

HESIB

LIFRARY
- Michigan state
L University

e

This is to certify that the

thesis entitled

VLSI SYSTOLIC ARRAY FOR
MATRIX TRIANGULATION IN
LOAD FLOW ANALYSIS

presented by

Yu-Ying Jackson Leung

has been accepted towards fulfillment
of the requirements for

M. S. Electrical Engr.

degree in

béjor professor

Date Z/ (7// 85

©-7639 MSU is an Affirmative Action/Equal Opportunity Institution

MSU

LIBRARIES
AE———

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

VLS| SYSTOLIC ARRAY
FOR MATRIX TRIANGULATION

IN LOAD FLOW ANALYSIS

By

Yu-Ying Jackson Leung

A THESIS
Submitted to
Michigan State University

in partial fulfillment of the requirments
for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering and
Systems Science

1983

ABSTRACT

VLS| SYSTOLIC ARRAY
FOR MATRIX TRIANGULATION
IN LOAD FLOW ANALYSIS

By

Yu-Ying Jackson Leung

The computational bottleneck incurred in power system load flow
analysis is due to the cumbersome solution of a large, highly sparse set
of linear equations. A VLS| systolic array structure for band matrix
triangulation, utilizing concurrent Gaussian elimination, is applied to
this problem to decrease the required triangulation time. Included is a
design of an interface system connecting the systolic array structure to
a host computer. A circuit simulation of the complete structure
indicates a time savings of two orders of magnitude over traditional
serial computer methods. These results lead to an assessment of the
advantages and significance of this class of special purpose VLS|

computing structures for throughput enhancement in load flow analysis.

To my mother and eldest brother

Mdm. Me Chit and Mr. Wai-Ying Tommy Leung

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to his major
advisor, Dr. Michael A. Shanblatt, for his guidance and encouragement in
the course of this research.

He also wishes to thank Dr. W. C. Hsu and the committee members,
Dr. P. D. Fisher and Dr. R. A. Schlueter, for giving the valuable
suggestions and comments in this work.

Finally, the author owes a special thanks to Miss Jasmine Lam for
her emotional encouragement and support.

Work reported here was supported in part by NSF under Grant

ECS-8106675.

LIST OF TABLES ..cvceveeeneccencccencccconcnnns

LIST OF FIGURES .

TABLE OF CONTENTS

ooo

INTRODUCTION ...cccvete cecccecttetccecccccccesasccccnnns

]']

Statement of Problemccccveeenes
1.2 APProach .c.eeeecsecccscscscncssscsscsnns ceeenae
1.3 Contributions ...cccececcccccsccccns

BACKGROUNDccceevveeccceccccccsscsssnss
Load Flow Analysis ceerseescens ceens
Traditional Load Flow

Program Structureceoeceeeccces
Program Structurececceeeccessss cecessne
2.2.2 Jacobian Matrix Triangulation

2.1
2.2

2.3
2.“

2.2.1

Banded Matrix ..ccecececececens

by Gaussian Elimination ...

VLS| Systolic Algorithm for
Matrix Triangulationccceee

SYSTOLIC ARRAY FOR TRIANGULATION

OF LOAD FLOW MATRIX FORMccccceenncccaccnne cecvens

3.1

3.2 Computing Structure and Timing

3.3

VLS| Array Structure Modification ..c.ceceecececcess

3.2.1

Multiplexer ...ccecceccece .
Latch and Stack .ccccavvves
MAC and DC ..cvveeccncnncas
TiMING coeeeeesososccsssosscsssccscsassasss

3.2.4.1 Internal DC Timing .

3.2.4k.2 External Computing
Array Timing

Fixed-Point Consideration
for Load Flow Convergenceccc000

LIS

e eeccss oo

ececeecoc o

eeecec e

LR Y

21

27
27
33
34
35
37

L2
L2
Ly

Iv.

Vi.

A PROPOSED HOST PROCESSOR/PROCESSING
ARRAY INTERFACE ...vvveeecrcecnooncasosncscassoccsnsonans
L.l Operand Adjustment by

Host Processorceeeecescses cesscsns ceessecsrene
4.2 Operand Adjustment by

Intermediate ProCessSOrcececeesccocsccscnnsnsns

SIMULATION DEVELOPMENT ...cvceeocceocssvocscssssccsssnnns
5.1 Chip Area Computation ...ceeseeccesccccsacssosansse
5.2 Throughput Computation ...ceeecceescssccccsssnoonss

5.3 Significant Module Data cecssescsnscsans
RESULTS AND CONCLUSIONS .cccceceoccscocnnns cevesesvcanne
6.1 Circuit Simulation ReSUILS ...cceceeccccrccncannns ..
6.2 Comparsion with Previous Resultscceceececacans
6.3 CONCIUSIONS ceveeecececeecccocscnoescanonnns cerecens
6.4 DiSCUSSION tivveveeeeecansoncannns Ceeccceccscccnans
BIBLIOGRAPHYccceceee ceececcccnsscns ceccccsscccesanes

L8
52
58

61
62

64
66
73

77
78

80

LIST OF TABLES

Table Page
2.1 Port-coefficient time table. .ccecceeeecocens ceccecsenns 25
3.1 Revised port-coefficient time table.c0.. ceecns 32
5.1 Significant module data.ccccevevncacccans ceeceeeaes 63
6.1 Covergence results in number of iterations

of MSU load flow program Version. ..cceeecececcccccocsns 65
6.2 Simulation time results of

|/0 pOl’tS, MAC and DCO © 0000 0000000000000 00000000000000 70
6.3 Simulation time results showing

an 1/0 timing bottleneck. cceeeececsssccae cececssssesnn 72
6.4 Simulation time and chip edge size

results for 10ad flow StUdY. .ccceeeccccrccsccnnccnnnans 74
6.5 Comparison of triangulation time per

iteration of different processors. ..ccceecescsccscsoscss 75
6.6 Comparison of time results of

different processors in ratio. cccceeseecccecsoocscosss 76

vi

Figure

2.2

2.3

2.4

2.6a

2.6b

2.7

3.1

3.2

3.3
3.4

3.5

LIST OF FIGURES

Structural flow of POWERFLO program.ccceeeuces .o

Row-ordered elimination pattern
in the POWERFLO program.ccceeeeccocccsssssoncssnns

Bandwidth and full breadth of
a band fOrm MatriX. cceecccecccocsscccsccocccnons cecececes

Single variable elimination
from a band form MAtriX. ccececeececccccccsscsscssosscoscs

Full row elimination from
a band form MAtriX. cccececcceccscrsccscscscccccscns ceeee

Augmented matrix [A:b}. cececscscsnans ceescsessssscsans

Augmented upper triangular
MAtriX U d}e cecececocecccccccsococacooosososnes ceeesns

Computing array structure for matrix
of arbitrary dimension with B=3,cccecevnennnsncs

Augmented strict upper triangular
matrix {U‘:d' with unit diagonal. sesesssensas ..

Revised computing array structure for matrix
of arbitrary dimension with B=3.cciececerceccccnes

2:1 multiplexer. ..eceeess ceessessesans ceeseesecsensnns

An n-by-n convergence division
algorithm based DC. ...ccecevcecssssacssasoccnssassnnnsnse

Latch and muitiplexer control
signals timing diagram. ..cceeeeeecosccssssssoccasssnnans

vii

Page

13

14

17

18

20

23

23

24

29

31
34

39

L3

Figure

L

L.2

L.3

b.b

6.2

Program flowchart for

operand pre-adjustment.ccceecesccoccsccscscsscncns

Program flowchart for
operand post-adjustment. cececscccscnsecsns cesse

Function block structure of an intermediate

processor for pre- and post-adjustment.ceccevecsns

A sample internal block

structure of an adjuster.cceeceecccscccscscancanes

Entire chip edge size versus matrix bandwidth

for 0.8, 0.5 and 0.2 micron 1inewidthS. .eeeeeeocccnsns

Entire chip propagation delay versus matrix band-

width for 0.8, 0.5 and 0.2 micron linewidths.c....

viii

50

51

53

55

67

68

CHAPTER |

INTRODUCT ION

Electrical energy generation and delivery systems, generally known
as power systems, are and will continue to be of fundamental importance
to the technological and engineering community. For this reason, power
systems, one of the biggest "systems' in the world, have been explored
and studied since the late nineteenth century [1]. In particular, the
load flow problem is the most basic and essential study because it
provides information for the continuous evaluation of the current
performance of the system and for analyzing the effectiveness of
alternative plans for system expansion to meet increased load demand.

The load flow problem is the evaluation of power flows and voltages
of a network for specified bus or terminal conditions. It provides the
solution for the static operating conditions of the power transmission
system. It is one of the most important of many current engineering
problems that require a very rapid routine solution before system
failures occur.

The Newton-Raphson method has been traditionally applied to solve
the load flow problem by iteratively solving a set of non-linear
equations expressing the specified real and reactive power in terms of
bus voltages and phase angles. The 1limiting factor in problem
throughput, from the standpoint of a traditional serial computer, is

the time required to solve the large (often n > 1000) set of non-linear

2
equations via triangular factorization, a form of Gaussian elimination.
This limitation is due to the fact that the number of computations is
directly proportional to the square of the matrix dimension. Also, it
is due to the cumbersome data transfers between the arithmetic-logic
unit and memory (the Von Neumann bottleneck) as well as the constant
packing and unpacking of operands during the elimination.

Recently, VLSI (Very Large Scale |Integration) technology has
emerged. An enormous number of computer algorithms and architectures
have been proposed which show great promise in overcoming this
computational bottleneck [2, 3, 4]. Utilizing this new VLS| technology,
the purpose of this thesis is to study aspects of the design of a
high-speed dedicated processor architecture, realizable in VLSI,
tailored towards the load flow problem.

The dedicated processor structure is mainly composed of arrays of
processing elements which can be implemented directly using low cost,
high speed VLS| circuit technology either on a single chip, or perhaps
in a modular fashion on a few chips. This VLS| computing array, based
on concurrent Gaussian elimination for triangulating band form systems
and composed of fixed-point processing elements, is to be simulated by a
Fortran-coded program. The simulation will be tied into a proposed
interfacing design between the VLS| processor and a host computer.

Special topics to be discussed include details of the interfacing
system, the simulation and results pertainihg to load flow throughput
enhancement. Furthermore, a basic constraint of the number of
fixed-point bits (word size) inside the computing array must be

determined. This is because the word size of the operands has an

3
essential effect on load flow convergence. Too few bits will cause
undue rounding error and lead to divergence of the overall
Newton-Raphson formulation.

Another detail to be discussed is how to interconnect the
processing elements within the array such that it can efficiently carry
out a strict upper triangular factorization of the coefficient matrix.
In the past, designs of this type have carried out a form of
factorization which is not immediately conducive to back-substitution
[2, 3, 4]. The goal of the design to be presented here is an array in
which the resolved upper triangle has a unit diagonal therefore prepared
for immediate back-substitution.

In addition, methods for adjusting the complex Jacobian coefficient
matrix, of the type encounted in load flow analysis, to the systolic
array must be reviewed. In this case, single matrix elements are
actually sets of 2x2 complex sub-entries relating real and reactive
power to changes in nodal voltages and phase angles.

