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ABSTRACT

RADIATION AND RESONANCES
OF ELECTROACOUSTIC AND IONACOUSTIC
WAVES IN COMPRESSIBLE PLASMA
By

Kam-Chi Li

The present study consists mainly of two major parts.
The first part is the study on the basic properties of the
electroacoustic and ionacoustic waves excited by an electro-
magnetic source or field in an infinite, homogeneous,
isotropic, compressible and lossy plasma. A two-fluid plasma
model is employed and this leads to the formulation of the
generalized electroacoustic and ionacoustic waves. The
electron-ion compositions, as well as the propagation constants
of the generalized electroacoustic and ionacoustic waves with
various collision frequencies and under various electron and
ion temperatures, are obtained.

The radiation patterns of the generalized electro-
acoustic and ionacoustic waves excited by simple antennas,
such as Hertzian dipole, disk monopole, disk dipole and

cylindrical antennas, are studied. They agree very closely



Kam-Chi Li

with the results of some recent experimental studies.

The second part is the investigation of the excitation
of an electroacoustic wave in the plasma sheath surrounding
a cylindrical antenna, the excitation of electroacoustic
resonances in various plasma geometries, and the reflection
behavior of electroacoustic waves on various surfaces. A new
diagnostic scheme for measuring the plasma density directly
has been developed. 1In this scheme, a cylindrical antenna
immersed in a compressible plasma is driven by a frequency-
sweeping electromagnetic wave, and its d.c. bias voltage is
varied. Based on the information on the electroacoustic
wave excited in the plasma sheath surrounding the antenna,
the plasma density can be read directly on the oscilloscope.

The behaviors of electroacoustic resonances excited
in the plasma sheaths at the boundaries of various plasma
geometries which include cylindrical, rectangular and single-
slope density profile plasma columns were studied. The
technique of exciting electroacoustic resonances was then
applied to study the reflection behavior of electroacoustic

waves on dielectric and metallic surfaces.
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CHAPTER 1

INTRODUCTION

The research described in this dissertation deals
with the interaction of the electfomagnetic radiation with
a plasma. The first part of the dissertation studies the
radiation of various antennas imbedded in an infinite,
homogeneous, isotropic, compressible and lossy plasma. A
two-fluid model is used to describe the plasma. The second
part of the dissertation investigates the excitation of an
electroacoustic wave in the plasma sheath surrounding a
cylindrical antenna, the excitation of electroacoustic
resonances in various plasma geometries, and the reflection
behavior of electroacoustic waves on various surfaces.

The excitation and radiation of the electroacoustic
and ionacoustic waves from various simple antennas imbedded
in a plasma medium is a subject that has received a great deal
of attention from researchers. As to the excitation and
propagation properties of the electroacoustic and ionacoustic
waves, theoretical and experimental investigations have been

done by the researchers such as Cohen [1], Hessel and Shmoys

[2], Kuehl [3], Barrett and Little [4], Jones and Alexeff [5,6],



e

.




Malmberg and Wharton [7], Chen and Lin [8], Doucet [9],
Lonngren et al.[10] and Alexeff, Jones and Montgomery [1l1l].
More recently, Nakamura et al.[l12], Ishizone et al,[13] and
Shen et al.[l4] have detected the electroacoustic and ion-
acoustic waves excited by some simple antennas, and their
radiation patterns have also been measured. 1In treating the
plasma, most of the workers, including Majumdar [15], Cohen (1],
Hessel amd Shmoys [2] and Seshadri [16], have idealized the
plasma to be a homogeneous, collisionless and compressive
electron fluid with stationary ions that neutralize the
electrons on the average. Recently, Kuehl [3] has studied
the excitation of waves in a warm plasma by an electric dipole
wherein the motion of the ion has been included. Seshadri [17]
studied the radiation from electric current sources in a two-
component finite temperature plasma and Maxam and Chen [18]
decoupled electroacoustic and ionacoustic wave equations
based on a two-fluid plasma model using macroscopic approach.
It is the purpose of this research to apply the
decoupled equations of electroacoustic and ionacoustic waves,
with the consideration of various collision frequencies and
under various electron and ion temperatures, to investigate
in detail the electron-ion compositions and the propagation
constants of the so-called generalized electroacoustic and
ionacoustic waves. The radiation patterns of the generalized
electroacoustic and ionacoustic waves excited by some simple

antennas including Hertzian dipole, disk monopole, disk dipole



and cylindrical antennas are calculated. Theoretical radiation
patterns are then compared with recent experimental results

by Nakamura et al.[l12], Ishizone et al.[13] and Shen et al-.[14].
A good agreement is obtained between the pfesent theory and
experimental results.

The excitation of an electroacoustic wave in an
inhomogeneous compressible plasma and the resonance of the
electroacoustic wave in a plasma sheath leading to the so-
called Tonks-Dattner's resonance, or thermal resonance, have
been studied by numerous workers including Tonks [19],

Dattner [20], Crowford [21], Parker et al.[22], Vandenplas [23],
Tutter [24], Van Hoven [25], Derfler and Simonen [26] and
Golddan and Yadlowsky [27]. Recently, Baldwin [28] and
Parbhakar and Gregory [29], through their theoretical and
experimental studies, proposed a new physical mechanism for
the electroacoustic resonance in the plasma sheath of a
cylindrical plasma column. The mechanism implies that in
order to excite an electroacoustic wave, an electromagnetic
wave is required to interact with the plasma at the critical
density point where the plasma frequency is equal to the
frequency of the electromagnetic wave. If no critical density
point exists in the plasma, an electroacoustic wave may not

be excited.

In the second part of this research, experimental
studies have been conducted to study (1) the excitation of

the electroacoustic wave in the plasma sheath surrounding a



cylindrical antenna imbedded in a compressible plasma, (2) the
excitation of electroacoustic resonances in various plasma
geometries which include cylindrical, rectangular and single-
slope density profile plasma columns, and (3) the reflection
behavior of electroacoustic waves on dielectric and metallic
surfaces based on the technique of exciting electroacoustic
resonances. Baldwin's mechanism [28] was used to explain
some experimental results.

In this part of the experimental study, a new diagnostic
scheme for plasma density measurement was developed. A
cylindrical antenna immersed in a compressible plasma is
driven by a frequency-sweeping electromagnetic wave and a
variable d.c. bias voltage is applied to the antenna. By
observing the effect of the d.c. bias voltage on the excitation
of the electroacoustic wave in the plasma sheath surrounding
the antenna, the plasma density at the location of the antenna
can be directly read on the oscilloscope.

Throughout the study, the macroscopic approach is
used. The problem was solved based on the hydrodynamic
equations and Maxwell's equations. Chapter 2 studies the
generalized electroacoustic and ionacoustic waves, their
electron~ion compositions, propagation constants, the effects
due to the collision frequency and electron and ion tempera-
tures. Chapter 3 applies the results of Chapter 2 to calculate
the radiation patterns of generalized electroacoustic and

ionacoustic waves excited by four different types of antennas.



Theoretical results are then compared with some recent
experimental results. Chapter 4 studies the excitation of
an electroacoustic wave in the plasma sheath surrounding a
cylindrical antenna. A new diagnostic method for the plasma
density measurement is described in this chapter. The
excitation of electroacoustic waves in various plasma geome-
tries and the reflection behavior of electroacoustic waves

on various surfaces are investigated in Chapter 5.



CHAPTER 2

ELECTROACOUSTIC WAVE AND IONACOUSTIC WAVE EXCITED
IN AN INFINITE, HOMOGENEOUS, ISOTROPIC,
COMPRESSIBLE AND LOSSY PLASMA BY

AN ELECTROMAGNETIC SOURCE

2.1 Geometry and the Related Equations

We consider a system in which an electromagnetic source

S and charge density pS is immersed in

with current density K}
an infinite, homogeneous, isotropic, compressible and lossy
plasma. The plasma is assumed to consist of two fluids, the
electrons and the ions. The neutral particles of the plasma
contribute to the dynamics of the plasma by collisions with
the charged particles. The electromagnetic source excited a
longitudinal electroacoustic wave and a longitudinal ionacoustic
wave in addition to the usual electromagnetic wave. Since the
excitation and propagation of the electromagnetic wave in
the plasma are well known, only the electroacoustic wave and
ionacoustic wave are investigated in detail in this study.

A macroscopic approach is used to describe this system.

It is assumed that the perturbation of the plasma due to the

source is small, so that the linearized equations are applicable.



Under these assumptions, the basic equations which govern
this system are Maxwell's equations and the hydrodynamic
equations.

Maxwell's equations:

in=5=-3—E (2.1.1)
VxB = v J 4+ uyue(n .U -n 0 ) + u € éﬁ (2.1.2)
o o oi oe e o odt T
a0 4e
V . = + =—(n, - n_) (2.1.3)
€ €y & e
v.-B=o0 (2.1.4)

where n; and n, . are the unperturbed ion and electron
densities which can be assumed to be equal and uniform

throughout the system, that is,
n_ . =n =n . (2.1.5)

n; and n, are the perturbed ion and electron densities such

th , << : << . . and n_ are functions of th
at n, no, ne no nl e o bo

position and time. ﬁi and ﬁe are the average velocities of
the ions and electrons induced by the external force. E and
B are the electric and the magnetic fields. 38 and os are

the current and charge density of the source and are related

by the equation of continuity as

vV oo J +§t—-=0 . (2.1.6)



Uo and e, are the permeability and permittivity of free space

respectively.

Hydrodynamic equations:

The linearized equations of motion for the electrons are

ane .
gt:_. + no(v . Ue) = 0 (2.1.7)
2
o0 v
e > e > e
-az— + ‘YeUe = - N E - —/ Vne . (2.1.8)
e o
The linearized equations of motion for the ions are
on,
i >
> 2
1] V.
i > e i
T + YiUi = I—I\I E - H;— Vny (2.1.10)

where Ye and Y; are the mean electron-neutral particle

collision frequency and mean ion-neutral particle collision

frequency respectively. Vg

of electrons

where mg and

are the electron and ion temperatures.

and of ions,

3kT

and Vi are the thermal velocities

and are defined as

e
- (2.1.11)
e
3kTi
(2.1.12)
m,
i
m, are the electron and ion masses. Te and Ti

e is the magnitude



of electron charge and k is the Boltzmann's constant.

It is assumed that the electromagnetic source oscil-
lates with a constant frequency w, consequently, all quantities
vary with time as ejwt. The phaser analysis method is then

applied in the following development.

2,2 Equations for Electroacoustic and Ionacoustic Waves

To establish equations for the electroacoustic wave,
Ny, and the ionacoustic wave, n,, equation (2.1.8) is written

as

; =-S5 F -
e o

Taking the divergence of equation (2.2.1) yields

2
v
(Fu + Ye)v . ﬁe = - rgn— V.E- ;9— Vzne . (2.2.2)
e (o]

vV - U_ can be obtained from equation (2.1.7) as

V.0 =-r;Jﬂn i (2.2.3)
(o]

VeU, =-32%n . (2.2.4)
nO
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vV + E can be obtained by taking the divergence of equation

(2.1.2);
+S > > . >
0=V +«J + eno(V e U, =V « U) + jwe vV - E .

(2.2.5)
Substituting equations (2.2.3) and (2.2.4) into equation

(2.2.5) gives

-»> ) -»S .
Ve+E-= Gg;[v + 37 - jew(n; = n))] . (2.2.6)

Substituting equations (2.2.6) and (2.2.3) into equation

(2.2.2), we have

2 2 wez Ye wez
A S
\Y 2 w2 w e \Y 1
e e
2
Ye 3 (2.2.7)
-3 —5— v .2.
Ve ew

where the electron plasma frequency is

2.1

AV
we = (m = > . (2.2.8)

e o
. S . S . L
Using V «+ J = - jwp from the equation of continuity and
defining
82=‘-”—2—<1-£-‘Y—e> (2.2.9)
e V2 2 J(\\ ! T
w
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equation (2.2.7) can be rewritten as

w 2 w 2 S

2 2 e _ _ e P

v ne + Be ne + _2 ni = -—E(e— o (2.2.10)
Ve Ve

Similarly, we can get an equation for n; as

w 2 w 2 S
2 2 i - i e”
Y n, + Bi n; + 5 Ng = 2(e ) (2.2.11)
v V.
i i
where the ion plasma frequency is
21
ne\3
“i = <m,e ) (2.2.12)
i“o
and
2
2 W Y.
2 _ W et TS
8,2 = 2= 5 =33 ) . (2.2.13)
i

2.3 Decoupling of n_ and n; Waves

Equations (2.2.10) and (2.2.11) can be decoupled

mathematically into two independent wave equations [18] as

(2.3.1)

(D[Om

2 2
(Vo + kl )nl S,

(v2 + k22)n2 = s (2.3.2)

mIo

where ny and n, are linear combinations of n, and n.; namely,
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. v
1 e
nl = (GT le)ni - (G— Tzz)ne (2.3.3)
1 e
v V.
e b §
n, = (a; T2l)ne - (;I Tll)ni (2.3.4)

which represent two new waves of perturbation densities. On

the other hand, ng and n, can be written in terms of n, and

l’12 as

w
e
ne -",-;(Tllnl + lenz) (2.3.5)

(2.3.6)

The propagation constants, kl and k2, for the n, wave and

the n, wave are given by

. W 2, 241
2 2 2 2 2,2 e 1 |2
e i
(2.3.7)
2, 2,1
2 _ 1), 2 2 2 2.2 e Yi |2
k= 538e + By PB Be )T+ 4 v 2V_2] l
(2.3.8)

The constants Sl’ SZ' Tll' T21 and T22 are expressed as

functions of plasma parameters as
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Wy w, ,
e 1
w w.
= = _€ . 1
S, = T,y 3 Tll 7 (2.3.10)
e i
T . = 1 (2.3.11)
ll 2 2 1 o Joe
p+1leli g2 52,22
4 w 2w 2 e i o
e 1
2 2
T __1 Ve’ e ~ By - A
21 2 w.w v 2 ]l
l e i 2 2 2]2
1+ = (B - B - A)
[ 4 ® Zw 2 e i o)
e i
(2.3.12)
T = ! (2.3.13)
12 ~ v 2V 2 g * 7
l 'e "1 2 2 2
1 + (B - R.“ + A)
[ 4w2u.2€ 1 0]
e i
2 2
7 -1 VeVi Be — Bi  * Ag
22 2 Wy v ZV 2 1
1+l e i g2 _ 432,22
4 72,2 e o
e i
(2.3.14)
where
® 2w 2 %
_ 2, 02,2 e i
e i

Physically, ny and n, represent two separate longi-
tudinal plasma waves each consisting of electrons and ions

and propagating with a particular velocity. For convenience,
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we will call n; the generalized ionacoustic wave and n, the

generalized electroacoustic wave.

