ELEMERT MIGRA'E‘EON 5.03033 GRANE'E‘EC BEKES “351.232: Etc? {Jim Daqmo of 535:. D. MiCHEGAN STATE UNIVERSEY Arthur Lifshén W653 ‘A In..-“ ‘_‘ - -.> p ‘ "' ‘ -A 1' LIBRARY (“3 Michigan State E University THESIS-‘- This is to certify that the thesis entitled Element Migration Across Granitic bikes presented by Arthur Ltfshin has been accepted towards fulfillment of the requirements for PhoD. degree in 6601082 “U , 8 gluteka Major professor Date November 17, 1969 0-169 ’r— 1 ABSTRACT by Arthur Lifshin This study was designed to examine the nature of diffusion patterns across an igneous contact zone, both in the intrusive and the country rock. Previous research indicates that diffusion plays an important role in such situations. Continuous samples were taken from small granite dikes and the adjacent host rock. These samples were analyzed for both major and minor elements by emission spectrographic techniques. Concentration distrubu- tions were obtained and a generalized function was determined. Three types of curves were observed: hyperbolic tangent, hyperbolic secant, and complex. Evidence from the complex curves indicates that the system is discontinuous at the contact. These curves cannot be used to describe the concentration distributions but, however, they can be used to describe the relative rates of diffusion on either side of the contact and through the contact itself. Further evidence from the curve types leads to the hypothesis that the contact acts as if it were a semipermeable barrier to diffusion of material across it. A high-frequency and a low—frequency periodicity that is not related to sampling was found in the distribution. This is thought to be due to enhancement of normal variation in the rock by a non-equilibrium situation and by diffusion producing a high frequency periodicity. The low-frequency periodicity is thought to be caused by the barrier nature of the contact. Solid-solid diffusion is rejected as the mechanism involved in igneous contact zone diffusion, leaving a form of fluid diffusion as the postulated mechanism. The amount of fluid is the main factor controlling the mechanism. With large amounts of fluid, the fluid is the active diffusing agent (hydrothermal ore deposits). With small amounts of fluid, diffusion occurs through a static fluid film surrounding the mineral grains which is a few molecules thick (granite contact zones). A matrix effect which was found appears to be due primarily to the texture of the host rock and secondarily to its composition. Increasing the width of the intrusive increases the thickness of the diffusion zone, but by a much smaller amount than the increased dike thickness. ' WV.———_1 ELEMENT MIGRATION ACROSS GRANITIC DIKES by Arthur Lifshin A Thesis Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Geology 1969 55. //73 J “/X'70 ACKNOWLEDGEMENTS The author wishes to express his appreciation to the following people for their help and aid without which this study could not have been completed. To Dr. Harold B. Stonehouse for his invaluable help and guidance throughout the course of the research program. To the other members of the author's committee, Dr. James Fisher, Dr. Samuel Romberger, and Dr. James W. Trow, for their help and careful reading of the manuscript. To Dr. John C. Colwell, Dr. Robert Ehrlich, Dr. T. Vogel, Alan Bailey and Michael Katzman for their help, ideas and suggestions which were invaluable throughout the course of the research. To my wife, J 0 Anne Lifshin, for her help in reading and typing this manuscript and for patiently suffering through the entire process. -4- TABLE OF CONTENTS CHAPTER Page I.Introduction.................... 8 Statement and Object of Thesis. . . . . . . . . . 8 PreviousWork................. 9 Location and Geologic Setting . . . . . . . . . . 15 II. MethodsandTechniques . . . . . . . . . . . . . . 17 Sampling...................17 Sample Description . . . . . . . . . . . . . . 17 Sample Preparation . . . . . . . . . . . . . . 19 Elements Selected for Analysis . . . . . . . . . 19 Spectrographic Analysis. . . . . . . . . . . . . 21 ExternalStandards............... 21 InterruptedArc................24 Precision...................25 III.Results...................... 27 GeneralStatement...............27 CurveDescription........ 27 Distribution of the Elements in the Type Curves . . 35 Specific Form of the Distribution. . . . . . . . 36 Periodicity..................37 Concentration Gradient . . . . . . . . . . . . . 42 Thickness of the Diffusion Zone . . . . . . . . . 47 IV.Discussion.................... 49 GeneralStatement............... 49 NatureoftheContact.............. 49 Periodicity..................52 Factors Controlling Diffusion Rate . . . . . . . . 54 V. Summary and Conclusions . . . . . . . . . . . . . 56 Summary and Conclusion . . . . . . . . . . . . S6 FurtherResearch............... 58 Bibliography..................... 59 Appendices...................... 61 AppendixA-DataTables. . . . . . . . . . . . 61 AppendixB-Data Curves . . . . . . . . . . . 100 Appendix C " lefllSlOll Theow o o o o o o o o o 122 Table 10. 11. 12. 13. 14. 15. 16. 17. LIST OF TABLES Summary of the Petrologic Data for the Granit Dikes . . Summary of the Petrologic Data for the Host Rocks . Analytical Conditions Used for Emission Spectrographs Anal-ySis O O ....... O O O O O O l ....... Spectroscopic Analysis Lines . . . . . . . . . . Maximum Error Determined for the Analysis of the Standards................ ...... Breakdown of the Various Elements into the Three Curve Classes 0 O O O O O O O O O O O O I O O O O O O O O O Breakdown of the Various Elements into the Subgroups of Type I O O O O O O O O O O O O O 0 O O O I O O O O Breakdown of the Various elements into Subgroups of Type E O O O O O O O O O O O O O O O I O O O 0 Parameters of Equation (3.4) for Section 37 . . . . Parameters of Equation (3.4) for Section 38 . . . . . . . Parameters of Equation (3.4) for Section 251 ..... Parameters of Equation (3.4) for Section 253 . . Results of the t Test Between Schist and Granite for Section 37 O O O I O O O C O O O O O O O O O O O O O 0 Results of the t Test Between Schist and Granite for &Ction 38 O O O O O O O O O O O O O O O 0 O O O O 0 Results of the t Test Between Schist and Granite for &ction 251 O O O ..... O O O O O O O O O O O O 0 Results of the t Test Between Schist and Granite for section 253 O C O ..... O O O O C O O O O O O O 0 Thickness of the Diffusion Zone for Each Element in Each SectionintheHostRock............. . -6- Page 18 20 22 23 26 29 33 34 38 39 40 41 43 44 45 46 48 Figure LIST OF FIGURE S Compositional Variations in Homogeneous Rocks (Dennen,1951)............. ......... Compositional Variations in Contact Zone Rocks (Dennen,1951)... ..... ...... Compositional Variations in Contact Zone Rocks in Hydro- therman Veins, Tintic District Mices (Morris & Lovering, 1952) I O O O O O O O O O O O O O O O O O O ....... Sketch Map of the Thomaston Waterbury Area, Connecticut, Showing Location of Samples . . . . . . ......... Three Classes of the Element Distribution