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ABSTRACT

A MODEL FOR THE DISTRIBUTION

OF INDIVIDUALS BY SPECIES

IN AN ENVIRONMENT

by John W. McCloskey

The problem considered in this thesis is that

of developing a model for biological environments

so that, for samples of individuals obtained from

the environment, the number of species and the

number of individuals in the respective species can

be predicted, It is assumed that the number of

individuals in the environment, as well as the num-

ber of species, is countably infinite so that only

in environments where these quantities are very

large will the model be realistic.

In Chapter 1 the model is developed and in

Chapter 2 a procedure developed to obtain maximum

likelihood estimates of the parameters of the model

using a sample of data already gathered from the

environment. Since there are three parameters in

the model the estimates are obtained from the



 John W. McCloskey

simultaneous solution of three equations which is

accomplished by means of an iterative Newton procedure.

As a means of studying the behavior of the model

a simulation procedure was developed in Chapter 4

which would choose a sample from the model for a

given set of parameters. This procedure uses random

variables having Binomial, Poisson, Hypergeometric,

Truncated Poisson and Exponential distributions.

Methods were thus developed in Chapter 3 to produce

random variables with these specified distributions

rapidly and with as few input random variables as

possible. The fundamental technique used in obtain-

ing these random variables is the acceptance-rejection

technique introduced by von Neumann.

Chapter 5 and Chapter 6 are devoted to the

analysis of data that was taken from actual biological

environments. The analysis is accomplished through

procedures developed in the previous chapters and the

Control Data 3600 computer used for the actual calcula-

tions. Several FORTRAN 60 programs were used for these

calculations which are tabulated in the appendix.
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  T~lfiQnR€_thfi collection of all the individuals of a certain _

 

  55.Gnr_e§ample butterflies, present in an environment. Consider'*l_pp§rtition of the individuals into species designated by {31,sz,...}Vhflre the species are arbitrarily named 81,8 ,... and suppose the

 

the number of species is very large and in shmpling from the
environment there is assumed to be a strictly positive probability
of finding a new species regardless of the number of species that
have already been found. Also define a probability pi for each

as

species 3. such that 2 p. = l.
' 1

i=1 1
Consider now the task of choosing a sample of N individuals

independently from the environment. Let these individuals be
designated by II’IZ" "IV' the individuals are chosen according

l

to the restriction

PEI. is from the species 3.] = p.
for i = 1,2,- .N

1

J J
j = 1,2,.

After tne individuals are chosen from the environment the

sample will contain say 3 species for which there are n1 species

with one individual, n2 species with two individuals and in general

“i sPecies with i individuals subject to the conditions

N
N

Z n. = s and 2 i ni = N.
i=1 1

i=1

' Object of this report is to develop a model for natural
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2.

Consider therefore the generalization of the probabilitiespi where for each species si in the environment it is assumed thereis an "intensity" xi proportional to pi. Let 2 = _;;xi where z isdefined to be the total intensity of the environment. Define anintensity function f to be a non-negative integrable function on
I0,60 with the property that (i) for any 6 > 0, f€f(x)dx = + m

m

w
0

and I f(x)dx < + m and (ii) I xf(x)dx < + m.

eThe model can now be stgted as follows: Given an intensity
function f for an environment, for any interval [a,b) with

O < a < b E +m the number of species present with intensity X1.- in
tge interval a 5 xi < b has a Poisson distribution with mean

f f(x)dx and for disjoint intervals the number of species with
intensities in the respective intervals have independent Poisson
distributions. Condition (i) on f is made so that the expected

number of species will be infinite and (ii) is made so that the

total intensity will be almost surely finite. Let Ui be a random
variable representing the number of individuals observed from

species 51.- for i = 1,2,.... Suppose U1, 2,... to be independent
Poisson random variables with means ksxi’ where ks is a positive

constant and xi the intensity of the respective species. Define

a sample to be an observation of the random vector U = (U1,U2,...)

and define Ym = (number of Ui = m) for m = 1,2»--

The development which follows in this section is an attempt

to give motivation for the actual development of the model in the

next section. Thus, let X = (X1,X2,..-) be a set 0f intensities
obtained from the process and define Z = f Xi and the species

‘..  



3.

with intensity xi will be designated species si.

Then

x.
PEI1 is from species sj] = 22-for j = 1,2,.... Let s: be

the species of individual I1 and let V1 be the intensity of
this species. Choose a second individual 12 randomly from the
environment and examine its species. If it is different from
8:, let s; be its species and V2 the intensity of this species.

1If however 12 is from the same species as I1 continue selecting
individuals independently from the environment until one is

found which has a different species than I1 and let the species

*

-

of this individual be 32. Consider now the two random variables

_ l

_ 2211 - Z“
and

W2 —Z-V

Theorem 1: Suppose that w1 and Wé are independent and identically

distributed according to a distribution H on [0,1]. If

1

)\+1

 

0 ( E(w1) < 1, then define A such that E(w1) = It then

follows that d H(u) = lCl—w)A-1dw.

Proof: Let YI. for i = 1,2, be the proportion of individuals in

the environmen: from the same species as individual II' The

individuals 11 and 12 are chosen independently from the same

environment so YI and YI are independent and identically
1

distributed. YI is defined as follows

and
wl with probability w1

2 (1—w1)w2 with probability (l-Wl).
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Let the rth moment of H be pr. Then for r > 0

r _ r _ rgr 2041 ) - E<YI ) - E(YI )
1 2

r+l r
r+l12w1 + w2 (1-w1) J

+1
= ”r+l + H‘r E(1-W1)r

r+l
-

k r+l‘ ”r+l + “‘r [1:0 ('1) (k >“kJ

Solv1ng for “r+l

»

r

k r+lu- =u [1-E(-1)<>u]+r l r k=0
k k

1 + (_1)r+1 u

r

From this equation ”r+l is determined
by p0,p1,...,ur

unless

r is even and pr = 1. If however pr=l for r > 0 the distribution

is concentrated
at one and all “k = 1. This distribution

with uk= l
for all k indicates

that all individuals
are from the same species

which violates the assumption
that the environment

contain an infinite

number of species.

In order to determine the moments pr an equality must first be

established. Thus

1
l r11

_1IE (l-x)r+1 (1-x)A-1dx =2! 1:0 (-1)k<r1:1> xk(l-x)A dx

r+l
l

k r+l k A-1= Z (-1)
x (l-x) dxk=0 Ck) g

r+l

r+l .k r+l

k P+

a -1
[(+1 1" A = E (-1)

k1 1112
REO ( ) k) I‘LL—LN k=0 (1‘5 raw-1+1)

k+1+l)

IIIIIIIIIiL.  
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Thus

§HWC®MFA =lwfiflbonm(mNF

H, k 144me i
EAL

l"(r+2+}\)

- (-1)r+l (r+l)! EL

1

r+l+1

I‘( r+2+).)

It is to be show now with the use of the above equation that

1

H = klr A+1 by induction.
Obviously

p. = ~ and assume
1‘ (k+1+x)

1 “1

RIF A+l
”k: I"(k+1+)\) for k= 0, 1,2,...r.

From the recursion formula for “r+l

_ rll‘ l+1 r k (r+l kJFgAH)“r+l ‘ mam) l 1 ‘ 1:0 ('1) k) 1“(k+1+>.)

r+l I“ A+11+ (-1) r! T_Hr+l+l)

KL

r! F)\+1

1
_ _

+ I
g I"(k+1+>\) I: 1 ' r+1+A ( DH1(r I) F r+2+?\ ]

N

1+(-1)r+1 r! I‘ x+1

I"(r+l+)»)

r+l
_ r+l gr+12 r! F A+lr! l" A+l [ r+1+}\ + ( I) r+1+K F—(T+%

]=l" k+l+K

( )
1+ (-1)r+l r! ng+12

I“(r+1+A)

_Sr+l!!l"g}\+12

=I"(r+2+7\)

k-l
Consider

the rth moment of the distribution
X(1-X)

for 0 5 x5 1 J
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0 otherwise

1

I xr 1(lcx)A-1dx
= A F r+l F A = r1 F A+l .

o

I‘(r+1+l)
I"(r+1+>.)

This distribution has the desired moments and since its momentgenerating function exists in a neighborhood of zero

dH(w) = A(l-w)A-1dw
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if), fiiz halos-ant of the Mode!
'

"W", be an, intensity function and
. ‘ “‘1 .

‘ is“: ”39$ intensities

snaps-avian section us i. . .

  
let X = (xl.x§,x3....)

obtained from the process described in

   

ng f as the intensityfunction. Let

 

z = 2 xi and let Z have density g. Define V1 to be a random

' i=1

 

X.variable such that P(V1 = xilx) = z—1 for i = 1,2,... and define
Y 3 Z - V1.

Lemma 1: If f is a continuous intensity function the joint
density h of V1 and Y can be expressed in the form

v1f(v1)

h(v1,y) =W $00

The proof of this result was obtained by Professor
Herman Rubin

and is to be published
in a paper by him.

Make the substitution 2 = v1 + y so that
v1f(v )

hv z(v1.2) = 2‘ g(z—v1). Now integrating with respect to

1’

V1 to obtain the density of the total intensity
2

z v1f(v1)
g(z) =f h.V Z(v1,z)dv1 = I z‘gh—VIMV1 .0 1’

0

V1Define W = Z— . Then

hi‘,,z(w,z) =W
= wzf(wz)g(z(l-w)).

Theorem 2: If hw'z(w,z) = wzf(wz)g(z(1-w)) for 0 S w 5 1 and

0 < z < a and if [Ra/'20,) é :p(w) and assuming f and g to be twice

differentiable then f(x) = c x-lekx for O < x < an and

8(2) = c'zfi'ekz for O < z < co .

hw,z(""z’_ wz f(wz) (z(l-w))
PM“ hWis”) = *3— ' gmg(z
  = (90¢)
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,

103 w + log 2 + log f(wz) + log g(z(1-w))

= 108 @(2) + log 3(2)

Let ¢1(wz) - log f(wz)

and ¢2(2(1-W)) = log g(2(1-W))

thus

log w + log 2 + W1(wz) + ¢2(z(1-w)) = log <p(w) + log g(z)

taking derivative with respect to w and then with respect to z

1
l

.
' WE + z *1 (wz) ‘ Z *2 (2(1-W)) - EYéil

ii (W2) + WZ Wi'(WZ) - Wé (z(l-w)) - z(l-w) W; (z(l-w)) = 0-

Thus

wz WE (wz) + Wi (wz) = z(l-w) $3 (z(l-w)) + W5 (z(l-w))

Since the above equation is valid for all values of z and w

the following must be true

wz WY (wz) + vi (wz) = k

and z(l-w) $3 (z(l-w) + W5 (z(l-w)) = k.

Solving then these two differential equations

H l =u¢1<u)+¢1(u> k

u ¢i (u) = ku + H

H

‘4‘1' (U) =k+;

W1 (u) = ku + H log u + M

f(u) = e¢l(u) = c uH eku

Similarly

8(v) = e¢2(v) c c' vH' ekv

Finding now the particular solution

‘.  



"-3-". _ w: E vs a l-w
' h by]. 3(2

H H esz c'z(1-w)H' ekz(l-w)
.WSCWZ

'

H'CZH ekz

 

lc wn+1 zH+l(1_w)H

which implies that H - -1 yielding the final result f(u)-c u'leku .

From the above analysis and in an effort to make the model as

general as possible the form of the function f was decided to be-cx

      

x

Obviously A > O and due to the restrictions
of the model c > 0

since £ f(x)dx a 0 as N a m because the total intensity of the

largee species is almost surely finite. Also a 3 1 because if a < 1

  

*7 Ae‘c" A Ael'“thenJ: f(x)dx = 1! dx 5 E —a dx = l-a < 0° controdicting the
x

restriction that the expected number of small species present be

infinite.

