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ABSTRACT

A MODEL FOR THE DISTRIBUTION
OF INDIVIDUALS BY SPECIES
IN AN ENVIRONMENT

by John W. McCloskey

The problem considered in this thesis is that

of developing a model for biological environments
so that, for samples of individuals obtained from
the environment, the number of species and the
number of individuals in the respective species can
be predicted, It is assumed that the number of
individuals in the environment, as well as the num-
ber of species, is countably infinite so that only
in environments where these quantities are very
large will the model be realistic.
In Chapter 1 the model is developed and in

Chapter 2 a procedure developed to obtain maximum

likelihood estimates of the parameters of the model

using a sample of data already gathered from the

Since there are three parameters in

environment.

the model the estimates are obtained from the




~solution of three equations which is
lished by means of an iterative Newton procedure.
As a means of studying the behavior of the model
a simulation procedure was developed in Chapter 4

which would choose a sample from the model for a
. This p ds uses random

given set of p
variables having Binomial, Poisson, Hypergeometric,

Truncated Poisson and Exponential distributions.

Methods were thus developed in Chapter 3 to produce

random variables with these specified distributions

rapidly and with as few input random variables as

possible. The fundamental technique used in obtain-

ing these random variables is the acceptance-rejection
| technique introduced by von Neumann.

Chapter 5 and Chapter 6 are devoted to the
analysis of data that was taken from actual biological
environments. The analysis is accomplished through
procedures developed in the previous chapters and the
Control Data 3600 computer used for the actual calcula-

tions. Several FORTRAN 60 programs were used for these

calculations which are tabulated in the appendix.
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Chapter 1
Section 1: Geieral Discussion of the Mode 1

Let C be tie collection of a1 the individuals of a certain
type. for example butterflies, Present in ap environment . Consider
the partition of the individuals into Species designateq by {51‘52""}
where t e Species are arbitrarily named sl,s »+-+ and suppose the
nuuber of Species present in the environment ig countably infinjte.
This assumption is made because in the environments being considered
the number of Species is very large and in sampling from the L
environuent there is assumeq to be a strictly positive probability

of finding a new Species regardless of the number of Species that

have already been found. Also define a probability P; for each I

©
Species s, syej EHat #5357 Pt =%
i . s}
i=1
Consider now the task of choosing a sample of N individuals

independently from the environment. Let tiese individuals be

I The individuals are chosen according

designateq by 11,12,,.. N

to the restriction

Pfxi is from the species s.]= Py

After the individuals are chosen frou: the environment the

le will contain Say s species for which there are n, species

Witi one individual, n2 species with two individuals and in general

n; Species with i individuals subject to the conditions
J N
Bl = is and z ini=N.
1 :
=1 i=1
The object of this report is to develop a model for natural
environments so tnat the distribution of the numbers s,nl,nz,...,nN

can be Predicted.
£

——— ’




Consider therefore the generalization of the Probabilities
pi where for each Species si in the environment it is assumed there
is an "intensity" xi Proportional to pi' Let g"= .glxi where z jg
defined to be the total intensity of the environmen;. Define an
intensity function f to be a non-negative integrable function on
[0,2) with the Property that (i) for any ¢ > o] gef(x)dx s

©
BRdRE Ry ax'< Ve B (1) ijf(x)dx <+

RThe model can now be st:ted as follows: Given an intensity
function £ for ap environment, for any interval [a,b) with
O<ac<hp < +® the number of species present with intensity x; in
the interval a < x; < b has a Poisson distribution with mean
J‘ £(x)dx and for dis joint intervals the number of Species with
;ntensities in the respective intervals have independent Poisson
distributions. Condition (i) on f is made so that the expected
number of species will be infinite ang (ii) is made so that the
total intensity will be almost surely finite. Let Uy be a random
variable representing the number of individuals observed from
Species By for i = 2 e Suppose UI‘UZ"" to be independent
Poisson random variables with means ksxi’ where k, is a positive
constant and xi the intensity of the respective species. Define
4 sample to be an observation of the random vector U = (UI’UZ"")
and define Ym = (number of Ui = mySfof my=claas 0

The deve lopment which follows in this section is an attempt
to give motivation for the actual development of the model in the
next section. Thus, let X = (xl,xz,..‘) be a set of intensities

obtained frop the process and define z = & X; and the species

—




3.

with intenaity xi will be designateq Species 8.

Then

P[I1 is from species sj] e I e Let S: be
the species of individual I1 and let vl be the intensity of
this species. Choose a second individual I2 randomly from the
environment and examine its species. If it ig different from
S:, let S; be its species and V2 the intensity of this species.
If however I2 is from the Same species as Il continue selecting
individuals independently from the environment until one is
found which has a different species than I1 and let the Species

*
of this individual be 324 Consider now the two random variables

Theorem 1: Suppose that wl and W, are independent and identically
distributed according to a distribution H on (0,27 re

0< E(wl) < 1, then define \ such that E(Wl) = —%T - It then
Eollows that d i(w) = & (1-wy*lgu.

Proof: tLet YI. Lor~i =12 ‘be ‘the proportion of individuals in
the environmen; from the same species as individual I,. The

individuals I, and 1, are chosen independently from the same

environuwent so YI and YI are independent and identically
1

distributed. vy is defined as follows

and ”1 with probability Wl

) (140, with probability (1-w,).
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Let the rth, moment of H be B.. Then for r > o
r. 3 r
be =B00T) =R ) - xel )
1 2
r+l % T+,
=E[Wl + W, (1-w1) ]
Tlny iy B T
r+1
k /41
Thrig tug [kEO GO )“’k]

Solving for )

r
k /T+1
Bepp =u[1- 8 (o ]
+:
r+l 5 ] k k.
—_—
§ % (_1)r+1u
T
From this equation p,r+l is determined by “’0’“1""’”1— unless
r is even and Wy = 1. If however k.=l for r > 0 the distribution
is concentrated at one and all Wy = 1. This distribution with b= 1
for all k indicates that all individuals are from the same species
which violates the assumption that the environment contain an infinite
number of Species.
In order to determine the moments M, an equality must first be
established. Thys

1 1 k
1£ (1-0™ (o -Tgy [ is (.1)“(‘:1) (1M Lax
0 k=0

r+1 g
K /r+1 K Al
= kEO =1y <k> ‘g = (o) Lax

r+l r+l
- _pk (D = ST G TR
R (L) petnu -5 coiCR

T(k+140)

T



r 1

k /r+T A r+1
Z (-1) U RS = i dx sl r+1)1 T\
i (k) r_(_z(kﬂ_m ,E (1) "Tax o (-1)TH () a)

I'(r+2%)

e - (DT L (eenyy )

1
B o= kIP(\+1 by induction, Obviously p_ = —L_ and assume
X Thermo L

= kiICO+1 x
He CktTrh) £OF k = 0,1,2,. . .r.

From the recursion formula for ur—H

S EIT O 5 k (T4l KICQw1)
i r('kim')" L kfo -1 (k) Tty |
=m0 o S SR
r+1 T+l
(G Tﬁﬁ)

TIeT X!l TQ+1) o)

r+l
= l"(k+1+}\) [ 1-% Sim = 0™ T(rom ]
M

LD EL Fir o

T'(r+1+0)
r+1 r+l  (r+1) ! A+1
e [ et T D T —t&ﬁ ]
" Tty e Ty
1+ (-1 rl T(A+1)
T(r+1+\)

Rk F!M-lz
=T

(r+2+0)

et
Consider the r™ moment of the distribution A1t for0<x<1




istribution has the desired moments and since jits moment

ting function exists in a neighborhood of zero
o O VS
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Chapter 1

Section 2 Development of the Model

be a set of intensities obtained from the process described in
the previous section using f as the intensity function. pet
o

g, xi and let Z have density g. Define V1 to be a random
¥

i=1
variable such that BV = x |0 = SR ieE i e define
Y=z -y, |

Lemma 1: 1f £ jg 4 continuous intensity function the joint
density h of v1 and Y can be expressed in the form

vlf(v )
h(vl'y) = vl,\y g(y)
The proof of this result was obtained by Professor Herman Rubin
and is to be published in a paper by him.

Make the substitution z = V) * ¥ so that

vlf(v )
h, (Yape e g(z-v.). Now integrating with respect to
Vl,Z 257 z 1
V1 to obtain the density of the total intensity

z oz vlf(v )
€@ = [, Lov v, = | T g-vav,
0 1 0
)/

Define w = Z—l . Then

By g Gw,2) = "”f(”zi (2oaw)s. wzf (w2) g (z(1-w)) .
Theorem 2: 1f hw Z(w,z) = wzf(wz)g(z(1l-w)) for 0 <w<1and

0<z<o and if hw' (w) é w©(w) and assuming £ and g to be twice
5 =«
~1 kx
differentiable then f(x) = ¢ x le for 0 < x < » and
) A P SRR
(w,2)
Z e hw,Z = ¥z f(uz) g(z(1-w)) _ 00
Proof; hwlz(w) = ‘g(z) G
taking logarithms




‘

8.

log W + log z + log f(wz) + log g(z(1-w))
= log 9(2) + 1og g(z)
Let tl(wz) = log f(wz)
and ¥, (z(1-w)) = 1og 8(z(1-w))
thus
log w + log z + vl(wz) + vz(z(l-w)) = log @(w) + log g(z)

taking derivative with respect to y and then with respect to z |

1 1 ' 4

W IO -y o) - 2@
V] (Wz) + wz ¥i'(wz) - wz' (z(1-w)) - z(1-w) ¥y (2(1-w)) = 0.
Thus

vz ¥y (wz) + V] (wz) = z(1-w) vy (z2(1-w)) + ¥, (2(1-w))

Since the above equation is valid for all values of z and w
the following must be true

wz WT (wz) + Wi (wz) =k

and z(1-w) W'Z' (z(1l-w) + WZ' (z(1-w)) = k.
Solving then these two differential equations
U‘V'l' (u) +‘V1' (u) =k
UVl (W o= ku+H
H
¥y (W) = k+ -
Wl (u) =ku+Hlogu+M

f(u) = evl(u) = c uH eku

Similarly
'
g(v) = e"2<") =c!' vH ekv

Finding now the particular solution




R ———S

(W) = hwlg = Wz _f(wz z(1l-w

8(z)
H' H' kz(l-w)
mve ol e o gt leiw)
Hzthe et

'
= c yitl z“"’l(l-w)H

Vhich fmplies that H = -1 yielding the final result £(u)=c uy~leku
From the above analysis and in an effort to make the model as

general as possible the form of the function f was decided to be
-cx

X
0bv1ously A > 0 and due to the restrictions of the model ¢ >0
31ncef f(x)dx > 0 as N » » because the total intensity of the
large spec1es is almost surely finite. Also o > 1 because if o < ]

A -0
< ® controdicting the

thenf f(x)dx = dx < £ — dx =

1
&
restrictxon that the expected number of small species present be
infinite.

