
£9
13
3

WNW
NH“

MIN
IMU

MIH
IWI

JIH
WII

IHI
IHU

IWI

HESlB L"?- fiA 3'? Y

Michigan Mate ’

L Universfity

 'w

J:

This is to certify that the

thesis entitled

VLSI SYSTOLIC ARRAY FOR

MATRIX TRIANGULATION IN

LOAD FLOW ANALYSIS

presented by

Yu-Ying Jackson Leung

has been accepted towards fulfillment

of the requirements for

M. S. degree in Electrical Engr.

DAjor professor

2/67/67
’ I

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

MSU
LIBRARIES

“

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

VLSI SYSTOLIC ARRAY

FOR MATRIX TRIANGULATION

IN LOAD FLOW ANALYSIS

By

Yu-Ying Jackson Leung

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirments

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering and

Systems Science

1933

ABSTRACT

VLSI SYSTOLIC ARRAY

FOR MATRIX TRIANGULATION

IN LOAD FLOW ANALYSIS

BY

Yu-Ying Jackson Leung

The computational bottleneck incurred in power system load flow

analysis is due to the cumbersome solution of a large, highly sparse set

of linear equations. A VLSI systolic array structure for band matrix

triangulation, utilizing concurrent Gaussian elimination, is applied to

this problem to decrease the required triangulation time. Included is a

design of an interface system connecting the systolic array structure to

a host computer. A circuit simulation of the complete structure

indicates a time savings of two orders of magnitude over traditional

serial computer methods. These results lead to an assessment of the

advantages and significance of this class of special purpose VLSI

computing structures for throughput enhancement in load flow analysis.

To my mother and eldest brother

Mdm. Me Chit and Mr. Wai-Ying Tommy Leung

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to his major

advisor, Dr. Michael A. Shanblatt, for his guidance and encouragement in

the course of this research.

He also wishes to thank Dr. W. C. Hsu and the committee members,

Dr. P. D. Fisher and Dr. R. A. Schlueter, for giving the valuable

suggestions and comments in this work.

Finally, the author owes a special thanks to Miss Jasmine Lam for

her emotional encouragement and support.

Work reported here was supported in part by NSF under Grant

ECS-8106675.

TABLE OF CONTENTS

Page

LIST OF TABLES vi

LIST OF FIGURES vii

I. INTRODUCTION l

l.l Statement of Problem 3

1.2 Approach A

l.3 Contributions 6

II. BACKGROUND 8

2.l Load Flow Analysis 8

2.2 Traditional Load Flow

Program Structure l0

2. 2. I Program Structure ll

2. L 2 Jacobian Matrix Triangulation

by Gaussian Elimination 12

2.3 Banded Matrix 16

2.A VLSI Systolic Algorithm for

Matrix Triangulation 2l

III. SYSTOLIC ARRAY FOR TRIANGULATION

OE LOAD FLOW MATRIX FORM 27

3.l VLSI Array Structure Modification 27

3.2 Computing Structure and Timing 33

3.2.1 Multiplexer 3A

3.2.2 Latch and Stack 35

3.2.3 MAC and DC 37

3.2.A Timing A0

3.2.A.l Internal DC Timing A2

3.2.A.2 External Computing

Array Timing A2

3.3 Fixed-Point Consideration

for Load Flow Convergence AA

IV.

VI.

A PROPOSED HOST PROCESSOR/PROCESSING

ARRAY INTERFACE

A.l Operand Adjustment by

Host Processor ...}....

A.2 Operand Adjustment by

Intermediate Processor

SIMULATION DEVELOPMENT

5.] Chip Area Computation

5.2 Throughput Computation

5.3 Significant Module Data

RESULTS AND CONCLUSIONS

6.l Circuit Simulation Results

6.2 Comparsion with Previous Results

6.3 Conclusions

6.A Discussion

BIBLIOGRAPHY ...

Table

3.]

5.]

6.]

6.2

6.3

6.A

6.5

6.6

LIST OF TABLES

Port-coefficient time table.

Revised port-coefficient time table.

Significant module data.

Covergence results in number of iterations

of MSU load flow program version.

Simulation time results of

I/O ports, MAC and DC.

Simulation time results showing

an I/D timing bottleneck.

Simulation time and chip edge size

results for load flow study.

Comparison of triangulation time per

iteration of different processors.

Comparison of time results of

different processors in ratio.

vi

25

32

63

65

70

72

7A

75

76

Figure

. 2.2

2.3

2.A

2.5

2.63

2.6b

2.7

3.]

3.2

3.3

3.1.

3-5

LIST OF FIGURES

Structural flow of POWERFLO program.

Row-ordered elimination pattern

in the POWERFLO program.

Bandwidth and full breadth of

a band form matrix.

Single variable elimination

from a band form matrix.

Full row elimination from

a band form matrix.

Augmented matrix {Aib}.

Augmented upper triangular

matrix ”Id 0OOOO’OOOOOOOOOO......OOOOOOOOO

Computing array structure for matrix

of arbitrary dimension with 8-3.

Augmented strict upper triangular

matrix {U'Id' with unit diagonal. ,...................

Revised computing array structure for matrix

of arbitrary dimension with B-3.

2:1 multiplexer.

An n-by-n convergence division

algorithm based DC.

Latch and multiplexer control

Signals timing diagram.OOOOOOOO0.00.00.00.00

vii

IA

I7

I8

20

23

23

2A

29

31

3A

39

A3

Figure

A.2

I..3

A.A

6.l

6.2

Program flowchart for

operand pre-adjustment.

Program flowchart for

operand post-adjustment.

Function block structure of an intermediate

processor for pre- and post-adjustment.

A sample internal block

structure of an adjuster.

Entire chip edge size versus matrix bandwidth

for 0.8, 0.5 and 0.2 micron linewidths.

Entire chip propagation delay versus matrix band-

width for 0.8, 0.5 and 0.2 micron linewidths.

viii

50

5]

53

55

67

68

CHAPTER I

INTRODUCTION

Electrical energy generation and delivery systems, generally known

as power systems, are and will continue to be of fundamental importance

to the technological and engineering community. For this reason, power

systems, one of the biggest "systems” in the world, have been explored

and studied since the late nineteenth century [I]. In particular, the

load flow problem is the most basic and essential study because it

provides information for the continuous evaluation of the current

performance of the system and for analyzing the effectiveness of

alternative plans for system expansion to meet increased load demand.

The load flow problem is the evaluation of power flows and voltages

of a network for specified bus or terminal conditions. It provides the

solution for the static operating conditions of the power transmission

system. It is one of the most important of many current engineering

problems that require a very rapid routine solution before system

failures occur.

The Newton-Raphson method has been traditionally applied to solve

the load flow problem by iteratively solving a set of non-linear

equations expressing the specified real and reactive power in terms of

bus voltages and phase angles. The limiting factor in problem

throughput, from the standpoint of a traditional serial computer, is

the time required to solve the large (often n > l000) set of non-linear

2

equations via triangular factorization, a form of Gaussian elimination.

This limitation is due to the fact that the number of computations is

directly proportional to the square of the matrix dimension. Also, it

is due to the cumbersome data transfers between the arithmetic-logic

unit and memory (the Von Neumann bottleneck) as well as the constant

packing and unpacking of operands during the elimination.

Recently, VLSI (fiery Large Scale integration) technology has

emerged. An enormous number of computer algorithms and architectures

have been proposed which show great promise in overcoming this

computational bottleneck [2, 3, A]. Utilizing this new VLSI technology,

the purpose of this thesis is to study aspects of the design of a

high-speed dedicated processor architecture, realizable in VLSI,

tailored towards the load flow problem.

The dedicated processor structure is mainly composed of arrays of

processing elements which can be implemented directly using low cost,

high speed VLSI circuit technology either on a single chip, or perhaps

in a modular fashion on a few chips. This VLSI computing array, based

on concurrent Gaussian elimination for triangulating band form systems

and composed of fixed-point processing elements, is to be simulated by a

Fortran-coded program. The simulation will be tied into a proposed

interfacing design between the VLSI processor and a host computer.

Special topics to be discussed include details of the interfacing

system, the simulation and results pertaining to load flow throughput

enhancement. Furthermore, a basic constraint of the number of

fixed-point bits (word size) inside the computing array must be

determined. This is because the word size of the operands has an

3

essential effect on load flow convergence. Too few bits will cause

undue rounding error and lead to divergence of the overall

Newton-Raphson formulation.

Another detail to be discussed is how to interconnect the

processing elements within the array such that it can efficiently carry

out a strict upper triangular factorization of the coefficient matrix.

In the past, designs of this type have carried out a form of

factorization which is not immediately conducive to back-substitution

[2, 3, A]. The goal of the design to be presented here is an array in

which the resolved upper triangle has a unit diagonal therefore prepared

for immediate back-substitution.

In addition, methods for adjusting the complex Jacobian coefficient

matrix, of the type encounted in load flow analysis, to the systolic

array must be reviewed. In this case, single matrix elements are

actually sets of 2x2 complex sub-entries relating real and reactive

power to changes in nodal voltages and phase angles.

The requirement of a band form system for triangulation, as

mentioned before, is still applicable to this complex system. It is

assumed that the system has been permuted, a priori, to a minimum band

form.

l.l Statement of Problem

It is well known that the bottleneck operation encountered in large

scale power load flow programs is the solution of the system of complex

simultaneous equations derived from a Newton-Raphson formulation [5]. A

huge amount of research effort has been spent investigating new

generation computer architectures in order to obtain a faster and more

efficient solution [2, 3, A]. Likewise, the aim of this research is to

determine if a VLSI systolic array structure can be applied to an

existing load flow program, via simulation, for effectively reducing the

solution time.

l.2 Approach

. The primary goal of this thesis is to obtain an accurate

quantification of processing time (throughput) for a VLSI systolic

processing array imbedded, via simulation, in an industry standard load

flow program to promote its efficiency in improving load flow

computation time. In addition, the same simulation will provide an

estimation of the chip edge size of the VLSI array obtained as a

function of word size, matrix bandwidth, matrix dimension and minimum

lithographic linewidth parameters. Details of the approach towards this

goal will be described in this section.

Foremost, the structure of an industry standard, large-scale (l500

bus), serial computer load flow program is explained. The program is

modified to run on the CDC CYBER-750 computer at Michigan State

University and verified against benchmark results.

For the purpose of benchmarking, the program is executed with

several different sets of data independently to produce various records

of solution time, mainly the elimination time (or the triangulation

time) and iteration counts. The time records are known to be high when

5

compared to those available for a scientific-attached array processor

and are expected to be tremendously high when compared to the VLSI

systolic array processor. This is because the data processing inside

either array processor is in parallel and pipeline fashion and thus

inherently faster than Von Neumann type architectures.

As a second step a subroutine is designed to normalize all numbers

that are involved in the calculation of the resolved Jacobian elements.

This subroutine is to be annexed to the MSU load flow program version.

