

ABSTRACT

LOW TEMPERATURE ADIABATIC STUDIES OF MAGNETIC PHASE BOUNDARIES IN ANTIFERROMAGNETS

by James Nathaniel McElearney

A theoretical treatment of antiferromagnetism, for arbitrary spin values, is given, based on previous extensions of the molecular field model of antiferromagnetism. Theoretical predictions involving the magnetic phase boundaries are given. A new method to predict critical fields for spin flopping, using three magnetic susceptibility measurements, is proposed and the theoretical basis for adiabatic investigations of antiferromagnetic spin flop states is given. Apparatus and methods for such experiments are described.

The results of adiabatic experiments on $CoCl_2 \cdot 6H_2O$ and $MnCl_2 \cdot 4H_2O$, whose spin flop states have been previously studied, are given, indicating the validity of the new method. Also, results are given indicating that two previously studied substances, $CoBr_2 \cdot 6H_2O$ and $FeCl_2 \cdot 4H_2O$, exhibit spin flopping in accessible experimental regions. $CoBr_2 \cdot 6H_2O$ has a critical field in the region 1.15^OK to the triple point, $2.91 \pm .01^OK$, which is well fitted by the equation $H_C = 7523 - 230.7 \text{ T} + 292.5 \text{ T}^2$. $FeCl_2 \cdot 4H_2O$ apparently spin flops below 0.68^OK above a field equal to about 5500 gauss. Finally, results are also given of investigations done on $MnBr_2 \cdot 4H_2O$, $Cs_2MnBr_4 \cdot 2H_2O$, and $NiCl_2 \cdot 6H_2O$, which indicate the lack of spin flop states in

these substances in fields below 10,000 gauss and in temperatures down to 1.0°K .

LOW TEMPERATURE ADIABATIC STUDIES OF MAGNETIC PHASE BOUNDARIES IN ANTIFERROMAGNETS

Ву

James Nathaniel McElearney

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

1968

6 53049

ACKNOWLEDGMENTS

The author wishes to express his appreciation and thanks to all those who have helped in this study; to Dr. H. Forstat for suggesting this study and for invaluable aid during the course of the work; to Dr. J. A. Cowen and Dr. R. D. Spence for several fruitful discussions; to Mr. Peter T. Bailey for his assistance with the experiments; to the M.S.U. Computer Center for computer time made available; and especially to the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force for their financial support of this work.

TABLE OF CONTENTS

Introduction 1					Page
I. THEORETICAL BACKGROUND	INTRODUC	CTION .	• •		1
I. Theory	CHAPTER				
A. Antiferromagnetism	I.	THEORE	TICAL	BACKGROUND	2
B. Generalization of Garrett's Theory C. Behavior of the Sublattices in a Field		ı.	Theor		2
C. Behavior of the Sublattices in a Field			Α.	Antiferromagnetism	
A Field					cy 4
D. Equation for Magnetization and Entropy			C.		
Entropy					7
E. Introduction of Anisotropy			D.	-	
F. Antiferromagnetic-Paramagnetic			_		
Boundaries 14				_ _	13
G. Susceptibilities			F.		
H. Spin Flop			_		
II. Applications of the Theory			_		_
A. Observation of Spin Flop			н.	Spin Flop	22
A. Observation of Spin Flop		~~	7 mm1 -	cations of the Whoever	25
Boundaries Bou		11.			25
B. Observation of Paramagnetic Boundaries			А.		25
Boundaries			Ð		20
II. EXPERIMENTAL METHODS			٠ ط		30
I. Experimental Apparatus				Boundaries	•
A. Triple Can Calorimeter Modifications	II.	EXPERI	MENTAI	L METHODS	32
A. Triple Can Calorimeter Modifications		I.	Expe	rimental Apparatus	32
B. Main Dewar and Calorimeter					
C. Sample Holder					32
D. Pumps			В.	Main Dewar and Calorimeter	33
E. Pressure Gauges			C.	Sample Holder	
F. Thermometers and Current Supplies G. Measuring Electronics			D.	Pumps	
G. Measuring Electronics			E .		
H. Magnet			F.		
II. Experimental Procedures			_		
A. Sample Preparation and Precooling 46 B. Helium Transfer and Calibration 48 C. Specific Heat Measurements 50 D. Magnetic Field Experiments 51 E. Shut-Down			Η.	Magnet	44
A. Sample Preparation and Precooling 46 B. Helium Transfer and Calibration 48 C. Specific Heat Measurements 50 D. Magnetic Field Experiments 51 E. Shut-Down				dwar tal Brandana	4.0
B. Helium Transfer and Calibration 48 C. Specific Heat Measurements 50 D. Magnetic Field Experiments 51 E. Shut-Down		11.	-		
C. Specific Heat Measurements 50 D. Magnetic Field Experiments 51 E. Shut-Down					
D. Magnetic Field Experiments 51 E. Shut-Down					
E. Shut-Down			_		
III. Reduction of Experimental Data 55 A. Conversion of Pressures to Temperatures					
A. Conversion of Pressures to Temperatures			Ŀ.	SHUC-DOMIL	34
A. Conversion of Pressures to Temperatures		TTT.	Redu	ction of Experimental Data	55
Temperatures					
			•••		55
B. Temperature Calibration Equation 56			в.		

TABLE OF CONTENTS (Cont.)

CHAPTER			Page
	C. D. E.	Resistances	58 62 62
III.	RESULTS AND	CONCLUSIONS	65
		lts	65
	Α.	Results of Experiments on Samples with Known Spin Flop Phases Materials Discovered to Exhibit	65
	В.	Spin Flop	81
	С.	Materials Investigated Which Did Not Exhibit Spin Flop	95
	II. Conc	lusions	104
	REFERENCES		106
APPENDIC	CES		
ı.	COMPUTER P	ROGRAMS	109
	Part A. Part B.		110
	Part C.	Reduction	117 137
	_	-	101
II.		CALCULATION WITH AN UNBALANCED TER SETTING	144
III.	EXPERIMENT	AL DATA	148

LIST OF TABLES

TABLE		Page
1.	$CoCl_2 \cdot 6H_2O$ BC plane isentropic rotations $(C = 55^0) \cdot \cdot$	149
2.	$CoCl_2 \cdot 6H_2O$ AB plane isentropic rotations $(B = 0^0) \cdot \cdot$	150
3.	$CoCl_2 \cdot 6H_2O$ AC plane isentropic rotations $(C = 70^0)$	151
4.	${\tt CoCl_2\cdot 6H_2O}$ C-axis isentropic magnetizations	152
5.	CoCl ₂ ·6H ₂ O antiferromagnetic-spin flop boundary points (H // C-axis)	152
6.	$\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$ BC plane paramagnetic isentropic rotation (C = 55^0)	153
7.	$MnCl_2 \cdot 4H_2O$ AC plane isentropic rotations (C = 45^0)	154
8.	$MnCl_2 \cdot 4H_2O$ BC plane isentropic rotations (C = 55^0)	155
9.	MnCl ₂ ·4H ₂ O C-axis isentropic magnetizations	157
10.	$MnCl_2 \cdot 4H_2O$ specific heat maxima (H // C-axis).	160
11a.	$CoBr_2 \cdot 6H_2O$ BC plane isentropic rotations (C = 60^0)	161
11b.	$COBr_2 \cdot 6H_2O$ AC plane isentropic rotations (C = 220)	⁰) 162
12.	CoBr ₂ ·6H ₂ O C-axis isentropic magnetizations	163
13.	${\tt CoBr_2\cdot 6H_2O}$ antiferromagnetic-spin flop boundary points (H // C-axis)	165
14.	Specific heat maxima (H // C-axis, $CoBr_2 \cdot 6H_2 O$)	165
15.	FeCl ₂ ·4H ₂ O isentropic rotations	166
16.	${\tt FeCl_2\cdot 4H_2O}$ B-axis isentropic magnetizations	167
17.	Specific heat maxima (H $//$ B-axis, FeCl ₂ .4H ₂ O)	168
18.	${\tt MnBr_2\cdot 4H_2O}$ C-axis isentropic magnetizations	169
19.	Cs ₂ MnBr ₄ ·2H ₂ O isentropic magnetizations	172
20.	$Cs_2MnBr_4 \cdot 2H_2O$ specific heat maxima (H //[I I I])	173

LIST OF TABLES (CONT.)

TABLE		Page
21.	$NiCl_2 \cdot 6H_2O$ AC plane isentropic rotation $(A' = 110^0) \cdot \cdot$	173
22.	${ m NiCl}_2 \cdot 6{ m H}_2{ m O}$ A'-axis isentropic magnetizations.	174
23.	$NiCl_2 \cdot 6H_2O$ specific heat maxima (H $//$ A')	177

LIST OF FIGURES

FIGURE		Page
1.	Definition of angles	8
2.	Vector relations for a perpendicular field .	11
3.	Parallel and perpendicular antiferromagnetic- paramagnetic boundaries	17
4.	Parallel, perpendicular and paramagnetic susceptibilities	21
5.	Normalized spin flop cirtical fields	26
6.	Predicted temperature variation in an isentropic rotation	29
7.	Pyrex helium dewar	34
8.	Cross section of body of calorimeter	35
9.	Front and side cross sections of top of calorimeter	36
10.	C-clamp sample holder	38
11.	Schematic diagram of pumping systems	41
12.	Diagram of electrical measuring circuits	45
13.	Example of preliminary reduction of chart data	60
14.	Voltage calibration points from FeCl ₂ ·4H ₂ O (sample 4) runs	61
15.	Voltage calibration derived from Fig. 14	61 a
16.	Magnet calibration curve	64
17.	$CoCl_2 \cdot 6H_2O$ BC plane isentropic rotations	67
18.	CoCl ₂ ·6H ₂ O AB plane isentropic rotations	68
19.	$CoCl_2 \cdot 6H_2O$ AC plane isentropic rotations	69
20.	CoCl ₂ ·6H ₂ O isentropes	71
21.	CoCl ₂ ·6H ₂ O phase boundaries	73

LIST OF FIGURES (Cont.)

FIGURE			Page
22.	CoCl ₂ ·6H ₂ O BC plane paramagnetic isentropic rotation	•	74
23.	$MnCl_2 \cdot 4H_2O$ AC plane isentropic rotations	•	76
24.	$MnCl_2 \cdot 4H_2O$ BC plane isentropic rotations	•	77
25.	${\tt MnCl_2\cdot 4H_2O}$ phase boundaries and isentropes .	•	79
26.	$\text{CoBr}_2 \cdot 6\text{H}_2\text{O}$ BC plane isentropic rotations	•	83
27.	$CoBr_2 \cdot 6H_2O$ AC plane isentropic rotations	•	84
28.	CoBr ₂ ·6H ₂ O isentropes	•	85
29.	$CoBr_2 \cdot 6H_2O$ phase boundaries	•	87
30.	FeCl ₂ ·4H ₂ O AB and BC plane isentropic rotation	ıs	90
31.	${\tt FeCl_2\cdot 4H_2O}$ phase boundary and isentropes	•	94
32.	$MnBr_2 \cdot 4H_2O$ isentropes	•	97
33.	${\tt Cs_2MnBr_4\cdot 2H_2O}$ phase boundary and isentropes .	•	99
34.	${\tt Cs_2MnBr_4\cdot 2H_2O}$ isentropes (expanded scale)	•	100
35.	${\tt NiCl_2\cdot 6H_2O}$ AC plane isentropic rotation	•	102
36.	${\tt NiCl_2\cdot 6H_2O}$ phase boundary and isentropes	•	103
37.	Circuit diagram of a simple potentiometer		147

INTRODUCTION

Magnetic properties of matter have interested physicists for a long time. In recent years, there has been a great deal of study done on magnetic systems in their ordered states. Many different experimental measurements supply insight into the phenomenon of magnetism.

Although there have been many experimental investigations of different magnetic systems in different substances, at present there have been few investigations involving antiferromagnetic systems in the spin flop state (although, some of those done have been thorough). The basic reason for this is that few substances exhibit the phenomenon of spin flop in regions of magnetic field and temperature accessible by common methods.

The purpose of this investigation is to develop further methods of study of spin flop states and to discover more materials exhibiting spin flop properties in accessible experimental regions. The study has been divided into three parts. The first part will develop the theoretical basis for adiabatic observations of spin flop states. The second part will describe the experimental apparatus and methods used in such a study, and finally, the third part will report results indicating the validity of the new method and will also report on the new materials which exhibit spin flop properties.

CHAPTER I

THEORETICAL BACKGROUND

I. THEORY

A. Antiferromagnetism

The concept of antiferromagnetism, interpenetrating lattices of oppositely directed magnetic moments, was first postulated by Neel in 1932. Since then, many antiferromagnetic materials have been discovered and studied. There exist many excellent papers on the subject and reference 2 contains a general review of the subject.

To give a theoretical analysis of the phenomenon, one needs to describe the energy of interaction of several ions with spins. The model presently accepted as being correct was first suggested in 1928 by Heisenberg³. Heisenberg type exchange interactions, in the Dirac formalism⁴, are equivalent to the interatomic potential

$$V_{ij} = -1/2 J(1 + 4 \overline{S}_{i}^{*} \cdot \overline{S}_{j}^{*}).$$
 (1.00)

 $\overrightarrow{S_i}$ and $\overrightarrow{S_j}$ are the quantum mechanical spins of ions i and j. J is the exchange integral and is positive for ferromagnets and negative for antiferromagnets. Apart from an additive constant, then, the potential energy of atom i is given by

$$v_{i} = \sum_{j} v_{ij} = -2 J \sum_{j} (\overline{s}_{j}^{*} \cdot \overline{s}_{i}^{*}). \qquad (1.01)$$

		·	
	(

Thus, the Heisenberg model corresponds to magnetic isotropy.

Perhaps one of the most widely used approximations to equation 1.00 is that of the Ising model⁵, in which it is assumed that only the components of the spins in one direction interact. That is,

$$v_{i} = -2J \sum_{j} s_{jz} s_{iz}. \qquad (1.02)$$

This model obviously corresponds to extreme magnetic anisotropy.

The most commonly used approximation is that which Neel used, the Weiss molecular field approximation⁶. In this approach, the potential energy of atom i is given as

$$v_{i} = \sum_{j}^{z} v_{ij} = -2J z \overline{S}_{j}^{>} \cdot \overline{S}_{i}^{>}, \qquad (1.03)$$

where z j atoms interact with atom i with the same J and $\overline{\overline{S}}_{j}^{>}$ is the statistical average of $\overline{S}_{j}^{>}$ over the j sublattice. Since the magnetic moment of an atom may be written as $\overline{u}^{>}$ =-g μ_{B}^{-} $\overline{S}^{>}$, where g and μ_{B}^{-} are the usual magnetic factors, equation 1.00 becomes

$$v_{i} = -\overline{H}_{j}^{*} \cdot \overline{u}_{i}^{*}, \qquad (1.04)$$

where

$$\overline{H}_{j}^{>} = (-2J z/g^2 \mu_{B}^2) \overline{u}_{j}^{>}$$
 (1.05)

is the effective magnetic field (the molecular field) due to the j sublattice which is acting on atom i.

There have been many other approaches and approximations used, but for the purposes of this study, the molecular

ı < field approach will supply the necessary insight for understanding the experimental data involved. Bitter, Van Vleck, Garrett, Anderson, Nagamiya, Yosida, Gorter and Haantjes, and many others have made extensions and refinements to Neel's original theory. In particular, this study will deal with a further extension of Garrett's approach which itself was an extension, to include high magnetic fields, of Van Vleck's work on the Neel model.

B. Generalization of Garrett's Theory

Garret's work was for a spin 1/2 substance, and his equations did not explicitly include anisotropy. This study will consider his equations for spin S and, in addition, solutions will be considered for magnetic fields applied at arbitrary angles to the preferred axis of magnetization, rather than just parallel or perpendicular to it. Also, anisotropy will be introduced to the solution through Yosida's 14 approach which was similar to Neel's calculation at absolute zero¹⁵. The importance of anisotropy to antiferromagnetic phenomena cannot be overemphasized, as many of the writers have pointed out. Apparently the best treatment, to date, of a molecular field theory which includes anisotropic effects is that of Gorter and Van Peski-Tinbergen¹⁶. However, since that approach, which was for spin 1/2 systems, involved graphical solutions, it is not the simplest to comprehend, and a generalization of Garrett's work is worthwhile.

In the Van Vleck model, the net magnetization per unit volume of an antiferromagnetic crystal is given by

$$\overline{M}^{>} = \frac{1}{2} \quad g \quad \mu_B \quad N(\overline{S}_i^{>} + \overline{S}_j^{>}) = \overline{M}_i^{>} + \overline{M}_j^{>}, \quad (1.06)$$

where g is the usual Landé factor, μ_B is the Bohr magneton, N is the number of magnetic atoms per unit volume, and $\overline{S}_i^{>}$ and $\overline{S}_j^{>}$ represent the average spins of the ions of the two sublattices. The magnitudes of $\overline{S}_i^{>}$ and $\overline{S}_j^{>}$ are given according to standard magnetic theory by

$$s_{i} = s B_{S}(H_{i} S g \mu_{B}/k T)$$

 $s_{j} = s B_{S}(H_{j} S g \mu_{B}/k T),$
(1.07)

where k is Boltzman's constant, T is the absolute temperature, S is the spin quantum number of the magnetic atom in the crystal, H_i and H_j are the magnitudes of the effective fields due to the j and i sublattices respectively, and B_S is the Brillouin function, given by

$$B_S(x) = \frac{2S + 1}{2S}$$
 coth $(\frac{2S + 1}{2S} x) - \frac{1}{2S}$ coth $(\frac{x}{2S})$. (1.08)

For an arbitrary applied field \overline{H} , $\overline{H}_i^{>}$ and $\overline{H}_j^{>}$ are given by

$$\overline{H}_{i}^{>} = \overline{H}^{>} + (2z J/g \mu_{B}) \overline{S}_{j}^{>}$$

$$\overline{H}_{j}^{>} = \overline{H}^{>} + (2z J/g \mu_{B}) \overline{S}_{i}^{>},$$

$$(1.09)$$

with the additional requirement for internal consistency of the model that $\overrightarrow{H}_i^>$ is parallel to $\overrightarrow{S}_i^>$ and $\overrightarrow{H}_j^>$ is parallel to $\overrightarrow{S}_j^>$.

Following Garrett's method of introducing "reduced" fields, spins and temperatures, equations 1.07 and 1.09 become

$$s_{i} = b_{S}(h_{i}/t)$$

$$s_{j} = b_{S}(h_{j}/t)$$
(1.10)

$$\overline{h}_{i}^{>} = \overline{h}^{>} - \overline{s}_{j}^{>}$$

$$\overline{h}_{j}^{>} = \overline{h}^{>} - \overline{s}_{i}^{>},$$

$$(1.11)$$

where

$$b_{S}(x) = B_{S}(\frac{3S}{S+1} x),$$
 (1.12)

when the following definitions are made:

$$H_0 = (-2z \ J \ S/g \ \mu_B)$$
 (1.13)

$$T_n = -2J z S(S + 1)/3k$$
 (1.14)

$$\overline{h}_{i}^{>} = \overline{H}_{i}^{>}/H_{0}$$

$$\overline{h}_{j}^{>} = \overline{H}_{j}^{>}/H_{0}$$

$$(1.15)$$

$$\overline{h} = \overline{H}/H_0 \tag{1.16}$$

$$t = T/T_n \tag{1.17}$$

$$s_{i} = s_{i}/s$$

$$s_{j} = s_{j}/s$$
(1.18)

$$\overline{m}_{i}^{>} = \overline{M}_{i}^{>}/(g \mu_{B} N S/2)$$

$$\overline{m}_{j}^{>} = \overline{M}_{j}^{>}/(g \mu_{B} N S/2)$$
(1.19)

(Note now $\overline{m}_{i}^{>} = \overline{s}_{i}^{>}$ and $\overline{m}_{j}^{>} = \overline{s}_{j}^{>}$, so the reduced magnetization is $\overline{m}^{>} = \overline{m}_{i}^{>} + \overline{m}_{j}^{>} = \overline{s}_{i}^{>} + \overline{s}_{j}^{>}$.)

C. Behavior of the Sublattices in a Field

It is convenient now to define angles as in reference 2. Consider the z-x plane as in Fig. 1. Then let the preferred axis of magnetization be z and let h be applied in the z-x plane. It is shown in reference 2 that if

$$\overline{\triangle}^{>} = (\overline{s}_{j}^{>}/s_{j}) - (\overline{s}_{i}^{>}/s_{i}), \qquad (1.20)$$

then $\overline{\Delta}^{>}$ is also in the z-x plane. The angle between $\overline{h}^{>}$ and the z axis is θ and the angle between $\overline{h}^{>}$ and $\overline{\Delta}^{>}$ is ψ . (ψ is not equal to θ due to the anisotropy, as will be seen shortly.)

Note that the definition of $\overline{\Delta}$ insures that the angles (denoted as ϕ in Fig. 1) between $\overline{s_j}$ or $\overline{s_i}$ and $\overline{\Delta}$ will be equal. Now, for the molecular field model, as stated in reference 2, the component of \overline{h} perpendicular to $\overline{\Delta}$ causes the spin vectors of the two sublattices to cant equal angles away from $\overline{\Delta}$ toward \overline{h} . Furthermore, the component of \overline{h} parallel to $\overline{\Delta}$ causes the magnitudes of $\overline{s_i}$ and $\overline{s_j}$ to change. It is not clear whether the authors mean the above statements to be true in general, regardless of the intensity of the applied field, or whether the statements are only true for small enough fields such that the angle of cant of the sublattices, ϕ , is small.

This description of the behavior of the sublattice vectors certainly has a better chance of matching reality

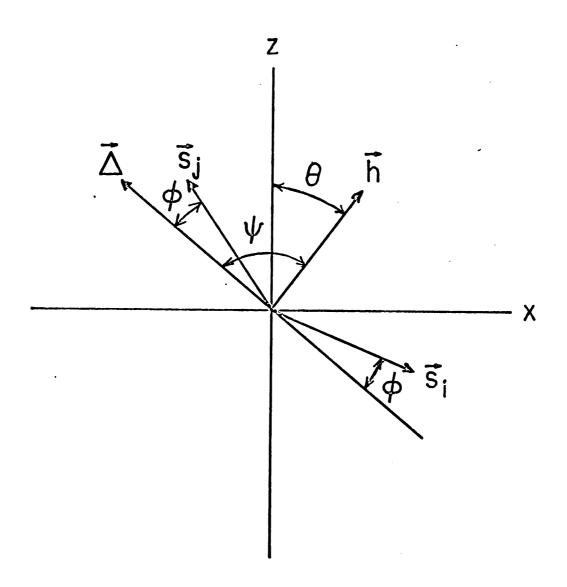


Fig. 1. Definition of angles.

than that of reference 18, in which it is stated that the components of $\overline{h}^{>}$ parallel and perpendicular to $\overline{\Delta}^{>}$ cause the parallel and perpendicular components of the magnetization to increase by $1/2 \times h_1$ and $1/2 \times h_1$ respectively. Were this so, then, as shown in reference 18, the following relations would hold:

$$\begin{split} \mathbf{s}_{jz} &= (\mathbf{s_0} + (\mathbf{x_n} \mathbf{h} (\cos \psi)/2)) \cos(\psi - \theta) + (\mathbf{x_1} \mathbf{h} \sin \psi \sin(\psi - \theta)/2) \\ \mathbf{s}_{jx} &= -(\mathbf{s_0} + (\mathbf{x_n} \mathbf{h} (\cos \psi)/2)) \sin(\psi - \theta) + (\mathbf{x_1} \mathbf{h} \sin \psi \cos(\psi - \theta)/2) \\ \mathbf{s}_{iz} &= -(\mathbf{s_0} - (\mathbf{x_n} \mathbf{h} (\cos \psi)/2)) \cos(\psi - \theta) + (\mathbf{x_1} \mathbf{h} \sin \psi \sin(\psi - \theta)/2) \\ \mathbf{s}_{ix} &= (\mathbf{s_0} - (\mathbf{x_n} \mathbf{h} (\cos \psi)/2)) \sin(\psi - \theta) + (\mathbf{x_1} \mathbf{h} \sin \psi \cos(\psi - \theta)/2), \end{split}$$

where s_0 is the zero field magnetic moment of one sublattice. Then if M and M' denote the sum and difference of the magnetic moments on the i and j sublattices, the components of these vectors are:

But this implies $M'=2\ s_0$ always. However, this is not possible, as is evident from consideration of the case where the applied field is perpendicular, or nearly perpendicular to the preferred axis and is large enough to almost

cause saturation. M' must then obviously approach zero. The behavior of the sublattices in a high field at some angle to the easy axis seems to need clarification. For a field applied either parallel or perpendicular to the easy axis, the picture of reference 2 would seem plausible (with the necessity that the relationship between ψ and θ be modified for high fields).

Furthermore, Garrett has given the following argument to determine the effect of a perpendicular field of arbitrary value. Consider \overline{h} applied perpendicular to z, as shown in Fig. 2, which represents the vector relations between $\overline{h}^{>}$, $\overline{h}_{\dot{1}}^{>}$, $\overline{h}_{\dot{1}}^{>}$, $\overline{s}_{\dot{1}}^{>}$, and $\overline{s}_{\dot{1}}^{>}$. Then the effect of the field must be to equally rotate $\overline{s}_{i}^{>}$ and $\overline{s}_{i}^{>}$ without changing their magnitudes. For, if \overline{h} were to change in magnitude and if the magnitudes of $\overline{s}_{i}^{>}$ and $\overline{s}_{i}^{>}$ were to change, they would have to change proportionally to the magnitudes of h; and h; as can be seen from Fig. 2. But this would imply a linear relation between s_i and h_i and also between s_{i} and h_{i} . Therefore, since the relationships of equations 1.10 are not linear, the magnitudes can not change and the only alternative is that they keep the same magnitude as in zero applied field and rotate toward the perpendicular direction when the field is applied. (This argument can not be applied in general to a field oriented at some arbitrary angle to the easy axis because of the effect of the anisotropy field.)

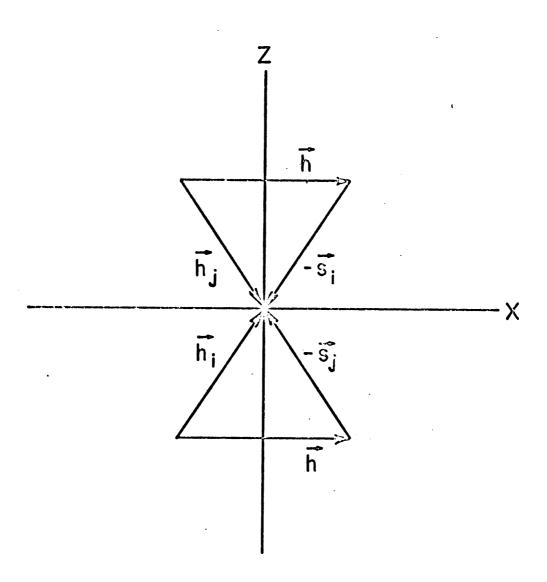


Fig. 2. Vector relations for a perpendicular field.

D. Equation for Magnetization and Entropy

Thus, adopting the viewpoint of reference 2 regarding the behavior of the sublattice vectors, with the reservation that the fields used must be small enough so as not to introduce any saturation effects, the magnitudes of \vec{s}_i and \vec{s}_j may be determined by merely considering the perpendicular component of the field to be zero. Then equations 1.10 become

$$s_{i} = b_{S}((s_{j} - h \cos \psi)/t)$$

 $s_{j} = b_{S}((h \cos \psi + s_{i})/t),$ (1.23)

where it has been assumed that the parallel components of s_j and h point in the same direction. (Note that these equations give positive values for s_i and s_j , whereas Garrett's equations have signed values for s_i and s_j built in.)