From the development in Chapter 2 it can easily be observed

1o
that the transformation x — Ax, ¢ = c/, k ks /A, A= AN

l-o
Preserves the model so that only @, k /(k +c) and A/(k +c) are

identifiable. For this reason only the cases ¢ = 0 and ¢ = 1 need

be constdered The general form of the function f was taken to be

£(x) = ae = for the work which immediately follows while in Chapter 6
&

8 generalized form of the case c = 0 is considered.




Soétﬁon !: A Sepcial Case of the Mode 1

Consider now a special case of the model developed in the
-x
Previous section where f(x) = Ae_

Knowing g(z) has the form
¥ el
g(z) = c'z = S and using the prevxously established equation for g(z),
£(v)
¥
g(2) -J’hv ,2(yi2dav, = § T stevpay, .
Z v Ae i § B vy
rT et (z-vl) e dvl
5 z -2 _H'+1
SPAGteT H' = Aclel’s
B e

This equation implies §' = A - 1 and since
-8

o8
]

e L
= T(a), then c' = TR
el AL e o
Therefore g(=2) = m) z Ny
Eor: == 1.24 % . defife Vj to be a random variable such that
P(V.=Xx, | 0 = 3 T for all i except
) 4 4
z- T V1
i=1
those i's for which xi = Vk for k = Ly 2ava =1
Let
Vs
L e
Z-ZV,
=17

z
x£(x)
By repeated application of the formula g(z) =£ g(z-x)dx

2

which was previously established z- T v,

z-v i
z v f(v,) L Gy
sl 0L AN AN ——— g(z- T v)dv,..dv.
g(z) £’__ G 5 £ = P AT 1




LEs
i-1
z z-v, 'fflv'
=f J] ViEGY Ve,
0 z (z-vl) 1
(z-Zv)
=1

So the joint density for vl,vz,...,vi,z where v0 = 0 becomes

i v.f(v]_) ‘0
NGy e ey Vi, s B) & J g(z- L v).
L2 i S 2 J
j=1 i-1 j=1

h, (v
VI’VZ""’vi'Z

Theorem 3: In ap environment where f(x) = A:— and

g(z) = Lz“\_le'z

Yoy and where Vi, vli,Z and the joint density

h‘/'I,Vz,.”,Vi,Z are defined as above, ”i is distributed

according to the distribution

* £
R N B B B
i i = =
Proof: For i 2 3 the joint density
el i
h, VoV, s vl Vs ) I v.f(v,) ]g(z-Ev.)
Vl,VZ,...,Vi,Z a2 i L j=1 1J-IJ j=1 3

2
(rzn)




9 ...

¥
Make the substitution wi = ﬁ so that

Z-T vV,
e

s i- i-1
i I:]T —— T gyl (6 By s et
T'(a) ju } o SR 3 :
( i)

Integrating this density then
i-2
z-Z v,
z =113
W, =] ... [n v
h‘n'i,Z - ° ° N2

10V ea Vs 1Y;,2

7 2 1'""vi-l’"i‘z)dvi-l"dvl

Tg-Al oA A-1 -z
= o * Q- )5 e7%,

®
*
Integrating now with respect to z, h (w’._) = ‘ghwi’z(wi,z)dz

A (l—wi)A_le-le_z

A-1 4
= = = 2
N7y dz = A(1 wi) - For i =1,2, the

n
o8

Same procedure is followed with simplification in the integration.




Chapter 2
Section 1: Maximum Likelihood Estimates of Parameters

The general form of the intensity function has been established
to be f(x) = ——%;— where A, o are parameters of the function. In
any sample thatxis taken from the model the number of individuals
in each species is assumed to be Poisson with mean Proportional
to the intensity of the species; that is the number of individuals
in the sample from the 1t species is Poisson with mean k x where
k is defined to be the intensity of the sample. This parameter
ks is also to be estimated.

Suppose now that data is available from this model and it is
desired to estimate the above parameter. Let b be the number of
Species with m individuals in the sample, I the number of individuals
and s the number of species. The following trivial equations are

©

to hold 2‘, a8 and Zm 7 58
m=1 m=1

In accordance with the above notation the probability that
there will be m 1nd1v1duals in the sample from a species with
(kg x) -k X . g
intensity x is and the expected number of species in

the sample with m individuals is

m m
S (kgx) _k.x e e
et )y are [ Ao = e % ax
m! m!

0
Ak kocim R,
& s C(m-otl) _ pom D(m-grtl)

s I'(m-o1 }fﬁ) = = BN =
s

S 1
(ks+l)m-°'+l <ks+) -

by making the substitution 1 = (k T )and B=

B

Logr.
(k5+1)
135
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14,

Since the total number of Species present in the sample has a
Poisson distribution, the Yp @Te independent and have a Poisson

distribution with mean B T]m %).

The density thus becomes

i

f(yl,yz,yy..-;B,n,a) = e "M m ywhere Yy 18 as previously
m=1 y !
m

defined and Am = BT]m H"‘n%ll) the expected number of species in
the sample with m individuals.
The logarithm of the density as a function of the three

Parameters ignoring constants becomes

5 5
LBa,M) = 5 - 5" H“‘m%"”l *+ uE1 Vo[ log Btm log Tlog I'(m-cet1)-1logm!].

Now simplifying the first term

© © m
mgl i Bnm%l 2 gl y Bm‘ f 7 L de
= ! = 9

) 3 e
T - B M x e ¥dx = -B£ x% e (e - 1)dx
m=

—

From Bierens DeHaan [1] table #90 equation #6
®

J‘(e“"‘-e‘"‘)di‘FH - % T(1-p) (+P-qP) for p < 1.
0

x
©
Let p=o -1, Then-Bé\(e-(l-’n)x-ex)xadx =

B g T -0 = ey [apel L.
Using the above and simplifying the second term, the likelihood
function thus becomes L(B,o,M) = 3 d
-nr(m)[(l-n)“"q] * s log B+ I log T Ty logl(ur+1)-3, v, log m!
It was found that in taking the derivative of the above function

with respect to the parameter 1) the resulting equation was very unstable

— _—




for N near one and @ near one. To eleviate this difficulty the
substitution (1-M) = 79 yag made. The likelihood function
L(B,,q) thus becomes
L(B,@,q) = - B[(1-) [e'q“"l).l] + s log B +Ilog (1-e79)

© ®
+ m§1 Y log T(m-at1) - m§1ym log m!.

Taking the derivatives with respect to these parameters

Ly = g% = - I'(1«) [e-qeu-l)_l] &

e 3—2 =-Bl(la) (1a) eT9@D , e

1

=-BTQ2a) 9@ |
el

and using the notation
V(x) = —los I'(x) = m % r'(X)

so that

3% T =T(x) y(x)
then

3L -q(@-1) _
L= 3 = BT(1<) §(1-0) [e 1]

+ qBM(1<) "9~ _ g Yy ¥ (mect1)
-1

In finding a solution for the equations L = Lq = LD =0a

Newton approximation in three variables was first attempted but
abandoned since the matrix involved in using this method is almost

singular causing instability in the procedure.
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Therefore the following modified Newto:

M method in two variables
was used:

1. Initial estimates 51 and ?11 are given

2. Solve equation LB =0 for B to get initial estimate il

3. Step two makes LB(ﬁl,al,&l) = 0 so that

Cona g s - 1) (2
Lqq s

LaB),5,,8)) N 1g

can be solved for Aq as follows

A -LBBL

L e Ly
BB"qq "qB"Bq

4G, =§ + g
5. Solve Ly = 0 using estimates &1 and E{Z to obtain %2
6. As in step 3 find Ax by the equation

“Lely
=TT
BB oo "oB By

. & =4
7 2 =¥ + M
8. Continue iterating until desired accuracy is reached.

This procedure gives likelihood estimates &, B and q

from which can be calculated the other two parameters




S

17%

The second derivatives of the likelihood function necessary

for the above method are as follows:

ot e |
Lsp = 3558 7

= F -q(a-1)
Lgg = Lgp = T(2) e

Uy = Top = -T(1-0) y(1<) [1-e79@D] | irg 4y omate-1)

q
L . =B(@-1) [(2-a) ¢"9@-1) _ ; e?
qq (eq 555)

Iz
Ly = B(1-) ¥%(1-0) [1-e79@-1);

+ BL(1<) ' (1-0) [1-e79@ 1)

£ -q(@-1
-2 gL (1-a) ¥ (1) ™9 | 25y 4y ma@-1)

™8

+ A V' (m-+1)

0
o

For the calculation of ¥(x) and §'(x) Stirling's asymptotic
series is used for log I'(x+l). Thus

log I'(x+1) =(x + %) logx -x+% log 2m

1

L L Rl
*T2x - 360x° * TZ60xS ° Tesox!
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tes I - i | STy 1 IS
V(x+1) axlog (x+1)=log x *5; B2+ T3oxt - 75756 + T8 e

' e pale g1 2 1
¥i(xt)= RrE3 st 9

For x 2 10 ¥(x) and ¥'(x) are calculated from the above

equations. However for small x the recursion formula

T(xtl) = '(x) is used.

log I'(x+1) = log x + log I'(x)
Differentiating both sides
1

V(xtl) = T ¥
N N A

In the calculation of the Newton process it is often necessary

-q(@-1

to evaluate the expression T'(1-a) [e a( )-1]. It is often the case
that @ is near one which requires that this expression be evaluated

with care to avoid the loss of several significant digits, For this

reason make the following substitution:

1-e"9(@-1)

) [e71071] 2o Lo

z
=T(2-a) ™42 1““_52 + q where z =a - 1,

T




9.
Now let
tanh w :}
S Tl e .
3+ W 2
5+ w

7+ w

9+

expressed as a continued fraction and

945 + 105w + w2 2
945 + 420w + 15w

expressed as a ratio of polynomials reduced from the first five

terms of the continued fraction. Using this and hyperbolic identies

-9z 1-tanh L& 1-ndE
i i 2 4
Z
1+ tann 42 1+ b
and
2 tanh & -"—2‘15
sinh 325 = —§Z
L -tann? % )
Using all of these equations then
-gz sinh L
E = 2
T(l-a) [79@-D)_jg =T@2) e C B st )

2 az
(Lh—‘};) L

=TI'2-) 5
) [1-¢hgz?

= [(2-0)
1

- TR
(14282 72
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The properties of the model require that the Parameter ¢ be
8reater than or at least equal to one. Since the System is fairly
unstable, it was found in actual calculation that the iterative
Newton procedure described Previously would sometimes give an
estimate of o less than one. To avoid this difficulty a restriction

was placed on the Procedure as follows: Given that &i =1+ éi then

& i 8
s _{ai+11fa1+121+7i
5 B
l+ﬁ 1fai+1<1+2
2 2

If indeed o = 1 it would be hoped that &i = 1 from above but
this is not the case since the method blows up; that is for & less
than about 1.005 (depending on the data) the error in calculating
Ay is larger than & itself which reduces the iteration to nonsense.
What results then is that the estimate is cut half way to one each
time until which time the error in Ay causes a large positive Jjump.
The estimate again approaches one and the pProcess repeated until
the computer is stopped by a programmed check which halts the Newton
Process after 50 iterations if no solution is reached. If this
happens o is set equal to one in the original likelihood equation
and another method used to estimate the other parameters.

