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ABSTRACT

RADIATION AND RESONANCES

OF ELECTROACOUSTIC AND IONACOUSTIC

WAVES IN COMPRESSIBLE PLASMA

BY

Kam-Chi Li

The present study consists mainly of two major parts.

The first part is the study on the basic properties of the

electroacoustic and ionacoustic waves excited by an electro-

magnetic source or field in an infinite, homogeneous,

isotropic, compressible and lossy plasma. A two-fluid plasma

model is employed and this leads to the formulation of the

generalized electroacoustic and ionacoustic waves. The

electron-ion compositions, as well as the propagation constants

of the generalized electroacoustic and ionacoustic waves with

various collision frequencies and under various electron and

ion temperatures, are obtained.

The radiation patterns of the generalized electro-

acoustic and ionacoustic waves excited by simple antennas,

such as Hertzian dipole, disk monopole, disk dipole and

cylindrical antennas, are studied. They agree very closely



Kam-Chi Li

with the results of some recent experimental studies.

The second part is the investigation of the excitation

of an electroacoustic wave in the plasma sheath surrounding

a cylindrical antenna, the excitation of electroacoustic

resonances in various plasma geometries, and the reflection

behavior of electroacoustic waves on various surfaces. A new

diagnostic scheme for measuring the plasma density directly

has been developed. In this scheme, a cylindrical antenna

immersed in a compressible plasma is driven by a frequency—

sweeping electromagnetic wave, and its d.c. bias voltage is

varied. Based on the information on the electroacoustic

wave excited in the plasma sheath surrounding the antenna,

the plasma density can be read directly on the oscilloscope.

The behaviors of electroacoustic resonances excited

in the plasma sheaths at the boundaries of various plasma

geometries which include cylindrical, rectangular and single-

slope density profile plasma columns were studied. The

technique of exciting electroacoustic resonances was then

applied to study the reflection behavior of electroacoustic

waves on dielectric and metallic surfaces.
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CHAPTER 1

INTRODUCTION

The research described in this dissertation deals

with the interaction of the electromagnetic radiation with

a plasma. The first part of the dissertation studies the

radiation of various antennas imbedded in an infinite,

homogeneous, isotropic, compressible and lossy plasma. A

two-fluid model is used to describe the plasma. The second

part of the dissertation investigates the excitation of an

electroacoustic wave in the plasma sheath surrounding a

cylindrical antenna, the excitation of electroacouStic

resonances in various plasma geometries, and the reflection

behavior of electroacoustic waves on various surfaces.

The excitation and radiation of the electroacoustic

and ionacoustic waves from various simple antennas imbedded

in a plasma medium is a subject that has received a great deal

of attention from researchers. As to the excitation and

prOpagation properties of the electroacoustic and ionacoustic

waves, theoretical and experimental investigations have been

done by the researchers such as Cohen [1], Hessel and Shmoys

[2], Kuehl [3], Barrett and Little [4], Jones and Alexeff [5,6],
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Mahmberg and Wharton [7], Chen and Lin [8], Doucet [9],

Lonngren et al.[10] and Alexeff, Jones and Montgomery [11].

More recently, Nakamura et al.[12], Ishizone et al.[13] and

Shen et al.[14] have detected the electroacoustic and ion—

acoustic waves excited by some simple antennas, and their

radiation patterns have also been measured. In treating the

plasma, most of the workers, including Majumdar [15], Cohen [1],

Hessel amd Shmoys [2] and Seshadri [16], have idealized the

plasma to be a homogeneous, collisionless and compressive

electron fluid with stationary ions that neutralize the

electrons on the average. Recently, Kuehl [3] has studied

the excitation of waves in a warm plasma by an electric dipole

wherein the motion of the ion has been included. Seshadri [17]

studied the radiation from electric current sources in a two-

component finite temperature plasma and Maxam and Chen [18]

decoupled electroacoustic and ionacoustic wave equations

based on a two—fluid plasma model using macrosc0pic approach.

It is the purpose of this research to apply the

decoupled equations of electroacoustic and ionacoustic waves,

with the consideration of various collision frequencies and

under various electron and ion temperatures, to investigate

in detail the electron—ion compositions and the prOpagation

constants of the so—called generalized electroacoustic and

ionacoustic waves. The radiation patterns of the generalized

electroacoustic and ionacoustic waves excited by some simple

antennas including Hertzian dipole, disk monopole, disk dipole



and cylindrical antennas are calculated. Theoretical radiation

patterns are then compared with recent experimental results

by Nakamura et al.[12], Ishizone et al-[l3] and Shen et al-[l4].

A good agreement is obtained between the present theory and

experimental results.

The excitation of an electroacoustic wave in an

inhomogeneous compressible plasma and the resonance of the

electroacoustic wave in a plasma sheath leading to the so-

called Tonks-Dattner's resonance, or thermal resonance, have

been studied by numerous workers including Tonks [19],

Dattner [20], Crowford [21], Parker et al.[22], Vandenplas [23],

Tutter [24], Van Hoven [25], Derfler and Simonen [26] and

Golddan and Yadlowsky [27]. Recently, Baldwin [28] and

Parbhakar and Gregory [29], through their theoretical and

experimental studies, proposed a new physical mechanism for

the electroacoustic resonance in the plasma sheath of a

cylindrical plasma column. The mechanism implies that in

order to excite an electroacoustic wave, an electromagnetic

wave is required to interact with the plasma at the critical

density point where the plasma frequency is equal to the

frequency of the electromagnetic wave. If no critical density

point exists in the plasma, an electroacoustic wave may not

be excited.

In the second part of this research, experimental

studies have been conducted to study (1) the excitation of

the electroacoustic wave in the plasma sheath surrounding a



cylindrical antenna imbedded in a compressible plasma, (2) the

excitation of electroacoustic resonances in various plasma

geometries which include cylindrical, rectangular and single-

slope density profile plasma columns, and (3) the reflection

behavior of electroacoustic waves on dielectric and metallic

surfaces based on the technique of exciting electroacoustic

resonances. Baldwin's mechanism [28] was used to explain

some experimental results.

In this part of the experimental study, a new diagnostic

scheme for plasma density measurement was developed. A

cylindrical antenna immersed in a compressible plasma is

driven by a frequency-sweeping electromagnetic wave and a

variable d.c. bias voltage is applied to the antenna. By

observing the effect of the d.c. bias voltage on the excitation

of the electroacoustic wave in the plasma sheath surrounding

the antenna, the plasma density at the location of the antenna

can be directly read on the oscillosc0pe.

Throughout the study, the macroscopic approach is

used. The problem was solved based on the hydrodynamic

equations and Maxwell's equations. Chapter 2 studies the

generalized electroacoustic and ionacoustic waves, their

electron—ion compositions, propagation constants, the effects

due to the collision frequency and electron and ion tempera—

tures. Chapter 3 applies the results of Chapter 2 to calculate

the radiation patterns of generalized electroacoustic and

ionacoustic waves excited by four different types of antennas.



Theoretical results are then compared with some recent

experimental results. Chapter 4 studies the excitation of

an electroacoustic wave in the plasma sheath surrounding a

cylindrical antenna. A new diagnostic method for the plasma

density measurement is described in this chapter. The

excitation of electroacoustic waves in various plasma geome-

tries and the reflection behavior of electroacoustic waves

on various surfaces are investigated in Chapter 5.



, CHAPTER 2

ELECTROACOUSTIC WAVE AND IONACOUSTIC WAVE EXCITED

IN AN INFINITE, HOMOGENEOUS, ISOTROPIC,

COMPRESSIBLE AND LOSSY PLASMA BY

AN ELECTROMAGNETIC SOURCE

2.1 Geometry and the Related Equations

We consider a system in which an electromagnetic source

with current density 38 and charge density p8 is immersed in

an infinite, homogeneous, isotrOpic, compressible and lossy

plasma. The plasma is assumed to consist of two fluids, the

electrons and the ions. The neutral particles of the plasma

contribute to the dynamics of the plasma by collisions with

the charged particles. The electromagnetic source excited a

longitudinal electroacoustic wave and a longitudinal ionacoustic

wave in addition to the usual electromagnetic wave. Since the

excitation and propagation of the electromagnetic wave in

the plasma are well known, only the electroacoustic wave and

ionacoustic wave are investigated in detail in this study.

A macroscopic approach is used to describe this system.

It is assumed that the perturbation of the plasma due to the

source is small, so that the linearized equations are applicable.



Under these assumptions, the basic equations which govern

this system are Maxwell's equations and the hydrodynamic

equations.

Maxwell's equations:

+

—_§.§
V x E - at (2.1.1)

V x B = u JS + u e(n U - n + ) + U e E: (2 l 2)

o o 01 oe e o 03 ° °

8

VoE=L+§_(n.-n) (2.1.3)
6 e 1 e
o o

v-§=o (2.1.4)

where noi and n0e are the unperturbed ion and electron

densities which can be assumed to be equal and uniform

throughout the system, that is,

n . = n = n . (2.1.5)

ni and ne are the perturbed ion and electron densities such

tha . << n r n << n . n. and n are functi ns of th

t n1 0’ e o 1 e 0 b0

position and time. 61 and fie are the average velocities of

the ions and electrons induced by the external force. E and

B are the electric and the magnetic fields. 38 and OS are

the current and charge density of the source and are related

by the equation of continuity as

s

v-35+§—f:—=0 . (2.1.6)



“o and so are the permeability and permittivity of free space

respectively.

Hydrodynamic equations:

The linearized equations of motion for the electrons are

an
_

e +

8?- + “6(V . Ue) _ 0 (2.1.7)

2

36 v

at + YeUe me E no Vne . (2.1.8)

The linearized equations of motion for the ions are

ani 4

+ 2

SU V.

where Ye and Yi are the mean electron-neutral particle

collision frequency and mean ion-neutral particle collision

frequency respectively. V and Vi are the thermal velocities
e

of electrons and of ions, and are defined as

 

 

3kT

v 2 = 8 (2.1.11)
8 m

e

2 3kTi

v. = (2.1.12)
1 mi

where me and mi are the electron and ion masses. Te and Ti

are the electron and ion temperatures. e is the magnitude



of electron charge and k is the Boltzmann's constant.

It is assumed that the electromagnetic source oscil-

lates with a constant frequency w, consequently, all quantities

vary with time as ejwt. The phaser analysis method is then

applied in the following development.

2.2 Equations for Electroacoustic and Ionacoustic Waves

To establish equations for the electroacoustic wave,

ne, and the ionacoustic wave, ni, equation (2.1.8) is written

as

' --L"-__(3w + ye)U — m E Vn . (2.2.1)

e 0

Taking the divergence of equation (2.2.1) yields

2
v

(fun + yelV - fie = -fi- v . E - 33-— Vzne .' (2.2.2)
8 O

V - 8 can be obtained from equation (2.1.7) as

v-fi =-%9’-n . (2.2.3)

0

v - '13.: — Mn. . (2.2.4)

n0
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V - E can be obtained by taking the divergence of equation

(2.1.2);

+8 -> ~> . ->

0 = V - J + eno(V ° U- - V 0 U ) +.jweOV ° E .

(2.2.5)

Substituting equations (2.2.3) and (2.2.4) into equation

(2.2.5) gives

+ ' +8 .

v - E = 6%;[V - J - jew(ni - ne)] . (2.2.6)

Substituting equations (2.2.6) and (2.2.3) into equation

(2.2.2), we have

 

2 2 we2 Ye wez.. +-“-’--(1-—--- ...). ......
e V2 2 w e V 1

e w e

2

- - j -f§—— V - 3S (2 2 7)

V em
e

where the electron plasma frequency is

2 l
nee-2-

we = (m e > . (2.2.8)

e o

. +8 . S . . .

Us1ng V - J = - jwp from the equat1on of continuity and

defining

B 2 = wZ <1 - wez - - :2) (2 2 9)
e V2 2 3(1) I o.

w



ll

equation (2.2.7) can be rewritten as

2 2 we we 08
V De + Be ne + 97 Hi = " W(g-) 0 (2.2.10)

e e ’

Similarly, we can get an equation for n- as

 

1

2 2
' w. m. S

Vzn. + 8.2n. + —£— n = —£—(£-) (2.2.11)
1 1 1 2 e e

V. V

1 1

where the ion plasma frequency is

2 l

noe 3

1 o

and

2
2 u)- y.

3.2 =L(1-J—-- '4) . (2.2.13)
1 2 w

Vi w

2.3 Decoupling of ha and ni Waves
 

Equations (2.2.10) and (2.2.11) can be decoupled

mathematically into two independent wave equations [18] as

S

2 0
(V

2

+ k1 )n1

((72 + 1.22)..2 = 8 (2.3.2)

(
D
I
D

where n1 and n2 are linear combinations of ne and ni; namely,



 
 



12

V. V

= .1 - .2
n1 (w- T12)ni (w T22)ne (2.3.3)

1 e

n = (33 T )n - (Xi T )n (2 3 4)
2 we 21 e mi 11 i ' ° °

which represent two new waves of perturbation densities. On

the other hand, ne and ni can be written in terms of n1 and

n2 as

w
e

ne V;(T11nl + lenz) (2.3.5)

“’1
ni = V:(T21n1 + T22n2) . (2.3.6)

The propagation constants, k1 and k2, for the 111 wave and

the n2 wave are given by

(A) 2(1).2 J'-

2 2 2 2 2 e 1 2

e i
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(2.3.7)
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(2.3.8)

The constants 81' 82, T11, T21 and T22 are expressed as

functions of plasma parameters as
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e 1

T s 1 (2 3 11)
ll
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l o o

1 Va V1 2 2 2 2
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w w.

e 1

2 2

T = - J; V V e - BL - A0

21 2 wewi V 2V.2 i
l + 1 e 1 (B 2 _ 8.2 _ A )2 2

4 w 2w.2 e 1 o
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(2.3.12)

T - l (2 3 13)
12 “ V 2V 2 g ' '

l e i 2 2 2
l + — (B — B + A )

[ 4 u) 200.2 e 1 0 ]

e 1

2 2

T = _ 1 veVi Be ‘ 8i + A0

1 + 1 1 (B 2 _ B 2 + A )2 2

4 w 2w.2 e o

e 1

(2.3.14)

where

2 2 l

_ 2 _ 2 2 we mi 7

e i

Physically, ml and n2 represent two separate longi-

tudinal plasma waves each consisting of electrons and ions

and propagating with a particular velocity. For convenience,
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we will call n1 the generalized ionacoustic wave and n2 the

generalized electroacoustic wave.

