^A MODEL FQR THE DISTRIBUTION OF INDIVIDUALS BY SPECIES IN AN ENVIRONMENT

L.

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY John W. McCIoskey 1965

LIBRARY Michigan S**tate** University $\mathsf{\Gamma}$ LIBRARY

This is to certify that the

thesis entitled

A MODEL FOR THE DISTRIBUTION OF INDIVIDUALS BY SPECIES IN AN ENVIRONMENT

presented by

John W. McCloskey

has been accepted towards fulfillment of the requirements for

 $\ddot{}$

Hyma Virting

Date $\frac{\frac{9}{7}}{\frac{9}{2}}$ /7 /5 65 has been $\frac{Ph}{\sqrt{\frac{2h}{\pi}}}$.
Date $\frac{2h}{\sqrt{2}}$ o.169

O-169

Ť

THESIS

tate
y

() {) {) { } } } } { { } } { { } } { { } } { { } {

RETURNING MATERIALS: Place in book drop to RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is returned after the date stamped below.

 $\label{eq:1.1} \Phi_{\mathbb{R}}(t) = \Phi_{\mathbb{R}}(t) \otimes \Phi_{\mathbb{R}}(t)$

HER OF

ABSTRACT

THE REPORT OF PERSONS ASSESSED

A MODEL FOR THE DISTRIBUTION OF INDIVIDUALS BY SPECIES IN AN ENVIRONMENT

by John W. McCloskey

ARSTRACT

A RODEL FOR MEDISTRACT

A RODEL FOR MEDISTRATION

OF ENDYLTDRALS BY SPECES

OF ENDYLTDRALS BY SPECES

DV John W. McCloskey

Ne problem considered in this thesis is that

loping a model for biological environments The problem considered in this thesis is that of developing a model for biological environments so that, for samples of individuals obtained from the environment, the number of species and the number of individuals in the respective species can be predicted, It is assumed that the number of individuals in the environment, as well as the number of species, is countably infinite so that only in environments where these quantities are very large will the model be realistic.

In Chapter ¹ the model is developed and in Chapter 2 a procedure developed to obtain maximum likelihood estimates of the parameters of the model using a sample of data already gathered from the environment. Since there are three parameters in the model the estimates are obtained from the

simultaneous solution of three equations which is accomplished by means of an iterative Newton procedure.

As a means of studying the behavior of the model a simulation procedure was developed in Chapter 4 which would choose a sample from the model for a given set of parameters. This procedure uses random variables having Binomial, Poisson, Hypergeometric, Truncated Poisson and Exponential distributions. Methods were thus developed in Chapter 3 to produce random variables with these specified distributions rapidly and with as few input random variables as possible. The fundamental technique used in obtaining these random variables is the acceptance-rejection technique introduced by von Neumann.

Chapter 5 and Chapter 6 are devoted to the analysis of data that was taken from actual biological environments. The analysis is accomplished through procedures developed in the previous chapters and the Control Data 3600 computer used for the actual calculations. Several FORTRAN 60 programs were used for these calculations which are tabulated in the appendix.

A MODEL FOR THE DISTRIBUTION OF INDIVIDUALS BY SPECIES IN AN ENVIRONMENT

 Bv John W. McCloskey

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics

1965

ACKNOWLEDGMENTS

\$ 3547 66

<u>All the second control of the second contro</u>

 $\overline{}$

ACCOMULED CONSTRAINERS

I would like to thank my academic advisor,

reference Termann Rubin, for his many comments and

gestions in the course of the research. His willing-

to discuss the problem and to exchange ideas in I would like to thank my academic advisor, Professor Herman Rubin, for his many comments and suggestions in the course of the research. His willingness to discuss the problem and to exchange ideas in the early stages of the research was especially helpful. Also, the ideas expressed by Professor Philip Clark concerning the presentation of the simulated data were very helpful and greatly appreciated.

I am also grateful to the Department of Statistics, Michigan State University, and the Office of Naval Research for their financial support during the writing of this thesis.

TABLE OF CONTENTS

<u>in the second company of the second company o</u>

LIST OF TABLES

<u>film and the second company of the second com</u>

The collection of the Model
The Collection of all the individuals of a certain $\frac{1}{\sqrt{2}}$
type for example the collection of all the individuals of a certain Section 1: General Discussion of the Model
Let C be the collection of all the individuals of a certain
type. for example butterflies, present in an environment. Consider
the partition of the individuals into species desig This assumption is made because in the environments being considered
the number of species is very large and in sampling from the
environment there is assumed to be a strictly positive probability
of finding a new species species s_i such that $\sum_{i=1}^{\infty} p_i = 1$.
Consider now the task of choosing a sample of N individuals Section 1: General Discussion of

Let C be the collection of

Let C be the collection of

type. for example butterflies, p

the partition of the individuals

where the species are arbitrarily

number of species present in

independently from the environment. Let these individuals be
designated by I_1, I_2, \ldots, I_N . The individuals are chosen accordi
to the restriction $\begin{bmatrix} 1 & -2 & \cdots & -1 \\ 0 & \text{the restriction} \end{bmatrix}$ are chosen according

P[I_i is from the species s_j] = p_j for $i = 1,2,...,N$
 $j = 1,2,...$
After the individuals are chosen from the environment the

 $P[I_i is$
After
sample will
with one in
 n_i species
 i
 i
The object of
environments
can be predic $\begin{array}{c}\n\text{sample} \quad \text{with } \text{o} \quad \text{with } \text{op} \quad \text$ a_n sample will contain say s species for which there are n₁ species with the species with two individuals and in general $\frac{n_i}{i}$ species with i individuals subject to the conditions P[I₁ is

After

sample will

with one in

n₁ species

The object c

environments

can be predi

$$
\sum_{i=1}^{N} n_i = s \quad \text{and} \quad \sum_{i=1}^{N} i n_i = N.
$$

² object of this report is to develop a model for natural

Consider therefore the generalization of the probabilities P_i where for each species s_i in the environment it is assumed there is an "intensity" x_i proportional to p_i . Let $z = \sum x_i$ where z is defined to be the total intensity of the environment. Define an intensity function f to be a non-negative integrable function on $\int_{-\infty}^{\infty}$ with the property that (i) for any $\varepsilon > 0$, $\int_{0}^{\varepsilon} f(x) dx = +\infty$ and $\int_{\epsilon}^{\infty} f(x) dx < + \infty$ and (ii) $\int_{0}^{\infty} x f(x) dx < + \infty$.
The model can now be stated as follows: Given an intensity

function f for an environment, for any interval [a,b) with
 $0 < a < b \le \infty$ the number of species present with intensity x_i in

the interval $a \le x_i < b$ has a Poisson distribution with mean
 $\int_a^b f(x) dx$ and for disjoint inte total intensity will be almost surely finite. Let U_i be a random
variable representing the number of individuals observed from
species s_i for $i = 1, 2, ...$ Suppose $U_1, U_2, ...$ to be independent Poisson random variables with means $k_{s}x_{i}$, where k_{s} is a positive constant and x_{i} the intensity of the respective species. Define a sample to be an observation of the random vector $U = (U_1, U_2, \ldots)$
and define $Y_m =$ (number of $U_i = m$) for $m = 1, 2, \ldots$.

The development which follows in this section is an attempt
to give motivation for the actual development of the model in the to give motivation for the actual development of the model in the next section. Thus, let $X = (X_1, X_2, ...)$ be a set of intensities obtained from the process and define $Z = \sum_{i=1}^{\infty} X_i$ and the species a sample to be an observation of the random vector $U = (U_1, U_2, ...)$
and define $Y_m = (number of U_1 = m)$ for $m = 1, 2, ...$
The development which follows in this section is an attempt
to give motivation for the actual development of the

2.

file and the second control of the second secon

with intensity X_i will be designated species s_i .
Then
 $P[I_1 \text{ is from species } s_j] = \frac{X_j}{2} \text{ for } j = 1, 2, \text{ Let } s_i^* \text{ be }$ the species of individual I_1 and let V_1 be the intensity of
this species. Choose a second individual I_2 randomly from the
environment and examine its species. If it is different from
 S_1^* , let S_2^* be its s individuals independently from the environment until one is found which has a different species than I_1 and let the species of this individual be S_2^* . Consider now the two random variables
 V_1
 V_x

$$
W_1 = \frac{v_1}{z}
$$
 and $W_2 = \frac{v_2}{z - v_1}$.

Theorem 1: Suppose that W_1 and W_2 are independent and identically distributed according to a distribution H on [0,1]. If $0 < E(W_1) < 1$, then define λ such that $E(W_1) = \frac{1}{\lambda + 1}$. It then follows that d $H(w) = \lambda (1-w)^{\lambda-1}dw$.

Proof: Let Y_{I} for $i = 1, 2$, be the proportion of individuals in the environment from the same species as individual I_{I} . The individuals I_{I} and I_{2} are chosen independently from the same environment so Y_{I_1} and Y_{I_2} are independent and identically distributed. Y_{I} is defined as follows 2. Y_{I_1} is defined as follows
 $I_1 = W_1$
 $I_2 = W_1$
 $I_1 = W_1$
 $I_2 = \begin{cases} V_1 \text{ with probability } W_1 \\ (1-W_1)W_2 \text{ with probability } (1-W_1) \end{cases}$

and W_1 with probability W_2

3.

Let the rth moment of H be μ_r . Then for $r > 0$

$$
\begin{aligned} \mu_{\text{r}} &= E(\text{W}_1^{\text{r}}) = E(\text{Y}_{\text{I}_1}^{\text{r}}) = E(\text{Y}_{\text{I}_2}^{\text{r}}) \\ &= E[\text{W}_1^{\text{r}+1} + \text{W}_2^{\text{r}} \ (1-\text{W}_1)^{\text{r}+1}] \\ &= \mu_{\text{r}+1} + \mu_{\text{r}} \ E(1-\text{W}_1)^{\text{r}+1} \\ &= \mu_{\text{r}+1} + \mu_{\text{r}} \left[\sum_{k=0}^{\text{r}+1} \ (-1)^k \binom{\text{r}+1}{k} \mu_k \right] \end{aligned}
$$

Solving for μ_{r+1}

$$
\mu_{r+1} = \mu_r \left[1 - \frac{\sum_{k=0}^{r} (-1)^k {r+1 \choose k} \mu_k}{1 + (-1)^{r+1} \mu_r} \right]
$$

From this equation μ_{r+1} is determined by $\mu_0, \mu_1, \ldots, \mu_r$ unless r is even and $\mu_r = 1$. If however $\mu_r = 1$ for r > 0 the distribution is concentrated at one and all $\mu_k = 1$. This distribution with $\mu_k = 1$ for which violates the assumption that the environment contain an infinite number of species.

In order to determine the moments μ_r an equality must first be established. Thus

$$
\int_0^1 (1-x)^{r+1} (1-x)^{\lambda-1} dx = \int_0^1 \sum_{k=0}^{r+1} (-1)^k {r+1 \choose k} x^k (1-x)^{\lambda-1} dx
$$

$$
= \sum_{k=0}^{r+1} (-1)^k {r+1 \choose k} \int_0^1 x^k (1-x)^{\lambda-1} dx
$$

$$
\int_{0}^{1} (1-x)^{r+1} (1-x)^{\lambda-1} dx = \int_{0}^{1} \sum_{k=0}^{r+1} (-1)^{k} {r+1 \choose k} x^{k} (1-x)^{\lambda-1} dx
$$

\n
$$
= \sum_{k=0}^{r+1} (-1)^{k} {r+1 \choose k} \int_{0}^{1} x^{k} (1-x)^{\lambda-1} dx
$$

\n
$$
= \sum_{k=0}^{r+1} (-1)^{k} {r+1 \choose k} \frac{\Gamma(k+1)\Gamma(\lambda)}{\Gamma(k+1+\lambda)} = \sum_{k=0}^{r+1} (-1)^{k} {r+1 \choose k} \frac{\Gamma(\lambda)}{\Gamma(k+1+\lambda)}
$$

. "And in the same of the

Thus

$$
\sum_{k=0}^{\tilde{L}} (-1)^k {\binom{r+1}{k}} k! \frac{\Gamma(\lambda)}{\Gamma(k+1+\lambda)} = \int_0^1 (1-x)^{r+\lambda} dx - (-1)^{r+1} (r+1)! \frac{\Gamma(\lambda)}{\Gamma(r+2+\lambda)}
$$

$$
= \frac{1}{r + \lambda + 1} - (-1)^{r+1} (r+1) \prod_{r = r + 2 + \lambda}^{r} (r+1)
$$

It is to be shown now with the use of the above equation that $\mu_k = \frac{k \Gamma(\lambda+1)}{\Gamma(k+1+\lambda)}$ by induction. Obviously $\mu_1 = \frac{1}{\lambda+1}$ and assume

$$
\mu_k = \frac{k!\Gamma(\lambda+1)}{\Gamma(k+1+\lambda)}
$$
 for $k = 0,1,2,...$

From the recursion formula for μ_{r+1}

$$
\mu_{r+1} = \frac{\underline{r} \prod (\lambda+1)}{\Gamma(k+1+\lambda)} \left[\underbrace{1 - \frac{r}{k}}_{k=0} (-1)^k \binom{r+1}{k} \frac{k \prod (\lambda+1)}{\Gamma(k+1+\lambda)} \right]
$$

$$
1 + (-1)^{r+1} \frac{\Gamma(\lambda+1)}{\Gamma(r+1+\lambda)}
$$

$$
\frac{r(1 - \lambda)}{\Gamma(k+1+\lambda)} \left[\frac{1 - \lambda \frac{1}{r+1+\lambda} - (-1)^{r+1} (r+1) + \frac{\Gamma(\lambda)}{\Gamma(r+2+\lambda)}}{1 + (-1)^{r+1} \frac{\Gamma(\lambda+1)}{\Gamma(r+1+\lambda)}} \right]
$$

$$
\frac{r!\ \Gamma(\lambda+1)}{\Gamma(k+1+\lambda)}\ \left[\begin{array}{c|c} \frac{r+1}{r+1+\lambda} & +\ (-1)^{r+1} & \frac{(r+1)}{r+1+\lambda} & r!\ \Gamma(\lambda+1) \\ \hline & & \\ 1 & +\ (-1)^{r+1} & r!\ \Gamma(\lambda+1) \\ \hline & & & & \\ \h
$$

$$
= \frac{(\mathbf{r}+1) \mathbf{i} \Gamma(\lambda+1)}{\Gamma(\mathbf{r}+2+\lambda)}
$$

Consider the rth moment of the distribution $\lambda(1-x)^{\lambda-1}$ for $0 \le x \le 1$, ≤ 1 ,

____———-----IIIIIII

0 otherwise

$$
\int_0^1 x^r \lambda (1-x)^{\lambda-1} dx = \frac{\lambda \Gamma(r+1) \Gamma(\lambda)}{\Gamma(r+1+\lambda)} = \frac{r! \Gamma(\lambda+1)}{\Gamma(r+1+\lambda)}.
$$

This distribution has the desired moments and since its moment generating function exists in a neighborhood of zero where $\delta x = \lambda (1-w)^{\lambda-1} dw$.

Chapter 1

Section 2: Development of the Model

Let f be an intensity function and let $X = (X_1, X_2, X_3, \dots)$ be a set of intensities obtained from the process described in the previous section using f as the intensity function. Let $Z = \sum_{i=1}^{n} X_i$ and let Z have density g. Define V_1 to be a random $i=1$ *
variable such that $P(V_1 = X_i | X) = \frac{X_i}{Z}$ for $i = 1, 2, ...$ and define $Y = Z - V_1$.

Lemma 1: If f is a continuous intensity function the joint density h of V_1 and Y can be expressed in the form

$$
h(v_1, y) = \frac{v_1 f(v_1)}{v_1 + y} g(y)
$$
.

The proof of this result was obtained by Professor Herman Rubin and is to be published in a paper by him.

Make the substitution $z = v_1 + y$ so that $h_{\overline{v}_1, \overline{z}}(v_1, z) = \frac{v_1 f(v_1)}{z} g(z-v_1)$. Now integrating with respect to v_1 to obtain the density of the total intensity

$$
g(z) = \int_0^z h_{V_1, Z}(v_1, z) dv_1 = \int_0^z \frac{v_1 f(v_1)}{z} g(z - v_1) dv_1.
$$

Define $W = \frac{V_1}{Z}$. Then
 $h_{W,Z}(w, z) = \frac{wz f(wz)g(z - zw)z}{wz + wz}$ = $wz f(wz)g(z(1-w)).$
Theorem 2: If $h_{W,Z}(w, z) = wzf(wz)g(z(1-w))$ for $0 \le w \le 1$ and
 $0 < z < \infty$ and if $h_{W|Z}(w) \stackrel{z}{\equiv} \varphi(w)$ and assuming f and g to be twice
 $g(z) = c'z^H e^{kz}$ for $0 < z < \infty$.
 $g(w) = \frac{h_{W,Z}(w, z)}{g(z)} = \frac{wz f(wz)g(z(1-w))}{g(z)} = \varphi(w)$

logarithms

 $\log w + \log z + \log f(wz) + \log g(z(1-w))$

= $\log \varphi(z) + \log g(z)$

Let $\psi_1(wz) = \log f(wz)$ and $\psi_2(z(1-w)) = \log g(z(1-w))$ thus

log w + log z + $\psi_1(wz)$ + $\psi_2(z(1-w))$ = log $\varphi(w)$ + log $g(z)$ taking derivative with respect to w and then with respect to z

$$
\frac{1}{w} + z \psi_1' (wz) - z \psi_2' (z(1-w)) = \frac{\varphi'(w)}{\varphi(w)}
$$

 $\hat{\Psi}_1^{\dagger}$ (Wz) + Wz $\hat{\Psi}_1^{\dagger}$ (Wz) - $\hat{\Psi}_2^{\dagger}$ (z(l-w)) - z(l-w) $\hat{\Psi}_2^{\dagger}$ (z(l-w)) = 0.
Thus Thus

$$
\frac{wz \psi_1^w (wz) + \psi_1^v (wz) = z(1-w) \psi_2^w (z(1-w)) + \psi_2^v (z(1-w))
$$

Since the above equation is valid for all values of z and w the following must be true

 $wz \psi_1^m (wz) + \psi_1^m (wz) = k$

and $z(1-w) \psi_2'' (z(1-w) + \psi_2' (z(1-w)) = k$.

Solving then these two differential equations
\n
$$
u \psi_1^u(u) + \psi_1^s(u) = k
$$
\n
$$
u \psi_1^s(u) = ku + H
$$
\n
$$
\psi_1^s(u) = ku + H
$$
\n
$$
\psi_1^s(u) = k + \frac{H}{u}
$$
\n
$$
\psi_1^s(u) = ku + H \log u + M
$$
\n
$$
f(u) = e^{\psi_1^s(u)} = e^{\psi_1^s(u)} = e^{\psi_1^s(u)}
$$
\nSimilarly
\n
$$
g(v) = e^{\psi_2^s(v)} = e^{\psi_1^s(v)} = e^{\psi_1^s(v)}
$$
\nFinding now the particular solution

Similarly

 $g(v) = e^{\psi_2(v)} = c' v^{H'} e^{kv}$ Finding now the particular solution

$$
\varphi(w) = h_{W}|_{z} = \frac{wz f(wz) g(z(1-w))}{g(z)}
$$

= wz c $w^H z^H e^{kwz} \frac{c' z^H (1-w)^{H'} e^{kz(1-w)}}{c' z^H e^{kz}}$
= c $w^{H+1} z^{H+1} (1-w)^{H'}$

which implies that $H = -1$ yielding the final result $f(u)=c u^{-1}e^{ku}$.

