0035 range. 

 



126 

 

Table 5.6. Marginal Distribution Estimation over Common Date Range 

The table contains the marginal point estimates and observation counts for the includible life insurer asset classes.  The 

GPD estimates are in Panel A, and the GEVD estimates are in Panel B.  The t-statistics are included in parentheses.  The 

number of extreme observations included in the tail or the block size chosen for each asset class is also included.  

Except for port2013, which is a portfolio of the individual asset classes using the 2013 industry-wide asset distribution 

as the weights, the number of tail observations modeled over this date range is equal to the same ratio of the number of 

total observations as in the full date range.  Likewise, the block size used over this date range is set equal to the block 

size chosen in the full date range.  The number of tail observations used for port2013 was based on the Loretan and 

Phillips (1994) method and the block size was chosen from the same set used for the individual assets in the full date 

range. 

Panel A – Generalized Pareto Distribution Estimates 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 port2013 

𝜆̂ -0.0060 -0.0064 -0.0040 -0.0144 -0.0020 -0.0031 -0.0001 -0.0001 -0.0061 

𝜏̂ 
-0.0345 

(-0.73) 

0.0056 

(0.12) 

0.0067 

(0.17) 

0.1802 

(3.13) 

0.0773 

(1.93) 

0.4415 

(8.61) 

0.4737 

(4.09) 

0.4087 

(5.36) 

0.3226 

(4.30) 

𝜎̂ 
0.0033 

(21.31) 

0.0036 

(20.10) 

0.0024 

(36.28) 

0.0080 

(13.77) 

0.0014 

(679.32) 

0.0019 

(946.68) 

0.0001 

(38.62) 

0.0001 

(50.14) 

0.0023 

(19.71) 

          

Tail Observations 404 454 404 404 420 496 110 220 248 

Total Observations 4,236 4,236 4,236 4,236 4,236 4,234 4,236 4,236 4,234 

Panel B – Generalized Extreme Value Distribution Estimates 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 port2013 

𝜆̂ 
-0.0072 

(-33.81) 

-0.0044 

(-34.07) 

-0.0048 

(-34.87) 

-0.0152 

(-23.88) 

-0.0037 

(-14.88) 

-0.0036 

(-22.03) 

-0.0001 

(-32.26) 

-0.0001 

(-74.62) 

-0.0025 

(-30.87) 

𝜏̂ 
0.0819 

(1.34) 

0.0014 

(0.06) 

0.1419 

(2.07) 

0.2045 

(3.39) 

0.0376 

(0.41) 

0.3028 

(4.14) 

0.5273 

(4.57) 

0.7713 

(4.79) 

0.1237 

(4.96) 

𝜎̂ 
0.0029 

(63.37) 

0.0034 

(67.14) 

0.0020 

(987.25) 

0.0079 

(17.37) 

0.0018 

(908.84) 

0.0026 

(1280.9

2) 

0.0001 

(37.61) 

0.0001 

(58.77) 

0.0024 

(1204.08

) 

          

Block Size 21 5 21 21 77 21 126 126 5 

Total Observations 4,236 4,236 4,236 4,236 4,236 4,234 4,236 4,236 4,234 

  

 Table 5.6 also includes the GPD and GEVD marginal distribution estimations for a 

portfolio of these asset classes (port2013).  The weights used to construct this portfolio are based 

on the 2013 industry-wide distribution of combined assets (i.e., General and Separate Accounts 

combined).  Due to the two missing observations for the cmbs variable, the portfolio also has 

only 4,234 observations on the common date range.  The GPD estimation for the portfolio was 

done for the same four Loretan and Phillips cases used in the full date range.  Likewise, the 

GEVD estimation was done under the same set of block sizes as the other variables.  Although 
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some of the individual asset classes have statistically insignificant estimates for 𝜏, the portfolio 

estimation produces a shape estimate with a p-value that is less than 1%.  
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G. Estimation of Joint Distribution 

G. 1. Risk Hyperplane 

 Our initial attempt to model the joint tail risk of the includible asset classes is to make use 

of the concept of a risk hyperplane.  To do this, we will estimate the Sortino Ratio across a 

variety of portfolio weights for a representative life insurance company’s General Account.  This 

analysis will focus on the company’s choice of how much to invest in equities, which is an asset 

class with an especially high amount of market risk, and how much to invest in corporate bonds, 

which is the largest allocation in the General Account.  Our representative life insurance 

company is one that matches the industry-wide asset allocations found in the 2014 ACLI Fact 

Book.   

Although the General Account weights are the choice variables for the company, the 

Separate Account weights as of 2013 are included as an exogenous variable.  It is appropriate to 

include the Separate Account weights exogenously because these reflect investment decisions 

made directly by policyholders rather than the company itself.  Admittedly, the company retains 

some control because policyholders must choose from the investment options provided by the 

company.  However, the ultimate decision of how much to invest in stocks, bonds, etc. lies with 

the policyholder.  The degree to which the policyholders invest in asset classes with high market 

risk should also affect the company’s own investment decisions in the General Account. 

The weights actually used in the analysis are somewhat different than those derived 

directly from the ACLI Fact Books.  This is because we do not have data on all types of life 

insurer assets.  In particular, we lack data for assets such as policy loans, receivables, farm 

mortgages, and direct ownership of real estate.  The weights for the includible asset classes are 

normalized to sum up to one after excluding those asset classes for which we lack data.  From 
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2009 - 2013, the includible asset classes accounted for about 85% of the General Account assets 

with policy loans and miscellaneous assets, which includes premiums and investment income 

earned but not yet received by year-end, accounting for most of the gap. 

As of 2013, the industry-wide General Account allocation to common stocks is 2.37% of 

the includible assets.  This has been remarkably consistent in the post-financial crisis period, 

with the allocation ranging from 2.29% to 2.46% since the crisis.  Going back twenty years to the 

mid-1990s, though, this allocation has been trending down.  In fact, the 2013 allocation is 53% 

lower than that of 1994, when about 5% of the includible General Account assets were invested 

in equities.  For our analysis, we will build twenty-one life insurer asset portfolios where the 

equity allocation has a low of 1% and increases in steps of 20 basis points each until we reach a 

maximum of 5.00%.  The weights of the remaining includible assets will be based on their 2013 

allocations.  For example, corporate bonds make up 58.36% of the non-equity includible General 

Account assets as of 2013.  If the portfolio under consideration includes an equity allocation of 

1%, then the corporate bond allocation in this portfolio will be 0.5836 × (1 – 0.01) ≈ 0.5778. 

To estimate the tail risk and Sortino Ratios, we need to estimate the GPD and GEVD 

models for each of the twenty-one portfolios.  For the GPD model, we will use a threshold 

corresponding to 248 tail observations, which is the number of tail observations selected for the 

portfolio using actual 2013 weights (port2013 in Table 5.6).  For the GEVD model, we will 

likewise use a block size of five to correspond to the selection made for port2013.  The 

parameter estimates of these models will then be used to calculate the lower partial moment and 

Sortino Ratio for each portfolio.  

The GPD and GEVD parameter estimates are provided in Table 5.7.  Interestingly, the 

GPD model does not appear to be very sensitive to the choice of equity weight, at least within 
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the range of equity weights considered.  However, we can still see that adjusting the company’s 

equity weight from 1% to 5% does have some impact on the tail risk of a company’s portfolio.  

The location of the tail shifts from -0.0060 to -0.0064 and the scale increases from 0.0022 to 

0.0023.  Although these do not seem like big shifts in tail risk, they both move in the direction 

that greater allocations to equities increase the company’s tail risk.  It appears that the company 

does receive some compensation for this additional risk as the mean portfolio daily return 

increases from 0.0242 to 0.0243. 

 

Table 5.7. Portfolio Marginal Distribution Estimation over Common Date Range 

The table contains the GPD and GEVD parameter estimates and mean daily portfolio return for a range of 

equity portfolio weights.  Panel A contains the estimates for the GPD model and Panel B contains the GEVD 

estimates.  The equity weight in the portfolio under consideration is captured by the column headings within 

each panel.  For every portfolio, the GPD model is estimated based on the 248 most extreme daily returns over 

the common date range and the GEVD model is estimated with a block size of five observations.  The t-

statistics are included in parentheses. 

Panel A – Generalized Pareto Distribution 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% 

𝜆̂ -0.0060 -0.0061 -0.0061 -0.0063 -0.0064 

𝜏̂ 
0.3318 

(4.43) 

0.3244 

(4.33) 

0.3146 

(4.21) 

0.3352 

(4.40) 

0.3408 

(4.43) 

𝜎̂ 
0.0022 

(21.48) 

0.0023 

(20.10) 

0.0024 

(18.87) 

0.0023 

(19.33) 

0.0023 

(18.97) 

      

Mean Return (× 100) 0.0242 0.0242 0.0243 0.0243 0.0243 

Panel B – Generalized Extreme Value Distribution 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% 

𝜆̂ 
-0.0024 

(-30.77) 

-0.0024 

(-30.85) 

-0.0025 

(-30.92) 

-0.0025 

(-30.99) 

-0.0026 

(-31.05) 

𝜏̂ 
0.1219 

(4.90) 

0.1233 

(4.95) 

0.1247 

(4.99) 

0.1264 

(5.04) 

0.1277 

(5.09) 

𝜎̂ 
0.0024 

(1181.47) 

0.0024 

(1197.85) 

0.0024 

(1214.77) 

0.0025 

(1231.35) 

0.0025 

(1248.77) 

      

Mean Return (× 100) 0.0242 0.0242 0.0243 0.0243 0.0243 

 

To calculate the lower partial moment, we need to choose a target rate.  Inspired by the 

Loretan and Phillips (1994) method for selecting the GPD threshold, the target rates for the 
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portfolio lower partial moment estimations will be based on the 31, 62, 124, and 248 most 

extreme returns of the value-weighted stock index.  These tail points correspond to daily stock 

returns of approximately -4.02%, -3.13%, -2.49%, and -1.86%, respectively.  We then choose the 

target rate for the overall portfolio to be the minimum of the threshold from that portfolio’s GPD 

estimation and the product of the stock return tail point and the equity portfolio weight (e.g., if 

the equity allocation is 1% and the equity market tail includes 31 observations, then the daily 

target rate return equals 0.01 × -0.0402 = -0.000402).  We use the GPD threshold as a maximum 

to ensure that the target rate is located in the left tail used to estimate the GPD model.  Based on 

the 2013 portfolio weights, the average daily portfolio return is equal to 0.000243. 

After setting the target rate and equity weight for a given portfolio, we calculate the lower 

partial moment as described in Section C of this chapter.  Table 5.8 contains the square root of 

the lower partial moment estimates for both the GPD and GEVD models.  Recall that all of these 

estimates use the 248 most extreme portfolio daily returns for the GPD and a block size of five 

for the GEVD.  So, the tail of the portfolio series used is the same for all estimates.  Generally, 

this measure of tail risk produces lower estimates with the GEVD model than with the GPD 

model.  However, the general conclusions are similar across both models. 

We can see that the riskiness of the tail depends on both the target rate and the 

“aggressiveness” of the company’s asset allocation as measured by equity weight.  As the 

company moves to a less negative target rate, the tail risk decreases.  In fact, the reduction in the 

square root of the lower partial moment is in the range of 0.25% to 0.28% for the GPD and 

0.17% to 0.20% for the GEVD, depending on how much is invested in equities.  The notable 

aspect of this result is that it is almost a 50% reduction in the tail risk of the most extreme target 

rate.  This occurs because a more negative target rate focuses the analysis on the tip of the tail, 
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which is the riskiest portion.  As a greater portion of the portfolio’s tail is included in the tail risk 

measure, more moderate manifestations of tail risk are included, which reduces the overall tail 

risk measure.  Not surprisingly, investing more of the General Account in equities leads to some 

increase in tail risk.  However, the sensitivity to equity weight is not as great as it is to the target 

rate.  Increasing one’s equity weight from 1% to 5% results in a tail risk increase of about two 

and a half to three basis points on average or as much as four to five basis points with a more 

extreme target rate.   