Whenever a number is transferred to this subroutine, it is first changed

to a fixed-point binary number and then truncated to a predefined number

of bits. Finally, this truncated binary number is converted back to the

original representation and returned back to the calling program thus

simulating the effect of fixed-point round off.

The whole program (the full load flow program plus the rounding

subroutine) is then executed to ascertain the necessary number of

fixed-point bits required for load flow convergence.

The third step involves restructuring the version of a VLSI

systolic array for triangulating large augmented band form coefficient

matrices based on a recently proposed algorithm [A]. This restructuring

includes the addition and revision of some hardware in the suggested

array structure such that it can do {53513; upper triangulation (i.e.

resolve the diagonal to unity).

Fourthly, the development of a hardware interface system between

the host computer and the processing array will be discussed. This

interface is responsible for the adjustment of operands transferring

back and forth between the host computer and the peripheral array

6

processor. The interface is necessary since the number format of these

two computing structures is different. The overall block structure of

the interface will be presented and explained.

Finally, the proposed VLSI circuit model is simulated with variuos

parameters of word size, matrix bandwidth, matrix dimension and minimum

lithographic linewidth. The word size, which determines the width in

bits of the systolic array processing elements, is found from the second

step of the approach. The matrix bandwidth is found by reducing the

original bandwidth as much as possible. The matrix dimension is

~ dependent on the size of the electrical utility network. The minimum

lithographic linewidth, X, is varied to project the trend of I. C.

technology. Lastly, in order to determine if the goal of load flow

throughput enhancement is achieved, the obtained time results are to be

compared with the results from the previous works [7, 8].

l.3 Contributions

The major contributions of this thesis are summarized as follows:

I. An existing VLSI systolic array algorithm based on concurrent

Gaussian elimination is successfully improved such that it can

effectively triangulate any augmented band form matrix to a

strict upper triangle and a unit diagonal.

2. The VLSI algorithm is successfully applied to a representative

7

load flow program and the accuracy of the load flow convergence

results are within tolerance.

A suggested interface is presented for the proposed special

purpose processor attached to a host computer.

The significance of using a VLSI algorithm to relax the

computational bottleneck that occurs in many engineering

problems, specifically the load flow problem, is reinforced by

the data collected.

CHAPTER II

BACKGROUND

2.l Load Flow Analysis

Load flow analysis involves calculating power flows and voltages

for a specified utility system subject to the regulating capability of

electric generators, condensers, and tap changing under load

transformers. This procedure is used to determine a set of complex bus

voltages and line power flows representing the static operating

condition of the power system network. The analysis involves solving a

set of non-linear algebraic equations which is typically large and

sparce (< 3 X non-zero elements). The set of equations, obtained from

nodal voltages and the network admittance, is solved for bus voltage

magnitudes and phase angles. Then, the voltages and phase angles are

used to calculate the power flows.

Although a power system is operated with three-phase generation and

loads, a single-phase representation is adequate because the system is

considered balanced. For each bus there are four possible parameters,

namely the voltage magnitude, the phase angle, and the real and reactive

power. Two of these four quantities are specified at each bus

representing one of three bus types: a voltage controlled bus, a load

bus or a swing bus. A swing bus, also known as a slack bus, must be

designated to supply the additional real and reactive power for

accommodating transmission losses inasmuch as these quantities are

9

unknown prior to the final solution.

Although there are many numerical methods that can be used to solve

the load flow equations. the most economical and effective one, from the

standpoint of computer memory storage and solution time, is an approach

employing the bus admittance matrix and the Newton-Raphson method [5].

This approach involves the derivation of a set of non-linear equations

which is used to express the specified real and reactive power in terms

of bus voltages and phase angles. A Jacobian matrix equation in polar

notation is derived which is in the form of Ax=b as follows:

aPS aP .
38 {MEI IEI A8 AP

..... (2-l)

a9 : 89 . AIEI

as gain ”5' IEI AQ

where AP - real power mismatch,

AQ 8 reactive power mismatch,

A6 - correction to the nodal voltage phase angle,

AIEI correction to the nodal voltage magnitude.

To initiate the procedure all bus voltages and phase angles are set

to the swing bus value. Next, real and reactive bus power and current

are evaluated. Then, the Jacobian matrix equation is formed and the

linear system is solved for the nodal voltage and phase angle

corrections. Now, a new set of bus voltages is derived using the

calculated corrections and the real and reactive bus power are

reevaluated. The process continues with convergence checked by

examining a tolerable power mismatch. If the tolerence is not

lO

satisfied, the process continues iteratively until convergence results.

The computational bottleneck in the overall load flow method lies

in the solution of the Jacobian matrix equation at each iteration of the

Newton-Raphson approach. Many procedures have been developed to ease

this hindrance as much as possible [6, 7, 8]. One of these methods is

first to reorder the system of equations by a strategy which attempts to

locally minimize the number of new non-zero elements which are

introduced into the matrix during the elimination process. Then the

network variables are packed into a sparse data structure and a specific

form of Gaussian elimination, operating on one row at a time, is used to

acquire the upper triangular factorization [6].

Another technique makes clever use of a one-dimensional array

processor to achieve fast elimination [7, 8]. In this method,

peripheral attached array processors, such as the AP-ISOL, are utilized

in the solution of the highly vectorizable elimination procedure. With

proper restructuring of the computer algorithm. savings of up to 6A.5 2

of the overall solution time, compared to the traditional serial

computer approach, have been achieved [8]. However, as the power

networks grow much larger, a bigger array processor with larger internal

memories have to be designed for solving the problem at the same speed.

2.2 Traditional Load Flow Program Structure

As an initial step in this research, a traditional and

representative load flow computer program was brought up on the Michigan

State University CYBER-750 computer. Serving as a basic reference

ll

program, a version of Philadelphia Electric Company's POWERFLO program

was obtained [9]. This program was originally modified at the

University of Pittsburgh to faciliate studies of this type*.

This program utilizes the Newton-Raphson approach with the solution

of the resulting linear equations by row-ordered Gaussian elimination

and subsequent back-substitution of the resulting strict upper

triangular matrix.

2.2.l Program Structure

Although there are many procedures inside a standard load flow

package, only those steps involving the generation of the Jacobian

matrix and subsequent solution by Gaussian elimination are of interest

in this study. A brief explanation of these two steps follows.

I. The MAIN program calls a subroutine MATGEN which oversees the

matrix generation and factorization.

2. Inside MATGEN, the program starts looping over all the nodes in

. the system. A "working row” of the Jacobian is generated for

each node.

*We gratefully acknowledge the help of Professors M. H. Mickle and

W. G. Vogt, Department of 'Electrical Engineering, University of

Pittsburgh, for supplying us with the working version load flow

package.

l2

3. For each ”working row” the subroutine ELIM is called to

eliminate all the elements of that row up to the diagonal. The

eliminated coefficients (factors) of the upper triangle are

then packed into a condensed and indexed form.

A. After all rows have been eliminated, subroutine BAKSUB is

called for back-substitution and thus the nodal voltage

corrections are obtained.

5. Finally, subroutine ADJUST is called to perform inter-iteration

adjustments and convergence is checked before the next

Newton-Raphson iteration is initiated.

6. If convergence is not obtained, the loop is either terminated

(divergent case) or steps I through 5 are repeated until a

satisfactory solution is obtained.

The program flowchart is illustrated in Figure 2.l.

2.2.2 Jacobian Matrix Triangulation by Gaussian Elimination

Since the main concern of this research is in reducing the time

required in the factorization aspect of a load flow program, the exact

details of the elimination process will be explained in this section.

The solution scheme used in the standard load flow program

processes and stores only non-zero elements. This is done by storing a

CM?“ 3

 NO

SUBROUTINE

MATGEN

 I

SUBROUTINE

ADJUST

YES

(END)

13

SUBROUTINE

MATGEN

GENERATE

WORKING

ROW

I

SUBROUTINE

ELIM

LAST

NODE

YES

SUBROUTINE

BAKSUB

cm 3

Figure 2.l Structural flow of POWERFLO program.

lA

compacted table of factors (upper triangle) and a compacted working row.

In addition. a set of pointers and counters for tracking the process are

required.

The elimination process is actually a triangular decomposition of

the Jacobian matrix by Gaussian elimination which is described in many

books on matrix analysis [l0, ll]. However, in here, only non-zero

elements of each row up to the diagonal are eliminated and stored

according to the current pointers and indexed counters before proceeding

to the next row. This is shown pictorially in Figure 2.2.

The figure depicts the matrix form just prior to the elimination of

row i. Since only the non-zero elements of the upper triangle are

stored, it is not necessary to store all the resultant elements depicted

in the figure.

The form of each element shown in Figure 2.2 is actually a set of

2x2 complex sub-entries, expressing the partial derivatives of real and

reactive power with respect to nodal voltage and phase angle (See

Equation 2-l). For easy reference, Equation 2-l can be rewritten in the

form of Equation 2-2.

quuuuu'

quuu

quu

.—— xxxxxx

xxxxxx

xxxxxx

Figure 2.2 Row-ordered elimination pattern

in the POWERFLO program.

IS

where AP, AQ and A8 are defined as before

and AV AIEI/IEI,

H 3P/35.

2

II (aP/aIEI)-IEI,

c
. II

aQ/aa.

r

I (aQ/aIEI)-IEI.

Therefore, the Jacobian

can be expressed in the form

matrix derived from a system of

After the elimination is complete, the matrix is

upper triangular form

of

n+l

the

(2-2)

nodes

strict

I Nll Hln Nln

cccccccccc-0.0.0.0....-

0 l J ' L '

ln ln

0 . Q

o o o

O O o

03 o I N '
. nn

(...... g . g

05 O 0 l
and thus ready for immediate back-substitution.

2.3 Banded Matrix

In this section, the description and advantages of reordering a

matrix to band form prior to performing Gaussian elimination in an array

processing environment are presented.

Any matrix, A, is said to be banded, or in band form, if all the

non-zero elements are clustered about the main diagonal. The bandwidth,

B, a measure of this clustering, is defined by

a . max {Ii-jl : a(i,j) # o}. (2-3)

For a structurally symmetric matrix, as in the case of Jacobian

matrix derived from the Newton-Raphson approach to the load flow

problem, the above bandwidth definition implies that the maximum width,

in number of elements, between the first and last non-zero entry of any

row is 28+l. This maximum width will be referred to as the "full

breadth" of the matrix. The bandwidth and full breadth are illustrated

in Figure 2.3.

28+]

Figure 2.3 Bandwidth and full breadth

of a band form matrix.

There are several heuristic algorithms that have been developed to

reorder the matrix A to a reduced band form [l2, l3, IA]. The two most

commonly used are the Cuthill and Mckee algorithm [l3] and an improved

version described by Gibbs, et al [IA]. These two algorithms were

basically developed with the same fundamental graph theoretic concepts.