From the development in Chapter 2 it can easily be observed

that the transformation x 4 Ax, c a c/A, ks 4 k8 /A, A a All

In:
preserves the model so that only a, ks/(k8+6) and A/(kS+C) are
identifiable. For this reason only the cases c = O and c - 1 need

be considered. The general form of the function f was taken to be

 

f(x) = xfor the work which immediately follows while in Chapter 6
X“

a generalized form of the case c = 0 is considered.
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" 5'; 4‘ 3.5.5331. (has. 0: the Model

Consider now a special case of the model developed in t

I

he

  

-X

gfevious section where f(x) = Ae-— .

X

 

Knowing 8(a) has the form  H' -z
g(l) = c's e and using the previously

established
equation for g(s),

   

   

  

   

   

    

  

    

 

   

  

  

  

 

z v1f(v1)
8(8) = ghvlz(V1.z)dv1 =f -——;—-— g(z-v1)dv1°

-v
2

—z+v
H' l

_1...'

= I -——-—-—— c'(z-v ) e dv

‘ ,
O v12

1
1

-z z
-z H'+l_ Ac'e

H' _ Ac'e z
- z {(z—vl) dvl - z(H'+l) '

This equation implies H' = A - 1 and since

” 1
1I c' 2A- e_z dz = F(A), then c' = -—-

0
TCA)’

Therefore
g(z) = f%X3 2A“1 e-z.

For j = 1,2,... define Vj to be a random variable such that

 

P(Vj = Xi I X) = 1 for all i except

those i's for which xi = Vk for k = 1,2,...j-1.

Let

   

   

  

Vi

wi = 1—1

— 2 V

i=1 3

z xf(x)By repeated application of the formula g(z) = f— g(z-x)dx

1-1 0
which waszpreviouslyestablished 2-12 vj

i=1 if(v )2 vl v f(v ) v. f(v. )

8(2) = zv—1--—1 -—2-——2- i—ll—gu-svmvi...~- a (z-vl) 1—1 j-l j

 

(1:1F.Yj)



1
i

ll.

i—l

z z-v1 ztglvj

-- v f(v) v f(v)
v.f(v.)

1

= f I ...
1 1 2 2 ... 1 1 g(z- 2 v )dv ...dv

o o o z (z-v ) 1—1 j=1 J 1 1
1

(z— 2 v.)

i=1 3
,

so the joint density for V1,V2, ...,Vi,Z where v0 = 0 becomes

TE]. vjf(v1.)
i

h
(v ,v ,...,v.,z)=

g
g(z—ZVJ.

V1,V2,...,Vi,Z

1 2
l

J=1
j‘l

J=1 J

z— E vk

k=O

-xTheorem 3: In an environment where f(x) = A? and

_ 1 A-l —z

. . .

g(z) — m)z e and where Vi' wi,Z and the JOlnt denSLty

V1,V2,...,Vi,z are defined as above, wi is distributed

according to the distribution

A—l

  

*

= _

, < 1.

h (wi) A(1 wi)
for 0 5 W1 _

Proof: For i i 3 the joint density

7' i

i

h
(v ,v ,...,v.,z) = IT v f(v.) ] g(z- v.)

V1,V2,...,Vi,Z

1 2
l

l. i=1 J]_ J \
i=1 J

(‘z— 2 v I)

k=0 k

i i

- L
1 — 2 v )A-le_z— F(A) [ II; j—1 (2 ,=1 J

“— <2- ): vk>

k=0

1 l 1

1‘1
_2

V A_1 —ZA [ T‘- 1 (z— E v )A ( l — ) e .
PM) J- 1‘1

j=1
1—12- E vk

z— 2 v.
k=0

J
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Make the substitution Wi = 1_i
so that

z —2 V.

i=1 3

Vl’VZ’""Vi_1wi:z(v1’""vi-lwi’z) =

 

i i-l
1-1A

-f"‘ [ ll -} ] (Z - E V.)A 1 (l—w.)A-1e_z.
(A) .=1 J 1 \

,_ J
l

J C 2- Z V / J_1

k=0 k

Integrating this density then

i—2

z- E v.

z j=l J

hwi’z(wi,z) = % ... g hV
(v

,...,v. ,w.,z)dv.1’V2""Vi-l’wi’z
1 1-1 1 1-

1. .dv1

_ A A—l A-l -z— ffx3 z (l—wi) e .

as

*Integrating now with respect to 2, h (wi) = ghwi’z(wi,z)dz

.é. A—l A—l -z
F(A) (l—wi) z e

u

O
L
—
n
a

dz = A(l-wi)A—1. For i = 1,2, the

same procedure is followed with simplification in the integration.

  



  "7.1.: mm Likelihood Estimates of Parameters

 

all. “he generalform of the intensity function has been established

to be f(x) - -:2;- where A, a are parameters of the function. In

any sample that is taken from the model the number of individuals

in each species is assumed to be Poisson with mean proportional

to the intensity of the species; that is the number of individuals

in the sample from the 1th species is Poisson with mean ksxi where

ks is defined to be the intensity of the sample. This parameter

k8 is also to be estimated.

Suppose now that data is available from this model and it is

 
desired to estimate the above parameter. Let ym be the number of

Species with m individuals in the sample, I the number of individuals

and s the number of species. The”following trivial equations are

to hold 2 ym s and 2 m ym I.
m=1

m=1

In accordance with the above notation the probability that

there will be m individuals in the sample from a species withm

X -k x
intensity x is (kS!) e s and the expected number of species inm

the sample with m individuals is

mD

k x
as - - (ksx)

‘ksx

f‘S—e s f(x)dx=zj)““‘xa’exTe
dx0

 

m

Aka I‘gm-oH-l)
(ks m-ar+1 1.111114%

m’ (k3+1)m‘°*1= (k81"“)
ks+1rml

 



   

  

‘Eht total umber of species present in the sample has

 

I aifltribution,the ym are independent and have a Poisson

‘ hflitbution with mean B 11‘"L)

The density thus becomes

°’ l lf(yl:Y2;y3,---;B;Tlfl)
‘ TT e m_m

m=1 y

ym

where ym is as previously

“I

defined and Am = 311‘“ 11%

the sample with :11 individuals.

, the expected number of species in

The logarithm of the density as a function of the three

parameters ignoring constants becomes

L<B,a,n> = 2- Wan—11+

Now simplifying the first term

m§1 ym[log B+m log n+log F(mqr+l)--logml].

Q

Q mm
m P m-a+l _ _ B may -x

m§l - B“ m! _ m§1 m! g x e dx

com m I
a

= f 21 - Bml xm qu e-xdx = -B g x'a e x (eTlx - l)dx0m=

From Bierens DeHaan [1] table #90 equation #6

-qx_e-rx dx _ _ _ p_ p
.

g(e )xP+1 - P P(1 p) (r q ) for p < l

 

so

Let P a o - 1. Then -B g ( e.(1'n)x - e x )xqa dx -

-B 0,—1 I‘(2-a)<1-(1-n)"'1) = -31" (1.0,) [(1—n)°"1 - 1 J

USing the above and simplifying the second term, the likelihood

function thus becomes L(B,o,n) -
_. -

-BF(1-a)[(1-1])°"1-111+ 8 log B + I log 11+”.81mylogI‘(m-a+l)-;1ynlog ml

It was found that in taking the derivative of the sham; j , 4
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for T] near one and a near one. To eleviate this difficulty thesubstitution (l-n) = e.q was made. The likelihood functionL(B,a,q) thus becomes

L(B,U,Q) - - BT(1-a) [e-q(a-1)-l] + 8 log B +Ilog (l-e-q)Q

as

+ mgl ym log T(m-a+1) - mglym 108 ml.

Taking the derivatives with respect to these parameters

-fl -q(°’-1) gLB‘aB"F(1'a)[e '1]+B

-qL = g‘L = - B 1"(1-cr) (l-a) e'q("'1) + I L
q q

l-e-q

1_= - B F(2-oz) e'qm'” + I

eq-l

and using the notation

a
1 _§WK) = alog I1(X) = my ax I’(X)

so that

7 UK) = I1(X) WX)

then

La: % = BTU-a) “1-01) [e'q(°"1)-1J

+ qBF(lay) e-q(a-1) - Zlym W(m-a+1)

m:

In finding a solution for the equations La = Lq = LB=—O a

Newton approximation in three variables was first attempted but

abandoned since the matrix involved in using this method is almost

Singular causing instability in the procedure.

 



"
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16.

Therefore the following modified Newton method in two variableswas used:

1. Initial estimates &1 and al are given

2. Solve equation LB = 0 for B to get initial estimate bl3. Step two makes LB(§1,q1,&1) = 0 so that

C ° >=<LBB WU")-Lq(§1,<31,611) LqB qu q

can be solved for Aq as follows

Aq =L EB -L L
BB qq qB Bq

q2=q1+4q

U
I

Solve LB — 0 using estimates &1 and a2 to obtain 32
6. As in step 3 find A! by the equation

M _ 'LBBLoz

“L L L L
BB (10' 08 Ba!

7. 02 = a1 + AU

8. Continue iterating until desired accuracy is reached.

This procedure gives likelihood estimates a, B and q

from which can be calculated the other two parameters

  



fi

17.

The second derivatives of the likelihood function necessary

for the above method are as follows:

2

LB 3 é-lL. = .;E

B BBB B2

= = .. -q(a'l)

LEI = RIB = -F(1-a) W(141) [I-e-q(a'l)] + qr(141) e'QCI-l)

q
= _ F 2_ -q(a'1) _ I Lqu B(a 1) ( a) e (eq ‘1)2

Bra—a) 92(1-01) [l-e'q("'1)]

[
.
.
.

II

+ BTU-a) w'u-oz) [1_e-q(0’-1)]

-
- -l-2 qBT(l-a) ¢(1-a) e-qGY 1) - quF(l-a) e q(a )

as

+ 2 y ¢'(m-oz+1)

m=l m

For the calculation of W(x) and ¢'(x) Stirling's asymptotic

series is used for log T(x+l). Thus

108 I"(X-H) =(x + %) logx -x+% log 2n

1 1 1 - —1— +
J’fi ' T66}? + 1260x5 1680x7

 



V
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18.

15.1" 1 1-44-; 1'

#(x+l) axlog (x+1) log x +—— 12x2 + 120x4 252x6 + EZBEB +....
2x

1 1 1 1 1 1
c . _ _ __ _ ___ .___ _ ___ +1 (x+1) x 2x2 + 6x3 30x5 + 42x7 30x9 ' ""

For x 2 lg ¢(x) and W'(x) are calculated from the above

equations. However for Small x the recursion formula

F(x+1) = xf(x) is used.

log F(x+l) = log x + log F(x)

Differentiating both sides

w<x+1) =§+ we)

and ¢'(x+1)= - fiz+ w'(x)

In the calculation of the Newton process it is often necessary

to evaluate the expression F(l-a) [e-q(a-l)_1]- It is often the case

that a is near one which requires that this expression be evaluated

with care to avoid the loss of several significant digits. For this

reason make the following substitution:

1_e'Q(°"1)

1"(1-ar) [e'q(°"121] = 1"(2-a) 0H

2

=r(2-QI) e112E inhi. q wherez=av 1.

¥

 _|_



   

19.

Now let

tanh w l

h w - l + w2 2

3 + w 2

5 + w 2

7 + w

9 + .

expressed as a continued fraction and

945 + 105w + w2 2

945 + 420w + 15w

expressed as a ratio of polynomials reduced from the first five

Using this and hyperbolic identies

terms of the continued fraction.