Consider therefore the likelihood function
L(B,1,M) = mgl = Bn“ﬂnﬁl + élym [log B + m log M + logl'(m)-log m!].

- B8

m @
1]—+ Z.y [log B+ m log 1 + log I'(m)- log m!]
m=l m m=1"m

Using the expansion

B



v *

2t

I a102:" 1 v1 3
st 705 gy T CE) i forx iy

set N = Eil

XN = x-1
x(1-M) =1

1
X=M ro<N<1itheni<x<ew

thus
9 1
m
20 =1logx-= log (T:ﬁ) = - log (1-M). Using this and
m=l m

again making the substitution (1-M) = 79

®
L(B,1,q) = -Bq + % Yo [log B+ m 1og(1-e9) 4 log I'(m) - log m!].
m=1

Taking the derivatives with respect to these parameters

s
LB -q + mElym/ll L 08

1
W B, e ed-1

B
In finding a solution LB = Lq = 0 make the substitution B = E into

the second equation to get

which reduces to ed - 1 - é q=0.

To find a solution to this equation consider the following

iterative procedure. Given an initial estimate 9% and where L™

— B
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is the root of the equation

X
0 90+ lm =49 +Fxx) where x, a, b are to be determined
as follows:

I it
Let).=;andAo-e -I-Aqo

X

q B(x)

q
T R R il 230 it SEP 2.8

Then

9, _x x
B(x) [e "e B(x) - 1 - Aqy - A B)] = o.
Expanding this equation and calling it Q(x) then
q 2 3 4
Or X X X X
Q(x) = B(x)e ,1+m+m+ X m+....]
=B(x) - AB(x)qo- Ax

- 9% 9y 2 x> <*
=B Aj+ (e -Mx+e [—ZB(X) + B2 * I -l

1 k
Now expand the expressions Bk(x) 1+ax+bx

into polynomials

1 k 2 3
“7) = a + a x+ak2x +ak3x L S
1+ax+bx’ kO kL

After finding these polynomials for k = 1,2,3 the expansion

then becomes Q(x) =

q q 2 2
‘B(X)A*o+ a0 A s 220 E%XZ(I -ax+ (a° - b)x" + ...)

k



L e —

23,

+'};x3 (1-2ax + ...) +%'xl' Lk vindd ey

q, q
* q 0 ]
+B(x) A + (e °-x)x+eTx2+e x3[%.zla]

Choose a and b such that the coefficient of x3 and x“ are zero.

Thus
Ld 1 1
6"22" 0 = a-= 3
and
1 a 1 2
-3tz -0 -0
ey S W e L
24" "9 36
therefore

q
i 1.-1,2 O Myx +
Q(x) = Ay (1+3x 365 ) + (e )x
* q *
* 9 0 0, 2
=AO+(eO—A+7)x+(eT-?é)x +agx + .

As an approximation to Q(x) = 0 set the equation
* q *
) Y
* 9 0. e 0y S2M8
- —_ —_— - =)X =
AO + (e A+ 3)x % 3 36

and solve for x as follows: For the general quadratic

ax2+ﬂx+5=o

B
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x = Bt\8% w08 (5. \[pZs0s 26
gas2is L
2 3 —

Since B is positive in the neighborhood of 9, the positive
root is taken to obtain the root of the quadratic nearer zero and
the last form is used in calculating x to avoid round off. The
procedure for finding the root of the equation e9 . 1 . Ag =0
is as follows:

1. Make initial estimate 9y = log(1H log A)

* q
2. Evaluate A7 =e .1 . )q
1 1
3. Solve the equation, q e
ign sofly i 142
Ai+(e -k+-3—)x+(T -—a)x = 0 for x.
4o qpyy =gt —E
i+1 i 1 1 36xZ

5. Return to step 2 until desired accuracy is reached.

The method was designed for rapid convergence and in fact it
was found in actual compitation that five digit accuracy was
obtained in only two iterationms.

Using a as found from the above procedure and from the original
equations remembering that A = B for the case in question where

@ =1 the estimates obtained are

i
T3
and R
£ha 2% 3 —-.—l'e-q = ea-l
s~ 1-M o
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Chapter 3 Generating Random Variables for the Simulation
Section 1: Acceptance Rejection Procedures

In the process of simulating the established model on the
high speed computer it is necessary to generate random variables
with certain specified distributions. Since the actual computa-
tion is to be done on the computer and the Procedures used many
thousands of times it is necessary they be effecient and use the
minimum of input random variables. With these goals in mind it
was decided that for discrete random variables an acceptance
rejection procedure would be used. This method of generating
random variables with specified distributions is discussed by

Rubin [5] and will be used in this problem in the following way:

P(ni)

241 By Peaa Biuailog
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Suppose a random variable with the distribution P(n ) is
desired. Construct a frequency distribution Q(ni) which dominates
P(ni). Obtain an observation from the distribution Q(n ) and

accept this observation x with probability A3p) o DR x1 is
[IEN)

rejected obtain a second observation from Q(“i) and repeat the
Process until an observation is accepted. If the first accepted
observation is designated as x then it has distribution P(n 4 3

This procedure is to be used for Binomial, Poisson and
Hypergeometric distributions and in these cases the distribution
Q(ni) will take the form of a uniform over the mode and discrete
exponential over each tail with parameter 01I over the right tail
and parameter &, over the left tail. The parameters @, and o,
are determined by taking the ratio of two consecutive probabilities
of the distribution P(ni) and it was determined that the most
efficient place to calculate o and @, was about /7 standard
deviations on either side of the mode of the distributions being
considered.

Thus let M = mode of distribution P(ni)

Let N =u+[/Z op]

and N2=M-[/Eopj-1

then determining @

QB ctas QWD 4n 101 LB ()
Q) Qe D
P(N )
so that o, = log
L ¢ BN, +1))

T
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and similarly for @,
(N,+1) Q(N,+1) &2 B(N,H)
Q(N) T oA e 2= - W,y
so that @) = log ( ::: ;1) ).

The first term of the right exponential is Nl-k where

[ log P(M) - log P(Nl)]
—_— =

@ @ al(k-i)
120 QN -k+i) = i§0 P(N)) e
ke
ka & -ia. 1
EER)) df Y m ol B(N)e
1 i=0 g
l-e 1
also the last term of the left exponential is

N2 + 1 + j where
log P(M) - log P(N2+1)

P xS ek D
%
and
@ ® @, (j-1)
iZp AN, + 145 -14) = iZp P(N,+1) e
g 3 ja.
ja, ® -ia, 2
SP(N41) e 2 g 2. P(N+De
2 i=0 A P
l-e 2

Q(i) being thus defined in the tails let

Q(i) = P(M) for N, +1+j<i<N1-k

2
so that
2] P(N )em1
T - FipDe QO (N -Ny-k-j-2) + ZT0°
1= h jeaidil
1 - e

S
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For ease of computation make the substitutions
u = log P(M) - log P(Nl) - Imfl
v = log P(M) - log P(Nz+1)-jcr2

which reduces the sum to

& pu -
1<% QD) = PQM) [1.;"’2 + (NN, k-g-2) + ! e’°‘1]'

®

By letting T =;-Zs Q) /P(M) *

o 3
e_ e
=[ BERE GG =N, - k- 5 -2)+ 1-e'”1]

and normalizing this quantity a random variable with the dis-
tribution P(i) can be found as follows:

1) Let U1 be a uniform random variable
the observation is to be taken from

T(1-e"*2)
the left tail. Thus choose NO =[

2) £y <

1 ] .
- a, log U11 where U11 is a
uniform random variable and the brackets indicates the greatest

integer contained in the bracketed quantity. The observation

thus becomes N = N2 + 1+ j- NU' Then accept N with probability

Q(N) & el
<) e‘:a SRS 'eﬁ’l the observation is to
T(l-e 2) T(l-e 1)

be taken from the uniform range as follows

M =N, -k - j-2)

1

and let N, = [Rr]

e
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so that the observation N is

Ne=ly+ 3+24 N

and N is accepted with probability g%g} B
=-u

4) If Ul Sipraie the observation is taken from the
T(1-e™1)

right tail using the same procedure as in step 2. That is choose
NO = [- illog UIZJ where U12 is again uniform only this time

let the observation be

N = NI -k+ NO and accept N with probability gé%)z .

5) If at step 2,3 or 4,N is rejected obtain a new uniform
U2 and repeat the process until an observation N is accepted. N
will then be distributed according to the distribution P(n‘).

In steps 2,3,4 the acceptance rejection part of the procedure
is handled in comparison with an exponential random variable Eo in
the following way: Accept N if

Eq 2 - log gl = log Q) - log P(N).

Where in the left tail
log Q(N) = log PN, + 1) + (j - N @,
in the right tail
log Q(N) = log PON)) + (k - Np) @)
and in the uniform range
log Q(N) = log P(M).
This method of comparison is used so it is not necessary to
calculate Q(M), Q(N2 + 1) and Q(Nl) using instead already calculated

Quantities.

- -
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Section 2: Fitting Discrete Distributions with Large Means

In the problem at hand the Poisson, Binomial and Hypergeo-
metric distributions are used. It is therefore necessary to
determine the distribution Q(ni) as developed in the previous
section for these cases but first it will be necessary to develop
some machinery for the calculation of logx ! which is necessary
to evaluate in all three of the above mentioned distributions
when calculating log P(ni).

The first equation used is Stirling's asymptotic approxima-
tion to n!. From this

log n! = (n + %) logn -n+ % log 2T + ¢(n)

where @(n) = ;_Zn - 3_é0n3+ #60“5 'ﬁ7i
Consider now the product

288 T o) T(nty) = n! 1:3-5...(2n-3) (2n-1) /—E 2?0
2

=V/T T'(2n+1).
Taking the logarithm of both sides

% log M+ log I'(2n+1) = 2n log 2 + log I'(nt+%) + log n!
and using the more general form of Stirling's equation

log I'(x+1) = (x+%) logx - x + % log 2T + @(x)

®

where @(x) = m§0 c, X
Thus

% log M + log '(2n+1) = 4log 7 + log '(2n+2) - log (2m+1)

i -m
=% log ™+ (2n+%) log(2m+1) - (2n+1) + & log 2m +.Z0 Cu2n )™

Also % log m + log I'(2n+1) =
= 2n log 2 + log I'(n+3/2) - log (n+¥) + log nlm

= 1.
=2n log 2 + n log (nty) - (n+h) + % log 2m +m§00m(m'§) +log n

B
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)

Collecting terms then and combining these two equations
log n! = Xlogm + (2nt+%) log(2nt1) - (2n+%) log 2 + % log 2

© o C
-0 log(ety) - (nhy) - e ()™ 4 g B (sm
m=0 m m=0 oM

= ¥log 27 + (n+h) log(mth) - (n+h) - Y(nt)
where
©
Yorh) =2, ¢ ()™ 127,

Note that this function ¥ is not the logarithmic derivative
of the gamma function used in Chapter 2.