 

Table 5.8. Portfolio Lower Partial Moment by Target Rate and Equity Weight 

The table contains the square root of the lower partial moment estimates for portfolios of the includible asset 

classes.  The portfolio composition is defined by the equity weights given in the column headings.  The target rate 

used to calculate the lower partial moment is defined by the number of extreme observations used from the vwst 

series.  The estimates are given in percentage terms (e.g., the square root of the lower partial moment for an equity 

weight of 1.00% and an equity tail of 31 observations is 0.4857%).  The “High – Low” column calculates the 

difference between the estimate for a high equity weight of 5% and a low equity weight of 1%.  The “Small Tail – 

Big Tail” row calculates the difference between the estimate for a smaller equity market tail of 31 observations and 

a bigger equity market tail of 248 observations.  The GPD estimates (based on a portfolio tail of 248 observations) 

are in Panel A, and the GEVD estimates (based on a block size of five) are in Panel B. 

Panel A – Generalized Pareto Distribution 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% High – Low 

Equity Market Tail of 31 Obs. 0.4857 0.4890 0.5123 0.5245 0.5323 0.0466 

Equity Market Tail of 62 Obs. 0.3669 0.3698 0.3721 0.3814 0.3875 0.0206 

Equity Market Tail of 124 Obs. 0.2987 0.3060 0.3076 0.3229 0.3275 0.0288 

Equity Market Tail of 248 Obs. 0.2339 0.2369 0.2427 0.2481 0.2546 0.0207 

Small Tail – Big Tail 0.2518 0.2521 0.2696 0.2764 0.2777  

Panel B – Generalized Extreme Value Distribution 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% High – Low 

Equity Market Tail of 31 Obs. 0.3712 0.3754 0.4001 0.4054 0.4102 0.0390 

Equity Market Tail of 62 Obs. 0.2807 0.2844 0.2880 0.2922 0.2962 0.0155 

Equity Market Tail of 124 Obs. 0.2377 0.2447 0.2471 0.2578 0.2608 0.0231 

Equity Market Tail of 248 Obs. 0.1998 0.2029 0.2087 0.2123 0.2176 0.0178 

Small Tail – Big Tail 0.1714 0.1725 0.1914 0.1931 0.1926  

 

  

Although it is clear from Tables 5.7 and 5.8 that higher allocations to equities result in a 

somewhat higher tail risk exposure for a life insurance company, it remains to be seen if they 

receive sufficient compensation for this additional exposure.  When studying the risk-return 
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trade-off from a downside risk perspective, the typical risk premium (i.e., the return from the 

risky asset net of the risk-free rate) is no longer appropriate.  Instead, we calculate the portfolio’s 

return in excess of the target rate.  Obviously, if we set our target rate, or sometimes called the 

minimum acceptable rate, to be equal to the risk-free rate, then the excess return under the 

downside risk framework would be identical to the typical risk premium.  However, sometimes it 

makes more sense to have a target rate different from the risk-free rate.  For example, a life 

insurance company might set a portfolio target rate based on the rate of return that is required to 

maintain sufficient risk-based capital levels. 

 From Table 5.9, we can see that our representative life insurance does receive some 

compensation for taking on the extra tail risk exposure through either higher equity weights or 

accepting a more negative target rate.  Excess returns are defined to be the average portfolio 

return for a given equity weight net of the target rate used.  These excess returns are always at 

least 70 basis points higher when one focuses on a smaller portion of the tail than when one uses 

a larger portion of the tail.  Excess returns are also higher as one increases the portfolio’s 

allocation to equities.  However, the amount of extra compensation received depends on the 

target rate.  Average portfolio returns are nearly ten basis points higher when the equity weight is 

5% relative to a weight of 1% when the most negative target rate is used.  The amount of this 

extra return declines as one increases the target rate until only about five basis points of extra 

return is received with the least negative target rate.  Still, the company can still expect to receive 

more return with a higher exposure to tail risk.  To answer the question of whether or not this 

extra return is worth the extra risk, we need to review the Sortino Ratios of these portfolios. 
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Table 5.9. Portfolio Excess Return by Target Rate and Equity Weight 

The table contains the average portfolio return in excess of the target rate for portfolios of the includible asset classes.  

The portfolio composition is defined by the equity weights given in the column headings, and the target rate is 

defined by the number of extreme observations used from the vwst series.  The estimates are given in percentage 

terms (e.g., the excess return for an equity weight of 1.00% and an equity tail of 31 observations is 1.3494%).  The 

“High – Low” column calculates the difference between the estimate for a high equity weight of 5% and a low equity 

weight of 1%.  The “Small Tail – Big Tail” row calculates the difference between the estimate for a smaller equity 

market tail of 31 observations and a bigger equity market tail of 248 observations.  Only one set of estimates is given 

since the portfolio excess returns are equivalent under the GPD and GEVD models. 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% High – Low 

Equity Market Tail of 31 Obs. 1.3494 1.3743 1.3992 1.4240 1.4489 0.0995 

Equity Market Tail of 62 Obs. 1.0563 1.0757 1.0950 1.1144 1.1338 0.0775 

Equity Market Tail of 124 Obs. 0.8441 0.8595 0.8749 0.8903 0.9056 0.0615 

Equity Market Tail of 248 Obs. 0.6378 0.6494 0.6609 0.6724 0.6839 0.0461 

Small Tail – Big Tail 0.7116 0.7249 0.7383 0.7516 0.7650  

  

Table 5.10 contains the Sortino Ratio estimates for these portfolios.  Although there is 

some variation across particular combinations of the target rate and probability model used, some 

general conclusions are apparent.  It is clear that life insurance companies should generally avoid 

being both conservative and aggressive with their equity allocations, as measured by the Sortino 

Ratio.  The maximum Sortino Ratio for each target rate is in the “Optimal” column of Table 

5.10, and this peak often occurs in the middle of the equity weights considered here (i.e., in the 

1.5-3.0% range).  In fact, averaging the equity weights corresponding to each maximal Sortino 

Ratio gives an optimal equity weight of exactly 2.00% for the GPD model and 2.50% for the 

GEVD model.  Notably, these are quite close to the actual industry-wide equity allocation of 

2.37% of includible assets as of 2013.  Thus, we cannot reject the hypothesis that life insurers are 

making optimal asset allocation decisions in their General Account, given the allocation 

decisions of their policyholders in the Separate Account, from this analysis.  Given the strong 

incentives to appropriately manage tail risk and the fact that life insurers are very informed 

investors, this result is not particularly surprising.  
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Table 5.10. Portfolio Sortino Ratio by Target Rate and Equity Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  The portfolio composition 

is defined by the equity weights given in the column headings, and the target rate is defined by the number of extreme 

observations used from the vwst series.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess 

of the target rate and tail risk as measured by the second lower partial moment.  The maximum Sortino Ratio for each 

target rate and probability model is in the “Optimal” column with the corresponding equity weight in parentheses.  

The GPD estimates are in Panel A, and the GEVD estimates are in Panel B. 

Panel A – Generalized Pareto Distribution 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 2.7783 2.8106 2.7310 2.7152 2.7222 2.8106 (2.00%) 

Equity Market Tail of 62 Obs. 2.8790 2.9089 2.9428 2.9222 2.9258 2.9433 (3.20%) 

Equity Market Tail of 124 Obs. 2.8255 2.8092 2.8441 2.7572 2.7650 2.8472 (1.40%) 

Equity Market Tail of 248 Obs. 2.7273 2.7408 2.7226 2.7100 2.6862 2.7519 (1.40%) 

Panel B – Generalized Extreme Value Distribution 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.6354 3.6609 3.4967 3.5127 3.5326 3.6609 (2.00%) 

Equity Market Tail of 62 Obs. 3.7632 3.7825 3.8016 3.8140 3.8278 3.8278 (5.00%) 

Equity Market Tail of 124 Obs. 3.5504 3.5124 3.5406 3.4536 3.4724 3.5711 (1.60%) 

Equity Market Tail of 248 Obs. 3.1917 3.1997 3.1666 3.1679 3.1428 3.2143 (1.40%) 

 

Our subsequent risk hyperplane analysis will proceed as follows.  Next, we will study 

how sensitive the asset allocation optimality result is to a particular time period’s allocations.  

This will be done by re-calculating the lower partial moments, excess returns, and Sortino Ratios 

for the same set of portfolios and target rates but with weights from different time periods.  

Recall that the analysis above was conducted given the Separate Account weights as of 2013.  In 

addition, we also held fixed the proportion of the non-equity includible General Account 

allocations accounted for by each of the non-equity asset classes, which were also from 2013.  

Now, we will repeat the above analysis but using weights from 1994, 1998, 2002, 2006, and 

2010. 
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Table 5.11. GPD-Based Sortino Ratios by Reference Year and Equity Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  Within each panel, the 

portfolio composition is defined by the equity weights given in the column headings, and the target rate is defined by 

the number of extreme observations used from the vwst series.  However, the portfolio weights of the Separate 

Account assets and the non-equity General Account assets are based on the actual industry-wide allocations as of the 

year corresponding to each panel.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess of the 

target rate and tail risk as measured by the second lower partial moment.  The maximum Sortino Ratio for each 

reference year and target rate is in the “Optimal” column, and the corresponding equity weight is in parentheses.  The 

probability distribution function of the portfolio is modeled using a GPD model with a left tail of 248 observations.   

Panel A – 2010 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 2.7119 2.8429 2.8622 2.7993 2.8209 2.8764 (3.20%) 

Equity Market Tail of 62 Obs. 2.8587 2.8300 2.8461 2.8392 2.8603 2.8929 (1.80%) 

Equity Market Tail of 124 Obs. 2.7931 2.8493 2.8507 2.8210 2.8480 2.8753 (2.80%) 

Equity Market Tail of 248 Obs. 2.6904 2.7080 2.7106 2.7426 2.7429 2.7599 (4.20%) 

Panel B – 2006 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 2.7725 2.7051 2.7311 2.6240 2.6167 2.8049 (1.80%) 

Equity Market Tail of 62 Obs. 2.8835 2.9168 2.8915 2.8885 2.8764 2.9347 (2.20%) 

Equity Market Tail of 124 Obs. 2.8017 2.7657 2.7956 2.7799 2.7028 2.8091 (1.40%) 

Equity Market Tail of 248 Obs. 2.6929 2.7102 2.7012 2.6987 2.6494 2.7276 (2.40%) 

Panel C – 2002 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 2.9937 2.8608 2.7377 2.7417 2.7354 2.9937 (1.00%) 

Equity Market Tail of 62 Obs. 3.2071 3.1277 2.9895 2.9350 2.7878 3.2071 (1.00%) 

Equity Market Tail of 124 Obs. 2.8586 2.8171 2.8299 2.7194 2.7181 2.8586 (1.00%) 

Equity Market Tail of 248 Obs. 2.5661 2.6423 2.6476 2.6710 2.6643 2.6750 (4.20%) 

Panel D – 1998 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 2.7697 2.7890 2.7454 2.6561 2.6196 2.7890 (2.00%) 

Equity Market Tail of 62 Obs. 2.8484 2.8257 2.9262 2.8007 2.8192 2.9262 (3.00%) 

Equity Market Tail of 124 Obs. 2.7167 2.7109 2.7733 2.7298 2.7773 2.8068 (4.60%) 

Equity Market Tail of 248 Obs. 2.6660 2.6826 2.6798 2.6972 2.6939 2.6988 (4.60%) 

Panel E – 1994 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.1774 3.2344 3.3996 3.4819 3.4524 3.5386 (4.40%) 

Equity Market Tail of 62 Obs. 2.7544 2.9004 2.9330 2.9644 2.9095 3.0531 (3.60%) 

Equity Market Tail of 124 Obs. 2.6948 2.6901 2.6926 2.6398 2.6319 2.7229 (2.60%) 

Equity Market Tail of 248 Obs. 2.6948 2.6901 2.6926 2.6398 2.6271 2.7229 (2.60%) 
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Table 5.12. GEVD-Based Sortino Ratios by Reference Year and Equity Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  Within each panel, the 

portfolio composition is defined by the equity weights given in the column headings, and the target rate is defined by 

the number of extreme observations used from the vwst series.  However, the portfolio weights of the Separate 

Account assets and the non-equity General Account assets are based on the actual industry-wide allocations as of the 

year corresponding to each panel.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess of the 

target rate and tail risk as measured by the second lower partial moment.  The maximum Sortino Ratio for each 

reference year and target rate is in the “Optimal” column, and the corresponding equity weight is in parentheses.  The 

probability distribution function of the portfolio is modeled using a GEVD model with a block size of five 

observations.   