2,4 Electron-ion Composition Ratios of the Generalized

Ionacoustic Wave (n; Wave) and the Generalized Electro-

acoustic Wave (n, Wave)

The electron-ion composition ratios for the n; wave and
the n, wave are studied for various collision frequencies and
various ratios of electron temperature to ion temperature.

From equation (2.3.3), we have

Ve Vi
nl = - (a): Tzz)ne + (a‘; le)nl . (2.4.1)

Let Ry be the electron-ion composition ratio for the n; wave
such that

Vuo,T
(8122)

. (2-4.2)
ViweTy)

Ry = -
Using equations (2.3.13) and (2.3.14), equation (2.4.2) can

be written as
Ry = 5(— (R - B, + A) . (2.4.3)

Similarly, from equation (2.3.4), we calculate RZ’ the electron-

ion composition ratio for the n, wave, as

Vw.T
( e i 21)

. (2.4.4)
ViweTyy

R2=-
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Using equations (2.3.11) and (2.3.14) in equation (2.4.4),

we have

2
- AO) . (2-4-5)

N

v
=1l ey2¢p 2 _

Ry and R, are numerically calculated for various
collision frequencies, various T,/T; and various source fre-
quencies. A hydrogen gas plasma is assumed in the numerical
example. The detail of this calculation is shown in Appendix
A.

The numerical calculation of R) and R, for various
parameters was carried out on the CDC 6500 computer in five
programs. In each program, we assign one of the ‘I‘e/Ti ratios
(1, 10, 100, 1000, 10000) and consider six different collision
frequency ratios Ye/w (0, 0.001, 0.01, 0.1, 1.0 and 10).

Figures 2.1 and 2.2 plot the electron-ion composition
ratios of the n; wave and n, wave respectively for ye/w =0,
0.001, 0.01, 0.1, 1.0 and 10 with T/T, = 1, 10, 100, 1000,
10000 as a function of the plasma frequency square over the
frequency square. The range of wez/w2 considered in these

4 to 1 x 106 which corresponds to a

figures is from 1 x 10~

hgih frequency region and a low frequency region respectively.
It can be seen in Figure 2.1 that at the high frequency

limit, the n; wave consists mainly of ions regardless of the

Ye/m and Te/Ti values. At the low frequency limit, electron
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composition is Te/Ti times higher than the ion composition;
in the case of Te = Ti' the n, wave consists of equal amount
of ions and electrons. In Figure 2.2, at the high frequency
limit, the n, wave consists mainly of eléctrons; the higher
the Te/Ti values, the higher is the composition of electrons.
At the low frequency limit, the n, wave consists of equal
amount of electrons and ions regardless of the ye/m and Te/Ti
values. It should be noted that the n, wave is evanescent
at the low frequency. In both figures, the effect due to

the y,/w value is not very obvious.

The numerical output of the computer can be checked

analytically for the simple case where Te Ti and Ye/m = 0.

In the low frequency limit, we have w < Wy << wge and
we can assume(wez/w2)+ QD;(miz/mz)-r o,
Under these conditions, equations (2.2.9), (2.2.13)

and (2.3.15) are reduced to

2 w 2
82=w (_e
e ;_7 2
w
e
2
32=£_(—‘_D.j.'__)
i V.Z w2
i
miz we2
A = 4+ ——
o y2 2 '
i e

2 2
Ry = (%’2‘)(11‘5) .
1
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Using equations (2.1.11), (2.1.12), (2.2.8) and (2.2.12), we

have
R = _g. (2.4.6)

which is reduced to 1 when Te = Ti' This result is consistent
with Figure 2.1l. Similarly, equation (2.4.5) becomes R, = -1.
Since R, and R, are ratios of two waves, we are interested
only in their absolute values, that is, the ratio of their
magnitudes. Therefore we have |R2| = 1. This result is
consistent with Figure 2.2.

In the high frequency limit, we have w > We >> Wy,

and we can assume (mez/wz) + 0; (wiz/wz) + 0.

Equations (2.2.9), (2.2.13) and (2.3.15) are reduced

to
2
6e2=“’—5 (2.4.7)
\Y/
e
2
8.2=‘”—2 (2.4.8)
1 V.
i
2 2 .2 w 2w, 2
A=<___‘*’ -—“’)+4—-—elz. (2.4.9)
© v,2 v 2 v 2y 2
i e e i
wezmiz m4
Since w > w_. >> w.,, it is true that 4§ ——— << 2 —m,
e i v 2y.2 v 2y, 2
e 1 e i
w 2y, 2
After omitting the term 4 3 12 in equation (2.4.9), we have
Ve Vi
A =8.2-82 | (2.4.10)
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Substituting equations (2.4.7), (2.4.8) and (2.4.10) into
equation (2.4.3), we have R} = 0. This result implies that
the n; wave in the high frequency region consists mainly of
positive ions. This phenomenon is shown in Figure 2.1.

Substituting equation (2.4.10) into equation (2.4.5),
we have

2 2
R, = (w_e) (B,“ - B.") . (2.4.11)

e i
e
Using equations (2.4.7) and (2.4.8) in -equation (2.4.11),

we have

R, = (-‘3—)2(1 - L) .
e v
With Te/Ti = 1 and for hydrogen gas plasma model, Vez/viz
=‘m-/me = 1836, thus, we have lel = », This result indicates
that the n, wave in the ,high frequency region consists mainly
of electrons. This fact is shown in Figure 2.2.

Furthermore, since R, at the low frequency 1limit is
equal to T,/T; as given in equation (2.4.6), it can easily be
seen that in the cases of Te = 10 Ti’ Te = 100 Ti’ Te = 1000 Ti
and Te = 10000 Ti' the ratios of n_ to n; are 10, 100, 1000

e

and 10000 respectively. These results are shown in Figure 2.1.
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Figure 2.1 Electron-ion composition ratio of the
generalized ionacoustic wave (n; wave) as a function of (we/w)2
for various ratios of electron temperature to ion temperature.
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Figure 2.2 Electron-ion composition ratio of the
generalized electroacoustic wave (n; wave) as a function of
(we/m)2 for various ratios of electron temperature to ion
temperature.
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2.5 Propagation Constants of the Generalized Ionacoustic

Wave and the Generalized Electroacoustic Wave

The propagation constants of the generalized ionacoustic
wave and the generalized electroacoustic wave, kl and k2' for
the cases of various collision frequencies and various ratios
of electron temperature to ion temperature are studied in this
section. kj; and k, are given by equations (2.3.7), (2.3.8)
and (2.3.15) as

2

ky (B + 8% + A) (2.5.1)
2

ko

D= N
N
N

(B + B' - A ) . (2.5'2)

It is shown in Appendix B that equations (2.5.1) and
(2.5.2) are reduced to two sets of equations; one set for
hydrogen gas and another set for xenon gas, such that
kl/(w/Vi) and kz/(w/ve) for each gas assumption can be cal-
culated numerically by using CDC 6500 computer in five programs.
In each program, we assign one of the Te/Ti ratios (1, 10,
100, 1000, 10000) and consider six different collision
frequency ratios yg/w (0, 0.001, 0.01, 0.1, 1 and 10). The
numerical results for the hydrogen gas are drawn in Figures
2,3 to 2.7. The numerical results for the xenon gas are used
in the electroacoustic wave and the ionacoustic wave radiation
pattern calculations.

Figure 2.3 plots the real part of kl/(w/vi), or the

phase constant of the n; wave, for the cases of ye/m =0,
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0.001, 0.01, 0.1, 1.0 and 10 with T,/T; = 1, 10, 100, 1000
and 10000 as a function of the plasma frequency square over

the frequency square. The range of w 2/w2 considered in these

6

e

figures is from 1 x 10'4 to 1 x 10 which‘corresponds to a
high frequency region and a low frequency region respectively.
The effect due to the collision frequency is not very evident
so that it is not shown in the figure. However, the tempera-
ture ratio, Te/Ti' has a big effect in the low frequency
region. It should be noted that kl/(w/vi) does not vanish

at any frequency range. This implies that the n; wave
propagates under all conditions. The phase velocity of the
n; wave, Vphl' can also be observed in this figure, since it
is given as w/[Re(kl)]. At the high frequency limit, we have

Re[kl/(w/Vi)] =1, or Re(w/kl) = V., This implies that at

ll
the high frequency limit, or in the low plasma density region,
the phase velocity of the n, wave approaches to the thermal
velocity of ions. Also, it can be seen in the figure that

at the low frequency region or as the plasma density in-

creases, the phase velocity becomes greater and then

approaches to the value of Vi/(Te + T,)/T;, which is called Var
the phase velocity of the pseudosonic wave.

Figures 2.4 and 2.5 plot the negative imaginary part
of kl/(w/Vi), the attenuation constant, of the n; wave. 1In
Figure 2.4, the cases for Te = Ti’ ye/w = 1 and Te = Ti'
Ye/w = 10 are plotted. In Figqure 2.5, the cases for

Te = 100 Ti with ye/w = 0.001, 0.01, 0.1 and 1 are plotted.
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It is noted that for the case of ye/w = 0, the attenuation
constant is zero.

From Figures 2.4 and 2.5, the most striking phenomenon
is that the attenuation constant of the ni wave decreases
drastically once w becomes smaller than W . It is also seen
that the attenuation of the n, wave is reduced as the colli-
sion frequency becomes smaller or the temperature ratio Te/Ti
becomes higher. It should be noted that the Landau damping
is very high for the n, wave at high frequency range where
Vphl approaches to V;.

Figure 2.6 plots the real part of [kg/(w/V,)], or the
phase constant of the n, wave, as a function of (we/w)2 for
various collision frequencies.

The effect due to the collision frequency is signifi-
cant. For the collisionless case, it is seen that the real
part of [ke/(w/ve)] changes from one in the high frequency

region to zero abruptly as w approaches w It is understood

-~
that as the phase constant of a wave goes to zero, the wave
becomes evanescent. Therefore, it can be seen that the n,
wave is cut off when w < W * The phase velocity of the n,
wave, VphZ' in the high frequency region is Re(w/k,) which
is equal to V,.

As the collision frequency becomes higher, the region
in which the n, wave propagates is extended further to the

lower frequency region, though it can be seen in Figure 2.7

that the wave in this region will suffer a very high
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attenuation. When w is around wje A peak appears in the
curve, this peak probably corresponds to the oscillation of
ions at this frequency.

The ratio Te/Ti affects the phaselconstant curve of
the n, wave only slightly on the low frequency region,
therefore, it will not be plotted.

Figure 2.7 plots the negative imaginary part of
ke/(m/Ve), that is, the attenuation constant of the n, wave.
It is seen in the figure that the higher the collision fre-
quency, the higher is the attenuation factor. Once w becomes

smaller than w_, the attenuation constant becomes extremely

e
large implying that the n, wave is nearly cut off. It is
noted that our theory based on the macroscopic approach does
not predict the Landau damping which occurs at the high
frequency region where Vph2 approaches to Ve

The numerical results for the propagation constants,
kl and kz, can also be checked analytically for the case where
T, = T, and yg,/w = 0.

In the low frequency limit, we have w < w; << w

1 e’
Using equation (2.2.9) with ye/w = 0, we have
2 wz wez
Be = S T T3 (2.5.3)
\Y/ \Y/
e e

Using equations (2.2.13), (A-12) with Yo/w = 0, we have

€

2
8 =£—5-—1— i (2.5.4)
V.