Curves . . . . . . Generalized Curves for the Subclasses of Type I . . . . . . . Generalized Curves for the Subclasses of Type II . . . . . . Page 12 CHAPTER I INTRODUCTION Statement and Object: Interactions between an intrusive body and its host rock constitute a major area within the field of igneous and metamorphic rocks which is replete with unsolved problems. One aspect, the interchange of material between the two rock bodies, is of major importance in understanding the chemical pro- cesses that occur during intrusion. Exchange processes may involve move— ments of fluids or fluidized materials or molecular diffusion. Contact phenomena probably involve combinations of these processes on several dif- ferent scales. On the largest scale this interaction can be seen in veins proceeding from the main body of the intrusion and in similar phenomena. Smaller scale interactions are usually manifested by changes in gross mineralogy near contacts or, more subtly, slight intra-mineralic changes in composition. This latter type of change may be due to molecular solid-solid diffusion, or to a fluidized molecular diffusion either by movement of the fluid itself or by the movement of molecules or ions through a fluid film surrounding the grains. The determination of the nature of small scale transfer processes is the object of this research. Patterns of elemental variations across contacts of small dikes and the adjacent country rock will serve to limit the possible mechanisms for small scale transfer. -9- The primary objectives of this study are as follows: 1. To determine the extent of interchange of material between an intrusion and host rock. 2. To determine how the element distribution pattern resulting from the interchange differs for different elements. 3. From 1 and 2, to postulate mechanisms for element transfer that could result in the distributions observed. Previous Work Most of the studies in the area of diffusion in geological systems have focussed on wall rock alteration in mineral deposits. A few studies have been done on diffusion in contact metamorphic zones, diffusion in single crystals, or the theoretical basis of these phenomena. Most of the experimental studies are of the diffusion of a single element into individual minerals. These studies are summarized by Fyfe, Turner, and Verhoogan (1958) and the values of the diffusion coefficients reported by them are exceedingly small (on the order of 10-6). Jensen (1964) investigated the mechanisms of solid-solid diffusion from a theoretical standpoint. Calculated activation energies for solid-solid diffu- sion by means of lattice defects agree with the activation energies from experimentally determined diffusion coefficients, suggesting that solid-solid diffusion probably occurs by movement of the ion through lattice defects in crystals. The values determined by Jensen and those reported by Fyfe, Turner and Verhoogan show the improbability of solid-solid diffusion as a mechanism in the transport of materials over distances greater than a few millimeters to one or two centimeters indicating that this type of diffusion is important only in the interchange of material between contiguous mineral grains and cannot be used to explain larger transport phenomena. -10.. The interchange of material between an intrusive and its host rock has been reported for distances many times greater than appears to be possible through solid—solid diffusion. One possible process for these phenomena is the introduction of a fluid into the diffusion system either as a passive or active agent. In the case of the fluid acting as a passive agent, diffusion would occur within an intergranular fluid film and would yield diffusion coefficients somewhere between those of solid-solid diffusion and active fluid movement. Mueller (1966) examined diffusion mechanisms from theory and pub— lished data in relation to the attainment of equilibrium in metamorphic rocks. He concluded that solid-solid diffusion is of major importance in the establish- ment of local equilibrium, but that it cannot be utilized in extensive material interchange. He asserts that extensive material interchange requires a fluid or vapor phase. He points out that any substance has a vapor pressure, and that this is enhanced by increased temperatures and fluids. This essentially agrees with Jensen's work and adds the idea of a vapor phase playing a role in the diffusion process to his conclusions. Dennen (1951) investigated chemical variation in homogeneous rocks and in contact zones. His findings show that there are minor compositional variations even in the homogeneous rocks (Figure 1). The composition varia— tions he found in contact rocks are seen to be completely different from those determined for the homogeneous rocks (Figure 2). The contact zone distribu- tion curves show major depletion and enhancement of elements near the contacts which are of a different order of magnitude from the variations seen in the homo— geneous rock. It should be noted that the zone of concentration variation in the contact zone rocks is too large to support solid-solid diffusion as a transport mechanism and that fluids must be involved. It should also be noted that the Figure |- Chemical Variation in a Homogeneous Rock (from Dennen) IOO 50— ”——._ X ,_:---—...— ._H_ __ _ £9h£’_dq_ ___’.’_.— _‘~-_ ___________ A_'3°3____— “3.. :_- FOO _ ‘___— _____ L——— 5 ————— " 1L __ ,__._._.._.__ __ __. Cat) 0 /0 LG: i L5‘___,..——*-—-..~___,_.--—--_.__u_.!EE{_ ____.—.. __ ..... d _-_§_z0_:0:5_ — _.... — 1.0— I will! Ijllllll O l 2 3 4 5 7 9 IO N l2 l3 l4 -11- Figure 2 -Chemical Variation Across a Contact of the Medford Diabase Dike with Rhyolite (from Dennen,l95l) |00 l0 0.! l T'ITIII I 0.0l 1' I 1" I" Diabase flow 1‘ l! ..\./" // \j t 292/ ‘ Arkose 24 inches ~1- a. a. (I -12- -13- diabase-arkose contact curves and the granite-shale contact curves show a distinct periodicity in zone of concentration variation. This periodicity may be due to a variation in the rate of diffusion. Woodard (1968) studied the compositional variation in the Cape Neddick Gabbro—Kittery Formation contact zone in Maine. He obtained composition distribution curves similar to those of Dennen's over similar distances. Morris and Lovering (1952) investigated the distribution of metals in the wall rock of the Tintic District mines. Their distribution curves show a major increase in concentration near the ore vein with the element transfer zone (Figure 3) being from one to two orders of magnitude greater than those of Dennen's or Woodard's. The availability of fluids in these cases appear to be the critical difference. The "intrusion" is a hydrothermal vein which may be considered to be primarily an aqueous fluid in comparison to a granitic or a gabbroic magma. This leads to the assumption that material transfer has occurred primarily through liquid diffusion, where the major source of the fluid is in the "intrusive" itself. In magmatic intrusives, the width of the material transfer zone is much too large for solid-solid