ELECIRDMC STRUCTURE or mama INTERMEDEATES: . CARBONYL mama AND LITHIUM (mamas; THE ZERO-FIELD spumue PARAMETERS or METHYLENE Dissertation for the Degrae of Ph. D. MECHieAN STATE UNWERSITY RICHARD CHARLES UEDTKE 1975 LIBP RY ichard Charles Liedtke ,a: J a has been accepted towards fulfillment of the requirements for Ph.D. \ degree in Chemical Physics Major professor F’ ‘ '5 final“ ufi'fsma sun:m am 251%,; _ :5 '"IIIIPQ‘ITYIWIIMI ABSTRACT .527 ELECTRONIC STRUCTURE OF REACTIVE INTERMEDIATES: as! CARBONYL CARBENES AND LITHIUM CARBENES; l L THE ZERO-FIELD SPLITTING PARAMETERS OF METHYLENE By Richard Charles Liedtke Minimal basis Q initio SCF-CI calculations on the lowest states of the carbonyl carbene, :CHCOH, and its fluorine- substituted forms, :CHCOF and :CFCOH, yielded the state order- ing E(3A").oma 05>.m om.va someh.mval momma rmm oh.HNH om.HmH mm>.~ om.mma ~mmo>.mvau mfio rdm me me louroeeuum a “stem oueum o :‘H UCM o .‘H s : .I‘A <:)J :aBCO Figure 9. :CFCOH (cis) Excitation Energies at the 3A" Geometry. 39 2‘3 . C) 'VACI E 40‘ (42°) 1.84eV '3 u . x “J 20- G 3 n (:)J (4J2) (£SEI- 1‘3: Figure 10. :CFCOH (cis) Excitation Energies at the 1A' Geometry. 40 in the CI wave functions of each state are given in Table 12. Due to the delocalized nature of the a" MO's, the A" states require a large orbital correction structure, ap- pearing in each case as a single excitation within the a" system. The 1A' state is more strongly dominated by the 02 SCF determinant, the 0 MO having become significantly 2 stabilized by the adjacent fluorine; and the p determinant has faded in significance as a component in the qualitative electronic structure. 1 3 Partly accounting for the decreased A" + A" energy is the delocalization of both the o and p NO's onto the fluorine. This argument can be made in terms of the NO's because, if the CI were redone in the NO basis, the op structure would be much more dominant than it was for the 1A" + 3A" energy for a op occupancy is MO's. Since the just 2ch (twice the exchange integral for the o and p orbitals), which diminishes in magnitude as the average distance between 0 and p electrons, the delocalization of the o and p NO's is a significant factor in decreasing 1 3 the A" + A" energy. Figure 11 shows electron density contours for the a' NO's and the total electron density at the 3 A" cis geometry. The active NO's and their occupa- tion numbers are listed in Table 13. The relative unim- portance of the 0' and c" NO's in the A" states is apparent from their near-zero occupation numbers, reflecting a very small mixing of the 0' and o" MO's in the lower a' MO's. * It is interesting to notice that the n NO (mostly C-O 41 Table 12. :CFCOH Principal Contributing CI Structures for the Three Lowest States. Structure Occupation State pF OF ECO co 0 p n* Coef. 2 2 2 2 1 1 .864 2 2 2 2 l l —.375 3A" cis 2 2 2 1 2 1 .161 2 2 1 2 1 2 -.152 2 2 2 1 1 2 -.129 2 2 2 l 2 1 .119 2 2 2 2 2 .950 2 2 2 2 l 1 .169 1A' cis 2 2 2 2 2 -.161 2 2 2 2 2 -.103 2 2 2 2 2 -.098 2 2 2 2 1 1 .868 2 2 1 2 1 2 .344 2 2 1 2 l 1 l .173 1A" cis 2 2 2 2 1 1 -.164 2 2 2 1 2 1 .113 2 2 l 2 l 2 -.107 42 3A" cis :CFCOH Electron Density Contour NO's and Total Density at the 11. Figure 43 Table 13. :CFCOH Active NO Occupation Numbers State NO 3A" ‘lA' 1A" OF 1.999 2.000 1.998 pF 1.998 1.989 1.996 00 1.986 1.996 1.984 ECO 1.874 1.863 1.890 0 1.012 1.959 1.017 p .999 .044 1.008 * n .132 .149 .108 0' .000 --- .000 o" .000 --- .000 44 1 anti-bonding) has a larger occupation in the A' state than does the p (localized on the carbene carbon) -- a situation 1A' state and associated with the also found in the :CHCOF increased ionic character of the C—0 bond in the fluorine- substituted species. The Mulliken population analysis, summarized in Table 14, shows the effects on the charge density due to direct fluorine substitution. As in :CHCOF, the fluorine draws substantial charge through the a' system and returns a smaller amount to the a" system, which doubles the carbene 1A' state relative to :CHCOF and 1 carbon a" density in the implies a much less electrophilic A' than either :CHCOF or :CHCOH. There is still a significant C-O polarization, although not as severe as in :CHCOF. The effect on the electronic structure is undoubtedly the stabilization of the 0 orbital by the fluorine, leading to the transition energies shifts and a singlet, instead of a triplet, ground state. E. Discussion The effects of fluorine substitution on the relative energies of the low-lying states are summarized in Figure 12. It should be repeated that the expected result of including the correlation energy is to lower the 1A' state relative to the A" states for each molecule, leading to a 1A' ground state for :CFCOH. The results of direct 45 so.+ 1--- no. mo.+ 1111 mm. oo.+ 1111 am. e oH.1 mo.H oo.e mH.1 No.a ma.» oH.- mo.H mo.e o oo.+ mo.H Hm.e mo.+ om. om.e eo.+ Ho.H no.4 o ma.+ em. me.e HH.+ em. mm.m NH.+ No.H ee.e oo oo.1 ee.H oH.s ae.1 ee.a mm.e oa.1 oo.H o~.e a a. m pm on” an n.“ -m 0 C C 0 C G v C C Hmfich =¢H naifi 34m .momumnu uoz one msofiumaomom coxwaaoz mmouo moumuu .va manna 46 / \ 40. 1 / 41.5 \ A ' / \\ 37.8 \ ‘ ¥ 35.2 1 l A 30. A m 29.6 \\\ g . 26.6 \\ _\_ ‘1‘ U 20' 1 g 1 Lu 1‘ <1 \ 10‘ \ \ 1 1 1 \. 4.0 3 I! 0‘ A :CHCOH __ ICHCOF “ :c FCOH Effect of Fluorine Substitution on the Energy Levels of Carbonyl Carbenes. Figure 12. 47 fluorine substitution are very close to those found in 26 The effects of indirect substitution studies on methylene. are significant in demonstrating the insulating properties of the carbonyl group and the resulting minimal effect on the electronic structure of the low—lying states. A parallel study on carbonyl nitrenes (isoelectronic with the carbenes) 21 revealed a similar effect. In by Shalhoub and Harrison their study, CH3 and OCH3 were also used as substituents, with the result that the A" states were insensitive to such substitutions. In their study the analogous p and o orbitals on nitrogen were localized on that center. It is this localization of the critical one particle densities, common to both the carbenes and nitrenes which makes the carbonyl group so effective in minimizing substituent effects on the gross electronic structure and perhaps the chemical reactivity. Two interesting studies should be pursued to extend this work. One is the investigation of the barrier to for- mation of ketene, discussed earlier. Experimentally, there is no evidence for the presence of the reactive singlet carbonyl carbene, but ketene is found to be present. In this regard, a theoretical investigation of the rearrange- ment barrier in the 1 A' state would be helpful. A second rearrangement reaction which could be followed theoretically is the formation of the heterocycle oxirene. The stability and electronic characterization of that species as an inter— mediate is also of interest in reactions involving the Wolff rearrangement. CHAPTER II LITHIUM CARBENES In this chapter, the results of an ab initio SCF study of lithium-substituted methylene are presented. Lithium has as its first unoccupied atomic orbital a low-lying p- type function. Hence, the two molecules studied, LiCH and Lizc, were expected to be characterized by low-lying excited states. Also, in contrast to the mainly electro- negative substituents of Chapter 1, lithium is a good electron donor and it was anticipated that a substantial amount of c electron density would shift from lithium to carbon, and some amount would be returned to lithium via the n system. The level of calculation for the triplet ground states of both molecules and the first excited triplet of LiCH was that of a restricted open-shell SCF (ROSSCF). The basis set of contracted nuclear-centered cartesian gaussian functions was of double zeta quality and included one 4- component lithium p function, whose exponents and coef- ficients were optimized by William527 in an SCF calculation 2P state. The other excited state wave- of the lithium functions were constructed via a single excitation CI (SECI) calculation using the ground state MO's. Further details of the basis set, CI wave functions and calculational methods can be found in Appendix II. 48 49 All the states examined for these molecules were linear and at least nominally bound. The ground states were found to be of 3 2- symmetry (32- for LiCH, 32; for Li2C). Table 15 contains a list of the ground state MO's and their or- bital energies for both molecules at their equilibrium geometries. Figures 13 and 14 display electron density contour maps of the MO's above the atomic core orbitals and the total molecular density for LiCH and LiZC, respectively. In LiCH, the two MO's which primarily determine the bonding characteristics are the 30 (covalent C-H bonding) and the highly ionic 40 (C-Li bonding). For Li2C, which has no covalent bonds, two ionic C-Li bonding orbitals, similar to the 40 in LiCH, can be formed as linear combinations of the Zen and 30g MO's. These characteristics are apparent in the contour maps. From the ground state electronic configurations of LiCH and LiZC, each having an occupancy describable as (0 core)2(wx)l(wz)1, with the two single electrons triplet 1A and a non-degenerate 12+ coupled, a doubly degenerate state can be constructed by alternate couplings of the n electrons. Virtual orbital representations of these states were constructed and improved via SECI calculations within the U orbitals. Table 16 gives the ground and ex- cited state energies and equilibrium bond lengths for both molecules. The fact that no 0 excitations were allowed in the SECI wave functions undoubtedly contributed to the nearly identical geometries of the three lowest states Table 15. Occupied MO's at Ground State Equilibrium ’ Geometries: a) LiCH (32‘) and b) LiZC (32;). a) MO Character -e(au) 10 Carbon ls 11.123 1 20 Lithium ls 2.461 30 C-H bonding .581 4c C-Li bonding (ionic) .305 EX Carbon px .042 Hz Carbon pz .042 b) 109 Carbon ls 11.093 209 Li-Li bonding o 2.409 lou Li-Li anti-bonding o 2.409 Bog Carbon 25 .395 Zou Carbon py (lonlc) .164 "Xg Carbon px .006 U2 Carbon pz .006 51 .muwmson mac m can m.oz 0&001soz mom musoucou aoamsoo couuooam flaw venom“ I M . .me mesons 51 one o .mueusoo Hence on» OS 0H001coz mom whoousoo mpwmcoo souuooam A1wmv moan .ma enemas 52 .auflmsoo Hmuoe on» use m.oz ouoo1coz you musousoo Swanson sonuooam Amwmv UNHQ .ee mesons 53 Table 16. Ground and Excited State Energies and Equilibrium Bond Lengths for LiCH and LiZC. Molecule State Energy(au) RC-Li(b°hrs) RC_H(bohrs) LiCH 3 -45.697l3 4.40 2.08 1 + -45.69438 3.58 2.06 1 -45.73662 3.59 2.06 3 ‘ -45.78154 3.59 2.07 L12C 1 ; -52.53350 3.73 ---- 1 g -52.56700 3.76 ---- 3 ; -52.60479 3.78 ---- 54 of each molecule. As a consequence, the 0-0 transition energies are the same as the vertical excitation energies. An energy level diagram illustrating both sets of energies is given in Figure 15 for both molecules. It is seen that the excitation energies, E(12;)-E(1Ag) and E(1Ag)-E(3Z;), in Lizc are smaller than the corresponding separations in LiCH. This result is due to the delocalization of the occupied n MO in LiZC compared to LiCH. Outside of small corrections due to the single excitations, the two dif- ferences are largely determined by the exchange integral connecting the two occupied n MO‘s: AE < 2KTr n . x For LiCH, 2K = 1.27 eV, and for Li C, 2K = 1.08 anz 2 Trx'"z eV. Hence, the extent to which n density can become more diffuse on carbon or delocalize to the lithium has a rather significant effect on the predicted relative energies of the lowest excited states. The expected effect of the inclusion of correlation energy would be to preferentially 1A state relative to the 2 states by some fraction lower the of an eV, which would not be sufficient to alter the pre- dicted state ordering, but it would reduce the singlet- triplet splitting. This correlation energy difference is principally the pair correlation energy associated with the U MO. LiCH was bent from its linear equilibrium geometry 55 547 1‘ 12+ A . 