1 1

L2
2

<



Then (8.2 - B 2)2 =8B 4 _ 28 28_2 + 8.4 becomes
i e e e i 1
2 2 2 2 2 2 2
+
(8.2 - g 2)2 - (we _ Y ) - 2m2<we4 _ e 3 . i )
i e 2 2 2., 2 4
Ve Vi Ve Ve Vi Vl
+ 4( l2 _ 12)2 .
\Y V.
e i

Noting that w < Wy << wgs we drop the term containing w4 and
2

neglect the term wiz in comparison with w,“, thus,this
equation reduces to
w 2 " 2 2 w 2 " 2 o 2
2 2,2 e i 2/ e e i
(B - B )" = (——7 - ——7> - 2w < - + > .
1 e v V. vi v 4 v i
e i e i i
(2.5.5)

Using equation (2.5.5) in equation (2.3.15), we have

1
wezvlz + wizvez 2. \2
Ao = O.- 2w A4) , (2.5.6)
v 2y, 2
e 'i
where
2., 4 2. 2 2.4
Al = we Vl - we Vi + wi Ve
4 ~ 2. 2 2., 2,2 ‘
(we Vi + wg Ve )

A, can be expressed in terms of Ty and To by using equations

(2.1.11), (2.1.12), (2.2.8) and (2.2.12);

L T2 .r1 +7.%m /n)
A = e 1 e 1 e 1 . (2.5.7)

2
W, (Te + Ti)
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Because T, = T and m. >> m , then T.z(m /m.) << T 2. After
i e i e i e i e

neglecting Tiz(me/mi) in the numerator of equation (2.5.7) and

recognizing that (Te + Ti)2 >> (Te2

2

- TiTe)' the inequality
becomes A4 < (l/miz), or 2w A4 < (2w2/wiz). Since

(wz/wiz) << 1, then 2w2A4 << 1. Using binomial expansion in

equation (2.5.6) and keeping the first two terms, we have

w 2V.2 + w,2V 2 2 w 2V.4 - W 2V 2V.2 + w,zv 4
A =~ & 1 i e E._ w e 1i - e e i i e
o 2¢ 2 2 2y 242
Ve Vi (we Vi + Wy Ve )
+ ...] (2.5-8)

Substituting equations (2.5.3), (2.5.4) and (2.5.8) into

equation (2.5.1), we have

2wl 1
k1 =v2[1+ (W, /w0 )2 (V /V)z]
i Wi/ e’Vi

2 2 _ -
where (mi/we) (Ve/Vi) =1 for Te = Ti‘

Thus,

L

-(-(:)—/—-V?— . (2-5.9)

S [

This result is confirmed in Figure 2.3. Putting equations
(2.5.3), (2.5.4) and (2.5.8) into equation (2.5.2), we drop

terms with w2 since w < Wy << Wy then

k.2 = (L5 + L) (2.5.10)
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which is a negative value.

Since k2 is purely imaginary, the n, wave will not

propagate in the low frequency limit.

In the high frequency limit, we have w > Wg >> Wy

Using equation (2.2.9) with y,/w = 0, we have

8 2 - 23.(1 - ez) . (2.5.11)
v 2

wl

€

e

Using equations (2.2.13), (A-12) with ye/m = 0 and ws << W,
we have

2
612 = W = (2.5.12)
V.

1

Thus, equation (2.3.15) reduces to

2 2 wez

A = U - +
o 2 2 2
Vi Ve Ve

and finally, k12 =~ wz/Vi2 or kl/(w/Vi) ~ 1, This result is
shown in Figure 2.3. Similarly,

2 mz we
o2 =0l (-2

The last term in the bracket can be dropped, because w > Wy

Therefore, k22 o wz/vez, or k2/(w/Ve) ~ 1. This result is

shown in Figure 2.6.
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2.6 Differential Equations of the Magnetic Field

The magnetic field excited by the electric source in

the plasma can be found as follows:

From equation (2.1.2), with the assumption of periodic

time dependence and using the relation of equation (2.1.5),

we have
= S _ .
Vx3B= u°3 + uoeno(ﬁi 5e) + jwuoeoﬁ . (2.6.1)
Taking the curl of equation (2.6.1l), we get
VxVxB = bV x 35 + y en (V x 0. -vx0 )
o o o i e
+ 3 v E 2.6.2
jwuge Vo x (2.6.2)
where

VxE=- 0B (2.6.3)

is given by equation (2.1.1), V x Ge and V x ﬁi can be

obtained by taking the curl of equations (2.1.8)and (2.1.10)

and using equation (2.6.3), thus,

N >
> JweB
V x U = - (2.6.4)
e mg (Y + jw)
v xU. = JueB i (2.6.5)

i mi(yi + jw)
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Substituting equations (2.6.3), (2.6.4) and (2.6.5) into

equation (2.6.2), we have

2 2

3 3S Y4 ‘e 3
vV xV x =y VX J = jwp.e +
° I®¥o%o (Yi + Jw)  (Ye + Jjw)

+ wzuoeo§ . (2.6.6)

2

. -+ > > ->
Since Vx Vx B = V(V « B) - V'B and V « B = 0, equation

(2.6.6) can be rewritten as
w2 w2
v2B + w2u e |1 + - e o+ - i |8
oo julyg + jJw)  Julyy + jw)

pas]
= - ro X J . (2.6.7)

Let ke2 = wzuoe, where

w w,
€ =€ |1 + - e o+ - : S
o) Julyg + Jjuw) Jwlyy + Jw)]
r ® 2 w.Z ® 2Y
=ttt T - e - (2
L w® + v w® + v, w(ws + y_“)
e i e
w.zY.
+—t L ) (2.6.8)
w(w® + Y; )

the equivalent complex permittivity in the plasma,

equation (2.6.7) can be written as

S

2 2,2 _ _ +
(V4 + k )B = uoV x J (2.6.9)

which is an inhomogeneous wave equation and its solution can
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be expressed as

(> = _O 35 2, e '
B(r) I vV x i'J (r') —x— dv (2.6.10)
> >
where R = |r - r'|.

2.7 The Electric Field in the Plasma

The electric field in the plasma can be derived from
the equation of magnetic fields, equations of the n; wave and
n, wave. It will be shown later in this section that the
electric field in the plasma consists of three components;
one of which is electromagnetic in nature, while the other
two components, which are due to the presence of the electro-
acoustic and ionacoustic waves, are longitudinal in nature.

Let us consider the source free Maxwell's equation in

the plasma:

>
VvV xB

> > . >
uoeno(Ui - Ue) + jwuoeoE (2.7.1)

>

>
where Ug and U; can be found from equations of momentum

conservation for electrons and ions. That is,from equations

(2.1.8) and (2.1.10), we have

R R 3KT
U = - € _E - e _ _Un (2.7.2)
e mg (yg + Juw) noMg (yg + jw) €
3KT.
0. = e E - 1 Vn; . (2.7.3)

i - mi(Yi + jw) nomi(Yi + jw) 1
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It is seen that these average velocities of electrons and
ions are proportional to the electric field in the plasma
and the pressure gradient of the particles. Using equations
(2.7.2) and (2.7.3) in equation (2.7.1) and after rearrange-

ment, we have

2

HE W HE W
VxB=|dupe +,-00e 4+ __ooi |&
[J Hofo (v + jw) vy + )
3uoekTeVne ) 3uoekTiVni
me(ye + jw) mi(yi + jw)
which yields
3u ekT Vn

v xB = o e e

4 +
(ye * juw) (yi + juw) mg (ye + jw)

3u_ekT, Vn,
- ‘z i .1) (2.7.4)

where

. . . 2 .
P = jwuoeo(ye + ]w)(yi + jw) + HoEoWe (Yi + jw)

+ uoeowiz(ye + jw)

uogo{[yi(“’e2 - w?) o+ Ye(“’i2 - w?)]

. 2 2 2
+ jJulw,® + w;© o= w4 yeyi]} . (2.7.5)
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Express E in terms of §, n_, and n. in equation (2.7.4),

e 1

we have

3u ekT, (y + jw)Vn,
o i ‘e i

E=%—[(Ye+ jw) (y; + jw) (V x B) +

m.
1

= (2.7.6)

3uoekTe(yi + Jw)Vne] .
e

Using equations (2.3.5) and (2.3.6) which express Ng, Ny in

terms of n, and n2, we can obtain B in terms of §, n, and n

1 2
as follows:
> = 1 _ 2 R
E §[(Yeyi wc) + ]w(ye + Yi)](V X ﬁ)
, dugek [(YewiTiTZI _Yi%TeTu, jw(wiTiT2l
T T T T T T
_Yele 11)] ¥n, + [(Ye“’i 122 _ Yi% e 12
meVe mivi meVe
T T TT
+ jw(wl i22 _Cee 12)]Vn2 : (2.7.7)
mivVy meVe

It is seen in this equation that the electric field in the
plasma has three components. The first term on the right
hand side of the equation is electromagnetic in nature,
because B field is entirely electromagnetic. The second and
third terms, which are due to the presence of the electro-

acoustic and ionacoustic waves, are longitudinal in nature.
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2.8 Average Velocities of Electrons and Ions in the Plasma

The average velocities of electrons and ions in the
plasma can be obtained from equations (2.7.2) and (2.7.3)

with equations (2.3.5) and (2.3.6) as

[ E 3KT w

- &b o E e ___ _(Ty,Vn, + T,.,Vn q
me menove(Ye + ]w) 11'1 127772

(2.8.1)
-+ 3kT. w.
g. = 1 eE _ ii T VN, + T..V .
Loy Y demy omingVyly; 4 Jay F21771 * T22™2)
(2.8.2)

n; and n, can be found by solving equations (2.3.1) and (2.3.2)
and B is given by equation (2.7.7). It is observed that
ﬁe and ﬁi also possess both electromagnetic and longitudinal

natures.



CHAPTER 3

RADIATION PATTERNS OF ELECTROACOUSTIC AND
IONACOUSTIC WAVES EXCITED

BY VARIOUS ANTENNAS

3.1 Introduction

Our objective in this chapter is to calculate the
radiation patterns of electroacoustic and ionacoustic waves
excited by four different types of antennas; namely, Hertzian
dipole antenna, disk monopole antenna, disk dipole antenna
and cylindrical antenna. The antennas are assumed to be im-
mersed in an infinite, homogeneous, isotropic and compressible
plasma.

In Chapter 2, the generalized ionacoustic and electro-
acoustic waves which are excited by an electromagnetic source

are given in equations (2.3.1l) and (2.3.2) as

2 2 S
@2+ k,5n) =5, 2 (3.1.1)
(v2 + k. %)n_ = s 0° (3.1.2)
2 2 2 e . . .

The propagation constants of the n; and n, waves, that 1is,

39
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kl and kz, are shown graphically in Figures 2.3 to 2.7 for
various electron and ion temperatures and various collision
frequencies.

Since equations (3.1.1) and (3.1.2) are of the same

form, only a common equation such as
2, .2 S
(V¢ + k%)n = s & (3.1.3)

will be considered. Equation (3.1.3) is a scalar inhomogeneous

Helmholtz equation whose solution is

+ S S -+ -Jkl-f = f.l
n(r) = - e J e7(x") & > >
Te v! lr - rll

dv' (3.1.4)

where the primed coordinates refer to the source points and
the unprimed coordinates represent the field point. We
assume that the antenna dimensions are small compared with
a free space electromagnetic wavelength and the observation
point is in the far zone of the antenna that the far zone
approximations of |; - ?'I >~ r for the amplitude term and
|t - ¥'| = r - z' cos6 for the phase term can be used.

The radiation patterns of the generalized electro-
acoustic wave (n2 wave) and the generalized ionacoustic wave
(nl wave) excited by various antennas can be calculated from
equation (3.1.4) For the n, wave, we use n,, 82 and k2 to

replace n, S and k in equation (3.1.4) while for the n, wave

we use n,, Sl and kl instead.
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3.2 Hertzian Dipole Antenna

3.2.1 Geometry and Statement of the Problem

The geometrical configuration of a Hertzian dipole
antenna is shown in Figure 3.1 using a spherical coordinate
system (r, 6, ¢). A Hertzian dipole antenna, with the assump-
tion that the radius of the wire is thin and its length, dl1,
is very short compared with the wavelength, is immersed in
the plasma. The ends of the antenna are large enough that
the charge distribution of the antenna can be given approxi-

mately as

S _ Y Qd(z' - da1)s(x)é(y)
T 1-Q8(z' + dl)s(x) s (y) (3.2.1)

where Q is the charge in coulomb and § is the Dirac delta

function.

The generalized electroacoustic and ionacoustic waves
excited by a Hertzian dipole antenna can be obtained from
equation (3.1.4) after the substitution of pS from equation
(3.2.1). Using the far zone approximations, the integral in
equation (3.1.4) becomes
o-iklT - T -jkr

;o7 (") — dv' = j2@ £ [sin(kdl cosH) ]
v’ lr - r'| r

(3.2.2)
where k is the propagation constant of a particular wave.

For the generalized electroacoustic wave, we use k, to replace
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Figure 3.1 Geometry of a Hertzian dipole antenna.
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k, while for the generalized ionacoustic wave we use k, to
replace k. The term in the bracket in equation (3.2.2) will
be used to calculate the radiation patterns of these plasma
waves excited by the Hertzian dipole antenna.

3.2.2 Radiation Patterns of the Generalized Ionacoustic

Wave (n1 Wave)

The radiation pattern function of the generalized ion-
acoustic wave can be obtained from equation (3.2.2) after

replacing k by kl. The pattern function can be expressed as
Fl(e) = sin(kldl cosf) . (3.2.3)

Since kl/(w/Vi) has been calculated by using the computer for
a xenon gas plasma, we can determine the valﬁe of k; by assum-
ing the values of w, Te and Te/Ti' dl is the antenna half

length and is assigned for various values. The phase velocity

of the generalized ionacoustic wave, Vphl' at the low frequency

range is approximated by /§ETTe + TiTVmi and is called V,.

The results of some typical cases are plotted in
Figures 3.2, 3.3 and 3.4 and their numerical results are
given in Tables 1, 2 and 3 of Appendix C.

Figure 3.2 shows the radiation patterns of the
generalized ionacoustic wave at various electron temperatures.
Since the wave length in the plasma is Ap = Vphl/f' as Tg
increases, Ap increases;and consequently, the antenna becomes

relatively smaller.

Figure 3.3 shows the radiation patterns of the
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generalized ionacoustic wave at various ratios of electron
temperature to ion temperature. It is seen that the change
in the ratio Te/Ti does not affect the radiation patterns
significantly.

Figure 3.4 shows the radiation patterns of the
generalized ionacoustic wave at various antenna frequencies.
It is seen that as the antenna frequency increases, the wave-
length of the generalized ionacoustic wave decreases; as a
result, the antenna becomes relatively larger.

