SHARPESTIMATESINHARMONICANALYSIS By GuillermoRey ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof Mathematics{DoctorofPhilosophy 2015 ABSTRACT SHARPESTIMATESINHARMONICANALYSIS By GuillermoRey Weinvestigatecertainsharpestimatesrelatedtosingularintegrals.Inparticularwegive sharplevelsetestimatesforsparseoperators,weshowhowtoreducetheproblemof estimatingon-Zygmundoperatorsbysparseoperators,andwestudysomeweighted inequalitiesfortheseoperators. ACKNOWLEDGEMENTS Todoesto,nosoloestatesis,habrsidoimposibledenoserpormifamilia.Gracias, a,porense~narmeaserfeliz,yporaguantarmetodosestosa~nos;todavmeacuerdo cuandoentedlasaticasporprimeravezcuandoabamosenElkridge.Gracias, a,portodasesasdiscusionessobreciencia,informatica,ydetodoengeneral; portenersiempeunarespuestaamispreguntas,ypordejarmejugarcontodoslos aparatosqueencontraba.GraciasalosdosporestarsiempreahYgraciasaMarta,por ayudarmeentodaslasgrandesdecisionesquehetomado;contigoheaprendidomuch yesoqueestosdostellevanmasdeveintea~nosdeventaja.Gracias,Jaime,porhacerme reirtantveces:asesimposiblenotenerbuenasmemorias.Y,Pablo,graciaspor querermetanto;eresdelasprimeraspersonasconlasquequieroestarcadavezquehago unavisita.Yporsupuesto,graciasalrestodemifamilia,queesdemasiadograndecomo paraenumeraraquQueaisqueospongocomoejemplodelasuertequetengo. AMichayAntonioporesosinterrailes,yaLuis Angel.Porserdelospocosbuenos recuerdosquetengodemionantesdeiralauniversidad.AJorgeporquecontigo siempresepuedehablardeloqueasnosgusta.ARita,porserunaamigatanchachiy porense~narmetantaspalabrasguays.ACarmenportenerconversacionesinterminables conmigosobreomoarreglarelmundo.AMarporqueyonoibaalacafetercontigo porlacalidaddeloscafes,sinoporqueaspodestarmastiempocontigo;porqueeras,y siguessiendo,absolutamenteimprescindible.AAnonporquedespuesdetantotiempoyo creoqueyapensamosaticamente.Porense~narmequelosproblemassinonno existen,yporquecontigopuedoestarhablandohastaelamanecer.YaMiranda,porque aunmeacuerdodecuandoteconocydelasagujetasquetuvealdsiguientedetanto reirme. AJose,porquetegustanlasaticasylacomidatantocomoamPorvisitarme, viajarconmigo,yayudarmeenelproyectodelqueestoymasorgulloso.ABeatrizporque siempretepreocupaspormyporqueabrazasfenomenal.Aanporense~narmetantas iii cosas,yportodaslasqueaunnomehasense~nado.YaMarporquepuedoconartelo todoysiempreasahcuandotenecesito.Porquehablarcontigomealegraeldaunque estemuylejos. AlosprofesoresdelaUAMquemeayudarontantodesdeelprincipio.GraciasaAntonio ordoba,JoseGarca,yFernandoSoria.Sobretodo,graciasaAnaVargaspor enmyense~narmetanto. TothegraduatestudentsatMSUwhichmademystayheremuchmoretolerable;thank youAlexforteachingmeBellmanfunctions,thankyouTylerandBenforallthoseBeggars nights,andthankyouCharlotteandSamiforallthelaughsinyournew Andlast,butnotleast.Thankyoutomytwowonderfuladvisors:IgnacioUriarte-Tuero andAlexanderVolberg.Thankyouforyourconstantsupportandforteachingmesomuch aboutmathematicsandlife.This,obviously,wouldnothavehappenedwithoutyourhelp. GuillermoRey iv TABLEOFCONTENTS LISTOFFIGURES vi 1Introduction 1 2Sharpweak-typeboundsforpositivedyadicshifts 5 2.1Introduction 5 2.2TheBellmanfunctiontechnique 8 2.3FindingtheBellmanfunctioncandidate 12 2.4Optimality 16 3Dyadicmodelsforsingularintegrals 27 3.1Introduction 27 3.2Pointwisedomination 33 3.3Applications 48 3.3.1Multilinear A 2 theorem 48 3.3.2SharpapertureweightedLittlewood-Paleytheorem 49 3.4Theweak-typeestimateformultilinear m -shifts 51 4Ontheembeddingof A 1 into A 1 57 4.1Introduction 57 4.1.1Organization 62 4.2TheBellmanfunctionapproach 63 4.3FindingtheBellmanfunction 69 4.3.1Explicitextremizers 71 4.4VerifyingtheMainInequality 76 5Borderlineweak-typeboundsforsingularintegrals 82 5.1Introduction 82 5.2Proof 83 BIBLIOGRAPHY 89 v LISTOFFIGURES Figure4.1 Plotsof f and e f 62 Figure4.2 Domains k 79 vi 1 Introduction Inanalysis,oneoftenneedstocommutealimitwithanoperator.Afamousexampleof suchsituationconcernstheFouriertransform: b f ( ˘ ):= Z 1 e 2 ˇix˘ f ( x ) dx: Wewouldliketorecoverthefunction f fromitsFouriertransform b f ,andthisiscertainly possibleinsomecases,butoneshouldbecarefulwithwhatexactlydowemeanby \recover".Inparticular,eventhoughtheFouriertransformmaybewellthe inverseFouriertransformmaynot. Atypicalwaytoresolvethisissueistonotinvertthewholefunction b f ,butatruncationof it: f R ( x ):= Z R R e 2 ˇix˘ b f ( ˘ ) d˘: Nowthequestionis:Does f R tendto f as R !1 ?Inwhatsense? Thisisaveryoldquestionandtherearemanywaystoanswerit.Perhaps,thebestknown answeristhefollowing:if f 2 L 2 ( R )then f R ! f in L 2 ( R ),thatis lim R !1 k f R f k L 2 ( R ) =0 : (1.1) 1 ThemaintoolusedtoprovethisresultisPlancherel'stheorem: k b f k L 2 ( R ) = k f k L 2 ( R ) : Ifwetakethistheoremforgranted,thenwecangiveashortproofof( 1.1 ): lim R !1 k f R f k 2 L 2 =lim R !1 k c f R b f k 2 L 2 =lim R !1 Z R j f ( x ) j 2 (1 1 [ R;R ] ( x )) dx; =0 : wherewehaveusedtheDominatedConvergenceTheoreminthesecondtolastline. Onecouldaskwhatissospecialabout L 2 ,apartfromPlancherel'stheorem.Isthistruein, say, L 3 ? Thisisindeedtruefor f 2 L p ( R )forall1 o C Z I j f j : However,herewepreciselydescribehowthebestconstantintheaboveinequalitychanges withrespecttotheparametersoftheproblem. Themainresultofthearticleisthefollowingtheorem: Theorem2.1. Let A , and t bepositivenumbersand I anintervalin R ,then sup 1 j I j n x 2 I : X J 2D ( I ) J h f i J 1 J ( x ) > o = 8 > > > > > > > > < > > > > > > > > : 2 At + t if 0 t q At if 0 A min t ; t ; 1 otherwise. Wherethesupremumistakenoverallnonnegativefunctions f with h f i I = t andallnon- negativesequences f J g J 2D ( I ) withCarlesonconstantatmost 1 whichsatisfy 1 j I j X J 2D ( I ) J j J j = A: Wealsoprovideasequenceofexampleswhich,inthelimit,attainthesupremumofthe previousresult.Seethelastsectionfordetailsonthestructureofsuchexamples. Asanimmediatecorollarywehavethefollowinglocalweak-type(1,1)estimate: Corollary2.2. Foranynonnegative f 2 L 1 ([0 ; 1)) andforanyCarlesonsequence f J g J 2D ([0 ; 1)) 6 withconstantatmost 1 wehavethesharpbound x 2 [0 ; 1): A f ( x ) > 8 > > < > > : 2 k f k L 1 + k f k L 1 if k f k L 1 1 if k f k L 1 whichinparticularimpliesthat kA f k L 1 ; 1 ([0 ; 1)) 2 k f k L 1 ([0 ; 1)) ; andthattheconstant 2 issharp. Operatorssimilartothesewererecentlystudiedin[ 29 ],[ 33 ],[ 31 ]and[ 32 ],howevertheir resultsareslightlytfromours.Theyconsiderthesupremumtakenoverall functions f satisfying Z I f = s and Z I G ( f )= t; where G isastrictlyconvexfunctionsatisfying G ( x ) =x !1 as x !1 .Thisdoesnot includethequestionofboundednessfrom L 1 to L 1 ; 1 .Ourmethodofproofistthan theoneusedinthearticlescitedabove,wheretheyusethedeepcombinatorialproperties oftheseoperators.Seealsothemonograph[ 40 ]byA.Os ` ekowskiforrelatedresults.We insteadfollowtheideasin[ 45 ]and[ 46 ]tosolvetheBellmanPDEandproveitssharpness. ThisproblemisalsocloselyrelatedtostudyingHaarshifts,themainbeingthat Haarshiftsarenotpositiveoperators.Ithasbeenshownhowever,see[ 5 ],thatLerner-type operatorscanbeusedtoboundHaarshifts.Thereadercanresultssimilartooursin [ 44 ],[ 34 ]and[ 38 ]. Thearticleisorganizedasfollows.InSection2weexplainhowtheBellmanfunction techniqueisusedtocomputethesupremuminTheorem 2.1 .InSection3wegivea supersolutiontotheBellmanvariationalproblemwhichservesasanupperboundforthe 7 exactBellmanfunction.Finally,inSection4weshowthatthefunctionwefoundinthe previoussectionistheexactBellmanfunction,wealsogiveasequenceofexampleswhich, inthelimit,extremizetheinequalityofTheorem 2.1 . 2.2TheBellmanfunctiontechnique Considerthefunctionin= f ( t;A; ):0 t; 0 A 1 ; 2 R g B ( t;A; )=sup n 1 j I j x 2 I : X J 2D ( I ) J h f i J 1 J > o ; wherethesupremumistakenoverallallnonnegativefunctions f on I with h f i I = t and allCarlesonsequences f J g j 2D ( I ) withconstantatmost1and A = 1 j I j X J I J j J j : Notethat I is not aparameterin B ,thisisbecausethesupremumisinvariantunder dilationsandtranslationsin I ,andhenceindependentof I . TheBellmanfunctiontechnique,whichappearedinthe1995preprintversionof[ 36 ], isbasedonshowingthat B solvesacertainminimizationproblem.Oneshowsthat B akindofconcavitypropertyandexplicitlycomputes B inasubdomainnaturalto theproblem(thisisusuallyeasy).Thenoneshowsthatanycontinuouspositivefunction satisfyingtheseconditionsmajorizes B ,whichreducestheproblemtoingthesmallest functionwhichtheseproperties.Finallyonehastoactuallysuchafunction, thisisusuallythehardestpart.Thereadercaninsightfulintroductionsin[ 37 ]and [ 39 ],seealso[ 36 ],[ 45 ],and[ 46 ]formoreexamplesofthistechnique. Letusbeginbydescribingmorepreciselytheconcavitypropertywhich B 8 Lemma2.3 (Maininequality) . B ( t;A; ) 1 2 B ( t 1 ;A 1 ; 0 )+ B ( t 2 ;A 2 ; 0 ) (2.1) whenever t = t 1 + t 2 2 ;A = A 1 + A 2 2 + and = 0 + t and 0 . Proof. Consideranydyadicinterval I ,anyfunction f 0satisfying h f i I = t 1 and h f i I + = t 2 andanyCarlesonsequence f J g J 2D ( I ) withconstantatmost1on I satisfying 1 j I j X J 2D ( I ) J j J j = A 1 ; 1 j I j X J 2D ( I + ) J j J j = A 2 and I = : Supposealsothat = 0 + t . Since h f i I = t thenwemusthave B ( t;A; ) 1 j I j n x 2 I : X J 2D ( I ) J h f i J 1 J ( x ) > o sincethesupremum B istakenoveralargerspace. 9 Observenowthat 1 j I j n x 2 I : X J 2D ( I ) J h f i J 1 J ( x ) > o = 1 2 j I j n x 2 I : X J 2D ( I ) J h f i J 1 J ( x ) > o + 1 2 j I + j n x 2 I + : X J 2D ( I ) J h f i J 1 J ( x ) > o = 1 2 j I j n x 2 I : X J 2D ( I ) J h f i J 1 J ( x ) > I t o + 1 2 j I + j n x 2 I + : X J 2D ( I + ) J h f i J 1 J ( x ) > I t o = 1 2 j I j n x 2 I : X J 2D ( I ) J h f i J 1 J ( x ) > 0 o + 1 2 j I + j n x 2 I + : X J 2D ( I + ) J h f i J 1 J ( x ) > 0 o andthustheclaimfollows. Also,wetriviallyseethat B mustsatisfythefollowing\obstacle"condition: B ( t;A; )=1whenever < 0 : (2.2) Aswedescribedinthebeginningofthesection,thefunction B isaminimizerinthespace ofpositivefunctionswhichsatisfytheseproperties.Thefollowingpropositionmakesthis precise: Proposition2.4. Supposeacontinuousfunction F inequality ( 2.1 ) togetherwith theobstaclecondition ( 2.2 ) ,thenwemusthave B ( t;A; ) F ( t;A; ) : Proof. Let f 0beanintegrablefunctiononaninterval I andlet f J g J 2D ( I ) beaCarleson 10 sequencewithconstantatmost1,thenforall wehave(by( 2.1 )) F ( h f i I ;A; )= F h f i I + h f i I + 2 ; A + A + 2 + I ; 1 2 F ( h f i I ;A ; I h f i I )+ F ( h f i I + ;A + ; I h f i I ) ; where A = 1 j I j P J I J j J j and A isanalogouslyfor I and I + . Ifweiteratethisinequalityweobtain F ( h f i I ;A; ) 1 2 N X J ˆ I; j J j =2 N j I j F ( h f i J ;A J ; N X k =1 J ( k ) h f i J ( k ) 1 J ( k ) ( c J )) ; where A J = 1 j J j P P J P j P j . IfweassumeapriorithattheCarlesonsequence isthenwecanlet N !1 and obtain F ( h f i I ;A; ) 1 j I j Z I F ( f ( x ) ;A ( x ) ; A f ( x )) dx 1 j I j Z f x 2 I : f ( x ) < 0 g 1 dx by( 2.2 ) = 1 j I j jf x 2 I : A f ( x ) > gj : Here A ( x )isalmostevasthelimitof A ( J )as J ! x ,thisiseasilyseento existalmosteverywherebytheLebesguedtiationtheorem. Lettingthenumberofnon-zeroelementsof f J g J 2D ( I ) tendtoyandthentakingthe supremumintheof B weobtain F ( h f i I ;A; ) B ( h f i I ;A; ) : Remark 2.5 . Notethatwedon'tknowyetifthefunction B iscontinuous,thusa 11 minimizerinthespaceofcontinuousfunctionsmightnotgiveusthetrueBellmanfunction. Itturnsout,however,thatassumingcontinuity(actually C 1 smoothness)weareableto apositivefunctionsatisfying( 2.1 )and( 2.2 )whichmoreoverisbestpossiblewithoutthea prioriassumptionofsmoothness.Weshowthisinthelastsection. Wehavethereforeseenthatanypositivecontinuousfunction F satisfying( 2.1 )and ( 2.2 )willgiveusanupperboundfor B .Inthenextsectionwesuchafunction. 