2 37 0V 1 (l) E _ 44.7 g CE) 40. I4 0V 2. « 1 g) 28.4 F A 'A \/ 123eV 23] g LU 20. OEV <1 J 3 — , 3 — O 2 29 LiCH LIZC Figure 15. Excitation Energies at the Ground State Geometry for LiCH and LiZC. 56 holding the bond lengths fixed. The resulting energy dependence gs angle is shown in Figure 16. The preference for a linear configuration is difficult to rationalize because several small effects are involved, and their magnitudes are not reliably estimated at present. Consid- eration of the stabilization of the in—plane U MO through acquisition of s-character, stabilization of the bonding 3c and 4c MO's due to loss of s-character, the effects of incomplete orbital following, and bond-bond repulsion must all be taken into account with a good estimate of their relative importance. Without attempting such a task here, it does seem possible to give an argument as to why these ionic lithium-substituted methylenes should prefer linear geometries as compared to methylene itself, which is predicted by theoretical calculations to be bent in the states analogous to those considered here. The differences are mainly due to the ionic nature of the bonding in the lithium carbenes. The ionic bond is manifested as an electron pair closely associated with the carbon and hybridized in a roughly sp manner. Upon bending, the nuclear-nuclear repulsion between Li and H is more effec- tive with the Li positively-charged. Also, if the ionic MO is less faithful in following the Li nucleus than a covalent MO would be (although plausible, this effect needs verification), the result would be less s-character ac- quired by the in-plane w MO. All of these differences imply an increased destabilization on bending compared 57 .80 - . - , - j 180° 160° 140° 120° ®LiCH Figure 16. LlCH State Energies y_s_ 0Li-C-H' 58 to methylene. For LiZC, with two ionic bonds, the effect would be expected to increase. A Walsh diagram of the LiCH MO's above the 2a' MO is included in Figure 17. In examining the charge distribution of the lithium carbenes, a Mulliken population analysis was made of the ground state wavefunction. The results are summarized in Table 17, which lists the net atomic populations broken down into the o orbital contribution, the U orbital contribution, and the net atomic charge. It is seen in LiCH that the Li loses about 0.9 electrons through the 0 system and regains only about 0.1 electron via the w MO's. Since the carbon extracts about 0.1 electron from H, it is left with an ex- cess charge of ~0.9 electron. In going to the Li2C system, the excess charge on C has increased to 1.2 electrons, which is the result of drawing over 0.7 electrons from each Li through the o MO's and losing about 0.12 electrons to each Li via the n MO's. The overall result is less 0 charge shifted to C and a greater n delocalization for Li2C as compared to LiCH. However, this n delocalization is not apparent in the H MO contour plots because in neither case does the Li contribution reach the density of the lowest contour, 0.005 e1ectrons/(bohr)3. The 3H state of LiCH was examined at the ROSSCF level because its electronic configuration was essentially dif- ferent than the three lowest states and because as the first allowed transition from the ground state, a better transition energy was desired. The results showed its C-Li 59 1 I r 229-1 4a’ A -.30-1 3 40' 8 it “I -.5 8 4% 3a' 30 159‘ ' 1 ' 1 ' i 180° 160° 140° 120° Figure 17. ®LiCH LlCH Orbital Energies vs eLi-C-H' 60 Table 17. Gross Mulliken Populations and Net Charges for LiCH and Li C. 2 LiCH 32' Atom n n n 5 0 fix U2 C 4.995 0.950 0.950 -0.895 Li 2.110 0.050 0.050 +0.789 a 0.894 ---------- +0.106 1122 C 5.453 0.878 0.878 -1.208 Li 2.274 0.061 0.061 +0.604 61 bond length to be dramatically longer than the 32- (4.40 bohr compared to 3.59 bohr). It was also found to be bound by only 5 kcal/mole with respect to Li(ZS)+CH(2H), into which it smoothly dissociates. Hence, it was expected that a vertical transition from the ground state would result in dissociation. The potential energy was found to be a very broad and shallow function of the C-Li bond length. 32- The vertical transition energy to the 3H from the equilibrium is estimated to be about 60 kcal/mole (2.6 eV), which would lie in the energy continuum of the 3H surface. The bonding in the 3 H state was found to be essentially different from the other states examined in that there was little charge displacement, i.e., the Li was almost neutral. The long and shallow Li-(C-H) stretching potential and the substantial sp hybridization of the Li "28" electron indicates a bonding based on a dipole—induced dipole attrac- tion. Heats of formation of the two molecules were estimated by determining the ROSSCF ground state equilibrium energies of the most stable dissociation fragments and calculating the dissociation energies. The calculated AE's differ from the corresponding AH's by an amount roughly 1 to 2 kcal/ mole,which was less than the resolution of these calcula- tions. FigUres 18 and 19 correlate the levels of LiCH and LiZC, respectively, to their lowest energy stable frag- 3 ments. It is seen that Z- LiCH is much stabler to dissoci- ation than Li2C, and all the states examined, barring the 100 60- A (D 1 O > 40- O U x 1 V LlJ < 20- 1 0.1 Figure 19. 63 L12C ‘25 (45) ‘\\ (37) \\2L1(2s)+C(°P) //F /////7L12(129)+C(3P) Ag (24)// 0” (34) Correlation of Lizc Levels and Dissociation Fragments. 64 Li2C 12;, appear at least nominally stable. Although lithium carbenes have not been observed ex- perimentally, their generation does not a priori seem un- attainable. As with several other carbenes produced in the laboratory, a promising technique would be the photolysis (or pyrolysis) of a diazo precursor, such as NZCLi2 in this case. The synthesis of that precursor may not be possible, but that question would require an experimental answer. CHAPTER III THE ZERO-FIELD SPLITTING PARAMETERS 3 OF Bl METHYLENE A. The Electron Spin-spin Interaction and the ZFS Parameters Each electron has a magnetic dipole moment, 5) associated with its intrinsic spin, 5; the relation connecting the two is F'= -gB§. In any system containing two or more electrons, each pair of electronic magnetic dipoles interact through their associated magnetic fields. This interaction is called the electron spin-spin interaction, and the corres- ponding quantum mechanical energy operator is given by all all A A A A A A e e“ E -'s' 3(s ~35 )(‘5 -'f ) g _ 1 282 2 2' K A _ K K1 1 K1 as A3 15 K 1 K1 rKl where g is the electronic g-factor, and B is the Bohr mag- neton (B = eM/Zmec). rKl is the distance between electrons K and A. The range of the interaction is quite short, dropping off as l/rgx. In practice, an empirical "spin Hamiltonian" is used which includes both the spin-spin and spin-orbit interac- tions. This empirical Hamiltonian has the form where S is the total electronic spin of the molecular system, 65 66 and D and E are constants into which all the information concerning the spatial distribution of the spin density has been compressed. It has been demonstrated that 988 can be 28,29 reduced to this form, in which case D and E are given (for a two-electron wave function ¢(l,2)) by: £2 -322 D = % 9282<¢| 135 12|¢> r12 §2 -fi2 E = % 9282<¢l 135 12|¢> r12 It is apparent that if the x and y directions are indis- tinguishable in the molecule (axial symmetry about 2), then B s 0. Also, if there is complete Spatial isotropy in the electronic distribution, D E 0. To the extent that D and E differ from zero, their magnitudes are a measure of the diffuseness of the net unpaired electronic spin density. Other properties of the spin Hamiltonian can be gleaned from an examination of the general matrix element 2 A2 x A . . A 1 A2 A2 ' ' - ' Writing S S as 7(Sl + S_), it is seen that A _ 1 - H |00> - 0(0 - — - 0) + E(0) = o, s 3 and A 1 1 1 l 3 _ HSI-Z- 1'3) < D";- ' '3‘ ' '4") + E(0) : 0. 67 Thus there is no correction to the molecular energy levels for molecules having 8 < 1. Also, A a ' HSISMS> ISMS>, indicating that mixing of spin states occurs only within a spin multiplet and does not mix states of different S. The energy shift of each level within a spin multiplet is given by D(M: - % S(S+1)) and is a result of the first term in 38. The second term causes a mixing of the multiplet com— ponents which differ by 12 in their MS value: A _ E — _ .. 2\I(S+MS+2) (S+Mst2+l). In general, then, it is apparent that the spin-spin inter- action causes a splitting of the Zeeman multiplets for S 3 1 in molecules possessing spatial anisotropy -- even in the absence of externally applied fields. This last observa- tion justifies the name "Zero-field Parameters" (ZFS) for D and E. For molecules containing only "low Z" nuclei, the spin- spin interaction is the dominant contributor to the ZFS parameters. However, the spin-orbit interaction will also 4, where contribute, and its strength increases roughly as 2 "2" refers to the charge of the nuclei in the molecule considered. Since both of these effects are small in common molecules of interest in, say, organic chemistry, (i.e., in 68 the order of cm.1 energies), they are treated effectively in terms of perturbation theory. In those terms, the spin- spin interaction contributes in first order while the spin- orbit effects don't appear until second order corrections are accounted for. A useful diagram of the perturbed multiplet levels can be constructed which relates the level splittings to the measured quantities D and E: I X , T b [ /.muuwfmun. 