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ABSTRACT

by Arthur Lifshin

This study was designed to examine the nature of diffusion patterns

across an igneous contact zone, both in the intrusive and the country rock.

Previous research indicates that diffusion plays an important role in such

situations.

Continuous samples were taken from small granite dikes and the

adjacent host rock. These samples were analyzed for both major and minor

elements by emission spectrographic techniques. Concentration distrubu-

tions were obtained and a generalized function was determined.

Three types of curves were observed: hyperbolic tangent, hyperbolic

secant, and complex. Evidence from the complex curves indicates that the

system is discontinuous at the contact. These curves cannot be used to

describe the concentration distributions but, however, they can be used to

describe the relative rates of diffusion on either side of the contact and

through the contact itself. Further evidence from the curve types leads to

the hypothesis that the contact acts as if it were a semipermeable barrier

to diffusion of material across it.

A high-frequency and a low—frequency periodicity that is not related

to sampling was found in the distribution. This is thought to be due to

enhancement of normal variation in the rock by a non-equilibrium situation

and by diffusion producing a high frequency periodicity. The low-frequency

periodicity is thought to be caused by the barrier nature of the contact.



Solid-solid diffusion is rejected as the mechanism involved in igneous

contact zone diffusion, leaving a form of fluid diffusion as the postulated

mechanism. The amount of fluid is the main factor controlling the mechanism.

With large amounts of fluid, the fluid is the active diffusing agent (hydrothermal

ore deposits). With small amounts of fluid, diffusion occurs through a static

fluid film surrounding the mineral grains which is a few molecules thick

(granite contact zones). A matrix effect which was found appears to be due

primarily to the texture of the host rock and secondarily to its composition.

Increasing the width of the intrusive increases the thickness of the diffusion

zone, but by a much smaller amount than the increased dike thickness.
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CHAPTER I

INTRODUCTION

Statement and Object:
 

Interactions between an intrusive body and its host rock constitute a

major area within the field of igneous and metamorphic rocks which is replete

with unsolved problems. One aspect, the interchange of material between the

two rock bodies, is of major importance in understanding the chemical pro-

cesses that occur during intrusion. Exchange processes may involve move—

ments of fluids or fluidized materials or molecular diffusion. Contact

phenomena probably involve combinations of these processes on several dif-

ferent scales. On the largest scale this interaction can be seen in veins

proceeding from the main body of the intrusion and in similar phenomena.

Smaller scale interactions are usually manifested by changes in gross mineralogy

near contacts or, more subtly, slight intra-mineralic changes in composition.

This latter type of change may be due to molecular solid-solid diffusion,

or to a fluidized molecular diffusion either by movement of the fluid itself

or by the movement of molecules or ions through a fluid film surrounding the

grains.

The determination of the nature of small scale transfer processes is

the object of this research. Patterns of elemental variations across contacts

of small dikes and the adjacent country rock will serve to limit the possible

mechanisms for small scale transfer.
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The primary objectives of this study are as follows:

1. To determine the extent of interchange of material between

an intrusion and host rock.

2. To determine how the element distribution pattern resulting

from the interchange differs for different elements.

3. From 1 and 2, to postulate mechanisms for element transfer

that could result in the distributions observed.

Previous Work
 

Most of the studies in the area of diffusion in geological systems have

focussed on wall rock alteration in mineral deposits. A few studies have been

done on diffusion in contact metamorphic zones, diffusion in single crystals,

or the theoretical basis of these phenomena.

Most of the experimental studies are of the diffusion of a single element

into individual minerals. These studies are summarized by Fyfe, Turner, and

Verhoogan (1958) and the values of the diffusion coefficients reported by them

are exceedingly small (on the order of 10-6).

Jensen (1964) investigated the mechanisms of solid-solid diffusion from

a theoretical standpoint. Calculated activation energies for solid-solid diffu-

sion by means of lattice defects agree with the activation energies from

experimentally determined diffusion coefficients, suggesting that solid-solid

diffusion probably occurs by movement of the ion through lattice defects in

crystals. The values determined by Jensen and those reported by Fyfe, Turner

and Verhoogan show the improbability of solid-solid diffusion as a mechanism

in the transport of materials over distances greater than a few millimeters to

one or two centimeters indicating that this type of diffusion is important only

in the interchange of material between contiguous mineral grains and cannot be

used to explain larger transport phenomena.
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The interchange of material between an intrusive and its host rock has

been reported for distances many times greater than appears to be possible

through solid—solid diffusion. One possible process for these phenomena is

the introduction of a fluid into the diffusion system either as a passive or

active agent. In the case of the fluid acting as a passive agent, diffusion would

occur within an intergranular fluid film and would yield diffusion coefficients

somewhere between those of solid-solid diffusion and active fluid movement.

Mueller (1966) examined diffusion mechanisms from theory and pub—

lished data in relation to the attainment of equilibrium in metamorphic rocks.

He concluded that solid-solid diffusion is of major importance in the establish-

ment of local equilibrium, but that it cannot be utilized in extensive material

interchange. He asserts that extensive material interchange requires a fluid

or vapor phase. He points out that any substance has a vapor pressure, and

that this is enhanced by increased temperatures and fluids. This essentially

agrees with Jensen's work and adds the idea of a vapor phase playing a role in

the diffusion process to his conclusions.

Dennen (1951) investigated chemical variation in homogeneous rocks

and in contact zones. His findings show that there are minor compositional

variations even in the homogeneous rocks (Figure 1). The composition varia—

tions he found in contact rocks are seen to be completely different from those

determined for the homogeneous rocks (Figure 2). The contact zone distribu-

tion curves show major depletion and enhancement of elements near the contacts

which are of a different order of magnitude from the variations seen in the homo—

geneous rock. It should be noted that the zone of concentration variation in the

contact zone rocks is too large to support solid-solid diffusion as a transport

mechanism and that fluids must be involved. It should also be noted that the



 

 

Figure |- Chemical Variation in a Homogeneous Rock

(from Dennen)
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Figure 2 -Chemical Variation Across a Contact of the Medford

Diabase Dike with Rhyolite (from Dennen,l95l)
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diabase-arkose contact curves and the granite-shale contact curves show a

distinct periodicity in zone of concentration variation. This periodicity may

be due to a variation in the rate of diffusion.

Woodard (1968) studied the compositional variation in the Cape Neddick

Gabbro—Kittery Formation contact zone in Maine. He obtained composition

distribution curves similar to those of Dennen's over similar distances.

Morris and Lovering (1952) investigated the distribution of metals in

the wall rock of the Tintic District mines. Their distribution curves show a

major increase in concentration near the ore vein with the element transfer

zone (Figure 3) being from one to two orders of magnitude greater than those

of Dennen's or Woodard's. The availability of fluids in these cases appear

to be the critical difference. The "intrusion" is a hydrothermal vein which

may be considered to be primarily an aqueous fluid in comparison to a granitic

or a gabbroic magma. This leads to the assumption that material transfer has

occurred primarily through liquid diffusion, where the major source of the

fluid is in the "intrusive" itself. In magmatic intrusives, the width of the

material transfer zone is much too large for solid-solid diffusion and seems

to be too small for fluid diffusion, suggesting the possibility of diffusion of

the ions through an effectively static fluid film.

Similar studies by Stonehouse (1954) at Sudbury; Ishikawa, Kuroda and

Sudo (1962) in the Kuroko deposits of Japan; Fullagar, Brown and Hagner

(1967) at the Ore Knob Deposits in North Carolina; and Wehrenberg and Silverman

(1965) at Gilman, Colorado; have yielded results similar to those of Morris and

Lovering. The distribution curves for both major and trace elements which

were determined in these studies show major enhancement or depletion effects

near the contact. The zone of concentration enhancement or depletion varies

from about 5 feet in some of the Kuroko deposits to about 75 feet in some of the



 

 

Figure 3- Heavy Metal Dispersion Pattern, Eureka Hill Mine,

Tintic District, Utah (from Morris 8: Lovering ,l952)
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Ore Knob deposits. The findings of these studies agree with the results of

Morris and Lovering in respect to the material transfer and the thickness of

the transfer zone, but like them do not agree with Dennen's and Woodard's

studies on "normal" igneous contact zones.