2.3FindingtheBellmanfunctioncandidate Ourgoalnowistothesmallestcontinuousfunction F satisfying( 2.1 )and( 2.2 ).As weremarkedafterProposition 2.4 ,wewillassumeapriorithat F is C 1 .Moreover,wewill restricttheminimizationspaceevenmorebyrequiring F tohavethesamekindof homogeneitythatthetrue B musthave,i.e.: B ( t;A; )= B ( t;A; ) 8 > 0 ;> 0 : ThisinprinciplemightmakeourcandidateforBellmanfunctionlargerthantheonewe couldwithoutrequiringsuchhomogeneity.However,theoptimalBellmanfunction thisidentity,sorequiring F toalsosatisfyitwillnotpreventusfromingit. AssumingsmoothnesswecanwritetheMainInequality( 2.1 )asaconcavitycondition, togetherwithamonotonicitypropertyalongcertaincharacteristics.Moreprecisely,if F is asmoothpositivefunction,then( 2.1 )togetherwith( 2.2 )andtheabovehomogeneityis equivalenttothefollowingconditions: 1. F isnonnegative,andconcaveinthetwovariables. 2. F ( t;A; )isincreasinginthedirection(0 ; 1 ;t ). 3. F ( st;A; )= F ( t;A; )forall s> 0. 4. F ( t;A; )=1whenever < 0 12 Indeed,ifwelet =0in( 2.1 )weseethat B isconcaveinthevariables( t;A ).Ifweset A 1 = A 2 = A and t 1 = t 2 = t thenwesee,byvarying ,that B ( t;A; )isincreasinginthe direction(0 ; 1 ;t ).Thisshowsthatanysmooth F satisfying( 2.1 )and( 2.2 ),andwhichis alsohomogeneousintheabovesense,mustalsosatisfyproperties(1)through(4). Moreover,if F isanysmoothfunctionsatisfyingproperties(1)through(4),thenitalso mustsatisfythemaininequality( 2.1 )andtheobstaclecondition( 2.2 ).Toseethisobserve thatusingproperty(1)weobtain( 2.1 )butwith =0,nowproperty(2)allowsusto insertan asinthehypothesesforthemaininequalitysinceitdescribesthepathalong which F isincreasing.Thehomogeneityandobstacleconditionsareexactly(3)and(4) respectively,sothisprovestheequivalence. Usingthehomogeneityproperty,wecanreduceto M :(0 ; 1 ) [0 ; 1] ! [0 ; 1 )such thatif F ( x;y;z )= 8 > > < > > : M ( x=z;y )if z> 0 1if z 0 ; then F (1)through(4).Theseproperties,whentranslatedtothefunction M , become: 1. M isconcave. 2. M y x 2 M x 0. 3. M ( x;y ) ! 1when x !1 . Thesecondofthesepropertiestellsusthat M isincreasingalongthecharacteristics 8 > > < > > : _ x ( t )= x 2 _ y ( t )=1 : Observethatthesecharacteristicsfoliate[0 ; 1 ) [0 ; 1].Also,ifwemovebackwardsintime 13 alongacharacteristicwhichstartsat( x 0 ; 1)with x 0 1,thenthischaracteristicisabove thecurve y = 1 x andfurthermorethecharacteristictendsto( 1 ;y f )forsome0 > < > > : 2 xy x + y if0 x y 1 p xy if0 y min( x;x 1 ) ; whichusingthehomogeneitygivesusthefullfunctionofTheorem 2.1 . 2.4Optimality Inthissectionweshowthatthefunctionfoundintheprevioussectionisactuallytheexact Bellmanfunction.Weweneedasimpletechnicallemmawhichwillallowustodeduce that B ( ; ; 1)mustbesuperlinearalonglinesjoining(0 ; 0 ; 1)to( x; 1 ; 1). Lemma2.6. Let f :[0 ; 1] ! [0 ; 1 ) beafunctionwhich f x + y 2 1 2 f ( x )+ 1 2 f ( y )(2.3) forall 0 x y 1 .Thenwemusthave f ( x ) f (1) x forall x 2 [0 ; 1] : Proof. Wecanassumewithoutlossofgeneralitythat x 2 (0 ; 1)andthat f (1)=1.Using ( 2.3 )wehave f ( x 0 + (1 x 0 )) (2.4) foralldyadicrationals 2 [0 ; 1],i.e.:numbersoftheform = k 2 N for0 k 2 N . Forevery N 2 N let k N betheuniqueintegerin0 k 2 N x which x k 2 N < 1 2 N 16 (thisexistsbecausethesequence k 7! k 2 N isanarithmeticsequenceofstep2 N ). Observethatthen,ifwe x N := 2 N x k N 2 N k N = x k N 2 N 1 k N 2 N ; wemusthave0 x N 1 2 N (1 x ) ,soinparticular x N ! 0as N !1 . Butthen := k N 2 N = x x N 1 x N isadyadicrationalandpluggingitinto( 2.4 ),with x N playingtheroleof x 0 ,yields f ( x ) x x N 1 x N ; soletting N !1 completestheproof. Usingthislemma,togetherwiththeMainInequality( 2.1 )weimmediatelyhavethe followingcorollary: Corollary2.7. Wehavethefollowingidentity: B ( x;y; 1)= M ( x;y ) forall x;y inthesubdomain 0 y min( x;x 1 ) . Proof. Weshowedintheprevioussectionthat B ( x;y; 1) M ( x;y )forall( x;y ) 2 0 .To showthereverseinequalitynoticethattheMainInequality( 2.1 )togetherwithLemma 2.6 imply B ( x;y; 1) B x ; y ; 1 : (2.5) Wewouldbedoneifwecanshowthat B ( x;y; 1)=1whenever xy =1.Indeed,thenwecan justuseequation( 2.5 )with = p xy . 17 Fix( x;y ) 2 0 with xy =1andconsiderthefunction f n = 2 n x 2 n 1 1 [0 ; 1 2 n ) : If I istheinterval[0 ; 1)thenobviously h f n i I = x .ConsideralsotheCarlesonsequence f J g J 2D ( I ) by J = 8 > > < > > : y 1 2 n if J =[2 n ( k 1) ; 2 n k )and k 2f 1 ;:::; 2 n 1 g 0otherwise. Thenwehave 1 j I j X J 2D ( I ) J j J j = y 2 n 1 X k =1 2 n 1 2 n = y: Also, A f n ( t )= 8 > > < > > : 2 n 2 n 1 2 if0 t< 1 2 n 0otherwise, hence B ( x;y; 1) 1 2 n forall n 1.Letting n !1 yieldstheclaim. Remark 2.8 . Observethatusingtheconstantfunction f ( t )= x 1 I ( t )andtheone-term Carlesonsequencewhichis y on I and0everywhereelse,oneobtainsthat A f = xy 1 I , hence B ( x;y; 1)=1forall xy> 1. UsingLemma 2.6 inthesameway,wejusthavetoshowthat B ( x; 1 ; 1)= 2 x x +1 toprovethat B ( x;y; 1)= M ( x;y )intherestofthedomain,howeverthisturnsouttobeharder. Theorem2.9. Fix x 2 (0 ; 1) andlet > 0 .Foranyinterval I thereexistsanonnegative function f on I with h f i I = x andaCarlesonsequence f J g J 2D ( I ) withCarlesonconstant 18 atmostoneandverifying 1 j I j X J 2D ( I ) J j J j =1 suchthat 1 j I j I \ n X J 2 D ( I ) J h f i J 1 J > 1 o = 2 x x +1 + O ( ) : ToprovethiswewillusetheMainInequality( 2.1 )iterativelytogiveadecompositionof f consistingofconstantfunctionsoncertaindyadicintervals,thisalsogivesusthe constructionofthesequence f J g J 2D ( I ) .Thebasicideaisto,startingwithapoint( x; 1)in 0 ,use( 2.1 )tosplitthispointintoanotherpoint( x + ; 1)ontheboundaryandsomepoint ( x ;A ).Thepoint( x ;A )isthenabsorbedbackintotheinitialpointandweapplythe sameproceduretothepoint( x + ; 1)untilwegettoapointpasttheobstacle xy 1(where extremizersconsistofconstantfunctionstogetherwithone-termCarlesonsequencesasin theRemarkafterCorollary 2.7 ). Inordertoillustratetheideawewillprovethelowerboundfor B withoutexplicitly constructingtheexample.Thewayinwhichweprovethelowerboundwillmakethe constructionmoreintuitive. Theorem2.10. TheBellmanfunction B B ( x; 1 ; 1)= 2 x x +1 forall x 2 [0 ; 1] . Proof. Let E ( x;y )= B ( x;y; 1),thenusingtheMainInequality( 2.1 )weseethatwehave thefollowingbehavior: E ( t; 1) 1 2 E t 1 1 t ;A 1 + 1 2 E t 2 1 t ;A 2 19 whenever t = t 1 + t 2 2 and1= A 1 + A 2 2 + .Letting > 0, x = t and A 2 =1weget E ( x; 1) 1 2 E x 2 1 2 x + E x + ; 1 ; where x + = x 1+ 1 +2 Since B issuperlinearinthetwovariablesand B (0 ; 0 ; 1)=0,wemusthave E x 2 1 2 x 1 2 x E ( x; 1) soputtingeverythingtogetherweobtain E ( x; 1) x x +2 E ( x + ; 1) : (2.6) Ifwedeinductively x n +1 = x n 1+ 1 +2 and x 0 = x ,thenweeasilyseethat x n = n 1 1 + x 1 1 ; where = 1+ 1 . Wewanttostoptheiterationonce x n 1,andthishappenswhen n 2 1+ x (1 ) ; let N = N ( x )bethesmallestintegerforwhichtheaboveinequalitydoesnothold.Then iterating( 2.6 ) N timesweget(since E (1 ; 1)=1) E ( x; 1) N Y j =0 x j x j +2 ; itjusttogivealowerboundfortherighthandside. 20 Tothisendobservethat N Y j =0 x j x j +2 exp N X j =0 log 1+ 2 x j exp N X j =0 2 x j =exp 2 N X j =0 1 x j : Letusestimate 2 P N j =0 1 x j .Usingtheexplicitformulafor x n wehave 2 N X j =0 1 x j = 2 N X j =0 1 j 1 1 + x 1 1 = 2 N X j =0 1 j 1 1 + x 1 1 1 j 1+ x 1 + N X j =0 2 1 j (1+ x ) : Thesttermtendsto0as ! 0andthesecondisaRiemannsum,indeed(recallingthe of N = N ( x; ): N X j =0 2 1 j (1+ x ) =(1 ) N X j =0 j 2 1 j (1 j (1+ x )) =(1 ) N X j =0 f ( j )( j +1 j ) = Z 2 1+ x 1 f ( y ) dy + O ( ) ; as ! 0andwhere f ( y )= 1 y (1 y ( x +1)) : Itiseasytoseethat Z 2 1+ x 1 1 y (1 y ( x +1)) dy =log 2 x x +1 ; whichcompletestheproofofthelowerbound. 21 Letusnowusetheseideastoconstructtheexample.Therearetwobasicstepsinthe iteration:wesplitthepoint( x; 1)into( x ;A )and( x + ; 1),thenweabsorb( x ;A ) into( x; 1)andobtainalowerboundfor E ( x; 1)intermsof E ( x + ; 1),wetheniteratethis until x + > 1,wherewestopbecauseweknowthat E ( x + ; 1)mustbe1there.Thesetwo stepsareimposingacertainself-similarityon f andtheCarlesonsequence intermsof ( f + ; + ).ThefollowingLemma,whichisbasedontheideasfrom[ 46 ],makesthisprecise. Lemma2.11. Fixaninterval I andlet g + beanonnegativefunctionon I + .Supposealso that + isaCarlesonsequenceadaptedto I + withconstantatmost 1 andsuchthat 1 j I + j X J 2D ( I + ) + J j J j =1 : If h g + i I + = x 1+ 1 +2 forsome x 2 (0 ; 1) andasmall > 0 ,thenwecanconstruct afunction f on I andaCarlesonsequence adaptedto I withconstantatmost 1 suchthat h f i I = x , 1 j I j X J 2D ( I ) J j J j =1(2.7) and 1 j I j I \ n X J 2D ( I ) J h f i J 1 J > 1 o x x +2 1 j I + j I + \ n X J 2D ( I + ) + J h g + i J 1 J > 1 o : (2.8) Proof. Wewillassumewithoutlossofgeneralitythat I =[0 ; 1),alsodenote = x . J tobe if J = I and + J for J 2D ( I + ). 