2E xa and xb are E: 9 I 1 linear combinations / n xo,x1.x_l 45/ xa 0f x+1 and x_1] e \ r \\ D 9 \ \ y \ \ \ \ X0 Figure 20. Relation of D and E to the Zero-Field Level Splittings of a Triplet State. B. The Spin-Spin Contribution to D and E for a CI Wave Function In demonstrating the essential equivalence of ass and A HS, McLachlan29 develops a function, 5(FI,F2), which is identical to the "coupling anisotropy"function of McWeeny.3o As McLachlan derives it, 69 ._ ._ _ 1 A A _; .2 _.__ 3(r1,r2) — §T§§3TT, where ISSa> is the state of total spin 8 in its "standard state”, i.e., with M8 = S, and a denotes its non-spin quantum numbers. Since the Ms =0 component was preferred in the techniques used in this thesis, S(Fi,?2) was used with a normalization factor appropriate to M8 = 0 wave func- tions, i.e., 1/S(2S-l) was replaced by -l/S(S+1). Corres- pondingly, a wave function describable as IS 0 a> replaced |SSa>. Of course, this choice of M8 = 0 would not be appli- cable in the case of a wave function having non-integral spin. S(§i,?2) can be used to construct D and E as follows: 2 2 -32 _ 3 2 2 r12 12 1— .— -. — D - -4- 9 BH( r5 )S(r1,r2)dr1dr2 12 y2 _x2 _ 3 2 2 12 12 —. — 1— — E - 71- g 81]} 5 )S(r1,r2)dr1dr2, r12 where S(fi,?2) can be written explicitly as: _ -1 *M =0 S(r1,r2) - Wf'fws 8 (Tl'T2"'°'Tn) N X{ Z'[3s u¥v A dT dT d1 1 2 3...dTN, (III.B.l) 70 where N is the number of electrons in the system, and the integration is done over the space and spin coordinates, Ti, of all electrons. The wave functions employed in this work were CI wave functions and have the general form =Zc K where DK is a Slater determinant of one-particle functions. For such wave functions, 3(f1,Fé) reduces to _ ._ t _ _ * __ _ s(rl,r2) - {[22 aijk£¢i(rl)¢j(r1)¢k(r2)¢2(r2), (111.3.2) ijzm where the ai ijkz are determined by the CK for w and by factors arising from the spin integrations over in the expression the ¢'s in each term of S. Hence, D takes the form (and E, in a similar way) 2 2 2-3222 D=z<3 B {lilaijkgffi (rlmj (r1)<:-1—— r5 2)¢]:(r2 )¢£('r.2)d? drz. ijkz 12 The author wrote a program to construct the set of aijkz from a CI wave function; and using an existing routine for calcu- lating the spatial integrals in a gaussian lobe function (GLF) basis, D and E were obtained for the ground 381 state of :CHZ. For further details on the construction of the aijkl' see Appendix III. 71 C. The ZFS Parameters of 331 Methylene The apparent conflict which developed between theory and experiment concerning the electronic structure of methylene has been gradually finding resolution. The initial inter- pretation of the electronic spectra of methylene by Herz- 7 suggested a linear 32; ground state, while the rapidly- improving theoretical calculations indicated a bent triplet berg ground state (331; 6 N140°). This situation remained stale- 11,12 mated until the esr spectrum was observed in 1970, supporting the common belief in a triplet ground state. The ZFS parameters were the critical measurements in determin- ing the question of the bond angle. The experimental values of D and E for methylene trapped in a matrix at low tempera- 1 ture were found to be 0.69 cm” and 0.003 cm-1, respectively. A previous semi-quantitative estimate had been made by 31 Higudhi. The low experimental value of E, suggesting a nearly linear triplet state, must be corrected for motional effects. The result is an experimental value of 0.074 cm-1 1 in a xenon matrix and 0.021 cm- in SF6. An ab initio calculation using an eight structure CI was carried out by 32 Harrison, who found the spin-spin contribution to D and E at eHCH = 132.5° (the determined equilibrium bond angle) to be 0.71 cm-1 and 0.05 cm_1, respectively. When the spin- orbit contribution (expected to be much less significant) is added to Harrison's value for D, the theoretical predic- tion of 0.776 cm.1 (using D = 0.066 cm.1 from the latest SO 72 33 9 calculation by Hameka and Hall at = 135°) agrees well HCH with the average experimental value of 0.76 1 .02 cm—l. The results obtained in a xenon lattice are not included in the average because of the abnormally large spin-orbit contribution induced by the xenon host. The calculations described in this chapter were under- taken to verify the essential correctness of Harrison‘s results. The double zeta set of GLF was retained but the CI procedure was extended to include the 100 most energet- ically important structures (based on their first order contribution to the 331 energY) selected from the set of single and double excitations with respect to the dominant 331 structure represented by the orbital occupation (la1)2(2a1)2(lb2)2(3a1)1(1b1)1. 0f the 14 MO's resulting from the closed shell restricted SCF calculation, the 1a1 was held doubly occupied and the 7a1 and 8a1 were maintained empty in the construction of the excitations. Using the NO's obtained from the CI wave func- tion as a basis; the selection of the "best" 100 structures was repeated, and a CI calculation done. This procedure, first introduced by Bender and Davidson34 is called the interative natural orbital technique and has the property that it produces a CI energy lowering for one or more itera— tions but, at some point, begins to diverge, i.e., the CI energy increases with iteration. In the case described 73 here, one iteration gave the lowest CI energy; the second iteration energy was somewhat higher (see Figure 21). With a C-H bond length fixed at 1.05 A, the minimum CI energy was interpolated to correspond to a eHCH value of 132.5°. The calculation of the ZFS parameters at this bond angle, using the first iteration CI wave function (CI-N01), gave D = 0.722 cm.1 and E = 0.053 cm-1 , supporting the earlier eight structure CI results. Figure 22 exhibits the angular dependence of D and E as calculated from the CI wave function for each iteration, and it also includes the eight structure results (C10). The results of this extended calculation are also consistent with the range of experimental results for D, using the same spin-orbit contributions as above. Subsequent to the results described here, Langhoff and Davidson35 have calculated the spin-spin values of D and E based on a 575 configuration iterative NO CI wave function at 1 l and E8 = 0.050 cm” . o _ - 135 . They report DSS — 0.781 cm 8 Although this puts the theoretical value of D somewhat higher than the experimental results, it does help confirm the essential stability of the theoretical method. With the theoretically predicted spin-spin contributions fairly well defined, the appearance of a sound value of the spin-orbit part is of most importance in making a firm com- parison with the experimental results. -38.956T 74 .9584 \'-/' Cl-MO ’5 (0 " .9604 )p- 0 CE UJ E .962“ CI-NOZ NI. / / Cl-NO1 .964- 13?‘ 155' 1:10" ('9ch . 3 Figure 21. .CH2 ( Bl) Energy XE eHCH’ D (cm") E (cm“) Figure 22. .74:1 .72."—“/ + .06 ‘ .05"I .7.J .76 j T EXPERIMENTAL .1 0 Clo A Cl-MO v CI'NO’] o Cl-NO2 2 .041 I I 1 130° 135° 140° 9mm :CH (3B1) Spin-spin ZFS Parameters XE eHCH' APPENDICES APPENDIX I A. The Closed Shell SCF (CSSCF) The quantum mechanical description of molecules is commonly done in terms of the solutions of the time-independent Schrodinger Equation with the purely electrostatic hamil- tonian N M N N N "_ 1 2 a 1 I 1 H - -'2 Z 61 - Z r . + 2 Z 2 r1 i=1 a=l i=1 a1 i=1 j=l 3 M M +12 2' Zazb 2 r b ' a=l =1 a where atomic units are employed (e = 1, m = 1, h = l). e N is the number of electrons in the system, M the number of nuclei, Z is the multiple of the unit charge carried by a each nucleus, and the r's are interparticle distances. The nuclei are assumed to be fixed at some pre-chosen positions so that their coordinates become parameters in the problem. With the rab fixed, the last term, the nuclear repulsion energy, is simply a constant and doesn't affect the wave function solution by being neglected until the end. Of the first three terms, the first two are sums of one-elec- tron operators (depending on the coordinates of only one electron). Because of the way the third term couples the coordinates of pairs of electrons, there is no exact mathe- matical way to write the part of P involving electron 76 77 coordinates as a sum over one-electron operators. Hence, there is no finite procedure which can yield an exact solu- tion, V(§i,§é,...§fi), for the Schrédinger Equation In) W = EV. (E constant). Approximate solutions are obtained by the Hartree-Fock method which replaces the exact electron-electron potential with an "effective" electron repulsion potential, in which each electron feels not the force of other electrons as point charges but only their "smeared out" charge densities. This modification requires a knowledge of the solutions before constructing the potentials used in 3 and transforms E into a sum of effective one-electron operators, which permits separation of the Schrdedinger Equation into a coupled set of one-particle equations. The dependence of the hamiltonian on the solution makes the problem a pseudo- eigenvalue problem, expressed by: This equation (or set of equations) must be iteratively solved, beginning with an initial estimate of T. When, or if, the procedure converges, the solution, W, is called the self- consistent field (SCF) wave function. Multiple nuclei impose difficulties which restricted the numerical calculations to atomic systems. Molecular systems became generally 78 treatable when Roothaan36 demonstrated the validity of a reformulation of the problem. In the alternate form, the one-particle solutions are written as expansions in a com- plete set of analytic functions satisfying the general boundary conditions of the problem; the expansion coef- ficients are determined by a variational minimization of the total energy, E. The variational energy is equal to the Hartree—Fock energy, E and the variationally-deter- HF' mined coefficients describe the one-particle Hartree-Fock solutions. The numerical solution of a set of coupled integro-differential equations is thus transformed into a set of algebraic equations, solved by methods of linear algebra. Although the new formulation allows solution of molecular systems and yields solutions in terms of analytic functions (instead of numerical tables), in practice it can only be carried out approximately; any complete set of expansion functions is necessarily infinite for these problems, and the choice of a truncated set is a very ser- ious qualification on the results obtained. The SCF wave functions obtained for the carbonyl car- benes were constructed using the Hartree-Fock-Roothaan (HFR) method discussed above for the case of a restricted, closed—shell wave function, i.e., each a spin electron was associated with a 8 spin electron having the same spatial distribution, and there were always an even number of electrons involved. The one particle SCF spatial functions are 911 316 P3 79 are called molecular orbitals (MO's); if the MO is multi- plied by one of the S2 eigenfunctions (called a and B), the function is called a spin-orbital (SO). B. The Basis Set The basis functions employed in the carbonyl carbene calculations were the STD-3G functions of Pople E£.21-20 These functions are linear combinations of nuclear-centered cartesian gaussian functions,least-squares fitted to indi- vidual unscaled Stater-type functions (STO's). The scaling factors, Ci' used for each atomic shell were those suggested by Pople as the "best molecular" scale factors. The form of each such simulated STO is 2 3 2 = -c-aikr Xi(r) Ni 2 dik e 1 k=1 where Ni is a normalization constant, dik are the least- squares determined coefficients of each gaussian in the linear combination, aik are the least-squares determined exponents, Ci is the scale factor appropriate to the basis function Xi' and r is the radial distance of the electron from the nucleus on which xi is centered. As Xi is written above, it has the angular isotropy of an s-type function. The spherical harmonics, YE, having 2 > 0 (in real form) are obtained by incorporating appropriate products of cartesian coordinates into Xi' e.g., a pX would contain the 80 additional factor x: 3 2 (x,y,z) = Ni x Z dik e Clalkr k=1 2 X px Table 18 contains the coefficients, dik' and scaled ex- ponents, aik = Ciaik' used for the basis functions on each type of nucleus included in the series of carbenes involved. The basis set for each molecule was minimal, which is to say that the number of basis functions included for each atom involved in the molecules was just enough to account for the occupied (n,£) subshells. Thus, H has only one basis function, an s-type function, while C through F have five -- two 8 functions and a set of three p—type functions (px, py, and pz). C. The CI One method used to extend the wave function beyond the Hartree-Fock level (HF), is to construct a trial function as a linear combination of single determinants, formed by re- placing some of the 80's in the HF determinant by some of the "virtual orbitals" resulting from the SCF procedure. The inclusion of these "excitations" allow the electrons a flexibility not obtainable in the HF wave function and this consequently allows the recovery of the Coulomb correla- tion energy missing from the HF total energy, E Also, HF' this extended wave function is sometimes necessary to represent 81 Table 18. Carbonyl Carbene Basis Set: STO-3G Coefficients and Scaled Exponents Basis Function 0' d(s) d(p) Carbon ls: 3.53053 .444635 13.04509 .535328 71.616818 .154329 Carbon 28,2p: .22229 .700115 .391957 .68348 .399513 .607684 2.94125 -.0999672 .155916 Oxygen ls: 6.44364 Same as 23.80886 Carbon ls 130.70929 Oxygen 28,2p: .38039 Same as Same as 1.16959 Carbon 25 Carbon 2p 5.03315 Fluorine ls: 8.216857 Same as 30.360801 Carbon ls 166.67909 Fluorine 28,2p: .488589 Same as Same as 1.502279 Carbon 25 Carbon 2p 6.464805 Hydrogen ls: .15814 Same as .58431 Carbon ls 3.20783 82 molecular systems which are not even qualitatively described by a single determinantal wave function. This extended wave function is variationally determined by minimizing the expec- tation value of H, E = <¢CI|HI¢CI>/<¢CI|¢CI>: with respect to the coefficients of each determinant. The basis for the CI wave function is then the set of all deter- minants derivable from the HF determinant by replacement of “at... w»? SO's occupied in that determinant by virtual SO's. However, it is also possible to alter this basis (as was done for the CI wave functions of :CHCOF and :CFCOH) by chosing linear combinations of the determinants. This is done to facilitate the interpretation of the wave function. In the calculations in this thesis, the new basis elements of the CI are linear combinations of determinants having definite symmetry under the elements of the molecular point group and the spin operators Sz and Sz; such linear combinations of determinants are called "structures" It is important to note that usually the number of de- terminants in the basis is finite (if the SCF basis is finite), but usually it is too large to be fully employed, so a subset of the basis is used. That subset vd11.be termed the CI basis here. For :CHCOH, a determinantal basis was used. Since, given the SCF MO's, a determinant is completely specified by a list 83 of the occupied spin-orbitals, the description of the CI basis in the following tables consists in associating a "." (unoccupied) or a 1 (occupied) with each SO. The "ac- tive" MO's are those with variable occupation in the basis used. Hence, there is also a "core", consisting, in this work,of MO's always doubly occupied in the basis determinants. In the tables, each MO is associated with two adjacent posi- tions, the first for the a spin-orbital, the second for the B spin-orbital. The core is de—emphasized by leaving no blanks between its MO's; the active MO's are separated by blanks. The coefficient given in front of each determinant is its weight in the associated structure. Since for :CHCOH structures were not used, each determinant has a coefficient of 1.0. * The active MO's for :CHCOH were the set {w p o n }. co “0 There were six electrons (3a, 38) distributed among these 10 80's. The total number of arrangements was s 5 51 2_ 2 (3H3)=(§'1'7T) -10 100. These 100 determinants are given in Table 19. A structure basis was chosen for :CHCOF. The set of ac- tive MO's was taken as {pF OF 00 "CO 0 p n*} and hosted 10 electrons (5a and 58). First, leaving the CF doubly occupied, all determinants were formed having 4a and 4B electrons distribu- ted among the remaining six MO's. There are (g)(2) = 225 such determinants. When structures are formed from these ." Li‘s-2 ‘1 Table 19. 1 10 2 10 3 1o 4 lo 5 1o 6 1o 7 10 3 10 9 10 10 10 11 10 12 10 13 1o 14 10 15 10 16 10 17 1o 18 10 19 10 2O 1. 21 1o 22 1o 23 10 24 1o 25 1o 26 1o 27 10 28 1o 29 10 3O 10 3! 1o 32 1o 33 1o 34 1o 35 10 36 1o 37 1o 38 10 39 10 40 10 :CHCOH Determinantal Basis for all States. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111111 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 84 CO 1! 11 11 1o 1! 11 I. 11 10 1o 11 1! 11 lo 11 11 lo 11 1. lo 11 11 11 lo 11 1! 1. 11 1. lo o! 01 0! o! .1 o! 11 11 1. 1! 1! 1o 11 lo 11 lo 1! 11 1. 11 1! lo 1! lo 11 lo 01 o! o! 01 o! 01 1! 1! 10 1! 1! 1. 11 10 11 lo 11 lo 11 1! lo 11 11 lo I. 11 01 01 01 01 01 o! 11 lo 1! 1! 1. 11 11 lo 1. 11 1! 1. 11 11 1. 1! 11 lo 10 11 Q Conny-.3... O Ono-o... ”0.0.0.0000 ”p” flpfl hint-obo-oo—O— O unfit-n. O O gnu-ppm... O O 0 up... —~”ufl~h gnu—u... on...“ an“... 00. any". Hpfl OOOOOOOOOOOOOOOOOOOOOOO ppppnuOOOQppp—wfiOOOOo-nu L. I __‘|_- _~ 85 Table 19 - Continued "CO 00 p o n* 4! 1. 1111111111111!!! 1! 1! .1 .. 1. 42 1. 1111111111111!!! 1! 11 .. .1 1. 43 1. 1111111111111!!! 11 1. .1 .1 l. 44 1. 1111111111111!!! 1. 11 .1 .1 1. 45 1. 1111111111111!!! 11 1! .. .. 11 46 1. 1111111111111!!! 1! 1. .1 .. 11 47 1. 1111111111111!!! 1. 1! .1 .. 1! 48 1. 1111111111111!!! 11 1. .. .1 11 49 1. 1111111111111!!! 1. 1! .. .1 1! 50 1. 1111111111111!!! 1. 1. .1 .1 11 5! 1. 1111111111111!!! 1! .1 1! .. 1. 52 1. 1111111111111!!! 11 .1 1. .1 1. 53 1. 1111111111111!!! 1! .. 1! .1 1. S4 1. 1111111111111!!! 1. .1 1! .1 1. 55 1. 1111111111111!!! 11 .1 1. .. 1! 56 1. 1111111111111!!! 1! .. 1! .. 11 57 1. 1111111111111!!! 1. .1 1! .. 1! 58 1. 1111111111111!!! 11 .. 1. .1 1! 59 1o 1111111111111!!! 1. .1 1. .1 11 6O 1. 1111111111111!!! 1. .. 11 .1 11 6! 1. 1111111111111!!! .1 11 11 .. 1. 62 1. 1111111111111!!! .1 1! 1. .1 1. 63 1. 1111111111111!!! .1 1. 11 .1 1. 64 1. 1111111111111111 .. 1! 11 .1 1. 65 1. 1111111111111!!! .1 1! 1. .. 1! 66 l. 1111111111111!!! .1 1. 1! .. 1! 67 1. 1111111111111!!! .. 1! 1! .. 1! 68 1. 1111111111111!!! .1 1. 1. .1 11 69 1. 1111111111111!!! .. 1! 1. .1 1! 7O 1. 1111111111111!!! .. 1. 1! .1 1! 7! 1. 1111111111111!!! 1! .1 .1 1. 1. 72 1. 1111111111111!!! 1! .1 .. 1! 1. 73 1. 1111111111111!!! 1! .. .1 11 1. 74 1. 1111111111111!!! 1. .1 .1 1! 1. 75 1. 1111111111111!!! 1! .1 .. 1. 1! 76 10 1111111111111!!! 11 .. .1 1. 1! 77 1. 1111111111111!!! 1. .1 .1 1. 1! 78 l. 1111111111111!!! 11 .. .. l! 1! 79 1. 1111111111111!!! 1. .1 .. 11 11 80 1. 1111111111111!!! 1. .. .1 1! 11 Table 19 - Continued 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 86 .1 .1 01 .1 01 .1 .1 01 .1 .1 01 .1 11 11 1. 11 11 1. 11 1. 11 1. .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 11 1. 11 11 1. 1! 11 1. 1. 11 1. 11 11 11 1. 1. l. 11 11 11 1. 11 1! 1. 1. 1. 11 11 1. 1. 1. 1. 11 1! 11 11 11 11 1. 1. 1. 1. 11 11 1! 1! 11 11 - "-z YI- 87 determinants, the following distribution of symmetries is obtained: Singlet Triplet Quintet Total A' 57 49 7 113 A" 48 56 8 112 Total 105 105 15 225 The quintet spin structures were not included in the CI wave function. In addition, two singlet and two triplet structures involving single excitations from the OF were included, bringing the total number of structures in the CI basis to 214. In the tables listing these structures, two "core" MO's appear above the o and pF active MO's. 1 F Tables 20, 21 and 22 list the structures of 3A", 1 A', and A" symmetry, respectively. The active orbital set for :CFCOH included nine MO's: * {o o p n o' 0"}. In the CSSCF determinant, the F P]? 1'CO °o first five were doubly occupied. The structure basis was constructed by, first, forming all excitations within the first seven active Mo‘s excluding any quadruple excitations with respect to the SCF determinant and all structures of quintet spin. In addition, a few selected double excitations involving the o' and 0" virtual MO's were added. The following breakdown of the structures obtained (the quintets Table 20. 1 1. 1 1. 2 1o 2 1o 3 1- 3 1. 4 1- 4 1. 5 10 5 1. 6 1. 6 10 7 1. 7 1- 8 1. 8 1o 9 1o 9 1o 10 1. 10 1. 11 1o 11 1o 12 1. 12 1. 13 1. 13 1. 14 1. 14 1. 15 10 15 1- 16 10 16 1o :CHCOF 3A" 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 88 pF 1! 11 l! 11 11 1! 11 11 11 11 1! 11 11 11 O. 01 1. 01 1. 01 1. .1 1. 0F 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 on... an..- 11 11 1! 11 1! 11 1! 11 11 11 11 11 11 11 CI Structure. 1111 1111 111! 11!! 1111 1111 11!! 1111 1111 1111 1111 1111 1111 1111 1111 1111 111! 1111 1111 1111 1111 11!! 1111 111! 1111 11!! 1111 1111 1!!! 11!! 111! 111! 00 “CO C p 11 1! 1. 01 .1 1. 1. .1 .1 1. 11 1! 1! 1! 11 1! 1. .1 1. .1 1. .1 1. .1 11 11 11 11 .1 1. .1 1. 1. .1 11 1! 11 11 11 11 .1 1. .1 1. 11 11 11 !1 1! 11 1. .1 11 11 1. .1 1. 01 1! 1! 1. .1 1. .1 1. .1 11 1. .1 .1 1. 11 1! 11 11 11 1! 11 11 1! 1! 1! 11 11 11 11 1! 11 1! 11 11 Table 20 - Continued 17 17 18 18 19 19 20 2O 2! 21 22 23 23 24 24 25 25 26 26 28 28 29 30 3O 3! 31 32 32 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111!!! 11111111! 1111111!!! 11!!!! 1111111111111!!! 1111111111111!!! 1111111111! 11!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 111111111111! 111111111111! 0.... 11 11 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 89 pF .1 1. .1 1. 