Since the original equation for log n! was an asymptotic
approximation, log n! and therefore ¥(nt%) cannot be calculated
in this way for small n. To find ¥(m+%) for n = 0,1,...10
calculate ¥(11 + %) = ¥(11.5) from the already developed formula
and use a backwards recursion formula which is now to be derived.

log nl = %log 2 + (nt}) log (mt%) - (n+k) - ¥(ntk)

= ¥log 2T+ (n+}) log (I+ =) + (nt}) log m - (n+d)
- Y(n+y)
also

log n! = log n+ log (n-1)!

= log n+ % log 27 + (n-k) log (1-) + (n-%) log n-(n-k)

Y (n-y).
Combining these equations
Y(ek) = Y(or) + 1+ (n-3) Log(l- 1) - (obh) log (1+ L)
=Y F 1+ o) [ - gy -3 b -tk i s -
RGN R PR S SO T R P ek
1
il +22.2-13n2 z 24.i~5n4 s 26-;.7-“6 T P e

T -
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The first seven terms of this expansion are used for n = 1,
2,...,10 but in calculating ¥(3) an additional four terms are used.
Consider now a careful calculation of the expression
(1+x) log(1#+x)-x which will be useful in calculating logP(n ). Make

the substitution l+x = _X so that

x=Ex and y =

—
l-y 2+x

and under the assumption that x > -1 it follows that |y| < 1
Thus (1+x) log(1l+x) -x liX log<m> -J—
The evaluation of this expression will be brcken into two cases
First if 5 < |y| < 1 then
(14x) log(I+x) -x = (1+x) log(l+x) -(2—) 2+ 2x - x)
= xy + (I+x) [log(l+x) - 2y].
Secondly if |y| < % use the expansion
logC——l)— 2y+—y + §y5+
Thus
(1+x) log(l+x) -x

2537 1255 2
(b0 B

2
2:9
SRRV T2y e S oaky salal
Ty ibiazy L 3% iy syl sy ]
2 QU259
= xy + (l+x) [Zyj + —-y5 +3y' + Sy + L]
& 7 9

With these equations consider now the calculation of Q(“i)
for desired distributions.
Let A be the parameter of the Poisson

1) Poisson Distribution:

distribution.

e
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Then obviously M = D\]
N, =M+ [V2X)
N, =M-[VA] -1
where in each case the bracket indicates the greatest integer

contained in the bracket.

Also
Q) e A P(N)) ¢ N+ 1
QN +1) . P(N +1) A

so that @ = 1og(N1+l) - log:A’,

Similarly
Q(N,+1) h, eaz g P(N,+1) =
Q(Nz) B(N,) N +1
so that @) = log A - log (N2+1)
; AR b
and finally P(n) = = ¢ for m/=t071 203045 e

n!

50 1logP(n) = -A + n log A - log n!

=-A+nlogh - (k) log (ntk) + (nth) - % log 2m + Y(nt)).

Make the substitution n = A + KB. Then

log P(n) = -A + (A+p+d) logh - O+pty) log(M+ity) - (tprk)
+ % log2m - Y(Mp+d) - % log A

= ML+ BE ) goefy 4 BHE AEED -y logamh + YOuuey)

= U1+ 2 10 14 B BE L.y togamh + YOupy).

2) Binomial Distribution: Let p,n be the parameters of the

Binomial distribution
then M = [(n+1)p]
N= M + [/2npq]
Ny= M - [/Znpq] - 1

B
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N +1 a n-N
andasbeforee1=1—kﬁande2= —2 P

n-N1 p N2+1 1-p

N +1 n-N
= — l-p - 2 1-
so al log n'N]_ + log > and @, log N+l log —pp-
2
n! k n-k

and finally P(k) = m! p (1l-p) for k = o,1,...,n.

log P(k) = log n! + k log p + (n-k) log(1-p)
-log k! - log(n-k)! .
Using the derived formula for log x! then and the identity
log n! = log(nt1)! - log(nt+1)
log P(k) = (n+%) log(n+l) - (1) + & log 2m + @(nt1)
- [(et%) log(kty)- (kth) + % log2m-¥(kery)]
- [(n-k+%) log(n-k+y) - (n-k+%) + ¥log 2 - ¥(n-kt+¥)]
+ k log p + (n-k) log(l-p).
Make the substitution k + % = (n+1)ptn into the above equation,.
log P(k) = (n+%) log(m+1) - [(n+1)p+n] log((m1)pti)
- [(1)q-n] 1log((n+1)q-p) + [(n+1)p+n] log p
+ [(n+1)q-n] log q - & log 2 + o(m+1) + Y(kt}) + Y(n-ktk)
- % logp-%loggq

= - [ Dpra] logl1 + =55=T - [(m+1)p+u] log(nt1)p

- [(n+1)q-n] 10g[1 - (ggfjal - [(n+1)q-n] log(nt+l)q

+ [(m1)q-n] log q + [(n+1)ptn] log p + (n+1) log(mt+1)

= % log (m+1) 2mpq + q(ntl) + Y(ktk) + Y(n-kty)

B
= - (nt+1) p{[l + ——L(n-i-l)p] log(l + (n.l:l)p) -(n+1)p}
B__ —B
- (n+1l)q {[1 - (—m_kl—qu] log(1l - (n-!-l)q) - C (nt+1)q >}

- % log(m1)2mpq + @(ntl) + ¥Y(ktk) + Y(n-ktl) .
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3) Hypergeometric Distribution: Let D,N,n be the parameters

of the distribution

then [ N + 2 ]
C M nD(N -D) (N-n 2]

N (N-1)

-M-[E‘KE'_DL(M]

N"(N-1)

also

o (Nf+1)(N-D-n+N1+1) o (D-N )(n N )

2 _
(D-Nl) (n-Nl) T (N +1)(N D N +1)

and e

Consider now the probability

@ @:D D! (N-D) ! n!(N-n)!

P(x) = =
CD (D-x) Ix! (n-x)!(n-D-ntx)! N!

C(N,n,D) C o1 5
(D'X)' x! (n-x)! (N-D-n¥x) ! for x 0,1,...,D.

Expand the factorials using the established formula and

make the substitution

y=x+% - M, where M, = (n;{+ 2+1

Thus
log x! = (x+%) log(x+s) - (x+%) + % log2m - Y ()

= (Mo+y) 10g(M0+y) - (M0+y) + % log2m - Y(Md+y)

= MJ:(H ﬁ—) log(1+ ﬁv—o-) - )’% ] + y log MO - MO + Mylog MO

0
+ % log2m - Y(M0+y)

log(n-x)! = (n-x+%) log(n-xt+%) + % log2m - Y(n-xt%)

(n+1-M0-y) 10g(n+1-M0-y) - (n+1-Mo-y) + % log2m - Y(n+1-M0-y)
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T (1) [“-nrﬁu—o) tosl - TR nﬁ-yno—] T Y log(ntl-Hy)

+ (n+1-MO) 1og(n+1-Mo) - (n+1-Mo) + % logom - ‘lf(n+1-M0-y).
Similarly as above
1D-;=D+_[__y__ _y_]
°8(D-x)1 = (D+H1-Mp) | (1 - 5= ) 10501 ) " o

0 0 0
-y log(D-i-l-Mo) + (D+1-M0) log(Dl-l-Mo) - (D+1-MO)
+ % log2m - Y(D+1-Mo-y)

and finally

log(N-D-n+x) ! = (N-D-n+M) [(1 + m) log(1 + ﬁt{m)
0 0

N-D-n+M0 + y log(N-D n+M0)

+ (N-D-ntM ) Log(N-D-n¥M ) - (N-D-n+M )

+ % log2m - Y(N-D-n+M0+y).

Combining these equations

*
logP(x) = C (N,n,D) - M| (I+ L) log(l+ &) - L
o8t (x (N,n o[ M M MO]

y y -y
(m+1-My) [(1 - n+1-Mo) log(1 - n+1-M0) - 1M

y -y
(D”'Mo) [(1 N D+1-MO) log(1 - DJ-{-MO) T DF1-M

0

y . ]

M (N-D-ntM))
vy lo 0 0 ]
(n+1-M0)(D+1-M0)

+ Y(Mty) + Y(n1-M-y) + Y(D+1-M-y) + ¥(N-D-n+M ty).

M, (N-D-mkM )

: = 1 which eliminates this
A check will show that (n+1-Mo)(D+1-M

o)

term from consideration.
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Also for use in these acceptance rejection procedures the
*
constant term C (N,n,D) may be neglected since the procedure uses
only the ratios of the probabilities of the respective points

being considered.
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Section 3: Procedures for Discrete Distributions with Small Means.
The procedures in the previous section generate the desired

random variable using a small number of uniform random variables

but at the expense of considerable numerical calculations. When

the mean of the distributions under consideration is small, proce-

dures exist which use about the same number of uniform random

variables but which are much less involved. Such procedures used

in the simulation will now be considered.

1) Poisson: Let A be the mean of the Poisson distribution. Let

EI’EZ’E3"" be independent exponential random variables which

are obtained by the equation E, = -log Ui where Ui are independent

i
uniform random variables. Let J be the integer such that
J-1 J
L E,.<A=s I Ei

=1 * i=1

J
Then J-1 has a Poisson distribution with mean A and i§1 Ei- A

is independent exponential. This result can be shown by directly

integrating the joint demsity of the Ei'

2) Truncated Poisson: This distribution is needed only in the

small mean case and its use will be shown later. Let A be the

mean of the distribution and as before let EI’EZ’E3"" be

exponential random variables.

Let q be defined as the integer such that
qr < E; < (D).

Let J be the integer such that
J-1 J
z Ei < (¢+1)A < I Ei'
i=1 i=1
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Then J-1 has a truncated Poisson distribution with mean A
J

and EEi- (¢+1)A is independent exponential. This result can
i=1
also be shown by directly integrating the joint density of the Ei'

3) Binomial: Let N,p be the parameters of the Binomial distribution.
Define @ = -log (1-p) and let g = No. Divide the interval
(0,Nx] into the N intervals Ii = ((i-1)a,ia].
Let EI’EZ’E3"" be independent exponential random variables.
Consider the points

i
x, = jEI Ej for i = 1,2,3,...,k-1
where k is defined to be the first integer such that
k
= X E, > N.
T EE

Let NB = Number of intervals Ii which contain a point X, -
Then NB has a Binomial distribution with parameters N and p.
This can be shown directly by integrating the joint density of

the E ..
J

4) Hypergeometric: Let N,D and n be the parameters of the

distribution. Then

D\ /N-D (N-D) !
P(x) = QQ-Q = (2) (Nr-xl
n

N) n)IN!  (N-D-n+x)!(n-x)!