Besides the magnetization, which may be calculated from s_i and s_j , the entropy of the system is also of interest. Garrett has given a statistical argument to determine the entropy for a spin 1/2 system in terms of the sublattice magnetizations. The general thermodynamic argument to determine the entropy of an antiferromagnet of spin j will be given here. In general,

$$s = b_{j} (h/t).$$
 (1.24)

From the combined first and second laws of thermodynamics for a magnetic system,

$$dU = T dS + H dM, \qquad (1.25)$$

where S now is entropy and U is the energy of the system (including the field energy). For dU = 0, T dS = - H dM. In reduced units,

t dS =
$$-\frac{h \ k \ N}{2} \left(\frac{3J}{J+1}\right) \ ds$$
. (1.26)

Thus,
$$h/t = -\frac{2(J+1)}{3JN} \frac{d(S/k)}{ds}$$
. (1.27)

so,
$$s = B_J(-\frac{2(J+1)}{3JN} \frac{d(s/k)}{ds}).$$
 (1.28)

Therefore,
$$B_J^{-1}(s) = -\frac{2(J+1)}{3JN} \frac{d(s/k)}{ds}$$
. (1.29)

So,
$$S/k = -\frac{3JN}{2(J+1)} \int B_J^{-1} (s) ds$$
. (1.30)

Thus, for an antiferromagnet,

$$s/kN = -\frac{3J}{2(J+1)} \left(\int B_J^{-1} (s_i) ds_i + \int B_J^{-1} (s_j) ds_j \right), (1,31)$$

which reduces to Garrett's expression for a spin 1/2 system.

E. <u>Introduction of Anisotropy</u>

To introduce anisotropy into the solution, ψ is allowed to be different from θ such that the sum of the magnetic energy,

$$E_{m} = -\frac{1}{2}(X_{\perp} \sin^{2} \psi + X_{\parallel} \cos^{2} \psi) h^{2},$$
 (1.32)

and the anisotropy energy (assuming uniaxial anisotropy

and no saturation effects),

$$E_{a} = a \sin^{2} (\psi - \theta) \qquad (1.33)$$

(where a isin reduced units and is greater than zero), takes on its minimum value. This requirement leads to the equation

$$\tan 2\psi = \frac{\sin 2\theta}{\cos 2\theta - (h/h_c)^2}$$
 (1.34)

where
$$h_{C} = \sqrt{\frac{2a}{(X_{\perp} - X_{\parallel})}}$$
 (1.35)

F. Antiferromagnetic-Paramagnetic Boundaries

1. Perpendicular Boundary

Garrett has given the following argument to determine the antiferromagnetic-paramagnetic boundary in the case of a perpendicular field. The component of magnetization in the direction of the field is $2s_0 \sin \phi$ which must equal X_1 h. But X_1 = 1, as will be seen later, so that

$$2s_0 \sin \phi = h \tag{1.36}$$

describes the magnetization in the perpendicular direction until the sublattice spins have been dragged into complete parallelism with the field. This occurs at $\phi = 90^{\circ}$, or $h = 2s_{\circ}$. But for a perpendicular field, equations 1.23 reduce to

$$s_0 = b_S (s_0/t)$$
. (1.37)

But on the boundary $h = 2s_0$, so

where b_S^{-1} refers to the inverse Brillouin function. (Note that at t=0, the boundary intersects the h axis at h=2.)

2. Parallel Boundary

For the parallel case ($\psi=0$), Garrett has noted that the antiferromagnetic-paramagnetic boundary is obtained by letting s_j approach $-s_i$ as the difference of s_j and s_i remains constant. The latter condition is equivalent to $ds_i/ds_j=1$. Application of these conditions to equations 1.23 results in the equations which define the boundary:

$$s_i = b_S(\frac{-s_i - h}{t})$$
 (1.39)

and

$$t = b'_{S}(\frac{h + s_{i}}{t})$$
, (1.40)

where $b_S^{'}$ is the derivative of the Brillouin function with respect to its argument. So, denoting the inverse of $b_S^{'}$ by $b_S^{'-1}$, 1.40 becomes

$$b_{S}^{i-1}(t) = \frac{h + s_{i}}{t}$$
, (1.41)

and therefore, using 1.41 in 1.39,

$$-s_i = b_S(b_S^{-1}(t)).$$
 (1.42)

Also, 1.39 is equivalent to

$$b_{S}^{-1}(-s_{i}) = \frac{h + s_{i}}{t}$$
 (1.43)

Solving 1.43 for h,

$$h = t b_S^{-1}(-s_i) - s_i.$$
 (1.44)

Therefore, using 1.42 in 1.43,

$$h = t b_S^{-1} (t) + b_S (b_S^{-1} (t))$$
 (1.45)

defines the paramagnetic boundary for a field applied in the parallel direction. For S=1/2 this reduces to the equation which Garrett derived:

$$h = t \tanh^{-1} \sqrt{1 - t} + \sqrt{1 - t}$$
 (1.46)

For S not equal to 1/2, equation 1.45 cannot be solved in closed form and numerical solutions are necessary. Computer programs were written to solve the boundary equations for fields applied both parallel or perpendicular to the easy axis, (see Appendix IA) and the results for two values of S are shown plotted in Fig. 3. Ziman¹⁹, using the higher order Bethe-Peierls-Weiss method has found that the critical curve, for the parallel case, drops continuously from h = 1 at t = 0 to h = 0 at t = 1, so that the peculiar maximum in the parallel critical curve near t = 0.2 for the molecular field model, as shown in Fig. 3, probably does not exist in an exact solution.

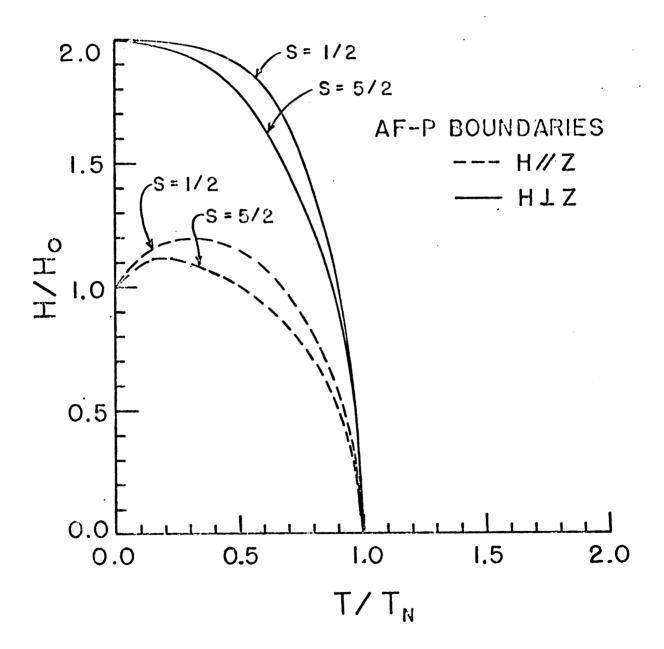


Fig. 3. Parallel and perpendicular antiferromagnetic-paramagnetic boundaries.

G. Susceptibilities

1. Perpendicular Case

As will be seen shortly, the magnetic susceptibilities of antiferromagnets are related to some of the phenomena connected with antiferromagnetism, so it is worthwhile
to calculate theoretical expressions for them. The susceptibility for a perpendicular field is most easily
calculated by noting that the torque on a sublattice spin,
due to the field acting on it, must be zero. That is,

$$|\overline{\mathbf{s}_{i}} \times \overline{\mathbf{h}_{i}}| = 0,$$
 (1.47)

or,
$$\left|\overline{s}_{i}^{*} \times (\overline{h}^{*} - \overline{s}_{j}^{*})\right| = 0$$
 (1.47')

(having neglected anisotropy). For $\overline{h}^{>}$ perpendicular to $\overline{\Delta}^{>}$, $s_i = s_j = s_0$, and the angle between $\overline{s}_i^{>}$ or $\overline{s}_j^{>}$ and $\overline{\Delta}^{>}$ is ϕ . So

$$s_i h cos \phi - s_i s_j sin 2\phi = 0$$
 (1.48)

or,
$$h = 2 s_0 \sin \phi$$
. (1.49)

But the right hand side of this equation is the magnetization in the perpendicular direction which must equal X_{\perp} h. Therefore,

$$X_{\perp} = 1.$$
 (1.50)

2. Parallel Case

For a parallel field, the susceptibility may be calculated from equations 1.23, since $x_{ij} = m/h = (s_{ij} - s_{ij})/h$. Following

Van Vleck's argument, the Brillouin function is expanded about s_0/t as a Taylor's series in its argument. Considering only the first two terms,

$$b_{S}(\frac{h}{t}) = b_{S}(\frac{s_{0}}{t}) + (\frac{h - s_{0}}{t}) b_{S}'(\frac{s_{0}}{t})$$
, (1.51)

Since

$$m = s_{j} - s_{i} = b_{S}(\frac{h_{j}}{t}) - b_{S}(\frac{h_{i}}{t}),$$
 (1.52)

using 1.51 in 1.52,

$$s_{j} - s_{i} = \frac{h_{j} - h_{i}}{t} b'_{S}(\frac{s_{0}}{t})$$

$$= \frac{2h + s_{i} - s_{j}}{t} b'_{S}(\frac{s_{0}}{t}) . \qquad (1.53)$$

Solving 1.53 for s; - s;

$$s_{j} - s_{i} = \frac{2h \ b'_{S}(s_{0}/t)}{t + b'_{S}(s_{0}/t)}$$
 (1.54)

Therefore,

$$x_{"} = \frac{2 b_{S}'(s_{0}/t)}{t + b_{S}'(s_{0}/t)} . \qquad (1.55)$$

3. Paramagnetic Case

In order to calculate the paramagnetic susceptibility (t greater than 1), it is necessary to assume t large enough so that the argument of the Brillouin function is small enough so that the function may be expanded. For small y,

$$B_S(y) = (\frac{S+1}{3S}) y,$$
 (1.56)

or
$$b_{s}(y) = y$$
. (1.57)

Then, since in the paramagnetic state the sublattice vectors are in the same direction as the field, equations 1.10 become

$$s_{i} = \frac{h - s_{j}}{t} \tag{1.58}$$

and
$$s_j = \frac{h - s_i}{t}$$
 (1.59)

So,
$$m = s_i + s_j = \frac{2h - (s_j + s_i)}{t}$$
. (1.60)

or,
$$s_i + s_j = \frac{2h}{1+t}$$
, (1.61)

and therefore,
$$X_{para} = \frac{2}{1+t}$$
 (1.62)

for t large. Note that the derivation of this expression does not guarantee its validity for t only slightly greater than 1, although it may actually be valid.

 X_{\parallel} and X_{\perp} , along with X_{para} , are shown in Fig. 4 for two values of S. Two points are to be noted. First that X_{\perp} is greater than X_{\parallel} , and second that X_{\parallel} decreases to 0 at t = 0.

4. Arbitrary Orientation Case

If a field is applied at an arbitrary angle from the easy axis, the susceptibility in that direction is calculated as follows. For a relatively small field, the parallel and perpendicular components of the induced magnetization

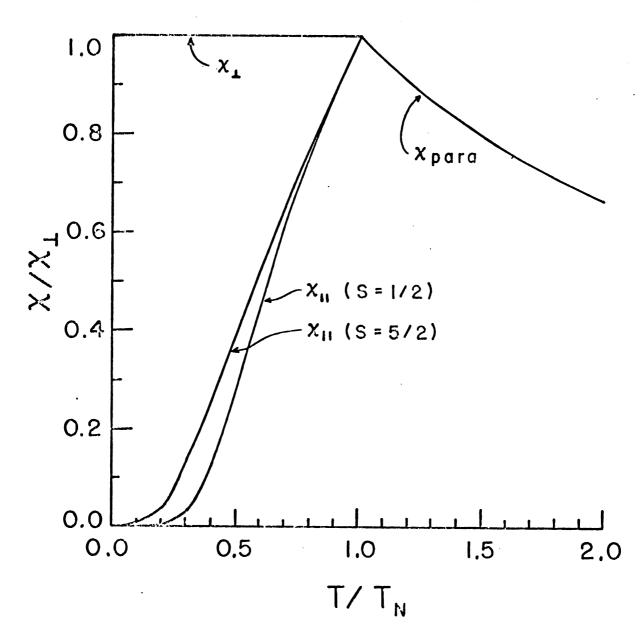


Fig. 4. Parallel, perpendicular and paramagnetic susceptibilities.

are:

$$m_{"} = X_{"} h_{"}$$
 (1.63)

and
$$m_{\perp} = X_{\perp} h_{\perp} , \qquad (1.64)$$

where $h_{\parallel} = h \cos \psi$ and $h_{\perp} = h \sin \psi$. The component of the induced magnetization in the direction of the field is given by the sum of the projections, in the direction of the field, of the above magnetization components:

$$X_{\bullet} h_{\bullet} \cos \psi + X_{\bullet} h_{\bullet} \sin \psi \qquad (1.65)$$

or,
$$X_{"} h \cos^2 \psi + X_{\perp} h \sin^2 \psi$$
. (1.66)

So,
$$X = X_{11} \cos^{2} \psi + X_{1} \sin^{2} \psi$$
. (1.67)

H. Spin Flop

1. The Phenomenon of Spin Flop

An immediate consequence of the difference between X_{\parallel} and X_{\perp} is the phenomenon of spin flop. This involves a 90° rotation of the direction of magnetization when $\overline{h}^{>}$ is applied along the easy axis. That this is possible is seen upon comparison of the free energy in the case that $\overline{h}^{>}$ is parallel to the easy axis and $\overline{\Delta}^{>}$ is also parallel to it to the free energy in the case that $\overline{h}^{>}$ is parallel to the easy axis and $\overline{\Delta}^{>}$ is perpendicular to it. The free energy of the first case is $-\frac{1}{2}X_{\parallel}h^{2}$, and for the second case it is a $-\frac{1}{2}X_{\perp}h^{2}$, where a is the anisotropy constant of equation 1.33. Thus there is a field such that

$$-\frac{1}{2} X_{*} h_{C}^{2} = a - \frac{1}{2} X_{*} h_{C}^{2} . \qquad (1.68)$$

or,
$$h_{c} = \sqrt{\frac{2a}{X_{1} - X_{1}}}$$
 (1.69)

This is the same as equation 1.35. As can be seen from equation 1.34, for θ = 0 and h greater than h_C , ψ = 90°. That is to say, \triangle 's direction flops at h = h_C . This phenomenon was first predicted by Neel¹⁵ in 1936 and was first observed in 1951 by Gorter et. al.²⁰ in a crystal of CuCl₂·2H₂O.

2. Prediction of the Critical Field

It is worth noting at this point that h_C may be predicted from three susceptibility measurements. If X is measured along $\overline{h}^{>}$ at an angle θ from the easy axis, and if the near zero field values of X_1 and X_n are obtained, then the following two equations, previously derived, can be used to predict h_C :

$$X = X_{\parallel} \cos^2 \psi + X_{\perp} \sin^2 \psi$$
 (1.70)
 $\tan 2\psi = \frac{\sin 2\theta}{\cos 2\theta - (h/h_{\perp})^2}$.

This possibility does not seem to have been previously considered. (Indeed, approximations are involved in the above equations, but an order of magnitude prediction is certainly a realistic possibility.)

3. Equations for the Critical Field

Upon substitution of the previously derived values of X_{\bullet} and X_{\bot} in equation 1.69, the following equation may be written:

$$h_{C}^{2} = \frac{2a}{1 - \frac{2}{1 + \frac{t}{b_{S}'(s_{0}/t)}}}$$
 (1.71)

To evaluate this equation, one needs to know a as a function of temperature and spin. Yosida¹⁴ has made a calculation, based on statistical mechanics, of the temperature variation of a for S greater than $\frac{1}{2}$, based on the assumption that the ionic energy causes the anisotropy of the entire crystal (versus the Zeeman energy and the exchange energy of neighboring magnetic ions). His result for the anisotropy constant is

$$a = A S^{2} \left(\frac{S + 1}{S} - 3B_{S}(x) \frac{1}{2S} \operatorname{coth}(\frac{x}{2S})\right)$$
 (1.72)

where

$$x = -2J z S S_0/kT$$
.

At T = 0 this becomes $AS(S - \frac{1}{2})$. So,

$$\frac{h_{c}(t)}{h_{c}(0)} = \left[\frac{s(\frac{s+1}{s} - 3b_{s}(\frac{s_{0}}{t}) \frac{1}{2s} \coth(\frac{3}{s+1} \frac{s_{0}}{2t}))}{(s - \frac{1}{2}) (1 - \frac{2}{1 + \frac{t}{b_{s}'(s_{0}/t)}})} \right]^{1/2}$$
(1.73)

This function has been calculated numerically on the computer

and the results are shown in Fig. 5 for several values of S.

For the case $S = \frac{1}{2}$, the expression giving a in equation 1.72 identically vanishes. Yosida¹² has made a calculation of the anisotropy constant for this case under the assumption that the anisotropy energy arises from the crystalline electric field at a magnetic ion site and from an anisotropic coupling of two spins (such as dipole-dipole interaction). In this case the anisotropy constant shows the same temperature variation as s_0^2 . Thus,

$$\frac{h_{c}(t)}{h_{c}(0)} = \left[\frac{s_{0}^{2}}{1 - \frac{2}{1 + \frac{t}{b_{s}'(s_{0}/t)}}}\right]^{1/2} . \quad (1.74)$$

This equation is also shown in Fig. 5.

II. Applications of the Theory

A. Observation of Spin Flop Boundaries

1. <u>Variation of Temperature in an Isentropic Magnetization</u>

On the basis of the preceding theory, it is obvious that the phenomenon of spin flop may easily be observed by adiabatic means. Whether the system is in the normal antiferromagnetic state, or whether it is in the spin-flop state may be determined by observation of the quantity dT/dH. Now,

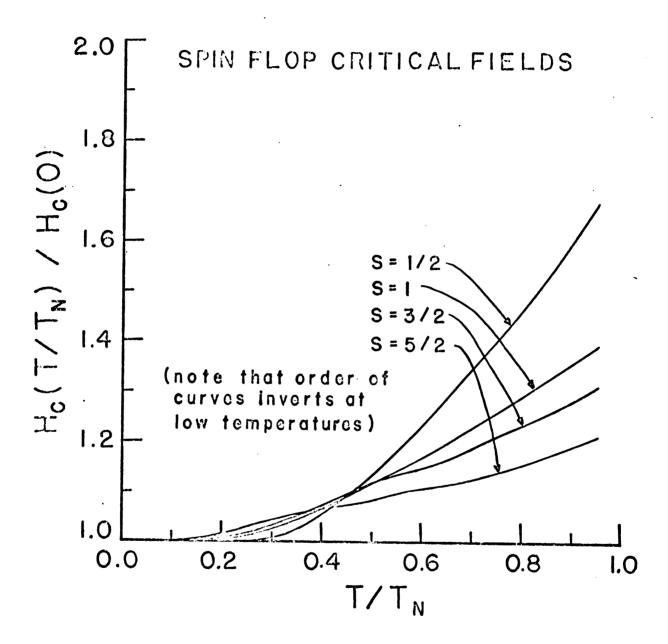


Fig. 5. Normalized spin flop critical fields.

$$\frac{d\mathbf{T}}{d\mathbf{H}} = \left(\frac{\partial \mathbf{T}}{\partial \mathbf{H}}\right)_{\mathbf{S}} = -\frac{\left(\frac{\partial \mathbf{S}}{\partial \mathbf{H}}\right)_{\mathbf{T}}}{\left(\frac{\partial \mathbf{S}}{\partial \mathbf{T}}\right)_{\mathbf{H}}}, \qquad (1.75)$$

where S now is entropy, H is field, and T is temperature. But

$$T \left(\frac{\partial S}{\partial T}\right)_{H} = C_{H}(T,H) , \qquad (1.76)$$

where C_{H} is the constant field specific heat, and by a Maxwell relation:

$$\left(\frac{\partial S}{\partial H}\right)_{T} = \left(\frac{\partial M}{\partial T}\right)_{H} . \qquad (1.77)$$

so,
$$\frac{\mathrm{dT}}{\mathrm{dH}} = \frac{-\mathrm{T}}{\mathrm{C_H}} \left(\frac{\partial \mathrm{M}}{\partial \mathrm{T}} \right)_{\mathrm{H}} , \qquad (1.78)$$

or,
$$\frac{dT}{dH} = -\frac{TH}{C_H} \left(\frac{\partial \chi}{\partial T}\right)_H$$
 (1.79)

Thus if the system is in a state such that $X = X_{"}$, then dT/dH is negative, since $dX_{"}/dT$ is positive. If the system is such that $X = X_{L}$, then dT/dH is zero, since dX_{L}/dT is zero. So, if the field is aligned along the easy axis and increased adiabatically, the temperature of the sample should decrease until the spins flop. Thereafter, there should be no magnetocaloric effect.

On the basis of the molecular field model Garret has computed the values of h and t along several isentropes for a spin 1/2 system and it is seen that the isentropes indeed have negative slopes in the h-t plane. Isentropes could be calculated for a spin S system using the

generalized Garrett equations previously derived above, but their general features should not be expected to vary much from the spin 1/2 system.

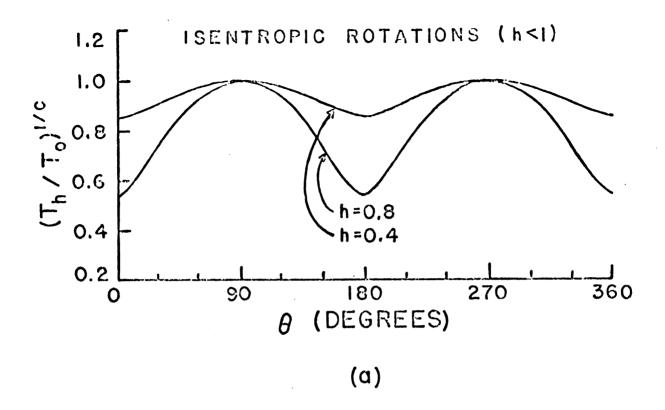
2. Variation of Temperature in an Isentropic Rotation

In addition, equation 1.67 may be combined with equation 1.79, for the case when the field is at an arbitrary angle θ from the easy axis. Then,

$$\frac{\mathrm{dT}}{\mathrm{dH}} = -\frac{\mathrm{TH}}{\mathrm{C_H}} \cos^2 \psi \left(\frac{\partial \chi_{\parallel}}{\partial \mathrm{T}}\right)_{\mathrm{H}}, \qquad (1.80)$$

where ψ is given by equation 1.34. In terms of θ ,

$$\frac{dT}{dH} = -\frac{TH}{C_{H}} \frac{1}{2} \left(1 + \frac{\cos 2\theta - (H/H_{C})}{(1 - 2(H/H_{C})\cos 2\theta + (H/H_{C})^{2})^{1/2}}\right) \left(\frac{\partial \chi_{\parallel}}{\partial T}\right)_{H}.$$
(1.81)


Then, if $(\frac{\partial \chi_u}{\partial T})_H$ is relatively constant between T_0 and T_H , and if C_H is also relatively constant, equation 1.81 may be integrated from $(T_0, 0)$ to (T_H, H) . Then,

$$T_h = T_0 \exp \left[c \int_0^h h' \left(1 + \frac{\cos 2\theta - h'}{\left(1 - 2h' \cos 2\theta + h'^2 \right)^{1/2}} \right) dh' \right], (1.82)$$

where
$$C = -\left(\frac{\partial \chi_{H}}{\partial T}\right)_{H} H_{C}^{2}/2C_{H}$$
, and $h = H/H_{C}$.

(For the type of substances used in this study, C turns out to be of the order 1/10 to 1.)

 $\left(T_h/T_0\right)^{1/c}$ has been calculated from 1.82 and is shown in Fig. 6. T_h/T_0 has

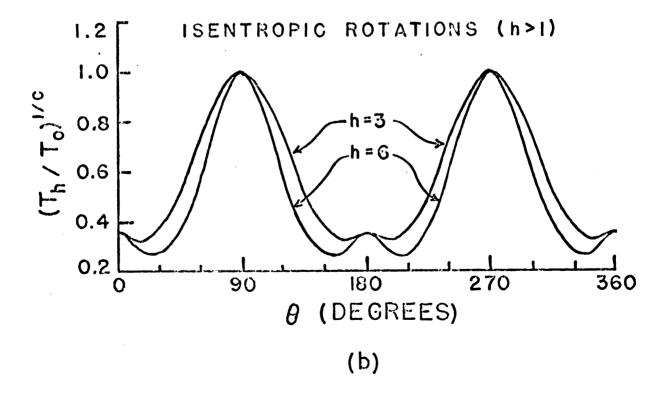


Fig. 6. Predicted temperature variation in an isentropic rotation.

been plotted against θ for several values of h. As can be seen in Fig. 6a, for h less than 1, the sample takes on its minimum temperature at θ = 0. This fact can be used to align a magnetic field along the easy axis in an isentropic situation.

Furthermore, note should be taken of the fact that for h greater than 1, the minimum in temperature (as a function of angle in an isentropic rotation of the field) becomes a maximum, as seen in Fig. 6b. This may be used as confirmation of spin-flopping, although caution must be used, since the model is basically a two dimensional model, and the same results are not to be expected if the spins flop out of the plane of rotation of the field. Also, since, in fact, there also exists anisotropy in the paramagnetic state, if there is a change of principal axes between the antiferromagnetic and paramagnetic states, a temperature minimum becoming a temperature maximum may only indicate an antiferromagnetic-paramagnetic transition.

As an aside, note that although basically a two dimensional model has been used, Nagamiya²¹ has done calculations for fields in different planes of a three dimensional system, and has found that spin-flop can exist in one crystal plane for values of h within a critical hyperbola region.

B. Observation of Paramagnetic Boundaries

Finally, as noted by Garrett, the transition from the

antiferromagnetic state to the paramagnetic state is a second order transition. Thus, the point of the transition may easily be determined adiabatically by finding the temperature at which there is a discontinuity in the slope of the specific heat as a function of temperature in a constant field.

CHAPTER II

EXPERIMENTAL METHODS

I. Experimental Apparatus

The experimental data were taken, using two distinct types of calorimeters. With the exception of minor modifications, the main experimental apparatus has been described elsewhere²², but for the sake of completeness it will be briefly redescribed below. A secondary triple-can calorimeter system, with modifications to cut down heat leaks, was used on a set of zero field specific heat runs and has also been previously described²³. Only the modifications to it will be noted here.

A. Triple-Can Calorimeter Modifications

To reduce the heat leaks to the inner sample can of the triple-can system, the leads which previously came down this can's pumping line were brought in from the liquid helium bath through an epoxy seal similar to those of Wheatley²⁴. A small tube was also attached to the end of the inner can's pumping line such that the line terminated in a T-joint, the pumping being through the sides of the T. Also, only the outer and middle cans were used on the runs. Prior to the above modifications, there were appreciable heat leaks to the sample at 1.20K; these were eliminated for all practical purposes.