22 f tobe(1 ) g + on I + anddenote g =(1 ) 1 f 1 I ,then 1 j I j y 2 I : X J 2D ( I ) J h f i J 1 J ( y ) > 1 = 1 2 j I j y 2 I : X J 2D ( I ) J h f i J 1 J ( y ) > 1 + 1 2 j I + j y 2 I + : X J 2D ( I + ) J h f i J 1 J ( y ) > 1 = 1 2 j I j y 2 I : X J 2D ( I ) J h g i J 1 J ( y ) > 1 + 1 2 j I + j y 2 I + : X J 2D ( I + ) J h g + i J 1 J ( y ) > 1 : Let I j =[ e j ;e j +1 ),where e j = 1 2 2 j ,andsupposethat b I j =0for j 1and I =0,then 1 2 j I j y 2 I : X J 2D ( I ) J h g i J 1 J ( y ) > 1 = 1 2 1 X j =1 2 j 1 j I j j y 2 I j : A ( g 1 j )( y ) > 1 : (2.9) Let =1 2 andwrite = 1 X j =1 2 j b j forsomebinarysequence f b j g j 2 N (i.e.:write inbinary). Foragiveninterval J let S J f bethescaledversionof f adaptedto J ,i.e.:if J =[ a;b )then S J f ( x )= f x a b a : Abusingnotation,letusalsodenoteby S J thescaledversionoftheCarlesonsequence tothedyadicsubinterval J of I ,thenwehave 1 j J j n y 2 J : X K 2D ( J ) ( S J ) K h S J f i K 1 K ( y ) > 1 o = 1 j I j n y 2 I : X K 2D ( I ) K h f i K 1 K ( y ) > 1 o : Supposethat(1 ) f ,whenrestrictedto I j ,agreeswith S I j f forall j 1suchthat b j =1 23 andis0otherwise.SupposefurthermorethattheCarlesonsequence alsothesame similarity,i.e.:ifwescaleto I therestrictionof to I j weobtain again.Ifwedenoteby theleft-handsidein( 2.8 )thenwecoulduse( 2.9 )toobtain = 1 2 1 X j =1 2 j b j + 1 2 j I + j y 2 I + : X J 2D ( I + ) J h g + i J 1 J ( y ) > 1 ; hence = 1 1+2 1 j I + j y 2 I + : X J 2D ( I + ) J h g + i J 1 J ( y ) > 1 = x x +2 1 j I + j y 2 I + : X J 2D ( I + ) J h g + i J 1 J ( y ) > 1 ; whichiswhatwewanted.Notealsothatwecouldusethesamemethodtocomputethe averageof f andityieldspreciselytherightamount: x . Thereforewejusthavetoshowthatwecanafunction f andaCarlesonsequence satisfyingtheseself-similarityconditions.Letusstartwith f :theoperator T by Tf =(1 ) 1 X j =1 b j 1 I j S I j f +(1 ) 1 I + g + : Weneedtoshowthat T hasapointin L 1 ( I );wewilldothisfollowingthestepsofthe proofoftheBanachpointtheorem.Let f 0 =(1 ) g + 1 I + andinductively f n +1 = Tf n : 24 Weshouldshowthat f n isaCauchysequencein L 1 ( I ),butobservethat k f n +1 f n k L 1 ( I ) =(1 ) Z I 1 X j =1 b j 1 I j S I j ( f n ) 1 X j =1 b j 1 I j S I j ( f n 1 ) =(1 ) 1 X j =1 b j Z I j j S I j ( f n ) S I j ( f n 1 ) j =(1 ) 1 X j =1 b j j I j j Z I j f n f n 1 j =(1 ) Z I j f n f n 1 j 1 X j =1 b j 2 j 1 = (1 )(1 2 ) 2 Z I j f n f n 1 j : Theconstant ˘ := (1 )(1 2 ) 2 isstrictlylessthan1andbyinductionwehave k f n +1 f n k L 1 ( I ) . ˘ n ; hencethesequenceisCauchy.Thistheproofofexistencefor f sincewecanjust f tobethelimitin L 1 ofthesequence f n above. ToshowtheexistenceoftheCarlesonsequencewecanfollowthesamestepsasabove,but nowwedon'thavetodealwithconvergenceissues.Indeed,startwithasequenceasinthe beginningoftheproofandinductivelythe( n +1)-thsequence n +1 byinsertingthe entiredyadictreeof n ateach I j .Ateachstepweareonlychangingthevalueofthe sequenceatdeeperanddeeperlevels,sowecanjust K asthethevalueof n K ,where n istheintegeratwhichthesequence n K stabilizes. WearenowreadytoproveTheorem 2.9 ,wewillusethesameideasandnotationasinthe proofofTheorem 2.10 .Given , I and x 2 (0 ; 1)let N bethesmallestintegersuchthat n 2 1+ x (1 ) : Let f 1 betheconstantfunction x on I + andlet 1 betheone-termCarlesonsequence 25 whichis1at I + .Nowthefunction f n +1 andCarlesonsequence n +1 inductivelyby applyingLemma 2.11 tothefunction g + := S I + ( f n )andtheCarlesonsequence S I + ( n );let f = f N and = N .Then,asintheproofofTheorem 2.10 ,wehave 1 j I j n y 2 I : X J 2D ( I ) J h f i J 1 J > 1 o exp N X j =0 2 1 j (1+ x ) ; whichweshowedtobe 2 x x +1 + O ( ) ; andthisiswhatwewantedtoprove. 26 3 Dyadicmodelsforsingularintegrals JoseM.Conde-AlonsoandGuillermoRey MathematischeAnnalen,October2015. 3.1Introduction OneparticularlyusefulwaytostudymanyimportantoperatorsinHarmonicAnalysisis thatofdecomposingthemintosumsofsimplerdyadicoperators.Anexampleofarecent strikingresultusingthisstrategyistheproofofthesharpweightedestimateforthe HilberttransformbyS.Petermichl[ 42 ].Thiswasakeysteptowardsthefull A 2 theorem forgeneralCalon-Zygmundoperators,provenbyT.onenin[ 14 ].Ofcourse therearemanyinstancesofthisusefultechnique,butwewillnottrytogiveathorough historicaloverviewhere. Theproofin[ 14 ]wasa tourdeforce whichwastheculminationofmanypreviouspartial byothers,see[ 14 ]andthereferencestherein.onendidnotonlyprovethe A 2 theorem,buthealsoshowedthatgeneralon-Zygmundoperatorscouldbe representedasaveragesofcertainsimpler\Haarshifts"inthespiritof[ 42 ].Thesharp weightedboundthenfollowedfromthecorrespondingoneforthesesimpleroperators. Later,A.Lernergaveaofthe A 2 theoremin[ 22 ]whichavoidedtheuseof 27 mostofthecomplicatedmachineryin[ 14 ];itmainlyreliedonageneralpointwiseestimate forfunctionsintermsofpositivedyadicoperatorswhichhadalreadybeenprovenin[ 20 ]. Theweightedresultforthepositivedyadicshiftsthatthiscontributionreducedthe problemtohadalreadybeenshownbeforein[ 18 ],seealso[ 4 ]and[ 5 ].Moreprecisely,the proofofLerner(essentially)gavethefollowingpointwiseestimateforgeneral on-Zygmundoperators T :foreverydyadiccube Q j Tf ( x ) j . 1 X m =0 2 m A m S j f j ( x )fora.e. x 2 Q; (3.1) where > 0dependsontheoperator T , S arecollectionsofdyadiccubes(belongingto samedyadicgridforeach S )whichdependon f , T and m ,and A m S arepositive dyadicoperatorsby A m S f ( x )= X Q 2S h f i Q ( m ) 1 Q ( x ) ; where Q ( m ) denotesthe m -thdyadicparentof Q .Moreover,thecollections S in( 3.1 )are sparse intheusualsense:given0 << 1,wesaythatacollectionofcubes S belongingto thesamedyadicgridis -sparseifforallcubes Q 2S thereexistmeasurablesubsets E ( Q ) ˆ Q with j E ( Q ) j j Q j and E ( Q ) \ E ( Q 0 )= ; unless Q = Q 0 .Acollectioniscalled simplysparseifitis 1 2 -sparse. FromthispointwiseestimateLernercontinuestheproofbyshowingthatboundingthe operatornormofeach A m S canbereducedtojustestimatingtheoperatornormof A 0 S 0 in thesamespaceforallpossiblesparsecollections S 0 .Moreprecisely,heshowsthat kA m S f k X . ( m +1)sup D ; S 0 kA 0 S 0 f k X ; (3.2) wherethesupremumistakenoveralldyadicgrids D andallsparsecollection S 0 ˆ D ,and where X isanyBanachfunctionspace,inthesenseof[ 1 ],Chapter1. 28 Itisatthispointwherethedualityof X isneededintheargument;theoperators A m S do notlendthemselvestoLerner'spointwiseformula,whiletheiradjointsdo.Consequently, thequestionofwhattodowhennodualityispresentwasleftopen.Ourmainresult answersthisquestionbyprovingastronger(thoughlocalized)statement:theoperators A m S areactuallypointwiseboundedbypositivedyadic0-shifts: Theorem3.1. Let P beacubeand S asparsecollectionofdyadicsubcubes Q suchthat Q ( m ) P ,thenforallnonnegativeintegrablefunctions f on P thereexistsanothersparse collection S 0 ofdyadicsubcubesof P suchthat A m S f ( x ) . ( m +1) A 0 S 0 f ( x ) 8 x 2 P (3.3) Infact,weproveTheorem 3.1 inaslightlymoregeneralsetting:thestatementis provenforacertainnaturalmultilineargeneralizationoftheoperators A m S .Second,the sparsecollection S isreplacedbyamoregeneralCarlesonsequence.Therelevantdetails aregiveninthenextsection. Thenoveltyinourapproachistwo-fold:wedirectlyattackthepointwiseestimateforthe operators A m ,insteadofboundingtheirnorminvariousspaces.Also,inprovingthe pointwiseboundwedevelopanalgorithmthatconstructivelyselectsthosecubeswhichwill formthefamily S 0 .Thisalgorithmhas\memory"inacertainsense:eachiterationtakes intoaccounttheprevioussteps,afeaturewhichiscrucialinourmethodtoensurethat S is sparse. AsacorollaryofTheorem 3.1 ,weananalogueof( 3.1 )forCon-Zygmund operatorswithmoregeneralmoduliofcontinuity(seethenextsectionfortheprecise Inparticular,weobtainthefollowingpointwiseestimatefor on-Zygmundoperators: Corollary3.2. If P isadyadiccube, f isanintegrablefunctionsupportedon P and T is 29 aon-Zygmundoperatorwhosekernelhasmodulusofcontinuity ! ,then j Tf ( x ) j . 1 X m =0 ! (2 m )( m +1) A 0 S m j f j ( x ) fora.e. x 2 P; (3.4) where S m aresparsecollectionsbelongingtoatmost 3 d entdyadicgrids. Moreover,ifweknowthat ! thelogarithmicDinicondition: Z 1 0 ! ( t ) 1+log 1 t dt t < 1 ; (3.5) thenwecansparsecollections fS 0 1 ;:::; S 0 3 d g ,belongingtopossiblyentdyadicgrids, suchthat j Tf ( x ) j . 3 d X i =1 A 0 S 0 i j f j ( x ) fora.e. x 2 P: (3.6) Thefactor m in( 3.2 )precludedanaiveadaptationoftheproofin[ 23 ]toan A 2 theorem withtheusualDinicondition: Z 1 0 ! ( t ) dt t < 1 ; (3.7) sincethesum 1 X m =0 ! (2 m )( m +1) ' Z 1 0 ! ( t ) 1+log 1 t dt t (3.8) coulddivergeforsomemoduli ! satisfyingonly( 3.7 ).Moreover,itwasshownin[ 12 ]that theweak-type(1 ; 1)normoftheadjointsoftheoperators A m S wasatleastlinearin m ,even intheunweightedcase,sousingdualitypreventedanextensionofthistype.However, althoughourargumentdoesnotquitegivean A 2 theoremforon-Zygmundoperators satisfyingtheDinicondition(westillneed( 3.8 )tobeourproofavoidstheuseof dualityandthestudyoftheadjointoperators( A m S ) .Itthusremovesatleastoneofthe obstructionstopossibleproofsofthe A 2 theoremwiththeDiniconditionwhichfollowthis 30 strategy.Hence,removingthelinearfactorof m inTheorem 3.1 remainsasanopen problem. Apartfrombeinginterestinginitsownright,aboundforon-Zygmundoperatorsby thesesumsofpositive0-shiftsincaseswherethereisnodualityhasinterestingapplications, someofwhichwedescribelater.Before,letusstateasecondcorollarytoTheorem 3.2 : Corollary3.3. Let kk X beafunctionquasi-norm(seesection 3.2 )and T aon- ZygmundoperatorsatisfyingthelogarithmicDinicondition,then k Tf k X . sup D ; S kA 0 S j f jk X ; (3.9) wherethesupremumistakenoveralldyadicgrids D andallsparsecollections Sˆ D . Wenowdescribetwoimmediateapplicationsofourresult.Firstwecancontinuethe program,initiatedin[ 6 ]andextendedin[ 28 ],whichaimstoextendthesharpweighted estimatesforCaldeon-Zygmundoperatorstotheirmultilinearanalogues(asin[ 10 ]).In particularweobtain Theorem3.4. Let T beamultilinearon-Zygmundoperator.Suppose 1

0 ,thenthesquarefunction S fortheconein R d +1 + ofapperture andthestandardkernel k S f k L p; 1 ( R d ;w ) . d [ w ] 1 =p A p k f k L p ( R d ;w ) for 1 2wasnecessaryforthesamereason whytheproofofthemultilinearweightedestimatesrequired p 1(acertainspacehadno satisfactorydualityproperties).Theorem 3.1 canbeusedinalmostthesamewayaswith theweightedmultilinearestimatestoproveTheorem 3.5 .Indeed,theproofsin[ 19 ]and[ 24 ] reducetheproblemtoestimatingcertaindiscretepositiveoperatorswhichcanbeseento beparticularinstancesofthepositivemultilinear m -shiftsusedintheproofofTheorem 3.4 . Aswasnotedin[ 19 ],estimate( 3.11 )canbeseenasananalogueoftheresultin[ 26 ] stablishingtheendpointweightedweak-typeestimateforon-Zygmundoperators k Tf k L 1 ; 1 ( w ) . [ w ] A 1 (1+log[ w ] A 1 ) k f k L 1 ( w ) : Seealso[ 34 ]forasimilarestimatefrombelowandmoreinformationonthesharpnessof thisestimate,knownastheweak A 1 conjecture.Inthisdirection,itseemsreasonablethat LaceyandScurry'sproofin[ 19 ]couldbeadaptedtothemultilinearsetting,howeverwe willnotpursuethisproblemhere. Finally,asathirdapplicationofourresults,itispossibletogiveamoredirectproofofthe 32 resultin[ 15 ]forthe q -variationofon-Zygmundoperatorssatisfyingthelogarithmic Diniconditionbyusingthepointwiseestimateanalogousto( 3.1 )in[ 15 ]andthenapplying Theorem 3.1 .However,wewillnotpursuethisargumentationeither. Shortlybeforeuploadingthispreprint,AndreiLernerkindlycommunicatedtotheauthors thathe,jointlywithFedorNazarov,hadindependentlyprovenatheoremverysimilarto Corollary 3.2 [ 25 ].Thoughthehypothesisarethesame,theirresultfromtheonein thisnoteinthatwegivealocalizedpointwiseestimatewhiletheirpointwiseestimateis validforallof R d .However,ourresultseemstobeaspowerfulintheapplications. 