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ABSTRACT

SHARP ESTIMATES IN HARMONIC ANALYSIS

By

Guillermo Rey

We investigate certain sharp estimates related to singular integrals. In particular we give

sharp level set estimates for sparse operators, we show how to reduce the problem of

estimating Calderón-Zygmund operators by sparse operators, and we study some weighted

inequalities for these operators.
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reir tant́ısimas veces: aśı es imposible no tener buenas memorias. Y, Pablo, gracias por

quererme tanto; eres de las primeras personas con las que quiero estar cada vez que hago

una visita. Y por supuesto, gracias al resto de mi familia, que es demasiado grande como
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por la calidad de los cafés, sino porque aśı pod́ıa estar más tiempo contigo; porque eras, y

sigues siendo, absolutamente imprescindible. A Antón porque después de tanto tiempo yo
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1

Introduction

In analysis, one often needs to commute a limit with an operator. A famous example of

such situation concerns the Fourier transform:

f̂(ξ) :=

∫ ∞
−∞

e−2πixξf(x) dx.

We would like to recover the function f from its Fourier transform f̂ , and this is certainly

possible in some cases, but one should be careful with what exactly do we mean by

“recover”. In particular, even though the Fourier transform may be well defined, the

inverse Fourier transform may not.

A typical way to resolve this issue is to not invert the whole function f̂ , but a truncation of

it:

fR(x) :=

∫ R

−R
e2πixξf̂(ξ) dξ.

Now the question is: Does fR tend to f as R→∞? In what sense?

This is a very old question and there are many ways to answer it. Perhaps, the best known

answer is the following: if f ∈ L2(R) then fR → f in L2(R), that is

lim
R→∞

‖fR − f‖L2(R) = 0. (1.1)
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The main tool used to prove this result is Plancherel’s theorem:

‖f̂‖L2(R) = ‖f‖L2(R).

If we take this theorem for granted, then we can give a short proof of (1.1):

lim
R→∞

‖fR − f‖2
L2 = lim

R→∞
‖f̂R − f̂‖2

L2

= lim
R→∞

∫
R
|f(x)|2(1− 1[−R,R](x)) dx,

= 0.

where we have used the Dominated Convergence Theorem in the second to last line.

One could ask what is so special about L2, apart from Plancherel’s theorem. Is this true in,

say, L3?

This is indeed true for f ∈ Lp(R) for all 1 < p <∞, but the proof is considerably more

involved. One way to prove it is to study the Fourier multiplier operator

Ĥf(ξ) = sign(ξ)f̂(ξ).

If one could show that this operator is bounded in Lp, then one would immediately get

‖fR − f‖Lp → 0

since we can reconstruct the multiplier 1[−R,R] by translated, modulated, and dilated

versions of the multiplier sign.

So, the problem is reduced to studying the boundedness of H, which is also known as the

Hilbert transform (up to a multiplicative constant), and which can also be written as

Hf(x) = c p.v.

∫
R

f(y)

x− y
dy,
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for some constant c 6= 0.

Hence, we have reduced the problem of studying the convergence properties of the Fourier

transform to studying a certain singular integral operator. And moreover, quantitative

bounds for the singular integral yield quantitative information about the original problem.

Singular integrals can be further generalized in many different directions, and have

numerous applications. There is a particularly common class, called Calderón-Zygmund

operators, which will be the main theme in this work. Their rigorous definition will be

postponed until Chapter 3, but essentially they are operators of the form

Tf(x) = p.v.

∫
Rd
K(x, y)f(y) dy,

where the kernel K satisfies certain growth conditions like

|K(x, y)| . 1

|x− y|d
,

and certain regularity conditions like

|∇K(x, y)| . 1

|x− y|d+1
.

These operators generalize the Hilbert transform to higher dimensions, where more

applications appear. For example, three-dimensional singular integrals are of special

interest in fluid dynamics.

In Chapter 2 we study the weak-type boundedness of a certain dyadic model of

Calderón-Zygmund operators called dyadic shifts. In this Chapter we obtain the best

possible upper-level set estimates for such operators using the Bellman function technique.

In Chapter 3 we show how to reduce the problem of obtaining estimates for

Calderón-Zygmund operators (as well as other similar operators) to studying the simple

dyadic shifts introduced in the previous Chapter. In Chapter 4 we study the embedding of

A1 weights into A∞; these are classes of absolutely continuous measures which play a key
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role in the study of weighted inequalities for singular integrals. In Chapter 5 we give short

proofs of two weak-type bounds (for singular integrals and for square functions) using the

machinery introduced in the previous chapters.
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2

Sharp weak-type bounds for positive

dyadic shifts

Guillermo Rey and Alexander Reznikov

Advances in Mathematics, Vol 254, March 2014.

2.1 Introduction

The purpose of this article is to study the weak-type (1, 1) boundedness of the operator

Af =
∑

Q∈D(I)

αQ〈f〉Q1Q.

Here I denotes any finite interval in R, 〈f〉I = 1
|I|

∫
I
f , D(I) denotes the dyadic grid

consisting of dyadic subintervals of I and {αJ}J∈D(I) is a Carleson sequence adapted to I,

i.e.: αJ ≥ 0 for all J ∈ D(I) and

sup
J∈D(I)

1

|J |
∑

K∈D(J)

αK |K| = C <∞.

These operators have recently appeared in the works of A. K. Lerner [20] and [21], where
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αK was a binary sequence, although the ideas go back to [9]. Hence, we will call them

Lerner operators in the sequel. Here we find the exact Bellman function describing the

local boundedness of A from L1 to L1,∞.

It is easy to see that the operator A is bounded in L2. This, together with a decomposition

of Calderón-Zygmund type, can be used to prove an estimate of the form

∣∣∣{x ∈ I :
∣∣∣ ∑
J∈D(I)

αJ〈f〉J1J(x)
∣∣∣ > λ

}∣∣∣ ≤ C

λ

∫
I

|f |.

However, here we precisely describe how the best constant in the above inequality changes

with respect to the parameters of the problem.

The main result of the article is the following theorem:

Theorem 2.1. Let A, λ and t be positive numbers and I an interval in R, then

sup
1

|I|

∣∣∣{x ∈ I :
∑

J∈D(I)

αJ〈f〉J1J(x) > λ
}∣∣∣ =



2At
Aλ+t

if 0 ≤ t ≤ Aλ ≤ λ,

√
At
λ

if 0 ≤ A ≤ min
(
t
λ
, λ
t

)
,

1 otherwise.

Where the supremum is taken over all nonnegative functions f with 〈f〉I = t and all non-

negative sequences {αJ}J∈D(I) with Carleson constant at most 1 which satisfy

1

|I|
∑

J∈D(I)

αJ |J | = A.

We also provide a sequence of examples which, in the limit, attain the supremum of the

previous result. See the last section for details on the structure of such examples.

As an immediate corollary we have the following local weak-type (1,1) estimate:

Corollary 2.2. For any nonnegative f ∈ L1([0, 1)) and for any Carleson sequence {αJ}J∈D([0,1))
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with constant at most 1 we have the sharp bound

∣∣{x ∈ [0, 1) : Af(x) > λ
}∣∣ ≤


2‖f‖L1

λ+‖f‖L1
if ‖f‖L1 ≤ λ

1 if ‖f‖L1 ≥ λ,

which in particular implies that

‖Af‖L1,∞([0,1)) ≤ 2‖f‖L1([0,1)),

and that the constant 2 is sharp.

Operators similar to these were recently studied in [29], [33], [31] and [32], however their

results are slightly different from ours. They consider the supremum taken over all

functions f satisfying

∫
I

f = s and

∫
I

G(f) = t,

where G is a strictly convex function satisfying G(x)/x→∞ as x→∞. This does not

include the question of boundedness from L1 to L1,∞. Our method of proof is different than

the one used in the articles cited above, where they use the deep combinatorial properties

of these operators. See also the monograph [40] by A. Os
‘
ekowski for related results. We

instead follow the ideas in [45] and [46] to solve the Bellman PDE and prove its sharpness.

This problem is also closely related to studying Haar shifts, the main difference being that

Haar shifts are not positive operators. It has been shown however, see [5], that Lerner-type

operators can be used to bound Haar shifts. The reader can find results similar to ours in

[44], [34] and [38].

The article is organized as follows. In Section 2 we explain how the Bellman function

technique is used to compute the supremum in Theorem 2.1. In Section 3 we give a

supersolution to the Bellman variational problem which serves as an upper bound for the
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exact Bellman function. Finally, in Section 4 we show that the function we found in the

previous section is the exact Bellman function, we also give a sequence of examples which,

in the limit, extremize the inequality of Theorem 2.1.

2.2 The Bellman function technique

Consider the function defined in Ω = {(t, A, λ) : 0 ≤ t, 0 ≤ A ≤ 1, λ ∈ R}

B(t, A, λ) = sup
{ 1

|I|

∣∣∣{x ∈ I :
∑

J∈D(I)

αJ〈f〉J1J > λ
}∣∣∣},

where the supremum is taken over all all nonnegative functions f on I with 〈f〉I = t and

all Carleson sequences {αJ}j∈D(I) with constant at most 1 and

A =
1

|I|
∑
J⊆I

αJ |J |.

Note that I is not a parameter in B, this is because the supremum is invariant under

dilations and translations in I, and hence independent of I.

The Bellman function technique, which first appeared in the 1995 preprint version of [36],

is based on showing that B solves a certain minimization problem. One first shows that B

satisfies a kind of concavity property and explicitly computes B in a subdomain natural to

the problem (this is usually easy). Then one shows that any continuous positive function

satisfying these conditions majorizes B, which reduces the problem to finding the smallest

function which satisfies these properties. Finally one has to actually find such a function,

this is usually the hardest part. The reader can find insightful introductions in [37] and

[39], see also [36], [45], and [46] for more examples of this technique.

Let us begin by describing more precisely the concavity property which B satisfies:

8



Lemma 2.3 (Main inequality).

B(t, A, λ) ≥ 1

2

(
B(t1, A1, λ

′) + B(t2, A2, λ
′)
)

(2.1)

whenever

t =
t1 + t2

2
, A =

A1 + A2

2
+ α and λ = λ′ + αt

and α ≥ 0.

Proof. Consider any dyadic interval I, any function f ≥ 0 satisfying

〈f〉I− = t1 and 〈f〉I+ = t2

and any Carleson sequence {αJ}J∈D(I) with constant at most 1 on I satisfying

1

|I−|
∑

J∈D(I−)

αJ |J | = A1,
1

|I−|
∑

J∈D(I+)

αJ |J | = A2 and αI = α.

Suppose also that λ = λ′ + αt.

Since 〈f〉I = t then we must have

B(t, A, λ) ≥ 1

|I|

∣∣∣{x ∈ I :
∑

J∈D(I)

αJ〈f〉J1J(x) > λ
}∣∣∣

since the supremum defining B is taken over a larger space.
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Observe now that

1

|I|

∣∣∣{x ∈ I :
∑

J∈D(I)

αJ〈f〉J1J(x) > λ
}∣∣∣ =

1

2|I−|

∣∣∣{x ∈ I− :
∑

J∈D(I)

αJ〈f〉J1J(x) > λ
}∣∣∣+

1

2|I+|

∣∣∣{x ∈ I+ :
∑

J∈D(I)

αJ〈f〉J1J(x) > λ
}∣∣∣

=
1

2|I−|

∣∣∣{x ∈ I− :
∑

J∈D(I−)

αJ〈f〉J1J(x) > λ− αIt
}∣∣∣+

1

2|I+|

∣∣∣{x ∈ I+ :
∑

J∈D(I+)

αJ〈f〉J1J(x) > λ− αIt
}∣∣∣

=
1

2|I−|

∣∣∣{x ∈ I− :
∑

J∈D(I−)

αJ〈f〉J1J(x) > λ′
}∣∣∣+

1

2|I+|

∣∣∣{x ∈ I+ :
∑

J∈D(I+)

αJ〈f〉J1J(x) > λ′
}∣∣∣

and thus the claim follows.

Also, we trivially see that B must satisfy the following “obstacle” condition:

B(t, A, λ) = 1 whenever λ < 0. (2.2)

As we described in the beginning of the section, the function B is a minimizer in the space

of positive functions which satisfy these properties. The following proposition makes this

precise:

Proposition 2.4. Suppose a continuous function F satisfies inequality (2.1) together with

the obstacle condition (2.2), then we must have

B(t, A, λ) ≤ F (t, A, λ).

Proof. Let f ≥ 0 be an integrable function on an interval I and let {αJ}J∈D(I) be a Carleson
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sequence with constant at most 1, then for all fixed λ we have (by (2.1))

F (〈f〉I , A, λ) = F

(
〈f〉I− + 〈f〉I+

2
,
A− + A+

2
+ αI , λ

)
≥ 1

2

(
F (〈f〉I− , A−, λ− αI〈f〉I) + F (〈f〉I+ , A+, λ− αI〈f〉I)

)
,

where A = 1
|I|
∑

J⊆I αJ |J | and A± is defined analogously for I− and I+.

If we iterate this inequality we obtain

F (〈f〉I , A, λ) ≥ 1

2N

∑
J⊂I, |J |=2−N |I|

F (〈f〉J , AJ , λ−
N∑
k=1

αJ(k)〈f〉J(k)1J(k)(cJ)),

where AJ = 1
|J |
∑

P⊆J αP |P |.

If we assume a priori that the Carleson sequence α is finite then we can let N → ∞ and

obtain

F (〈f〉I , A, λ) ≥ 1

|I|

∫
I

F (f(x), A(x), λ−Af(x)) dx

≥ 1

|I|

∫
{x∈I:λ−Af(x)<0}

1 dx by (2.2)

=
1

|I|
|{x ∈ I : Af(x) > λ}|.

Here A(x) is almost everywhere-defined as the limit of A(J) as J → x, this is easily seen to

exist almost everywhere by the Lebesgue differentiation theorem.

Letting the number of non-zero elements of {αJ}J∈D(I) tend to infinity and then taking the

supremum in the definition of B we obtain

F (〈f〉I , A, λ) ≥ B(〈f〉I , A, λ).

Remark 2.5. Note that we don’t know yet if the function B is continuous, thus finding a
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minimizer in the space of continuous functions might not give us the true Bellman function.

It turns out, however, that assuming continuity (actually C1 smoothness) we are able to find

a positive function satisfying (2.1) and (2.2) which moreover is best possible without the a

priori assumption of smoothness. We show this in the last section.

We have therefore seen that finding any positive continuous function F satisfying (2.1) and

(2.2) will give us an upper bound for B. In the next section we find such a function.

2.3 Finding the Bellman function candidate

Our goal now is to find the smallest continuous function F satisfying (2.1) and (2.2). As

we remarked after Proposition 2.4, we will assume a priori that F is C1. Moreover, we will

restrict the minimization space even more by requiring F to have the same kind of

homogeneity that the true B must have, i.e.:

B(ηt, A, ηλ) = B(t, A, λ) ∀η > 0, λ > 0.

This in principle might make our candidate for Bellman function larger than the one we

could find without requiring such homogeneity. However, the optimal Bellman function

satisfies this identity, so requiring F to also satisfy it will not prevent us from finding it.

Assuming smoothness we can write the Main Inequality (2.1) as a concavity condition,

together with a monotonicity property along certain characteristics. More precisely, if F is

a smooth positive function, then (2.1) together with (2.2) and the above homogeneity is

equivalent to the following conditions:

1. F is nonnegative, and concave in the first two variables.

2. F (t, A, λ) is increasing in the direction (0, 1, t).

3. F (st, A, sλ) = F (t, A, λ) for all s > 0.

4. F (t, A, λ) = 1 whenever λ < 0
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Indeed, if we let α = 0 in (2.1) we see that B is concave in the variables (t, A). If we set

A1 = A2 = A and t1 = t2 = t then we see, by varying α, that B(t, A, λ) is increasing in the

direction (0, 1, t). This shows that any smooth F satisfying (2.1) and (2.2), and which is

also homogeneous in the above sense, must also satisfy properties (1) through (4).