3.2.3 Radiation Patterns of the Generalized Electroacoustic

Wave (n2 Wave)

The radiation pattern function of the generalized
electroacoustic wave can be obtained from equation (3.2.2)
after replacing k by k,. The pattern function can be expressed

as
F2(6) = sin(kzdl cosf) . (3.2.4)

Since k2/(w/Ve) has been calculated by the computer for a
xenon gas plasma, we can determine values of k2 based on
assumed values of w, Te and Te/Ti’ Some typical cases are
chosen and plotted in Figures 3.5 and 3.6 and the corresponding
numerical results are given in Tables 4 and 5 of Appendix C.
Figure 3.5 shows the radiation patterns of the excited
generalized electroacoustic wave at various electron tempera-
tures. It is seen that as T, decreases, the phase velocity

and the generalized electroacoustic wave length in the plasma
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decreases; and consequently, the antenna becomes relatively
larger.

Figure 3.6 shows the radiation patterns of the excited
electroacoustic wave at various antenna frequencies.

In both Figures 3.5 and 3.6, we choose the propagation
constant, k2' at the frequency of wez/wz = 0.95. The reason
for this choice is that the electroacoustic wave suffer less

Landau damping when w is close to w, and slightly higher

e

than We «

3.2.4 Radiation Patterns of the Electromagnetic Wave

The magnetic field in the plasma has been determined

in Section 6 of Chapter 2 and is given by equation (2.6.10) as

=

-jkeR
B(X) = 20 x J IS e~ av’ (3.2.5)
vl

where ke is the propagation constant of the electromagnetic

wave in the plasma and is given as

w 2 w 2 w zy
2 2 i e ‘e
k = w up e {1 - - - ][
e o 2 Wy ? el + v 2)
w 2y
+ = ; (3.2.6)
w(w2 + .2)
Yi

*S > . . . .
J7(r') is the source current density and is given as

@y =Lz=12 for-dl<z.al (3.2.7)

for a Hertzian dipole antenna whose cross-scctional area is A.
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R represents |; - . Substituting equations (3.2.6) and
(3.2.7) into equation (3.2.5) and using the far zone approxi-

mations, we have

p I dl -jkg(r - z'cos0) R
B(¥) = 2 9 x s € dz'z
m -d41’ r
(3.2.8)
After evaluating the integral, using ; = ; cosf - 5 sinf,

taking the curl of the integral, neglecting l/r2 terms and
retaining only the 1/r term because of far zone approximation,

equation (3.2.8) can be reduced to

~n I k. dl, -jkerrsin(k_dl cosf)
B(E) = ¢ (222 e c ]sino )
27 r (kgdl cos0)
(3.2.9)
Considering dl as a small number, we have
[sin(kedl cose)]/(kedl cosf) = 1, and thus,
N ~ uOIOkedl e-jker _
B(r) = ¢( 37 X >31n6 . (3.2.10)

r

The electromagnetic component of E field in the plasma

can be obtained from equation (2.7.7);

> 2 . N
Fem = %[(YeYi = w) + July, + v;)]1(VxB)  (3.2.11)

2 2

where P = nge { [y (wg“ - w?) + Ye(wiz - why) o j‘*’l‘”ez towy

2
- w * y.y;l}. For collisionless case, i.e.,
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Yi = Ye = 0, equation (3.2.11) can be reduced to

B, = 5 s L > == U x B (3.2.12)
uoeo(w - Wt -y )

Using equation (3.2.10) in equation (3.2.12), and neglecting

l/r2 terms, we have

wI_k_2dl o-jker .
= 3 sin6 0 . (3.2.13)
2me (w2 - w 2 - . 2) r
o e i

->
em

Equation (3.2.13) is the electromagnetic component of E field

in the plasma and the corresponding radiation pattern function

can be expressed by

Fon(6) = sine . (3.2.14)

Figure 3.7 is the radiation pattern of the electromagnetic
component of the electric field in the plasma. It is seen
from equation (3.2.14) that this pattern is independent of

plasma parameters.

3.3 Disk Monopole Antenna

3.3.1 Geometry and Statement of the Problem

The geometrical configuration of a disk monopole
antenna is shown in Figure 3.8 using a spherical coordinate
system (r, 6, ¢). A metallic disk of radius a is excited by
a radio frequency signal source and is immersed in the plasma.

It is assumed that the charge is uniformly distributed over
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0=0°

Figure 3.7 Radiation pattern of the electromagnetic
wave excited by a Hertzian dipole antenna in a plasma.
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Figure 3.8 Geometry of a disk monopole

antenna.
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the disk surface. That is,
p® =0 . (3.3.1)

The generalized electroacoustic and ionacoustic waves
excited by this antenna can be calculated by substituting
equation (3.3.1) into equation (3.1.4). Using the far zone
approximations, the integral in equation (3.1.4) becomes

e—jk[r - r'sinfcos (¢ - ¢') ]

J o ds' . (3.3.2)

sl

o r

Let ds' = r'd¢'dr', equation (3.3.2) reduces to

-jkr
og.e a 2m .

O sy eJkr'sinbcos(é = ") pighrarr L (3.3.3)

r
00

Since the geometry has cylindrical symmetry, we choose the
observation point in the x-z plane (i.e. ¢ = 0) to simplify
the calculation. Equation (3.3.3) then becomes

coe"jkr a 2m

T ! ekr'sinbeosd gqpipigrr | (3.3.4)

Let us introduce the definite integral for the Bessel function,

2T .
Jn(n) = 1 S el¥ cos¢ cos(n¢')de' . (3.3.5)

2mi" 0

With n = 0 and u = kr'sinf, equation (3.3.4) can be written as

o e-jkr

o a

/S 2nJ_(kr'sinf)r'dr' . (3.3.6)
r 0 o
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Changing the variable from r' to u, the integral in equation

(3.3.6) becomes

2 u=ka sin®
—_— pd_ (u)du (3.3.7)
(k sine)2 0 °

where Jo(u) is the Bessel function of zero order with argument

p. The recurrent equation of the Bessel function is
Sl"'(unJ ) = u"g with n =1 we have
du n n-1’'
d
EH(UJl) = udg or

qu = fuJodu.

Thus equation (3.3.7) is transformed to

u=ka sin6
P
(k sin#9) 0

hence, equation (3.3.6) becomes

ka sinf

2ﬂa20 e~ Jkr 5 (ka sine)]
o [ 1
r

or

2 -jkr
_ 2mra“o_e
n(@) = (=) (—2

41e

Jl(ka sing)
)[ ] . (3.3.8)

r ka sin?®
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The term in the bracket of equation (3.3.8) will be used to
calculate the radiation patterns of the plasma waves excited
by a disk monopole antenna.

3.3.2 Radiation Patterns of the Generalizéd Ionacoustic

Wave (n, Wave)

The radiation pattern function of the generalized ion-
acoustic wave can be obtained from equation (3.3.8) by
replacing k by k;. That is,

J._(k.a sing)

1 1
F e = [ ] L ] L ]
1( ) kia sin® (3.3.9)

The numerical values of kl for various Te' Te/‘l‘i and antenna
frequencies are calculated and are given in Tables 6, 7 and 8
of Appendix C.

Figure 3.9 shows the radiation patterns of the
generalized ionacoustic wave at various electron temperatures.
It is seen that as the electron temperature becomes higher,
the pattern becomes broader. This is due to the fact that as
Te increases, the antenna becomes smaller in terms of the
ionacoustic wavelength.

Figure 3.10 shows the radiation patterns of the
generalized ionacoustic wave for various ratios of electron
temperature to ion temperature. The change in the ratio Te/Ti
does not affect significantly on the radiation patterns.

Figures 3.11 to 3.13 are the radiation patterns of the

generalized ionacoustic wave at various antenna frequencies.
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We choose the phase velocity of the generalized ionacoustic
wave, V,p, as 1.05 x 103 meter/sec.; the diameter of the disk
antenna, 2a, as 4.5 cm and the normalized antenna length, L,
(antenna length with respect to the generélized ionacoustic
wavelength, i.e., L = 2a/(VA/f)) as 0.7 (A), 1 (A), 2.5 ()).
In these cases, our radiation patterns agree very closely
with the experimental result of Shen et al.[14].

3.3.3 Radiation Patterns of the Generalized Electroacoustic

Wave (n7 Wave)

The radiation pattern function of the generalized
electroacoustic wave can be obtained from equation (3.3.8) by

replacing k by k,. That is,

J1 (kpa sinb)

F,(8) = (3.3.10)

k,a sin6
The numerical values of k, are calculated and are given in
Table 9 of Appendix C.

Figures 3.14 and 3.15 are the radiation patterns of
the generalized electroacoustic wave. We choose (1) ye/m =0
for simplification, (2) wez/w2 = 0.95 such that Landau damping
is small, (3) Te/Ti =~ 1 to 104, (4) the antenna frequency
f =17.5 MHz, and (5) L = 0.6 (A) and 1.1 (A) respectively in
these two figures. The radiation patterns for T, between
2000°K and 4000°K agree very closely with the experimental

results of Nakamura et al.[l2] who used the grid with the

plate as an antenna.
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3.4 Disk Dipole Antenna

3.4.1 Geometry and Statement of the Problem

The geometrical configuration of a disk dipole antenna
is shown in Fiqure 3.16 using a spherical coordinate system
(r, 8, ¢). The antenna consists of two half circular metallic
disks of radius a is immersed in the plasma. The antenna is
excited by a radio frequency signal source and the charge

distribution on the antenna can be given as

OS= 95 for 0 ¢

< ™
-0 f r T < '
O ¢

o (3.4.1)

I AN

where 9% is the surface charge density.
The generalized electroacoustic and ionacoustic waves
excited by this antenna can be calculated by substituting

equation (3.4.1) into equation (3.1.4). Using the far zone

approximations and with ds' = r'd¢'dr', the integral becomes
o e~Jkre g a . . .
o) [f 7 e]kr'51n8cos(¢ o )r'dr'd¢'
r ¢$'=0 r'=0
2T a Kr'si (6 -6")
- f s eJkr sinfbcos (¢ =9 r'dr'de" .
$'=m r'=0

Assuming that the observation point is in the y-z plane

(¢ = n/2), we have

-jkr

o e a ™ . . . .

o) [f c'dr' S e]kr'51n081n¢ ETY
r 0 0

a 21 . ) )
-/ r'dr'sS elkr'51“°sm¢'d¢'} ) (3.4.2)
0 bl
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4%%%' A%?

Figure 3.16 Geometry of a disk dipole antenna.
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2T L. C
Let Il = [ eJkr sinfsin¢ d¢' and replace the variable ¢' with
i
B' = ¢' - 7, the integral becomes

Il=

T _.a 1o . [
/e jkr'sinfsinB ag' .
0

Since B' is an independant variable, we can replace B' by ¢'

again and arrive at

- ! i i !
jkr'sinbsing do' . (3.4.3)

m
I, =1/ e

Lo
Substituting equation (3.4.3) into equation (3.4.2), we have

s e-jkr

o a

"f r'dr'S
r 0 0

-jkr

"r jkr'sint0sing¢’ -4kr'si ino'
[ejkr si né’ e jkr'sinOsing¢ ]d¢'

j2o0 _e a m
= ___QE____ / r'dr'/ sin(kr'sin6sin¢')de¢' . (3.4.4)
0 0

T

Let I, J sin(kr'sin6sin¢')d¢'. After replacing kr'sin6 by 2
0

and ¢' by (¢ + 7/2) such that sin¢' = cosy, the integral

becomes

m/2
I, = J sin(Zcosy)dy
-n/2

n/2
= 2/ sin(Zcosy)dy,
0
because the integrand is an even function.
The Struve function is defined by the equation
2(1lz)v 2
(z%)° "/

= / sin (2 cosg)sin
/AT (v + 2) 0

2V

H, (2) ¢do .
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For v = 0, we have

n/2

H (Z) = J sin(Zcos¢)dy .
° 0

ENLS)

Thus, I, can be expressed by the Struve function as

[oa]
]

2 nHo(Z) or

nHo(kr'sine) . (3.4.5)

Substituting equation (3.4.5) into equation (3.4.4), we have

-jkr

j20 e a
Or J ﬂHo(kr'sine)r'dr' . (3.4.6)
0
a
Let I, = J Ho(kr'sine)r'dr' and replace the variable
0

kr'sin6 by Z again, we have

ka sin® HO(Z)ZdZ

I, =1/ —_—
3 % (k sin0)2
1 ka sin®f
= — S HO(Z)ZdZ . (3.4.7)
(k sin8)“ 0

The recurrent equation of the Struve function is

é—(ZH ) = ZH for v =1, or
dz 1 o ’

ZHl = fZHOdZ . (3.4.8)
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Substituting equation (3.4.8) into equation (3.4.7), we obtain

azﬂl(ka sinb)
I3 = ka sin®

Then equation (3.4.6) or the integral of equation (3.1.4)

becomes

j2nazooe-3kr[ﬂl(ka sine)]

r ka sin®

(3.4.9)

The term in the bracket will be used to calculate the radia-
tion patterns of the plasma waves excited by a disk dipole
antenna.

3.4.2 Radiation Patterns of the Generalized Ionacoustic

Wave (nl Wave)

The radiation pattern function of the generalized ion-
acoustic wave can be obtained from equation (3.4.9) by

replacing k by kl‘ That is,

Hl (kla Sine)

Fy(0) = : (3.4.10)

kia sinb
The results of some typical cases are plotted in Figures 3.17
to 3.21 and their numerical results are given in Tables 10,
11 and 12 of Appendix C.

Figure 3.17 shows the radiation patterns of the

generalized ionacoustic wave at various electron temperatures.