From the above analysis and in an effort to make the model as possible the form of the function f was decided to be $f(x) = \frac{A e}{x}$

Obviously $A > 0$ and due to the restrictions of the model $c \ge 0$ since $\int_{a}^{\infty} f(x) dx \to 0$ as $N \to \infty$ because the total intensity of the large species is almost surely finite. Also $\alpha \ge 1$ because if $\alpha < 1$ then $\int_{0}^{g} f(x) dx = \int_{0}^{g} \frac{Ae^{-cx}}{x^{\alpha}} dx \leq \int_{0}^{g} \frac{A}{x^{\alpha}} dx = \frac{Ae^{1-\alpha}}{1-\alpha} < \infty$ controdicting the restriction that the expected number of small species present be infinite.

9.
 $\pi(\omega) = h_{\psi|_E} = \frac{w_E f(\omega_E) \frac{1}{2}(\xi(\frac{f(x)}{1-\omega}))}{\xi(\frac{f(x)}{1-\omega})^{K}} e^{\frac{1}{2}(\xi(\frac{f(x)}{1-\omega}))}$
 $= w e^{-\frac{1}{2}t^2} e^{\frac{1}{2}t^2} \frac{(\log x - \frac{e^{-\frac{1}{2}t^2}{2}(\frac{f(x)}{1-\omega})^{K}}{e^{-\frac{1}{2}t^2} \frac{1}{\omega}k} e^{\frac{1}{2}(\xi(\frac{f(x)}{1-\omega}))}}{e^{-\frac{1}{2}t^2$ From the development in Chapter ² it can easily be observed that the transformation $x \to \lambda x$, $c \to c/\lambda$, $k_s \to k_s/\lambda$, $A \to A/\lambda^{1-\alpha}$ preserves the model so that only α , $k_g/(k_g+c)$ and $A/(k_g+c)^{1-\alpha}$ are identifiable. For this reason only the cases c = 0 and c = 1 need be considered. The general form of the function ^f was taken to be $f(x) = \frac{Ae}{x^{\alpha}}$ for the work which immediately follows while in Chapter 6 9.
 $\pi(\omega) = h_{\psi|_E} = \frac{w_E f(\omega_E) \frac{2}{\pi} (f(\omega_E))}{\pi(G)}$
 $= w_C \sqrt{\frac{1}{\pi} \frac{1}{\pi} \frac{\log(1 - \omega_E)^2}{\log(1 - \omega_E)^2} \frac{\log(1 - \omega_E)}{\log(1 - \omega_E)^2}}$
 $= e \sqrt{\frac{1}{\pi} \frac{1}{\pi} \frac{\log(1 - \omega_E)^2}{\log(1 - \omega_E)^2}}$

Which implies that $\mathbf{B} = -1$ yielding the final

Chapter 1

 $\frac{1}{3}$: A Sepcial Case of the Model

Consider now a special case of the model developed in the Section 3: A Sepcial case of the Model

Consider now a special case of the model developed in the

Previous section where $f(x) = \frac{Ae^{-x}}{x}$. Knowing $g(z)$ has the for
 $g(z) = c'z^{\frac{11}{1}}e^{-z}$ and using the previous. -2 and using the previously established sources $g(z) = \int_0^z y_1(z)y_1(z)dy_1 = \int_0^z \frac{v_1f(v_1)}{2} g(z-v_1)dv_1$ $=\int_{0}^{z} \frac{v_1 A e^{-v_1}}{v_1 z}$ $c'(z-v_1)^{H'} e^{-z+v_1} dv_1$

$$
= \frac{{\rm{Ac}}^{\,\prime}{\rm{e}}^{-z}}{{\rm{z}}}\int\limits_{0}^{z}{{(z-v_1)}^{\rm{H'}}\ } {\rm{d}}v_1\,=\frac{{\rm{Ac}}^{\,\prime}{\rm{e}}^{-z}{\rm{z}}^{\rm{H}\,\prime+1}}{{\rm{z}}\left(\rm{H}\,\prime+1\right)}\ .
$$

This equation implies $H' = A - 1$ and since $\int_{0}^{\infty} c' z^{A-1} e^{-z} dz = \Gamma(A)$, then $c' = \frac{1}{\Gamma(A)}$.

Therefore $g(z) = \frac{1}{\Gamma(A)} z^{A-1} e^{-z}$.

For $j = 1, 2, ...$ define V_j to be a random variable such that $P(V_j = X_i | X) = \frac{X_i}{\frac{j-1}{j}} for all i except$
 $Z - \sum_{i=1}^{n} V_i$

those i's for which $X_i = V_k$ for $k = 1, 2, \ldots, j-1$.

Let

$$
w_{i} = \frac{v_{i}}{z - \sum_{j=1}^{i-1} v_{j}}
$$

 By repeated application of the formula $g(z) = \int_{0}^{z} \frac{x f(x)}{z} g(z-x) dx$ which was previously established $z - \sum v_j$

$$
Z = \sum_{i=1}^{3} v_i
$$

\n
$$
Z = \sum_{i=1}^{2} v_i
$$

\n
$$
W_i = \frac{v_i}{\frac{1}{2} - 1}
$$

\nLet
\n
$$
W_i = \frac{v_i}{\frac{1}{2} - 1}
$$

\n
$$
Z = \sum_{j=1}^{2} v_j
$$

\n
$$
W_i = \frac{1}{\frac{1}{2} - 1}
$$

\nBy repeated application of the formula $g(z) = \int_0^z \frac{x f(x)}{z} g(z-x) dx$
\nwhich was previously established $z = \sum_{i=1}^{2} v_i$
\n
$$
g(z) = \int_0^z \frac{v_1 f(v_1)}{z} \int_0^{z_1} \frac{v_2 f(v_2)}{(z-v_1)} \cdots \int_0^z \frac{1}{\frac{1}{2} - 1} g(z - \sum_{j=1}^{2} v_j) dv_j ... dv_1
$$

\n
$$
10. \qquad \int_{j=1}^{2} v_j dx
$$

U

U

$$
= \int_{0}^{z} \int_{0}^{i-1} \cdots \int_{0}^{i-1} \frac{v_1^{E(v_1)}}{z} \frac{v_2^{E(v_2)}}{(z-v_1)} \cdots \frac{v_i^{E(v_i)}}{(z-\frac{E}{v_i})^j} g(z-\frac{i}{\sum v_j}) dv_1 \cdots dv_1
$$

so the joint density for
$$
v_1, v_2, ..., v_i, z
$$
 where $v_0 = 0$ becomes
\n
$$
{}^{h}v_1, v_2, ..., v_i, z \times v_1, v_2, ..., v_i, z \times v_i = \left[\prod_{j=1}^{i} \frac{v_j f(v_j)}{j-1} \right] g(z - \sum_{j=1}^{i} v_j).
$$

Theorem 3: In an environment where $f(x) = \frac{Ae^{-x}}{x}$ and $g(z) = \frac{1}{\Gamma(A)} z^{A-1} e^{-z}$ and where V_i , W_i , Z and the joint density ${}^{\,h}\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_i, \mathbf{z}$ are defined as above, \mathbf{w}_i is distributed according to the distribution *

$$
h^{*}(w_{i}) = A(1-w_{i})^{A-1}
$$
 for $0 \le w_{i} \le 1$.

Proof: For $i \geq 3$ the joint density

8(3) =
$$
\overline{r(x)}z^{n+1}e^{-z}
$$
 and where V_i , W_i , z and the joint density
\n $h_1, v_2, ..., v_i$, z are defined as above, W_i is distributed
\naccording to the distribution
\n $h^*(w_1) = A(1-w_1)^{A-1}$ for $0 \le w_i \le 1$.
\nProof: For $i \ge 3$ the joint density
\n $h_1, v_2, ..., v_i, z^{(v_1, v_2, ..., v_i, z)} = \left[\int_{j=1}^{i} \frac{v_j f(v_j)}{s-1} \right] g(z - \frac{i}{j-1}v_j)$
\n $\left(z - \frac{i}{z - \sum v_k}\right)$
\n $= \frac{A^i}{\Gamma(x)} \left[\int_{j=1}^{i} \frac{1}{\left(\frac{1}{z - \sum v_k}\right)} (z - \frac{i}{z - \sum v_j})^{A-1} e^{-z}\right]$
\n $= \frac{A^i}{\Gamma(x)} \left[\int_{j=1}^{i-1} \frac{1}{\left(\frac{1}{z - \sum v_k}\right)} (z - \frac{i}{\sum v_j})^{A-2} (1 - \frac{v_i}{\frac{1}{i-1}})^{A-1} e^{-z}\right]$
\n $= \frac{A^i}{\Gamma(x)} \left[\int_{j=1}^{i-1} \frac{1}{\left(z - \sum v_k\right)} (z - \frac{i}{\sum v_j})^{A-2} (1 - \frac{v_i}{\frac{1}{i-1}})^{A-1} e^{-z}\right]$
\n $= \sum_{j=1}^{i} \frac{1}{j}$

$$
\begin{pmatrix}\n\frac{1}{2} & \frac{1}{k} \\
\frac{1}{2} & \frac{1}{k} \\
\frac{1}{2} & \frac{1}{k} \\
\frac{1}{k} & \frac{1}{k} \\
\
$$

$$
= \frac{A^{\frac{1}{2}}}{\Gamma(A)} \left[\int_{j=1}^{\frac{1}{2}} \left(\frac{1}{z - \sum_{k=0}^{2} v_k} \right) (z - \sum_{j=1}^{i-1} v_j)^{A-2} (1 - \frac{v_i}{\sum_{i=1}^{i-1} v_i})^{A-1} e^{-z} \right]
$$

1 in 1970, the control of the control of

Make the substitution W_i = $\frac{v_i}{1-1}$ so that $Z - \sum_{i=1}^{n} V_i$

$$
{}^{h}v_{1},v_{2},\ldots,v_{i-1}v_{i},z^{(v_{1},\ldots,v_{i-1}v_{i},z)} =
$$

$$
\frac{A^1}{\Gamma(A)} \left[\prod_{j=1}^{i-1} \left(\frac{1}{z - \sum_{k=0}^{j-1} v_k} \right) \right] (z - \sum_{j=1}^{i-1} v_j)^{A-1} (1 - w_i)^{A-1} e^{-z}
$$

Integrating this density then

$$
\sum_{z}^{i-2} \mathbf{v}_{j}
$$
\n
$$
\mathbf{h}_{W_{i},Z}(\mathbf{w}_{i},z) = \int_{0}^{z} \cdots \int_{0}^{z} \mathbf{h}_{V_{1},V_{2},\ldots,V_{i-1},W_{i},Z}(\mathbf{v}_{1},\ldots,\mathbf{v}_{i-1},\mathbf{w}_{i},z) d\mathbf{v}_{i-1} \ldots d\mathbf{v}_{1}
$$

$$
= \frac{A}{\Gamma(A)} z^{A-1} (1-w_i)^{A-1} e^{-z}.
$$

Integrating now with respect to z, $h^*(w_i) = \int_0^{\infty} h_{w_i, Z}(w_i, z) dz$ $=\int_{0}^{\infty} \frac{A}{\Gamma(A)} (1-w_i)^{A-1} z^{A-1} e^{-z} dz = A (1-w_i)^{A-1}.$ For $i = 1,2$, the

same procedure is followed with simplification in the integration.

Chapter 2

Section 1: Maximum Likelihood Estimates of Parameters

The general form of the intensity function has been established to be $f(x) = \frac{A e^{-x}}{x^{\alpha}}$ where A, α are parameters of the function. In any sample that is taken from the model the number of individuals in each species is assumed to be Poisson with mean proportional to the intensity of the species; that is the number of individuals in the sample from the 1th species is Poisson with mean $k_{s}x_{1}$ where k_{\circ} is defined to be the intensity of the sample. This parameter k_n is also to be estimated.

Suppose now that data is available from this model and it is desired to estimate the above parameter. Let y_m be the number of species with m individuals in the sample, I the number of individuals and s the number of species. The following trivial equations are $\sum_{m=1}^{\infty} y_m = s$ and $\sum_{m=1}^{\infty} m y_m = I$. to hold

In accordance with the above notation the probability that there will be m individuals in the sample from a species with intensity x is $\frac{(k_{s}x)^{m}}{m!}e^{k_{s}x}$ and the expected number of species in the sample with m individuals is

$$
\int_{0}^{\infty} \frac{(k_{s}x)^{m}}{m!} e^{-k_{s}x} f(x) dx = \int_{0}^{\infty} Ax^{-\alpha} e^{-x} \frac{(k_{s}x)^{m}}{m!} e^{-k_{s}x} dx
$$

$$
\frac{Ak_{s}^{m}}{m!}\frac{\Gamma(m\text{-} \alpha+1)}{(k_{s}+1)^{m-\alpha+1}}=\frac{A}{(k_{s}+)^{1-\alpha}}\quad \ \ \left(\frac{k_{s}}{k_{s}+1}\right)^{m}\quad \ \ \frac{\Gamma(m\text{-} \alpha+1)}{m!}=B\eta^{m}\frac{\Gamma(m\text{-} \alpha+1)}{m!}
$$

by making the substitution $\eta = \left(\frac{k_s}{k_s+1}\right)$ and $B = \frac{A}{(k_s+1)^{1-\alpha}}$

Since the total number of species present in the sample has a Poisson distribution, the y_m are independent and have a Poisson distribution with mean B $\eta^m \frac{\Gamma(m-\alpha+1)}{m!}$.

The density thus becomes $f(y_1,y_2,y_3,\ldots;B,\mathbb{I}),\alpha) = \prod_{m=1}^{\infty} e^{-\lambda} m \frac{\lambda_m}{y_m!}$ where y_m is as previously ym

defined and $\lambda_m = B\eta^m \frac{\Gamma(m\rightarrow c+1)}{m!}$, the expected number of species in the sample with m individuals.

The logarithm of the density as ^a function of the three parameters ignoring constants becomes

 $L(B,\alpha,\eta)=\sum_{m=-1}^{\infty} -\,\mathrm{B\eta}^m\,\frac{\Gamma\left(m\!-\!\alpha\!+\!1\right)}{m\,!}+\sum_{m=1}^{\infty}\,\gamma_m\!\!\left[\log\,\mathrm{B\!+\!m\ }\log\,\mathrm{\tilde{T}\!+\log\,}\Gamma\left(m\!-\!\alpha\!+\!1\right)\!-\!\log\eta\right]$ Now simplifying the first term

$$
\frac{\omega}{m^2} \mathbf{1} - B\eta^m \frac{\Gamma(m-\alpha+1)}{m!} = \frac{\omega}{m^2} \mathbf{1} - \frac{B\eta^m}{m!} \int_0^\infty x^{m-\alpha} e^{-x} dx
$$

$$
= \int_{0}^{\infty} \frac{x}{m+1} - \frac{B \pi}{m!} x^{m} x^{-\alpha} e^{-x} dx = -B \int_{0}^{\infty} x^{-\alpha} e^{-x} (e^{\pi/3} - 1) dx
$$

From Bierens DeHaan [1] table #90 equation #6

$$
\int_{0}^{e^{-qx} - e^{-rx} \frac{dx}{x^{p+1}}} = \frac{1}{p} \Gamma(1-p) \left(r^p - q^p \right) \text{ for } p < 1.
$$

Let $p = \alpha - 1$. Then -B $\int_{0}^{\infty} (e^{-(1-1)x} - e^{-x})x^{-\alpha} dx =$ $-B\,\frac{1}{\alpha-1}\,\,\Gamma(2-\alpha)\,\big(1-\big(1-\eta\big)^{\alpha-1}\big) \;=\; -B\Gamma\,\,\big(1-\alpha\big)\,\left\lceil\,\big(1-\eta\big)^{\alpha-1}\,\,-\,1\,\,\right\rceil.$ Following the signal distribution, the y_m are

distribution with mean B $\eta^m \frac{\Gamma(m)}{\Gamma(m)}$

The density thus becomes
 $f(y_1, y_2, y_3, \ldots; \beta, \eta, \alpha) = \prod_{m=1}^{\infty} e^{-\lambda}$

defined and $\lambda_m = B\eta^m \frac{\Gamma(m \rightarrow + 1)}{m}$, the

defined and

USing the above and simplifying the second term, the likelihood function thus becomes $L(B,\alpha,\eta)$ =

 $-B\Gamma(1-\alpha)\left[(1-\eta)^{\alpha-1}-1\right]+ s \log B + I \log \pi + \sum_{m=1}^{\infty} y_m \log \Gamma(m-\alpha+1)-\sum_{m=1}^{\infty} y_m \log m!$

 $\begin{array}{c}\n\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow\n\end{array}$ It was found that in taking the derivative of the above function

for \overline{P} near one and α near one. To eleviate this difficulty the substitution (1- \overline{P}) = e^{-q} was made. The likelihood function L(B, α ,q) thus becomes $L(B,\alpha,q) = - B\Gamma(1-\alpha) \left[e^{-q(\alpha-1)} - 1 \right] + s \log B + \log (1-e^{-q})$ + $\sum_{m=1}^{\infty} y_m \log \Gamma(m-\alpha+1)$ - $\sum_{m=1}^{\infty} y_m \log m!$.

Taking the derivatives with respect to these parameters

$$
L_B = \frac{\partial L}{\partial B} = - \Gamma(1-\alpha) \left[e^{-q(\alpha-1)} - 1 \right] + \frac{s}{B}
$$

$$
L_q = \frac{\partial L}{\partial q} = - B \Gamma(1-\alpha) (1-\alpha) e^{-q(\alpha-1)} + T \frac{e^{-q}}{1-e^{-q}}
$$

$$
= - B \Gamma(2-\alpha) e^{-q(\alpha-1)} + T \frac{1}{e^{q} - 1}
$$

and using the notation

$$
\psi(x) = \frac{\partial}{\partial x} \log \Gamma(x) = \frac{1}{\Gamma(x)} \frac{\partial}{\partial x} \Gamma(x)
$$

so that

$$
\frac{\partial}{\partial x} \Gamma(x) = \Gamma(x) \psi(x)
$$

then

$$
L_{\alpha} = \frac{\partial L}{\partial \alpha} = B\Gamma(1-\alpha) \sqrt{(1-\alpha)} \left[e^{-q(\alpha-1)} - 1 \right]
$$

+ $qB\Gamma(1-\alpha) e^{-q(\alpha-1)} - \sum_{m=1}^{\infty} y_m \sqrt{(m-\alpha+1)}$

In finding a solution for the equations $L_{\alpha} = L_{\beta} = L_{B} = 0$ a
Newton approximation in three variables was first attempted but abandoned since the matrix involved in using this method is almost
singular causing instability in the procedure. <u>in de la companya de la co</u>

Therefore the following modified Newton method in two variables was used.

