SHARPESTIMATESINHARMONICANALYSIS By GuillermoRey ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof Mathematics{DoctorofPhilosophy 2015 ABSTRACT SHARPESTIMATESINHARMONICANALYSIS By GuillermoRey Weinvestigatecertainsharpestimatesrelatedtosingularintegrals.Inparticularwegive sharplevelsetestimatesforsparseoperators,weshowhowtoreducetheproblemof estimatingon-Zygmundoperatorsbysparseoperators,andwestudysomeweighted inequalitiesfortheseoperators. ACKNOWLEDGEMENTS Todoesto,nosoloestatesis,habrsidoimposibledenoserpormifamilia.Gracias, a,porense~narmeaserfeliz,yporaguantarmetodosestosa~nos;todavmeacuerdo cuandoentedlasaticasporprimeravezcuandoabamosenElkridge.Gracias, a,portodasesasdiscusionessobreciencia,informatica,ydetodoengeneral; portenersiempeunarespuestaamispreguntas,ypordejarmejugarcontodoslos aparatosqueencontraba.GraciasalosdosporestarsiempreahYgraciasaMarta,por ayudarmeentodaslasgrandesdecisionesquehetomado;contigoheaprendidomuch yesoqueestosdostellevanmasdeveintea~nosdeventaja.Gracias,Jaime,porhacerme reirtantveces:asesimposiblenotenerbuenasmemorias.Y,Pablo,graciaspor querermetanto;eresdelasprimeraspersonasconlasquequieroestarcadavezquehago unavisita.Yporsupuesto,graciasalrestodemifamilia,queesdemasiadograndecomo paraenumeraraquQueaisqueospongocomoejemplodelasuertequetengo. AMichayAntonioporesosinterrailes,yaLuis Angel.Porserdelospocosbuenos recuerdosquetengodemionantesdeiralauniversidad.AJorgeporquecontigo siempresepuedehablardeloqueasnosgusta.ARita,porserunaamigatanchachiy porense~narmetantaspalabrasguays.ACarmenportenerconversacionesinterminables conmigosobreomoarreglarelmundo.AMarporqueyonoibaalacafetercontigo porlacalidaddeloscafes,sinoporqueaspodestarmastiempocontigo;porqueeras,y siguessiendo,absolutamenteimprescindible.AAnonporquedespuesdetantotiempoyo creoqueyapensamosaticamente.Porense~narmequelosproblemassinonno existen,yporquecontigopuedoestarhablandohastaelamanecer.YaMiranda,porque aunmeacuerdodecuandoteconocydelasagujetasquetuvealdsiguientedetanto reirme. AJose,porquetegustanlasaticasylacomidatantocomoamPorvisitarme, viajarconmigo,yayudarmeenelproyectodelqueestoymasorgulloso.ABeatrizporque siempretepreocupaspormyporqueabrazasfenomenal.Aanporense~narmetantas iii cosas,yportodaslasqueaunnomehasense~nado.YaMarporquepuedoconartelo todoysiempreasahcuandotenecesito.Porquehablarcontigomealegraeldaunque estemuylejos. AlosprofesoresdelaUAMquemeayudarontantodesdeelprincipio.GraciasaAntonio ordoba,JoseGarca,yFernandoSoria.Sobretodo,graciasaAnaVargaspor enmyense~narmetanto. TothegraduatestudentsatMSUwhichmademystayheremuchmoretolerable;thank youAlexforteachingmeBellmanfunctions,thankyouTylerandBenforallthoseBeggars nights,andthankyouCharlotteandSamiforallthelaughsinyournew Andlast,butnotleast.Thankyoutomytwowonderfuladvisors:IgnacioUriarte-Tuero andAlexanderVolberg.Thankyouforyourconstantsupportandforteachingmesomuch aboutmathematicsandlife.This,obviously,wouldnothavehappenedwithoutyourhelp. GuillermoRey iv TABLEOFCONTENTS LISTOFFIGURES vi 1Introduction 1 2Sharpweak-typeboundsforpositivedyadicshifts 5 2.1Introduction 5 2.2TheBellmanfunctiontechnique 8 2.3FindingtheBellmanfunctioncandidate 12 2.4Optimality 16 3Dyadicmodelsforsingularintegrals 27 3.1Introduction 27 3.2Pointwisedomination 33 3.3Applications 48 3.3.1Multilinear A 2 theorem 48 3.3.2SharpapertureweightedLittlewood-Paleytheorem 49 3.4Theweak-typeestimateformultilinear m -shifts 51 4Ontheembeddingof A 1 into A 1 57 4.1Introduction 57 4.1.1Organization 62 4.2TheBellmanfunctionapproach 63 4.3FindingtheBellmanfunction 69 4.3.1Explicitextremizers 71 4.4VerifyingtheMainInequality 76 5Borderlineweak-typeboundsforsingularintegrals 82 5.1Introduction 82 5.2Proof 83 BIBLIOGRAPHY 89 v LISTOFFIGURES Figure4.1 Plotsof f and e f 62 Figure4.2 Domains k 79 vi 1 Introduction Inanalysis,oneoftenneedstocommutealimitwithanoperator.Afamousexampleof suchsituationconcernstheFouriertransform: b f ( ˘ ):= Z 1 e 2 ˇix˘ f ( x ) dx: Wewouldliketorecoverthefunction f fromitsFouriertransform b f ,andthisiscertainly possibleinsomecases,butoneshouldbecarefulwithwhatexactlydowemeanby \recover".Inparticular,eventhoughtheFouriertransformmaybewellthe inverseFouriertransformmaynot. Atypicalwaytoresolvethisissueistonotinvertthewholefunction b f ,butatruncationof it: f R ( x ):= Z R R e 2 ˇix˘ b f ( ˘ ) d˘: Nowthequestionis:Does f R tendto f as R !1 ?Inwhatsense? Thisisaveryoldquestionandtherearemanywaystoanswerit.Perhaps,thebestknown answeristhefollowing:if f 2 L 2 ( R )then f R ! f in L 2 ( R ),thatis lim R !1 k f R f k L 2 ( R ) =0 : (1.1) 1 ThemaintoolusedtoprovethisresultisPlancherel'stheorem: k b f k L 2 ( R ) = k f k L 2 ( R ) : Ifwetakethistheoremforgranted,thenwecangiveashortproofof( 1.1 ): lim R !1 k f R f k 2 L 2 =lim R !1 k c f R b f k 2 L 2 =lim R !1 Z R j f ( x ) j 2 (1 1 [ R;R ] ( x )) dx; =0 : wherewehaveusedtheDominatedConvergenceTheoreminthesecondtolastline. Onecouldaskwhatissospecialabout L 2 ,apartfromPlancherel'stheorem.Isthistruein, say, L 3 ? Thisisindeedtruefor f 2 L p ( R )forall1
o
C
Z
I
j
f
j
:
However,herewepreciselydescribehowthebestconstantintheaboveinequalitychanges
withrespecttotheparametersoftheproblem.
Themainresultofthearticleisthefollowingtheorem:
Theorem2.1.
Let
A
,
and
t
bepositivenumbersand
I
anintervalin
R
,then
sup
1
j
I
j
n
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
o
=
8
>
>
>
>
>
>
>
>
<
>
>
>
>
>
>
>
>
:
2
At
+
t
if
0
t
q
At
if
0
A
min
t
;
t
;
1
otherwise.
Wherethesupremumistakenoverallnonnegativefunctions
f
with
h
f
i
I
=
t
andallnon-
negativesequences
f
J
g
J
2D
(
I
)
withCarlesonconstantatmost
1
whichsatisfy
1
j
I
j
X
J
2D
(
I
)
J
j
J
j
=
A:
Wealsoprovideasequenceofexampleswhich,inthelimit,attainthesupremumofthe
previousresult.Seethelastsectionfordetailsonthestructureofsuchexamples.
Asanimmediatecorollarywehavethefollowinglocalweak-type(1,1)estimate:
Corollary2.2.
Foranynonnegative
f
2
L
1
([0
;
1))
andforanyCarlesonsequence
f
J
g
J
2D
([0
;
1))
6
withconstantatmost
1
wehavethesharpbound
x
2
[0
;
1):
A
f
(
x
)
>
8
>
>
<
>
>
:
2
k
f
k
L
1
+
k
f
k
L
1
if
k
f
k
L
1
1
if
k
f
k
L
1
whichinparticularimpliesthat
kA
f
k
L
1
;
1
([0
;
1))
2
k
f
k
L
1
([0
;
1))
;
andthattheconstant
2
issharp.
Operatorssimilartothesewererecentlystudiedin[
29
],[
33
],[
31
]and[
32
],howevertheir
resultsareslightlytfromours.Theyconsiderthesupremumtakenoverall
functions
f
satisfying
Z
I
f
=
s
and
Z
I
G
(
f
)=
t;
where
G
isastrictlyconvexfunctionsatisfying
G
(
x
)
=x
!1
as
x
!1
.Thisdoesnot
includethequestionofboundednessfrom
L
1
to
L
1
;
1
.Ourmethodofproofistthan
theoneusedinthearticlescitedabove,wheretheyusethedeepcombinatorialproperties
oftheseoperators.Seealsothemonograph[
40
]byA.Os
`
ekowskiforrelatedresults.We
insteadfollowtheideasin[
45
]and[
46
]tosolvetheBellmanPDEandproveitssharpness.
ThisproblemisalsocloselyrelatedtostudyingHaarshifts,themainbeingthat
Haarshiftsarenotpositiveoperators.Ithasbeenshownhowever,see[
5
],thatLerner-type
operatorscanbeusedtoboundHaarshifts.Thereadercanresultssimilartooursin
[
44
],[
34
]and[
38
].
Thearticleisorganizedasfollows.InSection2weexplainhowtheBellmanfunction
techniqueisusedtocomputethesupremuminTheorem
2.1
.InSection3wegivea
supersolutiontotheBellmanvariationalproblemwhichservesasanupperboundforthe
7
exactBellmanfunction.Finally,inSection4weshowthatthefunctionwefoundinthe
previoussectionistheexactBellmanfunction,wealsogiveasequenceofexampleswhich,
inthelimit,extremizetheinequalityofTheorem
2.1
.
2.2TheBellmanfunctiontechnique
Considerthefunctionin=
f
(
t;A;
):0
t;
0
A
1
;
2
R
g
B
(
t;A;
)=sup
n
1
j
I
j
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
>
o
;
wherethesupremumistakenoverallallnonnegativefunctions
f
on
I
with
h
f
i
I
=
t
and
allCarlesonsequences
f
J
g
j
2D
(
I
)
withconstantatmost1and
A
=
1
j
I
j
X
J
I
J
j
J
j
:
Notethat
I
is
not
aparameterin
B
,thisisbecausethesupremumisinvariantunder
dilationsandtranslationsin
I
,andhenceindependentof
I
.
TheBellmanfunctiontechnique,whichappearedinthe1995preprintversionof[
36
],
isbasedonshowingthat
B
solvesacertainminimizationproblem.Oneshowsthat
B
akindofconcavitypropertyandexplicitlycomputes
B
inasubdomainnaturalto
theproblem(thisisusuallyeasy).Thenoneshowsthatanycontinuouspositivefunction
satisfyingtheseconditionsmajorizes
B
,whichreducestheproblemtoingthesmallest
functionwhichtheseproperties.Finallyonehastoactuallysuchafunction,
thisisusuallythehardestpart.Thereadercaninsightfulintroductionsin[
37
]and
[
39
],seealso[
36
],[
45
],and[
46
]formoreexamplesofthistechnique.
Letusbeginbydescribingmorepreciselytheconcavitypropertywhich
B
8
Lemma2.3
(Maininequality)
.
B
(
t;A;
)
1
2
B
(
t
1
;A
1
;
0
)+
B
(
t
2
;A
2
;
0
)
(2.1)
whenever
t
=
t
1
+
t
2
2
;A
=
A
1
+
A
2
2
+
and
=
0
+
t
and
0
.
Proof.