B. Main Dewar and Calorimeter

The main experimental apparatus consisted of the narrow-tailed pyrex helium dewar shown in Fig. 7 and the calorimeter shown in Figs. 8 and 9. The dewar is of common style, designed for insertion between the poles of a magnet, and was made to order by H. S. Martin & Son, Evanston, Illinois. The calorimeter was designed so that hopefully, temperatures below 1.20K could be reached. This was the lowest temperature that could be attained with the standard medium sized pump, which was available, pumping on a large volume of liquid helium through a large line. By pumping on a smaller volume of liquid helium which was surrounded by liquid helium, although still isolated from it, lower temperatures could be attained. This calorimeter was somewhat successful in this aspect, in that the temperature of the helium can normally could be reduced to 10K. Note also should be made of the attempts to cut heat leaks to the inner can: 1) an extra shield was placed inside the top of the outer can to cut down radiation from the outer can evacuation line; 2) to reduce radiation into the inner can, right angle bends were put in its pumping line inside the top of the outer can flange; 3) the inner can evacuation lines (and the electrical leads in one of those lines) were partially surrounded by the inside helium bath; 4) the leads were wrapped around and varnished to the bottom of the helium can for good thermal contact; 5) a brass radiation shield to

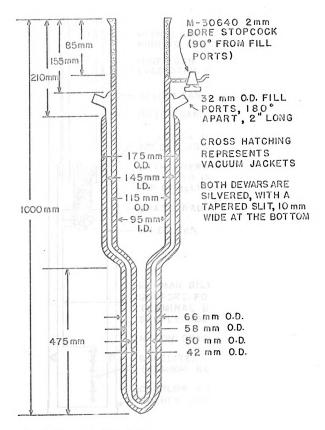


Fig. 7. Pyrex helium dewar.

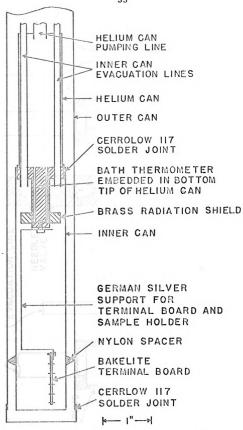


Fig. 8. Cross section of body of calorimeter.

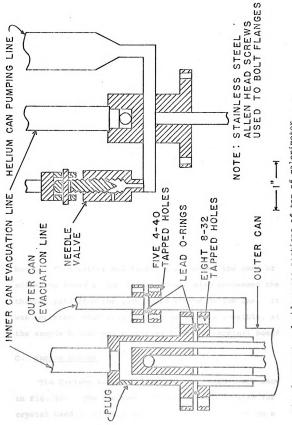


Fig. 9. Front and side cross sections of top of calorimeter.

block any radiation that did get down the inner can evacuation line was placed directly below the ends of the line;

6) copper, which has a higher thermal conductivity than brass, was used in most of the calorimeter below the outer can flange; 7) German silver, which has a low thermal conductivity and is non-magnetic, was used in the pumping lines which essentially support the outer can and its flange to the upper flange, and the inner can and the helium can to the outer can flange; 8) the bottom of the outside can was made removable to allow insertion of a nylon spacer which insured no direct physical thermal contact of the inner and outer cans.

The calorimeter differs from its previous description only in the brass radiation shield (which replaced an epoxy terminal ring-radiation shield) and the German silver extension strip which now supports a bakelite terminal board. This latter modification increased the ease of soldering leads to the terminals and also increased the thermal path from the lead board to the helium can. It was important that this path be as long as possible, since the sample holder was supported from the terminal board.

C. Sample Holder

The C-clamp sample holder and its support are shown in Fig. 10. (The C-clamp section was made to size for each crystal used.) Since a magnetic field experiment on a single crystal depends on the relative orientation of the

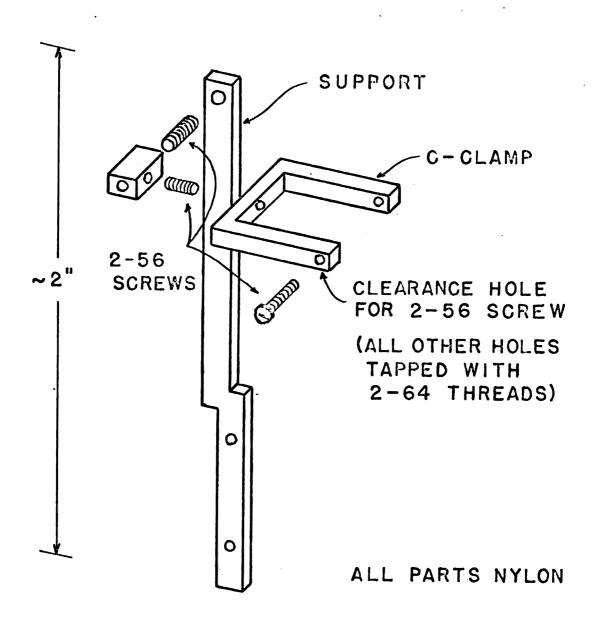


Fig. 10. C-clamp sample holder.

crystal and the field, it was important that the crystal be immobile. An early experiment showed that when a single crystal was supported by nylon threads and a field rotated about it, there was enough torque on the crystal to break the threads and free the crystal.

So, a more solid support was needed. However, since adiabatic experiments were to be done, a support with low thermal conductivity was needed. In addition, it was highly desirable that the support have some internal degrees of freedom so that a crystal's orientation might be changed. Other workers have used pyrex glass²⁵ and carbon²⁶, but it was felt that nylon had advantages over both of these, since it can be tapped to take a screw and since its thermal conductivity is lower than most other materials²⁷. It should be noted that the threads tapped in the holder were for the next size smaller screw than was actually used in the holes. This procedure insured that the holder would maintain its position, once set.

It must be noted that the holder was not completely satisfactory, since a certain amount of heat leak still existed. How much these heat leaks actually affected the measurements depended on the heat capacity of the sample. The larger the heat capacity, the less a given heat leak affected its temperature. So, the holder provided only an apparent adiabatic situation and was not satisfactory in a region where the sample's specific heat was small.

D. Pumps

Five pumps were used in the experiments. The medium size, high capacity pump used to pump on the liquid helium was a Kinney KDH-130. The high vacuum system used to evacuate the inner and outer cans consisted of a Welch DuoSeal pump used as a forepump for a water cooled diffusion pump which, in turn, was used as a forepump of another water cooled diffusion pump. Pressures as low as 10⁻⁶mm Hg were possible with this system. These pumping systems are shown schematically in Fig. 11. Another Welch DuoSeal pump was used to maintain a good vacuum on one side of the U-tube manometer system.

E. Pressure Gauges

Pressures in the high vacuum system could be read by means of an NRC thermocouple-ion gauge meter. Pressures in the liquid helium pumping system could be read on any of three gauges which could be connected to the system: a mercury filled U-tube manometer, an oil filled U-tube manometer, or a McLeod type gauge. Above 2.5 cm Hg of pressure, pressure was measured by measuring the difference in height of the mercury levels in the two arms of the mercury U-tube manometer. Below 2.5 cm Hg, the Todd McLeod type gauge was used. (It is important that no condensable vapors, e.g., air moisture, be allowed into a McLeod gauge system. Therefore, dry nitrogen gas was used to pressurize the gauge for each reading, and as there could

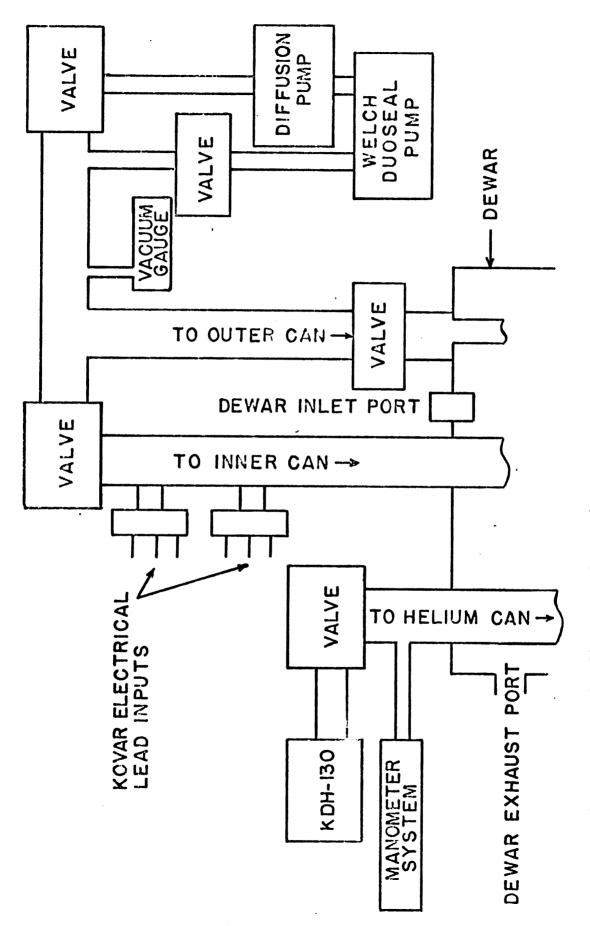


Fig. 11. Schematic diagram of pumping systems.

be a small amount of leakage of air into the system when it was shut down, the gauge was completely pumped out prior to its usage.)

The oil filled U-tube manometer was used below 4.0 cm. Hg for a qualitative observation of decrease in pressure (temperature) during the thermometer calibration part of a run. A Duragauge gauge (30 in. of vacuum to 15 # of pressure) connected to the pumping system at all times could be used as a crude qualitative measure of vacuum also.

F. Thermometers and Current Supplies

To measure temperatures, 1/10th watt 56 ohm Allen Bradley carbon resistors were used. Two six inch 31 mil manganin wires were soldered to each lead of a resistor, close to its body. Soldering was done at as low a temperature as possible while the resistor was being air cooled in order to lessen damage to the resistor. Current was passed through the resistor through two of the leads and the voltage across the resistor was measured potentiometrically through the other two leads. A one micro-ampere current was supplied by two 28 volt Mallory mercury batteries in series with three precision wirewound resistors totalling 56 megohms and a variable 20 megohm carbon potentiometer. The variable resistor was set to give the required current by potentiometrically checking the voltage across a 100K ohm precision resistor which was also in

series with the batteries. To insure a stable temperature environment, all the above resistors and batteries were encased in a 1/2-inch thick wooden box, as it was determined that fluctuating room temperatures significantly affected the current output (this probably was due to variations in the carbon resistor or the batteries). Two of these current supplies were used: one to supply the sample theremometer, and another to supply the helium bath thermometer.

G. Measuring Electronics

A Leeds and Northrup K-3 potentiometer with a galvanometer system consisting of a Leeds and Northrup 9835-B
microvolt amplifier used in conjunction with a Leeds and
Northrup two-pen Speedomax G recorder (with a 5 millivolt
range card) was used to either measure the resistance of
the sample thermometer (the potentiometer balanced), or
observe its change in time (the potentiometer unbalanced).
The amplifier was attached to the potentiometer so as to
give maximum sensitivity to the system. (The sensitivity
of the system could be changed by means of the amplifier's
range selector.)

A similar system (with only a one-pen recorder) was used to observe fluctuations in the temperature of the bath. This latter system was also used to measure the voltage across a 400 ohm heater on the sample. (A heater consisted of one foot of 14 mil Evanohm wire* with four leads similar

^{*}Available from Wilber B. Driver Co., Newark, N.J.

to those attached to the thermometer.) (In this case the other pen of the two-pen recorder was used in the galvanometer system.) When a heater voltage was being measured, the current through the heater was monitored by using the one-pen recorder to read the voltage across a precision resistor in series with the heater. (The heater current supply consisted of three five-cell 6.6 volt Edison batteries in series with a variable resistor used to adjust the current output.)

The heater was switched on and off by a relay attached to an electronic timer which could be preset to run for a given length of time, once started. The relay connected an external resistor (of the same value resistance as the heater) in place of the heater in the heater circuit when the timer was off so as to minimize any pulses from the current monitoring recorder.

All the measuring circuits are box-diagramed in Fig. 12.

H. Magnet

The magnet used in the experiments was constructed from a yoke and poles made to order to accommodate 36 copper strip coils 21 inches in diameter. The poles were made from 10-10 cold rolled steel and were 6.75 inches in diameter. The pole gap was 2.75 inches. Current for the magnet was obtained from two D.C. generators placed in series with the coils. The current output of the generators

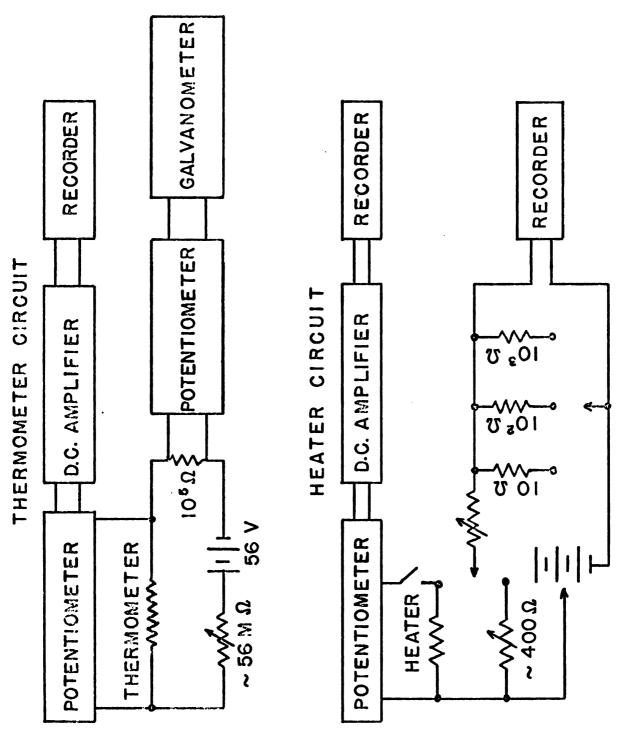


Diagram of electrical measuring circuits. Fig. 12.

was controlled by a variable rheostat in the field circuit of the generators, and a 50 ampere Simpson meter was used with a 50 my shunt to measure the current in the coils. A Rawson-Lush rotating coil gaussmeter was used with a type 501 Rawson-Lush indicator to measure the field between the pole faces. The field was observed to be uniform, within the reading sensitivity of the indicator (about 20 gauss), over about five cubic inches in the center of the gap. The magnet was placed on a frame with a rotating base. A Selsyn motor was attached to the magnet frame and the motor's shaft was attached to the non-rotating center section of the base. This motor was connected in parallel to a similar motor attached to a two foot diameter dial. latter motor's shaft had a pointer attached to it. arrangement allowed easy angular adjustment of the magnet (a lever arm was attached to the magnet frame to ease its rotation). The magnet was air cooled by two fans placed beneath it.

II. Experimental Procedures

A. Sample Preparation and Precooling

An experiment actually begins with the growing of the sample to be used. Single crystals of one to two cc in size, of the types of materials used in this study, are often difficult to grow and much patience is required. Once an adequate size single crystal was available, it was refrigerated

to prevent its losing or gaining water. When it was to be used in an experiment, the external angles between its faces were measured with a protractor-goniometer, and by comparison of these angles with those given in the literature, the crystallographic axes were determined. The sample was then weighed, a heater was wound around the crystal, and a carbon thermometer was tied to the crystal with a cotton thread. Usually the sample, the heater and the thermometer were then coated with G. E. 1202 varnish to insure good thermal contact. (Since the varnish reacted with FeCl₂·4H₂O, Krylon clear plastic spray was used on the fourth sample of that substance, instead.)

The sample was then placed in the C-clamp portion of the nylon holder, and the clamp then tightened. Care was taken so that major edges and faces of the crystal remained visible. The entire holder was then screwed tight to the bakelite terminal board and the leads from the sample heater and thermometer were then soldered to their terminals. Then, it having been previously decided which crystallographic plane was to be parallel to the rotation plane of the magnet, the holder was adjusted so that the appropriate edges or faces of the crystal were horizontal or vertical. This was done carefully by eyesight, and, depending on the orientation desired and the sizes of the faces and edges used for the orientation, the amount of misorientation was estimated to be from two to five degrees.

The inside can was then slipped up under the helium can and soldered closed with Cerrolow Alloy 117*. The outside can was then slipped up onto its flange (with five-ampere Buss fuse wire O-rings in place on the O-ring grooves) and tightened down. The nylon spacer was slipped up between the inner and outer cans from the bottom of the outer can, after which the bottom was soldered in place with the Cerrolow alloy. The calorimeter being completely assembled, it was put inside the dewar and all flanges were sealed tight and electrical connections were checked for continuity.

The inner and outer can evacuation line valves were closed, the helium can pumping valve closed, the needle valve opened, and the dewar evacuated with the high capacity pump. Liquid nitrogen was then put into the dewar's nitrogen jacket; when the jacket was filled to the top, the pump was closed off and helium gas at atmospheric pressure was admitted to the inside of the dewar.

B. Helium Transfer and Calibration

The above procedure was generally accomplished in two to three hours so that there would be little damage to the crystal from exposure to air at room temperature. Several hours later, when it was certain the crystal was cold enough to be pumped on without damage, the air which had been trapped in the inner and outer cans was pumped off with the Welch pump of the high vacuum system. When the pressure

^{*}Available from Cerro Sales Corporation, New York.

was below 50 microns Hg, the diffusion pumps were cut into the pumping system and were allowed to pump until the pressure was about 10⁻⁴ mm Hg. The high vacuum system was then closed off and helium gas at atmospheric pressure was admitted to the inner and outer cans. This procedure insured complete pre-cooling of the sample overnight.

Early the next morning, a thermometer calibration point at liquid nitrogen temperatures was taken by recording the thermometer's resistance, atmospheric pressure and room temperature. The helium exchange gas pressure was then reduced with the Welch pump to about 1000 microns Hg; with this pressure inside the cans and with the needle valve closed, liquid helium was transferred from a storage dewar into the experimental dewar. Both the bath and sample thermometer resistances were monitored on the two-pen recorder during the transfer. The transfer was done slowly enough to insure the sample's complete cooling to liquid helium temperatures before the end of the transfer. This procedure usually resulted in a five to seven liter transfer.

After the transfer, liquid helium was admitted into the helium can by opening the needle valve. The outer can valve was opened to the high vacuum system, the helium can pumping valve was opened, and the dewar vent valve was opened. When both the bath and sample thermometers had come to equilibrium, and when the pressure in the outer can was less than about $8\cdot 10^{-5}$ mm Hg, another thermometer calibration point was taken by recording the resistance of the

sample thermometer, room temperature, atmospheric pressure, and the approximate height of liquid above the sample. needle valve was then closed, the dewar vent valve connected to a helium recovery system, and the high capacity pump needle valve opened to pump on the helium in the helium can. Approximately every 0.2-0.30K the pumping was slowed down to allow both bath and sample thermometers to come to equilibrium. Equilibrium of the bath was attained by adjusting the needle valve to keep the resistance of the bath thermometer (observed on the recorder) constant. When both thermometers were stable, the sample thermometer's resistance and atmospheric pressure were recorded, and the pump valve was again opened until the next calibration point was reached. Each calibration point generally took from ten to thirty minutes, and the entire calibration procedure lasted about three hours.

When the calibration was finished, the outer can valve was closed, and the inner can was evacuated. The sample was considered to be isolated when the pressure in the inner can was less than about $5\cdot 10^{-5}$ mm Hg; the outer can valve could then be reopened.

C. Specific Heat Measurements

For a specific heat experiment, the potentiometer system which was being used to observe the bath thermometer was then set to observe the voltage across the sample heater, and the variable resistance in the heater circuit was set

to give a heater current of about 0.1 ma. The potentiometer observing the sample thermometer was set off balance so that the recorder pen was near the left side of the chart, and the potentiometer reading (converted to resistance) was recorded. The automatic timer was started, the sample was heated, and the effect on the sample's temperature was observed on the chart recorder. The heat input was adjusted so that in 20-30 seconds there would be 10-20 divisions change in the position of the pen observing the sample. Since there are always some heat leaks present in a calorimeter, the sample's temperature was seldom constant when the heater was off. Depending on its temperature and the temperature of the bath, the sample was normally either warming or cooling. Heat was introduced to the sample only after there was a relatively constant rate of change of temperature for about a minute. When the recorder pen was at the right side of the chart, the potentiometer was adjusted so the pen moved back to the left side and the above procedure was repeated. (Each time the timer was on, the length of time it was on, the amount of current being used, and the voltage across the heater were recorded.)

D. Magnetic Field Experiments

Four different types of magnetic field experiments were done in this study: 1) adiabatic rotation of the magnetic field about the sample, 2) adiabatic magnetization

of the sample, 3) discontinuous heat input to the sample (specific heat measurements), and 4) continuous constant power input to the sample. Generally a rotation was done immediately after isolating the sample and turning on the field.

By adiabatically rotating the field, the preferred axis of magnetization could be determined by looking for the magnet position in which the temperature of the sample was a minimum. For this positioning to be unambiguous, there could only be two minima 180° apart, thus insuring the sample to be in the AF state at the position of the minima. (If the field were higher than some critical value, the sample would be in some other state in the easy direction, and other minima would appear.) Generally, in order to be able to see a temperature difference upon rotation, the field had to be several kilogauss.

Although most rotation data points were taken five or ten degrees apart, the position of the easy axis was always determined to within one degree by careful observation of the temperature change on a slow continuous rotation. For each point taken in an adiabatic rotation, the magnet position was read from the Selsyn dial and the sample's temperature was determined by making a null measurement with the potentiometer of the voltage across the sample thermometer, thus determining its resistance.

After the direction of the easy axis was determined, isentropes could be measured along either the easy or hard

axis (the hard axis being 90° away from the easy direction). Points on a given isentrope were obtained by potentiometrically measuring the sample's temperature for different values of field (the value of the field being determined from the current in the magnet).

After the initial isentrope was obtained, higher temperature isentropes could be obtained by warming up the sample through its heater and then measuring the temperature at different fields again. Since the nylon holder permitted a heat leak, any measured isentrope actually consists of parts of many close-lying isentropes. So, although the isentropes are not quantitatively correct in every detail, their shapes should be qualitatively correct.

Isentropes along the easy axis direction were used to observe first-order phase boundaries. In this case there was sometimes a change in sign of the slope of the isentrope at the boundary in the H-T diagram and the point of change could easily be followed in the H-T plane by observing only a small part of the isentrope near the change. Points were obtained by slowly varying the field and recording resistance and field values as near as possible to the point of change. In order to get a good average, since the measurements were quasi-static, several points were generally taken, both with the field being raised and with it being lowered. (If there was no point of change, a complete isentrope was taken with static measurements.)

To observe a second-order transition boundary, a constant field specific heat experiment was done until the boundary was crossed (easily seen by the sudden increase in the amount of temperature change for a given heat input). Then the field was set to a new value, the inner and outer can valves shut, the high vacuum pumping system closed off, and about .05-.2 mm Hg of helium gas admitted to the pumping line outside the inner can valve. The valve was slowly opened and the sample would cool back to the temperature of the helium bath. The amount of exchange gas determined the speed of cooling. The inside can was evacuated with the high vacuum system as soon as it was evident that the sample had cooled enough so that it was sure to be in the ordered state again. Then specific heat measurements were done again.

In some cases, for instance, when the heat leak was very large, the second-order transition point was observed by looking for a change in the slope of a continuous heating track on the recorder. (The point of slope change was also looked for in the specific heat measurements.) In these measurements, the potentiometer reading (converted to resistance) was recorded whenever the recorder pen was moved to the left side of the chart.

E. Shut-Down

At the end of a run, all pumps were opened wide, the diffusion pump heaters turned off, and liquid nitrogen

maintained in the dewar jacket until about twelve hours before the calorimeter was to be removed from the dewar. The pumps were shut off and dry nitrogen gas was admitted to the dewar about four hours before removal of the calorimeter. Through these procedures, the sample was still cold when it was removed, so that damage to the crystal (from sitting in air at room temperature) was minimized. The sample was returned to the refrigerator after it was removed from the calorimeter.

III. Reduction of Experimental Data

Except for preliminary reduction of data from the recorder chart, all data reduction and calculations were done on the M.S.U. CDC 3600 computer. Appendix I contains a listing of the programs used plus a listing of a typical input deck.

A. Conversion of Pressures to Temperatures

Most of the data reduction is involved with determining the temperature of the sample. The pressure readings taken for each run, for the calibration of the thermometer, were first changed into pressures at 0°C. Then hydrostatic corrections were made for the pressure of the amount of liquid helium above the sample, since the vapor pressure measurements correspond to the temperature at the surface of the liquid. A correction was added to the 0°C corrected manometer reading, equal to the height of the helium times the density of

helium at its estimated temperature divided by the density of mercury at 0°C. (For the main calorimeter, the height of the helium could not be seen after the initial point, since the helium was isolated inside the cans, so the height was guessed to be six or seven cm.) Since a temperature gradient cannot exist in liquid helium below the lambda point (2.17°K), hydrostatic corrections were not made below this temperature. Also, below a pressure of 2.5 cm Hg, no pressure corrections to 0°C were made, since those readings were taken on the McLeod gauge which is relatively insensitive to temperature changes.

The corrected pressure readings were translated to temperatures using "The 1958 He⁴ Scale of Temperatures"²⁸. The nitrogen temperature calibration point, taken before the helium transfer, was translated to a temperature from the equation²⁹

$$T = \frac{255.821}{6.49594 - \log_{10} P} + 6.6 ,$$

where P is the $0^{\circ}C$ corrected manometer reading in mm.

B. Temperature Calibration Equation

An equation was then fitted to these resistance-ther-mometer calibration points for interpolation (or extrapolation) of temperatures from thermometer resistances. The standard equation that has been used³⁰ is

$$\sqrt{\log R/T} = a + b \log R$$
,

where R is resistance and T is temperature. However, it has been observed that when the calibration points are least-square fitted with the above equation, there are systematic deviations of the points from this curve for the thermometers used in this study. To take advantage of this fact, the relative deviations are then least-square fitted to a polynomial in log(resistance). (Normally, a fourth degree polynomial was used, although, in order to reduce extrapolation errors, a third degree fit could be used if there was to be any extrapolation from the equation.) Thus, given a thermometer resistance, the corresponding temperature could generally be calculated from the following equation:

$$T = \log R \left[\frac{a + b \log R}{1 - \sum_{n=0}^{4} C_n (\log R)^n} \right]^{-2}.$$

This type of fit usually resulted in no more than 0.1--0.2% deviations of the measured points from the fitted curve. If there was to be much extrapolation above the helium calibration region, the unmodified two parameter equation was used for the fit, since a separate experiment in which a carbon resistance thermometer was calibrated against a germanium resistance thermometer showed there to be less extrapolation error in this case. Similarly, if there was much extrapolation below the lowest calibration point, the straight line fit was assumed to induce less error. (Another possiblity of a calibration equation is 1/T = a polynomial in log R. The fits resulting from this

equation were never as good as those from the modified straight line fit, so it was never used.)