- Initial estimates $\hat{\alpha}_1$ and \hat{q}_1 are given $1.$
- Solve equation $L_{R} = 0$ for B to get initial estimate \hat{B}_{1} $2.$ $3.$
	- Step two makes $L_B(\hat{B}_1, \hat{q}_1, \hat{\alpha}_1) = 0$ so that

$$
\begin{pmatrix} 0 \ 0 \ -L_q(\hat{B}_1, \hat{q}_1, \hat{\alpha}_1) \end{pmatrix} = \begin{pmatrix} L_{BB} & L_{Bq} \\ L_{qB} & L_{qq} \end{pmatrix} \begin{pmatrix} \Delta B \\ \Delta q \end{pmatrix}
$$

can be solved for Δq as follows

$$
\Delta q = L_{BB}^{L_{qq} - L_{qB} L_{Bq}}
$$

4. $\hat{q}_2 = \hat{q}_1 + \Delta q$ 5. Solve $L_B = 0$ using estimates $\hat{\alpha}_1$ and \hat{q}_2 to obtain \hat{B}_2 6. As in step 3 find $\Delta \alpha$ by the equation

$$
\Delta \alpha = \frac{-L_{BB}L_{\alpha}}{L_{BB}L_{\alpha\alpha} - L_{\alpha B}L_{B\alpha}}
$$

$$
7. \quad \hat{\alpha}_2 = \hat{\alpha}_1 + \Delta \alpha
$$

8. Continue iterating until desired accuracy is reached. This procedure gives likelihood estimates $\hat{\alpha}$, \hat{B} and \hat{q} from which can be calculated the other two parameters

$$
\frac{\hat{k}_s}{1-\hat{l}} = \frac{1 - e^{-\hat{q}}}{-\hat{q}} = e^{\hat{q}} - 1
$$

and

$$
\hat{A} = \hat{B}(\hat{k}_s + 1)^{1-\hat{\alpha}}.
$$

The second derivatives of the likelihood function necessary for the above method are as follows:

$$
L_{BB} = \frac{\partial^2 L}{\partial B \partial B} = \frac{-s}{R^2}
$$

$$
L_{Bq} = L_{qB} = -\Gamma(2-\alpha) e^{-q(\alpha-1)}
$$

$$
L_{\text{B}\alpha} = L_{\alpha\beta} = -\Gamma(1-\alpha) \sqrt{(1-\alpha)\left[1-e^{-q(\alpha-1)}\right]} + q\Gamma(1-\alpha)e^{-q(\alpha-1)}
$$

$$
L_{\text{BZ}} = L_{\text{CZ}} = -\Gamma(1-\alpha) \sqrt{(1-\alpha)} \left[1 - e^{-q(\alpha-1)} \right]
$$
\n
$$
L_{\text{qq}} = B(\alpha-1) \Gamma(2-\alpha) e^{-q(\alpha-1)} - \frac{e^q}{(e^q-1)^2}
$$

$$
L_{\alpha\alpha} = B\Gamma(1-\alpha) \psi^2(1-\alpha) [1-e^{-q(\alpha-1)}]
$$

$$
+ B\Gamma(1-\alpha) \psi'(1-\alpha) [1-e^{-q(\alpha-1)}]
$$

$$
\frac{-2 \text{ qB} \Gamma(1-\alpha) \psi(1-\alpha) e^{-q(\alpha-1)} - q^2 B \Gamma(1-\alpha) e^{-q(\alpha-1)}}
$$

$$
+\sum_{m=1}^{\infty} y_m \sqrt{\Psi(m-\alpha+1)}
$$

For the calculation of $\psi(x)$ and $\psi'(x)$ Stirling's asymptotic series is used for $log \Gamma(x+1)$. Thus $\log \Gamma(x+1) = (x + \frac{1}{2}) \log x - x + \frac{1}{2} \log 2\pi$

$$
+\frac{1}{12x} - \frac{1}{360x^3} + \frac{1}{1260x^5} - \frac{1}{1680x^7} + \ldots
$$

 $\overline{}$

find the state of the

$$
*(x+1)-\frac{3}{2x}\log \Gamma(x+1)-\log x+\frac{1}{2x}-\frac{1}{12x^2}+\frac{1}{120x^4}-\frac{1}{252x^6}+\frac{1}{240x^8}+\dots
$$

$$
*(x+1)=\frac{1}{x}-\frac{1}{2x^2}+\frac{1}{6x^3}-\frac{1}{30x^5}+\frac{1}{42x^7}-\frac{1}{30x^9}+\dots
$$

For $x \ge 10$, $\psi(x)$ and $\psi'(x)$ are calculated from the above equations. However for Small ^x the recursion formula

$$
\Gamma(x+1) = x\Gamma(x) \text{ is used.}
$$

log $\Gamma(x+1) = \log x + \log \Gamma(x)$

Differentiating both sides

$$
\sqrt[{\psi(x+1)} = \frac{1}{x} + \sqrt[{\psi(x)}]
$$

and $\psi'(x+1) = -\frac{1}{x^2} + \psi'(x)$

In the calculation of the Newton process it is often necessary to evaluate the expression $\Gamma(1-\alpha)$ $[e^{-q(\alpha-1)}-1]$. It is often the case that α is near one which requires that this expression be evaluated with care to avoid the loss of several significant digits. For this reason make the following substitution:

$$
\Gamma(1-\alpha) \left[e^{-q(\alpha-1)}1 \right] = \Gamma(2-\alpha) \frac{1-e^{-q(\alpha-1)}}{\alpha-1}
$$

reason make the following substitution:
\n
$$
\Gamma(1-\alpha) \left[e^{-q(\alpha-1)}1 \right] = \Gamma(2-\alpha) \frac{1-e^{-q(\alpha-1)}}{\alpha-1}
$$
\n
$$
= \Gamma(2-\alpha) e^{-\frac{qz}{2}} \frac{\sinh \frac{qz}{2}}{\frac{qz}{2}} \cdot q \text{ where } z = \alpha - 1.
$$

V film and the state of the state of

Now let

$$
h = \frac{\tanh w}{w} = \frac{1}{1 + \frac{v^2}{3 + \frac{w^2}{5 + \frac{w^2}{7 + \frac{v^2}{9 + \dots}}}}}
$$

expressed as a continued fraction and

$$
= \frac{945 + 105w + w^2}{945 + 420w + 15w^2}
$$

expressed as a ratio of polynomials reduced from the first five terms of the continued fraction. Using this and hyperbolic identies

l.

$$
\frac{-\frac{qz}{2}}{1 + \tanh \frac{qz}{4}} = \frac{1 - h\frac{qz}{4}}{1 + h\frac{qz}{4}}
$$

and **and and**

$$
\frac{\sinh \frac{qz}{2}}{2} = \frac{\frac{2 \tanh \frac{qz}{4}}{4}}{1 - \tanh^2 \frac{qz}{4}} = \frac{\frac{hqz}{2}}{1 - (\frac{hqz}{4})^2}
$$

Using all of these equations then

$$
\Gamma(1-\alpha) \left[e^{-q(\alpha-1)} - 1 \right] = \Gamma(2-\alpha) e^{-\frac{qz}{2}} \frac{\sinh \frac{qz}{2}}{\frac{qz}{2}} \cdot q
$$

$$
=\Gamma(2-\alpha)\;\;\xrightarrow{\left(1+\ln\frac{qz}{4}\right)}\;\;\xrightarrow{\quad\,}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{q}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\xrightarrow{\quad\,q\;\;\frac{qz}{2}}\;\;\frac{z}{2}\;\;\;\frac{z}{2}\;\;\
$$

$$
= \Gamma(2-\alpha) \frac{hq}{\left[1+\frac{hqz}{4}\right]^2}
$$

of the art a married in

The properties of the model The properties of the model require that the parameter α be
greater than or at least equal to one. Since the system is fairly
unstable, it was found in actual calculation that the iterative
Newton procedure described p

$$
\hat{\alpha}_{i+1} = \begin{cases}\n\hat{\alpha}_{i+1} & \text{if } \hat{\alpha}_{i+1} \ge 1 + \frac{\delta_{i}}{2} \\
\frac{1+\delta_{i}}{2} & \text{if } \hat{\alpha}_{i+1} < 1 + \frac{\delta_{i}}{2}\n\end{cases}
$$

If indeed $\alpha = 1$ it would be hoped that $\hat{\alpha}_i \rightarrow 1$ from above but this is not the case since the method blows up; that is for $\hat{\alpha}$ less than about 1.005 (depending on the data) the error in calculating $\Delta\alpha$ is larger than $\hat{\alpha}$ itself which reduces the iteration to nonsense. What results then is that the estimate is cut half way to one each time until which time the error in $\Delta \alpha$ causes a large positive jump. The estimate again approaches one and the process repeated until the computer is stopped by ^a programmed check which halts the Newton process after ⁵⁰ iterations if no solution is reached. If this happens α is set equal to one in the original likelihood equation and another method used to estimate the other parameters. 20.

20. The properties of the model require that the persentar α be

straited that or at least equal to one. Since the system is fairly

were
ably, it was found in actual to one. Since the system is fairly

Neutron pr

 Consider therefore the likelihood function $L(B, l, \eta) \; = \; \sum\limits_{m=1}^{\infty} \; - \; B \eta \frac{m \Gamma(m)}{m!} \; + \; \sum\limits_{m=1}^{\infty} y_m \; \big[\log \; B \; + \; m \; \log \; \eta \; + \; \log \Gamma(m) \; - \log \; m \, ! \, \big].$ = $-B_{m=1}^{8}$ $\frac{m}{m}$ + $\sum_{m=1}^{\infty} y_m$ [log B + m log η + log $\Gamma(m)$ - log m!] Using the expansion

$$
\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^2 + \frac{1}{3} \left(\frac{x-1}{x}\right)^3 + \dots \text{ for } x > \frac{1}{2}
$$
\n
$$
\text{set } \mathbb{Q} = \frac{x-1}{x}
$$
\n
$$
x(1-0) = 1
$$
\n
$$
x = \frac{1}{(1-0)} \text{ for } 0 < 0 < 1 \text{ then } 1 < x < \infty
$$

thus

 $\sum_{m=1}^{\infty} \frac{m^m}{m}$ = log x = log $(\frac{1}{1-\overline{1}})$ = - log $(1-\overline{1})$. Using this and again making the substitution $(1-\eta) = e^{-q}$ $L(B,1,q) = -Bq + \sum_{m=1}^{\infty} y_m \left[\log B + m \log(1-e^{-q}) + \log \Gamma(m) - \log m \right].$

Taking the derivatives with respect to these parameters
∞

$$
L_B = -q + \sum_{m=1}^{\infty} y_m / B = -q + \frac{s}{B}
$$

$$
L_q = -B + \sum_{m=1}^{\infty} y_m \frac{m e^{-q}}{1 - e^{-q}} = -B + I \frac{1}{e^{q} - 1}.
$$

In finding a solution $L_B = L_q = 0$ make the substitution $B = \frac{s}{n}$ into the second equation to get

$$
-\frac{s}{q} + I \frac{1}{e^q - 1} = 0
$$

which reduces to $e^q - 1 - \frac{1}{s} q = 0$.

kan bergeraden anderen

To find ^a solution to this equation consider the following iterative procedure. Given an initial estimate q_0 and where q_r $\overline{}$

' finally the second the second state of the second state of the second state of the second state of the second

is the root of the equation

 $q_r = q_0 + \frac{x}{1+a x + bx^2} = q_0 + \frac{x}{B(x)}$ where x, a, b are to be determined as follows: Let $\lambda = \frac{I}{s}$ and $A_0^* = e^{q_0} - 1 - \lambda q_0$ Set e^{q_r} - 1 - $\lambda q = e^{q_0 + \frac{x}{B(x)}}$

Set
$$
e^x - 1 - \lambda q_r = e^{i(\theta) B(x)} - 1 - \lambda (q_0 + \frac{x}{B(x)}) = 0.
$$

Then

$$
B(x) \left[e^{q_0} e^{\frac{x}{B(x)}} - 1 - \lambda q_0 - \lambda \frac{x}{B(x)} \right] = 0.
$$

Expanding this equation and calling it $Q(x)$ then

$$
\frac{Q(x)}{B(x)} = B(x)e^{q}0 \left[1 + \frac{x}{B(x)} + \frac{x^2}{2B^2(x)} + \frac{x^3}{6B^3(x)} + \frac{x^4}{24B^4(x)} + \dots \right]
$$

$$
-B(x) - \lambda B(x)q_0 - \lambda x
$$

$$
= B(x) A_0^* + (e^{q_0} - \lambda)x + e^{q_0}\left[\frac{x^2}{2B(x)} + \frac{x^3}{6B^2(x)} + \frac{x^4}{24B^3(x)} + \ldots\right].
$$

Now expand the expressions $\frac{1}{B^k(x)} = \left(\frac{1}{1+ax+bx} \right)$ into polynomials

$$
\left(\frac{1}{1+a x + bx^2}\right)^k = a_{k0} + a_{k1}x + a_{k2}x^2 + a_{k3}x^3 + \dots
$$

After finding these polynomials for $k = 1,2,3$ the expansion then becomes $Q(x)$ = After finding these polynomials for $k = 1,2,3$ the expansion
then becomes $Q(x) =$
 $= B(x)\lambda^* + (e^{Q_0} - \lambda)x + e^{Q_0} [\frac{1}{2}x^2(1 - ax + (a^2 - b)x^2 + ...)$

$$
= B(x)A_{0}^{*} + (e^{q_{0}} - \lambda)x + e^{q_{0}} \left[\frac{1}{2}x^{2}(1 - ax + (a^{2} - b)x^{2} + ...)
$$

V film and the state of the state of

$$
+\frac{1}{6}x^{3} (1-2ax + \dots) + \frac{1}{24}x^{4} (1 + \dots) + \dots
$$

+ B(x) $A_{0}^{*} + (e^{q_{0}} - \lambda)x + \frac{e^{q_{0}}}{2}x^{2} + e^{q_{0}}x^{3} [\frac{1}{6} - \frac{1}{2}a]$
+ $e^{q_{0}}x^{4}[\frac{1}{24} - \frac{a}{3} + \frac{1}{2}(a^{2}-b)] + \dots$

Choose a and b such that the coefficient of x^3 and x^4 are zero. Thus

$$
\frac{1}{6} - \frac{1}{2}a = 0 \implies a = \frac{1}{3}
$$

and

$$
\frac{1}{24} - \frac{a}{3} + \frac{1}{2} (a^2 - b) = 0
$$

$$
\frac{1}{24} - \frac{1}{9} + \frac{1}{2} (\frac{1}{9} - b) = 0 \implies b = -\frac{1}{36}
$$

therefore

$$
Q(x) = A_0^* (1 + \frac{1}{3}x - \frac{1}{36}x^2) + (e^{q}0 - \lambda)x + \frac{e^{q}0}{2}x^2 + a_5x^5 + \dots
$$

$$
= A_0^* + (e^{q}0 - \lambda + \frac{A_0^*}{3})x + (e^{q}0 - \frac{A_0^*}{3}x^2 + a_5x^5 + \dots)
$$

As an approximation to $Q(x) = 0$ set the equation

$$
A_0^* + (e^{q_0} - \lambda + \frac{A_0^*}{3})x + (e^{q_0} - \frac{A_0^*}{36})x^2 = 0
$$

and solve for x as follows: For the general quadratic $\alpha x^2 + \beta x + \delta = 0$

$$
x = \frac{-\beta + \sqrt{\beta^2 - 4\alpha \delta}}{2\alpha} \frac{\left(-\beta - \sqrt{\beta^2 - 4\alpha \delta}\right)}{\left(-\beta - \sqrt{\beta^2 - 4\alpha \delta}\right)} = \frac{2\delta}{-\beta - \sqrt{\beta^2 - 4\alpha \delta}}
$$

Since β is positive in the neighborhood of q_r the positive root is taken to obtain the root of the quadratic nearer zero and the last form is used in calculating x to avoid round off. The procedure for finding the root of the equation $e^q - 1 - \lambda q = 0$ is as follows:

1. Make initial estimate $q_0 = \log(1 + \lambda \log \lambda)$

2. Evaluate
$$
A_i^* = e^{-i} - 1 - \lambda q_i
$$

3. Solve the equation.

$$
A_1^* + (e^{q_1} - \lambda + \frac{A_1^*}{3})x + (e^{q_1} - \frac{A_1^*}{36})x^2 = 0 \text{ for } x.
$$

4. $q_{1+1} = q_1 + \frac{x}{1 + \frac{1}{3}x - \frac{1}{36}x^2}$

5. Return to step 2 until desired accuracy is reached.

The method was designed for rapid convergence and in fact it was found in actual compitation that five digit accuracy was obtained in only two iterations.

Using q as found from the above procedure and from the original equations remembering that $A = B$ for the case in question where α = 1 the estimates obtained are

$$
\hat{A} = \frac{s}{\hat{q}}
$$

and

$$
\hat{k}_s = \frac{\eta}{1-\eta} = \frac{1-e^{-\hat{q}}}{e^{-\hat{q}}} = e^{\hat{q}}-1.
$$

Chapter 3 Generating Random Variables for the Simulation Section 1: Acceptance Rejection Procedures

In the process of simulating the established model on the high speed computer it is necessary to generate random variables with certain specified distributions. Since the actual computation is to be done on the computer and the procedures used many thousands of times it is necessary they be effecient and use the minimum of input random variables. With these goals in mind it was decided that for discrete random variables an acceptance rejection procedure would be used. This method of generating random variables with specified distributions is discussed by Rubin [5] and will be used in this problem in the following way:

 $P(n_i)$ $-Q(n_i)$ \mathbf{I} $\overline{1}$ $\overline{1}$ ď ı. Ь ħ h Ь ı. ı. \mathbf{I} h \mathbf{r} h h ı. ŀ Ъ h h \mathbf{I} h ı. h h h h h 'n ı h h ħ h I۰ Ь ı. h h h h h h ŀ h ħ ŀ ı h h

 \cdots n_{i-1} n_i n_{i+1} n_{i+2} ...

 $\texttt{Suppose a random variable with the distribution $\mathbb{P}(\mathfrak{n}_i)$ is}$ desired. Construct a frequency distribution $Q(n_i)$ which dominates $P(n_i)$. Obtain an observation from the distribution $Q(n_i)$ and accept this observation x_1 with probability $\frac{P(x_1)}{Q(x_1)}$. If x_1 is rejected obtain a second observation from $Q(n_i)$ and repeat the process until an observation is accepted. If the first accepted observation is designated as x then it has distribution $P(n_{\frac{1}{2}})$.

are determined by

of the distributief

efficient place to

deviations on eith

considered.

Thus let $M =$

Let $N_1 = M + \sqrt{2}$

and $N_2 = M - \sqrt{2}$

then determining α
 $\frac{Q(N_1)}{Q(N_1+1)} = \frac{Q(1)}{Q(N_1+1)}$

so that $\alpha_1 = \log$ This procedure is to be used for Binomial, Poisson and Hypergeometric distributions and in these cases the distribution $Q(n_i)$ will take the form of a uniform over the mode and discrete exponential over each tail with parameter α_1 over the right tail and parameter α_2 over the left tail. The parameters α_1 and α_2 are determined by taking the ratio of two consecutive probabilities of the distribution $P(n_i)$ and it was determined that the most efficient place to calculate α_1 and α_2 was about $\sqrt{2}$ standard deviations on either side of the mode of the distributions being considered. versus and in these cases the
 $Q(n_1)$ will take the form of a uniform over the mode

exponential over each tail with parameter α_1 over the

and parameter α_2 over the left tail. The parameters

are determined by t

Thus

Let $N_1 =$

and $N_2 =$

then deter
 $\frac{Q(N_1)}{Q(N_1 + \dots + N_n)}$

so that α_1 Thus let M = mode of distribution $P(n_i)$ Let $N_1 = M + [\sqrt{2} \sigma_n]$ and $N_2 = M - \sqrt{2} \sigma_p - 1$ fire—1+1)

 then determining α_1

 $s₀$

L

$$
\frac{Q(N_1)}{Q(N_1+1)} = \frac{Q(N_1)}{Q(N_1)e^{-Q_1}} = e^{Q_1} = \frac{P(N_1)}{P(N_1+1)}
$$

so that $\alpha_1 = \log \left(\frac{P(N_1)}{P(N_1+1)}\right)$
and similarly for α ₂

$$
\frac{Q\left(N_{2}+1\right)}{Q\left(N_{2}\right)} = \frac{Q\left(N_{2}+1\right)}{Q\left(N_{2}+1\right)e^{-\alpha_{2}}} = \frac{e^{\alpha_{2}}}{e^{-\alpha_{2}}} = \frac{P\left(N_{2}+1\right)}{P\left(N_{2}\right)}
$$
so that $\alpha_{2} = \log\left(\frac{P\left(N_{2}+1\right)}{P\left(N_{2}\right)}\right)$.