Moreover, if F is any smooth function satisfying properties (1) through (4), then it also

must satisfy the main inequality (2.1) and the obstacle condition (2.2). To see this observe

that using property (1) we obtain (2.1) but with α = 0, now property (2) allows us to

insert an α as in the hypotheses for the main inequality since it describes the path along

which F is increasing. The homogeneity and obstacle conditions are exactly (3) and (4)

respectively, so this proves the equivalence.

Using the homogeneity property, we can reduce to finding M : (0,∞)× [0, 1]→ [0,∞) such

that if

F (x, y, z) =


M(x/z, y) if z > 0

1 if z ≤ 0,

then F satisfies (1) through (4). These properties, when translated to the function M ,

become:

1. M is concave.

2. My − x2Mx ≥ 0.

3. M(x, y)→ 1 when x→∞.

The second of these properties tells us that M is increasing along the characteristics


ẋ(t) = −x2

ẏ(t) = 1.

Observe that these characteristics foliate [0,∞)× [0, 1]. Also, if we move backwards in time
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along a characteristic which starts at (x0, 1) with x0 ≥ 1, then this characteristic is above

the curve y = 1
x

and furthermore the characteristic tends to (∞, yf ) for some 0 < yf < 1.

Using the fact that M(x, y)→ 1 as x→∞ and that we should decrease if we move

backwards along these characteristics, we must have

M(x, y) ≥ 1 whenever y ≥ 1

x
.

However, we may assume (if our goal is to find the true Bellman function) that M ≤ 1 since

the true Bellman function B obviously cannot be larger than 1, so we will actually impose

M(x, y) = 1 whenever y ≥ 1

x
.

Observe that B(0, 0, 1) is 0 and consider the straight line joining the point (0, 0) with

(x1, y1), where x1y1 = 1. Observe also that the pointwise minimum of any two positive

continuous functions satisfying (2.1) and (2.2) will give us a smaller function which also

satisfies these properties.

We know that the function M should be 1 at (x1, y1) and that, along this line, M should

be concave. The smallest concave curve joining these two points is obviously a straight

line, so if defining M in this way produces a smooth concave function satisfying the

monotonicity property (2) then the optimal M should be such a function. Joining the

point (0, 0) with the points (x1, y1) ∈ [0,∞)× [0, 1] satisfying x1y1 = 1 covers everything in

the subdomain 0 ≤ y ≤ min(x, x−1), so let us define M here by

M(x, y) =
√
xy.

This function is linear along straight lines joining (0, 0) with the boundary curve xy = 1

and is 1 at this boundary. It is furthermore concave and satisfies the monotonicity property

(2), so if we knew that B is continuous then B(x, y, 1) must be defined as above in this

subdomain.
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We are therefore left with defining M in the upper triangle ΩT = {0 ≤ x ≤ y ≤ 1}.

Inspired by the linear behavior of M in the first domain, we make the ansatz that M is

actually 1-homogeneous in the whole domain.

Let f(x) = M(x, 1) for 0 ≤ x ≤ 1, then if M is 1-homogeneous we should have

M(x, y) = yf(x/y).

If we want condition (2) to hold then we should have

f(x/y)− (x/y)f ′(x/y)− x2f ′(x/y) ≥ 0.

We expect this to be an equality on the boundary, which is when y = 1, so we will assume

that

f(x)− f ′(x)(x+ x2) = 0.

This ordinary differential equation has the solutions

f(x) = C
x

1 + x
,

and we should furthermore have f(1) = M(1, 1) = 1. So C = 2 and therefore

f(x) =
2x

x+ 1
=⇒ M(x, y) =

2xy

x+ y

whenever 1 ≥ y ≥ x ≥ 0. One easily verifies that M satisfies all the requirements in this

subdomain, so we just have to show that the whole function M is concave, but this

immediately follows from the fact that M is concave in each subdomain and that M is C1

(as can be easily seen).

15



This gives us that

M(x, y) =


2xy
x+y

if 0 ≤ x ≤ y ≤ 1

√
xy if 0 ≤ y ≤ min(x, x−1),

which using the homogeneity gives us the full function of Theorem 2.1.

2.4 Optimality

In this section we show that the function found in the previous section is actually the exact

Bellman function. We first we need a simple technical lemma which will allow us to deduce

that B(·, ·, 1) must be superlinear along lines joining (0, 0, 1) to (x, 1, 1).

Lemma 2.6. Let f : [0, 1]→ [0,∞) be a function which satisfies

f
(x+ y

2

)
≥ 1

2
f(x) +

1

2
f(y) (2.3)

for all 0 ≤ x ≤ y ≤ 1. Then we must have

f(x) ≥ f(1)x

for all x ∈ [0, 1].

Proof. We can assume without loss of generality that x ∈ (0, 1) and that f(1) = 1. Using

(2.3) we have

f(x0 + λ(1− x0)) ≥ λ (2.4)

for all dyadic rationals λ ∈ [0, 1], i.e.: numbers of the form λ = k2−N for 0 ≤ k ≤ 2N .

For every N ∈ N let kN be the unique integer in 0 ≤ k ≤ 2Nx which satisfies

∣∣∣x− k

2N

∣∣∣ < 1

2N

16



(this exists because the sequence k 7→ k2−N is an arithmetic sequence of step 2−N).

Observe that then, if we define

xN :=
2Nx− kN
2N − kN

=
x− kN

2N

1− kN
2N

,

we must have 0 ≤ xN ≤ 1
2N (1−x)

, so in particular xN → 0 as N →∞.

But then

λ :=
kN
2N

=
x− xN
1− xN

is a dyadic rational and plugging it into (2.4), with xN playing the role of x0, yields

f(x) ≥ x− xN
1− xN

,

so letting N →∞ completes the proof.

Using this lemma, together with the Main Inequality (2.1) we immediately have the

following corollary:

Corollary 2.7. We have the following identity:

B(x, y, 1) = M(x, y)

for all x, y in the subdomain 0 ≤ y ≤ min(x, x−1).

Proof. We showed in the previous section that B(x, y, 1) ≤ M(x, y) for all (x, y) ∈ Ω′. To

show the reverse inequality notice that the Main Inequality (2.1) together with Lemma 2.6

imply

B(x, y, 1) ≥ λB
(x
λ
,
y

λ
, 1
)
. (2.5)

We would be done if we can show that B(x, y, 1) = 1 whenever xy = 1. Indeed, then we can

just use equation (2.5) with λ =
√
xy.
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Fix (x, y) ∈ Ω′ with xy = 1 and consider the function

fn =
2nx

2n − 1
1[0,1−2−n).

If I is the interval [0, 1) then obviously 〈fn〉I = x. Consider also the Carleson sequence

{αJ}J∈D(I) defined by

αJ =


y

1−2−n
if J = [2−n(k − 1), 2−nk) and k ∈ {1, . . . , 2n − 1}

0 otherwise.

Then we have

1

|I|
∑

J∈D(I)

αJ |J | = y
2n−1∑
k=1

2−n

1− 2−n
= y.

Also,

Afn(t) =


(

2n

2n−1

)2

if 0 ≤ t < 1− 2−n

0 otherwise,

hence

B(x, y, 1) ≥ 1− 2−n

for all n ≥ 1. Letting n→∞ yields the claim.

Remark 2.8. Observe that using the constant function f(t) = x1I(t) and the one-term

Carleson sequence which is y on I and 0 everywhere else, one obtains that Af = xy1I ,

hence B(x, y, 1) = 1 for all xy > 1.

Using Lemma 2.6 in the same way, we just have to show that B(x, 1, 1) = 2x
x+1

to prove that

B(x, y, 1) = M(x, y) in the rest of the domain, however this turns out to be harder.

Theorem 2.9. Fix x ∈ (0, 1) and let ε > 0. For any interval I there exists a nonnegative

function f on I with 〈f〉I = x and a Carleson sequence {αJ}J∈D(I) with Carleson constant
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at most one and verifying

1

|I|
∑

J∈D(I)

αJ |J | = 1

such that

1

|I|

∣∣∣I ∩ { ∑
J∈D(I)

αJ〈f〉J1J > 1
}∣∣∣ =

2x

x+ 1
+O(ε).

To prove this we will use the Main Inequality (2.1) iteratively to give a decomposition of f

consisting of constant functions on certain dyadic intervals, this also gives us the

construction of the sequence {αJ}J∈D(I). The basic idea is to, starting with a point (x, 1) in

Ω′, use (2.1) to split this point into another point (x+, 1) on the boundary and some point

(x−, A−). The point (x−, A−) is then absorbed back into the initial point and we apply the

same procedure to the point (x+, 1) until we get to a point past the obstacle xy ≥ 1 (where

extremizers consist of constant functions together with one-term Carleson sequences as in

the Remark after Corollary 2.7).

In order to illustrate the idea we will first prove the lower bound for B without explicitly

constructing the example. The way in which we prove the lower bound will make the

construction more intuitive.

Theorem 2.10. The Bellman function B satisfies

B(x, 1, 1) =
2x

x+ 1

for all x ∈ [0, 1].

Proof. Let E(x, y) = B(x, y, 1), then using the Main Inequality (2.1) we see that we have

the following behavior:

E(t, 1) ≥ 1

2
E
( t1

1− αt
,A1

)
+

1

2
E
( t2

1− αt
,A2

)
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whenever t = t1+t2
2

and 1 = A1+A2

2
+ α. Letting ε > 0, x = t and A2 = 1 we get

E(x, 1) ≥ 1

2

(
E
(
x− 2ε, 1− 2ε

x

)
+ E

(
x+, 1

))
,

where

x+ = x
1 + ε

1− ε
+ 2ε.

Since B is superlinear in the first two variables and B(0, 0, 1) = 0, we must have

E
(
x− 2ε, 1− 2ε

x

)
≥
(

1− 2ε

x

)
E(x, 1)

so putting everything together we obtain

E(x, 1) ≥ x

x+ 2ε
E(x+, 1). (2.6)

If we define inductively xn+1 = xn
1+ε
1−ε + 2ε and x0 = x, then we easily see that

xn = δn
( 1

1− ε
+ x
)
− 1

1− ε
,

where δ = 1+ε
1−ε .

We want to stop the iteration once xn ≥ 1, and this happens when

δn ≥ 2− ε
1 + x(1− ε)

,

let N = N(ε, x) be the smallest integer for which the above inequality does not hold. Then

iterating (2.6) N times we get (since E(1, 1) = 1)

E(x, 1) ≥
N∏
j=0

xj
xj + 2ε

,

it just suffices to give a lower bound for the right hand side.
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To this end observe that

N∏
j=0

xj
xj + 2ε

≥ exp
(
−

N∑
j=0

log
(

1 +
2ε

xj

))
≥ exp

(
−

N∑
j=0

2ε

xj

)
= exp

(
−2ε

N∑
j=0

1

xj

)
.

Let us estimate −2ε
∑N

j=0
1
xj

. Using the explicit formula for xn we have

−2ε
N∑
j=0

1

xj
= −2ε

N∑
j=0

1

δj
(

1
1−ε + x

)
− 1

1−ε

= −2ε
N∑
j=0

(
1

δj
(

1
1−ε + x

)
− 1

1−ε
− 1

δj
(
1 + x

)
− 1

)
+

N∑
j=0

2ε

1− δj(1 + x)
.

The first term tends to 0 as ε → 0 and the second is a Riemann sum, indeed (recalling the

definition of N = N(x, ε):

N∑
j=0

2ε

1− δj(1 + x)
= (1− ε)

N∑
j=0

δj 2ε
1−ε

δj(1− δj(1 + x))

= (1− ε)
N∑
j=0

f(δj)(δj+1 − δj)

=

∫ 2
1+x

1

f(y) dy +O(ε),

as ε→ 0 and where

f(y) =
1

y(1− y(x+ 1))
.

It is easy to see that ∫ 2
1+x

1

1

y(1− y(x+ 1))
dy = log

( 2x

x+ 1

)
,

which completes the proof of the lower bound.
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Let us now use these ideas to construct the example. There are two basic steps in the

iteration: first we split the point (x, 1) into (x−, A−) and (x+, 1), then we absorb (x−, A−)

into (x, 1) and obtain a lower bound for E(x, 1) in terms of E(x+, 1), we then iterate this

until x+ > 1, where we stop because we know that E(x+, 1) must be 1 there. These two

steps are imposing a certain self-similarity on f and the Carleson sequence α in terms of

(f+, α+). The following Lemma, which is based on the ideas from [46], makes this precise.

Lemma 2.11. Fix an interval I and let g+ be a nonnegative function on I+. Suppose also

that α+ is a Carleson sequence adapted to I+ with constant at most 1 and such that

1

|I+|
∑

J∈D(I+)

α+
J |J | = 1.

If 〈g+〉I+ = x1+ε
1−ε+2ε for some x ∈ (0, 1) and a sufficiently small ε > 0, then we can construct

a function f on I and a Carleson sequence α adapted to I with constant at most 1 such that

〈f〉I = x,

1

|I|
∑

J∈D(I)

αJ |J | = 1 (2.7)

and

1

|I|

∣∣∣I ∩ { ∑
J∈D(I)

αJ〈f〉J1J > 1
}∣∣∣ ≥ ( x

x+ 2ε

) 1

|I+|

∣∣∣I+ ∩
{ ∑
J∈D(I+)

α+
J 〈g+〉J1J > 1

}∣∣∣. (2.8)

Proof. We will assume without loss of generality that I = [0, 1), also denote α = ε
x
. Define

αJ to be α if J = I and α+
J for J ∈ D(I+).
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Define f to be (1− ε)g+ on I+ and denote g− = (1− ε)−1f1I− , then

1

|I|

∣∣∣y ∈ I :
∑

J∈D(I)

αJ〈f〉J1J(y) > 1
∣∣∣ =

1

2|I−|

∣∣∣y ∈ I− :
∑

J∈D(I−)

αJ〈f〉J1J(y) > 1− ε
∣∣∣

+
1

2|I+|

∣∣∣y ∈ I+ :
∑

J∈D(I+)

αJ〈f〉J1J(y) > 1− ε
∣∣∣

=
1

2|I−|

∣∣∣y ∈ I− :
∑

J∈D(I−)

αJ〈g−〉J1J(y) > 1
∣∣∣

+
1

2|I+|

∣∣∣y ∈ I+ :
∑

J∈D(I+)

αJ〈g+〉J1J(y) > 1
∣∣∣.

Let Ij = [ej, ej+1), where ej = 1
2
−2−j, and suppose that αÎj = 0 for j ≥ 1 and αI− = 0, then

1

2|I−|

∣∣∣y ∈ I− :
∑

J∈D(I−)

αJ〈g−〉J1J(y) > 1
∣∣∣ =

1

2

∞∑
j=1

2−j
1

|Ij|

∣∣∣y ∈ Ij : A(g−1j)(y) > 1
∣∣∣. (2.9)

Let θ = 1− 2α and write

θ =
∞∑
j=1

2−jbj

for some binary sequence {bj}j∈N (i.e.: write θ in binary).

For a given interval J let SJf be the scaled version of f adapted to J , i.e.: if J = [a, b) then

SJf(x) = f
(x− a
b− a

)
.

Abusing notation, let us also denote by SJα the scaled version of the Carleson sequence α

to the dyadic subinterval J of I, then we have

1

|J |

∣∣∣{y ∈ J :
∑

K∈D(J)

(SJα)K〈SJf〉K1K(y) > 1
}∣∣∣ =

1

|I|

∣∣∣{y ∈ I :
∑

K∈D(I)

αK〈f〉K1K(y) > 1
}∣∣∣.