    

- z l-tanh SE 1 - hflEe fi— = 4 = 4

l + tanh SE 1 + hfli
4 4

and

2 tanh ~25 133
sinh 3;

= .__—_——_T

l -tanh2 %% 1 (225)

Using all of these equations then

1
-%§ sinh 52E

F(141) [e-q(a- )-1] = F(2-o) e -EE?-—— '

2

(1-113;) h 923

= F(2-a)
- E:— =

2(WISE) [141252]

= 1‘ 2-01) ig—

( [1332512

k.  



  

    

  

 

1‘ ,xv~nerties of the model require that the paramstarda be
‘ than or at least equal to one. Since the system is fairly

Lfihfitabbg.it was found in actual calculation that the iterative
Newton procedure described previously would sometimes give an

estimate of a less than one. To avoid this difficulty a restriction

was placed on the procedure as follows: Given that 61 - l + 6 then

a A 6

. { ai+1 if a1+1 2 1 +.!$

”1+1 ‘ ~
Hg if a1“ < 1 +fi

2 2

If indeed a = 1 it would be hoped that &i ~ 1 from above but

this is not the case since the method blows up; that is for & less

than about 1.005 (depending on the data) the error in calculating

A0 is larger than & itself which reduces the iteration to nonsense.

What results then is that the estimate is out half way to one each

time until which time the error in Au causes a large positive jump.

The estimate again approaches one and the process repeated until

the computer is stopped by a programmed check which halts the Newton

process after 50 iterations if no solution is reached. If this

happens a is set equal to one in the original likelihood equation

and another method used to estimate the other parameters.

Consider therefore the likelihood function

4 ° mF w
- I.

L(B,1,n) = m§l - Bn -é$l-+ m§1ym [log B + m log n + logF(m) log m ]

m a

s - ll.
1 + 10 P(m)- 103 ml]

Bm§1m+m§1ymnogs+mogn
3

Using the expansion

 

 



'
fi
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x-l l x-l 2 l -l 3
logx:

—x-+§(T)
+§(§x—)+....

forx>15

x-l

set U = —;—

in - x-l

x(1-n) = l

1
x — (I-N) for 0 < n < 1 then 1 < x < ”

thus

°°
12 fl? = log x = log (l:fi) = - log (l-n). Using this andm=l m

again making the substitution (l-n) = e-q

Q

L(B,1,q) = -Bq + E yIn [log B + m iog(1-e'q) + log 1"(m) - log ml].m=l

Taking the derivatives with respect to these parameters

 

m

L = -q + E y /B = -q + EB m=1 m
B

a ‘q

L =-B+ 2y me_q=-B+I—1
q m=1 m l-e eq-1

s .
In finding a solution LB = Lq = 0 make the substitution B = a into

the second equation to get

 

Which reduces to eq - l - E q = 0-

To find a solution to this equation consider the following

iterative procedure. Given an initial estimate <10 and Where qr

 k



V
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22.

is the root of the equation

x
xqr - q0 + 1:;;:g;%

- q0 + E?;) where x, a, b are to be determined

as follows:

qoLetA=-andA0=e
-1-1q0

X
‘1 (1+—

Set er-1-1qr=e°B(x)

 

-1-A(qo+ )30.

x

B(x)

Then

q0 x ’ x
B(x) [e e B(x) - l - Aqo - A B(x)] = 0.

  

Expanding this equation and calling it Q(x) then

2 x3 X4
Q(x)= B(x)eq0[1+B(x)+m+ m-t m+....]

-B(x) - 13(x)q0- ix

4* q0 q0 x2 x3 x=B(X) AO+(e -l)x+e [m)+m+m)+.ml

 

1
Now expand the expressions

Bk(x) <: 1+ax+bx

into polynomials

1‘
3

< 1 A)
2

___—___ = a + a x + a x + a x + ..
k2 k31+ax+bx

k0 k1

= 1,2,3 the expansion

After finding these polynomials for k

then becomes Q(X) =

2= B(X)A*o + (eqo- k)x + eqOE-xz (l - ax<+ (a2 - b)x + ...)

 
I ..
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23.

+%x3 (1-2ax+ ...) +§x4 (1 + ....)J +

‘1o
2

3 1 1
+e x [3‘28]

q* q 0

+ B(x) A0 + (e 0- X)x + 23— x

qox4

+e “[271"+—(32
-b)]+....

Choose a and b such that the coefficient of x3 and x4 are zero.

Thus

and

l a 1 2
E-§+§(a-b)—O

1-11.1443“, _> b 1_
24 9 2 9

36

therefore

q

1 e02 5Q(x)= A0 (1 + 3x - —-x2) + (eqO- A)x + —E— x + asx + .

* q *

*

5=AO+(eClO-l+—O)x+(—-3—O)x2 +615x +--

As an approximation to Q(x) = 0 set the equation

*

* qo 3 e(10 A 2
- -— --- —— x = 0

A0 + (e l + 3)x + ( 2 36)

For the general quadratic

and solve for x as follows:

0x2 + Bx + 6 = 0

 h;



 

52 -4a6) -a-\Is-4aa

Since B is positive in the neighborhood of qr the positive

root is taken to obtain the root of the quadratic nearer zero and

the last form is used in calculating x to avoid round off. The

procedure for finding the root of the equation eq - l - Xq = 0

is as follows:

1. Make initial estimate q0 = log(l+k log 1)
* .

2. Evaluate Ai = e 1 - l - lqi

3. Solve the equation* q. *

* qii A1 +e1 fi)2=Ofrx
Ai+(e - +3—)x (2 36x 0 .

x4. q. = q.+'———"‘—‘
1+1 1 l l 2

1+3x'36x

5. Return to step 2 until desired accuracy is reached.

The method was designed for rapid convergence and in fact it

was found in actual compitation that five digit accuracy was

obtained in only two iterations.

USing q as found from the above procedure and from the original

equations remembering that A = B for the case in question where

Q = l the estimates obtained are

A s

A=€

and
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lienerating Random Variables for the Simulation  

    

  

   731-1»:Adaptation Rejection Procedures

W‘Zh the process of simulating the established model on the

high:.speed computer it is necessary to generate random variables

    

with certain specified distributions. Since the actual computa-  

   
 

tion is to be done on the computer and the procedures used many

thousands of times it is necessary they be effecient and use the

minimum of input random variables. With these goals in mind it

i
was decided that for discrete random variables an acceptance

' rejection procedure would be used. This method of generating

random variables with Specified distributions is discussed by

Rubin [5] and will be used in this problem in the following way:

P(ni)

—————— Q(ni)

-§__

             

I l

I l

l I I

l I I

I I l

I l I

I I l

l I I

l I I

I I l

I I I

I I I

I I I

I I I

l I I

I I I

l I I

I I I

I I l

I l I

l l l

I .

e I O n1-1 n1 “1+1 n1+2 - D O

   

    

 



  

  

.1
   

 

a. random variable with the distribution P(n1.3 is
  

 

  

". Construct a frequency distribution Q(ni) which dominates

n43... Obtain an observation from the distribution Q(ni) and
  

 

   

 

decspt this observation x1 with probability P(xl) . If x1 is

c'(Tl)
rejected obtain a second observation from Q(ni) and repeat the

    

  process until an observation is accepted. If the first accepted

    observation is designated as xthen it has distribution P(ni).

  

This procedure is to be used for Binomial, Poisson and

 

  

  

   

  

  

   

     

    

 

   

Hypergeometric distributions and in these cases the distribution

Q(ni) will take the form of a uniform over the mode and discrete

exponential over each tail with parameter a1 over the right tail

and parameter a2 over the left tail. The parameters a and a
1 2

are determined by taking the ratio of two consecutive probabilities

of the distribution P(ni) and it was determined that the most

efficient place to calculate al and 02 was about /§—’standard

deviations on either side of the mode of the distributions being

 
considered.

Thus let M = mode of distribution P(ni)

Let N1=M+[/§op]

and NzaM-[fiopj_1 .

then determining 01

Q(Nl) = Q(Nl) .eal E P(Nl)

Q<N1+1) Q(Nl)‘e‘°’1 fire—1+1)  
P(N )so that a! - log 1

1 < P(N—+11))   



 

27.

and similarly for 02

Q (N2+l) - Q(N2+l) a _ e02 _ P(N2+1)

Q(NZ) ‘ Q(N2+1)e'2 ‘ ‘ P(Nz)

 

so that 02 = 1°8< P(N2+”)

P(Nz)

The first term of the right exponential is Nl-k where

[ log P(M) - log P(N1)]

—\

 

and

£0 Q(Nl-k+1) = iEO P(Nl) e

kn!
ka/ °° -i0’ 1

=P(N)e 1,2 e 1= P(N1)e
1 i=0

-a

l-e 1

also the last term of the left exponential is

N2 + 1 + j where

log P(M) - 10g P(N2+1)

.- {NJ
“2

co

co
02(j-i)

iEO Q(N2 + 1 +j - i) = iEO P(N2+1) e

jQ’

2 _ P(N2+1)e

jQ/2 co -

= P(N2+l) e iEOe
_02

l-e

Q(i) being thus defined in the tails let

Q(i)=P(M) forN +l+j<i<N1-k
2

so that
ja

m1

2
P N eifom = P(N2“)6 + P(M) (NI-NZ-k-j-n + L1.)—

‘27;*
.-.-“11 -
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28.

For ease of computation make the substitutions

u - log P(M) - log P(Nl) - kal

v = log P(M) - log P(N2+l)-ja2

which reduces the sum to

  

E Q(il - P(M) [e-v + (N -N -k-j-2) + 9-“ J
i=_co 1_e_Q12 1 2 143—01 .

By letting T =i=§°° Q(i) /P(M) =

L
___eu

= [ be“)!2 + (N1 ' N2 ' k ' J ' 2) + l-e-a1]

and normalizing this quantity a random variable with the dis-

tribution P(i) can be found as follows:

1) Let U1 be a uniform random variable

 

2) If U < the observation is to be taken from1 -a2

T(l-e ) 1

the left tail. Thus choose N0 = [- — log U11] where U11 is a

“2
uniform random variable and the brackets indicates the greatest

integer contained in the bracketed quantity. The observation

thus becomes N = N2 + l + j - N0. Then accept N with probability

Q(N) _V _u

3) If EL-——b S Ul S 1 - 2—‘-—=U the observation is to

T(l-e 2) T(l-e 1)

be taken from the uniform range as follows

e-v

U1 ' T 1 -a2
_ #4 - -k-'-2R - _u -v (N1 N2 J )

1 e e

-T(l-e-al)- T(l-e‘32)

and let N0 = [R]
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so that the observation N is

N = N2 + j + 2 + No

and N is accepted with probability aéflg .

4) If U > 1 - -£L--- the observation is taken from the1 T(l-e-al)

right tail using the same procedure as in step 2. That is choose

_ i J . . . .
N0 - [- a11°g U12 where U12 is again uniform only this time

let the observation be

N = N1 - k + N0 and accept N with probability §{%% .

5) If at step 2,3 or 4,N is rejected obtain a new uniform

U2 and repeat the process until an observation N is accepted. N

will then be distributed according to the distribution P(ni).