1! 11 on... an... up on... 1111 1!!! 11!! 1111 1111 1111 111! 1111 1111 00 1'co 0 1. .1 1! on... no... 1. .1 11 1! 1. .1 .1 1. 11 11 1! 11 1! .-.-. ”n - ”fl 1! 11 11 11 .1 1. 11 11 1. .1 P 11 on..- one... 1. .1 1! 11 1! 1! .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 1! Table 20 - Continued 33 33 34 34 35 35 36 36 37 37 38 38 39 39 a. a. 41 41 42 42 43 43 44 44 45 45 46 46 47 47 a. a. 1. 1. 1. -1. 1. -1. 1. -l. 1. -l. 1. -l. 1. -‘. 1. -1. 1. -!. 1. -1. 1. -1. 1. -1. 1. -l. 1. -l. 1. -1. 1. -1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 111111111111111! 11111111111111! 11111111111111! ”h 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 90 11 11 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1! 1! 11 11 11 11 11 1! 11 1! 1! 1. .1 1. .1 1. .1 13}? OF 1. .1 11 11 11 11 11 11 1! 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1! 11 1! 11 11 11 11 111! 11!! o-g-o p... 0011' 1! 11 .1 1. .1 1. 1. .1 1! 1! !1 11 1! 11 1! 11 11 11 11 11 1. .1 1. .1 1. .1 1! 1! 11 11 11 11 CO 11 11 .1 1. 1. .1 .1 1. .1 1. .1 1. 1. .1 1. .1 1. .1 1. .1 .1 1. .1 1. 1. .1 11 1! 11 1! 1! 11 O 1! 11 11 11 11 1! 1! 1! .1 1. 1. .1 .1 1. .1 1. .1 1. 1. .1 11 1! 11 11 11 1! .1 1. .1 1. 1. .1 917* .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. 11 11 1! 11 11 11 11 1! 11 11 1! 11 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. Table 20 - Continued 49 49 50 50 51 51 52 52 S3 53 54 54 55 55 56 56 57 57 1. -!. 1. -1. 1. -1. 1. 1. -‘. 1. -1. 1. -1. 1. -1. 1. -1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1!!!!111!!!!!!!! !!!!!!!!!!!!!!!! 91 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 11 11 1! 11 1! 1! 11 1! 11 11 11 11 1111 1111 111! 111! 1111 111! 1!!! 111! 1111 111! 1111 1!!! 1!!! 111! 1111 1111 1111 1111 0‘0 7&0 ° .1 1. .1 1. 1. .1 1! 1! .1 1. .1 1. 1. .1 1! 1! 1! 1! 1! 11 .1 1. .1 1. 1. .1 .1 1. 1. .1 .1 1. 1! 1! 11 11 .1 1. 1. .1 .1 1. 11 11 1! 11 11 1! .1 1. 1. .1 .1 1. “i 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. Table 21. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1. 1! 1. 12 1. 13 1. 14 1. 15 1. 16 1. 16 -1. 17 1. 17 -1. 18 1. 18 -1. 19 1. 19 -1. 2O 1. 20 -1. 21 1. 21 -1. :CHCOF 1 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 11! 1111111111111 1111111111111 1111111111111 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 92 1! 11 1! !1 1! 1! 1! 1! 11 11 1. .1 1. .1 .1 1. .1 1. 1. .1 1. .1 11 11 11 11 11 1! 11 11 11 11 1! 11 1! A' CI Structures. 1111 1111 1111 1111 1111 1111 111! 1111 1111 1!!! 1!!! 1111 1111 11!! 1111 1111 111! “o "co 0' 11 11 1! 11 11 11 . 11 1 11 11 11 . .. 1 11 1 11 . 11 1 11 . .. 1 !! . 1! ! O. l ! 1 1 1 1 1 1 1 1 1! 11 1! 11 1! 1! 11 11 1! 11 11 1! 1! 11 1! 1! 1! a, “Lie”: 93 Table 21 - Continued 0 11 o p n* 22 1. 1111111111111!!! 1. 11 1111 11 1! .. 11 .1 22 -1. 1111111111111!!! .1 11 1111 11 11 .. 11 1. 23 1. 1111111111111!!! 1. 11 1111 11 23 -1. 1111111111111!!! .1 11 1111 1! .. .111 ..1.11 3...... fins... 24 1. 1111111111111!!! 1. 11 1111 11 .1 .. 11 11 24 '1. 1111111111111!!! .1 11 111! 11 1. .. 1! 11 25 1. 1111111111111!!! 1. 11 1111 11 .1 11 .. 11 25 '1. 1111111111111!!! .1 11 111! 1! 1. 11 .. 11 26 1. 1111111111111!!! 1. 11 111! 11 11 1! .. .1 26 -1. 1111111111111!!! .1 11 11!! 11 1! 11 .. 1. 27 1. 1111111111111!!! 1. 11 111! 11 1! 1! .1 .. 27 -1. 1111111111111!!! .1 11 1!!! 11 1! 1! 1. .. 28 1. 1111111111111111 .. 11 1111 11 1. 11 .1 1! 28 ~1. 1111111111111!!! .. 11 1!!! 1! .1 11 1. 1! 29 1. 1111111111111111 .. 11 1111 1. 1! .1 11 11 29 -1. 1111111111111111 .. 11 1111 .1 11 1. 11 11 3O 1. 1111111111111111 .. 11 1111 11 11 11 1. .1 30 -1. 1111111111111111 .. 11 1111 1! 11 11 .1 1. 31 1. 1111111111111!!! .. 11 1111 1! 1. 11 11 .1 31 -1. 1111111111111111 .. 1! 1111 11 .1 1! 11 1. 32 1. 1111111111111!!! 1! 1! 1111 .. 1. 11 1! .1 32 -1. 1111111111111!!! 11 1! 1111 .. .1 11 11 1. 33 1. 1111111111111!!! 11 11 1111 11 1. .. 11 .1 33 -1. 1111111111111!!! 11 11 1111 11 .1 .. 1! 1. 3A 1. 1111111111111!!! 1! 11 1111 .. 11 1! 1. .1 34 -1. 1111111111111!!! 11 11 1111 .. 11 1! .1 1. 3S 1. 1111111111111!!! 1! 11 1111 35 -1. 1111111111111!!! 11 11 1111 36 1. 1111111111111!!! 1! 11 1111 11 1. 11 .. .1 36 -1. 1111111111111!!! 1! 11 111! 11 .1 11 .. 1. 37 1. 1111111111111!!! 11 11 1111 11 .. 11 1. .1 31 -1. 1111111111111!!! 1! 11 1111 11 .. 11 .1 1. Table 21 - Continued 38 38 39 39 40 4O 41 4! 42 42 43 43 44 44 45 45 45 45 45 45 46 46 46 46 46 46 47 47 47 47 47 47 48 48 48 48 48 48 1. -l. 1. 1. 1. -1. 1. 1. -l. 1. -1. 2. -1. -1. -1. -1. 2. 2. -1, -1. -1. -1. 2. 2. -1. -1. -1. -1. 2. 2. -l. -I. -1. -1. 2. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 94 11 11 11 1! 11 11 9F OF 1! 11 11 11 11 1! 11 11 1! 1! 11 11 1111 11!! 1111 1!!! 1111 11!! 1111 111! 1111 1111 1111 11!! 1111 1!!! 11!! 1111 1111 111! 1111 1111 1111 111! 1111 111! 111! 1111 1111 1111 11!! 1111 1111 111! 1111 1111 1111 1!!! 1111 11!! 00 “CO or p 11 11 .1 1. 1. .1 1! 11 11 1! 1! 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. .1 .1 1. 1. .1 .1 1. 11 1! 11 1! .1 1. 1. .1 11 11 1. .1 .1 1. 1. .1 ”mono—u..— hon—uh..- .1 .1 1. 1. .1 11 11 1! 11 1! 11 11 11 1. .1 .1 1. 1. .1 1. .1 11 1! 1! 11 .1 1. 11 1! .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 1! 11 11 11 1! 1! 11 11 11 1! 11 .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. 5.1.:- m _— - ”‘17.. fiqu Table 21 - Continued -1. -1. -l. -1. 2. 2. -1. -l. -1. -1. 2. 2. -1. -1. -1, -1. 2. 1. -1. c}. 1. 1. -1. -1. 1. 1. -1. -1. 1. 1. -1. o‘. 1. 1. a!. -1. 1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 95 11 1! 11 11 1! 11 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. .1 .1 11 1! 1! 11 1! 11 11 1. 1. .1 .1 11 11 11 1! 00 "CO 0 1. 1. .1 .1 .1 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 11 11 11 1. 1. .1 .1 1. 1. .1 .1 .1 .1 1. 1. 1. 1. .1 .1 1. .1 .1 1. 1. .1 11 1! 11 11 11 1! .1 1. .1 1. .1 1. .1 .1 1. pong-.— ”flu” .1 .1 1. 1. 1! 11 1! 11 .1 .1 1. 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 .1 1. .1 1. 1. 11 11 11 11 .1 .1 1. 1. 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. 11 11 1! 1! 1! 11 1. .1 1. .1 1. .1 1. .1 11 1! 1! 11 11 11 11 11 .1 1. .1 1. Table 21 - Continued 57 S7 57 57 58 58 58 1. -l. -1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 96 1. 1. .1 .1 1. 1. .1 .1 1!!! 1111 1!!! 1!!! 1111 111! 11!! 1111 Q ...-..-0 0...... O .1 1. 1. uptown .-..-..-..-.o .1 1. .1 O 1. .1 1. .1 .1 1. .1 1. 91* .1 1. .1 1. 1! 11 11 11 11 11 1! 11 1! 11 1! Table 22. 1 1. 1 '1. 2 1. 2 ‘1. 3 1. 3 ‘1. 4 1'. l1 '1. 5 1. 5 '1. 6 1. 6 ’1. 7 1. 7 ‘1. 8 1. 8 '1. 9 1. 9 '1. 10 1. 10 -1. 11 1. 11 ‘1. 12 1. 12 ‘1. 13 1. 13 '1. 111 1. 14 '10 15 1° 15 ‘1. 16 1° 16 -1. l 97 :CHCOF A" CI Structures. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 91? OF 1! 11 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 11 11 1'1 11 1! 1! 11 1! 11 11 1! 1! 1! 1! 11 11 1! 11 11 1! 11 11 11 1! 11 11 1! 11 11 1! 11 11 1111 111! 11!! 111! 1111 1!!! no... —~ on... 111! 111! 111! 1111 11!! 1!!! 1111 1111 - ”0‘ fl” 1!!! 11!! 111! 1!!! 1111 111! 1111 1!!! 11!! 11!! 111! 1!!! 1!!! 111! C’0 1Tco ° 1! 11 .1 1. .1 1. 1! 11 11 11 1. .1 1. .1 11 1! 1. .1 1. .1 1. .1 1! 1! 1! 11 11 1! .1 1. 1! 11 o! 1. .1 1. .1 1. 1! 11 .1 1. .1 1. 1. .1 1. .1 11 11 1! 1! P 1. .1 1! 1! 1! 11 1! 1! 1! 1! 1! 11 1! 1! 1! 11 1! 11 11 1! 1! 11 .1 1. .1 1. .1 1. .1 1. Table 22 - Continued. 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 28 28 29 30 3O 31 31 32 32 1. -l. 1. -1. 1. -1. 1. -1. 1. -‘. 1. -1. 1. -1. 1. -l. 1. -1. 1. 1. -1. 1. -1. 1. -‘. 1. -1. 1. -l. 1. -l. 1! 1 1 1! 1 11 1 1 1! 1 an... 111 11 1 11 111 11 1 11 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 98 11 11 11 11 11 11 .1 1. 11 1! 11 1! 11 11 1! 1! 11 1! 11 11 11 11 11 11 11 1! 1! 11 11 1! 11 11 1! 11 II..- on... 11 11 11 11 11 11 11 11 11 11 1! 11 11 11 11 11 H“ ”H h..- D‘I‘ 1111 111! 1111 11!! .1 1. 1. .1 1. .1 1! 1! 1. .1 .1 1. .1 1. .1 1. 11 11 1! 11 1. .1 1. .1 11 11 1. .1 1. .1 1. .1 11 11 .1 1. .1 1. 11 1! 1. .1 11 11 1! 11 11 1! 11 11 11 1! 1. .1 1. .1 1. .1 1. .1 71* .1 1. .1 1. .1 1. .1 1. 11 1! 11 1! 1! 11 11 11 11 1! 1! 11 11 11 I fi‘fi'd Table 22 - Continued 33 33 34 34 34 34 34 34 35 35 35 35 35 35 36 36 36 36 36 36 37 37 37 37 37 37 38 38 38 38 3' 38 39 39 39 39 39 39 40 4O 4O 4O 4O 4O 1. -1. 2. -1, -1, -1, -1, 2. 2. -1. -1, -1. -1. 2. 2. -1. -1, -1, -1, 2. 2. -1. -1, -1. -1, 2. 2. -1. ’1. -1. -1. 2. 2. -g, -1. -1. -1. 2. 2. -1, -1, -1. -1, 2. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 99 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1! 11 11 11 11 1! 11 1! 1! 11 11 11 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 11 11 !! 11 11 1! 11 11 1! 11 1! 1! 1! 11 11 1! 1! 1! 1! 1! 11 11 11 11 1! 1! 11 1! 1! 11 11 1! 1! 1! 11 1! 11 11 11 1! 1! 0.." “fl - OI.“ 1111 1111 1111 1!!! 1111 111! 1!!! 1111 111! 1111 1111 1111 111! 1111 1111 1111 111! 1111 111! 1!!! 1111 1111 11!! 111! 1111 11!! 1111 111! 1111 1111 1111 1111 1111 1111 111! 1111 1111 1111 1111 1111 1111 1111 1. 1. 1. .1 .1 .1 11 1! 1! 11 11 11 1. .1 .1 1. 1. .1 11 1! .1 1. .1 1. .1 1. 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 p“ O H” 11 1! 1! 11 11 11 1. .1 .1 1. 1. .1 11 1! 11 1! 1! 1. .1 .1 1. 1. .1 11 11 11 1! 11 1! .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 1! 11 11 11 1! 11 1! 11 1! 1! 1! .1 .1 1. .1 1. 1. “Mk .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. 11 11 11 11 11 11 ,1 Table 22 - Continued 4! 4! 4! 41 41 41 42 42 42 42 43 43 43 43 44 44 44 44 45 45 45 45 46 46 46 46 47 47 47 47 48 48 48 48 49 49 49 49 2. -1. -1. -1. -1. 2. 1. -1. -1. 1. 1. -1. -l. 1. 1. -1. -l. 1. 1. -l. -!. 1. 1. -1. -1. 1. 1. -!. -!. 1. 1. -1. -1. 1. 1. -1. -1. 1. 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 1111111111111!!! 100 pF OF 1. 1. 1. .1 .1 .1 1. 1. .1 .1 1. 1. .1 .1 11 11 1! 1! 11 1! 1! 11 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1! 11 1! 11 11 1! 11 11 1! 1! 11 1! 11 1! 1! 11 !1 11 11 1! 11 11 11 1! 11 1! 11 11 1! 11 11 11 11 11 1! 1! 11 11 11!! 111! 1111 1111 111! 1!!! 1!!! 1111 1!!! 1!!! 111! 1111 1111 1111 11!! 1!!! 1111 1!!! 1111 1111 1!!! 1111 1111 1111 1111 1!!! 11!! 1111 1111 1111 1111 1!!! 11!! 1111 1111 1111 111! 111! 0'0 “CO 0' 1. .1 .1 l. 1. .1 .1 .1 1. 1. 1! 1! 11 1! 1. 1. .1 .1 1! 11 1! 11 .1 .1 1. 1. 11 1! 11 1! 11 11 11 1! .1 .1 1. 1. .1 1. .1 1. .1 1. guano-.- up”... o-o-pfi- an”... .1 .1 1. 1. 1. 1. .1 .1 1. .1 1. .1 .1 .1 1. 1. .1 .1 1. 1. 1. .1 1. .1 11 11 11 11 11 11 11 11 11 11 .1 .1 1. 1. 11 1! 11 1! .1 .1 1. 1. 11 11 11 1! 1. .1 1. .1 1. .1 1. .1 11 11 1! 11 P .1 .1 1. .1 1. 1. 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1! 1! 11 1! 1! 11 1! 11 .1 1. .1 1. .1 1. .1 1. 17* 1! 11 11 1! 1! 11 .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 11 11 11 11 1! 1! 