C. Determination of Thermometer Resistances

If a potentiometer null reading was taken, the thermometer resistance was merely determined by dividing the reading by the current in the thermometer. For the cases, as in specific heat measurements, where null measurements were not made, but the distance of the recorder pen from the null position was known, a "voltage calibration" had to be made in order to relate the resistance of the thermometer and the potentiometer setting when the pen was at a given distance from the potentiometer null position. The relationship used was (see Appendix II):

$$R_{T} = \frac{R_{0} - [C_{1} - C_{2}R - 2C_{3}R^{2} - 3C_{4}R^{3}]D}{1 + [C_{2} + 2C_{3}R + 3C_{4}R^{2}]D},$$

where $R_{\rm T}$ = the actual thermometer resistance, D = the number of divisions on the chart the recorder pen was to the right of the null position; R initially was set equal to R_0 , the potentiometer setting divided by the thermometer current, and the C's are constants determined from the fit to the voltage calibration points. The calculation was reiterated then, using $R = R_{\rm T}$ of the previous calculation until two successive iterations differed by less than 0.1%. The C's in the above equation were the coefficients obtained from fitting the voltage calibration points taken

off the chart to a third degree polynomial. A voltage calibration point was automatically obtained each time the recorder pen was made to move across the chart by changing the potentiometer setting. R_0L was the potentiometer setting when the pen was at the left of the change and R_0R the setting when it was at the right (both readings were converted to resistance). DL and DR were the number of divisions to the right of the null position when the pen was at the left and right sides of the change respectively. (See Fig. 13.) The abscissa and ordinate used in the fit were $(R_0L + R_0R)/2$ and $(R_0L - R_0R)/(DL - DR)$ respectively. (Generally, the change was made across the null position so that $(R_0L + R_0R)/2$ approximated R_m .)

During the runs on sample four of $FeCl_2 \cdot 4H_2O$, in which the thermometer resistance was very large, it was discovered that there was considerable non-linearity across the chart page. Some of the observed voltage calibration points, plotted against the average number of divisions from the null position at which each point was taken are shown in Fig. 14. A graph of voltage calibration points plotted against thermometer resistance, for different distances from the null position, derived from the previous plot, is shown in Fig. 15. Using this last graph, it was possible to estimate R_T , for the pen sitting D divisions right of the null position and a converted potentiometer setting of R_0 , using the crude equation

Fig. 13. Example of preliminary reduction of chart data.

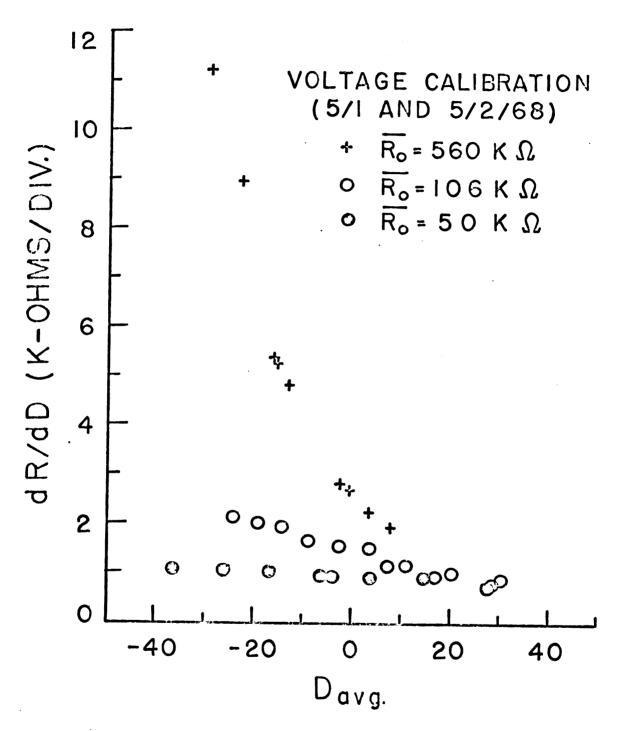


Fig. 14. Voltage calibration points from FeCl₂·4H₂O (sample 4) runs.

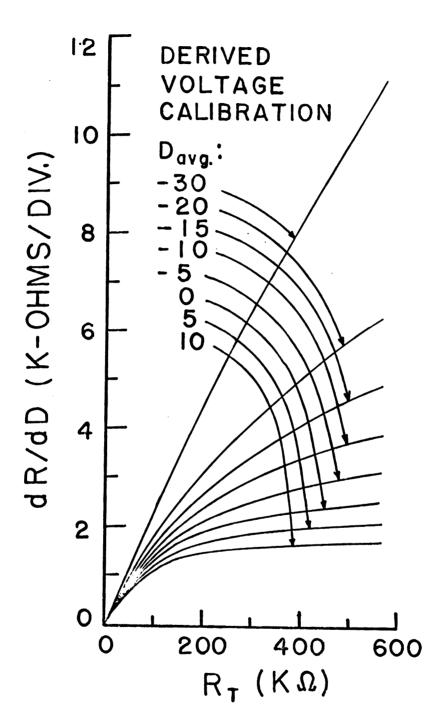


Fig. 15. Voltage calibration derived from Fig. 14.

$$R_{T} = R_{0} - \left(\frac{dR}{dD}\right)_{D,R_{0}} D,$$

where the quantity in parentheses is the appropriate number estimated from the second graph.

D. Specific Heat Calculations

The variable quantities in a specific heat measurement were the heat input to the sample and the temperature change of the sample produced by that heat input. The quantity of heat was equal to the (voltage across the heater) x (the current through the heater) x (the length of time the heater was on). The effect of heat leaks on the sample was subtracted out by the graphical method indicated in Fig. 13. The method minimizes any effect from a change in the rate of the heat leaks and approximates the ideal situation where the heat input is instantaneous to the sample. (For a small heat input, there should be little effect to the heat leak rates.) Thermometer resistances were calculated for the positions DS and DE with a converted potentiometer setting of Ro and were then transformed into temperatures. The difference of the temperatures was used to calculate the specific heat and their average was considered to be the temperature of the sample.

E. Calculation of Magnetic Field

In order to obtain slightly better values for the magnetic field as a function of the magnet current, an eighth degree polynomial in the current was fitted to about 50 current-field calibration points. Any necessary interpolation was then made from the fitted curve. The calibration curve of the magnet is shown in Fig. 16.

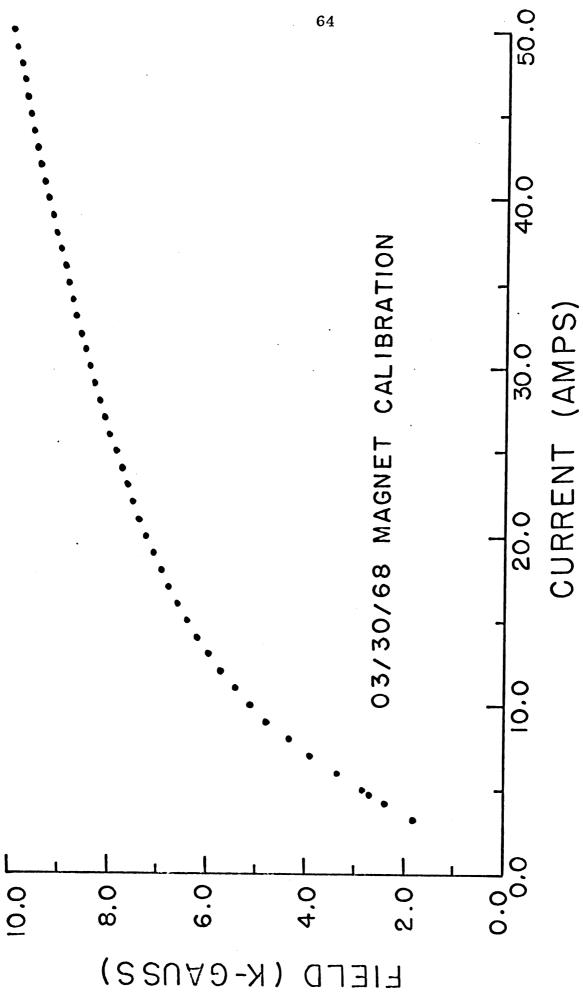


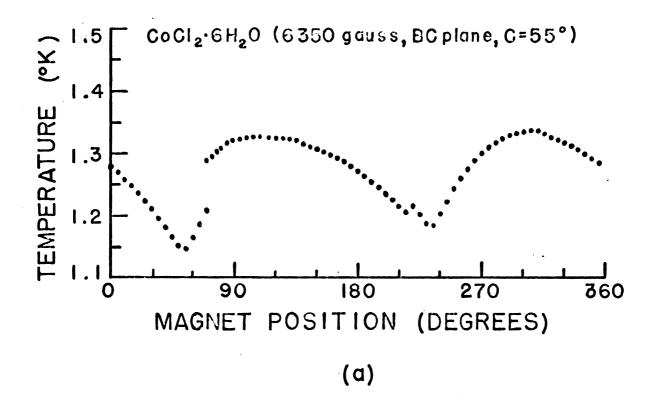
Fig. 16. Magnet calibration curve.

CHAPTER III

RESULTS AND CONCLUSIONS

I. Results

A. Results of Experiments on Samples with Known Spin Flop Phases


Since the adiabatic method used to observe the spin flop state of an antiferromagnet was new, observations were made on two materials whose spin flop states have been previously studied. The studies on $CoCl_2 \cdot 6H_2O^{31}$, 32 and $MnCl_2 \cdot 4H_2O^{33}$, 34 have indicated that both substances exhibit spin flop properties near ^{10}K below 10 ,000 gauss. Thus, since these regions of field and temperature were attainable with the present equipment, these substances offered a good test for the adiabatic method of observing the spin flop state.

A nearly single crystal of $CoCl_2 \cdot 6H_2O$, weighing about 0.8 grams, was grown from an aqueous solution at room temperature. $CoCl_2 \cdot 6H_2O$ is monoclinic with the angle $\beta = 122^019^{\circ}$. The habit has been described by $Groth^{35}$ and the crystal was oriented on the basis of that description. As noted by Schmidt and Friedberg³², large single crystals of $CoCl_2 \cdot 6H_2O$ are difficult to grow. Since the faces of the crystal used in this study exhibited some irregularities, more than likely it was not completely single.

Experimental measurements were made in three different crystallographic planes: the BC plane, the AB plane and the AC plane. Isentropic field rotations were made in each of these planes at two different fields, one below and one above the critical field for spin-flopping. (The previous measurements on CoCl₂·6H₂O have indicated a critical field of 7200 gauss at 1°K which rises to a value of 7825 gauss at 2.06°K.) The results are shown in Figs. 17, 18, and 19, and the data are listed in Tables 1, 2, and 3 of Appendix III. (It should be noted that in most of the isentropic rotations in this study, there were imperfect adiabatic conditions, so that at the end of a complete rotation, a sample's temperature may have been different from its temperature at the beginning of the rotation.)

Note should be made of the peculiar shift of the maximum in the two BC rotations, for which there is no explanation at present. Also, a third BC rotation, which is not shown, was done in a higher field of 8830 gauss. The results of this rotation reproduced, almost point for point, the results of the low field rotation of Fig. 17a. Although it is doubtful, there is a slight possibility there was a misreading of the field in one of these rotations. Thus, further investigation into the behavior of the magnetization in the BC plane is indicated.

Since in two of the isentropic rotations, in fields below the reported critical field (Figs. 17a and 19a), the temperature is a minimum in the C direction, this direction

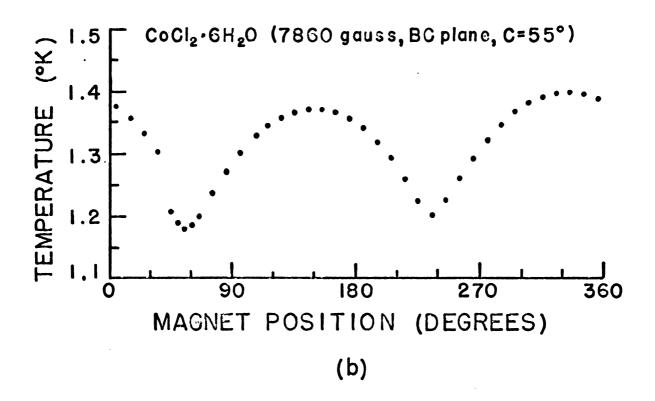
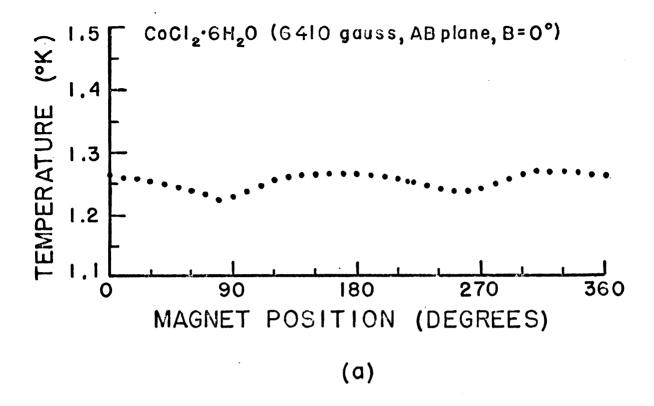



Fig. 17. $CoCl_2 \cdot 6H_2O$ BC plane isentropic rotations.

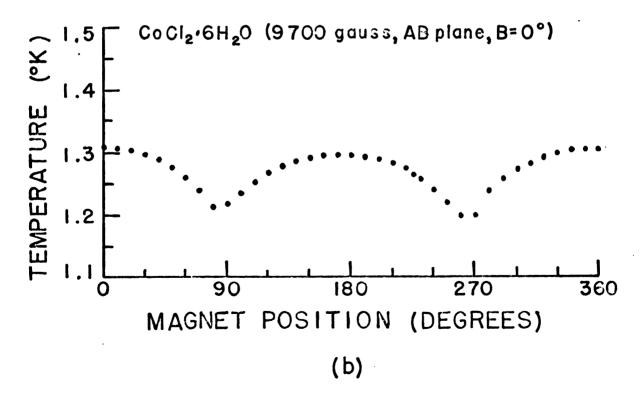
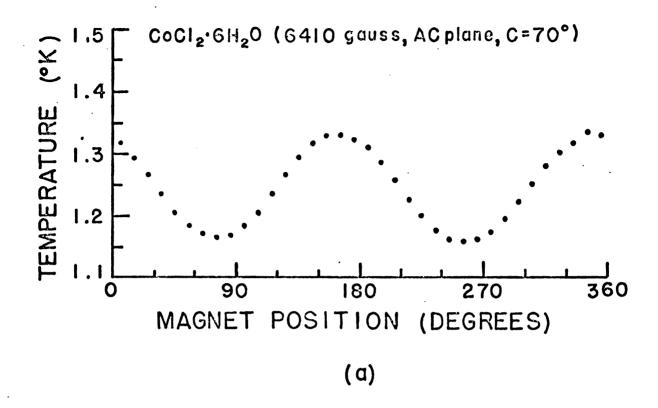



Fig. 18. CoCl₂·6H₂O AB plane isentropic rotations.

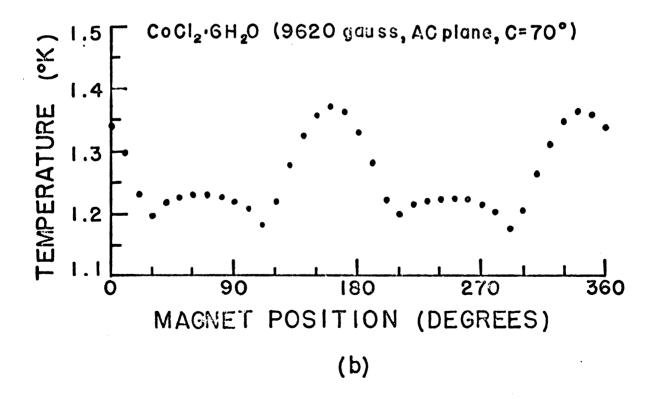
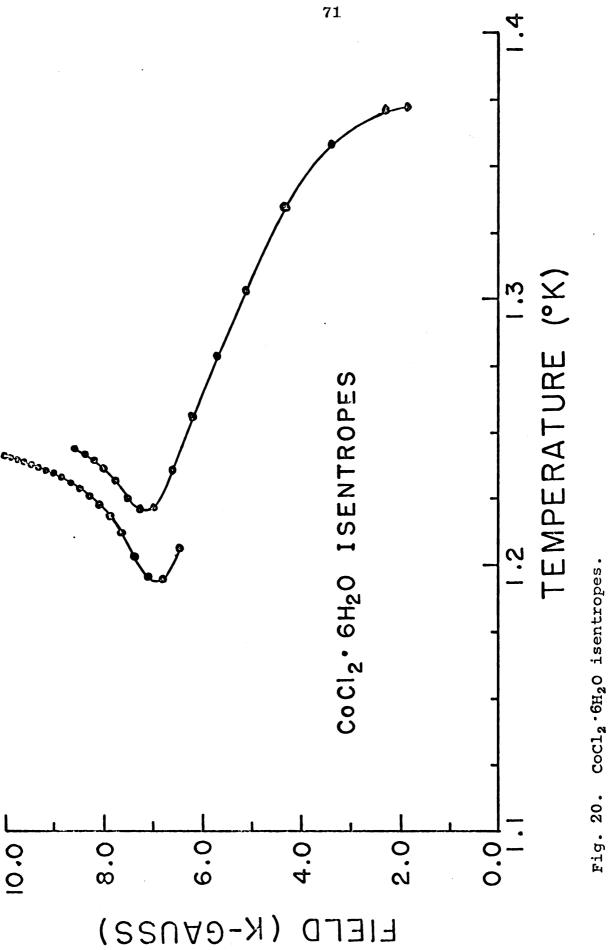


Fig. 19. $CoCl_2 \cdot 6H_2O$ AC plane isentropic rotations.


is, on the basis of the discussion of isentropic rotations in Chapter I and the predicted behavior shown in Fig. 6a, the preferred axis of magnetization. This is consistent with the susceptibility results of Haseda³⁶, which gave the same indication.

The AB rotations (Fig. 18) show nothing remarkable, although it is worth noting that it can be seen from these rotations, that since the temperature is a minimum in the A direction, after the C axis, the A axis (or perhaps the A' axis) is the next most preferred axis of magnetization. Thus if the spins flop, they should flop to the A (or maybe A') direction, and an AC plane isentropic rotation, above the critical field, would be expected to produce results as predicted in Fig. 6b.

The results of the AC plane high field rotation, shown in Fig. 19b, do indeed qualitatively correspond to Fig. 6b, and that $CoCl_2 \cdot 6H_2O$ undergoes spin flop (the spins flopping to the A' direction) is partially indicated by these results.

More conclusive evidence that CoCl₂·6H₂O enters a spin flop phase between 7200 and 7800 gauss in the temperature region 1.2-1.7°K is given by the results of the isentropic magnetizations along the C axis. The isentrope points thus obtained are listed in Table 4 of Appendix III and Fig. 20 shows smooth curves which have been drawn through the individual data points. As can be seen, there is cooling upon magnetization initially, which disappears when the spins flop.

Note should be taken of the change in sign of the isentropes' slopes near 7200 gauss. This fact, as mentioned in Chapter II, allowed determination of the point of the phase change without measuring a complete isentrope. The points thus obtained are listed in Table 5 of Appendix III and are shown in Fig. 21, along with a smooth line representing the phase boundary results of Van der Lugt and Poulis. (The results of Schmidt and Friedberg coincide closely to those results and therefore are not shown.) No points were taken above about 1.760K, since the change in sign of the isentropes' slopes disappeared above that temperature. However, it is clear that the points obtained coincide very well with the previously published results.

(To further verify that there is no magnetocaloric effect when the spins are perpendicular to the field, an isentropic magnetization along the B axis was done when the crystal was in the AB plane of rotation orientation. When the field was changed from about 6400 gauss to near 10,000 gauss, there was less than 5 millidegrees fluctuation in the sample's temperature, thus confirming the predictions of the theory.)

Also, an isentropic rotation was done in the paramagnetic state in the BC plane. The data is given in Table 6 of Appendix III and is shown in Fig. 22. It is seen that in this plane, from observation of the temperature variation in the rotation, the anisotropy is considerably smaller in the paramagnetic state than in the ordered state. Also

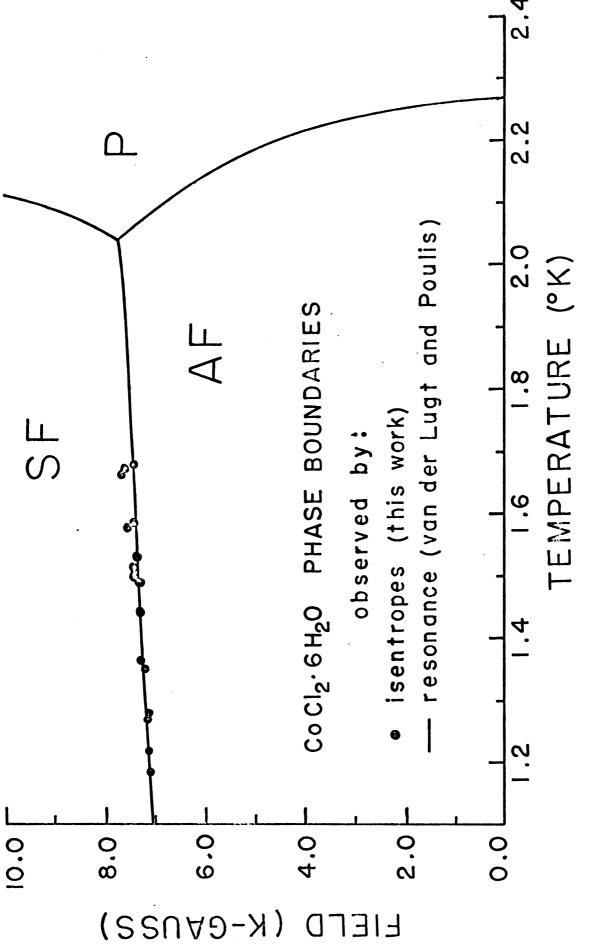
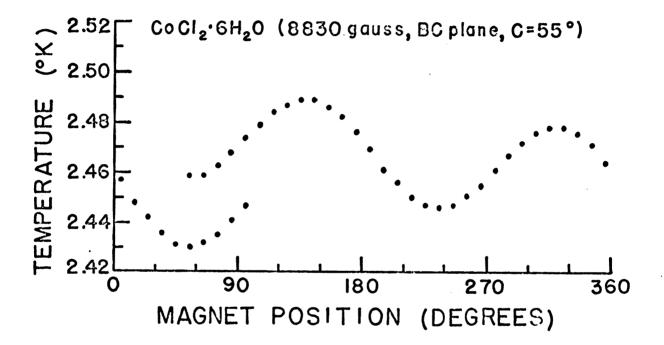
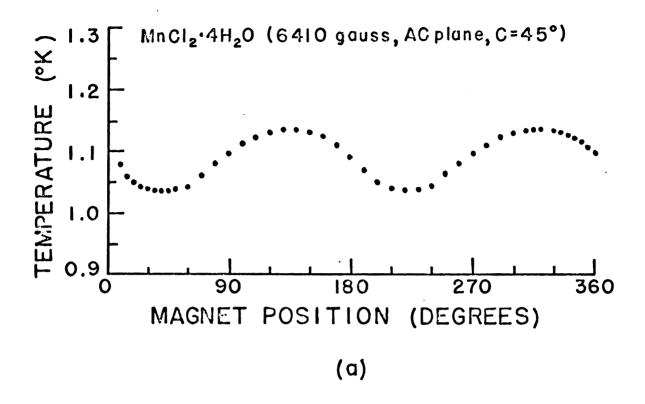


Fig. 21. CoCl₂·6H₂O phase boundaries.




Fig. 22. $CoCl_2 \cdot 6H_2O$ BC plane paramagnetic isentropic rotation.

it is seen that there is no change of principal magnetic axes between the ordered and unordered state, at least as far as the B and C axes are concerned.

Two points that may merit further investigation are the following. First, the magnitude of the field used in the high field AC rotation, relative to the critical field, should not have been expected to produce the relatively large change in the behavior of the sample when the field was near the C axis, as seen in Fig. 19. Secondly, the observed change in sign of the isentrope slopes was not predicted by the simple molecular field theory, and is not yet understood.

For the measurements on $MnCl_2\cdot 4H_2O$, two different portions of single crystals, borrowed from R. D. Spence, were used in separate experiments. The first crystal weighed about 1.0 grams and the second about 1.7 grams. The morphological description given by $Groth^{35}$ was used as the basis of the orientation of each crystal. Like $CoCl_2\cdot 6H_2O$, $MnCl_2\cdot 4H_2O$ is monoclinic with $\beta=99.74^O$.

The previous measurements have indicated that the preferred axis in MnCl₂·4H₂O is the C axis and that a transition to the spin flop phase takes place in a field near 8000 gauss near 10K. Thus, measurements were made only in the AC and BC planes for MnCl₂·4H₂O. The results of two isentropic rotations (below and above the critical field) in each of these two planes, using the first crystal, are shown in Figs. 23 and 24, and the data are listed in Tables 7 and 8 of Appendix III.

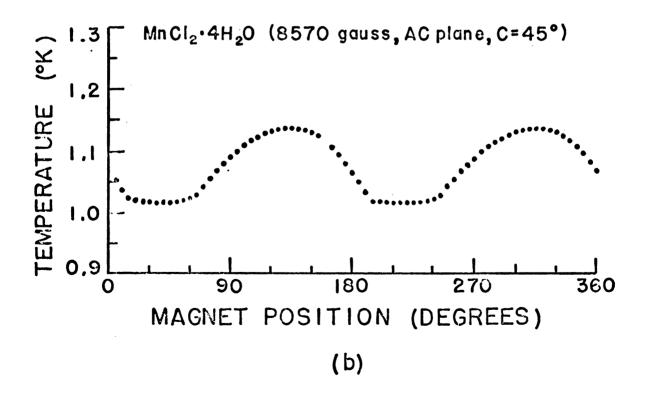
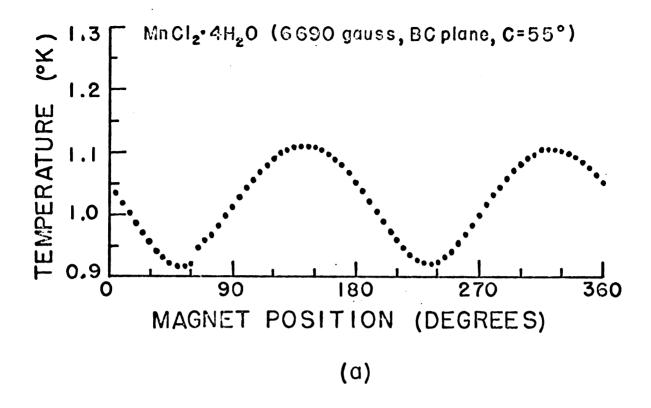



Fig. 23. MnCl₂·4H₂O AC plane isentropic rotations.