Suppose that (1− ε)f , when restricted to Ij, agrees with SIjf for all j ≥ 1 such that bj = 1
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and is 0 otherwise. Suppose furthermore that the Carleson sequence α also satisfies the same

similarity, i.e.: if we scale to I the restriction of α to Ij we obtain α again. If we denote by

Ξ the left-hand side in (2.8) then we could use (2.9) to obtain

Ξ =
1

2

∞∑
j=1

2−jbjΞ +
1

2|I+|

∣∣∣y ∈ I+ :
∑

J∈D(I+)

αJ〈g+〉J1J(y) > 1
∣∣∣,

hence

Ξ =
( 1

1 + 2α

) 1

|I+|

∣∣∣y ∈ I+ :
∑

J∈D(I+)

αJ〈g+〉J1J(y) > 1
∣∣∣

=
( x

x+ 2ε

) 1

|I+|

∣∣∣y ∈ I+ :
∑

J∈D(I+)

αJ〈g+〉J1J(y) > 1
∣∣∣,

which is what we wanted. Note also that we could use the same method to compute the

average of f and it yields precisely the right amount: x.

Therefore we just have to show that we can find a function f and a Carleson sequence α

satisfying these self-similarity conditions. Let us start with f : define the operator T by

Tf = (1− ε)
∞∑
j=1

bj1IjSIjf + (1− ε)1I+g+.

We need to show that T has a fixed point in L1(I); we will do this following the steps of the

proof of the Banach fixed point theorem. Let f0 = (1− ε)g+1I+ and define inductively

fn+1 = Tfn.
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We should show that fn is a Cauchy sequence in L1(I), but observe that

‖fn+1 − fn‖L1(I) = (1− ε)
∫
I−

∣∣∣ ∞∑
j=1

bj1IjSIj(fn)−
∞∑
j=1

bj1IjSIj(fn−1)
∣∣∣

= (1− ε)
∞∑
j=1

bj

∫
Ij

|SIj(fn)− SIj(fn−1)|

= (1− ε)
∞∑
j=1

bj|Ij|
∫
I

|fn − fn−1|

= (1− ε)
∫
I

|fn − fn−1|
∞∑
j=1

bj2
−j−1

=
(1− ε)(1− 2α)

2

∫
I

|fn − fn−1|.

The constant ξ := (1−ε)(1−2α)
2

is strictly less than 1 and by induction we have

‖fn+1 − fn‖L1(I) . ξn,

hence the sequence is Cauchy. This finishes the proof of existence for f since we can just

define f to be the limit in L1 of the sequence fn defined above.

To show the existence of the Carleson sequence we can follow the same steps as above, but

now we don’t have to deal with convergence issues. Indeed, start with a sequence as in the

beginning of the proof and define inductively the (n+ 1)-th sequence αn+1 by inserting the

entire dyadic tree of αn at each Ij. At each step we are only changing the value of the

sequence at deeper and deeper levels, so we can just define αK as the the value of αnK , where

n is the first integer at which the sequence αnK stabilizes.

We are now ready to prove Theorem 2.9, we will use the same ideas and notation as in the

proof of Theorem 2.10. Given ε, I and x ∈ (0, 1) let N be the smallest integer such that

δn ≥ 2− ε
1 + x(1− ε)

.

Let f1 be the constant function x on I+ and let α1 be the one-term Carleson sequence
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which is 1 at I+. Now define the function fn+1 and Carleson sequence αn+1 inductively by

applying Lemma 2.11 to the function g+ := SI+(fn) and the Carleson sequence SI+(αn); let

f = fN and α = αN . Then, as in the proof of Theorem 2.10, we have

1

|I|

∣∣∣{y ∈ I :
∑

J∈D(I)

αJ〈f〉J1J > 1
}∣∣∣ ≥ exp

( N∑
j=0

2ε

1− δj(1 + x)

)
,

which we showed to be

2x

x+ 1
+O(ε),

and this is what we wanted to prove.
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Dyadic models for singular integrals
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Mathematische Annalen, October 2015.

3.1 Introduction

One particularly useful way to study many important operators in Harmonic Analysis is

that of decomposing them into sums of simpler dyadic operators. An example of a recent

striking result using this strategy is the proof of the sharp weighted estimate for the

Hilbert transform by S. Petermichl [42]. This was a key step towards the full A2 theorem

for general Calderón-Zygmund operators, finally proven by T. Hytönen in [14]. Of course

there are many instances of this useful technique, but we will not try to give a thorough

historical overview here.

The proof in [14] was a tour de force which was the culmination of many previous partial

efforts by others, see [14] and the references therein. Hytönen did not only prove the A2

theorem, but he also showed that general Calderón-Zygmund operators could be

represented as averages of certain simpler “Haar shifts” in the spirit of [42]. The sharp

weighted bound then followed from the corresponding one for these simpler operators.

Later, A. Lerner gave a simplification of the A2 theorem in [22] which avoided the use of
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most of the complicated machinery in [14]; it mainly relied on a general pointwise estimate

for functions in terms of positive dyadic operators which had already been proven in [20].

The weighted result for the positive dyadic shifts that this contribution reduced the

problem to had already been shown before in [18], see also [4] and [5]. More precisely, the

proof of Lerner (essentially) gave the following pointwise estimate for general

Calderón-Zygmund operators T : for every dyadic cube Q

|Tf(x)| .
∞∑
m=0

2−δmAmS |f |(x) for a.e. x ∈ Q, (3.1)

where δ > 0 depends on the operator T , S are collections of dyadic cubes (belonging to

same dyadic grid for each fixed S) which depend on f , T and m, and AmS are positive

dyadic operators defined by

AmS f(x) =
∑
Q∈S

〈f〉Q(m)1Q(x),

where Q(m) denotes the m-th dyadic parent of Q. Moreover, the collections S in (3.1) are

sparse in the usual sense: given 0 < η < 1, we say that a collection of cubes S belonging to

the same dyadic grid is η-sparse if for all cubes Q ∈ S there exist measurable subsets

E(Q) ⊂ Q with |E(Q)| ≥ η|Q| and E(Q) ∩ E(Q′) = ∅ unless Q = Q′. A collection is called

simply sparse if it is 1
2
-sparse.

From this pointwise estimate Lerner continues the proof by showing that bounding the

operator norm of each AmS can be reduced to just estimating the operator norm of A0
S′ in

the same space for all possible sparse collections S ′. More precisely, he shows that

‖AmS f‖X . (m+ 1) sup
D ,S′
‖A0
S′f‖X, (3.2)

where the supremum is taken over all dyadic grids D and all sparse collection S ′ ⊂ D , and

where X is any Banach function space, in the sense of [1], Chapter 1.
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It is at this point where the duality of X is needed in the argument; the operators AmS do

not lend themselves to Lerner’s pointwise formula, while their adjoints do. Consequently,

the question of what to do when no duality is present was left open. Our main result

answers this question by proving a stronger (though localized) statement: the operators

AmS are actually pointwise bounded by positive dyadic 0-shifts:

Theorem 3.1. Let P be a cube and S a sparse collection of dyadic subcubes Q such that

Q(m) ⊆ P , then for all nonnegative integrable functions f on P there exists another sparse

collection S ′ of dyadic subcubes of P such that

AmS f(x) . (m+ 1)A0
S′f(x) ∀x ∈ P (3.3)

In fact, we prove Theorem 3.1 in a slightly more general setting: first, the statement is

proven for a certain natural multilinear generalization of the operators AmS . Second, the

sparse collection S is replaced by a more general Carleson sequence. The relevant details

are given in the next section.

The novelty in our approach is two-fold: we directly attack the pointwise estimate for the

operators Am, instead of bounding their norm in various spaces. Also, in proving the

pointwise bound we develop an algorithm that constructively selects those cubes which will

form the family S ′. This algorithm has “memory” in a certain sense: each iteration takes

into account the previous steps, a feature which is crucial in our method to ensure that S is

sparse.

As a corollary of Theorem 3.1, we find an analogue of (3.1) for Calderón-Zygmund

operators with more general moduli of continuity (see the next section for the precise

definition). In particular, we obtain the following pointwise estimate for

Calderón-Zygmund operators:

Corollary 3.2. If P is a dyadic cube, f is an integrable function supported on P and T is
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a Calderón-Zygmund operator whose kernel has modulus of continuity ω, then

|Tf(x)| .
∞∑
m=0

ω(2−m)(m+ 1)A0
Sm|f |(x) for a.e. x ∈ P, (3.4)

where Sm are sparse collections belonging to at most 3d different dyadic grids.

Moreover, if we know that ω satisfies the logarithmic Dini condition:

∫ 1

0

ω(t)
(

1 + log
(1

t

))dt
t
<∞, (3.5)

then we can find sparse collections {S ′1, . . . ,S ′3d}, belonging to possibly different dyadic grids,

such that

|Tf(x)| .
3d∑
i=1

A0
S′i
|f |(x) for a.e. x ∈ P. (3.6)

The factor m in (3.2) precluded a naive adaptation of the proof in [23] to an A2 theorem

with the usual Dini condition:

∫ 1

0

ω(t)
dt

t
<∞, (3.7)

since the sum

∞∑
m=0

ω(2−m)(m+ 1) '
∫ 1

0

ω(t)
(

1 + log
1

t

)dt
t

(3.8)

could diverge for some moduli ω satisfying only (3.7). Moreover, it was shown in [12] that

the weak-type (1, 1) norm of the adjoints of the operators AmS was at least linear in m, even

in the unweighted case, so using duality prevented an extension of this type. However,

although our argument does not quite give an A2 theorem for Calderón-Zygmund operators

satisfying the Dini condition (we still need (3.8) to be finite), our proof avoids the use of

duality and the study of the adjoint operators (AmS )∗. It thus removes at least one of the

obstructions to possible proofs of the A2 theorem with the Dini condition which follow this
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strategy. Hence, removing the linear factor of m in Theorem 3.1 remains as an open

problem.

Apart from being interesting in its own right, a bound for Calderón-Zygmund operators by

these sums of positive 0-shifts in cases where there is no duality has interesting applications,

some of which we describe later. Before, let us state a second corollary to Theorem 3.2:

Corollary 3.3. Let ‖ · ‖X be a function quasi-norm (see section 3.2) and T a Calderón-

Zygmund operator satisfying the logarithmic Dini condition, then

‖Tf‖X . sup
D ,S
‖A0
S |f |‖X, (3.9)

where the supremum is taken over all dyadic grids D and all sparse collections S ⊂ D .

We now describe two immediate applications of our result. First we can continue the

program, initiated in [6] and extended in [28], which aims to extend the sharp weighted

estimates for Calderón-Zygmund operators to their multilinear analogues (as in [10]). In

particular we obtain

Theorem 3.4. Let T be a multilinear Calderón-Zygmund operator. Suppose 1 < p1, . . . , pk <

∞, 1
p

= 1
p1

+ · · ·+ 1
pk

and ~w ∈ A~P . Then

‖T ~f‖Lp(v~w) . [~w]
max(1,

p′1
p
,...,

p′k
p

)

A~P

k∏
i=1

‖fi‖Lp(wi). (3.10)

The same theorem was proven in [28] but with the additional hypothesis that p had to be

at least 1. The proof of this theorem is an application of the result in [28] which proved the

same estimate (without the condition p ≥ 1) but for a multilinear analogue of the operators

AmS , together with Theorem 3.1. In fact, we will need a multilinear version of Theorem 3.1

which we state and prove in the next section.

Our second application is a sharp aperture weighted estimate for square functions which

extends a result in [24]. In particular:
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Theorem 3.5. Let α > 0, then the square function Sα,ψ for the cone in Rd+1
+ of apperture

α and the standard kernel ψ satisfies

‖Sα,ψf‖Lp,∞(Rd,w) . αd[w]
1/p
Ap
‖f‖Lp(Rd,w) for 1 < p < 2

and

‖Sα,ψf‖L2,∞(Rd,w) . αd[w]
1/2
A2

(1 + log[w]A2)‖f‖L2(Rd,w). (3.11)

An analogous result was shown in [24] for 2 < p < 3:

‖Sα,ψf‖Lp,∞(Rd,w) . αd[w]
1/2
Ap

(1 + log[w]Ap)‖f‖Lp(Rd,w).

The proof relies on the use of Lerner’s pointwise formula and previous results by Lacey and

Scurry [19]. However, in [24] the requirement of p > 2 was necessary for the same reason

why the proof of the multilinear weighted estimates required p ≥ 1 (a certain space had no

satisfactory duality properties). Theorem 3.1 can be used in almost the same way as with

the weighted multilinear estimates to prove Theorem 3.5. Indeed, the proofs in [19] and [24]

reduce the problem to estimating certain discrete positive operators which can be seen to

be particular instances of the positive multilinear m-shifts used in the proof of Theorem 3.4.

As was noted in [19], estimate (3.11) can be seen as an analogue of the result in [26]

stablishing the endpoint weighted weak-type estimate for Calderón-Zygmund operators

‖Tf‖L1,∞(w) . [w]A1(1 + log[w]A1)‖f‖L1(w).

See also [34] for a similar estimate from below and more information on the sharpness of

this estimate, known as the weak A1 conjecture. In this direction, it seems reasonable that

Lacey and Scurry’s proof in [19] could be adapted to the multilinear setting, however we

will not pursue this problem here.

Finally, as a third application of our results, it is possible to give a more direct proof of the
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result in [15] for the q-variation of Calderón-Zygmund operators satisfying the logarithmic

Dini condition by using the pointwise estimate analogous to (3.1) in [15] and then applying

Theorem 3.1. However, we will not pursue this argumentation either.

Shortly before uploading this preprint, Andrei Lerner kindly communicated to the authors

that he, jointly with Fedor Nazarov, had independently proven a theorem very similar to

Corollary 3.2 [25]. Though the hypothesis are the same, their result differs from the one in

this note in that we give a localized pointwise estimate while their pointwise estimate is

valid for all of Rd. However, our result seems to be as powerful in the applications.

3.2 Pointwise domination

The goal of this section is the proof of Theorem A and its consequences as stated in the

introduction. We will prove the result in the level of generality of multilinear operators.

Given a cube P0 on Rd, we will denote by D(P0) the dyadic lattice obtained by successive

dyadic subdivisions of P0. By a dyadic grid we will denote any dyadic lattice composed of

cubes with sides parallel to the axis. A k-linear positive dyadic shift of complexity m is an

operator of the form

AmP0,α
~f(x) = AmP0,α

(f1, f2, · · · , fk)(x) :=
∑

Q∈D(P0)

Q(m)⊆P0

αQ

( k∏
i=1

〈fi〉Q(m)

)
1Q(x).

As a first step towards the proof of Theorem A, it is convenient to separate the scales of (or

Since we uploaded this document to arXiv, two other articles have appeared: [17] and [11], in which
similar estimates are obtained.
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slice) AmP0,α
as follows:

AmP0,α
~f(x) =

m−1∑
n=0

∞∑
j=1

∑
Q∈Djm+n(P0)

αQ

( k∏
i=1

〈fi〉Q(m)

)
1Q(x)

=:
m−1∑
n=0

Am,nP0,α
~f(x).

Note that Dk(P0) denotes the k-th generation of the lattice D(P0). Now we rewrite Am;n
P0,α

as a sum of disjointly supported operators of the form Am;0
P,α . Indeed,

Am;n
P0,α

~f(x) =
∞∑
j=1

∑
Q∈Djm+n(P0)

αQ

( k∏
i=1

〈fi〉Q(m)

)
1Q(x)

=
∑

P∈Dn(P0)

∞∑
j=1

∑
Q∈Djm(P )

αQ

( k∏
i=1

〈fi〉Q(m)

)
1Q(x)

=
∑

P∈Dn(P0)

Am;0
P,α

~f(x),

which leads to the expression

Amα,P0
~f(x) =

m−1∑
n=0

∑
P∈Dn(P0)

Am;0
P,α

~f(x).

