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ABSTRACT

HIGH DIMENSIONAL LINEAR REGRESSION MODELS UNDER LONG
MEMORY DEPENDENCE AND MEASUREMENT ERROR

By

Abhishek Kaul

This dissertation consists of three chapters. The first chapter introduces the models under

consideration and motivates problems of interest. A brief literature review is also provided

in this chapter.

The second chapter investigates the properties of Lasso under long range dependent model

errors. Lasso is a computationally efficient approach to model selection and estimation, and

its properties are well studied when the regression errors are independent and identically

distributed. We study the case, where the regression errors form a long memory moving

average process. We establish a finite sample oracle inequality for the Lasso solution. We

then show the asymptotic sign consistency in this setup. These results are established in the

high dimensional setup (p > n) where p can be increasing exponentially with n. Finally, we

show the consistency, n
1
2−d-consistency of Lasso, along with the oracle property of adaptive

Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error

sequence. The performance of Lasso is also analysed in the present setup with a simulation

study.

The third chapter proposes and investigates the properties of a penalized quantile based

estimator for measurement error models. Standard formulations of prediction problems in

high dimension regression models assume the availability of fully observed covariates and

sub-Gaussian and homogenous model errors. This makes these methods inapplicable to

measurement errors models where covariates are unobservable and observations are possi-



bly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile

estimators for the regression parameter vector in linear regression models with additive mea-

surement errors, where unobservable covariates are nonrandom. The proposed estimators

forgo the need for the above mentioned model assumptions. We study these estimators in

both the fixed dimension and high dimensional sparse setups, in the latter setup, the di-

mensionality can grow exponentially with the sample size. In the fixed dimensional setting

we provide the oracle properties associated with the proposed estimators. In the high di-

mensional setting, we provide bounds for the statistical error associated with the estimation,

that hold with asymptotic probability 1, thereby providing the `1-consistency of the pro-

posed estimator. We also establish the model selection consistency in terms of the correctly

estimated zero components of the parameter vector. A simulation study that investigates

the finite sample accuracy of the proposed estimator is also included in this chapter.
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KEY TO SYMBOLS

In what follows, for any z = (z1, · · · , zp)T ∈ Rp, ‖z‖1 =
∑p
j=1 |zj |, ‖z‖

2
2 =

∑p
j=1 z

2
j . For

any two sequences of positive numbers {an, bn}, an = O(bn), denotes that for all large n,

an ≤ cbn, for some universal constant c > 0, which does not depend on any underlying

parameters or the sample size n. All limits are taken as n → ∞. For any index set S ⊆

{1, ..., p}, and for any vector δ ∈ Rp, denote δS = {δj ; j ∈ S}. For any event A, denote IA

as the indicator of the event A.
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Chapter 1

Introduction and Literature Review

This dissertation shall analyse and develop estimation and variable selection techniques for

linear regression models under two distinct setups. Chapter 2 considers the setup with the

model errors being a long memory moving average process and Chapter 3 considers the setup

where the design variables are not observed directly but a noisy form of these variables are

observable, which is commonly referred to as the measurement error or errors-in-variables

setup.

We begin by describing the models under consideration. The ith component of the

response vector yT = (y1, ...yn) is assumed to be related to the ith row xTi = (xi1, · · · , xip),

1 ≤ i ≤ n of the n× p design matrix X by the relation

yi = xTi β + εi, for some β ∈ Rp, 1 ≤ i ≤ n.(1.1)

Here for any vector a, aT denotes its transpose. In Chapter 2, the vector ε := (ε1, ..., εn)T is

assumed to be a long memory moving average process, additional assumptions on this vector

shall be made precise in Chapter 2. The design variables {xi, 1 ≤ i ≤ n} shall be assumed

to be non random. However as shall become apparent later this condition may be easily

relaxed to allow for some common random designs such as sub-Gaussian or sub-Exponential

with independent rows.

In the above discussion we assume that the design variables {xi, 1 ≤ i ≤ n} are com-
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pletely observed. A classical problem is that of estimation of the parameter vector β when

the design variables xi’s are not directly observable. This problem shall serve as the content

of Chapter 3. In place of the design variables xi’s we observe the surrogate wi’s obeying the

model

wi = xi + ui, 1 ≤ i ≤ n.(1.2)

Here, uTi = (ui1, · · · , uip) are assumed to be independent of {εi} and independent and

identically distributed (i.i.d.) p−dimensional random vectors. The exact assumptions are

made precise in Chapter 3.

The parameter vector of interest throughout this document shall be the p-dimensional

vector β = (β1, ..., βp). We shall consider both the fixed p setup as well as the high dimen-

sional p setup. In the latter case, the dimension p shall be allowed to grow exponentially

with the sample size n.

A critical assumption made on the parameter vector of interest β is ”sparsity, ” i.e. it is

assumed that a large proportion of the columns of the design matrix do not contribute any

linear effect to the response vector y. In other words, a large proportion of the components

of the parameter vector β are zero. The problem of interest is to consistently identify and

estimate the non-zero components of β.

The past two decades have contributed extensively to finding solutions to this problem,

chief among which has been the `1-penalized methods for their desirable finite sample and

asymptotic properties and computational efficiency. The estimates for these methods are

2



typically described as

β̂(λ) = argminβ∈Rp {ln(β) + λ‖d ◦ β‖1} , λ > 0,(1.3)

where ln(β) is an appropriately chosen loss function that can be computed using the observed

variables. The weights d = (d1, ..., dp)
T is a vector of non-negative weights, and ‘◦’ denotes

the Hadamard product, i.e., ‖d ◦ β‖1 :=
∑p
j=1 dj |βj |. Throughout this thesis, the design

variables xi’s may be triangular arrays depending on n, but we do not exhibit this dependence

for the sake of the transparency of the exposition. Also, all limits are taken as n→∞, unless

mentioned otherwise.

1.1 Lasso and long memory

For the estimator described in (1.3) choosing the loss function ln(β) = 1
n

∑n
i=1(yi − xTi β)2,

i.e., the squared loss function and setting dj = 1, 1 ≤ i ≤ p, we obtain the well celebrated

least absolute shrinkage and selection operator (Lasso) proposed by Tibshirani (1996). Its

statistical properties are well studied when the regression errors are independent and iden-

tically distributed (i.i.d.) random variables (r.v.), see, e.g., Knight and Fu (2000), Mein-

hausen and Bühlmann (2006), Zhao and Yu (2006), Bickel, Ritov and Tsybakov (2009)

and Bühlmann and van de Geer (2011). In particular, Knight and Fu (2000) provide the

consistency and
√
n-consistency of Lasso estimates under the fixed p setting. In the high di-

mensional setting, Bickel, Ritov and Tsybakov (2009) and Bühlmann and van de Geer (2011)

provide error bounds for the statistical error associated with Lasso that hold with probabil-

ity tending to 1. Furthermore they provide a detailed discussion of the necessary conditions
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required to obtain the desired error bounds. Meinhausen and Bühlmann (2006) and Zhao

and Yu (2006) made the important contribution of providing model selection consistency

results and also detailed the conditions necessary to obtain them.

The above mentioned papers work under the common assumption that the model errors

{εi, 1 ≤ i ≤ n} are i.i.d. realizations of a sub-Gaussian r.v., as breifly stated in the introduc-

tion the first problem investigated in this dissertation is to analyse the properties of Lasso

when the model errors {εi, 1 ≤ i ≤ n} form a long memory moving average process.

The literature in the area of `1-penalized estimation with dependence considerations is

scant. The first paper dealing with this issue is that of Alquier and Doukhan (2011). They

provide finite sample error bounds under weak dependence structures on the model errors

{εi, 1 ≤ i ≤ n}. Another recent paper addressing dependence concerns is that of Yoon, Park

and Lee (2013). Their paper provides asymptotic results in the n > p setup, in a linear

regression models with stationary auto-regressive errors. In that paper the error process is

assumed to be an AR(q) process, which is known to be a short memory process, see Giraitis,

Koul, and Surgailis (2012) (GKS). This thesis investigates the behaviour of Lasso under a

stronger dependence structure and less restrictive model assumptions in comparison to the

above mentioned papers.

The adaptive Lasso proposed by Zou (2006) differs from Lasso in the way parameters

are penalized where the weights dj , 1 ≤ i ≤ p are chosen carefully. To be more precise, for

any η > 0, define the weight vector d = 1/|(β̂)|η, with β̂ being any initial estimate of β

such that n
1
2−d(β̂−β) = Op(1) componentwise. To avoid confusion the reader should recall

that d denotes the memory parameter of the stationary error sequence whereas d denotes
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the vector of weights in the penalty term. The adaptive Lasso estimates β̃ are given by

β̃ = argminβ∈Rp

 1

n
‖y −Xβ‖22 + λn

p∑
j=1

dj |βj |

 .(1.4)

Let A = {j : βj 6= 0}, A?n = {j : β̃j 6= 0, 1 ≤ j ≤ p} and βA, β̃A be the corresponding

vectors with only those components whose indices are in the set A.

As stated in Zou (2006) for the i.i.d. model error setup when p is fixed, an estimator is

said to have oracle property if the following hold.

1. Asymptotically, the right model is identified, i.e limn→∞ P (A?n = A) = 1.

2. The estimator has an optimal estimation rate, n
1
2 (β̃A − βA) →D N (0,Σ?), for some

covariance matrix Σ?.

Here →D denotes convergence in distribution. The adaptive Lasso has an advantage over

Lasso, since it possesses the above oracle property under mild assumptions. On the other

hand, as proved by Zhao and Yu (2006), for Lasso to be sign consistent a necessary condition

is the ”strong irrepresentable condition” which is a much stronger assumption.

In Chapter 2 we provide bounds on the statistical error associated with Lasso under

long memory dependent model errors, that hold with probability tending to 1. Secondly,

we obtain the sign consistency of Lasso under this setup with standard restrictions on the

design matrix X. Lastly, we provide the consistency and n
1
2−d-consistency of the Lasso in

the case where p is fixed and is less than n. This proof is also extended to derive the oracle

property for adaptive Lasso. For these results, the price that we pay to tackle the persistent

correlation among the error sequence is that the rate of increase of the dimension p in the

high dimensional setting, and the rate of convergence in the fixed p setting is slowed down
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by a factor of nd. Here d is the memory parameter of the stationary error sequence.

1.2 Measurement error and penalized quantile regres-

sion

Chapter 3 of this dissertation proposes and analyses a quantile based estimation and variable

selection technique for the measurement model described in (1.1) and (1.2). In the classical

fixed p setting, it is well known that disregarding measurement error in covariates induces

an attenuation bias in the estimates of the parameter vector β, i.e., the estimates are biased

towards zero with a non diminishing bias whose magnitude depends on the variance of the

covariate noise. This problem for measurement error models when p is fixed has been exten-

sively worked on by several authors including Fuller (1987) and Carroll, Ruppert, Stefanski

and Crainiceanu (2006). These authors also provide numerous applications of such mod-

els and also provide bias corrected estimators for measurement error models in the context

of mean regression, where the objective is to obtain estimates of β corresponding to the

conditional mean of the response variables, given the covariates.

The problem of estimation and variable selection in high dimensional measurement error

models is of recent interest. Authors including Rosenbaum and Tsybakov (2010, 2011) and

Loh and Wainwright (2012) study these models and propose penalized estimators which pro-

vide consistent estimation and variable selection in the presence of measurement error. In

particular, Loh and Wainwright (2012) propose the `1-penalised bias corrected least squares

approach. They make the important contribution of providing error bounds for the associ-

ated statistical error in estimation that hold with probability tending to 1, and they do so

with a non-convex loss function. However, both papers assume an underlying sub-Gaussian
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homoscedastic distribution of the model errors and work under the premise of mean regres-

sion.

Another important estimation technique in linear regression models is that of quantile

regression where one is interested in estimates of β corresponding to a specific conditional

quantile of the response y, given the covariates, as opposed to mean regression where the

problem of interest is to obtain estimates corresponding to the conditional mean of response

variables. Quantile regression is robust against outliers and is useful in the presence of

heteroscedasticity, see, e.g., Buchinsky (1994). This estimation technique forgoes the need

for sub-Gaussian distributional assumptions on the model errors {εi, 1 ≤ i ≤ n} and replaces

them with much milder smoothness conditions on the density functions of these errors.

When covariates are completely observed, i.e. without measurement error, the problem

of quantile regression with non sub-Gaussianity and heteroscedasticity in sparse high dimen-

sional models has recently been studied by Fan, Fan and Barut (2014), Belloni and Cher-

nozhukov (2011), and Wang, Wu and Li (2012). The convexity of quantile loss function is

crucial for the analysis of their inference procedures. More precisely they propose and provide

theoretical guarantees for the `1-penalised estimator (1.3) with ln(β) = 1
n

∑n
i=1 ρ(yi, xi, β)

where ρ(yi, xi, β) = ρτ (yi − xTi β), ρτ (v) = v{τ − I(v ≤ 0)} is the quantile loss function.

Here τ is the quantile level of interest, i.e., P (εi < 0) = τ, 1 ≤ i ≤ n.

The problem of correcting for bias induced by measurement error in quantile regression

poses a challenging problem. In the case of fixed p, this problem has been addressed by

Wang, Stefanski and Zhu (2012) (WSZ). They provide a corrected quantile loss function and

show that the estimates obtained by minimizing this loss function provides consistent and

√
n-consistent estimates. However since their loss function is un-penalized, it is unable to

perform variable selection.
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Chapter 3 of this dissertation proposes and analyzes the penalized version of the estimator

proposed by WSZ. In the fixed p setup we provide the oracle property of the proposed

estimator. In the high dimensional setting we provide bounds on the statistical error of

the proposed estimator that hold with probability tending to 1. In this setting, we also

establish model selection consistency of this estimator in terms of identifying the correct

zero components of the parameter vector.
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Chapter 2

Lasso with Long Memory Regression

Errors

In many problems of practical interest regression models with long memory errors arise

naturally in the fields of econometrics and finance, see e.g., Beran (1994), Baillie (1996) and

more recent monographs of Giraitis, Koul, and Surgailis (2012) (GKS), and Beran, Feng,

Ghosh, Kulik (2013), and the numerous references therein. It is thus of interest to investigate

the behavior of Lasso in regression models with long memory errors.

Recall the model (1.1), where xi = (xi1, · · · , xip)T , i = 1, · · · , n are vectors of design

variables, yi’s denote the responses. The errors εi are assumed to be long memory moving

average with i.i.d. innovations, i.e.,

εi =
∞∑
k=1

akζi−k =
i∑

k=−∞
ai−kζk,(2.1)

where, ak = c0k
−1+d, k ≥ 1, 0 < d < 1

2 and some constant c0 > 0, and ak = 0 for k ≤ 0.

Also, ζj , j ∈ Z := {0,±1,±2, · · · } are i.i.d. r.v.’s with mean zero and variance σ2
ζ . For

notational convenience, we shall assume c0 = 1 and σ2
ζ = 1, without loss of generality. Note
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that {εi, i ∈ Z} is a stationary process with autocavariance function

γε(k) =
∞∑
j=1

ajaj+k = k−1+2dB(d, 1− 2d)(1 + o(1)), 0 < d < 1/2, k →∞,(2.2)

where B(a, b) :=
∫ 1

0 u
a−1(1 − u)b−1du, a > 0, b > 0, see, e.g., Proposition 3.2.1(ii) in GKS.

This auto-correlation structure induces a long memory structure on the model errors ε, i.e.,∑∞
k=1 |γε(k)| =∞. As briefly mentioned in Chapter 1, the Lasso estimate of β is defined as,

β̂(λ) = argminβ

{
1

n
‖y −Xβ‖22 + λ‖β‖1

}
, λ > 0.(2.3)

This chapter is devoted to understanding the properties of Lasso under our long memory

setup. The three main contributions of this chapter are as follows. First, we show that the

probability bound for a pre defined set controlling the stochastic term max1≤j≤p |XT
j ε| can

be obtained with a long memory moving average probability structure on {εi, 1 ≤ i ≤ n}

under appropriate restrictions on the rate of increase of the design variables and with the

proper choice of the regularizer λn. Here Xj denotes the jth column of the design matrix X.

This result can be used to obtain the desired error bound for the statistical error associated

with Lasso in this setup. Secondly, we obtain sign consistency of Lasso under the long

memory setup with standard restrictions on the design matrix X. These results are obtained

in the high dimensional setup. Lastly, we provide consistency and n
1
2−d-consistency of Lasso

in the case where p is fixed, under certain assumptions on the design variables X. This proof

is also extended to derive the oracle property for a modified version of Lasso known as the

adaptive Lasso. The price that we pay to tackle the persistent correlation among the error

sequence is that the rate of increase of the dimension p in the high dimensional setting, and
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the rate of convergence in the n > p setting is slowed down by a factor of nd.

All results in the high dimensional setting allow the design variables to grow with the

restriction
∑

1≤i≤n x
2
ij = O(n), and hence the results obtained can also easily be extended

to case of Gaussian random designs. Furthermore, all results proved in the high dimensional

setup in this chapter allow p to grow exponentially with n.

This chapter is organized as follows. Section 2.1 below investigates the finite sample

properties of Lasso. Section 2.2 investigates the sign consistency of Lasso. Section 2.3

provides the asymptotic properties of Lasso and also the oracle property of adaptive Lasso

in the fixe p setup. Section 2.4 presents a simulation study to analyse the finite sample

performance of Lasso in the current setup.

2.1 Results with Finite Sample

In this section we prove a finite sample oracle inequality for the Lasso solution when the

design is non random. This in turn will imply the consistency as well. Based on the assump-

tions of the design variables it will soon be clear that the results can be easily extended to

Gaussian random designs as well. Accordingly, in this subsection we assume xi’s are non

random. To proceed further, we shall need the following notation. Let

Wnj = n−(1/2+d)
n∑
i=1

xijεi = n−(1/2+d)
n∑
i=1

i∑
k=−∞

xijai−kζk =
n∑

k=−∞
cnk,jζk,(2.4)
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where

cnk,j := n−(1/2+d)
n∑
i=1

xijai−k, k ∈ Z, j = 1, · · · , p,(2.5)

cn,j := sup
−∞<k≤n

|cnk,j |, cn = max
1≤j≤p

cn,j .

Also, let,

σ2
n,j := V ar(Wnj), σ2

n = max
1≤j≤p

σ2
n,j .(2.6)

We shall prove that, with an appropriate choice of λn, the Lasso solution obeys the

following oracle inequality in the long memory case, with overwhelming probability, i.e., for

any n ≥ 1, with probability approaching 1,

‖X(β̂ − β)‖22/n+ λn‖β̂ − β‖1 ≤
4λ2
ns0

φ2
0

Here λn = (O log p/n1/2−d), under some conditions on the design matrix. Also, s0 is the

cardinality of the set of nonzero components of β and φ0 is a constant.