Consideranydyadicinterval
I
,anyfunction
f
0satisfying
h
f
i
I
=
t
1
and
h
f
i
I
+
=
t
2
andanyCarlesonsequence
f
J
g
J
2D
(
I
)
withconstantatmost1on
I
satisfying
1
j
I
j
X
J
2D
(
I
)
J
j
J
j
=
A
1
;
1
j
I
j
X
J
2D
(
I
+
)
J
j
J
j
=
A
2
and
I
=
:
Supposealsothat
=
0
+
t
.
Since
h
f
i
I
=
t
thenwemusthave
B
(
t;A;
)
1
j
I
j
n
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
o
sincethesupremum
B
istakenoveralargerspace.
9
Observenowthat
1
j
I
j
n
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
o
=
1
2
j
I
j
n
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
o
+
1
2
j
I
+
j
n
x
2
I
+
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
o
=
1
2
j
I
j
n
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
I
t
o
+
1
2
j
I
+
j
n
x
2
I
+
:
X
J
2D
(
I
+
)
J
h
f
i
J
1
J
(
x
)
>
I
t
o
=
1
2
j
I
j
n
x
2
I
:
X
J
2D
(
I
)
J
h
f
i
J
1
J
(
x
)
>
0
o
+
1
2
j
I
+
j
n
x
2
I
+
:
X
J
2D
(
I
+
)
J
h
f
i
J
1
J
(
x
)
>
0
o
andthustheclaimfollows.
Also,wetriviallyseethat
B
mustsatisfythefollowing\obstacle"condition:
B
(
t;A;
)=1whenever
<
0
:
(2.2)
Aswedescribedinthebeginningofthesection,thefunction
B
isaminimizerinthespace
ofpositivefunctionswhichsatisfytheseproperties.Thefollowingpropositionmakesthis
precise:
Proposition2.4.
Supposeacontinuousfunction
F
inequality
(
2.1
)
togetherwith
theobstaclecondition
(
2.2
)
,thenwemusthave
B
(
t;A;
)
F
(
t;A;
)
:
Proof.
Let
f
0beanintegrablefunctiononaninterval
I
andlet
f
J
g
J
2D
(
I
)
beaCarleson
10
sequencewithconstantatmost1,thenforall
wehave(by(
2.1
))
F
(
h
f
i
I
;A;
)=
F
h
f
i
I
+
h
f
i
I
+
2
;
A
+
A
+
2
+
I
;
1
2
F
(
h
f
i
I
;A
;
I
h
f
i
I
)+
F
(
h
f
i
I
+
;A
+
;
I
h
f
i
I
)
;
where
A
=
1
j
I
j
P
J
I
J
j
J
j
and
A
isanalogouslyfor
I
and
I
+
.
Ifweiteratethisinequalityweobtain
F
(
h
f
i
I
;A;
)
1
2
N
X
J
ˆ
I;
j
J
j
=2
N
j
I
j
F
(
h
f
i
J
;A
J
;
N
X
k
=1
J
(
k
)
h
f
i
J
(
k
)
1
J
(
k
)
(
c
J
))
;
where
A
J
=
1
j
J
j
P
P
J
P
j
P
j
.
IfweassumeapriorithattheCarlesonsequence
isthenwecanlet
N
!1
and
obtain
F
(
h
f
i
I
;A;
)
1
j
I
j
Z
I
F
(
f
(
x
)
;A
(
x
)
;
A
f
(
x
))
dx
1
j
I
j
Z
f
x
2
I
:
f
(
x
)
<
0
g
1
dx
by(
2.2
)
=
1
j
I
j
jf
x
2
I
:
A
f
(
x
)
>
gj
:
Here
A
(
x
)isalmostevasthelimitof
A
(
J
)as
J
!
x
,thisiseasilyseento
existalmosteverywherebytheLebesguedtiationtheorem.
Lettingthenumberofnon-zeroelementsof
f
J
g
J
2D
(
I
)
tendtoyandthentakingthe
supremumintheof
B
weobtain
F
(
h
f
i
I
;A;
)
B
(
h
f
i
I
;A;
)
:
Remark
2.5
.
Notethatwedon'tknowyetifthefunction
B
iscontinuous,thusa
11
minimizerinthespaceofcontinuousfunctionsmightnotgiveusthetrueBellmanfunction.
Itturnsout,however,thatassumingcontinuity(actually
C
1
smoothness)weareableto
apositivefunctionsatisfying(
2.1
)and(
2.2
)whichmoreoverisbestpossiblewithoutthea
prioriassumptionofsmoothness.Weshowthisinthelastsection.
Wehavethereforeseenthatanypositivecontinuousfunction
F
satisfying(
2.1
)and
(
2.2
)willgiveusanupperboundfor
B
.Inthenextsectionwesuchafunction.
2.3FindingtheBellmanfunctioncandidate
Ourgoalnowistothesmallestcontinuousfunction
F
satisfying(
2.1
)and(
2.2
).As
weremarkedafterProposition
2.4
,wewillassumeapriorithat
F
is
C
1
.Moreover,wewill
restricttheminimizationspaceevenmorebyrequiring
F
tohavethesamekindof
homogeneitythatthetrue
B
musthave,i.e.:
B
(
t;A;
)=
B
(
t;A;
)
8
>
0
;>
0
:
ThisinprinciplemightmakeourcandidateforBellmanfunctionlargerthantheonewe
couldwithoutrequiringsuchhomogeneity.However,theoptimalBellmanfunction
thisidentity,sorequiring
F
toalsosatisfyitwillnotpreventusfromingit.
AssumingsmoothnesswecanwritetheMainInequality(
2.1
)asaconcavitycondition,
togetherwithamonotonicitypropertyalongcertaincharacteristics.Moreprecisely,if
F
is
asmoothpositivefunction,then(
2.1
)togetherwith(
2.2
)andtheabovehomogeneityis
equivalenttothefollowingconditions:
1.
F
isnonnegative,andconcaveinthetwovariables.
2.
F
(
t;A;
)isincreasinginthedirection(0
;
1
;t
).
3.
F
(
st;A;
)=
F
(
t;A;
)forall
s>
0.
4.
F
(
t;A;
)=1whenever
<
0
12
Indeed,ifwelet
=0in(
2.1
)weseethat
B
isconcaveinthevariables(
t;A
).Ifweset
A
1
=
A
2
=
A
and
t
1
=
t
2
=
t
thenwesee,byvarying
,that
B
(
t;A;
)isincreasinginthe
direction(0
;
1
;t
).Thisshowsthatanysmooth
F
satisfying(
2.1
)and(
2.2
),andwhichis
alsohomogeneousintheabovesense,mustalsosatisfyproperties(1)through(4).
Moreover,if
F
isanysmoothfunctionsatisfyingproperties(1)through(4),thenitalso
mustsatisfythemaininequality(
2.1
)andtheobstaclecondition(
2.2
).Toseethisobserve
thatusingproperty(1)weobtain(
2.1
)butwith
=0,nowproperty(2)allowsusto
insertan
asinthehypothesesforthemaininequalitysinceitdescribesthepathalong
which
F
isincreasing.Thehomogeneityandobstacleconditionsareexactly(3)and(4)
respectively,sothisprovestheequivalence.
Usingthehomogeneityproperty,wecanreduceto
M
:(0
;
1
)
[0
;
1]
!
[0
;
1
)such
thatif
F
(
x;y;z
)=
8
>
>
<
>
>
:
M
(
x=z;y
)if
z>
0
1if
z
0
;
then
F
(1)through(4).Theseproperties,whentranslatedtothefunction
M
,
become:
1.
M
isconcave.
2.
M
y
x
2
M
x
0.
3.
M
(
x;y
)
!
1when
x
!1
.
Thesecondofthesepropertiestellsusthat
M
isincreasingalongthecharacteristics
8
>
>
<
>
>
:
_
x
(
t
)=
x
2
_
y
(
t
)=1
:
Observethatthesecharacteristicsfoliate[0
;
1
)
[0
;
1].Also,ifwemovebackwardsintime
13
alongacharacteristicwhichstartsat(
x
0
;
1)with
x
0
1,thenthischaracteristicisabove
thecurve
y
=
1
x
andfurthermorethecharacteristictendsto(
1
;y
f
)forsome0
0
,thenthesquarefunction
S
fortheconein
R
d
+1
+
ofapperture
andthestandardkernel
k
S
f
k
L
p;
1
(
R
d
;w
)
.
d
[
w
]
1
=p
A
p
k
f
k
L
p
(
R
d
;w
)
for
1
2wasnecessaryforthesamereason
whytheproofofthemultilinearweightedestimatesrequired
p
1(acertainspacehadno
satisfactorydualityproperties).Theorem
3.1
canbeusedinalmostthesamewayaswith
theweightedmultilinearestimatestoproveTheorem
3.5
.Indeed,theproofsin[
19
]and[
24
]
reducetheproblemtoestimatingcertaindiscretepositiveoperatorswhichcanbeseento
beparticularinstancesofthepositivemultilinear
m
-shiftsusedintheproofofTheorem
3.4
.
Aswasnotedin[
19
],estimate(
3.11
)canbeseenasananalogueoftheresultin[
26
]
stablishingtheendpointweightedweak-typeestimateforon-Zygmundoperators
k
Tf
k
L
1
;
1
(
w
)
.
[
w
]
A
1
(1+log[
w
]
A
1
)
k
f
k
L
1
(
w
)
:
Seealso[
34
]forasimilarestimatefrombelowandmoreinformationonthesharpnessof
thisestimate,knownastheweak
A
1
conjecture.Inthisdirection,itseemsreasonablethat
LaceyandScurry'sproofin[
19
]couldbeadaptedtothemultilinearsetting,howeverwe
willnotpursuethisproblemhere.
Finally,asathirdapplicationofourresults,itispossibletogiveamoredirectproofofthe
32
resultin[
15
]forthe
q
-variationofon-Zygmundoperatorssatisfyingthelogarithmic
Diniconditionbyusingthepointwiseestimateanalogousto(
3.1
)in[
15
]andthenapplying
Theorem
3.1
.However,wewillnotpursuethisargumentationeither.
Shortlybeforeuploadingthispreprint,AndreiLernerkindlycommunicatedtotheauthors
thathe,jointlywithFedorNazarov,hadindependentlyprovenatheoremverysimilarto
Corollary
3.2
[
25
].Thoughthehypothesisarethesame,theirresultfromtheonein
thisnoteinthatwegivealocalizedpointwiseestimatewhiletheirpointwiseestimateis
validforallof
R
d
.However,ourresultseemstobeaspowerfulintheapplications.
3.2Pointwisedomination
ThegoalofthissectionistheproofofTheoremAanditsconsequencesasstatedinthe
introduction.Wewillprovetheresultinthelevelofgeneralityofmultilinearoperators.
Givenacube
P
0
on
R
d
,wewilldenoteby
D
(
P
0
)thedyadiclatticeobtainedbysuccessive
dyadicsubdivisionsof
P
0
.Byadyadicgridwewilldenoteanydyadiclatticecomposedof
cubeswithsidesparalleltotheaxis.A
k
-linearpositivedyadicshiftofcomplexity
m
isan
operatoroftheform
A
m
P
0
~
f
(
x
)=
A
m
P
0
(
f
1
;f
2
;
;f
k
)(
x
):=
X
Q
2
D
(
P
0
)
Q
(
m
)
P
0
Q
k
Y
i
=1
h
f
i
i
Q
(
m
)
1
Q
(
x
)
:
AsasteptowardstheproofofTheoremA,itisconvenienttoseparatethescalesof(or
Sinceweuploadedthisdocumentto
arXiv
,twootherarticleshaveappeared:[
17
]and[
11
],inwhich
similarestimatesareobtained.