We say that a sequence {αQ}Q∈D(P0) is Carleson if its Carleson constant ‖α‖Car(P0) <∞,

where

‖α‖Car(P0) = sup
P∈D(P0)

1

|P |
∑

Q∈D(P )

αQ|Q|.

The following intermediate step is the key to our approach:

Proposition 3.6. Let m ≥ 1 and α be a Carleson sequence. For integrable functions
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f1, . . . , fk ≥ 0 on P0 there exists a sparse collection S of cubes in D(P0) such that

Am;0
P0,α

~f(x) ≤ C1‖α‖Car(P0)

∑
Q∈S

( k∏
i=1

〈fi〉Q
)
1Q(x),

where C1 only depends on k and d, and in particular is independent of m.

To prove Proposition 3.6 we will proceed in three steps: we will first construct the collection

S, then show that we have the required pointwise bound, and finally that S is sparse. By

homogeneity, we will assume that ‖α‖Car(P0) = 1. Also, we will assume that the sequence α

is finite, but our constants will be independent of the number of elements in the sequence.

Let ∆P0 = 0 and, for each Q ∈ Dmj(P0) with j ≥ 0, define the sequence {γQ}Q by

γQ = max
R∈Dm(Q)

αR.

For each Q ∈ Dmj(P0) with j ≥ 0, we will inductively define the quantities ∆Q and βQ as

follows:

βQ =


0 if ∆Q −

(∏k
i=1〈fi〉Q

)
γQ ≥ 0

22(k+1)CW otherwise,

where CW is the boundedness constant of the unweighted endpoint weak-type of the

operators Am proved in Theorem 3.16 in the last section. Also, for every R ∈ Dm(Q) we

define

∆R = ∆Q + (βQ − αR)
( k∏
i=1

〈fi〉Q
)
.

Note that the definition only applies to cubes in Dmj(P0) for some j. For all other cubes in

DP0 , we set βQ = ∆Q = 0. The collection S consists of those cubes Q ∈ D(P0) for which

βQ 6= 0. Note that, since 22(k+1)CW > 1 = ‖α‖Car(P0) ≥ αR for all R and by the definition of

γQ, we must have ∆Q ≥ 0 for all Q. This can be easily seen by induction.
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Remark 3.7. We are trying to construct a sparse operator of complexity 0 which dominates

Am;0
P0,α

. One way to achieve this is to let S be the collection of all dyadic subcubes of P0, but

of course this does not yield a sparse collection. A better way would be to let S consist of all

dyadic cubes in P0 for which at least one of its m-th generation children R satisfies αR > 0;

unfortunately this yields a collection S which is not sparse, and in fact it can be seen that

the Carleson sequence β associated with this collection can have a Carleson norm ‖β‖Car(P0)

which grows exponentially in m.

The main problem with this approach is that, when the time comes to decide whether a

cube should be in S or not, we do not take into account which cubes have been selected in

the previous steps. Note that whenever we add a cube Q to S we are not only “helping”

to dominate the portion of Am;0
P0,α

coming from Q, but also what may come from any of its

descendants.

One can account for this by having the algorithm use a sort of “memory” to, essentially,

keep track of how many cubes in S (appropriately weighted with the averages of ~f) lie above

any particular cube. This is the purpose of ∆Q. This can also be seen as the stopping time

algorithm which selects a cube whenever the previously selected cubes do not provide enough

height to dominate the operator until that point.

Lemma 3.8. We have the pointwise bound

Am;0
P0,α

~f(x) ≤
∑

Q∈D(P0)

βQ

( k∏
i=1

〈fi〉Q
)
1Q(x). (3.12)

Proof. We will prove by induction the following claim: if P ∈ Djm(P0) for some j ≥ 0, then

Am;0
P,α

~f(x) ≤ ∆P +
∑

Q∈D(P )

βQ

( k∏
i=1

〈fi〉Q
)
1Q(x). (3.13)

Note that, when P = P0, this is exactly (3.12). Since α is finite, there is a smallest j0 ∈ N

such that αQ = 0 for all cubes Q ∈ D≥j0m(P0). Let Q be any cube in Dj0m(P0), we obviously

We use D≥k(P ) to denote those cubes Q in D(P ) of generation at least k, so |Q| ≤ 2−dk|P |.
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have

Am;0
Q,α

~f ≡ 0 in Q.

Since ∆Q ≥ 0, the claim (3.13) is trivial for P ∈ Dj0m(P0). Now, assume by induction that

we have proved (3.13) for all cubes P ∈ Djm(P0) with 1 ≤ j1 ≤ j and let P be any cube in

D(j1−1)m(P0). By definition,

Am;0
P,α

~f(x) =
∑

Q∈Dm(P )

(
αQ

( k∏
i=1

〈fi〉P
)
1Q(x) +Am;0

Q,α
~f(x)

)
.

Let x ∈ Q ∈ Dm(P ), then by the induction hypothesis and the definition of ∆Q:

Am;0
P,α

~f(x) ≤ αQ

( k∏
i=1

〈fi〉P
)

+ ∆Q +
∑

R∈D(Q)

βR

( k∏
i=1

〈fi〉R
)
1R(x)

= αQ

( k∏
i=1

〈fi〉P
)

+ ∆P + (βP − αQ)
( k∏
i=1

〈fi〉P
)

+
∑

R∈D(Q)

βR

( k∏
i=1

〈fi〉R
)
1R(x)

= ∆P + βP

( k∏
i=1

〈fi〉P
)

+
∑

R∈D(Q)

βR

( k∏
i=1

〈fi〉R
)
1R(x)

= ∆P +
∑

R∈D(P )

βR

( k∏
i=1

〈fi〉R
)
1R(x),

which is what we wanted to show.

Lemma 3.9. The collection S is sparse.

Proof. Let P ∈ S, we have to show that the set

F :=
⋃

Q(P,Q∈S

Q

satisfies |F | ≤ 1
2
|P |. To this end, let R be the collection of maximal (strict) subcubes of P

which are in S, Note that for all R ∈ R we have R ∈ DNRm(P ) for some NR ≥ 1. We thus
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have

F =
⊔
R∈R

R.

By maximality, for all R ∈ R and dyadic cubes Q with R ( Q ( P we have βQ = 0. For all

R ∈ R and 1 ≤ j ≤ NR we now claim that

∆R((NR−j)m) ≥ βP

( k∏
i=1

〈fi〉P
)
−

j∑
ν=1

αR((NR−ν)m)

( k∏
i=1

〈fi〉R((NR−ν+1)m)

)
. (3.14)

Indeed, one can prove this by induction on j. If j = 1 then by definition we have

∆R((NR−1)m) = ∆P + (βP − αR((NR−1)m))
( k∏
i=1

〈fi〉P
)

≥ βP

( k∏
i=1

〈fi〉P
)
− αR((NR−1)m)

( k∏
i=1

〈fi〉P
)
,

since ∆P ≥ 0.

To prove the induction step, observe that (by the induction hypothesis) for j > 1

∆R((NR−j)m) = ∆R((NR−j+1)m) + (βR((NR−j+1)m) − αR((NR−j)m))
( k∏
i=1

〈fi〉R((NR−j+1)m)

)
= ∆R((NR−j+1)m) − αR((NR−j)m)

( k∏
i=1

〈fi〉R((NR−j+1)m)

)
≥ βP

( k∏
i=1

〈fi〉P
)
−

j∑
ν=1

αR((NR−ν)m)

( k∏
i=1

〈fi〉R((NR−ν+1)m)

)
.

From (3.14) with j = NR, we have (since the terms are nonnegative)

∆R ≥ βP

( k∏
i=1

〈fi〉P
)
−Am;0

P,α
~f(x)

for all x ∈ R. Since βR 6= 0, we must have

( k∏
i=1

〈fi〉R
)
γR −∆R > 0,
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i.e.: ( k∏
i=1

〈fi〉R
)
γR +Am;0

P,α
~f(x) > 22(k+1)CW

( k∏
i=1

〈fi〉P
)

for all x ∈ R. Let GP ~f =
∑

R∈R γR

(∏k
i=1〈fi〉R

)
1R, then for all x ∈ R we have

GPf(x) +Am;0
P,α

~f(x) > 22(k+1)CW

( k∏
i=1

〈fi〉P
)
,

hence

|F | ≤

∣∣∣∣∣
{
x ∈ P : GP ~f(x) +Am;0

P,α
~f(x) > 22(k+1)CW

( k∏
i=1

〈fi〉P
)}∣∣∣∣∣

≤
‖GP +Am;0

P,α‖
1/k

L1(P )×···×L1(P )→L1/k,∞(P )(
22(k+1)CW

(∏k
i=1〈fi〉P

))1/k

( k∏
i=1

‖fi‖L1(P )

)1/k

=
‖GP +Am;0

P,α‖
1/k

L1(P )×···×L1(P )→L1/k,∞(P )

(22(k+1)CW )1/k
|P |

Let us compute the operator norm ‖GP‖L1(P )×···×L1(P )→L1/k,∞(P ). Observe that, since γQ ≤ 1

for all Q, the operator G is pointwise bounded by the multi-linear projection

PP ~f(x) =
∑
R∈R

( k∏
i=1

〈fi〉R
)
1R(x) =

k∏
i=1

(∑
R∈R

〈fi〉R1R(x)
)
.

For each 1 ≤ i ≤ k, we have ‖
∑

R∈R〈fi〉R1R‖L1(P ) ≤ ‖fi‖L1(P ). Therefore, by Hölder’s

inequality we get

‖PP ~f‖L1/k,∞(P ) ≤
k∏
i=1

∥∥∥∑
R∈R

〈fi〉R1R
∥∥∥
L1(P )

≤
k∏
i=1

‖fi‖L1(P ).

On the other hand we have

‖Am;0
P,α

~f‖L1/k,∞(P ) ≤ CW

k∏
i=1

‖fi‖L1(P )
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by Theorem W.1. Combining these estimates we get

‖GP +Am;0
P,α‖L1(P )×···×L1(P )→L1/k,∞(P ) ≤ 2k+1(1 + CW ) ≤ 2k+2CW

and the result follows.

From lemmas 3.8 and 3.9 Proposition 3.6 follows at once. The proof shows that one can

actually take C1 = 22+k(7+d(2k−1)). We are now ready to finish the proof of Theorem A,

which we state here in full generality:

Theorem 3.10. Let α be a Carleson sequence and let P0 be a dyadic cube. For every k-tuple

of nonnegative integrable functions f1, . . . , fk on P there exists a sparse collection S of cubes

in D(P ) such that

AmP,α ~f(x) ≤ C2

∑
Q∈S

( k∏
i=1

〈fi〉Q
)
1Q(x).

Proof. If m = 0 we can just apply Proposition 3.6 after noting that A0
P0,α

can be written as

A1;0
P0,β

, where

βQ = αQ(1) .

One easily sees that ‖α‖Car(P0) = ‖β‖Car(P0). Hence, we may assume that m ≥ 1. Recall the

expression

AmP0,α
~f(x) =

m−1∑
n=0

∑
P∈Dn(P0)

Am;0
P,α

~f(x).

from the beginning of the section. By Proposition 3.6, for each 0 ≤ n ≤ m − 1 and each

P ∈ Dn(P0) we can find a sparse collection of cubes SnP ⊂ D(P ) such that

Am;0
P,α

~f(x) ≤ C1‖α‖Car(P0)

∑
Q∈SnP

( k∏
i=1

〈fi〉Q
)
1Q(x).
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Observe that the collection Sn = ∪P∈Dn(P0)SnP is also sparse, so

AmP0,α
~f(x) ≤ C1‖α‖Car(P0)

m−1∑
n=0

∑
Q∈Sn

( k∏
i=1

〈fi〉Q
)
1Q(x). (3.15)

For 0 ≤ n ≤ m− 1 define

µnQ =


1 if Q ∈ Sn

0 otherwise.

Since the collections Sn are sparse, the sequences µn are Carleson sequences with ‖µn‖Car(P0) ≤

2, therefore the sequence

µQ :=
m−1∑
n=0

µnQ

is also Carleson with ‖µ‖Car(P0) ≤ 2m.

With this we can continue the argument using estimate (3.15) and the case m = 0:

AmP0,α
~f(x) ≤ C1‖α‖Car(P0)

m−1∑
n=0

∑
Q∈Sn

( k∏
i=1

〈fi〉Q
)
1Q(x)

= C1‖α‖Car(P0)

m−1∑
n=0

∑
Q∈D(P0)

µnQ

( k∏
i=1

〈fi〉Q
)
1Q(x)

= C1‖α‖Car(P0)

∑
Q∈D(P0)

µQ

( k∏
i=1

〈fi〉Q
)
1Q(x)

= C1‖α‖Car(P0)A0
P0,µ

~f(x)

≤ C1‖α‖Car(P0)C12m
∑
Q∈S

( k∏
i=1

〈fi〉Q
)
1Q(x),

which yields the result with C2 = 2C2
1 .

Remark 3.11. The above procedure does not rely on any specific property of the Lebesgue

measure. In fact, Theorem 3.1 also holds when we replace all averages –both in complexity

0 and complexity m operators– by averages with respect to any other locally finite Borel

measure, because the proof is unaffected.
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We now detail how to use Theorem 3.1 to derive the multilinear version of corollaries 3.2

and 3.3. For us, a multilinear Calderón-Zygmund operator will be an operator T satisfying

T (f1, . . . , fk) =

∫
Rdk

K(x, y1, . . . , yk)f1(y1) · · · · · fk(yk)dy1 . . . dyk

for all x /∈ ∩ki=1 supp fi for appropriate fi. Also we will require that T extends to a bounded

operator from Lq1 × . . . Lqk to Lq where

1

q
=

1

q1

+ · · ·+ 1

qk
,

and that it satisfies the size estimate

|K(y0, . . . , yk)| ≤
A(∑k

i,j=0 |yi − yj|
)kd .

ω will be the modulus of continuity of the kernel of the operator i.e. a positive

nondecreasing continuous and doubling function that satisfies

|K(y0, . . . , yj, . . . , yk)−K(y0, . . . , y
′
j, . . . , yk)| ≤ Cω

(
|yj − y′j|∑k
i,j=0 |yi − yj|

)
1(∑k

i,j=0 |yi − yj|
)kd

for all 0 ≤ j ≤ k, whenever |yj − y′j| ≤ 1
2

max0≤i≤k |yj − yi|. We can now prove Corollary 3.2:

Proof of Corollary 3.2. Fix a measurable f , and a cube Q0 ⊂ Rd. Our starting point is the

formula

|T ~f(x)−mT ~f (Q0)| .
∑
Q∈S

∞∑
m=0

ω(2−m)
m∏
i=1

〈|fi|〉2mQ1Q(x),

which holds for a sparse subcollection S ⊂ D(Q0) (see [6] and [15], we are implicitly using

a slight improvement of Lerner’s formula which can be found in [12], Theorem 2.3). Here

mf (Q) denotes the median of a measurable function f over a cube Q (see [23] for the precise
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definition), which satisfies

|mf (Q)| .
‖f‖L1,∞(Q)

|Q|
.