The key result required for the proof involves obtaining a probability bound for the set

Λ =

{
max

1≤j≤p
2n−1|

n∑
i=1

xijεi| ≤ λ0n

}
,(2.7)

for a proper choice of λ0n. Once this probability bound is obtained, the oracle inequality

follows by deterministic arguments (See e.g. Bühlmann and van de Geer (2011)). In fact we

have the following

Proposition 2.1.1 Let εi be as defined in (2.1) with the innovation distribution satisfying
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the Cramér’s condition: For all k ≥ 2 and some 0 < D <∞,

E|ζ0|k ≤ Dk−2k!Eζ2
0 .(2.8)

For t > 0, define

λ0n =
{
Bn(t2 + 4 log p) +

√
B2
n(t2 + 4 log p)2 + 16σ2

n(t2 + 4 log p)
}/

2n1/2−d,(2.9)

where Bn := cnD. Then, for all 1 ≤ j ≤ p and for all n ≥ 1,

P

(
2
∣∣n−1

n∑
i=1

xijεi
∣∣ > λ0n

)
≤ 2 exp{−(t2 + 4 log p)/4}.(2.10)

Consequently,

P (Λ) ≥ 1− 2 exp(−t
2

4
), n ≥ 1.(2.11)

The proof of the above proposition will require several lemmas, hence is postponed to

Section 2.5 of this chapter. The key to the proof is an application of the Bernstein inequality

to finite partial sums and then passing to limit.

We can now proceed to describe the oracle inequality for the Lasso solution. The corre-

sponding results with i.i.d. errors are proved in Bühlmann and van de Geer (2011, chapter

6). In what follows, S0 denotes the collection of indices of the nonzero elements of the true

β as defined in (1.1) and s0 denotes the cardinality of S0. Also, for any δ ∈ Rp, δS0
denotes

the vector of those components of δ which have their indices in S0. In order to obtain the

following inequality we require the ‘compatibility condition’ on the design matrix X. This
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condition is as given in Bühlmann and van de Geer (2011), which is restated here for the

convenience of the reader.

Definition 2.1.1 We say the Compatibility condition is met for the set S0, if for some

φ0, and for all β satisfying ||βSc0
||1 ≤ 3||βS0

||1,

||βS0
||21 ≤

(βT Σ̂β)s0

φ2
0

,

with Σ̂ = XTX/n.

Theorem 2.1.1 Assume that the compatibility condition holds for S0. For some t > 0 let

the regularization parameter be λn ≥ 2λ0n, where λ0n is given in (2.9). Then with probability

at least 1− 2 exp(−t2/4), we have

‖X(β̂ − β)‖22/n+ λ‖β̂ − β‖1 ≤
4λ2
ns0

φ2
0

.(2.12)

The proof of Theorem 2.1.1 is the same as in (Bühlmann and van de Geer (2011, chapter

6)), with the value of λ0n changed to the one given in (2.9). This result holds on the set Λ

which has the required high probability by Proposition 2.1.1. �

The only assumptions we have made so far are (i) Cramer’s Condition in (2.8) on the

innovation distribution and (ii) The Compatibility Condition in Definition 3.15 on the design

variables. It may be of interest to mention that Gaussianity of the error distribution has

not been assumed. The price that we have paid for this generality is that λ0n as defined

in (2.9) is now itself data driven, i.e. λ0n also depends on the design variables xi’s. Thus,

keeping in view Theorem 2.1.1, it is of interest to analyse the rate of convergence of λ0n.

The following lemma and remark give additional conditions on the design variables, and the
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rate of increase of the dimension p, under which λ0n will converge to 0.

Lemma 2.1.1 Let X = (xij)n×p be the design matrix and suppose the following condition

holds ∀ 1 ≤ j ≤ p,

n−1
n∑
i=1

x2
ij ≤ C, for some C <∞.(2.13)

Then with cn and σ2
n as defined in (2.5), (2.6) respectively, we have, cn = o(1) and σ2

n =

O(1).

Since Bn = cnD, with D being a fixed constant, the above lemma implies Bn → 0.

Remark 2.1.1 Now, recall the definition of λ0n from (2.9). Assume the design variables

satisfy condition (2.13). Further assume, log p = o(n1/2−d), then, λ0n → 0.

The following proposition will yield the consistency of the Lasso solution.

Proposition 2.1.2 For some t > 0, let λn ≥ 2λ0n, where λ0n is defined in (2.9). Then on

the set Λ, with probability at least 1− 2 exp(−t2/4),

2‖X(β̂ − β)‖22/n ≤ 3λ‖β‖1.(2.14)

As mentioned earlier, the proof of this theorem follows deterministic arguments on the set

Λ, (See Bühlmann and van de Geer (2011, chapter 6)). The probability of the set Λ is given

in Proposition 2.1.1.
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Remark 2.1.2 Consistency of Lasso: Assume the following hold,

(i) log p/n1/2−d → 0,

(ii) Assumption (2.13) holds,

(iii) ‖β‖1 = o(n1/2−d/ log p).(2.15)

Then by Remark 2.1.1 we have λ0n → 0. Also, assumption (iii) ensures the right hand side

of the inequality (2.14) converges to zero. Hence, Proposition 2.1.2 along with Lemma 2.1.1

yields the consistency of the Lasso solution.

Remark 2.1.3 Random Design: There are two assumptions made on the design variables

in order to obtain the error bound in Theorem 2.1.1 and the convergence of λ0n to zero in

Remark 2.1.1. (i) Compatibility condition given in (3.15) and (ii) condition (2.13) which

restricts the rate of increase of the design variables. These conditions can be shown to

hold in the case of Gaussian random designs with independent rows. Using Theorem 1 of

Raskutti (2010), condition (i) can be shown to hold with high probability (increasing to

1 exponentially). If the maximum variance component of the design variables is bounded

above by a constant, then (ii) can be shown to hold with high probability using bounds for

chi-square distributions given in Johnstone (2001). Hence the above results remain valid

with high probability when the design variables are Gaussian with independent rows and

independent of the model errors ε.
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2.2 Sign Consistency of Lasso under Long Memory

In this section we prove the sign consistency of Lasso for the model (1.1), (2.1). The results

in this section are similar in spirit to Zhao and Yu (2006) and we shall follow the structure of

their proofs. They worked in the i.i.d. setup whereas we will be working in the long memory

setup. We begin with a definition and some notations.

Definition 2.2.1 Lasso is said to be strongly sign consistent if there exists λn = f(n), that

is, a function of n and independent of yn or Xn such that,

lim
n→∞

P (β̂n(λn) =s β
n) = 1.

Here the equality denotes equality in sign, i.e., β̂n =s β
n if and only if sign(β̂n) = sign(βn),

where sign(βj) assigns a value +1 to a positive entry, −1 to a negative entry and 0 to a zero

entry.

Assume βn = (βn1 , ..., β
n
q , β

n
q+1..β

n
p )T , where βnj 6= 0, j = 1, .., q, and βnj = 0, j =

q + 1, .., p. Let βn
(1)

= (βn1 , ...β
n
q )T and βn

(2)
= (βnq+1, ...β

n
p )T . Denote X(1) as the first q

columns of X, corresponding to the nonzero components of βn. Denote X(2) as the last

p− q columns of X, corresponding to the zero components of βn. Let Cn = n−1XTX. Then

by setting Cn11 = n−1X(1)TX(1), Cn22 = n−1X(2)TX(2), Cn12 = n−1X(1)TX(2) = (Cn21)T ,

Cn can then be expressed as

Cn =

(
Cn11 C

n
12

Cn21 C
n
22

)
.

In what follows, we do not exhibit the dependence of β, β̂ on n for transparency of the

exposition. Assuming Cn11 is invertible, the Strong Irrepresentable condition as defined by

Zhao and Yu is,
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Strong Irrepresentable Condition: There exists a vector η, with constant, positive com-

ponents, such that,

|Cn21(Cn11)−1sign(β(1))| ≤ 1− η,(2.16)

where 1 is a (p− q)× 1 vector of ones and the inequality holds element-wise.

The following proposition will serve as a tool to derive the sign consistency in the present

setup.

Proposition 2.2.1 Assume the strong irrepresentable condition holds with a vector η, with

all components positive. Then

P (β̂(λn) =s β) ≥ P (An ∩Bn),

for

An =
{
|(Cn11)−1W (1)| < n

1
2−d(|β(1)| −

λn
2
|(Cn11)−1sign(β(1))|)

}
,(2.17)

Bn = {|Cn21(Cn11)−1W (1)−W (2)| ≤ λn
2
n

1
2−dη},(2.18)

where

W (1) =
X(1)T ε

n
1
2+d

and W (2) =
X(2)T ε

n
1
2+d

.(2.19)
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This proposition provides a lower probability bound for the equivalence in sign of the

Lasso estimate and the true β vector. The proof is deterministic and hence the conclusion

holds with any probabilistic structure on ε. It is also worth mentioning that this proposition

holds without any restriction on the dimension p, hence we shall be able to obtain sign

consistency under the case where p is increasing with n.

In the following, we shall assume the following conditions on the design matrix and the

model parameters. Assume there exists 0 ≤ c1 < c2 < 1− 2d and M1,M2,M3 > 0, so that

1

n
xTi xi ≤ M1, ∀ i ∈ {1, ..., n},(2.20)

α′C11α ≥ M2, ∀ α 3 ||α||22 = 1,(2.21)

qn = O(nc1),(2.22)

n
1
2−d−

c2
2 min

1≤i≤q
|βi| ≥ M3.(2.23)

Under the above assumptions we obtain the following sign consistency result for Lasso

in the long memory case.

Theorem 2.2.1 Suppose the long memory regression model (1.1)and (2.1) hold, with the

innovation distribution satisfying the Cramér’s condition (2.8). Then under the condi-

tions (2.16), (2.20), (2.21), (2.22), (2.23), if for some 0 < c3 < c4 < (c2 − c1)/2,

λn ∝ n−(1/2−d−c4) and pn = O(en
c3 ), then

P (β̂(λn) =s β)→ 1.(2.24)

The proof is detailed in the Section 2.5.
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2.3 Asymptotics when p is fixed

2.3.1 Asymptotic distribution of XTε

When n > p and p is fixed, the asymptotic properties of Lasso rely critically on the asymp-

totic distribution of suitably normalized XT ε. This distribution is straightforward to obtain

in the case of i.i.d. errors. Here we present the asymptotic distribution of normalized XT ε.

This distribution has essentially been obtained in chapter 4 of GKS, where the authors give

CLT’s for weighted sums of a long memory moving average process. Define Tn as the non

normalized weighted sums Wn as given in (2.4), i.e. Tn = n
1
2+dWn. We use Tn instead of

Wn to relate the following more closely to GKS. Note that Tn = XT ε.

Our goal is to establish the asymptotic distribution of suitably normalized Tn. This in

turn is facilitated by Theorem 4.3.2 of GKS, pp 70. We state a slightly modified version of

this theorem which can be proved easily by following the same arguments. In the following

denote by Σn = Cov(Tnj , Tnk)
p
j,k=1.

Theorem 2.3.1 Let {xij}ni=1, j = 1, ..., p, be p arrays of real weights and {εi} be the sta-

tionary linear process as defined in (2.1). Assume the weights {xij}ni=1 satisfy the following

condition ∀ j = 1, ..., p,

(i) max
1≤i≤n

|xij | = o(n
1
2+d) and (ii)

n∑
i=1

x2
ij ≤ Cjn

1+2d,(2.25)

and for some matrix Σ,

n−(1+2d)Σn → Σ.(2.26)
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Then, n−(1
2+d)XT ε = n−(1

2+d)
(
Tn1, ..., Tnp

)
→D N (0,Σ).

Corollary 2.3.1 Suppose the weights {xij} satisfy (2.13). Then, n−(1+2d)Σn = O(1) com-

ponentwise, for any 0 < d < 1/2. Moreover, if (2.26) holds then, n−(1
2+d)XT ε→D N (0,Σ)

Remark 2.3.1 Theorem 2.25 assumes the convergence (2.26), Corollary 3.57 shows that

under a further restriction on the design matrix (2.13) we have n−(1+2d)Σn = O(1), however,

we are unable to show convergence or identify the limit Σ without further assumptions on

the design matrix. On the other hand, if we assume the following structure on the design

variables, this limit can then be explicitly computed. Let

gj : [0, 1]→ R, j = 1, ..., p, and xi = (g1(i/n), · · · , gp(i/n))T , i = 1, ..., n,(2.27)

where we assume that gj is a continuous function with ‖gj‖2 :=
∫ 1

0 g
2
j (u)du <∞, ∀1 ≤ j ≤ p.

Under this structure on the design variables, we have ∀1 ≤ j, k ≤ p

Σj,k := lim
n→∞

n−(1+2d)Cov(Tnj , Tnk) = B(d, 1− 2d)

∫ 1

0

∫ 1

0
gj(u)gk(v)|u− v|−1+2ddudv,

where B(d, 1− 2d) is defined in (2.2) and Σj,k is the (j, k)th component of Σ. This structure

on the design variables has been used in Dahlhaus (1995) in the context of polynomial

regression with long range dependent regression errors. A short proof is given in the Section

2.5.

2.3.2 Asymptotic Properties of Lasso

Knight and Fu (2000) proved that in the case of i.i.d. errors, Lasso estimates β̂ converge

in probability to the true coefficient vector β, with an optimal choice of the regularizer λn.
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They also show that Lasso is
√
n-consistent (asymptotic normality). Here we shall present

analogous results when the errors are assumed to be long memory moving average. In this

section we shall require the following assumption.

n−1XTX → C, where C is a positive definite matrix.(2.28)

Theorem 2.3.2 For the long memory regression model (1.1) and (2.1) assume that the

design variables satisfy (2.25), (2.26), and (2.28). Further, if λn is such that λn → λ0 ≥ 0,

then β̂n →p arg minφ(Z(φ)), where

Z(φ) = (φ− β)TC(φ− β) + λ0

p∑
j=1

|φj |, φ ∈ Rp.

Thus, if λn = o(1) then argminφ(Z(φ)) = β and β̂n(λn) is consistent for β

Theorem 2.3.3 For the long memory regression model (1.1) and (2.1) assume that the

design variables satisfy (2.25), (2.26), and (2.28). Suppose n
1
2−dλn → λ0 ≥ 0 as n → ∞,

then

n
1
2−d(β̂n − β)→D arg min

u
V (u),

where

V (u) = −2uTW + uTCu+ λ0

p∑
j=1

[ujsign(βj)I[βj 6=0] + |uj |I[βj=0]|],

and W is a Np(0,Σ) r.v.

Note that, when λ0 = 0, arg minV (u) = C−1W, where W ∼ Np(0,Σ). The above two

theorems highlight the desirable asymptotic properties of Lasso in the current setup. In
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particular, when λ0 = 0, Theorem 2.3.2 guarantees estimation consistency, while Theorem

2.3.3 guarantees the n
1
2−d − consistency.

The technique used to prove the above theorems is to normalize the dispersion func-

tion appropriately in order to use the asymptotic normality of n−(1
2+d)XT ε, in contrast to

n−
1
2XT ε in the i.i.d. case. The proof is detailed in the Section 2.5.

2.3.3 Adaptive Lasso

The adaptive Lasso differs from Lasso in the way parameters are penalized. To be more

precise, for any η > 0, define the weight vector ŵ = 1/|(β̂n)|η, with β̂n being any estimate

of β such that n
1
2−d(β̂n− β) = Op(1) componentwise. The adaptive Lasso estimates β̃n are

given by,

β̃n = argminβ

 1

n
‖y −Xβ‖22 + λn

p∑
j=1

ŵj |βj |

 .(2.29)

Let A = {j : βj 6= 0}, A?n = {j : β̃nj 6= 0, 1 ≤ j ≤ p} and βA, β̃
n
A be the corresponding

vectors with only those components whose indices are in the set A.

As stated in Zou (2006), an estimator is said to have oracle property if the following

hold,

1. Asymptotically, the right model is identified, i.e limn→∞ P (A?n = A) = 1.

2. The estimator has an optimal estimation rate, n
1
2−d(β̃nA−βA)→D N (0,Σ?), for some

covariance matrix Σ?.

The adaptive Lasso has an advantage over Lasso, since it possesses a desirable variable

selection property under mild assumptions. On the other hand, as seen in Section 3, for
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Lasso to be sign consistent, we require the strong irrepresentable condition which is a much

stronger assumption. The following theorem shows this property of the adaptive Lasso. In

other words, the adaptive Lasso enjoys the oracle property in the long memory case. Let ΣA

be the limiting covariance matrix in (2.26) with only those components whose indices are in

the set A×A.

Theorem 2.3.4 For the linear model (1.1), assume the design variables satisfy (2.25),

(2.26) and (2.28). Let the regularizer λn be such that n
1
2−dλn → 0, and n

1
2+

η
2−d−dηλn →

∞. Then the adaptive Lasso must satisfy the following.

1. Variable selection consistency, limn→∞ P(A?n = A) = 1.

2. Asymptotic normality, n
1
2−d(β̃nA − βA)→D (Cn11)−1N (0,ΣA)

Remark 2.3.2 For the adaptive weights ŵ = 1/|β̂|η, we can choose β̂ as the ordinary least

square estimate. It has already been shown in GKS that n
1
2−d(β̂n − β) = Op(1), which is

the required condition that the weights must satisfy.

2.4 Simulation Study

In this section we numerically analyse the performance of Lasso under long range dependent

setup. We also compare its performance to that in the i.i.d. setup. All simulations were done

in R, the estimation of Lasso was done using the package ‘glmnet’ developed by Friedman,

Hastie, Tibshirani (2013). The regularizer λn was chosen by five fold cross-validation.

Simluation setup: In this study, β was chosen as a 1000×1 vector, with the first twenty

five components chosen independently from a uniform distribution over the interval (-2,5), all

other components of β were set to zero. The covariates xi are i.i.d. observations from a 1000
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dimensional Gaussian distribution with each component having mean and variance one. We

set the pairwise correlation to be cor(xij , xik) = 0.5|j−k|. This design matrix has been used

by Tibshirani (1996) and many authors since then. The model error vector ε is generated

using the definition (2.1) with c0 = 1 and d = 0.15, 0.25, 0.35, 0.45, with the innovations

being i.i.d. Gaussian r.v. as given in (2.1) with mean zero and standard deviation σζ = 3.5.

The simulations were repeated 100 times, i.e. 100 data sets were generated under the above

setup with the same parameter vector β.