33
slice
)
A
m
P
0
asfollows:
A
m
P
0
~
f
(
x
)=
m
1
X
n
=0
1
X
j
=1
X
Q
2
D
jm
+
n
(
P
0
)
Q
k
Y
i
=1
h
f
i
i
Q
(
m
)
1
Q
(
x
)
=:
m
1
X
n
=0
A
m;n
P
0
~
f
(
x
)
:
Notethat
D
k
(
P
0
)denotesthe
k
-thgenerationofthelattice
D
(
P
0
).Nowwerewrite
A
m
;
n
P
0
asasumofdisjointlysupportedoperatorsoftheform
A
m
;0
P;
.Indeed,
A
m
;
n
P
0
~
f
(
x
)=
1
X
j
=1
X
Q
2
D
jm
+
n
(
P
0
)
Q
k
Y
i
=1
h
f
i
i
Q
(
m
)
1
Q
(
x
)
=
X
P
2
D
n
(
P
0
)
1
X
j
=1
X
Q
2
D
jm
(
P
)
Q
k
Y
i
=1
h
f
i
i
Q
(
m
)
1
Q
(
x
)
=
X
P
2
D
n
(
P
0
)
A
m
;0
P
~
f
(
x
)
;
whichleadstotheexpression
A
m
0
~
f
(
x
)=
m
1
X
n
=0
X
P
2
D
n
(
P
0
)
A
m
;0
P
~
f
(
x
)
:
Wesaythatasequence
f
Q
g
Q
2
D
(
P
0
)
isCarlesonifitsCarlesonconstant
k
k
Car(
P
0
)
<
1
,
where
k
k
Car(
P
0
)
=sup
P
2
D
(
P
0
)
1
j
P
j
X
Q
2
D
(
P
)
Q
j
Q
j
:
Thefollowingintermediatestepisthekeytoourapproach:
Proposition3.6.
Let
m
1
and
beaCarlesonsequence.Forintegrablefunctions
34
f
1
;:::;f
k
0
on
P
0
thereexistsasparsecollection
S
ofcubesin
D
(
P
0
)
suchthat
A
m
;0
P
0
~
f
(
x
)
C
1
k
k
Car(
P
0
)
X
Q
2S
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
;
where
C
1
onlydependson
k
and
d
,andinparticularisindependentof
m
.
ToproveProposition
3.6
wewillproceedinthreesteps:wewillconstructthecollection
S
,thenshowthatwehavetherequiredpointwisebound,andthat
S
issparse.By
homogeneity,wewillassumethat
k
k
Car(
P
0
)
=1.Also,wewillassumethatthesequence
isbutourconstantswillbeindependentofthenumberofelementsinthesequence.
Let
P
0
=0and,foreach
Q
2
D
mj
(
P
0
)with
j
0,thesequence
f
Q
g
Q
by
Q
=max
R
2
D
m
(
Q
)
R
:
Foreach
Q
2
D
mj
(
P
0
)with
j
0,wewillinductivelythequantities
Q
and
Q
as
follows:
Q
=
8
>
>
<
>
>
:
0if
Q
Q
k
i
=1
h
f
i
i
Q
Q
0
2
2(
k
+1)
C
W
otherwise
;
where
C
W
istheboundednessconstantoftheunweightedendpointweak-typeofthe
operators
A
m
provedinTheorem
3.16
inthelastsection.Also,forevery
R
2
D
m
(
Q
)we
R
=
Q
+(
Q
R
)
k
Y
i
=1
h
f
i
i
Q
:
Notethattheonlyappliestocubesin
D
mj
(
P
0
)forsome
j
.Forallothercubesin
D
P
0
,weset
Q
=
Q
=0.Thecollection
S
consistsofthosecubes
Q
2
D
(
P
0
)forwhich
Q
6
=0.Notethat,since2
2(
k
+1)
C
W
>
1=
k
k
Car(
P
0
)
R
forall
R
andbytheof
Q
,wemusthave
Q
0forall
Q
.Thiscanbeeasilyseenbyinduction.
35
Remark
3.7
.
Wearetryingtoconstructasparseoperatorofcomplexity0whichdominates
A
m
;0
P
0
.Onewaytoachievethisistolet
S
bethecollectionofalldyadicsubcubesof
P
0
,but
ofcoursethisdoesnotyieldasparsecollection.Abetterwaywouldbetolet
S
consistofall
dyadiccubesin
P
0
forwhichatleastoneofits
m
-thgenerationchildren
R
R
>
0;
unfortunatelythisyieldsacollection
S
whichisnotsparse,andinfactitcanbeseenthat
theCarlesonsequence
associatedwiththiscollectioncanhaveaCarlesonnorm
k
k
Car(
P
0
)
whichgrowsexponentiallyin
m
.
Themainproblemwiththisapproachisthat,whenthetimecomestodecidewhethera
cubeshouldbein
S
ornot,wedonottakeintoaccountwhichcubeshavebeenselectedin
theprevioussteps.Notethatwheneverweaddacube
Q
to
S
wearenotonly\helping"
todominatetheportionof
A
m
;0
P
0
comingfrom
Q
,butalsowhatmaycomefromanyofits
descendants.
Onecanaccountforthisbyhavingthealgorithmuseasortof\memory"to,essentially,
keeptrackofhowmanycubesin
S
(appropriatelyweightedwiththeaveragesof
~
f
)lieabove
anyparticularcube.Thisisthepurposeof
Q
.Thiscanalsobeseenasthestoppingtime
algorithmwhichselectsacubewheneverthepreviouslyselectedcubesdonotprovideenough
heighttodominatetheoperatoruntilthatpoint.
Lemma3.8.
Wehavethepointwisebound
A
m
;0
P
0
~
f
(
x
)
X
Q
2
D
(
P
0
)
Q
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
:
(3.12)
Proof.
Wewillprovebyinductionthefollowingclaim:if
P
2
D
jm
(
P
0
)forsome
j
0,then
A
m
;0
P;
~
f
(
x
)
P
+
X
Q
2
D
(
P
)
Q
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
:
(3.13)
Notethat,when
P
=
P
0
,thisisexactly(
3.12
).Since
isthereisasmallest
j
0
2
N
suchthat
Q
=0forallcubes
Q
2
D
j
0
m
(
P
0
)
.Let
Q
beanycubein
D
j
0
m
(
P
0
),weobviously
Weuse
D
k
(
P
)todenotethosecubes
Q
in
D
(
P
)ofgenerationatleast
k
,so
j
Q
j
2
dk
j
P
j
.
36
have
A
m
;0
~
f
0in
Q:
Since
Q
0,theclaim(
3.13
)istrivialfor
P
2
D
j
0
m
(
P
0
).Now,assumebyinductionthat
wehaveproved(
3.13
)forallcubes
P
2
D
jm
(
P
0
)with1
j
1
j
andlet
P
beanycubein
D
(
j
1
1)
m
(
P
0
).By
A
m
;0
P
~
f
(
x
)=
X
Q
2
D
m
(
P
)
Q
k
Y
i
=1
h
f
i
i
P
1
Q
(
x
)+
A
m
;0
~
f
(
x
)
:
Let
x
2
Q
2
D
m
(
P
),thenbytheinductionhypothesisandtheof
Q
:
A
m
;0
P
~
f
(
x
)
Q
k
Y
i
=1
h
f
i
i
P
+
Q
+
X
R
2
D
(
Q
)
R
k
Y
i
=1
h
f
i
i
R
1
R
(
x
)
=
Q
k
Y
i
=1
h
f
i
i
P
+
P
+(
P
Q
)
k
Y
i
=1
h
f
i
i
P
+
X
R
2
D
(
Q
)
R
k
Y
i
=1
h
f
i
i
R
1
R
(
x
)
=
P
+
P
k
Y
i
=1
h
f
i
i
P
+
X
R
2
D
(
Q
)
R
k
Y
i
=1
h
f
i
i
R
1
R
(
x
)
=
P
+
X
R
2
D
(
P
)
R
k
Y
i
=1
h
f
i
i
R
1
R
(
x
)
;
whichiswhatwewantedtoshow.
Lemma3.9.
Thecollection
S
issparse.
Proof.
Let
P
2S
,wehavetoshowthattheset
F
:=
[
Q
(
P;Q
2S
Q
j
F
j
1
2
j
P
j
.Tothisend,let
R
bethecollectionofmaximal(strict)subcubesof
P
whicharein
S
,Notethatforall
R
2R
wehave
R
2
D
N
R
m
(
P
)forsome
N
R
1.Wethus
37
have
F
=
G
R
2R
R:
Bymaximality,forall
R
2R
anddyadiccubes
Q
with
R
(
Q
(
P
wehave
Q
=0.Forall
R
2R
and1
j
N
R
wenowclaimthat
R
((
N
R
j
)
m
)
P
k
Y
i
=1
h
f
i
i
P
j
X
=1
R
((
N
R
)
m
)
k
Y
i
=1
h
f
i
i
R
((
N
R
+1)
m
)
:
(3.14)
Indeed,onecanprovethisbyinductionon
j
.If
j
=1thenbydwehave
R
((
N
R
1)
m
)
=
P
+(
P
R
((
N
R
1)
m
)
)
k
Y
i
=1
h
f
i
i
P
P
k
Y
i
=1
h
f
i
i
P
R
((
N
R
1)
m
)
k
Y
i
=1
h
f
i
i
P
;
since
P
0.
Toprovetheinductionstep,observethat(bytheinductionhypothesis)for
j>
1
R
((
N
R
j
)
m
)
=
R
((
N
R
j
+1)
m
)
+(
R
((
N
R
j
+1)
m
)
R
((
N
R
j
)
m
)
)
k
Y
i
=1
h
f
i
i
R
((
N
R
j
+1)
m
)
=
R
((
N
R
j
+1)
m
)
R
((
N
R
j
)
m
)
k
Y
i
=1
h
f
i
i
R
((
N
R
j
+1)
m
)
P
k
Y
i
=1
h
f
i
i
P
j
X
=1
R
((
N
R
)
m
)
k
Y
i
=1
h
f
i
i
R
((
N
R
+1)
m
)
:
From(
3.14
)with
j
=
N
R
,wehave(sincethetermsarenonnegative)
R
P
k
Y
i
=1
h
f
i
i
P
A
m
;0
P
~
f
(
x
)
forall
x
2
R
.Since
R
6
=0,wemusthave
k
Y
i
=1
h
f
i
i
R
R
R
>
0
;
38
i.e.:
k
Y
i
=1
h
f
i
i
R
R
+
A
m
;0
P
~
f
(
x
)
>
2
2(
k
+1)
C
W
k
Y
i
=1
h
f
i
i
P
forall
x
2
R
.Let
G
P
~
f
=
P
R
2R
R
Q
k
i
=1
h
f
i
i
R
1
R
,thenforall
x
2
R
wehave
G
P
f
(
x
)+
A
m
;0
P
~
f
(
x
)
>
2
2(
k
+1)
C
W
k
Y
i
=1
h
f
i
i
P
;
hence
j
F
j
(
x
2
P
:
G
P
~
f
(
x
)+
A
m
;0
P
~
f
(
x
)
>
2
2(
k
+1)
C
W
k
Y
i
=1
h
f
i
i
P
)
kG
P
+
A
m
;0
P;
k
1
=k
L
1
(
P
)
L
1
(
P
)
!
L
1
=k;
1
(
P
)
2
2(
k
+1)
C
W
Q
k
i
=1
h
f
i
i
P
1
=k
k
Y
i
=1
k
f
i
k
L
1
(
P
)
1
=k
=
kG
P
+
A
m
;0
P
k
1
=k
L
1
(
P
)
L
1
(
P
)
!
L
1
=k;
1
(
P
)
(2
2(
k
+1)
C
W
)
1
=k
j
P
j
Letuscomputetheoperatornorm
kG
P
k
L
1
(
P
)
L
1
(
P
)
!