* N [nl(N-D-n) ! 1-p™)'
e @(Tg?) e ETeey C—P-g_)]

" (N-D-n) I(N-n) IN1

n
%* * N-D-nt+1
P N-D-nt1

* .
Let N,vB(D;p ) and accept N, with probability
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n!(N-D-n)! N- D-n+1
(N-D-n#N ) | (n-N,)! ( >

If N1 is rejected let N, B(D,p*) and repeat the
process. Let NH be the first accepted Ni' Then NH has a Hyper-
geometric distribution with parameters N,D,n. This procedure is
used for small mean Hypergeometric and it is to be noted that
for the case where x = 0,1 the acceptance probability is one so
that the acceptance rejection part of the procedure is ignored
when the Binomial random variable is zero or omne.

Consider now a simplification of the factor,

n!(N-D-n)! N-D-nt I\
R()zNDn-l-x)!(n x)! < )

Using the established formula for log x!
log n! = log mtlog(n-1)! = (mt})log n - n + % log2m + @(n)
log(n-x)! = (n-x+%) log(n-xt}) - (n-x+}%) + % log2m - ¥(n-x+})
Combining these with x log n ‘
log n! - log(n-x) - x log n = - (n-xt%) log(1- iii)
- (x-%) + @(n) + ¥(n-xt}).
Make the substitution m = x-%
= - (n-p) log(1-5) - n+ @(n) + ¥(n-n).
Similarly as above
log(N-D-n)! - log(N-D-mx)! + X log(N-D-n+1)

-D- + Y(N-D-nt1+p).
= - (N-D-nmt+1+pn) log (1 + ﬁ_-]l;_-—r;l) + p+ @ (N-D-n+l) + ¥( )

From this then

log R(n) = - n[(l - Lnl) log(l - 'E) - 'i,"l]

- (N-D-nt1) [(1 + b)) log (L+ Tt N-D-n+1]

+ @(n) + ¥Y(n-p) + @(N-D-nt+1) + ¥ (N-D-mrt14p) .

Let U be a uniform random variable. Accept the observation if
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U < R(n) or equivalently if E = -log U > -log R(n) which reduces

to E + log R(n) > 0.



Chapter 4
Section 1l: Simulation of the Model.

Let Q be an environment. Recall that the species in the
environment are to be such that for any interval [a,b) with

0 < a<b<® the number of species with intensities in this

b
interval has a Poisson distribution with mean I f(x)dx where
a
f(x) = A e X,
o
X

Suppose that A and @ are given and that a sample of N
individuals is to be taken from a computer simulated environ-
ment. The problem reduces to first choosing the intensities
of the species in the environment so that they satisfy the
above condition and then choosing the number of individuals
in each species such that this number has a Poisson distribution
with mean proportional to the intensity of the respective species.
This constant of proportionality will be designated by ks and will
be called the power of the sample.

Let x,,x be the intensities of the species that are to

1, 2)...

be selected and suppose a supply of independent exponential ran-

dom variables Ei’i = 1,2,... are available.

Noting that the waiting time for a Poisson process is ex-

ponential consider the following method of choosing the intensities.

Let
[--}

E1 = f £(x)dx and solve this equation for xy-
*1

When this is done let
x
1 3
E2 = f f(x)dx and solve this equation for X,

and

)

42.
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continue finding intensities X)Xy K g,%, 5.
€
Notice that for € > O,I f(x)dx = + ® so that the method must
0
be modified for small x. The modification and the method of

determining a constant €;, which determines the intensity at which

the modification will be made, will be shown later.
-X

The function f£(x) = Ae
x
two arb%trary positive numbers so that the solution of the equation

cannot be integrated directly between

Ei = I f(x)dx for x is obtained through an acceptance-rejection

Xi+1

i+1

procedure. No such procedure was found that was effecient over
the entire real line so that different procedures were used depend-
ing upon the portion of the real line that was being considered.
The following method for finding the intensities of the species
was used:

1. Sety=x+ « log x

xa

Ez_—_ g:
so that 1+ % X

dx

1, set k = 1 and

2. Let Yo = %o = +® and set i

0.

set E0

3. Set y: =X + o log X1

yi-l and in order

to determine xi let

vy = x; + o log X, .

* *

xi-l )'i yi

X -y X

Then [ f(x)dx = [ £(y) 559y = J oA Gq v
x Y i

i i



% bh.

Yi

*
4. Set Ek = f Ae ydy = A(e'yi - e‘Yi)
i
and solving for Yy
*

-y
y; = -log (B, +e 1)+ loga
k-1
-log (Ek + I E,)+ loga
j=0

k
-log (£ E,) + log A.
=1

5. Solve the equation Yy = % + o log x; for X, -

X

6. Accept x, with probability
i Xy

7a) If x; is rejected set y: = yi,increase k by one and return
to step #4 provided X, > 3.0.
b) If X, is accepted increase k by one, increase i by one and
return to step #3 provided x; > 3.0.
For intensities less than 3.0 a modification is made in the
Procedure to obtain a higher degree of effeciency in choosing
the X, .

*
8. Let X, equal the last intensity calculated in step #5.

*
x* Let k1 = :* xN1= X, . >
i i i
Then [ f(x)dx = [ Ae™™ 2% ax = j'é_e'x@“dx.
X, x, @ X, @
&
i
9. Set E, = f A e *dx and solving for X,
X3 2%
k
Z E
x, = - log [j—kl I 4 e ™M ]
-
A2

2
10. 1If X, > 2.0 accept X with probability'<3;{)y. If x; is
- i
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rejected increase k by one, set x: = X;, return to step #9.
If x1 is accepted increase k by one, set x:+1 =X, increase
1 by one, return to step #9.

For the case x, <2.0, X, is rejected and the procedure
again modified.

*
11. Let x, = 2.0, increase k by one and set k2 = k.

*
X x% xk
Then i £(x)dx = £ Ae®elgy - f Aellmx dx.
i i o -1 Xj .«
e X
i -
12. Set E_= \L‘ A x“dx
ie

and solving for x;
l-a (l-o k =
= - )€ l-a .
Xy [2 A [jEkz Ej]]
l-x,

13. If X, > 1.0 accept X with probability e tooas X,

is rejected increase k by one, set x; = X,, return to step #12.

If x, is accepted increase k by one, set x:+1 = xi,increase i by

< 1.0, reject x, since the

one, return to step #12. If X, {

procedure breaks down at one.

€
As was pointed out earlier, f f(x)dx = ® for € > 0 so

0
that procedures of the type used for large intensities are

impractical for very small intensities. Note that when choosing

a sample from the simulated environment the number of individuals
in each species has a Poisson distribution with mean ksxi' Here

k_is unknown but it can be estimated and from this estimate a
s

method devised for choosing species with small intensities which

have a high probability of appearing in the sample while over-
looking many which do not appear in the sample of N individuals.
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The expected number of individuals is represented by the equation

} k £(x)d iil } Ae-xdx i-1
x f(x)dx + kx =]kx——=24 T xx
o ° =1 531 o's o j=1 S
1
v, [[ axt (e 2)dx+ 2 ]- kJ:A .
X
vos iy =% j G * TG’
izl
+j1x].

Setting this equal to N, the number of individuals to be taken

from the simulated environment, the estimate of ks is

" N
k =
S 1 1 1-1

A "3t Ty t jfl"j

Using this estimate of ks continue finding the intensities
of the species in the simulated environment.

0.8
= *=
14. Set €s E;_ R x¥ 1.0,

increase k by one and set k3 = k. Then

& &
I f(x)dx = I A e *dx.
Xi xi xQ’
*
Xi A
15. SetE = [ = dx
X, X

i

and solving for x,

[1 i (l-a) [J L, j]] l-a

16. Accept x, with probability e l. If X, is rejected,

i
increase k by one, set x¥ = x, and return to step #15
provided X, 2 €, If x, is accepted, increase k by one, set

xz+1 = x,, increase i by ome and return to step #15 provided

X,
i es
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For x1 < e then the probability that a Species with intensity

x; will have an individual Present in the sample with power R is

1 -k ¢¥i+ Therefore instead of solving the equation
- *
x7

E, = j‘ £(x)dx
i
for xi and letting the number of individuals present in the sample

from this species be

n, where 0 Truncated Poisson with parameter

{ Esxi with probability 1 - e~ s*i
0 with probability e-ksxi

an equivalent method for determining the individuals in the small

species is to solve the equation
*

Xy

Ek = f ﬁsxf(x)dx for x; and let the number of individuals

X5

Present in the sample from this species be

n, where nim Truncated Poisson with parameter

2 1-e " KsXi
{ k x. with probability
s 1 -kox sxi
f(sxi-1+e s*i
0 with prob. T x

This modification has the effect of skipping over some

Species which are in the environment but which do not appear

in the sample.

17. Set N* = i and Xe = xt, k4 =k
* * <
x ! i l-o X
A - -
I k x f(x)dx = f k x - e Xdx = f X e “dx
X X X

i i X1
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X

i
18. Set Ek = I &sA xl-adx and solving for X,
X
i k 1
2~ [ E ] 2-
<j - (2-a) j§k4 3 o
x, ={( x - ‘>
* ¢ kA
)
-xl
19. If X, > 0 accept X, with probability e .
*
If X, is rejected, increase k by one, set X, = x; and return
*
to step #18. If x; 1is accepted, increase k by ome, set x. . , = X,

increase i by one and return to step #18.

The procedure is continued until a negative intensity is
reached. Let SN be the number of species obtained. Consider now
the problem of finding the sample of N individuals and let n, for
i= 1,2,...,8N be the number of individuals chosen from the species
with intensity X Thus

n is chosen from a Poisson distribytion with
parameter Rsxi for i = 1,2,...,N -1,

n, chosen from a truncated Poisson distributjion
1 1 -ksxi
with parameter k_x, with probability =% s
s'i k x.
N -ﬁsxi s i
kgx, -lte *
. : —-— 3 3
0 with probability e for i = N yereaSy
s k x
N s i
Let NT = igl ni .
If N, = N then the sample is as chosen. If NT > N then NT - N

T

individuals must be independently rejected from the chosen sample.