2.4 Electron-ion Composition Ratios of the Generalized

Ionacoustic Wave (n1 Wave) and the Generalized Electro-

acoustic Wave (n2 Wave)

The electron-ion composition ratios for the n1 wave and

the n2 wave are studied for various collision frequencies and

various ratios of electron temperature to ion temperature.

From equation (2.3.3), we have

ve vi
111 = - ('m—e- T22)ne + (a: T12)ni 0 (2.4.1)

Let R1 be the electron-ion composition ratio for the n1 wave

such that

V w,T

( e 1 22)
. ’ (2.4.2)

ViweTlZ

R1:-

Using equations (2.3.13) and (2.3.14), equation (2.4.2) can

be written as

) (B — B. + A ) . (2.4.3)

Similarly, from equation (2.3.4), we calculate R2, the electron-

ion composition ratio for the n2 wave, as

V w.T

( e 1 21)
R:-

2 ViweTll

(2.4.4)
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Using equations (2.3.11) and (2.3.14) in equation (2.4.4),

we have

v .

_ 1 e 2 2 _ 2 _
R - 7‘52) (Be Bi A0) - (2.4.5)

N

R1 and R2 are numerically calculated for various

collision frequencies, various Te/Ti and various source fre-

quencies. A hydrogen gas plasma is assumed in the numerical

example. The detail of this calculation is shown in Appendix

A.

The numerical calculation of R1 and R2 for various

parameters was carried out on the CDC 6500 computer in five

programs. In each program, we assign one of the Te/Ti ratios

(1, 10, 100, 1000, 10000) and consider six different collision

frequency ratios ye/w (0, 0.001, 0.01, 0.1, 1.0 and 10).

Figures 2.1 and 2.2 plot the electron-ion composition

ratios of the n1 wave and n2 wave reSpectively for ye/w = 0,

0.001, 0.01, 0.1, 1.0 and 10 with Te/Ti = 1, lo, 100, 1000,

10000 as a function of the plasma frequency square over the

frequency square. The range of (082/032 considered in these

4tolxlo6figures is from 1 x 10- which corresponds to a

hgih frequency region and a low frequency region respectively.

It can be seen in Figure 2.1 that at the high frequency

limit, the n1 wave consists mainly of ions regardless of the

Ye/w and Te/Ti values. At the low frequency limit, electron
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composition is Te/Ti times higher than the ion composition;

in the case of T8 = Ti' the nl wave consists of equal amount

of ions and electrons. In Figure 2.2, at the high frequency

limit, the n2 wave consists mainly of electrons; the higher

the Te/Ti values, the higher is the composition of electrons.

At the low frequency limit, the n2 wave consists of equal

amount of electrons and ions regardless of the ye/w and Te/Ti

values. It should be noted that the n2 wave is evanescent

at the low frequency. In both figures, the effect due to

the ye/w value is not very obvious.

The numerical output of the computer can be checked

analytically for the simple case where Te = Ti and ye/m = 0.

In the low frequency limit, we have m < mi << we, and

we can assume(we2/w2)+ m;(wiZ/w2)+ m.

Under these conditions, equations (2.2.9), (2.2.13)

and (2.3.15) are reduced to

2 w 2

82:0) (_e)

e V 2 mi

e

2

82=i(-(_D_L)

1 V.2 NZ

1

miz wez

A= +_..,

° 3!.2 v2
1 e

2 2

(41:901.) .
l
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Using equations (2.1.11), (2.1.12), (2.2.8) and (2.2.12), we

have

= — ’

R1 (2.4.6)

which is reduced to 1 when Te = Ti' This result is consistent

with Figure 2.1. Similarly, equation (2.4.5) becomes R2 = -1.

Since R1 and R2 are ratios of two waves, we are interested

only in their absolute values, that is, the ratio of their

magnitudes. Therefore we have 'R2| = 1. This result is

consistent with Figure 2.2.

In the high frequency limit, we have m > me >> wi'

and we can assume (weZ/wz) + 0; (wiz/wz) + 0.

Equations (2.2.9), (2.2.13) and (2.3.15) are reduced

to

2

882 = 9—7 (2.4.7)

V

e

2

8.2 = 59—5- (2.4.8)

1 v.
1

2 2 1
2 2 2 u) m. _.

A0 = (L. .. L) + 4 42—1.]2 . (2.4.9)
v.2 v2 vzv.2
1 e

wezwiz w

Since w > me >> mi, 1t 15 true that 4 ;—§;—§ << 2 ;_§;—§.

e i e i

w 2w.2

After omitting the term 4 2 12 in equation (2.4.9), we have

Ve Vi

A =B.2- 82 . (2.4.10)
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Substituting equations (2.4.7), (2.4.8) and (2.4.10) into

equation (2.4.3), we have R1 = 0. This result implies that

the n1 wave in the high frequency region consists mainly of

positive ions. This phenomenon is shown in Figure 2.1.

Substituting equation (2.4.10) into equation (2.4.5),

we have

V 2

32 = (..2) (e 2 - 8-2) . (2.4.11)
0) e 1
e

Using equations (2.4.7) and (2.4.8) in equation (2.4.11),

we have

e V

With Te/Ti = l and for hydrogen gas plasma model, Ve'Z/Vi2

=‘mi/me = 1836, thus, we have IRZI = w. This result indicates

that the n2 wave in the,high frequency region consists mainly

of electrons. This fact is shown in Figure 2.2.

Furthermore, since R1 at the low frequency limit is

equal to Te/Ti as given in equation (2.4.6), it can easily be

seen that in the cases of T = 10 T., T = 100 T., T = 1000 T.
e 1 e 1 e 1

and Te = 10000 Ti' the ratios of n to ni are 10, 100, 1000

e

and 10000 respectively. These results are shown in Figure 2.1.
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Figure 2.1 Electron-ion composition ratio of the

generalized ionacoustic wave (n1 wave) as a function of (we/w)2

for various ratios of electron temperature to ion temperature.
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Figure 2.2 Electron—ion composition ratio of the

generalized electroacoustic wave (n2 wave) as a function of

(we/m)2 for various ratios of electron temperature to ion

temperature.
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2.5 Propagation Constants of the Generalized Ionacoustic

Wave and the Generalized Electroacoustic Wave

The propagation constants of the generalized ionacoustic

wave and the generalized electroacoustic wave, k1 and k2, for

the cases of various collision frequencies and various ratios

of electron temperature to ion temperature are studied in this

section. k1 and k2 are given by equations (2.3.7), (2.3.8)

and (2.3.15) as

(Be + Bi + A) (2.5.1)

a
:

A
n
y
a

k
fl
h
‘

a
:

a
:

(8 +8. -A) . (2.5.2)

It is shown in Appendix B that equations (2.5.1) and

(2.5.2) are reduced to two sets of equations; one set for

hydrogen gas and another set for xenon gas, such that

kl/(w/Vi) and kz/(w/Ve) for each gas assumption can be cal-

culated numerically by using CDC 6500 computer in five programs.

In each program, we assign one of the Te/Ti ratios (1, 10,

100, 1000, 10000) and consider six different collision

frequency ratios Ye/w (0, 0.001, 0.01, 0.1, l and 10). The

numerical results for the hydrogen gas are drawn in Figures

2.3 to 2.7. The numerical results for the xenon gas are used

in the electroacoustic wave and the ionacoustic wave radiation

pattern calculations.

Figure 2.3 plots the real part of kl/(w/Vi), or the

phase constant of the n1 wave, for the cases of ye/m = 0,
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0.001, 0.01, 0.1, 1.0 and 10 with Te/Ti = l, 10, 100, 1000

and 10000 as a function of the plasma frequency square over

the frequency square. The range of w 2/w2 considered in these

4 6

e

figures is from 1 x 10' to l x 10 which corresponds to a

high frequency region and a low frequency region respectively.

The effect due to the collision frequency is not very evident

so that it is not shown in the figure. However, the tempera-

ture ratio, Te/Ti' has a big effect in the low frequency

region. It should be noted that kl/(w/Vi) does not vanish

at any frequency range. This implies that the n1 wave

propagates under all conditions. The phase velocity of the

n1 wave, Vphl’ can also be observed in this figure, since it

is given as w/[Re(k1)]. At the high frequency limit, we have

Re[k1/(w/Vi)] = l, or Re(w/k1) = Vi' This implies that at

the high frequency limit, or in the low plasma density region,

the phase velocity of the n1 wave approaches to the thermal

velocity of ions. Also, it can be seen in the figure that

at the low frequency region or as the plasma density in-

creases, the phase velocity becomes greater and then

 

approaches to the value of Vi/(Te + Ti)/Ti' which is called VA’

the phase velocity of the pseudosonic wave.

Figures 2.4 and 2.5 plot the negative imaginary part

of kl/(w/Vi), the attenuation constant, of the n1 wave. In

Figure 2.4, the cases for Te = Ti' ye/w = l and T8 = Ti'

ye/w = 10 are plotted. In Figure 2.5, the cases for

T8 = 100 Ti with ye/w = 0.001, 0.01, 0.1 and l are plotted.
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It is noted that for the case of ye/w = 0, the attenuation

constant is zero.

From Figures 2.4 and 2.5, the most striking phenomenon

is that the attenuation constant of the ni wave decreases

(drastically once w becomes smaller than wi. It is also seen

that the attenuation of the n1 wave is reduced as the colli-

sion frequency becomes smaller or the temperature ratio Te/Ti

becomes higher. It should be noted that the Landau damping

is very high for the n1 wave at high frequency range where

Vphl approaches to Vi‘

Figure 2.6 plots the real part of [ke/(w/Ve)], or the

phase constant of the n2 wave, as a function of (we/w)2 for

various collision frequencies.

The effect due to the collision frequency is signifi-

cant. For the collisionless case, it is seen that the real

part of [ke/(w/Ve)] changes from one in the high frequency

region to zero abruptly as w approaches m It is understoode'

that as the phase constant of a wave goes to zero, the wave

becomes evanescent. Therefore, it can be seen that the n2

wave is cut off when w < we. The phase velocity of the n2

wave, Vph2' in the high frequency region is Re(w/k2) which

is equal to Ve'

As the collision frequency becomes higher, the region

in which the n2 wave propagates is extended further to the

lower frequency region, though it can be seen in Figure 2.7

that the wave in this region will suffer a very high
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attenuation. When w is around ”1’ a peak appears in the

curve, this peak probably corresponds to the oscillation of

ions at this frequency.

The ratio Te/Ti affects the phase constant curve of

the n2 wave only slightly on the low frequency region,

therefore, it will not be plotted.

Figure 2.7 plots the negative imaginary part of

ke/(w/Ve), that is, the attenuation constant of the n2 wave.

It is seen in the figure that the higher the collision fre-

quency, the higher is the attenuation factor. Once w becomes

smaller than w the attenuation constant becomes extremelye'

large implying that the n2 wave is nearly cut off. It is

noted that our theory based on the macrosc0pic approach does

not predict the Landau damping which occurs at the high

ph2 approaches to Ve'

The numerical results for the propagation constants,

frequency region where V

k1 and k2, can also be checked analytically for the case where

Te = Ti and ye/w = 0.

In the low frequency limit, we have m < “i << we.

Using equation (2.2.9) with ye/w : O, we have

2

82_w2_e
(253)e“ 2 o o.

e e

<

Using equations (2.2.13), (A-12) with ye/w = 0, we have

2 -2
U) l

B.2=-—§--——2 . (2.5.4)

1 i

8

P

< <



 

Then (8.2 - B 2)2 = B 4 — 28 28_2 + 8.4 becomes

1 e e e 1 l

w 2 w 2 2 w 2 w 2 + w 2 w 2

(B 2 _ 8 2)2 _ ( e _ 1 ) _ 2w2< e _ e 1 + 1 >

1 e V2 v2 v1 vzv2 v3
e i E e e i 1

+ w4( 12 _ 12)2 .

V V.

e 1

Noting that w < mi << we, we drop the term containing w4 and

 

 

neglect the term wiz in comparison with wez, thus,this

equation reduces to

2 2 2 2 2 2

(B 2 _ 8 2’2 : (we _ “1 ) _ 2“(we _ me + ”1 )

1 e v 2 v 2 v 4 v 2v.2 v I
e 1 e 1 1

(2.5.5)

Using equation (2.5.5) in equation (2.3.15), we have

1

wezviz + wizvez 2 2
A0 = (l — 2w A4) , (2.5.6)

vzv2
e i

where

m 2V 4 - m 2V.2 + w.2V 4

A4 = e 1 2 2e 1 2 212 e .

(a)e Vi + mi Ve )

A4 can be expressed in terms of Ti and Te by using equations

(2.1.11), (2.1.12), (2.2.8) and (2.2.12);

1 T 2 - T.T + T.2(m /m,)

2
m- (Te + Ti)
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Because T. = T and m. >> m , then T.2(m /m.) << T 2. After

1 e 1 e 1 e 1 e

neglecting Ti2(me/mi) in the numerator of equation (2.5.7) and

recognizing that (Te + Ti)2 >> (Te2

becomes A4 < (l/wiz), or szA

- TiTe)' the 1nequa11ty

2 2~ .
4 < (2w /wi ). Since

(oz/wiz) << 1, then 2(02A4 << 1. Using binomial expansion in

equation (2.5.6) and keeping the first two terms, we have

  

m 2V.2 + w.2V 2 2 m 2V.4 - m 2V 2V,2 + w,2V 4

A 2 e 1 1 e [i _ w e 1 e e 1 1 e

0 2 2 2 2 2 2 2
Ve Vi (we Vi + mi Ve )

+ ...]