Since we have chosen d, the corresponding variance of each component of the stationary

error process can be computed as, Var(εi) = σ2
ζ

∑∞
k=1 k

−2+2d ∀i, which turns out to be

25.16, 31.98, 47.64 and 100.94 corresponding to d=0.15, 0.25, 0.35, 0.45 respectively.

We begin by illustrating the significant correlation among the components of the regres-

sion error vector ε. Figure 1 and 2 present the sample auto-correlation functions of the error

vector ε of the first model of the 100 simulated data sets. Figure 1 & 2 above exhibit the

Figure 2.1: Lag vs sample auto-correlation function with d=0.15 and d=0.25.

slow decay of the autocorrelation among the error sequence ε. This slow rate of decay is in

coherence with long memory dependence, since
∑∞
k=1 |γε(k)| = ∞. Also, it is evident from

the above two figures that the strength of the dependence is increasing as d increases.
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Figure 2.2: Lag vs sample auto-correlation function with d=0.35 and d=0.45.

For comparison purposes, we shall also perform the same simulation study with the

errors ε = (ε1, ε2, ..., εn) being i.i.d. Gaussian observations with mean 0 and variance 25.16,

31.98, 47.64, 100.94 which correspond to the variances of the components of the stationary

sequence ε under the long memory setup corresponding to d = 0.15, 0.25, 0.35, 0.45. The

reason to choose the same variance of εi as in the long memory setup is to maintain the

same signal to noise ratio.

Now we proceed to the estimation part. In our study we simulated 100 different re-

alizations of the design matrix X and the error vector ε. Thus leading to 100 data sets

with the same parameter vector β. For performance comparison we shall report the Relative

Estimation Error (REE), i.e ‖β̂ − β‖2/‖β‖2 and the Relative Prediction Error (RPE) as

defined in Zou (2006), i.e. the empirical estimate of E‖ŷ −XTβ‖2/σ2
ε . Also, we shall report

the number of correctly estimated non-zero parameters (NZ) and the number of incorrectly

estimated zero parameters (IZ). Recall that in the true model there are 25 non-zero and 975

zero parameters. Table 1 summarizes the simulation results under the long memory setup

and Table 2 summarises the results under the i.i.d. setup.
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Table 2.1: Medians of RPE, REE, NZ & IZ with Gaussian design, long mem. errors

d=0.15 d=0.25 d=0.35 d=0.45
(n) REE RPE NZ IZ REE RPE NZ IZ REE RPE NZ IZ REE RPE NZ IZ
100 0.216 0.62 14 33 0.23 0.62 14 33.5 0.24 0.61 14 34.5 0.28 0.46 14 32
200 0.13 0.47 15 30 0.13 0.44 14 32.5 0.14 0.41 14 35 0.18 0.38 14 35
300 0.10 0.39 15 33 0.11 0.36 15 35 0.11 0.38 15 34 0.14 0.31 15 41
400 0.09 0.33 16 39 0.09 0.31 16 40 0.10 0.32 15 36 0.12 0.31 15 41
700 0.05 0.23 20 60 0.06 0.21 19 59.5 0.07 0.23 18 50 0.08 0.22 17 52

Table 2.2: Medians of RPE, REE, NZ & IZ with Gaussian design, i.i.d. errors

Var(εi) = 25.16 Var(εi) = 31.98 Var(εi) = 47.64 Var(εi) = 100.94
(n) REE RPE NZ IZ REE RPE NZ IZ REE RPE NZ IZ REE RPE NZ IZ
200 0.14 0.42 14 29.5 0.15 0.38 14 29 0.18 0.33 14 29 0.25 0.29 14 30
400 0.09 0.28 16 32 0.10 0.26 15 31 0.12 0.22 15 28 0.15 0.18 14 28

Interpretation:

• Lasso is a desirable estimation procedure in our long range dependent setup. It per-

forms accurate estimation at all levels of dependence, from d=0.15 to d=0.45. It is

evident from the simulation results that the estimation becomes increasingly accurate

in terms of both REE and RPE as the sample size increases. At n=400, the relative

error in estimation of β is around 10% at all levels of dependence. As the reader might

observe, It was expected that at any fixed sample size, RPE should increase as d in-

creases, however this is not the case, the reason for this is, we use cross validation to

choose λn and not the theoretical value of λn derived earlier.

• In terms of variable selection, Lasso is increasingly successful in choosing the non zero

parameters as the sample size increases. By n=700, it identifies around 20 of the non

zero parameters for all levels of dependence. The parameters that Lasso is consistently

unable to select are the ones that are too small in size, i.e in our model we have four

parameters where |βj | < 0.65, j = 3, 7, 15, 19, and it is these parameters that Lasso is

consistently unable to detect, up to the sample size n=700. The point here being, this
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is a known drawback of Lasso connected with assumption (2.23), and it is not due to

the long memory dependence structure on the errors. This is confirmed by the results

for the i.i.d. case, which exhibits the same problem. The above simulation also brings

out another familiar drawback, as the reader might observe, although Lasso manages to

correctly estimate a significant portion of the zero parameters (around 95% at n=700),

however the number of incorrectly estimated zero parameters (IZ) is not decreasing

as the sample size increases. This again is not due the long memory errors but is an

inherent drawback of cross validation. This can again be confirmed by the results in

the i.i.d. case at the variance levels 47.64 and 100.94 where IZ does not decrease as n

increases from 200 to 400.

• Comparing RPE in the long memory case and the i.i.d. case, as expected, we observe

that the long memory case requires larger number of observations to reach the same

level of accuracy, keeping in mind that the variance of components of ε is similar for

both the dependent and independent case.

2.5 Proofs for Chapter 2

The proof of Lemma 2.1.1, will follow after two key lemma’s. To proceed further we require

the following notation,

Let r be a finite positive integer and ∀1 ≤ j ≤ r, let hj = (h1j , h2j , ..., hnj)
T be a vector

of weights. Further, let cnk,j =
∑n
i=1 hijai−k and define for 1 ≤ j ≤ r,

Wn,j = hTj ε =
n∑
i=1

hijεi =
n∑
i=1

i∑
k=−∞

hijai−kζk =
n∑

k=−∞
cnk,jζk.(2.30)
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Further define,

cn,j = sup
−∞<k≤n

|cnk,j |, cn = max
1≤j≤r

cn,j .(2.31)

Also, denote by

σ2
n,j = V ar(Wn,j), σ2

n = max
1≤j≤r

σ2
n,j .(2.32)

Observe that,

σ2
n,j =

n∑
l,m=1

hljhmjγε(l −m).

Furthermore, if we set hij = 0 ∀ i > n and i ≤ 0, then under the assumption
∑n
i=1 h

2
ij ≤

M/n2d, M <∞, we obtain using (2.2) that for all 1 ≤ j ≤ r,

σ2
n,j = cγ

n−1∑
s=−(n−1),s6=0

p(s, j)|s|−1+2d + o(1)

= cγ

n∑
m=1

n∑
l=1,l 6=m

hmjhlj |l −m|−1+2d + o(1).(2.33)

Here, p(s, j) :=
∑n
i=1 hijh(i+s)j , and cγ = B(d, 1− 2d) as given by (2.2).

Note that, if we replace hij by n−(1
2+d)xij in the above definition of Wnj then we

obtain (2.4). This more general definition of Wnj will be essential later in the proof of sign

consistency.

Lemma 2.5.1 For any positive integer r, and for all 1 ≤ j ≤ r, let hj = (h1j , ..., hnj)
T be

any vector of weights such that ‖hj‖22 =
∑n
i=1 h

2
ij ≤M/n2d, for some constant M <∞. Let
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σ2
n be as defined in (2.32). Then σ2

n = O(1).

Proof. First

|p(s, j)| ≤
n∑
i=1

|hijh(i+s)j | ≤ (
n∑
i=1

h2
ij)

1/2(
n∑
i=1

h2
ij)

1/2

≤ M/n2d,

and hence

V ar(Wn,j) = cγ

n−1∑
s=−(n−1),s6=0

p(s, j)|s|−1+2d + o(1)

≤ cγ
M

n2d

n−1∑
s=−(n−1),s6=0

|s|−1+2d + o(1)

≤ cγ
M

n

n−1∑
s=−(n−1),s6=0

|s/n|−1+2d + o(1)

→ M ′
∫ 1

−1
|t|−1+2ddt.(2.34)

Observe that the bound in (2.34) is free of j, hence the claim follows. �

Lemma 2.5.2 For any positive integer r, and for all 1 ≤ j ≤ r, let hj = (h1j , ..., hnj)
T be

any vector of weights such that ‖hj‖22 =
∑n
i=1 h

2
ij ≤ M/n2d, for some constant M < ∞.

Then for cn as defined in (2.31) we have, cn = o(1).

Proof The idea of the proof is borrowed from GKS as part of Proposition 4.3.1, pp 66, where

it is used in a different context. First observe, since for all 1 ≤ j ≤ r,
∑n
i=1 h

2
ij ≤ M/n2d,
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⇒ 1
max1≤i≤n

1≤j≤r
|hij |

≥ nd/
√
M →∞. Define Kn := 1

max1≤i≤n
1≤j≤p

|hij |
, and consider

|cnk,j | ≤
n∑
i=1

|hijai−k|

≤
n∑
i=1

|hijai−k|I(|i− k| ≥ Kn)

+
n∑
k=1

|hijai−k|I(|i− k| ≤ Kn)

=: qn,1k,j + qn,2k,j

qn,1k,j ≤ (
n∑
k=1

h2
ij)

1/2(
n∑
k=1

a2
i−kI(|i− k| ≥ Kn))1/2

≤ C/nd
n∑

l≥Kn
a2
l → 0.(2.35)

qn,2k,j ≤ max
1≤i≤n,1≤j≤r

|hij |
n∑
i=1

|ai−k|I(|i− k| ≤ Kn)

≤ K−1
n K

1/2
n (

∞∑
l=0

a2
l )

1/2

≤ CK
−1/2
n → 0.(2.36)

Since the right hand side of (2.35) and (2.36) are free of j, hence we obtain, cn = o(1). �

Proof of Lemma 2.1.1: In the above setup ∀ 1 ≤ j ≤ p, let hij = n−(1
2+d)xij , 1 ≤ i ≤ n.

Then, under the assumption (2.13), we have,
∑n
i=1 h

2
ij ≤ C/n2d. The result now follows from

Lemma 2.5.1 and Lemma 2.5.2. �
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Remark 2.5.1 Observe from the proof of Lemma 2.5.2, for hij = n−(1/2+d)xij , we have,

|cnk,j | ≤
(
∑n
i=1 x

2
ij)

1/2

n
1
2+d

(
n∑
i=1

a2
i−kI(|i− k| ≥ Kn))1/2 +K

−1/2
n (

∞∑
l=0

a2
l )

1/2,

where Kn = max1≤i≤n
1≤j≤p

|xij |. Since xij <∞ ∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ p, and the sequence {al}

is square summable, hence each fixed n, cn <∞ without the assumption (2.13).

The following several lemmas are needed to prove Proposition 2.1.1. First recall the

Bernstein inequality from Doukhan (1994) or Lemma 3.1 from Guo and Koul (2007).

Lemma 2.5.3 For each n ≥ 1, m ≥ 1, let Zmni, i = −m, ..., n, be an array of mean zero

finite variance independent random variables. Assume, additionally that they satisfy the

Cramérs condition: for some Bmn <∞,

E|Zmni|k ≤ Bk−2
mn k!EZ2

mni, k = 2, 3, ..., i = −m, ..., n.(2.37)

Let Tmn =
∑n
i=−m Zmni, σ

2
mn =

∑n
i=−m V ar(Zmni). Then, for any η > 0 and n ≥ 1,

P (|Tmn| > η) ≤ 2 exp

{
−η2

4σ2
mn + 2Bmnη

}
, ∀m ∈ Z+, n ≥ 1.(2.38)

We need to apply the above Bernstein inequality p times, jth time to Zmni,j := cni,jζi,

−m ≤ i ≤ n, 1 ≤ j ≤ p. In this case then

Tmnj =
n∑

i=−m
cni,jζi.(2.39)
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For this purpose, we need to verify (2.37) in this case. Let D be as in (2.8) and

Bmn,j ≡ Bn := cnD, cn = max
1≤j≤p

cn,j .(2.40)

Then by assumption (2.8),

|cni,j |kE|ζi|k ≤ |cni,j |k−2Dk−2k!c2ni,jEζ
2
i(2.41)

≤ Bk−2
n k!c2ni,jEζ

2
i , −m ≤ i ≤ n,

thereby verifying the Cramér’s condition (2.37) for Zmni,j for each 1 ≤ j ≤ p with Bmn,j ≡

Bn, not depending on m and j.

To proceed further, we need to obtain an upper bound for σ2
mn,j :=

∑n
i=−m Var(Zmni,j).

But

σ2
mn,j =

n∑
i=−m

Var(cni,jζi) ≤
n∑

i=−∞
V ar(cni,jζi)

= V ar(
n∑

i=−∞
cni,jζi) = V ar(

n∑
i=1

n−(1/2+d)xijεi)

= n−(1+2d)
n∑

k,`=1

xkjx`jγε(k − `) = σ2
n,j <∞,(2.42)

From the above discussion we now readily obtain that for all η > 0 and 1 ≤ j ≤ p,

P (|
n∑

i=−m
cni,jζi| > η) ≤ 2 exp

[ −η2

4σ2
mn,j + 2Bnη

]
(2.43)

≤ 2 exp
[ −η2

4σ2
n + 2Bnη

]
.
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Remark 2.5.2 By Remark 2.5.1, we see that for each fixed n ≥ 1, we have, cn < ∞

without assumption (2.13). Hence the Bernstein inequality is applicable for every n ≥ 1

without assumption (2.13).

We are now almost set to derive the probability bound for Λ. Before that, we look at

the following preliminary lemma, which will help us to obtain this bound from the truncated

sums Tmnj defined in (2.39) for Wnj defined in (2.4) by taking limit as m→∞.

Lemma 2.5.4 For each fixed n, let

A := {|
n∑

i=−∞
yni| > r}, Bm = {|

n∑
i=−m

yni| > r − δ}, r > 0, δ > 0, m = 1, 2, ...

B = lim inf
m→∞

Bm.

If |
∑n
i=−∞ yni| <∞, a.s., then, for each fixed n, A ⊆ B

Proof. Let ω ∈ A. Then |
∑n
i=−∞ yni(ω)| > r. Also, by assumption, |

∑n
i=−∞ yni(ω)| <∞,

which implies ∀ δ > 0 ∃Nδ,ω 3 |
∑−m
i=−∞ yni(ω)| < δ, ∀ m > Nδ,ω. Hence |

∑n
i=−m yni(ω)| >

r − δ, ∀ m > Nδ,ω, which in turn implies

ω ∈
∞⋂

m=Nε,ω

{|
n∑

i=−m
yni| > r − δ|}

⇒ ω ∈
∞⋃
m=1

∞⋂
l=m

{|
n∑

i=−l
yni| > r − δ}

⇒ ω ∈ lim inf
m→∞

Bm.(2.44)

Since (2.44) is true for any δ > 0, the claim A ⊆ B follows. �

Before proceeding to the next proposition, we see that the assumption in Lemma 2.5.4

is valid for the series in consideration, which is
∑n
k=−∞ cnk,jζk. First, consider the series
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εi =
∑∞
k=1 akζi−k, since this is an infinite sum of independent zero mean random variables

with
∑∞
k=1 Var(akζi−k) <∞, hence εi <∞ a.s. (Durrett, Theorem 1.8.3, page 62). Now for

each fixed n, we have by (2.4),
∑n
k=−∞ cnk,jζk = n−(1

2+d)∑n
i=1 xijεi, since this is a finite

weighted sum of {εi} hence for each fixed n, we have,
∑n
k=−∞ cnk,jζk <∞, a.s. ∀1 ≤ j ≤ p.

Proof of Proposition 2.1.1. Fix a 1 ≤ j ≤ p and an n ≥ 1. Recall the definition of

cnk,j from (2.5). Let rnp := n1/2−dλ0n/2. Then, for any 0 < δ < rnp, we have the following

inequalities.

P (|n−(1/2+d)
n∑
i=1

xijεi| > rnp) = P (|
n∑

k=−∞
cnk,jζk| > rnp)

≤ P (lim inf
m→∞

{
|

n∑
k=−m

cnk,jζk| > rnp − δ
}

), by Lemma 2.5.4,

≤ lim inf
m→∞

P (|
n∑

k=−m
cnk,jζk| > rnp − δ), Fatou’s lemma,

≤ lim inf
m→∞

2 exp
[ −(rnp − δ)2

4σ2
n + 2Bn(rnp − δ)

]
,

where the last inequality follows from (2.43). Upon letting δ → 0 in this bound we thus

obtain

P (|n−(1/2+d)
n∑
i=1

xijεi| > rnp) ≤ 2 exp
[ −r2

np

4σ2
n + 2Bnrnp

]
.(2.45)

Note that rnp is a positive solution of the following quadratic equation.

−r2
np

4σ2
n + 2Bnrnp

=
−(t2 + 4 log p)

4
.
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Hence, (2.45) and the relation

2 exp
[ −r2

np

4σ2
n + 2Bnrnp

]
= 2 exp

[−(t2 + 4 log p)

4

]
,

together imply

P
(
2
∣∣n−1

n∑
i=1

xijεi
∣∣ > λ0n

)
= P (|n−(1/2+d)

n∑
i=1

xijεi| > rnp)(2.46)

≤ 2 exp
[−(t2 + 4 log p)

4

]
.

This completes the proof of (2.10). To prove (2.11), note that

1− P (Λ) = P ( max
1≤j≤p

2n−1|
n∑
i=1

xijεi| > λ0)

≤ P (∪pj=1{2n
−1|

n∑
i=1

xijεi| > λ0})

≤
p∑
j=1

P (2n−1|
n∑
i=1

xijεi| > λ0).

By (2.46) we get,

p∑
j=1

P (2n−1|
n∑
i=1

xijεi| > λ0) ≤ 2p exp{−(t2 + 4 log p)/4} = 2 exp(−t
2

4
).

This completes the proof of Proposition 2.1.1 �
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Proofs for Section 3

Proof of Proposition 2.2.1: Let β̂ be as defined in (2.3) and let û = β̂ − β. Define

Vn(u) =
n∑
i=1

1

n
[(εi −XT

i u)2 − ε2
i ] + λn‖u+ β‖1.