The first term of the right exponential is N_1-k where

$$
k = \left[\frac{\log P(M) - \log P(N_1)}{\alpha_1} \right]
$$

and **completion** the aut

$$
\frac{2}{1-0} \cdot \frac{Q(N_1 - k + 1)}{1-0} = \frac{2}{1-0} \cdot \frac{P(N_1)}{P(N_1)} \cdot \frac{P(N_1 - k)}{1-0}
$$
\n
$$
= P(N_1) e^{-k\alpha} \frac{1}{1-0} e^{-k\alpha} \frac{1}{1-0} = \frac{P(N_1) e^{-k\alpha} \frac{1}{1-0}}{1-e^{-k\alpha} \frac{1}{1-0}}
$$

also the last term of the left exponential is

$$
i = 0
$$

\n
$$
i = 0
$$

\n
$$
i = \frac{1}{1 - e^{-\alpha}i}
$$

\nalso the last term of the left exponential
\n
$$
N_2 + 1 + j
$$
 where
\n
$$
j = \left[\frac{\log P(M) - \log P(N_2 + 1)}{\alpha_2}\right]
$$

and

$$
\sum_{i=0}^{\infty} Q(N_2 + 1 + j - i) = \sum_{i=0}^{\infty} P(N_2 + 1) e^{-\alpha/2(j-i)}
$$

$$
= P(N_2 + 1) e^{j\alpha_2} \frac{e^{-i\alpha_2}}{i^2 e^{e^{-i\alpha_2}}} = \frac{P(N_2 + 1)e^{j\alpha_2}}{1 - e^{-\alpha_2}}
$$

Q(i) being thus defined in the tails let

$$
Q(i) = P(M)
$$
 for $N_2 + 1 + j < i < N_1 - k$

 $\overline{}$

so that
\n
$$
\sum_{i=-\infty}^{\infty} Q(i) = \frac{P(N_2+1)e^{j\alpha/2}}{1-e^{-\alpha/2}} + P(M) (N_1 - N_2 - k - j - 2) + \frac{P(N_1)e^{j\alpha}}{1-e^{-\alpha/1}}
$$

 \overline{a}

<u> De Maria de la componentación de la compo</u>

For ease of computation make the substitutions

$$
u = \log P(M) - \log P(N_1) - k\alpha_1
$$

$$
v = \log P(M) - \log P(N_2 + 1) - j\alpha_2
$$

which reduces the sum to

$$
\frac{2}{1-e^{-\alpha/2}} Q(i) = P(M) \left[\frac{e^{-v}}{1-e^{-\alpha/2}} + (N_1 - N_2 - k - j - 2) + \frac{e^{-u}}{1-e^{-\alpha/2}} \right].
$$

By letting $T = \frac{2}{1 - k - \alpha/2} Q(i) / P(M) =$

$$
= \left[\frac{e^{-v}}{1 - e^{-\alpha/2}} + (N_1 - N_2 - k - j - 2) + \frac{e^{-u}}{1 - e^{-\alpha/2}} \right]
$$

and normalizing this quantity ^a random variable with the distribution P(i) can be found as follows:

1) Let U_1 be a uniform random variable

²⁾ If $U_1 < \frac{E}{T(1-e^{-\alpha^2})}$ the observation is to be taken from the left tail. Thus choose $N_0 = \left[-\frac{1}{\alpha} \right]$ up U_{11} where U_{11} is a uniform random variable and the brackets indicates the greatest integer contained in the bracketed quantity. The observation thus becomes $N = N_2 + 1 + j - N_0$. Then accept N with probability $rac{P(N)}{Q(N)}$.

3) If
$$
\frac{e^{-v}}{T(1-e^{-\alpha/2})} \leq U_1 \leq 1 - \frac{e^{-u}}{T(1-e^{-\alpha})}
$$
 the observation is to

be taken from the uniform range as follows

$$
R = \frac{U_1 - \frac{e^{-V}}{T(1 - e^{-X_2})}}{1 - \frac{e^{-U}}{T(1 - e^{-X_1})} - \frac{e^{-V}}{T(1 - e^{-X_2})}}
$$
 (N₁ - N₂ - k - j - 2)

 $\overline{}$

and let $N_0 = [R]$

^V . —'_

so that the observation ^N is

 $N = N_2 + j + 2 + N_0$

and N is accepted with probability $\frac{P(N)}{O(N)}$.

4) If $U_1 > 1 - \frac{e^{-U}}{T(1 - e^{-Q}I)}$ the observation is taken from the right tail using the same procedure as in step 2. That is choose

 $N_0 = \left[-\frac{1}{\alpha_1} \log U_{12}\right]$ where U_{12} is again uniform only this time let the observation be

 $N = N_1 - k + N_0$ and accept N with probability $\frac{P(N)}{O(N)}$.

5) If at step $2,3$ or $4,N$ is rejected obtain a new uniform U_2 and repeat the process until an observation N is accepted. N will then be distributed according to the distribution $P(n_i)$.

In steps $2,3,4$ the acceptance rejection part of the procedure is handled in comparison with an exponential random variable E_0 in the following way: Accept ^N if

$$
\frac{E_0}{2} = \log \frac{P(N)}{Q(N)} = \log Q(N) - \log P(N).
$$

Where in the left tail

 $log Q(N) = log P(N_2 + 1) + (j - N_0) \alpha_2$

in the right tail

 $log Q(N) = log P(N_1) + (k - N_0) \alpha_1$

and in the uniform range

 $log Q(N) = log P(M)$.

This method of comparison is used so it is not necessary to calculate Q(M), Q(N₂ + 1) and Q(N₁) using instead already calculated quantities. log Q(N) = log P(M).

This method of comparison is used so it is not necessary to

calculate Q(M), Q(N₂ + 1) and Q(N₁) using instead already calculated

quantities.

<u> The Company of the Compan</u>

with Large Means

30.

Section 2: Fitting Discrete Distributions

In the problem at hand the Poisson, B

metric distributions are In the problem at hand the Poisson, Binomial and Hypergeo- metric distributions are used. It is therefore necessary to determine the distribution $Q(n_i)$ as developed in the previous section for these cases but first it will be necessary to develop
some machinery for the calculation of logx! which is necessary to evaluate in all three of the above mentioned distributions when calculating $log P(n_i)$.

The first equation used is Stirling's asymptotic approximation to nI. From this

 $\log n! = (n + \frac{1}{2}) \log n - n + \frac{1}{2} \log 2\pi + \varphi(n)$ where $\varphi(n) = \frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5} - \frac{1}{1680n^7}$ Consider now the product $2^{2n} \Gamma(n+1) \Gamma(n+\frac{1}{2}) = n! \ 1 \cdot 3 \cdot 5 \cdots (2n-3) (2n-1) \frac{\sqrt{\pi}}{n!} 2^{2n}$

 $=\sqrt{\pi} \Gamma(2n+1)$.

Taking the logarithm of both sides

and using the more general form of Stirling's equation $\frac{1}{2} \log \pi + \log \Gamma(2n+1) = 2n \log 2 + \log \Gamma(n+\frac{1}{2}) + \log n!$

 $\log \Gamma(x+1) = (x+\frac{1}{2}) \log x - x + \frac{1}{2} \log 2\pi + \varphi(x)$ where $\varphi(x) = \sum_{m=0}^{\infty} C_m x^{-m}$.

Thus

 $\begin{array}{c}\n\text{The equation } \n\text{The equation } \n\text{The$ $\begin{array}{r} \hline \text{Th} \\ \hline \text{13} \\ \text{14} \\ \text{15} \\ \text{16} \\ \text{17} \\ \text{18} \\ \text{19} \\ \text{10} \end{array}$ some machinery for the calculation of logir $x + y + z = 0$

to evaluate in all three of the above mentioned distributions

when calculating log $P(n_1)$.

The first equation used is Stirling's asymptotic approximate

tion to n $\frac{1}{2}$ log π + log $\Gamma(2n+1)$ = $\frac{1}{2}$ log π + log $\Gamma(2n+2)$ - log (2n+1) $= \frac{1}{2} \log \pi + (2\pi + \frac{1}{2}) \log(2\pi + 1) - (2\pi + 1) + \frac{1}{2} \log 2\pi + \sum_{m=0}^{\infty} C_m (2\pi + 1)^{-m}.$ Also $\frac{1}{2}$ log π + log $\Gamma(2n+1)$ = $=$ 2n log 2 + log $\Gamma(\frac{m+3}{2})$ - log $(\frac{m+\frac{1}{2}}{2})$ + log n!

쁵

Collecting terms then and combining these two equations
 $\log n! = k \log n + (2n!)$, $k = 0$

$$
\log n! = \frac{1}{2} \log \pi + (2n + \frac{1}{2}) \log (2n + 1) - (2n + \frac{1}{2}) \log 2 + \frac{1}{2} \log 2
$$

- n $\log(n + \frac{1}{2}) - (n + \frac{1}{2}) - \sum_{m=0}^{\infty} C_m (n + \frac{1}{2})^{-m} + \sum_{m=0}^{\infty} \frac{C_m}{2^m} (n + \frac{1}{2})^{-m}$

 $= \frac{1}{2} \log 2\pi + (\pi + \frac{1}{2}) \log(\pi + \frac{1}{2}) - (\pi + \frac{1}{2}) - \frac{\psi(\pi + \frac{1}{2})}{2}$ where

$$
{}^{\Psi}(\mathfrak{n}+\tfrac{1}{2}) = \sum_{m=0}^{\infty} C_m(\mathfrak{n}+\tfrac{1}{2})^{-m} (1-2^{-m}).
$$

Note that this function Y is not the logarithmic derivative of the gamma function used in Chapter 2.

Since the original equation for log n! was an asymptotic approximation, log n! and therefore $\Psi(m+\frac{1}{2})$ cannot be calculated in this way for small n. To find $\sqrt[n]{(n+k)}$ for n = 0,1,...10 calculate $\sqrt[4]{(11 + \frac{1}{2})} = \sqrt[4]{(11.5)}$ from the already developed formula and use ^a backwards recursion formula which is now to be derived.

 $log n! = \frac{1}{2}log 2T + (n+\frac{1}{2}) log (n+\frac{1}{2}) - (n+\frac{1}{2}) - \frac{\gamma(n+\frac{1}{2})}{2}$ $= \frac{1}{2} \log 2\pi + (\pi + \frac{1}{2}) \log (\pi + \frac{1}{2}) + (\pi + \frac{1}{2}) \log n - (\pi + \frac{1}{2})$ $-\frac{\Psi(m+\frac{1}{2})}{2}$

also

$$
\log n! = \log n + \log (n-1)!
$$

= $\log n + \frac{1}{2} \log 2\pi + (n-\frac{1}{2}) \log (1-\frac{1}{2n}) + (n-\frac{1}{2}) \log n - (n-\frac{1}{2})$
- $\frac{1}{2} (n-\frac{1}{2})$.

Combining these equations

14 this way for small n. To find
$$
\Psi(m+\frac{1}{2})
$$
 for $n = 0,1,...10$
\ncalcalate $\Psi(11 + \frac{1}{2}) = \Psi(11.5)$ from the already developed formula
\nand use a backwards recursion formula which is now to be derived.
\n
$$
\log n! = \frac{1}{2} \log 2\pi + (n+\frac{1}{2}) \log (n+\frac{1}{2}) - (n+\frac{1}{2}) - \Psi(n+\frac{1}{2})
$$
\n
$$
= \frac{1}{2} \log 2\pi + (n+\frac{1}{2}) \log (1+\frac{1}{2n}) + (n+\frac{1}{2}) \log n - (n+\frac{1}{2})
$$
\n
$$
= \Psi(m+\frac{1}{2})
$$
\nand so
\n
$$
\log n! = \log n + \log (n-1)!
$$
\n
$$
= \log n + \frac{1}{2} \log 2\pi + (n-\frac{1}{2}) \log (1-\frac{1}{2n}) + (n-\frac{1}{2}) \log n - (n-\frac{1}{2})
$$
\n
$$
= \Psi(n+\frac{1}{2}) - \Psi(n+\frac{1}{2}) + 1 + (n-\frac{1}{2}) \log (1-\frac{1}{2n}) - (n+\frac{1}{2}) \log (1+\frac{1}{2n})
$$
\n
$$
= \Psi(m+\frac{1}{2}) + 1 + (n-\frac{1}{2}) \left[\frac{1}{2n} - \frac{1}{2} \frac{1}{4n^2} - \frac{1}{3} \frac{1}{6n^3} - \frac{1}{4} \frac{1}{16n^4} - \frac{1}{5} \frac{1}{2n^5} - \cdots \right]
$$
\n
$$
= \Psi(m+\frac{1}{2}) + \frac{1}{2} - \frac{1}{2} \frac{1}{4n^2} + \frac{1}{3} \frac{1}{2n^3} - \frac{1}{4} \frac{1}{2n^4} + \frac{1}{5} \frac{1}{2n^5} - \frac{1}{4} \cdots
$$
\n
$$
= \Psi(m+\frac{1}{2}) + \frac{1}{2^2 \cdot 2 \cdot 3n^2} + \frac{1}{2^2 \cdot 4 \cdot 5n^4} + \frac{1}{2^6 \cdot 6 \cdot 7 \cdot n^6} + \cdots \frac{1}{2^{
$$

' and the second control of the second control

The first seven terms of this expansion are used for n = 1,
2,...,10 but in calculating $Y(\frac{1}{2})$ an additional four terms are used.

Consider now ^a careful calculation of the expression (1+x) log(1+x)-x which will be useful in calculating $logP(n_i)$. Make the substitution $l+x = \frac{l+y}{l-y}$ so that

$$
x = \frac{2y}{1-y} \qquad \text{and} \qquad y = \frac{x}{2+x}
$$

and under the assumption that $x > -1$ it follows that $|y| < 1$. Thus $(1+x) \log(1+x) -x = \frac{1+y}{1-y} \log \left(\frac{1+y}{1-y} \right) - \frac{2y}{1-y}$.

The evaluation of this expression will be broken into two cases First if $\frac{1}{2}$ < |y| < 1 then

 $(1+x) \log(1+x) -x = (1+x) \log(1+x) -\frac{x}{(2+x)} (2+2x-x)$ $= xy + (1+x) [log(1+x) - 2y].$

Secondly if $|y| \leq \frac{1}{2}$ use the expansion

 $\log \left(\frac{1+y}{1-y} \right) = 2y + \frac{2}{3}y^3 + \frac{2}{7}y^5 +$ **Thus**

$$
(1+x) \log(1+x) - x
$$

\n
$$
= \left(\frac{1+y}{1-y}\right) [2y + \frac{2}{3}y^3 + \frac{2}{5}y^5 + \dots] - \frac{2y}{1-y}
$$

\n
$$
= \frac{2y^2}{1-y} + \frac{1+y}{1-y} \left[\frac{2}{3}y^3 + \frac{2}{5}y^5 + \frac{2}{7}y^7 + \frac{2}{9}y^9 + \dots\right]
$$

\n
$$
= xy + (1+x) \left[\frac{2}{3}y^3 + \frac{2}{5}y^5 + \frac{2}{7}y^7 + \frac{2}{9}y^9 + \dots\right]
$$

With these equations consider now the calculation of $Q(n_i)$ for desired distributions.

1) Poisson Distribution: Let λ be the parameter of the Poisson distribution. for desired distributions.

1) Poisson Distribution: Let λ be the parameter of the Poisson

distribution.
 $\frac{1}{2}$

'T is a strong of the state of the

Then obviously $M = [\lambda]$

$$
N_1 = M + [\sqrt{2\lambda}]
$$

$$
N_2 = M - [\sqrt{2\lambda}] - 1
$$

where in each case the bracket indicates the greatest integer contained in the bracket.

Also

$$
\frac{Q(N_1)}{Q(N_1+1)} = e^{\alpha} 1 = \frac{P(N_1)}{P(N_1+1)} = \frac{N_1+1}{\lambda}
$$

so that $\alpha_1 = \log(N_1+1) - \log \lambda$.

Similarly

$$
\frac{Q(N_2+1)}{Q(N_2)} = e^{2} = \frac{P(N_2+1)}{P(N_2)} = \frac{\lambda}{N_2+1}
$$

so that $\alpha_2 = \log \lambda - \log (N_2+1)$ and finally $P(n) = \frac{\lambda^n}{n!} e^{-\lambda}$ for $n = 0,1,2,3,4,...$ so $logP(n) = -\lambda + n log \lambda - log n!$ $= - \lambda + n \log \lambda - (n+\frac{1}{2}) \log (n+\frac{1}{2}) + (n+\frac{1}{2}) - \frac{1}{2} \log 2\pi + \frac{\Psi(n+\frac{1}{2})}{n}$. Make the substitution $n = \lambda + \mu$. Then $\log P(n) = -\lambda + (\lambda + \mu + \frac{1}{2}) \log \lambda - (\lambda + \mu + \frac{1}{2}) \log(\lambda + \mu + \frac{1}{2}) - (\lambda + \mu + \frac{1}{2})$

+ $\frac{1}{2}$ log2 π - $\frac{1}{2}$ (λ +u+ $\frac{1}{2}$) - $\frac{1}{2}$ log λ

 $= -\lambda [1 + \frac{\mu + \frac{1}{2}}{\lambda}] \, \log [1 + \frac{\mu + \frac{1}{2}}{\lambda}] + \lambda [\frac{\mu + \frac{1}{2}}{\lambda}] - \frac{1}{2} \, \log 2\pi \lambda \, + \, \Psi(\lambda + \mu + \frac{1}{2})$ $= -\lambda \left\{ [1 + \frac{\mu + \frac{1}{2}}{\lambda}] \log [1 + \frac{\mu + \frac{1}{2}}{\lambda}] - \frac{\mu + \frac{1}{2}}{\lambda} \right\} - \frac{1}{2} \log 2\pi\lambda + \sqrt{\lambda + \mu + \frac{1}{2}}.$ + $\frac{1}{2} \log 2\pi - \frac{y(\lambda + \mu + \frac{1}{2})}{2} - \frac{1}{2} \log \lambda$

= $-\lambda [1 + \frac{\mu + \frac{1}{2}}{\lambda}] \log [1 + \frac{\mu + \frac{1}{2}}{\lambda}] + \lambda [\frac{\mu + \frac{1}{2}}{\lambda}] - \frac{1}{2} \log 2\pi\lambda + \frac{y(\lambda + \mu + \frac{1}{2})}{2}$

= $-\lambda \left[[1 + \frac{\mu + \frac{1}{2}}{\lambda}] \log [1 + \frac{\mu + \frac{1}{2}}{\lambda}] - \frac{1}{2} \log 2\pi\lambda + \frac{y(\$