3.2Pointwisedomination ThegoalofthissectionistheproofofTheoremAanditsconsequencesasstatedinthe introduction.Wewillprovetheresultinthelevelofgeneralityofmultilinearoperators. Givenacube P 0 on R d ,wewilldenoteby D ( P 0 )thedyadiclatticeobtainedbysuccessive dyadicsubdivisionsof P 0 .Byadyadicgridwewilldenoteanydyadiclatticecomposedof cubeswithsidesparalleltotheaxis.A k -linearpositivedyadicshiftofcomplexity m isan operatoroftheform A m P 0 ~ f ( x )= A m P 0 ( f 1 ;f 2 ; ;f k )( x ):= X Q 2 D ( P 0 ) Q ( m ) P 0 Q k Y i =1 h f i i Q ( m ) 1 Q ( x ) : AsasteptowardstheproofofTheoremA,itisconvenienttoseparatethescalesof(or Sinceweuploadedthisdocumentto arXiv ,twootherarticleshaveappeared:[ 17 ]and[ 11 ],inwhich similarestimatesareobtained. 33 slice ) A m P 0 asfollows: A m P 0 ~ f ( x )= m 1 X n =0 1 X j =1 X Q 2 D jm + n ( P 0 ) Q k Y i =1 h f i i Q ( m ) 1 Q ( x ) =: m 1 X n =0 A m;n P 0 ~ f ( x ) : Notethat D k ( P 0 )denotesthe k -thgenerationofthelattice D ( P 0 ).Nowwerewrite A m ; n P 0 asasumofdisjointlysupportedoperatorsoftheform A m ;0 P; .Indeed, A m ; n P 0 ~ f ( x )= 1 X j =1 X Q 2 D jm + n ( P 0 ) Q k Y i =1 h f i i Q ( m ) 1 Q ( x ) = X P 2 D n ( P 0 ) 1 X j =1 X Q 2 D jm ( P ) Q k Y i =1 h f i i Q ( m ) 1 Q ( x ) = X P 2 D n ( P 0 ) A m ;0 P ~ f ( x ) ; whichleadstotheexpression A m 0 ~ f ( x )= m 1 X n =0 X P 2 D n ( P 0 ) A m ;0 P ~ f ( x ) : Wesaythatasequence f Q g Q 2 D ( P 0 ) isCarlesonifitsCarlesonconstant k k Car( P 0 ) < 1 , where k k Car( P 0 ) =sup P 2 D ( P 0 ) 1 j P j X Q 2 D ( P ) Q j Q j : Thefollowingintermediatestepisthekeytoourapproach: Proposition3.6. Let m 1 and beaCarlesonsequence.Forintegrablefunctions 34 f 1 ;:::;f k 0 on P 0 thereexistsasparsecollection S ofcubesin D ( P 0 ) suchthat A m ;0 P 0 ~ f ( x ) C 1 k k Car( P 0 ) X Q 2S k Y i =1 h f i i Q 1 Q ( x ) ; where C 1 onlydependson k and d ,andinparticularisindependentof m . ToproveProposition 3.6 wewillproceedinthreesteps:wewillconstructthecollection S ,thenshowthatwehavetherequiredpointwisebound,andthat S issparse.By homogeneity,wewillassumethat k k Car( P 0 ) =1.Also,wewillassumethatthesequence isbutourconstantswillbeindependentofthenumberofelementsinthesequence. Let P 0 =0and,foreach Q 2 D mj ( P 0 )with j 0,thesequence f Q g Q by Q =max R 2 D m ( Q ) R : Foreach Q 2 D mj ( P 0 )with j 0,wewillinductivelythequantities Q and Q as follows: Q = 8 > > < > > : 0if Q Q k i =1 h f i i Q Q 0 2 2( k +1) C W otherwise ; where C W istheboundednessconstantoftheunweightedendpointweak-typeofthe operators A m provedinTheorem 3.16 inthelastsection.Also,forevery R 2 D m ( Q )we R = Q +( Q R ) k Y i =1 h f i i Q : Notethattheonlyappliestocubesin D mj ( P 0 )forsome j .Forallothercubesin D P 0 ,weset Q = Q =0.Thecollection S consistsofthosecubes Q 2 D ( P 0 )forwhich Q 6 =0.Notethat,since2 2( k +1) C W > 1= k k Car( P 0 ) R forall R andbytheof Q ,wemusthave Q 0forall Q .Thiscanbeeasilyseenbyinduction. 35 Remark 3.7 . Wearetryingtoconstructasparseoperatorofcomplexity0whichdominates A m ;0 P 0 .Onewaytoachievethisistolet S bethecollectionofalldyadicsubcubesof P 0 ,but ofcoursethisdoesnotyieldasparsecollection.Abetterwaywouldbetolet S consistofall dyadiccubesin P 0 forwhichatleastoneofits m -thgenerationchildren R R > 0; unfortunatelythisyieldsacollection S whichisnotsparse,andinfactitcanbeseenthat theCarlesonsequence associatedwiththiscollectioncanhaveaCarlesonnorm k k Car( P 0 ) whichgrowsexponentiallyin m . Themainproblemwiththisapproachisthat,whenthetimecomestodecidewhethera cubeshouldbein S ornot,wedonottakeintoaccountwhichcubeshavebeenselectedin theprevioussteps.Notethatwheneverweaddacube Q to S wearenotonly\helping" todominatetheportionof A m ;0 P 0 comingfrom Q ,butalsowhatmaycomefromanyofits descendants. Onecanaccountforthisbyhavingthealgorithmuseasortof\memory"to,essentially, keeptrackofhowmanycubesin S (appropriatelyweightedwiththeaveragesof ~ f )lieabove anyparticularcube.Thisisthepurposeof Q .Thiscanalsobeseenasthestoppingtime algorithmwhichselectsacubewheneverthepreviouslyselectedcubesdonotprovideenough heighttodominatetheoperatoruntilthatpoint. Lemma3.8. Wehavethepointwisebound A m ;0 P 0 ~ f ( x ) X Q 2 D ( P 0 ) Q k Y i =1 h f i i Q 1 Q ( x ) : (3.12) Proof. Wewillprovebyinductionthefollowingclaim:if P 2 D jm ( P 0 )forsome j 0,then A m ;0 P; ~ f ( x ) P + X Q 2 D ( P ) Q k Y i =1 h f i i Q 1 Q ( x ) : (3.13) Notethat,when P = P 0 ,thisisexactly( 3.12 ).Since isthereisasmallest j 0 2 N suchthat Q =0forallcubes Q 2 D j 0 m ( P 0 ) .Let Q beanycubein D j 0 m ( P 0 ),weobviously Weuse D k ( P )todenotethosecubes Q in D ( P )ofgenerationatleast k ,so j Q j 2 dk j P j . 36 have A m ;0 ~ f 0in Q: Since Q 0,theclaim( 3.13 )istrivialfor P 2 D j 0 m ( P 0 ).Now,assumebyinductionthat wehaveproved( 3.13 )forallcubes P 2 D jm ( P 0 )with1 j 1 j andlet P beanycubein D ( j 1 1) m ( P 0 ).By A m ;0 P ~ f ( x )= X Q 2 D m ( P ) Q k Y i =1 h f i i P 1 Q ( x )+ A m ;0 ~ f ( x ) : Let x 2 Q 2 D m ( P ),thenbytheinductionhypothesisandtheof Q : A m ;0 P ~ f ( x ) Q k Y i =1 h f i i P + Q + X R 2 D ( Q ) R k Y i =1 h f i i R 1 R ( x ) = Q k Y i =1 h f i i P + P +( P Q ) k Y i =1 h f i i P + X R 2 D ( Q ) R k Y i =1 h f i i R 1 R ( x ) = P + P k Y i =1 h f i i P + X R 2 D ( Q ) R k Y i =1 h f i i R 1 R ( x ) = P + X R 2 D ( P ) R k Y i =1 h f i i R 1 R ( x ) ; whichiswhatwewantedtoshow. Lemma3.9. Thecollection S issparse. Proof. Let P 2S ,wehavetoshowthattheset F := [ Q ( P;Q 2S Q j F j 1 2 j P j .Tothisend,let R bethecollectionofmaximal(strict)subcubesof P whicharein S ,Notethatforall R 2R wehave R 2 D N R m ( P )forsome N R 1.Wethus 37 have F = G R 2R R: Bymaximality,forall R 2R anddyadiccubes Q with R ( Q ( P wehave Q =0.Forall R 2R and1 j N R wenowclaimthat R (( N R j ) m ) P k Y i =1 h f i i P j X =1 R (( N R ) m ) k Y i =1 h f i i R (( N R +1) m ) : (3.14) Indeed,onecanprovethisbyinductionon j .If j =1thenbydwehave R (( N R 1) m ) = P +( P R (( N R 1) m ) ) k Y i =1 h f i i P P k Y i =1 h f i i P R (( N R 1) m ) k Y i =1 h f i i P ; since P 0. Toprovetheinductionstep,observethat(bytheinductionhypothesis)for j> 1 R (( N R j ) m ) = R (( N R j +1) m ) +( R (( N R j +1) m ) R (( N R j ) m ) ) k Y i =1 h f i i R (( N R j +1) m ) = R (( N R j +1) m ) R (( N R j ) m ) k Y i =1 h f i i R (( N R j +1) m ) P k Y i =1 h f i i P j X =1 R (( N R ) m ) k Y i =1 h f i i R (( N R +1) m ) : From( 3.14 )with j = N R ,wehave(sincethetermsarenonnegative) R P k Y i =1 h f i i P A m ;0 P ~ f ( x ) forall x 2 R .Since R 6 =0,wemusthave k Y i =1 h f i i R R R > 0 ; 38 i.e.: k Y i =1 h f i i R R + A m ;0 P ~ f ( x ) > 2 2( k +1) C W k Y i =1 h f i i P forall x 2 R .Let G P ~ f = P R 2R R Q k i =1 h f i i R 1 R ,thenforall x 2 R wehave G P f ( x )+ A m ;0 P ~ f ( x ) > 2 2( k +1) C W k Y i =1 h f i i P ; hence j F j ( x 2 P : G P ~ f ( x )+ A m ;0 P ~ f ( x ) > 2 2( k +1) C W k Y i =1 h f i i P ) kG P + A m ;0 P; k 1 =k L 1 ( P ) L 1 ( P ) ! L 1 =k; 1 ( P ) 2 2( k +1) C W Q k i =1 h f i i P 1 =k k Y i =1 k f i k L 1 ( P ) 1 =k = kG P + A m ;0 P k 1 =k L 1 ( P ) L 1 ( P ) ! L 1 =k; 1 ( P ) (2 2( k +1) C W ) 1 =k j P j Letuscomputetheoperatornorm kG P k L 1 ( P ) L 1 ( P ) ! L 1 =k; 1 ( P ) .Observethat,since Q 1 forall Q ,theoperator G ispointwiseboundedbythemulti-linearprojection P P ~ f ( x )= X R 2R k Y i =1 h f i i R 1 R ( x )= k Y i =1 X R 2R h f i i R 1 R ( x ) : Foreach1 i k ,wehave k P R 2R h f i i R 1 R k L 1 ( P ) k f i k L 1 ( P ) .Therefore,byolder's inequalityweget kP P ~ f k L 1 =k; 1 ( P ) k Y i =1 X R 2R h f i i R 1 R L 1 ( P ) k Y i =1 k f i k L 1 ( P ) : Ontheotherhandwehave kA m ;0 P ~ f k L 1 =k; 1 ( P ) C W k Y i =1 k f i k L 1 ( P ) 39 byTheoremW.1.Combiningtheseestimatesweget kG P + A m ;0 P k L 1 ( P ) L 1 ( P ) ! L 1 =k; 1 ( P ) 2 k +1 (1+ C W ) 2 k +2 C W andtheresultfollows. Fromlemmas 3.8 and 3.9 Proposition 3.6 followsatonce.Theproofshowsthatonecan actuallytake C 1 =2 2+ k (7+ d (2 k 1)) .WearenowreadytotheproofofTheoremA, whichwestatehereinfullgenerality: Theorem3.10. Let beaCarlesonsequenceandlet P 0 beadyadiccube.Forevery k -tuple ofnonnegativeintegrablefunctions f 1 ;:::;f k on P thereexistsasparsecollection S ofcubes in D ( P ) suchthat A m P ~ f ( x ) C 2 X Q 2S k Y i =1 h f i i Q 1 Q ( x ) : Proof. If m =0wecanjustapplyProposition 3.6 afternotingthat A 0 P 0 canbewrittenas A 1;0 P 0 ,where Q = Q (1) : Oneeasilyseesthat k k Car( P 0 ) = k k Car( P 0 ) .Hence,wemayassumethat m 1.Recallthe expression A m P 0 ~ f ( x )= m 1 X n =0 X P 2 D n ( P 0 ) A m ;0 P ~ f ( x ) : fromthebeginningofthesection.ByProposition 3.6 ,foreach0 n m 1andeach P 2 D n ( P 0 )wecanasparsecollectionofcubes S n P ˆ D ( P )suchthat A m ;0 P; ~ f ( x ) C 1 k k Car( P 0 ) X Q 2S n P k Y i =1 h f i i Q 1 Q ( x ) : 40 Observethatthecollection S n = [ P 2 D n ( P 0 ) S n P isalsosparse,so A m P 0 ~ f ( x ) C 1 k k Car( P 0 ) m 1 X n =0 X Q 2S n k Y i =1 h f i i Q 1 Q ( x ) : (3.15) For0 n m 1 n Q = 8 > > < > > : 1if Q 2S n 0otherwise. Sincethecollections S n aresparse,thesequences n areCarlesonsequenceswith k n k Car( P 0 ) 2,thereforethesequence Q := m 1 X n =0 n Q isalsoCarlesonwith k k Car( P 0 ) 2 m . Withthiswecancontinuetheargumentusingestimate( 3.15 )andthecase m =0: A m P 0 ~ f ( x ) C 1 k k Car( P 0 ) m 1 X n =0 X Q 2S n k Y i =1 h f i i Q 1 Q ( x ) = C 1 k k Car( P 0 ) m 1 X n =0 X Q 2 D ( P 0 ) n Q k Y i =1 h f i i Q 1 Q ( x ) = C 1 k k Car( P 0 ) X Q 2 D ( P 0 ) Q k Y i =1 h f i i Q 1 Q ( x ) = C 1 k k Car( P 0 ) A 0 P 0 ~ f ( x ) C 1 k k Car( P 0 ) C 1 2 m X Q 2S k Y i =1 h f i i Q 1 Q ( x ) ; whichyieldstheresultwith C 2 =2 C 2 1 . Remark 3.11 . TheaboveproceduredoesnotrelyonanysppropertyoftheLebesgue measure.Infact,Theorem 3.1 alsoholdswhenwereplaceallaverages{bothincomplexity 0andcomplexity m operators{byaverageswithrespecttoanyotherlocallyBorel measure,becausetheproofis 41 WenowdetailhowtouseTheorem 3.1 toderivethemultilinearversionofcorollaries 3.2 and 3.3 .Forus,amultilinearon-Zygmundoperatorwillbeanoperator T satisfying T ( f 1 ;:::;f k )= Z R dk K ( x;y 1 ;:::;y k ) f 1 ( y 1 ) f k ( y k ) dy 1 :::dy k forall x= 2\ k i =1 supp f i forappropriate f i .Alsowewillrequirethat T extendstoabounded operatorfrom L q 1 :::L q k to L q where 1 q = 1 q 1 + + 1 q k ; andthatitthesizeestimate j K ( y 0 ;:::;y k ) j A P k i;j =0 j y i y j j kd : ! willbethemodulusofcontinuityofthekerneloftheoperatori.e.apositive nondecreasingcontinuousanddoublingfunctionthat j K ( y 0 ;:::;y j ;:::;y k ) K ( y 0 ;:::;y 0 j ;:::;y k ) j C! j y j y 0 j j P k i;j =0 j y i y j j ! 1 P k i;j =0 j y i y j j kd forall0 j k ,whenever j y j y 0 j j 1 2 max 0 i k j y j y i j .WecannowproveCorollary 3.2 : ProofofCorollary 3.2 . Fixameasurable f ,andacube Q 0 ˆ R d .Ourstartingpointisthe formula j T ~ f ( x ) m T ~ f ( Q 0 ) j . X Q 2S 1 X m =0 ! (2 m ) m Y i =1 hj f i ji 2 m Q 1 Q ( x ) ; whichholdsforasparsesubcollection Sˆ D ( Q 0 )(see[ 6 ]and[ 15 ],weareimplicitlyusing aslightimprovementofLerner'sformulawhichcanbefoundin[ 12 ],Theorem2.3).Here m f ( Q )denotesthemedianofameasurablefunction f overacube Q (see[ 23 ]fortheprecise 42 which j m f ( Q ) j . k f k L 1 ; 1 ( Q ) j Q j : Hencewecanjustwrite j T ~ f ( x ) j . 