In steps 2,3,4 the acceptance rejection part of the procedure

is handled in comparison with an exponential random variable E0 in

the following way: Accept N if

E0 2 - log %%%% = log Q(N) - log P(N)

Where in the left tail

log Q(N) = log P(N2 + 1) + (j ' N0) a2

in the right tail

10g Q(N) = log P(Nl) + (k - NO) a1

and in the uniform range

108 Q(N) = log P(M).

This method of comparison is used so it is not necessary to

calculate Q(M), Q(N2 + l) and Q(Nl) using instead already calculated

quantities.

 llllllliiisns—-——-———e~



   

 

‘ Wtfng Discrete Distributions with Large gleam  
  

'k‘ Ebb'problsm at hand the Poisson, Binomial and Hypergso-

 

iifric distributions are used.

  

It is therefore necessary to

  

=dstarmine the distribution Q(n

 

1) as developed in the previous

 

section for these cases-but first it will be necessary to develop

  

some machinery for the calculation of logirl which is necessary

  

to.evaluate in all three of the above mentioned distributions

when calculating log P(ni).

,
The first equation used is Stirling's asymptotic approxima-

tion to nI. From this

log n! = (n + 3) log n - n + k 108 2" + ¢(n)

l 1 1 l
"he” W“) ' '13:: ' 3—66n3 + 1260n5 ' l680n7 i
Consider now the product

22:: I“(n+l) P(mg) a n! 1.3.5,__(2n_3)(2n_1) g 22,,

IT F(2n+1).

Taking the logarithm of both sides

95 log 1T + log I“(2n+1) - 2n log 2 + log P(mi) + 108 n1  
and using the more general form of Stirling's equation

log F(x+1) =- (XI-35) logx - x + 15 log 211 + <p(x)
Q

-mwhere ¢(x) a Ego Cm x .

Thus

35 log 11 + log I‘(2n+1) - 2,103 n + log I‘(2n+2) - log (21.1.1)

- 95 log n + (Zn-(~35) log(2n+l) - (2n+1) + 35 log 2n +m§ocn1"“(2m-1)

Also i log n + log F(2n+l) ‘

9.. 2n log 2 + log l"(n+3/2) - log (nu-1;) + 108 1“.

 



 

‘
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31.

Collecting terms then and combining these two equations

log n! = $10gfl + (2n+%) log(2n+l) - (2n+§)-log 2 + % log 2

a: as C

- n 1og<n+ss> - (ma) -m§0cm<n+a>'"‘ +m§o #2 (warm
2

= 95108 21'T + (n+52) 108(n+%) - (M’s) - Watt)

where

m

‘1’(n+35) -m§0 Cm(n+%)-m (1-2'“‘>.

Note that this function W is not the logarithmic derivative

of the gamma function used in Chapter 2.

Since the original equation for log n! was an asymptotic

approximation, log n! and therefore Y(n+%) cannot be calculated

in this way for small n. To find Y(n+%) for n = 0,1,...10

calculate Y(11 + %) = Y(ll.5) from the already developed formula

and use a backwards recursion formula which is now to be derived.

103 n! = J5103 2TT + (n+3!) 10g (Mi) - (Ms) - ‘i’(n+35)

Aslog 2n + (ma) log (1+ 51;) + (ma) log n - (ma)

- Y<n+%)

also

log n! = log n + log (n—l)!

= log n + % log 2n + (n-%) log (1-%B)-+ (“-5) 108 n-(n—%)

 

-Y(n-%).

Combining these equations

1 .1.Y(n-%) = Y(n+%) + 1 + (n—s) log(l- 3;) - (n+g) log (1+ 2“

111111_l__11_m_
=Y(n+%)+1+(“'%)['E'EZEZ'§8n3'416n4 533; J

1 1 1 1 1 i 1 i 1 — ...

‘(“5)[fi'§m+§m3'4m4+sfi5+ 3

1 1 1 1 +=‘i’n+ + + + +... ___2k

( %) 22-2-3n2 24.4-5n4 26-6-7-n6 22k-2k(2k+1)n
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The first seven terms of this expansion are used for n = 1,

2,...,10 but in calculating Y(%) an additional four terms are used.

Consider now a careful calculation of the expression

(L+x) log(l+x)-x which will be useful in calculating logP(ni). Make

the substitution l+x = 1?? so that
l

x=—21
and y=i

l-y
2+x

and under the assumption that x > -1 it follows that lyl < l.

_=L".‘£ <H1>-3Y—
Thus (L+x) 108(L+X) x l-y log 1-y l-y '

The evaluation of this expression will be broken into two cases

First if A; < |y| < 1 then

x(L+x) log(L+x) -x = (1+x) log(1+x) -(2+x) (2 + 2x - x)

= xy + (L+x) [log(1+x) - 2y].

Secondly if lyl s % use the expansion

1+ 2 3 2 5
log<fi>=2y+3y

+Ey +

Thus

(L+x) log(L+x) -x

2= fix) 23 £5 - J—<1_y [2y+3y +5y + J l-y

2

=3L it}: 23 §5+§7+39+...]
l-y+l-y[3y +5y 7y 9y

2 5 2 7 2 9
=xy+ (1+x) [%y3+§y +7y +'9'Y + ---J

With these equations consider now the calculation of Q(ni)

for desired distributions.

1) Poisson Distribution: let A be the parameter of the Poisson

distribution.

 ms—
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Then obviously M = [A]

N1=M+[/§Y]

N2=M-[/§A]-1

where in each case the bracket indicates the greatest integer

contained in the bracket.

 

Also

Q(Nl) — a1 _ P(Nl) _ N1+ 1

Q(N1+l) ‘ e ’ P(N1+1) ' A

so that 01 = log(N1+l) - log A

 

Similarly

Q(N2+1) _eaz = P(N2+l) = A

Q(NZ)
P(Nz) N2+1

so that 02 = log A - log (N2+l)

, A“ -A
and finally P(n) = ET e for n = 0,1,2;3:4:---

so logP(n) = -X + n log K - log n!

= - A + n log A - (ms) log (me) + (mg) - A; log 2n + Vows).

Make the substitution n = A + n. Then

log P(n) = ->» + (Mme) IogA - (A+p+%) log(A+u+%) - (A+p+%)

+ 15 log21'r - ‘1’(>~+u+%) - a log K

= -A[1 + if 3 1og[1 + #1 + MKS] - a 1og2nA + ‘Y(7\+u+»‘5)

= -)~{[1 + £52] log [1 + 5:5] - iii-35} - $5 logZTrA + ‘I’()\+p+%).

2) Binomial Distribution: Let p,n be the parameters of the

Binomial distribution

then M = [(n+l)p]

Nl-M+[/m]

stM-Um] - 1

 k
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a N +1
or n-Nandasbeforee1=l—i:£andez=

__‘3..P_
n-Nl p N2+l l-p

N +1

n-N
= __ hp

= 2 _ l-p

so 01 log n-Nl + log p and 02 log N2+l log p

and finally P(k) = 41—- pk(l-p)n-k for k = o l n
k!(n-k)!

’ """

log P(k) = log n! + k log p + (n-k) log(l-p)

-log k! - log(n-k)! .

Using the derived formula for log x! then and the identity

log n! = log(n+1)1 - log(n+l)

log P(k) = (rt-+35) log(n+l) - (n+1) + % log 211 + cp(n+l)

- [(k+%) log(k+%)- (k+%) + % logZW-Y(k+%)3

- [(n-k+%) log(n-k+%) - (n-k+%) + tlog 2n - Y(n-k*%)]

+ k log p + (n-k) log(l-p).

Make the substitution k + 35 = (n+1)p+p into the above equation.

108 P(k) = (n+%) 108(n+1) - [(n+1)p+u] 108((n+1)P+u)

- [(n+1)q-u] log((n+1)q-n)-+ [(n+1)p+n] 10g p

+ [(n+1)q-n] log q - l5 log 2n + cp(n+1) + ‘1’(k+15) + Y(n-k+%)

- g log p - a 103 q

= - [mum mm + (73517)] - [(n+1)p+u] Iog<n+1>p

- [(n+1)q-u] 10311 - (311351 - [(n+1)q-u] log(n+1)q

+ [(n+1)q-u] 108 q + [(n+1)p+u] log 9 + (n+1) log(n+1)

- % log (n+1) 2npq + ¢(n+1) + Y(k+%) + Y(n-k+%)

= - (n+1) p{[1+ inf—up] log(l + THE—17p) -(;f1—)p}

_ (n+1)q {[1 - TEE—17¢” 108(1 ' (Tl-PETE.) - < (tr;1)q D}

- % log(n+1)2npq + m(n+l) + Y(k+%) + Y(n-k+%) .
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3) Hypergeometric Distribution: Let D,N,n be the parameters

of the distribution

 

 

 

 

 

 

_ (m1 D+l

“‘9" M - 1 T572]

N = M‘+ anN-D)(N-n)

. 1 mI) J

Nz-(N 1)

also

01 (Nr+l)(N-D--n+N1+l)
02 (D-N2)(n-N2)

e =
and e =

.(D-N1) (n-N1)
(N2+1)(N-D~n+NZ+1)

Consider now the probability

D N-D

_ Q(n-x) _ D! LN—D)!
nlgN-nzl

P(x) - -(D-x)!x! (n-x)!(n—D~n+x)!
N!

C(N’ n ’D)
for x = O,l,...,D.=(D-x)! x! (n-x)! (N-D-n+x)!

Expand the factorials using the established formula and

make the substitution

1
Y = X'+ % - MO where M0 = (n;1+ 3+

Thus

103 x! = (we) log(wi) - (as) + 35 logzTr - Mme)

= (MO+Y) log(MO+y) - (Md+y) + % log2n - Y(Md+y)

=M 1 i’- 1 1+L)- 1— +ylogM -M +MologMO
01(+M0) °g( M0 MO] 0 o

+ % logZTT - “Moi-Y)

log(n-x)! = (n-x-I-Jfi) log(n-x‘l-lg) + 5. log21'r - Yul-yes)

- Y n+1-M -(n+l-MO-y) log(n+l-M0-y) - (n+l-MO-y)-+ % logZW ( 0 y)
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= - - __1L_.
'("+1 o) [(1 n+l-M0) mg” ' 31%) 'nfifi] " y 10g(“H“Mo)

+ (n+l-M0) log(IH-l-MO) - (n+1-MO) + $5 log21T - ‘Y(n+1-MO-y).

Similarly as above

loD-x!=DI-1-M[ -—1—— -—L- ‘ J
0

0 O

- y log(D+l-M0) + (D+l-MO) log(D+l-MO) - (D+l-MO)

+ % logZfi - Y(D+1-MO'Y)

and finally

log(N-D-Mx)! = (N-D-n-I-MO) [(1 + W) log(l + W)

0
0

N-D-n+MO + y log(N D n+MO)

+ (N-D-n+MO) log(N-D-n+MO) - (N-D-n+MO)

+ % logZfl - Y(N-D-n+MO+y).

Combining these equations

*

logP(x) = c (N, ,D) - M (1+ L) log(1+ L) - y-n (i M0 M0 M0]

=
z _ _L(n+1-Mb) [(1 - ;;{jfig) log(l ‘ “+I'MO) n+1-M0]

2 __ ._ _;2L__.(D+l-MO) [(1 - B;%ffi;) 108(1 ' D+1-MO) D+l-M0]

_L_ - —X——(N-D-MMO) [(1 431m) 108“ +N-D-n+MO) N-D-n+Mo]

MO(N-D-n+MO)

y 1° (n+l-MO) (D+1-MO)]
 

+ Y(M0+y) + ‘1’(n+l-M0-y) + ‘i’(D+l-MO-y) + ‘1’(N-D-n+MO+y).

M (N-D-n+M )

' 0 O = l h' h eliminates this
A check Will show that (n+1'Mo)(D+1'M0) W 1C

term from consideration.



37.