Figure 3.18 shows the radiation patterns of the
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generalized ionacoustic wave at various ratios of Te/Ti‘
Figures 3.19 to 3.21 show the radiation patterns of
the generalized ionacoustic wave at various antenna fre-
guencies. We choose the phase velocity of the generalized
ionacoustic wave, VA' to be 1.05 x lO3 meter/sec., the diameter
of the disk antenna, 2a, to be 4.5 cm, and the normalized
antenna length, L, as 1.5 (A), 2 (), 4 (A). In these cases,
our radiation patterns again agree very closely with the
experimental results of Shen et al.[1l4].

3.4.3 Radiation Patterns of the Generalized Electroacoustic

Wave (n, Wave)

The radiation pattern function of the generalized
electroacoustic wave can be obtained from equation (3.4.9)
by replacing k by k,. That is,

Hl(kza sinb)

200 = S—hme (3.4.11)

The results of two typical cases are plotted in
Figures 3.22 and 3.23 and their numerical results are given
in Tables 13 and 14 of Appendix C.

Figure 3.22 shows the radiation patterns of the
generalized electroacoustic wave at various electron tempera-
tures. Figure 3.23 shows the radiation patterns of the

generalized electroacoustic wave at various antenna frequencies.
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3.5 Cylindrical Antenna

3.5.1 Geometry and Statement of the Problem

The geometrical configuration of a cylindrical antenna
is shown in Figure 3.24 using a spherical.coordinate system
(r, 6, ¢). A cylindrical antenna with a thin radius is
immersed in the plasma. For this antenna, charge and current

distributions can be given approximately as

S pocos[k(h = z')] for 0 < z' <h
p - -QOCOS[k(h + Z')] for _h _<_ Z' : 0 (3.5.1)
. k - ' ~ N
35 _ Ims}n[ (h z')]g for 0 < z' < h (3.5.2)
Ipsin(k(h + 2') ]z for =h < z' <0

The propagation constant, k, of the antenna charge or current
is still not well known. Some theoretical studies performed
by Seshadri [30] and Wunsch [31] predict an electroacoustic
component in the antenna current while experimental studies
conducted by Chen et al. [32,33] and Ishizone et al. [34]
found the antenna current to be predominantly electromagnetic
in nature. This justifies the approximation of k = ke where

k., is the propagation constant of the electromagnetic wave in

e
the plasma. In our numerical calculation, k is assumed to be
ke which is given by equation (2.6.8).

The generalized electroacoustic and ionacoustic waves
excited by a cylindrical antenna can be obtained by substitu-

ting equation (3.5.1) into equation (3.1.4). Using the far

zone approximations, the integral becomes
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(r,0,9¢)

Figure 3.24 Geometry of a cylindrical antenna.



-jkR 2p k
I dv' = _0©
v! R J
cos (kh cos8) - cos(k_h) -jkr
e e
> > — cosb
k“cos“8 - k
e
Thus,
s jSpo cos (kh cosf8) - cos(keh) e-jkr
n(r) = cosf
2mek cos?e - (ke/k)2
(3.5.3)

where k is the propagation constant of the particular wave.

3.5.2 Radiation Patterns of the Generalized Ionacoustic

Wave (n, Wave)

The radiation pattern function of the generalized ion-
acoustic wave can be obtained from equation (3.5.3) by
replacing k by kl. That is,

cos(klh cosb) - cos(keh)

F,(6) = cosf . (3.5.4)
1 c0526 - (ke/kl)2

In order to excite the ionacoustic wave which does
not suffer excessive Landau damping, we need to operate the

antenna at low frequency region where w_, >> w. In this region

e

the electromagnetic wave is cut off and it implies that kg is
a pure imaginary number. In the present consideration, we
have k h << 1 and ke/kl ~ 0. Consequently, equation (3.5.4)
is reduced to

cos(klh cosfO) -1

Fy(0) = — : (3.5.5)
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The results of some typical cases are plotted in
Figures 3.25 to 3.29 and their numerical results are given
in Tables 15, 16 and 17 of Appendix C.

Figures 3.25 and 3.26 show the radiation patterns of
the generalized ionacoustic waves at various electron tempera-
tures.

Figures 3.27 and 3.28 show the radiation patterns of
the generalized ionacoustic waves for the cases of various
ratios of electron temperature to ion temperature.

Figure 3.29 shows the radiation patterns of the
generalized ionacoustic wave at various antenna frequencies.

3.5.3 Radiation Patterns of the Generalized Electroacoustic

Wave (n2 Wave)

The radiation pattern function of the generalized
electroacoustic wave can be obtained from equation (3.5.3)
by replacing k by k,. That is,

cos(kzh cosf) - cos(keh)

F,(8) = cosO . (3.5.6)
2 cos? - (k_/k,)?

To excite an electroacoustic wave without suffering substantial
Landau damping, the antenna frequency, w, is chosen to be
slightly higher than the plasma frequency, Wg* The results

of some typical cases are plotted in Figures 3.30 to 3.34

and their numerical results are given in Tables 18, 19 and

20 of Appendix C.

Figure 3.30 shows the radiation patterns of the
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generalized electroacoustic wave at various electron tempera-
tures in comparison with an experimental pattern measured by
Ishizone et al.[13].

Figure 3.31 shows the radiation patterns of the
generalized electroacoustic wave at various antenna frequencies.
Figures 3.32 to 3.34 show the radiation patterns of
the generalized electroacoustic waves predicted by the present
theory in comparison with the experimental patterns measured

by Ishizone et al.[13].

3.5.4 Radiation Patterns of the Electromagnetic Wave

To determine B(¥), the integral

-jkgR

3 iE)e "

v!

av'

in equation (2.6.10) is to be evaluated. For a cylindrical

antenna, we assume

S

N >
]

3 (r') =

>
|

where A is the cross-sectional area of the antenna and

. _ St >
S _ Igsinfkg(h - 2') ]z for z' > 0

Ipsin[kg (h + z')]z for z' < 0 ° (3.5.7)

ke is the propagation constant of the electromagnetic wave

in the plasma and is given by equation (3.2.6). For the

collisionless case, equation (3.2.6) is reduced to
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2 _ 2 _ _e
k = W uoeo<l —5—> . (3.5.8)

After using the far zone approximations and neglecting l/r2
terms, B(¥) is determined to be

-jIgug cos(k h cosB) - cos(kh) ~jker
sing -

B(Z) = ¢

2mA cos?9 - 1

(3.5.9)

It is evident in equation (2.7.7) that E field contains
ionacoustic, electroacoustic as well as electromagnetic com-
ponents. To calculate the radiation patterns of the electro-
magnetic wave, only the electromagnetic component is considered.

This component can be obtained as

> _ jw g
E = v B . .5.1
em u_€ (w2 -w? -y 2) * (3:5-10)
oo e i

Substituting equation (3.5.9) into equation (3.5.10) and

neglecting l/r2 terms, we have

5 A -jwIpgke cos (kgh cos6) = cos(kgh)
=0
en 2nAeo(m2 - we2 - wiz) cos?0 - 1
"jker
sing & ., (3.5.11)

r

The corresponding radiation pattern function can be expressed

by
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cos(keh cosf) - cos(keh)
Fem(e) = 3 sinf6 . (3.5.12)
cos“06 -1

Figure 3.35 shows the radiation patterns of the electro-
magnetic component of the electric field in the plasma. 1In
this example, the plasma frequency is assumed to be 4.5 MHz
and the antenna frequency is assumed to be 5, 5.5 and 7 MHz.
The numerical results are given in Table 21 of Appendix C.

Over this range of antenna frequency, the radiation patterns
of the excited electromagnetic wave largely remains circular

as shown in Figure 3.35.
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Figure 3.35 Radiation patterns of the electromagnetic

wave excited by a cylindrical antenna in a plasma for various
antenna frequencies.

(fp = 4,5 MHz, h = 8.5 cm)



CHAPTER 4

EXCITATION OF AN ELECTROACOUSTIC WAVE IN THE PLASMA

SHEATH SURROUNDING A CYLINDRICAL ANTENNA

4.1 Introduction

The excitation of an electroacoustic wave by an antenna
in an infinite, homogeneous, isotropic, compressible and lossy
plasma was studied in Chapter 2. 1In practice, when an antenna
is in contact with a compressible plasma, a plasma sheath is
created on the antenna surface. 1In this chapter, we like to
study the excitation of the electroacoustic wave by an actual
antenna surrounded by a plasma sheath and imbedded in a
compressible plasma. Main objectives of this chapter are (1)
to study the effect of the plasma sheath on the excitation
of the electroacoustic wave and (2) to seek the evidence of
the excitation of the electroacoustic wave by an actual

antenna.

4.2 Experimental Setup

The schematic diagram of the experimental setup is
shown in Figure 4.1. A mercury arc discharge was employed
to produce the large volume and high density plasma in a

large plasma tube which is made of an open end pyrex bell

97
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jar with the dimensions of l4-inch diameter and 18-inch length.
The upper end of the tube is the anode with a cylindrical
monopole antenna feeding through its center. The lower end
of the tube is the cathode which consistsvof a mercury pool.
A floating metallic ring is placed at the middle of the
mercury pool to fix the moving hot spots of the mercury arc.
An ignition circuit is installed in the mercury pool for the
purpose of starting the plasma. Between the anode and the
cathode, a d.c. power supply circuit is connected. Under

the normal operation, the discharge current can run from zero
to 50 amperes. The pumping system consists of two mechanical
pumps and a mercury diffusion pump. The tube is continuously
pumped during the experiment, and the pressure of the plasma
is kept around 1 micron (1073 mm Hg). The structure of the
large plasma tube is shown in Figure 4.2. The output of a
sweep frequency oscillator covering the frequency band of 0.4
to 1.4 GHz is amplified by a travelling wave tube amplifier
and then connected through a directional coupler. It then
passes through a bias insertion unit before reaching the
antenna. Through this bias insertion unit, the d.c. bias
voltage of the antenna can be varied from negative 40 volts
to positive 25 volts. When the antenna excites an electro-
acoustic wave in the plasma sheath, this effect appears in
the reflected wave from the antenna. The reflected wave
containing this electroacoustic resonance information is taken

out through the directional coupler, and then connected to the
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vertical input of the oscilloscope after detection. The
horizontal input of the oscilloscope is fed by the sweep
voltage of the sweep frequency oscillator. The curve dis-
played on the oscilloscope is the reflected wave versus the
sweeping antenna frequency.

The scheme of the experiment is to observe the change
in the curve of reflected wave versus sweeping frequency
(RW-SF curve) as the antenna d.c. bias voltage is varied.

As the bias voltage is varied, the size of the plasma sheath
surrounding the antenna is changed. The observed change in
the RW-SF curve as the bias voltage is varied supports the
conjecture that this change is due to the excited electro-
acoustic wave, because the excited electromagnetic wave should
not be affected by the change of the plasma sheath which is

at least a magnitude of order smaller than the electromagnetic

wavelength.

4.3 Experimental Results

When the sweep frequency signal covering the frequency
range of 0.4 to 1.4 GHz was fed to the cylindrical antenna
which is immersed in a large volume of compressible plasma,
the reflected wave versus sweeping frequency displayed a curve
such as shown in Figure 4.3 on the oscilloscope. Dips and
peaks in the curve were probably due to the reflection of the
electromagnetic wave from the antenna tip and the resonances

excited by the electroacoustic wave in the plasma sheath. It



reflected wave
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Figure 4.3 A typical reflected wave versus sweeping
frequency curve.
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is well known that at discrete numbers of frequencies, the
excited electroacoustic wave can set up resonances in the
plasma sheath. Whenever an electroacoustic resonance is set
up, a dip in the RW-SF curve is expected.

The antenna bias voltage was then varied to observe
the change in the RW-SF curve.

The antenna was first biased positively with respect
to the plasma. As the bias voltage was varied from zero
volt to positive 25 volts, the RW-SF curve was not changed
at all. When the bias voltage reached beyond positive 25
volts, the'antenna started to draw a heavy d.c. current from
the plasma evidenced by a red glowing at the antenna tip.

It was concluded that the variation of the antenna bias
voltage, which was positive relative to the plasma, did not
change the RW-SF curve.

The next step was to bias the antenna negatively with
respect to the plasma. When the antenna bias voltage was
varied from zero volt to negative 40 volts, a significant
change in the RW-SF curve was observed. As the negative
antenna bias voltage was substantially varied, the alternation
of the RW-SF curve stopped at a particular frequency for a
particular plasma density (discharge current). As the plasma
density was increased, this particular frequency moved up
indicating that a longer frequency range of the RW-SF curve
was changed. This phenomenon is demonstrated in Figure 4.4.

Figure 4.4(a) shows the RW-SF curve for the plasma current of
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10 amperes, subject to the variation of antenna bias voltage
from zero volt to negative 40 volts. It is clearly seen in
this oscillogram that the lower frequency part (0.5 to 0.68
GHz) is substantially changed. Figure 4;4(b) shows the RW-SF
curve for the case of 15 amperes plasma current. The frequency
band of 0.5 to 0.78 GHz is affected. Figure 4.4(c) shows the
RW-SF curve for the case of 20 amperes plasma current. The
frequency band of 0.5 to 0.92 GHz is affected.

Three oscillograms in Figure 4.5 show the similar
phenomena. In these oscillograms, the range of sweeping fre-
quency is from 0.4 to 1.4 GHz which is wider than the case of
Figure 4.4.

To understand the physics behind the observed pheno-
mena, the correlation, between the plasma density and the
highest frequency beyond which the antenna bias voltage
ceased to affect the RW-SF curve, was investigated. It was
found that this highest frequency was very close to the
ambient plasma frequency. This finding implied that as the
antenna bias voltage was varied, the affected part of the
RW-SF curve was in the frequency band lower than the ambient
plasma frequency. This phenomenon also implied that every
possible electroacoustic resonance was excited in the plasma
sheath for the antenna frequency lower than the ambient plasma
frequency.