Panel A – 2010 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.5269 3.7512 3.7976 3.6525 3.6794 3.8069 (3.20%) 

Equity Market Tail of 62 Obs. 3.7261 3.6888 3.7266 3.6807 3.7064 3.7564 (1.80%) 

Equity Market Tail of 124 Obs. 3.4817 3.5707 3.5877 3.5239 3.5605 3.6124 (2.80%) 

Equity Market Tail of 248 Obs. 3.1346 3.1622 3.1731 3.2007 3.2005 3.2191 (4.20%) 

Panel B – 2006 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.6685 3.5287 3.5541 3.3964 3.4183 3.6988 (1.80%) 

Equity Market Tail of 62 Obs. 3.8012 3.8251 3.7708 3.7886 3.8089 3.8301 (2.20%) 

Equity Market Tail of 124 Obs. 3.5281 3.4637 3.4987 3.4977 3.4205 3.5441 (1.40%) 

Equity Market Tail of 248 Obs. 3.1578 3.1716 3.1567 3.1642 3.1198 3.1823 (2.40%) 

Panel C – 2002 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.9069 3.8845 3.6931 3.7855 3.7213 3.9990 (1.80%) 

Equity Market Tail of 62 Obs. 4.0598 4.1355 3.9693 3.9874 3.7221 4.1529 (2.40%) 

Equity Market Tail of 124 Obs. 3.4092 3.4628 3.5085 3.4258 3.4076 3.5236 (2.40%) 

Equity Market Tail of 248 Obs. 2.8877 2.9258 2.9563 2.9757 3.0719 3.0719 (5.00%) 

Panel D – 1998 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.7302 3.7976 3.6959 3.5877 3.4691 3.7976 (2.00%) 

Equity Market Tail of 62 Obs. 3.7708 3.7723 3.9108 3.7637 3.7395 3.9108 (3.00%) 

Equity Market Tail of 124 Obs. 3.3845 3.4074 3.4884 3.4680 3.5041 3.5427 (4.60%) 

Equity Market Tail of 248 Obs. 3.1219 3.1193 3.1678 3.1988 3.1661 3.2002 (3.80%) 

Panel E – 1994 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

Equity Market Tail of 31 Obs. 3.6483 3.7746 4.0609 4.1782 4.2101 4.3106 (4.60%) 

Equity Market Tail of 62 Obs. 3.0762 3.2878 3.3622 3.4032 3.3590 3.5044 (3.60%) 

Equity Market Tail of 124 Obs. 2.5383 2.6424 2.7904 2.8577 2.9568 2.9581 (4.80%) 

Equity Market Tail of 248 Obs. 1.8957 1.9904 2.0804 2.1701 2.2608 2.2608 (5.00%) 
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 For the sake of brevity, we are only presenting the Sortino Ratios of the various portfolios 

based on the weights from the historical reference years
10

.  The GPD-based results are found in 

Table 5.11, and the GEVD-based results are found in Table 5.12.  As before, the highest Sortino 

Ratio, along with the corresponding equity weight, for each reference year and target rate is in 

the “Optimal” column of each table.  Note that the results for two different target rates using the 

GPD model and 1994 allocations are nearly identical.  This occurs because the product of the 

124
th

 and 248
th

 most negative equity returns and the Combined Account equity allocation is 

closer to zero than the threshold used in the portfolio’s GPD model.  The target rate of the 

portfolio must be at least as far from zero in absolute value as the threshold used in the 

portfolio’s GPD or GEVD modeling.  When the target rate is calculated to be between zero and 

the portfolio’s threshold, then the target rate is set equal to the threshold.  As a result, two of the 

equity market tail sizes in 1994 are using the same target rate for nearly all of the potential equity 

weights. 

The actual General Account equity allocations for the industry in these years are 2.46% 

(2010), 3.07% (2006), 2.94% (2002), 4.54% (1998), and 5.04% (1994).  In other words, life 

insurance companies have progressively reduced the amount they choose to invest in equities 

over the past twenty years.  However, our estimates of the optimal equity allocations do not 

match the actual investment behavior of the industry quite as well as in 2013.  Figure 5.1 helps 

us visualize a comparison of the actual General Account equity allocations with the optimal 

allocations, averaged across target rate, as determined by our risk hyperplane analysis.   

 

 

                                                 
10

 Data on the probability model estimation, portfolio lower partial moments, and portfolio excess returns are 

available upon request. 
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Figure 5.2. Optimal and Actual General Account Equity Allocations (Risk Hyperplane) 
This graph plots the optimal General Account equity allocations as determined by the GPD and GEVD-based 

portfolio models as compared with the historical industry-wide allocations.  These allocations are based on 

historical portfolio weights for Separate Account assets and non-equity General Account assets from various years, 

which are shown on the horizontal axis.  The vertical axis denotes the percentage of the General Account allocated 

to equities. 

 
 

In the earlier years of the analysis (i.e., from 1994 to 2006), our models suggest that the 

industry was over-weighting equities relative to an “optimal” level, although the degree of the 

overweighting depends on whether or not we use the GPD or GEVD model.  Using the GEVD 

model, the overweighting was relatively minor (about 0.72% on average), but it was more 

significant (about 1.25% on average) compared to the optimal allocations produced by the GPD 

model.  Noticeably, both the actual and optimal equity levels are decreasing throughout this 

period, so there is some consistency between the changes in actual and optimal allocations even 

if the levels are different.  Perhaps this is being driven by an increase in the equity exposure from 

the Separate Account.  In fact, both the Separate Account’s equity allocation and the overall 

Separate Account weight increased by about eighteen percentage points each (from 66.64% to 
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84.80% and from 18.03% to 35.78%, respectively).  Beyond 2006, the trend changes and the 

actual and optimal equity levels become more stable.  At this point, both models produce optimal 

allocations that are quite consistent with each other once we average across target rate.  In 2010, 

the models actually suggest that the industry has now started underweight equities in their 

General Accounts, but this seems to have been corrected by 2013.  As we noted earlier, the 

industry and our models are quite closely aligned at the end of our analysis in 2013. 

Although there are hints from Figure 5.1 that our models may have some contrarian 

aspects (underweight equities during the market run-ups of the late 1990s and prior to the 

financial crisis, the pace of the downward trend in equity allocations slows for the GEVD 

following the 2001 market crash, and overweight equities after the financial crisis), we are not 

ready to claim our models have such prescience.  Recall, that the only thing we are changing as 

we move from one reference year to the next are the portfolio weights of assets other than 

General Account equities.  We are still estimating the probability models, risk measures, and 

portfolio returns using the full time series of asset returns.  So, it appears that the fluctuation in 

the optimal allocations to General Account equities may be better explained by noticing how the 

make-up of the other assets changes.  However, there are a number of allocation changes in the 

other assets from reference year to reference year and each can have an impact on the portfolio’s 

tail risk, returns, and optimal allocations.  Thus, to properly analyze this particular question 

requires a more robust multivariate analysis than is the purpose of the current study.  Also, the 

low number of observations limits our ability to make strong conclusions based on changes in 

the optimal allocations from one reference year to the next. 
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Figure 5.3. Combined Account Tail Risk by Reference Year 
This graph plots the average tail risk, as measured by the square root of the second lower partial moment, for each 

asset allocation reference year.  Given the twenty-one possible General Account equity weights and the four target 

rates used, the value plotted in the graph for each probability model is the average value across all eighty-four of 

these equity weight-target rate combinations.  Each reference year is shown on the horizontal axis, and the vertical 

axis denotes the average tail risk measurement in percentage points. 

 
 

Still, because we know that all of the fluctuation in the optimal allocations must be due to 

changes in the exogenous allocations, this may help suggest some broad trends.  The most 

significant shift that occurs in these exogenous allocations over this time period is the large 

increase in equity exposure coming from the Separate Account, which we just referred to a little 

bit ago.  It is also clear that the tail risk of the Combined Account has significantly increased 

over this same time period, which is likely due in large part to the increased Separate Account 

equity exposure.  We know this by looking at the tail risk of the portfolios under consideration 

by our representative life insurer across the various reference years.  Over the course of the time 

period under analysis, the square root of the second lower partial moment of the portfolios under 

consideration, when averaged across the target rate used and the equity weight chosen, increases 
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by about 99% to 119% depending on the probability model used (see Figure 5.3 for a graphical 

illustration).  For sure, most of this increase occurs between 1994 and 1998 when the relative 

size of the Separate Account and the equity allocation within the Separate Account both jump to 

higher levels, but there is still a non-trivial increase since then.  Naturally, it makes sense for the 

life insurers to respond to this significant increase in tail risk by pulling back somewhat on their 

own equity allocations, which is what we see in the optimal allocations and in the actual 

behavior of the industry over this time period. 

Next, we will conduct a similar risk hyperplane analysis but with an alternative focus.  

Instead of focusing on equities, which is a small General Account allocation but a primary 

exposure to tail risk in an insurer’s Combined Account, we will now shift our focus to corporate 

bonds.  The corporate bond allocation is important for a life insurer because it is, by far, the 

largest allocation directly under the company’s control.  As of 2013, this asset class comprised 

nearly 57% of the includible General Account assets, which was just under four times larger than 

the second highest General Account allocation.  The trend for corporate bonds has been the 

opposite of equities since 1994.  Its allocation has increased nearly eight percentage points (from 

about 49% in 1994 to about 57% in 2013) over the past twenty years.  One hypothesis, then, is 

that life insurers have responded to the increased tail risk exposure from higher Separate Account 

equity allocations by shifting more of their own investments into corporate bonds.  This allows 

them to reduce the tail risk exposure of the General Account without sacrificing as much 

potential return as shifting into government bonds. 

As with the equities, we analyze portfolios of includible life insurer assets that vary based 

on their General Account corporate bond allocation.  Initially, the corporate bond allocation was 

to vary from a low of 48% to a high of 58% to reflect the range of historical General Account 
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weights in this asset class.  However, the initial results showed that the maximum weight was a 

binding constraint in almost all cases.  So, we looked at some alternative ranges to better capture 

the maximal Sortino Ratio points.  We found that our risk hyperplane analysis apparently shares 

a similar downside as the classical Markowitz portfolio optimization approach.  Recall that one 

issue with the classical Markowitz approach is that it can produce allocations for particular assets 

that are much higher than might otherwise be reasonable, especially for assets that have a 

relatively high historical Sharpe Ratio.  We run into a similar issue here with corporate bonds.  

From Table 5.2, we see that corporate bonds have an average daily return only slightly smaller 

than equities and higher than many of the other asset classes.  However, it also has one of the 

smallest daily variances, with the exception of the two U.S. Treasury bills series, so it may very 

well have relatively lower tail risk.  As a result, our risk hyperplane approach wants to select 

General Account allocations for corporate bonds that are in the 80% to 100% range.  Clearly, 

these allocations may not be reasonable for the typical life insurance company given that the 

industry has not invested anywhere close to that much in corporate bonds in the past.  

Nonetheless, we believe some conclusions can still be obtained by analyzing the optimal 

allocations in an important asset class for life insurers.   

For all of the portfolios, the Separate Account allocations to all asset classes and the 

General Account allocations to non-corporate bond assets are held fixed.  We estimate the 

probability distributions of these portfolios using the GPD and GEVD models and estimate the 

lower partial moments, excess returns, and Sortino Ratios of the portfolios in order to select an 

optimal corporate bond allocation from a representative insurer’s perspective.  Using a range of 

80% to 100% and a step size of 1% as our set of feasible corporate bond allocations, the Sortino 

Ratios of these portfolios are presented in Tables 5.13 and 5.14. 
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Table 5.13. GPD-Based Sortino Ratios by Reference Year and Corporate Bond Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  Within each panel, the 

portfolio composition is defined by the corporate bond weights given in the column headings, and the target rate is 

defined by the number of extreme observations used from the corp series.  However, the portfolio weights of the 

Separate Account assets and the non-corporate bond General Account assets are based on the actual industry-wide 

allocations as of the year corresponding to each panel.  The Sortino Ratio is defined to be the ratio of the portfolio’s 

return in excess of the target rate and tail risk as measured by the second lower partial moment.  The maximum Sortino 

Ratio for each reference year and target rate is in the “Optimal” column, and the corresponding corporate bond weight 

is in parentheses.  The probability distribution function of the portfolio is modeled using a GPD model with a left tail of 

248 observations.   