Also for use in these acceptance rejection procedures the

*

constant term C (N,n,D) may be neglected since the procedure uses

only the ratios of the probabilities of the reSpective points

being considered.
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Section 3: Procedures for Discrete Distributions with Small Means.

The procedures in the previous section generate the desired

random variable using a small number of uniform random variables

but at the expense of considerable numerical calculations. When

the mean of the distributions under consideration is small, proce-

dures exist which use about the same number of uniform random

variables but which are much less involved. Such procedures used

in the simulation will now be considered.

1) Poisson: Let A be the mean of the Poisson distribution. Let

EI,E2,E3,... be independent exponential random variables which

are independentare obtained by the equation E = -log Ui where U

i i

uniform random variables. Let J be the integer such that

J-l J

E E. < x s 2 E1

i=1 1 i=1

J

Then J-l has a Poisson distribution with mean X and igl Ei- X

is independent exponential. This result can be shown by directly

integrating the joint density of the Ei'

2) Truncated Poisson: This distribution is needed only in the

small mean case and its use will be shown later. Let X be the

mean of the distribution and as before let E1,E2,E3,... be

exponential random variables.

Let q be defined as the integer Such that

qk < E1 f (q+l)X.

Let J be the integer such that

J-l J

2 E < (q+l)k f 2 Ei'

i=1 1 i=1
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Then J-l has a truncated Poisson distribution with mean A
J

and 217-1- (q+l))» is independent exponential. This result can
i=11

also be shown by directly integrating the joint density of the Ei'

3) Binomial: Let N,p be the parameters of the Binomial distribution.

Define a = -log (l-p) and let g = Na. Divide the interval

(O,Na] into the N intervals I1 = ((i-l)a,fl1].

Let E1,E2,E3,...

Consider the points

i

xi = jgl Ej for i = l,2,3,...,k-l

where k is defined to be the first integer such that

k

= E E, > Na.*1. H.

be independent exponential random variables.

Let NB = Number of intervals Ii which contain a point xi.

Then NB has a Binomial distribution with parameters N and p.

This can be shown directly by integrating the joint density of

the E,.

J

4) Hypergeometric: Let N,D and n be the parameters of the

distribution. Then

N-
(N-D)!

P(x)= C—%%l>= (ID—L—(N__n—)IN! (N-D-n-i-x) ! (n-x)!

* x [(N-D-n)! 1- *Kx
(N-D)! CDCTEE') [Elmo-manna)! (jg—j ]

=(NTD-n) ! (N-n) 1N!

 

 

 

___E___

* N-D-n+l
where _£_*.=ND“n+1 and consequently P = L+ n

N-D-n+l

Let NIW B(D;p*) and accept N1 with probability
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N

n! (N-D-n) l < N-D-n+l 1

(N-D-nl-Nl)! (n-Nl)! n > '

*

If N is rejected let N q'B(D,p ) and repeat the
l 2

process. Let NH be the first accepted N Then NH has a Hyper-i'

geometric distribution with parameters N,D,n. This procedure is

used for small mean Hypergeometric and it is to be noted that

for the case where x = 0,1 the acceptance probability is one so

that the acceptance rejection part of the procedure is ignored

when the Binomial random variable is zero or one.

Consider now a simplification of the factor,

_ n!(N-D-n)! N-D-n+l x

R(x) zN-D-n+x)l(n-x)! < n >'

Using the established formula for log x!

log n! = log n+log(n-l)! = (n+%)log n - n + % 1082TT + ¢(n)

log(n-X)! = (II-#35) log(n-x+%) - (n-x+%) + 3: 10g21T - Uri-#35)

Combining these with x log n

log n! - log(n-x) - x log n = - (n-x+%) log(l-‘§%fi)

- (fit-35) + <P(n) + wows).

Make the substitution u = x-%

= - (n-p) 1og(1-§) - u + cp(n) + Y(n-u).

Similarly as above

log(N-D-n)! - log(N-D-n+x)! + x log(N-D-n+l)

- - + Y N-D-n+l+p).
= - (N-D-n+L+u) log (1 + fi:%:;;1)‘+ u-+ ¢ (N D n+1) (

From this then

1

log R(n) = - n[(1 -‘%) 108(1 "E) "i? J

- (N-D-rH-l) [(1 + 3757.371) log (1 + fifty—+1) ' N-D-n-i-l]

+ (P(n) + Y(n_n) + (P(N-D'IH’I) + Y(N—D-n+l+l-1).

Let U be a uniform random variable. Accept the observation 1f
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U 5 R01) or equivalently if E = -log U 2 -log R01) which reduces

to E + log R01) 2 0.



Chapter 4

Section 1: Simulation of the Model.

Let Q be an environment. Recall that the Species in the

environment are to be such that for any interval [a,b) with

0 < a < b < ” the number of Species with intensities in this

b

interval has a Poisson distribution with mean I f(x)dx where

a

f(x) = A e-x.

a

X

Suppose that A and a are given and that a sample of N

individuals is to be taken from a computer Simulated environ-

ment. The problem reduces to first choosing the intensities

of the Species in the environment so that they satisfy the

above condition and then choosing the number of individuals

in each species Such that this number has a Poisson distribution

with mean proportional to the intensity of the reSpective Species.

This constant of proportionality will be designated by ks and will

be called the power of the sample.

Let x be the intensities of the Species that are to
1,x2,...

be selected and suppose a supply of independent exponential ran-

dom variables Ei’i = 1,2,... are available.

Noting that the waiting time for a Poisson process is ex-

ponential consider the following method of choosing the intensities.

Let

an

E = I f(x)dx and solve this equation for x1-

1 x
1

When this is done let

x

1

o

E = I f(x)dx and solve this equation for x2 and

2 x
2

42.
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continue finding intensities x1,x2,x3,x4,...

6

Notice that for c > O,I f(x)dx =‘+ " so that the method must

0

be modified for small x. The modification and the method of

determining a constant cs, which determines the intensity at which

the modification will be made, will be shown later.

-x

 

The function f(x) = Ae cannot be integrated directly between

x

two arbitrary positive numbers so that the solution of the equation

1

E1 = I f(x)dx for x is obtained through an acceptance-rejection

x1+ 1

r+l

procedure. No such procedure was found that was effecient over

the entire real line so that different procedures were used depend-

ing upon the portion of the real line that was being considered.

The following method for finding the intensities of the Species

was used:

1. Set y = x-+ a log x

3.”;
91: g:

so that l + x x

dx

2. Let y0 = x0 =+OD and set i = 1, set k = l and

set E0 = 0.

3. Set y: = xi_1 + a log xi_1 = yi_1 and in order

to determine xi let

y1 = xi-+ a log xi.

xi-l y: y i

Ae-y __x— dy

Then I f(x)dx = I f(Y)‘;E§dY = I xH1

x. Y- yi
1 1
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yi

*

4. Set Ek = f Ae ydy .-. A(e‘Yi _ e’Yi)

yi

and solving for yi

*

-log (Ek + e i) + log A

k-l

-log (Ek + 1:; Ej) + log A

yi

k

-log ( 2 E ) + log A.

i=1 1

5. Solve the equation y1 = x1 + a log x1 for xi.

x

6. Acce t x. with b b ' i
p 1 pro a illtyxi+a 

78) If x is rejected set * - ’i yi — yi,1ncrease k by one and return

to step #4 provided x1 > 3.0.

b) If x1 is accepted increase k by one,increase i by one and

return to step #3 provided x1 > 3.0.

For intensities less than 3.0 a modification is made in the

procedure to obtain a higher degree of effeciency in choosing

the x

*
8. Let xi equal the last intensity calculated in step #5.

*

*Let k1 k: xN1= xi *

x* xi
1

Then I f(x)dx = flAe-XZ_ =xf1-A_exCijxdx.

xi xi fa Zad xi 20

*

X.

1

9. Set Ek = 'I'A_ e-xdx and solving for x.

x. a 1
1 2

k

E E

x1=-log[j—klj +e 1]

A 2"“

10. If xi 2 2.0 accept x1 With probability' ';>F° If x1 is

i
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*
rejected increase k by one, set xi = xi, return to step #9.

*f
=

I x1 is accepted increase k by one, set x1+1 xi, increase

i by one, return to step #9.

For the case xi < 2.0, x1 is rejected and the procedure

again modified.

*

11. Let x. = 2.0, increase k by one and set k = k.xi: 1 x* x* 2

i i
1

Then i f(x)dx a i A e-x e-ldx = IA 8-1 61-x dx.

i 1 0' --1 xi CY
x e x

X? -a
12. Set Ek = i A x dx

i e

and solving for X1

1 (1 k l-O’ -0' e _-= - 2 15]] 1-01 .x1 [2 A j=k2 J

l-xi

13. If xi‘z 1.0 accept xi with probability e . If xi

is rejected increase k by one, set x: = xi, return to Step #12.

If x1 is accepted increase k by one, set x:+1 = xi,increase i by

one, return to step #12. If xi < 1.0, reject xi since the

procedure breaks down at one.

6

AS was pointed out earlier, ‘f f(x)dx = a for e > 0 so

0

that procedures of the type used for large intensities are

impractical for very small intensities. Note that when choosing

a sample from the simulated environment the number of individuals

in each species has a Poisson distribution with mean ksxi' Here

k is unknown but it can be estimated and from this estimate a
S

method devised for choosing Species with small intensities which

have a high probability of appearing in the sample while over-

looking many which do not appear in the sample of N individuals.
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The expected number of individuals is represented by the equation

1 . 1 1

 

1' -x i-l
kaf(x)dx+ z kx =fk Ae dx3

x + 2 k x

0 j=1 SJ 08 xa j=1 SJ

1
2 -1

l-a 1gksUAx (l-xi-ilfmx-t- 2: x,].kiA(_1___L+_1_,
0 j=1 J 2'0 3-0 4(4-0)

1-1

2”=14.

Setting this equal to N, the number of individuals to be taken

from the simulated environment, the estimate of k is
s

 

R3 = N i
1 1 1 '1A ___.- ___. ______.

(Z-a 3-o/ + 4(4-a)) + 331*,

Using this estimate of k3 continue finding the intensities

of the Species in the simulated environment.

0.8
14. Set 88 = E;— , x1" = 1.0,

increase k by one and set k3 = k. Then

x* x?

i 1

‘f f(x)dx = ‘f -A— e-xdx.

x1.- x. #1

x? 1

1A
15. = --SetEk J” adx

x1 x

and solving for x,

1

k __1_

xi =[1 " (if!) [3'ng Ej]] 1.0 '

-x,

16. Accept x with probability e 1. If x1 is rejected,
1

increase k by one, set x: = x1 and return to step #15

i 2 es. If x1 is accepted, increase k by one, set

x:+1 = x,, increase 1 by one and return to step #15 provided

provided x

x 2

i 6s'
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For xi < as then the probability that a Species with intensity

xi will have an individual present in the sample with power ks is
e-k3x1. Therefore instead of solving the equation

1 -
x*

13k = f f(x)dx

X.

1

for x1 and letting the number of individuals present inthe sample

from this species be

111 where niQITruncated Poisson with parameter

{ 18x1 with probability 1 - e' Sxi

0 with probability e-ksxi

an equivalent method for determining the individuals in the small

species is to solve the equation
*

x1

=‘r ksxf(x)dx for X1 and let the number of individuals

x1

present in the sample from this species be

ni where n,m Truncated Poissonawith parameter
1

 

. l-e-ksxi{ k x. with probability
8 1

-R Sxi

ksxi-L+e Sxi

0 with prob. k x

This modification has the effect of skipping over some

Species which are in the environment but which do not appear

in the sample.