Wehrenberg and Silverman (1965) ran a series of experiments in

which zinc, in solution, was diffused through the Yule marble. Their resultant

curves were comparable with the curves from the hydrothermal deposit studies,

but they did not agree with the curves of either Dennen or \l’oodard. This is

another indication that there are major differences between the two types of

contact zones.

In the present study the writer is attempting partially to bridge the

gap between diffusion theory and diffusion in a non-hydrothermal igneous con-

tact zone in which the intrusion contains but little water. Empirical formulations

that describe the real system will be obtained and these formulations will be

related to current diffusion theory if possible.

Location and Geologic Setting
 

The samples for this study were taken from the igneous and matamorphic

rocks in the Thomaston and Waterbury Quadrangles in Western Connecticut

(Figure 4).

Gates (1951, 1954, 1968) mapped the Litchfield, Woodbury and Waterbury

quadrangles and Cassie (1966) mapped the Thomaston Quadrangle in Connecticut.

From their work in this area they have reported that there are two cycles of

deformation in the country rock. The country rock sampled for this study is

the regionally metamorphosed Hartland Formation.

The granites sampled are thought to be related to the Nonewaug Granite

which is intrusive in the area. These Granites are reported by both Gates and

Cassie to be post metamorphic and therefore not affected by the regional folding

and metamorphism in the area.
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CHAPTER II

METHODS AND TECHNIQUES

Sampling

Continuous samples were taken in all cases. In the case of narrow width

dikes (maximum width of about two feet), the samples were taken across the

dike and into the host rock. For wider dikes, only that part of the dike near

the contact and the adjacent horizon were sampled. The contact was defined as

that plane which divides the two rock types and was seen as a line of abrupt

mineralogical change. In either case care was taken so that only one horizon

was sampled in the host rock. The term horizon was defined as a mineralogically

homogeneous zone bounded by different mineralogies and probably represents

one original homogeneous sedimentary unit.

Sample Description
 

Three separate dikes were sampled for this study. Their locations are

shown in Figure 4 and the data concerning them is given in Table 1. The dikes

are roughly an order of magnitude apart in thickness which yields the following

thickness ratio: 1:6:120. The mineralogies of the dikes while similar, are

sufficiently different to distinguish one from the other. None of the dikes showed

chilled margins. Two separate sections were taken from the 12-inch wide dike

in order to obtain a replicate sample. The host rock in these sections was

chosen for its similarity.

The locations of the dikes are as follows:

Section 37 and 38 - On state route 109, 3. 1 miles west of

the intersection of state route 109 and US route 6. The outcrop

.-17_



Section

37, 38

251

253

TABLE 1

SUMMARY OF THE DATA FOR THE GRANITE DIKES

  

 

Width Quartz K-Feldspar Plagioclase An Muscovite

in inches % % % i %

12 41.6 21.1 21.9 18 15.0

2 36.1 42.1 19.0 17 2.0

240 45.4 31.1 15.7 16 7.4

-18..

Apatite

%

3.4

 

0.9

0.5
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is on the east side of the road at the intersection of route 109 and

a northeast trending side road.

Section 251 - By the Thomaston Dam Site on the Naugatuck

River, approximately 100 yards east of the causeway bridge.

Section 253 - On interstate route 84 approximately 200

yards before the first Waterbury exit.

The host rock that was sampled was different for each dike. The only

exception was section 37 and section 38 where similar rock types were sampled

to provide a duplication. The data for the host rocks sampled are given in

Table 2. Sections 37 and 38 are quartz-biotite schists. Section 251 is a

quartz—biotite-hornblende schist and section 253 is a granite gneiss. The three

sections provide enough differences in mineralogy and can be treated as dif-

ferent samples and not as a set of replications.

Sample Preparation

The field samples were sliced parallel to the contact by a diamond saw

to yield sections of approximately 0. 25 inches wide. These sections were

then coarse ground in a Spex Mixer Mill with a high alumina ceramic canister

and ball. An optimum grinding time of 45 minutes per sample was determined

from a plot of grinding time versus emission line intensity. Four hundred

milligrams of the sample were weighed out and mixed with 600 milligrams of

graphite mix. Mixing was done on the Spex Mixer Mill using glass vials and

plastic balls. Comparison with hand mim‘ng and hand grinding using a mortar

and pestle indicated that the mill was at least as good as the hand method.

Elements Selected for Analysis
 

The elements selected for analysis were chosen because of their posi-

tion in the periodic table, and in the case of trace elements, their substitution
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for the major element concerned. In all cases the elements chosen had to fit

the limitations of the analytical technique.

Elements were chosen to obtain a minimum of a full row on the periodic

table and, where possible, to yield multiples in the columns. This decision

was based on the assumption that the mobility of the diffusing ions would be

dependent on a parameter that could be related to atomic number and/or

atomic weight. Such parameters include ionic charge, ionic size, charge

density, etc.

The second item, ionic substitution, follows a similar pattern except

in this case ionic size and ionic charge are of primary importance.

The omission of aluminum and silicon as well as oxygen, sulfur and

similar elements is due to the limitations of the analytic technique.

SpectrographicfiAnalysis

All analyses for both major and minor elements were done by the writer

using emission spectrographic techniques while at the Department of Geology,

Michigan State University. The technique used was that of interrupted arc

with internal standards. Palladium and indium were used as internal standards

(Ahrens, 1950); graphite was added to the mixture for smoother burning.

Table 3 gives the analytical conditions used and Table 4 the Spectral lines

measured.

External Standards
 

In order to obtain useful quantitative data external standards must be

used. The intensity ratios of the unknowns are related to those of the external

standards which are of known composition to obtain the concentration of the

unknown. The following external standards were used in this study:

1. Standard sample rock G-1



TABLE 3

ANALYTICAL CONDITIONS FOR EMISSION SPECTROGRAPHIC ANALYSIS

Equipment: Source unit — Applied Research Laboratories

Multi-source-unit 4

Spectrograph - Bausch and Lomb 2 meter dual grating

Jarrel Ash Mic rophotometer

Seidel calculating board, calibration curve from iron

spectrum by two step filter method (Harvey, 1957)

Excitation: Interrupted arc, 30 ohms

40 mfd

360 mh

15 seconds burn time

sample positive

Electrodes: 0.242 inch graphite electrodes

Transmittance: 80% and 40% plus additional filtering to 27% and 14%

on some lines by means of a split filter

Photography: Plates - Eastman Kodak Spectrum Analysis No. 3

Processing - Developer D 19 3-1/2 minutes

Stop - 3% acetic acid 30 seconds

Fixer - Kodak fixer 10 minutes

Wash - running water 30 minutes



TABLE 4

SPECTROSCOPIC ANALYSIS LINE S

 

Element Line* Element Line

Barium 4554. 03 A Lead 2833. 06

Boron 2496. 78 Magnesium 2781.42

Magnesium 2802 . 69

Calcium 3007. 00 Magnesium 2783. 00

Calcium 3009. 20

Calcium 3158. 60 Manganese 2801 . 06

Chromium 4274. 80 Nickel 3012. 00

Chromium 4344. 51

Chromium 4351. 77 Palladium 3242. 90

Palladium 3404. 00

Copper 3273 . 94 Palladium 3690. 34

Gallium 2943. 61 Potassium 4047. 20

Indium 3258. 56 Sodium 3302. 99

Indium 3256. 00

Titanium 3326.70

Iron 3011. 48 Titanium 3361. 00

Iron 3075. 72

Iron 31 00. 67 Vanadium 3183 . 41

Iron 3196. 93 Vanadium 3183. 98

Iron 3198. 00

Iron 3199. 52 Zinc 3345. 07

Zirconium 3391.98

*Values of the spectroscopic lines are from the National Bureau of Standards

Monograph 32

-23-



The working curves obtained from the synthetic standards were adjusted to the

values of the standard rock samples G-1 and W—l with a partial correction for

.24~

Standard sample rock W-1

Synthetic standards - Spectrographically pure compounds

of various elements were mixed together to provide a

base of average composition similar to the samples to be

analyzed. Major elements of interest were varied within

this base. Minor and trace elements were added as dilu-

tions in graphite to cover the range of compositions of

interest.

the matrix effect.