Hence we can just write

|T ~f(x)| .
∞∑
m=0

ω(2−m)
∑
Q∈S

m∏
i=1

〈|fi|〉2mQ1Q(x), (3.16)

By an elaboration of the well-known one-third trick, it was proven in [15] that there exist

dyadic systems {Dρ}ρ∈{0,1/3,2/3}d such that for every cube Q in Rd and every m ≥ 1, there

exists ρ ∈ {0, 1/3, 2/3}d and RQ,m ∈ Dρ such that

Q ⊂ RQ,m, 2mQ ⊂ Q(m), 3`(Q) < `(RQ,m) ≤ 6`(Q).

Also, we may assume that for each ρ ∈ {0, 1/3, 2/3}d there exists a cube P (ρ) such that

Q0 ⊂ P (ρ) ⊂ cdP (ρ) for some dimensional constant cd. Using this, we can further write

(3.16) as

|T ~f(x)| .
∑

ρ∈{0, 1
3
, 2
3
}d

∞∑
m=0

ω(2−m)
∑
Q∈S

RQ,m∈Dρ

( k∏
i=1

〈|fi|〉R(m)
Q,m

)
1RQ .

Let Fρm = {RQ,m : RQ ∈ Dρ} ⊂ D(P (ρ)). Then, we can estimate

|T ~f(x)| . 6d
∑

ρ∈{0, 1
3
, 2
3
}d

∞∑
m=0

ω(2−m)
∑
R∈Fρm

( k∏
i=1

〈|fi|〉R(m)

)
1R,

since at most 6d cubes Q in D are mapped to the same cube RQ,m. Define the sequence

αρQ =


1 if Q ∈ Fρm

0 otherwise.
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The collections Fρm are 2−1 · 6−d-sparse, and hence Carleson with constant 2 · 6d. In order to

apply Theorem 3.1, for each fixed ρ ∈ {0, 1
3
, 2

3
}d, m ≥ 0, we now split the sum as follows:

∑
Q∈Dρ

αρQ

( k∏
i=1

〈|fi|〉Q(m)

)
1Q(x) =

∑
Q∈D≥m(P (ρ))

αρQ

( k∏
i=1

〈|fi|〉Q(m)

)
1Q(x)

+
∞∑
`=1

∑
Q∈Dm−`(P (ρ))

αρQ

( k∏
i=1

〈|fi|〉Q(m)

)
1Q(x)

= I + II.

Now, since fi is supported on Q0 ⊂ P (ρ) for 1 ≤ i ≤ k and all ρ ∈ {0, 1
3
, 2

3
}d, we claim that

II ≤ I. Indeed, compute

∞∑
`=1

∑
Q∈Dm−`(P (ρ))

αρQ

( k∏
i=1

〈|fi|〉Q(m)

)
1Q(x) ≤

∞∑
`=1

∑
Q∈Dm−`(P (ρ))

( k∏
i=1

〈|fi|〉Q(m)

)
1Q(x)

=
∞∑
`=1

( k∏
i=1

〈|fi|〉P (ρ)(`)

)
.

Now observe that, by the support condition on the tuple ~f ,

k∏
i=1

〈|fi|〉P (ρ)(`) = 2−dk`
k∏
i=1

〈|fi|〉P (ρ),

which is enough to prove the claim. Therefore, we only need to work in the localized cubes

P (ρ), ρ ∈ {0, 1
3
, 2

3
}d. Therefore, we can obtain the first assertion of Corollary 3.2 applying

Theorem 3.1:
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|T ~f(x)| .
∑

ρ∈{0, 1
3
, 2
3
}d

∞∑
m=0

ω(2−m)
∑

Q∈Dρ, Q⊂P (ρ)(m)

αρQ

( k∏
i=1

〈|fi|〉Q(m)

)
1Q(x)

.
∑

ρ∈{0, 1
3
, 2
3
}d

∞∑
m=0

ω(2−m)(m+ 1)
∑

Q∈S
m,~f

( k∏
i=1

〈|fi|〉Q
)
1Q

=
∑

ρ∈{0, 1
3
, 2
3
}d

∞∑
m=0

ω(2−m)(m+ 1)AS
m,~f

~f(x),

for sparse collections Sm,~f that may depend both on m and ~f (and which are subfamilies of

D(P (ρ)) for each value of ρ). Now, reorganizing the sum above we obtain

|T ~f(x)| .
∑

ρ∈{0, 1
3
, 2
3
}d

∑
S
m,~f
⊂Dρ

ω(2−m)(m+ 1)AS
m,~f

~f(x)

=:
∑

ρ∈{0, 1
3
, 2
3
}d
Aρ ~f(x).

Now, by the logarithmic Dini condition, each of the operators Aρ is bounded above by some

absolute constant times a 0-shift whose associated sequence is 1-Carleson (and localized in

P (ρ)) to which we can apply again Theorem 3.1. Therefore, we obtain

|T ~f(x)| .
∑

ρ∈{0, 1
3
, 2
3
}d
ASρ ~f(x),

for some sparse families Sρ ⊂ Dρ which depend on ~f .

We now introduce the notion of function quasi-norm. We say that ‖ · ‖X, defined on the set

of measurable functions, is a function quasi-norm if:

(P1) There exists a constant C > 0 such that

‖f + g‖X ≤ C
(
‖f‖X + ‖g‖X

)
,
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(P2) ‖λf‖X = |λ|‖f‖X for all λ ∈ C.

(P3) If |f(x)| ≤ |g(x)| almost-everywhere then ‖f‖X ≤ ‖g‖X.

(P4) ‖ lim infn→∞ fn‖X ≤ lim infn→∞ ‖fn‖X

Fix some dyadic system D such that there exists an increasing sequence of dyadic cubes

{P`}` ⊂ D whose union is the whole space Rd, and denote 1P`
~f = (1P`f1, . . . ,1P`fk). Now,

taking into account properties (P1) and (P3), if we take quasi-norms in the second

assertion of Corollary 3.2, we have

‖1P`T (1P`
~f)‖X . sup

D ,S
‖AS(1P`

~f)‖X ∀`.

On the one hand, since ~f is integrable, T (1P`
~f) converges pointwise to T (~f). Therefore, we

have

1P`T (1P`
~f)→ T (~f)

pointwise. Finally, we apply property (P4) and we get

‖T ~f‖X =
∥∥∥lim inf

`
1P`T (1P`

~f)
∥∥∥
X
≤ lim inf

`

∥∥∥1P`T (1P`
~f)
∥∥∥
X
. sup

D ,S

∥∥∥AS ~f∥∥∥
X
.

This is exactly Corollary 3.3.

Remark 3.12. We note that the dependence on m in the pointwise estimate of shifts of

complexity m must be at least linear in m. To see this, let us work in dimension one and fix

a large integer m. For any interval I = [a, b) let Ij be the j-th interval of Dm(I):

Ij = a+ |I|[j2−m, (j + 1)2−m).
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Define a tower over an interval I to be the collection of intervals

TI = {[a, a+ 2−k|I|) : k ∈ N}.

The collection of intervals S =
⋃
J∈Dm(I) TJ is a sparse collection. Now consider a function

f on I which is defined by

f(x) =


0 if x ∈ Ij with j even,

2 otherwise.

Denote gen(J) = log2(`(I)`(J)−1) for cubes J ∈ D(I). Observe that for any dyadic interval

J ⊆ I with gen(J) ≤ m− 1 we have

〈f〉J = 1.

Consider now the action of AmS on f . If x ∈ (Ij)0 with j even then

AmS f(x) = m.

In order to construct a collection S ′ of intervals in I for which we have

AmS f(x) ≤ CA0
S′f(x),

we would need to select every interval J ⊂ I with gen(J) ≥ m− 1. Indeed, let Ik(x) be the

interval in Dk(I) which contains x and let αJ be 1 if J ∈ S ′ and 0 otherwise. Then

CA0
S′f(x) = C

m−1∑
k=0

αIk(x) ≥ m

for all x ∈ (Ij)0 with j even. This implies that at least m/C of these intervals must be in
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S ′. But this implies that the height

∑
J∈S′

αJ1J(x) ≥ m/C

on half of the interval I, which contradicts the hypothesis of S ′ being sparse if m is large

enough.

3.3 Applications

We are now ready to fully state and prove the applications of the pointwise bound as

stated in the introduction. We begin with the multilinear sharp weighted estimates:

3.3.1 Multilinear A2 theorem

We need some more definitions first. These were introduced in [27].

Definition 3.13 (A~P weights). Let ~P = (p1, . . . , pk) with 1 ≤ p1, . . . , pk < ∞ and 1
p

=

1
p1

+ · · ·+ 1
pk

. Given ~w = (w1, . . . , wk), set

v~w =
k∏
i=1

w
p/pi
i .

We say that ~w satisfies the k-linear A~P condition if

[~w]A~P := sup
Q

( 1

|Q|

∫
Q

v~w

) k∏
i=1

( 1

|Q|

∫
Q

w
1−p′i
i

)p/pi
.

We call [~w]A~P the A~P constant of ~w. As usual, if pi = 1 then we interpret 1
|Q|

∫
Q
w

1−p′i
i to be

(ess infQwi)
−1.

The following theorem was proved in [28]:
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Theorem 3.14. Suppose 1 < p1, . . . , pk <∞, 1
p

= 1
p1

+ · · ·+ 1
pk

and ~w ∈ A~P . Then

‖AS ~f‖Lp(v~w) . [w]
max(1,

p′1
p
,...,

p′k
p

)

A~P

k∏
i=1

‖fi‖Lp(wi),

whenever S is sparse.

We can now use Corollary 3.3 to extend the above result to general k-linear

Calderón-Zygmund operators:

Theorem 3.15. Under the conditions of Theorem 3.14, for any k-linear Calderón-Zygmund

operator T , we have

‖T ~f‖Lp(v~w) . [~w]
max(1,

p′1
p
,...,

p′k
p

)

A~P

k∏
i=1

‖fi‖Lp(wi).

Proof. We just need to apply Corollary 3.3 with ‖·‖X := ‖·‖Lp(v~w), which clearly is a function

quasi-norm. The assumption of ~f being integrable is a qualitative one and can be trivially

removed by the usual density arguments.

3.3.2 Sharp aperture weighted Littlewood-Paley theorem

Here we follow Lerner [24], the reader can find a nice introduction and some references

there. We begin with some definitions:

Let ψ ∈ L1(Rd) with
∫
Rd ψ(x) dx = 0 satisfy

|ψ(x)| . 1

(1 + |x|)d+ε
(3.17)∫

Rd
|ψ(x+ h)− ψ(x)| dx . |h|ε. (3.18)

We will denote the upper half-space Rd × R by Rd+1
+ and the α-cone at x by

Γα(x) = {(y, t) ∈ Rd+1
+ : |y − x| ≤ αt}.
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Let ψt be the dilation of ψ which preserves the L1 norm, i.e.: ψt(x) = t−dψ(x/t), then we

can define the square function Sα,ψf by

Sα,ψf(x) =
(∫

Γα(x)

|(f ∗ ψt)(y)|2 dy dt
td+1

)1/2

.

We will also need a regularized version. Let Φ be a Schwartz function such that

1B(0,1)(x) ≤ Φ(x) ≤ 1B(0,2)(x).

We define the regularized square function S̃α,ψ by

S̃α,ψf(x) =
(∫

Rd+1
+

Φ
(x− y

tα

)
|(f ∗ ψt)(y)|2 dy dt

td+1

)1/2

.

The regularized version can be used instead of Sα,ψ in most cases since we have

Sα,ψf(x) ≤ S̃α,ψf(x) ≤ S2α,ψf(x).

It was proved in [24] that

|(S̃α,ψf(x))2 − (mQ0(S̃α,ψf)2)| . α2d

∞∑
m=0

2−δm
∑
Q∈S

〈|f |〉22mQ1Q(x)

By the same Theorem 3.1 in its bilinear formulation (with f1 = f2 = f), the last expression

can be bounded, up to a constant, by an expression of the form

α2d
∑

ρ∈{0, 1
3
, 2
3
}d

∞∑
m=0

2−δm(m+ 1)
∑

Q∈Sρ,m
〈|f |〉2Q1Q(x).

As in [24], we know (a priori) that mQ0(S̃α,ψf)→ 0 as |Q| → ∞ so by the triangle

inequality and Fatou’s lemma we can ignore that term (or by arguing as we did in the

50



previous section). Finally, arguing as in the proof of corollaries 3.2 and 3.3, we arrive at

‖S̃α,ψf‖Lp,∞(w) . αd sup
D ,S
‖A0
S(f, f)1/2‖Lp,∞(w),

where the supremum is taken over all dyadic grids D and all sparse collections S ⊂ D . To

finish the argument we recall the following result, which was shown in [19]:

‖A0
S(f, f)1/2‖Lp,∞(w) . [w]

max( 1
2
, 1
p

)

Ap
Φp([w]Ap)‖f‖Lp(w) (3.19)

for 1 < p < 3, where

Φp(t) =


1 if 1 < p < 2

1 + log t if 2 ≤ p < 3.

We are thus able to extend Lerner’s estimate to 1 < p ≤ 2, obtaining

‖Sα,ψf‖Lp,∞(w) . αd[w]
1/p
Ap
‖f‖Lp(w) for 1 < p < 2

and

‖Sα,ψf‖L2,∞(w) . αd[w]
1/2
A2

(1 + log[w]A2)‖f‖L2(w).

3.4 The weak-type estimate for multilinear m-shifts

Here we prove the weak-type estimate for k-linear m-shifts needed in section 3.2. Notice

that the only important point of the estimates below is the independence of the constants

from the parameter m. The proof could be more or less standard by now, but the authors

have not been able to find it elsewhere. Therefore we include it for completeness.
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Theorem 3.16.

sup
λ>0

λ|{x ∈ P0 : AmP0,α
~f(x) > λ}|k ≤ CW‖α‖Car(P0)

k∏
i=1

‖fi‖L1(P0), (3.20)

where CW > 0 only depends on k and d, and in particular is independent of m.

We will essentially follow Grafakos-Torres [10] and [14]. We first prove an L2 bound and

then apply a Calderón-Zygmund decomposition. For the L2 bound we will use a

multilinear Carleson embedding theorem by W. Chen and W. Damián [2], from which we

only need the unweighted result:

( ∑
Q∈D(P0)

αQ

( k∏
i=1

〈fi〉Q
)p) 1

p ≤ ‖α‖Car(P0)

k∏
i=1

p′i‖fi‖Lpi (P0) (3.21)

whenever

1

p
=

1

p1

+ · · ·+ 1

pk
.

Now we can prove

Proposition 3.17.

‖AmP0,α
~f‖L2(P0) ≤ 4‖α‖Car(P0)

k∏
i=1

‖fi‖L2k(P0)

Proof. We begin by using duality and homogeneity to reduce to showing

∫
P0

g(x)AmP0,α
~f(x) dx ≤ 4

assuming that ‖fi‖L2k(P0) = ‖g‖L2(P0) = ‖α‖Car(P0) = 1 and g ≥ 0. By definition and

Cauchy-Schwarz, this is equivalent to

( ∑
Q∈D≥m(P0)

αQ

( k∏
i=1

〈fi〉Q(m)

)2

|Q|
)1/2( ∑

Q∈D≥m(P0)

αQ〈g〉2Q|Q|
)1/2

.
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The second term can be estimated, using (3.21) in the linear case, by

( ∑
Q∈D≥m(P0)

αQ〈g〉2Q|Q|
)1/2

≤ 2.

For the first term observe that the sequence βQ defined by

βQ =
1

2dm

∑
R∈Dm(Q)

αR

is a Carleson sequence adapted to P0 of the same constant. Indeed:

1

|Q|
∑

R∈D(Q)

βR|R| =
1

|Q|
∑

R∈D(Q)

|R| 1

2dm

∑
T∈Dm(R)

αT

=
1

|Q|
∑

R∈D(Q)

∑
T∈Dm(R)

αT |T |

=
1

|Q|
∑

R∈D≥m(Q)

αR|R|

≤ ‖α‖Car(I)

= 1.