It has been shown that matrix banding is theoretically the optimal

network ordering for systems to be processed on an attached array

processor architecture [7]. Furthermore, in one particular study the

banded form ordering on the array processor yields the fastest solution

time for networks less than about I300 busses [7, 8]. This is

reasonable because for any sparse matrix, regardless of the non-zero

pattern, the total computing time required to resolve the upper triangle

by using vector row-ordered elimination on an array processor, is

I8

bounded by a function of B and in the limit by N.

This can be demonstrated by considering an N-dimensional matrix A

of minimum bandwidth B. The time required to eliminate one variable

from any given row is

T - T + B-T , (2-A)
s op

where Ts and Top are the setup and unit operation times of the array

processor function providing scalar-vector multiply followed by

vector-vector subtract. This corresponds to the operation illustrated

in Figure 2.A.

+
6
.
.

J+B

I g
VECTOR 1 1

Tl:

VECTOR 2

‘l .

"I H l

:— B—z'..'“—B :‘I

Figure 2.A Single variable elimination

from a band form matrix.

19

In this figure, only the shaded element and vectors l and 2 are

required to complete a given inner loop step. This is analogous to the

loop on index I of a FORTRAN coded procedure for the same row-ordered

elimination as follows:

DO)0 K = I, N

DO IO J = I, K

DO I0 I 8 J+I, J+B

lO_ A(K.I) - A(K.I)-A(K,J)*A(J,I).

Building on this, the time required to eliminate all the variables

of any row K is given by

2
T B°Ts + B .Top (2 5)

corresponding to those elements shown shaded in Figure 2.5.

The resolved elements to the right of the main diagonal must now be

divided by the diagonal entry. This adds one setup time and B more unit

operations and Equation 2-5 becomes

3 o o o A .-

T (B+l) TS + B (B+l) Top , (2 6)

where Top' is now the maximum operation time between the

multiply-subtract and division vector functions.

For an N-dimensional matrix, N such row eliminations are required.

Thus, an upper bound on the total elimination time is given by

TN(B) = N-(B+I)-Ts + N°B°(B+I)°Top'. (2-7)

20

K-B-—-C-

'V

K V

 K —> \l\\\\\\\\\\\\\\fi 1

B ____4;i::}.____8 .____:1

Figure 2.5 Full row elimination from

a band form matrix.

Now, if a parallel pipeline structure such as a systolic array is

used, the total elimination time is given by

a o o ' -TN(B) (B+l) Ts + N Top . (2 8)

As a result, since Ts’ N and Top' are defined variables, to

minimize the elimination time implies the minimization of B for both

array and parallel pipeline architectures.

In order to achieve the most efficient operation inside the

proposed VLSI array structure for matrix triangulation, all original

load flow bus and line data must be renumbered to reduced band form

beforehand. Also, as will be discussed later, the size of the systolic

computing structure is dependent on the bandwidth of the matrix due to

2l

the structural properties of the hardware algorithm [A]. In conclusion,

reordering a matrix to reduced band form prior to triangulation not only

reduces the solution time but will also yield bounds on hardware

dimensions in an array or pipeline processing environment.

2.A VLSI Systolic Algorithm for Matrix Triangulation

A systolic array processor is a system having a two-dimensional

configuration of processing elements (PE's) in a parallel pipeline

fashion. The processor synchronously pumps data between levels of PE's

performing part of an overall computation at each time step such that a

regular flow of data is kept up in the network. The algorithms use

distributed control achieved by simple local control mechanisms such as

stacked one-dimensional arrays of PE's located between rows of latches.

Ideally, these hardware algorithms are to be implemented on a single

chip or perhaps in a modular design on a few chips with the use of VLSI

technology. The modular approach will not be addressed here.

VLSI technology, however, places new constraints on computer

architects. For high-performance algorithms to be implemented at low

cost, the algorithm must possess the properties of regularity, local

communication, and parallelism and pipelining [l5]. An early example of

this type of algorithms is the systolic array for solving linear systems

of algebraic equations proposed by Kung and Leiserson [l6]. This

structure, built of simple inner-product step and division function

processors, can be used to carry out L-U decomposition on a full matrix,

{A}. A revised version appeared, advancing Kung's design, in which the

22

proposed VLSI architecture would perform L-U decomposition of an entire

linear system of equations, {A:Q} [3]. However, in both of these

examples, practical details such as input/ouput circuits and processing

cells designs were not considered.

Recently, an improved systolic structure was developed by Hsu and

Shanblatt [A]. This structure, by isolating a row of processing cells,

will triangulate an arbitrarily large augmented band system {A:Q} to

upper triangular form {gIg} aligning the A and g vectors. Moreover, in

this work, the potential l/O bottleneck was studied with respect to the

overall solution time, and, the processing cells as well as I/O port

circuit candidates were designed and evaluated.

The structure proposed by Hsu and Shanblatt utilizes both parallel

and pipeline concepts and performs the triangulation in 2N+ZB time

steps. Moreover, it requires B(B+l) inner-product cells and B division

cells, where N and B are the full dimension and the reduced bandwidth of

the coefficient matrix, respectively.

In order to illustrate this, consider an Nx(N+l) augmented matrix

system {A:Q}v with a bandwidth of 3 as depicted in Figure 2.6a. After

the upper triangulation has been performed, the system appears as

illustrated in Figure 2.6b. The array structure corresponding to this

matrix example is shown in Figure 2.7. A port-coefficient time table

for the triangulation of this system is given in Table 2.l.

In Figure 2.7, the inner-product cells are called MAC's (Aultiply

and Add gells) and perform w=xy+z, x-x and y-y. The complementation

circle shown on the input of the topmost row of MAC's refers to a two's

complement operation. The DC's (inision gells) perform g-e/f and f-f.

II

23

312 5‘13 311+ ' bl\

a"22 a23 azh a‘25 ' I"2

a'32 a33 33h ass ' ' b3

31.2 3&3 am. ' bu

a52 a53 I b5 I

I .

I

I

awn-3) aN(N-2) aN(N-l) aNN ' bu)

Figure 2.6a Augmented matrix {A:b }.

”12 “I3 ”It. ' ‘I'IW

u22 u23 ”2A u25 ' d2

”33 ”3:. ”35 ° ' d3

”III. ”u5 ' d1.

55

NN N
Figure 2.6b Augmented upper triangular

matrix {u:d}.

2A

e

f o f

DC DC DC 9

y

W

MAC MAC MAC x ® x

2

y

MAC MAC ' MAC

MAC MAC MAC

I1 .12 I4 15 16 17

r' """A """"" '4""" -,

3 X D section

1 MAC MAC MAC 1

L, ”IA.

ID

Figure 2.7 Computing array structure for matrix

of arbitrary dimension with B-3.

t7 alA

t2N+6

13

32A

Table 2.l Port-coefficient time table.

I3

“2!.

35

“1A

25

26

The D section is isolated in order to correctly align A vector

elements, which subsequently became g vector elements, during the

triangulation. This right-hand-side vector is pumped into input port

ID and out of output port 000

Input and output operands are pumped in and out of the processing

array through the I/O ports, I -I l and 01-0“, 0 Synchronism is

l 7' D D'

provided by latch arrays which are depicted by thick black lines between

the rows of PE's. The number of required input ports is given by the

full breadth of the matrix and right-hand-side vector input port, or

28+2, while the number of output ports is defined by the bandwidth plus

a diagonal and right-hand-side output port, or 8+2.

The operands shown in the time table (Table 2.l) are interspaced

with zeros and ones to provide proper synchronism among array

coefficients. The use of these ”spacers” will be explained in next

chapter.

As the time table shows, 2N+28 (2N+6 in this example) time slots

are required to obtain {gig}. The algorithm may therefore be classified

as an 0(N) algorithm. This is on the same order as other systolic array

algorithms, which require many more processing cells for this type of

problem [3].

In conclusion, all of the above mentioned algorithms have the same

important features: regularity, expandability, and extensive use of

parallel and pipeline concepts. This makes them particularly well

suited for VLSI implementation. Based on these algorithms, a revised

version of a VLSI algorithm for band matrix triangulation more conducive

to use in the load flow program will be presented next.

CHAPTER III

SYSTOLIC ARRAY FOR TRIANGULATION

OF LOAD FLOW MATRIX FORM

The development of an improved version of the VLSI algorithm for

fast band matrix triangulation will be presented in this chapter. This

algorithm is to replace the routine for matrix triangulation inside a

serial computer load flow program such that the overall solution time is

reduced at no loss of accuracy. As a starting point towards practical

realization, the number of fixed-point bits for load flow convergence is

determined because the present algorithm is constrained to a fixed-point

architecture due to chip size and lithography limitations. This is done

by executing a modified MSU load flow program version on CYBER-750

computer. A method for combining, or interfacing, this structure to the

serial host computer will be explained in next chapter.

3.l VLSI Array Structure Modification

In standard load» flow studies triangulating the A matrix by a

. serial computer program results in a strict upper triangle with a unit

diagonal [9]. Therefore, it is necessary to modify the algorithm of [A]

to match this requirement.

Referring to the structure and time table shown in Figure 2.7 and

Table 2.1, the diagonal elements of the resultant upper triangle (uii’

27

28

i=l,2,...N) pumped out of the 01 port, are not necessarily equal to one.

In order to obtain a definate unit diagonal, all of the elements in each

row must be divided by the diagonal element of that row before they are

pumped out of the array. That is

”ij' = "ij/uii’ (3'1)

and di' = di/uii’ (3-2)

for all i=l,2,...N and j=i,i+l,...i+8.

Since the diagonal elements must be equal to one .after the final

division, at any time slot, the maximum number of the elements which

must be divided by the diagonal is given by 8+l. This includes

8 A matrix entries and the right-hand-side entry. As a worst case

result, by adding an extra row of 8+] division cells to the array, a

strict upper triangle may be otained. However, the size of the

structure will be increased tremendously since the size of a DC is much

larger than that of an MAC [A].

Fortunately, by close examination of the structure, it is found

that the additional division as described above can be done by "cycle

stealing" instead of the addition of another row of DC's.

Focusing now on the present row of DC's in the example, a2],

a3] and ah] must be divided by all at time t“. At t5, though, null

divisions take place (0+l) and this is the case during every second time

slot from then on. In other words, at every ti+8+l’ where 8-3 and

i-l,3,5,...2N-l, the operation inside the DC's is zero-divided-by-one.

29

Indeed, the null operations are unnecessary for the process of

calculation because the results of these operations are always

subsequently multiplied by zero later in the procedure. Therefore, no

matter what value is obtained from the division, it has no effect on the

overall solution. As a result, cycles stolen during these operations

can be used to perform the additional division required to unitize the

diagonal. This is accomplished by adding multiplexers (MUX's) and~

latches to the array structure. However, only 8 DC's are available and

8+l divisions are required at a time. Therefore, one additional DC must

be added to the structure.