Figure 4.6 summarizes the affected frequency bands of

the RW-SF curves due to the variation of negative antenna
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Figqure 4.4 Oscillograns of the reflected wave versus
sweeninag frequency curves for various plasma currents. TIre-
auency ranoe from 0.5 to 1.0 GHz.
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Oscillograms of the reflected wave versus
frequency curves for various plasma currents. Fre-

from 0.4 to 1.4 GHz.
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bias voltage for various plasma densities (plasma currents).
The ambient plasma frequency in each case is indicated in

the figure showing it to be close to the upper bound of the
affected frequency band. It is noted thét the ambient plasma
frequency was measured by the conventional Langmuir probe
method. The ambient plasma frequencies in the central part
of the plasma tube, corresponding to various plasma currents,

are shown in Table 4.1.

Table 4.1 Ambient plasma frequency versus plasma current.

Plasma current Ambient plasma frequency
5 0.46
10 0.57
15 0.68
20 0.87
25 1.00
30 1.12
35 1.30
40 1.47
45 1.47

4.4 Interpretation of the Experimental Results

The excitation of an electroacoustic wave in a compress-
ible plasma, and the resonance of the electroacoustic wave

in a plasma sheath leading to the so-called Tonks-Dattner's
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resonance or the thermal resonance have been studied by
numerous workers.

Recently, Baldwin (28] and Parbhakar and Gregory [29],
through their theoretical and experimental studies, proposed
a new physical mechanism for the electroacoustic resonance
in the plasma sheath of a cylindrical plasma column. This
new physical mechanism is the following: When an electro-
magnetic wave is incident upon a bounded non-uniform plasma,
the electromagnetic field will excite an electroacoustic wave
at the critical density point on the density profile where
the local plasma density is equal to the frequency of the
incident wave. The electromagnetic energy is coupled to the
electroacoustic wave at this critical density point. The
excited electroacoustic wave then propagates in both directions;
one attenuates into the overdense plasma and the other propa-
gates, and sets up a standing wave in the underdense plasma
region or the plasma sheath. In this physical mechanism, it
is implied that in order to excite an electroacoustic wave,
an electromagnetic wave is required to interact with the
plasma at the critical density point. If no critical density
point exists in the plasma, an electroacoustic wave may not
be excited.

This new physical mechanism will be used to interpret

our experimental results.
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4.4.1 The Case When the Cylindrical Antenna is Biased

Positively:

When the antenna is biased positively with respect to
the plasma, the electron density in the vicinity of the antenna
is increased and it may create a density profile surrounding
the antenna as shown in Figure 4.7.

In our experiment, the antenna frequency was contin-
uously swept over a band and, at the same time, the antenna
bias voltage was varied. At a particular instant, the antenna
frequency is assumed to be w;. If w; is higher than the
ambient plasma frequency, an electroacoustic wave is excited

at the critical density point where w, = w;,; somewhere on the

p
density profile in the antenna vicinity.

The excited electroacoustic wave which propagates out-
wardly in a large volume of underdense ambient plasma is
essentially a travelling wave because of the large plasma
volume. It appears that the amount of energy used to excite
the electroacoustic wave remains rather constant even for
various antenna frequencies and various density profile which
is changed by the variation of antenna bias voltage.

The excited electroacoustic wave which propagates in-
wardly toward the antenna becomes evanescent because an
overdense plasma surrounds the antenna. Thus, no standing
electroacoustic wave can be set up in this situation and no

electroacoustic resonance can be observed through the reflected

wave of the antenna.
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Figure 4.7 Plasma density profiles surrounding the
antenna for various positive bias voltages.
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If the antenna frequency band is lower than the ambient
plasma frequency, neither electroacoustic wave can be excited
nor propagates in the plasma because every point in the plasma
volume is overdense with respect to thié frequency band.

Therefore, one would not expect to observe any signifi-
cant effect on the RW-SF curve as the antenna bias voltage
is varied positively.

4.4.2 The Case When the Cylindrical Antenna is Biased

Negatively:

When the antenna is biased negatively with respect to
the plasma, electrons in the antenna vicinity are repelled.
This will create an electron-deficient region surrounding
the antenna, or a conventional plasma sheath with a density
profile as shown in Figure 4.8.

For this situation, the local plasma frequency in the
plasma sheath region is lower than the ambient plasma fre-
quency. When the antenna frequency is lower than the ambient
plasma freéuency, an electroacoustic wave can be excited at
a critical density point on the density profile of the plasma
sheath. This excited electroacoustic wave attenuates out-
wardly; but can propagate inwardly because the plasma sheath
region is underdense with respect to this frequency. The
inward electroacoustic wave is essentially trapped in the
finite plasma sheath region, so that it will set up a standing
pattern. Furthermore, when the width of the plasma sheath

is roughly in the order of an integral multiple of the half
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antenna for various negative bias voltages.
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electroécoustic wavelength, the electroacoustic wave will
reach a resonance condition. Whenever the electroacoustic
resonance is reached at a particular antenna frequency and
at a particular antenna bias voltage, more power is transfered
from the antenna to the plasma resulting a dip in the reflected
wave from the antenna. Thus, as the antenna bias voltage is
varied, while the antenna frequency is being swept, the electro-
acoustic resonance is reached at some discrete frequencies.
Since these discrete frequencies are dependent on the density
profile of the plasma sheath, which are controlled by the
antenna bias voltage, the low frequency part of the RW-SF
curve will be altered when the antenna bias voltage is varied.

When the antenna frequency is higher than the ambient
plasma frequency, no critical density point can be found at
any point of the plasma volume. Thus, according to Baldwin's
[28] theory, no electroacoustic wave can be excited in the
plasma. If no electroacoustic wave is excited for the fre-
quency band higher than the ambient plasma frequency, no
significant change on the RW-SF curve can be observed when
the antenna bias voltage is varied.

Therefore, when the negative antenna bias voltage is
varied, only the part of the RW-SF curve where the antenna
frequency is lower than the ambient plasma frequency is

affected.
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4.5 Potential Application

The result of study described in this chapter may lead
to a convenient technique for plasma diagnostics; especially
for the measurement of the local plasma density.

A feasible scheme can be the following: A small movable
monopole can be built to probe the density of a plasma volume.
The exciting frequency of the monopole is swept over an appro-
priate frequency range. The bias voltage of the monopole is
made variable from zero volt to a certain negative volt. The
reflected wave versus sweeping frequency curve is displayed
on the scope. As the bias voltage is varied (usually manually),
the lower frequency part of the RW-SF curve will be altered.
The highest frequency of this altered frequency band is the
local plasma frequency at the location of this monopole probe.

The advantage of this diagnostic technique is the
direct reading of the local plasma frequency and the quick-
ness of obtaining results. Unlike the conventional Langmuir
probe method, this method does not require any graphical or
computational intermediate steps. The disadvantage of this
method is the requirement of a sweep frequency generator and
a variable bias voltage setup. The commercially available
sweep frequency generators usually have limited sweeping
frequency bands so that the measurable range of the plasma

density may also be limited.
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4.6 Analysis of the Coupling between the Electromagnetic

Mode and Electroacoustic Mode in the Plasma Sheath

In this section, we aim to show that the electric
field set up by the charge on the antenha will excite an
electroacoustic wave in the plasma sheath surrounding the
antenna. The excitation of an electroacoustic wave is poss-
ible because the gradient of the electron density in the
plasma sheath surrounding the antenna and the electric field
on the antenna surface are both in the same direction--the
radial direction. Thus, a strong coupling between the
electroacoustic mode and the electroﬁagnetic mode can exist.
The theory presented in this section is to confirm the
experimental observation that an antenna can excite an
electroacoustic wave in the plasma sheath surrounding the
antenna.

Since we are concerned only with the electroacoustic
wave in this section, the motion of positive ions is ignored
in the analysis. Consider the geometry of Figure 4.9 where
a cylindrical antenna is located along the z-axis. The
electron density profile in the plasma sheath surrounding
the antenna is also shown in this figure. Starting from the
basic equations which govern the systenm,

Maxwell's equations in the plasma sheath are
VxE=-jupd (4.6.1)

VxH=-enl + jwe E . (4.6.2)
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Figure 4.9 Geometry of a cylindrical antenna surrounded
by a plasma sheath.
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The equation of mass conservation of electrons is

N
FEE + U o (Neﬁe) =0 (4.6.3)
where
N, = no<;> + ne(?,t) . (4.6.4)

Thus, equation (4.6.3) becomes

jwn

etV (n0y) =0 | (4.6.5)

<< .
when ng ng

The equation of momentum conservation of electrons is

20 v
e > e e
+ Y U = e e— E - — VN (4.6-6)
3t e e me Ng e
where
z = Edc + B . (4.6.7)

For the d.c. component of equation (4.6.6),
0=-SE8  -_-Svwvn_ . (4.6.8)
m o

Equation (4.6.8) shows that the plasma density profile no(f)
is maintained by the d.c. component of the electric field.

For the a.c. component of equation (4.6.6)

(Ju + v )0, = - %- E- -2 vn_ . (4.6.9)
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Taking the divergence of equation (4.6.2) and using equation

(4.6.5), we have

0 = jwen, + jwe V + E (4.6.10)
or
en
V . E = - —e . (406.11)
E:O

Taking the curl of equation (4.6.1) and using equation (4.6.2),

we have
_ 2 -
VxVxE=ow HoEE + jwuoenoﬁe . (4.6.12)

Using equation (4.6.9), equation (4.6.12) reduces to

2 2
w Y. W
R R e A |
w® + Y wlwe + vy 2)
w2 + jwye> 2
+ ( 2 2 Llosove V(v . E)
w + vy
e
_ 22 v >
BemE + aV(V « E) (4.6.13)
where
w 2 - 2
2 2 e . e e
8 = uy € [1 -—_— - ] (4.6.14)
em o o w2 + Yez w(wz + Yez)

propagation constant of the electromagnetic

wave in the plasma sheath.



120

2 . 2
_ w” + Jwyg Ve
a = 5 > > (4.6.15)
w® + vg c
and c2 =1 .
Hofo

Let us assume that E = E_ + ﬁp where E_ corresponds to the
electric field of the electromagnetic wave such that V Ee =0
and ﬁp corresponds to the electric field of the longitudinal
electroacoustic wave such that V x Ep = 0.

Equation (4.6.13) then reduces to

2

2,2 2 2 -
(V5 + B _DIE, + (aV” + sem)ﬁ =0 . (4.6.16)

P

Taking the curl of equation (4.6.16), we have

2

2 _ 2
(V5 + 8 ) (V x Ee) = - (V8 D) X <Ee + §p) .(4.6.17)

Taking the divergence of equation (4.6.16), we have

2
2 em . _ _ (1 2, .
(V + =2V - E)) = - (2B ) ¢ (Eg + E))
en
Using V - Ep = - —Eg from equation (4.6.11]), we got
o
2 Bei “o0,1 2 z &
(Vo + T)ne = e—(a VBem) o e + p) . (4.6.18)

Equation (4.6.18) is the inhomogeneous wave equation for the
electroacoustic wave. In this equation, Bei is in the r

. . -> . . 3 .
direction. Ee is also in the r direction on the antenna
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surface because the electric field on the conductor surface

is perpendicular to the surface. Therefore, there is a strong
coupling between the electromagnetip mode and the plasma mode.
In other words, the radial component of ﬁe field on the antenna
surface can excite an electroacoustic wave, through the gradient

of the density profile, in the plasma sheath.



CHAPTER 5

EXCITATION OF ELECTROACOUSTIC RESONANCES IN VARIOUS PLASMA
GEOMETRIES AND STUDY OF THE REFLECTION BEHAVIOR OF

ELECTROACOUSTIC WAVES ON VARIOUS SURFACES

5.1 Introduction

Electroacoustic resonances are excited in (1) a cylin-
drical plasma column, (2) a rectangular plasma column and
(3) a single-slope density profile plasma column. The nature
of the electroacoustic resonances in different plasma geome-
tries is studied.

The techniques of exciting electroacoustic resonances
are applied to study the reflection behavior of electroacoustic

wave on (1) dielectric surface and (2) metallic surface.

5.2 Experimental Setup

For the experiments in this chapter, two types of
mercury-vapor plasma tubes have been constructed. One type
was the cylindrical glass tube with a length of about 30 cm,
outside diameter of 8 mm, inside diameter of 6 mm, and mercury
pressure of about 1 micron. The structure of this tube is
shown in Figure 5.1. The other type was the rectangular

glass tube with a length of about 30 cm, outside cross

122
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sectional dimensions of 12 mm by 8 mm with a wall thickness
of 1 mm, and the mercury pressure of about 1 micron. This
rectangular tube was divided into 3 sections; an uniform
density section, a single-slope density profile (single-
profile) section with a metallic reflector and a single-
profile section with a glass reflector. A single-profile
can be created in this tube by squeezing the plasma current
flow at a gap close to the wall by means of a built-in glass
plate. The structure of this tube is shown in Figure 5.2.