2) Binomial Distribution: Let p,n be the parameters of the Binomial distribution

then
$$
M = [(\text{nt}1)p]
$$

\n $N_1 = M + \sqrt{2npq}$
\n $N_2 = M - \sqrt{2npq} - 1$

<u> Barbara a Barbara a Tanzania a Barbara a Barbara a Tanzania a Barbara </u>

and as before
$$
e^{a} = \frac{N_1 + 1}{n - N_1} \frac{1 - p}{p}
$$
 and $e^{a} = \frac{n - N_2}{N_2 + 1} \frac{p}{1 - p}$
\nso $\alpha_1 = \log \frac{N_1 + 1}{n - N_1} + \log \frac{1 - p}{p}$ and $\alpha_2 = \log \frac{n - N_2}{N_2 + 1} - \log \frac{1 - p}{p}$
\nand finally $P(k) = \frac{n!}{k! (n - k)!} p^k (1 - p)^{n - k}$ for $k = 0, 1, ..., n$.
\n $\log P(k) = \log n! + k \log p + (n - k) \log(1 - p)$
\n $\log k! - \log(n - k)!$

Using the derived formula for log x! then and the identity log n! = $log(m+1)$! - $log(m+1)$ log P(k) = $(m+\frac{1}{2})$ log(n+1) - $(m+1) + \frac{1}{2}$ log $2\pi + \varphi(m+1)$ - $[(k+\frac{1}{2}) log(k+\frac{1}{2}) - (k+\frac{1}{2}) + \frac{1}{2} log2\pi - \frac{1}{2}(k+\frac{1}{2})]$

$$
-\left[(n-k+\frac{1}{2}) \log(n-k+\frac{1}{2}) - (n-k+\frac{1}{2}) + \frac{1}{2} \log 2\pi - \frac{\gamma(n-k+\frac{1}{2})}{n-k+2} \right] + k \log p + (n-k) \log(1-p).
$$

Make the substitution
$$
k + \frac{1}{2} = (m+1)p+\mu
$$
 into the above equation.
\nlog P(k) = $(m+\frac{1}{2}) log(m+1) - [(m+1)p+\mu] log((m+1)p+\mu)$
\n $- [(m+1)q-\mu] log((m+1)q-\mu) + [(m+1)p+\mu] log p$
\n $+ [(m+1)q-\mu] log(q - \frac{1}{2} log 2\pi + \varphi(m+1) + \Psi(k+\frac{1}{2}) + \Psi(n-k+\frac{1}{2})$
\n $- \frac{1}{2} log p - \frac{1}{2} log q$
\n $= - [(m+1)p+\mu] log[1 + \frac{\mu}{(m+1)p}] - [(m+1)p+\mu] log(m+1)p$
\n $- [(m+1)q-\mu] log[1 - \frac{\mu}{(m+1)q}] - [(m+1)q-\mu] log(m+1)q$
\n $+ [(m+1)q-\mu] log q + [(m+1)p+\mu] log p + (m+1) log(m+1)$
\n $- \frac{1}{2} log (m+1) 2\pi pq + \varphi(m+1) + \Psi(k+\frac{1}{2}) + \Psi(n-k+\frac{1}{2})$
\n $= - (m+1) p\left[1 + \frac{\mu}{(m+1)p} log(1 + \frac{\mu}{(m+1)p}) - \frac{\mu}{(m+1)p}\right]$
\n $- (m+1) q\left[1 - \frac{\mu}{(m+1)q} log(1 - \frac{\mu}{(m+1)q}) - \left(\frac{-\mu}{(m+1)q}\right)\right]$
\n $- \frac{1}{2} log(m+1)2\pi pq + \varphi(m+1) + \Psi(k+\frac{1}{2}) + \Psi(n-k+\frac{1}{2})$.

 $\sim 10^7$

3) Hypergeometric Distribution: Let D,N,n be the parameters of the distribution

 $\overline{}$

35.
\n3) Hypergeometric Distribution: Let D,
\nof the distribution
\nthen
$$
M = \left[\frac{(n+1)(D+1)}{N+2}\right]
$$

\n $N_1 = M + \left[\frac{nD(N-D)(N-n)}{N^2(N-1)}\right]$
\n $N_2 = M - \left[\frac{nD(N-D)(N-n)}{N^2(N-1)}\right]$
\n11so
\n $\alpha_1 = \frac{(N_1+1)(N-D-n+N_1+1)}{(D-N_1)(n-N_1)} \text{ and } e^2 =$
\nonsider now the probability
\n $P(x) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}} = \frac{D!}{(D-x)!x!} \frac{(N-D)!}{(n-x)!(n-D-1)}$

also

$$
M = \left[\frac{(n+1)(D+1)}{N+2}\right]
$$

\n
$$
M = \left[\frac{(n+1)(D+1)}{N+2}\right]
$$

\n
$$
N_1 = M + \left[\frac{nD(N-D)(N-n)}{N^2(N-1)}\right]
$$

\n
$$
N_2 = M - \left[\frac{nD(N-D)(N-n)}{N^2(N-1)}\right] - 1
$$

\n
$$
e^{\alpha_1} = \frac{(N_1+1)(N-D-n+N_1+1)}{(D-N_1)(n-N_1)} \text{ and } e^{\alpha_2} = \frac{(D-N_2)(n-N_2)}{(N_2+1)(N-D-n+N_2+1)}.
$$

 $\mathbf{1}$

Consider now the probability

$$
P(x) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}} = \frac{D!}{(D-x)!x!} \frac{(N-D)!}{(n-x)!(n-D-n+x)!} = \frac{n!(N-n)!}{N!}
$$

$$
= \frac{C(N,n,D)}{(D-x)! x! (n-x)! (N-D-n+x)!} \text{ for } x = 0,1,...,D.
$$

Expand the factorials using the established formula and make the substitution

$$
y = x + \frac{1}{2} - M_0
$$
 where $M_0 = \frac{(nt+1)(Dt+1)}{N+2}$.

Thus

$$
\log x! = (x + \frac{1}{2}) \log(x + \frac{1}{2}) - (x + \frac{1}{2}) + \frac{1}{2} \log 2\pi - \frac{\Psi(x + \frac{1}{2})}{\Psi(y + \frac{1}{2})}
$$
\n
$$
= (M_0 + y) \log(M_0 + y) - (M_0 + y) + \frac{1}{2} \log 2\pi - \frac{\Psi(M_0 + y)}{\Psi(y + \frac{1}{2})}
$$
\n
$$
= M_0 \left(1 + \frac{y}{M_0}\right) \log(1 + \frac{y}{M_0}) - \frac{y}{M_0} + y \log M_0 - M_0 + M_0 \log M_0 + \frac{1}{2} \log 2\pi - \frac{\Psi(M_0 + y)}{\Psi(y + \frac{1}{2})}
$$
\n
$$
\log(n - x)! = (n - x + \frac{1}{2}) \log(n - x + \frac{1}{2}) + \frac{1}{2} \log 2\pi - \frac{\Psi(n - x + \frac{1}{2})}{\Psi(y + \frac{1}{2})}
$$

$$
= (n+1-M_0-y) \log(n+1-M_0-y) - (n+1-M_0-y) + \frac{1}{2} \log 2\pi - \frac{\Psi(n+1-M_0-y)}{0}
$$

$$
= (n+1-M_0) \left[(1-\frac{y}{n+1-M_0}) \log(1-\frac{y}{n+1-M_0}) - \frac{-y}{n+1-M_0} \right] - y \log(n+1-M_0)
$$

+ $(n+1-M_0) \log(n+1-M_0) - (n+1-M_0) + \frac{1}{2} \log 2\pi - \Psi(n+1-M_0-y).$

Similarly as above

$$
\log(D-x) = (D+1-M_0) \left[(1 - \frac{y}{D+1-M_0}) \log(1 - \frac{y}{D+1-M_0}) - \frac{-y}{D+1-M_0} \right]
$$

- y log(D+1-M_0) + (D+1-M_0) log(D+1-M_0) - (D+1-M_0)
+ $\frac{1}{2} \log 2\pi - \frac{y}{D+1-M_0-y}$

and finally

$$
\log(N-D-n+x) = (N-D-n+M_{0}) \left[(1 + \frac{y}{N-D-n+M_{0}}) \log(1 + \frac{y}{N-D-n+M_{0}}) \right]
$$

$$
-\frac{y}{N-D-n+M_{0}} + y \log(N-D-n+M_{0})
$$

$$
+ (N-D-n+M_{0}) \log(N-D-n+M_{0}) - (N-D-n+M_{0})
$$

$$
+ \frac{1}{2} \log 2\pi - \frac{\Psi(N-D-n+M_{0}+y)}{y}.
$$

Combining these equations

Combining these equations
\n
$$
\log P(x) = C^{*}(N, n, D) - M_{0} \left(1 + \frac{y}{M_{0}}\right) \log(1 + \frac{y}{M_{0}}) - \frac{y}{M_{0}}\right]
$$
\n-
$$
(n+1-M_{0}) \left[(1 - \frac{y}{n+1-M_{0}}) \log(1 - \frac{y}{n+1-M_{0}}) - \frac{-y}{n+1-M_{0}}\right]
$$
\n-
$$
(D+1-M_{0}) \left[(1 - \frac{y}{D+1-M_{0}}) \log(1 - \frac{y}{D+1-M_{0}}) - \frac{-y}{D+1-M_{0}}\right]
$$
\n-
$$
(N-D-n+M_{0}) \left[(1 + \frac{y}{N-D-n+M_{0}}) \log(1 + \frac{y}{N-D-n+M_{0}}) - \frac{y}{N-D-n+M_{0}}\right]
$$
\n-
$$
y \log \left[\frac{M_{0}(N-D-n+M_{0})}{(n+1-M_{0})(D+1-M_{0})}\right]
$$
\n+
$$
Y(M_{0}+y) + Y(n+1-M_{0}-y) + Y(D+1-M_{0}-y) + Y(N-D-n+M_{0}+y).
$$
\n
$$
M_{0}(N-D-n+M_{0})
$$
\nA check will show that
$$
\frac{M_{0}(N-D-n+M_{0})}{(n+1-M_{0})(D+1-M_{0})} = 1
$$
 which eliminates this

term from consideration.

Also for use in these acceptance rejection procedures the * constant term C (N,n,D) may be neglected since the procedure uses only the ratios of the probabilities of the respective points being considered.

Section 3: Procedures for Discrete Distributions with Small Means.

The procedures in the previous section generate the desired random variable using a small number of uniform random variables but at the expense of considerable numerical calculations. When the mean of the distributions under consideration is small, procedures exist which use about the same number of uniform random variables but which are much less involved. Such procedures used in the simulation will now be considered.

1) Poisson: Let λ be the mean of the Poisson distribution. Let E_1, E_2, E_3, \ldots be independent exponential random variables which are obtained by the equation E_i = -log U_i where U_i are independent uniform random variables. Let J be the integer such that

 $J-I$ J $\sum E_{.} < \lambda \leq \sum E_{.}$ $i=1$ $i=1$

J Then J-1 has a Poisson distribution with mean λ and $\sum\limits_i\mathbf{E_i}-\lambda$ is independent exponential. This result can be shown by directly integrating the joint density of the E_i .

2) Truncated Poisson: This distribution is needed only in the small mean case and its use will be shown later. Let λ be the mean of the distribution and as before let E_1, E_2, E_3, \ldots be exponential random variables.

Let ^q be defined as the integer Such that

 $q\lambda \leq E_1 \leq (q+1)\lambda$.

Let J be the integer such that $J-1$ J $\sum E_i < (q+1)\lambda < \sum E_i$. $i=1$ ¹ $i=1$

Then 'hen J-l has a truncated Poisson distribution with mean λ
J and $\sum E_i - (q+1)\lambda$ is independent exponential. This result can i=1 also be shown by directly integrating the joint density of the E_i .

3) Binomial: Let N,p be the parameters of the Binomial distribution. Define α = -log (1-p) and let $g = N\alpha$. Divide the interval (0, N α) into the N intervals I₁ = ((i-1) α , i α].

Let \mathtt{E}_1 , \mathtt{E}_2 , \mathtt{E}_3 ,... be independent exponential random variables. Consider the points

$$
x_i = \frac{i}{j} E_j
$$
 for $i = 1, 2, 3, ..., k-1$

where ^k is defined to be the first integer such that

$$
x_k = \sum_{j=1}^k E_j > N\alpha.
$$

Let N_{B} = Number of intervals I. which contain a point x..

Then N_B has a Binomial distribution with parameters N and p. This can be shown directly by integrating the joint density of the E,.J ich contain a po:
bution with parameter
grating the joint
be the parameter
(N-D)!

4) Hypergeometric: Let N,D and n be the parameters of the distribution. Then

This can be shown directly by integrating the joint density
\nthis can be shown directly by integrating the joint density
\nthe E_j.
\n4) Hypergeometric: Let N,D and n be the parameters of the
\ndistribution. Then
\n
$$
P(x) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}} = \binom{D}{x} \frac{n!}{(N-n)!N!} \frac{(N-D)!}{(N-D-n+x)!(n-x)!}
$$
\n
$$
= \frac{\binom{N-D}{N-D-n}! \binom{N}{N-n}! \binom{D}{x} \left(\frac{P}{1-P^*}\right)^x \left[\frac{n! (N-D-n)!}{(N-D-n+x)!(n-x)!} \left(\frac{1-P^*}{P^*}\right)^x\right]}{\binom{n}{n}}
$$
\nwhere $\frac{P^*}{1-P^*} = \frac{n}{N-D-n+1}$ and consequently $p^* = \frac{\frac{n}{N-D-n+1}}{1+\frac{n}{N-D-n+1}}$.

Let $N_1^{\sim} B(D;p^*)$ and accept N_1 with probability

$$
\frac{n!(N-D-n)!}{(N-D-n+N_1)!(n-N_1)!} \left(\frac{N-D-n+1}{n}\right)^{N_1}.
$$

If \texttt{N}_1 is rejected let $\texttt{N}_2^{\;\;\sim\;}$ B(D,p $\overset{\star}{\texttt{>}}$ and repeat the process. Let N_H be the first accepted N_H . Then N_H has a Hypergeometric distribution with parameters N,D,n. This procedure is used for small mean Hypergeometric and it is to be noted that for the case where $x = 0,1$ the acceptance probability is one so that the acceptance rejection part of the procedure is ignored when the Binomial random variable is zero or one.

Consider now a simplification of the factor,

$$
R(x) = \frac{n! (N-D-n)!}{(N-D-n+x)!(n-x)!} \left(\frac{N-D-n+1}{n}\right)^{x}.
$$

Using the established formula for log x!

 $log n! = log n+log(n-1)! = (n+\frac{1}{2})log n - n + \frac{1}{2} log2\pi + \varphi(n)$ $log(n-x)! = (n-x+\frac{1}{2}) log(n-x+\frac{1}{2}) - (n-x+\frac{1}{2}) + \frac{1}{2} log2\pi - \frac{\gamma(n-x+\frac{1}{2})}{2}$ Combining these with x log n

$$
\log n! - \log(n-x) - x \log n = -(n-x+\frac{1}{2}) \log(1-\frac{x-\frac{1}{2}}{n})
$$

$$
- (x-\frac{1}{2}) + \varphi(n) + \sqrt{\frac{1}{2}(n-x+\frac{1}{2})}.
$$

Make the substitution $\mu = x-\frac{1}{2}$

$$
= - (n-\mu) \log(1-\frac{\mu}{n}) - \mu + \varphi(n) + \Psi(n-\mu).
$$

Similarly as above

$$
\log(N-D-n) ! - \log(N-D-n+x) ! + x \log(N-D-n+1)
$$

= -(N-D-n+1+\mu) log (1 + $\frac{\mu}{N-D-n+1}$) + μ + φ (N-D-n+1) + Ψ (N-D-n+1+\mu).

From this then

$$
\log R(\mu) = -n \left[(1 - \frac{\mu}{n}) \log(1 - \frac{\mu}{n}) - \frac{-\mu}{n} \right]
$$

- (N-D-n+1) $\left[(1 + \frac{\mu}{N-D-n+1}) \log(1 + \frac{\mu}{N-D-n+1}) - \frac{\mu}{N-D-n+1} \right]$
+ $\varphi(n) + \Psi(n-\mu) + \varphi(N-D-n+1) + \Psi(N-D-n+1+\mu)$.

Let ^U be ^a uniform random variable. Accept the observation 1f

 $U \le R(\mu)$ or equivalently if $E = -\log U \ge -\log R(\mu)$ which reduces to $E + log R(\mu) \ge 0$.

 $\overline{}$

Chapter 4

Section 1: Simulation of the Model.

Let Ω be an environment. Recall that the species in the environment are to be such that for any interval $[a,b)$ with $0 < a < b < \infty$ the number of species with intensities in this b interval has a Poisson distribution with mean $\int f(x) dx$ where a $f(x) = A e^{-X}$. $\overline{\mathbf{x}}^{\alpha}$

Suppose that A and α are given and that a sample of N individuals is to be taken from a computer Simulated environment. The problem reduces to first choosing the intensities of the Species in the environment so that they satisfy the above condition and then choosing the number of individuals in each species Such that this number has ^a Poisson distribution with mean proportional to the intensity of the respective species. This constant of proportionality will be designated by $\mathrm{k}_\mathbf{\mathrm{g}}$ and will be called the power of the sample.

Let $x_1, x_2,...$ be the intensities of the species that are to be selected and suppose ^a supply of independent exponential random variables E_i , i = 1,2,... are available.

Noting that the waiting time for ^a Poisson process is exponential consider the following method of choosing the intensities. Let

$$
E_1 = \int_{x_1}^{\infty} f(x) dx
$$
 and solve this equation for x_1 .

When this is done let $E_0 = \int_0^1 f(x) dx$ and solve this equation for x_2 and $\frac{2}{x^2}$

continue finding intensities $x_1, x_2, x_3, x_4, \ldots$

6 Notice that for $\epsilon > 0$, $\int f(x) dx = +\infty$ so that the method must 0 be modified for small x. The modification and the method of determining a constant ε_{s} , which determines the intensity at which the modification will be made, will be shown later. mining a constant ϵ_s , which determines the intensity at which
odification will be made, will be shown later.
The function $f(x) = \frac{Ae^{-x}}{x}$ cannot be integrated directly between

-x x two arbitrary positive numbers so that the solution of the equation E_{\perp} = $\int_{-}^{\infty} f(x) dx$ for x... is obtained through an acceptance-rejection x_{i+1} $i+1$

procedure. No such procedure was found that was effecient over the entire real line so that different procedures were used depending upon the portion of the real line that was being considered. The following method for finding the intensities of the species was used:

1. Set
$$
y = x + \alpha \log x
$$

\nso that $\frac{dy}{dx} = 1 + \frac{\alpha}{x} = \frac{x+\alpha}{x}$.
\n2. Let $y_0 = x_0 = +\infty$ and set $i = 1$, set $k = 1$ and
\nset $E_0 = 0$.
\n3. Set $y_i^* = x_{i-1} + \alpha \log x_{i-1} = y_{i-1}$ and in order
\nto determine x_i let
\n $y_i = x_i + \alpha \log x_i$.
\n $x_{i-1} = y_i - 1$ and in order
\n $y_i = x_i + \alpha \log x_i$.
\nThen $\int_{x_i}^{x} f(x) dx = \int_{x_i}^{x} f(y) \frac{x}{x+\alpha} dy = \int_{y_i}^{x} Ae^{-y} \frac{x}{x+\alpha} dy$

4. Set
$$
E_k = \int_{y_i}^{x} Ae^{-y} dy = Ae^{-y}i - e^{-y}i
$$

\n4. Set $E_k = \int_{y_i}^{x} Ae^{-y} dy = Ae(e^{-y}i - e^{-y}i)$
\nand solving for y_i
\n $y_i = -\log (E_k + e^{-y}i) + \log A$
\n $= -\log (E_k + \sum_{j=0}^{k} E_j) + \log A$
\n $= -\log (\sum_{j=1}^{k} E_j) + \log A$.
\n5. Solve the equation $y_i = x_i + \alpha \log x_i$ for x_i .
\n6. Accept x_i with probability $\frac{x_i}{x_i}$.