Therefore, we can write the first term as

( ∑
Q∈D(P0)

βQ

( k∑
i=1

〈fi〉Q
)2

|Q|
)1/2

,

which can also be estimated by (3.21) as follows:

( ∑
Q∈D(P0)

βQ

( k∑
i=1

〈fi〉Q
)2

|Q|
)1/2

≤
( 2k

2k − 1

)k
≤ 2.

Combining both terms we arrive at

∫
P0

g(x)AmP0,α
~f(x) dx ≤ 4
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which is what we wanted.

Now we can prove Theorem 3.16.

Proof. By homogeneity we can assume ‖α‖Car(P0) = ‖fi‖L1(P0) = 1. We now follow the

classical scheme which uses the L2 bound and a standard Calderón-Zygmund decomposition,

see for example Grafakos-Torres [10]. However, we need to be careful with the dependence

on m, so we will adapt the proof in [14] to our operators.

Assume without loss of generality that fi ≥ 0. Define

Ωi = {x ∈ P0 :Mdfi(x) > λ1/k}.

If 〈fi〉P0 > λ1/k then by the homogeneity assumption

|P0| < λ−1/k

and the estimate follows. Therefore, we can assume 〈fi〉P0 ≤ λ1/k for all 1 ≤ i ≤ k and hence

we can write Ωi as a union the cubes in a collection Ri consisting of pairwise disjoint dyadic

(strict) subcubes of P0 with the property

〈fi〉R > λ1/k and 〈fi〉R(1) ≤ λ1/k.

For each 1 ≤ i ≤ k let bi =
∑

R∈Ri b
R
i , where

bRi (x) :=
(
fi(x)− 〈fi〉R

)
1R(x).

We now let gi = fi − bi.

Observe that we have

|gi(x)| ≤ 2dλ1/k,
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as well as

|Ωi| =
∑
R∈Ri

|R| ≤ λ−1/k.

Define Ω = ∪ki=1Ωi, then we have

|{x ∈ P0 : AmP0,α
~f(x) > λ}| ≤ |Ω|+ |{x ∈ P0 \ Ω : AmP0,α

~f(x) > λ}|

≤ kλ−1/k + |{x ∈ P0 \ Ω : AmP0,α
~f(x) > λ}|. (3.22)

To estimate the second term observe that

AmP0,α
~f(x) = AmP0,α

(~g +~b)(x)

= AmP0,α
~g(x) +

2k−1∑
j=1

AmP0,α
(hj1, . . . , h

j
k)(x),

where the functions hji are either gi or bi and, furthermore, for each 1 ≤ j ≤ 2k − 1 there is

at least one 1 ≤ i ≤ k such that hji = bi. Fix j and let ij be such that hjij = bij , then

AmP0
(hj1, h

j
2, . . . , h

j
ij
, . . . , hjk)(x) =

∑
Q∈D≥m(P0)

αQ

( k∏
i=1

〈hji 〉Q(m)

)
1Q(x)

=
∑

Q∈D≥m(P0)

αQ〈bij〉Q(m)

( ∏
1≤i≤k, i6=ij

〈hji 〉Q(m)

)
1Q(x)

=
∑
R∈Rij

∑
Q∈D≥m(P0)

αQ〈bRij〉Q(m)

( ∏
1≤i≤k, i6=ij

〈hji 〉Q(m)

)
1Q(x)

=
∑
R∈Rij

∑
Q∈D>m(R)

αQ〈bRij〉Q(m)

( ∏
1≤i≤k, i6=ij

〈hji 〉Q(m)

)
1Q(x).

So we deduce that AmP0,α
(hj1, . . . , h

j
k)(x) = 0 for all x /∈ Ωij . With this fact we can see that

the second term in (3.22) is actually identical to

|{x ∈ P0 \ Ω : AmP0,α
~g(x) > λ}|.

55



Now we can use the L2 bound as follows:

|{x ∈ P0 \ Ω : AmP0,α
~g(x) > λ}| ≤ 1

λ2
‖AmP0,α

~g‖2
L2(P0)

≤ 16

λ2

k∏
i=1

‖gi‖2
L2k(P0)

≤ 16

λ2

k∏
i=1

(
2dλ1/k

) 2k−1
k ‖gi‖1/k

L1(P0)

=
16

λ2
2d(2k−1)λ2−1/k

= 24+d(2k−1)λ−1/k.

Putting both estimates together we arrive at

|{x ∈ P0 : AmP0,α
~f(x) > λ}| ≤ 25+d(2k−1)λ−1/k

which yields the result with CW = 2k(5+d(2k−1)).

56



4

On the embedding of A1 into A∞

Guillermo Rey

Submitted.

4.1 Introduction

The purpose of this article is to give a quantitative version of the classical embedding

between Muckenhoupt classes

A1 ↪→ A∞. (4.1)

The class A1 is defined to be all weights w ≥ 0 for which Mw ≤ Cw for some C, where

Mf(x) = sup
P3x

1

|P |

∫
P

|f(y)| dy

is the uncentered Hardy-Littlewood maximal operator (here the supremum is taken over

cubes with sides parallel to the coordinate axes).

The class A∞ is defined to be all weights w ≥ 0 for which there exists a constant C and an
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exponent ε > 0 such that

w(E)

|P |
≤ C

( |E|
|P |

)ε
for all cubes P and all subsets E ⊆ P . See [8] for more equivalent definitions.

It is a well-known fact that every weight in A1 is also in A∞; here we give a quantitative

version of this embedding.

We will actually work with a wider class of weights, the dyadic Ap weights. To state the

result, let us fix a way to quantify exactly how a weight lies in dyadic A1. Let P be a cube

in Rd, we define the Ad1(P ) characteristic of a weight w ≥ 0 to be

[w]Ad1(P ) := ess supx∈P
Mdyadic

P w(x)

w(x)
,

where Mdyadic
P is the dyadic maximal operator localized to P :

Md
Pf(x) = sup

R∈D(P )

〈|f |〉R1R(x).

Here we are denoting by D(P ) the collection of all dyadic subcubes of P , and the average

of a function f over a set E by

〈f〉E :=
1

|E|

∫
E

f(x) dx.

Also, we denote the characteristic function of a set E by 1E.

We define the (non-dyadic) A1 characteristic similarly:

[w]A1(P ) := ess supx∈P
MPw(x)

w(x)
,

where MP is the uncentered Hardy-Littlewood maximal operator where the cubes are

constrained to lie inside P .
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The classical way to prove (4.1) proceeds by using the reverse Hölder inequality of

Coifman-Fefferman [3] (see [13] for a recent sharp reverse Hölder inequality valid in a very

general context): for any weight w ∈ Ap we have

〈wq〉P ≤ C〈w〉qP ,

for some exponent q > 1 depending on w. Indeed, let CRH be the best constant in the

above inequality (which will depend on q and on how w lies in Ap), then:

w(E) =

∫
P

w1E

≤
(∫

P

wq
)1/q

|E|1/q′

≤ C
1/q
RHw(P )

( |E|
|P |

)1/q′

.

For (non-dyadic) A1 weights the most quantitative version of the reverse Hölder inequality

was given by [47] in dimension one. Using the results of [47] one obtains

w(E)

w(P )
≤ a

a− 1

( |E|
|P |

) 1
a[w]A1

(P )

for all a > 1, so one can get arbitrarily close to the exponent 1
[w]A1

at the cost of a

multiplicative constant. The results in [47] are, however, valid only for non-dyadic Ap

weights, which behave much better in terms of sharp constants; also [47] is valid only in

dimension 1.

In [30] A. Melas showed that, for dyadic A1 weights, one has

〈
(Mdyadicw)p

〉
P
≤ C(p, [w]Ad1)〈w〉pP ,
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for all p such that

1 ≤ p <
log(2d)

log
(

2d − 2d−1
[w]

Ad1

) ,
and where C(p, [w]Ad1) is a constant which blows-up as p tends to the endpoint above.

Following the same steps as before, this implies an inequality of the form

w(E)

w(P )
≤ Cε

( |E|
|P |

)ε
for all ε such that

0 ≤ ε < −
log
(

1− 2d−1
2d[w]

Ad1

)
d log 2

:= ε([w]Ad1 , d),

and where Cε is a constant which blows-up as ε tends to the endpoint ε([w]Ad1 , d).

It was of interest whether one could achieve an estimate with the endpoint ε([w]Ad1 , d), and

this was answered positively by A. Osȩkowski in [41], where he proved the following

weak-type estimate:

1

|P |

∣∣∣{x ∈ P : Mdyadicw(x) > 1
}∣∣∣ ≤ 〈w〉pP (4.2)

for all p such that

1 ≤ p ≤ log(2d)

log
(

2d − 2d−1
[w]

Ad1

) .
This estimate, coupled with Hölder’s inequality for Lorentz spaces yields

w(E)

w(P )
≤ Cε(Q,d)

( |E|
|P |

)ε(Q,d)

for all weights w with [w]Ad1 ≤ Q, thus settling the endpoint question of whether a decay
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rate of (|E|/|P |)ε(Q,d) could be achieved. However, note that Hölder’s inequality for Lorentz

spaces (when used in this way) has a constant which explodes when p→ 1 which in this

case implies that the constant Cε(Q,d) will blow-up as Q→∞.

In this article we improve this conclusion by directly computing the function

B(x, y,m) = sup
w(E)

|P |
,

where the supremum is taken over all sets E ⊆ P with |E|/|P | = x, and all dyadic A1

weights w with [w]Ad1(P ) ≤ Q, 〈w〉P = y and ess infz∈P w(z) = m.

The expression for B is a little involved and we refer the reader to section 4.3 for its full

form, but we can already give an upper bound for B(·, Q, 1):

B(x,Q, 1) ≤ f̃(x) := Qxε(Q,d). (4.3)

This shows that the decay rate deduced from Osȩkowski’s estimate can be achieved with a

uniform constant as Q→∞ (note that the constant Q cancels when estimating w(E)
w(P )

).

Observe also that this recovers the result of Osȩkowski when one takes w instead of its

maximal function in (4.2), which can be interpreted as a weak-type reverse Hölder

inequality. Indeed, assume without loss of generality that |P | = ess inf w = 1 and let

Eλ = {x ∈ P : w(x) > λ}, then our estimate will show (see (4.12)) that

w(Eλ) ≤ Q
(w(P )− 1

Q− 1

)(
|Eλ|

Q− 1

w(P )− 1

)ε(Q,d)

.

So integrating w over this set yields

λ|Eλ|1−ε(Q,d) ≤ (〈w〉P − 1)1−ε(Q,d)
( Q

(Q− 1)ε(Q,d)

)
≤ 〈w〉P .
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Or, in other words,

‖w‖Lp,∞ ≤
∫
P

w(x) dx

for the same p’s as in (4.2).

However, the function B(·, Q, 1) is, surprisingly, slightly better. Indeed if we define

f(x) = B(x,Q, 1), then our main result shows that f is the piecewise-linear interpolation of

the function f̃ evaluated at the points 2−dk for k ∈ N.

Figure 4.1 Plots of f and f̃
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In Figure 4.1 we show a normalized section of the plot (the values are divided by Q) of the

functions f and f̃ with Q = 10 and in dimension two.

4.1.1 Organization

The article is organized as follows: in section 4.2 we cast the problem as one of finding a

certain Bellman function, then in section 4.3 we give a lower bound for the Bellman

function; we also describe the structure of the maximizers. In section 4.4 we show that the

lower bound found in the previous section is also an upper bound, hence showing that the

function found is the actual Bellman function.
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4.2 The Bellman function approach

Define, as in the introduction, the function

B(x, y,m) = sup
{w(E)

|P |
: E ⊆ P, [w]Ad1(P ) ≤ Q such that |E| = x|P |, 〈w〉P = y, m = ess inf w

}
.

By translation and dilation invariance, the function B is independent of P .

The domain, which will be denoted by ΩB is:

0 ≤ x ≤ 1

0 < m ≤ y ≤ Qm.

In this section we cast finding B as a minimization problem. We will follow the Bellman

function method, see for example [36], [47] or [45], and [41] for an approach closer to ours.

The function B satisfies the following Main Inequality

B(x, y,m) ≥
〈
B(xi, yi,mi)

〉
, (4.4)

where 〈xi〉 = x, 〈yi〉 = y, minmi = m, (xi, yi,mi) ∈ Ω, and (x, y,m) ∈ Ω. In inequality

(4.4), and for the rest of the article, we use the notation

〈ξi〉 :=
1

n

n∑
i=1

ξi,

whenever {ξi} is a discrete sequence of n numbers; usually n will be obvious from the

context so we will omit its dependence.

We can see (4.4) by combining almost-extremizers defined on the first-generation dyadic

subcubes of P into one on the whole cube P .
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We also have the obstacle condition

B(1, y, y) = y,

which is just the observation that if E = P almost everywhere, then 〈1Ew〉P = 〈w〉P .

From the definition of B we have the homogeneity property

B(x, λy, λm) = λB(x, y,m). (4.5)

If we find a nonnegative function B defined in ΩB and which satisfies the main inequality

and the obstacle condition above, then B ≤ B. This is a typical fact whose proof we omit,

but the reader can consult [41] for a proof in a similar case.

The homogeneity condition will let us assume that m = 1 in (4.4):

Proposition 4.1. If a function B defined on ΩB satisfies the main inequality (4.4) with

m = 1 and the homogeneity property (4.5), then it must also satisfy the main inequality for

all m > 0.

Proof. This is just the observation that the domain of B is invariant under simultaneous

dilations of the variables y and m.

We want to find a set of necessary and sufficient conditions for B to satisfy the main

inequality, but which are simpler to verify. To this end, let us first prove necessary

conditions that any such B must satisfy.

The following Lemma is simple but important in what follows. It tells us that, in order to

exploit (4.4), we should strive to minimize the variables mi as much as possible. We will let

N := 2d for the rest of the article.

Lemma 4.2. Any function B satisfying (4.4) is decreasing in m. More precisely: assume

(x, y,m1) and (x, y,m2) are two points in ΩB with m1 ≤ m2, then

B(x, y,m1) ≥ B(x, y,m2). (4.6)

64



Proof. Let xi = x and yi = y for all 1 ≤ i ≤ 2d := N . Also, let

m̃i =


m1 if i = 1

m2 if i > 1.

Then the points (xi, yi, m̃i) are all in Ω. Also, 〈xi〉 = x and 〈yi〉 = y. Since m1 ≤ m2 we also

have that min(m̃i) = m1, so using (4.4):

B(x, y,m1) ≥ 1

N
B(x, y,m1) +

N − 1

N
B(x, y,m2),

which after rearranging yields (4.6).

The following Lemma follows directly from the main inequality (4.4).

Lemma 4.3. For any fixed m > 0, the function (x, y) 7→ B(x, y,m) is concave.

Proof. This is just the observation that the domain Ω is convex, together with (4.4) with

mi = m.

Now we are able to make the first reduction in (4.4) (after the trivial one of setting m = 1):

Proposition 4.4. Suppose B is a nonnegative function defined in ΩB and which satisfies

the obstacle condition, (4.5), and (4.6). If B satisfies

B(x, y, 1) ≥
〈
B
(
xi, yi,max

(
1,
yi
Q

))〉
(4.7)

for all N-tuples of points (xi, yi) satisfying

0 ≤ xi ≤ 1, and 〈xi〉 = x, (4.8)

1 ≤ yi, min(yi) ≤ Q, and 〈yi〉 = y, (4.9)

then we must have that B = B.
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Proof. The above conditions make (4.7) certainly necessary. To see that it is sufficient, take

any N -tuple (xi, yi,mi) of points in ΩB satisfying

〈xi〉 = x, 〈yi〉 = y and min(mi) = 1.