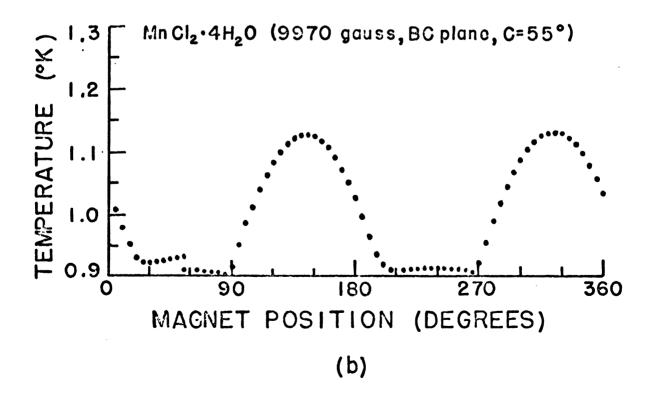
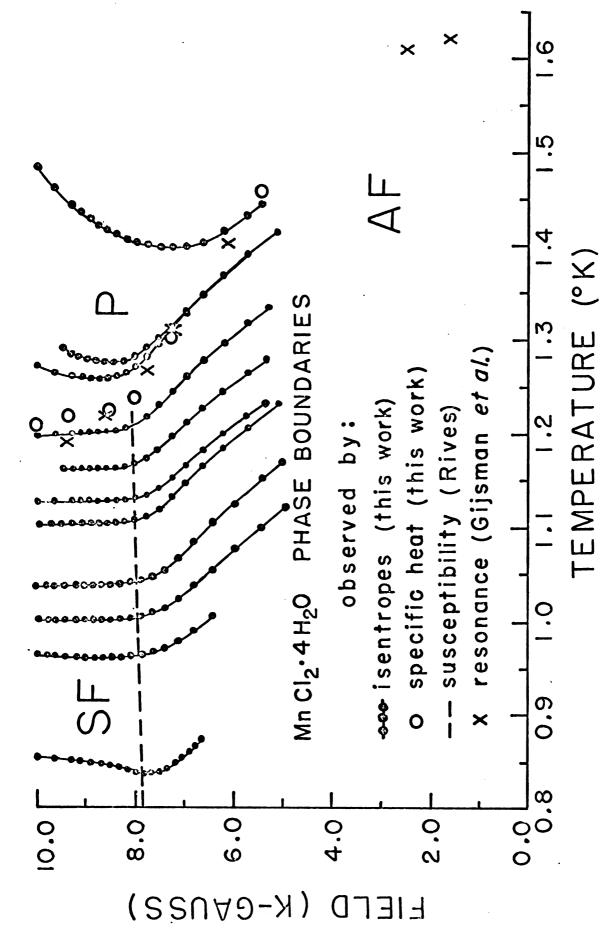



Fig. 24. $MnCl_2 \cdot 4H_2O$ BC plane isentropic rotations.

As in CoCl₂·6H₂O, the results of the rotations below the critical field indicate that the C axis is the preferred axis of magnetization. Other than the flatness near the C axis in the high field rotation (Fig. 23b), nothing remarkable is seen in the AC plane rotations. However, in the BC rotation above the critical field, shown in Fig. 24b, the behavior is again similar to that of Fig. 6b. Thus there is partial indication that MnCl₂·4H₂O undergoes a spin flop transition and that the spins flop to the B axis. Rives³⁴, in one of his experiments, with the field initially aligned along the C axis, experienced a 90° rotation of his crystal, about the A' axis, upon a quick demagnetization. This is consistent with the conclusion that the spins flop to the B axis.

Further evidence of the spin flop phase in MnCl₂·4H₂O is given by the C axis isentropic magnetization results. The data points are given in Table 9 of Appendix III and smooth curves drawn through the points are shown in Fig. 25. Also shown in Fig. 25 as a dashed line is the spin flop-antiferromagnetic boundary obtained by Rives.³⁴ (Rives results are about 100-200 gauss higher than the results of Gijsman, et. al.³³, which are not shown.) From the measured isentropes, it is seen that the initial cooling upon magnetization disappears in the spin flop phase.

Also shown in Fig. 25 are several points obtained from the maxima of specific heat measurements made in this study (these points are listed in Table 10 of Appendix III).

MnCl2 .4H2O phase boundaries and isentropes. Fig. 25.

It is seen that there is close agreement between the specific heat and nuclear resonance paramagnetic boundary results of Gijsman et. al.³³ which are shown in Fig. 25 also. (Note, however, that Rives' paramagnetic boundary results, which are not shown, are considerably higher in temperature than the boundary points shown in Fig. 25.)

The lowest temperature isentrope was obtained from the first crystal when it was in the BC plane orientation, while the others were obtained from the second crystal. (The second crystal was oriented in the AC plane. For this crystal, isentropic rotations in this plane gave results similar to those obtained for the first crystal.) Although there is a change in sign of the slope of the isentrope from the first crystal, similar to the CoCl₂·6H₂O results, there is none for the second crystal results and the isentropes behave as predicted by the theory. Unfortunately, the gradual decrease of the magnetization cooling effect near the spin flop boundary makes it nearly impossible to define a single point as a phase change point. However, the results, at least, do show the existence of the spin flop state, with a critical field in the vicinity of the results of the previous studies.

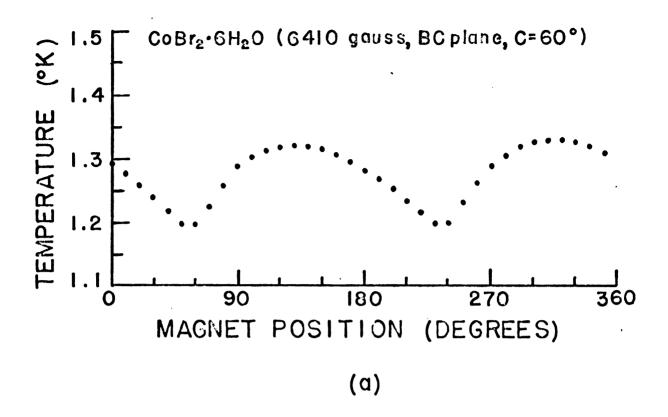
Also worthy of note are the measured isentropes which start in the antiferromagnetic state and cross over into the paramagnetic state. It is seen that adiabatic magnetization in the paramagnetic state, near the antiferromagnetic boundary produces cooling. Although this is

unusual, such an effect has been observed before by Friedberg and Schelleng³⁷ in MnBr₂·4H₂O. In contrast with those observations, though, these antiferromagnetic-paramagnetic isentropes apparently do not cross the phase boundary tangentially. It is possible that this is due to imperfect adiabatic conditions, although further measurements are needed for a better determination of the true isentropes.

B. Materials Discovered to Exhibit Spin Flop

Since the above results on $CoCl_2 \cdot 6H_2O$ and $MnCl_2 \cdot 4H_2O$ showed the practicality of the adiabatic method of observing the spin flop state in antiferromagnets, a search was begun to discover substances with previously unobserved spin flop states. From these investigations, it has been found that two previously studied substances, $CoBr_2 \cdot 6H_2O$ and $FeCl_2 \cdot 4H_2O$, undergo spin flopping in accessible field and temperature regions.

Previous specific heat³⁸ and susceptibility³⁹ measurements had been made on $CoBr_2 \cdot 6H_2O$, indicating it is antiferromagnetic below about 3.2^0K . Although it is isomorphic to $CoCl_2 \cdot 6H_2O$, $CoBr_2 \cdot 6H_2O$ is a more desirable substance to study than $CoCl_2 \cdot 6H_2O$, since it easily grows in long, large single crystals, while single crystals of $CoCl_2 \cdot 6H_2O$ are grown with difficulty.


About a cubic centimeter portion of a single crystal of $CoBr_2 \cdot 6H_2O$ grown from an aqueous solution at room temperature was used in the measurements. Since the previous

susceptibility results indicated the C axis to be the preferred axis of magnetization, measurements were made in the BC and AC crystallographic planes. Groth's morphology of CoCl₂·6H₂O was used as a basis for orienting the crystal. The AC plane orientation was an easier orientation to make than the BC orientation, and it is believed, for this reason, that there was less mis-alignment of the crystal in the AC orientation than in the BC orientation.

Isentropic field rotations at two different fields were made in each of these planes. The results are listed in Table 11 of Appendix III and are shown in Figs. 26 and 27. As in CoCl₂·6H₂O and MnCl₂·4H₂O, the results show that the C axis is the preferred axis. It is interesting to note the similarity of the shift of the maximum in the BC rotations to that observed in CoCl₂·6H₂O. This provides further evidence of the reality of that shift.

The results of the 8830 gauss AC plane rotation (Fig. 27b) are similar to the higher field rotation in $CoCl_2 \cdot 6H_2O$ and the predictions shown in Fig. 6b. Thus there is partial evidence, from the rotation data, that $CoBr_2 \cdot 6H_2O$ undergoes spin flop below 8830 gauss near 1.30K, with the spins flopping to the A' direction.

As further evidence of the existence of the spin flop state in $CoBr_2 \cdot 6H_2O$, the isentropes obtained in isentropic magnetization along the C axis are shown as smooth lines through the data points in Fig. 28 (the data points are

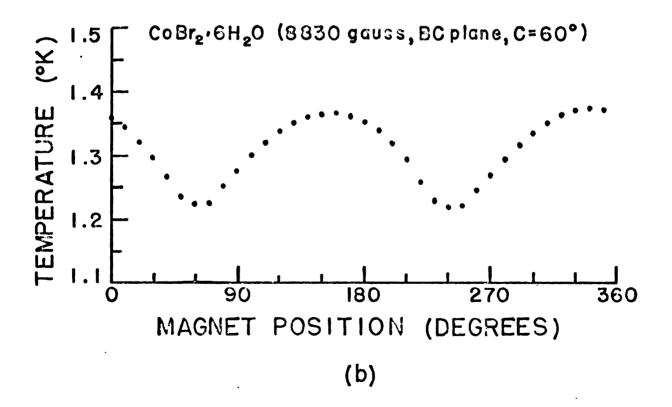
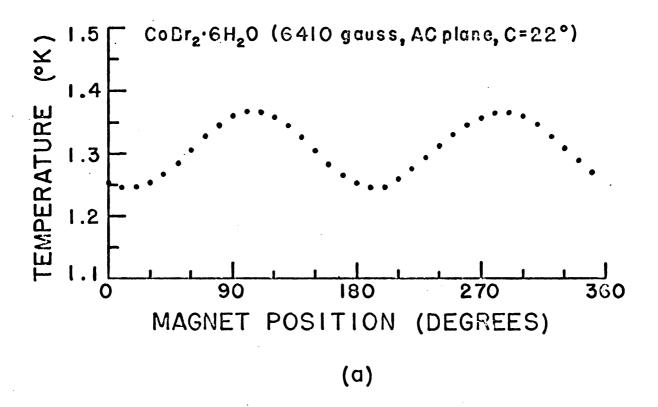



Fig. 26. $CoBr_2 \cdot 6H_2O$ BC plane isentropic rotations.

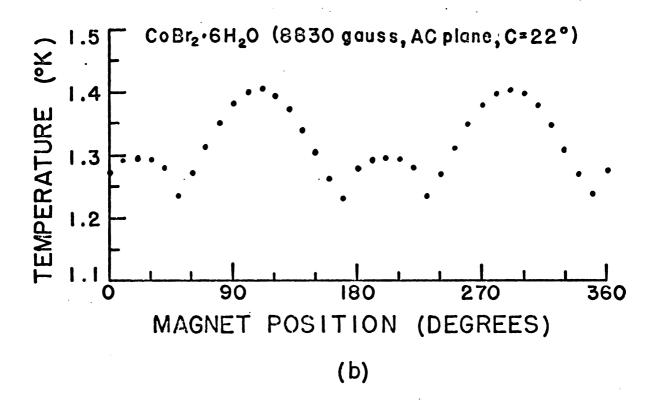


Fig. 27. CoBr₂·6H₂O AC plane isentropic rotations.

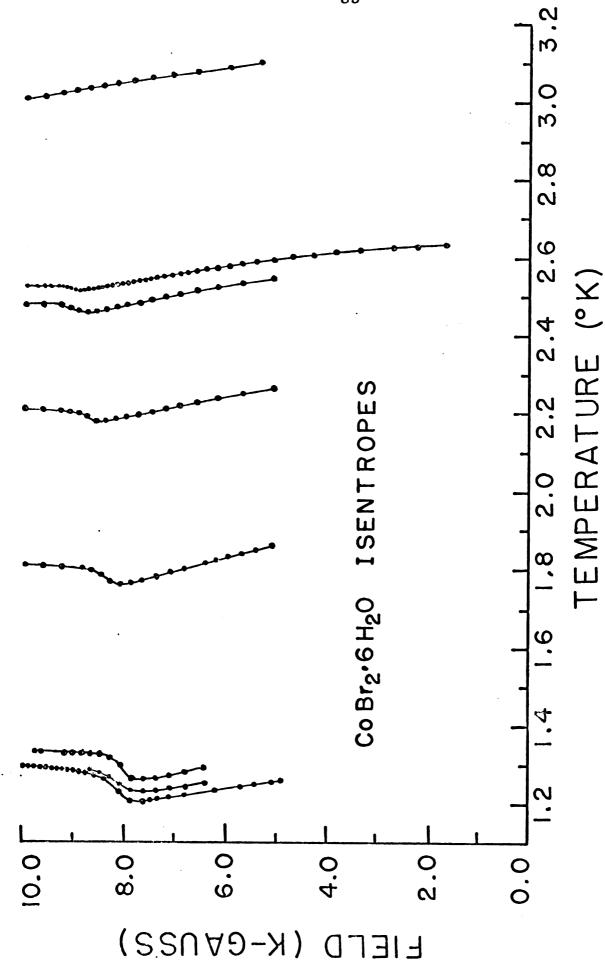


Fig. 28. CoBr₂·6H₂O 1sentropes.

listed in Table 12 of Appendix III). Similar to the $CoCl_2 \cdot 6H_2O$ results, there is initial cooling upon magnetization in the antiferromagnetic state which disappears when the spin flop state is entered. The change in sign of the slopes of the isentropes, seen in $CoCl_2 \cdot 6H_2O$, also exists in $CoBr_2 \cdot 6H_2O$.

Measurements of this point of change were made both when the crystal was in the AC plane orientation and when it was in the BC plane orientation. The BC plane results gave a slightly higher critical field than the AC plane measurements; this would correspond to a poorer alignment in the BC plane than in the AC plane as hypothesized.

Measurements of the paramagnetic boundary, using constant field specific heat measurements, were also made, both above and below the critical field. These results, along with the spin flop boundary results, are shown in the phase diagram shown in Fig. 29. All the data points are listed in Tables 13 and 14 of Appendix III.

The value of the triple point is $(2.91 \pm .01^{0}K)$, 9320 ± 40 gauss). A second degree polynomial was used to fit the observed spin flop boundary. The result of the fit was

$$H_C = 7523 - 230.7 \text{ T} + 292.5 \text{ T}^2$$
, (3.00)

where H_C is the critical field at temperature T. Thus on the basis of the observed data, a critical field of about 7250 gauss is expected at $\mathbf{0}^0 K$. Note that the spin

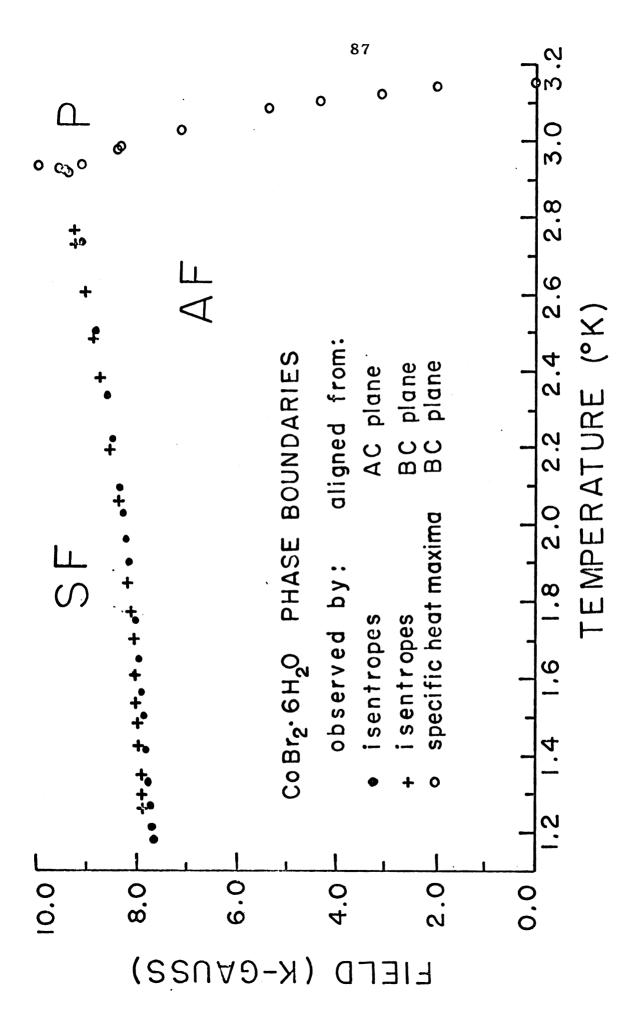
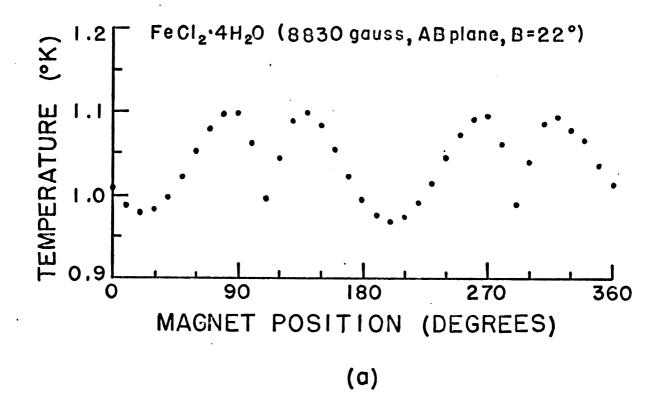


Fig. 29. CoBr₂·6H₂O phase boundaries.

flop boundary results do not quantitatively agree with the predictions of Yosida's theory for a spin 1/2 system, which is assumed for $CoBr_2 \cdot 6H_2O$. The spin flop boundary rises more slowly than the prediction. However, note that the antiferromagnetic-paramagnetic boundary corresponds to the predictions of the theory quite well with an H_0 of 18,000 gauss.

It is also worth noting that the antiferromagnetic-paramagnetic boundary apparently intersects the temperature axis perpendicularly. This is what was predicted from the results of the simple molecular field theory shown in Fig. 3a. (It should be noted that the zero field Neel temperature measured in this study, 3.1520K, differs from the result of the previous specific heat study, 3.070K. At present, there is no explanation for this.) Again, as in MnCl₂·4H₂O, it is also interesting to note the behavior of the isentrope measured in the paramagnetic state.

Previous specific heat^{40,41}, susceptibility⁴² and NMR⁴³ studies on FeCl₂·4H₂O indicated it is in an ordered state below about 1.1°K. This temperature is near the lowest temperature attainable in the apparatus used in this study, but since cooling takes place upon magnetization of an antiferromagnet, and since spin flopping was observed near 5400 gauss at 0.4°K in the NMR studies⁴⁴, a search for the spin flop state in FeCl₂·4H₂O was made.


The samples which had been used in the resonance experiments were borrowed from R. D. Spence and were used in

some initial measurements. However, it subsequently was discovered that the McLeod pressure gauge of the temperature measuring system was giving spurious measurements. Since there also was some question about the orientations of Spence's crystals (they had been ground into cylinders), it was decided to use the initial results only as qualitative indications of the behavior of FeCl₂·4H₂O.

A new single crystal of FeCl₂·4H₂O was grown from an aqueous solution in a desiccator so that more precise measurements could be made. It weighed about 1.3 grams and was stored in a refrigerator until its use, since, as noted by Schriempf and Friedberg⁴², FeCl₂·4H₂O tends to lose or gain water when exposed to air at room temperature. Also, before its use, it was spray coated with Krylon clear plastic spray to further protect it from contamination.

Like the crystals previously studied, $FeCl_2 \cdot 4H_2O$ forms monoclinic crystals with $\beta = 112^{\circ}$. The growth habit described by $Groth^{35}$, was used as a basis for orientation of the crystal. The susceptibility results indicated that the B axis is the preferred axis of magnetization, so experiments were done in the AB and BC crystallographic planes. It is felt that, since the BC plane is prominent on the crystal, that the BC plane orientation was more precise.

The results of high field isentropic rotations in these planes are shown in Fig. 30, and the data is listed in Table 15 of Appendix III. The earlier data gave the same qualitative results. In addition, the earlier data showed

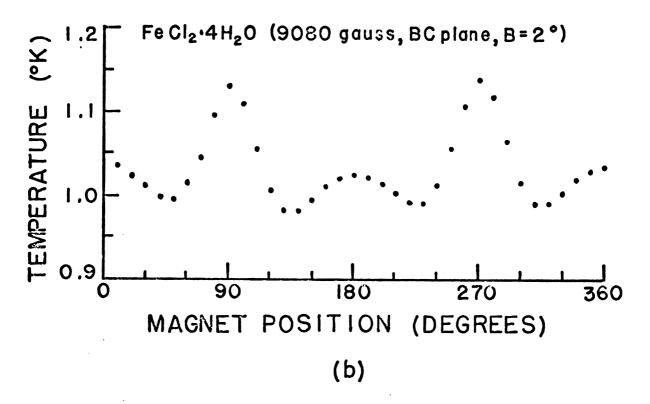


Fig. 30. FeCl $_2 \cdot 4\text{H}_2\text{O}$ AB and BC plane isentropic rotations.

that the rise in temperature near the B axis for the BC rotation disappears at lower fields and also that the dip in temperature near the A axis in the AB rotation disappears at lower fields. Also, the earlier data included AC plane isentropic rotations which gave results similar to the AB plane behavior discussed here. Furthermore, the earlier results also included a high field (about 8000 gauss) BC plane rotation at higher temperatures (about 1.5-1.60K). The results of that rotation were similar to the low field rotations done in previous crystals. However, in direct contrast to the FeCl₂·4H₂O low field BC plane rotations at lower temperature, mentioned above, the temperature was a maximum with the field along the B axis and a minimum when the field was along the C axis. qualitative results seem to imply a change in the principal magnetic axes between about 1.10K and 1.50K.

Although the BC plane results, to some extent, correspond to what would be seen in a spin flopping material, the AB plane results definitely do not correspond with the results seen in the other crystals studied.

In addition, when the crystal was in the AB plane orientation, with the field directed along the B axis, isentropic magnetizations produced cooling to a point and then warming. This also does not strictly correspond with the spin flop results previously seen (although the initial measurements were reported 45 as being partially similar to the MnCl₂·4H₂O results.)

For the above reasons, it was deemed worthwhile to measure the antiferromagnetic-paramagnetic boundary to determine in which phase the isentropic magnetizations had been taken. The results of these measurements indicated the previously measured isentropes were probably antiferromagnetic-paramagnetic or paramagnetic isentropes similar to the ones previously seen in other crystals. In one experiment, the turning point of the paramagnetic isentropes from cooling to warming was followed to near 1.30K. (Such a large region of negatively sloped paramagnetic isentropes is probably due, to some extent, to the large anisotropies seen in the susceptibilities.)

After the BC plane orientation had been made, it was discovered that a region of temperature (near $0.75^0 \rm K$) could be reached upon isentropic magnetization where the isentropes behaved similar to those in the spin flop state of MnCl₂·4H₂O. Unfortunately, the interval between $0.75^0 \rm K$ and the first calibration point of the thermometer, $1.0^0 \rm K$, is relatively large, so there may be as much as $0.05^0 \rm K$ error in the absolute temperatures measured, due to extrapolation of the thermometer calibration. However, the observations made are certainly at least, qualitatively correct.

Several times when temperatures near 0.750K were reached upon isentropic magnetization, the field was held constant at different values and the heat leaking in to the sample was allowed to warm it. In this manner, second order phase transitions were easily seen as discontinuous changes in

the rate of rise of temperature of the sample.

The measured isentropes (with smooth lines drawn through the points obtained) and all the second order phase transition points are shown in Fig. 31. All the data points are listed in Tables 16 and 17 of Appendix III.

Several points may be made from these results. First, from observation of the lowest temperature isentrope, it seems that FeCl₂·4H₂O goes into a definite spin flop state above about 7000 gauss near 0.680K. Second, the paramagnetic boundary points indicate that, if there is a spin flop state, the triple point is about 5500 gauss near 0.760 K. Third, since this field is near the one reported by Spence, it is possible that the critical field is actually near 5400-5500 gauss in the entire region 0.4-0.750K. Fourth, if that is so, it would seem, on observation of Fig. 31, that one conclusion is that the inflection point of the antiferromagnetic-spin flop isentropes may be the point of spin flop. (If this method of determining the spin flop point were then applied to the MnCl₂·4H₂O results, the critical field observed would turn out to be slightly lower than the previously published results.) Fifth, the nearly constant temperature of the paramagnetic boundary above the critical point is highly unusual. Sixth, these results, coupled with the four-sublattice models that have been previously hypothesized 42,46 for ${\tt FeCl_2\cdot 4H_2O}$ and the unusual NMR results between 0.7 and 1.10K, indicate that further isentropic measurements, perhaps using a He³ refrigerator,

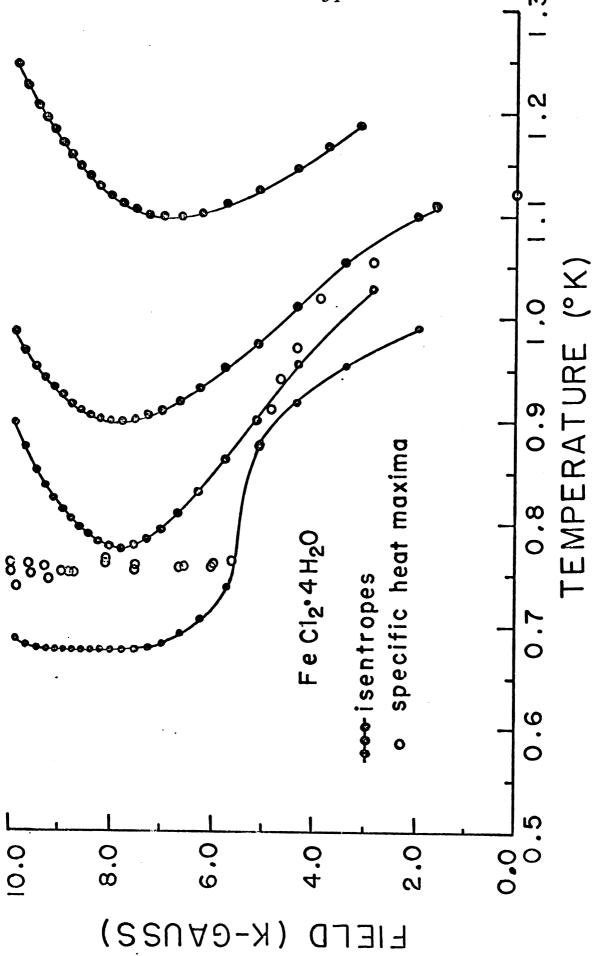
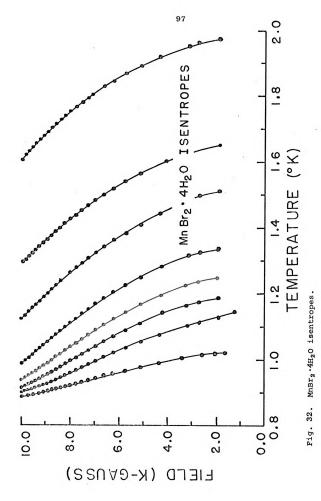


Fig. 31. FeCl2.4H2O phase boundary and isentropes.

in the region $0.7\text{-}1.1^0 \text{K}$ from 0-7000 gauss would be interesting. Seventh, and finally, it should be noted that the zero field Neel temperature determined here (1.116^0K) is slightly higher than that reported previously (1.097^0K) , and that, in either case, the antiferromagnetic-paramagnetic phase boundary would not seem to intersect the temperature axis quite perpendicularly, in contrast to what was seen in the other crystals studied (although finer measurements are needed to verify this fact).