In order to illustrate this modified algorithm, the same augmented

system {A:Q} with a bandwidth of 3, as depicted in Figure 2.63, is

considered. After the upper triangulation is complete, the system of

equations is as shown in Figure 3.l. The modified computing structure

r I I .7

I “12 uI3 ”IA ' “I

l u23' ”2A. ”25' I d2'

I UBAI ”35' I d3'

l ”AS. I dA'

Figure 3.l Augmented strict upper triangular

matrix {U'Id'} with unit diagonal.

30

corresponding to this example is illustrated in Figure 3.2. A

port-coefficient time table for the triangulation of this system is

given in Table 3.l.

The multiplexers (MUX's) shown in Figure 3.2 are controlled by a

simple true and false signal synchronous with the clock. At every even

time slot, t2, t“, t6..., all lines marked L are selected to pass the

I

data. However, at every odd time slot the L lines are selected.

2

The stack section (S section) depicted in the same figure is

composed of arrays of latches which serve as an FIFO

(Airst-ln-fiirst-Qut) memory stacks. The number of stacks, as well as

the number of latches inside each stack, varies with B. The details of

their relationship will be explained in Section 3.2.2.

Referring to this structure (Figure 3.2) and the corresponding time

table (Table 3.l), during the period tA all lines marked LI are selected

to pass the operands all’ al2’ a13, and alA to the row of DC's and enter

as defined in Table 2.l) into stack S(same as u At the next
an ll 5'

slot, t5, Lz's are selected to pass and store operands. Simultaneously,

ull propagates to the next stage of $5 and u}2 Is put onto SA' At t6.

L1's are selected again to pass operands as well as push u22 onto 55. At

the same time, while ”II and u]2 are pushed further along in S

u]3 Is put onto S3. Eventually, at the end of t8, d], ulA’ u

5 and SA’

13’ ”12

ll are at the topmost latch of SI through 55, respectively. Then,

and

u

during t Lz's are selected such that d and "IA-”I2 are all99 I!

' ' ‘ I I l I

simultaneously dIVIded by "II In the DC 5. Therefore, u]2 , u]3 , ulA

1-03 and OD at the end of t9.

After this at every two time slots, a new row of the upper triangle

and d]' are pumped out of output ports, 0

3I

,5"

S Section

D Section 3

Figure 3.2 Revised computing array structure for matrix

of arbitrary dimension with 8-3.

t2N+7

alA

25

336

Table 3.]

I2 I3

aIz

an 6‘23

32A 33A

a35 31.5

3A6

Revised port-coefficient time table.

32

I5 I6 I7

a2I a31 aAl

a32 aA2 a52

03 0D

”IA' dI

uzs' d2

U36 d3

“I.

d5

dN

33

elements with an implied unit diagonal, is pumped out. Because of this

implied unit diagonal, the number of output ports in this modified

structure is one less than that of the original structure.

3.2 Computing Structure and Timing

The special purpose peripherial array processor for band matrix

triangulation is mainly composed of input/output circuits and a

computing array structure. This processor, consisting of those

circuits, is to be attached to a serial host computer. The overhead

timing and data controls of the peripheral processor are provided by the

host computer through interconnected lines. The internal timing control

can be supplied by either a built-in clock circuit or the host computer;

however, the former method is preferred because it only requires a small

increase in overall hardware size. Internal timing controlled by the

host computer immediately increases the connection complexity between

the two machines.

Operand I/O for the computing structure fundamentally suffers from

a potential bottleneck problem due to practical fabrication limitations

of pin-out and packaging considerations. Fortunately, through careful

design of I/O circuits, the I/O bottleneck can be avoided [17]. This

will be shown among the results presented in Section 6.l.

The computing array depicted in Figure 3.2 requires only five

schematic logic circuit diagrams of function blocks, namely multiplexer,

latch, stack, MAC and DC. The design of each function block is based on

previous work [A] and crucial details of these designs, as well as

3A

timing control, are explained in the following sections.

3.2.l Multiplexer

A 2-to-l multiplexer (2:l MUX) is simply constructed by a pair of

pass transistors under mutually exclusive control of a single signal

line with an additional inverter. This is illustrated in Figure 3.3.

The pulse width and frequency of the control signal (CS) depend on the

sequence of data flow or operating time step. Whenever this signal is

true (high), the right-hand-side transistor is turned on. This allows

the data in line LI to pass through. If the signal is false (low), the

Ieft-hand-side transistor will be turned on allowing data in L2 to pass.

The MUX's inside the computing structure are built solely from this

basic block and are simply controlled by a signal synchronous with the

Figure 3.3 2:l multiplexer.

35

system clock. The frequency of this signal is half of that of the

signal controlling the latches between rows of PE's. Therefore, the

L1 and L2 lines are selected alternately. This control signal, which

will be called a, is shown in the timing diagram presented in

Section 3.2.A.2.

Due to the nature of the modified triangulation algorithm, the

L1 lines are selected at either every odd or even time slot depending on

the bandwidth. If 8 is an odd number, as in the previous example where

8-3, LI lines will be selected at every even time slot. This is because

it requires 8 time steps to initially fill up the topmost row of MAC's.

Therefore, at every t8+l+i’ where i-0,2,A,...2N-2, all of the L1 lines

must be selected to pass the operands to the DC's as well as to the

stack.

3.2.2 Latch and Stack

All latches are dynamic and consist of two pass transistors and two

inverters [l8]. A two-phase non-overlapping clock is required to load

and refresh the latch data.

The memory stacks, 51-55, inside the 5 section shown in Figure 3.2,

are merely arrays of dynamic latches. The main function of these stacks

is to consecutively store the individual elements of each row of the

resolved upper triangle and right-hand-side vector. When all elements.

of a complete row are available in the topmost latch of each stack, they

are simultaneously enabled into the DC's through the L MUX lines.
2

However, since L2 lines are selected according to the even/odd control

36

signals, the operands (a complete row of elements) may have to wait

another cycle before they can reach the DC's. This is to avoid a

potential data flow conflict that may happen in the MUX's. Therefore,

another function of the stacks is to serve as a delay circuit if such

conflict exists.

By close inspection of the structure (Figure 3.2) it is seen that

the last element of a particular row that is put onto the stack is the g

vector element. In general, these 9 vector elements are actually

available from the upper left corner latch inside the 0 section at every

odd time slot starting at t . However, L lines are selected only at

28+] 2

every t8+i slot and Ll lines are selected at every

Therefore, all the elememts of a complete row can be pumped into the

t8+l+i slot.

DC's through the MUX's at either t28+l+i if B is odd or t28+i if B is

even (where i-2,A,6,...2N).

In the example of 8-3, L2 lines are selected at every odd time slot

and one complete row of elements is also available at every odd time

slot starting from t7. Therefore, there is one latch inside the stack

SI and all of the other stacks have an extra latch for producing a delay

of one time step such that the sequence of data flow is properly

adjusted. But, for an example of B being even, these L2 lines are

selected at every even time slot, and a complete row is obtained at

every t28+l+i’ for i-0,2,A,...2N-2, which is always odd. Therefore,

this complete row can be latched directly into the DC's at t which
28+2+i

is always even. As a result, a row of latches inside the stack section

actually can be saved without disturbing the proper sequence of data

flow if B is even.

37

Based on these facts, the number of stacks, j, and the number of

latches, L, inside each stack Sk are proportional to the bandwidth, 8,

and are given as follows:

J = z-FB/zl + I. (3-3)

and L(Sk) = k, (3-A)

where k B l,2,...j.

The notation [x] refers to the smallest integer that is not less than

the real number x.

3.2.3 MAC and DC

The structure of an MAC is merely a Baugh-Wooley multiplier with an

extra row of full-adders at its bottom edge [A, IS].

The convergence division algorithm [20] is chosen in the DC design

because the number of iteration steps can be determined a griori in

terms of word size and software convergence checking is not required.

In addition, since this algorithm requires mostly iterative multipling

procedures, the Baugh-Wooley algorithm can be applied again such that

there is no loss in structural regularity.

This division algorithm can be partitioned into several subtasks.

Thus, the algorithm can be realized in a pipeline structure having rows

of latches located between rows of multipliers. The details of the

numerical formulation of this algorithm can be found in [20] and an

38

example of the pipeline structure is presented in [A].

Due to the constraint of synchronous data flow between the rows of

DC's and MAC's, the latch-to-latch time between rows of MAC's is

constrainted by that of the DC. This is because the operands that will

be pumped into the DC's are obtained from the topmost row of MAC's but

the calculation of these operands requires previous results from the

DC's first. In other words, there is a tightly coupled linkage between

the DC's and the topmost MAC's. Therefore, eventhough the division

algorithm can be pipelined, the worst case time slot is still the sum of

all segment times. So, pipelining the division algorithm does not help

in increasing throughput.

In addition, due to the nature of the convergence division

algorithm, the number of iteration steps, m, of multiplication varies

with the word size of the operands. The number of iteration steps is

given by

m - [log2(n)]. (3‘5)

where n is the word size of the operands. Therefore, the number of rows

of multipliers in the pipeline structure is also m. This implies that

the hardware size of a DC is directly proportional to m times the number

of multipliers in each row. As a result, an improved DC structure with

drastically reduced hardware having approximately the same speed as

before is developed next.

The improved structure has only one row of multipliers and is

independent of m. This original design is illustrated in Figure 3.A.

In this figure, the latches and MUX's have the same structure as

39

 SHIFT

REGISTER

SHIFT BIT
..... COUNT

N D

n n

DIVIDEND ...;. DIVISOR * _ SHIFT BIT

SHIFT SHIFT COUNT

N' 1-6

1L2 ALT A ,L1 A?

I MUX I I] MUX I

1-5i

ADDER

I (2-(1-51))

nxn I- J1+61 , nxn

MULTIPLIER MULTIPLIER

It LATCH
i_, LATCH l

N'(1+6)...(1+61) Is

Figure 3.A An n-by-n convergence division

algorithm based DC.

A0

described in Section 3.2.l and Section 3.2.2. However, the pulse width

and frequency of the signals for these latches and MUX's are different.

These control signals will be explained and shown in the timing diagram

presented in the next section.

After the dividend and divisor, marked as N and D in the figure,

have been shifted, lines marked L] are selected to pass the shifted

results to the adder and subsequently to the multipliers. This

shifting, integral to the convergence division algorithm, is necessary

in order to obtain a faster convergence [20]. The Ll lines are selected

only once in every PE's segment time slot. Then, the partial results,

N'(l+5) and (l-8)(l+5), held by the latches are looped back to the adder

and multipliers through the L2 lines. This loop continues until the

result, N'(l+5)...(l+53), where i-Zm (m is defined in Equation 3'5). is

obtained. Finally, a convergent quotient, Q, is available after the

result has been shifted back according to the original shift bit count.