(20508)

Substituting equations (2.5.3), (2.5.4) and (2.5.8) into

equation (2.5.1), we have

 

2 (.2 1

k1 ... 2 L 2 2]
Vi + (mi/we) (vs/Vi)

2 2 _ _
where (mi/we) (Ve/Vi) - l for Te - Ti'

Thus,

k

l _
757VEY - . (2.5.9)

fi
l
e

This result is confirmed in Figure 2.3. Putting equations

(2.5.3), (2.5.4) and (2.5.8) into equation (2.5.2), we drOp

terms with w2 since w < wi << we, then

8

N

E

N

k 2 = -(._e._. + .1.) (2.5.10)

< 1"
“
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which is a negative value.

Since k2 is purely imaginary, the n2 wave will not

propagate in the low frequency limit.

In the high frequency limit, we have m > me >> mi.

Using equation (2.2.9) with ye/w = 0, we have

2

E

2 w2 e
B = ———(1 - ———) . (2.5.11)

e Vez w2

Using equations (2.2.13), (A-lZ) with ye/m = 0 and wi (a m,

we have

2

8.2 =9L— . (2.5.12)
1 2

i

<

Thus, equation (2.3.15) reduces to

2 2 we2

zw___-w 4'

Ac V2 {72 ‘72
i e e

and finally, k12 = (112/Vi2 or kl/(w/Vi) = 1. This result is

shown in Figure 2.3. Similarly,

2 w2 we.2 2.79-4.

The last term in the bracket can be drOpped, because w > we.

'Therefore, k22 = wz/Vez, or kZ/(w/Ve) = 1. This result is

shown in Figure 2.6.
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2.6 Differential Equations of the Magnetic Field

The magnetic field excited by the electric source in

the plasma can be found as follows:

From equation (2.1.2), with the assumption of periodic

time dependence and using the relation of equation (2.1.5),

we have

V x g = uo3s + poenofl)i - fie) + jwuoeofi . (2.6.1)

Taking the curl of equation (2.6.1), we get

V x V x § = 00V x 35 + uoeno(V x 6i — V x U )

+ jwuoeov x E (2.6.2)

where

Vxfi=- jwfi (2.6.3)

is given by equation (2.1.1), V x fie and V x fii can be

obtained by taking the curl of equations (2.1.8)and (2.1.10)

and using equation (2.6.3), thus,

 

 

. +

+ JweB
V x U = , (2.6.4)

9 mewe + 3w)

v X at = "' Jweg o (2.605)

1 mi(Yi + 3w)
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Substituting equations (2.6.3), (2.6.4) and (2.6.5) into

equation (2.6.2), we have

m 2. w 2

V x V x B = 00V x 35 - jwuoeo[ i + ]B 

e

(Y1 + jw) (Ye + jw)

+ wzuoeoB . (2.6.6)

2. + + + -> .

Since V x V x B = V(V - B) - V B and V . B = 0, equation

(2.6.6) can be rewritten as

2 2

2+

V B + w u e 1 + , e , + , , B
o o 3m(ye + 3w) 3w(yi + 3w)

  

+S

= - ro x J . (2.6.7)

Let ke2 = wzpoe, where

  

2 2

e = e 1 + . . + . .

‘3[ jw(Ye + 3w) Jw(Yi + Jw)]

 

 

w 2 w.2 w 2Y

w + y w + y. w(w + y )

e 1 e

w.zy.

+ 21 1 2 ) (2.6.8)

w(w + Yi )

the equivalent complex permittivity in the plasma,

equation (2.6.7) can be written as

2 2 _ _ +8
(v + ke )fi _ 00v x J (2.6.9)

which is an inhomogeneous wave equation and its solution can
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be expressed as

156) II

.
1
1
1
:

O

< x

<
‘
w Q R
‘ (
D

. .__§___ dv' (2.6.10)

 

+ ->

where R = Ir - r'

2.7 The Electric Field in the Plasma

The electric field in the plasma can be derived from

the equation of magnetic fields, equations of the n1 wave and

n2 wave. It will be shown later in this section that the

electric field in the plasma consists of three components;

one of which is electromagnetic in nature, while the other

two components, which are due to the presence of the electro-

acoustic and ionacoustic waves, are longitudinal in nature.

Let us consider the source free Maxwell's equation in

the plasma:

+

V x B + + ' E 2 7 1poenomi - Ue) + jwuoeo ( . . )

.y.+

where Ue and Ui can be found from equations of momentum

conservation for electrons and ions. That is,from equations

(2.1.8) and (2.1.10), we have

 
 

i + 3kT
e e

Ue = - m ( + . ) E - , Vne (2.7.2)

e Ye 3w nome(Ye + 3w)

3kT .

6. — e E - 1 Vno . (2.7.3) 
 

1 mi(Yi + jw’ nomi(Yi + 3w) 1
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It is seen that these average velocities of electrons and

ions are proportional to the electric field in the plasma

and the pressure gradient of the particles. Using equations

(2.7.2) and (2.7.3) in equation (2.7.1) and after rearrange-

ment, we have

u e w 2 u e w 2

_ . o o e o o i
V x B - [jwuoeo + ( + ]B  

Ye + jw) TYi + jw)

BuoekTeVne - BuoekTiVni

me(Ye + jw) mi(Yi + jw)

 

 

which yields

Bu ekT Vn

V x B = 0 e e  P , B + .
(Ye + jw71Yi + 3w) me(Ye + 3w)

3n ekT.Vn.
o 1 i

- mi(Yi + ij V(2.7.4) 

where

. . . 2 .
P = jwuoeo(ye + 3w)(yi + 3w) + “oeowe (yi + 3m)

+ poeowiz(ye + jw)

pon{[Yi(wez - wz) + Ye(wiz - w2)]

. 2 2 2

+ jw[we + wi - w + yeyi]} . (2.7.5)
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EXpress E in terms of B, ne and ni in equation (2.7.4),

we have

 

 

3n ekT (Y + jw)Vn
= 1 . - o i e ii F [(ye + 3(1))(Yi + 3w)(V x B) + mi

3n ekT (y. + jw)Vn

- 0 e 1 e] . (2.7.6)

me

Using equations (2.3.5) and (2.3.6) which express ne, ni in

terms of n1 and n2, we can obtain B in terms of B, nl and n2

as follows:

+_1 _2 .

E - F[(YeYi w ) + Jw(Ye + Yi)](V x g)

 
 

  

+ 311oek [(YewiTiTZI YiweTeT11)+ . (“iTiTzi
...—.....— - 3(1) .__...__

P miVi meVe miVi

w T T w T T w T T
_ e e 11)]an + [Ce 1 i 22 _ Y1 e e 12)

meVe miVi meVe

w T_T w T T

+ jw( 1 1 22 - —————ee 12)]Vn2 . (2.7.7)

miVi meVe

It is seen in this equation that the electric field in the

plasma has three components. The first term on the right

hand side of the equation is electromagnetic in nature,

because B field is entirely electromagnetic. The second and

third terms, which are due to the presence of the electro-

acoustic and ionacoustic waves, are longitudinal in nature.
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2.8 Average Velocities of Electrons and Ions in the Plasma

The average velocities of electrons and ions in the

plasma can be obtained from equations (2.7.2) and (2.7.3)

with equations (2.3.5) and (2.3.6) as

 

 

+ 1 eg 3kTewe
U = ——————— - —— - , (T Vn + T Vn )

e Ye + 3w [ me menove(Ye + 3m) 11 1 12 2:]

(2.8.1)

a 1 eE 3kTiwi
. = __ - . (T Vn + T Vn fl .

1 Y1 + 3‘“[’“i minoViTYi + 3‘“) 21 1 22 2

(2.8.2)

n1 and n2 can be found by solving equations (2.3.1) and (2.3.2)

and E is given by equation (2.7.7). It is observed that

fie and 61 also possess both electromagnetic and longitudinal

natures.



CHAPTER 3

RADIATION PATTERNS OF ELECTROACOUSTIC AND

IONACOUSTIC WAVES EXCITED

BY VARIOUS ANTENNAS

3.1 Introduction
 

Our objective in this chapter is to calculate the

radiation patterns of electroacoustic and ionacoustic waves

excited by four different types of antennas; namely, Hertzian

dipole antenna, disk monopole antenna, disk dipole antenna

and cylindrical antenna. The antennas are assumed to be im-

mersed in an infinite, homogeneous, isotropic and compressible

plasma.

In Chapter 2, the generalized ionacoustic and electro-

acoustic waves which are excited by an electromagnetic source

are given in equations (2.3.1) and (2.3.2) as

2 2 S
(v + kl )nl = 51 ep— (3.1.1)

(V2+k2)n =5 9.8. (312)2 2 2 e o o o

The propagation constants of the nl and n2 waves, that is,

39
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k1 and k2, are shown graphically in Figures 2.3 to 2.7 for

various electron and ion temperatures and various collision

frequencies.

Since equations (3.1.1) and (3.1.2) are of the same

form, only a common equation such as

2 2 S
(v +1. )n=Sg-— (3.1.3)

will be considered. Equation (3.1.3) is a scalar inhomogeneous

Helmholtz equation whose solution is

 

_+ s S ., -jkI-f - I")

n(r) = - -— f p (r') e + + dv' (3.1.4)

4Ne v' [r - r'I

where the primed coordinates refer to the source points and

the unprimed coordinates represent the field point. We

assume that the antenna dimensions are small compared with

a free space electromagnetic wavelength and the observation

point is in the far zone of the antenna that the far zone

approximations of I? - E'I = r for the amplitude term and

I; - ?'| = r - z' 0086 for the phase term can be used.

The radiation patterns of the generalized electro-

acoustic wave (n2 wave) and the generalized ionacoustic wave

(n1 wave) excited by various antennas can be calculated from

and k to
2 2

replace n, S and k in equation (3.1.4) while for the nl wave

equation (3.1.4) For the 112 wave, we use n2, S

we use n1, S1 and k1 instead.
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3.2 Hertzian Dipole Antenna

3.2.1 Geometry and Statement of the Problem

The geometrical configuration of a Hertzian dipole

antenna is shown in Figure 3.1 using a Spherical coordinate

system (r, 9, 0). A Hertzian dipole antenna, with the assump-

tion that the radius of the wire is thin and its length, d1,

is very short compared with the wavelength, is immersed in

the plasma. The ends of the antenna are large enough that

the charge distribution of the antenna can be given approxi-

mately as

s _ 00(2' - d1)6(x)0(y)

‘ 'QG(z' + dl)5(x)0(y) ‘3-2-1’

where Q is the charge in coulomb and 6 is the Dirac delta

function.

The generalized electroacoustic and ionacoustic waves

excited by a Hertzian dipole antenna can be obtained from

equation (3.1.4) after the substitution of OS from equation

(3.2.1). Using the far zone approximations, the integral in

equation (3.1.4) becomes

 
 

+ +

~jklr - r'l -jkrf ps(;') e + + dv' = sz e [sin(kdl c080)]

v' Ir ' r'l r

(3.2.2)

where k is the propagation constant of a particular wave.

For the generalized electroacoustic wave, we use k2 to replace
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+

z=d1 '- 1
;

w

H
+

1
1
+ 
 

 
=-d1

Figure 3.1 Geometry of a Hertzian dipole antenna.
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k, while for the generalized ionacoustic wave we use k1 to

replace k. The term in the bracket in equation (3.2.2) will

be used to calculate the radiation patterns of these plasma

waves excited by the Hertzian dipole antenna.

3.2.2 Radiation Patterns of the Generalized Ionacoustic

Wave (n1 Wave)
 

The radiation pattern function of the generalized ion-

acoustic wave can be obtained from equation (3.2.2) after

replacing k by kl. The pattern function can be expressed as

Fl(6) = sin(k1d1 cose) . (3.2.3)

Since kl/(w/Vi) has been calculated by using the computer for

a xenon gas plasma, we can determine the value of k1 by assum-

ing the values of w, T6 and Te/Ti' d1 is the antenna half

length and is assigned for various values. The phase velocity

of the generalized ionacoustic wave, Vphl' at the low frequency

 

range is approximated by /3ETT€ + Ti)7mi and is called VA.

The results of some typical cases are plotted in

Figures 3.2, 3.3 and 3.4 and their numerical results are

given in Tables 1, 2 and 3 of Appendix C.

Figure 3.2 shows the radiation patterns of the

generalized ionacoustic wave at various electron temperatures.

Since the wave length in the plasma is A = Vphl/f' as Te

P

increases, 1p increaseszand consequently, the antenna becomes

relatively smaller.

Figure 3.3 shows the radiation patterns of the
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generalized ionacoustic wave at various ratios of electron

temperature to ion temperature. It is seen that the change

in the ratio Te/Ti does not affect the radiation patterns

significantly.

Figure 3.4 shows the radiation patterns of the

generalized ionacoustic wave at various antenna frequencies.

It is seen that as the antenna frequency increases, the wave-

length of the generalized ionacoustic wave decreases; as a

result, the antenna becomes relatively larger.

3.2.3 Radiation Patterns of the Generalized Electroacoustic
 

Wave (n, Wave)
 

The radiation pattern function of the generalized

electroacoustic wave can be obtained from equation (3.2.2)

after replacing k by k2. The pattern function can be expressed

as

F2(0) = sin(k2dl cose) . (3.2.4)

Since kZ/(w/Ve) has been calculated by the computer for a

xenon gas plasma, we can determine values of k2 based on

assumed values of w, Te and Te/Ti' Some typical cases are

chosen and plotted in Figures 3.5 and 3.6 and the corresponding

numerical results are given in Tables 4 and 5 of Appendix C.

Figure 3.5 shows the radiation patterns of the excited

generalized electroacoustic wave at various electron tempera-

tures. It is seen that as Te decreases, the phase velocity

and the generalized electroacoustic wave length in the plasma
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decreases; and consequently, the antenna becomes relatively

larger.

Figure 3.6 shows the radiation patterns of the excited

electroacoustic wave at various antenna frequencies.

In both Figures 3.5 and 3.6, we choose the propagation

constant, k2, at the frequency of 1082/002 = 0.95. The reason

for this choice is that the electroacoustic wave suffer less

Landau damping when w is close to w and slightly higher
e

than we.

3.2.4 Radiation Patterns of the Electromagnetic Wave
 

The magnetic field in the plasma has been determined

in Section 6 of Chapter 2 and is given by equation (2.6.10) as

4.