Interrgpted Arc
 

Interrupted arc is a technique whereby the are, instead of being continuous,

is mechanically interrupted by a rotary motor rotating at 60 cycles per second.

The main effect of the interrupted arc is to lower the temperature of the sample

in the arc . The interrupted arc was used in this study instead of the more

commonly used continuous are for the following reasons:

1.

The disadvantages of this method appear to be an enhancement of the matrix

effect of particle size on emission line intensity.

Reduction of CN emission and background over that of the

continuous arc, probably due to the lower temperature of

the interrupted arc.

Shorter arcing time per sample. In the present case, 15

seconds yielded consistant results with as good or better

sensitivity than the 2 minutes or longer required of the

continuous arc .

Correction for the matrix
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effect was done as stated previously. The values of G-1 and W-1 were the

recommended values of Fleischer and Stevens (1962). A correction for

particle size was made by determining an optimum grinding time from a

plot of grinding time versus emission line intensity.

Precision

All the samples were analyzed in triplicate, the standards were ana-

lyzed six separate times and two other samples were analyzed ten times. The

maximum error for the standards are listed in Table 5.



TABLE 5

MAXIMUM ERROR DETERMINED FOR

THE ANALYSIS OF THE STANDARDS

Error in Percent

  

Element Concentration

Barium 10%

Boron 1 0%

Calcium 9%

Chromium 1 0%

Copper 10%

Gallium 1 0%

Iron 7%

Lead 10%

Magnesium 8%

Manganese 7%

Nickel 1 0%

Potassium 8%

Sodium 9%

Titanium 10%

Vanadium 10%

Zinc 10%

Zirconium 9%
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CHAPTER III

RESULTS

General Statement
 

An examination of the data curves (Appendix B) indicates the presence

of gradients for most of the elements studied. In most of the curves, the

observed gradients indicate the movement of material within the system

studied. This is best seen in those curves which appear to be convergent

or continuous at the contact (Figures 8, 10, 11, etc.). Other curves do not

show material transfer although a gradient exists. This is seen in Figures

16, 21, 25, etc. In this last case, the concentration distribution on either

side of the contact can best be described as a horizontal straight line.

Most of the curves have a periodicity which is superimposed upon the

general trend of the distribution. Both a high frequency and a low frequency

periodicity can be seen on the same curve. There is an order of magnitude

difference in the two frequencies which indicates distinct differences between

the two types.

Curve Descriptions
 

Examination of the patterns of the curve gradients indicates that they

can be roughly grouped into three classes (Figure 5). The first class can

be described as a generalized hyperbolic tangent (Figure 5a). The second

class can be described as a generalized hyperbolic secant (Figure 5b). The

third class is more complex as the curves are divergent at the contact

(Figure 5c). Table 6 shows the breakdown of the elements into the major

classes.
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Figure 5- Three Classes of the Element Distribution Curves

Figure 50- Class I Generalized Hyperbolic Tangent
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Figure 5b- Class III Generalized Hyperbolic Secant
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Figure 5c - Class III Complex,Div ergent at the contact
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Section

37

38

251(1)

251(2)

253

BREAKDOWN OF THE VARIOUS ELEMENTS

INTO THE THREE CURVE CLASSES

Type I

Hyperbolic

Tangent
 

K, Mg, Ca, Fe,

Mn,Cu,B

K, Mg, Ca, Fe,

Mn, Cu, Pb,

Ga,B

Na, Mg,Ca, Fe,

Cr, V, Ti, Ga, Mn

Na, Mg,Ca, Fe,

Cr, V, Ti, Ga

K, Na,Ca,Cu,

Ga, Pb

TABLE 6

Type II

Hyperbolic

Secant

Type 11]

Comp] ex
  

Na, Ti, Ga, Pb

Na

K

Mn

-29-

none

Ti

none

Mn

Mg, FeV, Ti
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The greatest number of curves are of the type I (generalized hyperbolic

tangent). This class of curves contains the straight line distributions

which may be considered as an extreme form of the hyperbolic tangent.

A few curves fit the type II classification (generalized hyperbolic secant).

Six curves are in the type III class (complex).

The first two main curve classes can be further broken down into

subgroups. The class III curves are all of the same form and hence there

are no subgroups for this class. Figures 6 and 7 show the subgroups for

the corresponding classes. Tables 7 and 8 show the element breakdown

into the subclasses. It may be noted that while the subclasses are dis-

tinct from each other, they are all basically modifications of the same

curves.

The general form of the curve for type I is the hyperbolic tangent

which can be expressed as follows:

Ci = tanh (¢) = (e¢ - e‘¢)(e¢ + e‘¢) (3.1)

where i = concentration of element 1

q) = some function of the distance from the contact

The three subgroups of the type I curve can be generated from the generalized

hyperbolic tangent of type I by changing the function ¢.

The type 11b curve is the inverse of the type Ila curve and can be

generated by a rotation around the x axis. The hyperbolic secant can be

expressed as follows:

ci = sech (¢) = (e¢ + e‘¢)/2

where i = concentration of element i

¢ 2 some function of the distance from the contact



1
3
1
.
1
1
.
»
.
i
i
i
!
!
!

.
2
1
.
.
.

.
.
E

.
V

a.



 

 

 

  

 

 

 

 

 

Figure 6 - Generalized Curves for the Subclasses of the

Class I Curves

Figure 60* - Class Ia Hyperbolic Tangent
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6i

Figure 6b- Class Ib Straight line with gradient

x

Ci

Figure 6c - Class Ic Straight line , no gradient
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Figure 7-Generalized Curve for the Subclasses of the

00553 Curves

Figure 7a - Class Ilia Hyperbolic Secant
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Figure 7b- ClassJIb Inverted Hyperbolic Secant
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TABLE 7

BREAKDOWN OF THE VARIOUS ELEMENTS

INTO THE SUBGROUPS OF TYPE I

  

Section Ia lb 10

37 K, Mg, Ca, Cu, B Fe, Mn none

38 K, Mg, Fe, Mn, Ga, none Ca

Pb, B, Cu

251(1) Na, Mg, Fe, Ga, V, Cr, Ti none

Ca, Mn

251(2) Na, Fe, Ga Ca, Mg, V, ’11, Cr none

253 Ca, K Pb Na, Cu, Ga

M33-



TABLE 8

BREAKDOWN OF THE VARIOUS ELEMENTS

IN"O THE SUBGROUPS OF TYPE II

W Ill.) 1121

37 Ti, Ga

38 Na none

251(1) K none

251(2) 1( none

253 none Mn
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The type III curve is the only curve that is divergent at the contact. A formu-

lation for this type of curve would involve two separate functions, a decay

curve on one side of the contact and a straight line on the other.

Distribution of the Elements in the Curve 'llypes

The majority of the elements fall into the type I or hyperbolic tangent

curves. These curves can be described as a growth or decay curve which

would be expected in a diffusion System. A definite relationship appears

between the Na and K curves for each section. Where the Na is in the type I

groups the K is in the type II group and visa versa. This does not hold for

section 253, probably due to the non-diffusion of the Na. The other elements

in the type II curves do not show any distinct relationships with the type I

curves. No obvious relationships appear for the type III curves, although _

this type of curve could be generated if diffusion occurred only on one

side of the contact without material crossing the contact.