1 X m =0 ! (2 m ) X Q 2S m Y i =1 hj f i ji 2 m Q 1 Q ( x ) ; (3.16) Byanelaborationofthewell-knownone-thirdtrick,itwasprovenin[ 15 ]thatthereexist dyadicsystems f D ˆ g ˆ 2f 0 ; 1 = 3 ; 2 = 3 g d suchthatforeverycube Q in R d andevery m 1,there exists ˆ 2f 0 ; 1 = 3 ; 2 = 3 g d and R Q;m 2 D ˆ suchthat Q ˆ R Q;m ; 2 m Q ˆ Q ( m ) ; 3 ` ( Q ) <` ( R Q;m ) 6 ` ( Q ) : Also,wemayassumethatforeach ˆ 2f 0 ; 1 = 3 ; 2 = 3 g d thereexistsacube P ( ˆ )suchthat Q 0 ˆ P ( ˆ ) ˆ c d P ( ˆ )forsomedimensionalconstant c d .Usingthis,wecanfurtherwrite ( 3.16 )as j T ~ f ( x ) j . X ˆ 2f 0 ; 1 3 ; 2 3 g d 1 X m =0 ! (2 m ) X Q 2S R Q;m 2 D ˆ k Y i =1 hj f i ji R ( m ) Q;m 1 R Q : Let F ˆ m = f R Q;m : R Q 2 D ˆ gˆ D ( P ( ˆ )).Then,wecanestimate j T ~ f ( x ) j . 6 d X ˆ 2f 0 ; 1 3 ; 2 3 g d 1 X m =0 ! (2 m ) X R 2F ˆ m k Y i =1 hj f i ji R ( m ) 1 R ; sinceatmost6 d cubes Q in D aremappedtothesamecube R Q;m .thesequence ˆ Q = 8 > > < > > : 1if Q 2F ˆ m 0otherwise : 43 Thecollections F ˆ m are2 1 6 d -sparse,andhenceCarlesonwithconstant2 6 d .Inorderto applyTheorem 3.1 ,foreach ˆ 2f 0 ; 1 3 ; 2 3 g d , m 0,wenowsplitthesumasfollows: X Q 2 D ˆ ˆ Q k Y i =1 hj f i ji Q ( m ) 1 Q ( x )= X Q 2 D m ( P ( ˆ )) ˆ Q k Y i =1 hj f i ji Q ( m ) 1 Q ( x ) + 1 X ` =1 X Q 2 D m ` ( P ( ˆ )) ˆ Q k Y i =1 hj f i ji Q ( m ) 1 Q ( x ) =I+II : Now,since f i issupportedon Q 0 ˆ P ( ˆ )for1 i k andall ˆ 2f 0 ; 1 3 ; 2 3 g d ,weclaimthat II I.Indeed,compute 1 X ` =1 X Q 2 D m ` ( P ( ˆ )) ˆ Q k Y i =1 hj f i ji Q ( m ) 1 Q ( x ) 1 X ` =1 X Q 2 D m ` ( P ( ˆ )) k Y i =1 hj f i ji Q ( m ) 1 Q ( x ) = 1 X ` =1 k Y i =1 hj f i ji P ( ˆ ) ( ` ) : Nowobservethat,bythesupportconditiononthetuple ~ f , k Y i =1 hj f i ji P ( ˆ ) ( ` ) =2 dk` k Y i =1 hj f i ji P ( ˆ ) ; whichisenoughtoprovetheclaim.Therefore,weonlyneedtoworkinthelocalizedcubes P ( ˆ ), ˆ 2f 0 ; 1 3 ; 2 3 g d .Therefore,wecanobtaintheassertionofCorollary 3.2 applying Theorem 3.1 : 44 j T ~ f ( x ) j . X ˆ 2f 0 ; 1 3 ; 2 3 g d 1 X m =0 ! (2 m ) X Q 2 D ˆ ;Q ˆ P ( ˆ ) ( m ) ˆ Q k Y i =1 hj f i ji Q ( m ) 1 Q ( x ) . X ˆ 2f 0 ; 1 3 ; 2 3 g d 1 X m =0 ! (2 m )( m +1) X Q 2S m; ~ f k Y i =1 hj f i ji Q 1 Q = X ˆ 2f 0 ; 1 3 ; 2 3 g d 1 X m =0 ! (2 m )( m +1) A S m; ~ f ~ f ( x ) ; forsparsecollections S m; ~ f thatmaydependbothon m and ~ f (andwhicharesubfamiliesof D ( P ( ˆ ))foreachvalueof ˆ ).Now,reorganizingthesumaboveweobtain j T ~ f ( x ) j . X ˆ 2f 0 ; 1 3 ; 2 3 g d X S m; ~ f ˆ D ˆ ! (2 m )( m +1) A S m; ~ f ~ f ( x ) =: X ˆ 2f 0 ; 1 3 ; 2 3 g d A ˆ ~ f ( x ) : Now,bythelogarithmicDinicondition,eachoftheoperators A ˆ isboundedabovebysome absoluteconstanttimesa0-shiftwhoseassociatedsequenceis1-Carleson(andlocalizedin P ( ˆ ))towhichwecanapplyagainTheorem 3.1 .Therefore,weobtain j T ~ f ( x ) j . X ˆ 2f 0 ; 1 3 ; 2 3 g d A S ˆ ~ f ( x ) ; forsomesparsefamilies S ˆ ˆ D ˆ whichdependon ~ f . Wenowintroducethenotionoffunctionquasi-norm.Wesaythat kk X ,ontheset ofmeasurablefunctions,isafunctionquasi-normif: (P1) Thereexistsaconstant C> 0suchthat k f + g k X C k f k X + k g k X ; 45 (P2) k k X = j jk f k X forall 2 C . (P3) If j f ( x ) jj g ( x ) j almost-everywherethen k f k X k g k X . (P4) k liminf n !1 f n k X liminf n !1 k f n k X Fixsomedyadicsystem D suchthatthereexistsanincreasingsequenceofdyadiccubes f P ` g ` ˆ D whoseunionisthewholespace R d ,anddenote 1 P ` ~ f =( 1 P ` f 1 ;:::; 1 P ` f k ).Now, takingintoaccountproperties (P1) and (P3) ,ifwetakequasi-normsinthesecond assertionofCorollary 3.2 ,wehave k 1 P ` T ( 1 P ` ~ f ) k X . sup D ; S kA S ( 1 P ` ~ f ) k X 8 `: Ontheonehand,since ~ f isintegrable, T ( 1 P ` ~ f )convergespointwiseto T ( ~ f ).Therefore,we have 1 P ` T ( 1 P ` ~ f ) ! T ( ~ f ) pointwise.Finally,weapplyproperty (P4) andweget k T ~ f k X = liminf ` 1 P ` T ( 1 P ` ~ f ) X liminf ` 1 P ` T ( 1 P ` ~ f ) X . sup D ; S A S ~ f X : ThisisexactlyCorollary 3.3 . Remark 3.12 . Wenotethatthedependenceon m inthepointwiseestimateofshiftsof complexity m mustbeatleastlinearin m .Toseethis,letusworkindimensiononeand alargeinteger m .Foranyinterval I =[ a;b )let I j bethe j -thintervalof D m ( I ): I j = a + j I j [ j 2 m ; ( j +1)2 m ) : 46 atoweroveraninterval I tobethecollectionofintervals T I = f [ a;a +2 k j I j ): k 2 N g : Thecollectionofintervals S = S J 2 D m ( I ) T J isasparsecollection.Nowconsiderafunction f on I whichisby f ( x )= 8 > > < > > : 0if x 2 I j with j even ; 2otherwise : Denotegen( J )=log 2 ( ` ( I ) ` ( J ) 1 )forcubes J 2 D ( I ).Observethatforanydyadicinterval J I withgen( J ) m 1wehave h f i J =1 : Considernowtheactionof A m S on f .If x 2 ( I j ) 0 with j eventhen A m S f ( x )= m: Inordertoconstructacollection S 0 ofintervalsin I forwhichwehave A m S f ( x ) C A 0 S 0 f ( x ) ; wewouldneedtoselecteveryinterval J ˆ I withgen( J ) m 1.Indeed,let I k ( x )bethe intervalin D k ( I )whichcontains x andlet J be1if J 2S 0 and0otherwise.Then C A 0 S 0 f ( x )= C m 1 X k =0 I k ( x ) m forall x 2 ( I j ) 0 with j even.Thisimpliesthatatleast m=C oftheseintervalsmustbein 47 S 0 .Butthisimpliesthattheheight X J 2S 0 J 1 J ( x ) m=C onhalfoftheinterval I ,whichcontradictsthehypothesisof S 0 beingsparseif m islarge enough. 3.3Applications Wearenowreadytofullystateandprovetheapplicationsofthepointwiseboundas statedintheintroduction.Webeginwiththemultilinearsharpweightedestimates: 3.3.1Multilinear A 2 theorem WeneedsomemoresThesewereintroducedin[ 27 ]. 3.13 ( A ~ P weights) . Let ~ P =( p 1 ;:::;p k )with1 p 1 ;:::;p k < 1 and 1 p = 1 p 1 + + 1 p k .Given ~w =( w 1 ;:::;w k ),set v ~w = k Y i =1 w p=p i i : Wesaythat ~w the k -linear A ~ P conditionif [ ~w ] A ~ P :=sup Q 1 j Q j Z Q v ~w k Y i =1 1 j Q j Z Q w 1 p 0 i i p=p i : Wecall[ ~w ] A ~ P the A ~ P constantof ~w .Asusual,if p i =1thenweinterpret 1 j Q j R Q w 1 p 0 i i tobe (essinf Q w i ) 1 . Thefollowingtheoremwasprovedin[ 28 ]: 48 Theorem3.14. Suppose 1

> < > > : 1if1 gj k C W k k Car( P 0 ) k Y i =1 k f i k L 1 ( P 0 ) ; (3.20) where C W > 0 onlydependson k and d ,andinparticularisindependentof m . WewillessentiallyfollowGrafakos-Torres[ 10 ]and[ 14 ].Weprovean L 2 boundand thenapplyaon-Zygmunddecomposition.Forthe L 2 boundwewillusea multilinearCarlesonembeddingtheorembyW.ChenandW.an[ 2 ],fromwhichwe onlyneedtheunweightedresult: X Q 2 D ( P 0 ) Q k Y i =1 h f i i Q p 1 p k k Car( P 0 ) k Y i =1 p 0 i k f i k L p i ( P 0 ) (3.21) whenever 1 p = 1 p 1 + + 1 p k : Nowwecanprove Proposition3.17. kA m P 0 ~ f k L 2 ( P 0 ) 4 k k Car( P 0 ) k Y i =1 k f i k L 2 k ( P 0 ) Proof. Webeginbyusingdualityandhomogeneitytoreducetoshowing Z P 0 g ( x ) A m P 0 ~ f ( x ) dx 4 assumingthat k f i k L 2 k ( P 0 ) = k g k L 2 ( P 0 ) = k k Car( P 0 ) =1and g 0.Byand Cauchy-Schwarz,thisisequivalentto X Q 2 D m ( P 0 ) Q k Y i =1 h f i i Q ( m ) 2 j Q j 1 = 2 X Q 2 D m ( P 0 ) Q h g i 2 Q j Q j 1 = 2 : 52 Thesecondtermcanbeestimated,using( 3.21 )inthelinearcase,by X Q 2 D m ( P 0 ) Q h g i 2 Q j Q j 1 = 2 2 : Forthetermobservethatthesequence Q by Q = 1 2 dm X R 2 D m ( Q ) R isaCarlesonsequenceadaptedto P 0 ofthesameconstant.Indeed: 1 j Q j X R 2 D ( Q ) R j R j = 1 j Q j X R 2 D ( Q ) j R j 1 2 dm X T 2 D m ( R ) T = 1 j Q j X R 2 D ( Q ) X T 2 D m ( R ) T j T j = 1 j Q j X R 2 D m ( Q ) R j R j k k Car( I ) =1 : Therefore,wecanwritethetermas X Q 2 D ( P 0 ) Q k X i =1 h f i i Q 2 j Q j 1 = 2 ; whichcanalsobeestimatedby( 3.21 )asfollows: X Q 2 D ( P 0 ) Q k X i =1 h f i i Q 2 j Q j 1 = 2 2 k 2 k 1 k 2 : Combiningbothtermswearriveat Z P 0 g ( x ) A m P 0 ~ f ( x ) dx 4 53 whichiswhatwewanted. NowwecanproveTheorem 3.16 . Proof. Byhomogeneitywecanassume k k Car( P 0 ) = k f i k L 1 ( P 0 ) =1.Wenowfollowthe classicalschemewhichusesthe L 2 boundandastandardon-Zygmunddecomposition, seeforexampleGrafakos-Torres[ 10 ].However,weneedtobecarefulwiththedependence on m ,sowewilladapttheproofin[ 14 ]toouroperators. Assumewithoutlossofgeneralitythat f i 0. i = f x 2 P 0 : M d f i ( x ) > 1 =k g : If h f i i P 0 > 1 =k thenbythehomogeneityassumption j P 0 j < 1 =k andtheestimatefollows.Therefore,wecanassume h f i i P 0 1 =k forall1 i k andhence wecanwrite i asaunionthecubesinacollection R i consistingofpairwisedisjointdyadic (strict)subcubesof P 0 withtheproperty h f i i R > 1 =k and h f i i R (1) 1 =k : Foreach1 i k let b i = P R 2R i b R i ,where b R i ( x ):= f i ( x ) h f i i R 1 R ( x ) : Wenowlet g i = f i b i . Observethatwehave j g i ( x ) j 2 d 1 =k ; 54 aswellas j i j = X R 2R i j R j 1 =k : = [ k i =1 i ,thenwehave jf x 2 P 0 : A m P 0 ~ f ( x ) > gjj j + jf x 2 P 0 n : A m P 0 ~ f ( x ) > gj k 1 =k + jf x 2 P 0 n : A m P 0 ~ f ( x ) > gj : (3.22) Toestimatethesecondtermobservethat A m P 0 ~ f ( x )= A m P 0 ( ~g + ~ b )( x ) = A m P 0 ~g ( x )+ 2 k 1 X j =1 A m P 0 ( h j 1 ;:::;h j k )( x ) ; wherethefunctions h j i areeither g i or b i and,furthermore,foreach1 j 2 k 1thereis atleastone1 i k suchthat h j i = b i .Fix j andlet i j besuchthat h j i j = b i j ,then A m P 0 ( h j 1 ;h j 2 ;:::;h j i j ;:::;h j k )( x )= X Q 2 D m ( P 0 ) Q k Y i =1 h h j i i Q ( m ) 1 Q ( x ) = X Q 2 D m ( P 0 ) Q h b i j i Q ( m ) Y 1 i k;i 6 = i j h h j i i Q ( m ) 1 Q ( x ) = X R 2R i j X Q 2 D m ( P 0 ) Q h b R i j i Q ( m ) Y 1 i k;i 6 = i j h h j i i Q ( m ) 1 Q ( x ) = X R 2R i j X Q 2 D >m ( R ) Q h b R i j i Q ( m ) Y 1 i k;i 6 = i j h h j i i Q ( m ) 1 Q ( x ) : Sowededucethat A m P 0 ( h j 1 ;:::;h j k )( x )=0forall x= 2 i j .Withthisfactwecanseethat thesecondtermin( 3.22 )isactuallyidenticalto jf x 2 P 0 n : A m P 0 ~g ( x ) > gj : 55 Nowwecanusethe L 2 boundasfollows: jf x 2 P 0 n : A m P 0 ~g ( x ) > gj 1 2 kA m P 0 ~g k 2 L 2 ( P 0 ) 16 2 k Y i =1 k g i k 2 L 2 k ( P 0 ) 16 2 k Y i =1 2 d 1 =k 2 k 1 k k g i k 1 =k L 1 ( P 0 ) = 16 2 2 d (2 k 1) 2 1 =k =2 4+ d (2 k 1) 1 =k : Puttingbothestimatestogetherwearriveat jf x 2 P 0 : A m P 0 ~ f ( x ) > gj 2 5+ d (2 k 1) 1 =k whichyieldstheresultwith C W =2 k (5+ d (2 k 1)) . 56 4 Ontheembeddingof A 1 into A 1 GuillermoRey Submitted. 