T
: -jkeR

6(2) = _% v x f 35(E') E__§__ dv' (3.2.5)
v.

where k8 is the propagation constant of the electromagnetic

wave in the plasma and is given as

 

 

w 2 w 2 w 2y

2 _ 2 e _ i _ . e e
ke - U) U05: 1 (D2 + 2 L02 + 2 J[m(w2 + 2)

Ye Yi Ye

w 2y

+ l l ; (3.2.6)

w(w2 + -2)
Y1

+8 + . . . .

J (r') is the source current den31ty and is given as

35(2') = i z = Ioz for —d1 5 z 2 dl (3.2.7)

for a Hertzian dipole antenna whose cross—sectional area is A.
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R represents I? - §' . Substituting equations (3.2.6) and

(3.2.7) into equation (3.2.5) and using the far zone approxi-

mations, we have

u I d1 -jke(r - z'cosO)

 

 fiat): 230fo e dz';

" -dl' r

(3.2.8)

After evaluating the integral, using 2 = 2 c058 - 6 sine,

taking the curl of the integral, neglecting l/r2 terms and

retaining only the l/r term because of far zone approximation,

equation (3.2.8) can be reduced to

u I k d1

 

 

+ A o o e -jker{sin(kedl c059) .

§(r) = ¢< San

2n r i (kedl cosO)

(3.2.9)

Considering d1 as a small number, we have

[sin(kedl cosG)]/(kedl cose) 2 l, and thus,

+ + A uOIOkedl e-jker -

B(r) 2 ¢( 2n X r >Sln9 . (3.2.10)

The electromagnetic component of E field in the plasma

can be obtained from equation (2.7.7);

+

2 .
+

Eem = %[(YeYi - w ) + 3w<ye + yi)](v x B) (3.2.11)

where P = uO€O{[yi(wez - w2) + Ye(wi2 - w2)] + jwlwez + mi
2

2 . . .

- w + yeyi1}. For collisionless case, i.e.,
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yi = Ye = 0, equation (3.2.11) can be reduced to

 Eem = ‘jw v x 6 (3.2.12)
2 _ 2 _ 2

noeo(w we mi )

Using equation (3.2.10) in equation (3.2.12), and neglecting

l/r2 terms, we have

onkezdl e-jker A

= 2 2 sine 0 . (3.2.13)

ZNE (wz - w - w. ) r

0 e l

+

em

 

Equation (3.2.13) is the electromagnetic component of E field

in the plasma and the corresponding radiation pattern function

can be expressed by

Fem(0) = sine . (3.2.14)

Figure 3.7 is the radiation pattern of the electromagnetic

component of the electric field in the plasma. It is seen

from equation (3.2.14) that this pattern is independent of

plasma parameters.

3.3 Disk Monopole Antenna
 

3.3.1 Geometry and Statement of the Problem
 

The geometrical configuration of a disk monOpole

antenna is shown in Figure 3.8 using a spherical coordinate

system (r, 0, ¢). A metallic disk of radius a is excited by

a radio frequency signal source and is immersed in the plasma.

It is assumed that the charge is uniformly distributed over
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Figure 3.7 Radiation pattern of the electromagnetic

wave excited by a Hertzian dipole antenna in a plasma.
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the disk surface. That is,

S _
p ‘- do 0 (3.3.1)

The generalized electroacoustic and ionacoustic waves

excited by this antenna can be calculated by substituting

equation (3.3.1) into equation (3.1.4). Using the far zone

approximations, the integral in equation (3.1.4) becomes

e—jklr - r'sinecos(¢ - ¢')]

f 0 ds' . (3.3.2)

SI

 

0 r

Let ds' = r'd¢'dr', equation (3.3.2) reduces to

-jkr
c e a 2n . . u

-111;——- f f elkr'31n°°°3‘¢ ‘ ¢ )r'd¢'dr' .(3.3.3)

0 0

Since the geometry has cylindrical symmetry, we choose the

observation point in the x-z plane (i.e. ¢ = 0) to simplify

the calculation. Equation (3.3.3) then becomes

-jkr a 2ncoe . .

g f eJkr'51n9c°s¢'d¢'r'dr' . (3.3.4)

o
r

Let us introduce the definite integral for the Bessel function,

2n . ,

Jn(u) = 1 f e311 cos¢ cos(n¢')d¢' . (3.3.5)

2njn o

 

With n = 0 and u = kr'sine, equation (3.3.4) can be written as

o e-jkr

O a

f 2nJ0(kr'sin6)r'dr' . (3.3.6)

r O
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Changing the variable from r' to u, the integral in equation

(3.3.6) becomes

2" u=ka sine

f uJ (u)du I (3.3.7)

(k sine)2 0 O

 

where J0(u) is the Bessel function of zero order with argument

u. The recurrent equation of the Bessel function is

d n n .
du(u Jn) - u Jn-l' With n — l we have

d

53(uJ1) = uJO or

Thus equation (3.3.7) is transformed to

u=ka SinG

2" 2[qu(u)]

(k sine) 0

 

hence, equation (3.3.6) becomes

20 e-jkr
2na 0 Jl(ka Sine)

r ka sine

 

01'

2 ~jkr .
+ _ 2na c e J (ka Sin0)

n(r) = (-——45)( ° )[1 ] . (3.3.8)
r

  

we ka sinU
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The term in the bracket of equation (3.3.8) will be used to

calculate the radiation patterns of the plasma waves excited

by a disk monopole antenna.

3.3.2 Radiation Patterns of the Generalized Ionacoustic

Wave (n1 Wave)
 

The radiation pattern function of the generalized ion-

acoustic wave can be obtained from equation (3.3.8) by

replacing k by k1. That is,

J (k a sine)

F16 = 1 l . 3.3.9
( ) kla sine ( )

 

The numerical values of R1 for various Te, Te/Ti and antenna

frequencies are calculated and are given in Tables 6, 7 and 8

of Appendix C.

Figure 3.9 shows the radiation patterns of the

generalized ionacoustic wave at various electron temperatures.

It is seen that as the electron temperature becomes higher,

the pattern becomes broader. This is due to the fact that as

Te increases, the antenna becomes smaller in terms of the

ionacoustic wavelength.

Figure 3.10 shows the radiation patterns of the

generalized ionacoustic wave for various ratios of electron

temperature to ion temperature. The change in the ratio Te/Ti

does not affect significantly on the radiation patterns.

Figures 3.11 to 3.13 are the radiation patterns of the

generalized ionacoustic wave at various antenna frequencies.
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We choose the phase velocity of the generalized ionacoustic

wave, VA' as 1.05 x 103 meter/sec.; the diameter of the disk

antenna, 2a, as 4.5 cm and the normalized antenna length, L,

(antenna length with respect to the generalized ionacoustic

wavelength, i.e., L = 2a/(VA/f)) as 0.7 (A), l (A), 2.5 (A).

In these cases, our radiation patterns agree very closely

with the experimental result of Shen et al.[14J.

3.3.3 Radiation Patterns of the Generalized Electroacoustic

Wave (n7 Wave)
 

The radiation pattern function of the generalized

electroacoustic wave can be obtained from equation (3.3.8) by

replacing k by k2. That is,

J1(k2a sine)

 

F2(0) (3.3.10)

kza sine

The numerical values of k2 are calculated and are given in

Table 9 of Appendix C.

Figures 3.14 and 3.15 are the radiation patterns of

the generalized electroacoustic wave. We choose (1) ye/m = 0

for simplification, (2) wez/wz = 0.95 such that Landau damping

is small, (3) Te/Ti 2 l to 104, (4) the antenna frequency

f = 17.5 MHz, and (5) L = 0.6 (1) and 1.1 (A) respectively in

these two figures. The radiation patterns for Te between

2000°K and 4000°K agree very closely with the experimental

results of Nakamura et al.[12] who used the grid with the

plate as an antenna.
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3.4 Disk Dipole Antenna
 

3.4.1 Geometry and Statement of the Problem

The geometrical configuration of a disk dipole antenna

is shown in Figure 3.16 using a spherical coordinate system

(r, 0, 0). The antenna consists of two half circular metallic

disks of radius a is immersed in the plasma. The antenna is

excited by a radio frequency signal source and the charge

distribution on the antenna can be given as

pS= Go for 0

'00 for W

¢l

¢l

TT

2TT

I
A
I
A

(3.4.1)

I
A
I
A

where 00 is the surface charge density.

The generalized electroacoustic and ionacoustic waves

excited by this antenna can be calculated by substituting

equation (3.4.1) into equation (3.1.4). Using the far zone

approximations and with ds' = r'd¢'dr', the integral becomes

'jkr .
Go8 [In fa ejkr'51n9COS(¢ - ¢')r'dr'd¢'

r ¢'=0 r'=0

2n a . , . ,

_ f f ejkr s1n0cos(¢ -¢ )r'dr'd¢{] .

¢'=n r'=0

Assuming that the observation point is in the y-z plane

(0 = n/2), we have

-jkr
0 e a n . , . . ,

o r [I r'dr'f ejkr 51n081n¢ d¢.

0 0

a 2n 'k ' ° Osin¢'
- f r'dr'f e3 r 51“ d0i] . (3.4.2)

0 fl
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\
0

+
(r,6'¢)

 
 

 
j
¢

Figure 3.16 Geometry of a disk dipole antenna.
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Zn . . .

Let 11 = f ejkr'51n051n0'd¢.

n

8' = 0' - n, the integral becomes

and replace the variable 0' with

I1:

TT_' 0' 'l
f e jkr SinGSinB dB' .

0

Since 8' is an independant variable, we can replace 8' by 0'

again and arrive at

-° . ° 9 ' 'Jkr Sin Sin¢ d0' . (3.4.3)

n

I = f e

l 0

Substituting equation (3.4.3) into equation (3.4.2), we have

0e

0

r f r'dr'f

0 0

-jkr

-jkr a “ 'kr'sinOSin0' -'kr'sin05in¢'
[e] _ e 3 ]d¢|

j20 e a H

= 0r f r'dr'f sin(kr'sinesin0')d¢' .(3.4.4)

o 0

 

1T

2 f sin(kr'sinesin0')d¢'. After replacing_kr'sin0 by Z

0

and 0' by (w + n/2) such that sin¢' = cosw, the integral

Let I

becomes

n/Z

12 = f sin(Zcosw)dw

-n/2

n/2

= 2f sin(Zcosw)dw,

0

because the integrand is an even function.

The Struve function is defined by the equation

212V 2
(2) "/

— f sin(Z cos¢)sin

/Fr(v + l) o

2v¢d¢ .
 a, (Z)
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For v = 0, we have

n/Z

H (Z) = f sin(Zcos¢)d¢ .

° 0

=
l
|
N

Thus, 12 can be expressed by the Struve function as

H

II2 nHO(Z) or

nHO(kr'sin0) . (3.4.5)

Substituting equation (3.4.5) into equation (3.4.4), we have

 

j20 e.jkr a

0r f nHO(kr'sin0)r'dr' . (3.4.6)

0

a

Let I3 = f Ho(kr'sin0)r'dr' and replace the variable

0

kr'sine by Z again, we have

ka sine HO(Z)ZdZ

 

 

I = f

3 0 (k sine)2

1 ka sin0

= 2 f HO(Z)ZdZ . (3.4.7)

(k sine) 0

The recurrent equation of the Struve function is

d v _ v

d _ _
d§(ZH1) - ZHO for v — l, or

2H1 = fZHOdZ . (3.4.8)
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Substituting equation (3.4.8) into equation (3.4.7), we obtain

a2H1(ka sine)

 

3 = ka sine °

Then equation (3.4.6) or the integral of equation (3.1.4)

becomes

j2na200e-Jkr[Hl(ka sin0)]

ka sine

 

r (3.4.9)

The term in the bracket will be used to calculate the radia-

tion patterns of the plasma waves excited by a disk dipole

antenna.

3.4.2 Radiation Patterns of the Generalized Ionacoustic

Wave (n1 Wave)

The radiation pattern function of the generalized ion-

acoustic wave can be obtained from equation (3.4.9) by

replacing k by kl. That is,

H1(kla sine)

 

F1(0) = . (3.4.10)

kla sine

The results of some typical cases are plotted in Figures 3.17

to 3.21 and their numerical results are given in Tables 10,

11 and 12 of Appendix C.

Figure 3.17 shows the radiation patterns of the

generalized ionacoustic wave at various electron temperatures.

Figure 3.18 shows the radiation patterns of the
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generalized ionacoustic wave at various ratios of Te/Ti'

Figures 3.19 to 3.21 show the radiation patterns of

the generalized ionacoustic wave at various antenna fre-

quencies. We choose the phase velocity of the generalized

ionacoustic wave, V , to be 1.05 x 103 meter/sec., the diameter

of the disk antenna, 2a, to be 4.5 cm, and the normalized

antenna length, L, as 1.5 (A), 2 (A), 4 (A). In these cases,

our radiation patterns again agree very closely with the

experimental results of Shen et al.[14].

3.4.3 Radiation Patterns of the Generalized Electroacoustic

 

Wave (n2 Wave)

The radiation pattern function of the generalized

electroacoustic wave can be obtained from equation (3.4.9)

by replacing k by k2. That is,

H1(k2a Sine)

0 = . . . 1

F2( ) kza sin0 (3 4 l )

 

The results of two typical cases are plotted in

Figures 3.22 and 3.23 and their numerical results are given

in Tables 13 and 14 of Appendix C.

Figure 3.22 shows the radiation patterns of the

generalized electroacoustic wave at various electron tempera-

tures. Figure 3.23 shows the radiation patterns of the

generalized electroacoustic wave at various antenna frequencies.
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3.5 Cylindrical Antenna

3.5.1 Geometry and Statement of the Problem
 

The geometrical configuration of a cylindrical antenna

is shown in Figure 3.24 using a spherical coordinate system

(r, 8, 0). A cylindrical antenna with a thin radius is

immersed in the plasma. For this antenna, charge and current

distributions can be given approximately as

 

s _ pocos[k(h - z')] for 0 f z' E h

p _ -pocos[k(h + z')] for -h 5 z' 5 0 (3°5‘1)

1 _ 1 A 1
IS Imsln[k(h z')]; for 0 g z. 5 h (3.5.2)

Imeln[k(h + z )]z for -h g z 5 0

 

The propagation constant, k, of the antenna charge or current

is still not well known. Some theoretical studies performed

by Seshadri [30] and Wunsch [31] predict an electroacoustic

component in the antenna current while eXperimental studies

conducted by Chen et al. [32,33] and Ishizone et a1. [34]

found the antenna current to be predominantly electromagnetic

in nature. This justifies the approximation of k = ke where

ke is the propagation constant of the electromagnetic wave in

the plasma. In our numerical calculation, k is assumed to be

ke which is given by equation (2.6.8).