3.2.A Timing

Recall that the whole computing array is pipelined in nature and

therefore the operation time, top’ must be at least the worst case

segment time. In the array structure shown in Figure 3.2, the maximum

segment time should be the propagation delay from the MUX's to those

latches between the DC's and MAC's. As a result,

' t + tDC + tLATCH' (3’6)

SInce tHux and tLATCH are sImply the total delay of two pass transIstors

Al

and two inverters, the important focus must be placed on tDC'

3.2.A.l Internal DC Timing

Referring to Figure 3.A, the number of loops routing from the MUX

through the adder, multiplier, latch and back to the MUX is given by m

(Equation 3-5). Let ts, ta, and tx be the shifting, adding, and

multipling time, respectively. Then

t -- 2-t +In-(t

s

+ +

DC ta tx tMUX I LATCH)° (3'7)

The control signals for the MUX's and latches inside a DC are not

the same as those controlling MUX's and latches in the external

computing array. The two-phase non-overlapping clock signals of the

latches in the DC, A] and A5, must be at a frequency at least m times

faster than l/top such that m iteration steps, plus the shifting, can be

done within top' Specifically, this frequency, fL, can be obtained from

Equation 3-6 and Equation 3-7.

The signal, B, controlling the MUX's inside the DC must be

synchronous to that for the latches as described above. At every first

cycle within top’ Ll lines must be selected in order to pass the initial

operands, N' and (l-8) (See Figure 3.A). Then, during the remaining

cycles, L2 lines must be selected instead. Therefore, assuming relative

high voltage is "true" or "I", the control signal for these MUX's can be

veiwed as a pulse signal with a pulse width approximately equal to the

reciprocal of the frequency of the control signal of the latches, or

l/fL.

A2

3.2.A.2 External Computing Array Timing

The rows of latches amid the PE's, as well as inside the stack

section, oversee the operand timing between each row of PE's (See

Figure 3.2). These latches are controlled by two-phase non-overlapping

clock signals, ¢l and ¢2. The time period of these signals, should be

approximately equal to the maximum segment time, top’ which implies that

the frequency of the clock is l/top.

As a result, based on the above assumption, an approximate function

block timing diagram is shown in Figure 3.5. In this figure, W and A

are the control signals for the latches and MUX's inside the DC, and ¢

and I: are those for the latches and MUX's outside the DC, respectively.

Notice that 5 iteration steps of multiplication inside the DC (word size

of 32 bits) is assumed for illustration.

Finally, the overall throughput time depending on the bandwidth of

the system matrix, B, is derived. As shown in Table 3.l, the time

required for triangulating an Nx(N+l) matrix with 8-3 is 2N+28+l or 2N+7

time slots. This is true for all odd 8. However, for all even 8, the

time required for triangulating the same system is 2N+28. This is

because an extra row of latches inside the stack section is removed (See

Section 3.2.2). Therefore, a general equation expressing the overall

througput time, T(N,B), is

T(N.a) - top-(z-N + a + 2-I'a/2'I). (3-8)

A3

 II II—

I

Figure 3.5 Latch and multiplexer control

signals timing diagram.

AA

3.3 Fixed-Point Consideration for Load Flow Convergence

The computing structure presented in this thesis is basically

constrained to a fixed-point binary number system due to the nature of

its processing element designs dictated by available chip real estate.

However, an approach circumventing a true floating-point solution is to

consider processing large fixed-point numbers which are pre-adjusted

mantissas of previous floating-point coefficients.

In order to allow the PE's of the computing array to operate in a

common fixed-point number system, the selected position for the radix

point is at the left extreme of the magnitude position of the number.

Thus, the radix point lies between the sign bit and most significant bit

which dictates that all fixed-point numbers be strictly less than one.

In adjusting floating-point numbers to this fixed-point scheme the

host computer or an intermediate processor must first sort out the

maximum operand among those that will be sent to the processing array.

The mantissa value of this maximum operand is normalized and the

exponent value is stored. Then, all of the operands are pre-adjusted in

floating-point to the same exponent value as the maximum operand. Next,

the mantissa of each operand is truncated according to the number of

fixed-point bits defined by the array structure design. Upon return of

the upper triangle and right-hand-side vector elements, post-adjustment

or post-normalization is done by the host computer or the intermediate

processor according to the retained fixed exponent value.

A5

Although this approach and the ultimate convergence of the overall

non-linear system are extremely vulnerable to the dynamic range of the

input matrix entries, the approach still can be applied to the system

matrix derived from load flow analysis if all of its coefficients are

well tempered and of tight dynamic range. Since the number of

fixed-point bits of each word governs this dynamic range, a study is

made to determine the minimum number of bits for which load flow

convergence is obtained.

First, a subroutine, called NORMAL, is designed and incorporated

into the MSU load flow program version. This subroutine serves to

normalize all numbers that are involved in the calculation of the upper

triangle and right-hand-side vector elements. These numbers are

actually the elements of the "working rows" described in Section 2.2.l,

plus any numbers that are directly or indirectly calculated from these

elements. Specifically, these elements of the working rows are H, N, J,

L, AP and A0 as depicted in Equation 2.2.

The main function of the subroutine NORMAL is to simulate the

effect of fixed-point round off. Whenever a number is transferred from

ELIM to this subroutine, the number is first converted to a fixed-point

binary format and then truncated to a predefined number of bits.

Finally, this truncated binary number is converted back to the original

representation and returned thus incorporating the numerical effect of

truncation.

The whole program (MSU load flow program version with edited ELIM

and annexed NORMAL) is then individually executed with networks

consisting of A3, A9, l05 and ISO busses. For each network, the program

A6

is consecutively executed varying the number of fixed-point bits and

determining whether or not convergence results. Too few bits cause

undue rounding error and lead to divergence of the overall

Newton-Raphson formulation. Therefore, the purpose of the above

procedure is to determine the minimum necessary number of fixed-point

bits (word size) required for convergence. Subsequently, this number

will be used as the parameter in the simulation of the VLSI array

structure.

CHAPTER IV

A PROPOSED HOST PROCESSOR/PROCESSING

ARRAY INTERFACE

The most effective near term approach for enhancing the load flow

computation speed is to reduce the solution time of the system equations

derived from the Newton-Raphson formulation. This can be achieved by

attaching the VLSI systolic array processor presented in the previous

chapter to a serial host computer such that the triangulation is

efficiently executed in a parallel pipeline fashion. Thus, a designate

goal of this research is to simulate the interface of these two

computing structures and quantify the enhanced processing throughput of

load flow solution.

Generally, incompatibility arises when two computing systems,

differing in number format or representation, are assembled. For

example, the proposed VLSI array structure is limited to two's

complement fixed-point fractional binary number operation while the host

computer used in this project, the MSU CYBER-750, is basically a one's

complement floating-point binary number computing system. In addition,

the position of the radix point of floating-point numbers inside the

. CYBER-750 is at the right extreme of the mantissa. Therefore, pre- and

post-adjustments of the data (operands) transferring back and forth

between these two systems must be made to avoid a modification or

redesign of either system.

A7

A8

As described in Section 3.3, the operand adjustment can be done by

either the host computer or an intermediate processor. More details of

these two methods are discussed in the following sections.

A.l Operand Adjustment by Host Processor

An obvious advantage of using the mainframe computer for operand

adjustment is a savings of additional hardware cost. This is because

the VLSI array processor can be attached peripherally to the host

computer by simple interconnection with data and control lines.

However, this is under the assumption that the host computer can provide

an adequately fast memory access through an operational DMA channel such

that data transfer time between the host computer and the VLSI processor

is less than the I/O time of the VLSI array.

First, the structure of the load flow program must be reviewed.

Inside the subroutine MATGEN, the program starts looping over all the

nodes in the system. A "working row” is generated for each node and

then eliminated (triangulated) by calling subroutine ELIM. The elements

of this working row are actually H's, J's, N's, L's, AP's and AQ's as

depicted in Equation 2-2, which are exactly the elements of the

augmented matrix. Therefore, this working row can at most be composed

of two single rows of elements. The column size of the Jacobian matrix

is, at most, equal to 2N' for a system with N'+l busses including the

slack bus. Thus, the maximum number of single elements is 2N'x2N' plus

2N' right-hand-side (augmented) vector elements. If this system is

A9

reduced to a bandwidth of 8', the maximum number of elements will become

2N'(AB'+3)-(28'+l)(28'+2) plus 2N' augmented vector elements. In other

words, the upper bound Jacobian matrix bandwidth, 8, and dimension, N,

are expressed as follows:

8 8 2°B' + I, (A-I)

N - 2-N'. (A-2)

The upper bound matrix full breadth then becomes AB'+3.

Since the elimination (triangular factorization only) procedure is

carried out for each node, it can be described as a piece-wise

elimination process. Therefore, the total elimination time is the sum

of all the nodal processing times. Also, the operation of finding the

operand of maximum absolute value can be started when each working row

is generated.

Finally, according to the normalization procedure described in

Section 3.3, the pre- and post-adjustments of the operands carried out

by the host computer, the CYBER-750, can be summarized in the program

flowcharts illustrated in Figure A.l and Figure A.2. The number of the

operands which will be normalized is the only parameter in the program.

Unfortunately, as described before, this number is directly proportional

to NxB. Therefore, the time required for the normalization increases as

the size of the network increases, which will eventually slow down the

overall solution throughput.

INPUT

MATRIX

ELEMENTS

81,.‘0 08k

INCREMENT

S's MANTISSA

OVERFLOW

?

 NO

50

 OVERFLOW

?

SHIFT RIGHT

AND

INCREMENT

ai's EXP

t J

j=S's EXP -

ai's EXP

's MANTIS.

LEFT

3 BITS

SHIFT RIGHT

AND

INCREMENT

S ' s EXEONENT

I

s!

STORE

8 EXPONENT

STORE

a '8 MANTIS.

I

Figure A.l

o
INCREMENT ‘

ai's MANTIS.

Program flowchart for.

operand pre-adjustment.

51

C Sim)

INPUT

MATRIX

ELEMENTS

u1,...uk

I {9

LET

j a

8'8 EXPONENT

- :. SHIFT LEFT

AND

3 = 3'1

SHIFT LEFT I

AND

:I = 1-1

Y

STORE u1

CONCATENATING

WITH :1

DECREMENT

ui (MANTIS.)

Figure A.2 Program flowchart for

operand post-adjustment.

52

A.2 Operand Adjustment by Intermediate Processor

In this section, a hardware interface system between a host

computer and the VLSI array processor is discussed in terms of function

block operation. This interface, an intermediate processor, is

responsible for the adjustments described before. It is assumed here

that the operation of finding the maximum absolute operand is done by

the host computer during the procedure of generating the Jacobian

matrix. Therefore, the intermediate processor only serves to pre- and

post-adjust the operands. The advantage of using this intermediate

processor is a savings of time when compared to the method explained in

the previous section.