L
1
=k;
1
(
P
)
.Observethat,since
Q
1
forall
Q
,theoperator
G
ispointwiseboundedbythemulti-linearprojection
P
P
~
f
(
x
)=
X
R
2R
k
Y
i
=1
h
f
i
i
R
1
R
(
x
)=
k
Y
i
=1
X
R
2R
h
f
i
i
R
1
R
(
x
)
:
Foreach1
i
k
,wehave
k
P
R
2R
h
f
i
i
R
1
R
k
L
1
(
P
)
k
f
i
k
L
1
(
P
)
.Therefore,byolder's
inequalityweget
kP
P
~
f
k
L
1
=k;
1
(
P
)
k
Y
i
=1
X
R
2R
h
f
i
i
R
1
R
L
1
(
P
)
k
Y
i
=1
k
f
i
k
L
1
(
P
)
:
Ontheotherhandwehave
kA
m
;0
P
~
f
k
L
1
=k;
1
(
P
)
C
W
k
Y
i
=1
k
f
i
k
L
1
(
P
)
39
byTheoremW.1.Combiningtheseestimatesweget
kG
P
+
A
m
;0
P
k
L
1
(
P
)
L
1
(
P
)
!
L
1
=k;
1
(
P
)
2
k
+1
(1+
C
W
)
2
k
+2
C
W
andtheresultfollows.
Fromlemmas
3.8
and
3.9
Proposition
3.6
followsatonce.Theproofshowsthatonecan
actuallytake
C
1
=2
2+
k
(7+
d
(2
k
1))
.WearenowreadytotheproofofTheoremA,
whichwestatehereinfullgenerality:
Theorem3.10.
Let
beaCarlesonsequenceandlet
P
0
beadyadiccube.Forevery
k
-tuple
ofnonnegativeintegrablefunctions
f
1
;:::;f
k
on
P
thereexistsasparsecollection
S
ofcubes
in
D
(
P
)
suchthat
A
m
P
~
f
(
x
)
C
2
X
Q
2S
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
:
Proof.
If
m
=0wecanjustapplyProposition
3.6
afternotingthat
A
0
P
0
canbewrittenas
A
1;0
P
0
,where
Q
=
Q
(1)
:
Oneeasilyseesthat
k
k
Car(
P
0
)
=
k
k
Car(
P
0
)
.Hence,wemayassumethat
m
1.Recallthe
expression
A
m
P
0
~
f
(
x
)=
m
1
X
n
=0
X
P
2
D
n
(
P
0
)
A
m
;0
P
~
f
(
x
)
:
fromthebeginningofthesection.ByProposition
3.6
,foreach0
n
m
1andeach
P
2
D
n
(
P
0
)wecanasparsecollectionofcubes
S
n
P
ˆ
D
(
P
)suchthat
A
m
;0
P;
~
f
(
x
)
C
1
k
k
Car(
P
0
)
X
Q
2S
n
P
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
:
40
Observethatthecollection
S
n
=
[
P
2
D
n
(
P
0
)
S
n
P
isalsosparse,so
A
m
P
0
~
f
(
x
)
C
1
k
k
Car(
P
0
)
m
1
X
n
=0
X
Q
2S
n
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
:
(3.15)
For0
n
m
1
n
Q
=
8
>
>
<
>
>
:
1if
Q
2S
n
0otherwise.
Sincethecollections
S
n
aresparse,thesequences
n
areCarlesonsequenceswith
k
n
k
Car(
P
0
)
2,thereforethesequence
Q
:=
m
1
X
n
=0
n
Q
isalsoCarlesonwith
k
k
Car(
P
0
)
2
m
.
Withthiswecancontinuetheargumentusingestimate(
3.15
)andthecase
m
=0:
A
m
P
0
~
f
(
x
)
C
1
k
k
Car(
P
0
)
m
1
X
n
=0
X
Q
2S
n
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
=
C
1
k
k
Car(
P
0
)
m
1
X
n
=0
X
Q
2
D
(
P
0
)
n
Q
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
=
C
1
k
k
Car(
P
0
)
X
Q
2
D
(
P
0
)
Q
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
=
C
1
k
k
Car(
P
0
)
A
0
P
0
~
f
(
x
)
C
1
k
k
Car(
P
0
)
C
1
2
m
X
Q
2S
k
Y
i
=1
h
f
i
i
Q
1
Q
(
x
)
;
whichyieldstheresultwith
C
2
=2
C
2
1
.
Remark
3.11
.
TheaboveproceduredoesnotrelyonanysppropertyoftheLebesgue
measure.Infact,Theorem
3.1
alsoholdswhenwereplaceallaverages{bothincomplexity
0andcomplexity
m
operators{byaverageswithrespecttoanyotherlocallyBorel
measure,becausetheproofis
41
WenowdetailhowtouseTheorem
3.1
toderivethemultilinearversionofcorollaries
3.2
and
3.3
.Forus,amultilinearon-Zygmundoperatorwillbeanoperator
T
satisfying
T
(
f
1
;:::;f
k
)=
Z
R
dk
K
(
x;y
1
;:::;y
k
)
f
1
(
y
1
)
f
k
(
y
k
)
dy
1
:::dy
k
forall
x=
2\
k
i
=1
supp
f
i
forappropriate
f
i
.Alsowewillrequirethat
T
extendstoabounded
operatorfrom
L
q
1
:::L
q
k
to
L
q
where
1
q
=
1
q
1
+
+
1
q
k
;
andthatitthesizeestimate
j
K
(
y
0
;:::;y
k
)
j
A
P
k
i;j
=0
j
y
i
y
j
j
kd
:
!
willbethemodulusofcontinuityofthekerneloftheoperatori.e.apositive
nondecreasingcontinuousanddoublingfunctionthat
j
K
(
y
0
;:::;y
j
;:::;y
k
)
K
(
y
0
;:::;y
0
j
;:::;y
k
)
j
C!
j
y
j
y
0
j
j
P
k
i;j
=0
j
y
i
y
j
j
!
1
P
k
i;j
=0
j
y
i
y
j
j
kd
forall0
j
k
,whenever
j
y
j
y
0
j
j
1
2
max
0
i
k
j
y
j
y
i
j
.WecannowproveCorollary
3.2
:
ProofofCorollary
3.2
.
Fixameasurable
f
,andacube
Q
0
ˆ
R
d
.Ourstartingpointisthe
formula
j
T
~
f
(
x
)
m
T
~
f
(
Q
0
)
j
.
X
Q
2S
1
X
m
=0
!
(2
m
)
m
Y
i
=1
hj
f
i
ji
2
m
Q
1
Q
(
x
)
;
whichholdsforasparsesubcollection
Sˆ
D
(
Q
0
)(see[
6
]and[
15
],weareimplicitlyusing
aslightimprovementofLerner'sformulawhichcanbefoundin[
12
],Theorem2.3).Here
m
f
(
Q
)denotesthemedianofameasurablefunction
f
overacube
Q
(see[
23
]fortheprecise
42
which
j
m
f
(
Q
)
j
.
k
f
k
L
1
;
1
(
Q
)
j
Q
j
:
Hencewecanjustwrite
j
T
~
f
(
x
)
j
.
1
X
m
=0
!
(2
m
)
X
Q
2S
m
Y
i
=1
hj
f
i
ji
2
m
Q
1
Q
(
x
)
;
(3.16)
Byanelaborationofthewell-knownone-thirdtrick,itwasprovenin[
15
]thatthereexist
dyadicsystems
f
D
ˆ
g
ˆ
2f
0
;
1
=
3
;
2
=
3
g
d
suchthatforeverycube
Q
in
R
d
andevery
m
1,there
exists
ˆ
2f
0
;
1
=
3
;
2
=
3
g
d
and
R
Q;m
2
D
ˆ
suchthat
Q
ˆ
R
Q;m
;
2
m
Q
ˆ
Q
(
m
)
;
3
`
(
Q
)
<`
(
R
Q;m
)
6
`
(
Q
)
:
Also,wemayassumethatforeach
ˆ
2f
0
;
1
=
3
;
2
=
3
g
d
thereexistsacube
P
(
ˆ
)suchthat
Q
0
ˆ
P
(
ˆ
)
ˆ
c
d
P
(
ˆ
)forsomedimensionalconstant
c
d
.Usingthis,wecanfurtherwrite
(
3.16
)as
j
T
~
f
(
x
)
j
.
X
ˆ
2f
0
;
1
3
;
2
3
g
d
1
X
m
=0
!
(2
m
)
X
Q
2S
R
Q;m
2
D
ˆ
k
Y
i
=1
hj
f
i
ji
R
(
m
)
Q;m
1
R
Q
:
Let
F
ˆ
m
=
f
R
Q;m
:
R
Q
2
D
ˆ
gˆ
D
(
P
(
ˆ
)).Then,wecanestimate
j
T
~
f
(
x
)
j
.
6
d
X
ˆ
2f
0
;
1
3
;
2
3
g
d
1
X
m
=0
!
(2
m
)
X
R
2F
ˆ
m
k
Y
i
=1
hj
f
i
ji
R
(
m
)
1
R
;
sinceatmost6
d
cubes
Q
in
D
aremappedtothesamecube
R
Q;m
.thesequence
ˆ
Q
=
8
>
>
<
>
>
:
1if
Q
2F
ˆ
m
0otherwise
:
43
Thecollections
F
ˆ
m
are2
1
6
d
-sparse,andhenceCarlesonwithconstant2
6
d
.Inorderto
applyTheorem
3.1
,foreach
ˆ
2f
0
;
1
3
;
2
3
g
d
,
m
0,wenowsplitthesumasfollows:
X
Q
2
D
ˆ
ˆ
Q
k
Y
i
=1
hj
f
i
ji
Q
(
m
)
1
Q
(
x
)=
X
Q
2
D
m
(
P
(
ˆ
))
ˆ
Q
k
Y
i
=1
hj
f
i
ji
Q
(
m
)
1
Q
(
x
)
+
1
X
`
=1
X
Q
2
D
m
`
(
P
(
ˆ
))
ˆ
Q
k
Y
i
=1
hj
f
i
ji
Q
(
m
)
1
Q
(
x
)
=I+II
:
Now,since
f
i
issupportedon
Q
0
ˆ
P
(
ˆ
)for1
i
k
andall
ˆ
2f
0
;
1
3
;
2
3
g
d
,weclaimthat
II
I.Indeed,compute
1
X
`
=1
X
Q
2
D
m
`
(
P
(
ˆ
))
ˆ
Q
k
Y
i
=1
hj
f
i
ji
Q
(
m
)
1
Q
(
x
)
1
X
`
=1
X
Q
2
D
m
`
(
P
(
ˆ
))
k
Y
i
=1
hj
f
i
ji
Q
(
m
)
1
Q
(
x
)
=
1
X
`
=1
k
Y
i
=1
hj
f
i
ji
P
(
ˆ
)
(
`
)
:
Nowobservethat,bythesupportconditiononthetuple
~
f
,
k
Y
i
=1
hj
f
i
ji
P
(
ˆ
)
(
`
)
=2
dk`
k
Y
i
=1
hj
f
i
ji
P
(
ˆ
)
;
whichisenoughtoprovetheclaim.Therefore,weonlyneedtoworkinthelocalizedcubes
P
(
ˆ
),
ˆ
2f
0
;
1
3
;
2
3
g
d
.Therefore,wecanobtaintheassertionofCorollary
3.2
applying
Theorem
3.1
:
44
j
T
~
f
(
x
)
j
.
X
ˆ
2f
0
;
1
3
;
2
3
g
d
1
X
m
=0
!
(2
m
)
X
Q
2
D
ˆ
;Q
ˆ
P
(
ˆ
)
(
m
)
ˆ
Q
k
Y
i
=1
hj
f
i
ji
Q
(
m
)
1
Q
(
x
)
.
X
ˆ
2f
0
;
1
3
;
2
3
g
d
1
X
m
=0
!
(2
m
)(
m
+1)
X
Q
2S
m;
~
f
k
Y
i
=1
hj
f
i
ji
Q
1
Q
=
X
ˆ
2f
0
;
1
3
;
2
3
g
d
1
X
m
=0
!
(2
m
)(
m
+1)
A
S
m;
~
f
~
f
(
x
)
;
forsparsecollections
S
m;
~
f
thatmaydependbothon
m
and
~
f
(andwhicharesubfamiliesof
D
(
P
(
ˆ
))foreachvalueof
ˆ
).Now,reorganizingthesumaboveweobtain
j
T
~
f
(
x
)
j
.