17. Set N* = 1 and x = xi, k4 = k

Xi x1 1 l a x. A A -x = . - - d

f ksx f(x)dx =.f ksx ~75 e dx I ksA x e x

x x x x
i 1

i
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x1

18. Set Ek =‘I ksA xl-adx and solving for X1

x

i 1

(2'0) [jgk4Ej ] Z-a

.. 4.2-0 - >
1 E

 

12A
8

-x

19. If x1 > 0 accept xi with probability e

*

If x1 is rejected, increase k by one, set xi = x1 and return

*

to step #18. If x1 is accepted, increase k by one, set x1+1 = xi,

increase i by one and return to step #18.

The procedure is continued until a negative intensity is

reached. Let sN be the number of Species obtained. Consider now

the problem of finding the sample of N individuals and let n1 for

i = 1,2,...,sN be the number of individuals chosen from the Species

with intensity xi. Thus

 

 

n. is chosen from a Poisson distribution with

1 parameter ksxi for i = 1,2,...,N -l.

n. chosen from a truncated Poisson distribution

1 - x
. -e s i

with parameter k x, with probability . ,

s 1 k x,

A ”fisxi
S 1

ksx,-1+e

' ‘ ' " 1 for i = N* ... s .

0 With probability
) , N

s
k x,

N S 1

Let NT = i§l ni .

If NT = N then the sample is as chosen. If NT > N then NT - N

individuals must be independently rejected from the chosen sample.

This is accomplished be means of the Hypergeometric distribution

. I

where the number to be eliminated in the first SPeCieS is “1

N -N,n

which is distributed Hypergeometric With parameters NT’ T 1

th . .

and in general the number to be eliminated in the k Spec1es 18
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k-l

n' which is distributed Hypergeometric with parameter N - Z n
k k_1 1‘ i=1 i ’

NT-N-Z ni, nk. This is continued until all NT - N individuals

i=1

have been eliminated.

The number of individuals in each gpecies is

n

and E n: = N.n: = n - n; for i = 1,2,...,s

i=1
i N

If however NT‘< N then N - NT more individuals must be chosen

from the model.

fijflg . The factor two is added to make the

N

probability of fallingTshort again vary small since it is better

Let Ak a 2k

3 s

to over estimate ks. The intensity of the sample is now

k; = k. + Ak so let n2 be the number of individuals that are to

s s

be added to the already selected Species where

n? N Poisson (Aksxi) for i = 1,2,...,SN.

Since some Species were skipped in the interval [0,x6) the

possibility that some of these may now appear in the enlarged

Sample must be considered. Let €* = Ei— . If 5* > x6 select the

new Species using the method described in steps #17-19 replacing

Rs by 4&8 and continue finding intensities until zero is reached.

The number of individuals present in the sample from these Species is

n? where If; N Truncated Poisson with parameter £1ka1 With

1 1 6-13ka1

probability -——Zfif;——'

S i

AA

0 with probability 8 i

' ' ber

for i = SN + l,...,sfi where SN 13 now the num

so that it is

of species present. The intensity x6 is chosen
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*
very unlikely that e < x.e but if this should happen the situation

can be corrected by decreasing the upper value of x6 from say-19;;§

s
. .6

to p0881b1Y‘2E- and rerunning the experiment.

s

I

SN

1 = 11
let NT i=1 ni

If Ni = N - NT then no individuals need be deleted. If Ni > N-NT

then Ni - N‘+ NT individuals must be eliminated from the Ni new

individuals chosen.

This is accomplished again using the Hypergeometric distribu-

tion by letting ni be the number of individuals eliminated from

the first species Where ni is distributed Hypergeometric with

T’ Ni - N‘+ NT’ n? and for the kth species

k-l ' k-l

n; is Hypergeometric (Nf - i§l n2, Ni - Ni+ NT - i§1 Hi; nk)'

parameters N'

The number of individuals in the respective Species is then

n? = n, + n; - n1 for i = 1,2,...,sN
1 1

l
*= "- '

.=S
+1 cons

n1 n1 n1 for 1 N , , N

S!

N

e E n? = N.wher i=1 1

If Ni < N - NT repeat the process for selecting new individuals

from the Species. Because of the method for determining Aks

however it is extremely unlikely that the adding of new individuals

Will be necessary more than once.



Chapter 4

Section 2: Simulation in the Special case.

The simulation of the model for the Special case developed

in Chapter 1 Section 3 is greatly simplified over the general

case. In taking the sample of size N in this case consider the

following procedure. Define W1 as before to be the proportion

of individuals of the ith sampled Species present in the environ-

ment neglecting the i-l Species already sampled.

Choose w1“'h(w) = A(1-W)A-1 where A is a parameter of the

model which is to be estimated. Choose mlm Binomial (N-l,w1)

where 1111 represents the number of times that this Species repeats

in selecting the remaining N-l individuals. Then n1 = m1-+ 1

represents the number of individuals from the first Species in

the random sample of N individuals. Now choose w23'h(w) and

again select

m “'Binomial (N-n1-1,W2) and let 112 = m2-+ l.

2 i-l

In general select wi“'h(WL select miB'Binomial (N- ZInJ-l,wi)

J:

and let n. = m.‘+ l.

1 1

Continue this process until a sample of N individuals has

been chosen.

51.



Chapter 5

Section 1: Data Analysis

Using the procedures developed in the previous chapters a

set of data will now be analized to indicate the fit of the

model in an actual environment. The data used for this purpose

was taken from Williams [4] and is reproduced in table 5.1.

From the maximum likelihood methods developed in Chapter 2

an estimate of the parameters for this set of data was found to be

6: = 1.0000 21 = 40.453 13 = 392.7.

Since & 8 l the estimation of the other two parameters reduces

to the Special case Where a is set equal to one in the likelihood

equations and an estimate of the other parameters obtained by the

procedure developed in Chapter 2 Section 2. This maximum likeli-

hood estimate was found to be

21 = 40.2576 13 = 387.2

According to the model each sample is such that the number

of individuals in the sample from a species with intensity x is

distributed Poisson with mean ksx. Using ks as an estimate 0f

kS then, the expected number of Species in the sample with m

individuals is

 

” c m -k x w A m -k x A -x
k x) S Ae

.(_s.2‘_). S d = (s e ——dx1]; ml e f(x) x '(I). ‘111'1— x

“ m .. 1+1». 1 i m
AkS m-l -( s d _ S F m

= m! g x e 3 x — m! ( l)m

fc
_ e S m l _ 40.2576 99743)m.

- A ( Eé+l ) m — ‘m (°

52.
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Table 5.1

Macrolepedoptera
Data

Observed captures of Macrolepedoptera in a light trap at Rothamstad

Journal of Animal Ecology Volume 12-13, pp.45-46.

Distribution of Species according to number of individuals present

in the sample.

 

l 2 3 4 5 6 7 8 9 10

0 35 ll 15 14 10 ll 5 6 4 4

10 2 2 5 2 4 3 3 3 3 4

20 l 3 3 l 3 l l 3 2 0

30 0 l 0 2 0 3 2 0 0 0

40 0 0 2 2 l 0 0 0 3 0

50 4 l l 2 0 0 l 2 O 3 
also at 61,64,67,73,76(2),78,84,89,96,99,109,112,120,122,129,

135,141,148,149,151,154,177,181,187,190,199,211,221,226,235,239,

244,246,282,305,306,333,464,560,572,589,604,743,823,2349

TOTAL NUMBER OF INDIVIDUALS 15,609

TOTAL NUMBER OF SPECIES 240
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Table 5.2

Theoretical Frequencies for Macrolepedoptera Data

Distribution of the expected number of Species present in the

sample with parameters a = 1.0000, A = 40.2576, k8 = 387.2

1 2 3 4 5 6 7 8 9 10

0 40.15 20.03 13.31 9.96 7.96 6.61 5.64 4.93 4.37 3.92

10 3.55 3.25 2.99 2.77 2.58 2.41 2.26 2.13 2.02 1.91

20 1.81 1.73 1.65 1.58 1.51 1.45 1.39 1.34 1.29 1.24

30 1.20 1.16 1.12 1.08 1.05 1.02 .99 .96 .93 .91

 

 

40 .88 .86 .84 .81 .80 .78 .76 .74 .72 .71

50 .69 .68 .66 .65 .64 .62 .61 .60 .59 .57

also

61 - 70 5.14 151 - 200 7.31

71 - 85 6.34 201 - 300 8.57

86 -110 7.96 301 - 500 7.43

111 ~150 8.84 500 6.07

EXPECTED NUMBER OF INDIVIDUALS 15,587.7

EXPECTED NUMBER OF SPECIES 239.99



# of individuals

in Species

°
°
\
‘
O
‘
U
1
4
>
u
N
.
-
a

9-10

ll-12

13-14
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Table 5.3

40.

20

13.

9.

7

6.

5

4

8

6

5

5

6

5

4

6

6.

7

7

8

6

7

8

7

8

7

6
 

239.

Theoretical

frequency Frequency

15

.03

31

96

.95

61

.64

.93

.29

.80

.77

.00

.40

.44

.71

.68

63

.98

.02

.18

.34

.96
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.06

.12
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.08

.28
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.14
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These values were calculated and are presented in table 5.2. It is

interesting to note that in this Special case the expected number of

Species present in the sample can be easly calculated by the formula

 

 

°° -f<sx °° -ksx Ae-x

f(l-e ) f(x)dx = f(l-e ) dx

0 0

a _ -(ké+l)x

A e - e = A A = A.A =

— Ag x dx Alog(ks+1) A 239.99.

Using these theoretical values a x2 goodness of fit test is

applied to the data in table 5.1 and the theoretical values in

table 5.2. The number of degrees of freedom for this test is j-3

where j is the number of categories. Here three degrees of freedom

are lost because of the estimation of the three parameters of the

model. The test is as shown in table 5.3 and is not significant

at the 5% level.

As an aid in studying the behavior of the model a simulation

procedure has been developed in the previous chapters. Three

independent samples of 15,609 individuals have been taken from the

model using the parameters estimated from the data in table 5.1

and the procedure developed in Chapter 4 Section 2. These three

sets of simulated data are reproduced in tables 5.4-5.6 and

should give the reader a good indication of the stability of the

model. Note in particular that the total number of SPECIES’pre-

sent in each of the simulated samples are very close and that

while the number of Species present in the samples with a given

number of individuals may have a large variation among samples

nevertheless the number of large, moderate and small species
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Table 5.4

Simulated Test #1

Distribution of Species according to number of individuals

present in the sample with parameters a'= 1.0000, A = 40.2576

 

l 2 3 4 5 6 7 8 9 10

0 41 27 8 6 8 9 7 8 4 5

10 3 3 2 3 5 l 4 3 2 0

20 0 2 l 0 0 l l 2 0 0

30 3 3 l O 4 0 0 0 2 3

40 0 0 1 l l 0 O 1 0 0

50 l l 1 0 0 0 l 0 0 O 
also at 62,63,66,67,79,80,83,85(2),88,89,9l(2),93,94,96,97,105,

107,109(2),136,155,159(2),162,165,166,169,180,187,188,189,217,

222,246,247,255,260,273,277,287,324,325,345,350,405,408,440,

464,485,582,606,1385,1399.