C. Materials Investigated Which Did Not Exhibit Spin Flop

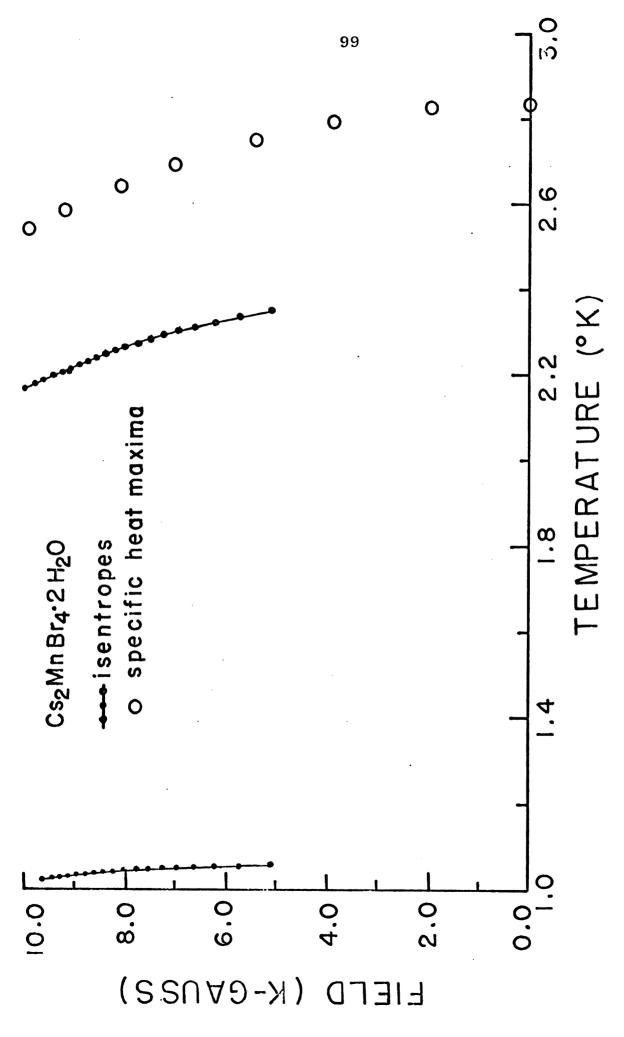
In the search for substances exhibiting spin flop states, experimental observations were made on three other hydrated salts: $MnBr_2 \cdot 4H_2O$, $Cs_2MnBr_4 \cdot 2H_2O$, and $NiCl_2 \cdot 6H_2O$. None of these exhibited spin flop in the region 0-10,000 gauss between 1^0K and 4^0K .

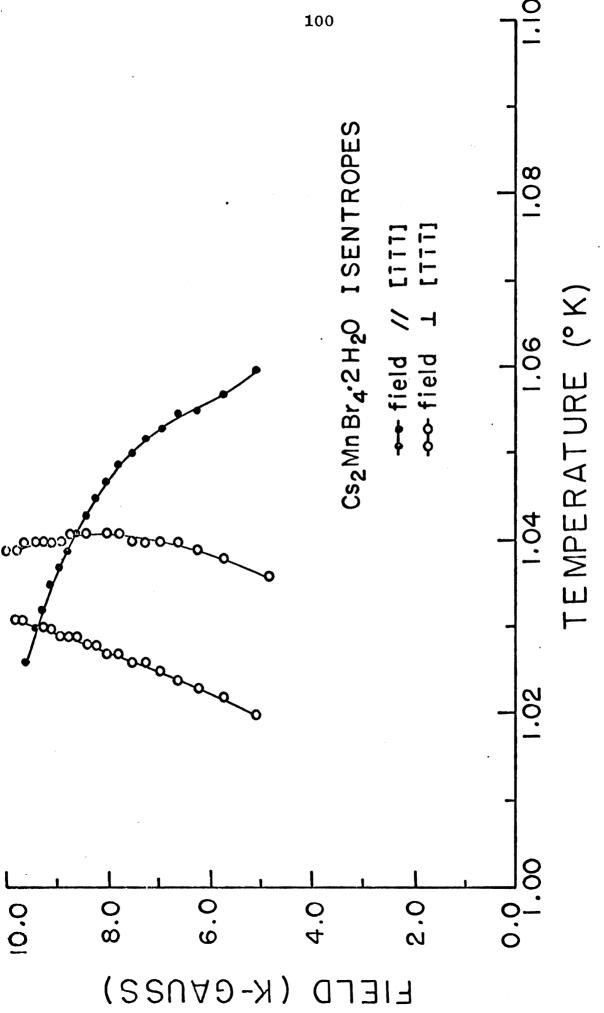

The first of the above three salts, MnBr₂·4H₂O, has been previously studied by means of susceptibility³², ³³, specific heat³⁷, ⁴⁷, ⁴⁸, proton resonance³³, optical absorption⁴⁹, and antiferromagnetic resonance⁵⁰ experiments. The latter two experiments have inferred spin flopping near 9000 gauss near 1.2-1.4°K, while the others have shown no such results.

A single crystal of MnBr $_2$ ·4H $_2$ O, weighing about 2 grams was grown from an aqueous solution at room temperature. MnBr $_2$ ·4H $_2$ O crystals are monoclinic with β = 99.6 $^{\rm O}$. Under the assumption that the lattice structure is similar to

the isomorphic crystal, MnCl₂·4H₂O, the crystal was aligned with the AC crystallographic plane as the plane of rotation of the field. (The susceptibility measurements have indicated the C axis to be the easy axis.) The field was precisely aligned along the C axis by observation of the temperature variation in an isentropic rotation (no data points were taken). Isentropic magnetizations were then done at several temperature regions. The isentrope results are shown in Fig. 32 with smooth curves drawn between the points measured and the data is given in Table 18 of Appendix III. As can be seen, from the continuous cooling effect of magnetization, there is no evidence of spin flop in the regions observed.

Although a previous investigation²² of the paramagnetic phase boundary in Cs₂MnCl₄·2H₂O, which is a triclinic crystal, failed to exhibit any spin flop characteristics, a single crystal of the isomorphic compound Cs₂MnBr₄·2H₂O was grown so that a search could be made for the spin flop state in it. A solution of CsBr and MnBr₂·4H₂O in water at room temperature was used to grow the crystal. A specific heat study of this substance indicated it to be in a magnetically ordered state below 2.82°K.


The bromide was assumed to have the same preferred axis as the chloride ([$\bar{1}$ $\bar{1}$] direction) so it was oriented with the [0 $\bar{1}$ 1] direction parallel to the axis of rotation of the field. Isentropic magnetizations were done with the field aligned parallel and perpendicular to the


apparent preferred axis, determined from an isentropic rotation. The isentropes are shown in Fig. 33, along with several paramagnetic boundary points measured from constant field specific heat measurements. (The data points are given in Tables 19 and 20 of Appendix III.) As can be seen from the expanded portion of the data shown in Fig. 34, there is no indication of spin flopping from the behavior of the parallel isentropes. However, it should be noted that the perpendicular isentropes are not temperature independent, as would be expected. Thus, it might be concluded that the magnetization direction in Cs2MnBr4 · 2H2O (and probably Cs2MnCl4 · 2H2O, also) is not in the plane perpendicular to the $[0 \ \overline{1} \ 1]$ direction. (In fact, resonance experiments on the chloride⁵¹ do indicate the magnetization direction to be out of that plane.) Thus a better alignment might be necessary, before any conclusions are drawn concerning spin flopping either in the bromide or the chloride.

Previous specific heat⁵² and magnetic susceptibility⁵³ experiments indicated that the salt $NiCl_2 \cdot 6H_2O$, which is isomorphic to $CoCl_2 \cdot 6H_2O$, becomes antiferromagnetic below 5.34°K. For this reason, an investigation was undertaken to search for spin flopping in $NiCl_2 \cdot 6H_2O$.

A single crystal of NiCl₂·6H₂O, weighing about one gram, was borrowed from R. D. spence. The crystal is monoclinic with $\beta = 122.5^{\circ}$ and the morphology is given in Groth³⁵. Since the susceptibility experiments indicated

Cs2MnBr4.2H2O phase boundary and isentropes. Fig. 33.

Cs₂MnBr₄·2H₂O isentropes (expanded scale). Fig. 34.

the A' axis to be the preferred axis, the crystal was oriented so that its AC plane was in the plane of rotation of the field.

The field was aligned along the A' axis by observation of the temperature in an isentropic rotation and isentropic magnetizations were then done at different temperature regions. Nothing remarkable was seen in the isentropic rotations done, other than a rather small temperature variation. The results of the only one which was recorded are shown in Fig. 35 and are given in Table 21 of Appendix III. The results of the isentropic magnetizations are shown in Fig. 36 and are listed in Table 22 of Appendix III. These results certainly are not similar to the previous results in the other crystals studied.

The nearly constant temperature isentropes would normally indicate a perpendicular spin state. However, since the field had been aligned along the axis of the isentropic rotation temperature minimum, the spins should have been expected to be in the parallel state. At present, the best explanation seems to be that the sample was not actually isolated, so that there would be a constant temperature in a magnetization. The lack of isolation can be explained by noting that the sample's specific heat is very small in the temperature region in which observations were made. Since, as noted in Chapter 2, the degree of apparent isolation depends on the specific heat of the sample being used, the NiCl₂·6H₂O sample may have been

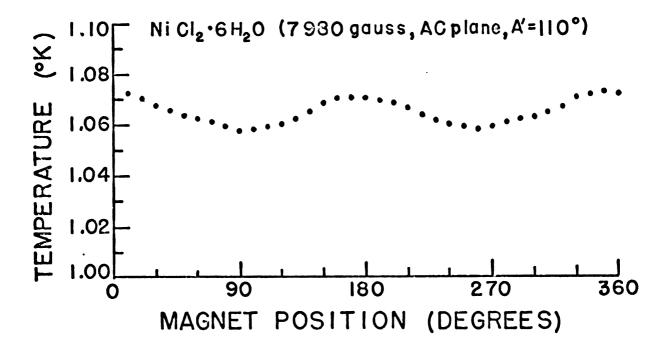
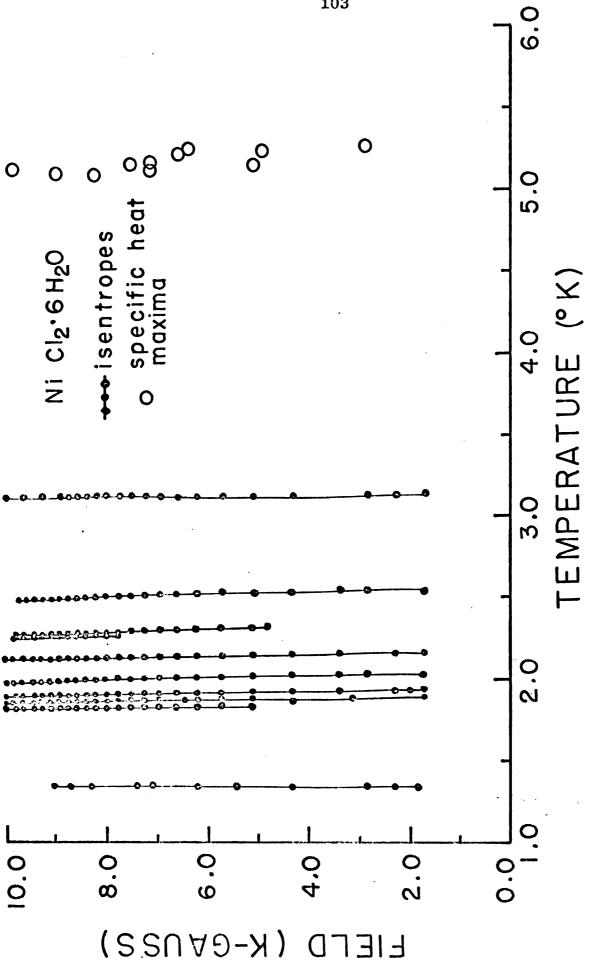



Fig. 35. NiCl₂·6H₂O AC plane isentropic rotation.

 ${
m NiCl}_2\cdot 6{
m H}_2{
m O}$ phase boundary and isentropes. Fig. 36.

relatively unisolated.

In addition to the isentropic magnetizations and rotations done, constant field specific heat measurements were used in an attempt to determine the paramagnetic phase boundary in $NiCl_2 \cdot 6H_2O$.

The results of these measurements are also shown in Fig. 36 and are given in Table 23 or Appendix III. As can be seen, there is a large amount of scatter in the points. Careful observation of the raw data shows the scatter to be independent of the calibration curves connected with determining temperatures. Thus the scatter is real, or more probably, there are hysterisis effects in crossing the NiCl₂·6H₂O paramagnetic boundary. In any case, all the NiCl₂·6H₂O measurements should be considered as preliminary results and further observations on this salt are needed.

II. Conclusions

In conclusion, this study has shown that adiabatic methods for observing the spin flop state of an antiferromagnet are practical, although there is yet room for their refinement. There are some drawbacks with the present method of mounting the crystal. Better adiabatic conditions would be desirable. Also, so that any crystalline axis might be easily aligned parallel to the field, a method to rotate the sample about an axis in the plane of rotation of the field, while it is in the calorimeter during the experiment, would be highly desirable. It would also be

desirable if there were less metal in the calorimeter, to reduce eddy current heating which exists when the field is being rotated.

With the discovery of spin flopping properties of COBr₂·6H₂O and FeCl₂·4H₂O, new areas of research into some of the basic properties of these substances are possible. Also, it would be interesting to do a complete set of magnetic field specific heat experiments, magnetic susceptibility experiments and adiabatic magnetization experiments so that the theoretical relationship between the measured quantities might be tested for antiferromagnets.

Finally, from the theory, a new method to predict the critical field for spin flopping has been proposed. It would be interesting to do some susceptibility measurements to test the predictions of the simple molecular field theory regarding the critical field value. Such measurements on MnBr₂·4H₂O would be especially interesting.

REFERENCES

- 1. L. Neel, Ann. Physique <u>18</u>, 5 (1932).
- 2. T. Nagamiya, K. Yosida and R. Kubo, Advances in Physics $\underline{4}$, 1 (1955).
- 3. W. Heisenberg, Phys. Z. 49, 619 (1928).
- 4. P. A. M. Dirac, Proc. Roy. Soc. 123, 714 (1929).
- 5. E. Ising, Z. Phys. 31, 253 (1925).
- 6. P. Weiss, J. Phys. $\underline{4}$, 661 (1907); J. Phys. $\underline{6}$, 667 (1907); Ann. Phys. $\underline{17}$, 97 (1932).
- 7. F. Bitter, Phys. Rev. 54, 79 (1937).
- 8. J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
- 9. C. G. B. Garrett, J. Chem. Phys. 19, 1154 (1951).
- 10. P. W. Anderson, Phys. Rev. <u>79</u>, 705 (1950).
- 11. T. Nagamiya, Prog. Theor. Phys. 6, 342 (1951).
- 12. K. Yosida, Prog. Theor. Phys. $\frac{7}{2}$, 25 (1952).
- 13. C. J. Gorter and J. Haantjes, Physica 18, 285 (1952).
- 14. K. Yosida, Prog. Theor. Phys. 6, 691 (1951).
- 15. L. Neel, Ann. Physique 5, 232 (1936).
- 16. C. J. Gorter and Tineke Van Peski-Tinbergen, Physica 22, 273 (1956).
- 17. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford, 1932), p. 257.
- 18. K. Yosida, Prog. Theor. Phys. 7, 425 (1952).
- 19. J. M. Ziman, Proc. Phys. Soc. <u>64</u>, 1108 (1951).
- 20. N. J. Poulis, J. van den Handel, J. Ubbink, J. A. Poulis, and C. J. Gorter, Phys. Rev. 82, 552 (1951).
- 21. T. Nagamiya, Prog. Theor. Phys. $\underline{11}$, 309 (1954).
- 22. N. D. Love, Ph.D. Dissertation, Michigan State University (1967).

- 23. W. R. Eisenberg, M.S. Dissertation, Michigan State University (1963).
- 24. W. R. Roads and J. C. Wheatley, Rev. Sci. Instr. <u>35</u>, 634 (1964).
- 25. W. F. Giauque, R. A. Fisher, E. W. Hornung, and G. E. Brodale, J. Chem. Phys. 43, 4387 (1965).
- 26. J. Butterworth (private communication).
- 27. A. C. Anderson, W. Reese, and J. C. Wheatley, Rev. Sci. Instr. 34, 1386 (1963).
- 28. F. G. Brickwedde, H. van Dyk, M. Durieux, J. R. Clement, and J. K. Logan, J. Res. Nat. Bur. Stand. 64A, 1 (1960).
- 29. G. T. Armstrong, J. Res. Nat. Bur. Stand. <u>53</u>, 263 (1954).
- 30. J. R. Clement and E. H. Quinnel, Rev. Sci. Instr. 23, 213 (1952).
- 31. W. van der Lugt and N. J. Poulis, Physica $\underline{26}$, 917 (1960).
- 32. V. A. Schmidt and S. A. Friedberg, J. Appl. Phys., 38, 5319 (1967).
- 33. H. M. Gijsman, N. J. Poulis, and J. van den Handel, Physica 25, 954 (1959).
- 34. John E. Rives, Phys. Rev. <u>162</u>, 491 (1967).
- 35. P. Groth, <u>Chemische Kristallographie</u> (Wilhelm Englemann, Leipzig, 1908), Vol. 1.
- 36. T. Haseda and E. Kanda, J. Phys. Soc. Japan <u>12</u>, 1051 (1957).
- 37. S. A. Friedberg and J. H. Schelleng, <u>Proceedings of the International Conference on Magnetism</u>, Nottingham (1964), p. 90.
- 38. H. Forstat, G. Taylor and R. D. Spence, Phys. Rev. 116, 897 (1959).
- 39. M. Garber, J. Phys. Soc. Japan 15, 734 (1960).
- 40. S. A. Friedberg, A. F. Cohen, and J. H. Schelleng, J. Phys. Soc. Japan 17, Suppl. B-1, 515 (1962).
- 41. S. A. Friedberg and C. A. Raquet, International Congress on Magnetism, Boston Mass. (Sept. 11-15, 1967).

- 42. J. T. Schriempf and S. A. Friedberg, Phys. Rev. <u>136</u>, A 518 (1964).
- 43. R. D. Spence, R. Au, and P. A. Van Dalen, Physica 30, 1612 (1964).
- 44. R. D. Spence (private communication)
- 45. J. N. McElearney, P. T. Bailey and H. Forstat, Bull. Am. Phys. Soc. <u>12</u>, 1148 (1967).
- 46. Norikiyo Uryû, Phys. Rev. <u>136</u>, A527 (1964).
- 47. D. G. Kapadnis and R. Hartmans, Physica 22, 181 (1956).
- 48. J. H. Schelleng and S. A. Friedberg, J. Appl. Phys. 34, 1017 (1963).
- 49. I. Tsujikawa and J. Kanda, J. Phys. Radium <u>20</u>, 352 (1959).
- 50. B. Bolger, <u>Communications Conference de Physique des</u>
 Basses Temperatures, Paris (1955), p 244.
- 51. R. D. Spence, (private communication).
- 52. W. K. Robinson and S. A. Friedberg, Phys. Rev. <u>117</u>, 402 (1960).
- 53. R. B. Flippen and S. A. Friedberg, J. Appl. Phys. 315, 3385 (1960).

APPENDIX I

COMPUTER PROGRAMS

PART A

FORTRAN Subroutines for Theory

```
N
FUNCTION RBRIL(S,XP)
THE REDUCED BRILLOUIN FUNCTION
(FOR SPIN S, EVALUATED AT XP)
                                                                                                        IF(ABSF(XP), LT. 354.0) GO TO
                                                                                                                                                                                                                                                                   COTH1=(E2X1+1.0)/(E2X1-1.0)
                                                                                                                                                                                                                                                                                                       COTH2=(E2X2+1.0)/(E2X2-1.0)
RBRIL=SGN+(B+COTH1+C+COTH2)
                                             IF(XP,LT.0.0) SBN#1.0
IF(ABSF(XP).NE.0.0) GO TRBRILEO.0
                                                                                                                                        XE3.0*5*ABSF(XP)/(S+1.0)
AE2.0*S
                                                                                                                                                                                     C=1,0/A
X1=8+X
IF(X1,LT.354.0) GU TO 3
X=353.9/B
                                                                                                                                                                                                                                                     E2X1#EXPF(2,0+X1)
                                                                                                                                                                                                                                                                                           E2X2=EXPF(2,0+X2)
                                                                                                                      RBRIL#1.0
                                                                                                                                                                        B=(A+1.0)/A
                                                                                                                                  RETURN
                                         SGNHLOO
                                                                                                                                                                                                                                                                             X2=C*X
                                                                                                                                                                                                                                                                                                                                  RETURN
                                                                                                                                                                                                     7
                                                                                                           •
                                                                                                                                                 2
                                                                                                                                                                                                                                                       M
```

```
INVERSE OF THE REDUCED BRILLOUIN FUNCTION (FOR SPIN S, EVALUATED AT YO WITH AN ERROR NO GREATER THAN EPS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SLP==BSQ+CSCHSQ1+CSQ+CSCHSQ2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RBRILI=SGN*X+(S+1.0)/(3.0*S)
RFTUDN
                                                                                                                                                                                                                                                                                            E2X1=EXPF(2.0*X1)
COTH1=(E2X1+1.0)/(E2X1-1.0)
CSCHSG1=COTH1+COTH1+1.0
                                                                                                                                                                                                                                                                                                                                                                             COTH2=(E2X2+1,0)/(E2X2-1,0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(DY.LT.0.0) GO TO 3
X#X+DY/SLP
IF(ABSF(DY).GT.EPS) GO TO
                                                                                                                                                                                                                                               N
                                                                                                                                                                                                                                                                                                                                                                                           CSCHSQ2=C0TH2+C0TH2-1.0
                                                              IF(Y0.LT.0.0) SGN=+1.0
Y1S=EPS/10.0
                                                                                                                                                                                                                                                                                                                                                                                                                           IF(Y1,LT,0,0) GO TO 10
IF(Y1,GT,Y1S) GO TO 10
FUNCTION RBRILI(S. YO. EPS)
                                                                                                                                                                                                                                             IF(X1,LT,354.0) G0 T0
X=353,9/B
                                                                                                                                                                                                                                                                                                                                                                                                          Y1=B+COTH1-C+COTH2
                                                                                                                                                                                                                                                                                                                                                             E2X2=EXPF(2,0+X2)
                                                                                                                               Y15=10.0+Y15
A=2.0*S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DY=SGN+Y0-Y1
                                                                                                                                                            B=(A+1.0)/A
BSQ=B+8
                                                                                             XEEPS/10.0
XEX*10.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                            Y15=1.0
                                                                                                                                                                                                                                                                             GO TO 1
                                                                                                                                                                                                            CSQ=C+C
X1=B+X
                                                SGN=1.0
                                                                                                                                                                                               C=1,0/A
                                                                                                                                                                                                                                                                                                                                         X5=C*X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RETURN
```

 \mathbf{c}

M

10

```
FUNCTION RBRILP(S,XP)
THE FIRST DERIVATIVE OF THE REDUCED BRILLOUIN FUNCTION
(FOR SPIN S, EVALUATED AT XP)
                                                                                                                                                                                                                                                                                                                                                                                                          CSCHSQ2=COTH2+COTH2-1.0
RBRILP=SGN*(-8*8+CSCHSQ1+C+C*C*CSCHSQ2)*3.0*S/(S+1.0)
                                                                                                                                                                                                                                                                                                                            COTH1=(E2X1+1.0)/(E2X1-1.0)
CSCHSQ1=COTH1+COTH1-1.0
                                                                                                                                                                                                                                                                                                                                                                                           COTH2=(E2X2+1.0)/(E2X2-1.0)
                                                                IF(XP.LT.0.0) SGN=*1.0
X=3.0*S*ABSF(XP)/(S+1.0)
                                                                                                                                                                                                                                                            IF(x1,LT,354,0) G0 T0 3
X=353,9/8
G0 T0 2
                                                                                                                                                                                                N
                                                                                                                                                                                              IF(X.LT.354.0) 60 TO
RBRILP=1.0
                                                                                                                             C=1.0/A
IF(X,NE,0,0) GO TO
RBRILP=1.0
                                                                                                                                                                                                                                                                                                            E2X1=EXPF(2.0+X1)
                                                                                                                                                                                                                                                                                                                                                                           E2X2=EXPF(2,0+X2)
                                                                                               A=2,0+S
B=(A+1,0)/A
                                                                                                                                                                              RETURN
                                                                                                                                                                                                                              RETURN
                                                 SGN=1.0
                                                                                                                                                                                                                                           X1=8+X
                                                                                                                                                                                                                                                                                                                                                        X-0=CX
                                                                                                                                                                                                                                                                                                                                                                                                                                         RETURN
                                                                                                                                                                                                                                               C
                                                                                                                                                                                                                                                                                                             3
```

```
REDUCED BRILLOUIN FUNCTION NO GREATER THAN EPS)
FUNCTION RBRILPI(S,YO,EPS)
THE INVERSE OF THE FIRST DERIVATIVE OF THE (FOR SPIN S, EVALUATED AT YO WITH AN ERROR D=(S+1.0)/(3.0+S)
                                                                                                                                                                                                                                                                                                                                                                                                                                                M
                                                                                                                                                                                                                                                                                                                                                                                                                                                JF((Y1.GT,1.0).OR.(Y1.LT.0.0)) 60 TO
                                                                                                                                                                                                                                                                                                                                                                                    E2X2=EXPF(2,0*X2)
COTH2=(E2X2+1,0)/(E2X2-1,0)
CSCHSQ2=COTH2+COTH2+1,0
Y1==BSQ+CSCHSQ1+CSQ+CSCHSQ2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               M
                                                                                                                                                                                                                                                                                                                                          COTH1=(E2X1+1.0)/(E2X1-1.0)
CSCHSQ1=COTH1+COTH1-1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F(ABSF(DY), LY.EPS) GD TO
                                                                                                                                                                                                                                                                                N
                                                                                 SGN=1.0
IF(Y0R.LT.0.0) SGN=1.0
Y0R=ABSF(Y0R)
                                                                                                                                                                                                                                                                               IF(X1.LT.354.0) GO TO
X=353.9/8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(DX, LE, EPS) GO TO
                                                                                                                                                                                                                                                                                                                            E2X1=EXPF(2,0+X1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F (DY) 22, 3,21
                                                                                                                                                                         BE(A+1,0)/A
                                                                                                                                                                                                                                                                                                             GO TO 1
                                                                                                                                                                                                     BCB=B*BSQ
C=1.0/A
CSG=C*C
                                                                                                                                                                                                                                                                                                                                                                                                                                                               DY=YOR-Y1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DX=0.5+DX
                                                                                                                                                                                                                                                   CCB=C+CSQ
                                                                   YOR=YO+D
                                                                                                                                             DXHXHO.5
                                                                                                                                                                                    880=8+8
                                                                                                                                                         A=2.0+5
                                                                                                                                                                                                                                                               X48=X
                                                                                                                                                                                                                                                                                                                                                                     X2=C+X
                                                                                                                              1 = 0
```