The generalized electroacoustic and ionacoustic waves

excited by a cylindrical antenna can be obtained by substitu-

ting equation (3.5.l) into equation (3.1.4). Using the far

zone approximations, the integral becomes



80

’
N

 

 

 

0

s: // z=h
(r,0,¢)

\/// R

\ +

)’ r
,\

1 \
( \

| w fly

is) \

\ \\

\ \

\

\

\\ ¢ 1

\ z=-h I

Figure 3.24 Geometry of a cylindrical antenna.



81

 
 

-ij Zp k

x 115$)e dv' = .0
v' R J

cos(kh cose) - cos(keh) -jkr

  

. cose

kzcosze - ke2

Thus,

n(i?) = e  

jSp cos(kh cose) - cos(k h) -jkr

°[ ]cose e

2nek c0520 - (ke/k)2

(3.5.3)

where k is the propagation constant of the particular wave.

3.5.2 Radiation Pattggns of the Generalized Ionacoustic

Wave (n1 Wave)

The radiation pattern function of the generalized ion-

acoustic wave can be obtained from equation (3.5.3) by

replacing k by k1. That is,

cos(klh cose) - cos(keh)

F (8) = cose . (3.5.4)

1 c0320 - (ke/kl)2

 

In order to excite the ionacoustic wave which does

not suffer excessive Landau damping, we need to operate the

antenna at low frequency region where me >> m. In this region

the electromagnetic wave is cut off and it implies that ke is

a pure imaginary number. In the present consideration, we

have keh << 1 and ke/kl 2 0. Consequently, equation (3.5.4)

is reduced to

cos(klh cose) — l

F1(9) '3 COSB . (3.5.5)
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The results of some typical cases are plotted in

Figures 3.25 to 3.29 and their numerical results are given

in Tables 15, 16 and 17 of Appendix C.

Figures 3.25 and 3.26 show the radiation patterns of

the generalized ionacoustic waves at various electron tempera-

tures.

Figures 3.27 and 3.28 show the radiation patterns of

the generalized ionacoustic waves for the cases of various

ratios of electron temperature to ion temperature.

Figure 3.29 shows the radiation patterns of the

generalized ionacoustic wave at various antenna frequencies.

3.5.3 Radiation Patterns of the Generalized Electroacoustic

Wave (n, Wave)
 

The radiation pattern function of the generalized

electroacoustic wave can be obtained from equation (3.5.3)

by replacing k by k2. That is,

cos(kzh cose) - cos(keh)

F (0) = c050 . (3.5.6)

2 cosze - (ke/k2)2

 

To excite an electroacoustic wave without suffering substantial

Landau damping, the antenna frequency, w, is chosen to be

slightly higher than the plasma frequency, we. The results

of some typical cases are plotted in Figures 3.30 to 3.34

and their numerical results are given in Tables 18, 19 and

20 of Appendix C.

Figure 3.30 shows the radiation patterns of the
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generalized electroacoustic wave at various electron tempera-

tures in comparison with an exPerimental pattern measured by

Ishizone et al.[13].

Figure 3.31 shows the radiation patterns of the

generalized electroacoustic wave at various antenna frequencies.

Figures 3.32 to 3.34 show the radiation patterns of

the generalized electroacoustic waves predicted by the present

theory in comparison with the experimental patterns measured

by Ishizone et al.[13].

3.5.4 Radiation Patterns of the Electromagnetic Wave

To determine B(f), the integral

e-jkeR
I

R dv

in equation (2.6.10) is to be evaluated. For a cylindrical

antenna, we assume

8

¢
*
H
+

l
m

3 (2') =

>
H
4

where A is the cross-sectional area of the antenna and

+5 _ Imsin[ke(h - 2')12 for z' > 0

— Imsin[ke(h + z')]z for z' < 0 °

H (3.5.7)

ke is the prOpagation constant of the electromagnetic wave

in the plasma and is given by equation (3.2.6). For the

collisionless case, equation (3.2.6) is reduced to
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2 _ 2 e
k - m uoeo<l —§—> . (3.5.8)

After using the far zone approximations and neglecting l/r2

..y -) . .

terms, B(r) is determined to be

  

fi + N A -jImuo cos(keh cose) - cos(keh) . e-jker

(r) - ¢ 2 A 2 Sine --- .

n cos 8 - 1 r

(3.5.9)

It is evident in equation (2.7.7) that B field contains

ionacoustic, electroacoustic as well as electromagnetic com-

ponents. To calculate the radiation patterns of the electro-

magnetic wave, only the electromagnetic component is considered.

This component can be obtained as

~> _ —jw '+

E - V B . 3.5.1

em u e (w2 - w 2 - w 2) X ( O)

o o e i

 

Substituting equation (3.5.9) into equation (3.5.10) and

neglecting 1/r2 terms, we have

E _ 5 -ju)Imke cos(keh c050) - cos(keh)

em

 

2_2_2 2_
2nA€o(w we mi ) cos 0 1

"jker

sine S_____ . (3.5.11)

r

The corresponding radiation pattern function can be expressed
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cos(keh cose) - cos(keh)

F (0) = sin0 . (3.5.12)

em c0528 - l

 

Figure 3.35 shows the radiation patterns of the electro-

magnetic component of the electric field in the plasma. In

this example, the plasma frequency is assumed to be 4.5 MHz

and the antenna frequency is assumed to be 5, 5.5 and 7 MHz.

The numerical results are given in Table 21 of Appendix C.

Over this range of antenna frequency, the radiation patterns

of the excited electromagnetic wave largely remains circular

as shown in Figure 3.35.
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CHAPTER 4

EXCITATION OF AN ELECTROACOUSTIC WAVE IN THE PLASMA

SHEATH SURROUNDING A CYLINDRICAL ANTENNA

4.1 Introduction
 

The excitation of an electroacoustic wave by an antenna

in an infinite, homogeneous, isotrOpic, compressible and lossy

plasma was studied in Chapter 2. In practice, when an antenna

is in contact with a compressible plasma, a plasma sheath is

created on the antenna surface. In this chapter, we like to

study the excitation of the electroacoustic wave by an actual

antenna surrounded by a plasma sheath and imbedded in a

compressible plasma. Main objectives of this chapter are (1)

to study the effect of the plasma sheath on the excitation

of the electroacoustic wave and (2) to seek the evidence of

the excitation of the electroacoustic wave by an actual

antenna.

4.2 Experimental Setup
 

The schematic diagram of the experimental setup is

shown in Figure 4.1. A mercury arc discharge was employed

to produce the large volume and high density plasma in a

large plasma tube which is made of an open end pyrex bell

97



 
 

 
 

 

d
i
r
e
c
t
i
o
n
a
l

.
b
i
a
s

s
w
e
e
p

f
r
e
q
.

_
,
(

T
-
W
-
T
-

c
o
u
p
l
e
r

1
<
+
-
i
n
s
e
r
t
i
o
n

*
—
-

d
.
c
.

p
o
w
e
r

o
s
c
1
1
1
a
t
o
r

a
m
p
l
i
f
i
e
r

{
/
7
7

u
n
i
t

s
u
P
p
l
y

L
_

 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

7
a
n
t
.

 
d
e
t
e
c
t
o
r

p
l
a
s
m
a

 
o
s
c
i
l
l
o
-
J

s
c
o
p
e

 
 

 
 

 

 

 
  

F
i
g
u
r
e

4
.
1

E
x
p
e
r
i
m
e
n
t
a
l

s
e
t
u
p

f
o
r

t
h
e

e
x
c
i
t
a
t
i
o
n

o
f

t
h
e

e
l
e
c
t
r
o
a
c
o
u
s
t
i
c

w
a
v
e

i
n

t
h
e

p
l
a
s
m
a

s
h
e
a
t
h

s
u
r
r
o
u
n
d
i
n
g

a
c
y
l
i
n
d
r
i
c
a
l

a
n
t
e
n
n
a
.

98



99

jar with the dimensions of l4-inch diameter and lB-inch length.

The upper end of the tube is the anode with a cylindrical

monOpole antenna feeding through its center. The lower end

of the tube is the cathode which consists of a mercury pool.

A floating metallic ring is placed at the middle of the

mercury pool to fix the moving hot spots of the mercury arc.

An ignition circuit is installed in the mercury pool for the

purpose of starting the plasma. Between the anode and the

cathode, a d.c. power supply circuit is connected. Under

the normal operation, the discharge current can run from zero

to 50 amperes. The pumping system consists of two mechanical

pumps and a mercury diffusion pump. The tube is continuously

pumped during the eXperiment, and the pressure of the plasma

is kept around 1 micron (10"3 mm Hg). The structure of the

large plasma tube is shown in Figure 4.2. The output of a

sweep frequency oscillator covering the frequency band of 0.4

to 1.4 GHz is amplified by a travelling wave tube amplifier

and then connected through a directional coupler. It then

passes through a bias insertion unit before reaching the

antenna. Through this bias insertion unit, the d.c. bias

voltage of the antenna can be varied from negative 40 volts

to positive 25 volts. When the antenna excites an electro-

acoustic wave in the plasma sheath, this effect appears in

the reflected wave from the antenna. The reflected wave

containing this electroacoustic resonance information is taken

out through the directional coupler, and then connected to the
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vertical input of the oscillosc0pe after detection. The

horizontal input of the oscilloscope is fed by the sweep

voltage of the sweep frequency oscillator. The curve dis-

played on the oscillosc0pe is the reflected wave versus the

sweeping antenna frequency.

The scheme of the experiment is to observe the change

in the curve of reflected wave versus sweeping frequency

(RW-SF curve) as the antenna d.c. bias voltage is varied.

As the bias voltage is varied, the size of the plasma sheath

surrounding the antenna is changed. The observed change in

the RW-SF curve as the bias voltage is varied supports the

conjecture that this change is due to the excited electro—

acoustic wave, because the excited electromagnetic wave should

not be affected by the change of the plasma sheath which is

at least a magnitude of order smaller than the electromagnetic

wavelength.

4.3 Experimental Results
 

When the sweep frequency signal covering the frequency

range of 0.4 to 1.4 GHz was fed to the cylindrical antenna

which is immersed in a large volume of compressible plasma,

the reflected wave versus sweeping frequency displayed a curve

such as shown in Figure 4.3 on the oscilloscope. Dips and

peaks in the curve were probably due to the reflection of the

electromagnetic wave from the antenna tip and the resonances

excited by the electroacoustic wave in the plasma sheath. It
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i.

1.4 GHz
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Figure 4.3 A typical reflected wave versus sweeping

frequency curve.
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is well known that at discrete numbers of frequencies, the

excited electroacoustic wave can set up resonances in the

plasma sheath. Whenever an electroacoustic resonance is set

up, a dip in the RW-SF curve is expected.

The antenna bias voltage was then varied to observe

the change in the RW-SF curve.

The antenna was first biased positively with respect

to the plasma. As the bias voltage was varied from zero

volt to positive 25 volts, the RW-SF curve was not changed

at all. When the bias voltage reached beyond positive 25

volts, the antenna started to draw a heavy d.c. current from

the plasma evidenced by a red glowing at the antenna tip.

It was concluded that the variation of the antenna bias

voltage, which was positive relative to the plasma, did not

change the RW-SF curve.

The next step was to bias the antenna negatively with

respect to the plasma. When the antenna bias voltage was

varied from zero volt to negative 40 volts, a significant

change in the RW—SF curve was observed. As the negative

antenna bias voltage was substantially varied, the alternation

of the RW-SF curve stopped at a particular frequency for a

particular plasma density (discharge current). As the plasma

density was increased, this particular frequency moved up

indicating that a longer frequency range of the RW-SF curve

was changed. This phenomenon is demonstrated in Figure 4.4.

Figure 4.4(a) shows the RW-SF curve for the plasma current of
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10 amperes, subject to the variation of antenna bias voltage

from zero volt to negative 40 volts. It is clearly seen in

this oscillogram that the lower frequency part (0.5 to 0.68

GHz) is substantially changed. Figure 4.4(b) shows the RW-SF

curve for the case of 15 amperes plasma current. The frequency

band of 0.5 to 0.78 GHz is affected. Figure 4.4(c) shows the

RW-SF curve for the case of 20 amperes plasma current. The

frequency band of 0.5 to 0.92 GHz is affected.

Three oscillograms in Figure 4.5 show the similar

phenomena. In these oscillograms, the range of sweeping fre-

quency is from 0.4 to 1.4 GHz which is wider than the case of

Figure 4.4.

To understand the physics behind the observed pheno-

mena, the correlation, between the plasma density and the

highest frequency beyond which the antenna bias voltage

ceased to affect the RW-SF curve, was investigated. It was

found that this highest frequency was very close to the

ambient plasma frequency. This finding implied that as the

antenna bias voltage was varied, the affected part of the

RW—SF curve was in the frequency band lower than the ambient

plasma frequency. This phenomenon also implied that every

possible electroacoustic resonance was excited in the plasma

sheath for the antenna frequency lower than the ambient plasma

frequency.

Figure 4.6 summarizes the affected frequency bands of

the RW-SF curves due to the variation of negative antenna
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Figure 4.5 Oscillograms of the reflected wave versus

swooping frequency curves for various plasma currents. Fre—
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bias voltage for various plasma densities (plasma currents).

The ambient plasma frequency in each case is indicated in

the figure showing it to be close to the upper bound of the

affected frequency band. It is noted that the ambient plasma

frequency was measured by the conventional Langmuir probe

method. The ambient plasma frequencies in the central part

of the plasma tube, correSponding to various plasma currents,

are shown in Table 4.1.

Table 4.1 Ambient plasma frequency versus plasma current.