TOTAL NUMBER OF INDIVIDUALS 15,609

NOTAL NUMBER OF SPECIES 235
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Table 5.5

Simulated Test #2

Distribution of species according to number of individuals

present in the sample with parameters a = 1.0000, A = 40.2576

 

l 2 3 4 5 6 7 8 9 10

0 40 14 15 10 8 7 3 8 3

10 4 3 l l 2 5 3 l 2 O

20 3 0 l 3 l 0 3 2 0 2

30 l l l 2 l 0 2 0 l 0

40 l 0 0 3 l 2 0 0 2 0

50 O 0 0 l l 0 l 3 0 0 
also at 61(4),64,66,67,69,71(2),72(3),73,74,7S,93,94(2),97,100(2),

101,112,120,122,124(2),125,130,135,136,140,143,148,155,157,161,

l75(3),177,187,191,192,193,196,205,206,237,291,295(2),299,302,

305,325,348,349,394,405,426,573,808,819,1079.

TOTAL NUMBER OF INDIVIDUALS 15,609

TOTAL NUMBER OF SPECIES 243
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Table 5.6

Simulated Test #3

Distribution of species according to number of individuals

present in the sample With parametersa= 1.0000 A = 40.2576

 

l 2 3 4 5 6 8 9 10

O 45 18 12 10 7 4 8 3 4

10 6 3 l 2 l l 2 3 2 2

20 3 O l l 2 2 2 0 l 0

30 2 l 3 l 4 l 3 0 l 0

40 O 0 1 0 2 O 0 0 O l

50 4 0 2 0 0 l l l l 0 
also at 61,62,67,68,70(2),71,75,77,79,80(2),89,92(2),102,104,

105,106,107,113,115,119,121,125(2),138,152,168,192,l96,208,218,

223(2),248,249,286,301,305,375,384,410,451,531,616,630,762,768,

1186,1711

TOTAL NUMBER OF INDIVIDUALS 15,609

TOTAL NUMBER OF SPECIES 233
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present remains quite stable among samples.

vWith the use of the simulated tests the question of the

accuracy of the estimates of the parameters when using the model

can be considered. The simulated data is now considered as the

original data to find the maximum likelihood estimates of the

parameters, again using the procedures developed in Chapter 2.

These estimates for the three simulated tests can be compared to

the values of the parameters used in obtaining the simulated

data as shown in the table below:

a A k

8

Values of parameters 1.000 40.2576 387.2

Estimates for simulated test #1 1.000 39.2429 397.7

Estimates for simulated test #2 1.000 40.8523 382.1

Estimates for simulated test #3 1.000 38.8425 401.8

Another point of interest is to consider the behavior of the

data as the number of individuals increases in the sample. Taking

a = l and A = 40.2576 table 5.7 shows the behavior of the data

where a sample of size 50 is first taken and then the sample in-

creased in small steps up to 15,609. It is to be remembered that

this collection of data only illustrates the behavior as n increases

in one sample but should serve as a guide for other samples. It

is to be noted for example that the number of Species with one

individual in the sample has already stabilized by the time 200

individuals are sampled.

In order to compare the simulated data to the theoretical

distribution for arbitrary N it is necessary to obtain an estimate
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of the parameter ks. Noting that the number of individuals

present in a sample from a species with intensity x1 is dis-

tributed Poisson with mean kai so that the expected number is

ksx., an estimate of this parameter for arbitrary N is obtained

(9

by setting the equation I ksx f(x)dx equal to N. Thus

0

 

- m

fk x d — k A f e xdx = k A
s s s

0 0

C O A N

and the estimate 18 k = -.

s A

Using this estimate the expected number of Species present

in the sample with m individuals for a sample with parameter

-x

 

  

 

 

h and where f(x) - Ae is

S

N

m (ES x)m "ksN E: A m m_1 '(l‘sN“1)X

N e f(x)dx = N f x e dx

0 m! m! 0

A fism T(m) is m

g N _ A <: N :>

I A - — A

m‘ (kS +1)m m ks +1

N N

.A<_N_>m
m N+A '

For given values of N and A this can easily be tabulated and in

particular compared with the data in table 5.7 for A = 40.2576.



Distribution of species according to number of individuals

Table 5.7
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present in the sample with parameterscr= 1.0000, A = 40.2576

for increasing N

N = 50 Number of Species = 28

1 3 4 5 9 10

0 15 8 2 1 O 0 0 0

N = 100 Number of Species = 41

. 1 3 4 5 6 8 9 10

0 20 8 3 2 5 l 0 2 0 0

N = 200 Number of species = 63

1 2 3 4 5 6 7 8 9 10

0 29 10 3 2 2 l 0

also at 12(2),21

N = 500 Number of Species = 94

1 2 3 4 5 6 7 8 9 10

0 31 19 8 9 4 1 5 2 0

10 3 1 l 0 1 0 0 O 2

20 0 2 l 1 0 0 0 0 0

also at 33,49

N = 1000 Number of species 119

1 2 3 4 5 6 7 8 9 10

0 32 19 12 10 6 8 2 3 l 2

10 2 2 l l l 2 l 0

20 0 0 l 0 1 l 0 1

also at 33,42,43,46,47,49,67,97
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N = 2000 Number of Species = 143

 

 

1 2 3 4 5 6 7 8 9 10
0 36 14 9 10 7 10 5 5 4 2

10 1 3 5 0 l 1 0 l

20 1 l 1 1 O 2 0 3

also at 34,35,40,47,49,54,56,59,80,83,93,95,97,144,203

N = 3000 Number of Species = 165

1 2 3 4 5 6 7 8 9 10

0 43 16 ll 8 8 7 4 3 6 6

10 4 2 3 2 0 1 2 2 3

20 3 2 0 1 0 2 0 0 1 0

also at 39(2),41,42,44(2),47,50(2),52(2),67,79,80,81,92,124,

125,130,136,142,208,319

N = 4000 Number of Species = 176

 

1 2 3 4 5 6 7 8 9 10

o 41 22 5 11 5 5 7 6 3 4

10 4 2 4 5 1 4 1 2 2 1

20 2 2 1 1 o 1 2 o 1 0

3o 2 2 o 2 o o o 1 1 o

40 o o o o o o o o 1 2

50 o o 1 o o o 1 0 0 0 
also at 61,63,66,67,68,71,86,93,106,110,114,157,l61,l70,173,

190,295,434



64.

N = 5000 Number of Species ' 190

 

1 2 3 4 5 6 7 8 9 10

O 43 28 5 8 5 5 7 3 5 5

10 6 0 5 3 5 1 2 2 2 0

20 2 2 3 2 1 0 0 2 O 2

30 0 O 3 3 0 1 0 l O 1

40 0 1 1 0 0 O 1 0 0 0

50 O 0 1 0 0 0 O 0 l 0 
a136 at 61,64,65,71,74,79,82,88(2),89,98,ll8,130,133,138,l95,

200,212,227,237,378,529

N = 6000 Number of species = 198

 

 

 

1 2 3 4 5 6 7 8 9 1o

0 4o 31 8 7 7 5 6 o 5 5

1o 2 5 5 2 1 4 7 1 1 o

20 1 o 3 2 3 1 o 1 1 1

3o 1 1 1 1 1 1 1 o 1 1

40 o 2 3 o 1 o 1 o o o

50 o o 1 2 o 1 o o o 0

also at 70(2),77,81,87,91,93,96,101,107,120(2),142,149,150,

171,218,236,248,275,285,449,633

N = 7000 Number of Species = 200

~ 1 2 3 4 5 6 7 8 9 10

0 35 29 9 8 11 2 7 4 1 5

1o 4 1 4 6 2 3 2 1 1 5

20 0 1 1 1 2 2 2 2 1 o

30 1 o 2 1 1 2 1 2 o 0

4o 0 2 o o 1 0 0 2 1 0

50 3 1 o o 0 1 0 1 0 1 
also at 61,67,81,83,86,92,102,105,109(2),115,124,136,141,172,

173,175,197,256,277,288,332(2),531,742
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N = 8000 Number of Species = 205

 

1 2 3 4 5 6 7 8 9 10

0 35 23 16 7 14 3 3 3 5 1

10 4 1 5 1 6 3 3 1 1 2

20 0 3 2 1 2 2 3 0 3 O

30 1 1 2 1 0 1 1 0 2 1

40 0 2 0 1 0 0 l 2 0 1

50 0 0 1 3 0 1 0 0 0 1 
also at 61,64,66,67,72,75,94,95,97,108,111,116,122,123,129,149,

150,167,192,l95,204,227,284,314,325,382,393,600,860

N = 9000 Number of Species = 207

 

1 2 3 4 5 6 7 8 9 10

0 35 22 13 8 9 9 0 7 2 4

10 5 2 2 1 6 3 3 1 1 3

20 1 O 1 2 2 2 3 1 2 1

30 1 1 0 2 0 2 1 0 1 1

40 0 1 1 1 2 1 1 0 0 1

50 0 O 0 1 1 0 1 O 3 0 
also at 61,64,65(2),68,71,72,77,81,84,99,105(2).118,120,121,

131,140,147,163,173,182,213,224,234,265,324,360,365,433,445,

676,961
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N = 10,000 Number of Species = 210

 

1 2 3 4 5 6 7 8 9 10

0 32 25 13 7 9 6 4 6 5 4

10 1 3 3 3 2 2 2 3 3 2

20 2 2 0 2 1 0 1 1 1 4

3O 3 O 1 0 1 4 0 0 1 0

40 0 1 1 2 0 1 0 3 1 0

50 1 1 1 0 0 0 0 0 1 0 
also at 61,62,65(2),71(2),72(2),74(2),76,80,86,88,93,112,113,

123,130,132,138,141,154,160,191,192,199,236,244,274,293,355,391,

397,479,492,751,1093

N = 11,000 Number of Species = 215

 

1 2 3 4 5 6 7 8 9 1o

0 34 25 12 8 9 6 4 7 4 2

10 4 3 o 4 1 3 4 3 1 o

20 5 1 1 1 1 3 1 1 0 1

30 1 1 1 2 2 1 1 3 o 1

40 1 o o o 2 1 1 o o 1

50 1 1 2 o 1 1 o o 2 o 
also at 64,66,69,7o,71,77(3),79,80,81,85(2),95,96,105,121,126,

135,145,148,154,155,173,175,207,213(2),256,261,298,316,385,440,

442,529,533,335,1215
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N = 12,000 Number of species = 220

 

1 2 3 4 5 6 7 8 9 10

0 37 23 12 8 7 11 2 6 5 2

10 3 4 2 2 1 2 2 6 1 1

20 2 1 1 2 2 2 2 2 2 0

3O 1 0 1 0 1 2 2 1 0 3

40 0 1 1 1 0 1 0 1 2 0

50 0 2 0 1 O 1 1 1 O 2 
also at 62,63,67,70,73,80,81,85(2),86(2),88,89,93,94,101,105,

121,128,144,148,157,162,169,171,187,l89,223,227,230,276,279,322,

348,423,474,484,575,592,916,1327

N = 13,000 Number of Species = 221

 

1 2 3 4 5 6 7 8 9 10

o 38 20 10 11 7 9 5 1 9 2

10 1 2 5 4 1 2 2 2 2 3

20 1 1 o 1 3 1 3 1 3 2

3o 1 1 1 1 o o 1 0 3 1

40 o 1 1 o 2 2 o 1 1 o

50 1 1 o 1 1 0 o 1 2 1 
also at 64(2),65,66,67,71,74,77,84,90,92(2),94,96,98,99,101,

102,106,114,13o,138,161,165,177,181,189,201,207,239,247,252,

305,311,342,374,452,515,518,628,646,989,1415
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N = 14,000 Number of Species = 224

 

1 2 3 4 5 6 7 8 9 1o

0 39 20 1o 10 8 8 5 2 8 5

10 1 2 1 3 2 3 4 1 2 3

20 1 1 2 o 1 1 1 2 2 0

3o 1 5 4 o o 1 o o 1 0

4o 0 1 3 o o 1 2 1 1 o

50 1 1 1 1 o o 1 1 1 o 
also at 62,63(2),64,69,70,71,72(2),78,84(2),90,96,97(2),99,

103,106(2),107,109,116,123,136,148,171,179,194,195,197,2o3,221,

223,258,269(2),333,339,400,477,556,559,679,684,1063,1528

N = 15,000 Number of Species = 230

 

1 2 3 4 5 6 7 8 9 10

o 43 17 13 6 1o 9 5 4 4 5

1o 5 2 1 2 3 o 2 3 3 2

20 2 1 2 1 3 o o o 1 1

30‘ 2 2 2 3 5 o o 1 o 0

40 o 1 o 1 1 1 o o 3 2

50 o 1 1 o o 1 2 o o 1  
also at 62,64,65,66,68(2),73,75(2),77,79,83,87(2),99,1o1,102,

103,106,108,111,115,117,119,123,133,144,164,184,190,205,206,213,

216,235,238,275,287,294,356,369,399,43o,508,588,602,728,741,1134,

I

1647
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N = 15,609 Number of species = 233

 

1 2 3 4 5 6 7 8 9 10

0 45 18 12 6 10 7 4 8 3 4

10 6 3 1 2 1 1 2 3 2 2

20 3 0 1 1 ' 2 2 2 0 1 0

30 2 1 3 1 4 1 3 0 1 0

40 0 0 1 0 2 0 0 0 0 1

50 4 0 2 O 0 1 1 1 1 0 
also at 61,62,67,68,70(2),71,75,77,79,80(2),89,92(2), 102,104,

105,106,107,113,115,119,121,125(2),138,152,168,192,196,208,218,

223(2),248,249,286,301,305,375,384,410,451,531,616,630,762,768,

1186,1711.