The overall block structure of the intermediate processor, which

operates in pipeline fashion, is shown in Figure A.3. In this figure,

the mantissa and exponent busses have m and e lines, respectively. The

number m must be equal to or greater than the number of fixed-point

bits, n, of the operand width inside the VLSI array processor. If m is

greater than n, these n lines (input to and output from the array

processor) must be connected to the most significant bit (MSB) positions

(including the sign bit) of m lines. Likewise, the m lines inpUt from

and output to the host computer will be connected to the MSB's of the

mantissa bus lines inside the host computer. The number e is the number

of bits in the exponent field of the host computer. The left half

portion of the structure performs the pre-adjustment of the operands

£53

 | e

I BUFFER] I BUFFER I I I BUFFER] l BUFFER

I I I I I
I I ; : I I

I

I

I

l ADJUSTER l ADJUSTER

__i, _ I

[SUBTRACTER] I SUBTRACTER I' SHE-[5%,

I;-I-----—Jl I

I I ‘

I DECODER I I DECODER

A I

I I I I I
RIGHT

l SHIFTER I I i LZDC i

| i_

1*

II I , I

I BUFFER | I BUFFER I

i-m I +m

I VLSI ARRAY PROCESSOR

Figure A.3 Function block structure of an intermediate

processor for pre- and post-adjustment.

5h

traveling from the host computer. The right half portion operates the

post-adjustment of the operands resulting from the VLSI processor.

Both of the adjusters depicted in the same figure function as a

number format adapter. Therefore, the internal structure is dependent

on the format of the input and output operands. The adjuster inside the

left half portion converts the mantissa of an input operand in any

format to a two's complement form. For example, if the normalized

mantissa and exponent of the input operands are in one's complement

representation (e.g. from the CYBER-750) and the radix point is at

either the right or left extreme of the magnitude of the mantissa, the

adjuster must include an incrementer for converting the mantissa to

two's complement form. No increment of the exponent is required because

the exponent will not be transferred to the VLSI processor. Thus, the

exponent can be in either biased or unbiased form. In case an overflow

results after the mantissa's increment, the whole mantissa except the

sign bit will be shifted right once with trailing ”0” (if the number is

positive) or "I" (if negative) and its corresponding exponent value must

be incremented by one. A possible design of the adjuster is illustrated

in Figure h.h based on the pipeline concept.

If, however, the input operands are in two's complement format,

this .portion of the adjuster can be omitted. If the input operands are

not in a normalized form, a leading-zero detection circuit (LZDC), a

decoder and a left shifter for the mantissa and a subtracter for the

exponent may be required additionally. Even in this case the adjuster

can still be divided into pipeline segments. Therefore, it is assumed

that the adjuster can always be designed in a pipeline‘ structure which

55

Mant ssa Exponent

m ”“9

I_____—__-___—I

’ overflow='l'

I I INCREMENTER I"——‘ I

I I I

I I 1 l
I I RIGHT SHIFTER I“_ ADDER I I

Figure h.h A sample internal block

structure of an adjuster.

is crucial to avoiding a potential interface bottleneck.

The adjuster inside the right half portion of the processor always

changes the input mantissa from two's complement form back into the

original number format. For the same example of one's complement

format, the input two's complement mantissa is initially decremented and

then a test determines if the M58 next to the sign bit is still "l". If

not, the mantissa without the sign bit will be shifted left once with

trailing "O" or "i" and the corresponding exponent value must be

decremented by one. The structure of this adjuster is thus composed of

a decrementer, a subtracter (or another decrementer) and a left shifter

which are interconnected similar to the structure shown in Figure h.h.

56

During the pre-adjustment, the maximum operand found beforehand

appears first followed by other operands in row-ordered form. These

operands are pumped into the pipeline structure through the receiving

buffers. At the second stage, the latches marked as L5 in Figure h.3

have the same structure as that of the others, but they have a different

input control. Once the very first exponent, the exponent of the

maximum operand, has been input into these latches, no other exponents

can be put into them. Therefore, this exponent will be kept stable by

constant refreshing for use as the subtrahend for the subtracter in the

next stage as well as in the post-adjustment portion. .As a result, the

maximum exponent is consistently subtracted from all other exponents.

Finally, before all of the adjusted mantissas, except the one of

the maximum operand, are pumped into the VLSI processor through the

output buffer, they are shifted right (with trailing "0" or "l”)

corresponding to the result obtained from the exponent's subtraction.

During the post-normalization, triangulated results are returned

from the array processor through a receiving buffer. These results are

pumped into a leading-zero detection circuit (LZDC). Subsequently, the

result of the detection is used as a minuend and decoded as a control

signal to be sent to a subtracter and a left shifter. Inside the

shifter, the mantissa is shifted with trailing "O" or ”i" again

depending on its sign. Eventually, after the shifted mantissas and

subtracted exponents have been adjusted back to the original number

format, they are transferred to the host computer through the output

buffers. All of these output buffers as well as the receiving buffers

can be first-in-first-out memory buffers if necessary for speed matching

57

(e.g. if a DNA channel is operational).

Latches control the timing of the process in the same way as those

in the VLSI array structure. Therefore, the processing time, Tp, can be

described by the standard pipeline processing equation,

Tp - ts + (n-l)°top, (h-3)

where t5 = setup time,

tOp - longest segment time,

n = number of operands.

The segment time, top’ can be determined from the structure shown in

Figure A.3. Assuming the adjuster can be pipelined (See Figure A.A),

all of the shifters are barrel shifters, subtraction is pipelined into a

complementation and addition, and, the decoder and the LZDC are

sufficiently fast (a total 5 unit gate delay LZDC has been described by

Chang and Fisher [Zl]), top is simply the addition time.

As a whole, performing the pre- and post-adjustments of the

operands by this intermediate processor is better than utilizing the

host computer from the view point of data transfer time and arrangement.

This is because execution in this processor is pipelined.

CHAPTER V

SIMULATION DEVELOPMENT

The main purpose of the circuit simulation is to quantify the

overall triangulation time as well as the chip area of the improved VLSI

array structure including I/O circuits. The triangulation portion

represents the actual triangular factorization encountered in the load

flow calculation except that fixed-point arithmetic is employed.

Therefore, the piece-wise elimination time as discussed in Section h.l

will be replaced by the simulated processing time.

The estimation of the chip area, though it does not affect the

triangulating process, will project a basic trade-off comparison of chip

size versus matrix bandwidth.

Several fundamental parameters that may be manipulated in the

simulation are minimum lithographic linewidth (A), word size, matrix or

network bandwidth (8 or B'), and matrix or network dimension (N or

N'+I) .

In particular, the manipulation of A can track current trends in

I. C. fabrication technology and thus projects the reality of the

implementation of the proposed VLSI systolic array algorithm. A "A

model", a layout geometry design tool introduced by Head and Conway

[18], assumes that the permissible layout linewidths and spaces along

the diffusion, polysilicon and metal lines can all be scaled down in

linear dimension. Therefore, the geometries of layout elements can be

58

59

described proportionally in terms of current and projected minimum

lithographic linewidth. As the I. C. fabrication technology

advances, X decreases and thus the layout geometries also decrease

proportionally.

In addition to the A model, a revised “7 model", a simple

arithmetic model for computing propagation delay of a transistor level

circuit, is used to relate the switching speed of a gate and overall

processing time of triangulation [A, IS]. The original 1 model

acknowledges that the delay time of a node depends on the total

capacitance of that node together with the gate capacitance and transit

time of the driving transistor [18]. However, the transit time, 1, is

the fundamental limit on the switching speed of the gate. In a

practical circuit, the speed of MOS (fietal-Qxide-§emiconductor) device

operation is determined by the speed with which capacitors can be

charged and discharged [22]. Therefore, the revised model assumes that

"T" is the discharge time for a basic inverter coupled with only one

identical inverter. Also the gate effective capacitance of every logip

gate is assumed equal. Thus, the simulation results in the propagation

delay calculation are more realistic than the 1 model since it uses

discharge time, T, not just transit time, 7. Moreover, this simplifies

the process of estimating total load capacitance [A].

The number of bits per word (word size) is determined by the

necessary number of fixed-point bits required for load flow convergence

(See Section 3.3). The Jacobian matrix bandwidth and dimension,

however, are .not the same as the network bandwidth and dimension. As

mentioned in Section h.l, corresponding to a power utility network with

60

a system bandwidth 8' and bus dimension N'+l the upper bound Jacobian

matrix bandwidth and dimensions, 8 and NxN, are given by 28'+l and

2N'x2N', respectively. This is of course due to multiple entries (up to

2x2) for the particular partial derivatives. The upper bound dimensions

of the right-hand-side vector then becomes 2N'xl.

5.1 Chip Area Computation

The major hardware design of the VLSI array processor in this

research is.partitioned into three distinct parts, namely computing

structure, input and output circuits.

The design of I/O circuits for the array structure is based on the

choice from several I/O circuit candidates [1?]. The input circuit,

cataloged as a ”data controlled" circuit, pumps the data operands into

the destination PE's without using any channel-selecting control

signals. It ultilizes the FIFO stack concept employing n sets (same as

the number of bits per word) of Min-stage shift register chains (where

Nin is the number of input ports or 28+2). Therefore, this circuit is

composed of Nin arrays of 1-bit shift registers.

The output circuit, cataloged as an ”SCS" (Shift-Register Control

Sequence) circuit, is controlled by an SCS signal. This sequence, a

single "1" followed by B "0's", is synchronously pumped into a 1-bit

shift register chain and is used to select the proper operand output

channel. When the "out data operands, where Nout is the number of

output ports or 8+l (See Figure 3.2), are ready to be clocked out of the

array structure, N output channels are sequentially selected for
out

61

routing the operands. Thus, this output circuit consists of Nout l-bit

shift registers plus Nou arrays of buffers and pass transistors. Finer
t

details of these I/O circuits can be found in [17].

Since the layout of processing elements (PE's), multiplexers and

latches in the computing array is regularly connected and supports local

communication (i.e., nearest neighbors), it is possible to model each

unit as a functional module and tesselate these modules into large

building blocks. Also, the fundamental building blocks, such as

full-adders in the PE's, can be modeled and likewise tesselated. In the

same manner, the I/O circuits are modeled as unit modules such as l-bit

shift registers and buffers.

As a result, the I/O circuits and computing structure taken

together require that relatively few specific modules be laid out by

hand and quantified (with respect to the parameter A) as per the

technique of Head and Conway. Specifically, these modules include a

full-adder, l-bit shift register, buffer, latch, 2-input NAND gate, 2:1

multiplexer and pass transistor.

5.2 Throughput Computation

The localized connectivity of the computing and I/O structure

allows straightforward computation of delay parameters. Quantification

of module delay involved summing the active gates' propagation time,

with consideration of loading due to fan-out, and internal communication

path delay. Diffusion line length and unit length delay were considered

the significant path delay parameters. Moreover, 'intermodule line

62

length was negligible due to the tesselated nature of the structures.

Utilizing the revised 1 model, the active gate delay time is based

on T. It is assumed that T is linearly dependent on A and when

A93 microns, T=O.6 nsec [18]. An upper bound on the diffusion line

lengths were determined for each module as a function of line length

squared. Then, using the fact that transit time is 100 nsec for a

10 millimeter length line [18], communication path delays were obtained.