The requirement of a band form system for triangulation, as
mentioned before, is still applicable to this complex system. It is
assumed that the system has been permuted, a priori, to a minimum band

form.

1.1 Statement of Problem

It is well known that the bottleneck operation encountered in large
scale power load flow programs is the solution of the system of complex

simultaneous equations derived from a Newton-Raphson formulation [5]. A

L
huge amount of research effort has been spent investigating new
generation computer architectures in order to obtain a faster and more
efficient solution [2, 3, 4]. Likewise, the aim of this research is to
determine if a VLS| systolic array structure can be applied to an
existing load flow program, via simulation, for effectively reducing the

solution time.

1.2 Approach

. The p;imary goal of this thesis 1is to obtain an accurate
quantification of processing time (throughput) for a VLS| systolic
processing array imbedded, via simulation, in an industry standard load
flow program to promote its efficiency in improving load flow
computation time. In addition, the same simulation will provide an
estimation of the chip edge size of the VLS| array obtained as a
function of word size, matrix.bandwidth. matrix dimension and minimum
lithographic linewidth parameters. Details of the approach towards this
goal will be described in this section.

Foremost, the structure of an industry standard, large-scale (1500
bus), serial computer load flow program is explained. The program is
modified to run on the CDC CYBER-750 computer at Michigan State
University and verified against benchmark results.

For the purpose of benchmarking, the program is executed with
several different sets of data independently to produce various records
of solution time, mainly the elimination time (or the triangulation

time) and iteration counts. The time records are known to be high when

5
compared to those available for a scientific-attached array processor
and are expected to be tremendously high when compared to the VLSI
systolic array processor. This is because the data processing inside
either array processor is in parallel and pipeline fashion and thus
inherently faster thaﬁ Von Neumann type architectures.

As a second step a subroutine is designed to normalize all numbers
that are involved in the calculation of the resolved Jacobian elements.
This subroutine is to be annexed to the MSU load flow program version.
Whenever a number is transferred to this subroutine, it is first changed
to a fixed-point binary number and then truncated to a predefined number
of bits. Finally, this truncated binary number is converted back to the
original representation and returned back to the calling program thus
simulating the effect of fixed-point round off.

The whole program (the full load flow program plus the rounding
subroutine) is then executed to ascertain the necessary number of
fixed-point bits required for load flow convergence.

The third step involves restructuring the version of a VLSI
systolic array for triangulating large augmented band form coefficient
matrices based on a recently proposed algorithm [4]. This restructuring
includes the addition and revision of some hardware in the suggested
array structure such that it can do strict upper triangulation (i.e.
resolve the diagonal to unity).

Fourthly, the development of a hardware interface system between
the host computer and the processing array will be discussed. This
interface is responsible for the adjustment of operands transferring

back and forth between the host computer and the peripheral array

6
processor. The interface is necessary since the number format of these
two computing structures is different. The overall block structure of
the interface will be presented and explained.

Finally, the proposed VLS| circuit model is simulated with variuos
parameters of word size, matrix bandwidth, matrix dimension and minimum
lithographic linewidth. The word size, which determines the width in
bits of the systolic array processing elements, is found from the second
step of the approach. The matrix bandwidth is found by reducing the
original bandwidth as much as possible. The matrix dimension is
- dependent on the size of the electrical utility network. The minimum
lithographic 1linewidth, A, is varied to project the trend of |. C.
technology. Lastly, in order to determine if the goal of load flow
throughput enhancement is achieved, the obtained time results are to be

compared with the results from the previous works [7, 8].

1.3 Contributions

The major contributions of this thesis are summarized as follows:

1. An existing VLS| systolic array algorithm based on concurrent
Gaussian elimination is successfully improved such that it can
effectively triangulate any augmented band form matrix to a

strict upper triangle and a unit diagonal.

2. The VLSI algorithm is successfully applied to a representative

7
load flow program and the accuracy of the load flow convergence

results are within tolerance.

A suggested interface is presented for the proposed special

purpose processor attached to a host computer.

The significance of wusing a VLS!I algorithm to relax the
computational bottleneck that occurs in many engineering
problems, specifically the load flow problem, is reinforced by

the data collected.

CHAPTER 11

BACKGROUND

2.1 Load Flow Analysis

Load flow analysis involves calculating power flows and voltages
for a specified utility system subject to the regulating capability of
electric generators, condensers, and tap changing under load
transformers. This procedure is used to determine a set of complex bus
voltages and line power flows representing the static operating
condition of the power system network. The analysis involves solving a
set of non-linear algebraic equations which is typically large and
sparce (< 3 ¥ non-zero elements). The set of equations, obtained from
nodal voltages and the network admittance, is solved for bus voltage
magni tudes and phase angles. Then, the voltages and phase angles are
used to calculate the power flows.

Although a power system is operated with three-phase generation and
loads, a single-phase representation is adequate because the system is
considered balanced. For each bus there are four possible parameters,
namely the voltage magnitude, the phase angle, and the real and reactive
power . Two of these four quantities are specified at each bus
representing one of three bus types: a voltage controlled bus, a load
bus or a swing bus. A swing bus, also known as a slack bus, must be
designated to supply the additional real and reactive power for

accommodating transmission losses inasmuch as these quantities are

9
unknown prior to the final solution.

Although there are many numerical methods that can be used to solve
the load flow equations, the most economical and effective one, from the
standpoint of computer memory storage and solution time, is an approach
employing the bus admittance matrix and the Newton-Raphson method [5].
This approach involves the derivation of a set of non-linear equations
which is used to express the specified real and reactive power in terms
of bus voltages and phase angles. A Jacobian matrix equation in polar

notation is derived which is in the form of Ax=b as follows:

aP :_aP
26 . DIEI IEI AS AP
..... . - feeene. (2-])
990 :_a0 ., AlE]I
as el BN |TTEN 4Q
where AP = real power mismatch,

AQ = reactive power mismatch,
A8 = correction to the nodal voltage phase angle,

AlEI

correction to the nodal voltage magnitude.

To initiate the procedure all bus voltages and phase angles are set
to the swing bus value. Next, real and reactive bus power and current
are evaluated. Then, the Jacobian matrix equation is formed and the
linear system is solved for the nodal voltage and phase angle
corrections. Now, a new set of bus voltages is derived using the
calculated corrections and the real and reactive bus power are
reevaluated. The process continues with convergence checked by

examining a tolerable power mismatch. If the tolerence is not

10
satisfied, the process continues iteratively until convergence results.

The computational bottleneck in the overall load flow method lies
in the solution of the Jacobian matrix equation at each iteration of the
Newton-Raphson approach. Many procedures have been developed to ease
this hindrance as much as possible [6, 7, 8]. One of these methods is
first to reorder the system of equations by a strategy which attempts to
locally minimize the number of new non-zero elements which are
introduced into the matrix during the elimination process. Then the
network variables are packed into a sparse data structure and a specific
form of Gaussian elimination, operating on one row at a time, is used to
acquire the upper triangular factorization [6].

Another technique makes clever use of a one-dimensional array
processor to achieve fast elimination [7, 8]. In this method,
peripheral attached array processors, such as the AP-190L, are wutilized
in the solution of the highly vectorizable elimination procedure. With
proper restructuring of the computer algorithm, savings of up to 64.5 %
of the overall solution time, compared to the traditional serial
computer approach, have been achieved [8]. However, as the power
networks grow much larger, a bigger array processor with larger internal

memor ies have to be designed for solving the problem at the same speed.

2.2 Traditional Load Flow Program Structure

As an initial step in this research, a traditional and
representative load flow computer program was brought up on the Michigan

State University CYBER-750 computer. Serving as a basic reference

11
program, a version of Philadelphia Electric Company's POWERFLO program
was obtained [9]. This program was originally modified at the
University of Pittsburgh to faciliate studies of this type*.
This program utilizes the Newton-Raphson approach with the solution
of the resulting linear equations by row-ordered Gaussian elimination
and subsequent back-substitution of the resulting strict upper

triangular matrix.

2.2.1 Program Structure

Although there are many procedures inside a standard load flow
package, only those steps involving the generation of the Jacobian
matrix and subsequent solution by Gaussian elimination are of interest

in this study. A brief explanation of these two steps follows.

1. The MAIN program calls a subroutine MATGEN which oversees the

matrix generation and factorization.

2. Inside MATGEN, the program starts looping over all the nodes in
. the system. A '"working row'" of the Jacobian is generated for

each node.

*Ne gratefully acknowledge the help of Professors M. H. Mickle and
W. G. Vogt, Department of Electrical Engineering, University of
Pittsburgh, for supplying us with the working version load flow
package.

12
3. For each 'working row" the subroutine ELIM is called to
eliminate all the elements of that row up to the diagonal. The
eliminated coefficients (factors) of the upper triangle are

then packed into a condensed and indexed form.

L. After all rows have been eliminated, subroutine BAKSUB s
called for back-substitution and thus the nodal voltage

corrections are obtained.

5. Finally, subroutine ADJUST is called to perform inter-iteration
adjustments and convergence is checked before the next

Newton-Raphson iteration is initiated.

6. |If convergence is not obtained, the loop is either terminated
(divergent case) or steps 1 through 5 are repeated until a

satisfactory solution is obtained.

The program flowchart is illustrated in Figure 2.1.

2.2.2 Jacobian Matrix Triangulation by Gaussian Elimination

Since the main concern of this research is in reducing the time
required in the factorization aspect of a load flow program, the exact
details of the elimination process will be explained in this section.

The solution scheme used in the standard load flow program

processes and stores only non-zero elements. This is done by storing a

NO

13

SUBROUTINE
(HATN) (MATGEN
SUBROUTINE GENERATE
MATGEN WORKING
ROW
SUBROUTINE SUBROUTINE
ADJUST FLIM
LAST
NODE
?
YES YES

SUBROUTINE

(END) BAKSUB

G

Figure 2.1 Structural flow of POWERFLO program.

14
compacted table of factors (upper triangle) and a compacted working row.
In addition, a set of pointers and counters for tracking the process are
required.

The elimination process is actually a triangular decomposition of
the Jacobian matrix by Gaussian elimination which is described in many
books on matrix analysis [10, 11]. However, in here, only non-zero
elements of each row up to the diagonal are eliminated and stored
according to the current pointers and indexed counters before proceeding
to the next row. This is shown pictorially in Figure 2.2.

The figure depicts the matrix form just prior to the elimination of
row i. Since only the non-zero elements of the upper triangle are
stored, it is not necessary to store all the resultant elements depicted
in the figure.

The form of each element shown in Fibure 2.2 is actually a set of
2x2 complex sub-entries, expressing the partial derivatives of real and
reactive power with respect to nodal voltage and phase angle (See
Equation 2-1). For easy reference, Equation 2-1 can be rewritten in the

form of Equation 2-2.

—
-

xxx>xcCcacc
XX X>xXxCCC
XX x>xCccCcC

> X >
> > X<
XXX —-~CC

Figure 2.2 Row-ordered elimination pattern
in the POWERFLO program.

where AP, AQ and AS are defined as before

and

AV AIEI/IEY,

H

oP/ a5,

z
n

(oP/31EI) - IEI,

(=
]

9Q/ 35,

-
n

(3Q/d1E1) < IEI.