diffusion and seems to be too small for fluid diffusion, suggesting the possibility of diffusion of the ions through an effectively static fluid film. Similar studies by Stonehouse (1954) at Sudbury; Ishikawa, Kuroda and Sudo (1962) in the Kuroko deposits of J apan; Fullagar, Brown and Hagner (1967) at the Ore Knob Deposits in North Carolina; and Wehrenberg and Silverman (1965) at Gilman, Colorado; have yielded results similar to those of Morris and Lovering. The distribution curves for both major and trace elements which were determined in these studies show major enhancement or depletion effects near the contact. The zone of concentration enhancement or depletion varies from about 5 feet in some of the Kuroko deposits to about 75 feet in some of the Figure 3- Heavy Metal Dispersion Pattern, Eureka Hill Mine, Tintic District, Utah (from Morris 8: Lovering ,l952) 200 IOOO Edgei Edge 2 Heavy of of __l Metals (we the In Body Body PP“ sm “Al' __J 311. '3' __ IOO Pb " : —--lOO u Pb l0 — :1 '° MD 0 2 4 6 8 l0 l2 l Distance from the Ore My in feet lOOO Ewe ' f" —* Metals of In °" " _ PPII 8ite"B" '—“ IOO —-—1IOO l0 - §¥§= o 0 2468 Distance from l0l2 the Ore Body In feet -14- _15- Ore Knob deposits. The findings of these studies agree with the results of Morris and Lovering in respect to the material transfer and the thickness of the transfer zone, but like them do not agree with Dennen's and Woodard's studies on "normal" igneous contact zones. Wehrenberg and Silverman (1965) ran a series of experiments in which zinc, in solution, was diffused through the Yule marble. Their resultant curves were comparable with the curves from the hydrothermal deposit studies, but they did not agree with the curves of either Dennen or \l’oodard. This is another indication that there are major differences between the two types of contact zones. In the present study the writer is attempting partially to bridge the gap between diffusion theory and diffusion in a non-hydrothermal igneous con- tact zone in which the intrusion contains but little water. Empirical formulations that describe the real system will be obtained and these formulations will be related to current diffusion theory if possible. Location and Geologic Setting The samples for this study were taken from the igneous and matamorphic rocks in the Thomaston and Waterbury Quadrangles in Western Connecticut (Figure 4). Gates (1951, 1954, 1968) mapped the Litchfield, Woodbury and Waterbury quadrangles and Cassie (1966) mapped the Thomaston Quadrangle in Connecticut. From their work in this area they have reported that there are two cycles of deformation in the country rock. The country rock sampled for this study is the regionally metamorphosed Hartland Formation. The granites sampled are thought to be related to the Nonewaug Granite which is intrusive in the area. These Granites are reported by both Gates and Cassie to be post metamorphic and therefore not affected by the regional folding and metamorphism in the area. 63 Section 25! 05 East Morris Secjign 37 53 _§ Thomaston Rte. (’09 Watertown 2) 6 2° Figure4. Sketch map of the Thomaston — Waterbury area Connecticut, showing location of samples. ,. Scale 0.75 inch =I mile .\ W" ate - Vlgterbury . n '1‘ -]_6- CHAPTER II METHODS AND TECHNIQUES Sampling Continuous samples were taken in all cases. In the case of narrow width dikes (maximum width of about two feet), the samples were taken across the dike and into the host rock. For wider dikes, only that part of the dike near the contact and the adjacent horizon were sampled. The contact was defined as that plane which divides the two rock types and was seen as a line of abrupt mineralogical change. In either case care was taken so that only one horizon was sampled in the host rock. The term horizon was defined as a mineralogically homogeneous zone bounded by different mineralogies and probably represents one original homogeneous sedimentary unit. Sample Description Three separate dikes were sampled for this study. Their locations are shown in Figure 4 and the data concerning them is given in Table 1. The dikes are roughly an order of magnitude apart in thickness which yields the following thickness ratio: 1:6:120. The mineralogies of the dikes while similar, are sufficiently different to distinguish one from the other. None of the dikes showed chilled margins. Two separate sections were taken from the 12-inch wide dike in order to obtain a replicate sample. The host rock in these sections was chosen for its similarity. The locations of the dikes are as follows: Section 37 and 38 - On state route 109, 3. 1 miles west of the intersection of state route 109 and US route 6. The outcrop .-17_ Section 37, 38 251 253 TABLE 1 SUMMARY OF THE DATA FOR THE GRANITE DIKES Width Quartz K-Feldspar Plagioclase An Muscovite in inches % % % i % 12 41.6 21.1 21.9 18 15.0 2 36.1 42.1 19.0 17 2.0 240 45.4 31.1 15.7 16 7.4 -18.. Apatite % 3.4 0.9 0.5 -19.. is on the east side of the road at the intersection of route 109 and a northeast trending side road. Section 251 - By the Thomaston Dam Site on the Naugatuck River, approximately 100 yards east of the causeway bridge. Section 253 - On interstate route 84 approximately 200 yards before the first Waterbury exit. The host rock that was sampled was different for each dike. The only exception was section 37 and section 38 where similar rock types were sampled to provide a duplication. The data for the host rocks sampled are given in Table 2. Sections 37 and 38 are quartz-biotite schists. Section 251 is a quartz—biotite-hornblende schist and section 253 is a granite gneiss. The three sections provide enough differences in mineralogy and can be treated as dif- ferent samples and not as a set of replications. Sample Preparation The field samples were sliced parallel to the contact by a diamond saw to yield sections of approximately 0. 25 inches wide. These sections were then coarse ground in a Spex Mixer Mill with a high alumina ceramic canister and ball. An optimum grinding time of 45 minutes per sample was determined from a plot of grinding time versus emission line intensity. Four hundred milligrams of the sample were weighed out and mixed with 600 milligrams of graphite mix. Mixing was done on the Spex Mixer Mill using glass vials and plastic balls. Comparison with hand mim‘ng and hand grinding using a mortar and pestle indicated that the mill was at least as good as the hand method. Elements Selected for Analysis The elements selected for analysis were chosen because of their posi- tion in the periodic table, and in the case of trace elements, their substitution v . o 8 Seaweed Q0 msoecezmoomnz m .o annex? 