Consider now the alternative N -tuple formed by (xi, yi, m̃i), where

m̃i =


yi
Q

if yi ≥ Q

1 otherwise.

= max
(

1,
yi
Q

)
.

These points all lie in ΩB and moreover they still satisfy the condition

min(m̃i) = 1.

However, by inequality (4.6) we have

B
(
xi, yi,max

(
1,
yi
Q

))
≥ B(xi, yi,mi).

This proposition is useful because it allows us to “almost” eliminate the third variable from

our analysis. The reason that we used the word “almost” comes from the fact that we still

have the extraneous condition that min(yi) ≤ Q, which is an effect of having min(mi) = 1.

We now proceed to eliminate this condition too.

Suppose that of the N points (xi, yi), there are exactly N − k of them for which yi ≥ Q.

Then, after possibly reordering the inequality (which we can do without loss of generality),
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the right hand side of (4.7) becomes

1

N

( k∑
i=1

B(xi, yi, 1) +
N∑

i=k+1

B
(
xi, yi,max

(yi
Q

)))

which can be written, after applying the homogeneity property (4.5), as

1

N

( k∑
i=1

B(xi, yi, 1) +
N∑

i=k+1

yi
Q
B(xi, Q, 1)

)
.

So, verifying (4.7) reduces to just showing that B is concave in (x, y), decreasing in m, and

that for each 1 ≤ k ≤ N − 1

B(x, y, 1) ≥ 1

N

( k∑
i=1

B(xi, yi, 1) +
N∑

i=k+1

yi
Q
B(xi, Q, 1)

)
(4.10)

for all (x, y) and all (xi, yi) as in Proposition (4.4), with the additional assumption that

yi ≥ Q for k ≥ k + 1.

The next proposition allows us to just consider the case where k = N − 1 in the above

inequality.

Proposition 4.5. Let M be a nonnegative function defined on Ω and which satisfies that

1. M is concave.

2. The function t 7→ tM(x, y/t) is decreasing.

3. For all (x, y) and all (x̃, ỹ) in Ω we have

M(x, y) ≥ N − 1

N
M(x̃, ỹ) +

Ny − (N − 1)ỹ

QN
M(Nx− (N − 1)x̃, Q) (4.11)

whenever Nx− (N − 1)x̃ ≥ 0 and Ny − (N − 1)ỹ ≥ Q.

Then, defining B by homogeneity as in (4.5):

B(x, y,m) = mM(x, y/m),
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yields a function which satisfies the conditions of Proposition 4.4

Proof. First of all note that, by the above discussion, we just need to find M satisfying the

conditions (1), (2) and

M(x, y) ≥ 1

N

( k∑
i=1

M(xi, yi, 1) +
N∑

i=k+1

yi
Q
M(xi, Q, 1)

)
,

where the average of xi is x, the average of yi is y and all yi ≥ Q for i ≥ k + 1.

Also, note that (4.11) is just the case of (4.7) with k = N−1. So, in what follows we assume

k < N − 1.

Fix all points (xi, yi) for i ≤ k and consider the collection V of all vectors ~y = (yk+1, . . . , yN)

with yi ≥ Q for k ≥ k + 1 and satisfying.

1

N

N∑
i=k+1

yi +
1

N

k∑
i=1

yi = y.

We can write this condition as

ŷ :=
1

N −K

N∑
i=k+1

yi =
Ny −

∑k
i=1 yi

N − k
=
Ny − kỹ
N − k

,

where we have defined ỹ = 1
k

∑k
i=1 yi.

It is an easy exercise to verify that

1

N

N∑
i=k+1

yi
Q
M(xi, Q) ≤ 1

QN

N∑
i=k+1

biM(xi, Q),

where bi are defined by

bi =


Q if i 6= imax

(N − k)ŷ −Q(N − k − 1) if i = imax,

and where imax is defined to be the index which maximizes M(xi, Q) for i ≥ k + 1.

68



Observe that the vector (bk+1, . . . , bN) ∈ V , so we can assume that yi = bi for i ≥ k+ 1. But

then, we can reorganize the inequality to put all of the terms except one (the one with imax)

on the first summation. Writing it this way makes it evident that it really was a particular

example of the inequality with k = N − 1.

4.3 Finding the Bellman function

In this section we give a lower bound M for M, and in the next section we will show that

this lower bound is also an upper bound and hence that M = M.

First recall that

t 7→M(x, y/t)

is non-increasing and therefore that M(1, y) ≥ y (here we are using the obstacle

M(1, 1) = 1. Since M(0, 1) ≥ 0, we now can extend this bound to the subdomain

y ≤ 1 + (Q− 1)x to get:

M(x, y) ≥ x+ y − 1 ∀(x, y) ∈ Ω : y ≤ 1 + (Q− 1)x.

We will now give a lower bound for M in the rest of the domain. The idea is to use

inequality (4.11) setting the number Nx− (N − 1)x̃ to be as large as possible, within the

domain that we know, and then iterate.

More precisely let x0 = 1, observe that if Nx− (N − 1)x̃ = x0, then

x̃ =
Nx− x0

N − 1
.

Clearly we need x ≥ 1/N for x̃ to be in the domain, so we set x = 1
N

. We will also make ỹ

as small as possible, which means ỹ = 1.
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Putting it all together we obtain, using (4.11) with x = 1
N

and y = Q:

M
( 1

N
,Q
)
≥ NQ− (N − 1)

NQ
M(x0, Q) = Q

(
1− N − 1

NQ

)
.

Now we iterate this procedure. Set x = xk+1 = xk
N

, y = Q, ỹ = 1 and x̃ = 0, then (4.11)

gives

M(xk+1, Q) ≥ (1− N − 1

NQ

)
M(xk, Q),

so

M(N−k, Q) ≥ Q
(

1− N − 1

NQ

)k
.

Between xk+1 and xk we know that M(·, Q) is concave, so M must certainly be at least

linear in these intervals. Now, since M(0, 1) ≥ 0, we can also extend this bound by

homogeneity and get the upper bound

M(x, y) ≥ y − 1

Q− 1
M
(
x
Q− 1

y − 1
, Q
)
≥ y − 1

Q− 1
f
(
x
Q− 1

y − 1

)

for y − 1 ≥ x. Here, f is the piecewise linear function defined on [0, 1] by linearly

interpolating the points

f(xk) = Q
(

1− N − 1

NQ

)k
between xk+1 and xk, Figure 4.1 shows what f typically looks like.

Putting it all together, we get

M(x, y) ≥


x+ y − 1 if y ≤ 1 + (Q− 1)x

y−1
Q−1

f
(
xQ−1
y−1

)
if y ≥ 1 + (Q− 1)x.

}
=: M(x, y). (4.12)
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The way we proved these bounds also shows how one would construct pairs of weights w

and sets E showing that M is at least the promised lower bound. We now give a detailed

description of these examples.

4.3.1 Explicit extremizers

Let’s start with examples corresponding to the line (1, y) with y ∈ [1, Q]. To get the bound

M(1, y) ≥ y we used the main inequality keeping all the parameters fixed except one of the

mi’s. So let us repeat the proof, but now with actual weights. Fix a cube P and let

P1, . . . PN be its dyadic children. Define wi(x) = 1 for all i and all x ∈ Pi except for i = N ,

for which we define wi(x) = 1 +N(y − 1) for all x ∈ PN . Now define w(x) = wi(x) for all

x ∈ Pi; clearly ess infx∈P w(x) = 1 and 〈w〉P = y. Now, since x = 1, we should set E = P .

The pair (w,E) is clearly contained in the supremum in the definition of

B(1, y, 1) = M(1, y) and so

M(1, y) ≥ w(P )

|P |
= y (4.13)

for this particular choice of w. Of course, any weight with 〈w〉P = y would also have been

sufficient since x = 1.

Examples for weights and sets corresponding to points (x, y) on the rest of the domain are

more complicated. We will start by constructing examples along the line y = Q.

The way we proved that M( 1
N
, Q) ≥ Q(1− N−1

NQ
) was by using (4.11) with x̃ = 0, ỹ = 1,

x = 1
N

and y = Q. Similarly, we got the bound M(xk+1, Q) ≥ (1− N−1
NQ

)M(xk, Q) by using

(4.11) with x̃ = 0, ỹ = 1, x = 1
Nk+1 and y = Q. Looking back at how we got (4.11), we see

that we combined N − 1 trivial weight-set pairs (the pairs (w ≡ 1, E = ∅)) with an example

coming from

B
( 1

Nk
, N(Q− 1) + 1, N − N − 1

Q

)
.
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We then used homogeneity to translate this to an example which would extremize

M
( 1

Nk
, Q
)
,

but having lost a factor slightly larger than one.

We can trace back these steps with the following lemma:

Lemma 4.6. Let P be a cube in Rd. Given a pair (w,E) where w is a dyadic A1 weight with

[w]A1 ≤ Q and with 〈w〉P = Q, ess infz∈P w(z) = 1, and 〈1E〉P = x, there exists a pair (w̃, Ẽ)

where w̃ is another dyadic A1 weight with [w]Ad1 ≤ Q and with 〈w̃〉P , ess infz∈P w̃(z) = 1,

and 〈1E〉P = x/N for which

w̃(Ẽ)

|P |
≥
(

1− N − 1

NQ

)w(E)

|P |
.

Moreover, the set Ẽ is entirely contained in one of the dyadic subcubes of P and w̃ is

identically 1 on the complement of Ẽ.

Proof. As before, enumerate the children of P by P1, . . . , PN . We start by translating and

dilating (w,E) to the subcube P1, we do this with the obvious linear change of variables.

We then multiply the weight we just constructed by the constant NQ−(N−1)
Q

. Let us call this

new weight w1. Clearly ess infz∈P1 w1(z) = NQ−(N−1)
Q

≥ 1 and 〈w1〉P1 = NQ− (N − 1). Now

define wi(z) = 1 for all z ∈ Pi and each i ≥ 2 and combine all of these weights into one:

w̃(z) = wi(z), for all z ∈ Pi. This new weight is a dyadic A1 weight with [w̃]Ad1 ≤ Q.

With E we do the same: we translate and dilate it to P1; let us call this new set E1. This

new set has 〈1E1〉 = x. Define Ẽ to be just E1 (so 1Ẽ(z) = 1E1(z)).

We assert that this new pair (w̃, Ẽ) satisfies the promised estimate. Indeed (assuming with-
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out loss of generality that |P | = 1):

w̃(Ẽ) =
1

N

(
(N − 1)w2(Ẽ) + w1(Ẽ)

)
=

1

N
w1(Ẽ)

=
(

1− N − 1

NQ

)
w(E),

which is what we wanted.

Given a cube P and a pair (w,E) as in Lemma 4.6, we define

T (w) = w̃,

where w̃ is the weight constructed in the proof of Lemma 4.6. Similarly, we define

S(E) = Ẽ.

With this lemma at hand we can now describe the structure of the examples which show

that M(N−k, Q) ≥ Q(1− N−1
NQ

)k.

Lemma 4.7. Let P be any cube and let w0 be the weight constructed when proving (4.13)

(but any weight with 〈w0〉P = Q, ess infz∈P w0(z) = 1, and with [w]Ad1 = Q will work as well).

Define the weights wk and the sets Ek inductively by

wk+1 = Twk and Ek+1 = SEk,

where E0 = P .

Then wk is an Ad1 weight with [w]Ad1 = Q, 〈wk〉P = Q, ess infz∈P wk(z) = 1, 〈1Ek〉P = N−k

and

wk(Ek)

|P |
= Q

(
1− N − 1

NQ

)k
.

Proof. The proof is just to iteratively apply Lemma 4.6.

It remains to extend the examples to the rest of the domain. But recall that the bound we

73



gave for M on the rest of the domain was obtained by linear interpolation, so we just need

to combine examples that have already been constructed.

The following lemma shows how to combine two pairs (w0, E0) and (w1, E1) into one:

Lemma 4.8. Let P be a cube and let (w0, E0) and (w1, E1) be two pairs. Assume w0 and

w1 are both dyadic A1 weights with [wi]Ad1 ≤ Q, and also:

〈1Ei〉P = xi, 〈wi〉P = yi, ess infz∈P wi(z) = 1.

Then, for any λ ∈ [0, 1] we can construct a pair Cλ((w0, E1), (w1, E1)) = (w,E), where w is

a dyadic A1 weight with [w]Ad1 ≤ Q,

〈1E〉P = x, 〈w〉P = y, ess infz∈P w(z) = 1,

and

w(E)

|P |
= (1− λ)

w0(E0)

|P |
+ λ

w1(E1)

|P |
,

where

x = (1− λ)x0 + λx1 and y = (1− λ)y0 + λy1.

Proof. Note that, at least when λ is a dyadic rational, repeated applications of the Main

Inequality give exactly these dynamics. So we should follow the proof of the Main Inequality,

whose meaning is to show what happens when one combines pairs (wi, Ei) defined on the

dyadic children of a cube into one pair (w,E) on the whole cube.

There is a slight technicality: if one applies this combination procedure a finite number of

times, one can only prove this lemma in the case where λ is a dyadic rational, but we can

still prove this lemma with a limiting argument.

Let bi be the digits of λ when written in binary:

λ =
∞∑
i=1

bi2
−i
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(it does not matter which of the possible binary representations one uses).

Fix the cube P and let R be any of its dyadic subcubes. Define SP→R to be the linear change

of variables which maps P to R.

Given a cube P let P1, . . . PN be a fixed enumeration of its first-generation children, this

ordering will be fixed throughout the proof (in the sense that we will use the same ordering

on every other cube, which we obtain by translating and dilating the original ordering).

The idea is to split the subcubes of P and on half of them put a translated and dilated copy

of either (w0, E0) or (w1, E1), depending on the binary digit of the current step. We apply

the same procedure on each of the remaining cubes (but now with the next digit).

More precisely, let ch(P ) be the first-generation dyadic subcubes of P and define H1
±(P ) to

be the subset of ch(P ) consisting of the first or second half the dyadic children, i.e.:

H1
−(P ) = {P1, . . . , P2d−1} and H1

+(P ) = {P2d−1+1, . . . , P2d}.

We inductively define Hj+1
± (P ) as follows:

Hj+1
± (P ) =

⋃
R∈Hj+(P )

H±(R).

We define the weight w by

w(x) =
∞∑
j=1

∑
R∈Hj−(P )

(
(1− bj)SP→Rw0(x) + bjSP→Rw1(x)

)
.

Similarly, we define the set E by

1E(x) =
∞∑
j=1

∑
R∈Hj−(P )

(
(1− bj)SP→R1E0(x) + bjSP→R1E1(x)

)
.

One can now check that this pair satisfies the required properties; see [43] for a very similar

construction.
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With this Lemma, we can now express the structure of the examples on the line y = Q of Ω

which lie between the points with coordinates x = N−k. Indeed, let (wk, Ek) be the

weight-set pair constructed by Lemma 4.7. Then for any x ∈ (N−k−1, N−k) we have

(wx, Ex) := Cλ((wk+1, Ek+1), (wk, Ek)),

where

x = (1− λ)N−k−1 + λN−k.

To extend to the rest of Ω, let (x, y) ∈ Ω with y < Q. First assume that y ≤ 1 + (Q− 1)x;

then we should use the previous Lemma with boundary on x = 1. Indeed let

(w,E) = Cλ((1, ∅), (wy, P )),

where λ = 1 + y−1
x

and where wy is any dyadic A1 weight with [w]Ad1 ≤ Q, 〈wy〉P = y and

ess infz∈P w(z) = 1. This pair clearly satisfies all the required estimates.