N

7

```
x=X+DX

GO TO 1

SO TO 1

X=2.0*X

DX=X

GO TO 1

SO TO 1

X=X+DX

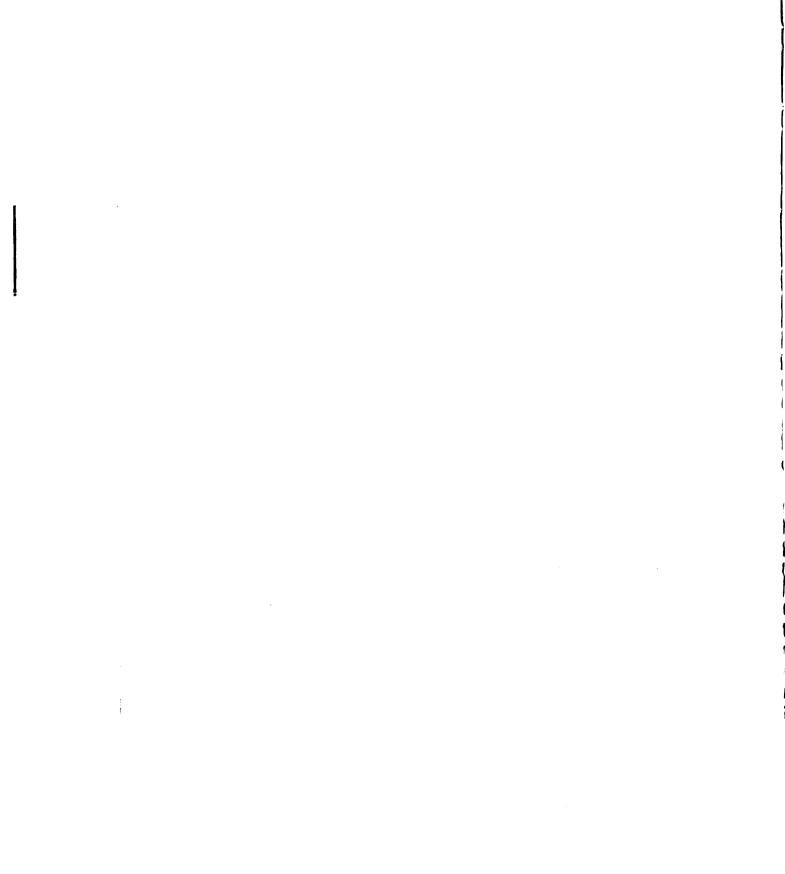
GO TO 1

SO TO 1

SETURN

FND
```

```
EPS)
           FIELD THEORY
Greater than
             ON THE MOLECULAR WITH AN ERROR NO
FUNCTION RSO(S,T,EPS)
S-ZERO, THE REDUCED MAGNETIZATION RASED (FOR SPIN S, EVALUATED AT TEMPERATURE T
                                                                                                                                                        KC.
                                                                                                                                                        C
L
                                                                                                                                                        0
                                                                                             DX=1.0/(2.04T)
X=X+DX
GO TO 4
X=X-DX
D=T+X-RBRIL(S.X)
IF(ABSF(D).LE.EPS) 3
                                               60 T0
60 T0
                                   X#0.0
IF(T.0EE.1.0) G
IF(T.NE.0.0) G
RSO=11.0
                                                                                                                                                                 DX BDX/2.0
IF(D) 2.5.3
RSG=T*X
RETURN
```


₽ 0

5

PART B

FORTRAN Subroutines for Data Reduction

```
(14,11E12.4)
(3x,F6.3,F7,x,F8.3,6A8,A6)
(/23x,44HFOR THE FOLLOWING POINTS A THERMOMETER LEAD ,
13HRESISTANCE OF,FA.1,27H OHMS WAS TAKEN ACCOUNT OF./
9x,19HQUANTITIES EQUAL TO,F8,5,12H MLE-JLS AND,F8.5,
48H TIMES THE MEASURED HEATER CURRENT WERE ADDED TO.
                                                                                                                                                                                                                                                                                                                                                            (MLE-JLS)
                   (EXPERIMENTAL SPECIFIC HEATS AT LOW TEMPERATURES)
                                                                                                                                                                                                                                                                                 GRAM-MOLE-WT
                                                                                                                                                                                                                                                                                                                                                                                                               (F10.1.F10.1.F8.1.F8.1.12.11.F9.5.F10.6)
(I5.F9.3.F11.3.F15.6.F10.2.2F9.2.3F6.1.F11.5.F11.6.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CP+(T++2)
                                                                                          COMMON/CLN/CLN/NOPRYTTC/NOPRNTTC/NOPRNTVC/NOPRNTVC/TCF/TCF
DATA (SP1#8H SPECIFI), (SP2#8HC HEAT ), (SP3#8H (CAL/MO),
(SP4#8HLE-DEG) ), (HC1##H HEAT CA), (HC2#8HPACITY ),
                                                                                                                                                                                                                                                                                                                                                        (SHHO)
                                                     DIMENSION C(10), CP(300), T(300), CLN(A,9), ZROPT(9), NAME(10)
                                                                                                                                                                                                                                                               WOLLY TEMP ,248,124DELTA TEMP ,248,124DELTA TEMP 474 CURRENT VOLTAGE ENERG DS DE TYX,84 (DEG=K),210
                                                                                                                                                                                        . BH T++2, .8H
                                                                                                                                                                    .8H C/T. ,8HC/T**1.5.8H C+T*+2
                                                                                                                                                                                                                                                                                                                                                     7X,8H (DEG=K),2A8,3QH (NEG=K) (OHMS)
6H(OHMS),15X,38H(SEC) (MLE=AMPS) (VOLTS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CP/(T**3/2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1++3/5
                                                                                                                                                                                                                                                                                (1H1/29X,10AA/48X,4H(WT=,F7.3,20H GMS
                                                                        CCCOEF(5) * XT(11) * XTD(11) * CMC(20)
                                                                                                                                                                                                                         FORMAT (10A8)
FORMAT (315,2F10.3,9F5.1/915,2F10.5,215)
                                                                                                                                                  (HC3=8H (ML-JLS), (HC4=8H/DEG-K)
                                     PROGRAMMED BY J. N. MC ELEARNEY, 8-19-65
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1**5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (15,F9,3,F11,3,6A8,1X,A6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            L0G(T)
                                                                                                                                                                                     8H LOG(C),,8H LJG(T),,8H
                                                                                                                                                                                                       T++5, ,8H T++1,5,1
SUBROUTINE ESPHAET (NDP, CP.T.C)
                                                                                                                                                                                                                                                                                                                                                                                                                                                     F10.5.F11.5.I5.I1)
                                                                                                                                                                                                                                                                                                                                                                                              11H(MLE+WATTS)/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (1H1/29X+10AA//
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          N++ F
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            45H LOG(CP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         10X,45HCP
                                                                                                                                                                   DATA (XTD=8H C.
                                                                                                                                                                                                                                                               (5E16.8)
                                                                                                                                                                                                                                                                               FORMAT
                                                                                                                                                                                                                                                               FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT
                                                                                                                                                                                            - C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -1
                                                                                                                                                                                                                              1010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1070
1080
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1100
                                                                                                                                                                                                                                                                                                                                                                                                                 1,150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1090
                                                                                                                                                                                                                                                                                 1040
                     ပပ
```



```
IF A POLYNOMIAL IN TEMPERATURE TO BE SUBTRACTED FROM DATA ..
                                                                                                                                                                                                                                                                                                                    CURRENT DIFFERENT FROM THERMOMETER
                                                                                                                ccc0eF(1)=ccc0eF(2)=ccc0eF(3)=ccc0eF(4)=ccc0eF(5)=NZ=RL=EE=EI=0
EPS=0
                                                                                                                                                                                                       READ 1020, NVCP, NTCP, NDP, WT, GMOLWT, (ZROPT(1), 1 = 1,9), NVCC, NTCC,
                                                       ANGLE
                                                                                                                                                                                                                                                                                                                                                                                                                                              ANALYIZE TEMPERATURE CALIBRATION CURVE CALL TEMPCALBINTOP, CP, T, C, NTCC)
                                                                                                                                                                                                                        NOPRNIVC. NAPRNIIC. NOPRNID, NOPRNIXI, IFCAN, IFPUNCH.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALCULATE SPECIFIC HEATS, TEMPERATURES, FIELDS
                                                                                                                                                                                                                                                                                                                                                                                                               CALIBRATION CURVE
                                                       CODE/8x,9H(GAUSS)
                                                                                                                                                                     TITLE AND INITIAL DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           THE TYPE OF DATA IS.
                                  (15,F8,0,F11,4,F9,1,F12,2,F13,2,14,14) (141/1x,1048//374 POINT FIELD TEM
                                                                                         (AMPERES)/)
                                                                                                                                                                                                                                                                                                                                                                         ANALYIZE MAGNET CALIBRATION CURVE
                                                                                                                                                                                                                                                                                                                                                                                                             CALL CALBLNR(NVCP,CP,T,CLN,ZROPT,NVCC)
                                                                                                                                                                                                                                                                                READ 1030, (CCCOEF(I), 1=1,5)
23H THE CALCULATED ENERGY./)
                                                                                                                                                                                                                                                                                                                                                                                            IF (NMCP) CALL CALBMAG (NMCP, NDMC, CMC)
                                                                                                                                                                                                                                           LISTPUN, TOU, ATC, MACP, NOMO
                                                                        R-ZERO
                                                                                                                                                                                                                                                                                                                                       CURRENT USED, ADJUST..
                                                                                                                                                                                                                                                                                                                   IF ACTUAL THERMOMETER
                                                                                         (DEGREES)
                                                                                                                                                                    READ A
                                                                                                                                                                                      READ 1010, (NAME(I), [ # 1, 10)
                                                                      27HMAG CURRENT
                 (2E12,4,6A8,A6)
                                                                                       30H(DE6-K)
                                                                                                                                                                                                                                                                                                                                                        IF(TCU) TCF = TCU/ATC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FOR LP1=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF(NDP)400,20,30
NDP=NVCP+NTCP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 290 J=1,NDP
                                                                                                             DE I BRUN(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  READ 1010,J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LLP2=LP2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LLP1=LP1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ZNICIZO
                                                                                                                                                                                                                                                                                IF ( IFCAN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RETURN
                                                   FORMAT
                                  FORMAT
                 FORMAT
                                  1130
                                                                                                                                 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                               ပ
                                                                                                                                                                                                                                                                                                                                                                            ပ
                                                                                                                                                                                                                                                                                                                                                                                                                ပ
                                                                                                                                                                                                                                                                                                                      ပပ
```

```
4
                                   9
CP (LP2sAMPLIFIER SCALE CODE)
MAGNET EXPT, LP2s1..ROT, =2..H-T
CP. START NEW SERIES-FOR LAST HALF
                                                 CP. NEW VPD AND/OR NEW SERIES-(##)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Gn To (180,250,180,190,190),LP1
                                                                                                                                                                                                              IF(NOPRNTD) GO TO 160
PRINT 1040,(NAME(1),I=1,10),WT.GMOLWT,HC1,HC2,HC3,HC4
GO TO 160
                                                                                                                                                                                                                                                            GMOL=GMOLWT/(WT*4186.0)
IF(NOPRNTD) GO TO 160
PRINT 1040,(NAME(1),1=1,10),WT.GMOLWT,SP1,SP2,SP3,SP.
GO TO 160
 1 CP (LP2=/2)
2 A AGNET EXP
5 CP. START
5 CP. NEW VF
1F(J,GT.1) G0 TO 110
1LP2=LP2
G0 TO 120
1F(LP1-E0.1LP1) G0 TO 160
                                                                                                                                                               GO TO (130,150,130,130,130), P1
IF(WT) GO TO 140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    EN=DS-ZROPT(LNCLRST)
RS=CALCOR(R0,EN,LNCLBST,CLN)
                                                                                                                                                                                                                                                                                                                                          PRINT 1140, (NAME(I), I=1,10)
IF(LP1) GO TO 170
                                                                                                                                                                                                                                                                                                                                                                         RL=RO
EE=TM
EI=HC
PRINT 1110, RL, EE, EI
                                                                                                                                                                                                                                                                                                                                                                                                                                      GO TO 100
RO=RO+TCF
IF(XSIGNF(1,LP2),GE.0)
CP(J2)=T(J2)=0
                                                                                                                                                                                                                                                                                                                           IF (NOPRNTD) GO TO 160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LNCLBST=LP2+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NZ=NZ+1
                                                                                                                                                                                             GMOL=1.0
                                                                                                                                                  110
120
130
                                                                                                                                                                                                                                                                                                                             150
                                                                                                                                                                                                                                                                                                                                                              160
                                                                                                                                                                                                                                                                                                                                                                                                                                                          170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         180
```

0000

```
ROJIM=RO
IF((CP(JZ),EQ.0),OR.NOPRNTD) GO TO 240
PRINT 1060,JrT(JZ),CP(JZ),DELTAT,RS,RE,RO,DS,DE,TM,HC,HV,EN,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PUNCH 1070, Jof(JZ), CP(JZ), (NAME(I), I=3,8), ID
IF((LISTPUN.EQ.1), AND.(CP(JZ), GT.0))
PUNCH 1100, CP(JZ), DELTAT, T(JZ), (NAME(I), I=3,8), ID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF((IFPUNCH.EQ.1). AND. (CP(JZ).61.0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF ((HC, NE. 0) AND, (HV, NE. 0)) PH=HV/HC
                                                                                                                                                                                                                                                                                                                                                                                      IF(IFCAN.GT.0) CP(JZ)=CP(JZ)-R0J1M
                                                                                                                                                                                                                                                                                                                                                                ROJIM#ROJIM#T(JZ)+CCCOEF(5-I)
                                      RS=CALCOR(ROJ1M, EN, LNCST1M, CLN)
EN=DE-ZROPT(LNCLRST)
RE=CALCOR(RO, EN, LNCLRST, CLN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO 260
                                                                                                                                                                                                                                                                                                   230
                                                                                                                                                                                                                                                                                                                                                                                                                                 CP(JZ)=GMOL+CP(JZ)+R0J1M
                                                                                                                                                                                                           PEKHICAHV-HC*HC*0.001*RL
                                                                                                                                                                                                                                                                                                                                                                                                           IF(IFCAN.GE.O) ROUIMED
                                                                                                       TSETEMP (RS-RL, C, NTCC)
                                                                                                                          TESTEMP(RESRL, C. NTCC)
DELTATETE
                                                                                                                                                                                                                                                                                                IF(IFCAN.EO.0) Gn TO
ROJIM=CCCOEF(5)
DO 220 I=1.4
                                                                                                                                                                     IF(HV.EQ.0) HVEHC+RH
                                                                                                                                                                                         IF (HC.EG.G) HCTHV/RH
                    EN=DS-ZROPT(LNCST1M)
                                                                                                                                                                                                                                                          T(JZ)=TS+0,5+DELTAT
                                                                                                                                                                                                                                    ENAPARATMAREAR I AND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PWR, LP2, LP1
                                                                                                                                                                                                                                                                             CP(JZ)=EN/DELTAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(LLP2,E0,LP2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LNCSTIMELNCLBST
LNCLBST=LP2+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TO 150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LLP2=LP2
 190
                                                               200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          250
```

220

230

```
ADIABATIC ROTATION OF MAGNETIC FIELD CALCULATION CP(JZ)=TEMP(R0-RL,C.NTCC)
GO TO (270,280),LP2
ADIABATIC CHANGE OF MAGNETIC FIELD CALCULATION
CP(JZ)*FIELDMAG(DS,NDMC,CMC)
                                                                                                                                                                                                                                                                                                                                                                                                                                          IF((((1/56)+56-1).EQ.0).AND.(NOPANTXT.EQ.0))
                                                                                       PRINT 1130, J, CP (JZ), T (JZ), DE, DS, RO, LP2, LP1
GO TO 240
                                                                                                                                                                                                                    PRINT 1130, JAHV.CP(JZ), T(JZ), DS, RO, LP2, LP1
                                                                                                                                                                                                                                                                                                                                                                                      CALCULATE CROSS TERMS
                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRINT 1080, (NAME(I), IR1,10)
XT(8)=DS#T(J)*T(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        XT(5)=DELTAT=LOGF(ABSF(CP(J)))
XT(6)=PWR=LOGF(AmsF(T(J)))
                                                   I(JZ)=TEMP(R0-RL,C,NTCC)
IF(NOPRNTD) GO TO 240
                                                                                                                                                                                 HV #FIELDMAG (DS.NIMG. CMC)
                                                                                                                                                                                                 IF (NOPRNTD) GO TO 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             XT(2)=EN=CP(J)/T(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   XT(4)=TSECP(J)*DS
XT(4)=TSECP(J)*DS
XT(3)=TEECP(J)/RS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               T2#SURTF(T(J))
XT(11)#RS#T(J)*T2
                                                                                                                                                                                                                                                                                             IF (NOPRNIXT) RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XT(9)=DE=DS+T(J)
                                                                                                                                                                                                                                                                                                                                                                   IF(NZ.LT.0) JZ=0
                                                                                                                                                                                                                                                                                                                                                                                                       610 J=1,NDP
                                                                                                                                                                                                                                                                                                                                NDP = X ABSF (NDP)
                                                                                                                                                                                                                                      GO TO 240
                                                                                                                                                              T(JZ)=DE
                                                                                                                                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                                           NDP=NDP-NZ
                                                                                                                                                                                                                                                                                                                                                                                                                         1=J=1
                                                                                                                                                                                                                                                                                                          NZ=NDP
                                                                                                                                                                                                                                                                                                                                                                                                         00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -
  260
C
270
                                                                                                                            2,40
                                                                                                                                                                                                                                                                                                                400
                                                                                                                                                                                                                                                         290
                                                                                                                                                                                                                                                                                                                                                                                       ပ
```

```
XT(1)=CP(J)
XT(7)=T(J)
IF(JZ) GO TO 600
IF(LISTPUN+IFPUNCH)

A PUNCH A120,XT(NVCC),XT(NTCC),XTD(NVCC),XTD(NTCC),

A NAME(I),I=3,6),ID
PRINT 1090,J,CP(J),EW,TE,TS,PWR,T(J),DS,DE,RE,RS
CONTINUE
O RETURN
                                                                                                                                    61.0
700
                                                                                                            600
```

```
SHFIELD, 12x, 16HCALCULATED FIFLD, 14x, 10HDIFFERENCE, 11X,
                                                                                                                                                                                                                                  7X,4HC16=,F18,11)
(/60X,15HANALYSIS OF FIT//11X,7HCURRENT,16X,9HMEASURED
                                                                                                                                                                                                                                                                                21HPERCENTAGE DIFFERENCE/11X,64(AMPS),21X,7H(GAUSS),
                                                                                                                                                                                    7X,4HC 7 = F18.11,7X,4HC 8=,E18.11/14X,4HC 9=,E18.11,7X,4HC10=,E18.11/
                                                                                                                                                                                                                                                                                               20x,7H(GAUSS)/(14,1X,0PE16,8,6x,3(5x,0PE16.8,6x),5X,
                                                                                                                                                                                                                    14X,4HC13*,E18,11,7X,4HC14*,E18,11,7X,4HC15*,E18.11,
                              DIMENSION W(130), Z(18,130), P(2,130), CMC(16), NAME(10), H(130),
CALBMAG(NPF, NDMC, CMC)
                                                                                                                                                                                                                                                                                                                                                                                                                                        READ 101, (NAME(1), I=1,10)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      READ 102, (CMC(1), 1#1,16)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     READ 101, (NAME(I), I = 1,10)
                                                                                                                         (1H1/32X, A4, 9AB/)
                                                                                        (3E20.11/3E20.11)
(F5.2,F5.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    READ 103, RMC(I), H(I)
                                                                                                                                                                                                                                                                                                                                             IF(NP.EG.0) RETURN
                                             RMC(130)
                                                            COMMON/ETS/W, Z, R
                                                                                                                                                                                                                                                                                                                                                                             NDMC#XABSF (NDMC)
SUBROUTINE CALBMAG
                                                                            (A4,9A8)
                                                                                                                                                                                                                                                                                                                                                                                                                          IF(NP-1)60,3,4
                                                                                                                                                                                                                                                                                                                                                                                           IF (NDMC) 2, 1, 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GO TO 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7 I=1,NP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   H(1)=1,0
                                                                                                                                                                                                                                                                                                                                                                                                           NDMC=13
                                                                                                                                                                                                                                                                                                                                                            NS=NDMC
                                                                          FORMAT
                                                                                                        FORMAT
                                                                                                                                                                                                                                                  FORMAT
                                                                                         FORMAT
                                                                                                                        FORMAT
                                                                                                                                      FORMAT
                                                                                                                                                                                                                                                                                                                             NPHNPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00
                                                                                                                                                                                                                                                                      4
                                                 •
                                                                               4444
6664
4084
                                                                                                                                                                                                                                                    106
                                                                                                                                                                                                                                                                                                                                                                                                              HOB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~
```

ບ

```
PRINT 105,(CMC(I), 1 = 1, 16)
IF(NP-1) PRINT 106,(I,RMC(I), H(I), Z(1,I),R(1,I),R(2,I),
I=1,N<sup>2</sup>)
CALL PALS(NP, NDMC, 0, W, RMC, H, Z, R, CMC, I)
                                                                                                                                                                                                                     ZP=ZP+FCTR+CMG(17-J)
H(1)=ZP
                                                                  CMC(1)=0
PRINT 104, (NAME(1), 1=1,10)
                                                                                                                                                                                                                                              RMC(1+1) #RMC(1)+0.5
             DO 10 IS1,NP
Z(1,1)SH(1)-R(1,7)
                                                                                                                                                                                                       DU 61 J=2,16
                                                                                                                                                                                         FCTR=RMC(1)
                                                                                                                                                              DO 62 1=1,100
ZP=CMC(16)
                                       KENDMC+2
D0 20 I=K:16
                                                                                                                                    RETURN
RMC(1)=0
                                                                                                                                                                                                                                                           NPF#100
RETURN
                             100
                                                                      300
                                                                                                                                                                                                                                                 8
00
                                                                                                                                                                                                                       44
```

```
51H+C4*(R*+3)+C5*(R**4)+C6*(R*+5)+C7*(R*+6)+C8*(R**7))
                                                                                                                                                                                                                                                                                                                                                                                           //14X,3HC1=,E19.11,8X,3HC2=,E19.11,8X,3HC3=,E18.11.8X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DR/DD
                                                                                                                                                                     DATA (RNG(1)=1.0).(RNG(2)=2.0).(RNG(3)=4.0).(RNG(4)=10.0).
(RNG(5)=20,0).(RNG(6)=40.0).(RNG(7)=50.0).(RNG(8)=100.0).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             36HARE BEING DELETED FOR A BETTER FIT..//(66X,F4.0)) FORMAT (//37x,31HTHF DEGREE OF THE FIT IS BEING ,
                                                                                              NAME(10), CLN(8,9), ZROPT(9), RNG(9), DRDD(130), Rg(130)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10H(0HMS/D1V),17x,10H(nHMS/D1V)/(14,1X,0PE16.8,6X
                                                                                                                                                                                                                                                                                                                                                                                                                    3HC4=,E18;11/14X,3HC5=,E18.11,8X,3HC6=,E18.11,8X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (/60%,15HANALYSIS OF FIT//13X,2HR0,19X,14HMEASURED
                                                                                                                                                                                                                                                                                                                                           (22X,41HTHE FQJATION IS..DR/DD=(C1+C2+R+C3+(R++2),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .12x.16HCALCJLATED DR/ND.14X.10HDIFFERENCE.11X.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    714
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             13HINGREASED TO , 11,17H FOR A BETTER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   21HPERCENTAGE DIFFERENCE/11X,64(DHMS),19X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3(5x,0PE16,8,6x),5x,2PF12,4,10x))
(//34x,32HTHF FOLLOWING POINTS FROM ABOVE
SUBROUTINE CALBLNRINVCPF, DRDD, RO, CLN, ZROPT, NFIT)
                          (CALIBRATE L AND N RECORDER)
                                               PROGRAMMED BY J. N. MC ELEARNEY, 8-19-65
DIMENSION W(130), Zf10,130), R(2,130), C(10),
                                                                                                                                                                                                                                                                                                                                                                                                                                         3HC7=, E18:11,8x,3HC8=, F18.11)
                                                                                                                                              COMMON/NOPRNTVC/NOPRNTVC/IC/IC/TCF/TCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ 101, (NAME(I), I=1,10)
                                                                                                                                                                                                                                                                       (3E20,11/3E20,11)
                                                                                                                                                                                                                                                                                                                       (1H1/32X, A4, 9AB/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF(NVCP, EG.O) RETURN
NSHNFII
                                                                                                                                                                                                                        (RNG(9) #200.0)
                                                                                                                                                                                                                                                                                              (4F10,2,14)
                                                                                                                        COMMON/ETS/W,Z,R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (NVCP-1)60,3,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                VFI LARXABSF(NFI L)
                                                                                                                                                                                                                                                 (A4,9A8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (NFIT) 2, 1, 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NVCPRNVCPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            NFITE1
                                                                                                                                                                                                                                                                       FORMAT
                                                                                                                                                                                                                                                                                                                       FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FORMAT
                                                                                                                                                                                                                                              FORMAT
                                                                                                                                                                                                                                                                                              FORMAT
                                                                                                                                                                                                      * *
                                                                                                                                                                                                                                                                       102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        116
                                                                                                                                                                                                                                                                                                103
                                                                                                                                                                                                                                                                                                                        104
                                                                                                                                                                                                                                                                                                                                                105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          117
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  40 M
                            \upsilon
```

```
RO(1)=((ZP-DRR)+(ZP-DRL))+FCTR+(RR+RL)+0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF(NOPRNIVC) GO TO 40
IF((NS.NE,NFIT),AND.(VS.GT.g)) PRINT 109,VFIT
                                                                                                                                                                                                                                                                                                    CALL PALS(NVCP, NFII, 0, M, RO, DRDD, Z.R, C. I)
                                                                                                                                                                                                                                                                                                                               IF(NS.LT.0) GO TO 15
DO 10 I=1,NVCP
IF(ABSF(R(2,1)),LE,EPS) GO TO 10
IF(IC,GT.0) GO TO 401
                                                                                     W(I)=1.0
READ 103, RL, DRL, PR, DRR, IC
RL=RL+TCF
                                                                                                                                                                                                                                        DRDD(I) = DRDD(I)/ANG(IC+1)
                                                                                                                                                                                            DRDD(1)=(RR-RL)/(DRR-DRL)
                             GO TO 30
READ 101, (NAME(I), Im1,10)
READ 102, (C(1), 1x1,8)
                                                                                                                                                                                                                                                                                                                                                                                                                          Z(1,1)=DRDD(1)-R(1,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF(IC, EQ.2) GO TO 42
K#NFIT+2
                                                                                                                                                                                                            FCTR=0.5+DRDD(1)
                                                                                                                                                                               ZP=ZROPT(IC+1)
                                                                                                                                                 IF(RR)6,5,6
                                                                                                                                                                                                                                                                                                                                                                                                           2(2, 1)=1
                                                                                                                                                               RR=RL1M
                                                          EPS=0,10
DO 7 I=1,NVCP
                                                                                                                                  RRERRATOF
                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                            J=J+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 20 1=K,8
                                                                                                                                                                                                                                                       RL1M=RL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C(1)=0
              10=2
                                                                                                                                                                                                                                                                                                                                                                                                                                       10=10+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0 0
0 0
                                                                                                                                                                   50
                                                                                                                                                                                                                                                                                                      & O
                                                                                                                                                                                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     15
```

```
PRINT 105.(C(1),1=1,8)
IF(NVCP-1) PRINT 104.(1,R0(1),DRDD(1),Z(1,1),R(1,1),R(2,1),
                                   I . I . NVCP)
PRINT 104, (NAME(I), 181,10)
                                                                                                           30
                                                                                                                                                                                                                                            IF(NOPRNIVC) GO TO A
PRINT 107, (Z(2,1), Imia)
                                                                                                                                                                                                                                                                                                                                                                                            ZP=ZP+FCTR+C(10+J)
                                                                                                                                                                                                                                                                                                         IF(NFIT, EQ, 73 GO TO
                                                                                                                                                                                                                                                                                                                                                                                                                   RO(I+1)=RO(I)+250.0
                                                                                                                                                                                                                      DRDD(K) = DRDD(K1)
                                             IF(IC.GE.2) GO TO 42
EPS=0.075
IF(J.NE.0) GO TO 402
IF(IC.EQ.1) GO TO 9
                                                                                                                                                                                              K1=K+1
R0(K)=R0(K1)
                                                                                                                                                                                 DO 41 KEICINVCP
                                                                                                                                                         IC=Z(2,1)+1+1
                                                                                                                                                                     NVCP=NVCP-1
                                                                                                                                                                                                                                                                                                                                                                                DO 61 J=3,9
                                                                                                                      NFITENFITET
                                                                                                                                                                                                                                                                                                                                                                                                        DRDD([)=ZP
                                                                                                                                                                                                                                                                                                                                            DO 62 I=1,100
                                                                                                                                                                                                                                                                                                                                                                   FCTR=RO(1)
                                                                                                                                              41 I=1,J
                                                                                                                                                                                                                                                                                DO 43 I=1,9
DO 43 J=1,8
                                                                                                                                                                                                                                                                                                                                                        ZPEC(8)
                                                                                                                                  GO TO 8
                                                                                                                                                                                                                                                                                                                                                                                                                               NVCPF=100
                                                                                                                                                                                                                                                                   GO TO 8
                                                                                                                                                                                                                                                                                                                                R0(1)=0
                                                                                              IC= IC+1
                                                                                                                                                                                                                                  IC= IC+1
                                                                                                                                                                                                                                                                                                                   RETURN
                                                                                                                                               00
                                                                                                                                                                                                                                                                                                         402
                                                                                                                                                                                                                                                                                                                                                                                                                      <del>ک</del>
                                                                                                401
                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                              61
                                                                                                                                                                                                                       4
```