5m. ocmnam QGOC mGOC 0e msoo§2ooma¢ wdw ed 98: ed o.wm swamp—omnx o .m econ one: w .3 o . H 0653503 one: N6. v.3 m.mm m.om one: m.m o.: Tum mém e a. a. is: I 0a 38282832 “macaw 83003.2 332m 8.350 mMOOm HmOm HEB mom a>C’ ¢>oiu>cam-h1¢>h-c>c>haoionha~aoahA-Joaoahicpnaha~aoa (D 05 01 10.57 10.90 11.29 11.65 11.90 oHomomooo-qcnn-Ac:upHoomHu-xcopt-ao-‘oowpm Na #4:)bah‘hih‘h‘h‘h‘DDthDBDthJP‘bDPJDDhDbDP‘P‘h‘P‘P‘P‘h‘h‘h‘h‘c> % .82 .32 .14 .40 .33 .45 .31 .57 .52 .76 .77 .15 .67 .47 .88 .00 .10 .65 .22 .05 .19 .28 .53 .55 .85 .73 .30 .70 .83 .12 .95 .09 Ca OOOOOOOOOOOOOOO:OOOOOOOOOOOOOOOO % .30 .43 .51 .31 .33 .28 .23 .24 .29 .31 .37 .41 .46 .45 .28 .49 .38 .43 .50 .52 .55 .53 .32 .29 .27 .41 .34 .28 .42 .28 .31 ‘66- % 2.37 2.33 2.12 2.57 2.58 2.80 2.05 2.13 2.77 1.98 1.80 2.15 1.35 1.30 1.38 1.35 2.75 2.05 1.87 1.77 1.05 n.d. 1.24 1.33 2.85 2.52 3.08 2.50 1.93 1.85 2.18 1.12 Fe OOOOOOOOOOOOOOO?OOOOOOOOOOOOOOOO % .49 .34 .32 .34 .38 .52 .48 .40 .37 .32 .53 .47 .61 .63 .76 .58 .71 .60 .75 .23 .24 .37 .27 .27 .37 .43 .64 35 45 .33 Mg ppm 1683 1383 1507 1767 1250 1467 830 967 837 610 660 610 342 450 393 395 377 427 377 413 343 507 370 265 1025 723 733 870 510 500 227 260 -67- x B Cu Ga Pb T1 in. ppni ppni ppni ppni ppni 15.54 99 483 15 31 1923 14.95 97 687 24 36 2067 14.64 132 447 24 30 2883 14.34 61 530 23 37 2367 13.84 58 335 28 33 2133 13.45 102 530 23 33 2250 12.89 61 362 20 31 1742 12.35 68 430 28 28 1758 11.74 31 417 21 25 1967 11.20 33 340 19 29 1908 10.67 33 333 19 26 1975 10.20 34 500 29 29 2225 9.84 28 427 18 22 2242 9.30 136 497 19 22 2267 9.22 139 423 26 31 2533 8.88 67 453 22 32 2017 8.55 136 480 23 29 2092 7.99 153 580 23 32 2750 7.55 107 530 21 32 2217 7.05 63 467 20 29 2067 6.30 78 338 18 27 1750 5.77 95 388 22 27 2042 5.05 84 733 23 36 2400 4.80 100 433 28 31 1633 4.77 130 430 18 29 1483 3.94 70 655 25 27 2075 3.54 109 523 22 37 1917 2.98 113 467 20 35 1475 2.54 108 590 19 35 1875 1.98 110 440 22 28 1788 1.76 108 444 18 30 1780 1.65 42 283 14 26 1375 1.43 86 185 17 26' 1967 1.04 30 277 14 30 1130 0.79 25 177 20 22 1533 0.54 37 113 17 23 5567 0.35 13 373 18 19 1690 Sch C Gr 0.35 17 102 13 28 310 0.74 14 77 21 39 128 1.13 29 58 16 25 293 1.28 11 51 19 33 122 2.01 11 49 17 24 112 2.11 15 208 24 35 145 .58 2.34 2.39 2.74 3.11 3.35 3.78 4.11 4.34 4.56 5.11 5.65 6.07 6.18 6.90 7.15 7.40 7.65 7.90 8.51 8.90 9.65 10.57 10.90 11.29 11.65 11.90 ppnl HHH QHH p—i Hi—l ooor—wocomoooqoooo =5 r-w-t HHHHHQQQH Hw-QQDNNNoN' ° ' Cu ppm] 39 29 24 87 293 148 243 148 240 188 n.d. 102 383 223 23 27 85 700 107 109 59 303 178 160 13 38 -68- (3a ppni 16 18 18 14 15 15 13 11 10 10 10 10 11 14 11 15 17 14 11 14 14 12 Pb ppni 27 36 36 48 58 66 72 65 52 74 56 50 69 73 75 75 89 57 48 46 42 80 60 39 49 Ti ppni 111 137 113 85 142 99 138 101 109 119 67 93 82 105 75 67 89 84 124 88 99 150 92 j 95 64 63 ppnl 527 403 593 430 450 437 413 500 677 607 650 463 860 743 617 333 443 773 407 480 420 427 667 277 257 395 315 370 285 415 438 377 753 200 420 1667 1220 999999 999999 hhi 1313111 3633 2750 2983 2617 2813 2380 2117 2787 2833 2193 2850 2983 2317 2667 3117 2883 3217 2567 2533 2967 2433 2617 3967 3050 3233 3600 2587 2400 3450 3350 2447 2708 2433 1900 2067 2600 1967 81 68 417 257 182 65 -69- Zr PPHI 101 85 97 54 107 86 78 80 113 77 89 66 86 71 107 78 73 102 69 101 78 85 44 61 84 75 71 115 55 93 76 86 68 82 93 146 70 999999 999999 Zn ppni 196 205 197 144 223 201 179 147 188 174 157 159 185 121 233 178 162 179 187 193 167 169 183 115 135 205 170 137 137 190 140 118 140 129 100 140 99 FPF??? 9799?”??- PPPPFP Ni 45 51 44 48 49 51 56 43 44 47 43 37 32 31 5O 46 46 47 45 56 45 31 33 22 26 39 32 31 29 32 32 35 34 33 31 35 35 -70.. Ni ppm Zn ppm Z r ppm Mn ppm pp m dddddddddddddddddddddddddd nnnnnnnnnnnnnnnnnnnnnnnnnn dddddddddddddddddddddddddd nnnnnnnnnnnnnnnnnnnnnnnnnn dddddddddddddddddddddddddd nnnnnnnnnnnnnnnnnnnnnnnnnn 97F027006630007270563935510 2654...)36r0r059295667108987656 121121 35 1... 21 11.. dddddddddddddddddddddddddd nnnnnnnnnnnnnnnnnnnnnnnnnn 494158146.15780505010570950 33713713516019146959659269 92.22.333.44455666777788900111 11111 in. 1.33 0. 95 0.57 O. 19 Gr Sch . 18 .55 92 .19 .56 .93 .30 .67 . 04 .41 .88 .25 .62 .99 .46 .83 .20 .57 .94 .31 .68 .05 .42 .79 .11 .38 .65 .92 10.15 10.46 10.73 11.00 11.27 11.54 11.81 12.08 12.35 customooooooqqmczczmmfihphwwwNMHv-lwooo SPECTROC HEMICA L ANALYSES SECTION 250 Na (70 FONND—O HNNNHb—‘NNHNNNHHHHHHNl—‘HHHHHHHHHHHOHHHHH .29 .58 .99 .93 .73 .80 .42 .75 .65 .95 .65 .87 .77 .48 .47 .42 .73 .06 .48 .15 .80 .57 . 02 .43 .87 .10 .35 .83 .28 .22 .15 .43 .88 .37 .12 .62 .65 .12 .45 .33 .77 99:7: 49941-499 l"OOOOOOOOOOl—‘HOOOOOOOOOQOOOOl—‘OOOOOOOOO .89 .63 .82 .87 .80 .87 .87 .88 .85 .85 .90 .98 .93 .07 .95 .93 .76 .72 .98 .97 .84 .76 .67 .90 .83 .82 .82 .71 .22 .01. .77 .90 .68 .64 .76 .78 .83 .86 .86 .82 .64 -71- Ca % 0. 0. 0. 0. mwmmaqmoomooqqm-qooootsaczmmc:moooomximmocncocooor-aoccz 41 34 39 22 .90 .50 .50 .00 .40 .87 .93 .53 .27 .60 .13 .87 .77 .43 .53 .97 .63 .60 .00 .67 .10 .05 .90 .00 .53 .27 .77 .17 .83 .40 .73 .43 .43 .97 .07 .40 .10 or /O OOOO mqmqmmqqmqqqmqr—tqmmqmqqqqqmqqmquoqmmq .60 .27 .10 .53 .47 .57 .50 .67 .40 .60 .37 .30 .73 .33 .30 .50 .63 .70 .73 .90 .33 .95 .10 .50 .83 .37 .27 .37 .10 .13 .40 .63 .03 .97 .57 .47 .70 0000 999999999999999999999 Mg 999999999 % . 066 . 056 . 066 . 039 in. 12. 12. 13. 13. 13. 13. 14. 14 14 15. 15. 15. 15. 16. 16. 16. 16. 17. 17. 17. 18. 18. 18. 18. 19. 19. 19. 19. 20. 20. 20. 20. 21. 21. 21. 22. 22. 22. 22. 23. 23. 23. 23. 24. 24. 24. 25 25. 62 89 16 43 70 97 24 .51 .78 05 31 59 86 13 40 67 94 21 48 75 02 29 56 81 O6 33 60 87 14 41 68 95 22 49 80 03 4O 57 84 11 42 65 93 20 51 74 .01 28 Z n: HHHHHHHOHHNHHHHHOHHHOHNHHHNNHHHHHNHHNHNHHHHi—‘HHHN‘ 58 .45 .73 .63 .40 .90 .83 .63 .62 .77 .18 .80 .22 .83 .88 .50 .68 .15 .73 .77 .73 .28 .00 .58 .27 .41 .48 .06 .81 O3 .16 .33 .95 .00 .23 .19 .06 .37 .02 .18 .48 .95 .33 .00 .00 .43 .04 .19 7) .60 .49 .12 .03 O H N CD CD CD 00 99°9999999999999999999999999H9999H9~99999HHHHH O (I) O N -72- Ca. .40 77 40 .70 .67 .27 27 .90 .40 10.37 10.30 8.93 9.93 10.67 9.83 10.93 11.10 9.00 12.97 14.13 12.93 9.70 9.97 9.47 8.97 9.23 9.60 7.07 7.40 5.47 6.97 7.23 8.20 7.87 8.40 7.07 6.30 6.17 7.53 11.07 6.53 5.40 8.00 6.43 6.00 7.10 7.60 9.40 CD#-#~GDC>UIUIPHQ H HH H H by m ooooooooocoooooooocuoooooooooooooo-qooooowcoHsiooqcocoQ-qooqoocosioococbcncn-qoocac:moo %; .43 .60 .47 .00 .20 .30 .67 .97 .63 .40 .67 .97 .03 .03 .13 .27 .55 .10 .77 .13 .93 .73 .16 .65 .90 .17 .03 .87 .67 .17 .20 .80 .73 .53 .77 .90 .80 .97 .00 .25 .50 - .po .00 .57 .30 .90 .97 .07 F’F’F’F’C’F’F’F’F’F’F’F’F’F’F’F’F’C’F’F’F’F’F’F’F’F’F’F’F’F’F’F’F’C’F’F’C’F’F’F’F’F’F’9’ C»: O (5 25.55 25.82. 