The type Ib and lo curves are those that show no diffusion either with

a gradient (lb) or without one (Ic). Some relationships appear to exist

between these and the type Ia curves, but these relationships are not con-

sistent. The type Ia curves could be further subdivided but the resultant

groupings would be superfluous since they would be due to modifications in

the ¢function.

The previous discussion is based on the assumption that the curves can

be treated as continuous across the contact. The type III curves directly

indicate this. If the reverse assumption is made, that the curves are dis-

continuous at the contact, the curve types then assume other meanings. The

type I curves could be treated either way, but the Ib and lo curves indicate a

discontinuous function.
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In the case of the type II curves, the contact is a point of high con—

centration (IIa) or low concentration (111)) common to both sides. Under the

assumption of continuity this is not easily explained. If one assumes a dis-

continuity, however, the situation can be explained by means of differing

rates of diffusion on either side of the contact. It should also be noted that

the physical system is itself discontinuous at the contact.

Under the assumption of discontinuity the system can still be treated

as a growth or decay curve if each side of the contact is considered independently.

In this case all of the curves can be treated either as a straight line or as a

hyperbolic tangent. The breakdown into types I, II, and III curves can now be

used to indicate relative mobilities within the system.

Specific Form of the Distribution

An approximate solution for the function (bin equation 3. 1 was obtained

by the following method.

1. The data was transformed such that;

0

ll ln(Ci/CO)/ln(Co/Cm) (3.3)

resultant concentration of element iwhere: C
e

Ci = actual concentration of element i

CO = concentration of element i at its midpoint

Cm = minimum value of the concentration of element i

This was done in order tofit the data to the +1 to -1 range of the

(hyperbolic tangent.

2. The values of ¢corrBSponding to arctanh (Ce) were

obtained from a table.
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3. These values were then plotted against X, where

X = x - x0 and x0 is the distance from the contact

corresponding to Ci = Co'

4. A linear regression was performed on these variables

and a generalized expression for ¢ was obtained.

The resultant expression for (D is:

__ _ kX
Ce —— ln(Ci/CO)/ln(CO/Cm) - tanh(b(e - 1)) (3.4)

Tables 9 to 12 show the values of the parameters for each section. There

appear to be no definite relationships between b and k and atomic weight or

atomic number. This may be due to the approximate nature of the data or

to the small amount of data available.

Periodicity

As stated earlier, most of the curves show both a high and low fre-

quency periodicity. A wavelength analysis of this periodicity was done by

means of an autocorrelation program developed by D. Hill (Department of

Geology, Michigan State University) on the CDC 3600 at Michigan State

University. Comparison of the determined wavelengths with the sampling

interval indicated the following.

1. The low frequency periodicity was not related to the

sampling interval.

2. Of the high frequencies for a given curve, some are

distinctly not related to the sampling interval while

others may be related.

All of the high frequencies may be the result of the experimental procedure

and may be viewed as noise within the data. This is not probable as the

low frequency appears to be inherent in the system, and the high frequency



TABLE 9

PARAMETERS OF EQUATION (3.4) FOR SECTION 37

  3.1.9.9991. x0 3.9.- 39/3111 b 1......

Na (G)* 0.30 1.14 2 0.24 0.90

Na (S)** 0.60 0.99 2 1.22 0.49

K (G) -0.30 2.98 2 —0.36 0.43

Mg (S) 0. 90 1. 20 2 0.35 0.99

Ti (G) 0.60 1628 2 -0.08 2.71

Ti (S) 0.55 4568 2 —0.11 5.70

Cu (G) 0.70 112 2 0.17 1.84

Cu (S) 1.25 40 4 -0.12 1.37

Ga (G) —0.40 24 2 -0.11 2.21

Pb (S) 0.30 30 2 0.07 5.00

*(G) indicates that the values are for the granite part of the section.

**(S) indicates that the values are for the schist part of. the section.
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Element

Na

Na

K

Fe

PARAME’ ‘ERS OF EQUATION (3. 4) FOR SECTION 38

(G)*
(S)**

(S)

(5)

Mg (G)

Ms (S)

B

. B

Cu

Ga

Pb

Pb

Ti

V

Zn

*(G) indicates that the values are for the granite part of the section.

**(S) indicates that the values are for the schist part of the section.

(G)_

(S)

(S)

(G)

(G)

(S)

(S)

(S)

(S)

 

0
'
]

U
]

.30

.50

.10

.15

.50

.10

.10

.95

.70

TABLE 10

C

0.93

0.50

22

31

15

204

980

86

-39..

C/C
O

a.—.- 

111

C
O

I)

 

.09

.35

.14

.16

.01

.23

.27

.55

.30

.47

.83

.06

.31

.67

.08

.52

.10

.48

.81

.16



PARAMETERS OF EQUATION (3.4) FOR SECTION 251

 

TABLE 1 1

  

Element Xo _(__:_g__ Co/C b k

Na (Si)* 0.00 3.70 2 -0.16 3.14

Na (82)“ -O.90 3.16 2 —0.54 0.20

K (Si) -O.20 1.01 2 0.22 0.89

K (82) 0.00 0.90 2 0.33 0.70

Mg (Si) 0.10 0.23 2 0.34 1.79

Mn (Si) --0.40 1096 2 0.48 0.79

Mn (S2) 0.00 2796 2 -0.29 1.10

Ni (Si) 0. 00 40 2 0. 45 1. 33

Ga (Si) —0. 80 44 2 -0. 01 5. 99

Ga (82) 0. 15 24 2 —0. 07 29. 90

*(Si) indicates that the values are for the schist (1) part of the section.

**(S2) indicates that the values are for the schist (2) part of the section.
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TABLE 12

PARAMETERS OF EQUATION (3.4) FOR SECTION 253

   

 

Element Xo Co Eo/Cm b _l_<___.

K (S)* 0.40 2.44 2 —0.54 0.20

Ca (S) 0.60 1.16 2 0.36 0.40

Fe (S) 0.50 3.14 2 -0.10 0.91

Ba (S) 1.40 60 2 -0.07 1.29

Cr (8) 1.20 84 2 —0.15 0.54

Ti (S) 0.90 1268 2 -0.18 1.80

V (S) 0.80 80 2 —O.21 1.73

Mn (G)** 3.70 346 2 -0.17 0.46

Mn (8) 2.60 790 2 -0. 08 1.07

*(S) indicates that the values are for the schist part of the section.

**(G) indicates that the values are for the granite part of the section.
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may be expected secondary and tertiary frequencies. Some of the higher

frequencies may be due to inhomogeneity to be found in any rock.

Accurate analysis of the wavelengths of the periodicity was found

to be impossible due to the variance in the x position of the points which

is due to the thickness of the samples analyzed. There is some indica-

tion, however, from the analysis, that the wavelengths will correlate

with atomic number or atomic weight. Further experimental work is

needed to determine this with any degree of certainty.

Concentration Gradient

It would be expected that the driving force for the diffusion of an

element would be the existence of an activity gradient within the system.

Since it is not possible to determine the activities, the concentrations were

used as a first approximation.

Unless the diffusion has resulted in the same concentration on both

sides of the contact, differences in base level concentrations on either

side of the contact should still appear. That the concentrations have not

been equalized is shown by the mineralogical differences in the rocks on

either side of the contact. With this in mind, t tests between the rock types

for each element in each section were computed as a determination of

differences in concentration (Walker and Lev, 1953). These values are

presented in Tables 13 to 16.

The results of these t tests do not, in most cases, appear to be

meaningful. Significant differences exist where there is no incfication of

diffusion from the curves and also the reverse. This may be due to the

nature of the t test for this type of data, which seems doubtful. It is more

probable that the concentrations, as a first approximation, are not linearly



TABLE 13

RESULTS OF t TEST BETWEEN SCHIST

AND GRANITE FOR SECTION 37

  
Element t

Na 0. 92

K 10. 75*

Mg 19. 70*

Ti 3. 82*

B 3.47*

Ga 6.68*

Cu. 8. 91*

Fe 19. 00*

Mn 20.60*

Cu 11.40*

Pb 0. 82

Zn,Ni. V, Zr not determined

*indicates that the value is significant at 0. 005.