Therefore, the Jacobian matrix derived from a system of

can be expressed in the form

After the elimination is complete, the matrix

upper triangular form

15

is

of

n+1

the

(2-2)

nodes

strict

1] 1]

! Nll Hln Nln

---------- . . .'.----.o.---.-.

]]

0:1 Jln Lln
[] ® []
° ° ™
o [] o

0:0 1 N !

: nn

Greeess @ O @ +crccrsiienienn

0:0 0 1

and thus ready for immediate back-substitution.

2.3 Banded Matrix

In this section, the description and advantages of reordering a
matrix to band form prior to performing Gaussian elimination in an array
processing environment are presented.

Any matrix, A, is said to be banded, or in band form, if all the
non-zero elements are clustered about the main diagonal. The bandwidth,

B, a measure of this clustering, is defined by
B = max {li-jl : ali,j) # 0}. (2-3)

For a structurally symmetric matrix, as in the case of Jacobian
matrix derived from the Newton-Raphson approach to the load flow
problem, the above bandwidth definition implies that the maximum width,
in number of elements, between the first and last non-zero entry of any
row is 2B+1. This maximum width will be referred to as the '"full
breadth" of the matrix. The bandwidth and full breadth are illustrated

in Figure 2.3.

2B+1

Figure 2.3 Bandwidth and full breadth
of a band form matrix.

There are several heuristic algorithms that have been developed to
reorder the matrix A to a reduced band form [12, 13, 14]. The two most
commonly used are the Cuthill and Mckee algorithm [13] and an improved
version described by Gibbs, et al [14]. These two algorithms were
basically developed with the same fundamental graph theoretic concepts.

It has been shown that matrix banding is theoretically the optimal
network ordering for systems to be processed on an attached array
processor architecture [7]. Furthermore, in one particular study the
banded form ordering on the array processor yields the fastest solution
time for networks less than about 1300 busses [7, 8]. This is
reasonable because for any sparse matrix, regardless of the non-zero
pattern, the total computing time required to resolve the upper triangle

by using vector row-ordered elimination on an array processor, is

18
bounded by a function of B and in the limit by N.
This can be demonstrated by considering an N-dimensional matrix A
of minimum bandwidth B. The time required to eliminate one variable

from any given row is

T=T + BT, (2-4)

P

where Ts and Top are the setup and unit operation times of the array
processor function providing scalar-vector multiply followed by
vector-vector subtract. This corresponds to the operation illustrated

in Figure 2.4,

J+B

VECTOR 1

—] N vecror 2

jt:isaj

Figure 2.4 Single variable elimination
from a band form matrix.

19

In this figure, only the shaded element and vectors 1 and 2 are
required to complete a given inner loop step. This is analogous to the
loop on index | of a FORTRAN coded procedure for the same row-ordered

elimination as follows:

DO 10 K=1, N
bo 10 J=1, K
DO 10 | = J+1, J+B

10 A(K,I1) = A(K,I)-A(K,J)*A (J,1).

Building on this, the time required to eliminate all the variables

of any row K is given by

2
T B-Ts + B -Top (2-5)

corresponding to those elements shown shaded in Figure 2.5.
The resolved elements to the right of the main diagonal must now be
divided by the diagonal entry. This adds one setup time and B more unit

operations and Equation 2-5 becomes
= . . . ' -
T (B+1) Ts + B+ (B+1) Top , (2-6)

where Top' is now the maximum operation time between the
multiply-subtract and division vector functions.
For an N-dimensional matrix, N such row eliminations are required.

Thus, an upper bound on the total elimination time is given by

TN(B) = N-(B—H)-Ts + N'B-(B+l)-T°p'. (2-7)

20

N
K — \\l\\\\\\\\\\\\\\

*:}BJ

Figure 2.5 Full row elimination from
a band form matrix.

Now, if a parallel pipeline structure such as a systolic array is

used, the total elimination time is given by

Ty(B) = (B+1)-T_ + N T (2-8)

As a result, since Ts' N and Top' are defined variables, to
minimize the elimination time implies the minimization of B for both
array and par;llel pipeline architectures.

In order to achieve the most efficient operation inside the
proposed VLS| array structure for matrix triangulation, all original
load flow bus and line data must be renumbered to reduced band form
beforehand. Also, as will be discussed later, the size of the systolic

computing structure is dependent on the bandwidth of the matrix due to

21
the structural properties of the hardware algorithm [4]. In conclusion,
reordering a matrix to reduced band form prior to triangulation not only
reduces the solution time but will also yield bounds on hardware

dimensions in an array or pipeline processing environment.

2.4 VLS| Systolic Algorithm for Matrix Triangulation

A systolic array processor is a system having a two-dimensional
configuration of processing elements (PE's) in a parallel pipeline
fashion. The processor synchronously pumps data between levels of PE's
performing part of an overall computation at each time step such that a
regular flow of data is kept up in the network. The algorithms use
distributed control achieved by simple local control mechanisms such as
stacked one-dimensional arrays of PE's located between rows of latches.
Ideally, these hardware algorithms are to be implemented on a single
chip or perhaps in a modular design on a few chips with the use of VLSI
technology. The modular approach will not be addressed here.

VLS| technology, however, places new constraints on computer
architects. For high-performance algorithms to be implemented at low
cost, the algorithm must possess the properties of regularity, local
communication, and parallelism and pipelining [15]. An early example of
this type of algorithms is the systolic array for solving linear systems
of algebraic equations proposed by Kung and Leiserson [16]. This
structure, built of simple inner-product step and division function
processors, can be used to carry out L-U decomposition on a full matrix,

{A}. A revised version appeared, advancing Kung's design, in which the

22
proposed VLS| architecture would perform L-U decomposition of an entire
linear system of equations, {A:g} [3]. However, in both of these
examples, practical details such as input/ouput circuits and processing
cells designs were not considered.

Recently, an improved systolic structure was developed by Hsu and
Shanblatt [L4]. This structure, by isolating a row of processing cells,
will triangulate an arbitrarily large augmented band system {A:g} to
upper triangular form {g:g} aligning the b and d vectors. Moreover, in
this work, the potential |/0 bottleneck was studied with respect to the
overall solution time, and, the processing cells as well as |/0 port
circuit candidates were designed and evaluated.

The structure proposed by Hsu and Shanblatt utilizes both parallel
and pipeline concepts and performs the triangulation in 2N+2B time
steps. Moreover, it requires B(B+1) inner-product cells and B division
cells, where N and B are the full dimension and the reduced bandwidth of
the coefficient matrix, respectively.

In order to illustrate this, consider an Nx(N+1) augmented matrix
system {A:Q} with a bandwidth of 3 as depicted in Figure 2.6a. After
the upper triangulation has been performed, the system appears as
illustrated in Figure 2.6b. The array structure corresponding to this
matrix example is shown in Figure 2.7. A port-coefficient time table
for the triangulation of this system is given in Table 2.1.

In Figure 2.7, the inner-product cells are called MAC's (Multiply
and Add Cells) and perform w=xy+z, x=x and y=y. The complementation
circle shown on the input of the topmost row of MAC's refers to a two's

complement operation. The DC's (Division Cells) perform g=e/f and f=f.

23

r 3
a3y, 33 3y I by
a1 3 33 3y, 3 I by
331 33 2333 33, 33z - I by
a1 3 343 3y . I by

{ a52 as3 | b5 r

) |
|
|
§ a3\ (N-3) ®N(N-2) 2N(N-1) NN bNJ

Figure 2.6a Augmented matrix {A:b}.

- 3
Upp Yy Y3 Yy bod
Upp Ypz Yy Ypg I dy
sz Y3y Y3 lods
uhh uh5 . . | dh
< Uss } 45 L
|
|
|
u | d
L NN N

Figure 2.6b Augmented upper triangular
matrix {U:d}.

oo

Figure 2.7 Computing array structure for matrix
of arbitrary dimension with B=3.

7 214

LoN+6

13

3

Table 2.1

Iy 1

N
|

312 22
]

%23 233
|

234 Ay
|

%45 355

25

Port-coefficient time table.

13

Y14
Y24
25
35

26

The D section is isolated in order to correctly align b vector
elements, which subsequently became d vector elements, during the
triangulation. This right-hand-side vector is pumped into input port
ID and out of output port OD.

Input and output operands are pumped in and out of the processing
array through the 1/0 ports, ll-l7, ID and o]-oh, OD. Synchronism is
provided by latch arrays which are depicted by thick black lines between
the rows of PE's. The number of required input ports is given by the
full breadth of the matrix and right-hand-side vector input port, or
2B+2, while tge number of output ports is defined by the bandwidth plus
a diagonal and right-hand-side output port, or B+2.

The operands shown in the time table (Table 2.1) are interspaced
with zeros and ones to provide proper synchronism among array
coefficients. The use of these ''spacers" will be explained in next
chapter.

As the time table shows, 2N+2B (2N+6 in this example) time slots
are required to obtain {g[g}. The algorithm may therefore be classified
as an 0(N) algorithm. This is on the same order as other systolic array
algorithms, which require many more processing cells for this type of
problem [3].

In conclusion, all of the above mentioned algorithms have the same
important features: regularity, expandability, and extensive use of
parallel and pipeline concepts. This makes them particularly well
suited for VLS| implementation. Based on these algorithms, a revised
version pf a VLS| algorithm for band matrix triéngulation more conducive

to use in the load flow program will be presented next.

CHAPTER 111

SYSTOLIC ARRAY FOR TRIANGULATION
OF LOAD FLOW MATRIX FORM

The development of an improved version of the VLS| algorithm for
fast band matrix triangulation will be presented in this chapter. This
algorithm is to replace the routine for matrix triangulation inside a
serial computer load flow program such that the overall solution time is
reduced at no loss of accuracy. As a starting point towards practical
realization, the number of fixed-point bits for load flow convergence is
determined because the present algorithm is constrained to a fixed-point
architecture due to chip size and lithography limitations. This is done
by executing a modified MSU load flow program version on CYBER-750
computer. A method for combining, or interfacing, this structure to the

serial host computer will be explained in next chapter.

3.1 VLS| Array Structure Modification

In standard load flow studies triangulating the A matrix by a
. serial computer program results in a strict upper triangle with a wunit
diagonal [9]. Therefore, it is necessary to modify the algorithm of [4]
to match this requirement.

Referring to the structure and time table shown in Figure 2.7 and

Table 2.1, the diagonal elements of the resultant upper triangle (uii’

27

28
i=1,2,...N) pumped out of the 0] port, are not necessarily equal to one.
In order to obtain a definate unit diagonal, all of the elements in each
row must be divided by the diagonal element of that row before they are

pumped out of the array. That is

uij' = uij/uii' (3-1)

and d,' =d./u.., (3-2)
for all i=1,2,...N and j=i,i+l,...i+B.

Since the diagonal elements must be equal to one - after the final
division, at any time slot, the maximum number of the elements which
must be divided by the diagonal is given by B+l. This includes
B A matrix entries and the right-hand-side entry. As a worst case
result, by adding an extra row of B+l division cells to the array, a
strict upper triangle may be otained. However, the size of the
structure will be increased tremendously since the size of a DC is much
larger than that of an MAC [4].