101 listed were not included in the CI): Singlet Triplet Quintet Total A' 76 81 16 173 A" 74 88 14 176 Total 150 169 30 349 3 1 1 The structures for the symmetries A", A', and A" are displayed in Tables 23, 24, and 25, respectively. D. Natural Orbitals The natural orbitals (NO's) used in the population analyses and displayed in the electron density contour maps were obtained as the eigenfunctions of the one-particle den- sity matrix for the CI wave function for each state. This procedure was carried out using a program written by the author of this thesis. It is technically inaccurate to call the NO's obtained "the NO's for the molecule" since that description is reserved for the eigenfunctions of the exact one-particle density matrix. However, the NO's con- structed may be called "approximate NO's" or perhaps the NO's "for this approximate wave function". The occupation numbers are the eigenvalues of the one-particle density matrix corresponding to each NO. In a limited CI, the 102 pF OF Trco 0o 1! 11 11 11 11 11 11 1! 11 11 11 11 11 1! 11 1! 11 11 1! 1! 11 11 11 11 1! 11 11 1! 11 11 11 11 11 11 1! 1! 11 11 11 11 1! 11 1! 11 11 11 1! 1. .1 1! 11 1. 11 1! 1! 1! 1! 11 .1 1. 1. .1 .1 1. .1 1. .1 1. 1. .1 11 11 1. .1 11 Table 23. :CFCOH 3A" CI Structures. 1 1. 1111111111111111111! 1 1. 11111111111111111111 2 1. 11111111111111111111 2 l. 11111111111111111111 3 1. 11111111111111111111 3 1. 11111111111111111111 4 l. 11111111111111111111 4 1. 11111111111111111111 S 1. 11111111111111111111 S -1. 11111111111111111111 6 1. 11111111111111111111 6 1. 11111111111111111111 7 1. 11111111111111111111 7 1. 11111111111111111111 8 1. 11111111111111111111 8 1. 11111111111111111111 9 1. 11111111111111111111 9 1. 11111111111111111111 10 1. 1111111111111111111! 10 1. 11111111111111111111 1! 1. 11111111111111111111 1! -1. 11111111111111111111 12 1. 11111111111111111111 12 ~1. 1111111111111111111! 13 l. 11111111111111111111 13 -l. 11111111111111111111 la 1. 11111111111111111111 14 -1. 11111111111111111111 15 1. 11111111111111111111 15 -1. 11111111111111111111 11 .1 11 11 11 .1 1. 11 11 11 11 11 1! .1 1. 11 11 11 11 11 11 1. .1 11 11 11 11 1. .1 1. .1 O .1 1. .1 1. 1. .1 .1 pap. n.— .1 1. .1 1. 1. .1 1. .1 1. .1 p n* o' 0" 1. .l 1. .1 1! 11 1. .1 11 11 1. .1 .1 1. .1 1. .1 1. .1 1. .1 1. 1. .1 1. .1 1! .1 1. .1 1. .1 1. 103 Table 23 - Continued pF OFTTCO 00 o p 1r* 0' 16 l. 111111111111111111111.111.1111.1.1. 16 -1. 11111111111111111111.111.111111. 1. . 17 1. 11111111111111111111 1. 1. 11 1! 11.1.1. 17 -1. 1111111111111111111!.1.1111!111. 1. . 18 1. 11111111111111111111111. 1111.11. .1 . 18 -1. 1111111111111111111!11.111111. .11. . 19 1. 111111111111111111111.11111. .111.1. 19 -1. 11111111111111111111.11111.11.111. . 20 1. 11111111111111111111111.1.11.111.1. 20 -1. 1111111111111111111111.1.!!!1.11!. . 2! 1. 111111111111111111111 1. .1 . 21-1. 11111111111111111111! 22 1. 1111111111111111111!111.11.!!! 1. .1 . 22 -1. 1111111111111111111!11.1111. 11.11. . 23 1. 111111111111111111111.1111.1!. 11.1. 23 '1. 11111111111111111111.111111. .1111. . 24 1. 1!!!!111111111111111111.1. .11111.1. 24 -1. 1111111111111111111111.1.11.1111!. . 25 1. 111111111111111111111111.11. 111. .1 . 25 -1. 1111111111111111111111111. .111 .11. O 1. .1. 26 1. 111111111111111111111. 11.11!!! 11011. . 26 '1. 11111111111111111111.1111.11 27 1. 111111111111111111111! 1. .1111. 11.1. 27 '1. 1111111111111111111111.11. 11.1111. . 11.1. 28 1. 11111111111111111111111. .11.11 11111. . 28 -1. 1111111111111111111111.11. .1 29 1. 111111111111111111111. 1. .1111111.1. 29 *1. 11111111111111111111.!.11. 1111111. . 3O 1. 1111111111111111111111.111111. 11.. . 30 1. 11111111111111111111 11 1. 1! 11.! 11.. . 104 Table 23 - Continued 31 31 32 32 33 33 34 34 35 35 36 36 37 37' 38 38 39 39 4O 4O 41 41 42 42 43 43 44 44 45 45 1. 1. 1. .x. -1. 1. -1. 1. -1. 1. 9‘. 1. -1. 1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 1. -1. 1. -l. 1. -1. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 91? OF "co 00 O 11 11 11 11 1. .1 11 11 11 11 1. .1 .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 1. .1 .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 11 11 1. .1 11 11 1. .1 11 11 1. .1 11 11 11 11 11 11 11 11 11 11 1. .1 1. .1 1. .1 11 11 1. .1 11 11 1. .1 11 11 11 11 11 11 1. .1 11 11 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 1. .1 11 11 1. .1 11 11 1. .1 11 11 11 11 11 11 11 11 11 11 1. .1 1. .1 1. .1 11 11 poo-o “on. 1. .1 11 11 11 11 1. .1 1. .1 11 11 no... pay-n .1 1. pfl* .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 105 Table 23 - Continued 46 46 47 47 48 48 49 49 SO 50 51 51 52 52 53 S3 S4 54 SS 55 56 SC 57 57 58 58 S9 S9 60 60 1. -1. 1. -1. 1. -1. 1. 1. 1. -1. 1. -1. 1. -1. 1. 1. 1. 1. 1. -1. 1. o!. 1. -1. 1. 1. 1. 1. 1. 1. 1111111111 1111111111 1111111111 1111111111 cunt-o 111111111 111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 1111111111111111111 1111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 P 11 11 1. .1 11 11 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 11 11 1. .1 .1 1. .1 1. .1 1. 1. .1 11 11 1. on... 0...... 1. .1 1. .1 1. .1 .1 1. .1 1. .1 1. .1 1. .1 1. 1. .1 1. .1 1. .1 .1 1. .1 1. .1 1. .1 1. 11 11 1. .1 1. .1 1. .1 F OF Trco C’0 11 11 .1 1. .1 1. 1. .1 11 11 1. .1 11 11 1. .1 .1 1. 1. .1 1. .1 11 11 11 11 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 1. .1 106 Table 23 — Continued * I O'FTTCOOO a pn 0 o 11111.1. .111.. o. 11 11 .1 .1 1. 11 .. .. 61 1. 11111111111111111111 . 61 *1. 11111111111111111111 1 62 1. 11111111111111111111 .1 1. 1. 11 11 .1 11 .. .. 62 '1. 11111111111111111111 1. .1 .1 11 11 1. 11 .. .. 63 1. 11111111111111111111 11 11 11 .1 .. 11 1. .. .. 63 1. 11111111111111111111 11 11 11 1. .. 11 .1 .. .. 64 1. 11111111111111111111 11 11 11 .. .1 11 1. .. .. 64 1. 11111111111111111111 11 11 11 .. 1. 11 .1 .. .. 65 1. 11111111111111111111 11 11 11 .1 .. 1. 11 .. .. 65 1. 11111111111111111111 11 11 11 1. .. .1 11 .. .. 66 1. 11111111111111111111 11 11 11 .. .1 1. 11 .. .. 66 1. 11111111111111111111 11 11 11 .. 1. .1 11 .. .. 67 1. 11111111111111111111 11 .. 11 11 .1 11 1. .. .. 67 1. 11111111111111111111 11 .. 11 11 1. 11 .1 .. .. 68 1. 11111111111111111111 11 .. 11 11 .1 1. 11 .. .. 68 1. 11111111111111111111 11 .. 11 11 1. .1 11 .. .. 69 1. 11111111111111111111 .1 11 11 11 .. 11 1. .. .. 69 1. 11111111111111111111 1. 11 11 11 .. 11 .1 .. .. 7O 1. 11111111111111111111 .. 11 11 11 .1 11 1. .. .. 7O 1. 11111111111111111111 .. 11 11 11 1. 11 .1 .. .. 71 1. 11111111111111111111 .1 11 11 1 .. 1. 11 .. .. 71 1. 11111111111111111111 1. 11 11 1 .. .1 11 72 1. 11111111111111111111 .. 11 11 11 1. .1 11 .. .. 73 1. 111111111111111111111111.. .111111. .. .. 73 1. 11111111111111111111 11 11 .. 1. 11 11 .1 .. .. 74 1. 11111111111111111111 11 11 .. .1 11 1. 11 .. .. 74 1. 11111111111111111111 11 11 .. 1. 11 .1 11 .. .. 75 1. 11111111111111111111 11 .. 11 .1 11 11 1. .. .. 75 1. 11111111111111111111 11 .. 11 1. 11 11 .1 .. .. 107 Table 23 - Continued 91? 0F Trco 0‘0 76 1. 11111111111111111111 11 76 1. 11111111111111111111 11 77 1. 11111111111111111111 .1 77 1. 11111111111111111111 1. 78 1. 11111111111111111111 .. 78 1. 11111111111111111111 .. 79 1. 11111111111111111111 .1 79 1. 11111111111111111111 1. 80 1. 11111111111111111111 .. 80 1. 11111111111111111111 .. 81 1. 11111111111111111111 .1 81 1. 11111111111111111111 1. 82 1. 11111111111111111111 .1 82 1. 11111111111111111111 1. 83 1. 11111111111111111111 .1 83 1. 11111111111111111111 1. 84 1. 11111111111111111111 .1 84 1. 11111111111111111111 1. 85 1. 11111111111111111111 11 85 1. 11111111111111111111 11 86 1. 11111111111111111111 11 86 1. 11111111111111111111 11 87 1. 1 11 11111 111 1 87 1. 1 11 11111 111 1 ~— an... 1 1 11 111 1 1 1 11 111 1 88 1. 11111111111111111111 11 88 1. 11111111111111111111 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 .1 1. 11 11 11 11 11 11 11 pun. poo-o p” u..- 1. .1 1. .1 11 11 1. .1 1. .1 1. .1 11 11 11 11 1. .1 11 11 1. .1 11 11 Table 24. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 1O 1. 11 1. 12 1. 12 ’1. 13 1. 13 -1. 14 1. 14 -1. 15 1. 15 '1. 16 1. 16 ‘1. 17 1. 17 '1. 18 1. 18 -1. 19 1. 19 ‘1. 108 :CFCOH lA' 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 111111111111111111 111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 1 1 1 1 11 11 1 1 1 1 11 11 CI Structures. pF 1Tco 0o 11 11 11 11 11 11 11 11 1. 1. .1 11 11 11 11 11 11 11 11 11 11 11 1. .1 11 11 1. .1 11 11 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 o 11 11 11 11 11 11 11 11 1 1 1 11 11 .1 1 1 1. 1 1. 11 11 11 11 11 .1 1. .1 1. .1 1. .1 1. 109 Table 24 - Continued 20 1. 11111111111111111111 11 20 -1. 11111111111111111111 11 21 1. 11111111111111111111 1. 21 -1. 11111111111111111111 .1 22 1. 11111111111111111111 11 22 -1. 11111111111111111111 11 23 1. 11111111111111111111 11 23 -1. 11111111111111111111 11 24 1. 11111111111111111111 11 24 -1. 11111111111111111111 11 25 1. 11111111111111111111 11 25 -1. 11111111111111111111 11 26 1. 11111111111111111111 11 26 -1. 11111111111111111111 11 27 1. 11111111111111111111 11 27 -1. 11111111111111111111 11 28 1. 11111111111111111111 11 28 -1. 11111111111111111111 11 29 1. 11111111111111111111 11 29 -1. 11111111111111111111 11 3O 1. 11111111111111111111 .. 30 -1. 11111111111111111111 .. 31 1. 11111111111111111111 .. 31 -1. 11111111111111111111 .. 32 1. 11111111111111111111 .. 32 -1. 11111111111111111111 .. 33 1. 11111111111111111111 11 33 -1. 11111111111111111111 11 34 1. 11111111111111111111 1. 34 ’1. 11111111111111111111 .1 11 11 11 11 1. .1 1. .1 11 11 1. .1 11 11 11 11 1. .1 11 11 11 11 11 11 1. .1 11 11 1. .1 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 out... w... 11 11 1. .1 .1 1. .1 1. 11 11 11 11 1. .1 11 11 O! O. O. l. O. O. .1 .. .. l. O. O. .1.. O. l. O. .0 .1 .. o. 1. .. .. .1.. O. ‘0 O. O. .1.. .0 l. O. O. .1.. .0 l. O. O. .1.. O. l. O. O. .1.. O. 1. .. .. .1.. O. 1. .. o. 11.. .. 11.. .. pan. hot- I O I O 110 Table 24 - Continued 35 35 36 36 37 37 38 38 39 39 4O 4O 41 41 42 42 43 43 44 44 45 45 45 45 45 45 46 46 46 46 46 46 47 47 47 47 47 47 1. -1. 1. -1. 1. -1. 1. -1. 1. -1, 1. -1. 1. -1. 1. -1. 1. -1. 1. -1. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 OI‘UI‘Q hob-'11 1. .1 11 11 p...— gnu-o 11 11 11 11 11 11 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 9? "co 11 11 1. .1 11 11 11 11 1. .1 1. .1 1. .1 1. .1 1. .1 11 11 .1 1. 1. .1 1. .1 11 11 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 .1 1. .1 1. .1 1. 11 11 11 11 11 11 11 11 .1 1. .1 1. .1 1. ....-..-..-..-n.-. punch—“p .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 11 11 11 11 11 11 11 11 11 11 .1 .1 1. .1 1. 1. .u..-. p...- .1 .1 1. .1 1. 1. .1 .1 1. .1 1. Ody-#0....— wflflnpp 111 Table 24 - Continued 48 48 48 48 48 48 49 49 49 49 49 49 50 50 50 50 50 50 51 51 51 51 51 51 52 52 52 52 52 52 53 53 53 53 53 53 54 54 54 54 54 54 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1. ‘1. -1, -1. 2. 2. -1, -1, -1, -1, 2. 2. ’1. -1, -1. -1, 2. 2. -1, -1, -1, -1, 2. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1. 1. 1. .1 .1 .1 1. .1 .1 1. 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 upon-nun... ”flu-out...“ 11 11 11 11 11 11 F p]? "co 00 .1 1. .1 1. .1 1. 11 11 11 11 11 11 11 11 11 11 11 11 .1 1. .1 1. .1 1. 11 11 11 11 11 11 .1 1. .1 1. .1 1. 1. .1 .1 1. 1. .1 O 11 11 11 11 11 11 1. .1 .1 1. 1. .1 .1 1. .1 1. .1 1. 11 11 11 11 11 11 .1 1. .1 1. .1 Haunt-Inpu- hogan—op..- .1 1. .1 1. .1 1. P .1 .1 1. .1 1. 1. .1 1. .1 1. .1 1. 112 Table 24 - Continued 55 55 SS 55 55 55 56 S6 56 56 56 56 57 S7 57 57 57 57 58 58 58 58 58 58 S9 59 59 59 S9 S9 60 60 60 6O 60 60 61 61 61 61 2. -1, -1, -1, -1, 2. 2. -l, -l, '1. -l, 2. 2. -1, ‘1. -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -l, -l, -1, -l. 2. 1. 1. -l, -l, 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 tight-thin penning-no.0... 1. 1. 1. .1 .1 .1 1. 1. .1 .1 PF 1Tco 00 1. .1 .1 1. 1. .1 11 11 11 11 11 11 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1. 1. 1. .1 .1 .1 1. .1 .1 1. 1. .1 11 11 11 11 <5 P .1 .1 1. .1 .1 1. 1. .1 .1 1. 1. 1. 1 .1 1 1. 1 .1 1 1. 11 .1 11 1. .1 .1 1. .1 .‘ 1. 1. .1 .1 1. 1. 1. .1 11 1. 11 .1 11 1. 11 .1 11 1. 11 1. .1 .1 1. .1 .1 1. 1. 1. .1 .1 1. 11 .1 11 1. 11 .1 11 1. 11 .1 11 1. 1. 11 .1 11 1. 11 .1 11 71* 11 11 11 11 11 11 .1 .1 1. .1 1. 1. 11 11 11 11 11 11 .1 .1 1. .1 1. 1. .1 .1 1. .1 1. hog-Op... ..~.- .1 1. .l 1. 113 Table 24 - Continued 62 62 62 62 63 63 63 63 64 64 64 64 65 65 65 65 66 66 66 66 67 67 67 67 68 68 68 68 69 69 69 69 70 7O 7O 7O 1. 1. col. -1, 1. 1. -1. -1. 1. 1. -1, -1, 1. 1. -1, -1. 1. 1. -1. -1, 1. 1. -1. -1. 1. 1. -1. -1, 1. 1. -1, -1, 1. 1. -1. -l, 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 0' 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 11 11 11 11 11 .1 .1 1. 1. .1 1. .1 .1 1. 1. 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 “pg...— 1“ pF‘Tcoo’o 0 p Q. 114 Table 24 - Continued 71 71 71 71 72 72 72 72 73 73 73 73 74 74 74 74 75 75 75 75 76 76 76 76 1. 1. -1. -l, 1. 1. -1, -l, 1. 1. -1. -1. 1. 1. -1, -1. 1. 1. -1, -1, 1. 1. -l, -1. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1. 1. .1 .1 PF "co 0‘0 1. 1. .1 .1 1. 1. .1 .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 .1 1. 1. 1. .1 .1 1. 1. .1 .1 11 11 11 11 11 11 11 11 .1 .1 1. 1. 11 11 11 11 .1 .1 1. 1. .1 .1 1. 1. 1. 1. .1 .1 .1 .1 1. 1. <5 P 1. .1 1. .1 11 11 11 11 1. .1 1. .1 1. .1 1. .1 .1 1. .1 1. 1. .1 1. .1 .1 1. .1 -- you...” 1. .1 1. .1 1. .1 1. .1 Table 25. 1 1. 1 ’1. 2 1. 2 '1. 3 1. 3 ‘1. 4 1. 4 '1. 5 1. 5 '1. 6 1. 6 ’1. 7 1. 7 -1. 8 1. 8 '1. 9 1. 9 '1. 10 1. 10 '1. 11 1. 11 ‘1. 12 1. 12 ’1. 13 1. 13 '1. 14 1. 14 -1. 15 1. 15 '1. 115 1 :CFCOH A" CI Structures. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 OFPFTTCO 1111 11 11 11 1. .1 11 11 11 11 1. .1 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 1. .1 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 .1 1. O 11 11 1. .1 11 11 11 11 1. .1 11 11 11 11 1. .1 11 11 .1 1. O 1. .1 11 11 11 11 .1 1. .1 1. 11 11 11 11 1. .1 11 11 P .1 1. .1 1. .1 1. 11 11 11 11 11 11 11 11 .1 1. .1 1. .1 1. .1 1. .1 1. as 116 Table 25 - Continued 16 16 17 17 18 18 19 19 2O 20 21 21 22 22 23 23 24 24 25 25 26 26 28 28 30 30 1. -l, 1. 1. -1. 1. 1. -1. 1. -1. 1. -1. 1. -1. 1. 1. -1. 1. -1, 1. o‘. 1. -1. 1. -1. 1. -1, 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11 11 1. .1 1. .1 11 11 11 11 1. .1 11 11 11 11 1. .1 a... no... 11 9F 11 11 11 11 11 11 .1 1. 11 11 11 11 11 11 1. .1 11 11 11’ 3...... cup—- 11 11 11 11 11 11 11 11 11 11 1. .1 11 11 11 11 11 11 1. .1 11 11 1. .1 11 11 11 11 1. .1 11 11 1. .1 11 11 .1 1. .1 1. G 1. .1 1. .1 11 11 11 11 1. .1 11 11 .1 1. .1 1. P 11 11 11 11 11 11 11 11 .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 11 11 11 11 11 11 11 11 117 Table 25 - Continued 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 1. -1. 1. -1. 1. -1, 1. -1. 1. -1, 1. -l, 1. -1. 1. -1, 1. -1. 1. -l, 1. -1, 1. 1. -1, 1. -1, 1. -1, 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 111111 11111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 1. .1 11 11 1. .1 1. .1 11 11 11 11 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 c...- an... OI..— an... 1. .1 11 11 .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. o...— pun. gun... ”on 118 Table 25 - Continued 46 46 47 47 47 47 47 47 48 48 48 48 48 48 49 49 49 49 49 49 50 50 50 50 50 50 51 51 51 51 51 51 52 52 52 52 52 52 1. -1, 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 1. 1. 1. .1 .1 .1 OF 91‘ N00 11 11 11 11 11 11 11 11 1. .1 .1 1. 1. .1 11 11 11 11 11 11 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 11 11 1. .1 .1 1. 1. .1 .1 1. .1 1. .1 1. 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 .1 1. .1 1. .1 1. 11 11 11 11 11 11 1. .1 .1 1. 1. .1 .1 1. .1 1. .1 1. .1 1. .1 1. .1 1. 11 11 11 11 11 11 gnawing-j... pong-noun..." .1 1. .1 1. .1 1. 11 11 11 11 11 11 .1 .1 1. .1 1. 1. .1 .1 1. .1 1. 1. 119 Table 25 - Continued 53 53 53 53 53 53 54 54 S4 54 54 54 55 55 55 55 55 55 S6 56 56 56 56 56 57 57 57 S7 57 57 58 58 58 58 58 58 S9 59 59 59 59 59 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -1, -1, -1, 2. 2. -1, -l, -1, -1, 2. 2. -1, -1, -1, -1, 2. 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 1. .1 .1 1. 1. .1 1. .1 .1 1. 1. .1 1T 8 ...-~ .-..-..-o. 0 O 1. 1. 1. .1 .1 .1 11 11 11 11 11 11 1. .1 .1 1. 1. Hflpno—t‘ O‘I‘flflo—Ofl 11 11 11 11 11 11 .1 1. .1 1. .1 1. U 11 11 11 11 11 11 1. .1 .1 10 1. .1 1. .1 .1 1. 1. .1 11 11 11 11 11 11 1. .1 .1 1. 1. .1 11 11 11 11 11 11 11 11 11 11 11 11 O 1. .1 .1 1. 1. .1 pug-Huck. pomp-non...- .1 1. .1 1. .1 1. 11 11 11 11 11 11 .1 1. .1 1. .1 1. 11 11 11 11 11 11 hint-unti— Human...— -O~OO 000-...‘0-3 -—.-. ‘gvanz TableZS 60 2. 60 '1. 60 ‘1. 60 '1. 60 ‘1. 60 2. 61 1. 61 1. 61 '1. 61 '1. 62 1. 62 1. 62 '1. 62 '1. 63 1. 63 1. 63 ‘1. 63 ‘1. 64 1. 64 1. 6‘1 '1. 64 ‘1. 65 1. 65 1. 65 '1. 65 '1. 66 1. 66 1. 66 ’1. 66 ’1. 67 1. 67 1. 67 "1. 67 “1. 68 1. 68 1. 68 '1. 68 ‘1. 120 - Continued 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 OF 1. 1. 1. .1 .1 .1 Only-oh... o—pQ-sg-n -- ~fl- 11 11 11 11 11 11 11 11 11 11 11 11 PFTT 1. .1 .1 1. 1. .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 11 11 11 11 11 11 11 11 CO .1 1. 1. 1. 1. .1 .1 1. 1. .1 .1 1. .1 1. .1 11 11 11 11 0.....-— gnu-own... 11 11 11 11 .1 1. .1 1. .1 1. .1 1. A h -. .- I Q t V .1 h‘ ‘ . .1 ,, . 121 Table 25 - Continued 69 69 69 69 7O 7O 7O 70 71 71 71 71 72 72 72 72 73 73 73 73 74 74 74 74 1. 1. -1, '1. 1. 1. -1, -1, 1. 1. -l, -1, 1. 1. -l, -1, 1. 1. -l, -1. 1. 1. -1, -l, 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 OF 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 1. 1. .1 .1 gun—npfl uwflfl 0.9-ah.” 11 11 11 11 .1 .1 1. 1. 11 11 11 11 11 11 11 11 11 11 11 11 1. .1 1. .1 flung-ou— boo—pot— 1. poo—pp. flint—OI. 1. .1 1. .1 .1 1. .1 1. 1. .1 1. .1 gnu-on...- outfit—.— .1 1. .1 1. n*<fl .1 1. .1 1. .1 1. .1 1. 11 11 11 11 .1 1. .1 1. .1 1. .1 1. 11 11 11 11 122 NO's and their eigenvalues contain a large amount of concise information about the CI wave function and are of value as a diagnostic device as well as a source of physical informa- tion about the electronic structure. APPENDIX I I A. Basis Set The basis chosen for the lithium carbenes was of roughly double zeta quality and consisted of a set of contracted nuclear-centered cartesian gaussian-type functions. Each '37“ function in the basis has the form ni X1: 2 dim 9‘aim’r“ m=1 ‘VJ where gnaim;r) is a primitive normalized cartesian gaussian having an exponent aim' and where dim is the contraction co- efficient of that primitive in the basis function xi. The exponents and contraction coefficients defining each basis function in the set used are given in Table 26. Except for the 4-component p function on Li, taken from Williams,27 the prfinitives were the revised set of Huzinaga36 contracted according to the method of Dunning.37 Specifically, for carbon a (985p) set was contracted to a [4s/2p] set; for lithium, an (85) set of primitives was contracted to [33], and a (43) set for hydrogen to [23]. B. The Restricted Open Shell SCF (ROSSCF) The SCF results for the lithium carbenes were obtained using the ROSSCF routine (PA41) of the POLYATOM package of programs. 123 Table 26 . 124 Basis Set for LiCH and Li C Calculations. 2 Atom s-functions p-functions a. d. a. d. 1 1 l 1 1354.159 .00084731232 1.5343 .032763 203.30116 .0065139116 .27499 .139005 46.323493 .032726414 .073618 .500402 13.133489 .11848646 .024026 .508552 Li 4.2477542 .29643380 1.4872743 .44723288 .54097490 1.0 .047841890 1.0 4240.3098 .0012152226 18.099144 .014760512 637.77827 .0092731586 3.9769145 .091649350 146.74534 .045279235 1.1450768 .30392714 42.531428 .15492334 .36188831 .50711806 14.184804 .35808349 C 2.0072531 .14932812 .11460548 1.0 5.1756943 1.0 .49677422 1.0 .15348718 1.0 19.2406 .032828 2.8992 .231208 H .6534 .817238 .1776 1.0 125 For a closed shell wave function (all electrons spin- paired) the set of one-particle equations are mixed by a matrix of LaGrangian multipliers. A unitary transformation on the occupied functions can be found which does not alter the physical meaning of the total wave function but effects a diagonalization of the multiplier matrix. The result is a set of pseudo-eigenvalue equations for the individual MO's. In the open shell problem, attempts to apply the same technique met with difficulties in eliminating the off- diagonal multipliers connecting the closed and open shell functions, which cannot be mixed in a unitary transformation without altering the total wave function. No exact method of constructing open shell Hartree-Fock-Roothaan wave functions existed until Roothaan38 found a formulation of the problem requiring no approximations. It is Roothaan's method which is the basis for the program employed here. An Open shell wave function based on the independent particle approximation usually cannot be written as a single Slater determinant, and in the ROSSCF method, an expression representing the energy expectation value of the multi-determinantal wave function is variationally minimized with respect to the coefficients, Cij' which relate the MO's to the fixed set of basis functions. This energy expression, in the Roothaan formulation, has the form E = 2 X Hk + 1: (2Jk2-Kkz) + f[2 Z Hm k k1 m + £2: (2a Jmn-men) + 2 Z (2 mn km ka-Kkm)]’ 126 where the indices k and 2 run over the set of closed MO's, m and n run only over the open shell MO's, and f, a, and b are parameters which are chosen to make the expression identical to the energy expectation value of the multi- determinantal wave function of interest. It should be noted that a set of f, a, and b cannot be found for all multi-determinantal functions. As an example, consider the LiCH 32- ground state func- E tion. In terms of Slater determinants, a ¢(32-) =‘JL {I1016202O303c4OZCNXFZ /2 + I1016202o3o3o4046?xnzl} where I...