26.09 26.36 26.63 26.91 27.40 27.89 28.38 28.87 29.36 29.85 30.34 ' 30.83 31.32 31.81 32.30 32.79 33.28 33.77 34.26 34.75 35.24 35.73 36.22 36.70 37.17 37.64 38.11 38.58 39.05 39.52 39.99 40.46 40.93 41.40 42.01 42.76 43.51 44.26 44.88 45.37 45.86 46.35 46.84 47.33 47.82 48.31 1Na 7) 1.47 1.57 1.53 1.18 1.27 1.66 1.59 1.45 1.44 1.48 1.28 1.63 1.56 1.48 1.68 1.48 1.80 1.26 1.39 1.53 2.13 1.78 1.78 2.09 1.52 1.47 1.28 1.41 1.70 1.13 1.90 2.40 1.85 1.70 1.75 1.73 1.68 1.37 1.82 1.68 1.83 1.97 0.62 1.51 1.50 1.37 1.32 1.34 OOOOOCOOOHHHCOOOOOOOOHHOOOOHOHHHHOOOOOHHOHHOOOOO %; .86 .87 .69 .98 .78 .00 .17 .53 .00 .06 .90 .90 .84 .85 .86 .01 .10 .05 .01 .86 .10 .80 .81 .96 .83 .07 .04 .91 .79 .88 .73 .84 .79 .79 .79 .09 .53 .19 .93 .75 .86 .75 .76 .72 .84 .80 .80 -73- Ca %> 9.23 9.00 8.20 8.13 7.80 12.93 7.37 9.40 8.23 9.10 8.07 8.13 7.27 7.13 7.40 8.23 7.33 9.40 7.83 8.17 8.93 9.47 7.03 7.40 6.60 10.97 11.83 11.13 10.43 7.83 12.97 8.97 10.90 10.67 8.87 9.13 7.70 10.43 11.90 7.43 7.50 7.63 7.17 7.43 6.57 9.67 8.47 8.67 7; .47 .80 .97 .87 .23 .40 .13 .93 .13 .53 .13 .20 .60 .50 .17 .33 .97 .70 .33 .87 .53 .27 .40 .90 .03 .38 .33 .17 .17 a>a>u>c>~a-a~ac:~1u>c>o>c>c=~a-a-q<1<1019a~a~aoaa><1c>cac>a>a>caq>u:-ahabotorh-Q+><:csc> cacopa-q.n<:GDBDU1GJ CD '9 N 10.15 10.46 10.73 11.00 11.27 11.54 11.81 12.08 12.35 12.62 12.89 97 126 83 99 133 137 92 81 78 80 73 120 110 76 126 96 88 135 64 75 132 178 103 74 89 94 82 77 90 77 77 75 115 76 86 64 64 69 Cu ppm (0000110 143 178 133 102 187 205 97 11 37 n.d. 82 153 137 104 83 29 21 53 15 230 105 n d -75- 190 163 77 72 82 62 77 45 70 81 109 97 108 45 48 50 Ga PPHI 12 12 10 15 34 42 30 23 44 34 28 23 23 32 19 19 39 27 16 33 26 15 25 14 23 31 '28 30 25 25 20 20 19 24 16 15 12 44 21 26 19 28 23 Ti ppm} 188 162 183 152 ‘8200 7267 9133 7100 7833 8600 6500 6600 5200 7267 6433 5367 5400 6267 4800 6800 6100 4750 5733 4467 6167 7250 6400 6533 5533 6100 5467 5500 5167 5300 5900 5467 4767 6067 5650 5300 6800 9100 6100 ppnl 01901149 1013 1050 1013 977 840 1373 847 900 743 787 813 533 827 907 720 820 983 550 710 497 697 715 750 743 ' 827 783 703 767 547 820 797 700 647 937 610 1143 870 1000 730 13. 13. 13. 13. 14 14. 14. 15. 15 15. 15. 16. 16. 16 16. 17. 17. 17. 18. 18. 18. 18. 19. 19. 19. 19. 20. 20. 20. 20. 21. 21. 21. 22. 22. 22. 22. 23. 23. 23. 23. 24. 24 24. 25. 25. 25. 25 16 43 70 97 .24 51 78 05 .31 59 86 13 40 .67 94 21 48 75 02 29 56 81 06 33 60 87 14 41 68 95 22 49 80 03 40 57 84 11 42 65 93 20 .51 74 01 28 55 .82 ppni 80 80 112 96 65 67 79 126 99 140 124 145 75 85 137 79 207 106 98 168 208 119 97 130 123 144 132 98 114 153 125 94 140 102 126 133 122 88 108 103 110 112 94 99 149 118 113 Cu PPm 42 35 48 14 5.1 44 n.d. 175 103 101 P DUI +dbO° QQQNNQNNCJWN' :35 99 NODNOD° GINQCJON‘ n.d. ~76- Ga ppnl 21 16 32 30 17 18 29 70 38 38 44 37 39 39 30 27 41‘ 36 36 29 28 12 11 38 24 20 21 20 22 17 12 13 21 18 14 27 19 11 19 25 21 21 17 21 17 25 16 10 Ti ppn1 6067 4567 6667 6633 4800 5067 4967 .7400 7500 9250 n.d. 6000 6300 7800 9167 6967 9350 9300 8050 9900 7500 5700 4367 7000 4600 5700 5333 4533 5717 5850 4050 3983 3450 5000 4717 4967 5017 6167 4317 4950 5583 5800 4733 4383 5567 5500 5067 6633 ppni 593 707 1037 967 583 680 800 1473 1633 977 1230 1053 817 1263 857 1183 1187 1600 1250 1043 700 713 683 867 543 463 433 387 607 593 567 570 477 623 567 663 540 790 500 413 617 553 523 600 653 653 813 743 in. 26. 09 26.36 26.63 26.91 27.40 27. 89 28.38 28. 87 29.36 29.85 30.34 30. 83 31.32 31. 81 32.30 32. 79 33.28 33. 77 34.26 34. 75 35.24 35.73 36.22 36.70 37.17 37.64 38.11 38. 58 39. 05 39.52 39. 99 40.46 40. 93 41.40 42. 01 42.76 43. 51 44.26 44.88 45.37 45. 86 46.35 46. 84 47.33 47.82 48.31 48.79 49.28 49.77 ppm] 123 91 78 133 99 163 104 101 80 98 71 88 90 100 105 122 106 99 78 121 87 97 101 108 162 148 149 79 124 101 117 87 76 103 84 84 124 105 99 106 106 98 98 108 109 125 110 101 101 Cu ppnl H H coooocbfioowmmozmHoonp-‘oowwww H O HHHHNO'ébPNNNi-‘NN N 03 «10000me OOH H NNDDWNU'IQVPODQQ P a. epip- .1; oo 63 -77.. Ga ppm 23 19 17 16 15 29 17 14 15 12 14 16 12 16 15 35 15 11 15 16 14 14 14 16 26 25 26 13 27 21 25 17 17 28 14 21 13 11 10 18 22 15 13 11 13 16 10 12 Ti ppni 5167 5767 6833 9850 7850 9800 9150 9250 6833 8400 7900 8600 5700 5800 6250 4633 5800 6133 7550 8350 6267 6550 6500 7567 7900 7067 6333 5450 7267 7733 6767 7200 6233 6517 8100 5233 5052 6833 5767 6100 6300 .4700 4783 5500 5950 7350 7767 6533 6400 ppm 620 560 627 667 570 543 563 523 510 717 517 427 580 500 673 513 603 583 1063 603 490 553 693 637 773 623 723 477 933 620 867 637 443 480 547 470 577 510 530 610 610 507 443 660 477 500 567 563 607 50.26 50.77 51.30 51.83 52.32 52.76 53.20 53.64 54.08 54.52 54.96 55.40 55.84 56.28 56.72 57.16 57.60 58.09 58.63 59.17 59.71 60.15 60.79 61.33 61.79 62.17 62.52 62.88 63.60 63.96 64.32 64.68 65.04 65.40 65.76 66.12 66.48 66.84 67.20 67.56 67.92 ppni 91 111 91 109 113 132 110 128 118 114 114 128 114 101 106 116 111 111 98 111 98 107 100 111 113 119 87 97 123 88 89 91 99 94 112 77 89 83 80 90 79 Cu ppnn 1960:3009qu n.d. :3 D. #4016009me “#MN’ F’ a. AWO3NNHNMNO1AN‘ -73- Ga ppnn 14 13 10 14 17 14 12 15 13 12 17 11 13 14 11 12 10 12 10 15 14 14 12 13 19 14 14 11 10 11 12 12 16 16 20 17 15 13 17 Ti ppni 5775 8850 7667 8550 7100 6967 7767 7633 7500 6133 7067 6800 6133 6300 6700 5967 5167 6550 6767 6717 6050 6033 5067 5500 6253 7367 8800 7200 6567 5367 6033 5617 6267 6967 6133 4600 4633 5300 4217 4267 4033 PPnl 483 557 500 513 640 857 680 743 767 690 840 817 607 523 547 643 487 690 563 620 600 660 487 547 523 687 580 647 697 507 620 597 977 653 647 520 563 657 637 630 433 .18 .55 .92 .19 .56 .93 .30 .67 .04 .41 .88 .35 .62 .99 .46 .83 .20 .57 .94 .31 .68 .05 .42 .79 .11 .38 .65 .92 .15 .46 .73 .00 .27 .54 .81 .08 .35 .62 .89 PP“1 9999 9999 108 178 103 83 153 108 106 97 106 94 76 89 143 102 80 117 111 76 n.d. 75 87 91 143 85 97 95 73 79 87 75 63 59 51 143 86 97 74 100 73 PP“1 15 13 11 15 770 1240 1453 1073 947 967 690 897 478 1106 843 733 573 492 523 673 680 525 677 527 618 797 917 563 1160 1300 890 1033 840 960 807 843 747 800 1000 697 1367 1390 1300 “79' 5:3 a z 9‘9‘9‘9‘ 272 171 285 237 197 263 195 228 207 290 227 228 160 195 160 240 178 260 n.d. 167 250 205 178 163 235 375 188 345 268 205 207 212 185 202 282 217 273 410 258 215 188 152 134 164 203 171 127 140 157 143 119 181 132 113 142 110 108 n.d. 101 131 155 179 147 130 129 133 118 126 142 135 114 108 153 124 133 140 192 120 180 172 150 132 155 190 128 128 86 120 109 83 120 98 83 99 88 108 59 80 73 98 148 105 97 77 71 82 59 66 60 55 59 85 83 76 81 141 100 13. 13. 13. 13. 14. 14. 14 15. 15 15. 15. 16. 16. 16. 16. 17. 17. 17. 18. 18. 18. 18. 19. 19. 19. 19. 20. 20. 20. 20. 21. 21. 21. 22. 22. 22 22. 23. 23. 23. 23. 24 24. 24. 25 25. 25 25 16 43 70 97 24 51 .78 05 .31 59 86 13 40 67 94 21 48 75 02 29 56 81 06 33 60 87 14 41 68 95 22 49 80 03 40 .57 84 11 42 65 93 .20 51 74 .01 28 .55 .82 Zn ppni 92 60 130 101 71 66 68 126 137 163 122 117 133 147 120 124 92 177 132 101 117 102 60 129 178 125 125 118 129 146 175' 107 54 Cr PP“1 1003 618 467 933 983 830 797 957 1110 1703 1170 797 1075 1233 1417 1700 1683 1847 1927 1197 1163 853 1040 977 813 683 853 458 567 710 830 980 780 1057 773 397 1289 1563 900 463 1210 510 463 913 950 1003 1073 1100 -30- .Ba ppnl 248 185 173 293 263 197 177 172 202 n.d. 268 n.d. 135 173 280 232 n.d. 265 405 n.d. n.d. 423 467 n.d. 195 158 177 127 143 160 157 217 142 158 128 150 183 507 157 123 200 138 128 143 190 220 205 530 Zr ppni 139 108 141 163 89 115 103 145 135 n.d. 194 n.d. 107 116 153 145 n.d. 170 150 n.d. n.d. 122 134 152 157 148 104 121 147 146 113 127 125 122 130 137 160 109 123 134 164 123 108 150 181 150 157 Ni ppnl 100 78 126 134 101 115 118 111 140 107 203 147 167 147 178 138 102 139 155 86 72 95 96 85 106 105 103 80 93 95 102 110 105 98 93 81 105 132 95 80 95 107 98 91 115 125 112 125 26. 26. 26. 26 27. 27. 28 28. 29. 29. 30. 30. 31. 31. 32. 32. 33. 33. 34. 34. 