 

 

Plasma current Ambient plasma frequency

5 0.46

10 0.57

15 0.68

20 0.87

25 1.00

30 1.12

35 1.30

40 1.47

45 1.47    
4.4 Interpretation of the Experimental Results
 

The excitation of an electroacoustic wave in a compress-

ible plasma, and the resonance of the electroacoustic wave

in a plasma sheath leading to the so-called Tonks-Dattner's
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resonance or the thermal resonance have been studied by

numerous workers.

Recently, Baldwin [28] and Parbhakar and Gregory [29],

through their theoretical and experimental studies, proposed

a new physical mechanism for the electroacoustic resonance

in the plasma sheath of a cylindrical plasma column. This

new physical mechanism is the following: When an electro-

magnetic wave is incident upon a bounded non-uniform plasma,

the electromagnetic field will excite an electroacoustic wave

at the critical density point on the density profile where

the local plasma density is equal to the frequency of the

incident wave. The electromagnetic energy is coupled to the

electroacoustic wave at this critical density point. The

excited electroacoustic wave then propagates in both directions;

one attenuates into the overdense plasma and the other prepa-

gates, and sets up a standing wave in the underdense plasma

region or the plasma sheath. In this physical mechanism, it

is implied that in order to excite an electroacoustic wave,

an electromagnetic wave is required to interact with the

plasma at the critical density point. If no critical density

point exists in the plasma, an electroacoustic wave may not

be excited.

This new physical mechanism will be used to interpret

our experimental results.
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4.4.1 The Case When the Cylindrical Antenna is Biased

Positively:
 

When the antenna is biased positively with respect to

the plasma, the electron density in the vicinity of the antenna

is increased and it may create a density profile surrounding

the antenna as shown in Figure 4.7.

In our eXperiment, the antenna frequency was contin-

uously swept over a band and, at the same time, the antenna

bias voltage was varied. At a particular instant, the antenna

frequency is assumed to be ml. If “I is higher than the

ambient plasma frequency, an electroacoustic wave is excited

at the critical density point where w = ml somewhere on the

P

density profile in the antenna vicinity.

The excited electroacoustic wave which prepagates out-

wardly in a large volume of underdense ambient plasma is

essentially a travelling wave because of the large plasma

volume. It appears that the amount of energy used to excite

the electroacoustic wave remains rather constant even for

various antenna frequencies and various density profile which

is changed by the variation of antenna bias voltage.

The excited electroacoustic wave which prepagates in-

wardly toward the antenna becomes evanescent because an

overdense plasma surrounds the antenna. Thus, no standing

electroacoustic wave can be set up in this situation and no

electroacoustic resonance can be observed through the reflected

wave of the antenna.
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Figure 4.7 Plasma density profiles surrounding the

antenna for various positive bias voltages.
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If the antenna frequency band is lower than the ambient

plasma frequency, neither electroacoustic wave can be excited

nor propagates in the plasma because every point in the plasma

volume is overdense with respect to this frequency band.

Therefore, one would not expect to observe any signifi-

cant effect on the RW-SF curve as the antenna bias voltage

is varied positively.

4.4.2 The Case When the Cylindrical Antenna is Biased

Negatively:
 

When the antenna is biased negatively with respect to

the plasma, electrons in the antenna vicinity are repelled.

This will create an electron-deficient region surrounding

the antenna, or a conventional plasma sheath with a density

profile as shown in Figure 4.8.

For this situation, the local plasma frequency in the

plasma sheath region is lower than the ambient plasma fre~

quency. When the antenna frequency is lower than the ambient

plasma frequency, an electroacoustic wave can be excited at

a critical density point on the density profile of the plasma

sheath. This excited electroacoustic wave attenuates out-

wardly; but can propagate inwardly because the plasma sheath

region is underdense with respect to this frequency. The

inward electroacoustic wave is essentially trapped in the

finite plasma sheath region, so that it will set up a standing

pattern. Furthermore, when the width of the plasma sheath

is roughly in the order of an integral multiple of the half
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antenna for various negative bias voltages.
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electroacoustic wavelength, the electroacoustic wave will

reach a resonance condition. Whenever the electroacoustic

resonance is reached at a particular antenna frequency and

at a particular antenna bias voltage, more power is transfered

from the antenna to the plasma resulting a dip in the reflected

wave from the antenna. Thus, as the antenna bias voltage is

varied, while the antenna frequency is being swept, the electro-

acoustic resonance is reached at some discrete frequencies.

Since these discrete frequencies are dependent on the density

profile of the plasma sheath, which are controlled by the

antenna bias voltage, the low frequency part of the RW-SF

curve will be altered when the antenna bias voltage is varied.

When the antenna frequency is higher than the ambient

plasma frequency, no critical density point can be found at

any point of the plasma volume. Thus, according to Baldwin's

[28] theory, no electroacoustic wave can be excited in the

plasma. If no electroacoustic wave is excited for the fre-

quency band higher than the ambient plasma frequency, no

significant change on the RW-SF curve can be observed when

the antenna bias voltage is varied.

Therefore, when the negative antenna bias voltage is

varied, only the part of the RW-SF curve where the antenna

frequency is lower than the ambient plasma frequency is

affected.
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4.5 Potential Application

The result of study described in this chapter may lead

to a convenient technique for plasma diagnostics; especially

for the measurement of the local plasma density.

A feasible scheme can be the following: A small movable

monOpole can be built to probe the density of a plasma volume.

The exciting frequency of the monopole is swept over an appro-

priate frequency range. The bias voltage of the monopole is

made variable from zero volt to a certain negative volt. The

reflected wave versus sweeping frequency curve is displayed

on the scope. As the bias voltage is varied (usually manually),

the lower frequency part of the RW-SF curve will be altered.

The highest frequency of this altered frequency band is the

local plasma frequency at the location of this monopole probe.

The advantage of this diagnostic technique is the

direct reading of the local plasma frequency and the quick-

ness of obtaining results. Unlike the conventional Langmuir

probe method, this method does not require any graphical or

computational intermediate steps. The disadvantage of this

method is the requirement of a sweep frequency generator and

a variable bias voltage setup. The commercially available

sweep frequency generators usually have limited sweeping

frequency bands so that the measurable range of the plasma

density may also be limited.
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4.6 Analysis of the Coupling between the Electromagnetic

Mode and Electroacoustic Mode in the Plasma Sheath
 

In this section, we aim to show that the electric

field set up by the charge on the antenna will excite an

electroacoustic wave in the plasma sheath surrounding the

antenna. The excitation of an electroacoustic wave is poss-

ible because the gradient of the electron density in the

plasma sheath surrounding the antenna and the electric field

on the antenna surface are both in the same direction--the

radial direction. Thus, a strong coupling between the

electroacoustic mode and the electromagnetic mode can exist.

The theory presented in this section is to confirm the

experimental observation that an antenna can excite an

electroacoustic wave in the plasma sheath surrounding the

antenna.

Since we are concerned only with the electroacoustic

wave in this section, the motion of positive ions is ignored

in the analysis. Consider the geometry of Figure 4.9 where

a cylindrical antenna is located along the z—axis. The

electron density profile in the plasma sheath surrounding

the antenna is also shown in this figure. Starting from the

basic equations which govern the system,

Maxwell's equations in the plasma sheath are

v x E = - jouofi (4.6.1)

V x H = - enofie + jweOE . (4.6.2)
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The equation of mass conservation of electrons is

8N

3E2 + v . (Nefie) = 0 (4.6.3)

where

Ne = no(f) + ne(f,t) . (4.6.4)

Thus, equation (4.6.3) becomes

jwne + v . (node) = 0 ‘ (4.6.5)

<< .when n6 no

The equation of momentum conservation of electrons is

36 Ve + e e

at e e me :10 e

where

g = fidc + g .
(4.6.7)

For the d.c. component of equation (4.6.6),

0 = - E— E - —E-Vn . (4.6.8)
m 0

Equation (4.6.8) shows that the plasma density profile no(f)

is maintained by the d.c. component of the electric field.

For the a.c. component of equation (4.6.6)

3— E - —— Vn . (4.6.9)
m e

e no

. +

(3w + Ye)Ue = -
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Taking the divergence of equation (4.6.2) and using equation

(4.6.5), we have

0 = jwene + jweoV - E . (4.6.10)

or

+ ene

V . E = - -— 0 (406.11)

80

Taking the curl of equation (4.6.1) and using equation (4.6.2),

we have

_ 2 -
V x V x E - w uoeoE + jwuoenofie . (4.6.12)

Using equation (4.6.9), equation (4.6.12) reduces to

 

 

 

2 2
w Y m

vaXi=wzuo.o[—7i_7—j 2”,]???
w + Ye w(w + Ye )

w2+jwye) 2 +

+ < 2 2 Uoeove V(V . E)
w + y

e

_ 2+ .«r

BemE + aV(V E) (4.6.13)

where

2 2

2 2 we . Yewe ]
B = w u e [l - ———————— - 3 (4.6.14)
em

0 O w2 + Yez (0(0)2 + Yez)

prepagation constant of the electromagnetic

wave in the plasma sheath.
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w + jwy V

a = ( 2 e) 92 (4.6.15)

0.) C

 

“080

Let us assume that E = fie + 3p where fie corresponds to the

electric field of the electromagnetic wave such that V - fie = O

and fip corresponds to the electric field of the longitudinal

electroacoustic wave such that V x E = 0.

P

Equation (4.6.13) then reduces to

2 2 + 2 2 =
(v + Bem)Ee + (aV + eem)§ o . (4.6.16)

P

Taking the curl of equation (4.6.16), we have

2
(v + 6 2)(v x E ) = - (vs 2) x (E + E ) .(4.6.l7)

em e em e P

Taking the divergence of equation (4.6.16), we have

2

B
2 em . = _ 1 2 .

(v + —37)(v Ep) (; veem) (fie + Ep)

ene

Using V ° Ep = - _E_ from equation (4.6.11), we got

0

2 Be: 60 1 2 E g
(V 4' Th'le = e—(E VBem) ° (6 + p) . (4.6.18)

Equation (4.6.18) is the inhomogeneous wave equation for the

electroacoustic wave. In this equation, Be: is in the r

O O ...) c 0 O I

d1rection. Be 15 also 1n the r d1rect1on on the antenna
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surface because the electric field on the conductor surface

is perpendicular to the surface. Therefore, there is a strong

coupling between the electromagnetic mode and the plasma mode.

In other words, the radial component of‘fie field on the antenna

surface can excite an electroacoustic wave, through the gradient

of the density profile, in the plasma sheath.



CHAPTER 5

EXCITATION OF ELECTROACOUSTIC RESONANCES IN VARIOUS PLASMA

GEOMETRIES AND STUDY OF THE REFLECTION BEHAVIOR OF

ELECTROACOUSTIC WAVES ON VARIOUS SURFACES

5.1 Introduction
 

Electroacoustic resonances are excited in (1) a cylin-

drical plasma column, (2) a rectangular plasma column and

(3) a single-SIOpe density profile plasma column. The nature

of the electroacoustic resonances in different plasma geome-

tries is studied.

The techniques of exciting electroacoustic resonances

are applied to study the reflection behavior of electroacoustic

wave on (1) dielectric surface and (2) metallic surface.

5.2 Experimental Setup
 

For the experiments in this chapter, two types of

mercury-vapor plasma tubes have been constructed. One type

was the cylindrical glass tube with a length of about 30 cm,

outside diameter of 8 mm, inside diameter of 6 mm, and mercury

pressure of about 1 micron. The structure of this tube is

shown in Figure 5.1. The other type was the rectangular

glass tube with a length of about 30 cm, outside cross

122
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sectional dimensions of 12 mm by 8 mm with a wall thickness

of 1 mm, and the mercury pressure of about 1 micron. This

rectangular tube was divided into 3 sections; an uniform

density section, a single-slope density profile (single-

profile) section with a metallic reflector and a single-

profile section with a glass reflector. A single-profile

can be created in this tube by squeezing the plasma current

flow at a gap close to the wall by means of a built-in glass

plate. The structure of this tube is shown in Figure 5.2.

The single-profile plasma column was constructed

primarily for the purpose of studying the reflection behavior

of an electroacoustic wave on various surfaces. It was hoped

that the electromagnetic field of the electroacoustic probe

can excite an electroacoustic wave in the region between the

reflector and a point on the plasma density profile and not

in the plasma sheath at the glass wall next to the electro-

acoustic probe. Assuming that an electroacoustic wave can

be excited in the region mentioned above by the electromagnetic

field of the electroacoustic probe, a standing electroacoustic

wave will be set up between the critical density point and

the reflector if a sufficient amount of electroacoustic wave

is reflected from the reflector surface. This standing

electroacoustic wave will appear as resonances in the reflected

electromagnetic wave which is picked up by the electroacoustic

probe when the plasma current is varied. If the reflector

surface absorbs the incident electroacoustic wave, no standing
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electroacoustic wave will be set up and no resonances will

be observed. From the patterns of resonances observed with

different reflectors, the reflection behavior of the electro-

acoustic wave on various reflector surfaces can be studied.

The schematic diagram of the experimental setup is

shown in Figure 5.3. The incident c. w. electromagnetic wave

which excites an electroacoustic wave in the plasma column

is fed to the electroacoustic probe which is essentially an

open-ended coaxial line with a protruding center conductor

with a disk tip. The reflected electromagnetic wave from

the plasma column is picked up by the same electroacoustic

probe. This reflected electromagnetic wave is passed through

a directional coupler and a detector before reaching the

vertical input terminal of the oscilloscope. The horizontal

input of the oscilloscope synchronizes with 60 Hz sweeping

of the plasma discharge current. The display of the reflected

electromagnetic wave on the oscillosc0pe contains all the

information on the electroacoustic and dipole resonances and

is called the reflection curve in the later sections of this

chapter.