Panel A – 2013 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.6915 2.7121 2.7299 2.7567 2.8640 2.8640 (100%) 

Corporate Bond Tail of 62 Obs. 2.6915 2.7121 2.7299 2.7382 2.7382 2.7458 (97%) 

Corporate Bond Tail of 124 Obs. 2.6915 2.7121 2.7299 2.7382 2.7382 2.7458 (97%) 

Corporate Bond Tail of 248 Obs. 2.6915 2.7121 2.7299 2.7382 2.7382 2.7458 (97%) 

Panel B – 2010 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.7602 2.7764 2.7644 2.8178 2.7958 2.8795 (97%) 

Corporate Bond Tail of 62 Obs. 2.7602 2.7677 2.7686 2.7670 2.7348 2.7755 (88%) 

Corporate Bond Tail of 124 Obs. 2.7602 2.7677 2.7686 2.7670 2.7348 2.7755 (88%) 

Corporate Bond Tail of 248 Obs. 2.7602 2.7677 2.7686 2.7670 2.7348 2.7755 (88%) 

Panel C – 2006 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.7146 2.7121 2.8308 2.7744 2.7657 2.8583 (91%) 

Corporate Bond Tail of 62 Obs. 2.7146 2.7121 2.7369 2.7654 2.7753 2.7768 (98%) 

Corporate Bond Tail of 124 Obs. 2.7146 2.7121 2.7369 2.7654 2.7753 2.7768 (98%) 

Corporate Bond Tail of 248 Obs. 2.7146 2.7121 2.7369 2.7654 2.7753 2.7768 (98%) 

Panel D – 2002 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.9012 3.0991 3.1616 3.2962 3.3771 3.3771 (100%) 

Corporate Bond Tail of 62 Obs. 2.6069 2.7108 2.8383 2.8649 2.9424 2.9424 (100%) 

Corporate Bond Tail of 124 Obs. 2.6733 2.6796 2.6363 2.6453 2.6957 2.6957 (100%) 

Corporate Bond Tail of 248 Obs. 2.6733 2.6796 2.6363 2.6231 2.6348 2.6796 (85%) 

Panel E – 1998 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.7164 2.7420 2.8446 2.8847 3.0024 3.0076 (99%) 

Corporate Bond Tail of 62 Obs. 2.7150 2.7210 2.7091 2.7316 2.7151 2.7910 (94%) 

Corporate Bond Tail of 124 Obs. 2.7150 2.7210 2.7095 2.6827 2.6740 2.7265 (87%) 

Corporate Bond Tail of 248 Obs. 2.7150 2.7210 2.7095 2.6827 2.6740 2.7265 (87%) 

Panel E – 1994 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 4.0824 4.2267 4.1974 4.1364 4.3372 4.4581 (99%) 

Corporate Bond Tail of 62 Obs. 3.3815 3.6360 3.7007 3.8961 4.1625 4.1625 (100%) 

Corporate Bond Tail of 124 Obs. 2.9942 2.9956 3.1111 3.2702 3.2591 3.3438 (98%) 

Corporate Bond Tail of 248 Obs. 2.7895 2.7984 2.7887 2.8836 2.8842 2.8842 (100%) 
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Table 5.14. GEVD-Based Sortino Ratios by Reference Year and Corporate Bond Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  Within each panel, the 

portfolio composition is defined by the corporate bond weights given in the column headings, and the target rate is 

defined by the number of extreme observations used from the corp series.  However, the portfolio weights of the 

Separate Account assets and the non-corporate bond General Account assets are based on the actual industry-wide 

allocations as of the year corresponding to each panel.  The Sortino Ratio is defined to be the ratio of the portfolio’s 

return in excess of the target rate and tail risk as measured by the second lower partial moment.  The maximum Sortino 

Ratio for each reference year and target rate is in the “Optimal” column, and the corresponding corporate bond weight 

is in parentheses.  The probability distribution function of the portfolio is modeled using a GEVD model with a block 

size of five observations.   

Panel A – 2013 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.6995 2.8848 3.0773 3.2165 3.3787 3.3787 (100%) 

Corporate Bond Tail of 62 Obs. 2.3036 2.3773 2.5139 2.6455 2.8074 2.8074 (100%) 

Corporate Bond Tail of 124 Obs. 1.7992 1.9290 2.0539 2.2141 2.2900 2.2900 (100%) 

Corporate Bond Tail of 248 Obs. 1.3973 1.4813 1.5608 1.6394 1.7682 1.7682 (100%) 

Panel B – 2010 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 3.0956 3.2859 3.3157 3.4348 3.4340 3.5193 (97%) 

Corporate Bond Tail of 62 Obs. 2.4763 2.6960 2.8553 3.0031 3.2359 3.2359 (100%) 

Corporate Bond Tail of 124 Obs. 2.0730 2.2004 2.3092 2.4848 2.5662 2.5662 (100%) 

Corporate Bond Tail of 248 Obs. 1.5679 1.6981 1.7941 1.8886 2.0136 2.0136 (100%) 

Panel C – 2006 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 2.9243 3.1158 3.3264 3.3287 3.3706 3.4549 (94%) 

Corporate Bond Tail of 62 Obs. 2.4021 2.5153 2.7402 2.8962 3.0396 3.0396 (100%) 

Corporate Bond Tail of 124 Obs. 1.9640 2.1051 2.2459 2.3394 2.4852 2.4852 (100%) 

Corporate Bond Tail of 248 Obs. 1.4899 1.5930 1.7094 1.7993 1.8962 1.8962 (100%) 

Panel D – 2002 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 3.1095 3.3532 3.3604 3.4692 3.5389 3.5389 (100%) 

Corporate Bond Tail of 62 Obs. 2.7156 2.8472 2.9493 2.9595 3.0323 3.0323 (100%) 

Corporate Bond Tail of 124 Obs. 2.7624 2.7121 2.6628 2.6435 2.7293 2.7658 (81%) 

Corporate Bond Tail of 248 Obs. 2.7624 2.7121 2.6628 2.6435 2.6371 2.7658 (81%) 

Panel E – 1998 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 3.2291 3.3083 3.4644 3.5147 3.7016 3.7048 (99%) 

Corporate Bond Tail of 62 Obs. 2.8136 3.0397 3.1553 3.1946 3.1994 3.2720 (98%) 

Corporate Bond Tail of 124 Obs. 2.3017 2.4362 2.6039 2.7049 2.8541 2.8541 (100%) 

Corporate Bond Tail of 248 Obs. 1.7725 1.8854 1.9894 2.1212 2.2310 2.2310 (100%) 

Panel E – 1994 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

Corporate Bond Tail of 31 Obs. 4.9191 5.1444 5.1048 5.1358 5.4427 5.5695 (99%) 

Corporate Bond Tail of 62 Obs. 3.9117 4.2294 4.3155 4.6753 5.0834 5.0834 (100%) 

Corporate Bond Tail of 124 Obs. 3.3927 3.3896 3.5326 3.7814 3.7913 3.8599 (98%) 

Corporate Bond Tail of 248 Obs. 2.6034 2.7484 2.9573 3.0617 3.2466 3.2466 (100%) 
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 Again, these optimal allocations are much higher than those seen in the actual investing 

choices of the life insurance industry.  Other than any potential issues with estimation error or 

sensitivity in our risk hyperplane models, this may also be exhibiting another limitation of our 

study.  We have chosen to focus on only one of the major sources of risk for life insurance 

companies.  When discussing how much to invest in corporate bonds, another major risk that we 

exclude from the analysis is credit risk.  Given that the life insurance industry already finances a 

significant part of the corporate bond market, greatly expanding the General Account’s 

allocations to corporate bonds, as our models suggest here, may force life insurance companies 

to move into riskier classes of bonds, which would offset at least some of the market risk benefits 

of such a strategy.  
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G. 2. Copulas 

To complete the analysis, we model the joint distribution of the includible asset classes 

by making use of copula theory.  In particular, we will need to build a vine of bivariate copula 

pairs using the techniques of Czado (2010), Czado, Schepsmeier, and Min (2012), and 

Brechmann and Schepsmeier (2013).  Instead of needing to draw conclusions about optimality 

based on empirical estimates as in the risk hyperplane analysis, copulas allow us to be more 

precise and theoretical in pinpointing the optimal asset allocation decisions for life insurers 

concerned about long-term solvency. 

As described in Section V.D.2, we first model the marginal distribution of each includible 

asset using a two-tailed GPD model.  Consistent with the marginal GPD estimation performed 

earlier, we set the threshold for each asset class’s lower tail to be equal to that used earlier in 

Table 5.6.  The upper tail’s threshold is then set equal to the lower tail’s threshold except with 

the opposite sign.  Table 5.15 contains the estimated parameters of these GPD marginal 

distributions.  Again, it is apparent that equities contain a significant amount of tail risk for life 

insurers.  As a class, they are fairly heavy-tailed with above-average tail shape parameter 

estimates and the highest scale parameter estimates.  Corporate bonds, on the other hand, exhibit 

much flatter tails and more reasonable dispersion as measured by the scale parameter.   

Table 5.15. GPD Marginal Distribution Estimation for Vine Copulas 

The table contains the GPD parameter estimates for each includible asset class.  For each asset class, the lower tail 

threshold is based on the return associated with the corresponding tail observations in Panel A of Table 5.6.  The 

upper tail threshold is then set equal to the lower tail threshold but with the opposite sign.  The threshold is denoted 

by 𝜆, the tail shape by 𝜏, and the scale by 𝜎.  The subscript on each parameter indicates whether the estimate is for 

the lower or upper tail. 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 

𝜆̂𝑙 -0.0060 -0.0064 -0.0040 -0.0144 -0.0020 -0.0031 -0.0001 -0.0001 

𝜆̂𝑢 0.0060 0.0064 0.0040 0.0144 0.0020 0.0031 0.0001 0.0001 

𝜏̂𝑙 -0.0109 0.0144 -0.0308 0.1797 0.1065 0.4587 0.4639 0.4197 

𝜏̂𝑢 0.1063 0.0658 0.0087 0.2387 0.1365 0.3645 -0.0048 0.0707 

𝜎̂𝑙 0.0032 0.0035 0.0025 0.0079 0.0013 0.0019 0.0001 0.0001 

𝜎̂𝑢 0.0026 0.0033 0.0018 0.0071 0.0012 0.0020 0.0001 0.0002 
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After estimating the marginal distributions for each asset class using the GPD model, we 

use the corresponding cumulative distribution functions to produce data for our assets that can be 

used in vine copula.  Recall that a copula function requires as inputs the marginal cumulative 

distribution functions.  Before we can estimate the vine copula, though, we need to select an 

appropriate structure.  For a C-vine copula, this means we must select the root variable for each 

tree of the vine.  To do this, we utilize the Kendall’s tau estimates of dependence between each 

pair of variables in the tree.  The Kendall’s tau estimates for the first tree are given in Table 5.16, 

and it becomes clear that corporate bonds are chosen to be the root variable of the first tree as it 

has a higher sum of tau estimates than any other asset class.  These estimates are calculated anew 

among the remaining seven asset classes for the second tree in the vine except these tau estimates 

are now conditional on the corporate bond returns.  Again, the asset class with the highest 

aggregate joint dependency, using the absolute value of each individual tau estimate, is chosen to 

be the root variable for the second tree.  This process repeats itself until the root variables for all 

of the trees are chosen.  The order of these root variables for our study is corp, trbd6, rmbs, trbd, 

cmbs, fnbd, and trbd3 and vwst sharing equally in the final tree. 