X
ˆ
2f
0
;
1
3
;
2
3
g
d
X
S
m;
~
f
ˆ
D
ˆ
!
(2
m
)(
m
+1)
A
S
m;
~
f
~
f
(
x
)
=:
X
ˆ
2f
0
;
1
3
;
2
3
g
d
A
ˆ
~
f
(
x
)
:
Now,bythelogarithmicDinicondition,eachoftheoperators
A
ˆ
isboundedabovebysome
absoluteconstanttimesa0-shiftwhoseassociatedsequenceis1-Carleson(andlocalizedin
P
(
ˆ
))towhichwecanapplyagainTheorem
3.1
.Therefore,weobtain
j
T
~
f
(
x
)
j
.
X
ˆ
2f
0
;
1
3
;
2
3
g
d
A
S
ˆ
~
f
(
x
)
;
forsomesparsefamilies
S
ˆ
ˆ
D
ˆ
whichdependon
~
f
.
Wenowintroducethenotionoffunctionquasi-norm.Wesaythat
kk
X
,ontheset
ofmeasurablefunctions,isafunctionquasi-normif:
(P1)
Thereexistsaconstant
C>
0suchthat
k
f
+
g
k
X
C
k
f
k
X
+
k
g
k
X
;
45
(P2)
k
k
X
=
j
jk
f
k
X
forall
2
C
.
(P3)
If
j
f
(
x
)
jj
g
(
x
)
j
almost-everywherethen
k
f
k
X
k
g
k
X
.
(P4)
k
liminf
n
!1
f
n
k
X
liminf
n
!1
k
f
n
k
X
Fixsomedyadicsystem
D
suchthatthereexistsanincreasingsequenceofdyadiccubes
f
P
`
g
`
ˆ
D
whoseunionisthewholespace
R
d
,anddenote
1
P
`
~
f
=(
1
P
`
f
1
;:::;
1
P
`
f
k
).Now,
takingintoaccountproperties
(P1)
and
(P3)
,ifwetakequasi-normsinthesecond
assertionofCorollary
3.2
,wehave
k
1
P
`
T
(
1
P
`
~
f
)
k
X
.
sup
D
;
S
kA
S
(
1
P
`
~
f
)
k
X
8
`:
Ontheonehand,since
~
f
isintegrable,
T
(
1
P
`
~
f
)convergespointwiseto
T
(
~
f
).Therefore,we
have
1
P
`
T
(
1
P
`
~
f
)
!
T
(
~
f
)
pointwise.Finally,weapplyproperty
(P4)
andweget
k
T
~
f
k
X
=
liminf
`
1
P
`
T
(
1
P
`
~
f
)
X
liminf
`
1
P
`
T
(
1
P
`
~
f
)
X
.
sup
D
;
S
A
S
~
f
X
:
ThisisexactlyCorollary
3.3
.
Remark
3.12
.
Wenotethatthedependenceon
m
inthepointwiseestimateofshiftsof
complexity
m
mustbeatleastlinearin
m
.Toseethis,letusworkindimensiononeand
alargeinteger
m
.Foranyinterval
I
=[
a;b
)let
I
j
bethe
j
-thintervalof
D
m
(
I
):
I
j
=
a
+
j
I
j
[
j
2
m
;
(
j
+1)2
m
)
:
46
atoweroveraninterval
I
tobethecollectionofintervals
T
I
=
f
[
a;a
+2
k
j
I
j
):
k
2
N
g
:
Thecollectionofintervals
S
=
S
J
2
D
m
(
I
)
T
J
isasparsecollection.Nowconsiderafunction
f
on
I
whichisby
f
(
x
)=
8
>
>
<
>
>
:
0if
x
2
I
j
with
j
even
;
2otherwise
:
Denotegen(
J
)=log
2
(
`
(
I
)
`
(
J
)
1
)forcubes
J
2
D
(
I
).Observethatforanydyadicinterval
J
I
withgen(
J
)
m
1wehave
h
f
i
J
=1
:
Considernowtheactionof
A
m
S
on
f
.If
x
2
(
I
j
)
0
with
j
eventhen
A
m
S
f
(
x
)=
m:
Inordertoconstructacollection
S
0
ofintervalsin
I
forwhichwehave
A
m
S
f
(
x
)
C
A
0
S
0
f
(
x
)
;
wewouldneedtoselecteveryinterval
J
ˆ
I
withgen(
J
)
m
1.Indeed,let
I
k
(
x
)bethe
intervalin
D
k
(
I
)whichcontains
x
andlet
J
be1if
J
2S
0
and0otherwise.Then
C
A
0
S
0
f
(
x
)=
C
m
1
X
k
=0
I
k
(
x
)
m
forall
x
2
(
I
j
)
0
with
j
even.Thisimpliesthatatleast
m=C
oftheseintervalsmustbein
47
S
0
.Butthisimpliesthattheheight
X
J
2S
0
J
1
J
(
x
)
m=C
onhalfoftheinterval
I
,whichcontradictsthehypothesisof
S
0
beingsparseif
m
islarge
enough.
3.3Applications
Wearenowreadytofullystateandprovetheapplicationsofthepointwiseboundas
statedintheintroduction.Webeginwiththemultilinearsharpweightedestimates:
3.3.1Multilinear
A
2
theorem
WeneedsomemoresThesewereintroducedin[
27
].
3.13
(
A
~
P
weights)
.
Let
~
P
=(
p
1
;:::;p
k
)with1
p
1
;:::;p
k
<
1
and
1
p
=
1
p
1
+
+
1
p
k
.Given
~w
=(
w
1
;:::;w
k
),set
v
~w
=
k
Y
i
=1
w
p=p
i
i
:
Wesaythat
~w
the
k
-linear
A
~
P
conditionif
[
~w
]
A
~
P
:=sup
Q
1
j
Q
j
Z
Q
v
~w
k
Y
i
=1
1
j
Q
j
Z
Q
w
1
p
0
i
i
p=p
i
:
Wecall[
~w
]
A
~
P
the
A
~
P
constantof
~w
.Asusual,if
p
i
=1thenweinterpret
1
j
Q
j
R
Q
w
1
p
0
i
i
tobe
(essinf
Q
w
i
)
1
.
Thefollowingtheoremwasprovedin[
28
]:
48
Theorem3.14.
Suppose
1
>
<
>
>
:
1if1
gj
k
C
W
k
k
Car(
P
0
)
k
Y
i
=1
k
f
i
k
L
1
(
P
0
)
;
(3.20)
where
C
W
>
0
onlydependson
k
and
d
,andinparticularisindependentof
m
.
WewillessentiallyfollowGrafakos-Torres[
10
]and[
14
].Weprovean
L
2
boundand
thenapplyaon-Zygmunddecomposition.Forthe
L
2
boundwewillusea
multilinearCarlesonembeddingtheorembyW.ChenandW.an[
2
],fromwhichwe
onlyneedtheunweightedresult:
X
Q
2
D
(
P
0
)
Q
k
Y
i
=1
h
f
i
i
Q
p
1
p
k
k
Car(
P
0
)
k
Y
i
=1
p
0
i
k
f
i
k
L
p
i
(
P
0
)
(3.21)
whenever
1
p
=
1
p
1
+
+
1
p
k
:
Nowwecanprove
Proposition3.17.
kA
m
P
0
~
f
k
L
2
(
P
0
)
4
k
k
Car(
P
0
)
k
Y
i
=1
k
f
i
k
L
2
k
(
P
0
)
Proof.
Webeginbyusingdualityandhomogeneitytoreducetoshowing
Z
P
0
g
(
x
)
A
m
P
0
~
f
(
x
)
dx
4
assumingthat
k
f
i
k
L
2
k
(
P
0
)
=
k
g
k
L
2
(
P
0
)
=
k
k
Car(
P
0
)
=1and
g
0.Byand
Cauchy-Schwarz,thisisequivalentto
X
Q
2
D
m
(
P
0
)
Q
k
Y
i
=1
h
f
i
i
Q
(
m
)
2
j
Q
j
1
=
2
X
Q
2
D
m
(
P
0
)
Q
h
g
i
2
Q
j
Q
j
1
=
2
:
52
Thesecondtermcanbeestimated,using(
3.21
)inthelinearcase,by
X
Q
2
D
m
(
P
0
)
Q
h
g
i
2
Q
j
Q
j
1
=
2
2
:
Forthetermobservethatthesequence
Q
by
Q
=
1
2
dm
X
R
2
D
m
(
Q
)
R
isaCarlesonsequenceadaptedto
P
0
ofthesameconstant.Indeed:
1
j
Q
j
X
R
2
D
(
Q
)
R
j
R
j
=
1
j
Q
j
X
R
2
D
(
Q
)
j
R
j
1
2
dm
X
T
2
D
m
(
R
)
T
=
1
j
Q
j
X
R
2
D
(
Q
)
X
T
2
D
m
(
R
)
T
j
T
j
=
1
j
Q
j
X
R
2
D
m
(
Q
)
R
j
R
j
k
k
Car(
I
)
=1
:
Therefore,wecanwritethetermas
X
Q
2
D
(
P
0
)
Q
k
X
i
=1
h
f
i
i
Q
2
j
Q
j
1
=
2
;
whichcanalsobeestimatedby(
3.21
)asfollows:
X
Q
2
D
(
P
0
)
Q
k
X
i
=1
h
f
i
i
Q
2
j
Q
j
1
=
2
2
k
2
k
1
k
2
:
Combiningbothtermswearriveat
Z
P
0
g
(
x
)
A
m
P
0
~
f
(
x
)
dx
4
53
whichiswhatwewanted.
NowwecanproveTheorem
3.16
.
Proof.
Byhomogeneitywecanassume
k
k
Car(
P
0
)
=
k
f
i
k
L
1
(
P
0
)
=1.Wenowfollowthe
classicalschemewhichusesthe
L
2
boundandastandardon-Zygmunddecomposition,
seeforexampleGrafakos-Torres[
10
].However,weneedtobecarefulwiththedependence
on
m
,sowewilladapttheproofin[
14
]toouroperators.
Assumewithoutlossofgeneralitythat
f
i
0.
i
=
f
x
2
P
0
:
M
d
f
i
(
x
)
>
1
=k
g
:
If
h
f
i
i
P
0
>
1
=k
thenbythehomogeneityassumption
j
P
0
j
<
1
=k
andtheestimatefollows.Therefore,wecanassume
h
f
i
i
P
0
1
=k
forall1
i
k
andhence
wecanwrite
i
asaunionthecubesinacollection
R
i
consistingofpairwisedisjointdyadic
(strict)subcubesof
P
0
withtheproperty
h
f
i
i
R
>
1
=k
and
h
f
i
i
R
(1)
1
=k
:
Foreach1
i
k
let
b
i
=
P
R
2R
i
b
R
i
,where
b
R
i
(
x
):=
f
i
(
x
)
h
f
i
i
R
1
R
(
x
)
:
Wenowlet
g
i
=
f
i
b
i
.