This is accomplished be means of the Hypergeometric distribution

ies is ni

which is distributed Hypergeometric with parameters NT:NT'N:“

where the number to be eliminated in the first spec

1

th
and in general the number to be eliminated in the k  species is
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k-1
n' which is distributed Hypergeometric with parameter N_-.Z n
k k-1 T i=171 °

NT,N-E ni, n This is continued until all N, - N individuals
i=1

have been eliminated.

k"

The number of individuals in each gpecies is

n
n¥*=n -n! fori=1,2,...,s, and T n* = N.
i i i N j=1 1

If however NT < N then N - NT more individuals must be chosen

from the model.
N-Np )

N
probability of fallingTshort again vary small since it is better

Let A&s = 2is The factor two is added to make the

to over estimate ks, The intensity of the sample is now

~ -

k; = ks + Aﬁs so let n; be the number of individuals that are to

be added to the already selected species where

“2 "~ Poisson (Aﬂsxi) for i = 1,2,...,8y"

Since some species were skipped in the interval [O,xe) the

possibility that some of these may now appear in the enlarged

1 *
sample must be considered. Let e* = bl If €* > x_ select the

S
new species using the method described in steps #17-19 replacing

k_ by Ak and continue finding intensities until zero is reached.
s s
e species is

The number of individuals present in the sample from thes

n" where n" " Truncated Poisson with parameter Aksxi with

i -
. Afcsxi
probability —pF——
s i
bk x, - 1+ e.Aksxi
0 with probability s i
Ak _x
s'i
for i = sy + 1,...,3& where sﬁ is now the number

t is
of species present. The intensity X, is chosen so that i
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very unlikely that e¢* < X, but if this should happen the situation

can be corrected by decreasing the upper value of X, from say E-g

to possibly _E- and rerunning the experiment,

]
;N
" = "
Let NT 21 n
If Ni =N - NT then no individuals need be deleted. If Ni > N-NT
then Ni - N+ NT individuals must be eliminated from the Né new

individuals chosen.

This is accomplished again using the Hypergeometric distribu-
tion by letting ni be the number of individuals eliminated from
the first species where ni is distributed Hypergeometric with

parameters N' - N+ NT, n' and for the k species

J
T % 1 k-1

né is Hypergeometric (Ni - i§1 ng, Ni - N+ N, - i§1 ni, nﬁ).

The number of individuals in the respective species is then

' —
n? =n + ng -0, for i = 1’2"'°’SN
1
nf = n; - n{ for i = sy + 1,...,sN
1)
°N
* = N
where i§1 n¥

If Ni <N - NT repeat the process for selecting new individuals

from the species. Because of the method for determining Aks

however it is extremely unlikely that the adding of new individuals

will be necessary more than once.



Chapter 4
Section 2: Simulation in the Special case.

The simulation of the model for the special cage developed
in Chapter 1 Section 3 is greatly simplified over the general
case. In taking the sample of size N in this case consider the
following procedure. Define Wi as before to be the proportion
of individuals of the ith sampled species present in the environ-
ment neglecting the i-1 species already sampled.

Choose wlm h(w) = A(l-w)A-1 where A is a parameter of the
model which is to be estimated. Choose mlm Binomial (N-l,wl)
where m, represents the number of times that this species repeats
in selecting the remaining N-1 individuals. Then n, =m + 1
represents the number of individuals from the first species in
the random sample of N individuals. Now choose WZW h(w) and
again select

mZW Binomial (N-nl-l,wz) and let n, =m, + 1.

i-1
In general select wim h(w), select miN Binomial (N-jflnj-l,wi)
and let n, =m, + 1.
i i

Continue this process until a sample of N individuals has

been chosen.

51.



Chapter 5
Section 1l: Data Analysis

Using the procedures developed in the previous chapters a
set of data will now be analized to indicate the fit of the
model in an actual environment. The data used for this purpose
was taken from Williams [4] and is reproduced in table 5.1.

From the maximum likelihood methods developed in Chapter 2
an estimate of the parameters for this set of data was found to be

& = 1.0000 A = 40.453 k, = 392.7.

Since @ = 1 the estimation of the other two parameters reduces
to the special case where @ is set equal to one in the likelihood
equations and an estimate of the other parameters obtained by the
procedure developed in Chapter 2 Section 2. This maximum likeli-
hood estimate was found to be

A = 40.2576 ky = 387.2

According to the model each sample is such that the number
of individuals in the sample from a species with intensity x is
distributed Poisson with mean ksx. Using ﬁs as an estimate of

ks then, the expected number of species in the sample with m

individuals is

® A m -ﬁ X - m -ﬁ X 4 =X
k x s” Ae
f Sale e ° f(x)dx = g (k x) —— d
0 1
Ak @ -(k +1)x s C(m
.= el Tk - o
T ml 0 x € m! (le+1)

52.
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Table 5.1
Macrolepedoptera Data
Observed captures of Macrolepedoptera in a light trap at Rothamstad
Journal of Animal Ecology Volume 12-13, pp.45-46.
Distribution of species according to number of individuals present

in the sample.

1 2 3 4 5 6 7 8 9 10
0f 35 11 15 14 10 11 5 6 4 4
10f 2 2 5 2 4 3 3 3 3 4
200 1 3 3 1 3 1 1 3 2 0
300 0 1 0 2 0 3 2 0 0 0
401 0 0 2 2 1 0 0 0 3 0
50] 4 1 1 2 0 0 1 2 0 3

also at 61,64,67,73,76(2),78,84,89,96,99,109,112,120,122,129,
135,141,148,149,151,154,177,181,187,190,199,211,221,226,235,239,
244,246,282 ,305,306,333,464,560,572,589, 604,743 ,823,2349

TOTAL NUMBER OF INDIVIDUALS 15,609

TOTAL NUMBER OF SPECIES 240



Table 5.2
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Theoretical Frequencies for Macrolepedoptera Data

Distribution of the expected number of species present in the

sample with parameters @ = 1.0000, A = 40.2576, ks = 387.2
1 2 3 5 6 7 8 9 10

0( 40.15 20.03 13.31 .96 7.96 6.61 5.64 4.93 4.37 3.92
10 3.55 3.25 2.99 .77 2.58 2.41 2.26 2.13 2.02 1.91
20) 1.81 1.73 1.65 .58 1.51 1.45 1.39 1.34 1.29 1.24
30/ 1.20 1.16 1.12 .08 1.05 1.02 .99 .96 .93 .91
40 .88 .86 .84 .81 .80 .78 .76 .74 .72 71
50 .69 .68 .66 .65 .64 .62 .61 .60 .59 .57
also

61 - 70 5.14 151 - 200 7.31

71 - 85 6.34 201 - 300 8.57

86 -110 7.96 301 - 500 7.43

111 -150 8.84 500 6.07

EXPECTED NUMBER OF INDIVIDUALS

EXPECTED NUMBER OF SPECIES

15,587.7

239.99



# of individuals
in species

® N VLW N

9-10
11-12
13-14
15-16
17-19
20-22
23-25
26-30
31-36
37-45
46-55
56-70
71-85
86-110

111-150
151-200
201-300
301-500
500 —

2
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Table 5.3

Goodness of Fit Test

Observed

35
11
15
14
10
11

5
6
8
4
7
7
9
8
7
7
6
7
11
9
5
4
8
7
8
4
7

240

X '95(24) = 36.42

Theoretical
frequency Frequency

40.
20.
13.
9.96
7.

6.61

239.

15
03
31

95

5.64
4.93
8.29
6.80
5.77
5.00
6.40
5.44
4.71
6.68
6.
7
7
8
6
7
8
7
8
7
6

63

.98
.02
.18
.34
.96
.84
.31
.57
.43
.07

99

fth

.66
4.07
21
1.64
.53
2.91
.07
.23
.01
1.15
.26
.80
1.06
1.20
1.11
.02
.06
.12
2.26
.08
.28
1.97
.08
.01
.04
1.58
14
22.55

2

(fp - fth)
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These values were calculated and are presented in table 5.2. It is

interesting to note that in this special case the expected number of

species present in the sample can be easly calculated by the formula

® -k x bod -k x Ae” ¥
f(l-e s ) £f(x)dx = j(l-e s ) £ dx
0 0
® . -(k§+1)x .
= RA[ &=—=° dx = Alog(k +1) = A-q = 239.99.
0 x s

Using these theoretical values a X2 goodness of fit test is
applied to the data in table 5.1 and the theoretical values in

table 5.2. The number of degrees of freedom for this test is j-3

where j is the number of categories. Here three degrees of freedom

are lost because of the estimation of the three parameters of the

model. The test is as shown in table 5.3 and is not significant

at the 5% level.
As an aid in studying the behavior of the model a simulation

procedure has been developed in the previous chapters. Three

independent samples of 15,609 individuals have been taken from the
model using the parameters estimated from the data in table 5.1
and the procedure developed in Chapter 4 Section 2. These three
sets of simulated data are reproduced in tables 5.4-5.6 and

should give the reader a good indication of the stability of the
model. Note in particular that the total number of species pre-
sent in each of the simulated samples are very close and that
while the number of species present in the samples with a given

number of individuals may have a large variation among samples

nevertheless the number of large, moderate and small species
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Table 5.4

Simulated Test #1

Distribution of species according to number of individuals

present in the sample with parameters o = 1.0000, A = 40.2576

1 2 3 4 5 6 7 8 9 10

0] 41 27 8 6 8 9 7 8 4 5

10 3 3 2 3 5 1 4 3 2 0
20 0 2 1 0 0 1 1 2 0 0
30 3 3 1 0 4 0 0 0 2 3
40 0 0 1 1 1 0 0 1 0 0
50 1 1 1 0 0 0 1 0 0 0

also at 62,63,66,67,79,80,83,85(2),88,89,91(2),93,94,96,97,105,
107,109(2),136,155,159(2),162,165,166,169,180,187,188,189,217,
222,246,247,255,260,273,277,287,324,325,345,350,405,408, 440,
464,485,582 ,606,1385,1399.

TOTAL NUMBER OF INDIVIDUALS 15,609

NOTAL NUMBER OF SPECIES 235
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Table 5.5
Simulated Test #2
Distribution of species according to number of individuals

present in the sample with parameters o = 1.0000, A = 40.2576

1 2 3 4 5 6 7 8 9 10
0f 40 14 15 10 8 7 3 8 8 3
10 4 3 1 1 2 5 3 1 2 0
20 3 0 1 3 1 0 3 2 0 2
30 1 1 1 2 1 0 2 0 1 0
40 1 0 0 3 1 2 0 0 2 0
50 0 0 0 1 1 0 1 3 0 0

also at 61(4),64,66,67,69,71(2),72(3),73,74,75,93,94(2),97,100(2),
101,112,120,122,124(2),125,130,135,136,140,143,148,155,157,161,
175(3),177,187,191,192,193,196,205,206,237,291,295(2),299, 302,
305,325,348, 349,394,405 ,426,573,808,819,1079.

TOTAL NUMBER OF INDIVIDUALS 15,609

TOTAL NUMBER OF SPECIES 243
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Table 5.6
Simulated Test #3
Distribution of species according to number of individuals

present in the sample with parametersa = 1.0000 A = 40.2576

1 2 3 5 6 8 9 10

0 45 18 12 10 7 4 8 3 4
10 6 3 1 2 1 1 2 3 2 2
20 3 0 1 1 2 2 2 0 1 0
30 2 1 3 1 4 1 3 0 1 0
40 0 0 1 0 2 0 0 0 0 1
50 4 0 2 0 0 1 1 1 1 0

also at 61,62,67,68,70(2),71,75,77,79,80(2),89,92(2),102,104,
105,106,107,113,115,119,121,125(2),138,152,168,192,196,208,218,

223(2),248,249,286,301,305,375,384,410,451,531,616,630,762,768,

1186,1711
TOTAL NUMBER OF INDIVIDUALS 15,609
TOTAL NUMBER OF SPECIES 233
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present remains quite stable among samples.