Now suppose that y ≥ 1 + (Q− 1)x and let (w∗, E∗) be the pair we just constructed on the

line y = Q with x-coordinate xQ−1
y−1

. Then

(w,E) = Cλ
(
(1, ∅), (w∗, E∗)

)
,

with λ = xQ−1
y−1

also satisfies all the required estimates.

4.4 Verifying the Main Inequality

We now have to show that the function M that we found in the previous section satisfies

all the required conditions which, we recall, are:

1. M is concave.
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2. The function t 7→ tM(x, y/t) is nonincreasing.

3. For all (x, y) ∈ Ω and all (x̃, ỹ) in Ω with x̃ ≤ x and Ny − (N − 1)ỹ ≥ Q, we have

M(x, y) ≥ N − 1

N
M(x̃, ỹ) +

Ny − (N − 1)ỹ

NQ
M(Nx− (N − 1)x̃, Q). (4.14)

It will be convenient to examine the function f , in particular observe that

f ′(x) = (Nη)k,

where η = 1− N−1
NQ

, whenever x ∈ (N−k−1, N−k).

The ratio ηN > 1 whenever Q > (N − 1)/N , which is always the case since Q ≥ 1, hence f

is concave. Since f is concave, it follows that M must also be concave, since M is just the

extension of f by homogeneity to the subdomain of Ω which lies above the diagonal

y = 1 + (Q− 1)x, and below this line the function is just the plane z = x+ y − 1. A brief

check now shows that M is indeed concave in Ω. This proves (1).

Now we will show that the function

t 7→ tM(x, y/t)

is decreasing, thus proving (2).

To show this, note that we just need to prove yMy ≥M wherever M is differentiable. This

obviously holds for y < 1 + (Q− 1)x, so it suffices to assume y > 1 + (Q− 1)x. By

homogeneity, we can translate this condition to one for f :

y

Q− 1
f
(
x
Q− 1

y − 1

)
− xy

y − 1
f ′
(
x
Q− 1

y − 1

)
≥ y − 1

Q− 1
f
(
x
Q− 1

y − 1

)
.

Let u = xQ−1
y−1

, then this inequality becomes

1

u
f(u)− yf ′(u) ≥ 0
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for all u ∈ [0, 1] and all y ∈ [1, Q]. Since f is increasing, this inequality is strongest when

y = Q, so it suffices to show

f(u) ≥ Quf ′(u).

Recall that f is piecewise linear, so let u0 = N−k−1 and u1 = N−k and assume u ∈ (u0, u1).

The above inequality now becomes

f(u0) + (u− u0)f ′(u0+) ≥ Quf ′(u0+).

Thus, we can reduce to showing

f(u0)

f ′(u0+)
≥ u0 + (Q− 1)u1.

But an easy computation, using the value of f ′ computed before, yields that this inequality

is equivalent to

η ≥ 1− N − 1

NQ
,

which is precisely the value of η so we are done. This shows (2).

Finally, we are left with verifying (3). To do this we will construct a sequence of functions

Mk defined on Ω, all of which satisfy (3) on a specific subset of Ω. Define

Ωk = {(x, y) ∈ Ω : y ≤ 1 + (Q− 1)Nkx}.

Figure 4.2 represents the first three of these domains (again, the diagram is not to scale).

For example Ω2 is the subdomain of Ω which lies to the right of the line joining O and C.
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Figure 4.2 Domains Ωk
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We define Mk to be the wedge formed by the k-th plane of M on Ω \ Ωk−1 and the

(k − 1)-th plane of M on Ωk−1, that is:

Mk(x, y) =


akx+ bk(y − 1) if (x, y) ∈ Ω \ Ωk−1

ak−1x+ bk−1(y − 1) if (x, y) ∈ Ωk−1.

where M(x, y) = akx+ bk(y − 1) on Ωk \ Ωk−1. One can give the explicit formulas for ak

and bk:

ak = (Nη)k, bk = ηk.

Obviously M0 satisfies (3).

Fix any (x, y) ∈ Ω, we can assume without loss of generality that (x, y) ∈ Ωk for some k.

Introduce the notation

x =
N − 1

N
x̃+

1

N
x̂ and y =

N − 1

N
ỹ +

1

N
ŷ.
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Since M is concave, we have that Mk ≥M on Ω (Mk is a “supporting wedge” of the graph

of M). Instead of (3) we will prove (under the same hypotheses)

Mk(x, y) ≥ N − 1

N
Mk(x̃, ỹ) +

1

N

ŷ

Q
Mk(x̂, Q), (4.15)

which, by the above remark, is a stronger statement.

We will first show that we can assume the point (x̂, Q) to be in Ωk. Indeed, suppose that x̃

is so small that (x̂, Q) /∈ Ωk, then

∂

∂x̃

(
Right hand side of (4.15)

)
=
N − 1

N
ak −

N − 1

N

ŷ

Q
ak−1

=
(N − 1

N

)(
ak −

ŷ

Q
ak−1

)
≥
(N − 1

N

)(
ak −

Ny − (N − 1)

Q
ak−1

)
≥
(N − 1

N

)(
ak −

NQ− (N − 1)

Q
ak−1

)
.

Now recall that ak = (Nη)k, so the partial derivative of the right hand side of equation

(4.15) is at least

N − 1

N
(Nη)k−1

(
Nη − NQ− (N − 1)

Q

)
= 0,

so the right hand side is increasing, at least as long as (x̂, Q) ∈ Ωk−1.

This allows us to assume that x̃ is large enough to make (x̂, Q) ∈ Ωk (by continuity).

Under this assumption the inequality becomes much easier since Mk is now being evaluated

always on Ωk, and hence we can assume that Mk itself is a plane. Now it is easy to check

that the inequality is indeed true under these conditions.

To see this, observe that inequality (4.15) can be written as:

ax+ b(y − 1) ≥ N − 1

N

(
ax̃+ b(ỹ − 1)

)
+

1

N

ŷ

Q

(
ax̂+ b(Q− 1)

)
.

80



We can reorganize this as:

a
(
x− N − 1

N
x̃− 1

N

ŷ

Q
x̂
)

+ b
(
y − 1− N − 1

N
ỹ +

N − 1

N
− 1

N

ŷ

Q
(Q− 1)

)
≥ 0.

This simplifies to showing

a
( x̂
N
− x̂

N

ŷ

Q

)
+ b
( ŷ

NQ
− 1

N

)
≥ 0,

which is equivalent to

( ŷ
Q
− 1
)(
b− ax̂

)
≥ 0.

Since the assumptions force ŷ to be at least Q, we just need to check that x̂ ≤ b
a
. But this

is exactly the bound that is guaranteed from the considerations above since b
a

= N−k.
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5

Borderline weak-type bounds for

singular integrals

Carlos Domingo-Salazar, Michael Lacey, and Guillermo Rey

Bulletin of the London Mathematical Society, October 2015.

5.1 Introduction

The purpose of this chapter is to show some applicaitons of the techniques developed so

far. The results in this chapter use the pointwise domination of singular integrals from

Chapter 3, as well as several facts about sparse families and Muckenhoupt weights.

The first theorem is in the context of linear singular integral operators:

Theorem 5.1. Let T be a Calderón-Zygmund operator on Rd and w an A1 weight, then

‖Tf‖L1,∞(w) .T,d [w]A1

(
1 + log[w]A∞

)
‖f‖L1(w).

It is unknown whether the logarithmic term is sharp, but a power is necessary, see [35].

We can also state a very similar theorem for square functions:
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Theorem 5.2. Let G be a square function as in 3.5, then

‖Gf‖L2,∞(w) .G,d

√
[w]A2(1 + log[w]A∞)‖f‖L2(w).

Theorem 5.1 was already known, see for example [26], but here we give an elementary

proof which uses the machinery developed in the previous chapters. Theorem 5.2 was

obtained in [7]. Since the proofs are very similar, here we just prove Theorem 5.1. The

proof follows the steps in [19], as developed in [7].

5.2 Proof

By the pointwise domination of Calderón-Zygmund operators proved in Chapter 3 it

suffices to prove

‖ASf‖L1,∞(w) .d [w]A1

(
1 + log[w]A∞

)
‖f‖L1(w), (5.1)

where S is a sparse family of cubes, and f is nonnegative. See Chapter 4 for precise

definitions of A1 and A∞.

After possibly splitting the family into several subfamilies, we can assume that S is

1
4
-sparse, that is:

∣∣ ⋃
R(Q,R∈S

R
∣∣ ≤ 1

4
|Q| ∀Q ∈ S.

Now, by homogeneity, it suffices to show

w
(
x : ASf(x) > 3

)
.d [w]A1

(
1 + log[w]A∞

)
,

for all nonnegative functions f with ‖f‖L1(w) = 1, and for all weights w.
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It will be convenient to split the family S into better-behaved subfamilies:

Sm = {Q ∈ S : 2−m−1 < 〈f〉Q ≤ 2−m}

and

S− = {Q ∈ S : 〈f〉Q > 1}.

We have

w
(
x : ASf(x) > 3

)
≤ w

(
x : AS−f(x) > 1

)
+ w

(
x : AS+f(x) > 2

)
,

where we have defined S+ to be the union of all the families Sm for m ≥ 0.

We begin estimating the first term. Note that AS−f is supported on {x : Mdf(x) > 1},

where Md is the dyadic maximal function, so

w
(
x : AS−f(x) > 1

)
≤ ‖Md‖L1(w)→L1,∞(w) ≤ [w]A1 ,

so this deals with the first summand.

The second summand will be split into two:

w
(
x : AS+f(x) > 2

)
≤ w

(
x :

m0−1∑
m=0

ASmf(x) > 1
)

+ w
(
x :

∞∑
m=m0

ASmf(x) > 1
)

= I + II.

The way we defined the subfamilies Sm gives us very good control of the averages of f .

Indeed:
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Lemma 5.3. For each m ∈ N define

Em(Q) = Q \
⋃

R(Q,R∈Sm

R,

then

〈f1Em(Q)〉Q ∼ 〈f〉Q (5.2)

for all Q ∈ Sm.

Proof. Indeed: if we let R1, R2, . . . be the maximal subcubes of Q en Sm then

1

|Q|

∫
Q

f1Em(Q) = 〈f〉Q −
∑
i

1

|Q|

∫
Ri

f

> 2−m−1 −
∑
i

|Ri|
|Q|

1

|Ri|

∫
Ri

f

≥ 2−m−1 − 2−m
∑
i

|Ri|
|Q|

≥ 2−m−1 − 2−m
1

4

& 〈f〉Q.

The reason this is useful is because the sets {Em(Q)} are pairwise disjoint when Q runs
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over Sm. We can use this to deal with I:

w
(
x :

m0−1∑
m=0

ASmf(x) > 1
)
≤
∫ m0−1∑

m=0

ASmf(x)w(x)dx

=

m0−1∑
m=0

∫ ∑
Q∈Sm

〈f〉Q1Qw(x)dx

.
m0−1∑
m=0

∑
Q∈Sm

〈f1Em(Q)〉Q1Q(x)w(x)dx

=

m0−1∑
m=0

∑
Q∈Sm

∫
f1Em(Q)

w(Q)

|Q|

≤ [w]A1

m0−1∑
m=0

∫
fw

= m0[w]A1 .

Finally, to estimate II, let {am}∞m=m0
be a sequence of nonnegative numbers such that

∞∑
m=m0

am = 1.

Then

II = w
(
x :

∞∑
m=m0

ASmf(x) >
∞∑

m=m0

am

)
≤

∞∑
m=m0

w
(
x : ASmf(x) > am

)
≤

∞∑
m=m0

w
(
x :

∑
Q∈Sm

〈f〉Q1Q(x) > am

)
≤

∞∑
m=m0

w
(
x :

∑
Q∈Sm

1Q(x) > 2mam

)
.

Call

bm(x) :=
∑
Q∈Sm

1Q(x).
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Since Sm is sparse, this function is almost, but not quite, uniformly bounded; it is actually

in BMO. In fact, for each m there exist a collection of maximal dyadic cubes

Qm
1 , Q

m
2 , · · · ∈ Sm such that bm is supported in the union of these cubes and

1

|Qm
i |

∣∣∣{x ∈ Qm
i : bm(x) > λ

}∣∣∣ ≤ e−Cλ

for all λ ≥ 1 and all i ≥ 1.

Now we can use that every A1 weights is also in A∞ (see also Chapter 4) to obtain

w
({
x ∈ Qm

i : bm(x) > λ
})

w(Qm
i )

≤ exp
(
− c

[w]A∞
λ
)
.

After summing in i, this yields

w
({
x : bm(x) > λ

})
≤ exp

(
− c

[w]A∞
λ
)∑

i

w(Qm
i ).

Since all of the cubes Qm
i are contained in the set

{x : Mdf(x) > 2−m},

we can use the (weighted) weak-type boundedness of the maximal function to give the

estimate

w
({
x : bm(x) > λ

})
≤ [w]A12

m exp
(
− c

[w]A∞
λ
)
.

Now, plugging this estimate back, we have

II ≤ [w]A1

∞∑
m=m0

2m exp
(
− c

[w]A∞
2mam

)
.

We should choose am so that it “looses” against 2m (since we want exponential growth),
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while still summing to 1. A possible choice is

am = ξ−m(1− ξ−1)ξm0

for some 1 < ξ < 2, like for example 3/2.

Plugging this in the previous inequality, and estimating the sum by an integral we finally

obtain

II . [w]A1

∫ ∞
m0

2x exp
(
− c

[w]A∞
2xξ−x(1− ξ−1)ξm0

)
dx.

Calling η = 2/ξ we see that 1 < η < 2 and:

II . [w]A1

∫ ∞
0

2x exp
(
− c′

[w]A∞
ηxξm0

)
dx

. [w]A1

∫ ∞
0

yαe−y
dy

y

. [w]A1

provided we choose m0 ∼ log[w]A∞ , and where α > 0.

With this choice of m0 we obtain

w
(
ASf > 3

)
. [w]A1(1 + log[w]A∞),

which is what we needed to prove the theorem.
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spaces of homogeneous type. J. Funct. Anal., 263(12):3883–3899, 2012.

[14] T. P. Hytönen. The sharp weighted bound for general Calderón-Zygmund operators.
Ann. of Math. (2), 175(3):1473–1506, 2012.

[15] T. P. Hytönen, M. T. Lacey, and C. Pérez. Sharp weighted bounds for the q-variation
of singular integrals. Bull. Lond. Math. Soc., 45(3):529–540, 2013.

[16] M. T. Lacey. An elementary proof of the A2 Bound. ArXiv e-prints, Jan. 2015.

90



[17] M. T. Lacey. Weighted Weak Type Estimates for Square Functions. ArXiv e-prints,
Jan. 2015.

[18] M. T. Lacey, E. T. Sawyer, and I. Uriarte-Tuero. Two Weight Inequalities for Discrete
Positive Operators. ArXiv e-prints, Nov. 2009.

[19] M. T. Lacey and J. Scurry. Weighted Weak Type Estimates for Square Functions.
ArXiv e-prints, Nov. 2012.

[20] A. K. Lerner. A pointwise estimate for the local sharp maximal function with applica-
tions to singular integrals. Bull. Lond. Math. Soc., 42(5):843–856, 2010.

[21] A. K. Lerner. A simple proof of the A2 conjecture. International Mathematics Research
Notices, 2012.

[22] A. K. Lerner. On an estimate of Calderón-Zygmund operators by dyadic positive oper-
ators. J. Anal. Math., 121:141–161, 2013.

[23] A. K. Lerner. A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN,
90(14):3159–3170, 2013.

[24] A. K. Lerner. On sharp aperture-weighted estimates for square functions. J. Fourier
Anal. Appl., 20(4):784–800, 2014.

[25] A. K. Lerner and F. Nazarov. personal communication.
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