Table 5.16. C-Vine Copula Root Variable Selection 

The table contains the Kendall’s tau estimates for each pair of the includible life insurer asset classes.  These are 

used to select the appropriate root variable for the first tree of a C-vine copula.  The Sum column contains the 

aggregate sum over each row when using the absolute value of each Kendall’s tau estimate in that row.  The 

highest sum is in boldface and corresponds to the asset class selected to be the root variable for the first tree of 

the vine copula. 

 trbd fnbd corp vwst rmbs cmbs trbd3 trbd6 Sum 

trbd 1.0000 0.2218 0.8165 -0.1885 0.6243 0.5195 0.0740 0.2016 3.6461 

fnbd 0.2218 1.0000 0.2201 -0.0492 0.2188 0.2029 0.0349 0.1003 2.0480 

corp 0.8165 0.2201 1.0000 -0.1537 0.6413 0.5777 0.0632 0.1959 3.6685 

vwst -0.1885 -0.0492 -0.1537 1.0000 -0.1095 -0.0665 -0.0458 -0.0811 1.6942 

rmbs 0.6243 0.2188 0.6413 -0.1095 1.0000 0.5528 0.0849 0.2254 3.4569 

cmbs 0.5195 0.2029 0.5777 -0.0665 0.5528 1.0000 0.0629 0.1811 3.1635 

trbd3 0.0740 0.0349 0.0632 -0.0458 0.0849 0.0629 1.0000 0.5738 1.9396 

trbd6 0.2016 0.1003 0.1959 -0.0811 0.2254 0.1811 0.5738 1.0000 2.5593 
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 For a D-vine copula, we make use of the Kendall’s tau estimates again.  However, this 

time, the basic structure of the vine is different.  Instead of looking for the single variable with 

the maximum joint dependence across all of the asset classes, we are looking for the order that 

produces the maximum aggregate joint dependence.  Recall that the bivariate pairs in the first 

tree of a D-vine copula are setup differently than in a C-vine copula.  Instead of having each non-

root variable paired with the root variable, which is the case in a C-vine copula, each variable is 

paired with only the variable immediately preceding and following it in the order (e.g., if the 

variable order is 1, 2, 3, and 4, then the pairs for the first tree would be 1-2, 2-3, and 3-4).  With 

eight asset classes, we have 8!, or 40,320, possible orders for the first tree.  Setting up all of the 

possible ordering schemes and using the Kendall’s tau estimates for each pair from Table 5.16 

allows us to find the order with the highest aggregate joint dependence.  Again, we use the 

absolute value of each tau estimate when taking the sum across all of the pairs in the ordering 

scheme.  This produces an optimal D-vine copula order of trbd3, trbd6, fnbd, cmbs, rmbs, corp, 

trbd, and vwst. 

 After choosing an appropriate vine copula structure, we must select an appropriate copula 

function for each bivariate pair in the vine and estimate the corresponding parameters of the 

chosen bivariate copula.  Before reviewing the vine copula estimation results, we review some of 

the major bivariate copulas (see Czado, Schepsmeier, and Min (2012) and Brechmann and 

Schepsmeier (2013) for further details).  In finance, some commonly used copula functions 

include the Gaussian and Student-t copulas, which both belong to a class called elliptical 

copulas.  Both of these have symmetric tail dependence but in different ways.  The Gaussian 

copula has zero tail dependence while it is non-zero for the Student-t copula.  An alternative 

class of functions is that of the Archimedean copulas.  These copulas allow for more flexible 
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forms of tail dependence.  For example, the Clayton copula exhibits non-zero lower tail 

dependence and zero upper tail dependence, the Gumbel and Joe copulas exhibit the opposite, 

and the Frank copula has zero tail dependence in both tails.  These copulas are functions of a 

single dependence parameter where the higher degrees of dependence are associated with higher 

parameter values.  They also have variants that are based on the underlying copula function but 

have alternative dependency structures.  For example, the Survival Gumbel copula is based on 

the Gumbel copula function but with a non-zero lower (instead of upper) tail dependence and a 

zero upper (instead of lower) tail dependence.  Some of the Archimedean copulas are even more 

flexible by allowing for dependencies that are potentially asymmetric and both non-zero.  These 

copulas are governed by two parameters to allow for such flexibility.  In light of this bivariate 

copula review, the copula selection and estimation results for our C-vine copula are presented in 

Table 5.17. 

 One notable observation of the vine copula estimation results is the frequency with which 

the Student-t copula is chosen.  Given that the Student-t distribution is similar to the oft-used 

Gaussian distribution but with somewhat heavier tails, perhaps this is not very surprising.  

Nonetheless, it is interesting to see how often a relatively simple dependence structure fits asset 

return pairs better than more complicated dependence structures.  Another observation is that the 

dependence within the pairs (as measured by Parameter 1 in Table 5.17, which is in (-1, 1) for 

the Student-t copula and often greater than one for the Archimedean copulas) declines 

significantly after conditioning on the corporate bond returns.  However, the estimated degrees 

of freedom, which is a factor in the tail dependence modeled by the copula, does seem to be 

generally higher after conditioning on the corporate bond returns. Still, this suggests that 

corporate bond returns are driving much of the joint dependencies of life insurance company 
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investment portfolios making a C-vine copula structure a reasonable approach.  This is also 

reflected in the fact that the independence copula is chosen more frequently in the later trees of 

the vine. 

Table 5.17. C-Vine Copula Selection and Estimation 

The table contains the copula selection and parameter estimates for each bivariate pair in the C-vine copula of a life 

insurer’s includible asset classes.  Variable 1 contains the root variable for each respective tree in the vine.  

Conditioning Set contains the root variables from earlier trees that are now conditioned on when estimating the 

current tree.  The entries in Copula indicate the copula function chosen where “I” denotes the independence copula, 

“N” denotes the Gaussian copula, “t” denotes the Student-t copula, “F” denotes the Frank copula, “BB8” denotes 

the Joe-Frank two-parameter Archimedean copula, “SG” denotes the survival version of the Gumbel copula, and 

“SJ” denotes the survival version of the Joe copula.  For the Gaussian and Student-t copulas, Parameter 1 is a 

dependence parameter 𝜌 ∈ (-1, 1).  For the Student-t copula, Parameter 2 is a degrees of freedom parameter 𝜈 > 2.   

For the one-parameter Archimedean copulas, Parameter 1 is 𝜃 ≥ 1 (for Gumbel), 𝜃 ∈ ℝ \ {0} (for Frank), or 𝜃 > 1 

(for Joe).  For the two-parameter Archimedean copulas, the dependence is governed by two parameters, which are 

𝜃 ≥ 1 and 𝛿 ∈ (0, 1] for the BB8 copula. 

Tree Variable 1 Variable 2 Conditioning Set Copula Parameter 1 Parameter 2 

1 corp trbd6 N/A SG 1.2499 - 

 corp rmbs N/A t 0.8310 4.5747 

 corp trbd N/A t 0.9559 2.2150 

 corp cmbs N/A t 0.7978 2.1251 

 corp fnbd N/A t 0.3381 6.7571 

 corp trbd3 N/A SJ 1.1079 - 

 corp vwst N/A t -0.2431 4.6258 

2 trbd6 rmbs corp t 0.1819 8.0417 

 trbd6 trbd corp I - - 

 trbd6 cmbs corp t 0.1307 10.2479 

 trbd6 fnbd corp t 0.0685 15.8650 

 trbd6 trbd3 corp BB8 4.3970 0.9164 

 trbd6 vwst corp t -0.0661 6.8569 

3 rmbs trbd corp, trbd6 I - - 

 rmbs cmbs corp, trbd6 t 0.2987 5.8977 

 rmbs fnbd corp, trbd6 t 0.1037 16.5928 

 rmbs trbd3 corp, trbd6 t -0.0614 12.3659 

 rmbs vwst corp, trbd6 t 0.0844 8.7589 

4 trbd cmbs corp, trbd6, rmbs t -0.1859 7.3073 

 trbd fnbd corp, trbd6, rmbs I - - 

 trbd trbd3 corp, trbd6, rmbs t 0.0260 26.1849 

 trbd vwst corp, trbd6, rmbs t -0.2211 9.1631 

5 cmbs fnbd corp, trbd6, rmbs, trbd N 0.0722 - 

 cmbs trbd3 corp, trbd6, rmbs, trbd t -0.0603 15.8395 

 cmbs vwst corp, trbd6, rmbs, trbd I - - 

6 fnbd trbd3 corp, trbd6, rmbs, trbd, cmbs F -0.2615 - 

 fnbd vwst corp, trbd6, rmbs, trbd, cmbs I - - 

7 trbd3 vwst corp, trbd6, rmbs, trbd, cmbs, fnbd F 0.2397 - 
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Table 5.18. D-Vine Copula Selection and Estimation 

The table contains the copula selection and parameter estimates for each bivariate pair in the D-vine copula of a life 

insurer’s includible asset classes.  The entries in Copula indicate the copula function chosen where “I” denotes the 

independence copula, “t” denotes the Student-t copula, “F” denotes the Frank copula, “BB8” denotes the Joe-Frank 

two-parameter Archimedean copula, “SBB7” denotes the survival version of the Joe-Clayton two-parameter 

Archimedean copula, and “RBB8” denotes the 270-degree rotated version of the BB8 copula.  For the Student-t 

copula, Parameter 1 is a dependence parameter 𝜌 ∈ (-1, 1) and Parameter 2 is a degrees of freedom parameter 𝜈 > 

2.   For the Frank one-parameter Archimedean copula, Parameter 1 is 𝜃 ∈ ℝ \ {0}.  For the two-parameter 

Archimedean copulas, the dependence is governed by two parameters, which are 𝜃 ≥ 1 and 𝛿 > 0 for the BB7 

copula and 𝜃 ≥ 1 and 𝛿 ∈ (0, 1] for the BB8 copula.  The 270-degree rotated versions of the Archimedean copulas 

allow for negative dependence and have parameter spaces with the opposite sign (i.e., 𝜃 ≤ -1 and 𝛿 ∈ [-1, 0) for the 

RBB8 copula). 

Tree Variable 1 Variable 2 Conditioning Set Copula Parameter 1 Parameter 2 

1 trbd3 trbd6 N/A BB8 4.7491 0.8859 

 trbd6 fnbd N/A SBB7 1.1160 0.1075 

 fnbd cmbs N/A t 0.3110 6.1904 

 cmbs rmbs N/A t 0.7587 2.8094 

 rmbs corp N/A t 0.8310 4.5747 

 corp trbd N/A t 0.9559 2.2150 

 trbd vwst N/A t -0.2961 4.2864 

2 trbd3 fnbd trbd6 F -0.6923 - 

 trbd6 cmbs fnbd t 0.2565 4.9743 

 fnbd rmbs cmbs t 0.1557 18.4851 

 cmbs corp rmbs t 0.4699 4.1301 

 rmbs trbd corp I - - 

 corp vwst trbd t 0.1314 6.4029 

3 trbd3 cmbs trbd6, fnbd RBB8 -1.7545 -0.7682 

 trbd6 rmbs fnbd, cmbs t 0.1692 21.0446 

 fnbd corp cmbs, rmbs t 0.0668 12.2309 

 cmbs trbd rmbs, corp t -0.1923 6.7365 

 rmbs vwst corp, trbd t 0.0927 11.5838 

4 trbd3 rmbs trbd6, fnbd, cmbs t -0.0679 12.0842 

 trbd6 corp fnbd, cmbs, rmbs I - - 

 fnbd trbd cmbs, rmbs, corp I - - 

 cmbs vwst rmbs, corp, trbd I - - 

5 trbd3 corp trbd6, fnbd, cmbs, rmbs I - - 

 trbd6 trbd fnbd, cmbs, rmbs, corp I - - 

 fnbd vwst cmbs, rmbs, corp, trbd I - - 

6 trbd3 trbd trbd6, fnbd, cmbs, rmbs, corp t 0.0370 27.4600 

 trbd6 vwst fnbd, cmbs, rmbs, corp, trbd t -0.0743 11.9488 

7 trbd3 vwst trbd6, fnbd, cmbs, rmbs, corp, trbd F 0.2482 - 
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 The estimation results for the D-vine copula are presented in Table 5.18.  The lack of a 

root variable in each tree is a key difference between this estimation and that done for the C-vine 

copula.  Instead, the pairs are arranged in the fashion of a line where the first variable pairs with 

the second, the second goes on to pair with the third, and so on.  Again, a popular copula for the 

pairs is the Student-t copula with progressively smaller degrees of dependence (and more 

degrees of freedom) as we move down to later trees with larger conditioning sets.  In fact, quite a 

number of pairs in the fourth and fifth trees do not even reject the null hypothesis of 

independence and are modeled with an independence copula.  One interesting observation is the 

trbd3-cmbs pair in the third tree.  Conditional on six-month U.S. Treasury bills and non-U.S. 

government bonds, the model estimates negative dependence between these two fixed income 

asset classes.  It may be due to very negative correlations during the financial crisis when U.S. 

Treasury securities, including bills, were a safe haven and commercial mortgage-backed 

securities were anything but that. 