With the use of the simulated tests the question of the
accuracy of the estimates of the parameters when using the model
can be considered. The simulated data is now considered as the
original data to find the maximum likelihood estimates of the
parameters, again using the procedures developed in Chapter 2.
These estimates for the three simulated tests can be compared to
the values of the parameters used in obtaining the simulated

data as shown in the table below:

o A k
s

Values of parameters 1.000 40.2576  387.2

Estimates for simulated test #1 1.000 39.2429 397.7

Estimates for simulated test #2 1.000 40.8523 382.1

Estimates for simulated test #3 1.000 38.8425 401.8

Another point of interest is to consider the behavior of the
data as the number of individuals increases in the sample. Taking
@ =1 and A = 40.2576 table 5.7 shows the behavior of the data
where a sample of size 50 is first taken and then the sample in-
creased in small steps up to 15,609. It is to be remembered that
this collection of data only illustrates the behavior as n increases
in one sample but should serve as a guide for other samples. It
is to be noted for example that the number of species with one
individual in the sample has already stabilized by the time 200
individuals are sampled.

In order to compare the simulated data to the theoretical

distribution for arbitrary N it is necessary to obtain an estimate
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of the parameter ks. Noting that the number of individuals
present in a sample from a species with intensity xi is dis-
tributed Poisson with mean ksxi so that the expected number is
ksx., an estimate of this parameter for arbitrary N is obtained

@
by setting the equation f ksx f(x)dx equal to N. Thus
0

© A-x )
[k x =— dx = k A [ e™Fdx = kA
s X S s
0 0
. .7 N
and the estimate is k ==
S A

N

Using this estimate the expected number of species present

in the sample with m individuals for a sample with parameter

o Ae-x
k  and where f(x) = is
S
N
- (i;s )™ -ksN f(r: A o . -(ksN+1)x
N e f(x)dx = _°N [ x" e dx
] m! m! 0
A ism I'(m) ke n
- - 2 (/)
1 -~ A
m (kg +1)" m k, +1
N N

.A(L)‘“
m N+A )
For given values of N and A this can easily be tabulated and in

particular compared with the data in table 5.7 for A = 40.2576.



Distribution of species according to number of individuals

Table 5.7
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present in the sample with parameterso= 1.0000, A = 40.2576
for increasing N
N = 50 Number of species = 28
1 2 3 4 5 10
0] 15 8 2 2 1 0 0 0 0
N = 100 Number of species = 41
1 2 3 4 5 6 8 9 10
0] 20 8 3 5 1 0 0 0
N = 200 Number of species = 63
1 2 3 4 5 6 7 8 9 10
o] 29 10 8 2 2 2 3 1 0
also at 12(2),21
N = 500 Number of species = 94
1 2 3 4 5 6 7 8 9 10
ol 31 19 8 9 4 1 5 2 0
10 3 1 1 0 1 0 0 0 2
20 0 2 1 1 0 0 0 0 0
also at 33,49
N = 1000 Number of species = 119
1 2 3 4 5 6 7 8 9 10
0] 32 19 12 10 6 8 2 3 1 2
10 2 0 2 2 1 1 1 2 1 0
20 0 0 0 1 0 1 1 0 1

also at 33,42,43,46,47,49,67,97
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N = 2000 Number of species = 143

1 2 3 4 5 6 7 8 9 10
0 36 14 9 10 7 10 5 5 4 2
10 5 3 5 0 0 1 1 0 1
20 1 0 1 1 1 0 0 2 0 3
also at 34,35,40,47,49,54,56,59,80,83,93,95,97,144,203
N = 3000 Number of species = 165
1 2 3 4 5 6 7 8 9 10
0 43 16 11 8 8 7 4 3 6 6
10 4 2 3 2 0 1 2 2
20 3 2 1 0 2 0 0 1 0

also at 39(2),41,42,44(2),47,50(2),52(2),67,79,80,81,92,124,

125,130,136,142,208,319

N = 4000 Number of species = 176

1 2 3 4 5 6 7 8 9 10
0 41 22 5 11 5 5 7 6 3 4
10 4 2 4 5 1 4 1 2 2 1
20 2 2 1 1 0 1 2 0 1 0
30 2 2 0 2 0 0 0 1 1 0
40 0 0 0 0 0 0 0 0 1 2
50 0 0 1 0 0 0 1 0 0 0

also at 61,63,66,67,68,71,86,93,106,110,114,157,161,170,173,

190,295,434
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N = 5000 Number of species = 190

1 2 3 4 5 6 7 8 9 10
0 43 28 5 8 5 5 7 3 5 5
10 6 0 5 3 5 1 2 2 2 0
20 2 2 3 2 1 0 0 2 0 2
30 0 0 3 3 0 1 0 1 0 1
40 0 1 1 0 0 0 1 0 0 0
50 0 0 1 0 0 0 0 0 1 0

also at 61,64,65,71,74,79,82,88(2),89,98,118,130,133,138,195,

200,212,227,237,378,529

N = 6000 Number of species = 198

1 2 3 4 5 6 7 8 9 10

0 40 31 8 7 7 5 6 0 5 5

10 2 5 5 2 1 4 7 1 1 0
20 1 0 3 2 3 1 0 1 1 1
30 1 1 1 1 1 1 1 0 1 1
40 0 2 3 0 1 0 1 0 0 0
50 0 0 1 2 0 1 0 0 0 0

also at 70(2),77,81,87,91,93,96,101,107,120(2),142,149,150,

171,218,236,248,275,285,449,633

N = 7000 Number of species = 200

1 2 3 4 5 6 7 8 9 10

of 35 29 9 8 11 2 7 4 1 5

10 4 1 4 6 2 3 2 1 1 5
20 0 1 1 1 2 2 2 2 1 0
30 1 0 2 1 1 2 1 2 0 0
40 0 2 0 0 1 0 0 2 1 0
50 3 1 0 0 0 1 0 1 0 1

also at 61,67,81,83,86,92,102,105,109(2),115,124,136,141,172,

173,175,197,256,277,288,332(2) ,531,742
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N = 8000 Number of species = 205

1 2 3 4 5 6 7 8 9 10

0 35 23 16 7 14 3 3 3 5 1

10 4 1 5 1 6 3 3 1 1 2
20 0 3 2 1 2 2 3 0 3 0
30 1 1 2 1 0 1 1 0 2 1
40 0 2 0 1 0 0 1 2 0 1
50 0 0 1 3 0 1 0 0 0 1

also at 61,64,66,67,72,75,94,95,97,108,111,116,122,123,129,149,

150,167,192,195,204,227,284,314,325,382,393, 600,860

N = 9000 Number of species = 207

1 2 3 4 5 6 7 8 9 10
0 35 22 13 8 9 9 0 7 2 4
10 5 2 2 1 6 3 3 1 1 3
20 1 0 1 2 2 2 3 1 2 1
30 1 1 0 2 0 2 1 0 1 1
40 0 1 1 1 2 1 1 0 0 1
50 0 0 0 1 1 0 1 0 3 0

also at 61,64,65(2),68,71,72,77,81,84,99,105(2),118,120,121,
131,140,147,168,173,182,213,224,234,265,324,360,365,433,445,

676,961
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N = 10,000 Number of species = 210

1 2 3 4 5 6 7 8 9 10
0 32 25 13 7 9 6 4 6 5 4
10 1 3 3 3 2 2 2 3 3 2
20 2 2 0 2 1 0 1 1 1 4
30 3 0 1 0 1 4 0 0 1 0
40 0 1 1 2 0 1 0 3 1 0
50 1 1 1 0 0 0 0 0 1 0

also at 61,62,65(2),71(2),72(2),74(2),76,80,86,88,93,112,113,
123,130,132,138,141,154,160,191,192,199,236,244,274,293, 355,391,

397,479,492,751,1093

N = 11,000 Number of species = 215

1 2 3 4 5 6 7 8 9 10

0] 34 25 12 8 9 6 4 7 4 2

10 4 3 0 4 1 3 4 3 1 0
20 5 1 1 1 1 3 1 1 0 1
30 1 1 1 2 2 1 1 3 0 1
40 1 0 0 0 2 1 1 0 0 1
50 1 1 2 0 1 1 0 0 2 0

also at 64,66,69,70,71,77(3),79,80,81,85(2),95,96,105,121,126,
135,145,148,154,155,173,175,207,213(2) ,256,261,298,316,385,440,

442,529,533,835,1215
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N = 12,000 Number of species = 220

1 2 3 4 5 6 7 8 9 10

0 37 23 12 8 7 11 2 6 5 2

10 3 4 2 2 1 2 2 6 1 1
20 2 1 1 2 2 2 2 2 2 0
30 1 0 1 0 1 2 2 1 0 3
40 0 1 1 1 0 1 0 1 2 0
50 0 2 0 1 0 1 1 1 0 2

also at 62,63,67,70,73,80,81,85(2),86(2),88,89,93,94,101,105,
121,128,144,148,157,162,169,171,187,189,223,227,230,276,279, 322,

348,423,474 ,484,575,592,916,1327

N = 13,000 Number of species = 221

1 2 3 4 5 6 7 8 9 10

0 38 20 10 11 7 9 5 1 9 2

10 1 2 5 4 1 2 2 2 2 3
20 1 1 0 1 3 1 3 1 3 2
30 1 1 1 1 0 0 1 0 3 1
40 0 1 1 0 2 2 0 1 1 0
50 1 1 0 1 1 0 0 1 2 1

also at 64(2),65,66,67,71,74,77,84,90,92(2),94,96,98,99,101,
102,106,114,130,138,161,165,177,181,189,201,207,239,247,252,

305,311,342,374,452,515,518,628,646,989,1415
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N = 14,000 Number of species = 224

1 2 3 4 5 6 7 8 9 10

0 39 20 10 10 8 8 5 2 8 5

10 1 2 1 3 2 3 4 1 2 3
20 1 1 2 0 1 1 1 2 2 0
30 1 5 4 0 0 1 0 0 1 0
40 0 1 3 0 0 1 2 1 1 0
50 1 1 1 1 0 0 1 1 1 0

also at 62,63(2),64,69,70,71,72(2),78,84(2),90,96,97(2),99,
103,106(2),107,109,116,123,136,148,171,179,194,195,197,203,221,

223,258,269(2),333,339,400,477,556,559,679,684,1063,1528

N = 15,000 Number of species = 230

1 2 3 4 5 6 7 8 9 10

0 43 17 13 6 10 9 5 4 4 5

10 5 2 1 2 3 0 2 3 3 2
20 2 1 2 1 3 0 0 0 1 1
30 2 2 2 3 5 0 0 1 0 0
40 0 1 0 1 1 1 0 0 3 2
50 0 1 1 0 0 1 2 0 0 1

also at 62,64,65,66,68(2),73,75(2),77,79,83,87(2),99,101,102,
103,106,108,111,115,117,119,123,133,144,164,184,190,205,206,213,

216,235,238,275,287,294,356,369,399,430,508,588,602,728,741,1134,

'

1647



69.