Fortunately, by close examination of the structure, it is found
that the additional division as described above can be done by ''cycle
stealing'" instead of the addition of another row of DC's.

Focusing now on the present row of DC's in the example, a,
a3] and an must be divided by an at time tk’ At ts. though, null
divisions take place (0:1) and this is the case during every second time
slot from then on. In other words, at every ti+B+l’ where B=3 and

i=1,3,5,...2N-1, the operation inside the DC's is zero-divided-by-one.

29

Indeed, the null operations are unnecessary for the process of
calculation because the results of these operations are always
subsequently multiplied by zero later in the procedure. Therefore, no
matter what value is obtained from the division, it has no effect on the
overall solution. As a result, cycles stolen during these operations
can be wused to perform the additional division required to unitize the
diagonal. This is accomplished by adding multiplexers (MUX's) and
latches to the array structure. However, only B DC's are available and
B+1 divisions are required at a time. Therefore, one additional DC must
be added to the structure.

In order to illustrate this modified algorithm, the same augmented
system [A:g} with a bandwidth of 3, as depicted in Figure 2.6a, is
considered. After the upper triangulation is complete, the system of

equations is as shown in Figure 3.1. The modified computing structure

e D
Toouyyt Uyt gy oy
1 u23' uzh' u25'] dz'
1 u3h' u35' . | d3'
1 Uh5' . | dh'

Figure 3.1 Augmented strjct upper triangular
matrix {U',d'} with unit diagonal.

30
corresponding to this example is illustrated in Figure 3.2. A
port-coefficient time table for the triangulation of this system is
given in Table 3.1.

The multiplexers (MUX's) shown in Figure 3.2 are controlled by a
simple true and false signal synchronous with the clock. At every even
time slot, t2, th’ t6..., all lines marked L‘ are selected to pass the
data. However, at every odd time slot the L2 lines are selected.

The stack section (S section) depicted in the same figure is
composed of arrays of latches which serve as an FIFO
(First-iIn-First-Qut) memory stacks. The number of stacks, as well as
the number of latches inside each stack, varies with B. The details of
their relationship will be explained in Section 3.2.2.

Referring to this structure (Figure 3.2) and the corresponding time
table (Table 3.1), during the period th all lines marked L] are selected

to pass the operands a alz. a,,, and a, to the row of DC's and enter

13
a, (same as u, as defined in Table 2.1) into stack S.. At the next

5

slot, ts, Lz's are selected to pass and store operands. Simultaneously,
Uy propagates to the next stage of 55 and u,, is put onto Sh' At t6’

L,'s are selected again to pass operands as well as push u,, onto S_. At

1

the same time, while u

5
n and u,, are pushed further along in 55 and Sh.

u]3 is put onto S3. Eventually, at the end of t8’ dl’ Up» ul3, ui, and
u;, are at the topmost latch of S] through SS’ respectively. Then,

during t Lz's are selected such that d], and U,y are all

9’

simul taneously divided by Uiy in the DC's. Therefore, u

(]]]
12 * Y130 Yy

and d]' are pumped out of output ports, 0]-03 and 0D at the end of t9.

After this at every two time slots, a new row of the upper triangle

31

S -
: b o] dtat] fadh
: [U
= S9)..59..54. 51
$ Section bC 0 oc oc
. 0 0 0 0
MAC MAC MAC
MAC MAC MAC
(MAC MAC
t '
Ll Y, Y|ty I Ig

D Section :

Figure 3.2 Revised computing array structure for matrix
of arbitrary dimension with B=3,

toN+7

2y

25

836

Table 3.1
, 1y

%12
%13 %23
3, 231
235 25
246

Revised port-coefficient time table.

32

13

Yoy

35

Y6

U1y

25

036

33
elements with an implied unit diagonal, is pumped out. Because of this
implied unit diagonal, the number of output ports in this modified

structure is one less than that of the original structure.

3.2 Computing Structure and Timing

The special purpose peripherial array processor for band matrix
triangulation is mainly composed of input/output circuits and a
computing array structure. This processor, consisting of those
circuits, is to be attached to a serial host computer. The overhead
timing and data controls of the peripheral processor are provided by the
host computer through interconnected lines. The internal timing control
can be supplied by either a built-in clock circuit or the host computer;
however, the former method is preferred because it only requires a small
increase in overall hard;are size. Internal timing controlled by the
host computer immediately increases the connection complexity between
the two machines.

Operand 1/0 for the computing structure fundamentally suffers from
a potential bottleneck problem due to practical fabrication limitations
of pin-out and packaging considerations. Fortunately, through careful
design of 1/0 circuits, the 1/0 bottleneck can be avoided [17]. This
will be shown among the results presented in Section 6.1.

The computing array depicted in Figure 3.2 requires only five
schematic logic circuit diagrams of function blocks, namely multiplexer,
latch, stack, MAC and DC. The design of each function block is based on

previous work [4] and crucial details of these designs, as well as

34

timing control, are explained in the following sections.

3.2.1 Multiplexer

A 2-to-1 multiplexer (2:1 MUX) is simply constructed by a pair of
pass transistors under mutually exclusive control of a single signal
line with an additional inverter. This is illustrated in Figure 3.3.
The pulse width and frequency of the control signal (CS) depend on the
sequence of data flow or operating time step. Whenever this signal s
true (high), the right-hand-side transistor is turned on. This allows
the data in line L] to pass through. |f the signal is false (low), the
left-hand-side transistor will be turned on allowing data in L2 to pass.

The MUX's inside the computing structure are built solely from this

basic block and are simply controlled by a signal synchronous with the

CS —»

T

Figure 3.3 2:1 multiplexer.

35

system clock. The frequency of this signal is half of that of the
signal controlling the latches between rows of PE's. Therefore, the
Ll and L2 lines are selected alternately. This control signal, which
will be called a, is shown in the timing diagram presented in
Section 3.2.4.2.

Due to the nature of the modified triangulation algorithm, the
L] lines are selected at either every odd or even time slot depending on
the bandwidth. |[|f B is an odd number, as in the previous example where
B=3, L‘ lines will be selected at every even time slot. This is because
it requires B time steps to initially fill up the topmost row of MAC's.

Therefore, at every t +i° where i=0,2,4,...2N-2, all of the L] lines

B+1
must be selected to pass the operands to the DC's as well as to the

stack.

3.2.2 Latch and Stack

All latches are dynamic and consist of two pass transistors and two
inverters [18]. A two-phase non-overlapping clock is required to load
and refresh the latch data.

The memory stacks, S]-SS, inside the S section shown in Figure 3.2,
are merely arrays of dynamic latches. The main function of these stacks
is to consecutively store the individual elements of each row of the
resolved upper triangle and right-hand-side vector. When all elements
of a complete row are available in the topmost latch of each stack, they

are simultaneously enabled into the DC's through the L, MUX lines.

2

However, since L, lines are selected according to the even/odd control

2

36

signals, the operands (a complete row of elements) may have to wait
another cycle before they can reach the DC's. This is to avoid a
potential data flow conflict that may happen in the MUX's. Therefore,
another function of the stacks is to serve as a delay circuit if such
conflict exists.

By close inspection of the structure (Figure 3.2) it is seen that
the last element of a particular row that is put onto the stack is the d
vector element. |In general, these d vector elements are actually
available from the upper left corner latch inside the D section at every

odd time slot starting at t23+]. However, L., lines are selected only at

2

every t,,. slot and L, lines are selected at every

B+i 1 slot.

LB+

Therefore, all the elememts of a complete row can be pumped into the

DC's through the MUX's at either t if Bis odd or t ., if Bis

2B+1+i 2B+i
even (where i=2,4,6,...2N).

In the example of B=3, L2 lines are selected at every odd time slot
and one complete row of elements is also available at every odd time
slot starting from t7. Therefore, there is one latch inside the stack
S] and all of the other stacks have an extra latch for producing a delay
of one time step such that the sequence of data flow is properly

adjusted. But, for an example of B being even, these L., lines are

2

selected at every even time slot, and a complete row is obtained at

every t for i=0,2,4,...2N-2, which is always odd. Therefore,

2B+1+i°

this complete row can be latched directly into the DC's at t which

2B+2+i
is always even. As a result, a row of latches inside the stack section
actually can be saved without disturbing the proper sequence of data

flow if B is even.

37

Based on these facts, the number of stacks, j, and the number of
latches, L, inside each stack Sk are proportional to the bandwidth, B,

and are given as follows:

jo=2-B/27+ 1, (3-3)
and L(Sk) = k, (3-4)
where k=1,2,...].

The notation [x7] refers to the smallest integer that is not less than

the real number x.

3.2.3 MAC and DC

The structure of an MAC is merely a Baugh-Wooley multiplier with an
extra row of full-adders at its bottom edge [4, 19].

The convergence division algorithm [20] is chosen in the DC design
because the number of iteration steps can be determined a priori in
terms of word size and software convergence checking is not required.
In addition, since this algorithm requires mostly iterative multipling
procedures, the Baugh-Wooley algorithm can be applied again such that
there is no loss in structural regularity.

This division algorithm can be partitioned into several subtasks.
Thus, the algorithm can be realized in a pipeline structure having rows
of latches located between rows of multipliers. The details of the

numerical formulation of this algorithm can be found in [20] and an

38

example of the pipeline structure is presented in [L].

Due to the constraint of synchronous data flow between the rows of
DC's and MAC's, the latch-to-latch time between rows of MAC's is
constrainted by that of the DC. This is because the operands that will
be pumped into the DC's are obtained from the topmost row of MAC's but
the calculation of these operands requires previous results from the
DC's first. |In other words, there is a tightly coupled linkage between
the DC's and the topmost MAC's. Therefore, eventhough the division
algorithm can be pipelined, the worst case time slot is still the sum of
all segment times. So, pipelining the division algorithm does not help
in increasing throughput.

In addition, due to the nature of the convergence division
algorithm, the number of iteration steps, m, of multiplication varies
with the word size of the operands. The number of iteration steps is

given by
m= rlogz(n)1. (3-5)

where n is the word size of the operands. Therefore, the number of rows
of multipliers in the pipeline structure is alsom. This implies that
the hardware size of a DC is directly proportional to m times the number
of multipliers in each row. As a result, an improved DC structure with
drastically reduced hardware having approximately the same speed as
before is developed next.

The improved structure has only one row of multipliers and is
independent of m. This original design is illustrated in Figure 3.4,

In this figure, the latches and MUX's have the same structure as

DIVIDEND
SHIFT

nxn
MULTIPLIER

l

LATCH

N' (146)... (1+61)

SHIFT

REGISTER [*

2,

Figure 3.4 An n-by-n convergence

39

D
n
DIVISOR | J SHIFT BIT
SHIFT COUNT
1-5
L ¢
MUX
1-61
i
ADDER
1
(2-(1-67))
ll+61 nxn
MULTIPLIER
TATCH

SHIFT BIT
..... COUNT

algorithm based DC.

division

Lo
described in Section 3.2.1 and Section 3.2.2. However, the pulse width
and frequency of the signals for these latches and MUX's are different.
These control signals will be explained and shown in the timing diagram
presented in the next section.