Then û = arg minu Vn(u). Denote the first term in Vn(u) by (I), and the second term by

(II). Then (I) can be simplified as

n∑
i=1

1

n
[(εi −XT

i u)2 − ε2
i ] =

[
− 2

n∑
i=1

1

n
uTXiεi +

n∑
i=1

1

n
(u)TXiX

T
i u
]

=
[−2uTW

n
1
2−d

+ uTCnu
]
,(2.47)

where W = n−1/2−dXT ε. Differentiate (2.47) with respect to u to obtain

2n−(1
2−d)(Cn(n

1
2−du)−W ).

Let û(1), W (1) and û(2), W (2) denote the first q and the last p − q entries of û, W ,

respectively. Now note that (Zhao and Yu, 2006 )

{sign(β(1))û(1) > −|β(1)|} ⊆ {sign(β̂j) = sign(βj), j = 1, 2..., q}.(2.48)
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Also, by the Karush-Kuhn-Tucker conditions and uniqueness of Lasso, if a solution û exists,

then the following conditions must hold,

(Cn11(n
1
2−dû(1))−W (1)) = −λn

2
n

1
2−dsign(β(1)),(2.49)

|û(1)| < |β(1)|,(2.50)

|(Cn21(n
1
2−dû(1))−W (2))| ≤ λn

2
n

1
2−d1.(2.51)

The set (2.50) is contained in the set on the left of (2.48). Hence (2.49), (2.50), (2.51)

together imply {sign(β̂(1)) = sign(β(1))} and β̂(2) = û(2) = 0. The condition An implies the

existence of û(1) which satisfies (2.49) and (2.50) and condition Bn and An together imply

(2.51). The result follows. �

To maintain clarity of notation in the coming proof, we define the following, for a matrix of

weights ha = (ha1, ..., haq), where haj = (ha1j , ha2j , ...hanj), ∀1 ≤ j ≤ q, define W a
n,j , c

a
n, σ

2
an

as done in (2.30), (2.31), (2.32) respectively. Also define Ban = canD. Repeat similarly for a

matrix of weights hb = (hb1, ..., hb(p−q)), with hbj = (hb1j , hb2j , ...hbnj), ∀1 ≤ j ≤ (p− q).

Proof of Theorem 2.2.1: Let An, Bn be as defined in Proposition 2.2.1.

1− P (An ∩Bn) ≤ P (Acn) + P (Bcn)

≤
q∑
i=1

P (|zi| ≥ n
1
2−d(|βi| −

λn
2
bi)) +

p−q∑
i=1

P (|κi| ≥
λn
2
n

1
2−dηi),

where z = (z1, z2, ..., zq)
T = (Cn11)−1W (1) , κ = (κ1, κ2, ..., κp−q)T = Cn21(Cn11)−1W (1) −

W (2), b = (b1, b2, ..., bq) = (Cn11)−1sign(β(1)).Now express z = hTa ε, where hTa = (ha1, ..., haq)
T =
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(Cn11)−1(n−1/2−dX(1)T ). Then hTa ha = (Cn11)−1n−2d, and zj = hTajε with

‖haj‖22 ≤
1

n2dM2
∀j = 1, ...q, by assumption (2.21)

Similarly write κ = hTb ε, where hTb = Cn21(Cn11)−1(n−
1
2−dX(1)T )− (n−

1
2−dX(2)T ). Then

hTb hb =
1

n1+2d
X(2)T

[
I −X(1)(X(1)TX(1))−1X(1)T

]
X(2).

Since [I −X(1)(X(1)TX(1))−1X(1)] has eigenvalues between 0 and 1, therefore ζnj = hTbjε,

with

‖hbj‖22 ≤M1/n
2d ∀j = 1, ...p− q, by assumption (2.20).

Hence the weight vectors haj , 1 ≤ j ≤ q and hbj , 1 ≤ j ≤ p − q both satisfy Lemma 2.5.1

and Lemma 2.5.2 for r = q and r = p− q respectively. Also,

|λnb| = λn|(C11)−1sign(β(1))| ≤
λn
M2
||sign(β(1))||2 =

λn
M2

√
q.(2.52)

Now, zj = hTajε =
∑n
i=1 haijεi Proceed as done earlier in (2.45). Using (2.52), Lemma 2.5.1,

Lemma 2.5.2 and the Bernstein’s Inequality as applied in (2.45). We get, for some constants

r1, r2 > 0,

q∑
j=1

P (|zj | ≥ n
1
2−d(|βj | −

λn
2
bj)) ≤

q∑
j=1

P (|zj | ≥ r1n
c2/2)(2.53)

≤ 2q exp
( −r2

1n
c2

4σ2
an + 2Banr1n

c2/2

)
→ 0.
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Also

p−q∑
j=1

P (|κj | ≥
λn
2
n

1
2−dηj) ≤ (p− q) exp

( −r2
2(λnn

1/2−d)2

4σ2
bn + 2Bbnr2λnn

1/2−d
)

(2.54)

≤ (p− q) exp
(
− r2λnn1/2−d), for n large,

≤ exp (nc3 − r2λnn1/2−d)→ 0.

The result follows from (2.53) and (2.54) together. �

Proofs for Section 4

Proof of Corollary 3.57: Observe that assumption (2.13) implies assumption (2.25)(i)

and (2.25)(ii). Hence we only need to show, n−(1+2d)Σn = O(1) componentwise. For each

variance component, this has already been shown in (2.34) in the proof of Lemma 2.1.1,

with hij = n−(1
2+d)xij , ∀1 ≤ j ≤ p. The covariance components can be easily dealt with

the Cauchy-Schwarz inequality. �

Proof of Remark 2.3.1: Using (2.33), we obtain,

n−1−2dCov(Tnj , Tnk) = n−1−2dcγ

n∑
l,m=1,l 6=m

gj(
l

n
)gk(

m

n
)|l −m|−1+2d + o(1)

→ cγ

∫ 1

0

∫ 1

0
gj(u)gk(v)|u− v|−1+2ddudv.

Proof of Theorem 2.3.2: Let

Zn(φ) =
1

n

n∑
i=1

(yi −XT
i φ)2 + λn

p∑
i=1

|φi|,
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then Zn(φ) is convex. We need to show the pointwise convergence (in probability) of Zn(φ)

to Z(φ) + k2 for some constant k. Clearly, λn
∑p
i=1 |φi| → λ0

∑p
i=1 |φi| and consider,

1

n

n∑
i=1

(yi −XT
i φ)2 =

1

n

n∑
i=1

(εi −XT
i (φ− β))2

=
1

n

n∑
i=1

ε2
i +

1

n

n∑
i=1

(φ− β)TXiX
T
i (φ− β)− 2n−1(φ− β)T

n∑
i=1

Xiεi

=
1

n

n∑
i=1

ε2
i +

1

n

n∑
i=1

(φ− β)TXiX
T
i (φ− β)− 2

1

n
(φ− β)TXT ε,

the first term in the above equation converges to k2 by the ergodic theorem (since {εi} form

a stationary ergodic sequence), the second term converges to (φ− β)TC(φ− β) and the last

term converges to zero in probability (since by Theorem 2.3.1, n−(1
2+d)XT ε converges in

distribution). This proves the Theorem. �

Proof of Theorem 2.3.3: Define

Vn(u) = n1−2d

 n∑
i=1

1

n
[(εi −

XT
i u

n
1
2−d

)2 − ε2
i ] + λn

p∑
j=1

[|βj +
uj

n
1
2−d
| − |βj |]

 .(2.55)

Denote the first term in the above equation by (I), and the second term by (II). Then

(I) = n1−2d

[
n∑
i=1

1

n
ε2
i +

uT
∑n
i=1XiX

T
i u

n.n1−2d
− 2

∑n
i=1 u

TXiεi

n.n
1
2−d

−
n∑
i=1

1

n
ε2
i

]

= [
uT
∑n
i=1XiX

T
i u

n
− 2

∑n
i=1 u

TXiεi

n
1
2+d

]

→ uTCu− 2uTW, as n→∞,(2.56)

where W is Np(0,Σ). Also,
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(II) = n
1
2−dλn

p∑
j=1

[|n
1
2−dβj + uj | − n

1
2−d|βj |]

→ λ0

p∑
j=1

[ujsign(βj)I[βj 6=0] + |uj |I[βj=0]],(2.57)

The result follows from (2.56) and (2.57) together. �

Proof of Theorem 2.3.4: The structure of the proof is similar to that of Theorem 2 in

Zuo (2006). Define,

Ṽn(u) = n1−2d

 n∑
i=1

1

n
[(εi −

XT
i u

n
1
2−d

)2 − ε2
i ] + λn

p∑
j=1

ŵj [|βj +
uj

n
1
2−d
| − |βj |]

 ,(2.58)

then ũj = n
1
2−d(β̃n − β) = arg minṼn(u). Expanding Ṽn(u) as done in (2.56) and (2.57) we

get,

Ṽn(u) =
uT
∑n
i=1XiX

T
i u

n
− 2

∑n
i=1 u

TXiεi

n
1
2+d

+ n
1
2−dλn

p∑
j=1

ŵj [|n
1
2−dβj + uj | − n

1
2−d|βj |.

Recall, n−1XTX → C, and by Theorem 2.3.1 we have n−(1
2+d)XT ε→D N (0,Σ). Also, since

n
1
2−dλn → 0, n

1
2+

η
2−d−dηλn →∞ and the adaptive weights β̂n are so that n

1
2−d(β̂n−β) =

Op(1). Hence we obtain Ṽn(u)→ Ṽ (u) where,

Ṽ (u) =


uTAC11uA − 2uTAWA , if uj = 0∀j /∈ A

∞ , else

(2.59)

The unique minimum of Ṽ (u) is (C−1
11 WA, 0)T . Hence we obtain,

ũA = n
1
2−d(β̃nA − βA)→D C−1

11 WA and ũAc →D 0.(2.60)
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The variable selection part can be obtained by adjusting normalization in the proof of Zuo

(2006). From the asymptotic normality obtained in (2.60), we obtain, ∀j ∈ A, P (j ∈ A?n)→

1. Let xj := (x1j , ...., xnj)
T be the jth column of the design matrix X, 1 ≤ j ≤ p. Next we

show that if j /∈ A, then P (j /∈ A?n)→ 1. By the KKT conditions for the Lasso solution, we

have, |2xTj (y −Xβ̃)| ≤ nλnŵj . Consider,

xTj (y −Xβ̃n)

n
1
2+d

=
xTj Xn

1
2−d(β − β̃n)

n
+

xTj ε

n
1
2+d

using (2.60), the first term on the right side converges to some normal distribution, and by

Theorem 2.3.1 the second term on the right converges to a normal distribution. Also, since

βj = 0 and n
1
2−d(β − β̂n) = Op(1), hence, n

1
2−dλnŵj = n

1
2−d+η−dηλn 1

|n
1
2−dβ̂j |η

→ ∞.

This implies,

P (j /∈ A?n) ≤ P (|2xTj (y −Xβ̃n)| ≤ nλnŵj)→ 1.

This completes the proof. �
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Chapter 3

Weighted `1-Penalized Corrected

Quantile Regression

for High Dimensional Measurement

Error Models

As described in Chapter 1, we shall now consider the problem of estimation and variable

selection in measurement error linear regression models. In this chapter we shall propose

a `1-penalized corrected quantile estimator that consistently corrects the bias induced by

measurement error and also provides consistent variable selection. The problem of bias

correction due to measurement error in the context of mean regression is a classical problem

in the case of fixed p, on the other hand it is of recent interest in the high dimensional

setting. Furthermore bias correction in quantile regression has only recently been studied

Wang, Stefanski and Zhu (2012) in the fixed p setting and to the best of our knowledge this

chapter is the first attempt to do so in the high dimensional setting. The main contributions

of this chapter are to provide the oracle property of the proposed estimator in the fixed p

setting, and to provide bounds on the statistical error of the proposed estimator in the high

dimensional setting. In this setting, we also establish the model selection consistency of
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this estimator in terms of identifying the correct zero components of the parameter vector.

Furthermore we illustrate its empirical success via a simulation study.

3.1 Model, Estimator and its Oracle Property

In this section, we describe the model, the proposed estimator and the necessary assumptions

on the model parameters. Also we establish the oracle property of the proposed estimator in

the fixed p setting. As described in (1.1) and (1.2) we consider a linear regression model with

additive error in the design variables. Where xi = (xi1, · · · , xip)T , i = 1, · · · , n, are vectors

of non-random design variables and yi’s are the responses related to xi’s by the relations

yi = xTi β
0 + εi, for some β0 ∈ Rp, 1 ≤ i ≤ n.(3.1)

Here β0 = (β0
1 , ..., β

0
p) ∈ Rp is the parameter vector of interest, and ε = (ε1, ..., εn)T is

an n−dimensional vector whose components are independent but not necessarily identically

distributed, and satisfy P (εi ≤ 0) = τ, for every 1 ≤ i ≤ n, where τ ∈ (0, 1) is the quantile

level of interest.

Furthermore, the design variables xi’s are not observed directly. Instead, we observe the

surrogate wi’s obeying the model,

wi = xi + ui, 1 ≤ i ≤ n.(3.2)

Here, uTi = (ui1, · · · , uip) are assumed to be independent of {εi} and independent and

identically distributed (i.i.d.) according to a p−dimensional multivariate Laplace distribution

which is defined via its characteristic function as follows,

45



Definition 3.1.1 A random vector u ∈ Rp is said to have a multivariate Laplace distribution

Lp(µ,Σ), if for some µ ∈ Rp and a nonnegative definite symmetric p × p matrix Σ, its

characteristic function is
(

1 + tTΣt/2− iµt
)−1

, t ∈ Rp.

Note that, if µ = 0, then Σ is the covariance matrix of the random vector u.

Laplace distributions are often used in practice to model data with tails heavier than

normal. McKenzie et al. (2009) used these distributions in the analysis of global positioning

data and Purdom and Holmes (2005) adopted Laplace measurement error model in the

analysis of data from some microarray experiments. Stefanski and Carroll (1990) provide an

in depth discussion of Laplace measurement errors.

In our setup, we shall consider the model (3.1) and (3.2) in both the fixed and high dimen-

sional settings. In the latter setting, the dimension p of the parameter vector β0 is allowed

to grow exponentially with n, and the measurement errors ui, 1 ≤ i ≤ n are i.i.d. Lp(0,Σ),

with Σ known. Furthermore, β0 is assumed to be sparse, i.e., only a small proportion of the

parameters are assumed to be non zero. The number of non zero components shall be de-

noted by s, where s is allowed to diverge slower than n. Let S =
{
j ∈ {1, 2, ..., p}; β0

j 6= 0.
}
,

and Sc denote its compliment set. Note that card(S) = s. Also, for any vector δ ∈ Rp, let

δS = {δj ; j ∈ S} and δSc = {δj ; j ∈ Sc}.

All results presented in the chapter shall assume the unobserved design variables xi’s to

be non-random. However, it is worth pointing out that the assumptions made in this chapter

on xi’s can be shown to hold with probability converging to 1 under some random designs,

in particular for sub-Gaussian or sub-Exponential designs with independent observations.

When the design variables xi’s are completely observed, several authors including Fan,

et al. (2014), Belloni and Chernozhukov (2011) and Wang, Wu and Li (2012) have shown
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that β0 can be estimated consistently by

β̂x = arg min
β∈Rp

{
1

n

n∑
i=1

ρ(yi, xi, β) + λn‖d ◦ β‖1

}
,(3.3)

where ρ(yi, xi, β) = ρτ (yi− xTi β), ρτ (v) = v{τ − I(v ≤ 0)} is the quantile loss function, and

d = (d1, ..., dp)
T is a vector of non-negative weights, and ‘◦’ denotes the Hadamard product,

i.e. ‖d ◦ β‖1 :=
∑p
j=1 dj |βj |.

To overcome the difficulty due to measurement error in the covariates, we begin with the

regularized version of corrected quantile estimator W`1-CQ. The un-penalized version was

introduced by Wang, Stefanski and Zhu (2012) (WSZ). To describe their loss function, let

K(· ) denote a kernel density function and K ′ be its first derivative. Also, let h = hn → 0

be sequence of positive window widths, and define H(x) =
∫ x
−∞K(u)du. Let

ρ?L(yi, wi, β, h) = ε̃i(τ − 1) + ε̃iH(
ε̃i
h

)−
σ2
β

2

{2

h
K
( ε̃i
h

)
+
ε̃i
h2
K ′
( ε̃i
h

)}
,(3.4)

where, ε̃i = yi − wTi β and σ2
β = βTΣβ. WSZ proposed to approximate the quantile func-

tion ρτ (yi − xTi β
0) by the smooth function ρ?L(yi, wi, β, h) and defined their estimator as a

minimizer with respect to β of the average n−1∑n
i=1 ρ

?
L(yi, wi, β, h). Its penalized analog is

l?n(β) :=
1

n

n∑
i=1

ρ?L(yi, wi, β, h) + λn‖d ◦ β‖1.

Observe that l?n(β) is non-convex and l?n(β) may diverge when σ2
β = βTΣβ →∞. Hence, we

restrict the parameter space to the expanding `1-ball Θ = {β ∈ Rp; ‖β‖1 ≤ b0
√
s}, for some
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b0 > 0. Now, define the W`1-CQ estimator as

β̂ = arg min
β∈Θ

l?n(β).(3.5)

The weights dj , 1 ≤ j ≤ p are assumed to satisfy

(i) max
j∈S

dj ≤ cmax, 0 < cmax <∞, (ii) min
j∈Sc

dj ≥ cmin, 0 < cmin <∞.(3.6)

We begin by providing the oracle property of the proposed estimator in the fixed dimen-

sion setting, i.e. p, s are constants that do not change with n. In the following we provide

the necessary notation and assumption required to proceed further.

(F1) In the neighborhood of zero, the density function fi(· ) of εi, 1 ≤ i ≤ n is bounded

away from zero and infinity and has a bounded first derivative.

(F2) The kernel function K(· ) is a bounded probability density function having finite fourth

moment and is symmetric about the origin. In addition, K(· ) is twice differentiable

and its second derivative K ′′(· ) is bounded and Lipchitz continuous.

(F3) Let

Ψ∗n1(β0, h) =
1√
n

n∑
i=1

∂ρ∗L(yi, wi, β
0, h)/∂β Ψ∗n2 =

1

n

n∑
i=1

∂2ρ∗L(yi, wi, β
0, h)/∂β∂βT .

Assume that there exists positive definite matricesD andA such that Cov
(
Ψ∗n1(β0, h)

)
→

D and EΨ∗n2(β0, h)→ A.