5.3 Electroacoustic Resonances and Dipole Resonance in a

Cylindrical Plasma Column
 

In this eXperiment, a cylindrical plasma tube was used

in the setup as shown in Figure 5.3. The electromagnetic

source was set at 2.4 GHz and the tube discharge current was
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swept 60 Hz in the experiment. The reflected electromagnetic

wave picked up by the electroacoustic probe went through the

directional coupler (or a matched coaxial hybrid), detector

and then was displayed on the oscilloscope. Resonance peaks

were observed at various discharge currents. When a metallic

backing was placed on the back side of the tube as shown in

Figure 5.4, one of the resonance peaks was affected. Three

sets of oscillograms were taken in this experiment and they

are shown in Figures 5.6, 5.7 and 5.8.

Figure 5.6 shows the resonance curves in the lower

discharge current region. The Operating frequency was set

at 2.4 GHz and the plasma current was swept around 95 mA.

No effect on this part of the resonance curve was observed

with a metallic backing to the tube. It is evident that

these peaks are electroacoustic resonances which are excited

in the plasma sheath directly near the probe. A metallic

backing in the back side of the tube has little effect on

this locally excited electroacoustic standing wave. This

phenomenon is shown in Figure 5.5.

Figures 5.7 and 5.8 show the resonance curves in the

higher discharge current region observed in two different

plasma tubes of same dimensions. When the tube was placed

with a metallic backing on the back side, some effect was

observed on the first highest peak of the resonance curve.

This first highest peak is recognized as the dipole resonance

which is physically different from the remaining electroacoustic



128

metallic  

EH -3—(
electro- electro-

acoustic acoustic

probe probe

(a) (b)
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Figure 5.5 Electroacoustic resonance in a cylindrical

plasma column.



I29

 

 

 

 

m

>

P

p without metallic

3 backing

U

m

r-G

w

m

u

Ipo = 95 mA plasma current

m

>

9

U with metallic
w .

u backing

o

w
H

‘44

w

u

I r 95 mA plasma current

Figure 5.6 Resonance curves observed in a cvlindrical

plasma column. (f = 2.4 CH2, Ip0 — 95 mA)



I30

 

w

>

m

3

8 without metallic

u backing

o

m

H

'H

w

u

ll-_, _____ ,

[no , 115 mA plasma current

3’
V

9
5

U with metallic

3 backing

o

w

H

04

w

u

 

A

Ip0 = 115 mA plasma current

Figure 5.7 Resonance curves observed in a cylindrical

plasma column. (f = 2.4 CH2, Ip0 = 115 mA)



I31

without metallic

backing

r
e
f
l
e
c
t
e
d

w
a
v
e

 

.——-»7# , 7A,__-. ,.1,__.v-,,_.—__.

IUD , 120 mA plasma current

 

 

w

>

S

g with metallic

u backing

o

m

r-4

U.

m

H

I = 120 mA plasma current
po

Figure 5.8 Resonance curves observed in a cylindrical

plasma column. (f = 2.45 CH2, Tpo : 120 mA)



132

resonances. Since a dipole resonance is an electromagnetic

resonance and is excited over the whole column, a metallic

backing will alter drastically the boundary condition and

lead to a change in the dipole resonance peak.

5.4 Electroacoustic Resonances and Dipole Resonance in a
 

Rectangular Plasma Column
 

In this eXperiment, a rectangular plasma tube was

used in the setup as shown in Figure 5.3. The electro-

acoustic probe was placed at the uniform plasma section.

The resonance curves were observed in both the low and the

high discharge current regions and a complete series of

electroacoustic and dipole resonances can be reconstructed

in four oscillograms in Figure 5.9. To our best knowledge,

the electroacoustic and dipole resonances have not been

studied in this rectangular geometry. In Figure 5.9, it is

observed that the resonance curve consists mainly of four

distinct peaks; the highest peak occurs at the high discharge

current end and the rest with descending order of magnitude

toward the low discharge current end. This curve looks

similar to the resonance curve observed in the cylindrical

plasma tube.

Figures 5.10 and 5.11 show the effect of a metallic

backing on the resonance peaks. When the metallic backing

was placed on the tube, the second highest peak was affected;

but not the first highest peak as in the case of the cylindrical
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plasma tube. This may imply that the second highest peak

in the resonance curve observed in a rectangular plasma tube

is the dipole resonance.

5.5 Resonances in Singleéprofile Plasma Column in the
 

Rectangular Tube
 

As stated before, a single-profile column was fabricated

in order to study the reflection behavior of an electro-

acoustic wave on various boundary surfaces. Before this

study was conducted, the plasma density profile of this

plasma column was examined by observing the resonance curves

created by the electroacoustic probe at different parts of

the plasma column.

5.5.1 Glass Reflector Region
 

We first examined the density profile at three differ-

ent points in the glass reflector region as shOWn in Figure

5.12. A large density profile difference was expected to

exist between the front and back sides at the neck section

of this region. The density profile should become more

uniform away from the neck section, so that a small density

difference was expected to exist between the front and back

sides at the center and tail sections of this region. The

electroacoustic probe was placed at different positions along

this glass reflector region and the reflection curves were

studied.

Figure 5.14 shows that at the neck section, the
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flow

neck nter tail

front Side

Figure 5.13 Plasma density distribution in the

metallic reflector region.
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reflection curve from the front side is significantly

different from that of the back side implying the existence

of a drastic density profile difference between the front

and back sides of the tube at this section.

Figures 5.15 and 5.16 show that a relatively small

difference exists between the reflection curves from the

front and back sides at the central section of the glass

reflector region. This will imply the existence of only a

small difference in the densities between the front and

back sides at this section of the tube. Also in Figure 5.15,

the effect due to the metallic backing is indicated. We can

see that the second highest peak was altered when the metallic

backing was placed on the tube.

Figure 5.17 shows the existence of a small difference

in density profile between the front and back sides at the

tail section of the glass reflector region. The similar

effect due to the metallic backing was also observed in the

experiment.

Experimental results shown in Figures 5.14, 5.15, 5.16

and 5.17 confirm that a single-profile was created in this

rectangular plasma tube.

5.5.2 Metallic Reflector Region

The density profile in the metallic reflector region

of the same tube as shown in Figure 5.13 was studied. Three

sections, the neck, center and tail sections, of this region

were examined. A series of oscillograms of the reflection
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IpO = 150 mA plasma current

Figure 5.15 Resonance curves observed in the center

section of the glass reflector region of a rectangular plasma

tube. (F = 2.4 CH2, Ip0 = 150 mA)
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Figure 5.16 Resonance curves observed in the center

section of the glass reflector region of a rectangular plasma

tube. (f = 2.4 CH2, IDo = 200 mA)
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Figure 5.17 Resonance curves observed in the tail

section of the glass reflector region of a rectangular plasma

tube. (f a 2.4 CH2, Ipo = 150 mA)
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curves were taken during the experiment at the neck, center

and tail sections of the metal reflector region under various

discharge currents. By grouping these oscillograms together,

we obtained three complete curves of the resonance.

Figure 5.18 shows a complete curve of resonance at the

neck section. At this section no distinct electroacoustic

resonance was observed. It was probably due to the turbulent

plasma flow and irregular density distribution in this posi-

tion.

Figure 5.19 shows a complete curVe of resonance at the

center section. The electroacoustic and dipole resonances

were observed.

Figure 5.20 shows a complete curve of resonance at the

tail section. The electroacoustic and dipole resonances were

clearly observed at this section.

5.6 Reflection Behavior of Electroacoustic Wave from Metallic
 

and Non-metallic Surfaces
 

Figure 5.21 shows the reflection curves observed in

the uniform, glass reflector and metallic reflector regions

of the tube. The reflection curve from the metallic reflector

region is different from the other two cases. This appears

to imply different reflection behaviors of an electroacoustic

wave on metallic and non-metallic surfaces. However, Figure

5.22 shows that the reflection curve observed in the uniform

column is affected by an external metallic backing and,
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Figure 5.18 Resonance curve observed in the neck

section of the metallic reflector region of a rectangular

plasma tube. (f = 2.4 GHz)

 1 1 L l ,__1

100 150 200 250 mA p

 

Figure 5.19 Resonance curve observed in the center

section of the metallic reflector region of a rectangular

plasma tube. (f = 2.4 GHz)

  l J l l I

100 150 200 250 um” P

Figure 5.20 Resonance curve observed in the tail

section of the metallic reflector region of a rectangular

plasma tube. (f = 2.4 GHz)
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Figure 5.21 Reflection curves observed in uniform,

glass reflector and metallic reflector regions of a rectangular

plasma tube. (f ,, 2.33 "Hz, Ip0 s 190 mA)
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Figure 5.22 Reflection curves observed in the uniform
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furthermore, Figure 5.23 shows that inside and outside metallic

backing do not give different reflector curves. Based on the

results observed in Figures 5.22 and 5.23, the different

reflection curves observed in Figure 5.21 may not be due to

the reflecting surface. This may imply that all the electro-

acoustic resonances were still excited at the front side of

the tube directly near the probe. The different reflection

curves observed in the glass reflector and metallic reflector

regions may be due to the electromagnetic effect of the

metallic reflector to the reflected wave.

Our attempt to study the reflection behavior of an

electroacoustic wave on metallic and non-metallic surfaces

using a single-profile plasma column was proved to be incon-

clusive. A major disruption in the vacuum system prevented

the continuation of this study. It is recommended that with

some modifications on the tube construction, but based on the

same idea of a single-profile plasma column, the reflection

behavior of the electroacoustic wave can be successfully

studied.
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APPENDIX A

NUMERICAL CALCULATION OF R1, R2, THE ELECTRON-ION

COMPOSITION RATIOS OF THE n1 WAVE

AND THE n2 WAVE

To determine R1 and R2, the electron-ion composition

ratios of the n1 wave and the n2 wave, for various source

frequencies, various collision frequencies and various Te/Ti

by using a computer, we write the following equations in terms

of X, Y and Z where

X = (we/w)2 , (A-l)

Y = Ye/w (A-2)

z = Te/Ti . (A-3)

Equation (2.2.9)

2 w 2 y
Be2 = E”__2_<1 - .2. .. j .2) (A-4)

ve

can be written as

82=K2 (A-S)

149
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where

x = 9—. (A-6)
2 Ve

A1 = (1 - x - jY) . ' (A-7)

For equation (2.2.13),

2
2 w y.

2 w i . 1
B, = —< - —— 'I' J —)

(A‘s)

l Vi2 042 w '

we use equations (2.2.8), (2.2.12), (2.1.11) and (2.1.12)

with hydrogen gas plasma assumption, then we have

wiz = (me/mime2 :

or

wiz = (1/1836)we2 ; { (A-9)

vi2 = (me/miimi/Tewe2 .

0r

V12 = VeZ/(l8362) ; (A-lO)

assuming

(vi/Ye) = (Vi/Va) (A-11)

and using equation (A-lO), we have

vi = Ye/(1836)1/2 . (A-12)
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Equation (A—8) can be written as

312 = K22A2 (A-13)

where

A2 a 18362 - xz - jy(13362)1/2 . (A-14)

Similarly, equation (2.3.15) 1

2 2 ‘5
4 w m

2 2 2 w e i

. = - . , + 4(—)(—><—)° [ 1 e v 2v.2 (1)2 (1)2
e 1

can be written as

A = K 2A (A—ls)
o 2 3

where l

_ _ 2 2 2 _

Substituting equations (A-S), (A-13), (A-lS) into equations

(2.4.3), (2.4.5) and using equations (A-l), (A-S) yield

R1 = 52(A1 - A2 + A3) (A-17)

R = l—(A - A - A ) (A-18)
2 2x 1 2 3 °

Equations for R1 and R2 are functions of X, Y and Z, i.e.,

functions of (we/w)2, ye/w and Te/Ti. Therefore, the electron-

ion composition ratios of the n1 wave and the n2 wave can be

determined by assuming various source frequencies, various

collision frequencies and various Te/Ti'



APPENDIX B

NUMERICAL CALCULATION OF k1, k2, THE PROPAGATION

CONSTANTS OF THE n WAVE AND THE n2 WAVE

1

To determine k1, k2, the propagation constants of the

n1 wave and the n2 wave, for various source frequencies,

various collision frequencies and various Te/Ti by using a

computer, we rewrite equations (2.5.1) and (2.5.2).

For hydrogen gas plasma, we use equation (A-l4) as

well as equations (A-S), (A-7), (A-l3), (A-lS), (A-16) and

(A-6). Then equations for k1 and k2 can be written as

 

 

L— =<Al + A2 4' A3); (3-1)

(w/Vi) 36722

i=<Al 4' A2 "' A3); (B-Z)

(w/Ve) 2

where

A1 = 1 - x - jY (B-3)

A2 = 1836z - xz - jY(18362)1/2 (3-4)

A3 = [(242 - 111)2 + 4zxz]1/2 (B-S)

x = (we/w)2 (B-6)
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Y = Ye/w (B-7)

2 = Te/Ti (B-8)

For xenon gas plasma, we use

w 2 m

w 2 ml 54 x 1836 99144

e

V12 me Ti 1
——— — (—-)(——) = ————-— (B-lO)
V 2 mi Te 991442

e

y. V.

—i = Vi = 1 1 2 . (B-ll)

Ye e (991442) /

Equation (A-8) becomes

812 = KZZAZ (B-12)

where

A2 = 991442 - x2 - jY(99l44Z)1/2 . (B-13)

Using equations (B-12), (B-13) as well as equations (A-S),

(A-6), (A-7), (A-lS), (A-16) in equations (2.5.1) and (2.5.2),

we can write

 

1
k A +A +A3
1 < 1 2 )2 (3-14)

(w/Vi) 198288Z

 

1
k2 Al + A2 - A3 3 (3-15)

(w/ve)
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where

A1 = 1 - x - jY (B-16)

A2 = 991442 - x2 - jY(99144Z)1/2 (3-17)

A.3 = BA? - Al)2 + 42x2]1/2 (B-18)

x = (we/w)2 (3-19)

Y = ye/w (B-20)

z = Te/Ti . (B-21)

Therefore, k1 and k2 for various source frequencies, various

collision frequencies and various Te/Ti can be determined.

For hydrogen gas plasma, we use equations (B-l) through (B-B).