6. Accept
$$
x_i
$$
 with probability $\frac{x_i}{x_i + \alpha}$.

7a) If
$$
x_i
$$
 is rejected set $y_i^* = y_i$, increase k by one and return
to step #4 provided $x_i > 3.0$.

b) If
$$
x_i
$$
 is accepted increase k by one, increase i by one and return to step #3 provided $x_i > 3.0$.

For intensities less than 3.0 ^a modification is made in the procedure to obtain ^a higher degree of effeciency in choosing the x_i .

*
8. Let x_i equal the last intensity calculated in step #5.

 $\texttt{Let } k_1 = k, \; x_1 = x_1$. $\begin{array}{ccccc}\n\mathbf{x}_1^{\bullet} & & \mathbf{1} & \mathbf{x}_1^{\star} & \mathbf{N}_1 & \mathbf{1} & & & \mathbf{x}_i^{\star} \\
\mathbf{x}_1^{\bullet} & & \mathbf{x}_1^{\star} & & \mathbf{1} & & & \mathbf{x}_i^{\star}\n\end{array}$ Then $\int f(x) dx = \int Ae^{-x}x^{2} dx = \int A e^{-x} (2)^{\alpha} dx$. x_i x_i \overline{x}^{α} $\overline{z^{\alpha}}$ x_i $\overline{z^{\alpha}}$ * $\mathbf{x_i^c}$ 9. Set $E_{1} = \int A e^{-X} dx$ and solving for x. $\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array}$ i k $x_{i} = -\log \left[j \frac{\sum_{k=1}^{n} E_{j}}{j} + e^{-x} N_{1} \right]$ A 2^{$-\alpha$} 10. If $x_i \ge 2.0$ accept x_1 with probability $\left(\frac{2}{x_i}\right)^\alpha$. If x_i is

rejected increase k by one, set $x_i^* = x_i$, return to step #9. If x_i is accepted increase k by one, set $x_{i+1}^* = x_i$, increase ⁱ by one, return to step #9.

For the case $x_i < 2.0$, x_i is rejected and the procedure again modified.

11. Let
$$
x_i^* = 2.0
$$
, increase k by one and set $k_2 = k$.
\nThen
$$
\int_{i}^{x_i} f(x) dx = \int_{x_i}^{x_i} \frac{A e^{-x}}{x} e^{-1} dx = \int_{x_i}^{x_i} \frac{A e^{-1}}{x} e^{1-x} dx
$$
\n12. Set $E_k = \int_{x_i}^{x_i} \frac{A}{e} x^{-\alpha} dx$

and solving for x_i

$$
\mathbf{x}_{i} = \left[2^{1-\alpha} - \frac{(1-\alpha)e}{A} \left[\sum_{j=k_{2}}^{k} \mathbf{E}_{j}\right]\right] \frac{1}{1-\alpha} .
$$

13. If $x_i \ge 1.0$ accept x_i with probability e^{1-x}_i. If x_i is rejected increase k by one, set $x_i^* = x_i$, return to step #12. If x_i is accepted increase k by one, set $x_{i+1}^* = x_i$, increase i by one, return to step #12. If $x_i < 1.0$, reject x_i since the procedure breaks down at one.

As was pointed out earlier, $\int\limits_{0}^{\varepsilon} f(x) dx = \infty$ for $\varepsilon > 0$ so 0 that procedures of the type used for large intensities are impractical for very small intensities. Note that when choosing a sample from the simulated environment the number of individuals in each species has a Poisson distribution with mean $k_s x_i$. Here $^{\bf k}{}_{\bf s}$ is unknown but it can be estimated and from this estimate a method devised for choosing Species with small intensities which have a high probability of appearing in the sample while overlooking many which do not appear in the sample of N individuals.

The expected number of individuals is represented by the equation

$$
46.
$$

\nexpected number of individuals is represented by the equation
\n
$$
\int_{0}^{1} k_{s}x f(x)dx + \sum_{j=1}^{i-1} k_{s}x_{j} = \int_{0}^{1} k_{s}x \frac{Ae^{-x}dx}{x} + \sum_{j=1}^{i-1} k_{s}x_{j}
$$
\n
$$
\int_{0}^{\sqrt{\pi}} k_{s} \left[\int_{0}^{1} Ax^{1-\alpha} (1-x + \frac{x^{2}}{4})dx + \sum_{j=1}^{i-1} x_{j} \right] = k_{s} \left[A(\frac{1}{2-\alpha} - \frac{1}{3-\alpha} + \frac{1}{4(4-\alpha)}) + \sum_{j=1}^{i-1} x_{j} \right].
$$
\ning this equal to N, the number of individuals to be taken

\nthe simulated environment, the estimate of k_s is

\n
$$
\hat{k}_{s} = \frac{N}{\sqrt{\pi}} \sum_{j=1}^{i-1} x_{j} \frac{1}{N_{s}}
$$

Setting this equal to N, the number of individuals to be taken from the simulated environment, the estimate of $\mathrm{k}_\mathrm{S}^{}$ is

$$
\hat{k}_{s} = \frac{N}{A(\frac{1}{2-\alpha} - \frac{1}{3-\alpha} + \frac{1}{4(4-\alpha)}) + \sum_{j=1}^{i-1} x_{j}}
$$

Using this estimate of k_{s} continue finding the intensities of the species in the simulated environment.

14. Set
$$
\epsilon_s = \frac{0.8}{k_s}
$$
, $x_i^* = 1.0$,
\nincrease k by one and set $k_3 = k$. Then
\n
$$
\int_{x_i}^{x_i^*} f(x) dx = \int_{x_i}^{1} \frac{A}{x^{\alpha}} e^{-x} dx.
$$
\n15. Set $E_k = \int_{x_i}^{1} \frac{A}{x} dx$
\n $x_i^* = \int_{x_i}^{1} \frac{A}{x} dx$

and solving for \mathbf{x}_i

$$
x_{i} = \left[1 - \frac{(1-\alpha)}{A} \left[\sum_{j=k}^{k} E_{j}\right]\right]^{\frac{1}{1-\alpha}}.
$$

16. Accept $\mathbf{x_i}$ with probability e $\mathbf{1}$. If $\mathbf{x_i}$ is rejected, increase k by one, set $x_i^* = x_i$ and return to step #15

 $x_{i+1}^* = x_i$, increase i by one and return to step #15 provided
 $x_i \ge \epsilon_s$. provided $x_1 \geq \varepsilon$. If x_1 is accepted, increase k by one, set $x_i \geq \epsilon_s$.

For $x_i < \epsilon_g$ then the probability that a species with intensity x_i will have an individual present in the sample with power k_g is $E_{\mathbf{k}} = \int_{0}^{1} f(x) dx$ $\mathbf{r_i}$

for x_i and letting the number of individuals present in the sample from this species be

$$
\begin{cases}\n n_i & \text{where } n_i \sim \text{Truncated Poisson with parameter} \\
 \hat{k}_s x_i & \text{with probability } 1 - e^{-\hat{k}_s x_i} \\
 0 & \text{with probability } e^{-\hat{k}_s x_i}\n\end{cases}
$$

an equivalent method for determining the individuals in the small species is to solve the equation

 $\mathbf{1}$ = $\int_{x}^{1} k_s x f(x) dx$ for x_i and let the number of individuals x_i

present in the sample from this species be

to solve the equation

\n
$$
\kappa_{\mathbf{S}}^*
$$
\ni

\ni

\nk

\nk

\ni

\ni

\ni

\ni

\ni

\ni

\nthe sample from this species be

\nn

\ni

\nwhere n_i *x runcated Poisson with parameter*

\nj

\nk

\nk

\nk

\ni

\nwith probability

\nl

\n

This modification has the effect of skipping over some Species which are in the environment but which do not appear in the sample.

17. Set
$$
N^* = i
$$
 and $x_{\varepsilon} = x_i^*, k_4 = k$
\n x_i^*
\n $\int_{}^{i} \hat{k}_s x f(x) dx = \int_{}^{i} \hat{k}_s x \frac{A}{x} e^{-x} dx = \int_{}^{i} \hat{k}_s A x^{1-\alpha} e^{-x} dx$.
\n x_i

18. Set
$$
E_k = \int_{x_1}^{x_1} k_s A x^{1-\alpha} dx
$$
 and solving for x_i
 $x_i = (x_6^{2-\alpha} - \frac{(2-\alpha) \left[\int_{3}^{k} E_k B_j dx}{\sum_{s=1}^{k} (x_s^{2-\alpha} - \frac{(2-\alpha) \left[\int_{3}^{k} E_k dx}{\sum_{s=1}^{k} (x_s^{2-\alpha} - \frac{(2-\alpha$

19. If $x_1 > 0$ accept x_1 with probability e

* If x1 is rejected, increase k by one, set xi = x1 and return to step #18. If x. is accepted, increase k by one, set x_{..}, = x., increase i by one and return to step #18.

The procedure is continued until a negative intensity is reached. Let s_N be the number of species obtained. Consider now the problem of finding the sample of N individuals and let n_i for $i = 1, 2, ..., s_N$ be the number of individuals chosen from the species with intensity x_i . Thus

> n. is chosen from a Poisson distribytion with ¹ parameter $\hat{k}_{\alpha}x_i$ for $i = 1,2,...,N-1$.

Poisson dist

or $i = 1, 2, ...$

mcated Poiss

x_i with prob
 $\hat{k}_s x_i$ -lte

x_i \hat{k}_s n_i chosen from a truncated Poisson distribution $\frac{1}{1-e}$ - $k_s x_i$ with parameter $k_s x_i$ with probability $\frac{1-e^{-t}}{k x_i}$, $\hat{k}_{s}x_{s}-1+e$ s 1 0 with probability \overline{S} for $i = N^*, \ldots, s_N$. s_{N} $k_{s}x_{i}$ Let $N_T = \sum_{i=1}^{T} n_i$.

 $\frac{1}{2}$ If $N_T = N$ then the sample is as chosen. If $N_T > N$ then $N_T - N$ individuals must be independently rejected from the chosen sample. This is accomplished be means of the Hypergeometric distribution where the number to be eliminated in the first species is $\mathfrak{n}_1^{\mathfrak{t}}$ which is distributed Hypergeometric with parameters N_T, N_T-N, n_1 and in general the number to be eliminated in the kth species is

48.

k-l n'_k which is distributed Hypergeometric with parameter $N_T - \sum_{i=1}^T n_i$, $N_m-N-\Sigma$ n', n_{i.}. This is continued until all N_m - N individuals i=1 have been eliminated.

The number of individuals in each gpecies is n $n_{i}^{*} = n_{i} - n_{i}^{*}$ for $i = 1, 2, ..., s_{N}$ and $\sum_{i=1}^{N} n_{i}^{*} = N$.

If however $N_T \le N$ then $N - N_T$ more individuals must be chosen from the model.

 $N-NT$. The factor two is added to make the Let $\Delta \hat{k}_s = 2\hat{k}_s - \frac{N-1}{N}$ probability of falling¹short again vary small since it is better to over estimate k_{s} . The intensity of the sample is now $\hat{k}'_s = \hat{k}_s + \Delta \hat{k}_s$ so let n''_i be the number of individuals that are to be added to the already selected Species where

 $n_i'' \sim \text{Poisson } (\Delta \hat{k}_s x_i)$ for $i = 1, 2, ..., s_N$.

Since some species were skipped in the interval $[0, x_{\epsilon})$ the possibility that some of these may now appear in the enlarged sample must be considered. Let $\varepsilon^* = \frac{1}{k_1!}$. If $\varepsilon^* > x_{\varepsilon}$ select the new Species using the method described in steps #17-19 replacing $\mathbf{k_{s}}$ by $\Delta\mathbf{\hat{k}_{s}}$ and continue finding intensities until zero is reached. The number of individuals present in the sample from these Species is n" where n" · Truncated Poisson with parameter Δ $\hat{k}_s x_i$ with -Δ \hat{k} x. probability $\frac{1-e}{\Delta E}$ S i $\ddot{\cdot}$ 0 with probability <u>sai</u>

for $i = s_N + 1, \ldots, s_N$ where s_N is now the number of species present. The intensity x_{ε} is chosen so that it is

very unlikely that $\varepsilon^* < x_{\varepsilon}$ but if this should happen the situation can be corrected by decreasing the upper value of $\mathbf{x}_{\epsilon}^{}$ from say $\frac{\mathbf{0.8}}{\mathbf{x}_{\epsilon}^{}}$ s to possibly $\frac{0.6}{k}$ and rerunning the experiment. s

Let
$$
N_{T}^{t} = \sum_{i=1}^{S_{N}^{t}} n_{i}^{t}
$$

If $N'_T = N - N_T$ then no individuals need be deleted. If $N'_T > N-N_T$ then $N'_T - N + N_T$ individuals must be eliminated from the N'_T new individuals chosen.

This is accomplished again using the Hypergeometric distribution by letting n_i' be the number of individuals eliminated from the first species where n_1' is distributed Hypergeometric with $_{\text{\tiny T}}$, $\texttt{N}_{\text{\tiny T}}^{\text{\tiny I}}$ - \texttt{N} + $\texttt{N}_{\text{\tiny T}}^{\text{\tiny I}},$ $\texttt{n}_{\text{\tiny T}}^{\text{\tiny U}}$ and for the k $^{\text{\tiny th}}$ species $\frac{\overline{k}-1}{\overline{k}}$ is Hypergeometric $(N_T^1 - \frac{\Sigma}{i^{s-1}} n''_i, N_T^1 - N + N_T - \frac{\Sigma}{i^{s-1}} n'_i, n''_i)$. parameters N'

The number of individuals in the respective species is then

$$
n_1^* = n_1 + n_1'' - n_1'
$$
 for $i = 1, 2, ..., s_N$
\n $n_1^* = n_1'' - n_1'$ for $i = s_N + 1, ..., s_N'$
\n s_N'
\nwhere $\sum_{i=1}^{S} n_i^* = N$.

If N_T^{\prime} < N - N_T^{\prime} repeat the process for selecting new individuals from the species. Because of the method for determining $\Delta \hat{k}_{s}$ however it is extremely unlikely that the adding of new individuals Will be necessary more than once.

Chapter 4

Section 2: Simulation in the Special case.

The simulation of the model for the Special case developed in Chapter ¹ Section ³ is greatly simplified over the general case. In taking the sample of size ^N in this case consider the following procedure. Define W_i as before to be the proportion of individuals of the ith sampled species present in the environment neglecting the i-l Species already sampled.

Choose w_1 ¹ h(w) = A(1-w)^{A-1} where A is a parameter of the model which is to be estimated. Choose $m_1 \sim$ Binomial (N-1,w₁) where m_1 represents the number of times that this species repeats in selecting the remaining N-1 individuals. Then $n_1 = m_1 + 1$ represents the number of individuals from the first Species in the random sample of N individuals. Now choose w_2^{α} h(w) and again select

 m_2^{\sim} Binomial (N-n₁-1,w₂) and let n₂ = m₂ + 1.
i-1

In general select w. $^{\circ}$ h(w), select m. $^{\circ}$ Binomial (N- Σ n.-l,w.) J: and let $n_i = m_i + 1$.

Continue this process until a sample of N individuals has been chosen.

Chapter 5

Section 1: Data Analysis

Using the procedures developed in the previous chapters ^a set of data will now be analized to indicate the fit of the model in an actual environment. The data used for this purpose was taken from Williams [4] and is reproduced in table 5.1.

From the maximum likelihood methods developed in Chapter ² an estimate of the parameters for this set of data was found to be

$$
\hat{\alpha} = 1.0000 \qquad \qquad \hat{A} = 40.453 \qquad \qquad \hat{k}_s = 392.7.
$$

Since $\hat{\alpha}$ = 1 the estimation of the other two parameters reduces to the special case where α is set equal to one in the likelihood equations and an estimate of the other parameters obtained by the procedure developed in Chapter ² Section 2. This maximum likelihood estimate was found to be

$$
\hat{A} = 40.2576 \qquad \qquad \hat{k}_s = 387.2
$$

According to the model each sample is such that the number of individuals in the sample from a species with intensity x is distributed Poisson with mean k_{s} x. Using \hat{k}_{s} as an estimate of k_{s} then, the expected number of species in the sample with m individuals is

$$
\int_{0}^{\infty} \frac{(\hat{k}_{s}x)^{m}}{m!} e^{-\hat{k}_{s}x} f(x) dx = \int_{0}^{\infty} \frac{(\hat{k}_{s}x)^{m}}{m!} e^{-\hat{k}_{s}x} \frac{\hat{A}e^{-x}}{x} dx
$$

$$
= \frac{\hat{A}\hat{k}_{s}^{m}}{m!} \int_{0}^{\infty} x^{m-1} e^{-\left(\hat{k}_{s}+1\right)x} dx = \frac{\hat{A} \hat{k}_{s}^{m}}{m!} \frac{\Gamma(m)}{\left(\frac{k+1}{s}\right)^{m}}
$$

$$
= \hat{A} \left(\frac{\hat{k}_{s}}{\hat{k}_{s}+1}\right)^{m} \frac{1}{m} = \frac{40.2576}{m} (.99743)^{m}.
$$

Macrolepedoptera Data

Observed captures of Macrolepedoptera in ^a light trap at Rothamstad Journal of Animal Ecology Volume 12-13, pp.45-46. 53.

Table 5.1

Macrolepedoptera Data

served captures of Macrolepedoptera in a light trap at Rotha

served captures of Macrolepedoptera in a light trap at Rotha

stribution of species according to number of individuals pr

Distribution of Species according to number of individuals present in the sample.

also at 61,64,67,73,76(2),78,84,89,96,99,109,112,120,122,129, 135,141,148,149,151,154,177,181,187,190,199,211,221,226,235,239, 244,246,282,305,306,333,464,560,572,589,604,743,823,2349

Theoretical Frequencies for Macrolepedoptera Data Distribution of the expected number of Species present in the sample with parameters $\alpha = 1.0000$, $A = 40.2576$, $k_g = 387.2$

	ı	$\mathbf{2}$	3	4	5	6	7	8	9	10
$\mathbf{0}$		40.15 20.03	13.31		9.96 7.96		6.61 5.64 4.93		4.37	3.92
10	3.55	3.25	2.99			2.77 2.58 2.41	2.26 2.13 2.02			1.91
20	1.81	1.73	1.65			1.58 1.51 1.45	1.39 1.34 1.29			1.24
30	1.20	1.16	1.12		1.08 1.05 1.02		.99 ₁	.96	.93	.91
40	.88	.86	$\overline{}$.84	.81	.80	.78	.76	.74	.72	.71
50	.69	.68	.66	.65		$.64-.62$.61	.60	.59	.57
also										
	$61 - 70$		5.14			$151 - 200$		7.31		
	$71 - 85$		6.34			$201 - 300$		8.57		
	$86 - 110$		7.96			$301 - 500$			7.43	
	$111 - 150$		8.84			$500 -$			6.07	

Goodness of Fit Test

 χ^2 (24) = 36.42

These values were calculated and are presented in table 5.2. It is interesting to note that in this Special case the expected number of Species present in the sample can be easly calculated by the formula

$$
\begin{array}{rcl}\n\text{values were calculated and are presented in table 5.2.}\n\text{resting to note that in this special case the expected to be a given by the equation:\n
$$
\begin{aligned}\n\text{as } & \text{present in the sample can be easily calculated by the equation:\n\\ \n\begin{aligned}\n& \text{a. } & \text{a. } & \text{b. } & \text{b. } \\
& \text{b. } & \text{c. } & \text{d. } \\
& \text{c. } & \text{d. } \\
& \text{d. } & \text{d. } \\
& \text{e. } & \text{d. } \\
& \text{e. } & \text{d. } \\
& \text{e. } & \text{d. } \\
& \text{d. } & \text{d. } \\
& \text{e. } & \text{d. } \\
& \text{e. } & \text{d. } \\
& \text{e. } & \text{d. } \\
& \text{d. } &
$$
$$

Using these theoretical values a χ^2 goodness of fit test is applied to the data in table 5.1 and the theoretical values in table 5.2. The number of degrees of freedom for this test is j-3 where ^j is the number of categories. Here three degrees of freedom are lost because of the estimation of the three parameters of the model. The test is as shown in table 5.3 and is not significant at the 5% level.