35. 35. 36. 36. 37. 37. 38. 38. 39. 39. 39 40. 40. 41. 42. 42. 43. 44 45. 45. 46. 46. 47. 47. 48. 48. 49. 09 36 63 .91 40 89 .38 87 36 85 34 83 32 81 30 79 28 77 26 75 24 73 22 70 17 64 11 58 05 52 .99 46 93 40 01 76 51 .26 .88 37 86 35 84 33 82 31 79 28 Zn ppm 155 120 98 82 85 87 75 88 79 90 90 82 83 71 149 88 71 78 80 101 72 90 90 153 158 153 88 117 100 135 72 82 110 86 68 95 78 75 84 104 98 102 67 77 86 142 88 ppm 597 987 917 1657 2150 1173 1917 2467 1370 1817 1337 1510 1007 1800 2383 780 1767 1460 2450 1750 1507 1983 1560 1583 1500 1750 1950 1117 1267 665 1793 1753 1087 1183 1433 957 807 1850 1217 1047 593 1167 1017 1423 1800 1463 1350 1433 -31- 18a ppn1 128 205 192 365 570 n. d. 540 635 307 500 n.d. 410 430 440 435 177 360 420 370 n.d. 370 500 325 292 280 217 198 218 207 183 238 317 215 182 710 207 192 625 435 195 167 275 ‘ 285 325 380 283 265 570 ppnl 122 140 148 260 177 n. d. 193 187 153 218 168 147 172 123 155 135 158 178 192 262 155 139 170 150 198 218 203 101 207 160 198 143 105 117 127 69 105 170 127 137 125 98 91 168 142 300 133 167 Ni ppm 105 99 95 143 111 68 107 108 96 104 116 105 77 102 111 87 101 90 150 119 73 105 108 105 133 133 132 93 118 85 98 ’ 87 77 87 84 72 130 97 93 113 122 123 117 140 127 142 105 95 49.77 50.26 50.77 51.30 51.83 52.32 52.76 53.20 53.64 54.08 54.52 54.96 - 55.40 55.84 56.28 56.72 57.16 57.60 58.09 58.63 59.17 59.71 60.15 60.79 61.33 61.79 62.17 62.52 62.88 63.60 63.96 64.32 64.68 65.04 65.40 65.76 66.12 66.48 66.84 67.20 67.56 67.92 Zn ppnn 9O 78 85 84 114 104 95 87 108 79 87 100 66 97 91 72 70 71 75 80 70 89 80 78 65 96 96 78 78 102 70 69 61 55 58 77 60 95 60 56 51 65 ppnl 1673 1700 1707 1683 2057 2217 1917 1687 1750 1833 1117 1700 2033 1340 1450 1417 960 1413 1107 1020 1650 1300 1157 1240 1783 1667 1717 1133 1700 1417 1650 1317 1783 1440 1750 1417 1153 820 1167 1023 1667 1110 -82.. IBa PPHI 305 370 395 530 515 n.d. 547 302 563 395 450 237 547 357 395 310 385 367 410 345 547 345 320 277 487 533 603 248 313 550 600 490 633 480 723 473 412 175 460 373 430 380 Zr ppnl 187 133 192 178 203 153 182 170 192 163 133 113 172 158 120 117 160 145 157 132 205 140 117 122 155 170 182 148 167 162 128 142 118 143 145 130 103 118 97 95 110 98 N1 ppnl 148 123 142 99 137 155 157 145 178 145 132 168 132 125 117 133 128 122 117 118 113 138 110 108 110 118 111 91 92 122 93 88 90 121 101 88 84 80 97 96 113 81 hhl ppnl 760 563 572 215 3400 2725 2683 3493 2433 3700 2525 2425 2683 2458 2367 2225 2400 3200 2900 2750 2383 5667 2500 2100 2650 3400 3700 2167 2533 2967 2350 3200 2067 2217 2800 2433 2217 2900 2717 2783 2283 2750 2600 -83.. in. 13. 13. 13. 13. 14. 14. 14. 15. 15. 15. 15. 16. 16. 16. 16. 17. 17. 17. 18. 18. 18. 18. 19. 19. 19. 19. 20. 20. 20. 20. 21. 21. 21. 22. 22. 22. 22. 23. 23. 23. 23. 24. 24. 24. 25. 25. 25. 25. 16 42 7O 97 24 51 78 05 31 59 86 13 40 67 94 21 48 75 02 29 56 81 06 33 60 87 14 41 68 95 22 49 80 O3 40 57 84 11 42 65 93 20 51 74 01 28 55 82 Rh} ppnl 1800 2333 2000 2117 2200 2067 2467 2733 3333 2650 2850 1700 3383 3167 3100 2467 2167 3300 3567 2100 3217 3550 4167 2450 3350 3950 2200 2350 2867 3400 1867 2600 3183 3067 2883 2467 2900 5367 2517 2467 3183 3100 3367 3317 3217 3750 2433 4333 in. 26 29 40 44 46 47 47 .09 26. 26. 26. 27. 27. 28. 28. 36 63 91 40 89 38 87 .36 29. 30. 30. 31. 31. 32. 32. 33. 33. 34. 34. 35. 35. 36. 36. 37. 37. 38. 38. 39. 39. 39. 40. .93 41. 42. 42. 43. 85 34 83 32 81 30 79 28 77 26 75 24 73 22 70 17 64 11 58 05 52 99 46 40 01 76 51 .26 44. 45. 45. 88 37 86 .35 46. .33 .82 84 Dbl ppn1 2633 2617 2250 3383 2817 2483 3050 2950 2700 3050 3633 2933 2783 3500 2783 3050 2800 2517 3033 3283 2883 2100 2800 3150 3917 3850 3050 2017 3050 2883 3217 2433 3050 2733 3217 2583 3800 2583 3750 2700 3700 3233 2933 3000 3433‘ -34- in. 48 51 54 .31 48. 49. 49. 50. 50. .30 51. 52. 52. 53. 53. 54. 54. .96 55. 55. 56. 56. 57. 57. 58. 58. 59. 59. 60. 60. 61. 61. 62. 62. 62. 63. 63. 64. 64. . 65. 65. 65. 66. 66. 66. 67. 67. 67. 79 28 77 26 77 83 32 76 20 64 08 52 4O 84 28 72 16 60 O9 63 17 71 15 79 33 79 17 52 88 60 96 32 68 O4 40 76 12 48 84 20 56 92 9%) PP“1 3233 3483 3083 3783 3450 3617 3167 3333 3567 4267 2533 4687 3167 4433 2933 3400 4433 3200 3517 3033 4150 2883 4383 4300 3367 2983 3333 3967 4783 3067 3333 2817 3467 4517 2850 4800 5000 4417 4533 5533 2850 5850 4450 5000 5233 SPE CTR OCHE MICA L ANA L 18 ES SECTION 251 x Na K Ca Fe IMg in . (Z) 90 QC 0/0 % 4.84 1.93 2.43 1.47 7.40 0.40 4.77 1.73 2.38 1.52 9.17 0.50 4.50 1.93 2.10 1.88 9.03 0.55 4.23 1.65 2.18 1.43 8.77 0.39 3.98 1.57 1.95 1.31 7.03 0.43 3.69 2.03 1.69 2.42 11.00 0.57 3.44 1.83 1.94 1.71 8.37 0.39 3.24 1.62 1.78 1.33 7.67 0.44 3.07 2.17 1.67 2.47 9.90 0.48 2.83 1.93 1.97 1.18 8.60 0.39 2.38 1.88 2.10 1.26 8.30 0.41 1.80 1.90 1.72 1.28 7.77 0.36 1.29 1.95 1.40 1.70 8367 0.38 1.02 2.42 1.08 1.77 7.83 0.40 0.77 2.05 1.47 1.26 7.43 0.45 0.57 2.05 1.35 2.17 10.53 0.34 0.32 2.13 1.35 1.50 7.63 0.40 0.17 3.13 1.25 1.16 9.57 0.26 Sch C Gr 0.15 3.22 1.33 0.24 0.86 0.027 0.50 3.78 1.94 0.33 0.88 0.021 0.77 2.82 3.75 0.27 0.58 0.016 0.96 3.52 2.85 0.23 0.75 0.024 1.15 3.45 1.80 0.29 0.86 0.025 1.34 2.90 1.70 0.34 0.87 0.033 1.56 2.58 1.11 0.29 0.90 0.034 Gr C Sch 0.11 2.18 1.18 1.68 9.17 0.38 0.35 2.05 1.13 4.50 5.90 0.39 0.79 1.82 1.09 4.70 6.40 0.36 1.06 2.27 1.31 6.23 7.07 0.29 1.33 1.87 1.41 8.00 7.63 0.35 1.53 2.13 1.55 6.00 7.87 0.46 1.70 1.55 1.92 4.00 7.80 0.34 1.89 2.18 1.40 4.70 7.03 0.45 2.16 1.55 1.59 3.2 6.63 0.39 2.43 2.12 1.94 7.27 7.80 0.42 ~85- 01999143000519 .93 .45 .75 .00 .25 .52 .77 .10 HHHHHHHH % .64 .78 .86 .91 .97 .65 .58 .68 49 . QUIQMHNU‘N (”NO‘DQHQO: Q-QOCDQCO“ (134054033QO Fe % .50 .00 .73 .77 .33 .63 .00 .47 OOOOOOOO M8 % .33 .39 .29 .30 .39 .38 .35 .43 4.. OOOOHHHNNwwwwwfikrfif HOOCHQONCDOOQONQOfiQDNUIQCD qwqumoqupaxwmwoqub U) G D" CDC) H r‘h‘T‘F’F’F’F’ entering-acnva cam>o1ca~1c>01 (“C3C3 O :7 H 0.11 0.50 0.79 1.06 1.33 1.53 1.70 1.89 2.16 2.43 2.93 3.45 3.75 ppnl 1883 2017 2900 1967 1817 2717 2033 2033 2750 1817 1700 1433 2067 2033 2300 1800 1817 1600 360 430 365 397 265 375 301 2517 1917 1783 1783 1583 2067 1383 1383 1317 1650 1333 1592 1083 Ppnl 923 1133 1057 950 737 1050 917 703 1510 540 650 733 910 917 683 1283 763 843 21 14 10 15 34 31 613 257 300 460 483 517 487 433 373 700 277 480 320 ”87w Ti Ppm 6800 5967 10000 5900 8800 8200 n.d. 6400 6200 7633 7800 6433 n.d. 7467 6467 10000 5867 7933 1493 800 687 1110 1030 1037 1120 8800 7400 5700 6400 7033 6300 6600 7500 6533 8500 5800 7000 5900 ppm P P ? ? P P F F F P P P P P P ? F P P P 187 238 133 227 238 243 197 202 208 128 160 192 175 137 165 147 137 207 9999999 9999999999999 N1 ppnl P F P P P P F 82 81 90 67 63 100 73 75 91 65 58 64 84 70 64 74 68 52 9999999 78 51 51 57 69 58 53 50 52 77 44 55 61 .99 99999 H-JU‘INO @41ch ~88- 001 V Ti Zr N1 ppnl ppn1 ppn1 ppn1 ppn1 1117 283 4767 n.d. 47 1233 557 7767 n.d. 71 1483 290 6567 n.d. 74 1300 387 6767 n.d. 80 1867 643 7233 n.d. 85 t-h P x ooocHHHNNwwwwwAppp HCDUIQCNQOOQONWGQONUIQCD qwqqmwoqupfiwmuoqa> CD 0 5" £363 01-: E‘I‘rPOPP cncnrdco-acnra oawsvtc><1c>oi alCDC) o :3- 7 0.11 0.50 0.79 1.06 1.33 1.53 1.70 1.89 2.16 2.43 2.93 