After the dividend and divisor, marked as N and D in the figure,
have been shifted, lines marked L] are selected to pass the shifted
results to the adder and subsequently to the multipliers. This
shifting, integral to the convergence division algorithm, is necessary
in order to obtain a faster convergence [20]. The L, lines are selected
only once in every PE's segment time slot. Then, the partial results,
N' (1+8) and (1-6) (1+8), held by the latches are looped back to the adder
and multipliers through the L2 lines. This loop continues until the
result, N'(I+8)...(l+8i), where i=2" (m is defined in Equation 3-5), s

obtained. Finally, a convergent quotient, Q, is available after the

result has been shifted back according to the original shift bit count.

3.2.4 Timing

Recall that the whole computing array is pipelined in nature and
therefore the operation time, top' must be at least the worst case
segment time. In the array structure shown in Figure 3.2, the maximum

segment time should be the propagation delay from the MUX's to those

latches between the DC's and MAC's. As a result,

* twux * toc * tLaTcw® (3-6)

Since tMUX and tLATCH are simply the total delay of two pass transistors

h

and two inverters, the important focus must be placed on tDC'

3.2.4.1 Internal DC Timing

Referring to Figure 3.4, the number of loops routing from the MUX
through the adder, multiplier, latch and back to the MUX is given by m
(Equation 3-5). Let te, to, and t, be the shifting, adding, and

multipling time, respectively. Then

ta. = 2¢t_ + me(t
s

o

mux Pttt

LATCH * (3-7)

The control signals for the MUX's and latches inside a DC are not
the same as those controlling MUX's ﬁnd latches in the external
computing array. The two-phase non-overlapping clock signals of the
latches in the DC, ¢] and ¢&. must be at a frequency at least m times
faster than l/top such that m iteration steps, plus the shifting, can be
done within top' Specifically, this frequency, fL’ can be obtained from
Equation 3-6 and Equation 3-7.

The signal, B, controlling the MUX's inside the DC must be
synchronous to that for the latches as described above. At every first
cycle within top' L] lines must be selected in order to pass the initial
operands, N' and (1-8) (See Figure 3.4). Then, during the remaining
cycles, L2 lines must be selected instead. Therefore, assuming relative
high voltage is "true" or "1", the control signal for these MUX's can be
veiwed as a pulse signal with a pulse width approximately equal to the
reciprocal of the frequency of the control signal of the latches, or

]/fLo

L2

3.2.4.2 External Computing Array Timing

The rows of latches amid the PE's, as well as inside the stack
section, oversee the operand timing between each row of PE's (See
Figure 3.2). These latches are controlled by two-phase non-overlapping
clock signals, ¢l and ¢2. The time period of these signals, should be
approximately equal to the maximum segment time, top’ which implies that
the frequency of the clock is l/top.

As a result, based on the above assumption, an approximate function
block timing diagram is shown in Figure 3.5. In this figure, ¥V and B
are the control signals for the latches and MUX's inside the DC, and ¢
and a are those for the latches and MUX's outside the DC, respectively.
Notice that 5 iteration steps of multiplication inside the DC (word size
of 32 bits) is assumed for illustration.

Finally, the overall throughput time depending on the bandwidth of
the system matrix, B, is derived. As shown in Table 3.1, the time
required for triangulating an Nx(N+1) matrix with B=3 is 2N+2B+1 or 2N+7
time slots. This is true for all odd B. However, for all even B, the
time required for triangulating the same system is ZN+28. This is
because an extra row of latches inside the stack section is removed (See
Section 3.2.2). Therefore, a general equation expressing the overall

througput time, T(N,B), is

T(N.B) = t (2N + B+ 2-[8/2]). (3-8)

2

L3

‘ i
l L}
I]
|

'4)2 !
! I
' []
| '
I , ‘
U 1

B<4_______7_
! '
| '
' [}
|

'

' (]
|
'

a !
! '
' [}
' 1]
']
' (]

1 ,
! 1
‘]
|

¢ '
+—
|
|

— top

Figure 3.5 Latch and multiplexer control
signals timing diagram.

Ly

3.3 Fixed-Point Consideration for Load Flow Convergence

The computing structure presented in this thesis is basically
constrained to a fixed-point binary number system due to the nature of
its processing element designs dictated by available chip real estate.
However, an approach circumventing a true floating-point solution is to
consider processing large fixed-point numbers which are pre-adjusted
mantissas of previous floating-point coefficients.

In order to allow the PE's of the computing array to operate in a
common fixed-point number system, the selected position for the radix
point is at the left extreme of the magnitude position of the number.
Thus, the radix point lies between the sign bit and most significant bit
which dictates that all fixed-point numbers be strictly less than one.

In adjusting floating-point numbers to this fixed-point scheme the
host computer or an intermediate processor must first sort out the
maximum operand among those that will be sent to the processing array.
The mantissa value of this maximum operand is normalized and the
exponent value is stored. Then, all of the operands are pre-adjusted in
floating-point to the same exponent value as the maximum operand. Next,
the mantissa of each operand is truncated according to the number of
fixed-point bits defined by the array structure design. Upon return of
the upper triangle and right-hand-side vector elements, post-adjustment
or post-normalization is done by the host computer or the intermediate

processor according to the retained fixed exponent value.

L5

Although this approach and the ultimate convergence of the overall
non-linear system are extremely vulnerable to the dynamic range of the
input matrix entries, the approach still can be applied to the system
matrix derived from load flow analysis if all of its coefficients are
well tempered and of tight dynamic range. Since the number of
fixed-point bits of each word governs this dynamic range, a study is
made to determine the minimum number of bits for which load flow
convergence is obtained.

First, a subroutine, called NORMAL, is designed and incorporated
into the MSU load flow prégram version. This subroutine serves to
normalize all numbers that are involved in the calculation of the upper
triangle and right-hand-side vector elements. These numbers are
actually the elements of the ''working rows' described in Section 2.2.1,
plus any numbers that are directly or indirectly calculated from these
elements. Specifically, these elements of the working rows are H, N, J,
L, AP and AQ as depicted in Equation 2.2.

The main function of the subroutine NORMAL is to simulate the
effect of fixed-point round off. Whenever a number is transferred from
ELIM to this subroutine, the number is first converted to a fixed-point
binary format and then truncated to a predefined number of bits.
Finally, this truncated binary number is converted back to the original
representation and returned thus incorporating the numerical effect of
truncation.

The whole program (MSU load flow program version with edited ELIM
and annexed NORMAL) is then individually executed with networks

consisting of 43, 49, 105 and 150 busses. For each network, the program

L6
is consecutively executed varying the number of fixed-point bits and
determining whether or not convergence results. Too few bits cause
undue rounding error and lead to divergence of the overall
Newton-Raphson formulation. Therefore, the purpose of the above
procedure is to determine the minimum necessary number of fixed-point
bits (word size) required for convergence. Subsequently, this number
will be wused as the parameter in the simulation of the VLS| array

structure.

CHAPTER |V

A PROPOSED HOST PROCESSOR/PROCESSING
ARRAY [INTERFACE

The most effective near term approach for enhancing the load flow
computation speed is to reduce the solution time of the system equations
derived from the Newton-Raphson formulation. This can be achieved by
attaching the VLS| systolic array processor presented in the previous
chapter to a serial host computer such that the triangulation s
efficiently executed in a parallel pipeline fashion. Thus, a designate
goal of this research is to simulate the interface of these two
computing structures and quantify the enhanced processing throughput of
load flow solution.

Generally, incompatibility arises when two computing systems,
differing in number format or representation, are assembled. For
example, the proposed VLS| array structure is limited to two's
complement fixed-point fractional binary number operation while the host
computer used in this project, the MSU CYBER-750, is basically a one's
complement floating-point binary number computing system. In addition,
the position of the radix point of floating-point numbers inside the
' CYBER-750 is at the right extreme of the mantissa. Therefore, pre- and
post-adjustments of the data (operands) transferring back and forth
between these two systems must be made to avoid a modification or

redesign of either system.

L7

L8

As described in Section 3.3, the operand adjustment can be done by
either the host computer or an intermediate processor. More details of

these two methods are discussed in the following sections.

L.,1 Operand Adjustment by Host Processor

An obvious advantage of using the mainframe computer for operand
adjustment is a savings of additional hardware cost. This is because
the VLS| array processor can be attached peripherally to the host
computer by simple interconnection with data and control lines.
However, this is under the assumption that the host computer can provide
an adequately fast memory access through an operational DMA channel such
that data transfer time between the host computer and the VLS| processor
is less than the 1/0 time of the VLS| array.

First, the structure of the load flow program must be reviewed.
Inside the subroutine MATGEN, the program starts looping over all the
nodes in the system. A '"working row'" is generated for each node and
then eliminated (triangulated) by calling subroutine ELIM. The elements
of this working row are actually H's, J's, N's, L's, AP's and AQ's as
depicted in Equation 2-2, which are exactly the elements of the
augmented matrix. Therefore, this working row can at most be composed
of two single rows of elements. The column size of the Jacobian matrix
is, at most, equal to 2N' for a system with N'+1 busses including the
slack bus. Thus, the maximum number of single elements is 2N'x2N' plus

2N' right-hand-side (augmented) vector elements. If this system is

L9
reduced to a bandwidth of B', the maximum number of elements will become
2N' (4B'+3) - (2B'+1) (2B'+2) plus 2N' augmented vector elements. In other
words, the wupper bound Jacobian matrix bandwidth, B, and dimension, N,

are expressed as follows:

B=2B'+1, (4-1)

N = 2:N'. (4-2)

The upper bound matrix full breadth then becomes LB'+3.

Since the elimination (triangular factorization only) procedure is
carried out for each node, it can be described as a piece-wise
elimination process. Therefore, the total elimination time is the sum
of all the nodal processing times. Also, the operation of finding the
operand of maximum absolute value can be started when each working row
is generated.

Finally, according to the normalization procedure described in
Section 3.3, the pre- and post-adjustments of the operands carried out
by the host computer, the CYBER-750, can be summarized in the program
flowcharts illustrated in Figure 4.1 and Figure 4.2. The number of the
operands which will be normalized is the only parameter in the program.
Unfortunately, as described before, this number is directly proportional
to NxB. Therefore, the time required for the normalization increases as
the size of the network increases, which will eventually slow down the

overall solution throughput.

S

INCREMENT
's MANTISSA

OVERFLOW
?

SHIFT RIGHT
AND
INCREMENT
S's EXPONENT

NO

3

S

STORE
's EXPONENT

50

OVERFLOW

SHIFT RIGHT
AND
INCREMENT

\]
a,'s EXP

j=S's EXP -
a,'s EXP

YES

NO SHIFT

la,'s MANTIS
LEFT
j BITS

STORE
a,'s MANTIS.

x

INCREMENT

ai'sMANTIS.'_"® (D)

Figure 4.1

Program flowchart for
operand pre-adjustment.

51

()

“1"1'“k
I ©
LET
j =
S's EXPONENT
— SHIFT LEFT
AND
j=3-1
SHIFT LEFT}
AND ‘-d\
j=3-1
STORE ui
CONCATENATING
WITH j

O
i=1+1

DECREMENT
u, (MANTIS.)