As an aid in studying the behavior of the model a simulation procedure has been developed in the previous chapters. Three independent samples of 15,609 individuals have been taken from the model using the parameters estimated from the data in table 5.1 and the procedure developed in Chapter 4 Section 2. These three sets of simulated data are reproduced in tables 5.4-5.6 and should give the reader a good indication of the stability of the model. Note in particular that the total number of species present in each of the simulated samples are very close and that while the number of Species present in the samples with a given number of individuals may have a large variation among samples nevertheless the number of large, moderate and small species

Simulated Test #1

also at 62,63,66,67,79,80,83,85(2),88,89,9l(2),93,94,96,97,105, 107,109(2),136,155,159(2),162,165,166,169,180,187,188,189,217, 222,246,247,255,260,273,277,287,324,325,345,350,405,408,440, 464,485,582,606,1385,1399.

Simulated Test #2

Distribution of species according to number of individuals present in the sample with parameters α = 1.0000, A = 40.2576 58.

Table 5.5

Simulated Test #2

stribution of species according to number of individuals

sent in the sample with parameters $\alpha = 1.0000$, $A = 40.2576$

1 2 3 4 5 6 7 8 9 10

also at 61(4),64,66,67,69,71(2),72(3),73,74,7S,93,94(2),97,100(2), 101,112,120,122,124(2),125,130,135,136,140,143,148,155,157,161, l75(3),177,187,191,192,193,196,205,206,237,291,295(2),299,302, 305,325,348,349,394,405,426,573,808,819,1079.

TOTAL NUMBER OF INDIVIDUALS 15,609 TOTAL NUMBER OF SPECIES 243

Simulated Test #3

Distribution of species according to number of individuals present in the sample with parameters α = 1.0000 A = 40.2576 59.

Table 5.6

Simulated Test #3

istribution of species according to number of individuals

resent in the sample with parameters $\alpha = 1.0000$ A = 40.2576

12345678910

also at 61,62,67,68,70(2),71,75,77,79,80(2),89,92(2),102,104, 105,106,107,113,115,119,121,125(2),138,152,168,192,l96,208,218, 223(2),248,249,286,301,305,375,384,410,451,531,616,630,762,768, 1186,1711

present remains quite stable among samples.

With the use of the simulated tests the question of the accuracy of the estimates of the parameters when using the model can be considered. The simulated data is now considered as the original data to find the maximum likelihood estimates of the parameters, again using the procedures developed in Chapter 2. These estimates for the three simulated tests can be compared to the values of the parameters used in obtaining the simulated data as shown in the table below:

Another point of interest is to consider the behavior of the data as the number of individuals increases in the sample. Taking α = 1 and A = 40.2576 table 5.7 shows the behavior of the data where a sample of size 50 is first taken and then the sample increased in small steps up to 15,609. It is to be remembered that this collection of data only illustrates the behavior as n increases in one sample but should serve as a guide for other samples. It is to be noted for example that the number of Species with one individual in the sample has already stabilized by the time 200 individuals are sampled.

In order to compare the simulated data to the theoretical distribution for arbitrary N it is necessary to obtain an estimate

60.

of the parameter k_{s} . Noting that the number of individuals present in a sample from a species with intensity x_i is distributed Poisson with mean $k_{s}x_{i}$ so that the expected number is k_s $_{s}$, an estimate of this parameter for arbitrary N is obtained o
by setting the equation \int k x f(x)dx equal to N. Thus

The equation
$$
\int_{0}^{x} k_s x \, 1(x) dx
$$
 equal to

$$
\int_{0}^{\infty} k_s x \, \frac{Ae^{-x}}{x} dx = k_s A \int_{0}^{\infty} e^{-x} dx = k_s A
$$

and the estimate is $\hat{k}_{S_{xx}} = \frac{N}{A}$.

Using this estimate the expected number of Species present in the sample with m individuals for ^a sample with parameter -x the sample with m individent
 \hat{k}_s and where $f(x) = \frac{Ae^{-x}}{x}$ is where
 \hat{k}_{s} \mathbf{x})
 $\frac{\hat{k}}{N}$ where $f(x) =$
 $(\hat{k}_{s} x)^m - \hat{k}_{s}$
 $\frac{1}{m!} e^{-\hat{k}}$

A $\hat{k}_{s}^m \Gamma(m)$ ∞ (k x)^{m -k}s_N k^m A ∞ $-(k^*_{s_m}+1)x$ \texttt{N} e \texttt{N} f(x)dx = $\texttt{S}_\texttt{N}$ f x \texttt{N} e \texttt{N} dx $\frac{1}{2}$ m! $\frac{1}{2}$ m! $\frac{1}{2}$

$$
= \frac{A \hat{k}^m_{s} \Gamma(m)}{m! (\hat{k}^{}_{s} + 1)^m} = \frac{A}{m} (\frac{\hat{k}^{}_{s} \Gamma(m)}{\hat{k}^{}_{s} + 1})^m
$$

 $\overline{A} \left(\frac{N}{m} \right)^{m}$ \overline{m} $\left(\overline{N+A}$ $\right)$ \cdot

For given values of N and A this can easily be tabulated and in particular compared with the data in table 5.7 for $A = 40.2576$.

 $N = 3000$ Number of species = 165

also at 39(2), 41, 42, 44(2), 47, 50(2), 52(2), 67, 79, 80, 81, 92, 124,

125, 130, 136, 142, 208, 319

also at 61, 63, 66, 67, 68, 71, 86, 93, 106, 110, 114, 157, 161, 170, 173, 190,295,434

 $N = 5000$ Number of species = 190

also at 61,64,65,71,74,79,82,88(2),89,98,118,130,133,138,195, 200, 212, 227, 237, 378, 529

 $N = 6000$ Number of species = 198

also at 70(2), 77, 81, 87, 91, 93, 96, 101, 107, 120(2), 142, 149, 150, 171,218,236,248,275,285,449,633

 $N = 7000$ Number of species = 200

also at 61, 67, 81, 83, 86, 92, 102, 105, 109(2), 115, 124, 136, 141, 172,

173, 175, 197, 256, 277, 288, 332(2), 531, 742

also at 61,64,66,67,72,75,94,95,97,108,111,116,122,123,129,149, 150,167,192,l95,204,227,284,314,325,382,393,600,860

N = 9000 Number of Species = 207

also at 61,64,65(2),68,71,72,77,81,84,99,105(2).118,120,121, 131,140,147,163,173,182,213,224,234,265,324,360,365,433,445, 676,961

65.

N = 8000 Number of Species = 205

N = 10,000 Number of Species = 210

also at 61,62,65(2),71(2),72(2),74(2),76,80,86,88,93,112,113, 123,130,132,138,141,154,160,191,192,199,236,244,274,293,355,391, 397,479,492,751,1093

also at 64,66,69,7o,71,77(3),79,80,81,85(2),95,96,105,121,126, 135,145,148,154,155,173,175,207,213(2),256,261,298,316,385,440, 442,529,533,335,1215

N = 12,000 Number of species = 220

also at 62,63,67,70,73,80,81,85(2),86(2),88,89,93,94,101,105, 121,128,144,148,157,162,169,171,187,l89,223,227,230,276,279,322, 348,423,474,484,575,592,916,1327

 $N = 13,000$ Number of species = 221

also at 64(2),65,66,67,71,74,77,84,90,92(2),94,96,98,99,101, 102,106,114,13o,138,161,165,177,181,189,201,207,239,247,252, 305,311,342,374,452,515,518,628,646,989,1415

 $N = 14,000$ Number of species = 224

also at 62, 63(2), 64, 69, 70, 71, 72(2), 78, 84(2), 90, 96, 97(2), 99, 103, 106(2), 107, 109, 116, 123, 136, 148, 171, 179, 194, 195, 197, 203, 221, 223, 258, 269(2), 333, 339, 400, 477, 556, 559, 679, 684, 1063, 1528

 $N = 15,000$ Number of species = 230

 $N = 15,609$ Number of species = 233

also at 61,62,67,68,70(2),71,75,77,79,80(2),89,92(2), 102,104, 105,106,107,113,115,119,121,125(2),138,152,168,192,196,208,218, 223(2),248,249,286,301,305,375,384,410,451,531,616,630,762,768, 1186,1711.

Chapter 6

A

Section 1: Investigation of Species per Genus Data

In an effort to determine the different types of environments for which the model holds data from Williams $[6]$ on Orthoptera was investigated. It is realized that the data is in the form of Species per genus which is quite a different concept from the individuals per Species data that had previously been considered but this data seemed to Show some of the same properties as the other data and it was hoped that this biological Situation could also be explained by the model. Applying therefore the methods of the previous chapters the maximum likelihood estimate of the parameters was

$$
\alpha = 1.1056
$$
 $\hat{A} = 231.065$ $\hat{k}_s = 16.3$

In comparing the actual data , reproduced in table 6.1, to the theoretical expected values obtained using the above estimates of the parameters it was determined that the model fit rather well for the small and moderate genera but that the theoretical values for the larger genera were too small. This conclusion was reinforced when three samples of 4112 species were taken using $\alpha=1.1056$ and $A=231.065$ and it was found that the largest genus among the three samples contained only 80 Species, far below the number that was actually encountered.

With this result in mind it was decided that an adequate fit might be obtained if the form of the function $f(x)$ was altered to accommodate this new situation. It was decided that the term e^{+X} in the numerator made the function $f(x)$ decrease too rapidly. For large intensities it was decided to try the form $f(x) = \frac{A}{x^4}$ where q is a parameter with the restriction $2 \leq q \leq \infty$.

In determining q for the Orthoptera data make the definition $SPC[a,b)$ = total number of species in the genera which have n_i species with $a \le n_1'$ < b. Adjusting so that $k_g = 1$ the expected number of species is defined by the equation $\int_{a}^{b} x f(x) dx$ for the interval $[a,b)$.

Using $SPC[a, b)$ as an estimate of the number of species in the sample which are in genera having an intensity in the interval $[a,b)$ consider the following equations

$$
\int_{30}^{c} x f(x) dx = \int_{30}^{c} A x^{1-q} dx = SPC[30, c)
$$

$$
\int_{c}^{\infty} x f(x) dx = \int_{c}^{\infty} A x^{1-q} dx = SPC[c, \infty)
$$

for $50 < c < 100$
and $q > 2$

Integrating and eliminating A from the two above equations the solution for q is seen to be

$$
q = 2 - \frac{\log \text{SPC}[\ 30, \infty) - \log \text{SPC}[\ c, \infty)}{\log 30 - \log c}
$$

From the graph of q as a function of c for $50 \lt \lt \lt 100$ a good choice for q in this case seems to be $q = 3$. Also for small genera the function $f(x)$ appears to take the general form similar to $f(x)$. so that the expected number of genera with m species is a function
eems to be
to take the
of genera
A $x^{m-1} e^{-x}$

$$
\int_{0}^{\infty} \frac{x^{m} e^{-x}}{m!} f(x) dx = \int_{0}^{\infty} \frac{A x^{m-1} e^{-x}}{m!} dx = \frac{A \Gamma(m)}{m!} = \frac{A}{m}
$$

Combining these two characteristics it was decided that the function $f(x)$ should take the form $f(x) = \frac{A}{x(x+a)^2}$ where A and a are positive constants. An attempt at finding a maximum likelihood estimate of these parameters became very messy so that an estimate was obtained from a simultaneous solution of the equations

$$
\int_{30}^{\infty} x f(x) dx = \int_{30}^{\infty} \frac{A}{(x+a)^2} dx = \text{SPC} \left[30, \infty \right) = 904
$$

$$
\int_{0}^{\infty} \frac{x e^{-x}}{1!} f(x) dx = \int_{0}^{\infty} \frac{A e^{-x}}{(x+a)^2} dx = 320.
$$

The estimates obtained were

$$
a = 10 \t\t A = 37,000
$$

The simulation procedure used in the case where $f(x) = \frac{A}{x(x+a)^2}$ is quite similar to the procedure developed in Chapter 4 Section 1 except that some changes are needed in finding the intensities due to the different form of the function $f(x)$. As before let E_k , $k=1,2,3,...$ be an infinite supply of exponential random variables and consider the following procedure for producing a sample of size N with known parameters a and A.

1. Set k=1, set i=1, set
$$
x_1^* = + \infty
$$

\n2. $\int_{x_1}^{x_1^*} f(x) dx = \int_{x_1}^{x_1^*} \frac{A}{x(x+a)^2} dx = \int_{x_1}^{x_1^*} \frac{A}{x^3} \left(\frac{x}{x+a}\right)^2 dx$
\n3. Set $E_k = \int_{x_1}^{x_1^*} \frac{A}{x^3} dx$ and solving for x_i
\n $x_i = \sqrt{\frac{A}{2} \sum_{j=1}^{L} E_j}$

4. Accept x_i with probability $\left(\frac{m_1}{x_i + a}\right)$.

5. If x_i is rejected, set $x_i^* = x_i$, increase k by one, and return to step #3 provided $x_i > \frac{a}{\sqrt{2} - 1}$ If x_i is accepted, increase k by one, set $x_{i+1}^* = x_i$, increase i by one and return to step #3 provided $x_i > \frac{a}{\sqrt{2} - 1}$. The point $x_i = \frac{a}{\sqrt{2} - 1}$ is the point where the acceptance

probability $\left(\begin{array}{c} \frac{x}{k+a} \end{array}\right)$ is equal to one half so that it becomes desirable to modify the procedure at this point to increase the effeciency.

ability
$$
\left(\frac{x}{x+a}\right)^2
$$
 is equal to one half so that it be
table to modify the procedure at this point to increase
ciency.
6. Set $k_1 = k$. Also

$$
\int_{x_1}^{x_1^*} f(x) dx = \int_{x_1}^{x_1^*} \frac{A}{x(x+a)} 2 dx = \int_{x_1}^{x_1^*} \frac{A}{2x^3} \frac{2}{1} \left(\frac{x}{x+a}\right)^2 dx
$$
7. Set $E_k = \int_{x_1}^{x_1^*} \frac{A}{2} \frac{1}{x^3} dx$ and solving for x_i

$$
x_i = \sqrt{\frac{A}{2}} \frac{1}{\int_{j=k_1}^{k_1} \frac{1}{j-1}} dx
$$
8. Accept x_i with probability $\frac{2x_i^2}{(x_i+a)^2}$.

9. If x_i is rejected, set $x_i^* = x_i$, increase k by one, and return to step #7 provided $x_i > a$. If x_i is accepted, set $x_{i+1}^* = x_i$, increase k by one, increase i by one and return to step #7 provided

 $x_i > a$.

At the point $x = a$ another modification is to be made to increase the effeciency.

10. Set
$$
k_2 = k
$$
, set $x_{N_1} = x_1^*$
\n
$$
\int_{x_1}^{x_1^*} f(x) dx = \int_{x_1}^{x_1^*} \frac{A}{x(x+a)} dx = \int_{x_1}^{x_1^*} \frac{A}{x a^2} \left(\frac{a}{x+a}\right)^2 dx
$$
\n11. Set $E_k = \int_{x_1}^{x_1^*} \frac{A}{x a^2} dx$ and solving for x_1
\n $x_1 = x_{N_1} e^{-\frac{a^2}{A} \left[\frac{k}{3} E_1 E_1\right]}$
\n12. Accept x_1 with probability $\left(\frac{a}{x_1 + a}\right)^2$.

13. If x_i is rejected, set $x_i^* = x_i$, increase k by one, and return k by one, increase i by one and return to step #11 provided $\mathrm{x_i} > \varepsilon_{\mathrm{s}}.$

 $\overline{}$

The constant ε is determined similar to the procedure used before.

The expected sample size is
\n
$$
\int_{0}^{\infty} k_{s}x f(x)dx = \int_{0}^{\infty} k_{s}x \frac{A}{x(x+a)} 2dx = k_{s}A \int_{0}^{\infty} \frac{1}{(x+a)^{2}}dx = \frac{k_{s}A}{a}.
$$
\nSetting this equal to N to obtain an estimate for k_{s}
\n
$$
\hat{k}_{s} = \frac{aN}{A}.
$$

14. ^S ^e ^t N* = 1.' and k4 = k, Xe ⁼ xi.*

For the small intensities the modification which skips over some of the genera which do not appear in the sample is again employed. $\frac{1}{5}$
again

15.
$$
\int_{x_1}^{x_1} \hat{k}_s x f(x) dx = \int_{x_1}^{x_1} \hat{k}_s x \frac{A}{x(x+a)^2} dx = \int_{x_1}^{x_1} \frac{\hat{k}_s A}{a^2} \left(\frac{a}{x+a}\right)^2 dx.
$$

16. Set $E_k = \int_{x_1}^{x_1} \frac{\hat{k}_s A}{a^2}$ dx and solve for x_i

$$
x_{i} = x_{\epsilon} - \frac{a^{2}}{k_{s}A} \sum_{j=k_{4}}^{k} E_{j}.
$$

17. If $x_{i} > 0$, accept x_{i} with probability $\left(\frac{a}{x_{i}+a}\right)^{2}$. If x_{i} is
rejected increase k by one, set $x_{i}^{*} = x_{i}$ and return to step #16.
If x_{i} is accepted, increase k by one, set $x_{i+1}^{*} = x_{i}$, increase i by
one and return to step #16.

If $x_i \leq 0$ reject x_i and cease finding intensities.

In finding the number of Species in each genus for ^a particular sample employ the procedure described in Chapter 4.

Using the above prodecure with $A = 37,000$ and $a = 320$ three samples of 4112 genera were taken and the results shown in table 6.2. These results can be compared to the original data in table 6.1 to examine the fit of the model in this case.

Table 6.1

ORTHOPTERA OF WORLD

Journal of Ecology Volume ³² page ¹⁸

Distribution of genera according to number of Species present

also at 31(2),34,35,36,38,41,43,51,54,58,72,75,103,202.

Table 6.2

S IMULATED TEST ¹

Distribution of genera according to number of Species present

also at 32,34,35,36,44(2),49,53,54,55,56(2),57,69,73,79,83,178.

Table 6.2

SIMULATED TEST 2

Distribution of genera according to number of Species present

also at 32,34,35,36,39(2),41,45,49,52,53,74,79,153.

TOTAL GENERA 837

TOTAL SPECIES 4112

SIMULATED TEST 3

Distribution of genera according to number of Species present

also at 33,37,42,46,48,50(2),56,57(2),217,354.

APPENDIX

Using the theory developed in the previous chapters, FORTRAN 60 programs have been developed to perform the indicated operations on the Control Data 3600 Computer.

Program SPECIES ^l finds the maximum likelihood estimates of the parameters of the model using the methods discribed in Chapter 2 Section 1.