The single-profile plasma column was constructed
primarily for the purpose of studying the reflection behavior
of an electroacoustic wave on various surfaces. It was hoped
that the electromagnetic field of the electroacoustic probe
can excite an electroacoustic wave in the region between the
reflector and a point on the plasma density profile and not
in the plasma sheath at the glass wall next to the electro-
acoustic probe. Assuming that an electroacoustic wave can
be excited in the region mentioned above by the electromagnetic
field of the electroacoustic probe, a standing electroacoustic
wave will be set up between the critical density point and
the reflector if a sufficient amount of electroacoustic wave
is reflected from the reflector surface. This standing
electroacoustic wave will appear as resonances in the reflected
electromagnetic wave which is picked up by the electroacoustic
probe when the plasma current is varied. If the reflector

surface absorbs the incident electroacoustic wave, no standing
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electroacoustic wave will be set up and no resonances will
be observed. From the patterns of resonances observed with
different reflectors, the reflection behavior of the electro-
acoustic wave on various reflector surféces can be studied.
The schematic diagram of the experimental setup is
shown in Figure 5.3. The incident c. w. electromagnetic wave
which excites an electroacoustic wave in the plasma column
is fed to the electroacoustic probe which is essentially an
open-ended coaxial line with a protruding center conductor
with a disk tip. The reflected electromagnetic wave from
the plasma column is picked up by the same electroacoustic
probe. This reflected electromagnetic wave is passed through
a directional coupler and a detector before reaching the
vertical input terminal of the oscilloscope. The horizontal
input of the oscilloscope synchronizes with 60 Hz sweeping
of the plasma discharge current. The display of the reflected
electromagnetic wave on the oscilloscope contains all the
information on the electroacoustic and dipole resonances and
is called the reflection curve in the later sections of this

chapter.

5.3 Electroacoustic Resonances and Dipole Resonance in a

Cylindrical Plasma Column

In this experiment, a cylindrical plasma tube was used
in the setup as shown in Figure 5.3. The electromagnetic

source was set at 2.4 GHz and the tube discharge current was
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Figure 5.1 Structure of the cylindrical plasma tube.
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Figure 5.2 Structure of the rectangular plasma tube.
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Figure 5.3 Experimental setup for the excitation and
observation of electroacoustic resonances in different plasma
geometries.
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swept 60 Hz in the experiment. The reflected electromagnetic
wave picked up by the electroacoustic probe went through the
directional coupler (or a matched coaxial hybrid), detector
and then was displayed on the oscilloscbpe. Resonance peaks
were observed at various discharge currents. When a metallic
backing was placed on the back side of the tube as shown in
Figure 5.4, one of the resonance peaks was affected. Three
sets of oscillograms were taken in this experiment and they
are shown in Figures 5.6, 5.7 and 5.8.

Figure 5.6 shows the resonance curves in the lower
discharge current region. The operating frequency was set
at 2.4 GHz and the plasma current was swept around 95 mA.

No effect on this part of the reéonance curve was observed
with a metallic backing to the tube. It is evident that
these peaks are electroacoustic resonances which are excited
in the plasma sheath directly near the probe. A metallic
backing in the back side of the tube has little effect on
this locally excited electroacoustic standing wave. This
phenomenon is shown in Figure 5.5.

Figures 5.7 and 5.8 show the resonance curves in the
higher discharge current region observed in two different
plasma tubes of same dimensions. When the tube was placed
with a metallic backing on the back side, some effect was
observed on the first highest peak of the resonance curve.
This first highest peak is recognized as the dipole resonance

which is physically different from the remaining electroacoustic
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Figure 5.5 Electroacoustic resonance in a cylindrical
plasma column.
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resonances. Since a dipole resonance is an electromagnetic
resonance and is excited over the whole column, a metallic
backing will alter drastically the boundary condition and

lead to a change in the dipole resonance peak.

5.4 Electroacoustic Resonances and Dipole Resonance in a

Rectangular Plasma Column

In this experiment, a rectangular plasma tube was
used in the setup as shown in Figure 5.3. The electro-
acoustic probe was placed at the uniform plasma section.

The resonance curves were observed in both the low and the
high discharge current regions and a complete series of
electroacoustic and dipole resonances can be reconstructed
in four oscillograms in Figure 5.9. To our best knowledge,
the electroacoustic and dipole resonances have not been
studied in this rectangular geometry. In Figure 5.9, it is
observed that the resonance curve consists mainly of four
distinct peaks; the highest peak occurs at the high discharge
current end and the rest with descending order of magnitude
toward the low discharge current end. This curve looks
similar to the resonance curve observed in the cylindrical
plasma tube.

Figures 5.10 and 5.11 show the effect of a metallic
backing on the resonance peaks. When the metallic backing
was placed on the tube, the second highest peak was affected;

but not the first highest peak as in the case of the cylindrical
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plasma tube. This may imply that the second highest peak
in the resonance curve observed in a rectangular plasma tube

is the dipole resonance.

5.5 Resonances in Single-profile Plasma Column in the

Rectangular Tube

As stated before, a single-profile column was fabricated
in order to study the reflection behavior of an electro-
acoustic wave on various boundary surfaces. Before this
study was conducted, the plasma density profile of this
plasma column was examined by observing the resonance curves
created by the electroacoustic probe at different parts of

the plasma column.

5.5.1 Glass Reflector Region

We first examined the density profile at three differ-
ent points in the glass reflector region as shown in Figure
5.12. A large density profile difference was expected to
exist between the front and back sides at the neck section
of this region. The density profile should become more
uniform away from the neck section, so that a small density
difference was expected to exist between the front and back
sides at the center and tail sections of this region. The
electroacoustic probe was placed at different positions along
this glass reflector region and the reflection curves were
studied.

Figure 5.14 shows that at the neck section, the
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reflection curve from the front side is significantly
different from that of the back side implying the existence
of a drastic density profile difference between the front
and back sides of the tube at this section.

Figures 5.15 and 5.16 show that a relatively small
difference exists between the reflection curves from the
front and back sides at the central section of the glass
reflector region. This will imply the existence of only a
small difference in the densities between the front and
back sides at this section of the tube. Also in Figure 5.15,
the effect due to the metallic backing is indicated. We can
see that the second highest peak was altered when the metallic
backing was placed on the tube.

Figure 5.17 shows the existence of a small difference
in density profile between the front and back sides at the
tail section of the glass reflector region. The similar
effect due to the metallic backing was also observed in the
experiment.

Experimental results shown in Figures 5.14, 5.15, 5.16
and 5.17 confirm that a single-profile was created in this
rectangular plasma tube.

5.5.2 Metallic Reflector Region

The density profile in the metallic reflector region
of the same tube as shown in Figure 5.13 was studied. Three
sections, the neck, center and tail sections, of this region

were examined. A series of oscillograms of the reflection
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curves were taken during the experiment at the neck, center
and tail sections of the metal reflector region under various
discharge currents. By grouping these oscillograms together,
we obtained three complete curves of the resonance.

Figure 5.18 shows a complete curve of resonance at the
neck section. At this section no distinct electroacoustic
resonance was observed. It was probably due to the turbulent
plasma flow and irregular density distribution in this posi-
tion.

Figure 5.19 shows a complete curve of resonance at the
center section. The electroacoustic and dipole resonances
were observed.

Figure 5.20 shows a complete curve of resonance at the
tail section. The electroacoustic and dipole resonances were

clearly observed at this section.

5.6 Reflection Behavior of Electroacoustic Wave from Metallic

and Non-metallic Surfaces

Figure 5.21 shows the reflection curves observed in
the uniform, glass reflector and metallic reflector regions
of the tube. The reflection curve from the metallic reflector
region is different from the other two cases. This appears
to imply different reflection behaviors of an electroacoustic
wave on metallic and non-metallic surfaces. However, Figure
5.22 shows that the reflection curve observed in the uniform

column is affected by an external metallic backing and,
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Figure 5.18 Resonance curve observed in the neck
section of the metallic reflector region of a rectangular
plasma tube. (f = 2.4 GHz)
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Figure 5.19 Resonance curve observed in the center
section of the metallic reflector region of a rectangular
plasma tube. (f = 2.4 GHz)
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Figure 5.20 Resonance curve observed in the tail
section of the metallic reflector region of a rectangular
plasma tube. (f = 2.4 GHz)
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furthermore, Figure 5.23 shows that inside and outside metallic
backing do not give different reflector curves. Based on the
results observed in Figures 5.22 and 5.23, the different
reflection curves observed in Figure 5.21 may not be due to

the reflecting surface. This may imply that all the electro-
acoustic resonances were still excited at the front side of

the tube directly near the probe. The different reflection
curves observed in the glass reflector and metallic reflector
regions may be due to the electromagnetic effect of the
metallic reflector to the reflected wave.

Our attempt to study the reflection behavior of an
electroacoustic wave on metallic and non-metallic surfaces
using a single-profile plasma column was proved to be incon-
clusive. A major disruption in the vacuum system prevented
the continuation of this study. It is recommended that with
some modifications on the tube construction, but based on the
same idea of a single-profile plasma column, the reflection
behavior of the electroacoustic wave can be successfully

studied.
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APPENDIX A

NUMERICAL CALCULATION OF Ry, R2, THE ELECTRON-ION
COMPOSITION RATIOS OF THE n, WAVE

AND THE n, WAVE

To determine R,y and R2, the electron-ion composition
ratios of the n, wave and the n, wave, for various source
frequencies, various collision frequencies and various Te/Ti
by using a computer, we write the following equations in terms

of X, Y and Z where

X = (0 /w)? (A-1)
Y = v /w (A-2)
Z2 =T /Ty . (a-3)

2 w_ 2 Y
2 _w (. _s_e -

can be written as

2 2
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where

K. = w_ (A"‘G)
2 Ve
Al = (1 -X - jY) . (A“?)
For equation (2.2.13),
2
2 w Y.
2 w i i
ey )
i Viz w2 W !

we use equations (2.2.8), (2.2.12), (2.1.11) and (2.1.12)

with hydrogen gas plasma assumption, then we have

w2 = (m/moye?
or
w2 = (1/1836)0 % ; (A-9)
Vil = (mg/mp) (T /T v 2,
or
v, = v 2/(18362) ; (A-10)
assuming
(vi/ve) = (V4/V,) (A-11)

and using equation (A-10), we have

v; = vo/1836) Y% (A-12)
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Equation (A-8) can be written as

832 = Ky?a, (A-13)
where
A, = 18362 - X2 - jY(18362)1/2 . (A-14)
Similarly, equation (2.3.15) 1
2 2.2
4 w w
2 2,2 w e i
it - 0 ()
° [ 1 e v 2V.2 w2 w2
e i
can be written as
A = K,2A (A-15)
o 2 73
where l
Ay = [, - ap? + azx?]? . (A-16)

Substituting equations (A-5), (A-13), (A-15) into equations

(2.4.3), (2.4.5) and using equations (A-1), (A-5) yield

R, = l—(A - A, - A,) (A-18)
2 2% 1 2 3 :

Equations for Ry and R, are functions of X, Y and 2, i.e.,
functions of (me/m)z, Ye/m and Te/Ti. Therefore, the electron-
ion composition ratios of the n; wave and the n, wave can be
determined by assuming various source frequencies, various

collision frequencies and various T, /T,.



APPENDIX B

NUMERICAL CALCULATION OF kl' k2, THE PROPAGATION

CONSTANTS OF THE n, WAVE AND THE n, WAVE

1
To determine kl, kz, the propagation constants of the
n, wave and the n, wave, for various source frequencies,
various collision frequencies and various Te/Ti by using a
computer, we rewrite equations (2.5.1) and (2.5.2).
For hydrogen gas plasma, we use equation (A-14) as
well as equations (A-5), (A-7), (aA-13), (A-15), (A-16) and

(A~6) . Then equations for k; and k2 can be written as

kq =<Al + A, + A3)% 5-1)
(w/V;) 3672%

ks =<A1 + Ay - A3>% (B-2)
(w/Vg) 2

where

Aj = 1-X- 3Y (B-3)
A, = 18362 - Xz - jY(l83GZ)l/2 (B-4)
A, = BAQ - Al)2 + 4zx2]1/2 (B-5)
X = (wg/w)? (B-6)

152
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Y = ye/w (B-7)
Z2 =T,/T; - (B-8)

For xenon gas plasma, we use

W, m
= =& = 1 =1 (B-9)
w 2 m, 54 x 1836 99144
e
v,) mT 1
— = (=) () = g9 (B-10)
v 2 m; Tg 991442
e
Y. V.
R 1 T3 (B-11)
Ye Ve  (991442)1/
Equation (A-8) becomes
2 _ 2 -
Bi“ = K,°A, (B-12)
where
A, = 99144z - Xz - j¥(991442)/2 | (B-13)

Using equations (B-12), (B-13) as well as equations (A-5),
(A-6), (A-7), (A-15), (A-16) in equations (2.5.1]) and (2.5.2),

we can write

N

k Ay + Ay + A
2 3
1 ( = > (B-14)

(w/vy) 1982882

1
2 (Mt A3>5 (B-15)
(w/Ve)
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where

A; =1-X-3jY (B-16)
A, = 991442 - X3z - jY(9914;Z)1/2 (B-17)
ay= [y -ap?+ 4zx2]1/2 (B-18)
X = (0 /w)? (B-19)
Y =y /u (B-20)
Z="T_/T. . (B-21)

e’ 1

Therefore, k1 and k2 for various source frequencies, various
collision frequencies and various Te/Ti can be determined.
For hydrogen gas plasma, we use equations (B-1l) through (B-8).

For xenon gas plasma, we use equations (B-14) through (B-21).
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Sample Program

QOOOO0O0000n0n0n

OO0

NN N KD

10

PROGRAM PLASMA (OUTPUT)

KRk hkkhhkhkhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhkhhkkhhhhhk

THIS PROGRAM CALCULATES

(1) THE WAVE NUMBERS AKlK AND AK2K

(2) THE RATIOS RN1EI AND RN2EI

AS A FUNCTION OF X (X=(WE/W)**2) FOR AN ASSIGNED A
(A=COLLISION FREQUENCY/W).