Observethatwehave
j
g
i
(
x
)
j
2
d
1
=k
;
54
aswellas
j
i
j
=
X
R
2R
i
j
R
j
1
=k
:
=
[
k
i
=1
i
,thenwehave
jf
x
2
P
0
:
A
m
P
0
~
f
(
x
)
>
gjj
j
+
jf
x
2
P
0
n
:
A
m
P
0
~
f
(
x
)
>
gj
k
1
=k
+
jf
x
2
P
0
n
:
A
m
P
0
~
f
(
x
)
>
gj
:
(3.22)
Toestimatethesecondtermobservethat
A
m
P
0
~
f
(
x
)=
A
m
P
0
(
~g
+
~
b
)(
x
)
=
A
m
P
0
~g
(
x
)+
2
k
1
X
j
=1
A
m
P
0
(
h
j
1
;:::;h
j
k
)(
x
)
;
wherethefunctions
h
j
i
areeither
g
i
or
b
i
and,furthermore,foreach1
j
2
k
1thereis
atleastone1
i
k
suchthat
h
j
i
=
b
i
.Fix
j
andlet
i
j
besuchthat
h
j
i
j
=
b
i
j
,then
A
m
P
0
(
h
j
1
;h
j
2
;:::;h
j
i
j
;:::;h
j
k
)(
x
)=
X
Q
2
D
m
(
P
0
)
Q
k
Y
i
=1
h
h
j
i
i
Q
(
m
)
1
Q
(
x
)
=
X
Q
2
D
m
(
P
0
)
Q
h
b
i
j
i
Q
(
m
)
Y
1
i
k;i
6
=
i
j
h
h
j
i
i
Q
(
m
)
1
Q
(
x
)
=
X
R
2R
i
j
X
Q
2
D
m
(
P
0
)
Q
h
b
R
i
j
i
Q
(
m
)
Y
1
i
k;i
6
=
i
j
h
h
j
i
i
Q
(
m
)
1
Q
(
x
)
=
X
R
2R
i
j
X
Q
2
D
>m
(
R
)
Q
h
b
R
i
j
i
Q
(
m
)
Y
1
i
k;i
6
=
i
j
h
h
j
i
i
Q
(
m
)
1
Q
(
x
)
:
Sowededucethat
A
m
P
0
(
h
j
1
;:::;h
j
k
)(
x
)=0forall
x=
2
i
j
.Withthisfactwecanseethat
thesecondtermin(
3.22
)isactuallyidenticalto
jf
x
2
P
0
n
:
A
m
P
0
~g
(
x
)
>
gj
:
55
Nowwecanusethe
L
2
boundasfollows:
jf
x
2
P
0
n
:
A
m
P
0
~g
(
x
)
>
gj
1
2
kA
m
P
0
~g
k
2
L
2
(
P
0
)
16
2
k
Y
i
=1
k
g
i
k
2
L
2
k
(
P
0
)
16
2
k
Y
i
=1
2
d
1
=k
2
k
1
k
k
g
i
k
1
=k
L
1
(
P
0
)
=
16
2
2
d
(2
k
1)
2
1
=k
=2
4+
d
(2
k
1)
1
=k
:
Puttingbothestimatestogetherwearriveat
jf
x
2
P
0
:
A
m
P
0
~
f
(
x
)
>
gj
2
5+
d
(2
k
1)
1
=k
whichyieldstheresultwith
C
W
=2
k
(5+
d
(2
k
1))
.
56
4
Ontheembeddingof
A
1
into
A
1
GuillermoRey
Submitted.
4.1Introduction
Thepurposeofthisarticleistogiveaquantitativeversionoftheclassicalembedding
betweenMuckenhouptclasses
A
1
,
!
A
1
:
(4.1)
Theclass
A
1
istobeallweights
w
0forwhich
Mw
Cw
forsome
C
,where
Mf
(
x
)=sup
P
3
x
1
j
P
j
Z
P
j
f
(
y
)
j
dy
istheuncenteredHardy-Littlewoodmaximaloperator(herethesupremumistakenover
cubeswithsidesparalleltothecoordinateaxes).
Theclass
A
1
istobeallweights
w
0forwhichthereexistsaconstant
C
andan
57
exponent
>
0suchthat
w
(
E
)
j
P
j
C
j
E
j
j
P
j
forallcubes
P
andallsubsets
E
P
.See[
8
]formoreequivalent
Itisawell-knownfactthateveryweightin
A
1
isalsoin
A
1
;herewegiveaquantitative
versionofthisembedding.
Wewillactuallyworkwithawiderclassofweights,thedyadic
A
p
weights.Tostatethe
result,letusawaytoquantifyexactlyhowaweightliesindyadic
A
1
.Let
P
beacube
in
R
d
,wethe
A
d
1
(
P
)characteristicofaweight
w
0tobe
[
w
]
A
d
1
(
P
)
:=esssup
x
2
P
M
dyadic
P
w
(
x
)
w
(
x
)
;
where
M
dyadic
P
isthedyadicmaximaloperatorlocalizedto
P
:
M
d
P
f
(
x
)=sup
R
2D
(
P
)
hj
f
ji
R
1
R
(
x
)
:
Herewearedenotingby
D
(
P
)thecollectionofalldyadicsubcubesof
P
,andtheaverage
ofafunction
f
overaset
E
by
h
f
i
E
:=
1
j
E
j
Z
E
f
(
x
)
dx:
Also,wedenotethecharacteristicfunctionofaset
E
by
1
E
.
Wethe(non-dyadic)
A
1
characteristicsimilarly:
[
w
]
A
1
(
P
)
:=esssup
x
2
P
M
P
w
(
x
)
w
(
x
)
;
where
M
P
istheuncenteredHardy-Littlewoodmaximaloperatorwherethecubesare
constrainedtolieinside
P
.
58
Theclassicalwaytoprove(
4.1
)proceedsbyusingthe
reverseolderinequality
of
Coifman-F[
3
](see[
13
]forarecentsharpreverseolderinequalityvalidinavery
generalcontext):foranyweight
w
2
A
p
wehave
h
w
q
i
P
C
h
w
i
q
P
;
forsomeexponent
q>
1dependingon
w
.Indeed,let
C
RH
bethebestconstantinthe
aboveinequality(whichwilldependon
q
andonhow
w
liesin
A
p
),then:
w
(
E
)=
Z
P
w
1
E
Z
P
w
q
1
=q
j
E
j
1
=q
0
C
1
=q
RH
w
(
P
)
j
E
j
j
P
j
1
=q
0
:
For(non-dyadic)
A
1
weightsthemostquantitativeversionofthereverseolderinequality
wasgivenby[
47
]indimensionone.Usingtheresultsof[
47
]oneobtains
w
(
E
)
w
(
P
)
a
a
1
j
E
j
j
P
j
1
a
[
w
]
A
1
(
P
)
forall
a>
1,soonecangetarbitrarilyclosetotheexponent
1
[
w
]
A
1
atthecostofa
multiplicativeconstant.Theresultsin[
47
]are,however,validonlyfornon-dyadic
A
p
weights,whichbehavemuchbetterintermsofsharpconstants;also[
47
]isvalidonlyin
dimension1.
In[
30
]A.Melasshowedthat,fordyadic
A
1
weights,onehas
D
(
M
dyadic
w
)
p
E
P
C
(
p;
[
w
]
A
d
1
)
h
w
i
p
P
;
59
forall
p
suchthat
1
p<
log(2
d
)
log
2
d
2
d
1
[
w
]
A
d
1
;
andwhere
C
(
p;
[
w
]
A
d
1
)isaconstantwhichblows-upas
p
tendstotheendpointabove.
Followingthesamestepsasbefore,thisimpliesaninequalityoftheform
w
(
E
)
w
(
P
)
C
j
E
j
j
P
j
forall
suchthat
0
<
log
1
2
d
1
2
d
[
w
]
A
d
1
d
log2
:=
([
w
]
A
d
1
;d
)
;
andwhere
C
isaconstantwhichblows-upas
tendstotheendpoint
([
w
]
A
d
1
;d
).
Itwasofinterestwhetheronecouldachieveanestimatewiththeendpoint
([
w
]
A
d
1
;d
),and
thiswasansweredpositivelybyA.Os˘ekowskiin[
41
],whereheprovedthefollowing
weak-typeestimate:
1
j
P
j
n
x
2
P
:
M
dyadic
w
(
x
)
>
1
o
h
w
i
p
P
(4.2)
forall
p
suchthat
1
p
log(2
d
)
log
2
d
2
d
1
[
w
]
A
d
1
:
Thisestimate,coupledwitholder'sinequalityforLorentzspacesyields
w
(
E
)
w
(
P
)
C
(
Q;d
)
j
E
j
j
P
j
(
Q;d
)
forallweights
w
with[
w
]
A
d
1
Q
,thussettlingtheendpointquestionofwhetheradecay
60
rateof(
j
E
j
=
j
P
j
)
(
Q;d
)
couldbeachieved.However,notethatolder'sinequalityforLorentz
spaces(whenusedinthisway)hasaconstantwhichexplodeswhen
p
!
1whichinthis
caseimpliesthattheconstant
C
(
Q;d
)
willblow-upas
Q
!1
.
Inthisarticleweimprovethisconclusionbydirectlycomputingthefunction
B
(
x;y;m
)=sup
w
(
E
)
j
P
j
;
wherethesupremumistakenoverallsets
E
P
with
j
E
j
=
j
P
j
=
x
,andalldyadic
A
1
weights
w
with[
w
]
A
d
1
(
P
)
Q
,
h
w
i
P
=
y
andessinf
z
2
P
w
(
z
)=
m
.
Theexpressionfor
B
isalittleinvolvedandwereferthereadertosection
4.3
foritsfull
form,butwecanalreadygiveanupperboundfor
B
(
;Q;
1):
B
(
x;Q;
1)
e
f
(
x
):=
Qx
(
Q;d
)
:
(4.3)
ThisshowsthatthedecayratededucedfromOs˘ekowski'sestimatecanbeachievedwitha
uniformconstantas
Q
!1
(notethattheconstant
Q
cancelswhenestimating
w
(
E
)
w
(
P
)
).
ObservealsothatthisrecoverstheresultofOs˘ekowskiwhenonetakes
w
insteadofits
maximalfunctionin(
4.2
),whichcanbeinterpretedasaweak-typereverseolder
inequality.Indeed,assumewithoutlossofgeneralitythat
j
P
j
=essinf
w
=1andlet
E
=
f
x
2
P
:
w
(
x
)
>
g
,thenourestimatewillshow(see(
4.12
))that
w
(
E
)
Q
w
(
P
)
1
Q
1
j
E
j
Q
1
w
(
P
)
1
(
Q;d
)
:
Sointegrating
w
overthissetyields
j
E
j
1
(
Q;d
)
(
h
w
i
P
1)
1
(
Q;d
)
Q
(
Q
1)
(
Q;d
)
h
w
i
P
:
61
Or,inotherwords,
k
w
k
L
p;
1
Z
P
w
(
x
)
dx
forthesame
p
'sasin(
4.2
).
However,thefunction
B
(
;Q;
1)is,surprisingly,slightlybetter.Indeedifwe
f
(
x
)=
B
(
x;Q;
1),thenourmainresultshowsthat
f
isthepiecewise-linearinterpolationof
thefunction
e
f
evaluatedatthepoints2
dk
for
k
2
N
.
Figure4.1Plotsof
f
and
e
f
In
Figure4.1
weshowanormalizedsectionoftheplot(thevaluesaredividedby
Q
)ofthe
functions
f
and
e
f
with
Q
=10andindimensiontwo.
4.1.1Organization
Thearticleisorganizedasfollows:insection
4.2
wecasttheproblemasoneofa
certainBellmanfunction,theninsection
4.3
wegivealowerboundfortheBellman
function;wealsodescribethestructureofthemaximizers.Insection
4.4
weshowthatthe
lowerboundfoundintheprevioussectionisalsoanupperbound,henceshowingthatthe
functionfoundistheactualBellmanfunction.
62
4.2TheBellmanfunctionapproach
asintheintroduction,thefunction
B
(
x;y;m
)=sup
n
w
(
E
)
j
P
j
:
E
P;
[
w
]
A
d
1
(
P
)
Q
suchthat
j
E
j
=
x
j
P
j
;
h
w
i
P
=
y;m
=essinf
w
o
:
Bytranslationanddilationinvariance,thefunction
B
isindependentof
P
.
Thedomain,whichwillbedenotedby
B
is:
0
x
1
0
1whenever
Q>
(
N
1)
=N
,whichisalwaysthecasesince
Q
1,hence
f
isconcave.Since
f
isconcave,itfollowsthat
M
mustalsobeconcave,since
M
isjustthe
extensionof
f
byhomogeneitytothesubdomainofwhichliesabovethediagonal
y
=1+(
Q
1)
x
,andbelowthislinethefunctionisjusttheplane
z
=
x
+
y
1.Abrief
checknowshowsthat
M
isindeedconcaveinThisproves(1).