Program SPECIES 2 finds the maximum likelihood estimates of the parameters of the model under the special condition $\alpha = 1$ using the methods discribed in Chapter 2 Section 1.

Program SPECIES ³ is ^a simulation program to obtain ^a sample of size N from the model in the case $\alpha + 1$ using the methods developed in Chapter 4 Section 1.

When using the program to obtain ^a sample it was found that about 5000 individuals could be sampled in about ³⁰ seconds on the CDC 3600 computer. Also note that if the sample size is doubled the estimated Simulation time increases only ^a few seconds due to the fact that ^a large percentage of the simulation time is used to obtain the intensities of the Species and the number of new species decreases rapidly with increasing sample size.

Program.SPECIES ⁴ is ^a simulation program to obtain ^a sample of size N from the model in the case $\alpha = 1$ using the procedure described in Chapter 4 Section 2.

This program obtains ^a sample of 15,000 individuals in about ²⁰ seconds on the CDC ³⁶⁰⁰ computer. Note that this procedure is much faster than SPECIES 3. This is explained by the fact that

the simulation procedure is extremely simplified in the case where $\alpha = 1$.

The four above mentioned programs are tabulated in the following pages with a brief explination to the right of the tabulated programs. Although these were not the only programs used in this investigation, they were the ones used to obtain the primary results.

 $\overline{}$

 $\frac{1}{2}$

 79

 $\bar{\beta}$

 $\frac{9}{4}$

is a

 $\begin{array}{c} \begin{array}{c} \text{1.5 } \\ \text{2.5 } \\ \text{3.6 } \\ \text{4.7 } \\ \text{5.7 } \\ \text{6.7 } \\ \text{7.7 } \\ \text{8.7 } \\ \text{9.8 } \\ \text{10.8 } \\ \text{11.9 } \\ \text{12.9 } \\ \text{13.9 } \\ \text{14.9 } \\ \text{15.9 } \\ \text{16.9 } \\ \text{17.9 } \\ \text{18.9 } \\ \text{19.9 }$

STOP AFTER 50 ITERATIONS PRINT NEW ESTIMATES NEW ESTIMATE FOR Q NEW ESTIMATE FOR a SOLV4c==EST(1)*(1))*(50LV4PS1M+SOLV6+x120LV6+(1);+SJ==9VJ0S +50LV2#(SOLV8-PSIM)) SOLVE(2) =-EST(1) +SOLV2-SOLV5/(EXPF(EST(2))-1.0) 100 SOLVE(2)=SOLV1541021/(201)/(2)20145412130LV2++21 139 SOL 20105-9414 JOS + 14 SOL 15 14 SOL 14 SOL 1905-61 WRITE OUTPUT TAPE3,6,(EST(1),1=1,3) 148 IF (SOLVE(3)+ESTA) 149,149,157 IF(ESTA-SOLVE(3)) 158,158,151 SOLVE (3) =- EST (1) + SOLV3+ SUM1 SOLV5=EST(1) * (GAM1 *DATA 151 EST(3)=EST(3)+SOLVE(3) EST(2)=EST(2)+SOLVE(2) 161 IF (M-50) 50.180.180 147 ESTA=(EST(3)-1.0)/2.0 157 ESTA=(2.0-EST(3))/2.0 IF(KJ-1) 120.100.120 $50LVI = -50LVI / EST(1)$ 158 EST(3) =EST(3) +ESTA 149 EST(3)=1.0+ESTA 180.STOP.0001 GOTO 152 150 GOTO 152 152 CONTINUE 6010 156 KJ=1-KJ 160 M=M+1

END

 $\hat{\mathcal{A}}$

 \bar{z}

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

DIMENSION CLASS(2000), INCLS(2000), PSIII(11), RANDOM(72), INCL2(2000)

- 1481 FORMAT(10(15))
- 1482 FORMAT(2X+15)
- 1485 FORMAT(15.3(E15.5))

PAUSE 0001

1200 X=1.0/10.5**2

X*(269897000°04X*(6L8505000°0-X*89010980000°0+)))=(11)115d1021

1-0.00243055555) *** 0.04166666661/10.5

 1203 PNI=11-J

1204 PN1=1.0/(2.0#PN1) #2

10.0772.0.11410011001110.01156.001410.0110.0110.0110.0141.0772.001

IPNI+1.002.00+1+120+0+00000+1-0000.01+1201

86.

CALCULATE $\mathbf{y}(1) = 1, 2, ...$

1206 PSIII(11-J)=PSIII(12-J)-DELTA

1207 PS1111111 - PS111111 - 110,25/506,0+1,0/421,01+0,2540,262,01+0,251

1+1.0/272.01+0.25**8

1210 CALL RANREAD (RANDOM, KZ)

READ INPUT TAPE2, 1485, ISAMP, ALPHA, BETA, 000

INPUT DATA

1296 BETA=BETA*EXPF (-QQ4 (ALPHA-1.0))

1297 ALPHA2=2.0 + + (-ALPHA)

1298 BETALG=LOGF (BETA)

1299 SUM =0.0

1300 1=0

 $\frac{1}{2}$ \mathbf{I}

 1302 $1=1+1$

 $\frac{1}{88}$. $\ddot{\phi}$

ADD EXTRA INDIVIDUALS WHEN NECESSARY J. 1386 CALL TRUNCP (PMEAN, INCLS (LZ), RANDOM, KZ) 1401 IF(CLASS(JQ)-POWER1) 1356,1356,1410 1392 IF(INDIVS-ISAMP) 1393,1430,1415 1400 POWERI=1.0/(1.0/POWERI+POWER) 1396 POWER=2.0*DSAMP*POWER/DINDV 1383 IF(TEST-X) 1384,1386,1386 1407 INDIVE1=INDIV51+INCL5(LZ) 1390 INDIVS=INDIVS+INCLS(LZ) IF(MN) 1405, 1388, 1405 1393 IDSAMP=ISAMP-INDIVS 1391 INCL2(LZ)=INCLS(LZ) IZ7.1=Z7 IGEI OO 68EI 1406 DO 1407 LZ=1.LZ1 INDIVSI=INDIVS IDSAMP=ISNAP 1394 DSAMP=IDSAMP 2VIONI=VONIO 56EI 1384 INCLS(LZ)=0 1385 GOTO 1387 1405 INDIVSI=0 1387 CONTINUE 1388 INDIVS=0 1398 $J2=1-1$ ZC=DC L6E1 $\frac{1}{2}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$.

 $\sim 10^6$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

CALL FIT(MODE, INTP, ALPHA, DLTA, NP, J, PARAM, NPAR, NDLF, NJ, NTOT, ALPHA=LOGF((PNI+1.0)*(1)+0-PAHAM)/(PAHAME(PHAHAME))) BETA=LOGF(PARAM*(PNPAR-PN2)/((1.0-PARAM)*(PN2+1.0))) SUBROUTINE BINOML (NPAR, PARAM, NB, RANDOM, KZ, PSIII) INTP=SGRTF(2.0*PARAMN*PARAM*(1.0-PARAM)) DIMENSION RANDOM (72) .PSIII(11) MODE=(PARAMN+1.0) *PARAM IRANDOM.KZ.PSIII) PN2=MODE-INTP-1 PN1=MODE+1NTP PARAMNENPAR PNPAR=NPAR NTOT=0 NDEF=0 NPAR=0 RETURN $3 = 2$ END

NDEF=0

 $R3=0$

CALL FIT('10DE, INTP, ALPHA, DETA, NB, J, PARAM, NPAR, NOEF, NJ, NTOT,

IRANDOM.KZ.PSIIII

RETURN

e
Exp

SUBROUTINE HYPENL (NTOT, N3, NOEF, NH, RANDOM, KZ, PSIII)

CALCULATE BINOMIAL PARAMETERS FOR FIT SUBROUTINE

 $\overline{}$

 $\frac{1}{96}$.

ACCEPTANCE-REJECTION j \mathbf{r} $\frac{1}{1}$ $\begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{j} \end{array}$ **The Company's Company** $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$ $\begin{array}{c} \end{array}$ \mathbf{i} $\begin{array}{c} \rule{0pt}{2ex} \rule{0pt}{$ 1

CALL LOGPRB(MODE, ELOGPM, J, PARAM, NPAR, NDEF, N3, NTOT, PS111) CALL LOGPRB (N1,5LOGP1, J,PARAM, NPAR, NJEF, N3, NTOT,PSIII) CALL LOSPRB (NZ.ELOGP2.J.PARAM, NPAR.NOEF.NJ.NTOT.PSIII) $TOTI = EXPF (-UI) / (I_0 - EXPF (- ALPHA))$ TOT2=EXPF(-U2)/(1.0-EXPF(-BETA)) DIMENSION RANDOM (72) , PSIII(11) UI=ELOGPM-ELUGPI-FLTKI*ALPHA IF(X-TOT2-FLTN) 201.201.206 U2=ELOGPM-ELUGP2-FLTK2*BETA KLOG1=(ELOGPM-ELOGP1)/ALPHA KLOG2=(ELOGPM-ELOGP2)/BETA 198 CALL UNIFORM(X.RANDOM.KZ) FLTN=N1-N2-KL0G1-KL0G2-2 201 LF(T0T2-X) 202,202,211 TOT=TOT1+TOT2+FLTN N2=MODE-INTP-1 TOT2=TOT2/TOT **FLIN=FLIN/TOT TOT1=TOT1/TOT** NI=MODE+INTP FLTK2=KL0G2 FLTK1=KLOG1 $NZ = NZ + 1$ PN2=N2 PN1=N1

SPECIFIED DISTRIBUTIONS PROCEDURE DESCRIBED IN CHAPTER 3 FOR FINDING RANDOM VARIABLES WITH ACCEPTANCE-REJECTION

 $99.$

 ~ 1

350 CALL PSII (PARAME, PSIFUZ, PSIII) USCALL PSII (PARAINI PSIFUS, PSIII) 546 UZ=Y1/(Y-PARAMI-PARAM2+UI) 354 CALL PSII(Y.PSIFU4.PSIII) 348 CALL PSII(X, PSIFUI, PSIII) 331 IF(NS-N3) 334,334,365 SALL SIMPLOUGRESS 1 343 CALL SIMPLIU2, PROB2) 345 CALL SIMPL (U2, PROB3) 347 CALL SIMPLIUZ.PRSB4) X-SARANA-IMARANA-Y=Y 332 IF (-NS) 333,333,355 342 J2=-Y1/(PARAM2-J1) **S44 U2=-Y1/(PARAM1-U1)** VYINARAMELIJISO JJS PARAMI=PARAMI+YI 331 PARAMI=PARANI-X 343 PARAM2=PARAM2-X 334 PARAMI=NOEF+1 335 PARAM2=N3+1 336 Y=NTOT+2 INVIATION ONE 10-X=14 Scc 337 X=X+0.5 233 $X=NS$

HYPERGEOMETRIC PROBABILITY CALCULATE LOGARITHM OF

 \sim

 $\hat{\beta}$

PROGRAM SPECIES 4

 $\hat{\mathcal{A}}$

LITTER INSIGN RANDOW (72) .PSIII(11)

ALL FOLLOWING SUBBOUTING THE

 $\frac{1}{2}$

 \sim

 $\{p_{i}\}$

 $\mathcal{A}^{\mathcal{A}}$

TOT1=EXPF(-01)/(1.0-EXPF(-ALPHA)) 206 CALL EXPVAR (ALPHA, NS, RANDOM, KZ) TOT2=EXPF(-02)/(1,0-EXPF(-3ETA)) JI=ELOGPM-ELDGP1-FLTKI*ALFHA $IF(X-TOTZ-FLT)$ $107.201.201.200$ UZ=ELOGPM-ELCGPZ-FLTKZ#DETA KLOGI=(ELOGPM-ELOGPI)/ALPHA KLOG2=(ELOGPM-ELOGP2)/BETA 198 CALL UNIFORMIX.RANDOM.KZ) FLTN=N1-K2-K27-T22-T2 201 IF (TOT2-X) 202,202,211 TOT=TOT1+TOT2+FLTN 203 NS=N2+KL062+2+NS 202 NS=(X-TOT2)#TOT ELOGP2=ELCGPM FLIN=FLIN/TOT TOT1=TOT1/TOT TOT2=TOT2/TOT FLTK1=KLOC1 FLTK2=KLCG2 205 6010 220 204 PN=0.0 $PNC=Ni2$ PN1=N1

SZ+100-JV-1Z=SZ 202

 $\ddot{}$

108.

ECB PN=NS

- 209 PN=(PN-PN1)*ALE+A
- ELCGP2-ELCGF1
- **CPS OLOS OFT**
- LIT CALL EXPVAR (USTA MS (RANDOM MA)
- 412 NS#N2+KL001-NS+1
- Z13 PN=NS
- **41mm*(0*1+2d-2Nd)=Nd +17**
- C.2011-2012-02-2020-02-2020-02-2020-02-2020-02-2020-02-2020-02-2020-02-2020-02-20
- 221 CALL EXPVARE (TEST , RANDOW (N.2)
- 222 RAND=TEST-(ELOSP2-PN-ESTPN)
- 523.532.24NO) 224.22.32
- 424 GOTO 198
- $\frac{5}{10}$ N=4N 3
- RETURN
- $\frac{1}{2}$

UNDITIAL LINE CONSTRUCTION OF PRESENTATION CONTROLS

- DIMENSION POILICITY
- IF(J-2) 300+310+330
- 300 $X = N5$
- IF(NS) 365,301,301
- 501 Y=X+0.5
- 302 CALL PSII(Y,PSIFU,PSIII)
- MARAN (3.0+MARANHO.5)/PARAM
- 304 CALL SIMPLIU2, PROB)
	- $\ddot{}$

 $\begin{array}{c}\n\ast \\
\bullet \\
\bullet \\
\bullet\n\end{array}$ IDJIED+PSIED+PSIED+PSIED+PSIANAPARAMAMANIANAPALIANA $\ddot{}$ 316 U3=-(X+0.5-Y*PARAM)/(Y*(1.0-PARAM)) UOS PROBE-PARAM*(PROD-1.0)+PSIFU 314 U2=(X+0.5-Y*PARAM)/(Y*PARAM) ILOGF (Y*PARAM* (I.O-PARAM)) JELISTITUS III CALL PSIIIVI 151 320 CALL PSII(X, PSIFU, PSIII) 330 IF(NS-NOEF) 331,331,365 331 IF (NS-N3) 332, 332, 365 565, 110, 15(NPAR) 311, 311, 365 317 CALL SIMPL(US, PROBI) 332 IF(-NS) 333,533,365 311 IF(-NS) 312,312,505 315 CALL SIMPL (U2, PROB) 334 PARAMI=NOEF+1 335 PARAM2=N3+1 336 Y=NTOT+2 337 X=X+0.5 513 Y=NPAR+1 319 X=X+0.5 RETURN RETURN 321 $X=Y-X$ SN=X ECC 312 $X = N5$

 $\overline{}$

360 PROB=UI*PROdI+PARAM2*PRODC+PARAMI*PROD3+Y*PROD4-PSIFUI-PSIFU2 OCALL PSITCHARAMENTISE 352 CALL FSII(PARAMI, PSIFUS, PUIII) **いんの コクリンニンニングはなくコーロゼスドラインローリー** OALL PSII(X+PSIFUI+PSIII) 354 CALL PSII(Y,PSIFU4,PSIII) S41 CALL SIMPL (U2, PROB1) 343 CALL SIMPLIUL.PROB2) J45 CALL SIMPL (U2, PROB3) OALT SIMPLIULENGAI X-ZUVARA-INARA-Y=Y CCC JO UISARANEIU OUS $10-5MARARARARAR1$ 344 V $227 - Y17$ (PARAMI-01) 356 PARAM2=PARAME+Y1 355 PARAMI=PARAMI+YI J49 PARAMC=PARAML-X JEI PARAMI=PARAMI-X $1-PSTFU3-PSTFUA$ 340 UZ=Y1/U1 10-X=14 SEC 14-4=4 LSC

361 PROB=-PROB

RETURN

01**0.01-=DOPAd cos

 λ

RETURN

CN₃

SUBROUTINE SIMPL (X.PROB)

380 Y=X/(2.0+X)

1 382,352,385 381 IF (ABSF (Y) - 0.1

382 Y2=Y**2

0°59/1*Z1*(0°12+21*(9°21+21*(0°5+21*(0°21)+12+1)1)+20°10

364 RETURN

JáS PROB=X*Y+(1.4X)*(105F(1.0+X)-2.55

RETURN

 $\frac{1}{2}$

SUBROUTINE EXP VARANDONES

OINETO ROTSZUETO

CALL UNIFORMIX.RANDOM.KZ)

 $X = -LOGF(X)$

RETURN

 $\frac{5}{2}$

SUBROUTINE PSII(X, PRCB, PSIII)

DIMENSION PSIII(11)

501 IF(X-11.0) 502.502.504

502 KS=X+1.0

503 PRCB=PSIII(K3)

RETURN

 $504 \times 2 = 1.07 \times 1.22$

 \cdot

SUBROUTINE SMEAR PARADY STRANGE 1-0.02430555551*X2+0.0416666661/X one 1F(KHX/PARAM) JOS, りつう りりつ DOO CALL EXPVAR2(X,RANDOM,KZ) 559 IF(X-PARAM) 560,560,565 D51 PARAM=-LOSE(1.0-PARAM) \cdot DIMENSION RANDOM (72) 560 IF(NB) 561,563,561 558 IF(5) 559,567,567 **E61 REM=(GG+S)/FARAM** S63 REM=REM-REM1 ついい ついせひてんよけていない REMI=IREM 567 CONTINUE 562 IREM=REM 566 GOTO 556 S65 No=NB+1 SASHERAN 055 RETURN RETURN 357 $S = S + X$ $56 - 66$ $\frac{Q}{L}$ Dean Con $\frac{Q}{Z}$ $\ddot{}$

 $\ddot{}$

SUBROUTINE UNIFURNIAANDOM. WRITE OUTPUT TAPE3,589,KZ 592 CALL RANREAD (RANDOM.KZ) 591 IF (KZ-72) 593,593,592 DIMENSION RANDOM (72) DK RSO(LCYC) AUPI(IK) 593 X=RANDOM(KZ) 589 FORMAT (15) 590 KZ=KZ+1 RETURN $\frac{5}{2}$

INIZ(I) $STAZ$ (RANDOM)

IUP4(2K) ENI(0)

RETURN

END
E

 $\frac{1}{2}$

ł,

267

 \mathcal{C}_{\bullet}

BIBLIOGRAPHY

- [1] BIERENS DEHAAN, DAVID Nouvelles Tables D'Intégrales Defines G. E. Stechert & Co. New York 1939.
- [2] CARATHÉODORY, C. Theory of Functions, Volume I, Part Five, Chelsea, New York 1958.
- [3] DAVIS, HAROLD T. Tables of the Higher Mathematical Functions, Volume I, Principia Press Bloomington, Indiana 1933.
- [4] FISHER, R. A., A.S. CORBET and C. B. WILLIAMS The Relation Between the Number of Species and the Number of Individuals in ^a Random Sample of an Animal Population. Journal of Animal Ecology, Volume 12(1943) pp.42-58.

[5] RUBIN, HERMAN

Construction of Random Variables with Specified Distributions, Research Memorandum #88, Department of Statistics, Michigan State University, 1961.

[6] WILLIAMS, C. B.

Some Application of the Logarithmic Series and the Index of Diversity to Ecological Problems. Journal of Ecology, Volume 32(1944) pp.l-44.