=)

Figure 4.2 Program flowchart for
operand post-adjustment.

52

L.2 Operand Adjustment by Intermediate Processor

In this section, a hardware interface system between a host
computer and the VLS| array processor is discussed in terms of function
block operation. This interface, an intermediate processor, is
responsible for the adjustments described before. It is assumed here
that the operation of finding the maximum absolute operand is done by
the host computer during the procedure of generating the Jacobian
matrix. Therefore, the intermediate processor only serves to pre- and
post-adjust the operands. The advantage of using this intermediate
processor is a savings of time when compared to the method explained in
the previous section.

The overall block structure of the intermediate processor, which
operates in pipeline fashion, is shown in Figure 4.3. In this figure,
the mantissa and exponent busses have m and e lines, respectively. The
number m must be equal to or greater than the number of fixed-point
bits, n, of the operand width inside the VLS| array processor. Ifm is
greater than n, these n lines (input to and output from the array
processor) must be connected to the most significant bit (MSB) positions
(including the sign bit) of m lines. Likewise, the m lines inpht from
and output to the host computer will be connected to the MSB's of the
mantissa bus lines inside the host computer. Thé number e is the number
of bits in the exponent field of the host computer. The left half

portion of the structure performs the pre-adjustment of the operands

53

:

:

'

!

ADJUSTER

SUBTRACTER

‘

!

DECODER

I

RIGHT
SHIFTER

:

:

BUFFER

.}m

|
|
|
|
|
A
|

HOST
Mantissa Exponent COMPUTER Exponent
m %@ | e ?im
BUFFER BUFFER BUFFER BUFFER

!

i

[
[
[
T

ADJUSTER
LEFT
SUBTRACTER SHIFTER
Ni— F
1)
DECODER
Lznc
3
1
BUFFER

fm

VLSI ARRAY PROCESSOR

Figure 4.3 Function block structure of an intermediate

processor for pre- and post-adjustment.

54
traveling from the host computer. The right half portion operates the
post-adjustment of the operands resulting from the VLS| processor.

Both of the adjusters depicted in the same figure function as a
number format adapter. Therefore, the internal structure is dependent
on the format of the input and output operands. The adjuster inside the
left half portion converts the mantissa of an input operand in any
format to a two's complement form. For example, if the normalized
mantissa and exponent of the input operands are in one's complement
representation (e.g. from the CYBER-750) and the radix point is at
either the right or left extreme of the magnitude of the mantissa, the
adjuster must include an incrementer for converting the mantissa to
two's complement form. No increment of the exponent is required because
the exponent will not be transferred to the VLS| processor. Thus, the
exponent can be in either biased or unbiased form. In case an overflow
results after the mantissa's increment, the whole mantissa except the
sign bit will be shifted right once with trailing "0" (if the number is
positive) or "1" (if negative) and its corresponding exponent value must
be incremented by one. A possible design of the adjuster is illustrated
in Figure 4.4 based on the pipeline concept.

I1f, however, the input operands are in two's complement format,
this .portion of the adjuster can be omitted. I|f the input operands are
not in a normalized form, a leading-zero detection circuit (LZDC), a
decoder and a left shifter for the mantissa and a subtracter for the
exponent may be required additionally. Even in this case the adjuster
can still be divided into pipeline segments. Therefore, it is assumed

that the adjuster can always be designed in a pipeline structure which

55

Mantjssa Expopent
m e

r— 1 — = = |

overflow="'1"' ’

INCREMENTER

! |
| 1 P |

| RIGHT SHIFTER je—r ADDER '
m e

Figure 4.4 A sample internal block
structure of an adjuster.

is crucial to avoiding a potential interface bottleneck.

The adjuster inside the right half portion of the processor always
changes the input mantissa from two's complement form back into the
original number format. For the same example of one's complément
format, the input two's complement mantissa is initially decremented and
then a test determines if the MSB next to the sign bit is still "1, |If
not, the mantissa without the sign bit will be shifted left once with
trailing "0" or "1" and the corresponding exponent value must be
decremented by one. The strﬁcture of this adjuster is thus composed of
a decrementer, a subtracter (or another decrementer) and a left shifter

which are interconnected similar to the structure shown in Figure L4.4.

56

During the pre-adjustment, the maximum operand found beforehand
appears first followed by other operands in row-ordered form. These
operands are pumped into the pipeline structure through the receiving
buffers. At the second stage, the latches marked as Ls in Figure 4.3
have the same structure as that of the others, but they have a different
input control. Once the very first exponent, the exponent of the
maximum operand, has been input into these latches, no other exponents
can be put into them. Therefore, this exponent will be kept stable by
constant refreshing for use as the subtrahend for the subtracter in the
next stage as well as in the post-adjustment portion. .As a result, the
maximum exponent is consistantly subtracted from all other exponents.

Finally, before all of the adjusted mantissas, except the one of
the maximum operand, are pumped into the VLS| processor through the
output buffer, they are shifted right (with trailing "O" or "1')
corresponding to the result obtained from the exponent's subtraction.

During the post-normalization, triangulated results are returned
from the array processor through a receiving buffer. These results are
pumped into a leading-zero detection circuit (LZDC). Subsequently, the
result of the detection is used as a minuend and decoded as a control
signal to be sent to a subtracter and a left shifter. Inside the
shifter, the mantissa is shifted with trailing "0" or "1" again
depending on its sign. Eventually, after the shifted mantissas and
subtracted exponents have been adjusted back to the original number
format, they are transferred to the host computer through the output
buffers. A1l of these output buffers as well as the receiving buffers

can be first-in-first-out memory buffers if necessary for speed matching

57
(e.g. if a DMA channel is operational).
Latches control the timing of the process in the same way as those
in the VLS| array structure. Therefore, the processing time, Tp. can be
described by the standard pipeline processing equation,

Tp =ty (=Dt (4-3)

p

where ts = setup time,
top = longest segment time,
n = number of operands.

The segment time, top’ can be determined from the structure shown in
Figure 4.3. Assuming the adjuster can be pipelined (See Figure 4.4),
all of the shifters are barrel shifter;. subtraction is pipelined into a
complementation and addition, and, the decoder and the LZDC are
sufficiently fast (a total 5 unit gate delay LZDC has been described by
Chang and Fisher [21]), top is simply the addition time.

As a whole, performing the pre- and post-adjustments of the
operands by this intermediate processor is better than utilizing the

host computer from the view point of data transfer time and arrangement.

This is because execution in this processor is pipelined.

CHAPTER V

SIMULATION DEVELOPMENT

The main purpose of the circuit simulation is to quantify the
overall triangulation time as well as the chip area of the improved VLSI
array structure including 1/0 circuits. The triangulation portion
represents the actual triangular factorization encountered in the load
flow calculation except that fixed-point arithmetic is employed.
Therefore, the piece-wise eliminatidn time as discussed in Section L.1
will be replaced by the simulated processing time.

The estimation of the chip area, though it does not affect the
triangulating process, will project a basic trade-off comparison of chip
size versus matrix bandwidth.

Several fundamental parameters that may be manipulated in the
simulation are minimum lithographic linewidth (A), word size, matrix or
network bandwidth (B or B'), and matrix or network dimension (N or
N'+1) .

In particular, the manipulation of A can track current trends in
I. C. fabrication technology and thus projects the reality of the
implementation of the proposed VLS| systolic array algorithm. A "\
model", a layout geometry design tool introduced by Mead and Conway
(18], assumes that the permissible layout linewidths and spaces along
the diffusion, polysilicon and metal lines can all be scaled down in

linear dimension. Therefore, the geometries of layout elements can be

58

59
described proportionally in terms of current and projected minimum
1ithographic linewidth. As the i. C. fabrication technology
advances, A decfeases and thus the layout geometries also decrease
proportionally.

In addition to the A model, a revised '"7 model'", a simple
arithmetic model for computing propagation delay of a transistor level
circuit, is used to relate the switching speed of a gate and overall
processing time of triangulation [4, 18]. The original 7 model
acknowledges that the delay time of a node depends on the total
capacitance of that node together with the gate capacitance and transit
time of the driving transistor [18]. However, the transit time, 7, s
the fundamental 1limit on the switching speed of the gate. In a
practical circuit, the speed of MOS (Metal-Oxide-Semiconductor) device
operation is determined by the speed with which capacitors can be
charged and discharged [22]. Therefore, the revised model assumes that
"T" jis the discharge time for a basic inverter coupled with only one
identical inverter. Also the gate effective capacitance of every logig
gate is assumed equal. Thus, the simulation results in the propagation
delay calculation are more realistic than the 7 model since it wuses
discharge time, T, not just ;ransit time, 7. Moreover, this simplifies
the process of estimating total load capacitance [4].

The number of bits per word (word size) is determined by the
necessary number of fixed-point bits required for load flow convergence
(See Section 3.3). The Jacobian matrix bandwidth and dimension,
however, are .not the same as the network bandwidth and dimension. As

mentioned in Section 4.1, corresponding to a power utility network with

60
a system bandwidth B' and bus dimension N'+1 the upper bound Jacobian
matrix bandwidth and dimensions, B and NxN, are given by 2B'+l and
2N'x2N', respectively. This is of course due to multiple entries (up to
2x2) for the particular partial derivatives. The upper bound dimensions

of the right-hand-side vector then becomes 2N'xl.

5.1 Chip Area Computation

The major hardware design of the VLS| array processor in this
research is partitioéed into three distinct parts, namely computing
structure, input and output circuits.

The design of 1/0 circuits for the array structure is based on the
choice from several 1/0 circuit candidates [17]. The input circuit,
cataloged as a ''data controlled" circuit, pumps the data operands into
the destination PE's without using any channel-selecting control
signals. It ultilizes the FIFO stack concept employing n sets (same as
the number of bits per word) of Nin-stage shift register chains (where
Nin is the number of input ports or 2B+2). Therefore, this circuit is
composed of Nin arrays of 1-bit shift registers.

The output circuit, cataloged as an "SCS" (Shift-Register Control
Sequence) circuit, is controlled by an SCS signal. This sequence, a
single "1" followed by B "0's", is synchronously pumped into a 1-bit
shift register chain and is used to select the proper operand output

channel. When the N° t data operands, where N is the number of

u out

output ports or B+1 (See Figure 3.2), are ready to be clocked out of the

array structure, N output channels are sequentially selected for

out

61
routing the operands. Thus, this output circuit consists of Nout 1-bit

shift registers plus Nou arrays of buffers and pass transistors. Finer

t
details of these 1/0 circuits can be found in [17].

Since the layout of processing elements (PE's), multiplexers and
latches in the computing array is regularly connected and supports local
communication (i.e., nearest neighbors), it is possible to model each
unit as a functional module and tesselate these modules into large
building blocks. Also, the fundamental building blocks, such as
full-adders in the PE's, can be modeled and likewise tesselated. In the
same manner, the |/0 circuits are modeled as unit modules such as 1-bit
shift registers and buffers.

As a result, the 1/0 circuits and computing structure taken
together require that relatively few specific modules be laid out by
hand and quantified (with respect to the parameter \A) as per the
technique of Mead and Conway. Specifically, these modules include a
full-adder, 1-bit shift register, buffer, latch, 2-input NAND gate, 2:1

multiplexer and pass transistor.