 We proceed to simulate life insurance company asset returns that reflect the underlying 

dependencies as modeled by the C-vine and D-vine copula estimations in addition to the 

marginal distributions modeled by the GPD estimations.  Regarding the number of returns to be 

simulated, we could produce any number of returns as long as it was computationally feasible.  

However, in order to match our original dataset, we will generate 4,234 returns for each asset 

class, which is the same number of historical returns in the common date range. 

 To build portfolios of these simulated returns, we use the same Combined Account 

weights as the risk hyperplane analysis.  Recall that the weights for each reference year were 

determined based on a few elements.  First, we hold fixed the actual Separate Account weights 

from that reference year.  Second, we vary either the General Account equity or the General 
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Account corporate bond weights in order to focus the analysis on the company’s allocation 

choice of one of these important asset classes.  Third, we hold fixed relative proportions in either 

the non-equity or the non-corporate bond segment of the General Account.  Again, these relative 

proportions are based on the actual industry-wide weights from the corresponding reference year.  

The equity weights are chosen from a range of 1% to 5% both to reflect the actual weights 

chosen by life insurers and the regulatory constraints on devoting a significant part of the 

General Account to high-risk securities like equities.  As with the risk hyperplane analysis, the 

vine copula analysis appears to be quite partial to corporate bonds.  Constraining the analysis to 

choose weights within a range more consistent with the actual weights chosen by the industry 

would produce certainly uninteresting results.  The chosen weight would always be the 

maximum point in the range, and we would not the ability to see how different policyholder 

allocation decisions factored in to the company’s allocation decisions.  So, we use a range of 

80% to 100% to choose an optimal corporate bond General Account weight. 

 For each portfolio formed, we calculate a number of statistics.  First, we define a left tail 

by calculating an estimate of the Value-at-Risk by finding the portfolio return that corresponds to 

various threshold points including 1%, 2.5%, 5.85%, and 10%.  We choose to estimate the VaR 

at 5.85% instead of the more common point of 5% because 248 observations, which is the 

number of observations used in the risk hyperplane analysis to define the portfolio’s left tail, 

corresponds to approximately 5.85% of the full time series of portfolio returns.  Finally, we 

estimate the Sortino Ratio for each portfolio-threshold combination by estimating the second 

lower partial moment for the returns in the left tail and the difference between the average 

portfolio return and the VaR.  The Sortino Ratio estimates are presented in Tables 5.19 and 5.20, 

respectively, for equities and in Tables 5.21 and 5.22, respectively, for corporate bonds.   



155 

 

Table 5.19. C-Vine Sortino Ratios by Reference Year and Equity Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  The portfolio returns are 

determined by the Combined Account weights used and returns simulated for each asset class based on the joint 

dependencies modeled by a C-vine copula.  The weights depend on the actual Separate Account, the non-equity 

General Account allocations for each reference year, and the General Account equity weight from the column 

heading.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess of the target rate and tail risk 

as measured by the second lower partial moment.  The target rate is based on the Value-at-Risk calculated at various 

threshold points.  The maximum Sortino Ratio for each reference year and VaR threshold is in the “Optimal” 

column, and the corresponding equity weight is in parentheses.   

Panel A – 2013 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 1.5400 1.5370 1.5376 1.5389 1.5292 1.5419 (4.40%) 

VaR Threshold of 2.50% 1.3139 1.3061 1.3040 1.3045 1.2954 1.3160 (1.40%) 

VaR Threshold of 5.85% 1.1123 1.1000 1.0891 1.0904 1.0901 1.1123 (1.00%) 

VaR Threshold of 10.00% 0.9075 0.9105 0.9069 0.9042 0.9009 0.9128 (1.60%) 

Panel B – 2010 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 1.5031 1.5060 1.5122 1.5178 1.5269 1.5269 (5.00%) 

VaR Threshold of 2.50% 1.3761 1.3579 1.3345 1.3252 1.3020 1.3761 (1.00%) 

VaR Threshold of 5.85% 1.1345 1.1318 1.1321 1.1157 1.1065 1.1410 (2.40%) 

VaR Threshold of 10.00% 0.9139 0.9097 0.9107 0.9133 0.9082 0.9144 (3.80%) 

Panel C – 2006 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 1.5192 1.5208 1.5221 1.5298 1.5456 1.5456 (5.00%) 

VaR Threshold of 2.50% 1.3220 1.3055 1.3076 1.3017 1.2973 1.3220 (1.00%) 

VaR Threshold of 5.85% 1.1161 1.1127 1.1063 1.0958 1.0972 1.1163 (1.20%) 

VaR Threshold of 10.00% 0.9076 0.9070 0.8990 0.8952 0.9000 0.9093 (2.20%) 

Panel D – 2002 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 1.5237 1.4834 1.4496 1.4434 1.4334 1.5237 (1.00%) 

VaR Threshold of 2.50% 1.4083 1.4215 1.4188 1.4163 1.4416 1.4416 (5.00%) 

VaR Threshold of 5.85% 1.0850 1.0852 1.0755 1.0865 1.0834 1.0866 (1.40%) 

VaR Threshold of 10.00% 0.9093 0.9033 0.9033 0.8951 0.8895 0.9093 (1.00%) 

Panel E – 1998 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 1.5059 1.4947 1.4876 1.4832 1.4775 1.5059 (1.00%) 

VaR Threshold of 2.50% 1.4173 1.3991 1.4010 1.3957 1.3784 1.4173 (1.00%) 

VaR Threshold of 5.85% 1.1372 1.1367 1.1279 1.1284 1.1353 1.1418 (1.20%) 

VaR Threshold of 10.00% 0.9316 0.9232 0.9270 0.9227 0.9201 0.9323 (3.40%) 

Panel E – 1994 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 2.0401 1.9860 1.9813 1.9649 1.9525 2.0401 (1.00%) 

VaR Threshold of 2.50% 1.7408 1.6960 1.7100 1.6554 1.5713 1.7408 (1.00%) 

VaR Threshold of 5.85% 1.3535 1.3280 1.3068 1.2864 1.2793 1.3662 (1.40%) 

VaR Threshold of 10.00% 1.0076 1.0082 1.0040 1.0025 1.0048 1.0200 (2.20%) 
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Table 5.20. D-Vine Sortino Ratios by Reference Year and Equity Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  The portfolio returns are 

determined by the Combined Account weights used and returns simulated for each asset class based on the joint 

dependencies modeled by a D-vine copula.  The weights depend on the actual Separate Account, the non-equity 

General Account allocations for each reference year, and the General Account equity weight from the column 

heading.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess of the target rate and tail risk 

as measured by the second lower partial moment.  The target rate is based on the Value-at-Risk calculated at various 

threshold points.  The maximum Sortino Ratio for each reference year and VaR threshold is in the “Optimal” 

column, and the corresponding equity weight is in parentheses.   

Panel A – 2013 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 2.1371 2.1135 2.0885 2.0906 2.0922 2.1371 (1.00%) 

VaR Threshold of 2.50% 1.5468 1.5410 1.5326 1.5286 1.5282 1.5468 (1.00%) 

VaR Threshold of 5.85% 1.2009 1.2007 1.2032 1.2057 1.2048 1.2063 (4.40%) 

VaR Threshold of 10.00% 1.0229 1.0282 1.0289 1.0173 1.0188 1.0316 (2.60%) 

Panel B – 2010 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 2.1886 2.1861 2.1591 2.1576 2.1826 2.1886 (1.00%) 

VaR Threshold of 2.50% 1.5510 1.5393 1.5361 1.5272 1.5239 1.5510 (1.00%) 

VaR Threshold of 5.85% 1.2480 1.2258 1.2096 1.2142 1.2142 1.2480 (1.00%) 

VaR Threshold of 10.00% 1.0367 1.0309 1.0264 1.0253 1.0239 1.0367 (1.00%) 

Panel C – 2006 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 2.1226 2.1108 2.1092 2.0870 2.0758 2.1226 (1.00%) 

VaR Threshold of 2.50% 1.5548 1.5550 1.5415 1.5319 1.5476 1.5557 (1.80%) 

VaR Threshold of 5.85% 1.2123 1.2033 1.1964 1.1966 1.1945 1.2123 (1.00%) 

VaR Threshold of 10.00% 1.0305 1.0360 1.0357 1.0257 1.0252 1.0384 (2.40%) 

Panel D – 2002 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 2.1362 2.1193 2.1433 2.1595 2.1668 2.1668 (5.00%) 

VaR Threshold of 2.50% 2.0586 2.0668 2.0622 2.0115 1.9718 2.0682 (1.60%) 

VaR Threshold of 5.85% 1.3656 1.3414 1.3262 1.3192 1.3169 1.3656 (1.00%) 

VaR Threshold of 10.00% 1.0911 1.0707 1.0583 1.0404 1.0239 1.0911 (1.00%) 

Panel E – 1998 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 2.0636 2.0717 2.1129 2.1496 2.1666 2.1697 (4.80%) 

VaR Threshold of 2.50% 1.5466 1.5407 1.5240 1.5366 1.5255 1.5492 (1.20%) 

VaR Threshold of 5.85% 1.2423 1.2392 1.2330 1.2309 1.2275 1.2423 (1.00%) 

VaR Threshold of 10.00% 1.0180 1.0156 1.0199 1.0247 1.0248 1.0269 (4.40%) 

Panel E – 1994 

Equity Weight 1.00% 2.00% 3.00% 4.00% 5.00% Optimal 

VaR Threshold of 1.00% 1.6545 1.6835 1.6381 1.6429 1.6025 1.7035 (1.60%) 

VaR Threshold of 2.50% 1.5663 1.5350 1.5017 1.5294 1.5235 1.5669 (1.20%) 

VaR Threshold of 5.85% 1.3880 1.3720 1.3465 1.3500 1.3409 1.3880 (1.00%) 

VaR Threshold of 10.00% 1.1549 1.1488 1.1471 1.1316 1.1252 1.1549 (1.00%) 
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Table 5.21. C-Vine Sortino Ratios by Reference Year and Corporate Bond Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  The portfolio returns are 

determined by the Combined Account weights used and returns simulated for each asset class based on the joint 

dependencies modeled by a C-vine copula.  The weights depend on the actual Separate Account, the non-corporate 

bond General Account allocations for each reference year, and the General Account corporate bond weight from the 

column heading.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess of the target rate and 

tail risk as measured by the second lower partial moment.  The target rate is based on the Value-at-Risk calculated at 

various threshold points.  The maximum Sortino Ratio for each reference year and VaR threshold is in the “Optimal” 

column, and the corresponding corporate bond weight is in parentheses.   

Panel A – 2013 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.3115 1.3276 1.3371 1.3509 1.3769 1.3769 (100%) 

VaR Threshold of 2.50% 1.2184 1.2164 1.2306 1.2164 1.2109 1.2348 (91%) 

VaR Threshold of 5.85% 0.9853 0.9847 0.9848 0.9907 1.0112 1.0112 (100%) 

VaR Threshold of 10.00% 0.8605 0.8532 0.8514 0.8467 0.8464 0.8605 (80%) 

Panel B – 2010 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.3930 1.4180 1.4369 1.4395 1.4351 1.4421 (94%) 

VaR Threshold of 2.50% 1.2116 1.1991 1.2030 1.2044 1.2050 1.2171 (81%) 

VaR Threshold of 5.85% 0.9891 0.9950 0.9961 0.9975 1.0054 1.0054 (100%) 

VaR Threshold of 10.00% 0.8534 0.8554 0.8575 0.8564 0.8548 0.8581 (92%) 

Panel C – 2006 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.3347 1.3688 1.4020 1.4075 1.4115 1.4115 (100%) 

VaR Threshold of 2.50% 1.2165 1.2148 1.2053 1.2089 1.2030 1.2216 (81%) 

VaR Threshold of 5.85% 0.9891 0.9855 0.9964 1.0009 1.0099 1.0103 (99%) 

VaR Threshold of 10.00% 0.8450 0.8498 0.8522 0.8520 0.8612 0.8629 (99%) 

Panel D – 2002 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.4901 1.4756 1.4446 1.4748 1.5189 1.5189 (100%) 

VaR Threshold of 2.50% 1.3938 1.3854 1.3918 1.3938 1.4005 1.4005 (100%) 

VaR Threshold of 5.85% 1.1101 1.1296 1.1397 1.1430 1.1615 1.1615 (100%) 

VaR Threshold of 10.00% 0.9190 0.9283 0.9398 0.9436 0.9564 0.9564 (100%) 

Panel E – 1998 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.4648 1.4531 1.4405 1.3856 1.4013 1.4648 (80%) 

VaR Threshold of 2.50% 1.2057 1.2112 1.2099 1.2294 1.2386 1.2415 (99%) 

VaR Threshold of 5.85% 0.9873 0.9895 1.0103 1.0347 1.0261 1.0386 (96%) 

VaR Threshold of 10.00% 0.8602 0.8428 0.8495 0.8492 0.8620 0.8620 (99%) 

Panel E – 1994 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.6374 1.7289 1.8336 1.8855 1.8579 1.8927 (94%) 

VaR Threshold of 2.50% 1.4238 1.4903 1.5394 1.5633 1.5944 1.5944 (100%) 

VaR Threshold of 5.85% 1.1694 1.1856 1.2056 1.2626 1.2835 1.2893 (98%) 

VaR Threshold of 10.00% 0.9106 0.9287 0.9658 0.9824 1.0261 1.0261 (100%) 
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Table 5.22. D-Vine Sortino Ratios by Reference Year and Corporate Bond Weight 

The table contains the Sortino Ratio estimates for portfolios of the includible asset classes.  The portfolio returns are 

determined by the Combined Account weights used and returns simulated for each asset class based on the joint 

dependencies modeled by a D-vine copula.  The weights depend on the actual Separate Account, the non-corporate 

bond General Account allocations for each reference year, and the General Account corporate bond weight from the 

column heading.  The Sortino Ratio is defined to be the ratio of the portfolio’s return in excess of the target rate and 

tail risk as measured by the second lower partial moment.  The target rate is based on the Value-at-Risk calculated at 

various threshold points.  The maximum Sortino Ratio for each reference year and VaR threshold is in the “Optimal” 

column, and the corresponding corporate bond weight is in parentheses.   