For xenon gas plasma, we use equations (B-l4) through (B-Zl).
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Sample Program
 

O
(
3
(
)
O
(
3
(
)
O
(
U
F
)
O

(
3
0
(
3
(
)
O

(
)
O
(
3
(
)
O

10

PROGRAM PLASMA (OUTPUT)

********************************fk'k***********************

THIS PROGRAM CALCULATES

(1) THE WAVE NUMBERS AKlK AND AK2K

(2) THE RATIOS RN1EI AND RNZEI

AS A FUNCTION OF x (x=(WE/W)**2) FOR AN ASSIGNED A

(A=COLLISION FREQUENCY/W).

THIS CASE (HYDROGEN GAS IS ASSUMED, TE=B*TI WHERE B=100)

*********************************************************

REAL MOD1,MOD2

COMPLEX C,D,AM,AN,ANMX,AK1K,AK2K,RNIEI,RNZEI,P

DIMENSION A(7),X(15),AM(7,15),AN(7,15),ANMX(7,15),

lP(7,15) ,Q(15) ,AK1K(7,15) ,AK2K(7,15) ,

2RN1EI(7,15),RNZEI(7,15),MOD1(7,15),MOD2(7,15)

A(1)=o.o

A(2)=lO.E-4

Do 1 I=3,6

A(I)=A(I-—1)*10.

CONTINUE

x(1)=10.E-S

Do 2 J=2,13

X(J)=X(J-1)*10.

CONTINUE

B=100.

C=CMPLX(0.0,1.0)

E=SQRT(1836.*B)

D=CMPLX(0.0,E)

Do 3 I=1,6

DO 4 J=1,13

AM(I,J)=1.—x(J)-C*A(I)

AN(I,J)=1836.*B-B*X(J)-D*A(I)

P(IIJ)=(AN(IIJ)-AM(IIJ))**2

Q(J)=4.*B*X(J)**2

ANMX(I,J)=CSQRT(P(I,J)+Q(J))

NOTING AT LARGE x, 4BX**2 IS MUCH SMALLER THAN THE

RE(AN-AM), so ANMx SHOULD HAVE THE SIGNS OF (AN-AM).

SINCE IM(AN—AM) IS NEGATIVE. WE DEMAND IM(ANMx) NEGATIVE.

IF(AIMAG(ANMX(I,J))-0.0) 20,20,10

ANMX(IIJ)=-(ANMX(IIJ))

AKIK MIGHT HAVE 2 SOLUTIONS,ONE IS THE NEGATIVE OF THE

OTHER.SINCE IT IS A WAVE NUMBER WHICH HAS TO HAVE

POSITIVE REAL PART AND NEGATIVE IMAGINARY PART.SO WE

COULD PICK THE REQUIRED SOLUTION BY DOING THE FOLLOWING
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STATEMENTS.(SAME FOR AKZK)

AK1K(I,J)=CSQRT((AM(I,J)+AN(I,J)+ANMX(I,J))/(3672.*B))

IF (REAL(AK1K(I,J))-0.0) 30,30,40

AK1K(I,J)=-(AK1K(I,J))

AK2K(I,J)=CSQRT((AM(I,J)+AN(I,J)-ANMX(I,J))/2.)

IF (REAL(AK2K(I,J))-0.0) 50,50,60

AK2K(I,J)=-(AK2K(I,J))

RNIEI(I,J)=(AM(I,J)-AN(I,J)+ANMX(I,J))/(2.*x(J))

RN2EI(I,J)=(AM(I,J)-AN(I,J)-ANMx(I,J))/(2.*X(J))

M0D1(I,J)=CABS(RN1EI(I,J))

MOD2(I,J)=CABS(RN2EI(I,J))

CONTINUE

CONTINUE

PRINT 100

D0 5 I=1,6

PRINT 200,I,A(I)

Do 6 J=1,13

PRINT 201,J,X(J),AM(I,J),AN(I,J),P(I,J).Q(J),ANMX(I,J)

CONTINUE

CONTINUE

PRINT 100

D0 7 I=1,6

PRINT 200,1,A(I)

D0 8 J=1,13

PRINT 300,J,X(J),AK1K(I,J),AK2K(I,J)

CONTINUE

CONTINUE

Do 9 I=1,6

PRINT 202,I,A(I)

D0 11 J=1,13

PRINT 400,J,X(J),RN1EI(I,J),RN2EI(I,J),MOD1(I,J),MOD2(I,J)

CONTINUE

CONTINUE

FORMAT(*1RESULTS*)

FORMAT(1H0,*A(*,Il,*)=*,F7.3)

FORMAT(3X,*X(*,IZ,*)=*,E10.2,3X,*AM=*,E15.7,2X,E15.7,6X,

1*AN=*,E15.7,2X,E15.7/

214X,11H(AN-AM)**2=,E15.7,2X,E15.7,2X,7H4BX**2=,E15.7/

320X,*ANMX=*,E15.7,2X,E15.7)

FORMAT(1H1,*A(*,II,*)=*,F7.3)

FORMAT(1H ,10X,*X(*,12,*)=*,E10.2,10X,

1*AK1K=*,ElS.7,2X,E15.7,10X,

2*AK2K=*,E15.7,2X,E15.7)

FORMAT(1H0,10X,*X(*,I2,*)=*,E10.2,10X,

1*RN1EI=*,E15.7,2X,E15.7,10X,

2*RN2EI=*,E15.7,2X,E15.7,/,

337X,*MOD1 =*,E15.7,27X,*MOD2 =*,E15.7)

END



’APPENDIX c

TABLES OF DATA FOR THE CALCULATION OF RADIATION

PATTERNS OF THE n1 WAVE AND THE n2 WAVE

Notations and constants used in this appendix:

1

Ve = (3kTe/me)2 , thermal velocity of electrons.

.1.

Vi = (3kTi/mi)2 , thermal velocity of ions.

1.

VA = [3k(Te + Ti)/mi]2 , phase velocity of the n1 wave at

low frequency range.

Re[kl/(w/Vi)] , numerical output of the computer.

kl = {Re[k1/(w/Vi)]}(w/Vi) , phase constant of the n1 wave.

Re[k2/(w/Ve)] , numerical output of the computer.

k2 = {Re[k2/(w/Ve)]}(w/Ve) , phase constant of the n2 wave.

.1.

ke = w/uoso(l - weZ/wz)2 , propagation constant of the

electromagnetic wave in the plasma.

f = antenna frequency.
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fp = electron plasma frequency.

me = anp , circular electron plasma frequency.

L = 2a/(Vbh/f) , normalized antenna length.

k = 1.38 x 10"23 joules/°K , Boltzmann's constant.

me = 9.109 x 10’31 kg , electron mass.

mi = 9.031 x 10'26 kg , xenon ion mass.

Remark: A xenon gas plasma with (ye/w) = 0 is assumed

for all cases in this appendix.
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Table C-l kldl versus Te°

(f = 30 kHz, Re[k1/(w/Vi)] = 0.3016 for (Te/Ti) = 10, d1 = 1 cm)

 

 

w .

J.

2000°K 623 188 1.88

6000°K 359 108 1.08

10000°K 278. 84 0.84     
 

Table C-2 kldl versus Te/Ti.

(f = 30 kHz, Te = 6000°K, d1 = 1 cm)

 

 

32 Re[——El——] 2— k k d1
Ti (w/Vi) vi 1 l

1 0.7071 114 80 0.80

10 0.3016 359 108 1.08

100 0.0995 1136 113 1.13

1000 0.0316 3594 114 1.14      
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Table C—3 kldl versus f.

6000°K, Re[k1/(w/Vi)] = 0.3016 for (Te/Ti) = 10, d1(Te =

= 2.5 cm)

 

 

0.)

l

10 kHz 120 36 0.9

20 kHz 240 72 1.8

30 kHz 360 108 2.7     
 

Table C-4 kzdl versus Te-

(f = 1 GHz, Re[k2/(w/Ve)] = 0.2235 for (weZ/wz) = 0.95 and

(Te/Ti) = 1 to 10“, d1 = 1 mm)

 

 

0)

e

2000°K 2.08 x 10“ 4650 4.65

6000°K 1.20 x 10“ 2690 2.69

10000°K 9.32 x 103 2080 2.08     
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Table C--5 k2dl versus f.

(T6 = 4000° K, Re[k2/(w/Vei] = o. 2235 for (082/02) = 0.95 and

(Te/Ti) = 1 to 10 , d1 = 1mm)

 

 

m

f v— k2 kzdl

e

0.5 GHZ 7.37 x 103 1650 1.65

1.0 GHz 1.47 x 10“ 3290 3.29

1.5 GHz 2.21 x 10“ 4940 4.94      

Table C- 6 kla versus Te

(f = 30 kHz, Re[k1/(w/Vi)] = 0e 0995 for (Te/Ti) = 100,

a = 2. 25 cm)

 

 

(1)

Te VA VT kl kla

l

2000°K 962 2000 199 4.48

6000°K 1666 1136 113 2.55

10000°K 2150 880 88 1.97       
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kla versus f.

(VA = 1.05 x 103 m/sec, Te = Ti 2 1200°K, Re[k1/(w/Vi)]

 

 

= 0.7071 for (Te/Ti) = 1, a 2.25 cm)

m
f L V— k1 kla

1

16.3 kHz 0.7 138 98 2.2

23.3 kHz 1.0 198 152 3.4

58.3 kHz 2.5 494 349 7.8     
 

Table C-lO kla versus Te-

0.3016 for (Te/Ti) = 10, a(f = 30 kHz, Re[k1/(w/Vi)]

cm)

 

 

 

     

0)

2000°K 1004 623 188 4.22

6000°K 1739 359 108 2.44

10000°K 2245 278 84 1.89  
 

2.25
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Table C-ll kla versus Te/Ti.

(f = 30 kHz, Te = 4000°K, a = 2.25 cm)

 

 

Te k1 w

—— Re[————-{] —— k k a

1 0.7071 139 98.4 2.21

10 0.3016 440 133.0 2.99

100 0.0995 139 139.0 3.12       

Table C-12 kla versus f.

(V = 1.05 x lO3 m/sec, Te = Ti 2 1200°K, Re[k1/(m/Vi)]

= 8.7071 for (Te/Ti) = l, a = 2.25 cm)

 

 

0.)

f L ‘7— k1 kla

1

35.0 kHz 1.5 297 210 4.72

46.6 kHz 2.0 395 279 6.28

93.3 kHz 4.0 790 559 12.60       



165

Table C-13 kza versus Te-

(f = 17.5 MHz, Relkz/(w/Vé)] = 0.2235 for (082/02) = 0.95 and

(Te/Ti) = 1 to 10 , a = 7.2 cm)

 

 

(J

e

2000°K 365 81.5 5.87

4000°K 257 57.6 4.15

8000°K 182 40.8 2.94      

Table C-14 kza versus f.

(T6 = 2000°K, Re[k2/(w/Ve)] = 0.2235 for (092/02) = 0.95 and

(Te/Ti) = l to 10“, a = 7.2 cm)

 

 

f E_ k k a
Ve 2 2

15.0 MHz 313 69.8 5.03

17.5 MHz 365 81.5 5.87

20.0 MHz 417 93.2 6.71      

 



Table C-lS klh versus T6.
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(f = 30 kHz, Re[k1/(w/Vi)] - 0.3016 for (Te/Ti) = 10)

T Q_ k1 klh

3 Vi h = 2.5 cm h = 5 cm

2000°x 623 188 4.7 9.4

6000°K 359 108 2.7 5.4

10000°x 278 84 2.1 4.2     
 

Table C-l7 k h versus f.

h = 5 cm)

w/Vi)] = 0.3016 for (Te/Ti) = 10,

 

 

 

(A)

1

10 kHz 120 36 1.8

20 kHz 240 72 3.6

30 kHz 360 108 5.4    
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Table C-18 kzh and ke/kz versus Te

(f= 5. 5 MHz, fp = 4. 5 MHz, (Te/Ti ) = 1 to 10“, Re[k2/(w/Ve)]

= 0. S7 and ke — 0. 066 for (weZ/mz) = 0. 67, h = 6 cm)

 

 

       

 

 

k

T 2— k —2 k h
e Ve 2 k2 2

4000°K 81.0 46.1 0.00143 2.70

6000°K 66.2 37.7 0.00176 2.26

8000°K 57.3 32.6 0.00203 1.95

Table C-21 keh versus f.

(f = 4.5 MHz, h = 8.5 cm)
P

we2

f —§—. ke keh

w

5.0 MHz 0.81 0.046 0.0039

5.5 MHz 0.67 0.066 0.0056

7.0 MHz 0.41 0.113 0.0096      
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Sample Program
 

0
0
0
0
0
0
0
0
0

1

2

100

101

200

300

PROGRAM PLASMA (OUTPUT)

*****************************************************

THIS PROGRAM CALCULATES THE RADIATION PATTERNS OF THE

N2 WAVE EXCITED BY A CYLINDRICAL ANTENNA.

RADPAT=COS(THETAR)*(COS(K2*H*COS(THETAR))-COS(KE*H))/

((COS(THETAR))**2-(KE/K2)**2)

WE LET P=K2*H, B=KE*H, C=KE/K2.

********2********************************************

DIMENSION THETA(20),THETAR(20),P(5),A(5),B(5),C(5)

P(1)=1.95

P(2)=2.26

P(3)=2.7O

P(4)=3.20

B(1)=0.00396

B(2)=o.00388

B(3)=B(1)

B(4)=0.00562

c(1)=0.00203

c(2)=o.00176

C(3)=0.00143

c(4)=c(2)

PI=3.l4159265

Do 2 J=1,4

PRINT 100

PRINT 101,J,P(J)

DO 1 I=1,l9

THETA(I)=-100.+10.*I

PRINT 200,I,THETA(I)

THETAR(I)=(PI/180.)*THETA(I)

A(J)=P(J)*COS(THETAR(I))

RADPAT=COS(THETAR(I))*(COS(A(J))-COS(B(J)))/

1((COS(THETAR(I)))**2-C(J)**2)

PRINT 300,RADPAT

CONTINUE

CONTINUE

FORMAT(*1RESULTS*)

FORMAT(*0*,5X,*CASE(*,IZ,*)*,2X,6HK2*H =,E15.7)

FORMAT(* *,5X,*THETA(*,IZ,*)=*,F6.1,* DEGREE*)

FORMAT(*+*,33X,*RADPAT=*,E15.7)

END
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