5.2 Throughput Computation

The 1localized connectivity of the computing and 1/0 structure
allows straightforward computation of delay parameters. Quantification
of module delay involved summing the active gates' propagation time,
with consideration of loading due to fan-out, and internal communication
path delay. Diffusion line length and unit length delay were considered

the significant path delay parameters. Moreover, ' intermodule line

62

length was negligible due to the tesselated nature of the structures.

Utilizing the revised 7 model, the active gate delay time is based
on T. it is assumed that T is linearly dependent on A and when
A=3 microns, T=0.6 nsec [18]. An upper bound on the diffusion line
lengths were determined for each module as a function of line length
squared. Then, using the fact that transit time is 100 nsec for a
10 millimeter length line [18], communication path delays were obtained.

Finally, the total module delay is the sum of active gate delays
and communication path delays. Thus, once the maximum segment delay is
fouhd,vthe total processing time (throughput) for triangulating a band
system matrix can be obtained by using the Equation 3-8. However, the
1/0 delay time must be considered and taken into the account of
throughput calculation. Therefore, assuming no 1/0 bottleneck, the

overall throughput time including 1/0 time, tin and tou is estimated

t’
by modifing Equation 3-8 and is shown as below.
TINGB) =t 4t ~(2N+B+ 22[B/2) + t_ s (5-1)
where tin and tout are also known as the pipeline setup time and flush

time, respectively.

5.3 Significant Module Data

Chip area and propagation delay computational methods have been
discussed in the previous sections. Based on the data from [4],
Table 5.1 presents results of these calculations for each fundamental

building block.

Table 5.1

Module Class

Full-Adder

1-Bit Shift Register
Buffer

Latch

2-Input NAND Gate
2:1 Multiplexer

Pass Transistor

63

Significant

Area

module data.

(x A

65
23
23
23
19

x 17

x5
x 6

Active Gate
Dela x T

28
18

CHAPTER VI

RESULTS AND CONCLUSIONS

The minimum number of fixed-point bits per word required for load
flow convergence of several different bus networks as determined by
running the revised MSU load flow program version described in
Section 3.3 will be presented first. As explained in that section, the
convergence of the overall Newton-Raphson formulation in the revised
program is limited by the number of fixed-point bits (word size).
Therefore, by varying this number, several load flow program results are
obtained and shown in Table 6.1. This table indicates that the minimum
numbers of bits per word required for the convergence of the test
networks are 28 and 32.

As a second step, the circuit simulations comparing the throughput
speed and chip size versus matrix bandwidth are presented. The time
results selected from the simulations are compared with those from
previous works to promote the significance of using a VLS| systolic
computing array structure for load flow computation.

Finally, conclusions will be drawn and summarized from all of the

resulits obtained from this research.

6L

Network Size

Busses Band-

width
43 6
49 11
105 17
150 16

65

Table 6.1 Convergence results in number of iterations
of MSU load flow program version.
*
Results of Convergence
Original MSU Revised MSU
Program Version Program Version
Number of Number of Number of
|terations Fixed-Point Iterations
Bits per Word
6 16 12
28 6
L 16 Divergent
28 5
32 4
6 28 6
32 6
6 28 7
32

*
Tolerant Real Power Mismatch (PMM) = 0.15
Tolerant Reactive Power Mismatch (QMM) = 0.25

66

6.1 Circuit Simulation Results

It has been predicted that the patterning resolution limitation of
optical lithography will be about 0.5 micron in the early twenty-first
century [23]. Recently, however, many |. C. designers have been
exploring new and promising techniques including electron-beam and X-ray
lithography. With electron-beam methods, for example, future linewidths
of 0.2 and 0.125 microns have been estimated as feasible [24, 25]. For
these reasons, 0.8, 0.5 and 0.2 micron linewidths have been chosen as
the realistic goals of mid and late 1980's and early 1990's VLSI
capability, and are used as quantification parameters in the
simulations. Another parameter used throughout the simulations is the
word size of 32 bits, which is chosen in order to assure convergence of
all test networks.

First, the results of a general circuit simulation with the
selected parameters and the assumption of B=0.IN (where B and N are
matrix bandwidth and dimension, respectively) are illustrated
graphically in Figure 6.1 and Figure 6.2.

Figure 6.1 contains three curves showing entire chip edge size
versus matrix bandwidth with linewidths of 0.8, 0.5 and 0.2 microns. A
projection of a maximum technologically feasible chip size has been made
which predicts the future |I. C. chip edge to be about 1.5 cm by the late
1980's [23]. Under this assumption, using a 0.5 micron linewidth the

matrix bandwidth, B, is limited to about 13. To extrapolate this result

4.80 5.60

4.00

Il A

1

CHIP EDGE IN CM
2.40

1

1.60

0.80

3.20

67

CHIP EDGE VS BANDWIDTH

+ 0
X 0
¢ 0

«8 MICRON LINEWIOTH
«5 MICRON LINEWIDTH
«2 MICRON LINEWIOTH

0.00

N -
»

Figure 6.1

T 1 _ T 1T _ 1T _ 1T 1T 1T 1t 71T 1
6 8 10 12 14 16 18 20 22 24 26 28 30

BANDWIDTH

Entire chip edge size versus matrix bandwidth
for 0.8, 0.5, and 0.2 micron linewidths.

68

1.40

TIME VS BANDWIDTH

+ 0.8 MICRON LINENWIDTH
X 0.5 MICRON LINENIDTH
® 0.2 MICRON LINENIDTH

1.20

1.00

0.80

TIME IN MILLI-SEC
0.60

0.40

0.20

I I | I | ! ! | | |
12 14 16 18 20 22 24 26 28 30
BANDWIDTH

0.00

1 T T 1
2 4 6 8 10

Figure 6.2 Entire chip propagation delay versus matrix band-
width for 0.8, 0.5, and 0.2 micron linewidths.

69

to an actual electrical utility network size, an additional aspect must
be first considered. As mentioned in Section 4.1, the upper bound of
the Jacobian matrix bandwidth and dimension are 2B'+1 and 2N', where B'
and N'+1 are the utility network bandwidth and dimension, respectively.
Thus, the result indicates that a power system of approximately 61
busses could be solved on a single chip assuming late 1980's technology
(0.5 micron linewidth). And, if early 1990's technology (0.2 micron
linewidth) with the same chip edge size is assumed, systems of about 171
busses could be solved on one chip.

Of greater significance is the fact that the triangulation time, or
total chip propagétion delay, is dramatically improved 6ver traditional
serial techniques. As depicted in the graph of time versus bandwidth
(Figure 6.2), using the same 0.5 and 0.2 micron linewidths as before,
the triangulation times of the networks of 61 and 171 busses are 0.266
and 0.286 milliseconds, respectively.

Next, by using the details of the simulation time results of
several major block structures, it can be shown that this type of
systolic array architecture will not cause a serious |/0 bottleneck of
operands. As shown in Table 6.2, it is unquestionable that the DC

segment time (t completely dominates over the time (t
i (DC) 1 ly domi he MAC ti (INPORT

MAC)’

time (tin) and OUTPORT time (t_ .) at the given bandwidths and

out
linewidths. The INPORT time is actually the time required to set up the
operands for the first row of input latches inside the computing
structure (See Figure 3.2). Therefore, this INPORT time is proportional

to the number of input ports or 2B+2. Likewise, the OUTPORT time varies

with the number of output ports or B+1. However, the DC time as well as

30

20

10

70

Table 6.2 Simulation time results of

A

(micron)

1/0 ports, MAC and DC.

t.
in

gnsec!

178.
11
Lk
121
75.
30.
63.
39.
15.
34,
21,

o oo 08 OO O

6

.6
.6

.0

tout tuac oc
(nsec) _(nsec) (nsec)
94.7 293.8 1480.0
59.2 183.6 925.0
23.7 73.4 370.0
65.9 293.8 1480.0
b1.2 183.6 925.0
16.5 73.4 370.0
37.1 293.8 1480.0
23.2 183.6 925.0
9.3 73.4 370.0
22.7 293.8 1480.0
14.2 183.6 925.0
5.7 73.4 370.0

71
the MAC time is dependent on the word size but not B. As a result, an
I/0 bottleneck will happen if and only if B is large enough to make
tin > tDC' As shown in Table 6.3, this 1/0 bottleneck occurs when B s
greater than 255 which implies B' and N'+1 are equal to 127 and 1271,
respectively. The bottleneck, though, never occurs in this work since
only networks of less than or equal to 150 busses are studied.

Now, utilizing the same simulation program, some practical results
tailored towards the load flow study are obtained by specifing the exact
dimensions and bandwidths of some typical power systems. The simulation
time results, however, when used to replace the complete piece-wise
elimination time, must include the time spent on the pre- and
post-normalization of operands.

These normalization times are found according to the intermediate
processor design discussed in Section 4.2. As shown in Figure 4.3 and
Figure 4.4, the numbers of stages (including the buffer stages and the
complementation stage for subtracters) in the pipeline structure are 8
(pre-adjustment portion) and 10 (post-adjustment portion). Assuming the
adder is a 3-level CLA (Carry Lookahead Adder) which has a 12 unit gate
delay [20], the pre- and post-normalization times are simply the setup
time of the pre-adjustment portion and the flush time of the
post-adjustment portion of the intermediate processor. Therefore, the
pre-normalization time (tp) is given by,

re

tpre =9 x 12°A (6-1)

where A is assumed to be 1 nsec with mid 1980's technology [23]. An

260

256

255

250

Table 6.3 Simulation time results showing
an |/0 timing bottleneck.

A tin
(micron) (nsec)
0.8 1503.4
0.5 939.6
0.2 375.8
0.8 1480.3
0.5 925.2
0.2 370.1
0.8 147L.6
0.5 921.6
0.2 368.6
0.8 1445.8
0.5 903.6
0.2 361.4

out MAC DcC

(nsec) (nsec) (nsec)
757 .1 293.8 1480.0
473.2 183.6 925.0
189.3 73.4 370.0
745.6 293.8 . 1480.0
L66.0 183.6 925.0
186.4 73.4 370.0
7L42.7 293.8 1480.0
L6y .2 183.6 925.0
185.7 73.4 370.0
728.3 293.8 1480.0
h55.2 183.6 925.0
182.1 73.4 370.0

73
extra segment time is included in tpre because the very first operand
pumped into the intermediate processor is the maximum operand which will

not be transferred to the VLS| processor. The post-normalization time

() is defined by,

tpost

tpost = 10 x 12-A. (6-2)

Finally, t , t

pre’ tpost’ the VLSI array computing time including 1/0

time (t), overall solution time (t) and the

comp VLSI.tpre+tpost+tcomp

corresponding chip edge size of the VLS| structure (S) are shown in

VLS|
Table 6.4. All of these time results are found with respect to the
network bandwidth (B'), network dimension (N'+1) and various
lithographic linewidths. This table indicates that tpre and tpost are

insignificant when compared to tcomp‘ The solution time, tVLSl’ will be
compared to other results in the next section. Notice that some of the

chip edge sizes, S j» are tremendously large compared to that of the

VLS
projected 1.5 cm x 1.5 em |I. C. chip.