Finally, the total module delay is the sum of active gate delays

and communication path delays. Thus, once the maximum segment delay is

found, the total processing time (throughput) for triangulating a band

system matrix can be obtained by using the Equation 3-8. However, the

I/O delay time must be considered and taken into the account of

throughput calculation. Therefore, assuming no I/O bottleneck, the

overall throughput time including I/O time, tin and to is estimated

ut’

by‘modifing Equation 3-8 and is shown as below.

T(N.B) a tin + top-(z-N + B + 2°rB/2]) + to . (5-1)
Ut

where tin and tout are also known as the pipeline setup time and flush

time, respectively.

5.3 Significant Module Data

Chip area and propagation delay computational methods have been

discussed in the previous sections. Based on the data from [A],

Table 5.1 presents results of these calculations for each fundamental

building block.

63

Table 5.1 Significant module data.

Active Gate

Module Class Areagjx K2) Delay (x T)

Full-Adder 65 x 5h 28

l-Bit Shift Register 23 x 17 18

Buffer 23 x 17 2

Latch 23 X I7 I3

2-Input NAND Gate 19 x 5 8

2:1 Multiplexer 6 x 6 1

Pass Transistor 3 x 3 l

CHAPTER VI

RESULTS AND CONCLUSIONS

The minimum number of fixed-point bits per word required for load

flow convergence of several different bus networks as determined by

running the revised MSU load flow program version described in

Section 3.3 will be presented first. As explained in that section, the

convergence of the overall Newton-Raphson formulation in the revised

program is limited by the number of fixed-point bits (word size).

Therefore, by varying this number, several load flow program results are

obtained and shown in Table 6.1. This table indicates that the minimum

numbers of bits per word required for the convergence of the test

networks are 28 and 32.

As a second step, the circuit simulations comparing the throughput

speed and chip size versus matrix bandwidth are presented. The time

results selected from the simulations are compared with those from

previous works to promote the significance of using a VLSI systolic

computing array structure for load flow computation.

Finally, conclusions will be drawn and summarized from all of the

results obtained from this research.

6h

Network Size

Busses Band-

width

I03

“9

105

150

11

I7

16

65

Table 6.1 Convergence results in number of iterations

of MSU load flow program version.

a

Results of Convergence

Original MSU Revised MSU

Program Version Program Version

Number of Number of Number of

Iterations Fixed-Point Iterations

Bits per Word

6 I6 12

28 6

h 16 Divergent

28 5

32 h

6 28 6

32 6

6 28 7

32

R

Tolerant Real Power Mismatch (PMM) - 0.15

Tolerant Reactive Power Mismatch (QMM) - 0.25

66

6.1 Circuit Simulation Results

It has been predicted that the patterning resolution limitation of

optical lithography will be about 0.5 micron in the early twenty-first

century [23]. Recently, however, many I. C. designers have been

exploring new and promising techniques including electron-beam and X-ray

lithography. With electron-beam methods, for example, future linewidths

of 0.2 and 0.125 microns have been estimated as feasible [2A, 25]. For

these reasons, 0.8, 0.5 and 0.2 micron linewidths have been chosen as

the realistic goals of mid and late 1980's and early 1990's VLSI

capability, and are used as quantification parameters in the

simulations. Another parameter used throughout the simulations is the

word size of 32 bits, which is chosen in order to assure convergence of

all test networks.

First, the results of a general circuit simulation with the

selected parameters and the assumption of B-O.1N (where B and N are

matrix bandwidth and dimension, respectively) are illustrated

graphically in Figure 6.1 and Figure 6.2.

Figure 6.1 contains three curves showing entire chip edge size

versus matrix bandwidth with linewidths of 0.8, 0.5 and 0.2 microns. A

projection of a maximum technologically feasible chip size has been made

which predicts the future I. C. chip edge to be about 1.5 cm by the late

1980's [23]. Under this assumption, using a 0.5 micron linewidth the

matrix bandwidth, 8, is limited to about 13. To extrapolate this result

C
H
I
P

E
D
G
E

I
N

C
H

67

O

“3
w"!

CHIP EDGE VS BFINOIIIDTHI

o + 0.8 MICRON LINEIIIDTII

a: x 0.5 MICRON LINEIIIDTI'I

v" o 0.2 MICRON LINENIDTH

O

‘3
*1

c, I

“I
m‘l

O

't
N!

D

“2

D

“3
O!

c:

c.’

c: I’ If If I l I If T8 T I T I I l

2 4 6 8 1012141618202224262830

BHNDNIDTH

Figure 6.1 Entire chip edge size versus matrix bandwidth

for 0.8, 0.5, and 0.2 micron linewidths.

68

1
-
4
0

TIME VS BHNDNIDTH

4- 0.8 NICRON LINENIDTH

X 0.5 I‘IICRON LINENIDTI‘I

O 0.2 NICRON LINENIDTH

0
.
8
0

1
:
0
0

1
.
2
0

1

0
.
6
0

1

T
I
M
E

I
N

H
I
L
L
I
-
S
E
C

O
-
4
O

O
-
Z
O

O
-
O
O

r I I I l l l r I l l l l

6 8 10 12 14 16 18 20 22 24 23 28 30

BHNDNIDTH

I

4

~
—

Figure 6.2 Entire chip propagation delay versus matrix band-

width for 0.8, 0.5, and 0.2 micron linewidths.

69

to an actual electrical utility network size, an additional aspect must

be first considered. As mentioned in Section A.l, the upper bound of

the Jacobian matrix bandwidth and dimension are 28'+l and 2N', where 8'

and N'+l are the utility network bandwidth and dimension, respectively.

Thus, the result indicates that a power system of approximately 61

busses could be solved on a single chip assuming late 1980's technology

(0.5 micron linewidth). And, if early 1990's technology (0.2 micron

linewidth) with the same chip edge size is assumed, systems of about 171

busses could be solved on one chip.

0f greater significance is the fact that the triangulation time, or

total chip propagation delay, is dramatically improved over traditional

serial techniques. As depicted in the graph of time versus bandwidth

(Figure 6.2), using the same 0.5 and 0.2 micron linewidths as before,

the triangulation times of the networks of 61 and 171 busses are 0.266

and 0.286 milliseconds, respectively.

Next, by using the details of the simulation time results of

several major block structures, it can be shown that this type of

systolic array architecture will not cause a serious I/O bottleneck of

operands. As shown in Table 6.2, it is unquestionable that the DC

segment time (tDc) completely dominates over the MAC time (t INPORT
MAC)’

time (tin) and OUTPORT time (t) at the given bandwidths and
out

linewidths. The INPORT time is actually the time required to set up the

operands for the first row of input latches inside the computing

structure (See Figure 3.2). Therefore, this INPORT time is proportional

to the number of input ports or 28+2. Likewise, the OUTPORT time varies

with the number of output ports or 8+l. However, the DC time as well as

30

20

10

70

Table 6.2 Simulation time results of

A

ImicronI

l/O ports, MAC and DC.

t t t

in out MAC

InsecI (nsec) Insec)

178.6 9A.7 293.8

111.6 59.2 183.6

hh.6 23.7 73.h

121.0 65.9 293.8

75.6 h1.2 183.6

30.2 16.5 73.h

63.h 37.1 293.8

39.6 23.2 183.6

15.8 9.3 73.h

38-6 22-7 293.8

21.6 lh.2 183.6

8.6 5.7 73-“

DC

InsecI

lh80.0

925.0

370.0

1h80.0

925.0

370.0

lb80.0

925.0

370.0

lh80.0

925.0

370.0

71

the MAC time is dependent on the word size but not B. As a result, an

I/O bottleneck will happen if and only if B is large enough to make

t > t As shown in Table 6.3, this l/D bottleneck occurs when 8 is
in DC'

greater than 255 which implies 8' and N'+l are equal to 127 and 1271,

respectively. The bottleneck, though, never occurs in this work since

only networks of less than or equal to 150 busses are studied.

Now, utilizing the same simulation program, some practical results

tailored towards the load flow study are obtained by specifing the exact

dimensions and bandwidths of some typical power systems. The simulation

time results, however, when used to replace the complete piece-wise

elimination time, must include the time spent on the pre- and

post-normalization of operands.

These normalization times are found according to the intermediate

processor design discussed in Section A.2. As shown in Figure h.3 and

Figure A.A, the numbers of stages (including the buffer stages and the

complementation stage for subtracters) in the pipeline structure are 8

(pre-adjustment portion) and 10 (post-adjustment portion). Assuming the

adder is a 3-level CLA (Carry Lookahead Adder) which has a 12 unit gate

delay [20], the pre- and post-normalization times are simply the setup

time of the pre-adjustment portion and the flush time of the

post-adjustment portion of the intermediate processor. Therefore, the

pre-normalization time (tp) is given by,
re

tpre = 9 x lZ-A (6-1)

where A is assumed to be 1 nsec with mid 1980's technology [23]. An

260

256

255

250

Table 6.3 Simulation time results showing

A

Imicron)

72

an I/O timing bottleneck.

t

1503.

.6939

375-

1880.

925.

370-

lh7h.

921.

368.

lhhs.

903.

361.

in

ShSECI

I.

8

t
'

0
‘

a
:

0
‘

O
‘

O
‘

I:

out

(nsecI

757 .

1173.

189.

765. 0
‘

\
N

h66.0

186.h

7&2.

56%.

185.

728.

#55.

182.

293.

MAC

(nsec)

8

183.6

73-

293.

183.

73-

293.

183.

73-

293.

183.

73-

0
‘

a
:

t
'

0
‘

0
0

S
‘

0
‘

a
:

t
'

r

DC

(nsecI

lh80.0

925.0

370.0

. 1h80.0

925.0

370.0

1A80.0

925.0

370.0

1h80.0

925.0

370.0

73

extra segment time is included in tpre because the very first operand

pumped into the intermediate processor is the maximum operand which will

not be transferred to the VLSI processor. The post-normalization time

(tpost) 15 defined by,

tpost = 10 x 12-A. (6-2)

FInalIy, tpre’ tpost’ the VLSI array computing tIme IncludIng I/D

tIme (tcomp)’ overall solutIon tIme (tVLSI.tpre+tpost+tcomp) and the

corresponding chip edge size of the VLSI structure (S) are shown in
VLSI

Table 6.A. All of these _time results are found with respect to the

network bandwidth (8'), network dimension (N'+l) and various

lithographic linewidths. This table indicates that t and t are
pre post

insignificant when compared to t The solution time, , will be
tVLSI

compared to other results in the next section. Notice that some of the

comp'

chip edge sizes, S , are tremendously large compared to that of the

VLSI

projected 1.5 cm x 1.5 cm I. C. chip.