(F4) Measurement errors: The measurement errors {ui} are independent of {εi}, and

i.i.d. Lp(0,Σ), for all 1 ≤ i ≤ n, with a known positive definite matrix Σ.
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Theorem 3.1.1 Assume the measurement error model (3.1) and (3.2) along with (F1)-(F4)

hold. Furthermore, if λn = O(n−1/2) and the weight vector d satisfies (3.6), then there exists

a local minimizer β̂ of l∗n(β) satisfying ‖β̂ − β0‖2 = Op(n
−1/2).

The above theorem requires the weight vector to satisfy the condition (3.6). This con-

dition is also satisfied by the ordinary `1 penalty, i.e. choosing dj = 1, 1 ≤ j ≤ p.

To establish the oracle property we need the weights to be more carefully chosen. Let

dS
c

min = min{dj ; j ∈ Sc} then we have the following.

Theorem 3.1.2 Assume the measurement error model (3.1) and (3.2) along with (F1)-(F4)

hold. Furthermore, if n1/2λn → 0 and the weight vector d satisfies (3.6). In addition assume

n1/2λnd
Sc
min →∞, then the

√
n-consistent local minimizer β̂ = (β̂S , β̂Sc)

T in Theorem 3.1.1

satisfies the following

1. Sparsity : P
(
β̂Sc = 0

)
→ 1,

2. Asymptotic Normality : n1/2(β̂S − β0
S)→ N (0, A−1

S DSA
−1
S ).

This theorem provides the desired oracle property of the proposed `1-penalized corrected

quantile estimator.

We now proceed to the high dimensional setup, where the model dimensions p, s are

allowed to diverge exponentially with the sample size n. Here we shall provide bounds on the

statistical error associated with the W`1-CQ estimator, namely, bounds on the quantities

‖β̂−β0‖1 and n−1‖Γ1/2X(β̂−β0)‖2, where Γ is defined in the paragraph preceding Lemma

3.3.2 below. The `1-consistency of β̂ will be a direct consequence of these error bounds.

Note that the choice dj = 1, for all 1 ≤ j ≤ p, makes β̂ to be the un-weighted penalized

`1-CQ estimator. As shall become apparent, the `1-CQ estimator is also `1-consistent in
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estimation. This shall also be observed in the simulation study in Section 4. On the other

hand, as observed in part (a) of Theorem 3.1.2 for the fixed p case, setting dj = 1, 1 ≤ j ≤ p

may not lead to consistent variable selection. The weights {dj}, chosen appropriately, shall

serve to improve on this issue, by guaranteeing that the zero components are identified

correctly with asymptotic probability 1, thereby making W`1-CQ model selection consistent

in addition to being `1-consistent.

We shall now describe the model more precisely while also providing assumptions neces-

sary to proceed further in the high dimensional setup.

(A1) Model errors (ε): The distribution function (d.f.) Fi of εi has Lebesgue density fi

such that sup1≤i≤n,x∈R fi(x) <∞, and fi is uniformly (in i) bounded away from zero,

in a neighborhood of zero. Also, there exists universal constants C1 > 0, C2 > 0 such

that for any y satisfying |y| ≤ C1,

max
1≤i≤n

|Fi(y)− Fi(0)− yfi(0)| ≤ C2y
2.

This condition is the same as Condition 1 in Fan et al. (2014). It imposes only mild conditions

on the error densities and is slightly stronger than the Lipchitz condition for fi’s around the

origin. Gaussianity and homoscedasticity is not imposed. Several distributions, including

double exponential and Cauchy, satisfy this condition.

(A2) Unobserved design matrix X: For all 1 ≤ j ≤ p, n−1∑n
i=1 x

2
ij ≤ cx, for some constant

cx <∞.

(A3) Measurement errors: The measurement errors {ui} are independent of {εi}, and

i.i.d. Lp(0,Σ), for all 1 ≤ i ≤ n, with a known Σ. Furthermore, there exists a constant
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0 < σ2
u <∞ such that max1≤j≤p V ar(uij) ≤ σ2

u.

(A4) Kernel function K: K is the probability density function of a standard normal random

variable.

This choice of the Kernel function shall play an important role in our analysis. This kernel

function is chosen for its many tractable properties, namely, it is symmetric around origin,

infinitely differentiable, and more importantly, its derivatives being Lipchitz continuous,

which is detailed in Section 3.5 of this chapter.

3.2 Relationship between ρ?L and ρ

The analysis to follow relies critically on the approximation of the corrected quantile loss

function ρ?L defined in (3.4) in terms of observed wi’s by the usual convex quantile function

ρ defined in (3.3) involving unobserved xi’s. We begin by establishing this connection.

The approximation result we derive for the current high dimensional set up, where p is

increasing exponentially with n, is similar to the one used in WSZ in the case of fixed p. For

that reason we use similar notation as in WSZ. Accordingly, define a smoothed quantile loss

function with arguments (yi, xi, β, h),

ρL(yi, xi, β, h) = (yi − xTi β){τ − 1 +H(
yi − xTi β

h
)}.(3.7)

Note that ρ?L is a function of the observed covariates w, whereas the ρL and ρ are functions
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of the unobserved covariates x. Now, for β ∈ Θ, define

M∗n(β) ≡M?
n(w, β, h) = n−1

n∑
i=1

{
ρ?L(yi, wi, β, h)− ρ?L(yi, wi, β

0, h)
}
,(3.8)

M̃n(β) ≡ M̃n(x, β, h) = n−1
n∑
i=1

{
ρL(yi, xi, β, h)− ρL(yi, xi, β

0, h)
}
,

Mn(β) ≡Mn(x, β) = n−1
n∑
i=1

{
ρ(yi, xi, β)− ρ(yi, xi, β

0)
}
.

We are now ready to state the following theorem describing the approximation of the

processes M?
n(β) and Mn(β) by their respective expectations, uniformly in β ∈ Θ, in prob-

ability with rates. Its proof is given in section 3.5. Throughout, γmax denotes the largest

eigenvalue of Σ.

Theorem 3.2.1 Assume the measurement error model (3.1) and (3.2) and the assumptions

(A1), (A2), (A3) and (A4) hold. Then,

sup
β∈Θ

∣∣∣M?
n(β)− EM?

n(β)
∣∣∣ = Op

(
γmax

s3/2

h2

√
2 log 2p

n

)
,(3.9)

sup
β∈Θ

∣∣∣M̃n(β)− EM̃n(β)
∣∣∣ = Op

(√
s

√
2 log 2p

n

)
.(3.10)

To proceed further, we require the following two results of WSZ. First, the twice differ-

entiability of ρL(y, x, β, h) in the variable y − x′β and ui ∼ Lp(0,Σ) imply

EM?
n(β) = EM̃n(β), ∀ β ∈ Rp.(3.11)
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Secondly, under assumption (A4),

sup
β∈Θ
|M̃n(β)−Mn(β)| = O(h), a.s.(3.12)

Claim (3.11) is a direct consequence of Theorem 2 of WSZ while claim (3.12) is proved in

WSZ as a part of the proof of their Theorem 3 (page 14). The short proof of this statement

is reproduced here for the convenience of a reader.

Proof of (3.12): Denote by ρL(e, h) := ρL(y, x, β, h), where e = y − x′β. Similarly define

ρ(e). Let Z denote a r.v. having d.f. H. Use the symmetry of K, and hence of H, the

finiteness of its first moment, and the change of variable formula to obtain that the left hand

side of (3.12) is bounded above by 2 times

sup
e

∣∣ρL(e, h)− ρ(e)
∣∣ ≤ sup

e

∣∣e[H( e
h

)
− I{e > 0}

]∣∣ ≤ sup
t

∣∣htH(− |t|)∣∣ ≤ hE|Z|.

This completes the proof of (3.12).

It is important to note that both of these results are valid without any restriction on the

model dimension p, hence applicable in our high dimensional setup. In view of the results

(3.11), (3.12) and Theorem 3.2.1, we obtain

sup
β∈Θ
|M?

n(β)−Mn(β)|(3.13)

≤ sup
β∈Θ
|M?

n(β)− EM?
n(β)|+ sup

β∈Θ
|M̃n(β)− EM̃n(β)|

+ sup
β∈Θ
|M̃n(β)−Mn(β)|

= Op

(
γmax

s3/2

h2

√
log 2p

n

)
+O(h).
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The last claim in the above bounds follows since by Theorem 3.2.1, the second term on the

right hand side of (3.13) decreases faster than the first term. This approximation plays a

pivotal role in the analysis carried out in the sequel.

3.3 Results in High Dimensions

In this section we shall provide statistical error bounds for the W`1-CQ estimator. The

following lemma is crucial for obtaining our error bounds. Let

vn(β) = n−1
n∑
i=1

ρ(yi, xi, β), gn(β) := Evn(β), β ∈ Rp.

We shall some times write ρ∗Li(β) for ρ∗L(yi, wi, β, h). Similar comment applies to ρ and ρL.

We have

Lemma 3.3.1 For the measurement error model (3.1) and (3.2), we have,

gn(β̂)− gn(β0) + λn‖d ◦ β̂‖1(3.14)

≤ λn‖d ◦ β0‖1 + |M?
n(β̂)−Mn(β̂)|+ |Mn(β̂)− EMn(β̂)|, ∀ β ∈ Rp.

This inequality is obtained by subtracting Mn(β̂)−EMn(β̂) on both sides of the inequality

n−1
n∑
i=1

ρ?Li(β̂) + λn‖d ◦ β̂‖1 ≤ n−1
n∑
i=1

ρ?Li(β
0) + λn‖d ◦ β0‖1,

and then rearranging terms and using the triangle inequality.

The technique adopted to provide the desired error bounds is to first establish results for

any β chosen in a small neighbourhood of β0. Later, using the convexity of ρτ (β) and the
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inequality (3.13), we show that the estimator β̂ indeed eventually lies in this neighborhood,

with probability tending to 1. Let κn := max1≤i≤n,1≤j≤p|xij |, and define

B(αn) =
{
β ∈ Rp : ‖β − β0‖1 ≤ αn

}
,

where αn is a sequence of positive numbers decreasing to 0 and satisfying αn = o(κ−1
n ). The

last piece of this jigsaw is the following lemma which shall provide a lower bound for the

first term on the left hand side of (3.14). Let X := (x1, x2, · · · , xn)T denote the n×p design

matrix, and Γ := diag{f1(0), ..., fn(0)}.

Lemma 3.3.2 Suppose the model (3.1) and assumption (A1) hold. Then, there exists a

constant 0 < ca < 1, such that for any β ∈ B(αn), and for all large n,

gn(β)− gn(β0) ≥ ca(β − β0)′
X ′ΓX
n

(β − β0) = can
−1‖Γ1/2X(β − β0)‖22 ≥ 0.

Proof: Set ai = |x′i(β−β
0)|, 1 ≤ i ≤ n. Then for β ∈ B(αn), ai ≤ κn‖β−β0‖1 ≤ κnαn → 0.

Then proceed as in Fan et al. (2014) page 341, to obtain the desired result. �

Fan et al. (2014) prove the above result for the oracle estimator, i.e., with the additional

information regarding the locations of zero and non zero components of β and β0. However,

as noted above, this result can be obtained without oracle information by defining the set

B(αn) as above.

To proceed further, we need the following Compatibility condition on the unobserved de-

sign matrix X. This condition is often used in high dimensional analysis (see, e.g., Bühlmann

and Van de Geer (2011) and Raskutti et al. (2010)). The closely related ‘Restricted eigen-

value condition’ is used by Belloni and Chernozhukov (2011) to provide consistency in esti-
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mation for quantile regression, when the covariates are completely observed.

Definition 3.3.1 We say the Compatibility condition is met for the set S, if for some

φ > 0, and constants 0 < b < 1, c0 > 0, and for all δ ∈ Rp satisfying ‖δSc‖1 ≤ c0‖δS‖1,

‖δS‖21 ≤
bs

nφ2
δX ′ΓXδ.(3.15)

In our setup the constant c0 can be explicitly computed as c0 = (2cmax + cmin)/cmin. Hence,

if we are using the `1 penalty, where the weights dj = 1, for all 1 ≤ j ≤ p, then c0 = 3.

We also need the following rate conditions on various underlying entities.

(i) κn →∞, γmax →∞, λn → 0, αn → 0,(3.16)

κnγmaxs
3/2
n h−2

√
log 2p

n
= o(λn), αn = o(κ−1

n ),

(ii) κnh = o(λn), (iii)
λnsnκn
φ2

→ 0.

For the bounded designs where κn = O(1), we shall need the following rate conditions.

(i) γmax →∞, λn → 0, αn → 0, γmaxs
3/2
n h−2

√
log 2p

n
= o(λn), ,

(ii) h = o(λn), (iii)
λnsn
φ2
→ 0.

In the above conditions, φ is the constant defined in (3.15). As is the case with kernel

density estimators, the rate of decrease of the smoothing parameter h has to be appropriately

balanced. It has to decrease slowly enough so as to satisfy (3.16)(i) and fast enough to satisfy

(3.16)(ii) in the case of unbounded design. Similarly, in the case of bounded design, these rate

constraints have to balance between (3.17)(i) and (3.17)(ii). Note that the rate of decrease
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of λn is significantly slower than in the case of non measurement error in the covariates. This

is mainly due to the presence of the additional noise in the covariates and the smoothing

parameter h.

We now state the main result providing error bounds for the proposed estimator.

Theorem 3.3.1 For the measurement error model (3.1) and (3.2), let β̂ be as in (3.5) and

cmin, cmax be as in (3.6) with cm := cmin + cmax. Assume (A1), (A2), (A3) and (A4), along

with the Compatibility condition (3.15) hold. Also assume that either the rate conditions

(3.16) or (3.17) holds. Then the following inequality holds with probability at least 1-o(1).

3can
−1‖Γ1/2X(β̂ − β0)‖22 + 2λncmin‖β̂ − β0‖1(3.17)

≤ 4λ2
nc

2
msn

φ2
+O

(
γmaxs

3/2
n h−2

√
log 2p

n

)
+O(h).

The bound (3.17) clearly implies that under the conditions of Theorem 3.3.1, ‖β̂ −

β0‖1 →p 0 and n−1‖Γ1/2X(β̂ − β0)‖22 →p 0. In other words, the sequence of estimators

W`1-CQ is consistent for β0 in `1-norm and in the weighted L2-norm n−1‖Γ1/2X(β̂−β)‖22.

Secondly, the weights dj , 1 ≤ j ≤ p, do not play a critical role for the consistency of the

estimator, i.e. as long as the condition (3.6) is satisfied, the above error bounds will pro-

vide the required consistency. Hence, if no prior information is available, one may choose

dj ≡ 1, in which case the estimator β̂ becomes the `1-CQ estimator, which is `1-consistent.

This fact shall also be useful for consistent model selection, which requires carefully cho-

sen weights corresponding to the non-zero and zero indices of the parameter. This shall be

further elaborated on after we provide a result on the sparsity properties of the proposed

estimator.
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The conclusion (3.17) of Theorem 3.3.1 bounding the l1 and weighted l2 error in estima-

tion resembles in form to that of Theorem 6.2 of Bühlmann and Van de Geer (2011) obtained

for `1-penalized mean regression estimator when there is no measurement error in the covari-

ates and when the errors in regression model are assumed to be sub-Gaussian. In comparison,

the above result (3.17) is established here in the presence of heavy tail measurement error

in covariates and when the regression model errors are independent heteroscedastic not nec-

essarily sub-Gaussian.

3.3.1 A Sparsity Property.

Next, we investigate a model selection property of W`1-CQ. It is well known that the model

selection properties are linked to the first order optimality conditions, also known as the

KKT conditions. These conditions are necessary and sufficient when the objective function

is convex. However, as noted earlier, the loss function of our estimator is non-convex. In

this case, KKT conditions are necessary but not sufficient. We exploit the necessity of KKT

conditions to show that the estimator W`1-CQ identifies all zero components successfully

with asymptotic probability 1, provided the weights dj are chosen appropriately. More

precisely, let

αn =
2λnc

2
ms

cminφ
2

+
1

λn
O
(
γmax

s3/2

h2

√
2 log 2p

n

)
+

1

λn
O(h)→ 0.(3.18)

Then in addition to the conditions of Theorem 3.3.1, we assume there exists a 0 < δ < 1/2

such that,

(i) κn ≤ nδ, and (ii) log p = o(nδ).(3.19)
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Furthermore along with the conditions (3.6) on the weight vector d, we assume that dj for

j ∈ Sc, diverge at a fast enough rate, i.e., dS
c

min = min{dj , j ∈ Sc} satisfies the following rate

conditions.

(i) max
{
αn, κ

3
nα

2
n

}
= o(λnd

Sc
min), (ii)κnh = o(λnd

Sc
min),(3.20)

(iii) max

{
γmaxsn

δh−2

√
2 log p

n
, αnγmaxn

δh−3s

√
2 log p

n

}
= o(λnd

Sc
min).

Theorem 3.3.2 For the measurement error model (3.1) and (3.2), assume the conditions

of Theorem 3.3.1 hold. In addition assume that (3.6), (3.19) and (3.20) hold. Then

P
(
β̂j = 0, ∀ j ∈ Sc

)
→ 1.(3.21)

This theorem provides the model selection consistency of the proposed W`1-CQ estimator

β̂, under suitable choice of the weight vector d = (d1, ...dp)
T . Note that setting the weights

dj ≡ 1, i.e., the un-weighted `1-penalty does not satisfy the rate assumptions (3.20) and

hence `1-CQ cannot be guaranteed to be model selection consistent as opposed to W`1-CQ.

As the reader may observe, the conditions required for Theorem 3.3.2 are only rate

conditions on the model parameters, in addition to mild distributional assumptions. These

conditions are weaker than those required for model identification in the work of Belloni and

Chernozhukov (2011). The reason for this being that our result states that zero components

are correctly identified, as opposed to Belloni and Chernozhukov (2011), who state a stronger

result regarding identifiability of the non-zero components. Thus, we are able to state a

weaker result under weaker conditions. We are unable to provide any result regarding the
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identification of non-zero components due to the non-convexity of the loss function.

We note that the above results will continue to hold for all other measurement error

distributions for which the identity (3.11) and the probability bound (3.47) given below

hold.

3.3.2 Adaptive choice of the weight vector d.

For model selection we have seen that the choice of the weight vector d plays a critical role

for the proposed estimator to guarantee that the zero components are identified correctly.

Zou (2008) proposed the idea of adaptively choosing these weights by setting dj = |β̂inij |
−η,

1 ≤ j ≤ p, η > 0, where β̂inij is any initial estimate of β0
j satisfying max1≤j≤p |β̂inij − β0

j | =

Op(αn), with αn → 0. We use the same approach to select the weight vector d in our setup.