3.45 3.75 ' -89- Ga ppnl 24 31 25 30 17 24 18 19 22 16 24 18 21 19 20 35 4 20 25 32 52 44 46 38 43 33 30 10 11 14 13 13 14 11 15 12 12 14 Cr 9931 1427 1383 1573 1230 1480 1633 1667 1340 1470 1167 1270 1310 1353 1063 993 1087 1150 1427 13 10 21 11 10 13 13 1233 1000 1520 1954 2240 2434 1826 1740 1134 1694 1280 1654 1526 in. 4.00 4.25 4.52 4.77 5.10 ~90— Ga Ppnl 12 10 14 18 Cr ppn1 1480 1500 1706 1880 2460 SPECTROC HEMICA L ANA LYSES SECTION 253 x Na K Ca F 8 Mg in. % O/G % ' 90 (70 23.90 2.15 3.65 0.80 0.34 0.20 23.70 2.83 5.27 0.53 0.29 0.24 23.30 3.10 4.32 0.84 0.37 0.22 22.90 2.38 3.57 0.76 0.32 0.23 22.50 2.83 3.47 0.76 0.26 0.19 22.10 2.85 3.80 0.75 0.34 0.22 21.70 2.87 3.92 0.66 0.34 0.23 21.55 2.20 3.97 0.66 0.35 0.30 21.35 2.74 3.68 0.79 0.44 0.32 21.05 2.37 4.17 0.71 0.37 0.34 20.75 2.36 4.38 0.79 0.32 0.31 20.50 3.05 4.02 0.75 0.35 0.24 20.30 2.65 3.77 0.78 0.47 0.26 19.95 2.73 3.85 0.71 0.45 0.30 19.70 2.10 3.77 0.54 0.32 0.26 19.50 2.41 3.63 0.52 0.35 0.23 19.25 2.53 4.08 0.65 0.35 0.24 19.00 2.63 3.58 0.71 0.33 0.25 18.75 2.28 3.58 0.63 0.32 0.31 18.32 2.75 3.48 n.d. n.d. n.d. 17.89 2.40 3.78 0.69 0.45 0.27 17.47 2.43 4.03 0.51 0.25 0.18 17.05 2.71 5.52 0.63 0.28 0.31 16.63 2.90 3.62 0.83 0.33 0.22 16.21 2.55 4.32 0.54 0.51 0.33 15.79 3.15 4.67 0.49 0.45 0.44 14.84 2.20 3.27 0 72 0.24 0.22 14.54 2.17 3.98 0.58 0.30 0.19 14.29 2.53 3.98 0.62 0.31 0:22 13.79 2.40 4.07 0.61 0.34 0.39 13.39 2.47 3.48 0.65 0.29 0.31 13.04 2.58 3.23 0.62 0.27 0.26 12.79 2.47 2.98 0.96 0.25 0.28 12.44 2.95 3. 2 0.87 0.28 0.23 12.04 2.64 3.57 0.78 0.24 0.18 11.74 2.82 3.33 0.90 0.27 0.19 11.49 2.58 3.68 0.96 0.24 0.17 11.09 2.80 3.48 0.77 0.23 0.21 10.74 2.47 3.80 0.65 0.23 0.24 10.14 2.12 3.27 0.77 0.29 0.21 9 89 2.73 3.38 0.77 0.27 0.20 9.39 2.53 3.30 0.78 0.32 0.25 8.74 2.50 3.15 0.63 0.21 0.15 8.39 2.50 3.03 0.52 0.22 0.20 7.94 2.20 2.97 0.85 0.21 0.14 -91- H- 33% O NU’ICDHQNOOODQDt-‘fimld C a>hauo~a gJCJC) C>C>C1hlhlhibahbbabboaaa¢>OIUIUIG50>OD~J~J H O O O O O O O l O o O 0 O I 0 tr 0 d haunhna>h4oa-amura-aoac>~:¢>94a>c>uac><1$:s; CU‘O‘IWOIOUIUIOCOHNOOQ‘DOHNOO Na 7; 2.70 3.10 2.80 2.40 2.78 2.73 2.92 2.80 2.83 2.90 2.80 3.33 2.55 3.00 2.90 2.78 3.15 2.83 2.75 2.45 2.67 2.65 2.38 2.63 2.82 2.23 .10 65 .50 .47 .75 .33 .83 .78 .60 .60 .28 .23 .98 .50 .93 .70 NNNNNNNNNNNNNNNW %; 3.23 3.28 2.98 3.83 4.00 4.70 3.28 3.38 2.65 3.08 2.68 2.92 3.15 2.53 ofil§lfll¢t§h¢ rd-qracncp-a ca-qtocajacn 1.57 1.78 1.80 1.97 1.80 1.60 1.43 1.32 1,67 1.32 1.48 1.28 1.53 1.53 .30 .37 .38 .23 .1o .10 .49 .62 P‘h‘h‘h‘h‘h‘h‘h‘ -92- «was 03010563016301 mono-hasn‘tom 9999999999 0 O ‘C O C I 0 O omomwqummgpqmqw NMNNNfi NNNHHHHHHNNHHHOO o on O 0 mfimNQQMwHCD‘DCDAOIGF-‘QCDNODCDO: 90°C“. 3.17 3.33 .53 .60 .77 .77 .32 75 .15 .73 .95 .77 .77 .62 88 80 .45 .21 .08 .95 1.90 h‘h‘h‘h‘D h‘h‘h‘hihihih‘TOF‘h‘ththbD 0.24 0.17 0.13 0.22 0.26 0.17 0.23 0.26 0.12 0.14 0.22 0.17 0.21 0.14 0.13 0.17 0.21 0.15 0.08 0.10 0.11 in. 8.65 9.40 10.13 10.86 11.59 12.32 13.05 13.78 Na % 2.83 1.83 2.26 2.22 2.60 2.67 2.43 2.92 1.43 1.12 1.28 1.04 0.94 0.96 1.05 1.08 -93.. <99 010°C” we N5NDEOHHN a". NGGQ—Ommm c>= c>a 99999999 Fe % .73 .17 .28 .40 .96 96 0.16 0.13 0.14 0.13 n. d. 0.09 n. d. 0.13 23. 23. 23. 22. 22. 22 19 19. 19. 19. 19. 18. 18. 17. 17. .05 16. 16. 15. 14. .54 .29 13. 13. 13. 12. 12. 12. 11. 11. 11. 10. . 14 . 89 .39 . 74 .39 . 94 17 14 14 H OQQQQCDWCDCDO 90 70 30 90 50 . 10 21. 21. 21. 21. 20. 20. 20. 70 55 35 05 75 50 30 .95 70 50 25 00 75 32 89 47 63 21 84 79 39 04 79 04 74 49 09 74 .19 .84 w :1: ppm P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P PPQPPPPPPPQPPPPQPQ“99999999999“PPQPPPQPQPPPPPPFP O O v-s “o 7:: 8 999999999999999999999999999999999999999999999999 O C 999999999999999999999999999999999999999999999999 -94- Ti. ppm 517 427 517 487 480 507 600 437 827 553 633 528 643 760 497 597 473 563 600 nd, 575 457 503 477 740 750 527 600 613 553 630 500 570 410 457 720 410 393 477 473 527 560 243 367 223 307 302 252 3< a H mwooalcowqoowmowmrhoounozoqm H 5 Q. 19010019.-1quArk-bm-qqcomuhm-qmphooubm-qqmcn- ppm 227 214 245 153 150 167 190 152 162 150 142 153 168 185 133 145 227 190 170 n.d. 183 162 157 198 215 180 138 138 155 138 170 129 170 162 156 156 150 127 139 184 136 162 338 227 248 202 190 160 .49 .19 .94 .64 .39 .24 .84 .14 .84 .54 .24 .04 .39 .19 .89 .44 .15 COOHHHNNNNDDODQMMU‘QO) 50636) g. H .15 .44 .73 .02 .31 .60 .89 .18 .43 .72 .01 .30 .70 .10 .45 .75 .30 .15 .85 .15 .55 .10 .65 .40 .13 OCDGDQQQGamfifihwwWNNNHHHF-‘OOO H .74' U! m ppnn 999999999999999999 999999999999999999 46 61 58 62 55 24 30 29 31 42 27 39 29 28 17 50 47 23 25 30 34 38 17 21 C) H ppm 999999999999999999 999999999999999999 80 96 77 93 76 77 42 72 56 66 52 56 55 61 53 43 37 29 34 56 64 46 31 38 -95- Ti ppn1 380 417 302 497 353 183 242 240 193 222 203 213 172 277 212 n.d. 215 257 1080 1610 1497 1027 1580 1933 417 513 817 733 703 730 800 625 570 425 n.d. 920 593 555 870 750 825 435 450 PP“1 raid timeTU'IQO'Qfith-PCIQO‘ICDCDQQ 51 69 73 51 66 81 23 38 53 30 37 34 48 4O 51 45 30 19 25 49 56 44 27 33 ppnl 153 153 166 166 158 270 325 400 473 393 360 547 390 467 487 447 510 178 1800 1533 1117 1267 1080 820 593 663 963 747 770 610 520 543 763 660 387 420 243 323 540 630 497 313 387 10. 86 11. 59 12.32 13. 05 13.78 IBa ppm 24 21 19 25 17 C r 99m 32 31 26 38 31 -96- T i ppm 562 n. d. 420 n. d. 380 ppm 29 n.d. 19 n.d. 21 ppm 413 263 309 233 327 23.90 23.70 23.30 Cu ppm :3 Q; N . mummokmwmozmh- n.d. GuhU‘I-J'OOUIOCD -97- (3a ppnn 20 20 22 21 18 26 17 22 16 17 25 19 22 21 19 20 18 19 18 20 22 27 19 21 21 16 16 18 21 17 19 18 21 16 17 18 19 16 17 17 19 22 21 19 26 19 23 Pb 91”“ 48 63 62 52 48 64 55 56 41 59 64 53 51 52 51 47 50 48 55 60 68 66 54 56 59 55 40 47 48 48 6 45 4O 55 39 49 38 46 43 47 38 42 49 42 61 59 54 57 5.44 mHWQONCflmI-‘CDNOOGQDHDA 9999~H~N~999999999 Efiwmwkkhfihfififiwfirfiww CC) 11 Sch H .44 .73 02 .31 .60 .89 .18 .43 .72 .01 .30 .70 .10 .45 .75 .30 .15 .85 .15 55 .10 .65 .40 .13 qammcouscpahcoJ-xmmub- .P $660119»:me .44-queen;- n.d own. n.d. 11 11 13 10 -93- (3a PPm 19 20 22 18 19 21 21 19 23 21 21 22 18 23 24 17 22 17 20 20 21 20 19 21 18 17 19 19 17 16 16 17 33 24 13 17 22 21 24 21 16 14 Pb ppm 52 48 6O 47 46 6O 52 54 59 51 48 56 47 55 55 55 47 46 36 34 34 29 30 29 34 28 28 31 28 29 31 28 , 33 29 27 30 36 45 41 42 32 27 in. 10.86 11.59 12.32 13.05 13.78 -99- (3a Ppnl 14 n.d. 15 n.d. 20 Pb PD”[1 27 n.d. 29 n.d. 31 in. 10.86 11.59 12.32 13.05 13.78 Cu -99- ppm 10 n.d. n.d. Ga PPm 14 n.d. 15 n.d. 20 Pb ppm 27 n.d. 29 n.d. 31 APPENDIX B DATA CURVES ~100— Figure 8. Element concentration distribution for Section 37 5 '" Granite Schist 4 .. 3 .. Contact ,, 24$- |.5T’ Ca in% N 5 Element concentration % 5 x at in% db — 1‘ t 3 i I 4 2 I 0' I 2 0-1- 3 6 Distance from the contact in inches ~101- Figure 9. Element concentration distribution for Section 37 Granite Schist .5 'Contact ‘9 E 0 O C O 0 E m E 2 “J . I41- 12-- '0“ Bib l.2-- N 1.1.4 ' Fe in 76 Lou- 0.9‘r ” o.e-- o.e+ I 65' I: 2'. 2 i J .' é :5. 