Panel A – 2013 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.9658 1.9750 1.9184 1.8300 1.9077 1.9826 (84%) 

VaR Threshold of 2.50% 1.6838 1.6742 1.6943 1.7371 1.7235 1.7371 (95%) 

VaR Threshold of 5.85% 1.3431 1.3456 1.3363 1.3601 1.3588 1.3639 (97%) 

VaR Threshold of 10.00% 1.0799 1.0954 1.0997 1.0835 1.0876 1.1031 (89%) 

Panel B – 2010 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.9290 1.9210 1.8739 1.9075 2.0232 2.0232 (100%) 

VaR Threshold of 2.50% 1.7424 1.7566 1.7673 1.8007 1.8315 1.8315 (100%) 

VaR Threshold of 5.85% 1.3614 1.3826 1.3887 1.4157 1.4249 1.4249 (100%) 

VaR Threshold of 10.00% 1.1104 1.1152 1.1248 1.1535 1.1434 1.1535 (95%) 

Panel C – 2006 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.9617 1.9356 1.8715 1.8900 1.9296 1.9617 (80%) 

VaR Threshold of 2.50% 1.7327 1.7493 1.7549 1.7772 1.8032 1.8032 (100%) 

VaR Threshold of 5.85% 1.3396 1.3549 1.3586 1.3692 1.4067 1.4067 (100%) 

VaR Threshold of 10.00% 1.0952 1.0964 1.0994 1.1215 1.1139 1.1288 (98%) 

Panel D – 2002 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 2.5267 2.5988 2.6271 2.7672 2.8257 2.8257 (100%) 

VaR Threshold of 2.50% 1.9933 2.0139 2.0912 2.1832 2.2700 2.2700 (100%) 

VaR Threshold of 5.85% 1.5651 1.5817 1.6516 1.6573 1.7005 1.7005 (100%) 

VaR Threshold of 10.00% 1.1689 1.2047 1.2166 1.2232 1.2438 1.2438 (100%) 

Panel E – 1998 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 1.8951 1.9314 1.9694 2.0952 2.2129 2.2129 (100%) 

VaR Threshold of 2.50% 1.8179 1.8485 1.8845 1.8619 1.8726 1.8845 (90%) 

VaR Threshold of 5.85% 1.4312 1.4660 1.4700 1.4567 1.4497 1.4701 (89%) 

VaR Threshold of 10.00% 1.1349 1.1550 1.1673 1.1616 1.1477 1.1717 (92%) 

Panel E – 1994 

Corporate Bond Weight 80.00% 85.00% 90.00% 95.00% 100.00% Optimal 

VaR Threshold of 1.00% 3.7649 3.5841 3.5528 3.5266 3.3855 3.8294 (81%) 

VaR Threshold of 2.50% 2.4892 2.4320 2.3885 2.4121 2.4148 2.4892 (80%) 

VaR Threshold of 5.85% 1.6750 1.6851 1.6659 1.6624 1.6780 1.6999 (83%) 

VaR Threshold of 10.00% 1.2984 1.3030 1.3152 1.2846 1.2847 1.3152 (90%) 
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Figure 5.4. Optimal and Actual General Account Equity Allocations (Vine Copulas) 
This graph plots the optimal General Account equity allocations as determined by the C-vine and D-vine copula 

portfolio models as compared with the historical industry-wide allocations.  These allocations are based on historical 

portfolio weights for Separate Account assets and non-equity General Account assets from various years, which are 

shown on the horizontal axis.  The vertical axis denotes the percentage of the General Account allocated to equities. 

 
 

 Reviewing the results for the equity allocation decision first, it is notable how much the 

vine copula models (both C-vine and D-vine versions) favor lower allocations to equities.  In 

many of the reference year-threshold combinations, the optimal General Account allocation to 

equities is between 1% and 2%.  In fact, the minimum allocation of 1% is chosen to be the 

optimal one with some regularity suggesting that perhaps we should expand the range of possible 

allocations below 1%.  Thus, it is not surprising that there is a bit less variation from year to year 

in the average optimal allocations than with the risk hyperplane approach.  This can be seen 

graphically in Figure 5.4, which shows the actual General Account equity allocations and the 

optimal C-vine and D-vine copula allocations averaged over the thresholds.  In fact, the average 

optimal equity General Account allocations are almost entirely in the 1.0% to 2.5% range.  The 
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exceptions to this are when the C-vine model calls for an allocation of 3.05% in 2010 and when 

the D-vine model calls for an allocation of 2.85% in 1998. 

We can also see from Figure 5.4 that the D-vine results deviate much further from the C-

vine results than the GPD and GEVD models did in the risk hyperplane approach.  This poses the 

question of whether the C-vine or D-vine copula model better models the underlying data.  To 

answer this question, we conduct two tests that compare models, and they are the likelihood ratio 

test proposed by Vuong (1989) and the test proposed by Clarke (2007).  Both of these are based 

on ratios of the competing vine copula densities and reject the null hypothesis of 

indistinguishability if the ratios are sufficiently large across our dataset.  Both of them can also 

be corrected for the number of parameters used.  Initially, we performed the Vuong test on the 

two models, and the C-vine model appeared to be the better model based on the direction of the 

test statistic, but the p-values were in the 15-19% range depending on which correction method 

used.  Second, we performed the Clarke test, and this strongly suggested that the C-vine model is 

to be preferred with a p-value less than 0.10%.  To confirm this, we looked at the log-likelihood 

values for the vine copula model estimations.  The log-likelihood value for the C-vine model is 

1,116.436 while it is -3,658.303 for the D-vine model, which is clearly smaller than that of the C-

vine model.  Hence, we will focus our analysis of the vine copula results on those produced by 

the C-vine model. 

However, the biggest difference between the vine copula results for equities and those for 

the risk hyperplane approach is in the trend.  Recall that the optimal risk hyperplane allocations, 

as shown in Figure 5.2, had an overall downward trend as we move from 1994 allocations to 

2013 allocations.  These optimal General Account equity allocations appear to have an upward 

trend.  If we look closer at Figures 5.2 and 5.4, though, we will notice that the main difference in 
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the results lies in the optimal allocations for 1994 and 1998.  With the risk hyperplane approach, 

the optimal General Account equity allocations were in the 3.0% to 4.5% range while these are 

below 2%.  Thus, the vine copula models must be modeling the joint dependencies in such a way 

that these earlier sets of allocations require lower allocations to equities.  Reviewing the tail risk 

measurements of the C-vine model portfolios reveals that the square root of the lower partial 

moment is generally higher under the vine copula model than with the risk hyperplane analysis.  

The average tail risk for the vine copula model is about 0.32% and 0.53% in 1994 and 1998, 

respectively, while it is only about 0.16% and 0.30% for the same years in the GPD risk 

hyperplane model.  So, this is a possible explanation for these relatively stark differences 

between the two approaches in the early years of our analysis. 

Different tail risk and portfolio return sensitivities to changes in the General Account’s 

equity allocation are another possible explanation.  We can see this by reviewing the excess 

returns and tail risk measurements for the portfolios based on equity weights of 1% and 5%.  

With the risk hyperplane GPD model, the average tail risk based on the square root of the second 

lower partial moment is about 0.29% with an equity weight 1% and about 0.32% with a weight 

of 5%, which is an increase of about three basis points.  The corresponding tail risk 

measurements for the C-vine copula model are 0.51% and 0.56%, which is an increase of about 

five basis points.  So, the C-vine model appears to be more sensitive to increases in the equity 

weight in terms of tail risk.   

For excess returns, the risk hyperplane approach appears to be more sensitive to increases 

in equity weight.  In this model, the average excess return is about 0.80% with an equity weight 

of 1% and about 0.88% with a weight of 5% for an increase of about eight basis points.  In the C-

vine copula model, the corresponding excess return measurements are 0.65% and 0.70% for an 
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increase of about five basis points.  Given that a Sortino Ratio has excess returns in the 

numerator and tail risk in the denominator, it makes sense for the model that has faster increases 

in the tail risk and slower increases in the returns to prefer lower equity weights. 

It is also interesting that the industry appears to have gradually caught up to optimal 

allocations suggested by the vine copula models.  Perhaps life insurers should have been 

investing in equities closer to the current levels for most of the past twenty years.  This “closing 

of the gap” effect actually occurs in both modeling approaches, but, as we just discussed, the 

main difference is the vine copula models start with a bigger gap.  A final observation of Figure 

5.4 that is worth mentioning is that both the C-vine and D-vine copula models also suggest that 

the industry’s 2013 General Account equity allocation is either optimal or very close to it.  This 

is one point on which both models seem to highly agree. 

Lastly, we review the vine copula results of the corporate bond General Account 

allocation decision in Tables 5.21 and 5.22.   The results from the vine copula models are largely 

in line with those from the risk hyperplane models.  If anything, the optimal allocations from the 

C-vine copula model are, on average, slightly less than those from the risk hyperplane model, but 

there is a lot of overlap as well.  Both approaches recommend investing nearly all of the General 

Account in corporate bonds, which is consistently the case as we change the exogenous 

allocations.  To be sure, the time period from which we have sampled our returns is a beneficial 

one for corporate bonds.  Overall, investment-grade corporate bonds, as an asset class, have 

earned a return only slightly less than equities but with much less risk, both in terms of standard 

deviation and tail risk.  Unfortunately, we are constrained from using more historical returns data 

as long as we try to model as many asset classes as possible.  Recall that some of our asset 

classes, especially cmbs, do not have as long of an available history.  It would be interesting to 
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extend this study by bringing in some other historical time periods in which corporate bonds did 

not out-perform equities as much on a risk-adjusted basis. 
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H. Portfolio Performance 

To conclude our analysis, we briefly test some of the portfolio performance implications 

of the optimal allocations produced by our risk hyperplane and vine copula models.  To do so, 

we compare how a portfolio based on our optimal weights performs relative to one based on the 

actual historical weights of the industry.  Admittedly, this is merely an in-sample test of 

performance, which biases us in favor of finding that our optimal weights produce superior 

performance.  However, it should still provide some insights into how detrimental are the 

industry’s deviations from our optimal allocations. 

We use all daily returns in our data sample for the time period common to all asset 

classes, which is January 1998 to October 2014.  Portfolio weights are held constant for four 

years, with monthly re-balancing, to match the four year gaps between the allocations used in the 

models.  Weights for a particular reference year are applied to the portfolios starting in the year 

following the reference year (e.g., the allocations from 1998 start being used by the portfolios at 

the beginning of 1999).  For 1998, the first year of daily returns in our sample, the weights are 

those from 1994.  All of the allocations used are on a Combined Account basis, and returns in 

excess of the daily risk-free rate (from Kenneth French’s website) are used for performance 

measurement. 