-43..



TABLE 14

RESULTS OF t TEST BETWEEN SCHIST

AND GRANITE FOR SECTION 38

Element
 

Na

K

Fe

Mn

Cu

Pb

Zn, Ni. V, Zr

 

8.16*

11.40*

29.10*

10.70*

7.90*

17.30*

2.11

26.10*

32.50*

87.40*

7.00*

not determined

*indicaies that the value is significant at 0. 005.
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TABLE 15

RESULTS OF t TEST BETWEEN SCHIST

 

AND GRANITE FOR SECTION 251

 

Element fl“ t2***

Na 6. 50* 7. 30*

K 0. 84 1. 36

Mg 66.80* 24. 70

V 15.60* 12. 90*

Ga 6.20* 9.45*

Zr, Ni not determined not determined

Ca 13. 70* 9.40*

Fe 29.20" 23. 80*

Mn 17.60”"- 94. 70*

Ti 56. 50* 22. 80*

Cr 28. 80"" 17.20*

*indicates that the value is significant at 0. 005.

**t refers to the schist (1)—gra‘mite part of the section.

***t2 refers to the schist (2)—granite part of the section.
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'I'A BL E 16

RESULTS OF t TEST BETWEEN GRANITE

AND GRANITE GNElSS FOR SECTION 253

 

Element t

Na 1. 30

K 24. 30*

Mg 3. 55*

Ti 4.30*

Pb 15.70*

Cu 3. 70*

Ca 12.20*

Fe 12.50*

Mn 6.20*

V 11. 00*

Ga 1. 07

Ba, Cr not determined

*indicates that the value is significant. at 0. 005.
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related to the activities of the diffusing elements at the conditions under

which the diffusion occurred.

Thickness of the Diffusion Zone
 

The thickness of the diffusion zone is, for the purposes of this section,

operationally defined as that point where the hyperbolic tangent is effectively

equal to one (C8 = 0.999). Table 17 Shows the diffusion zone thicknesses for

each element and each section.

The sections are arranged in order of increasing dike thickness. It

should be noted that there is a tendency for the wider dikes to have wider

diffusion zones for a given element. This may be due to the greater amount

of fluid associated with the wider dikes. There is not enough data to

determine what is the relationship between dike width and diffusion zone

thickness. The matrix of the dike and host rock will also effect the diffu—

sion zone width thereby making it difficult to determine such a relationship.

Comparisons within a single section are more fruitful. With partial

and incomplete data, it can be seen that Ni and Mg are comparable in 251(1).

In 251(2) Na and K are comparable and inverse. In section 38, Mg and Fe are

comparable, Na and Ti are inverse. Ti and V in 253 are comparable. These

comparable and inverse relationships of the thickness in a given section are

to be expected from the known atomic parameters of these elements. It is

to be expected that with more data other similar relationships will appear.



TABLE 17

THICKNESS OF THE DIFFUSION ZONE,IN INCHES,

FOR EACH ELEMENT IN EACH SECTION IN THE HOST ROCK

Element

Na

K

Ca

Mg

m

Ga

Ti

Cu

Pb

Ni

Zn

Cr

Section

3 7

1.82

none

none

2.27

none

none

none

none

1.25

2.71

0.82

none

none

none

none

none

Section

1.46

2.20

none

3.10

3.13

none

1.23

none

none

2.51

2.11

none
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Section

251(1) .

0.58

1.71

none

0. 88

none

1.02

none

0.30

none

none

none

none

0. 89

none

none

none

Section

251 2

2.10

2.00

none

none

none

1.37

none

0.24

none

none

none

none

none

none

none

none

Section

_253

none

2.60

3.90

none

3.14

5.03

none

none

1.82

none

none

none

none

1.81

none

5.83



CHAPTER IV

DISCUSSION

Nature of the Contact
 

The contact between the intrusive dike and the adjacent country rock

is a mineralogical and textural discontinuity, which may act as a barrier to

the free migration of elements from one rock type to the other.

When the various curves are examined, definite indications of

material transfer across the contact appear in some of the curves (Figures

8, 10, 11, etc.) while other curves, show movement of material on one

side of the contact only (Figures 16, 21, 25, etc.). The shape of the curves

suggests that the distribution is discontinuous at the contact. The curve

types described in the previous chapter probably indicate the relative

mobility of an element on either side of the contact. Thus, the contact

serves as a barrier to the free movement of material across it.

For a given element, the barrier can be considered to be permeable

if it allows the free movement of material across it, and impermeable if it

prevents such movement. If some elements can move freely across the barrier

while others cannot, or if some element can cross it only with difficulty, then

the barrier may be considered to be semipermeable. The mechanism of this

barrier is not understood.

Two different hypotheses apply to the treatment of the contact as a

barrier. The first hypothesis is that the contact is a physical barrier to

diffusion. The second hypothesis asserts that the barrier nature of the con—

tact is only apparent and the effect is due to the differing rates of diffusion
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on either side of the contact, which is to be expected since the material

through which the diffusion is occurring is mineralogically and texturally

different on either side of the contact. This would explain the need for

different functions for a given element on either side of the contact in the

same section. Either or both of the hypotheses will explain the type I

curves (hyperbolic tangent).

The type Ia curves can be explained by the barrier nature of the

contact and/or the differing diffusion rates on either side of it. At present

it is not possible to determine how much of an effect the barrier nature of

the contact has in this curve type. The difference in the curve on either

side of the contact can be handled by changing the diffusion rates which will

result in differing functions.

The term gradient as used below refers to both the concentration

and temperature difference existing during the diffusion process. The

use of concentration alone is due to lack of data on the temperature values.

The type Ib curves have a gradient and no movement of material

across the contact. This can be explained by assuming a very low diffu-

sion rate on either side of the contact and a very low permeability of the

contact.

The type Ic curves require no further explanation beyond the state—

ment that there is no gradient and no movement of material across the

contact.

The type II curves (hyperbolic secant) can be explained by the

assumption of a semipermeable contact which is effectively impermeable

to the diffusion across it. The rate of diffusion on either side of the con-

tact is now no longer of major importance to the argument. Since there is

still a gradient across the contact, there will still be diffusion away from
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the high concentration side of the contact which will not be able to cross the

contact and will, therefore, build up to a high concentration level near the

contact. With a gradient established across the contact and the contact

acting as a semipermeable barrier, a common high or low concentration

point would form at the contact. If the higher side of the gradient is the

side with the higher diffusion rate, there should be an increase in the con-

centration near the contact. This increase should develop at a faster rate

than it can cross the contact. Since the diffusion on the opposing side of

the contact is slow, movement of the transferred material away from the

contact should also be slow resulting in a zone of increased concentration

near the contact. Since both sides have concentrations increasing toward

the contact, the contact should appear as a common high point as is seen

in the type IIa curves.

An explanation for the type IIb curves is similar except that the

side having the high diffusion rate is now the low concentration side of the

gradient. In other words, material is removed from the area around the

contact faster than it can be supplied which produces common low at the

contact.

The type III curves (complex), however, can best be explained by

the action of the contact as a physical barrier to diffusion. An explanation

of the type III curves (complex) under the second hypothesis requires the

assumption of a zero rate of diffusion for the element on the one side of the

barrier. Section 253 has four curves in the type III group (complex), and

since the rock types on either side of the contact are very similar (granite—

granite gneiss), this assumption does not appear feasible. Similar argu—

ments also apply to the exclusive use of the second hypothesis for the

type II curves (hyperbolic secant).
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In the light of the above discussion it is proposed that a rational

explanation for the three curve groups lies in the combination of the two

hypotheses into one. This results in the following statement: In consi—

dering interchange of material between an intrusive and its host rock by

diffusion, the contact acts as a barrier to the free movement of material

across it and the rock type on either side of the contact acts as a controlling

factor in the diffusion process. This appears to be quite reasonable since

the assumption of differing diffusion rates with differing matrices cannot

easily be discarded, but as has already been shown, it is not a complete

explanation. Introduction of a semipermeable barrier to diffusion in the

contact adds the necessary conditions for the explanation of the three curve

groups.