6.2 Comparison with Previous Results

Time results obtained from the previous works which utilized a

one-dimensional array processor (AP-190L) to solve the same power

systems are compared with the benchmark results from the CYBER-750 and

the simulation results in this research. This is illustrated in

Table 6.5. This table shows that the triangulation time per iteration

spent on the VLSI systolic array structure is dramatically improved over

7h

Table 6.A Simulation time and chip edge size

results for load flow study.

pre + tpost + tcomp . tVLSI VLSI

__ (micron) (nsec) (nsecI ImsecI (msecI (ch

N'+l 8' A t S

A3 6 0.8 108 120 0.289 0.289 2.30

0.5 108 120 0.181 0.181 1.hh

0.2 108 120 0.072 0.072 0.58

AS 11 0.8 108 120 0.355 0.355 3.89

0.5 108 120 0.222 0.222 2.A3

0.2 108 120 0.089 0.089 0.97

105 17 0.8 108 120 0.722 0.722 5.80

0.5 108 120 0.b51 0.h51 3.62

0.2 108 120 0.180 0.180 1.A5

150 16 0.8 108 120 0.983 0.983 5.58

0.5 108 120 0.61h 0.61h 3.A3

0.2 108 120 0.2h6 0.2h6 1.37

75

Table 6.5 Comparison of triangulation time per

iteration of different processors.

N'+I 3' tCYBER* tAP tVLSI (I)

____ __ _jm§ggL _Jm§ggL (msec (micron))

I3 6 5.500 2.717 0.289 (0.8)

0.181 (0.5)

0.072 (0.2)

I9 11* 10.500 b.555 0.355 (0.8)

0.222 (0.5)

0.089 (0.2)

105 17 77.500 13.163 0.722 (0.8)

0.u51 (0.5)

0.180 (0.2)

150 16 55.833 17.6u6 0.983 (0.8)

0.6lh (0.5)

0.256 (0.2)

*Average from several runs with Markowitz ordered data

sets (Tinney No. 2 ordering [5,6]).

Numbers are absolute lower bounds; real CPU time is

considerably higher but could not be accurately trapped.

76

the benchmark result (tCYBER) and that spent on the array processor

(tAP)° tCYBER is tremendously large since the program is executed in a

serial fashion. Therefore, it is concluded that the VLSI array

structure is very efficient in reducing the banded Jacobian matrix

triangulation time which in turn enhances the overall computational

throughput of large scale load flow problems. In summary, the ratios of

tVLSI:tCYBER and tVLSIztAP (for A80.8 mIcron) are listed In the

following table.

Table 6.6 Comparison of time results of

different processors in ratio.

N'+l 3' tVLSI ‘ tCYBER tVLSI ‘ tAP

AB 6 l : 19.0 1 : 9.h

119 11 1 : 29.6 1 : 12.8

105 17 '1 : 107.3 1 : 18.2

150 16 l : 56.8 1 : 18.0

77

6.3 Conclusions

In this work, an existing VLSI algorithm for triangulating large

band form matrices was successfully modified and applied to load flow

analysis. By adding rows of multiplexers and latches to an existing

algorithm, the revised structure can triangulate a band matrix to strict

upper triangular matrix with a unit diagonal in 0(N) time steps.

The pre- and post-adjustments of the operands transferring between

a host computer and the VLSI array structure can be done efficiently by

the proposed intermediate pipeline processor described in Section A.2.

The time required for operand adjustment is simply the pipeline setup

and flush time which is insignificant to the overall triangulation time.

It is found that the minimum number of fixed-point bits per word

for load flow convergence of the test networks used (< 150 busses) is

32 which indicates that all of the coefficients of the system matrix are

reasonably well tempered and of adequately tight dynamic range.

The simulation results show that the l/O bottleneck does not occur

in this VLSI structure if the maximum segment delay time in the pipeline

is completely dominated by the PE time, specifically the DC time.

As shown in Section 6.1, a power system network of approximately 61

busses could be solved on a single VLSI chip with the late 1980's VLSI

technology.

The circuit simulation time results reveal that the time of upper

triangulation by the designed VLSI systolic array structure is greatly

78

reduced and hence the overall solution throughput of load flow analysis

is improved.

6.A Discussion

It has been shown that when the system bandwidth is large, the

proposed VLSI structure cannot be implemented on a single chip.

Therefore, this algorithm must be realized in a modular fashion on a few

chips. If such a case is possible, the VLSI algorithm should be

modified at the same time to have true floating-point capabilities since

there will be no limitation on the hardware size if the

intercommunication problem among chips is solved.

Recall that the complete triangulation time of the VLSI structure

is limited by the segment time of the DC (See Table 6.2) which is

approximately five times greater than that of an MAC. Thus, the

triangulation time can be further reduced if a faster DC is designed.

However, as indicated in Section 6.1, the I/O bottleneck did not occur

because of the domination of the DC segment time. So, it is possible

that if the matrix bandwidth is extremely large and DC time is reduced

tremendously, the INPORT time will dominate over other segment times.

As a result, an I/D bottleneck may be encountered. Therefore, a

trade-off between the segment and I/D time may result in limiting the

overall triangulation throughput in the future modular designs.

If the VLSI algorithm is realized in a modular fashion and designed

with binary floating-point (FLP) arithmetic, all of the processing

elements should be reexamined.’ An FLP PE should possess the

79

capabilities of alignment or normalization, truncation and rounding of

the operands. This, of course, may double or triple the hardware size

making a modular layout essential. In addition, the complexity of the

cell design depends on other factors, such as degree of precision and

error bounds. This may introduce trade-offs between normalized or

unnormalized FLP designs. Undoubtedly, the inclusion of FLP arithmetic

will. involve a huge increase in hardware size. Thus, a near term

research requirement is to investigate some area-efficient FLP

arithmetic algorithms (multiply-add and division) and then examine the

intercommunication problem and potential modularity among these new

PE's.

Finally, it must be pointed out that the application of a proposed

VLSI systolic array structure to load flow analysis leaves a lot of

practical questions unanswered. For instance, in the future when such a

VLSI structure is available, will it still be attached peripherally to a

host computer of today's serial genre? Also, in order to obtain the

fastest possible load flow solution, the structure of a load flow

program should be reexamined such that the process of finding a maximum

operand and coefficients' normalization can be avoided.

On the whole, as VLSI technology advances, not only should special

purpose computer architectures be designed and improved, but also the

algorithms, including arithmetic and programming, must be reexamined so

that all of the technology, architectures and algorithms can progress

harmoniously.

BIBLIOGRAPHY

10.

I].

BIBLIOGRAPHY

Gross, C. A., Power System Analysis, John Wiley and Sons, New York

(1979). PP- 3'9-

Kung, H. T., "The Structure of Parallel Algorithms," Advances 1p

Computers, Vol. 19, Academic Press (1980). Pp. 65-112.

Hwang, K. and Cheng, Y. H., "VLSI Computing Structures for Solving

Large-Scale Linear Systems of Equation," Proc. 1980 lnt'l Conf. pp

Parallel Processing (August 1980), pp. 217-230.

Hsu, W. C. and Shanblatt, M. A., Evalpption pi 3 Single VLSI Chip

Algorithm for Triangulating Large Band Form Matrices, Tech. Report

No. MSU-ENGR 82-015, Michigan State University, East Lansing,

Michigan (August 1982).

Tinney, W. F. and Hart, C. E., ”Power Flow Solution by Newton

Method," IEEE Trans. pp Power Apparatus ppp Systems, Vol. PAS-86,

No. 11 (November 1967), pp. lhh9-lh56.

Tinney, W. F. and Walker, J. W., "Direct Solutions of Sparse

Network Equations by Optimally Ordered Triangular Factorization,"

Eggs; [555, Vol. 55, N0. 11 (November 1967). PP. 1801-1809.

Shanblatt, M. A., Mickle, M. H. and Vogt, W. 6., ”Optimal Ordering

Strategies for Load Flows on an Array Processor,“ Proc. 1981 Int'l

Conf. pp Electrical Energy (April 1981), pp. 78-81.

Abulleil, A. M., Ipp U55 9: pp

Large Scale Load Fl Prob

Pittsburgh (1981).

Array Processor 1p the Solptjon ‘21

ems,1 Ph. D. Thesis, University of

Philadelphia Electric Company Power Flow Program, POWERFLO, Version

A, Mod Level 30, System Planning Division, Philadelphia Electric

Company, Philadelphia, Pa. (8 October 1975).

York (1965), pp. 398-h15.

Bodewig, E., Matrix Calculus, lnterscience, New York (1959), pp.

101-12A.

80

12.

13.

1h.

15.

l6.

l7.

l8.

19.

20.

21.

22.

23.

2h.

25.

81

Alway, G. G. and Martin, D. W., ”An Algorithm for Reducing the

Bandwidth of a Matrix of Symmetric Configuration,” Computer Journal

(August 1965), pp. 26h-272.

Cuthill, E. and McKee, J., "Reducing the Bandwidth of Sparse

Symmetric Matrices,” Proc. ghth National Conf. ACM, Brandon System

Press, New Jersey (1969), pp. 157-172.

Gibbs, N. E., Poole, W. G. Jr., and Stockmeyer, P. K., ”An

Algorithm for Reducing the Bandwidth and Profile of a Sparse

Matrix,“ SIAM pp Numer. Anal., Vol. 13 (1976). pp. 236-250.

Foster, M. J. and Kung, H. T., "The Design of Special-Purpose VLSI

Chips," omputer, Vol. 13 (January 1980), pp. 26-h0.

Kung, H. T. and Leiserson, C. E., "Algorithm for VLSI Processor

Array," Symposium pp Sparse Matrix Computptions, Knoxville (1978).

Hsu, W. C., Leung, Y.-Y. J. and Shanblatt, M. A., "Comparison of

Input/Output Structures for Single Chip VLSI Systolic Arrays,”

Proc. 25th Midwest Symp. pp Circ. and Sys. (August 1982).

Mead, C. and Conway, L., Introduction pp VLSI Systems,

Addison-Wesley Pub. Co., Reading, Massachusetts (1980), pp. 1-90.

Baugh, C. R. and Wooley, B. A., "A Two's Complement Parallel Array

Multiplication Algorithm," IEEE Trans. Computers, Vol. C-22, No.

l-2 (December 1973), pp. 10h5-10h7.

Hwang, K., Comppter Arithmetric, John Wiley and Sons, New York

(1979). PP- 35’259-

Chang, T. L. and Fisher, P. D., "High-Speed Normalization and

Rounding Circuits for VLSI Floating-Point Processors," Proc. IEEE

Int'l Conf. pp Circuits ppp Computers (1980), pp. 512-516.

Taub, H. and Schilling, D., Digital Integrated Electronics,

McGraw-Hill Inc. (1977), pp. 35-53.

Keyes, R. W., "Physical Limits in Semiconductor Electronics,"

Science, Vol. 195 (March 1977), pp. 1230-1235.

Eidson, J. C., "Fast Electron-Beam Lithography,” IEEE Spectrum,

V01. 18 (July 1981). pp. 2I—28.

Bernhard, R., "VLSI Lithography at the Crossroads,” IEEE Spectrum,

Vol. 18 (July 1981)” p. 27.