Nowwewillshowthatthefunction
t
7!
tM
(
x;y=t
)
isdecreasing,thusproving(2).
Toshowthis,notethatwejustneedtoprove
yM
y
M
wherever
M
istiable.This
obviouslyholdsfor
y<
1+(
Q
1)
x
,soittoassume
y>
1+(
Q
1)
x
.By
homogeneity,wecantranslatethisconditiontoonefor
f
:
y
Q
1
f
x
Q
1
y
1
xy
y
1
f
0
x
Q
1
y
1
y
1
Q
1
f
x
Q
1
y
1
:
Let
u
=
x
Q
1
y
1
,thenthisinequalitybecomes
1
u
f
(
u
)
yf
0
(
u
)
0
77
forall
u
2
[0
;
1]andall
y
2
[1
;Q
].Since
f
isincreasing,thisinequalityisstrongestwhen
y
=
Q
,soittoshow
f
(
u
)
Quf
0
(
u
)
:
Recallthat
f
ispiecewiselinear,solet
u
0
=
N
k
1
and
u
1
=
N
k
andassume
u
2
(
u
0
;u
1
).
Theaboveinequalitynowbecomes
f
(
u
0
)+(
u
u
0
)
f
0
(
u
0
+)
Quf
0
(
u
0
+)
:
Thus,wecanreducetoshowing
f
(
u
0
)
f
0
(
u
0
+)
u
0
+(
Q
1)
u
1
:
Butaneasycomputation,usingthevalueof
f
0
computedbefore,yieldsthatthisinequality
isequivalentto
1
N
1
NQ
;
whichispreciselythevalueof
sowearedone.Thisshows(2).
Finally,weareleftwithverifying(3).Todothiswewillconstructasequenceoffunctions
M
k
onallofwhichsatisfy(3)onaspsubsetof
k
=
f
(
x;y
)
2
:
y
1+(
Q
1)
N
k
x
g
:
Figure4.2
representsthethreeofthesedomains(again,thediagramisnottoscale).
Forexample
2
isthesubdomainofwhichliestotherightofthelinejoining
O
and
C
.
78
Figure4.2Domains
k
We
M
k
tobethewedgeformedbythe
k
-thplaneof
M
on
n
k
1
andthe
(
k
1)-thplaneof
M
on
k
1
,thatis:
M
k
(
x;y
)=
8
>
>
<
>
>
:
a
k
x
+
b
k
(
y
1)if(
x;y
)
2
n
k
1
a
k
1
x
+
b
k
1
(
y
1)if(
x;y
)
2
k
1
:
where
M
(
x;y
)=
a
k
x
+
b
k
(
y
1)on
k
n
k
1
.Onecangivetheexplicitformulasfor
a
k
and
b
k
:
a
k
=(
N
)
k
;b
k
=
k
:
Obviously
M
0
(3).
Fixany(
x;y
)
2
wecanassumewithoutlossofgeneralitythat(
x;y
)
2
k
forsome
k
.
Introducethenotation
x
=
N
1
N
e
x
+
1
N
b
x
and
y
=
N
1
N
e
y
+
1
N
b
y:
79
Since
M
isconcave,wehavethat
M
k
M
on(
M
k
isa\supportingwedge"ofthegraph
of
M
).Insteadof(3)wewillprove(underthesamehypotheses)
M
k
(
x;y
)
N
1
N
M
k
(
e
x;
e
y
)+
1
N
b
y
Q
M
k
(
b
x;Q
)
;
(4.15)
which,bytheaboveremark,isastrongerstatement.
Wewillshowthatwecanassumethepoint(
b
x;Q
)tobein
k
.Indeed,supposethat
e
x
issosmallthat(
b
x;Q
)
=
2
k
,then
@
@
e
x
Righthandsideof(
4.15
)
=
N
1
N
a
k
N
1
N
b
y
Q
a
k
1
=
N
1
N
a
k
b
y
Q
a
k
1
N
1
N
a
k
Ny
(
N
1)
Q
a
k
1
N
1
N
a
k
NQ
(
N
1)
Q
a
k
1
:
Nowrecallthat
a
k
=(
N
)
k
,sothepartialderivativeoftherighthandsideofequation
(
4.15
)isatleast
N
1
N
(
N
)
k
1
N
NQ
(
N
1)
Q
=0
;
sotherighthandsideisincreasing,atleastaslongas(
b
x;Q
)
2
k
1
.
Thisallowsustoassumethat
e
x
islargeenoughtomake(
b
x;Q
)
2
k
(bycontinuity).
Underthisassumptiontheinequalitybecomesmucheasiersince
M
k
isnowbeingevaluated
alwayson
k
,andhencewecanassumethat
M
k
itselfisaplane.Nowitiseasytocheck
thattheinequalityisindeedtrueundertheseconditions.
Toseethis,observethatinequality(
4.15
)canbewrittenas:
ax
+
b
(
y
1)
N
1
N
a
e
x
+
b
(
e
y
1)
+
1
N
b
y
Q
a
b
x
+
b
(
Q
1)
:
80
Wecanreorganizethisas:
a
x
N
1
N
e
x
1
N
b
y
Q
b
x
+
b
y
1
N
1
N
e
y
+
N
1
N
1
N
b
y
Q
(
Q
1)
0
:
Thistoshowing
a
b
x
N
b
x
N
b
y
Q
+
b
b
y
NQ
1
N
0
;
whichisequivalentto
b
y
Q
1
b
a
b
x
0
:
Sincetheassumptionsforce
b
y
tobeatleast
Q
,wejustneedtocheckthat
b
x
b
a
.Butthis
isexactlytheboundthatisguaranteedfromtheconsiderationsabovesince
b
a
=
N
k
.
81
5
Borderlineweak-typeboundsfor
singularintegrals
CarlosDomingo-Salazar,MichaelLacey,andGuillermoRey
BulletinoftheLondonMathematicalSociety,October2015.
5.1Introduction
Thepurposeofthischapteristoshowsomeapplicaitonsofthetechniquesdevelopedso
far.Theresultsinthischapterusethepointwisedominationofsingularintegralsfrom
Chapter
3
,aswellasseveralfactsaboutsparsefamiliesandMuckenhouptweights.
Thetheoremisinthecontextoflinearsingularintegraloperators:
Theorem5.1.
Let
T
beaon-Zygmundoperatoron
R
d
and
w
an
A
1
weight,then
k
Tf
k
L
1
;
1
(
w
)
.
T;d
[
w
]
A
1
1+log[
w
]
A
1
k
f
k
L
1
(
w
)
:
Itisunknownwhetherthelogarithmictermissharp,butapowerisnecessary,see[
35
].
Wecanalsostateaverysimilartheoremforsquarefunctions:
82
Theorem5.2.
Let
G
beasquarefunctionasin
3.5
,then
k
Gf
k
L
2
;
1
(
w
)
.
G;d
p
[
w
]
A
2
(1+log[
w
]
A
1
)
k
f
k
L
2
(
w
)
:
Theorem
5.1
wasalreadyknown,seeforexample[
26
],butherewegiveanelementary
proofwhichusesthemachinerydevelopedinthepreviouschapters.Theorem
5.2
was
obtainedin[
7
].Sincetheproofsareverysimilar,herewejustproveTheorem
5.1
.The
prooffollowsthestepsin[
19
],asdevelopedin[
7
].
5.2Proof
Bythepointwisedominationofon-ZygmundoperatorsprovedinChapter
3
it
toprove
kA
S
f
k
L
1
;
1
(
w
)
.
d
[
w
]
A
1
1+log[
w
]
A
1
k
f
k
L
1
(
w
)
;
(5.1)
where
S
isasparsefamilyofcubes,and
f
isnonnegative.SeeChapter
4
forprecise
of
A
1
and
A
1
.
Afterpossiblysplittingthefamilyintoseveralsubfamilies,wecanassumethat
S
is
1
4
-sparse,thatis:
[
R
(
Q;R
2S
R
1
4
j
Q
j8
Q
2S
:
Now,byhomogeneity,ittoshow
w
x
:
A
S
f
(
x
)
>
3
.
d
[
w
]
A
1
1+log[
w
]
A
1
;
forallnonnegativefunctions
f
with
k
f
k
L
1
(
w
)
=1,andforallweights
w
.
83
Itwillbeconvenienttosplitthefamily
S
intobetter-behavedsubfamilies:
S
m
=
f
Q
2S
:2
m
1
<
h
f
i
Q
2
m
g
and
S
=
f
Q
2S
:
h
f
i
Q
>
1
g
:
Wehave
w
x
:
A
S
f
(
x
)
>
3
w
x
:
A
S
f
(
x
)
>
1
+
w
x
:
A
S
+
f
(
x
)
>
2
;
wherewehave
S
+
tobetheunionofallthefamilies
S
m
for
m
0.
Webeginestimatingtheterm.Notethat
A
S
f
issupportedon
f
x
:
M
d
f
(
x
)
>
1
g
,
where
M
d
isthedyadicmaximalfunction,so
w
x
:
A
S
f
(
x
)
>
1
k
M
d
k
L
1
(
w
)
!
L
1
;
1
(
w
)
[
w
]
A
1
;
sothisdealswiththesummand.
Thesecondsummandwillbesplitintotwo:
w
x
:
A
S
+
f
(
x
)
>
2
w
x
:
m
0
1
X
m
=0
A
S
m
f
(
x
)
>
1
+
w
x
:
1
X
m
=
m
0
A
S
m
f
(
x
)
>
1
=
I
+
II:
Thewaywethesubfamilies
S
m
givesusverygoodcontroloftheaveragesof
f
.
Indeed:
84
Lemma5.3.
Foreach
m
2
N
E
m
(
Q
)=
Q
n
[
R
(
Q;R
2S
m
R;
then
h
f
1
E
m
(
Q
)
i
Q
˘h
f
i
Q
(5.2)
forall
Q
2S
m
.
Proof.
Indeed:ifwelet
R
1
;R
2
;:::
bethemaximalsubcubesof
Q
en
S
m
then
1
j
Q
j
Z
Q
f
1
E
m
(
Q
)
=
h
f
i
Q
X
i
1
j
Q
j
Z
R
i
f
>
2
m
1
X
i
j
R
i
j
j
Q
j
1
j
R
i
j
Z
R
i
f
2
m
1
2
m
X
i
j
R
i
j
j
Q
j
2
m
1
2
m
1
4
&
h
f
i
Q
:
Thereasonthisisusefulisbecausethesets
f
E
m
(
Q
)
g
arepairwisedisjointwhen
Q
runs
85
over
S
m
.Wecanusethistodealwith
I
:
w
x
:
m
0
1
X
m
=0
A
S
m
f
(
x
)
>
1
Z
m
0
1
X
m
=0
A
S
m
f
(
x
)
w
(
x
)
dx
=
m
0
1
X
m
=0
Z
X
Q
2S
m
h
f
i
Q
1
Q
w
(
x
)
dx
.
m
0
1
X
m
=0
X
Q
2S
m
h
f
1
E
m
(
Q
)
i
Q
1
Q
(
x
)
w
(
x
)
dx
=
m
0
1
X
m
=0
X
Q
2S
m
Z
f
1
E
m
(
Q
)
w
(
Q
)
j
Q
j
[
w
]
A
1
m
0
1
X
m
=0
Z
fw
=
m
0
[
w
]
A
1
:
Finally,toestimate
II
,let
f
a
m
g
1
m
=
m
0
beasequenceofnonnegativenumberssuchthat
1
X
m
=
m
0
a
m
=1
:
Then
II
=
w
x
:
1
X
m
=
m
0
A
S
m
f
(
x
)
>
1
X
m
=
m
0
a
m
1
X
m
=
m
0
w
x
:
A
S
m
f
(
x
)
>a
m
1
X
m
=
m
0
w
x
:
X
Q
2S
m
h
f
i
Q
1
Q
(
x
)
>a
m
1
X
m
=
m
0
w
x
:
X
Q
2S
m
1
Q
(
x
)
>
2
m
a
m
:
Call
b
m
(
x
):=
X
Q
2S
m
1
Q
(
x
)
:
86
Since
S
m
issparse,thisfunctionisalmost,butnotquite,uniformlybounded;itisactually
inBMO.Infact,foreach
m
thereexistacollectionofmaximaldyadiccubes
Q
m
1
;Q
m
2
;
2S
m
suchthat
b
m
issupportedintheunionofthesecubesand
1
j
Q
m
i
j
n
x
2
Q
m
i
:
b
m
(
x
)
>
o
e
C
forall
1andall
i
1.