First, we use the l1-CQ estimator, i.e., the proposed estimator with the ordinary `1-

penalty (dj = 1, ∀1 ≤ j ≤ p), this gives the initial estimate β̂ini. Theorem 3.3.1 provides

the consistency of this estimate. In particular, under conditions of Theorem 3.3.1 we obtain

with high probability, ‖β̂ini − β0‖1 ≤ αn → 0, where αn is defined in (3.18). Here we place

an additional assumption on the true parameter vector, namely, we assume that all non-zero

components of β0 are bounded above and below by a constant, i.e. b1 ≤ |β0
j | ≤ b2. Thus,

with high probability

|β̂inij | ≤ b2 + αn, ∀ j ∈ S |β̂inij | ≤ αn ∀ j ∈ Sc.(3.22)

Now, we set dj = (|β̂inij | + cw)−η, where cw = min1≤j≤p(|β̂inij |; β̂
ini
j 6= 0) is added to the

initial estimates to avoid the problem of diving by zero.

Keeping (3.22) in view, it is easy to verify that when n is large enough, the above weight
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vector d satisfies the required assumptions (3.6) and (3.20) for some constant η chosen

appropriately, with probability approaching to 1.

3.4 Simulation Study

3.4.1 Simulation setup

In this section we numerically analyse the performance of the proposed estimators `1-CQ

and W`1-CQ. All computations were done in R, on an ordinary desktop machine with a five

core (2.3GHz) processor. We compare our proposed estimators with least squares based high

dimensional procedures including Lasso and the bias corrected Lasso (Loh and Wainwright

(2011)), the latter of which is specifically designed to handle sub-Gaussian measurement

error in covariates.

While conducting our simulation study, we compute Lasso estimates using the package

glmnet developed by Friedman et al. (2010). To compute `1-CQ estimates and the bias cor-

rected Lasso, we use the projected gradient descent algorithm (Agarwal et al. (2012)), which

is a tool developed for optimizing penalized smooth loss functions in high dimensions. More

precisely, with ∇L(β) denoting the gradient of a loss function L, the method of projected

descent iterates by the recursions, {βr, r = 0, 1, 2, ...} as,

βr+1 = arg min
β∈Θ

{
L(βr) +∇L(βr)T (β − βr) +

δ

2
‖β − βr‖22 + λn‖β‖1

}
,(3.23)

where δ > 0 is a stepsize parameter. These recursions can be computed rapidly in O(p) time

using the procedure suggested by Agarwal et al. (2012) with the restriction of the parameter

space to the `1-ball Θ implemented by the procedure of Duchi et al. (2008). This procedure
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essentially involves two `2 projections onto the `1 ball Θ.

The weighted version W`1-CQ can be computed by the procedure described above with

the following algorithm similar in spirit to that described by Zou (2008). The proof of this

algorithm is straightforward and hence is omitted.

Algorithm to compute W`1-CQ by method of projected gradient descent:

1. Define w?i = (wi1/d1, ..., wip/dp)
T , ∀1 ≤ i ≤ n. Also define Σ? =

(
σij/didj

)
, ∀1 ≤

i, j ≤ p where σij denote the components of Σ.

2. Optimize, using the methods of projected gradient descent and Duchi et al.,

β̂? = arg minβ∈Θ

{ 1

n

n∑
i=1

ρ?L(yi, w
?
i , β, h) + λn‖β‖1

}
.

3. Evaluate β̂j = β̂?j /dj , ∀1 ≤ j ≤ p.

Tuning Parameters: The choice of the tuning parameters λn and h is still not a completely

understood aspect of high dimensional data analysis. Typically in regularized estimation

methods, either cross validation or AIC-BIC type selectors are used to select the tuning

parameters. Zhang, Li and Tsai (2010) provide theoretical justification for using AIC-

BIC type criteria for several models. The cross validation method is often observed to

result in over-fitting (Wang, Li and Tsai, 2007), furthermore it is considerably more time

consuming. More recently, Lee, Noh and Park (2014) have suggested a high dimensional

BIC type criterion for quantile regression methods. Motivated by their results, one way to

proceed is to select λn, h as minimizers of the function

HBIC(λn, h) = log
( n∑
i=1

ρ?L(yi − wTi β̂λ,h)
)

+ |Sλ,h|
(log n)

2n
Cn,
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where |Sλ| is the number of nonzero coefficients in the estimated parameter vector β̂λ,h and

Cn is a diverging sequence of positive numbers. However, since ρ?L can take negative values,

we shall use

eHBIC(λn, h) =
( n∑
i=1

ρ?L(yi − wTi β̂λ,h)
)
e
|Sλ,h|

(log n)
2n Cn

to obtain λn and h. The exponential transformation removes the problem of negativity of

ρL∗ and also maintains monotonicity. Furthermore, we choose Cn = O(log(log p)) which is

empirically found to work well in this simulation.

In defining HBIC(λn, h), we used the corrected quantile loss function instead of the check

function as defined by Lee et al. (2013). Although this makes intuitive sense as the corrected

quantile loss function is approximated by the check function, however a rigorous theoretical

argument justifying its use is missing. This criterion is empirically found to perform well in

our setup.

3.4.2 Computational Issues

A computational challenge of the proposed estimator is the non-convexity of the loss function

l∗n. The objective function l∗n becomes increasingly volatile around the true parameter as it

approaches the check function at values of h very close to zero. This behaviour is illustrated

in Figure 1, which plots the loss function against β1, keeping all other parameters fixed at

the true values. This plot is generated for the first of the 100 simulated models.

The loss function exhibits several local optimums at smaller values of h. On the other

hand at relatively higher values of h, the loss function appears to be convex shaped around

the true parameter and appears to have a unique minimum at the true parameter value. Two
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Figure 3.1: 1
n
∑n
i=1 ρ

?
L(β) + λn‖β‖1 evaluated around β1 at h = 0.01 (left) and 1.5 (right).

computational consequences of this behavior are that, first, at h close to zero, any optimiza-

tion procedure becomes excessively time consuming. To avoid this unpleasant feature, we

avoid values of h close to zero. It was numerically observed that by doing so, we are able to

maintain the accuracy of the estimator along with a reasonable computation time. Second,

at values of h outside a neighborhood of zero the optimizations are robust against the start-

ing points used in optimizations. In particular, in all 100 simulation repetitions the starting

point for optimization was chosen randomly from a Gaussian distribution. This behavior of

the objective function is also represented visually in the contour plot in Figure 3.2. Here the

`1 estimation error ‖β̂ − β‖1 is plotted as colored contours with the error increasing from

red to blue regions. Values of h are represented on the x-axis and values of λn on the y-axis.

From this plot it is apparent that the lowest error is given in regions concentrated around

the relatively smaller values of h and λn except when h is in a small neighborhood of zero.

Figure 3.2: Colored contours of ‖β̂ − β‖1 on h vs. λn for `1-CQ.

With regards to computational time, one optimization at h = 0.01 takes ≈ 16seconds
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as opposed to ≈ 2 seconds at h = 0.5, at (p = 40, n = 120). This can also be viewed in

comparison to corrected Lasso which takes ≈ 0.5 second to complete one optimization.

3.4.3 Simulation setup and results

For this simulation study, data is generated from the measurement error model (3.1) and

(3.2) under several choices of the underlying parameters and distributional assumptions.

The unobserved design variables {xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p} are chosen as i.i.d. r.v.’s from

a N (0, 1) distribution. The measurement errors {ui, 1 ≤ i ≤ n} are i.i.d. Lp(0,Σ), with

Σ = σ2 × I, where I is the p × p identity matrix. The model errors εi, 1 ≤ i ≤ n are

independent realizations of Normal, Cauchy or mean centered Pareto r.v.’s.

We begin by numerically verifying the result of Theorem 3.3.1. Observe that this theorem

can be viewed as describing the scaling behaviour of the error ‖β̂−β‖1. In order to visualize

this, we perform simulations by varying the dimension of the parameter vector p and the

sample size n while holding all other parameters fixed, in particular the number of non

zero components s = 5, the covariance matrix of the Laplace distribution for the covariate

errors is taken to be 0.2Ip×p and the model errors are Gaussian with variance 0.2. All of

the following figures describe the error of `1-CQ estimate. The behavior of the error of

estimation for the W`1-CQ is observed to be similar and thus the corresponding plots are

omitted for the sake of brevity.

Figure 3.3 is a contour plot generated at h = 0.4(left) and λ = 0.07(right). This plot

describes the `1 error, ‖β̂ − β‖1 as a spectrum of colors with red being the least and violet

being the maximum. The y-axis plots different values of the tuning parameter λ and the

x-axis marks the varying dimension p of the model. Note that for a given model dimension

the corresponding sample size is rescaled to maintain the ratio (n/ log 2p) to be constant.
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This rescaling is done in accordance with the result of Theorem 3.3.1 and as predicted by

the theorem, holding all other parameters fixed for each value of λ(left) and h(right) the

error level stays roughly constant (the colors align) across the chosen values of p.

Figure 3.3: Colored contours of ‖β̂ − β‖1 on p vs. λ(left) and h.(right)

We now proceed to a more detailed numerical comparison of the proposed estimates

with Lasso and corrected Lasso estimates. For any given method, we summarize the results

obtained by 100 repetitions. For every repetition, each non zero component of the parameter

vector β is generated from a N (0, 1) distribution normalized by the `2 norm of the generated

vector. The dimensions of this vector are chosen to be p = 40, 300, 500. The dimension of

the non zero components are set to s = 5, 8, 10. As mentioned earlier, the model errors εi,

1 ≤ i ≤ n are generated from Gaussian, Cauchy or mean centered Pareto r.v.’s. Note that

the Pareto distribution can be heavily skewed. For performance comparison we report the

following criteria.

MEE : (Median estimation error), median over 100 repetitions of the estimation error

‖β̂ − β0‖2.

MIZ : (Median incorrect number of zeros), median over 100 repetitions of the number of

incorrectly identified zero components of the parameter vector.

MINZ : (Median incorrect number of non zeros), median over 100 repetitions of the number
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of incorrectly identified non zero components of the parameter vector.

In all tables, the standard errors of the corresponding criteria are reported in the paren-

theses.

Table 3.1: Simulation results at p=40 for Normal, Cauchy and Pareto model errors

s = 8, ui ∼ Lp(σ
2 = 0.2), εi ∼ N (0, 0.2), τ = 0.5

`1-CQ C − Lasso Lasso
n MEE MINZ MIZ MEE MINZ MIZ MEE MINZ MIZ
20 0.62 4 5 0.63 4 6 0.78 4 9

(0.21) (1.72) (2.33) (0.22) (1.76) (2.39) (0.27) (1.98) (3.97)
60 0.27 1 9 0.28 1 9 0.39 1 12

(0.061) (1.07) (2.91) (0.065) (1.04) (2.90) (0.071) (1.12) (4.77)
120 0.18 1 12 0.20 1 11 0.34 1 14

(0.038) (0.86) (2.86) (0.038) (0.88) (2.93) (0.04) (0.91) (4.83)

s = 8, ui ∼ Lp(σ
2 = 0.2), εi ∼ Cauchy(scale = 0.1), τ = 0.5

50 0.95 5 7 1.61 7 9 5.21 2 20.5
(0.21) (1.21) (2.41) (0.42) (1.10) (2.25) (15.89) (1.59) (5.45)

150 0.60 4 9 1.54 7 10 5.02 2 25
(0.14) (1.17) (3.83) (0.47) (1.15) (2.44) (19.12) (1.69) (6.28)

300 0.35 2 11 1.56 7 13 4.77 2 24
(0.11) (1.01) (3.75) (0.49) (1.21) (2.45) (18.80) (1.53) (5.37)

s = 5, ui ∼ Lp(σ
2 = 0.2), εi ∼ mean centered Pareto, τ = 0.75

100 0.66 2 8 1.01 3 7 1.15 3 13
(0.15) (1.05) (2.93) (0.31) (1.32) (2.99) (3.05) (1.06) (7.20)

200 0.50 1 8 0.84 2 7.5 0.97 2 15
(0.10) (0.94) (2.56) (0.32) 1.31 (2.64) (2.49) (1.78) (6.70)

300 0.38 1 9 0.71 2 8 0.90 1 13
(0.07) (0.84) (2.89) (0.27) (1.16) (2.86) (2.41) (0.94) 5.64

Tables 3.1 and 3.2 provide results of the simulation study comparing the `1-CQ, the

corrected Lasso (C-Lasso) and Lasso estimators. It is clear from these results that under

heavy tailed or skewed model errors (Cauchy and mean centered Pareto), the `1-CQ esti-

mator significantly outperforms the other two procedures in all three comparison criteria.

Furthermore, the standard errors of `1-CQ are significantly smaller than those of the other

two. Under Gaussian model errors, `1-CQ is comparable (slightly better) in performance
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to the C-Lasso, while both of these procedures outperform Lasso. Consistency in terms of

the estimation error and identifying the correct support of β0 is clearly visible as n → ∞.

As expected, the `1-CQ estimator does not provide consistency in identifying the zero com-

ponents correctly. However, it is still much better in comparison to Lasso. This behavior

of Lasso under measurement error has also been observed by Sorensen et al. (2014), i.e.,

measurement error tends to induce over-fitting by naive estimators such as Lasso.

Another instance where the proposed estimators outperform the corrected Lasso and

Lasso is the heteroscedastic setup. To illustrate this, we generated independent model errors

εi from N (0, σ2
i ), where σ2

i is chosen uniformly from the interval (0.1, 9), for each i = 1, · · ·n.

The dimension p is increased to 500 for this case and the results are provided in Table 3.3.

We next investigate the W`1-CQ estimator for consistent identification of the zero com-

ponents, in addition to consistent estimation. Tables 4 and 5 provide simulation results

for W`1-CQ for p = 40 and p = 300. The weights dj are chosen as described at the end

of section 4 above, where the exponent η is chosen by using the selection criteria eHBIC.

Comparing W`1-CQ, `1-CQ, C-Lasso and Lasso, the first and most immediate conclusion

is the efficacy of the proposed estimators under heavy tailed or skewed model errors. The

W`1-CQ estimator consistently and significantly outperforms all other procedures in terms

of model identification under all chosen distributional and parameter settings.

Finally, to see how robust the `1-CQ estimator is to the misspecification of the mea-

surement error distribution, we compared its performance with C-Lasso when this error

distribution is Gaussian. The results reported in Table 6 show a comparable performance

with C-lasso performing only marginally better.
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Table 3.2: Simulation results at p=300 for Normal, Cauchy model errors

s = 10, ui ∼ Lp(σ
2 = 0.1), εi ∼ N (0, 0.2), τ = 0.5

`1-CQ C − Lasso Lasso
n MEE MINZ MIZ MEE MINZ MIZ MEE MINZ MIZ
100 0.26 2 21 0.27 2 21.5 0.35 2 37

(0.04) (1.20) (5.20) (0.05) (1.19) (4.70) (0.07) (1.09) (7.43)
200 0.17 1 30 0.17 1 29.5 0.23 1 55

(0.028) (0.89) (6.86) (0.029) (0.90) (6.77) (0.031) (0.91) (11.70)
300 0.11 1 33 0.14 1 32 0.18 1 79

(0.023) (0.79) (5.74) (0.023) (0.76) (5.68) (0.025) (0.82) (16.16)

s = 10, ui ∼ Lp(σ
2 = 0.1), εi ∼ Cauchy(scale = 0.1), τ = 0.5

100 0.44 3 23 0.92 7 20 4.39 7 27
(0.10) (1.57) (10.36) (0.41) (2.35) (7.21) (10.70) (1.96) (30.16)

200 0.30 2 21.5 0.87 6 22.5 3.27 6 30
(0.07) (1.34) (12.63) (0.44) (2.42) (8.18) (8.27) (1.84) (51.34)

300 0.21 2 13 0.85 6 22 3.47 6 28
(0.05) (1.23) (12.86) (0.50) (2.59) (8.99) (9.10) (1.91) (47.21)

Table 3.3: Simulation results at p=500 under heteroscedasticity

s = 10, ui ∼ Lp(σ
2 = 0.1), εi ∼ N (0, σ2

i ), σ2
i ∼ Uniform(0.1, 9), τ = 0.5

`1-CQ C − Lasso Lasso
n MEE MINZ MIZ MEE MINZ MIZ MEE MINZ MIZ
100 0.86 7 25.5 0.99 7 25 1.73 7 73

(0.14) (1.13) (4.33) (0.15) (0.99) (5.05) (0.27) (1.87) (16.15)
200 0.66 5 30 0.78 5 30 1.67 5 87

(0.12) (1.32) (5.98) (0.12) (1.20) (5.56) (0.25) (1.19) (21.25)
300 0.54 4 34 0.69 5 33 1.51 3 83

(0.09) (1.37) (6.56) (0.10) (1.17) (5.71) (0.18) (1.26) (19.56)

Table 3.4: W`1-CQ at p=40 for Normal and Cauchy model errors.

εi ∼ N (0, 0.2), εi ∼ Cauchy(scale = 0.1),
n MEE MINZ MIZ n MEE MINZ MIZ
20 0.70 1 5 50 0.98 1.5 5

(0.25) (0.66) (1.38) (0.23) (0.63) (2.20)
60 0.28 0 5 150 0.64 1 5

(0.06) (0.64) (1.55) (0.14) (0.61) (2.27)
120 0.21 0 4 300 0.41 1 4

(0.038) (0.61) (1.27) (0.11) (0.70) (2.17)
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Table 3.5: W`1-CQ at p=300 for Normal and Cauchy model errors.

εi ∼ N (0, 0.2), εi ∼ Cauchy(scale = 0.1),
n MEE MINZ MIZ n MEE MINZ MIZ

100 0.28 1 7 100 0.40 1 8
(0.04) (0.69) (1.75) (0.11) (0.72) (2.91)

200 0.23 0 6 200 0.29 1 6
(0.02) (0.62) (0.98) (0.09) (0.68) (1.85)

300 0.18 0 5 300 0.24 0 5
(0.02) (0.41) (0.97) (0.06) (0.46) (1.56)

Table 3.6: `1-CQ at p=300 with misspecified covariate error distribution.

s = 10, uij ∼ N (0, 0.3), εi ∼ N (0, 0.3)
`1-CQ C − Lasso

n MEE MINZ MIZ MEE MINZ MIZ
100 0.31 1 18 0.28 1 16

(0.06) (0.89) (3.64) (0.07) (0.83) (3.12)
200 0.22 1 21 0.20 1 18

(0.04) (0.71) (4.10) (0.03) (0.71) (4.44)
300 0.20 0 24 0.17 0 19

(0.02) (0.63) (4.14) (0.02) (0.61) 4.88
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3.5 Proofs for Chapter 3

We begin by proving Theorem 3.1.1 and Theorem 3.1.2 which provide consistency in estima-

tion and variable selection for the W`1-CQ estimator for the case of fixed p. For this purpose

we shall require the following uniform convergence result stated in WSZ, pp 16 as part of

the proof of Theorem 4 of their paper. For any compact set B in Rp we have,

sup
β∈B

∣∣∣n−1
n∑
i=1

(∂2ρ?L(β)

∂βj∂βl
− E

∂2ρ?L(β)

∂βj∂βl

)∣∣∣ = op(1).(3.24)

The proof of this statement follows from Nolan and Pollard (1987, Lemma 22) and Pollard

(1984, Theorem 2.37).