4 86 Distance from the contact in inches -102- Figure l0. Element concentration distribution for Section 37 Granite Schist (oozs) Contact 0.6+- 0.4.? W 0.2.. __ _ _ ,(0.069) 0.0l-- I Mn in 76 o.oo-~ c .2 4“ E ‘5 3‘9 :3 C C) 2._ 0 “is; E 0-1- 5 —JT o.oe-+ ,’ I “fig 0.07“ in Z 0.06" 0.0515 0.04-1- : : :1 : : I l : : : : 4 s 5 4 3 21412 3 4 s 6 Distance from the contact in inches -103- Figure ll. Element concentration distribution for Section 37 Granite Schist lOOO-p V 300.. in PPM soc" 400+ zoo4r eooo~§ ‘é 7000+}; O 0 sooo--g Ti ° in PPM 5000" c.- 2 J- 4ooo 2 m 3000" 20004. ‘ IOOOd- M + '9 4 : . 1 L . , 6 5 4 3 2 I A t E 3 Distance from the contact in inches -104- Figure l2. Elementc concentration distribution for Section 37 Granite Schist 6°" Contact .30-- .1. Ni 4° in PPM ' 304- 30'!- 20-- W Go '0“ W in PPM 0.. 3001- 200+ Cu '00., in PPM I: M O Odin: E E m 0 at. g 40Cl ‘3 3004- * B 200"? in PPM 32 IOO--m 0.7, W i i i 1‘ i i i i t i i i 6 5» 44 3 2 l l 2 ES 4 £5 6 0 Distance from the contact in inches -lOS- Figure l3. Element concentration distribution fOV Section 37 Granite Schist Contact soc-- Zr 200“ In PPM 1007.. I: .2 zoo-~95 :5; Zn 5 in PPM l00'1'o E 120-...» E 0 IOOq-[fi 607- SO-F 409- Pb 20-- in PPM l I I 1 1 l I l l L l l l I I I I I l l T I T 6 5 4 5 2 l l 2 5 4 5 Distance from the contact in inches -106- Figure l4. Element concentration distribution for Section 38 Schist Granite Contact 5" K in% 4,-- 3.11— - 8 2 - ._ 7 *5 I... 2 I: 0 O C O 0 o.e-r- Ca 0.5-1- "1% 0.4-1- ' 0.2-. o.o-. E Q) S 3 " E] No 2“ 1n% 1.. M o... I J 1 1 1 I 1 I 1 1 L 1 1 l T T l 1 l I T I l l l l T I 161412 864202468l0l2 Distance from the contact in inches -107- Schist l . Figure l5. Element concentration distribution Section 38 for Contact 1 Element concentration 1000‘ 800- 6 oo~ M9 400- in PPM T 2004 V Granite in% Fe in % l 1 I6 l4 I2 K) 8 Distance from the contact in inches ~108- Figure l6. Element concentration distribution for Section 38 Schist Granite Contact 6ooo-- noood- Ti in PPM 20004- 0 ‘7 c: °______.._._____.._____. __ _ 400-9 E 75 200+. o W C O o ‘_ O E 0 E 2 4ooo4- LU ..- WM Mn 2000“ In PPM 6 0041- 4oo-- 20°” W o .. J l l 1 J1 1 1 1 .L1 1 l l l V l J T 1 1 1 I 1 16141210 2 24 6810M Distance from the contact in inches -109- Figure l7. Element concentration distribution for Section 38 Schist Granite '°°' Contact so.- Pb so 1* in PPM 40¢ Outl- .5 ‘9 g ' Ga 0 in PPM 504 8 0 2o-- W ICLb 0.. E C) E eoo-- 2 11.1 Cu 6004 in PPM 4oo-. zoo... o _‘_ 1 l 1 l 1 1 1 I 1 1 1 1 1 1 I f l I F F I l I I l l l6l4lzI08 42L2468l0l2 Distance from the contact in inches -110- Figure l8. Element concentration distribution for Section 38 Schist Granite Contact I: .9 ‘2 E 2000+ 3 8 'l l000-- °._ 1 _ T 800-. '1 V l in PPM 600" 1 4004- I 2009 E O E .9. 111 zoo-- Zr too-- - in PPM o .- 3001 200.» n . MW 51 PPM 1004 1 1 1 1 1 1 1 L I 1 1 1 I 1 l 1 | 1 1 1 r’ | I I I l I l l I 161412106642 468|Ol2 0 Distance from the contact in inches -111- Figure 19. Element concentration Distribution for Section 38 Schist Granite M—‘T 60i- 4o.» .5 Ni 20“ ‘6 in PPM E 8 C O 0 1601 E 5 '40-11- m r 120-. 100... i B BOT ' in PPM 604. « ' 40.- J. zo-h ' {QM 0.1. l l 1 l 1 1 I 1 l J l I j I I l I I l l I I I I I I Distance from the contact in inches -112- concentration Element Figure 20. Element concentration distribution for Section 25I Schist (I) Granite Schist (2) Contact l Contact 4 4- Na 3 .. in X M 2‘. M Ca in 76 100- 8.. *V’ Fe in 76 5 $57 N r i U I 164 "'7 mm- 01-”- h-I- . ‘ K W” “1% 1.. l 6 3 8 F i J, i 0 Distance from the contact in inches -113- Figure 2|. Element concentration distribution for Section 25I Schist (I) Granite Schist (2) [P91101931 #0000" 8000" :1 6000 4 40009 Ti ‘ in PPM I 20004 I 60001 5000-- 4000-1- Element concentration 3000‘ 2000-- '°°°" in PPM 3000.. 2000-- Mn l000- in PPMI $ Oldi- 2-. N9- O_..1_. 0-1 Distance from contact in inches -114- for Section 25l Schist (I) Granite Contact :4 It Contact Figure 22. Element concentration distribution Schist (2) 300B Zr 200+ W in PPM loo-- 0.. C .2 4— O ‘- «.— C 0 O C O 0 E “e’ 2000-. g m i500.. V in PPM I000.- : : r : 4 3 I 5 O O N-P --P _-b N-i- Distance from the contact in inches out rm “- ai-r -115- Figure 23. 2300" 20001 I IOOO-w 500+ IOO-b O O m 9 concentration .5 SEQ :_ um 5:55 :0 - .00.:00 0.20:0 02:20 «SN :2800 :0. 5:22.88 :0_.2.:00:00 db b u q 02:20 .:0E0_ m om“. 0 u d 33% .00 050:. .10“ L00? 1' on +60 :0 @ nrO' 6 0 .60 guawelg uog iouuaouoo -121- APPENDIX C DIFFU SION THEORY ~122— APPENDIX C Diffusion Theory Fick's second law of diffusion can be stated as follows (Jost, 1960): 2 99:13 at (A.1) 9 l; 2 8x l.»-.1 where a 2 concentration t= ime x 2 distance -- D = diffusion coefficient Equation (A. 1) assumes that D is a constant. If we look at the system after diffusion has taken place and there is no further movement of material, then equation (A. 1) reduces to 2 0:13 a; (A.2) 3x The solution of equation (A.2) is of the form: L = (CO + Clx) D (A.3) Therefore a plot of C versus x should be linear. Since equation (3.4) which describes C as a function of x in nonlinear, equation (A.3) does not apply and the assumption of constant D is not valid for this case. If we assume that D is some function of C (D = f(C)) and since equation (3.4) defines C as a function of x, C = G(x), then D can be defined as a func- tion of x, D = D(x), and equation (A. 1) becomes: —123- -124-- 2 _ Q0 = a c Qngxz) 30 a t 1309 6x2 + 9x ax (AA) In the system under consideration, a dike intrusive into country rock, the boundary conditions for equation (A.4) are as follows: Dike Contact Host Rock atx=0 atx=0 atx=0 t=O t=0 t=0 C=O1 C=C1 C=02 The system under consideration is further complicated by anisotropy, multi- ple components, multiple phases and a multiplicity of grains. The solution of equation (A. 4) under the above conditions has not been reported. If we look at equation (A. 4) at t = tfinal’ then g9;- = 0, and 2 - 0=D(x) [—36-] + WJ [—3.3%] (A.5) X Equation (3.4) describes C = f(x) at t = tfinal' Substituting equation (3.4) into equation (A. 5) yields: 0 = 31959)- + D(x) [1 - (2be(kx)) Tanh (beam) — bf‘ (A.6) A solution that fits equation (A. 6) is of the form: D(x) .—.- ew (A. 7) where w = G(x) Substituting equation (A. 7) into equation (A. 6) and solving for (w) yields: ‘125- x = [(2/k)ln(Cosh(be(kx) - b))] - x (A. 8) Substituting equation (A. 8) into equation (A. 7) results in: D(x) = e [-131 ln(Cosh(be(kx) - b):| — x (A. 9) The solution of D is valid only under the following conditions: t = t and C = tanh(be(kx) - b) final This is because there is no reason to assume that equation (3.4) is a general solution of equation (A. 5) and also because equation (3. 4) is not valid at t 7‘ tfinal' A general solution of equation (A. 5) would involve C as a function of both distance and time, C = F(x, t), and would result in a solution for D involving distance and time or concentration and time, D = G(x, t) or D = H(C, t). This solution would also have to take into account the barrier nature of the contact. A solution for the type of system under consideration at the present is not possible. l l 9 0 7 4 5 4 1. 3 o 3 9 2 4| 3 II [It III “ “lll I'll... ill: “ I ll III “ ||. || III Il III