Nowwecanusethatevery
A
1
weightsisalsoin
A
1
(seealsoChapter
4
)toobtain
w
x
2
Q
m
i
:
b
m
(
x
)
>
w
(
Q
m
i
)
exp
c
[
w
]
A
1
:
Aftersummingin
i
,thisyields
w
x
:
b
m
(
x
)
>
exp
c
[
w
]
A
1
X
i
w
(
Q
m
i
)
:
Sinceallofthecubes
Q
m
i
arecontainedintheset
f
x
:
M
d
f
(
x
)
>
2
m
g
;
wecanusethe(weighted)weak-typeboundednessofthemaximalfunctiontogivethe
estimate
w
x
:
b
m
(
x
)
>
[
w
]
A
1
2
m
exp
c
[
w
]
A
1
:
Now,pluggingthisestimateback,wehave
II
[
w
]
A
1
1
X
m
=
m
0
2
m
exp
c
[
w
]
A
1
2
m
a
m
:
Weshouldchoose
a
m
sothatit\looses"against2
m
(sincewewantexponentialgrowth),
87
whilestillsummingto1.Apossiblechoiceis
a
m
=
˘
m
(1
˘
1
)
˘
m
0
forsome1
<˘<
2,likeforexample3
=
2.
Pluggingthisinthepreviousinequality,andestimatingthesumbyanintegralwe
obtain
II
.
[
w
]
A
1
Z
1
m
0
2
x
exp
c
[
w
]
A
1
2
x
˘
x
(1
˘
1
)
˘
m
0
dx:
Calling
=2
=˘
weseethat1
<<
2and:
II
.
[
w
]
A
1
Z
1
0
2
x
exp
c
0
[
w
]
A
1
x
˘
m
0
dx
.
[
w
]
A
1
Z
1
0
y
e
y
dy
y
.
[
w
]
A
1
providedwechoose
m
0
˘
log[
w
]
A
1
,andwhere
>
0.
Withthischoiceof
m
0
weobtain
w
A
S
f>
3
.
[
w
]
A
1
(1+log[
w
]
A
1
)
;
whichiswhatweneededtoprovethetheorem.
88
BIBLIOGRAPHY
89
BIBLIOGRAPHY
[1]
C.BennettandR.Sharpley.
Interpolationofoperators
,volume129of
PureandApplied
Mathematics
.AcademicPressInc.,Boston,MA,1988.
[2]
W.ChenandW.an.Weightedestimatesforthemultisublinearmaximalfunction.
Rend.Circ.Mat.Palermo(2)
,62(3):379{391,2013.
[3]
R.R.CoifmanandC.FWeightednorminequalitiesformaximalfunctions
andsingularintegrals.
StudiaMath.
,51:241{250,1974.
[4]
D.Cruz-Uribe,J.M.Martell,andC.Perez.Sharpweightedestimatesforapproximating
dyadicoperators.
Electron.Res.Announc.Math.Sci.
,17:12{19,2010.
[5]
D.Cruz-Uribe,J.M.Martell,andC.Perez.Sharpweightedestimatesforclassical
operators.
Adv.Math.
,229(1):408{441,2012.
[6]
W.an,A.K.Lerner,andC.Perez.Sharpweightedboundsformultilinearmaximal
functionsandCaldon-Zygmundoperators.
arXiv:1211.5115
,2012.
[7]
C.Domingo-Salazar,M.T.Lacey,andG.Rey.BorderlineWeakTypeEstimatesfor
SingularIntegralsandSquareFunctions.
ArXive-prints
,May2015.
[8]
J.Duoandikoetxea.
Fourieranalysis
,volume29of
GraduateStudiesinMathematics
.
AmericanMathematicalSociety,Providence,RI,2001.Translatedandrevisedfromthe
1995SpanishoriginalbyDavidCruz-Uribe.
[9]
J.B.GarnettandP.W.Jones.BMOfromdyadicBMO.
J.Math.
,99(2):351{
371,1982.
[10]
L.GrafakosandR.H.Torres.Multilinearon-Zygmundtheory.
Adv.Math.
,
165(1):124{164,2002.
[11]
T.S.anninen.Remarkondyadicpointwisedominationandmedianoscillationde-
composition.
ArXive-prints
,Feb.2015.
[12]
T.onen.
A
2
theorem:remarksandcomplements.
preprint
,2012.
[13]
T.onen,C.Perez,andE.Rela.Sharpreverseolderpropertyfor
A
1
weightson
spacesofhomogeneoustype.
J.Funct.Anal.
,263(12):3883{3899,2012.
[14]
T.P.onen.Thesharpweightedboundforgeneralon-Zygmundoperators.
Ann.ofMath.(2)
,175(3):1473{1506,2012.
[15]
T.P.onen,M.T.Lacey,andC.Perez.Sharpweightedboundsforthe
q
-variation
ofsingularintegrals.
Bull.Lond.Math.Soc.
,45(3):529{540,2013.
[16]
M.T.Lacey.Anelementaryproofofthe
A
2
Bound.
ArXive-prints
,Jan.2015.
90
[17]
M.T.Lacey.WeightedWeakTypeEstimatesforSquareFunctions.
ArXive-prints
,
Jan.2015.
[18]
M.T.Lacey,E.T.Sawyer,andI.Uriarte-Tuero.TwoWeightInequalitiesforDiscrete
PositiveOperators.
ArXive-prints
,Nov.2009.
[19]
M.T.LaceyandJ.Scurry.WeightedWeakTypeEstimatesforSquareFunctions.
ArXive-prints
,Nov.2012.
[20]
A.K.Lerner.Apointwiseestimateforthelocalsharpmaximalfunctionwithapplica-
tionstosingularintegrals.
Bull.Lond.Math.Soc.
,42(5):843{856,2010.
[21]
A.K.Lerner.Asimpleproofofthe
A
2
conjecture.
InternationalMathematicsResearch
Notices
,2012.
[22]
A.K.Lerner.OnanestimateofCon-Zygmundoperatorsbydyadicpositiveoper-
ators.
J.Anal.Math.
,121:141{161,2013.
[23]
A.K.Lerner.Asimpleproofofthe
A
2
conjecture.
Int.Math.Res.Not.IMRN
,
90(14):3159{3170,2013.
[24]
A.K.Lerner.Onsharpaperture-weightedestimatesforsquarefunctions.
J.Fourier
Anal.Appl.
,20(4):784{800,2014.
[25]
A.K.LernerandF.Nazarov.personalcommunication.
[26]
A.K.Lerner,S.Ombrosi,andC.Perez.
A
1
boundsforon-Zygmundoperators
relatedtoaproblemofMuckenhouptandWheeden.
Math.Res.Lett.
,16(1):149{156,
2009.
[27]
A.K.Lerner,S.Ombrosi,C.Perez,R.H.Torres,andR.Talez.New
maximalfunctionsandmultipleweightsforthemultilinearon-Zygmundtheory.
Adv.Math.
,220(4):1222{1264,2009.
[28]
K.Li,K.Moen,andW.Sun.Thesharpweightedboundformultilinearmaximal
functionsandon-Zygmundoperators.
J.FourierAnal.Appl.
,20(4):751{765,
2014.
[29]
A.D.Melas.TheBellmanfunctionsofdyadic-likemaximaloperatorsandrelated
inequalities.
Adv.Math.
,192(2):310{340,2005.
[30]
A.D.Melas.Asharp
L
p
inequalityfordyadic
A
1
weightsin
R
n
.
Bull.LondonMath.
Soc.
,37(6):919{926,2005.
[31]
A.D.Melas.Dyadic-likemaximaloperatorson
L
log
L
functions.
J.Funct.Anal.
,
257(6):1631{1654,2009.
[32]
A.D.Melas.Sharpgenerallocalestimatesfordyadic-likemaximaloperatorsandrelated
Bellmanfunctions.
Adv.Math.
,220(2):367{426,2009.
91
[33]
A.D.MelasandE.Nikolidakis.Onweaktypeinequalitiesfordyadicmaximalfunctions.
J.Math.Anal.Appl.
,348(1):404{410,2008.
[34]
F.Nazarov,A.Reznikov,V.Vasyunin,andA.Volberg.
A
1
conjecture:Weaknorm
estimatesofweightedsingularintegraloperatorsandBellmanfunctions.(Preprint),
2013.
[35]
F.Nazarov,A.Reznikov,V.Vasyunin,andA.Volberg.ABellmanfunctioncoun-
terexampletothe
A
1
conjecture:theblow-upoftheweaknormestimatesofweighted
singularoperators.
ArXive-prints
,June2015.
[36]
F.Nazarov,S.Treil,andA.Volberg.TheBellmanfunctionsandtwo-weightinequalities
forHaarmultipliers.
J.Amer.Math.Soc.
,12(4):909{928,1999.
[37]
F.Nazarov,S.Treil,andA.Volberg.Bellmanfunctioninstochasticcontroland
harmonicanalysis.In
Systems,approximation,singularintegraloperators,andre-
latedtopics(Bordeaux,2000)
,volume129of
Oper.TheoryAdv.Appl.
,pages393{423.
auser,Basel,2001.
[38]
F.NazarovandA.Volberg.RandomwalksandBellmanfunctionsforweakestimate
blow-upswith
A
1
and
A
2
weights.(Preprint),2013.
[39]
F.L.NazarovandS.R.Treil.ThehuntforaBellmanfunction:applicationstoestimates
forsingularintegraloperatorsandtootherclassicalproblemsofharmonicanalysis.
AlgebraiAnaliz
,8(5):32{162,1996.
[40]
A.Os
`
ekowski.
Sharpmartingaleandsemimartingaleinequalities
,volume72of
Instytut
MatematycznyPolskiejAkademiiNauk.MonogrMatematyczne(NewSeries)[Math-
ematicsInstituteofthePolishAcademyofSciences.MathematicalMonographs(New
Series)]
.auser/SpringerBaselAG,Basel,2012.
[41]
A.Os˘ekowski.Sharpinequalitiesfordyadic
A
1
weights.
Arch.Math.(Basel)
,
101(2):181{190,2013.
[42]
S.Petermichl.ThesharpboundfortheHilberttransformonweightedLebesguespaces
intermsoftheclassical
A
p
characteristic.
Amer.J.Math.
,129(5):1355{1375,2007.
[43]
G.ReyandA.Reznikov.Extremizersandsharpweak-typeestimatesforpositivedyadic
shifts.
Adv.Math.
,254:664{681,2014.
[44]
A.Reznikov,V.Vasyuinin,andA.Volberg.ExtremizersequencesandBellmanfunction
fortheweaktypeestimateofthemartingaletransform.(Preprint),2013.
[45]
L.Slavin,A.Stokolos,andV.Vasyunin.Monge-AmpereequationsandBellmanfunc-
tions:thedyadicmaximaloperator.
C.R.Math.Acad.Sci.Paris
,346(9-10):585{588,
2008.
[46]
V.VasyuninandA.Volberg.Monge-AmpereequationandBellmanoptimizationof
Carlesonembeddingtheorems.In
Linearandcomplexanalysis
,volume226of
Amer.
Math.Soc.Transl.Ser.2
,pages195{238.Amer.Math.Soc.,Providence,RI,2009.
92
[47]
V.I.Vasyunin.TheexactconstantintheinverseolderinequalityforMuckenhoupt
weights.
AlgebraiAnaliz
,15(1):73{117,2003.
93