Proof of Theorem 3.1.1. It suffices to show that for any ε > 0, there exists a sufficiently

large constant C such that

P
(

inf
‖u‖=C

l∗n(β0 + αnu) > l∗n(β0)
)
> 1− ε(3.25)

where αn := O(n−1/2). This implies there exists a local minimum in the ball (β0 + αnu :

‖u‖ ≤ C), i.e. there exists a local minimizer such that ‖β̂ − β0‖ = OP (αn). Recall Ψn1 and

Ψn2 from assumption (F3). Consider,

Dn(u) = n−1
n∑
i=1

(
ρ∗L(β0 + αnu)− ρ∗L(β0)

)
+ λn

p∑
i=1

dj(|β0
j + αnuj | − |β0

j |)(3.26)

= Tn1 + Tn2, (say, )

here, Tn1 = n−1∑n
i=1

(
ρ∗L(β0 +αnu)− ρ∗L(β0)

)
, and Tn2 = λn

∑p
i=1 dj(|β

0
j +αnuj | − |β0

j |).
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Now by Taylor’s expansion we obtain,

Tn1 = αnn
−1/2ψTn1(w, β0)u+ α2

n
1

2
uTψ∗n2(w, β∗)u

= αnn
−1/2ψTn1(w, β0)u+ α2

n
1

2
uTAu{1 + oP (1)}.(3.27)

Where β∗ is between β0 + αnu and β0 and the second equality follows from (3.24) and

assumption (F3) supβ∈B |Ψ∗n2(w, β)− EΨ∗n2(w, β)| = oP (1) and the assumption (F3).

Now by the Central Limit Theorem ψTn1(w, β0) = OP (1), hence the first term in (3.27) is

of the order OP (n−1/2αn). Consider the second term on the RHS, since A is positive definite

hence the second term is positive and by choosing a sufficiently large C it dominates the

first term uniformly in ‖u‖ = C.

Similarly,

Tn2 = λn

p∑
i=1

dj(|β0
j + αnuj | − |β0

j |)λnαn
∑
j∈S

dj |uj | ≤ λnαn‖u‖(
∑
j∈S

d2
j )

1/2 = O(λnαn).

Thus by choosing C large enough, the second term in RHS of (3.26) dominates the other

two, thus proving (3.25). �

Proof of Theorem 3.1.2. To show the first part of this theorem, observe that since the

loss function ρ∗L is a non convex smooth function, thus the KKT condition for optimatily is

necessary but not sufficient. We show that if (a) is not true then with probability tending

to 1 the necessity of KKT conditions is violated, i.e., for any j ∈ Sc, let if possible β̂j 6= 0

then by the necessity of KKT we have,

n−1
n∑
i=1

∂ρ∗L(β̂)

∂βj
= λndjsign(β̂j)(3.28)
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Now by Taylor’s expansion we obtain,

n−1
n∑
i=1

∂ρ∗L(β̂)

∂βj
= n−1

n∑
i=1

∂ρ∗L(β0)

∂βj
+ n−1

p∑
l=1

n∑
i=1

∂2ρ∗L(β∗)

∂βj∂βl
(β̂l − β0

l )

Following standard arguments,

n−1
n∑
i=1

∂ρ∗L(β0)

∂βj
= OP (n−1/2)

and n−1∑n
i=1 ∂

2ρ∗L(β∗)/∂βj∂βl = n−1∑n
i=1E(∂2ρ∗L(β∗)/∂βj∂βl) + oP (1) by (3.24). Also

by assumption β̂−β0 = OP (n−1/2). Thus the LHS of (3.28) is of the order OP (n−1/2) hence

choosing the condition
√
nλnd

Sc
min → ∞ contradicts the relation (3.28). Thus proving part

(a) of the Theorem.

To prove (b) we begin again with the KKT optimality condition, i.e., in view of Theorem

3.1.1, with probability tending to 1, for any j ∈ S, β̂j 6= 0 thus,

n−1
n∑
i=1

∂ρ∗L(β̂)

∂βj
− λndjsign(β̂j) = 0(3.29)

Now,

∂ρ∗L(β̂)

∂βj
=
∂ρ∗L(β0)

∂βj
+

p∑
l=1

∂2ρ∗L(β∗)

∂βj∂βl
(β̂l − β0

l )

Since, 1√
n

∑n
i=1

∂ρ∗L(β0)

∂βS
⇒ N (0, DS) and

√
nλndj → 0, since by assumption (3.6) for all

j ∈ S, dj ’s are bounded above, thus we obtain the required result. �

We now proceed to the proofs of results in the High Dimensional Setting. As briefly

stated at the beginning of Section 4, the technique used to prove Theorem 3.3.1 is to use
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the convexity of the quantile function ρ(β) and the weighted `1-penalty, along with the

approximation of ρ?L(β) to ρ(β). Some of the steps of the proof are similar to those adopted

by Bülmann and Van der Geer (2011, ch. 4).

Let t = αn/(αn+‖β̂−β0‖1), and set β̃ = tβ̂+(1− t)β0. Note that β̃ ∈ B(αn). Moreover,

β̃ ∈ B(cαn) implies β̂ ∈ B(cαn/(1− c)), ∀ 0 < c < 1.(3.30)

This fact will be used in the sequel.

Next, by the convexity of gn(β) and ‖d ◦ β‖1, and the inequality (3.14), we obtain

gn(β̃)− gn(β0) + λn‖d ◦ β̃‖1 ≤ λn‖d ◦ β0‖1 + sup
β∈Θ
|M?

n(β)−Mn(β)|

+ sup
β∈B(αn)

|Mn(β)− EMn(β)|.

We begin by providing error bounds for β̃, which shall easily extend to β̂. By (3.13) and

(3.16), the second term in the RHS of the (3.31) is op(1). The following lemma provides the

rate of decrease of the last term.

Lemma 3.5.1 For the measurement error model (3.1), (3.2), assume that (A1) and (A2)

hold. Then

sup
β∈B(αn)

|Mn(β)− EMn(β)| = Op
(
αn

√
2 log 2p

n

)
.(3.31)

The proof of Theorem 3.2.1 and Lemma 3.5.1 are provided after the proof of Theorem 3.3.1.
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Consider the following events,

(i) Ω1 = the event that the bounds (3.9) and (3.10) hold,

(ii) Ω2 = the event that the bound (3.31) holds.

Then by Theorem 3.2.1 and Lemma 3.5.1, P (Ω1 ∩ Ω2) ≥ 1− o(1), and on Ω1 ∩ Ω2,

sup
β∈Θ
|M?

n(β)−Mn(β)|+ sup
β∈B(αn)

|Mn(β)− EMn(β)|(3.32)

= O
(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).(3.33)

This follows since αn → 0, and hence the second terms on the LHS of (3.32) converges to 0

faster than the first term.

In the sequel, all arguments shall be restricted to the set Ω1∩Ω2. Recall that β̃ ∈ B(αn).

From (3.31) and (3.32) we now readily obtain that with probability at least 1− o(1),

gn(β̃)− gn(β0) + λn‖d ◦ β̃‖1 ≤ λn‖d ◦ β0‖1 +O
(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).(3.34)

By Lemma 3.3.2 we obtain gn(β̃) − gn(β0) ≥ 0. Thus, the triangle inequality ‖d ◦ β̃‖1 ≥

‖d ◦ β0‖1 − ‖
(
d ◦ (β̃ − β0)

)
S‖1 + ‖(d ◦ β̃)Sc‖1 applied to (3.34) yields

λn‖(d ◦ β̃)Sc‖1 ≤ λn‖
(
d ◦ (β̃ − β0)

)
S‖1 +O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h)(3.35)

≤ cmaxλn‖β̃S − β0
S‖1 +O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).
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Now we consider two cases, Case (i) where,

λn
2
cmin‖β̃ − β0‖1 ≥ O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h),(3.36)

or Case (ii) where,

λn
2
cmin‖β̃ − β0‖1 ≤ O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).(3.37)

Proof of Theorem 3.3.1. First, we prove error bounds for β̃, which, in view of (3.30),

shall be a precursor to obtaining error bounds for β̂.

Suppose Case (i) (3.36) holds. The fact ‖β̃ − β0‖1 = ‖(β̃ − β0)S‖1 + ‖β̃Sc‖1 and (3.35)

imply

λncmin‖β̃Sc‖1 ≤ λn‖(d ◦ β̃)Sc‖1 ≤ λncmax‖β̃S − β0
S‖1 +

λn
2
cmin‖β̃ − β0‖1,

which implies ‖β̃Sc‖1 ≤ c0‖β̃S − β0
S‖1, where c0 = (2cmax + cmin)/cmin. Thus the Compati-

bility condition (3.15) is satisfied for δ = β̃ − β0. Now Lemma 3.3.2, the triangle inequality

‖d ◦ β̃‖1 ≥ ‖d ◦ β0‖1 − ‖
(
d ◦ (β̃ − β0)

)
S‖1 + ‖(d ◦ β̃)Sc‖1, (3.34), and (3.36) together yield

2ca
n
‖Γ1/2X(β̃ − β0)‖22 + λncmin‖β̃Sc‖1 ≤ λncminc0‖β̃S − β0

S‖1.(3.38)

76



Recall cm = cmin + cmax and consider

4can
−1‖Γ1/2X(β̃ − β0)‖22 + 2λncmin‖β̃ − β0‖1

= 4can
−1‖Γ1/2X(β̃ − β0)‖22 + 2λncmin‖β̃S − β0

S‖1 + 2λncmin‖β̃cS‖1

≤ 2λncminc0‖β̃S − β0
S‖1 + 2λncmin‖β̃S − β0

S‖1 = 4λncm‖β̃S − β0
S‖1

≤
4λncm

√
sca√

nφ
‖Γ1/2X(β̃ − β0)‖2

≤ ca
n
‖Γ1/2X(β̃ − β0)‖22 +

4λ2
nc

2
ms

φ2
.

Here the first inequality follows from (3.38), the second from the Compatibility condition in

(3.15), and the third using the identity 4uv ≤ u2 + 4v2. Thus

3can
−1‖Γ1/2X(β̃ − β0)‖22 + 2λncmin‖β̃ − β0‖1 ≤

4λ2
nc

2
ms

φ2
.(3.39)

Now we consider Case (ii). From (3.34) we obtain,

can
−1‖Γ1/2X(β̃ − β0)‖22 + λncmin‖β̃Sc‖1

≤ λncmax‖β̃S − β0
S‖1 +Op

(
γmax

s3/2

h2

√
2 log 2p

n

)
+Op(h),

= O
(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).

In particular,

can
−1‖Γ1/2X(β̃ − β0)‖22 = O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).
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Thus under Case (ii), we have

3can
−1‖Γ1/2X(β̃ − β0)‖22 + 2λncmin‖β̃ − β0‖1 = O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).(3.40)

Hence from (3.39) and (3.40) for any β̃ ∈ B(αn) we have, with probability 1− o(1),

3can
−1‖Γ1/2X(β̃−β0)‖22 + 2λncmin‖β̃−β0‖1 ≤

4λ2
nc

2
ms

φ2
+O

(
γmax

s3/2

h2

√
2 log 2p

n

)
+O(h).

Thereby choosing λn according to the rate assumptions (3.16), with probability 1− o(1),

‖β̃ − β0‖1 ≤
1

2

[
4λnc

2
ms/cminφ+

1

λn
O
(
γmax

s3/2

h2

√
2 log 2p

n

)
+

1

λn
O(h)

]
→ 0.

Thus choosing,

αn ≥
(

4λnc
2
ms/cminφ+

1

λn
O
(
γmax

s3/2

h2

√
2 log 2p

n

)
+

1

λn
O(h))→ 0,

we have by the rate assumptions (3.16), κnαn → 0, and hence

‖β̃ − β0‖1 ≤
αn
2
.

This along with the construction of β̃ and (3.30) applied with c = 1/2 implies that ‖β̂ −

β0‖1 ≤ αn, and thus, β̂ ∈ B(αn). Repeating the above argument with β̃ replaced by β̂ now

gives the desired error bound (3.17), thereby completing the proof of Theorem 3.3.1. �

For a later use we state the fact about fact β̂ ∈ B(αn) as follows. Note that the above
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αn satisfies (3.18). Thus with αn as in (3.18), with probability 1− o(1),

β̂ ∈ B(αn).(3.41)

We now proceed to the proofs of Theorem 3.2.1 and Lemma 3.5.1. For this purpose we

first state some facts about the first two summands in the loss function ρ∗L of (3.4). These

facts are consequences of the properties of normal kernel density. Let, for s, y ∈ R,

l(s, y) = (y − s)(τ − 1) + (y − s)H
(y − s

h

)
,(3.42)

l′(s, y) = τ − 1 +H
(y − s

h

)
+
y − s
h

K
(y − s

h

)
,

l′′(s, y) =
2

h
K
(y − s

h

)
+
y − s
h2

K ′
(y − s

h

)
,

l′′′(s, y) =
3

h2
K ′
(y − s

h

)
+
y − s
h3

K ′′(
y − s
h

).

By the MVT and the definition of standard normal density we readily obtain that uniformly

in y ∈ R, the following facts hold for all s1, s2 ∈ R. For some constant C > 0,

(i) |l(s1, y)− l(s2, y)| ≤ C|s1 − s2|, (ii) |l′(s1, y)− l′(s2, y)| ≤ C

h1
|s1 − s2|,(3.43)

(iii) |l′′(s1, y)− l′′(s2, y)| ≤ C

h2
|s1 − s2|, (iv) |l′′′(s1, y)− l′′′(s2, y)| ≤ C

h3
|s1 − s2|.

The above conditions are the reason for choosing the kernel function K(· ) as the p.d.f. of

a standard normal r.v. We require that the first three derivatives of K(· ) to be bounded

uniformly. In the following we denote li(β) = l(w′iβ, yi) and l′i(β), l′′i (β) and l′′′i (β) are

defined similarly.

Proof of Theorem 3.2.1. First note that for β ∈ Θ, we have ‖β − β0‖1 ≤ 2b0
√
s, by
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the definition of Θ and the assumption ‖β0‖1 ≤ b0
√
s. Note that, ρ?Li(β) = li(β)−

σ2
β
2 l
′′
i (β).

Now,

M?
n(β)− EM?

n(β) =
1

n

n∑
i=1

(
li(β)− li(β0)− E

(
li(β)− li(β0)

))
(3.44)

− 1

n

σ2
β

2

n∑
i=1

(
l′′i (β)− l′′i (β0)− E

(
l′′i (β)− l′′i (β0)

))

+
1

n

σ2
β0 − σ

2
β

2

n∑
i=1

(
l′′i (β0)− E

(
l′′i (β0)

))

≤ I −
σ2
β

2
II +

σ2
β0 − σ

2
β

2
III, say.

We shall show that

(a) sup
β∈Θ
|I| = Op

(√
s

√
2 log 2p

n

)
, (b) sup

β∈Θ
|II| = Op

(s1/2

h2

√
2 log 2p

n

)
,

(c) |III| = Op

( s
h

√
log 2p

n

)
.

Observe that for β ∈ Θ, σ2
β = βTΣβ ≤ γmaxb0s and |σ2

β0 − σ
2
β | ≤ 2b0γmaxs. This fact

along with bounds for I, II and III shall imply the desired result.

Define the empirical process Gn(β) := 1
n

∑n
i=1

(
li(β)− Eli(β)

)
and

Zn := sup
β∈Θ
|Gn(β)− Gn(β0)|.

With σu as in assumption (A3), let cu = 1.4σu. On the event A =
{

max1≤j≤p
1
n

∑n
i=1 u

2
ij ≤
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cu
}
,

1

n

n∑
i=1

w2
ij ≤

2

n

n∑
i=1

(x2
ij + u2

ij) ≤ 2(cx + cu).(3.45)

This bound and the Lipschitz condition (3.43)(i) allow us to apply Lemma 14.20 and Theorem

14.2 as done in Example 14.2 of Bühlmann and Van de Geer (2011) page 503, to yield

E
(
ZnIA

)
≤ 32c1b0(cx + cu)

√
s

√
2 log 2p

n
,

P

(
ZnIA ≥ 8c1b0(cx + cu)

√
s
(

4

√
2 log 2p

n
+

√
2t

n

))
≤ exp

(
− t
)
,

for any t > 0. Choose t = log 2p in the latter bound to obtain

P

(
ZnIA ≥ O

(√
s

√
2 log 2p

n

))
= o(1).

Now to remove the truncation of Zn on the set A, observe that (3.43)(i) also implies that,

|li(β)− li(β0)| ≤ C(κn + max
ij
|uij |)‖β − β0‖1 ≤ 2Cb0(κn + max

ij
|uij |)

√
s,

since for any β ∈ Θ, we have ‖β − β0‖ ≤ 2b0
√
s. Hence,

Zn ≤ ZnIA + c
√
s(κn + max

ij
|uij |)IAc + c

√
sE
(

(κn + max
ij
|uij |)IAc

)
.(3.46)

Now recall that for each 1 ≤ j ≤ p, {uij , 1 ≤ i ≤ n} are i.i.d. L(0, σ2
jj) r.v.’s. Hence,

2
∑n
i=1 |uij |/σjj ∼ χ2

2n, where χ2
2n denotes a chi square r.v. with 2n degrees of freedom.

Now use the probability bounds for chi-square distributions given by Jhonstone (2001) to
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obtain

P
(
Ac
)
≤

p∑
j=1

P
({ 1

n

n∑
i=1

|uij |
}2
≥ c2u

)
≤

p∑
j=1

P
(

2
1

n

n∑
i=1

|uij |
σjj
≥ 2.8

)
(3.47)

=

p∑
j=1

P
(
χ2

2n ≥ n2.8
)
≤

p∑
j=1

P
(
|χ2

2n − 2n| ≥ 2n(0.4)
)

≤
p∑
j=1

exp
(−3n

100

)
≤ exp

(−3n

100
+ log p

)
.