N = 15,609 Number of species = 233

1 2 3 4 5 6 7 8 9 10

0 45 18 12 6 10 7 4 8 3 4
10 6 3 1 2 1 1 2 3 2 2
20 3 0 1 1 2 2 2 0 1 0
30 2 1 3 1 4 1 3 0 1 0
40 0 0 1 0 2 0 0 0 0 1
50 4 0 2 0 0 1 1 1 1 0

also at 61,62,67,68,70(2),71,75,77,79,80(2),89,92(2), 102,104,
105,106,107,113,115,119,121,125(2),138,152,168,192,196,208,218,
223(2),248,249,286,301,305,375,384,410,451,531,616,630,762,768,
1186,1711.



Chapter 6
Section 1l: Investigation of Species per Genus Data

In an effort to determine the different types of environments for
which the model holds data from Williams[ 6] on Orthoptera was investigated.
It is realized that the data is in the form of species per genus which
is quite a different concept from the individuals per species data that
had previously been considered but this data seemed to show some of the
same properties as the other data and it was hoped that this biological
situation could also be explained by the model, Applying therefore the

methods of the previous chapters the maximum likelihood estimate of the

parameters was

N

@=1.1056 A=231.065 ke=16.3

In comparing the actual data , reproduced in table 6.1, to the
theoretical expected values obtained using the above estimates of the
parameters it was determined that the model fit rather well for the
small and moderate genera but that the theoretical values for the
larger genera were too small. This conclusion was reinforced when
three samples of 4112 species were taken using a=1.1056 and A=231,065
and it was found that the largest genus among the three samples con-
tained only 80 species, far below the number that was actually
encountered,

With this result in mind it was decided that an adequate fit
might be obtained if the form of the function f(x) was altered to
accommodate this new situation ., It was decided that the term e™X in
the numerator made the function f(x) decrease too rdpidly. For large
intensities it was decided to try the form f(x)= -%E where q is a

parameter with the restriction 2<q<eo,
70.
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In determining q for the Orthoptera data make the definition

SPC[a,b) = total number of species in the genera which have n, species
with a < nj < b, Adjusting so that k; = 1 the expected number of species
is defined by the equation f: x f(x) dx for the interval [a,b).

Using SPC[a,b) as an estimate of the number of species in the
sample which are in genera having an intensity in the interval [a,b)

consider the following equations

C (o]
[ % £(x) ax = [ & =9 ax = spC[30,¢)
30 30

® -]
[ x £(x) dx = [ A 2% dx = sEC[c,®)
(o] C

for 50 < ¢ < 100
and q >2

Integrating and eliminating A from the two above equations the
solution for q is seen to be

log SPC[30,») = log SEC[c,=)
q=2- Tog 30 = 1og <

From the graph of q as a function of ¢ for 50 <c< 100 a good
choice for q in this case seems to be q = 3, Also for small genera
the function f£(x) appears to take the general form similar t» f(x)-g-
so that the expected number of genera with m species is

@ -]
f " e”* £(x) dx = f A xP1 "X gx = [(m) = A
0" ml 0 m! ml m

Combining these two characteristics it was decided that the
function f(x) should take the form f£(x) = —;?;5332 where A and a
are positive constants. An attempt at finding a maximum likelihcod

estimate of these parameters became very messy so that an estimate

was obtained from a simultaneous solution of the equations
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© (-]
A
f dx = dx = SPCL 30 = 904
[ o (x) dx = [ o G2 & [30,x)
[--] -}
x e”¥ A e~% B
IO'—]T—f(x) dx=‘ro-(;a—)2—dx— 320 .

The estimates obtained were
a=10 A = 37,000

The simulation procedure used in the case where f(x) = m
is quite similar to the procedure developed in Chapter 4 Section 1
except that some changes are needed in finding the intensities due to
the different form of the function f(x). As before let Ey, k=1,2,3,.,,
be an infinite supply of exponential random variables and consider the
following procedure for producing a sample of size N with known

parameters a and A,

1. Set k=1, set i=1, set xI =+ @

; * ¥ '
*i X1 A *1 A( X )2
2. fxi f(x) dx = fxi T dx = IXi 23 o dx
*
S T o £
3, Set E; = Ix. %3 dx and solving for xj
i
- | A 1
Xy = 2
\ B
j=1
X4 2
4, Accept x; with probability (-;;i-ja— .

5. If x; is rejected, set x? = Xy, increase k by one, and return

to step #3 provided x; >-/fL-- If x4 is accepted, increase k by
2-10

one, set x¥+1 = x{, increase i by one and return to step #3

a
provided x; > 51 -

is the point where the acceptance

The point x;=

/2 -1
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2
probability< ﬁ;—) is equal to one half so that it becomes
desirable to modify the procedure at this point to increase the

effeciency.

6. Set k1= k., Also

x* x’ic x* 2
1 A i A x
dx = A {2 Y
[y £ = J 0 e =l 7 {55
%*

Xi
7. Set EK=I -3‘- ;-];3dx and solving for xj
Xi
| A 1
i \ E K K1=1
J 28 Ej + T Ej
i=kq ¥=1

2x§
8. Accept x; with probability (x:+2)2°
i

9. If x; is rejected, set x’i" = X;, increase k by one, and
return to step #7 provided x; > a. If x; is accepted, set x5 1= %4,
increase k by one, increase i by one and return to step #7 provided
X{ > a,

At the point x = a another modification is to be made to increase
the effeciency.

10. Set ky=k, set xy,= x}

* X3 2
X i 1 A a
i T A k= ( > d
j‘ f(x) dx = f . x(xi-a)zdx Ix- 22\ %ra X
Xj Xi i

Xi A
= ing for X
11, Set E.= fx- ;;zdx and solving i

1
- %2[ jgk]_Ej:' )
Xj = XN; ©
2

a
12, Accept x; with probability ( xta > .
i i turn
13, If x; is rejected, set xji = X;j, lncrease k by one, and re
¥r1 = ase
to step #11 provided x; > €g. If xj is accepted, set X1+l = Xj, incre

. > .
k by one, increase i by one and return to step #11 provided x; > €4
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The constant ¢ 1is determined similar to the procedure used
s
before.
The expected sample size is

@® (-] -]

A 1 koA
k f = ——— = =
‘g ¢X (x)dx £ ksx q a)zdx ksA‘(f)‘ (—a—)-z dx —s-a .

Setting this equal to N to obtain an estimate for kS

& _ aN
kg = A -
Set N* = i *
14, =1 and k4 = k, )% = xi.

For the small intensities the modification which skips over

some of the genera which do not appear in the sample is again employed.

<& & &
i, i Xk A
15. I ksx f(x)dx=f ksx J‘ —7 < e )dx
X, X, x(xta)
i
&
i kSA
16. Set Ek = I - dx and solve for X,
X, a
i
2 k
a

X, = - — 2, E..
1 Ke &SA j'k4 b

jﬁ. If x, is
i

*
rejected increase k by one, set x, = X, and return to step #16.

a
17. 1f X, > 0, accept x, with probability(x ta

* .
s . = X increase i b
If X, is accepted, increase k by ome, set x. . i’ y

one and return to step #16.

If xi < ( reject x, and cease finding intensities.
i

In finding the number of species in each genus for a particular

sample employ the procedure described in Chapter 4.

Using the above prodecure with A = 37,000 and a = 320 three

samples of 4112 genera were taken and the results shown in table 6.2.

These results can be compared to the original data in table 6.1 to

examine the fit of the model in this case.
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Table 6.1
ORTHOPTERA OF WORLD
Journal of Ecology Volume 32 page 18

Distribution of genera according to number of species present

1 2 3 4 5 6 7 8 9 10

0 320 131 86 61 41 27 21 18 23 17
10 12 8 9 3 5 4
20 1 1 2 1 0 2 0 0

also at 31(2),34,35,36,38,41,43,51,54,58,72,75,103,202.
TOTAL GENERA 826

TOTAL SPECIES 4112

Table 6.2
SIMULATED TEST 1

Distribution of genera according to number of species present

1 2 3 4 5 6 7 8 9 10
0 317 134 86 49 37 24 26 22 12
10 10 8 8 7 1 5 3 3 0
20 1 5 4 1 5 2 1

also at 32,34,35,36,44(2),49,53,54,55,56(2),57,69,73,79,83,178.

TOTAL GENERA 798

TOTAL SPECIES 4112
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Table 6.2
SIMULATED TEST 2

Distribution of genera according to number of species present

1 2 3 4 5 6 7 8 9 10
0 324 146 90 54 43 24 17 23 15 5
10 7 9 7 8 8 8 5 1
20 3 2 3 2 2 3 1 3 0 1
also at 32,34,35,36,39(2),41,45,49,52,53,74,79,153.
TOTAL GENERA 837
TOTAL SPECIES 4112
SIMULATED TEST 3
Distribution of genera according to number of species present
1 2 3 4 5 6 7 8 9 10
0 317 141 83 48 41 25 21 9 15 7
10 7 9 7 4 5 2 4 4 4
20 3 5 1 3 2 0 2

also at 33,37,42,46,48,50(2),56,57(2),217,354.
TOTAL GENERA 790

TOTAL SPECIES 4112



APPENDIX

Using the theory developed in the previous chapters, FORTRAN 60
programs have been developed to perform the indicated operations on
the Control Data 3600 computer.

Program SPECIES 1 finds the maximum likelihood estimates of
the parameters of the model using the methods discribed in Chapter
2 Section 1.

Program SPECIES 2 finds the maximum likelihood estimates of
the parameters of the model under the special condition o =1
using the methods discribed in Chapter 2 Sectiom 1.

Program SPECIES 3 is a simulation program to obtain a sample
of size N from the model in the case o # 1 using the methods

developed in Chapter 4 Section 1.

When using the program to obtain a sample it was found that
about 5000 individuals could be sampled in about 30 seconds on
the CDC 3600 computer. Also note that if the sample size is

doubled the estimated simulation time increases only a few seconds

due to the fact that a large percentage of the simulation time is

used to obtain the intensities of the species and the number of

new species decreases rapidly with increasing sample size.

Program SPECIES 4 is a simulation program to obtain a sample

of size N from the model in the case a =1 using the procedure

described in Chapter 4 Sectiom 2.

This program obtains a sample of 15,000 individuals in about

20 seconds on the CDC 3600 computer. Note that this procedure is

This is explained by the fact that

much faster than SPECIES 3.
77.
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the simulation procedure is extremely simplified in the case
where ¢ = 1.

The four above mentioned programs are tabulated in the follow-
ing pages with a brief explination to the right of the tabulated
programs. Although these were not the only programs used in this

investigation, they were the ones used to obtain the primary results.
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