Periodicgy
 

As stated previously, the low freqneucy and most of the high fre-

quency periodicities are probably inherent in the diffusion system. No

relationships were found between these periodicities and the sampling

interval. Two factors may account for this periodicity. The first factor

is the normal variation in composition to be found in any "homogeneous"

rock, as reported by Dennen (Figure 1). The second factor is the semi—

permeable nature of the contact as discussed in the previous section.

Figure 1 (Dennen, 1951) shows element distributions for a homo-

geneous rock. It is evident that there are minor variations in composi-

tion, and that the variations are somewhat random in nature. If this rock

system is isolated and the mobility of constituents is increased by

increasing the temperature of the system so that material can move, the

system would be expected to reach an equilibrium distrubution. If the
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increase in temperature is constant over the entire system, the resultant

composition distribution expected is a straight line. If, however, the

temperature increase varies over the system, the resultant composition

distribution would reflect the temperature distrubution. Under this second

set of conditions, the variations in composition already existing within the

rock would be enhanced or depleted depending upon the distribution of the

temperature field. In either case, in the absence of equilibrium, enhanced

or depleted forms of the original compositional variations would still remain.

If the system is under further stress, such as an anisotropic mass inter-

change (diffusion) parallel to the trend of the variations, these variations

should be further enhanced. The system would be analogous to adding

energy to one end of a standing wave.

The semipermeable nature of the contact would act to develop its

own periodicity in the following manner. If material is diffusing out of the

system and the contact is acting as a partial barrier to this diffusion, then

an increase in the concentration of the diffusing element would be expected

at or near the contact. This increase would tend to deplete the adjacent

zone. The increase and depletion is basically a waveform although it is

localized at the contact. If the conditions generating this waveform corres-

pond with the conditions resulting in variations already present in the

rock the variations will be enhanced thereby extending the waveform fur-

ther into the rock away from the contact zone.

The combination of the two factors discussed above should result

in a periodicity similar to that seen in the experimental curves. The low

frequency periodicity being due to the semipermeable nature of the con-

tact and the high frequency periodicity due to the stressing of the original

compositional variation in the rock.
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Factors Controllingpiffusion Rate
 

Of the numerous factors controlling the diffusion rate only two are

evident from the results of this study. These are the "matrix" or bulk

composition and the fluid content of the system. The matrix effect can be

inferred from the values in Tables 9 to 12 (curve parameters) whereas the

fluid effect is estimated from the published values of the diffusion coefficients

(Fyfe, Turner & Verhoogan), the thickness of the diffusion zone as reported

in this research (Table 17) and the diffusion zone thicknesses reported for

wall rock alteration in hydrothermal vein deposits.

The effect of the matrix or bulk composition on the diffusion can be

seen both in the thickness values of the diffusion zone and in the values of

the distribution equation parameters. The values of b and k for any given

element in any one section are different on either side of the contact. These

values are also different from section to section, indicating that the matrix

is a controlling factor in the diffusion rate. It is probable that the matrix

effect, in the case of a fluid or of fluidized diffusion, is composed primarily

of the grain size, orientation, etc. , and secondarily the actual composition

of the grains. If the relative importance of the various factors were known,

it might be possible to assign numerical values to the matrix and thus apply

it to the diffusion system to yield meaningful results. Further research is

needed, however, before this can be done.

The fluids have a major effect on the diffusion system. If the system

were completely dry, which would not be expected in these rocks, diffusion

would have to be entirely solid-solid. The reported diffusion coefficients

(Fyfe, Turner 8: Verhoogan 1958) indicate that solid-solid diffusion is not

feasible for most geological systems. The rocks under consideration are
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not dry and do have a considerable amount of water in them as shown by the

presence of muscovite in them.

If, instead of a dry system, a water bearing system is considered,

two possibilities still remain. The first possibility is that the water or any

other fluid, is in motion itself carrying the diffusing ions. The second case

is where the water, or fluid, is static and simply serves as the medium

through which the material diffuses. The first case is simple fluid diffusion

and the second is a "fluidized" diffusion. It is probable that there is no sharp

line dividing the two types of diffusion because the critical factor would appear

to be the amount of water, or fluid, available and pore space and permeability.

The values reported for the diffusion zone thicknesses in the studies on wall

rock alteration in hydrothermal ore deposits are orders of magnitude greater

than those reported for "normal" igneous intrusives. The hydrothermal

deposits were formed from highly aqueous fluids and it is probable that the

diffusion into the wall rock proceeded by fluid diffusion. In the systems

studied in this research the amount of water available from the intrusive

should be much less than in the hydrothermal deposits and the diffusion

resulting from them should also be much smaller. The order of magni-

tude difference between the two cases, however, leads one to the conclu-

sion that a mechanism of diffusion different from that operating in the

hydrothermal deposits is responsible in this case. What is postulated is

that the fluid acts as a static medium allowing the various ions to diffuse

through it. By necessity this fluid would have to be a film, no more than a

few molecules thick, surrounding the various mineral grains in the rock.

This mechanism is somewhere between solid-solid diffusion on one end

and liquid diffusion on the other. The resultant from this mechanism should

lie somewhere between the other two and as the data indicates, it does.



CHAPTER V

SUMMARY AND CONCLUSIONS

This study was undertaken to determine the nature of diffusion in an

igneous contact zone. The research that has been done in this area shows

that diffusion plays an important role in contact zones. Contact alteration

zones of the granite dikes in this study range up to only one or two feet,

while wall rock alteration in hydrothermal ore deposits cited here show

diffusion zones of up to two hundred feet wide, indicating that there are two

different mechanisms involved. Data on solid-solid diffusion strongly sug—

gests that it is not a feasible mechanism for most geological diffusion

systems.

Continuous samples were taken from small granite dikes and the

adjacent host rock. These samples were analyzed for both major and minor

elements by emission spectrographix techniques. Concentration distribu-

tions were obtained and a generalized function was determined for them of

the form: Ce = tanh (beam) — b), where Ce is the element concentration

(transformed), x is the distance from the contact less the distance to the

zero point, and b and k are parameters of the equation.

The following three types of curves were observed; hyperbolic,

tangent, hyperbolic secant, and complex. Evidence from the complex curves

indicates that the system is discontinuous at the contact and that these curve

types cannot be used to describe the concentration distributions. These

curve types, however, can be used to describe the relative rates of diffu—

sion on either side of the contact and through the contact itself. Further

' .
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evidence from the curve types leads to the hypothesis that the contact acts as

a semipermeable barrier to diffusion of material across it. This hypothesized

process and the differing diffusion rates in the rocks on either side of the con-

tact appears to result in the concentration distributions found.

A high and low frequency periodicity was found in most of the curves.

Tests showed that this periodicity was not related to the sampling frequency

except for a few of the high frequencies. Two hypotheses, either separately

or together, yield an explanation of the periodicity. The first hypothesis is

that the normal variations found in any homogeneous rock will be enhanced

under a non-equilibrium system that is undergoing anisotropic stress (diffu-

sion in one direction only) to yield a high-frequency periodicity. The second

hypothesis is that the contact, by acting as a partial barrier to diffusion,

causes the buildup of concentration at the contact with a subsequent depletion

further away. This would generate a low-frequency periodicity. These

processes, together, should produce a periodicity similar to that seen in the

data curves.