6.2 Comparison with Previous Results

Time results obtained from the previous works which utilized a
one-dimensional array processor (AP-190L) to solve the same power
systems are compared with the benchmark results from the CYBER-750 and
the simulation results in this research. This is illustrated in
Table 6.5. This table shows that the triangulation time per iteration

spent on the VLS| systolic array structure is dramatically improved over

N'+1

L3

L9

105

150

7h

Table 6.4 Simulation time and chip edge size
results for load flow study.

B! A tpt'e * t'pc:st * tcomp " tuisi SVLSI
— (micron) (nsec) (nsec) (msec) (msec) (cm)
6 0.8 108 120 0.289 0.289 2.30

0.5 108 120 0.181 0.181 1.44

0.2 108 120 0.072 0.072 0.58

11 0.8 108 120 0.355 0.355 3.89
0.5 108 120 0.222 0.222 2.43

0.2 108 120 0.089 0.089 0.97

17 0.8 108 120 0.722 0.722 5.80
0.5 108 120 0.451 0.451 3.62

0.2 108 120 0.180 0.180 1.45

16 0.8 108 120 0.983 0.983 5.48
0.5 108 120 0.614 0.614 3.43

0.2 108 120 0.246 0.246 1.37

75

Table 6.5 Comparison of triangulation time per
iteration of different processors.

*

Ni+1 B! teyBeR tap tys N
- - _{(msec) _(msec) (msec (micron))
L3 6 5.500 2.717 0.289 (0.8)

0.181 (0.5)
0.072 (0.2)
L9 1 10.500 L.555 0.355 (0.8)
0.222 (0.5)
0.089 (0.2)
105 17 77.500 13.163 0.722 (0.8)
0.451 (0.5)
0.180 (0.2)
150 16 55.833 17.6L46 0.983 (0.8)

0.614 (0.5)

0.246 (0.2)

*Average from several runs with Markowitz ordered data
sets (Tinney No. 2 ordering [5,6]).

Numbers are absolute lower bounds; real CPU time is
considerably higher but could not be accurately trapped.

76
the benchmark result (tCYBER) and that spent on the array processor
(tAP). tevBER is tremendously large since the program is executed in a
serial fashion. Therefore, it 1is concluded that the VLS| array
structure is very efficient in reducing the banded Jacobian matrix
triangulation time which in turn enhances the overall computational
throughput of large scale load flow problems. In summary, the ratios of

and tVLSI:tAP (for A=0.8 micron) are listed in the

tyisiiteyBer

following table.

Table 6.6 Comparison of time results of
different processors in ratio.

N'+1 B' tyisi * tcyBer tyist ¢ tap
L3 6 1: 19.0 1: 9.4
49 n 1: 29.6 1: 12.8
105 17 1 : 107.3 1 :18.2

150 16 1: 56.8 1 : 18.0

77

6.3 Conclusions

In this work, an existing VLS| algorithm for triangulating large
band form matrices was successfully modified and applied to load flow
analysis. By adding rows of multiplexers and latches to an existing
algorithm, the revised structure can triangulate a band matrix to strict
upper triangular matrix with a unit diagonal in O(N) time steps.

The pre- and post-adjustments of the operands transferring between
a host computer and the VLS| array structure can be done efficiently by
the proposed intermediate pipeline processor described in Section 4.2.
The time required for operand adjustment is simply the pipeline setup
and flush time which is insignificant to the overall triangulation time.

It is found that the minimum number of fixea-point bits per word
for load flow convergence of the test networks used (< 150 busses) is
32 which indicates that all of the coefficients of the system matrix are
reasonabiy well tempered and of adequately tight dynamic range.

The simulation results show that the 1/0 bottleneck does not occur
in this VLS| structure if the maximum segment delay time in the pipeline
is completely dominated by the PE time, specifically the DC time.

As shown in Section 6.1, a power system network of approximately 61
busses could be solved on a single VLS| chip with the late 1980's VLSI
technology.

The circuit simulation time results reveal that the time of upper

triangulation by the designed VLS| systolic array structure is greatly

78
reduced and hence the overall solution throughput of load flow analysis

is improved.

6.4 Discussion

It has been shown that when the system bandwidth is large, the
proposed VLS| structure cannot be implemented on a single chip.
Therefore, this algorithm must be realized in a modular fashion on a few
chips. |If such a case is possible, the VLS| algorithm should be
modified at the same time to have true floating-point cap;bilities since
there will be no limitation on the hardware size if the
intercommunication problem among chips is solved.

Recall that the complete triangulation time of the VLS| structure
is limited by the segment time of the DC (See Table 6.2) which is
approximately five times greater than that of an MAC. Thus, the
triangulation time can be further reduced if a faster DC is designed.
However, as indicated in Section 6.1, the 1/0 bottleneck did not occur
because of the domination of the DC segment time. So, it is possible
that if the matrix bandwidth is extremely large and DC time is reduced
tremendously, the |INPORT time will dominate over other segment times.
As a result, an 1|/0 bottleneck may be encountered. Therefore, a
trade-off between the segment and |1/0 time may result in limiting the
overall triangulafion throughput in the future modular designs.

If the VLS| algorithm is realized in a modular fashion and designéd
with binary floating-point (FLP) arithmetic, all of the processing

elements should be reexamined. An FLP PE should possess the

79

capabilities of alignment or normalization, truncation and rounding of
the operands. This, of course, may double or triple the hardware size
making a modular layout essential. In addition, the complexity of the
cell design depends on other factors, such as degree of precision and
error bounds. This may introduce trade-offs between normalized or
unnormalized FLP designs. Undoubtedly, the inclusion of FLP arithmetic
will' involve a huge increase in hardware size. Thus, a near term
research requirement is to investigate some area-efficient FLP
arithmetic algorithms (multiply-add and division) and then examine the
intercommunication problem and potential modularity among these new
PE's.

Finally, it must be pointed out that the application of a proposed
VLS| systolic array structure to load flow analysis leaves a lot of
practical questions unanswered. For instance, in the future when such a
VLS| structure is available, will it still be attached peripherally to a
host computer of today's serial genre? Also, in order to obtain the
fastest possible load flow solution, the structure of a load flow
program should be reexamined such that the process of finding a maximum
operand and coefficients' normalization can be avoided.

On the whole, as VLS| technology advances, not only should special
purpose computer architectures be designed and improved, but also the
algorithms, including arithmetic and programming, must be reexamined so
that all of the technology, architectures and algorithms can progress

harmoniously.

B1BLI0OGRAPHY

10.

]].

B1BL10GRAPHY

Gross, C. A., Power System Analysis, John Wiley and Sons, New York
(1979), pp. 3-9.

Kung, H. T., "The Structure of Parallel Algorithms," Advances in
Computers, Vol. 19, Academic Press (1980), pp. 65-112.

Hwang, K. and Cheng, Y. H., "VLSI Computing Structures for Solving
Large-Scale Linear Systems of Equation,' Proc. 1980 Int'l Conf. on
Parallel Processing (August 1980), pp. 217-230.

Hsu, W. C. and Shanblatt, M. A., Evaluation of a Single VLS| Chip
Algorithm for Triangulating Large Band Form Matrices, Tech. Report
No. MSU-ENGR 82-015, Michigan State University, East Lansing,
Michigan (August 1982).

Tinney, W. F. and Hart, C. E., "Power Flow Solution by Newton
Method," 1EEE Trans. on Power Apparatus and Systems, Vol. PAS-86,
No. 11 (November 1967), pp. 1449-1L56.

Tinney, W. F. and Walker, J. W., 'Direct Solutions of Sparse
Network Equations by Optimally Ordered Triangular Factorization,"
Proc. IEEE, Vol. 55, NO. 11 (November 1967), pp. 1801-1809.

Shanblatt, M. A., Mickle, M. H. and Vogt, W. G., "Optimal Ordering
Strategies for Load Flows on an Array Processor," Proc. 1981 Int'l
Conf. on Electrical Energy (April 1981), pp. 78-81.

Abulleil, A. M., The Use of an Array Processor in the Solution of
Large Scale Load Flow Problems, Ph. D. Thesis, University of

Pittsburgh (1981).

Philadelphia Electric Company Power Flow Program, POWERFLO, Version
L, Mod Level 30, System Planning Division, Philadelphia Electric
Company, Philadelphia, Pa. (8 October 1975).

Ralston, A., A First Course in Numerical Analysis, McGraw-Hill, New

- —— C——— —— a— —

York (1965), pp. 398-415.

Bodewig, E., Matrix Calculus, Interscience, New York (1959), pp.
101-124,

80

12.

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

81

Alway, G. G. and Martin, D. W., "An Algorithm for Reducing the
Bandwidth of a Matrix of Symmetric Configuration,'" Computer Journal
(August 1965), pp. 26L4-272.

Cuthill, E. and McKee, J., '"Reducing the Bandwidth of Sparse
Symmetric Matrices," Proc. 24th National Conf. ACM, Brandon System
Press, New Jersey (1969), pp. 157-172.

Gibbs, N. E., Poole, W. G. Jr., and Stockmeyer, P. K., "An
Algorithm for Reducing the Bandwidth and Profile of a Sparse
Matrix,'" SIAM J. Numer. Anal., Vol. 13 (1976), pp. 236-250.

Foster, M. J. and Kung, H. T., "The Design of Special-Purpose VLSI
Chips," Computer, Vol. 13 (January 1980), pp. 26-40.

Kung, H. T. and Leiserson, C. E., '"Algorithm for VLS| Processor
Array," Symposium on Sparse Matrix Computations, Knoxville (1978).

Hsu, W. C., Leung, Y.-Y. J. and Shanblatt, M. A., 'Comparison of
Input/Output Structures for Single Chip VLS| Systolic Arrays,"
Proc. 25th Midwest Symp. on Circ. and Sys. (August 1982).

Mead, C. and Conway, L., Introduction to VLS| Systems,
Addison-Wesley Pub. Co., Reading, Massachusetts (1980), pp. 1-90.

Baugh, C. R. and Wooley, B. A., "A Two's Complement Parallel Array
Multiplication Algorithm,'" |EEE Trans. Computers, Vol. C-22, No.
1-2 (December 1973), pp. 1045-1047.

Hwang, K., Computer Arithmetric, John Wiley and Sons, New York
(1979) , pp. 84-25k.

Chang, T. L. and Fisher, P. D., '"High-Speed Normalization and
Rounding Circuits for VLS| Floating-Point Processors,'" Proc. IEEE
Int'l Conf. on Circuits and Computers (1980), pp. 512-516.

Taub, H. and Schilling, D., Digital Integrated Electronics,
McGraw-Hill Inc. (1977), pp. 35-53.

Keyes, R. W., '"Physical Limits in Semiconductor Electronics,'
Science, Vol. 195 (March 1977), pp. 1230-1235.

Eidson, J. C., "Fast Electron-Beam Lithography," IEEE Spectrum,
Vol. 18 (July 1981), pp. 24-28.

Bernhard, R., "VLSI| Lithography at the Crossroads,'" |EEE Spectrum,
Vol. 18 (July 1981), p. 27.