THIS CASE (HYDROGEN GAS IS ASSUMED, TE=B*TI WHERE B=100)
R sy Y Y Y]

REAL MOD1,MOD2

COMPLEX C,D,AM,AN,ANMX,AK1K,AK2K,RN1EI,RN2EI,P
DIMENSION A(7),X(15),AaM(7,15) ,AN(7,15) ,ANMX(7,15),
1p(7,15),Q(15) ,AK1K(7,15) ,AK2K(7,15),
2RN1EI(7,15) ,RN2EI(7,15),MOD1(7,15),MOD2(7,15)
A(1)=0.0

A(2)=10.E-4

DO 1 1=3,6
A(I)=A(I-1)*10.
CONTINUE
X(1)=10.E-5

DO 2 J=2,13
X(J)=X(J-1) *10.
CONTINUE
B=100.

C=CMPLX(0.0,1.0)

E=SQRT (1836.*B)

D=CMPLX(0.0,E)

DO 3 I=1,6

DO 4 J=1,13

AM(I,J)=1.-X(J)-C*A(I)

AN(I,J)=1836.*B-B*X(J)-D*A(I)
P(I,J)=(AN(I,J)-AM(I,J))**2

Q(J)=4.*B*X (J) **2

ANMX (I,J)=CSQRT(P(I,J)+Q(J))

NOTING AT LARGE X, 4BX**2 IS MUCH SMALLER THAN THE

RE (AN-AM) , SO ANMX SHOULD HAVE THE SIGNS OF (AN-AM).
SINCE IM(AN-AM) IS NEGATIVE. WE DEMAND IM(ANMX) NEGATIVE.
IF (AIMAG (ANMX(I,J))-0.0) 20,20,10

ANMX (I,J)=-(ANMX(I,J))

AK1lK MIGHT HAVE 2 SOLUTIONS,ONE IS THE NEGATIVE OF THE
OTHER.SINCE IT IS A WAVE NUMBER WHICH HAS TO HAVE
POSITIVE REAL PART AND NEGATIVE IMAGINARY PART.SO WE
COULD PICK THE REQUIRED SOLUTION BY DOING THE FOLLOWING
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STATEMENTS. (SAME FOR AK2K)

20 AK1K(I,J)=CSQRT((AM(I,J)+AN(I,J)+ANMX(I,J))/(3672.*B))
IF (REAL(AK1K(I,J))-0.0) 30,30,40

30 AK1K(I,J)=-(AK1K(I,J))

40 AK2K(I,J)=CSQRT((AM(I,J)+AN(I,J)-ANMX(I,J))/2.)

IF (REAL(AK2K(I,J))-0.0) 50,50,60

50 AK2K(I,J)=-(AK2K(I,J))

60 RN1EI(I,J)=(AM(I,J)-AN(I,J)+ANMX(I,J))/(2.*X(J))
RN2EI (I,J)=(AM(I,J)-AN(I,J)-ANMX(I,J))/(2.*X(J))
MOD1(I,J)=CABS (RN1EI(I,J))

MOD2(I,J)=CABS (RN2EI(I,J))
4 CONTINUE
3 CONTINUE
PRINT 100
DO 5 I=1,6
PRINT 200,I,A(I)
DO 6 J=1,13
PRINT 201,J,X(J) ,AM(1,J),AN(I,J),P(I,J),Q(J),ANMX(I,J)
6 CONTINUE
5 CONTINUE
PRINT 100
DO 7 I=1,6
PRINT 200,I,A(I)
DO 8 J=1,13
PRINT 300,J,X(J) ,AK1K(I,J) ,AK2K(I,J)
8 CONTINUE
7 CONTINUE
DO 9 I=1,6
PRINT 202,I,A(I)
DO 11 J=1,13
PRINT 400,J,X(J),RN1EI(I,J),RN2EI(I,J),MOD1(I,J),MOD2(I,J)
11 CONTINUE
9 CONTINUE

100 FORMAT (*1RESULTS*)

200 FORMAT (1HO,*A(*,I1l,*)=%*,F7.3)

201 FORMAT (3X,*X(*,I12,*)=*,E10.2,3X,*AM=*,E15.7,2X,E15.7,6X,
1*AN=*,E15.7,2X,E15.7/
214X,11H(AN-AM) **2=,E15.7,2X,E15.7,2X,7H4BX**2=_,E15.7/
320X, *ANMX=*,E15.7,2X,E15.7)

202 FORMAT (1H1,*A(*,Il,*)=*,F7.3)

300 FORMAT (1H ,10X,*X(*,I2,*)=*,E10.2,10X,
1*AK1K=*,E15.7,2X,E15.7,10X,
2*AK2K=* ,E15.7,2X,E15.7)

400 FORMAT (1HO0,10X,*X(*,I2,*)=*,E10.2,10X,
1*RN1EI=*,E15.7,2X,E15.7,10X,
2*RN2EI=*,E15.7,2X,E15.7,/,
337X,*MOD1 =*,E15.7,27X,*MOD2 =*,E15.7)

END



APPENDIX C

TABLES OF DATA FOR THE CALCULATION OF RADIATION

PATTERNS OF THE n; WAVE AND THE n; WAVE

Notations and constants used in this appendix:

1
Ve = (3kTe/me)2 , thermal velocity of electrons.
1
Vi = (3kTi/rni)2 , thermal velocity of ions.
1
Vp = [3k(Te + Ti)/mi]z , phase velocity of the n; wave at

low frequency range.
Re[kl/(w/vi)] , numerical output of the computer.
kqp = {Re[kl/(w/vi)]}(w/vi) , phase constant of the n; wave.

Re[ky/(w/Vgy)] , numerical output of the computer.

ky = {Re[kz/(w/ve)]}(w/ve) » phase constant of the n, wave.
1
ke = w/uoeo(l - wez/wz)2 , propagation constant of the

electromagnetic wave in the plasma.

f = antenna frequency.

157
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fp = electron plasma frequency.
wg = 21rfp , circular electron plasma frequency.
L = 2a/(Vph/f) , normalized antenna length.

k = 1.38 x 10723 joules/°K , Boltzmann's constant.

m, = 9.109 x 10-31 kg , electron mass.

m; = 9.031 x 10726 kg , xenon ion mass.

Remark: A xenon gas plasma with (y,/w) = 0 is assumed

for all cases in this appendix.
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Table C-1 kjdl versus T,.
(£ = 30 kHz, Re[ky/(w/Vij)] = 0.3016 for (Te/T;) = 10, d1 = 1 cm)

v .
1

2000°K 623 188 1.88

6000°K 359 108 1.08

10000°K 278 84 0.84

Table C-2 kjdl versus Teg/Tj.
(f = 30 kHz, Tg = 6000°K, dl = 1 cm)

Te Re[——fl——] w_ k k,dl
T, (w/V3) vy 1 1

1 0.7071 114 80 0.80

10 0.3016 359 108 1.08

100 0.0995 1136 113 1.13

1000 0.0316 3594 114 1.14
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Table C-3 k}dl versus f.

(Te = 6000°K, Re[k)/(w/Vi)] = 0.3016 for (Te/Ti) = 10, dl
= 2.5 cm)
w
£ v ky kydl
1
10 kHz 120 36 0.9
20 kHz 240 72 1.8
30 kHz 360 108 2.7
Table C-4 kjdl versus Te.
(f = 1 GHz, Re[ky/(w/Ve)] = 0.2235 for (we?/w2) = 0.95 and
(Te/Ti) = 1 to 10*, d1 = 1 mm)
w
T v k, k,dl
e
2000°K 2.08 x 10" 4650 4.65
6000°K 1.20 x 10" 2690 2.69
10000°K 9.32 x 10° 2080 2.08
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Table C-5 k2dl versus f.
(Te = 4000°K, Re[ka/(w/Ve)] = 0.2235 for (we2/w?) = 0.95 and
(Te/Ti) = 1 to 10", d1 = 1 mm)

w
f v k2 kzdl

e
0.5 GHz 7.37 x 103 1650 1.65
1.0 GHz 1.47 x 10" 3290 3.29
1.5 GHz 2.21 x 10" 4940 4.94

Table C-6 kja versus Te.
(f = 30 kHz, Re[kl/(w/Vi)] = 0.0995 for (Te/Ti) = 100,
a

= 2.25 cm)
o k k
Te VA Vv, 1 12
1
2000°K 962 2000 199 4.48
6000°K 1666 1136 113 2.55
10000°K 2150 880 88 1.97
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Table C-8 kja versus f.
(va = 1.05 x 10°® m/sec, Te = T; = 1200°K, Re[k1/(w/Vi)]
= 0.7071 for (Te/Ti) =1, a = 2.25 cm)

W

1
16.3 kHz 0.7 138 98 2.2
23.3 kHz 1.0 198 152 3.4
58.3 kHz 2.5 494 349 7.8

Table C-10 kja versus Te.
(f = 30 kHz, Re[kl/(w/Vj)] = 0.3016 for (Te/Ti) = 10, a = 2.25
cm)

w
2000°K 1004 623 188 4.22
6000°K 1739 359 108 2.44
10000°K 2245 278 84 1.89
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Table C-11 kja versus Tg/Tj.
(f = 30 kHz, Te = 4000°K, a = 2.25 cm)

Te kl "

== Re[—————i —_— k k.a
1l 0.7071 139 98.4 2.21
10 0.3016 440 133.0 2.99

100 0.0995 139 139.0 3.12

Table C-12 kja versus f.
(Vva = 1.05 x 10° m/sec, Te = Ti = 1200°K, Re[k}/(w/Vi)]
= 8.7071 for (Te/T3) =1, a = 2.25 cm)

w
f L v ky kla

1
35.0 kHz 1.5 297 210 4.72
46.6 kHz 2.0 395 279 6.28
93.3 kHz 4.0 790 559 12.60
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Table C-13 kja versus Te.
(f = 17.5 MHzZ, Re[kz/(w/ve)] = 0.2235 for (we?/w2) = 0.95 and
(Te/Ti) =1 to 10*, a = 7.2 cm)

T L k k.a

e Ve 2 2
2000°K 365 81.5 5.87
4000°K 257 57.6 4.15
8000°K 182 40.8 2.94

Table C-14 kja versus f.
(Te = 2000°K, Re[k2/(w/Ve)] = 0.2235 for (we?/w?) = 0.95 and
(Te/Ti) = 1 to 10*, a = 7.2 cm)

f w_ k k,a

Ve 2 2
15.0 MHz 313 69.8 5.03
17.5 MHz 365 81.5 5.87
20.0 MHz 417 93.2 6.71




Table C-15 kjh versus Tg.
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(f = 30 kHz, Re[k1/(w/Vi)] = 0.3016 for (Te/Ti) = 10)
. w y k,h
e Vi h=2.5c¢cm h=5ocm
2000°Kk 623 188 4.7 9.4
6000°K 359 108 2.7 5.4
10000°K 278 84 2.1 4.2

Table C-17 k
(Te = 6000°K, Re[kl/}

h =5 cm)

h versus f.

w/Vi)] = 0.3016 for (Te/Ty) = 10,

W

i
10 kHz 120 36 1.8
20 kHz 240 72 3.6
30 kHz 360 108 5.4
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Table C-18 ksh and ke/k2 versus Te.
(f = 5.5 MHz, fp = 4,5 MHz, (Te/Ti) =1 to 10, Re[kz/(w/ve)]
=~ 0.57 and ke ~ 0.066 for (we2/w2) = 0.67, h = 6 cm)

k
T w_ k £ k-,h
e Ve 2 k2 2
4000°K 81.0 46.1 0.00143 2.70
6000°K 66.2 37.7 0.00176 2.26
8000°K 57.3 32.6 0.00203 1.95
Table C-21 kgh versus f.
(fp = 4.5 MHz, h = 8.5 cm)
wez
f - ke keh
w
5.0 MHz 0.81 0.046 0.0039
5.5 MHz 0.67 0.066 0.0056
7.0 MHz 0.41 0.113 0.0096
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Sample Program

QOO0 n0n00n

1
2
100
101
200
300

PROGRAM PLASMA (OUTPUT)

AR AARR R IR AR KRR R AR RRRRR KR RRR R AR R AR AR AR AR ARk,
THIS PROGRAM CALCULATES THE RADIATION PATTERNS OF THE

N2 WAVE EXCITED BY A CYLINDRICAL ANTENNA.

RADPAT=COS (THETAR) * (COS (K2*H*COS (THETAR) ) -COS (KE*H) ) /

( (COS (THETAR) ) **2~ (KE/K2) **2)
WE LET P=K2*H, B=KE*H, C=KE/K2.

A X E2 SRR RSEXX R R 2222222222 22222 R 22 2 2 2 22 R 2 2 2]

DIMENSION THETA(20),THETAR(20),P(5),A(5),B(5),C(5)

P(l1l)=1.95

P(2)=2.26

P(3)=2.70

P(4)=3.20

B(1)=0.00396

B(2)=0.00388

B(3)=B (1)

B(4)=0.00562

C(1)=0.00203

C(2)=0.00176

C(3)=0.00143

C(4)=C(2)

PI=3.14159265

DO 2 J=1,4

PRINT 100

PRINT 101,J,P(J)

DO 1 I=1,19

THETA (I)=-100.+10.*I

PRINT 200,I,THETA(I)

THETAR (I)=(PI/180.) *THETA(I)
A(J)=P(J) *COS (THETAR(I))
RADPAT=COS (THETAR(I)) * (COS (A(J))-COS(B(J)))/
1((COS (THETAR(I)))**2-C(J)**2)
PRINT 300,RADPAT

CONTINUE

CONTINUE

FORMAT (* LRESULTS*)

FORMAT (*0* ,5X,*CASE (*,I2,*)*,2X,6HK2*H =,E15.7)
FORMAT (* *,5X,*THETA(*,I2,*)=*,F6.1,* DEGREE*)
FORMAT (*+%*, 33X, *RADPAT=* ,E15.7)
END
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