Chapter 6

Section 1: Investigation of Species per Genus Data

In an effort to determine the different types of environments for

which the model holds data from Williams[6] on Orth0ptera was investigated.

It is realized that the data is in the form of Species per genus which

is quite a different concept from the individuals per Species data that

had previously been considered but this data seemed to Show some of the

same properties as the other data and it was heped that this biological

Situation could also be explained by the model. Applying therefore the

methods of the previous chapters the maximum likelihood estimate of the

parameters was

A

a=1. 1056 A=2 31.065 ks=16. 3

In comparing the actual data , reproduced in table 6.1, to the

theoretical expected values obtained using the above estimates of the

parameters it was determined that the model fit rather well for the

small and moderate genera but that the theoretical values for the

larger genera were too small. This conclusion was reinforced when

three samples of 4112 species were taken using a=1.1056 and A=231.065

and it was found that the largest genus among the three samples con-

tained only 80 Species, far below the number that was actually

encountered.

With this result in mind it was decided that an adequate fit

might be obtained if the form of the function f(x) was altered to

accommodate this new situation . It was decided that the term e"'x in

the numerator made the function f(x) decrease too rapidly. For large

intensities it was decided to try the form f(x)= "$5 where q is a

parameter with the restriction ZSq<m.

70.
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In determining q for the Orthoptera data make the definition

SPCEa,b) = total number of Species in the genera which have ni Species

with a s n1'< b..Adjusting so that k8 = 1 the eXpected number of Species

is defined by the equation.r: x f(x) dx for the interval [a,b).

Using SPCEa,b) as an estimate of the number of Species in the

sample which are in genera having an intensity in the interval [a,b)

consider the following equations

C C

I x f(x) dx =f 11 x1‘9 dx = SPc[30,c)

30 30

Q Q

I x f(x) dx = IA xl-q dx = SPCCC:°°)

c c

for 50 < c < 100

and q >2

Integrating and eliminating A from the two above equations the

solution for q is seen to be

16g SPCI: 30,1») - log SPC[c,co)

q = 2- log 30 - log c

From the graph of q as a function of c for 50 <c< 100 a good

choice for q in this case seems to be q = 3. A130 for small genera

the function f(x) appears to take the general form similar to f(flwg—

so that the expected number of genera with m species is

 

C» Q

f xm e'x f(x) dx =f A xm‘l e"x dx = A Pgmz = _A

0 m1 0 m1 m! m

Combining these two characteristics it was decided that the

function f(x) should take the form f(x) = '-T;$;$z where A and a
x

are positive constants. An attempt at finding a maximum.likelihood

estimate of these parameters became very messy so that an estimate

was obtained from a simultaneous solution of the equations
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co 00

A

xfx dx= dx=SPC30w=904

I... H I... W [1)

a: Q

x e'x
—-—- f(x) dx =I -—-—2—Ae-x dx = 320

1! 0 (7&3) .ID

The estimates obtained were

; = 10 A = 37,000

The simulation procedure used in the case where f(x) = Fifi-5?-

is quite similar to the procedure deve10ped in Chapter 4 Section 1

except that some changes are needed in finding the intensities due to

the different form of the function f(x). As before let Ek, k=1,2,3,...

be an infinite supply of exponential random variables and consider the

following procedure for producing a sample of size N with known

parameters a and A.

1. Set k=1, set i=1, set x: = + co

 

 

 

x: x3}: x}? A ‘

A — — C x >22. Ix]: f(x) dx—IXimdx- Ix]: x3 x+a dx

5!:

xi A .
3. Set Ek = I :{3 dx and SOIVIng for Xi

xi

.. A 1
xi " 2 ‘12—"

\ >3 E3
l j=1

X’ 2

4. Accept xi with probability (Ii—2" .

5. If xi is rejected, set x: = xi, increase k by one, and return

to step #3 provided Xi > _a___ If xi is accepted, increase k by

/2-1.

one, set x241 == xi, increase 1 by one and return to step #3

. a
provided Xi > 2 _ 1 ,

is the point where the acceptance The point xi=

f2-1
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probability< :5?) is equal to one half so that it becomes

desirable to modify the procedure at this point to increase the

effeciency.

6. Set k1= k. Also

2" 9.‘x1 x1 A :>2d

Ix]: f(X) dx =1*fx1 x(x+a)2dx =f:* 2x_3{_x_x+a x

xi A 1
7. Set Ek='fx1‘§ -3dx and solving for xi

 

1
1i-[231r‘=\| Krl

\)22 Ej+ 2 E.

PM 3‘1 J

 

8. Accept xi with probability (ii)?

9. If xi is rejected, set xii: = xi, increase k by one, and

return to step #7 provided xi > a. If xi is accepted, set x§+1= xi,

increase k by one, increase i by one and return to step #7 provided

xi > a,

At the point x = a another modification is to be made to increase

the effeciency.

10. Set k2=k, set le= x?

 

x* X? x? A a 2

i 1 A — < >dx

f f(x) dx=f , mde-fx. 2:52 x+a
xi x* X1

11. Set Ek= f:i —-zdx and solving for Xi

1 , -gZL£131.13]
x1=x~N1e

2

12. Accept xi with probability (xi-+3 > '

 

. > .

k by one, increase i by one and return to step #11 provided x:L es
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The constant e is determined similar to the procedure used

s

before.

The expected sample Size is

Q m Q

A 1 k A
g sx (X) x g ksx x(x+a)2dx ksA g (;:332 dx a .

Setting this equal to N to obtain an estimate for kS

* aN

ks - 7r -

S t N* ‘ *e = = =14. 1. and k4 k, Xe xi.

For the small intensities the modification which skips over

some of the genera which do not appear in the sample is again employed.

* * x*

X.

 

x145 lA xikSA

f ksx f(x)dx=f ksx —--—2 =f -;S-2- (ax+a >2dx.

xi X. “(3*)2d xi

x* .

i kSA

16. Set Ek = I -3- dx and solve for X1

x, a

1

2 k

a

x. = x. - -——- g E,.

1 8 RSA j'k4

 :3. If x. is

1

and return to step #16.

. a

17, If xi > 0, accept x],L with probabil1ty< x +a

*

rejected increase k by one, set xi - xi

* - -
. . — x, increase 1 b

If x1.- 18 accepted,1ncrease k by one, set xi+1 1’ y

one and return to step #16.

If xi 5 Q reject x, and cease finding intensities.

1

In finding the number of Species in each genus for a particular

sample employ the procedure described in Chapter 4.

Using the above prodecure with A = 37,000 and a = 320 three

samPles of 4112 genera were taken and the results shown in table 6.2

These results can be compared to the original data in table 6.1 to

examine the fit of the model in this case.
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Table 6.1

ORTHOPTERA OF WORLD

Journal of Ecology Volume 32 page 18

Distribution of genera according to number of Species present

 

 

1 2 3 4 5 6 7 8 9 10

0 320 131 86 61 41 27 21 18 23 17

10 12 8 9 3 5 4 3 6

20 1 l 2 1 0 2 0 0 4 0

also at 31(2),34,35,36,38,41,43,51,54,58,72,75,103,202.

TOTAL GENERA 826

TOTAL SPECIES 4112

Table 6.2

S IMULATED TEST 1

Distribution of genera according to number of Species present

 

1 2 3 4 5 6 7 8 9 10

0 317 134 86 49 37 24 26 22 7 12

10 10 8 8 7 1 5 3 3 0

20 1 5 4 1 5 2 1 1 

also at 32,34,35,36,44(2),49,53,54,55,56(2),57,69,73,79,83,178.

TOTAL GENERA 798

TOTAL SPECIES 4112
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Table 6.2

SIMULATED TEST 2

Distribution of genera according to number of Species present

 

1 2 3 4 5 6 7 8 9 10

0 324 146 90 54 43 24 17 23 15 5

10 7 9 7 8 8 8 5 3 6 l

20 3 2 3 2 2 3 1 3 0 1 

also at 32,34,35,36,39(2),41,45,49,52,53,74,79,153.

TOTAL GENERA 837

TOTAL SPECIES 4112

SIMULATED TEST 3

Distribution of genera according to number of Species present

 

1 2 3 4 5 6 7 8 9 10

0 317 141 83 48 41 25 21 9 15 7

10 7 9 7 4 5 2 4 4 4 5

20 3 5 1 3 2 0 2

 

also at 33,37,42,46,48,50(2),56,57(2),2
17,354.

TOTAL GENERA 790

TOTAL SPECIES 4112



APPENDIX

Using the theory developed in the previous chapters, FORTRAN 60

programs have been developed to perform the indicated operations on

the Control Data 3600 Computer.

Program SPECIES l finds the maximum likelihood estimates of

the parameters of the model using the methods discribed in Chapter

2 Section 1.

Program SPECIES 2 finds the maximum likelihood estimates of

the parameters of the model under the Special condition a = 1

using the methods discribed in Chapter 2 Section 1.

Program SPECIES 3 is a simulation program to obtain a sample

of size N from the model in the case a + 1 using the methods

developed in Chapter 4 Section 1.

When using the program to obtain a sample it was found that

about 5000 individuals could be sampled in about 30 seconds on

the CDC 3600 computer. Also note that if the sample size is

doubled the estimated Simulation time increases only a few seconds

due to the fact that a large percentage of the simulation time is

used to obtain the intensities of the Species and the number of

new Species decreases rapidly with increa81ng sample Size.

Program.SPECIES 4 is a simulation program to obtain a sample

of size N from the model in the case a = 1 using the procedure

described in Chapter 4 Section 2.

This program obtains a sample of 15,000 individuals in about

20 seconds on the CDC 3600 computer. Note that this procedure is

much faster than SPECIES 3. This is explained by the fact that

77.
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the simulation procedure is extremely simplified in the case

where a = l.

The four above mentioned programs are tabulated in the follow-

ing pages with a brief explination to the right of the tabulated

programs. Although these were not the only programs used in this

investigation, they were the ones used to obtain the primary results.
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