The matrix or bulk composition of the rock through which the material

is diffusing exerts a controlling effect on the rate of diffusion. Since the

diffusion process postulated is a fluid or fluidized one, the matrix effect should

be due to the texture of the host rock primarily and secondarily to its mineral

composition.

By rejecting solid-solid diffusion as the mechanism involved in igneous

contact zone diffusion, the mechanism must then be one of a fluid diffusion.

Diffusion in wall rock alteration in hydrothermal ore deposits probably occurs

with fluid movement as the active mechanism; the highly aqueous nature of

the ore fluid and thickness of the resulting diffusion zones supports this

hypothesis. The diffusion zone thicknesses in the granite contact zones
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studied are orders of magnitude smaller than those of the ore deposits indi-

cating either very small amounts of water or a different mechanism. It is

hypothesized that a different mechanism pertains to the diffusion zones in

granite contact zones. That is, that a thin fluid film, perhaps only a few

molecules thick, acts as a static medium through which the material diffuses.

The controlling factor for these two mechanisms is the amount of water

available to the system.

Further Research
 

Two separate research projects lend themselves as a continuation of

this study. The first is an examination of the element concentration distribu-

tion in individual mineral grains as a function of distance from the contact.

This would have the advantage of determining the effect, if any, of solid-

solid and solid vapor diffusion in the system as well as determining the role

of the various minerals in diffusion.

The second project is a laboratory experiment to determine the diffu-

sion coefficients under controlled conditions and to determine the effect of

the matrix and the width of the dike on the thickness of the diffusion zone. This

would be done by putting an artificial melt into a rock and varying the times of

the molten state, the amount of water in the melt, the temperature of the melt,

the thickness of the melt and the rock type used.

Both of these projects should yield data to produce a more definitive

statement of the processes of diffusion in an igneous contact zone.
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SPECTROGRAPHKIANALYSES

SECTION 37

X Na Ca K Fe Mg

in. % ”/0 % % Ppm

6.31 1.53 0.45 1.78 0.91 510

6.04 2.17 0.47 1.82 0. 85 755

5.78 2.40 0.36 1.58 0.95 500

5.52 2.87 0.51 1.28 0.82 527

5.25 1.98 0.58 1.38 0.84 432

4.99 2.33 0.44 1.52 1.01 387

4.72 2.52 0.40 1.41 1.13 560

4.46 2.13 0.40 1.40 1.11 433

4.20 2.13 0.52 1.50 1.12 347

3.93 2.33 0.40 1.70 0.88 637

3.57 2.55 0.44 1.33 1.23 310

3.30 2.47 0.42 1.19 1.16 308

3.04 2.17 0.35 1.92 0.85 465

2.78 1.93 0.43 2.23 0.98 510

2.51 1.65 0.17 1.78 0.73 370

2.25 1.77 0.28 1.67 0.78 633

1.98 1.97 0.42 1.65 0.96 793

1.72 2.00 0.29 1.77 1.07 490

1.46 1.95 0.37 2.08 0.94 367

1.19 1.90 0.30 1.92 1.12 590

0.93 1.56 0.33 2.05 0.83 650

0.66 1.59 0.49 2.03 0.89 510

0.40 1.07 0.22 2.27 0.84 700

0.13 1.21 0.34 1.95 0.72 2750

Gr

C Mg

Sch ‘%

0.13 0.85 0.79 2.93 10.17 0.17

0.47 0.84 1.01 2.75 9.57 1.61

0.82 2.30 1.33 3.35 12.20 0.81

1.16 1.53 1.22 3.22 9.40 2.15

1.50 2.39 2.19 3.13 11.30 2.32

2.15 2.11 0.86 3.05 8.90 0.64

2.49 2.48 1.83 3.36 10.90 1.20

2.84 1.80 1.01 2.68 7.70 2.72

3.18 2.07 1.52 2.53 11.50 2.14

3.52 2.13 1.16 3.23 9.80 1.17

3.87 1.79 1.72 3.38 14.30 3.28

4.21 1.87 1.41 4.32 13.90 3.05

4.56 1.97 1.28 3.18 11.30 2.82

4.90 1.82 1.14 3.62 9.90 1.82

5.20 2.12 1.98 4.25 14.80 2.14
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x Ga Pb Zn Zr

in. ppni ppnn ppni ppm)

6.31 12 51 n.d. n.d.

6.04 15 52 n.d. n.d.

5.78 12 54 n.d. n.d.

5.52 16 35 n.d. n.d.

5.25 12 72 n.d. n.d.

4.99 11 64 n.d. n.d.

4.72 11 61 n.d. n.d.

4.46 12 59 n.d. n.d.

4.20 13 78 n.d. n.d.

3.93 12 58 n.d. n.d.

3.57 13 115 n.d. n.d.

3.30 11 84 n.d. n.d.

3.04 9 59 n.d. n.d.

2.78 13 91 n.d. n.d.

2 51 9 43 n.d. n.d.

2.25 11 59 n.d. n.d.

1.98 14 84 n.d. n.d.

1.72 12 66 n.d. n.d.

1.46 13 50 n.d. n.d.

1.19 10 44 n.d. n.d.

0.93 13 46 n.d. n.d.

0.66 14 54 n.d. n.d.

0.40 18 35 n.d. n.d.

0.13 17 35 n.d. n.d.

(3r

C

Sch

0.13 20 28 141 263

0.47 22 32 160 333

0.82 20 55 203 220

1.16 17 58 189 160

1.50 15 70 161 215

2.15 16 49 154 169

2.49 18 67 144 215

2.84 12 52 120 227

3.18 24 67 166 228

3.52 19 50 130 215

3.87 23 92 155 268

4.21 20 47 188 218

4.56 22 60 144 237

4.90 16 45 122 . 298

5.20 27 64 191 202
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15.45

14.95

14.64

14.34

13.84

13.45

12.89

12.35

11.74

11.20

10.67

10.20

9.84

9.30

9.22

8.88

8.55

7.99

7.55

7.05

6.30

5.77

5.05

4.80

4.77

3.94

3.54

2.98

2.54

1.98

1.76

1.65

1.43

1.04

0.79

0.54

0.35
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x B Cu Ga Pb T1

in. ppni ppni ppni ppni ppni

15.54 99 483 15 31 1923

14.95 97 687 24 36 2067

14.64 132 447 24 30 2883

14.34 61 530 23 37 2367

13.84 58 335 28 33 2133

13.45 102 530 23 33 2250

12.89 61 362 20 31 1742

12.35 68 430 28 28 1758

11.74 31 417 21 25 1967

11.20 33 340 19 29 1908

10.67 33 333 19 26 1975

10.20 34 500 29 29 2225

9.84 28 427 18 22 2242

9.30 136 497 19 22 2267

9.22 139 423 26 31 2533

8.88 67 453 22 32 2017

8.55 136 480 23 29 2092

7.99 153 580 23 32 2750

7.55 107 530 21 32 2217

7.05 63 467 20 29 2067

6.30 78 338 18 27 1750

5.77 95 388 22 27 2042

5.05 84 733 23 36 2400

4.80 100 433 28 31 1633

4.77 130 430 18 29 1483

3.94 70 655 25 27 2075

3.54 109 523 22 37 1917
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SPECTROCHEMICA L ANAL18ES