4.1Introduction Thepurposeofthisarticleistogiveaquantitativeversionoftheclassicalembedding betweenMuckenhouptclasses A 1 , ! A 1 : (4.1) Theclass A 1 istobeallweights w 0forwhich Mw Cw forsome C ,where Mf ( x )=sup P 3 x 1 j P j Z P j f ( y ) j dy istheuncenteredHardy-Littlewoodmaximaloperator(herethesupremumistakenover cubeswithsidesparalleltothecoordinateaxes). Theclass A 1 istobeallweights w 0forwhichthereexistsaconstant C andan 57 exponent > 0suchthat w ( E ) j P j C j E j j P j forallcubes P andallsubsets E P .See[ 8 ]formoreequivalent Itisawell-knownfactthateveryweightin A 1 isalsoin A 1 ;herewegiveaquantitative versionofthisembedding. Wewillactuallyworkwithawiderclassofweights,thedyadic A p weights.Tostatethe result,letusawaytoquantifyexactlyhowaweightliesindyadic A 1 .Let P beacube in R d ,wethe A d 1 ( P )characteristicofaweight w 0tobe [ w ] A d 1 ( P ) :=esssup x 2 P M dyadic P w ( x ) w ( x ) ; where M dyadic P isthedyadicmaximaloperatorlocalizedto P : M d P f ( x )=sup R 2D ( P ) hj f ji R 1 R ( x ) : Herewearedenotingby D ( P )thecollectionofalldyadicsubcubesof P ,andtheaverage ofafunction f overaset E by h f i E := 1 j E j Z E f ( x ) dx: Also,wedenotethecharacteristicfunctionofaset E by 1 E . Wethe(non-dyadic) A 1 characteristicsimilarly: [ w ] A 1 ( P ) :=esssup x 2 P M P w ( x ) w ( x ) ; where M P istheuncenteredHardy-Littlewoodmaximaloperatorwherethecubesare constrainedtolieinside P . 58 Theclassicalwaytoprove( 4.1 )proceedsbyusingthe reverseolderinequality of Coifman-F[ 3 ](see[ 13 ]forarecentsharpreverseolderinequalityvalidinavery generalcontext):foranyweight w 2 A p wehave h w q i P C h w i q P ; forsomeexponent q> 1dependingon w .Indeed,let C RH bethebestconstantinthe aboveinequality(whichwilldependon q andonhow w liesin A p ),then: w ( E )= Z P w 1 E Z P w q 1 =q j E j 1 =q 0 C 1 =q RH w ( P ) j E j j P j 1 =q 0 : For(non-dyadic) A 1 weightsthemostquantitativeversionofthereverseolderinequality wasgivenby[ 47 ]indimensionone.Usingtheresultsof[ 47 ]oneobtains w ( E ) w ( P ) a a 1 j E j j P j 1 a [ w ] A 1 ( P ) forall a> 1,soonecangetarbitrarilyclosetotheexponent 1 [ w ] A 1 atthecostofa multiplicativeconstant.Theresultsin[ 47 ]are,however,validonlyfornon-dyadic A p weights,whichbehavemuchbetterintermsofsharpconstants;also[ 47 ]isvalidonlyin dimension1. In[ 30 ]A.Melasshowedthat,fordyadic A 1 weights,onehas D ( M dyadic w ) p E P C ( p; [ w ] A d 1 ) h w i p P ; 59 forall p suchthat 1 p< log(2 d ) log 2 d 2 d 1 [ w ] A d 1 ; andwhere C ( p; [ w ] A d 1 )isaconstantwhichblows-upas p tendstotheendpointabove. Followingthesamestepsasbefore,thisimpliesaninequalityoftheform w ( E ) w ( P ) C j E j j P j forall suchthat 0 < log 1 2 d 1 2 d [ w ] A d 1 d log2 := ([ w ] A d 1 ;d ) ; andwhere C isaconstantwhichblows-upas tendstotheendpoint ([ w ] A d 1 ;d ). Itwasofinterestwhetheronecouldachieveanestimatewiththeendpoint ([ w ] A d 1 ;d ),and thiswasansweredpositivelybyA.Os˘ekowskiin[ 41 ],whereheprovedthefollowing weak-typeestimate: 1 j P j n x 2 P : M dyadic w ( x ) > 1 o h w i p P (4.2) forall p suchthat 1 p log(2 d ) log 2 d 2 d 1 [ w ] A d 1 : Thisestimate,coupledwitholder'sinequalityforLorentzspacesyields w ( E ) w ( P ) C ( Q;d ) j E j j P j ( Q;d ) forallweights w with[ w ] A d 1 Q ,thussettlingtheendpointquestionofwhetheradecay 60 rateof( j E j = j P j ) ( Q;d ) couldbeachieved.However,notethatolder'sinequalityforLorentz spaces(whenusedinthisway)hasaconstantwhichexplodeswhen p ! 1whichinthis caseimpliesthattheconstant C ( Q;d ) willblow-upas Q !1 . Inthisarticleweimprovethisconclusionbydirectlycomputingthefunction B ( x;y;m )=sup w ( E ) j P j ; wherethesupremumistakenoverallsets E P with j E j = j P j = x ,andalldyadic A 1 weights w with[ w ] A d 1 ( P ) Q , h w i P = y andessinf z 2 P w ( z )= m . Theexpressionfor B isalittleinvolvedandwereferthereadertosection 4.3 foritsfull form,butwecanalreadygiveanupperboundfor B ( ;Q; 1): B ( x;Q; 1) e f ( x ):= Qx ( Q;d ) : (4.3) ThisshowsthatthedecayratededucedfromOs˘ekowski'sestimatecanbeachievedwitha uniformconstantas Q !1 (notethattheconstant Q cancelswhenestimating w ( E ) w ( P ) ). ObservealsothatthisrecoverstheresultofOs˘ekowskiwhenonetakes w insteadofits maximalfunctionin( 4.2 ),whichcanbeinterpretedasaweak-typereverseolder inequality.Indeed,assumewithoutlossofgeneralitythat j P j =essinf w =1andlet E = f x 2 P : w ( x ) > g ,thenourestimatewillshow(see( 4.12 ))that w ( E ) Q w ( P ) 1 Q 1 j E j Q 1 w ( P ) 1 ( Q;d ) : Sointegrating w overthissetyields j E j 1 ( Q;d ) ( h w i P 1) 1 ( Q;d ) Q ( Q 1) ( Q;d ) h w i P : 61 Or,inotherwords, k w k L p; 1 Z P w ( x ) dx forthesame p 'sasin( 4.2 ). However,thefunction B ( ;Q; 1)is,surprisingly,slightlybetter.Indeedifwe f ( x )= B ( x;Q; 1),thenourmainresultshowsthat f isthepiecewise-linearinterpolationof thefunction e f evaluatedatthepoints2 dk for k 2 N . Figure4.1Plotsof f and e f In Figure4.1 weshowanormalizedsectionoftheplot(thevaluesaredividedby Q )ofthe functions f and e f with Q =10andindimensiontwo. 4.1.1Organization Thearticleisorganizedasfollows:insection 4.2 wecasttheproblemasoneofa certainBellmanfunction,theninsection 4.3 wegivealowerboundfortheBellman function;wealsodescribethestructureofthemaximizers.Insection 4.4 weshowthatthe lowerboundfoundintheprevioussectionisalsoanupperbound,henceshowingthatthe functionfoundistheactualBellmanfunction. 62 4.2TheBellmanfunctionapproach asintheintroduction,thefunction B ( x;y;m )=sup n w ( E ) j P j : E P; [ w ] A d 1 ( P ) Q suchthat j E j = x j P j ; h w i P = y;m =essinf w o : Bytranslationanddilationinvariance,thefunction B isindependentof P . Thedomain,whichwillbedenotedby B is: 0 x 1 0 0 . Proof. Thisisjusttheobservationthatthedomainof B isinvariantundersimultaneous dilationsofthevariables y and m . Wewanttoasetofnecessaryandtconditionsfor B tosatisfythemain inequality,butwhicharesimplertoverify.Tothisend,letusprove necessary conditionsthatanysuch B mustsatisfy. ThefollowingLemmaissimplebutimportantinwhatfollows.Ittellsusthat,inorderto exploit( 4.4 ),weshouldstrivetominimizethevariables m i asmuchaspossible.Wewilllet N :=2 d fortherestofthearticle. Lemma4.2. Anyfunction B satisfying ( 4.4 ) isdecreasingin m .Moreprecisely:assume ( x;y;m 1 ) and ( x;y;m 2 ) aretwopointsin B with m 1 m 2 ,then B ( x;y;m 1 ) B ( x;y;m 2 ) : (4.6) 64 Proof. Let x i = x and y i = y forall1 i 2 d := N .Also,let e m i = 8 > > < > > : m 1 if i =1 m 2 if i> 1 : Thenthepoints( x i ;y i ; e m i )areallinAlso, h x i i = x and h y i i = y .Since m 1 m 2 wealso havethatmin( e m i )= m 1 ,sousing( 4.4 ): B ( x;y;m 1 ) 1 N B ( x;y;m 1 )+ N 1 N B ( x;y;m 2 ) ; whichafterrearrangingyields( 4.6 ). ThefollowingLemmafollowsdirectlyfromthemaininequality( 4.4 ). Lemma4.3. Foranyd m> 0 ,thefunction ( x;y ) 7! B ( x;y;m ) isconcave. Proof. Thisisjusttheobservationthatthedomainisconvex,togetherwith( 4.4 )with m i = m . Nowweareabletomakethereductionin( 4.4 )(afterthetrivialoneofsetting m =1): Proposition4.4. Suppose B isanonnegativefunctiondin B andwhich theobstaclecondition, ( 4.5 ) ,and ( 4.6 ) .If B B ( x;y; 1) D B x i ;y i ; max 1 ; y i Q (4.7) forall N -tuplesofpoints ( x i ;y i ) satisfying 0 x i 1 ; and h x i i = x; (4.8) 1 y i ; min( y i ) Q; and h y i i = y; (4.9) thenwemusthavethat B = B . 65 Proof. Theaboveconditionsmake( 4.7 )certainlynecessary.Toseethatitist,take any N -tuple( x i ;y i ;m i )ofpointsin B satisfying h x i i = x; h y i i = y andmin( m i )=1 : Considernowthealternative N -tupleformedby( x i ;y i ; e m i ),where e m i = 8 > > < > > : y i Q if y i Q 1otherwise : =max 1 ; y i Q : Thesepointsallliein B andmoreovertheystillsatisfythecondition min( e m i )=1 : However,byinequality( 4.6 )wehave B x i ;y i ; max 1 ; y i Q B ( x i ;y i ;m i ) : Thispropositionisusefulbecauseitallowsusto\almost"eliminatethethirdvariablefrom ouranalysis.Thereasonthatweusedtheword\almost"comesfromthefactthatwestill havetheextraneousconditionthatmin( y i ) Q ,whichisanofhavingmin( m i )=1. Wenowproceedtoeliminatethisconditiontoo. Supposethatofthe N points( x i ;y i ),thereareexactly N k ofthemforwhich y i Q . Then,afterpossiblyreorderingtheinequality(whichwecandowithoutlossofgenerality), 66 therighthandsideof( 4.7 )becomes 1 N k X i =1 B ( x i ;y i ; 1)+ N X i = k +1 B x i ;y i ; max y i Q whichcanbewritten,afterapplyingthehomogeneityproperty( 4.5 ),as 1 N k X i =1 B ( x i ;y i ; 1)+ N X i = k +1 y i Q B ( x i ;Q; 1) : So,verifying( 4.7 )reducestojustshowingthat B isconcavein( x;y ),decreasingin m ,and thatforeach1 k N 1 B ( x;y; 1) 1 N k X i =1 B ( x i ;y i ; 1)+ N X i = k +1 y i Q B ( x i ;Q; 1) (4.10) forall( x;y )andall( x i ;y i )asinProposition( 4.4 ),withtheadditionalassumptionthat y i Q for k k +1. Thenextpropositionallowsustojustconsiderthecasewhere k = N 1intheabove inequality. Proposition4.5. Let M beanonnegativefunctiondon andwhichthat 1. M isconcave. 2. Thefunction t 7! tM ( x;y=t ) isdecreasing. 3. Forall ( x;y ) andall ( e x; e y ) in wehave M ( x;y ) N 1 N M ( e x; e y )+ Ny ( N 1) e y QN M ( Nx ( N 1) e x;Q )(4.11) whenever Nx ( N 1) e x 0 and Ny ( N 1) e y Q . Then, B byhomogeneityasin ( 4.5 ) : B ( x;y;m )= mM ( x;y=m ) ; 67 yieldsafunctionwhichtheconditionsofProposition 4.4 Proof. Firstofallnotethat,bytheabovediscussion,wejustneedto M satisfyingthe conditions(1),(2)and M ( x;y ) 1 N k X i =1 M ( x i ;y i ; 1)+ N X i = k +1 y i Q M ( x i ;Q; 1) ; wheretheaverageof x i is x ,theaverageof y i is y andall y i Q for i k +1. Also,notethat( 4.11 )isjustthecaseof( 4.7 )with k = N 1.So,inwhatfollowsweassume k > < > > : Q if i 6 = i max ( N k ) b y Q ( N k 1)if i = i max ; andwhere i max istobetheindexwhichmaximizes M ( x i ;Q )for i k +1. 68 Observethatthevector( b k +1 ;:::;b N ) 2V ,sowecanassumethat y i = b i for i k +1.But then,wecanreorganizetheinequalitytoputallofthetermsexceptone(theonewith i max ) onthesummation.Writingitthiswaymakesitevidentthatitreallywasaparticular exampleoftheinequalitywith k = N 1. 4.3FindingtheBellmanfunction Inthissectionwegivealowerbound M for M ,andinthenextsectionwewillshowthat thislowerboundisalsoanupperboundandhencethat M = M . Firstrecallthat t 7! M ( x;y=t ) isnon-increasingandthereforethat M (1 ;y ) y (hereweareusingtheobstacle M (1 ; 1)=1.Since M (0 ; 1) 0,wenowcanextendthisboundtothesubdomain y 1+( Q 1) x toget: M ( x;y ) x + y 1 8 ( x;y ) 2 : y 1+( Q 1) x: Wewillnowgivealowerboundfor M intherestofthedomain.Theideaistouse inequality( 4.11 )settingthenumber Nx ( N 1) e x tobeaslargeaspossible,withinthe domainthatweknow,andtheniterate. Morepreciselylet x 0 =1,observethatif Nx ( N 1) e x = x 0 ,then e x = Nx x 0 N 1 : Clearlyweneed x 1 =N for e x tobeinthedomain,soweset x = 1 N .Wewillalsomake e y assmallaspossible,whichmeans e y =1. 69 Puttingitalltogetherweobtain,using( 4.11 )with x = 1 N and y = Q : M 1 N ;Q NQ ( N 1) NQ M ( x 0 ;Q )= Q 1 N 1 NQ : Nowweiteratethisprocedure.Set x = x k +1 = x k N , y = Q , e y =1and e x =0,then( 4.11 ) gives M ( x k +1 ;Q ) (1 N 1 NQ M ( x k ;Q ) ; so M ( N k ;Q ) Q 1 N 1 NQ k : Between x k +1 and x k weknowthat M ( ;Q )isconcave,so M mustcertainlybeatleast linearintheseintervals.Now,since M (0 ; 1) 0,wecanalsoextendthisboundby homogeneityandgettheupperbound M ( x;y ) y 1 Q 1 M x Q 1 y 1 ;Q y 1 Q 1 f x Q 1 y 1 for y 1 x .Here, f isthepiecewiselinearfunctionon[0 ; 1]bylinearly interpolatingthepoints f ( x k )= Q 1 N 1 NQ k between x k +1 and x k , Figure4.1 showswhat f typicallylookslike. Puttingitalltogether,weget M ( x;y ) 8 > > < > > : x + y 1if y 1+( Q 1) x y 1 Q 1 f x Q 1 y 1 if y 1+( Q 1) x: ) =: M ( x;y ) : (4.12) 70 Thewayweprovedtheseboundsalsoshowshowonewouldconstructpairsofweights w andsets E showingthat M isatleastthepromisedlowerbound.Wenowgiveadetailed descriptionoftheseexamples. 