| represents a Slater determinant of one—particle spin functions, the bar over a spatial function indicates a 8 spin function, no bar means a spin. Here the spatial MO's {10,20,3c,4o}are the set of closed orbitals, and the degenerate pair {flx,flz} are the partially filled open set (only 2 of the 4 possible spin-orbitals are occupied). The expectation value of the electronic energy for this function, written in terms of one-electron integrals, Hi, and coulomb, Jij’ and exchange Kij' integrals is: 127 e1 _ 1'11 I N -hfl :13 H. + 54 :3 L1 1... I N + hfl :F + L1 : Q X z m + Z (J -K. +J -K ) i lrflx lrflx Iflz lrflz irj = {10120130140} m = {lefl21- Roothaan's energy expression will be identical if f = 1/2, a = 1, and b = 2. C. The Single Excitation CI (SECI) To obtain variational wave functions for the excited states, which again are open-shell functions, without the ROSSCF calculation to optimize the Mo‘s, a multideterminantal trial function was explicitly constructed, and the expecta- tion value of the electronic Hamiltonian over this function was minimized variationally with respect to the weighting coefficients of the determinants. In actuality, the trial function was constructed of structures, which are linear combinations of determinants and have a definite spatial and spin symmetry: 128 where the Dj are determinants and the aij are fixed in rela- tive size for a particular choice of spatial and spin sym- metry. The two-determinant function 1(3X-) given above is an example of a structure, with a1 = 1, a2 = 1. . . + The structures for the LiCH linear states 1A and 12 1 1 are listed in Tables 27 and 28. The A', A" structures for bent LiCH appear in Tables 29 and 30. Tables 31 and 32 list the Li C structures of 1A and 12+ symmetry. The 2 9 9 format of each determinant and structure is as given in Appendix I. Table 27. H... (0101010 00000.1 129 LiCH 1A SECI Structures Cine x1 1. 11111111................ 11 '1. 11111111................ .. 1. 111111110............... 1. ‘1. 11111111................ .1 -1. 11111111................ .. l. 11111111000000.000000000 O. 1. 11111111................ 1. -1. 11111111................ .1 -1. 111111“OOOOOOOOOOOOOOOO O. 1. 11111111................ .. O. 11.. .. 1. .1 .. .11. .1.. .0 1. O. .0 O. l. O. .1 1. 130 Table 28. LiCH 12+ SECI Structures. a core 1 1. 11111111................ 1 1. 11111111................ 2 1. 11111111................ 2 ’1. 11111111................ 2 1. 11111111................ 2 '1. 11111111................ 3 1. 11111111................ 3 ‘1. 11111111................ 3 1. 11111111................ 3 '1. 11111111....o........... 1. .1 1. .1 1. .1 Thhk329. U‘U" kh 0U 00 10 10 11 11 12 12 13 13 14 14 l. l. 1. -l. 1. -1. l. -1. 1. -1. l. -1. l. -1. 1. -1. l. ‘1. 1. -1. l. -l. l. -1. l. -1. Lflfiil CONE 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 111111 1 11 11111 11 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 A'EECI l. 01 1. 01 l. 01 l. 01 l. .1 l. 01 l. .1 I. .1 I. 01 1. .1 Stnxnmmes. 131 5‘10 ailal'za 13 514 315a" ‘3'"; 11 l. .1 l. 01 01 1. a3 Table 30 . 12 12 13 13 l. -1. l. -1. l. -1. 1. -1. 1. -1. l. -1. 1. -1. 1. -1. 1. -1. 1. -1. l. -1. l. -1. l. -‘. LiCH 1 (DRE 111111 111111 on... 1 1 11 11 on... 11111 11111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 1111111 1 1 1111111 11111111 11111111 1111 1111 11111111 11111111 11111111 11111111 A" SKI l. 01 1. 01 l. 01 SW5 . 132 I I I I I I I 1' a9 a10 an 5‘12 ‘3113 8‘14 315 a1 0. .1 1. 01 I. .1 1. 01 l. 01 1. .1 1. 01 l. 01 l. .1 1. .1 1. .1 1. a2 a3 .1.. l. .. .. .l .. l. Table 31 . Ono-n 00001» [0101010 bbbb 1. -1. 1. -1. -1, 1. 1. -1. -1. 1. 1. -1. -1. 1. 1 133 Li C Ag SEBI Structures. 2 CORE 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 11 l. 01 l. .1 1. 01 lxglxu .1 1. 21:9 qu 12g 11 1. .1 1. .l 1. .1 Table 32 . no... 0000110 10101010 bbbb 1. 1. 1. -1. 1. -1. 1. -1. 1. 1. -1. l. -1. . l L12C CORE 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 134 1:; SECI Structures 11 1. .1 1. .1 1. .1 APPENDIX III To construct the aijkl in Equation III.B.2, given s(?1,?2) in the form of Equation III.B.1, it is sufficient for illustration to evaluate one term in the sum over the pairs of determinants: N N . ufv First, however, it is necessary to make some preliminary explanatory remarks essential to clarity. The determinants are assumed to be of the form DK = A(¢l(1)¢2(2)¢3(3)...¢N(N)). where A is the N-particle anti-symmetrizer, and the ¢i are spin-orbitals forming an orthonormal set. Although each pair of spin-orbitals, ¢i and ¢j' are distinct for i¢j, their space parts, xi and Xj' may be identical. Also it is convenient to rewrite the spin part of the two particle operator as follows: A A A ‘ — A 3s 3 -s -s =25 s — uz vz u v uz vz 2 A 1A A A A — s 5 +5 5 ( u+ v- u- v+ ). The contribution due to a pair of determinants over a two-particle operator is given by the well-known Slater- ‘Condon rules, by which three cases can be distinguished. 135 136 Defining 0(u,v)E[Zs s u+sv- 1A A A —- .- — .- uz v2. 5(8 +8u-Sv+)]5(ru.r1)5(rv-r2)' the three cases are as follows: a) DK 5 DL: 2 U>V = 22 X<¢k1u1¢21v1IO; k>£ in which R and 2 run over the sets of occupied spin-orbitals in each determinant, and fiuv is the transposition operator for the particles u and v. It is through this case that every determinant has the potential to contribute. b) In place of ¢a in DK' ¢é appears in D (l dissonant L orbital, 1DO): 2 u>v = 2 Z <¢k. kfa c) ¢ (ZDO): and ¢b in D are replaced by ¢é and ¢£ in D a K L 2 u>v = 2<¢a¢b(v>|8(u.v)(i-Euv)|¢5(u)¢g(v>>. 137 Any other situation yields a result of zero. Since each case reduces to a sum of integrals of or- bital products over 6(u,v)(l-§u ), it is useful to evaluate V a general integral of that type. For the integral <¢a‘“)¢b“” |6>. 1“ two possibilities arise; the four spin-orbitals involved have the same spin or both a and 8 spin are involved. Con— sidering the first possibility (like spins): J J <¢a(u)¢b(v)l(2§uz§vz- 1f§u+§v-+§u-§v+"a(?fi‘f1’ x6 (Ev-E2) (i-EW) |¢p(u) ¢q(v)> =<¢a(u) ¢b(v) |[2 1%1- 111(0’15(?u"f1)5 ('fv'i‘z’ (i-fiuv) |¢p1u1¢q1v1> = %{xa (E1) Xb (Y2)xp ('51) xq 52) -xa (3'51) xb (f2) xq 51’ xp “‘2’ } ° For mixed spins, i.e., one a and one B in each orbital pro- duct, the result is: d. B A A 1" A A A _ _ <¢a(u%3¢b(v)a|[zsuzsvz-‘§(Su+Sv-+su-sv+)]6(ru-rl) x5 (Ev-3E2) (’i-fiuv) | ¢p1u1g¢q (v)§> = <¢a(u)g¢b(V)§|5 (Eu-E1161'Ev-‘r'21{2(- ‘1'"1‘i’uv)l¢p‘“’g¢q(">5> 138 2(1 Puv"¢p(u)a¢q(V>e>} = - %Xav = Z Z xka(El)x£a(E2)[1-P121Xka(?l)xia(E2) k >1 (1 C1 + Z Z XRBEINILBGZ)[1'P123XkBGI’X1352’ kB>£B ka>£B - Z Z XkB (37-1))(20' (E2[1-P12]xk8 (171))(10' (E2) kB>2a With respect to the index running over the spin-orbitals in the orbital product of DK’ Rd is the subset labelling the , and 2 . a spin-orbitals and similarly for 2a, kB 8 Case b): 2 u>v 139 (-1)PKL*(‘“8"" Z xa('f1)xka(?2) (1-13121x511r'11xka1E21 ka#a -(-11PKL+““8‘*’ z xav = ~~<~11qKL (E) <")(’1‘-f> 1'1‘f1'1?) ' Xa 1 Xb r2 12 xa 1 Xb 2 URL is the number of transpositions required to bring the dissonant orbitals into corresponding positions in their respective determinants; such that their spin functions match in the case of mixed spins. The (+) applies if all the spins are the same; the (-) if both spin functions are involved. The above completes the details of how each integral over each pair of determinants contributes to the function S(?1,EZ). It is significant to note that although the sum- mations involve all the spin-orbitals in each determinant, in practice there is usually a "core" of closed shells, 140 spatial Mo‘s doubly occupied in every determinant. Due to 39 the core, as a contributor to the a theorem by McConnell, spatially symmetric part of the two-particle density matrix, can be ignored as a cause of ZFS. This will also be true for any closed shell common to both determinants when evaluating the contributions from the sum over determinant pairs. Depending on the wave function employed, these considerations can effect significant savings in computation. BIBLIOGRAPHY 10. 11. 12. 13. 14. 15. 16. 17. BIBLIOGRAPHY Geuther, A., Justus Siebigs Ann. Chem., 123, 121 (1862). Standinger, H., and Kupfer, 0., Ber., 25, 501 (1912). Mulliken, R. S., Phy . Rev., 31, 751 (1932). Venkateswarlu, P., Phys. Rev., 22, 79, and 676 (1950). Andrews, F. B., and Barrow, R. F., Nature (London), 165, 890 (1950). Herberg, G., and Shoosmith, J., Nature (London), 183, 1801 (1959). Herzberg, 6., Proc. Roy. Soc. (Ser. A), 262, 291 (1961). Herzberg, G., and Johns, J. W. C., Proc. Roy. Soc. (Ser. A), 295, 107 (1967). Harrison, J. P., and Allen, J. C., J. Am. Chem. Soc., 2;. 807 (1969). Bender, C. F., Schaefer, H. F. III, O'Neil, S. V., J. Chem. Phys. 55, 162 (1971). Bernheim, R. A., Bernard, H. W., Wang, P. S., Wood, L. S., and Skell, P. S., J. Chem. Phys. 53, 1280 (1970). (a) Wasserman, E., Yager, W. A., and Kuck, V. J., Chem. Phys. Lett., 1, 409 (1970). (b) Wasserman, E., Kuck, V. J., Hutton, R. S., and Yager, W. A., J. Am. Chem. Soc., 23, 7491 (1970). (c) Wasserman, E., Kuck, V. J., Hutton, R. S., Yager, W. A., g. Chem. Phys., 55, 2593 (1971). Herzberg, G., and Johns, J. W. C., J. Chem. Phys. 55, 2276 (1971). Hoffman, R., Zeiss, G. D., and VanDine, G. W., J. Am. Chem. Soc., 22, 1485 (1968). Staemmler, V., Theor. Chim. Acta., 31, 49 (1973). Harrison, J. P., Int. J. Quant. Chem., 5, 285 (1971). Hine, J., Divalent Carbon, The Ronald Press Co., New York (1964): A1 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 142 Kirmse, W., Carbene Chemistry (2nd Ed.), Academic Press (1971). """—"“‘_"—“‘ Harrison, J. P., Accts. Chem. Res., 1, 378 (1974). Pople, J. A., Hehre, W. J., Stewart, R. F., J. Chem. Phys., JJ, 2657 (1969). Shalhoub, G., and Harrison, J. P., J. Am. Chem. Soc., _1, 000 (1975). Csizmadia,I. G., J. Chem. Phys., 33, 1849 (1966). Powell, F. X., Lide, D. R., Jr., J. Chem. Phys., 32, 1067 (1966). _ Bodor, N., and Dewar, M. J. S., J. Am. Chem. Soc., 35, 9103 (1972). —— Mulliken, R. S., J. Chem. Phys., 33, 1833 (1955). Harrison, J. P., J. gm. Chem. Soc., JJ, 4112 (1971). Williams, J. E., Chem. Phys. Lett., 3g, 507 (1974). Griffith, J. S., Mol. Phys., J, 79 (1960). McLachlan, A. D., Mol. Phys., 6, 441 (1963). McWeeny, R., J; Chem. Phys., 23, 399 (1961). Higuchi, J., J. Chem. Phys., _3_8, 1237 (1963); 313, 1339 (1963): g, 1817 T1963). Harrison, J. P., J. Chem. Phys., JJ, 5413 (1971). Hameka, H. F., and Hall, W. R., J. Chem. Phys., JJ, 226 (1973). Bender, C. P., and Davidson, B. R., J. Chem. Phys., 19, 2675 (1966). Langhoff, S. R., and Davidson, B. R., Int. J. Quantum. Chem., VII, 759 (1973). Huzinaga, S., Ap roximate Atomic Functions I (1971), Div. of Theore€T%§T=Efi§fiTSEYYT_UnT$3?s15y of Alberta. Dunning, T. H., Jr., J. Chem. Phys., JJ, 2823 (1970). Roothaan, C. C. J., Rev. Mod. Phys., 23, 179 (1960). McConnell, H. M., Proc. Nat. Acad. Sci (Wash), fig, 172 (1959).