Next, use the fact that |uij | ∼ Exp(σjj), to obtain

E
(

(max
ij
|uij |)2

)
≤
∑
i,j

E(u2
ij) ≤ npcu

Thus, using this bound, (3.47), and the Cauchy-Schwarz inequality, we obtain

(a) P
(

(max
ij
|uij |)IAc > n−k

)
≤ nkE

(
(max
ij
|uij |)IAc

)
≤ nk

√
npcu exp

(−3n

100
+ log p

)
,

(b)) E
(

(max
ij
|uij |)IAc

)
≤
√
E
(

(max
ij
|uij |)2

)
P (Ac) ≤

√
npcu exp

(−3n

100
+ log p

)
.

The exponential bound in (a) implies that the probability of the event in (a) tends to zero,

for any k > 0. This in turn implies that the second summand in (3.46) satisfies

√
s(κn + max

ij
|uij |)IAc = op(n

−k), ∀ k > 0.

Similarly, the bound in (b) implies that the third summand in the bound of (3.46) decreases

to zero at an exponential rate. Thus, with probability at least 1 − o(1), the remainder two
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summands in the bound in (3.46) decrease to zero, in probability, faster than ZnIA. Hence,

sup
β∈Θ
|I| = Zn = Op

(√
s

√
2 log 2p

n

)
.(3.48)

We can similarly obtain a bound for term II of (3.44). An outline is given below. Define

the empirical process G̃n(β) := 1
n

∑n
i=1

(
l′′i (β)− El′′i (β)

)
. Let

Z̃n := sup
β∈Θ
|G̃n(β)− G̃n(β0)|.

Proceeding as earlier, (3.43)(ii) along with the bound (3.45) allow us to apply Lemma 14.20

and Theorem 14.2 of Bühlmann and Van de Geer (2011), page 503, which yields

E
(
Z̃nIA

)
≤ 32c3b0(cx + cu)

√
s

h2

√
2 log 2p

n
, and

P

(
ZnIA ≥ 8c3b0(cx + cu)

√
s

h2

(
4

√
2 log 2p

n
+

√
2t

n

))
≤ exp

(
− t
)
, ∀ t > 0.

Choose t = log 2p in this bound to obtain

P

(
Z̃nIA ≥ O

(√s
h2

√
2 log 2p

n

))
= o(1).

Get rid of the truncation on the set A as done for I, to obtain

sup
β∈Θ
|II| = Z̃n = Op

(√s
h2

√
2 log 2p

n

)
.(3.49)

Lastly, consider the term III in (3.44). Observe that |l′′i (β0)| ≤ ch−1, for c < ∞. Then
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Lemma 14.11 of Bühlmann and Van de Geer (2011) yields

P
( 1

n

∣∣ n∑
i=1

(
l′′i (β0)− El′′i (β0))

∣∣ ≥ t
)
≤ 2 exp

(
− nt2h2

2c2
)
.

Choosing t = h−1
√

log 2p
n , we obtain

|III| = 1

n

∣∣ n∑
i=1

(
l′′i (β0)− El′′i (β0))

∣∣ = Op

(
h−1

√
log 2p

n

)
.(3.50)

Now use (3.48), (3.49) and (3.50) in (3.44), and the fact that the rate of decrease of (3.49)

is the slowest, to conclude (3.9) of Theorem 3.2.1.

The proof of (3.10) similar. This completes the proof of Theorem 3.2.1. �

Proof of Lemma 3.5.1. Define ρ(s, yi) = ρτ (yi − s). Then observe that it satisfies the

following Lipchitz condition,

|ρ(s1, yi)− ρ(s2, y2)| ≤ max{τ, 1− τ}|s1 − s2|.

Then proceed as in the proof of (3.9) of Theorem 3.2.1 to obtain the desired bound. �

Proof of Theorem 3.3.2. Let αn be as defined in (3.18). By (3.41), β̂ ∈ B(αn), with

probability 1−o(1). Thus, with arbitrarily large probability, for all large n, β̂ is in the interior

of Θ and not on its boundary. Hence, KKT conditions are necessary for this optimum. We

prove the desired result via contradiction. For any j ∈ Sc, let if possible β̂j 6= 0. Then by

the necessity of KKT conditions,

84



d

dβj

(
n−1

n∑
i=1

ρ?Li(β̂)
)

= λndjsign(β̂j).(3.51)

Recall (3.42). The first derivatives of ρ?Li(β) and ρLi(β) w.r.t βj are

ρ?
′
Li,j(β) :=

d

dβj
ρ?Li(β) = −wij l′i(β) +

σ2
β

2

[
l′′′i (β)

]
− wij

n∑
k=1

σkjβj
[
l′′i (β)

]
,(3.52)

ρ′Li,j(β) =
d

dβj
ρLi(β) = −xij

[
τ − 1 +H

(εiβ
h

)
+
εiβ
h
K
(εiβ
h

)]
.

Let ρ′i,j(β) := −xij
[
τ − I{yi − x′iβ ≤ 0}

]
, ψ∗

′
Li,j(β) := Eρ?

′
Li,j(β), ψ′Li,j(β) := Eρ′Li,j(β),

ψ′i,j(β) := Eρ′i,j(β), and

S?n,j(β) = n−1
n∑
i=1

(
ρ?
′
Li,j(β)− ρ?

′
Li,j(β

0)− ψ∗
′
Li,j(β) + ψ∗

′
Li,j(β

0)
)
, T ?B,j = sup

β∈B(αn)

∣∣S?n,j(β)
∣∣.

The fact that ψ′i,j(β
0) = E(ρ′ij(β

0)) = 0, and triangle inequality yield

|n−1
n∑
i=1

ρ?
′
Li,j(β̂)| ≤ n−1

∣∣∣ n∑
i=1

(
ρ?
′
Li,j(β

0)− ψ∗
′
Li,j(β

0)
)∣∣∣+ n−1

∣∣∣ n∑
i=1

(
ψ?
′
Li,j(β̂)− ψ′i,j(β̂)

)∣∣∣
+n−1

∣∣∣ n∑
i=1

(
ψ′i,j(β̂)− ψ′i,j(β

0)
)∣∣∣+ T ∗B,j .

= J1 + J2 + J3 + J4.

We will show the relations (3.53)-(3.53) below hold for all j ∈ Sc simultaneously with
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probability at least 1− o(1).

J1 := n−1
∣∣∣ n∑
i=1

(
ρ?
′
Li,j(β

0)− ψ?
′
Li,j(β

0)
)∣∣∣ = o(djλn),(3.53)

J2 := sup
β∈B(αn)

n−1
∣∣∣ n∑
i=1

(
ψ?
′
Li,j(β)− ψ′i,j(β)

)∣∣∣ = O(κnh) = o(djλn),(3.54)

J3 := sup
β∈B(αn)

n−1
∣∣∣ n∑
i=1

(
ψ′i,j(β)− ψ′i,j(β

0)
)∣∣∣ = o(djλn),(3.55)

J4 := T ∗B,j = o(djλn).(3.56)

Lemma 3.5.2 proves (3.54) and (3.55) and Lemma 3.5.3 proves (3.53) and (3.56). Finally,

combining (3.53)-(3.56), we obtain that for n large, with probability 1− o(1),

∣∣∣ d
dβj

(
n−1

n∑
i=1

ρ?Li(β̂)
)∣∣∣ < djλn, ∀ j ∈ Sc.

This contradicts the optimality condition (3.51), and also completes the proof of Theorem

3.3.2. �

Lemma 3.5.2 Under the conditions of Theorem 3.3.2 we have,

max
1≤j≤p,β∈Rp

n−1
∣∣∣ n∑
i=1

(
ψ?
′
Li,j(β)− ψ′i,j(β)

)∣∣∣ = O(κnh) = o(λnd
Sc
min),(3.57)

max
j∈Sc

sup
β∈B(αn)

n−1
∣∣∣ n∑
i=1

(
ψ′i,j(β)− ψ′i,j(β

0)
)∣∣∣ = o(λnd

Sc
min).(3.58)

Proof. Let ai = x′i(β − β
0), and εiβ := yi − x′iβ = εi − ai. By Theorem 2 of WSZ,

n∑
i=1

(
ψ?
′
Li,j(β)− ψ′i,j(β)

)
=

n∑
i=1

(
ψ′Li,j(β)− ψ′i,j(β)

)
.
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But

ψ′Li,j(β)− ψ′ij(β) = −xijE
(
H
(εiβ
h

)
− 1{εiβ > 0}+

εiβ
h
K
(εiβ
h

))
(3.59)

= −xijE
(
H
(
−
∣∣εiβ
h

∣∣)+
εiβ
h
K
(εiβ
h

))
.

Now,

E
(
H
(
−
∣∣εiβ
h

∣∣)) =

∫ ∞
x=−∞

H
(
−
∣∣x− ai

h

∣∣)fi(x)dx = h

∫ ∞
t=−∞

H(−|t|)fi(ht+ ai)dt

= h

∫ 0

t=−∞
H(t)fi(ht+ ai)dt+ h

∫ ∞
t=0

H(−t)fi(ht+ ai)dt = O(h),

uniformly in 1 ≤ i ≤ n, β ∈ Rp, because by assumption (A1), sup1≤i≤n,x∈R fi(x) < ∞.

Similarly, one verifies that max1≤i≤n,β∈Rp |h−1EεiβK(εiβ/h)| = O(h). Hence from (3.59)

we obtain,

sup
1≤i≤n,1≤j≤p,β∈Rp

∣∣ψ′Li,j(β)− ψ′i,j(β)
∣∣ = O(κnh) = o(λnd

Sc
min).(3.60)

The last equality follows from the rate assumptions (3.20). This bound and assumption (A2)

completes the proof of (3.57).

Next, we show (3.58). By assumption (A1),

ψ′i,j(β)− ρ′i,j(β
0)
)

(3.61)

= −xij
[
Fi
(
x′i(β − β

0)
)
− Fi(0)

]
= −xijfi(0)xTi (β − β0)− xij Ĩi,
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where Ĩi = Fi(x
′
i(β − β

0))− Fi(0)− fi(0)xTi (β − β0). Now for any j ∈ Sc,

∣∣∣ 1
n

n∑
i=1

xijfi(0)x′i(β − β
0)
∣∣∣ ≤ ∥∥∥ 1

n
xijfi(0)x′i

∥∥∥
∞
‖β − β0‖1 = O(αn) = o(λnd

Sc
min),(3.62)

this follows since fi(0) and n−1∑n
i=1 x

2
ij are bounded by a constant for all 1 ≤ i ≤ n and

1 ≤ j ≤ p. Also, from assumption (A1) we obtain,

max
j∈Sc

∣∣∣ 1
n

n∑
i=1

xij Ĩi

∣∣∣ ≤ κn
n

n∑
i=1

Ĩi ≤ C2
κn
n

n∑
i=1

(
x′i(β − β

0)
)2
.(3.63)

≤ Cκ3
n‖β − β0‖21 = O

(
κ3
nα

2
n

)
= o(λnd

Sc
min).

Now use (3.61)–(3.63) to obtain (3.58), thereby completing the proof of the lemma. �

Lemma 3.5.3 Under the conditions of Theorem 3.3.2,

max
j∈Sc

1

n

∣∣∣ n∑
i=1

(
ρ?
′
Li,j(β

0)− ψ?
′
Li,j(β

0)
)∣∣∣ = op(λnd

Sc
min)(3.64)

max
j∈Sc

T ∗B,j = op(λnd
Sc
min).(3.65)

Proof The structure of this proof is similar to the proof of Theorem 3.2.1. In the

following proof c > 0 shall denote a generic constant that may be different depending on the

context. For any 0 < δ, define the event

A =
{

max
1≤j≤p

1

n

n∑
i=1

u2
ij ≤ cu, max

1≤j≤p,1≤i≤n
|uij | ≤ nδ

}
.
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Use the fact |uij | ∼ Exp(σjj) to obtain

P
(

max
1≤i≤n,1≤j≤p

|uij | > cnδ
)
≤

p∑
j=1

n∑
i=1

P
(
|uij | ≥ cnδ

)
≤ 1

σu
exp

(
− cnδ

σu
+ log p+ log n

)
.

This bound and (3.47) together imply that

P (Ac) ≤ 1

σu
exp

(
− cnδ

σu
+ log p+ log n

)
+ exp

(−3n

100
+ log p

)
.

Now,

n−1
∣∣∣ n∑
i=1

(
ρ?
′
Li,j(β

0)− ψ?
′
Li,j(β

0)
)∣∣∣

≤ n−1
∣∣∣ n∑
i=1

wijγ
′
i(β

0)
∣∣∣+

σ2
β0

2
n−1

∣∣∣ n∑
i=1

wijγ
′′′
i (β0)

∣∣∣+
∣∣∣ n∑
i=1

σijβ
0
j

∣∣∣n−1
∣∣∣ n∑
i=1

wijγ
′′
i (β0)

∣∣∣,
where γ′i(β

0) := l′i(β
0) − El′i(β

0), γ′′i (β0) := l′′(β0) − El′′i (β0) and γ′′′i (β0) := l′′′i (β0) −

El′′′i (β0). Using κn ≤ nδ, we obtain

(i) |wijγ′i(β
0)IA| ≤ cnδ, (ii) |wijγ′′i (β0)IA| ≤ cnδh−1, (iii) |wijγ′′′i (β0)IA| ≤ cnδh−2.

Hence,

P
(

max
1≤j≤p

1

n

∣∣∣ n∑
i=1

wijγ
′
i(β

0)IA
∣∣∣ ≥ t

)
≤

p∑
j=1

P
( 1

n

∣∣∣ n∑
i=1

wijγ
′(β0)IA

∣∣∣ ≥ t
)

≤ 2 exp
[
− cn−δnt2 + log p

]
,

where the last inequality follows from Lemma 14.11 of Bühlmann and Van de Geer (2011).
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Thus choosing t = cnδ
√

2 log 2p/n, for some constant c > 0, we obtain

1

n

∣∣∣ n∑
i=1

wij l
′
i(β

0)IA
∣∣∣ = Op

(
nδ
√

2 log 2p

n

)
.(3.66)

Now to remove the truncation on the set A, observe that,

max
1≤j≤p

|
n∑
i=1

wijγ
′
i(β

0)| ≤ max
1≤j≤p

|
n∑
i=1

wijγ
′
i(β

0)IA|+ max
1≤j≤p

c(κn + max
i,j
|uij |)1Ac(3.67)

+c max
1≤j≤p

E
(

(κn + max
i,j
|uij |)1Ac

)

Proceed as in the proof of Theorem 3.2.1 to show that the last two terms on the RHS

converge to zero faster than the first term, in probability. Thus we obtain,

1

n

∣∣∣ n∑
i=1

wijγ
′
i(β

0)
∣∣∣ = Op

(
nδ
√

2 log 2p

n

)
,(3.68)

A similar argument yields that

max
1≤j≤p

1

n

∣∣∣ n∑
i=1

γ′′i (β0)
∣∣∣ = Op

(
h−1

√
2 log 2p

n

)
, max

1≤j≤p
1

n

∣∣∣ n∑
i=1

wijγ
′′′(β0)

∣∣∣ = Op

(nδ
h2

√
2 log 2p

n

)
.

Recall that σ2
β0 ≤ b0γmaxs, and |

∑n
k=1 σkjβj | ≤ b0σus. Now combine these results with the

rate assumptions (3.20) to obtain (3.64).
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To prove claim (3.65), note that

S?n,j(β) = − 1

n

n∑
i=1

wij
(
l′i(β)− l′i(β

0)− El′i(β)− El′i(β
0)
)

+
σ2
β

2

1

n

n∑
i=1

wij
(
l′′′i (β)− l′′′i (β0)− El′′i (β)− El′′i (β0)

)
+
σ2
β − σ

2
β0

2

1

n

n∑
i=1

wij
(
l′′′i (β0)− El′′′i (β0)

)
−

n∑
k=1

σkjβj
1

n

n∑
i=1

(
l′′i (β)− l′′i (β0)− El′′i (β)− El′′i (β0)

)
−

n∑
k=1

σkj(βj − β0
j )

1

n

n∑
i=1

(
l′′i (β0)− El′′i (β0)

)
= −I +

σ2
β

2
II +

σ2
β − σ

2
β0

2
III −

n∑
k=1

σkjβj IV −
n∑
k=1

σkj(βj − β0
j )V.

We begin with the term II, which turns out to have the slowest rate of convergence. Define

the empirical process G′′′n,j(β) := 1
n

∑n
i=1wij

(
l′′′i (β)− El′′′i (β)

)
and let,

Z ′′′n,j = sup
β∈B(αn)

∣∣G′′′n,j(β)− G′′′n,j(β
0)
∣∣.

Also, observe that from (3.42) and (3.43) we have,

∣∣wij l′′′(s1, yi)− wij l′′′(s2, yi)
∣∣ ≤ c(κn + max

i,j
|uij |)h−3|s1 − s2|.

Then as in the above proof of Theorem 3.2.1, apply Lemma 14.2 and Theorem 14.2 of
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Bühlmann and Van de Geer (2011 to obtain

P

(
max

1≤j≤p
Z ′′′n,jIA ≥ 8cb0(cx + cu)nδh−3αn

(
4

√
2 log 2p

n
+

√
2t

n

))

≤
p∑
j=1

P

(
Z ′′′n,jIA ≥ 8cb0(cx + cu)nδh−3αn

(
4

√
2 log 2p

n
+

√
2t

n

))
≤ exp

(
− t+ log p

)
.

Now choose t = c log p, c > 0, so that the last term in the above expression is o(1). Now

removing the truncation on the set A as done in the proof of Theorem 3.2.1, we obtain

max
j∈Sc

sup
β∈B(αn)

|II| = max
1≤j≤p

Z ′′′n,j = Op

(
nδh−3αn

√
2 log 2p

n

)
,

where the last equality follows by the rate assumption (3.20). A similar argument applied

to the terms I and IV yields that

max
j∈Sc

sup
β∈B(αn)

|I| = Op

(
nδh−1αn

√
2 log 2p

n

)
, max

j∈Sc
sup

β∈B(αn)
|IV | = Op

(
h−2αn

√
2 log 2p

n

)
,

An argument similar to the one used for proving (3.64) yields

max
j∈Sc

|III| = Op

(nδ
h2

√
2 log 2p

n

)
, max

j∈Sc
|V | = Op

(
nδh−1

√
2 log 2p

n

)
.

Now claim (3.65) follows from these bounds, the rate condition (iii) of (3.20), and the facts

|
∑n
k=1 σkj(βj − β0)| ≤ 2b0σu

√
s, and σ2

β ≤ b0γmaxs. This completes the proof of Lemma

3.5.3.
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