4.3.1Explicitextremizers Let'sstartwithexamplescorrespondingtotheline(1 ;y )with y 2 [1 ;Q ].Togetthebound M (1 ;y ) y weusedthemaininequalitykeepingalltheparametersexceptoneofthe m i 's.Soletusrepeattheproof,butnowwithactualweights.Fixacube P andlet P 1 ;:::P N beitsdyadicchildren. w i ( x )=1forall i andall x 2 P i exceptfor i = N , forwhichwene w i ( x )=1+ N ( y 1)forall x 2 P N .Now w ( x )= w i ( x )forall x 2 P i ;clearlyessinf x 2 P w ( x )=1and h w i P = y .Now,since x =1,weshouldset E = P . Thepair( w;E )isclearlycontainedinthesupremumintheof B (1 ;y; 1)= M (1 ;y )andso M (1 ;y ) w ( P ) j P j = y (4.13) forthisparticularchoiceof w .Ofcourse,anyweightwith h w i P = y wouldalsohavebeen tsince x =1. Examplesforweightsandsetscorrespondingtopoints( x;y )ontherestofthedomainare morecomplicated.Wewillstartbyconstructingexamplesalongtheline y = Q . Thewayweprovedthat M ( 1 N ;Q ) Q (1 N 1 NQ )wasbyusing( 4.11 )with e x =0, e y =1, x = 1 N and y = Q .Similarly,wegotthebound M ( x k +1 ;Q ) (1 N 1 NQ ) M ( x k ;Q )byusing ( 4.11 )with e x =0, e y =1, x = 1 N k +1 and y = Q .Lookingbackathowwegot( 4.11 ),wesee thatwecombined N 1trivialweight-setpairs(thepairs( w 1 ;E = ; ))withanexample comingfrom B 1 N k ;N ( Q 1)+1 ;N N 1 Q : 71 Wethenusedhomogeneitytotranslatethistoanexamplewhichwouldextremize M 1 N k ;Q ; buthavinglostafactorslightlylargerthanone. Wecantracebackthesestepswiththefollowinglemma: Lemma4.6. Let P beacubein R d .Givenapair ( w;E ) where w isadyadic A 1 weightwith [ w ] A 1 Q andwith h w i P = Q , essinf z 2 P w ( z )=1 ,and h 1 E i P = x ,thereexistsapair ( e w; e E ) where e w isanotherdyadic A 1 weightwith [ w ] A d 1 Q andwith h e w i P , essinf z 2 P e w ( z )=1 , and h 1 E i P = x=N forwhich e w ( e E ) j P j 1 N 1 NQ w ( E ) j P j : Moreover,theset e E isentirelycontainedinoneofthedyadicsubcubesof P and e w is identically 1 onthecomplementof e E . Proof. Asbefore,enumeratethechildrenof P by P 1 ;:::;P N .Westartbytranslatingand dilating( w;E )tothesubcube P 1 ,wedothiswiththeobviouslinearchangeofvariables. Wethenmultiplytheweightwejustconstructedbytheconstant NQ ( N 1) Q .Letuscallthis newweight w 1 .Clearlyessinf z 2 P 1 w 1 ( z )= NQ ( N 1) Q 1and h w 1 i P 1 = NQ ( N 1).Now w i ( z )=1forall z 2 P i andeach i 2andcombinealloftheseweightsintoone: e w ( z )= w i ( z ),forall z 2 P i .Thisnewweightisadyadic A 1 weightwith[ e w ] A d 1 Q . With E wedothesame:wetranslateanddilateitto P 1 ;letuscallthisnewset E 1 .This newsethas h 1 E 1 i = x . e E tobejust E 1 (so 1 e E ( z )= 1 E 1 ( z )). Weassertthatthisnewpair( e w; e E )thepromisedestimate.Indeed(assumingwith- 72 outlossofgeneralitythat j P j =1): e w ( e E )= 1 N ( N 1) w 2 ( e E )+ w 1 ( e E ) = 1 N w 1 ( e E ) = 1 N 1 NQ w ( E ) ; whichiswhatwewanted. Givenacube P andapair( w;E )asinLemma 4.6 ,we T ( w )= e w; where e w istheweightconstructedintheproofofLemma 4.6 .Similarly,we S ( E )= e E . Withthislemmaathandwecannowdescribethestructureoftheexampleswhichshow that M ( N k ;Q ) Q (1 N 1 NQ ) k . Lemma4.7. Let P beanycubeandlet w 0 betheweightconstructedwhenproving ( 4.13 ) (butanyweightwith h w 0 i P = Q , essinf z 2 P w 0 ( z )=1 ,andwith [ w ] A d 1 = Q willworkaswell). theweights w k andthesets E k inductivelyby w k +1 = Tw k and E k +1 = SE k ; where E 0 = P . Then w k isan A d 1 weightwith [ w ] A d 1 = Q , h w k i P = Q , essinf z 2 P w k ( z )=1 , h 1 E k i P = N k and w k ( E k ) j P j = Q 1 N 1 NQ k : Proof. TheproofisjusttoiterativelyapplyLemma 4.6 . Itremainstoextendtheexamplestotherestofthedomain.Butrecallthattheboundwe 73 gavefor M ontherestofthedomainwasobtainedbylinearinterpolation,sowejustneed tocombineexamplesthathavealreadybeenconstructed. Thefollowinglemmashowshowtocombinetwopairs( w 0 ;E 0 )and( w 1 ;E 1 )intoone: Lemma4.8. Let P beacubeandlet ( w 0 ;E 0 ) and ( w 1 ;E 1 ) betwopairs.Assume w 0 and w 1 arebothdyadic A 1 weightswith [ w i ] A d 1 Q ,andalso: h 1 E i i P = x i ; h w i i P = y i ; essinf z 2 P w i ( z )=1 : Then,forany 2 [0 ; 1] wecanconstructapair C (( w 0 ;E 1 ) ; ( w 1 ;E 1 ))=( w;E ) ,where w is adyadic A 1 weightwith [ w ] A d 1 Q , h 1 E i P = x; h w i P = y; essinf z 2 P w ( z )=1 ; and w ( E ) j P j =(1 ) w 0 ( E 0 ) j P j + w 1 ( E 1 ) j P j ; where x =(1 ) x 0 + 1 and y =(1 ) y 0 + 1 : Proof. Notethat,atleastwhen isadyadicrational,repeatedapplicationsoftheMain Inequalitygiveexactlythesedynamics.SoweshouldfollowtheproofoftheMainInequality, whosemeaningistoshowwhathappenswhenonecombinespairs( w i ;E i )onthe dyadicchildrenofacubeintoonepair( w;E )onthewholecube. Thereisaslighttechnicality:ifoneappliesthiscombinationprocedureanumberof times,onecanonlyprovethislemmainthecasewhere isadyadicrational,butwecan stillprovethislemmawithalimitingargument. Let b i bethedigitsof whenwritteninbinary: = 1 X i =1 b i 2 i 74 (itdoesnotmatterwhichofthepossiblebinaryrepresentationsoneuses). Fixthecube P andlet R beanyofitsdyadicsubcubes. S P ! R tobethelinearchange ofvariableswhichmaps P to R . Givenacube P let P 1 ;:::P N beaenumerationofitschildren,this orderingwillbethroughouttheproof(inthesensethatwewillusethesameordering oneveryothercube,whichweobtainbytranslatinganddilatingtheoriginalordering). Theideaistosplitthesubcubesof P andonhalfofthemputatranslatedanddilatedcopy ofeither( w 0 ;E 0 )or( w 1 ;E 1 ),dependingonthebinarydigitofthecurrentstep.Weapply thesameprocedureoneachoftheremainingcubes(butnowwiththenextdigit). Moreprecisely,letch( P )bethedyadicsubcubesof P and H 1 ( P )to bethesubsetofch( P )consistingoftheorsecondhalfthedyadicchildren,i.e.: H 1 ( P )= f P 1 ;:::;P 2 d 1 g and H 1 + ( P )= f P 2 d 1 +1 ;:::;P 2 d g : Weinductively H j +1 ( P )asfollows: H j +1 ( P )= [ R 2H j + ( P ) H ( R ) : Wetheweight w by w ( x )= 1 X j =1 X R 2H j ( P ) (1 b j ) S P ! R w 0 ( x )+ b j S P ! R w 1 ( x ) : Similarly,wetheset E by 1 E ( x )= 1 X j =1 X R 2H j ( P ) (1 b j ) S P ! R 1 E 0 ( x )+ b j S P ! R 1 E 1 ( x ) : Onecannowcheckthatthispairtherequiredproperties;see[ 43 ]foraverysimilar construction. 75 WiththisLemma,wecannowexpressthestructureoftheexamplesontheline y = Q of whichliebetweenthepointswithcoordinates x = N k .Indeed,let( w k ;E k )bethe weight-setpairconstructedbyLemma 4.7 .Thenforany x 2 ( N k 1 ;N k )wehave ( w x ;E x ):= C (( w k +1 ;E k +1 ) ; ( w k ;E k )) ; where x =(1 ) N k 1 + k : Toextendtotherestoflet( x;y ) 2 with y 1whenever Q> ( N 1) =N ,whichisalwaysthecasesince Q 1,hence f isconcave.Since f isconcave,itfollowsthat M mustalsobeconcave,since M isjustthe extensionof f byhomogeneitytothesubdomainofwhichliesabovethediagonal y =1+( Q 1) x ,andbelowthislinethefunctionisjusttheplane z = x + y 1.Abrief checknowshowsthat M isindeedconcaveinThisproves(1). Nowwewillshowthatthefunction t 7! tM ( x;y=t ) isdecreasing,thusproving(2). Toshowthis,notethatwejustneedtoprove yM y M wherever M istiable.This obviouslyholdsfor y< 1+( Q 1) x ,soittoassume y> 1+( Q 1) x .By homogeneity,wecantranslatethisconditiontoonefor f : y Q 1 f x Q 1 y 1 xy y 1 f 0 x Q 1 y 1 y 1 Q 1 f x Q 1 y 1 : Let u = x Q 1 y 1 ,thenthisinequalitybecomes 1 u f ( u ) yf 0 ( u ) 0 77 forall u 2 [0 ; 1]andall y 2 [1 ;Q ].Since f isincreasing,thisinequalityisstrongestwhen y = Q ,soittoshow f ( u ) Quf 0 ( u ) : Recallthat f ispiecewiselinear,solet u 0 = N k 1 and u 1 = N k andassume u 2 ( u 0 ;u 1 ). Theaboveinequalitynowbecomes f ( u 0 )+( u u 0 ) f 0 ( u 0 +) Quf 0 ( u 0 +) : Thus,wecanreducetoshowing f ( u 0 ) f 0 ( u 0 +) u 0 +( Q 1) u 1 : Butaneasycomputation,usingthevalueof f 0 computedbefore,yieldsthatthisinequality isequivalentto 1 N 1 NQ ; whichispreciselythevalueof sowearedone.Thisshows(2). Finally,weareleftwithverifying(3).Todothiswewillconstructasequenceoffunctions M k onallofwhichsatisfy(3)onaspsubsetof k = f ( x;y ) 2 : y 1+( Q 1) N k x g : Figure4.2 representsthethreeofthesedomains(again,thediagramisnottoscale). Forexample 2 isthesubdomainofwhichliestotherightofthelinejoining O and C . 78 Figure4.2Domains k We M k tobethewedgeformedbythe k -thplaneof M on n k 1 andthe ( k 1)-thplaneof M on k 1 ,thatis: M k ( x;y )= 8 > > < > > : a k x + b k ( y 1)if( x;y ) 2 n k 1 a k 1 x + b k 1 ( y 1)if( x;y ) 2 k 1 : where M ( x;y )= a k x + b k ( y 1)on k n k 1 .Onecangivetheexplicitformulasfor a k and b k : a k =( N ) k ;b k = k : Obviously M 0 (3). Fixany( x;y ) 2 wecanassumewithoutlossofgeneralitythat( x;y ) 2 k forsome k . Introducethenotation x = N 1 N e x + 1 N b x and y = N 1 N e y + 1 N b y: 79 Since M isconcave,wehavethat M k M on( M k isa\supportingwedge"ofthegraph of M ).Insteadof(3)wewillprove(underthesamehypotheses) M k ( x;y ) N 1 N M k ( e x; e y )+ 1 N b y Q M k ( b x;Q ) ; (4.15) which,bytheaboveremark,isastrongerstatement. Wewillshowthatwecanassumethepoint( b x;Q )tobein k .Indeed,supposethat e x issosmallthat( b x;Q ) = 2 k ,then @ @ e x Righthandsideof( 4.15 ) = N 1 N a k N 1 N b y Q a k 1 = N 1 N a k b y Q a k 1 N 1 N a k Ny ( N 1) Q a k 1 N 1 N a k NQ ( N 1) Q a k 1 : Nowrecallthat a k =( N ) k ,sothepartialderivativeoftherighthandsideofequation ( 4.15 )isatleast N 1 N ( N ) k 1 N NQ ( N 1) Q =0 ; sotherighthandsideisincreasing,atleastaslongas( b x;Q ) 2 k 1 . Thisallowsustoassumethat e x islargeenoughtomake( b x;Q ) 2 k (bycontinuity). Underthisassumptiontheinequalitybecomesmucheasiersince M k isnowbeingevaluated alwayson k ,andhencewecanassumethat M k itselfisaplane.Nowitiseasytocheck thattheinequalityisindeedtrueundertheseconditions. Toseethis,observethatinequality( 4.15 )canbewrittenas: ax + b ( y 1) N 1 N a e x + b ( e y 1) + 1 N b y Q a b x + b ( Q 1) : 80 Wecanreorganizethisas: a x N 1 N e x 1 N b y Q b x + b y 1 N 1 N e y + N 1 N 1 N b y Q ( Q 1) 0 : Thistoshowing a b x N b x N b y Q + b b y NQ 1 N 0 ; whichisequivalentto b y Q 1 b a b x 0 : Sincetheassumptionsforce b y tobeatleast Q ,wejustneedtocheckthat b x b a .Butthis isexactlytheboundthatisguaranteedfromtheconsiderationsabovesince b a = N k . 81 5 Borderlineweak-typeboundsfor singularintegrals CarlosDomingo-Salazar,MichaelLacey,andGuillermoRey BulletinoftheLondonMathematicalSociety,October2015. 