SECTION 251

x Na K Ca Fe IMg

in . (Z) 90 QC 0/0 %

4.84 1.93 2.43 1.47 7.40 0.40

4.77 1.73 2.38 1.52 9.17 0.50

4.50 1.93 2.10 1.88 9.03 0.55

4.23 1.65 2.18 1.43 8.77 0.39

3.98 1.57 1.95 1.31 7.03 0.43

3.69 2.03 1.69 2.42 11.00 0.57

3.44 1.83 1.94 1.71 8.37 0.39

3.24 1.62 1.78 1.33 7.67 0.44

3.07 2.17 1.67 2.47 9.90 0.48

2.83 1.93 1.97 1.18 8.60 0.39

2.38 1.88 2.10 1.26 8.30 0.41

1.80 1.90 1.72 1.28 7.77 0.36

1.29 1.95 1.40 1.70 8367 0.38

1.02 2.42 1.08 1.77 7.83 0.40

0.77 2.05 1.47 1.26 7.43 0.45

0.57 2.05 1.35 2.17 10.53 0.34

0.32 2.13 1.35 1.50 7.63 0.40

0.17 3.13 1.25 1.16 9.57 0.26

Sch

C

Gr

0.15 3.22 1.33 0.24 0.86 0.027

0.50 3.78 1.94 0.33 0.88 0.021

0.77 2.82 3.75 0.27 0.58 0.016

0.96 3.52 2.85 0.23 0.75 0.024

1.15 3.45 1.80 0.29 0.86 0.025

1.34 2.90 1.70 0.34 0.87 0.033

1.56 2.58 1.11 0.29 0.90 0.034

Gr

C

Sch

0.11 2.18 1.18 1.68 9.17 0.38

0.35 2.05 1.13 4.50 5.90 0.39

0.79 1.82 1.09 4.70 6.40 0.36

1.06 2.27 1.31 6.23 7.07 0.29

1.33 1.87 1.41 8.00 7.63 0.35

1.53 2.13 1.55 6.00 7.87 0.46

1.70 1.55 1.92 4.00 7.80 0.34

1.89 2.18 1.40 4.70 7.03 0.45

2.16 1.55 1.59 3.2 6.63 0.39

2.43 2.12 1.94 7.27 7.80 0.42

~85-
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361 V Ti Zr N1

ppn1 ppn1 ppn1 ppn1 ppn1

1117 283 4767 n.d. 47
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1300 387 6767 n.d. 80
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SPECTROCHEMICA L ANA LYSES

SECTION 253

x Na K Ca F 8 Mg

in. % O/G % ' 90 (70

23.90 2.15 3.65 0.80 0.34 0.20

23.70 2.83 5.27 0.53 0.29 0.24

23.30 3.10 4.32 0.84 0.37 0.22

22.90 2.38 3.57 0.76 0.32 0.23

22.50 2.83 3.47 0.76 0.26 0.19

22.10 2.85 3.80 0.75 0.34 0.22

21.70 2.87 3.92 0.66 0.34 0.23

21.55 2.20 3.97 0.66 0.35 0.30

21.35 2.74 3.68 0.79 0.44 0.32

21.05 2.37 4.17 0.71 0.37 0.34

20.75 2.36 4.38 0.79 0.32 0.31

20.50 3.05 4.02 0.75 0.35 0.24

20.30 2.65 3.77 0.78 0.47 0.26

19.95 2.73 3.85 0.71 0.45 0.30

19.70 2.10 3.77 0.54 0.32 0.26

19.50 2.41 3.63 0.52 0.35 0.23

19.25 2.53 4.08 0.65 0.35 0.24

19.00 2.63 3.58 0.71 0.33 0.25

18.75 2.28 3.58 0.63 0.32 0.31

18.32 2.75 3.48 n.d. n.d. n.d.

17.89 2.40 3.78 0.69 0.45 0.27

17.47 2.43 4.03 0.51 0.25 0.18

17.05 2.71 5.52 0.63 0.28 0.31

16.63 2.90 3.62 0.83 0.33 0.22

16.21 2.55 4.32 0.54 0.51 0.33

15.79 3.15 4.67 0.49 0.45 0.44

14.84 2.20 3.27 0 72 0.24 0.22

14.54 2.17 3.98 0.58 0.30 0.19

14.29 2.53 3.98 0.62 0.31 0.22

13.79 2.40 4.07 0.61 0.34 0.39

13.39 2.47 3.48 0.65 0.29 0.31

13.04 2.58 3.23 0.62 0.27 0.26

12.79 2.47 2.98 0.96 0.25 0.28

12.44 2.95 3. 2 0.87 0.28 0.23

12.04 2.64 3.57 0.78 0.24 0.18

11.74 2.82 3.33 0.90 0.27 0.19

11.49 2.58 3.68 0.96 0.24 0.17

11.09 2.80 3.48 0.77 0.23 0.21

10.74 2.47 3.80 0.65 0.23 0.24

10.14 2.12 3.27 0.77 0.29 0.21

9 89 2.73 3.38 0.77 0.27 0.20

9.39 2.53 3.30 0.78 0.32 0.25

8.74 2.50 3.15 0.63 0.21 0.15

8.39 2.50 3.03 0.52 0.22 0.20

7.94 2.20 2.97 0.85 0.21 0.14

-91-
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Figure 9. Element concentration distribution

for Section 37
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Figure ll. Element concentration distribution

for Section 37
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Figure l3. Element concentration distribution
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Figure l4. Element concentration distribution

for Section 38
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Figure l6. Element concentration distribution

for Section 38
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Figure l7. Element concentration distribution

for Section 38
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Figure l8. Element concentration distribution

for Section 38
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Figure l9. Element concentration Distribution

for Section 38
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Figure 2|. Element concentration distribution

for Section 25|
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APPENDIX C

Diffusion TheorjsI
 

Fick's second law of diffusion can be stated as follows (Jost, 1960):

 
 

2

99:er 8c (A.1)
9 I; 2

8x

l.»-.1

where a 2 concentration

t= ime

x 2 distance --

D = diffusion coefficient

Equation (A. 1) assumes that D is a constant. If we look at the system after

diffusion has taken place and there is no further movement of material, then

equation (A. 1) reduces to

2

0:13 a; (A.2)

3x

The solution of equation (A.2) is of the form:

L = (Co + Clx) D (A.3)

Therefore a plot of C versus x should be linear. Since equation (3.4) which

describes C as a function of x in nonlinear, equation (A.3) does not apply

and the assumption of constant D is not valid for this case.

If we assume that D is some function of C (D = f(C)) and since equation

(3.4) defines C as a function of x, C = G(x), then D can be defined as a func-

tion of x, D = D(x), and equation (A. 1) becomes:
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2 _

ac = a c Qngxz) so

a t 1309 8x2 + 9x ax (AA)

In the system under consideration, a dike intrusive into country rock,

the boundary conditions for equation (A.4) are as follows:

Dike Contact Host Rock

atx=0 atx=0 atx=0

t=O t=0 t=0

0:01 0:01 C=C2

The system under consideration is further complicated by anisotropy, multi-

ple components, multiple phases and a multiplicity of grains. The solution

of equation (A. 4) under the above conditions has not been reported.

If we look at equation (A. 4) at t = tfinal’ then g9;- = 0, and

2 -

0=D(x) [—36-] + WJ [—3.3%] (A.5)

X

Equation (3.4) describes C = f(x) at t = tfinal' Substituting equation (3.4)

into equation (A. 5) yields:

0 = 31959)- + D(x) [1 - (2be(kx)) Tanh (beam) — In.) (A.6)

A solution that fits equation (A. 6) is of the form:

D(x) .—.- ew (A. 7)

where w = G(x)

Substituting equation (A. 7) into equation (A. 6) and solving for (w) yields:
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x = [(2/k)1n(Cosh(be(kx) - b))] - x (A. 8)

Substituting equation (A. 8) into equation (A. 7) results in:

D(x) = e [-131 ln(Cosh(be(kx) - b):| — x (A. 9)

The solution of D is valid only under the following conditions:

t = t and C = tanh(be(kx) - b)
final

This is because there is no reason to assume that equation (3.4) is a general

solution of equation (A. 5) and also because equation (3. 4) is not valid at

t 7‘ tfinal' A general solution of equation (A. 5) would involve C as a function

of both distance and time, C = F(x, t), and would result in a solution for D

involving distance and time or concentration and time, D = G(x, t) or

D = H(C, t). This solution would also have to take into account the barrier

nature of the contact. A solution for the type of system under consideration

at the present is not possible.
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