The portfolio performance results are presented in Table 5.23.  A number of performance 

statistics are presented for each portfolio.  The portfolios include one based on the actual 

industry-wide asset allocations (“Actual”) and a number of competing portfolios based on the 

optimal allocations from our models.  These include the GPD and GEVD risk hyperplane models 

and the C-vine and D-vine copulas models.  For each of these, there is an equity-focused version 

and a corporate bond-focused version.  The statistics include the average daily log excess return 
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relative to the corresponding portfolio’s left tail threshold, the square root of the second lower 

partial moment, and the Sortino Ratio.  The left tail threshold is set equal to the 248
th

 most 

negative daily return for each portfolio.  This corresponds to the 5.85% VaR estimate used in the 

vine copula analysis and the threshold used in the GPD modeling for the risk hyperplane 

analysis.  This same threshold is used in the calculation of the second lower partial moment, 

which is calculated based on the ex post version presented in Section V.C.1. 

 

Table 5.23. Portfolio Performance 

The table contains the in-sample performance of several portfolios of life insurance company investment assets.  The 

benchmark portfolio is based on the actual asset allocations of the industry.  Against this benchmark, we compare 

several portfolios based on the optimal allocations produced by each of the models in this study.  These include the GPD 

and GEVD risk hyperplane models and the C-vine and D-vine copula models.  With each of these, we also have a 

version focused on the General Account equity weight decision and a version focused on the General Account corporate 

bond (“CB”) weight decision.  A number of performance statistics are presented for each portfolio.  These include the 

average daily log excess return relative to the corresponding portfolio’s left tail threshold (“Excess Return”), the square 

root of the second lower partial moment (“Tail Risk”), and the Sortino Ratio. 

 Actual 
GPD 

Equity 

GEVD 

Equity 

GPD 

CB 

GEVD 

CB 

C-Vine 

Equity 

D-Vine 

Equity 

C-Vine 

CB 

D-Vine 

CB 

Excess Return (%) 0.5643 0.5554 0.5553 0.5540 0.5551 0.5474 0.5499 0.5537 0.5542 

Tail Risk (%) 0.4940 0.4855 0.4859 0.4626 0.4598 0.4899 0.4798 0.4638 0.4624 

          

Sortino Ratio 1.1423 1.1440 1.1428 1.1976 1.2074 1.1174 1.1460 1.1939 1.1986 

 

The results in Table 5.23 make it clear how the optimal allocations improve the risk-

adjusted performance of a life insurance company’s Combined Account investment portfolio.  

They do so by reducing the portfolio’s tail risk exposure since all of the portfolios based on our 

optimal allocations have average returns lower than that of the portfolio based on the actual 

weights.  The reduction in the tail risk across our models averages about 4.11%, and this leads to 

an average increase of about 2.29% in the Sortino Ratio.  Thus, our results here suggest that life 

insurers could potentially see some improvement in risk-adjusted portfolio performance with our 

optimal asset allocations, but the potential is still somewhat limited.  It is also quite interesting to 
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note that the portfolio based on the optimal equity allocations from the C-vine copula model 

actually underperforms relative to the “Actual” portfolio, even though it is an in-sample test.  

This leads us to conclude that the life insurers do not appear to deviate very significantly from 

optimal allocations as far as ex post performance is concerned. 

Table 5.23 also provides some evidence for why our models exhibited a preference for 

corporate bonds.  The portfolios that are heavily focused on corporate bonds in the General 

Account (“GPD CB,” “GEVD CB,” “C-Vine CB,” and “D-Vine CB”) have even lower tail risk 

without sacrificing much in return.  Still, these corporate bond-focused portfolios did not 

perform as well in the middle of the recent financial crisis, which was a significant tail event.  

When we focused only on 2008, these four portfolios had negative risk premiums of about -20% 

for the year.  Meanwhile, the “Actual” portfolio and the equity-focused optimal portfolios had 

negative risk premiums of about -18%.  In fact, the equity-focused portfolios seemed to behave 

during the crisis as one might hope from a tail risk focused allocation decision.  They had 

negative risk premiums that were all somewhat smaller than the -18.3% risk premium earned by 

the “Actual” portfolio.  Even in a time period beneficial to corporate bonds, there appears to still 

be some benefits to diversification in a crisis. 
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VI. Conclusion 

A. Summary 

In this dissertation, we used extreme value statistics to study the measurement and 

modeling of market risk for a specific type of investment portfolio, which is that of a life 

insurance company.  We chose this application to study our market risk analysis because life 

insurance companies are particularly prone to tail risk due to the guarantees they provide on their 

products, especially in the newer “variable” products that open up the company to greater 

downside equity exposure. 

First, we reviewed the nature of the life insurance business including the historical 

development of the business, the types of risks faced by life insurance companies, the tools 

available to life insurance companies to manage these risks, and the regulatory environment in 

which life insurance companies operate.  After performing this review, we used two modeling 

approaches to measure and model the market risk of a typical life insurance company’s 

investment portfolio.  This analysis is used to provide insights into optimal asset allocation 

choices for life insurers in light of their tail risk exposure.  In this way, our models are related to 

the approach used by Roy (1952) rather than being based on the more customary mean-variance 

optimization approach. 

The first approach, that of the risk hyperplane, is mechanically similar to a classical 

Markowitz (1952) approach but with the key difference that the risk-return tradeoff is made 

based on tail risk, rather than total risk.  As a result, the second lower partial moment is used to 

measure the risk of a candidate portfolio and excess portfolio returns are determined relative to a 

target rate that will differ from the risk-free rate in general.  The second approach makes use of 

the mathematical sophistication embedded in the emerging tool of vine copulas.  Although vine 
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copulas have a theoretical foundation stretching back to Sklar (1959), it is only in the past twenty 

years or so that the theory has developed to the point where it can be very useful in finance and 

insurance applications like the one focused on here.  In this study, we use two vine copula 

structures, which are the so-called C-vine and D-vine copula structures, to model the joint 

dependencies present in a typical life insurance company’s investment portfolio. 

 This analysis enables us to determine some key results.  First, all of the modeling 

approaches (risk hyperplane, C-vine copula, and D-vine copula) agree that the industry’s 

aggregate allocation to equities in the General Account as of 2013 is effectively optimal.  Since 

this year marks the end of our analysis period, it remains to be seen whether or not the industry 

can maintain such optimality in their investment decisions.  Second, there is some evidence, 

particularly in the risk hyperplane analysis, that the roughly 50% decline in General Account 

equity allocations is related to the significant increase in equity exposure from the Separate 

Account.  Since the mid-1990s, not only has the equity allocation within the Separate Account 

increased but the Separate Account also comprises a greater proportion of the combined assets 

due to growth of “variable” products.  This result highlights a complication of making optimal 

asset allocation decisions for an investor that has at least some of their risk exposure determined 

by the asset allocations of others.  Interestingly, the vine copula models do not share this result, 

and it appears that it is due to detecting higher levels of tail risk and greater sensitivities to higher 

equity weights, especially in the early years of our analysis. 

 Finally, we studied the in-sample portfolio performance of our optimal allocations 

relative to the actual allocations chosen, in aggregate, by the industry.  We find that the optimal 

allocations generally produce an increase in risk-adjusted performance of just over 2%, and this 

is primarily due to the superior performance of the corporate bond-focused portfolios.  
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B. Directions for Future Research 

 We do not seek to make the claim that this research is all-encompassing and understand 

that it is limited in nature.  Certainly, there are areas in which this analysis could and ought to be 

extended and improved upon in the future.  One key area for future improvement is the objective 

of the optimization done here.  We seek to optimize the life insurance company’s trade-off of 

portfolio return and tail risk, as measured by the Sortino Ratio.  However, a more appropriate 

optimization for a life insurance company is really the capital surplus, which is the amount by 

the assets exceed the liabilities.  This is also the company’s buffer for unexpected losses.  

Maximizing the investment portfolio’s return and minimizing the tail risk does not necessarily 

maximize the company’s capital surplus.  Our analysis is focused entirely on the asset side of the 

balance sheet.  However, the liabilities of a life insurance company may also be sensitive to 

financial market movements.  For one thing, the reserves that are required on the company’s 

products will be based on present values of future expected payouts, which would generally 

change as prevailing interest rates fluctuate.  For variable products where the policyholder’s 

guarantee is often put-like in nature (i.e., the value of the guarantee and the company’s liability 

increases as the policy’s account value declines), a negative shock in the equity market could 

simultaneously reduce the company’s assets and increase the liabilities, which would be a 

double-hit to the capital surplus.  As a result, analyzing the capital surplus is a better, albeit much 

more difficult, method of assessing the full impact of market risk on the financial health of the 

life insurance company. 

 Another major extension would be to expand the number of key risks under analysis.  

Recall that the key risks faced by a life insurance company include insurance, market, credit, 

liquidity, operational, group, systemic, and regulatory risks.  A more complete assessment of 
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optimal asset allocation and tail risk in the context of a life insurance company would 

incorporate one or more of these other key risks.  It may be especially useful to incorporate credit 

risk in a more complete analysis of the corporate bond allocation decision.  It would be 

interesting to see if doing so makes the optimal allocations more consistent with actual industry-

wide allocations. 

 It would also be helpful to conduct a more rigorous multivariate analysis of the asset 

allocation decision.  This could potentially help us understand better the impacts of certain 

changes in policyholder behavior, such as decreasing allocations to equities during or after a 

market crash, affect the optimal allocation decisions of the company.  Although we would expect 

to see some kind of counterbalancing effect here (i.e., the company should pull back on equities 

when policyholders invest more of their funds in equities and vice versa), we were not able to 

provide definitive evidence of this in the current study.  In addition, a more rigorous analysis of 

the portfolio performance implications, including out-of-sample tests, would provide some more 

insight into the cost of deviating from optimality. 

Other areas of improvement are more technical in nature.  For example, we only 

considered the C-vine and D-vine copula structures of which the C-vine copula had a better fit to 

our set of asset classes.  A generalization of the C-vine and D-vine copula structures is called a 

regular vine (“R-vine”) copula.  It allows for multiple nodes in the same tree from which various 

paths of variable pairs can extend.  Thus, a C-vine copula is a special case by restricting to one 

the number of nodes in each tree and by requiring all paths to extend from that central node.  A 

D-vine copula is a special case by requiring all variable pairs to lie along the same path instead 

of allowing certain elements in the path to act as the node of one or more side paths.  Although 
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more complicated, an R-vine copula structure is more flexible given this less restrictive structure, 

so it could potentially be a better model than the structures used in our study. 

In addition, we were generally drawing conclusions from a limited number of 

observations due to having a relatively small number of historical years to base those 

observations on.  We could increase the statistical power of these conclusions by trying to 

expand the number of observations, although it may require more simulations to generate 

observations due to having no asset allocation data prior to the mid-1990s. 

Finally, one question left unexplored by our study relates to the relative merits of using 

the vine copula and risk hyperplane approaches.  Certainly, both approaches are feasible given 

the vast computational power available now to almost anyone with the knowledge of how to use 

it.  It is also obvious that the two approaches involve very different levels of theoretical rigor.  

The risk hyperplane approach is a “brute force” method that helps determine what we are 

interested in knowing, which is the relationship between asset allocation, portfolio return, and 

portfolio tail risk, but in a somewhat unsophisticated manner.  Vine copulas, on the other hand, 

have much greater mathematical sophistication and more rigorous theoretical foundations.  This 

enables the investor to potentially gain a more sophisticated understanding of the joint 

dependencies between the assets in a portfolio, which is a key advantage for using vine copulas.  

It allows the practitioner to gain a deeper knowledge of the impact on the portfolio’s tail risk 

exposure by adjusting the allocations.  With the risk hyperplane approach, these insights come 

from a kind of “trial and error” method by which we see how the end result is affected by 

altering allocations rather than trying to directly model the underlying dependencies driving the 

results.  Still, the simplicity and ease of understanding the method gives the risk hyperplane a 

different kind of advantage.  Perhaps the computational power available now will enable a 
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practitioner to gain the same insights that could be found theoretically with vine copulas.  This is 

one area of possible future research that will allow us to better understand if the mathematical 

sophistication of vine copulas is worth the cost or ultimately unnecessary. 
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