5.1Introduction Thepurposeofthischapteristoshowsomeapplicaitonsofthetechniquesdevelopedso far.Theresultsinthischapterusethepointwisedominationofsingularintegralsfrom Chapter 3 ,aswellasseveralfactsaboutsparsefamiliesandMuckenhouptweights. Thetheoremisinthecontextoflinearsingularintegraloperators: Theorem5.1. Let T beaon-Zygmundoperatoron R d and w an A 1 weight,then k Tf k L 1 ; 1 ( w ) . T;d [ w ] A 1 1+log[ w ] A 1 k f k L 1 ( w ) : Itisunknownwhetherthelogarithmictermissharp,butapowerisnecessary,see[ 35 ]. Wecanalsostateaverysimilartheoremforsquarefunctions: 82 Theorem5.2. Let G beasquarefunctionasin 3.5 ,then k Gf k L 2 ; 1 ( w ) . G;d p [ w ] A 2 (1+log[ w ] A 1 ) k f k L 2 ( w ) : Theorem 5.1 wasalreadyknown,seeforexample[ 26 ],butherewegiveanelementary proofwhichusesthemachinerydevelopedinthepreviouschapters.Theorem 5.2 was obtainedin[ 7 ].Sincetheproofsareverysimilar,herewejustproveTheorem 5.1 .The prooffollowsthestepsin[ 19 ],asdevelopedin[ 7 ]. 5.2Proof Bythepointwisedominationofon-ZygmundoperatorsprovedinChapter 3 it toprove kA S f k L 1 ; 1 ( w ) . d [ w ] A 1 1+log[ w ] A 1 k f k L 1 ( w ) ; (5.1) where S isasparsefamilyofcubes,and f isnonnegative.SeeChapter 4 forprecise of A 1 and A 1 . Afterpossiblysplittingthefamilyintoseveralsubfamilies,wecanassumethat S is 1 4 -sparse,thatis: [ R ( Q;R 2S R 1 4 j Q j8 Q 2S : Now,byhomogeneity,ittoshow w x : A S f ( x ) > 3 . d [ w ] A 1 1+log[ w ] A 1 ; forallnonnegativefunctions f with k f k L 1 ( w ) =1,andforallweights w . 83 Itwillbeconvenienttosplitthefamily S intobetter-behavedsubfamilies: S m = f Q 2S :2 m 1 < h f i Q 2 m g and S = f Q 2S : h f i Q > 1 g : Wehave w x : A S f ( x ) > 3 w x : A S f ( x ) > 1 + w x : A S + f ( x ) > 2 ; wherewehave S + tobetheunionofallthefamilies S m for m 0. Webeginestimatingtheterm.Notethat A S f issupportedon f x : M d f ( x ) > 1 g , where M d isthedyadicmaximalfunction,so w x : A S f ( x ) > 1 k M d k L 1 ( w ) ! L 1 ; 1 ( w ) [ w ] A 1 ; sothisdealswiththesummand. Thesecondsummandwillbesplitintotwo: w x : A S + f ( x ) > 2 w x : m 0 1 X m =0 A S m f ( x ) > 1 + w x : 1 X m = m 0 A S m f ( x ) > 1 = I + II: Thewaywethesubfamilies S m givesusverygoodcontroloftheaveragesof f . Indeed: 84 Lemma5.3. Foreach m 2 N E m ( Q )= Q n [ R ( Q;R 2S m R; then h f 1 E m ( Q ) i Q ˘h f i Q (5.2) forall Q 2S m . Proof. Indeed:ifwelet R 1 ;R 2 ;::: bethemaximalsubcubesof Q en S m then 1 j Q j Z Q f 1 E m ( Q ) = h f i Q X i 1 j Q j Z R i f > 2 m 1 X i j R i j j Q j 1 j R i j Z R i f 2 m 1 2 m X i j R i j j Q j 2 m 1 2 m 1 4 & h f i Q : Thereasonthisisusefulisbecausethesets f E m ( Q ) g arepairwisedisjointwhen Q runs 85 over S m .Wecanusethistodealwith I : w x : m 0 1 X m =0 A S m f ( x ) > 1 Z m 0 1 X m =0 A S m f ( x ) w ( x ) dx = m 0 1 X m =0 Z X Q 2S m h f i Q 1 Q w ( x ) dx . m 0 1 X m =0 X Q 2S m h f 1 E m ( Q ) i Q 1 Q ( x ) w ( x ) dx = m 0 1 X m =0 X Q 2S m Z f 1 E m ( Q ) w ( Q ) j Q j [ w ] A 1 m 0 1 X m =0 Z fw = m 0 [ w ] A 1 : Finally,toestimate II ,let f a m g 1 m = m 0 beasequenceofnonnegativenumberssuchthat 1 X m = m 0 a m =1 : Then II = w x : 1 X m = m 0 A S m f ( x ) > 1 X m = m 0 a m 1 X m = m 0 w x : A S m f ( x ) >a m 1 X m = m 0 w x : X Q 2S m h f i Q 1 Q ( x ) >a m 1 X m = m 0 w x : X Q 2S m 1 Q ( x ) > 2 m a m : Call b m ( x ):= X Q 2S m 1 Q ( x ) : 86 Since S m issparse,thisfunctionisalmost,butnotquite,uniformlybounded;itisactually inBMO.Infact,foreach m thereexistacollectionofmaximaldyadiccubes Q m 1 ;Q m 2 ; 2S m suchthat b m issupportedintheunionofthesecubesand 1 j Q m i j n x 2 Q m i : b m ( x ) > o e C forall 1andall i 1. Nowwecanusethatevery A 1 weightsisalsoin A 1 (seealsoChapter 4 )toobtain w x 2 Q m i : b m ( x ) > w ( Q m i ) exp c [ w ] A 1 : Aftersummingin i ,thisyields w x : b m ( x ) > exp c [ w ] A 1 X i w ( Q m i ) : Sinceallofthecubes Q m i arecontainedintheset f x : M d f ( x ) > 2 m g ; wecanusethe(weighted)weak-typeboundednessofthemaximalfunctiontogivethe estimate w x : b m ( x ) > [ w ] A 1 2 m exp c [ w ] A 1 : Now,pluggingthisestimateback,wehave II [ w ] A 1 1 X m = m 0 2 m exp c [ w ] A 1 2 m a m : Weshouldchoose a m sothatit\looses"against2 m (sincewewantexponentialgrowth), 87 whilestillsummingto1.Apossiblechoiceis a m = ˘ m (1 ˘ 1 ) ˘ m 0 forsome1 <˘< 2,likeforexample3 = 2. Pluggingthisinthepreviousinequality,andestimatingthesumbyanintegralwe obtain II . [ w ] A 1 Z 1 m 0 2 x exp c [ w ] A 1 2 x ˘ x (1 ˘ 1 ) ˘ m 0 dx: Calling =2 =˘ weseethat1 << 2and: II . [ w ] A 1 Z 1 0 2 x exp c 0 [ w ] A 1 x ˘ m 0 dx . [ w ] A 1 Z 1 0 y e y dy y . [ w ] A 1 providedwechoose m 0 ˘ log[ w ] A 1 ,andwhere > 0. Withthischoiceof m 0 weobtain w A S f> 3 . [ w ] A 1 (1+log[ w ] A 1 ) ; whichiswhatweneededtoprovethetheorem. 88 BIBLIOGRAPHY 89 BIBLIOGRAPHY [1] C.BennettandR.Sharpley. Interpolationofoperators ,volume129of PureandApplied Mathematics .AcademicPressInc.,Boston,MA,1988. [2] W.ChenandW.an.Weightedestimatesforthemultisublinearmaximalfunction. Rend.Circ.Mat.Palermo(2) ,62(3):379{391,2013. [3] R.R.CoifmanandC.FWeightednorminequalitiesformaximalfunctions andsingularintegrals. StudiaMath. ,51:241{250,1974. [4] D.Cruz-Uribe,J.M.Martell,andC.Perez.Sharpweightedestimatesforapproximating dyadicoperators. Electron.Res.Announc.Math.Sci. ,17:12{19,2010. [5] D.Cruz-Uribe,J.M.Martell,andC.Perez.Sharpweightedestimatesforclassical operators. Adv.Math. ,229(1):408{441,2012. [6] W.an,A.K.Lerner,andC.Perez.Sharpweightedboundsformultilinearmaximal functionsandCaldon-Zygmundoperators. arXiv:1211.5115 ,2012. [7] C.Domingo-Salazar,M.T.Lacey,andG.Rey.BorderlineWeakTypeEstimatesfor SingularIntegralsandSquareFunctions. ArXive-prints ,May2015. [8] J.Duoandikoetxea. Fourieranalysis ,volume29of GraduateStudiesinMathematics . AmericanMathematicalSociety,Providence,RI,2001.Translatedandrevisedfromthe 1995SpanishoriginalbyDavidCruz-Uribe. [9] J.B.GarnettandP.W.Jones.BMOfromdyadicBMO. J.Math. ,99(2):351{ 371,1982. [10] L.GrafakosandR.H.Torres.Multilinearon-Zygmundtheory. Adv.Math. , 165(1):124{164,2002. [11] T.S.anninen.Remarkondyadicpointwisedominationandmedianoscillationde- composition. ArXive-prints ,Feb.2015. [12] T.onen. A 2 theorem:remarksandcomplements. preprint ,2012. [13] T.onen,C.Perez,andE.Rela.Sharpreverseolderpropertyfor A 1 weightson spacesofhomogeneoustype. J.Funct.Anal. ,263(12):3883{3899,2012. [14] T.P.onen.Thesharpweightedboundforgeneralon-Zygmundoperators. Ann.ofMath.(2) ,175(3):1473{1506,2012. [15] T.P.onen,M.T.Lacey,andC.Perez.Sharpweightedboundsforthe q -variation ofsingularintegrals. Bull.Lond.Math.Soc. ,45(3):529{540,2013. [16] M.T.Lacey.Anelementaryproofofthe A 2 Bound. ArXive-prints ,Jan.2015. 90 [17] M.T.Lacey.WeightedWeakTypeEstimatesforSquareFunctions. ArXive-prints , Jan.2015. [18] M.T.Lacey,E.T.Sawyer,andI.Uriarte-Tuero.TwoWeightInequalitiesforDiscrete PositiveOperators. ArXive-prints ,Nov.2009. [19] M.T.LaceyandJ.Scurry.WeightedWeakTypeEstimatesforSquareFunctions. ArXive-prints ,Nov.2012. [20] A.K.Lerner.Apointwiseestimateforthelocalsharpmaximalfunctionwithapplica- tionstosingularintegrals. Bull.Lond.Math.Soc. ,42(5):843{856,2010. [21] A.K.Lerner.Asimpleproofofthe A 2 conjecture. InternationalMathematicsResearch Notices ,2012. [22] A.K.Lerner.OnanestimateofCon-Zygmundoperatorsbydyadicpositiveoper- ators. J.Anal.Math. ,121:141{161,2013. [23] A.K.Lerner.Asimpleproofofthe A 2 conjecture. Int.Math.Res.Not.IMRN , 90(14):3159{3170,2013. [24] A.K.Lerner.Onsharpaperture-weightedestimatesforsquarefunctions. J.Fourier Anal.Appl. ,20(4):784{800,2014. [25] A.K.LernerandF.Nazarov.personalcommunication. [26] A.K.Lerner,S.Ombrosi,andC.Perez. A 1 boundsforon-Zygmundoperators relatedtoaproblemofMuckenhouptandWheeden. Math.Res.Lett. ,16(1):149{156, 2009. [27] A.K.Lerner,S.Ombrosi,C.Perez,R.H.Torres,andR.Talez.New maximalfunctionsandmultipleweightsforthemultilinearon-Zygmundtheory. Adv.Math. ,220(4):1222{1264,2009. [28] K.Li,K.Moen,andW.Sun.Thesharpweightedboundformultilinearmaximal functionsandon-Zygmundoperators. J.FourierAnal.Appl. ,20(4):751{765, 2014. [29] A.D.Melas.TheBellmanfunctionsofdyadic-likemaximaloperatorsandrelated inequalities. Adv.Math. ,192(2):310{340,2005. [30] A.D.Melas.Asharp L p inequalityfordyadic A 1 weightsin R n . Bull.LondonMath. Soc. ,37(6):919{926,2005. [31] A.D.Melas.Dyadic-likemaximaloperatorson L log L functions. J.Funct.Anal. , 257(6):1631{1654,2009. [32] A.D.Melas.Sharpgenerallocalestimatesfordyadic-likemaximaloperatorsandrelated Bellmanfunctions. Adv.Math. ,220(2):367{426,2009. 91 [33] A.D.MelasandE.Nikolidakis.Onweaktypeinequalitiesfordyadicmaximalfunctions. J.Math.Anal.Appl. ,348(1):404{410,2008. [34] F.Nazarov,A.Reznikov,V.Vasyunin,andA.Volberg. A 1 conjecture:Weaknorm estimatesofweightedsingularintegraloperatorsandBellmanfunctions.(Preprint), 2013. [35] F.Nazarov,A.Reznikov,V.Vasyunin,andA.Volberg.ABellmanfunctioncoun- terexampletothe A 1 conjecture:theblow-upoftheweaknormestimatesofweighted singularoperators. ArXive-prints ,June2015. [36] F.Nazarov,S.Treil,andA.Volberg.TheBellmanfunctionsandtwo-weightinequalities forHaarmultipliers. J.Amer.Math.Soc. ,12(4):909{928,1999. [37] F.Nazarov,S.Treil,andA.Volberg.Bellmanfunctioninstochasticcontroland harmonicanalysis.In Systems,approximation,singularintegraloperators,andre- latedtopics(Bordeaux,2000) ,volume129of Oper.TheoryAdv.Appl. ,pages393{423. auser,Basel,2001. [38] F.NazarovandA.Volberg.RandomwalksandBellmanfunctionsforweakestimate blow-upswith A 1 and A 2 weights.(Preprint),2013. [39] F.L.NazarovandS.R.Treil.ThehuntforaBellmanfunction:applicationstoestimates forsingularintegraloperatorsandtootherclassicalproblemsofharmonicanalysis. AlgebraiAnaliz ,8(5):32{162,1996. [40] A.Os ` ekowski. Sharpmartingaleandsemimartingaleinequalities ,volume72of Instytut MatematycznyPolskiejAkademiiNauk.MonogrMatematyczne(NewSeries)[Math- ematicsInstituteofthePolishAcademyofSciences.MathematicalMonographs(New Series)] .auser/SpringerBaselAG,Basel,2012. [41] A.Os˘ekowski.Sharpinequalitiesfordyadic A 1 weights. Arch.Math.(Basel) , 101(2):181{190,2013. [42] S.Petermichl.ThesharpboundfortheHilberttransformonweightedLebesguespaces intermsoftheclassical A p characteristic. Amer.J.Math. ,129(5):1355{1375,2007. [43] G.ReyandA.Reznikov.Extremizersandsharpweak-typeestimatesforpositivedyadic shifts. Adv.Math. ,254:664{681,2014. [44] A.Reznikov,V.Vasyuinin,andA.Volberg.ExtremizersequencesandBellmanfunction fortheweaktypeestimateofthemartingaletransform.(Preprint),2013. [45] L.Slavin,A.Stokolos,andV.Vasyunin.Monge-AmpereequationsandBellmanfunc- tions:thedyadicmaximaloperator. C.R.Math.Acad.Sci.Paris ,346(9-10):585{588, 2008. [46] V.VasyuninandA.Volberg.Monge-AmpereequationandBellmanoptimizationof Carlesonembeddingtheorems.In Linearandcomplexanalysis ,volume226of Amer. Math.Soc.Transl.Ser.2 ,pages195{238.Amer.Math.Soc.,Providence,RI,2009. 92 [47] V.I.Vasyunin.TheexactconstantintheinverseolderinequalityforMuckenhoupt weights. AlgebraiAnaliz ,15(1):73{117,2003. 93