RETURN

```
(22x, 48HTHE EQJATION IS..1/T=C1+C2+LOG(R)+C3+(LOG(R)++2)
                                                                                                                                                                                        ,45H+C4+(LOG(R)++3)+C5+(LOG(R)++4)+C6+(LOG(R)++5))
(13X,48HTHE EDUATION IS.. SQRT(LOG(R)/T)=(C1+C2+LOG(R))/
                                                                                                                                                                                                                                                                                                                                                                                                                                           (8X,0PF9.2,10X,2(7X,0PF12,8,8X),9X,3PF8.2,15X,2PF12.4,
                                                                                                                                                                                                                                                                                                                                                          19HMEASUREN RESISTANCE, 8X, 20HMEASURED TEMPERATURE, 6X
                                      PROGRAMMED BY J. N. MC ELEARNEY, 8-19-65
DIMENSION R(50),T(50),W(130),X(50),Y(50),Z(10,130),ER(2,130),
                                                                                                                                                                                                                                                                                                                                                                                                     DIFFERENCE/11X,6H(DHMS),21X,7H(DEG-K),
                                                                                                                                                                                                                                  ,46H(1*(C3+C4*LOG(R)+C5*(LOG(R)**2)+C6*(LOG(R)**3)
                                                                                                                                                                                                                                                                           (/14X,3HC1 = , £18,11,8X,3HC2 = , £18,11,8X,3HC3 = , £18,11,
                                                                                                                                                                                                                                                                                              8X,3HC4=,E18,11/14X,3HC5=,E18,11,8X,3HC6=,E18,11,
                                                                                                                                                                                                                                                                                                                                                                               22HCALCULATED TEMPERATURE, 11X, 10MDIFFERENCE, 11X, 21HPERCENIAGE DIFFERENCE/11X, 64(04MS), 21X, 74(DEG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (///52X.30HINTERPOLATED CALIBRATION CURVE//)
                                                                                                                                                OF CALIBRATION CURVE
                                                                                                                                                                                                                                                                                                                                                                                                                        20x,7H(DEG-K),18x,11H(MLE-NEG-K)/
                                                                                                                                                                                                                                                                                                                   8X,3HC7=,E18,11,8X,3HC8=,E18,11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               202,(R(J),T(J),J=1,M)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   201, (NAME(J), J=1,10)
                                                                                                                                                                                                                                                       47I+C74(105(R)**4)))
                                                                                                                                                (1H2,51X,32HANALYS1S
SUBROUTINE TEMPCALB(M.Y.X.C.Z)
                                                                                                                          COMMON/NOPRNTIC/NOPANTIC
                                                                                   C(10), NAME(10)
                   THERMOMETER CALIBRATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F(M; EQ. -1) GO TO 60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORMAT (F9.1, F9.4)
                                                                                                      COMMON/ETS/W,Z,ER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF(M.EQ.0) RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (3E20,11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F(M,GT,0) READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ガルトエ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF(N.EQ.0) NET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   10x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (10A8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF(M,GT,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F(M, GT, 0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    MHXABSF(M)
                                                                                                                                                                  ORMAT
                                                                                                                                                                                                           ORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT
                                                                                                                                                                                                                                                                         FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ORMAT
                                                                                                                                                                                                                                                                                                                                         FORMAT
                                                                                                                                                                                                                                                                                                                                                                   ようちょうら
                                                                                                                                                   100
                                                                                                                                                                                                                112
                                                                                                                                                                                                                                                                                                                                           104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        105
                                                                                                                                                                      101
                                                                                                                                                                                                                                                                           103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                211
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    202
                        ပပ
```

```
C(1) + C(2) + C(3) + C(4) + C(5) + C(6) + C(7) + C(8) + C(9) + C(10) + C
                           DO 59 NLPE1.6
IF(((LPON.EQ.0).AND.(NLP.NE.N))
.OR.((LPON.EQ.1).AND.(NLP.EQ.N))) GO TO 59
                                                                               IF("NOT NOPRNITC) PRINT 100 (NAMF(L)) LEL.10)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL PALS(M.L-1.0.4.X.Y.Z.ER.C.J)
                                                                                                                                                                                                                   X(J)=LOGF(R(J))
Y(J)=1.0/T(J)
CALL PALS(M,L,0,4,x,4,2,ER,C,J)
                                                                                                                                                                                                                                                                                                                                                                                CALL PALS(M.1.00 W.X.Y.Z.ER.C.J)
                                                                                                                                                                                                                                                                                                                                         W(J)=1.0
X(J)=LOGFTR(J))
Y(J)=SQRTF(X(J)/T(J))
                                                                                                                                                                                                                                                                                                  ER(2, J) = ER(1, J) / T(J)
                                                                                                                                                                                                                                                                       M(U) HTEMP(R(U), C.)
ER(1, U) HT(U) + M(U)
                                                                                                         GO TO (2,3,4,5,6),1
L=5$ GO TO 10
                                                                                                                                                                                                                                                                                                                                                                                              IF(1,GT.5) GO TO 24
                                                                                                                                                                                                       (7)1+(7)1+(7)3
                                                                                                                                    G0 T0 10
G0 T0 20
                                                                                                                                                               GD 70 10
GO 70 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                    Y(J)=ER(2,J)
IF(N:LT.0) LPON#1
                                                                                                                                                                                                                                                                                                                                                                                                                       C2=C(2)
D0 22 J=1,M
                                                                                                                                                                                                                                                          DO 12 J#1,M
                                                                                                                                                                                                                                                                                                               GO TO 30
DO 21 J=1,M
                                                                                                                                                                                          JE11, H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DO 23 J=1,L
                                                                                                                                                                                                                                                                                                                                                                                                           C1 = C(1)
             NEXABSF(N)
                                                                  I = N L P
                                                                                                                                   ç
(
                                                                                                                                                                                                                                                                                                    2
                                                                                  4
                                                                                                                         0 M 4 M 6 0
                                                                                                                                                                                                                                  7
                                                                                                                                                                                                                                                                                                                                                                      4
```

```
PRINT 106, (NAME(J), J#1,10)
PRINT 104, (R(J), T(J), W(J), ER(1,J), ER(2,J), J#M1,MT)
IF((NLP,LT,6), OR, (LPON, EQ.0)) GO TO 59
                                                                                                                                                                                                                                                                                                                          PRINT 103,(C(J),J=1,9)
PRINT 104,(R(J),T(J),W(J),FR(1,J),ER(2,J),J#1,M)
IF(M1,GT,MT) GO TO 52
                                                                                                                                                                                                                                                                     IF(,NOT,NBPRNTTC) PAINT 103,(C(J), J#1,8)
                                                                                                                                                                                              GO TO 40
IF(.NOT.NOPRNTIC) PRINT 102
IF(M.NE.1) GO TO 50
                                                                                                                                                             GO TO (31,31,32,31,32),1
IF(.NOT.NOPRNITC) PRINT 101
                                                                                                                                                                                                                                                     READ 105, (C(J), J=1,8)
                                                                                       Y(J)=SQRTF(X(J)/T(J))
                                                                                                                                            ER(2,1) = ER(1,1)/T(1)
                                                                                                        W(C) HTEMPTR(C), C. 1)
                                                                                                                                                                                                                                                                                                                                                                                                    CIODHUMBAD(C) COLO
                                                                                                                          (7)3#(7)1#(7°13)8B
                                                                                                                                                                                                                                                                                                                                                                                                                     ER(1,1)=1(1,1)=(1)
                                                                                                                                                                                                                                                                                                          IF (NOPRNITC) RETURN
KHL#J
C(K+3)HC(K+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(N,GE,0) GO TO 62
DO 61 I=1,MT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        X(1)=LOGF(R(1))
                                                                                                                                                                                                                                                                                                                                                                                DO 51 J=M1,MT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              GO TO 1
                                                                                                                                                                                                                                                                                          RETURN
                                                                                                                                             30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            <del>ر</del>
2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  59
                                                                        4 0
```

```
Y(1)=ER(-N,1)

MEMT

RETURN

X(1)=0.0001

D0 63 I=1,100

Y(1)=1,0/TEMP(EXPF(X(1)),C,N)

Y(1)=1,0/TEMP(EXPF(X(1)),C,N)

X(1)=X(1)+0.11

ME100

RETURN
  4
                                    8
                                                                                 63
```

```
FUNCTION CALCOR(RO,DIV,ICF,C)
CALCULATE CORRECTED RESISTANCE (FOR NON-NULL RECORDER READING)
DIMENSION C(8,9)
IC=ICF
                                                                                                                                                                                                                                                        R#(R0-C1P+DIV)/(1.0+C2P+DIV)
IF(((ABSF(R1-R))/R),GT.0.001) Gn TO
                                                                                                                                                              RIEI
SUM=SUM*R+(7.0-RI)*C(8-I,IC)
C2PEC(2,IC)+SUM*R
RI=R
                                                                                                                           SUM=SUM*R+(6,0*R1)*C(8*I,1C)
C1P=C(1,1C)=SUM*R*R
SUM=7,0*C(8,1C)
DO 3 I=1,5
                                                                                SUM=6,0*C(8,1C)
DO 2 1=1,5
RI=1
                                                                                                                                                                                                                                                                                      CALCOR=R
RETURN
                                                              RERO
```

ບ

+1

N

m

```
CONVERT RESISTANCE TO TEMPERATURE
PROGRAMMED BY J. N. MC ELEARNEY, 8-19-65
                                                                                                                                                                                                                                                          SUM=RLOG*SUM+C(12+4)
SUM=(C(1)+C(2)+RLOG)/(1.0-S!)M)
                                                                                                                                                                SUMBREOG+SUM+C(I+-K)
                                DIMENSION C(10)

GO TO (1,2,3,4,5),N

I=5$ GO TO 10

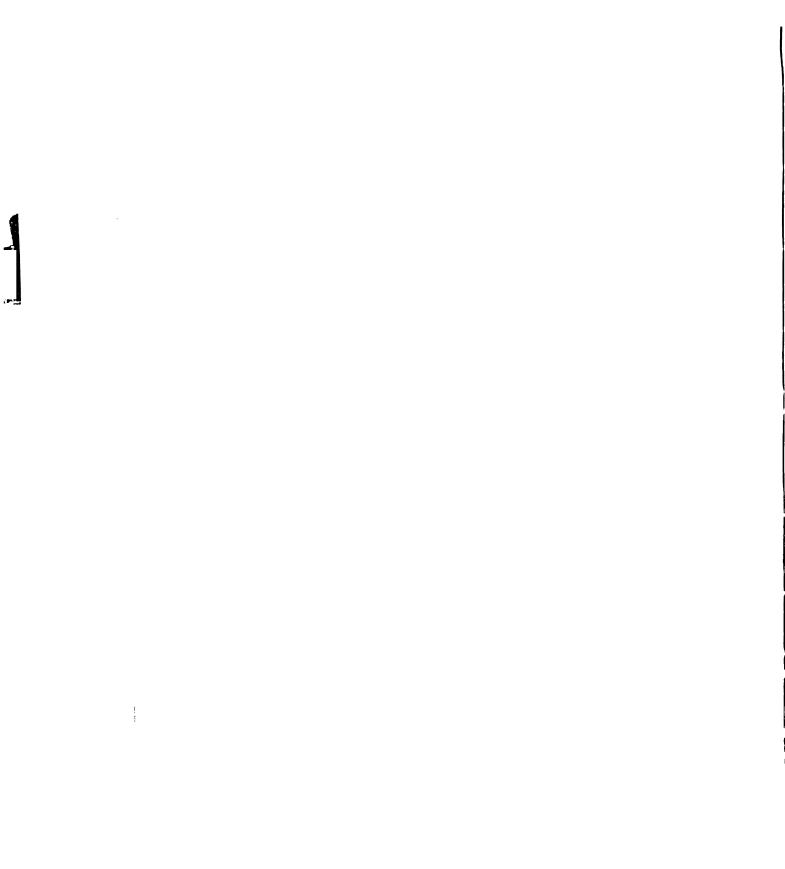
I=5$ GO TO 10

I=5$ GO TO 20

I=5$ GO TO 20

I=4$ GO TO 20
FUNCTION TEMP(R,C.N)
                                                                                                                                                                                                                                                                                 SUM#SUM#SUM
TEMP#KLOG/SUM
                                                                                                                                                                            TEMP±1,0/SUM
                                                                                                                   RLOG=LOGF(R)
                                                                                                                                                                                      RETURN
RLOG=LOGF(R)
                                                                                                                                                                                                                                               DO 21 K=1,11
                                                                                                                                                      DO 11 K=1,1
                                                                                                                              11=1+1
SUM=C(11)
                                                                                                                                                                                                               12=1+2
SUM=C(12)
                                                                                                                                                                                                                                    11=1-1
                                                            40 M 4 M 0
                                                                                                                                                                                                    00
                                                                                                                                                                                                                                                             7
              ပပ
```

```
NZ=N+2
N1=N+1
THIS IS.A TRANSLATION OF A STANFORD SUBALGOL PROCEDURE
SUBROUTINE PALS(M.NN.EPS.W.X.Y.Z.R.C.N)
POLYNOMIAL APPROXIMATION BY LEAST SQUARES
DIMENSION W(M).X(M).Y(M).Z(10,M).R(2,M).C(20).A(9)
                                                                                                                                                                                                                               IF (EPS-ABSF (Z(N3, I)))041,94,94
                                                                                                                                                                         IF(TGL)97,95,97
IF(BOX-T0T)95,96,96
                                                                                                                                                               BOX = BOX + ZN3 + ZN3
                                           IF(M-N-1)940,942,942
                                                                                                                                                     ZN3=Z(N3.1)
                                                                                                                                                                                                         GO TO 82
94 I=1,M
                                                                                                                                                                                                                                                                                                                   TGL=0
DO 92 J=1,M
Z(2,J)=W(J)
                                                                                                                                BOX=0
DO 98 I=1,M
                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                                         TGL=1.0
GO TO 89
                                                                                                                                                                                                                                                                                                                                                    Natel 19
                                                                                                                                                                                                 大=大・コ
                                                                                                                                                                                                                                                    GO TO 82
                                                                                                                                                                                                                                                             TOT=80x
                                                                                                           GO TO 93
START SUM
                                                     NAMILA
                                                                                                                                                                                                                                                                                             END SUR
                                                             N+2H N2
                                                                                                                                                                                                                     00
                                                                                                                                                                                                                                                                                                                                                   00
                                                       940
                                                                                                                                                                                                                                                                941
                                                                                                                      ည်
                                                                                                                                                                                      97
                                                                                                                                                                                                                     95
                                                                                                                                                                                                                                           46
                                                                                                                                                                                                                                                                                                S C
```


ပ

```
85 1=K,N1
12=1+2
DO 85 J=1,M
Z(12,J)=Z(12,J)=Z(K,1)+Z(K1,J)
                                                                                                                                                                                                               Z(I,J)=Z(I,J)=Z(I,K1)+Z(K,J)
                                                                                           A(1)=Z(K1,J)+Z(I1,J)+A(I)
86 I=K,N1
Z(12, U) = X(U) + Z(11, U)
                                                                                                                                                                                                                                 DO 81 I=1,K
C(1)=Z(1,N1)
DO 80 I=1,M
R(1,1)=Z(N3,1)
R(2,1)=R(1,1)/Y(1)
                                                                                                                  Z(K,1)=A(1+1)/A(K)
         DO 90 JEL, M
Z(NG, C)84(L)**(L)
                                                                                                                                                                    IF(K=1)84,99,84
K1=K+1
DO 83 I=1,K1
DO 83 L=K,N1
                                       K4=K+1
DO 88 1=K,N2
A(1)=0
11=1+1
DO 88 J=1,M
                                                                                                                                                                                                                                                                                      NEK 1
                               X # X + 1
                                                                                                       00
                                                                                                                            00
                                                                                                                                                                                                                                    œ œ
~ <del>-</del>
                     0
0
0
0
                                                                                             8
                                                                                                                  8
                                                                                                                                                            80
37
                                                                                                                                                                                84
                                                                                                                                                                                                               83
```

PART C

Typical Data Deck Input

			01/26/68 RJN 4 SAMPLE 1 CO=882.6420
* 0 +	£4 8	111	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
+	•		03/30/68 MAGNET CALIBRATION
0 0.00	0 9 0		
13.2 1	810		
04.7 2	680		
14.2 2	360		
05.0 2800	800		
0.90	330		
07.0 3	870		
4 0.80	300		
4 0.60	4760		
10.05	100		
11.0 5	410		
12.0 5	5700		
13.0 5	5950		

	(_,	·.	7	÷	ır.	~		ERMOMETER														JN DATA										12		
		6/0B	332	000	000	1000	• 0 0 0	0.0000	9/9														26/68 R	060.	60.	60.	60.	60.	60.	60.	60.	60.	0.090	• 0 9	60.
		•	•	m	13.0	7	-	8		,157	:199	.093	066.	.887	3,7866	:674	,558	419	.240	.071	840	.636		٠ س	4.	4	•	7	&	6	•	+	12,0	m	4.
70.0 9990			480.	430.	1320.0	215.	125.	032.		060	551,	572.	9669	626.	0657.0	695.	738,	798.	890.	997.	187,	415.		15.	21.	25.	32.	41.	50.	59	68	74.	1483.0	68	97.

```
00000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
00000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                         - - - -
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                   an an an an an
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                   0000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
00000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                  \alpha
\begin{array}{c} \mathbf{r} \, \mathbf{u} \, \mathbf{u} \, \mathbf{v} \, \mathbf{v} \, \mathbf{u} \, \mathbf{v} \, \mathbf{u} \, \mathbf{v} \, \mathbf{u} \, \mathbf{
```

00000000000 **નનનન** $\bullet\bullet\bullet\circ \mathsf{N}\bullet \mathsf{N}\bullet$

.07920	.07920	.97920	.97920	.97920	17920	. 17920	.07920	.07920	.97920	.07920	.07920	.07920	. 97920	0.079200	.07920	.07920	.07920	.07920	.07920	.07920	.97920	.17920	.07920	.07920	.07920	07920
.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	0.19800	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	.1980	1980
														21												
	÷	ب	•	+ ;	ò	℃	6		ė	ċ	•	•		30.0	•		6		ė	•	6	6	6	ċ	6	ċ
0	*	•	÷	6	**	4.	æ	4	4.	ь.	•	+	5	32.2	•	٠ •	4	œ	∾	•	۶.	-	•	•	7	5
	80	2	80	2	4.	80	3	7	٠ س	′.	2	•	•	25.4	•	٠ س	8	٠ س	7.	+	5	0	2	•	٠ <u>.</u>	5
032.	032.	132.	132.	132.	932.	932.	932.	932.	932.	932.	932.	932.	932.	0932.0	932.	932.	932.	932.	932.	932.	932.	932.	932.	932.	932.	932.

APPENDIX II

RESISTANCE CALCULATION WITH AN UNBALANCED POTENTIOMETER SETTING

APPENDIX II

RESISTANCE CALCULATION WITH AN UNBALANCED POTENTIOMETER SETTING

When Kirchoff's Circuit Law is applied to the potentiometer circuit shown in Fig. 37, the result is

$$(I_E - I_P)R_P + I_ER + (I_E + I_T)R_T = 0.$$
 (1)

 I_{p} is the potentiometer current; R_{p} is the potentiometer resistance; R_{T} is the thermometer resistance; I_{T} is the thermometer current; R is the lead resistance; and I_{E} is the unbalance current. When $I_{E}=0$ (1) becomes $I_{p} R_{p} = I_{T} R_{T}. \quad \text{If} \quad V_{0} \quad \text{is the potentiometer voltage reading, then} \quad V_{0} = I_{p} R_{p} \quad \text{, so (1)} \quad \text{becomes}$

$$(1 - I_E/I_P)V_0 = I_ER + (1 + I_E/I_T)I_TR_T.$$
 (2)

In the actual experimental apparatus, the galvanometer consisted of a microvolt amplifier used with a chart recorder. Experiments have shown that \mathbf{I}_E is proportional to the pen deflection from the null position, and that it is less than, at most, 0.1 microampere. For the K-3 potentiometer \mathbf{I}_P is never less than 200 microamperes. Thus $\mathbf{I}_E/\mathbf{I}_P$ is negligible compared to 1. Then, if the recorder deflection is D, and $\mathbf{I}_E=\mathbf{D}$, (2) becomes

$$V_0 = aDR + (1 + aD/I_T)I_TR_T.$$
 (3)

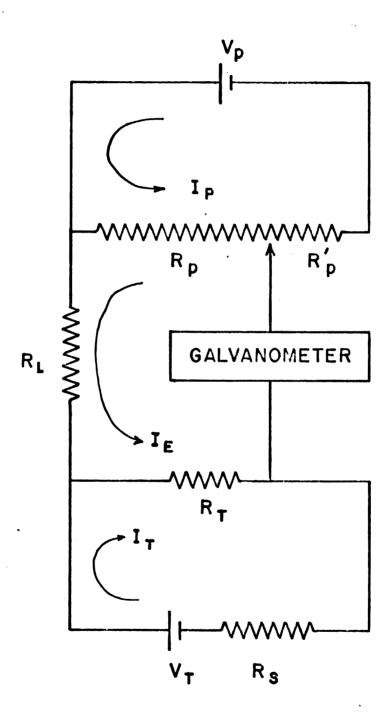


Fig. 37. Circuit diagram of a simple potentiometer.

Since the thermometer current is constant, (3) becomes, setting $R_0 = V_0/I_{\pi}$,

$$R_0 = (a/I_T)RD + [1 + (a/I_T)D]R_T$$
 (4)

If the potentiometer setting is changed, while $R_{f T}$ and R are constant, then, denoting the new values of $R_{f 0}$ and D by primes:

$$R_0' = (a/I_{\pi})RD' + [1 + (a/I_{\pi})D']R_{\pi}.$$
 (5)

If (5) is subtracted from (4), then

$$R_0 - R_0' = (a/I_m)(R + R_m)(D - D')$$
 (6)

or,
$$\Delta R_0/\Delta D = C_1 + C_2 R_m$$
, (7)

where $C_1 = (a/I_T)R$ and $C_2 = a/I_T$. This is the voltage calibration curve, in theory.

To calculate R_{m} using (7), (4) is solved for R_{m} :

$$R_{T} = [R_{0} - (a/I_{T})RD]/[1 + (a/I_{T})D]$$
 (8)

or,

$$R_{T} = \frac{R_{0} - C_{1}D}{1 + C_{2}D} \qquad . \tag{9}$$

In practice (7) turns out to be non-linear, so a modified form of (9) was used:

$$R_{T} = \frac{R_{0} - [C_{1} - C_{2}R - 2C_{3}R^{2} - 3C_{4}R^{3}]D}{1 + [C_{2} + 2C_{3}R + 3C_{4}R^{2}]D}.$$
 (10)

This equation was arrived at empirically.

APPENDIX III

EXPERIMENTAL DATA

Table 1. $CoCl_2 \cdot 6H_2O$ BC plane isentropic rotations (C = 55^0)

θ	T(0 K)	θ	$T(_{0}K)$	θ	$T(_{0}K)$
		1/	5/68, 6350 G	auss	
70	1.287	175	1.278	305	1.336
73	1.294	180	1.270	310	1.336
77	1.301	185	1.262	315	1.330
80	1.306	190	1.253	320	1.324
85	1.315	195	1.243	32 5	1.321
88	1.318	200	1.233	33 0	1.316
90	1.319	205	1.223	335	1.311
9 3	1.320	210	1.214	340	1.316
95	1.321	215	1.204	34 5	1.298
98	1.323	220	1.215	3 50	1.291
100	1.323	225	1.201	355	1.284
103	1.324	230	1.186	0	1.276
105	1.324	23 5	1.184	5	1.266
108	1.324	240	1.203	10	1.256
115	1.322	245	1.222	15	1.245
120	1.322	250	1.243	20	1.234
125	1.322	255	1.260	25	1.222
130	1.321	260	1.274	30	1.210
135	1.320	265	1.287	35	1.193
140	1.313	270	1.299	40	1.178
145	1.309	275	1.309	45	1.162
150	1.305	280	1.317	50	1.149
155	1.300	285	1.324	55	1.145
160	1.295	290	1.329	60	1.162
165	1.291	295	1.332	65	1.185
L70	1.285	300	1.334	70	1.206
		1/	5/68, 7 860 G	auss	
3 5	1.303	265	1.293	135	1.367
25	1.333	255	1.262	125	1.358
15	1.357	245	1.227	115	1.345
5	1.376	23 5	1.202	107	1.329
355	1.389	225	1.225	95	1.302
345	1.397	215	1.261	85	1.271
335	1.400	205	1.294	75	1.237
325	1.398	195	1.320	65	1.199
315	1.392	185	1.342	60	1.185
305	1.381	175	1.358	55	1.179
295	1.368	165	1.368	50	1.189
285	1.347	155	1.371	45	1.207
275	1.322	145	1.371		

Table 2. $CoCl_2 \cdot 6H_2O$ AB plane isentropic rotations (B = 0^0)

θ	T(OK)	θ	T(0K)	θ	T(0K)
		1/11/68,	6410 Gauss		
70	1.224	200	1.259	320	1.266
80	1.223	210	1.256	330	1.268
90	1.228	217	1.253	340	1.267
100	1.238	220	1.252	350	1.265
110	1.246	230	1.245	0	1.265
120	1.255	240	1.240	0	1.262
130	1.260	250	1.237	10	1.259
140	1.262	260	1.237	20	1.257
150	1.263	270	1.241	30	1.253
160	1.265	280	1.248	40	1.247
170	1.265	290	1.256	50	1.242
180	1.263	300	1.263	60	1. 2 36
190	1.262	310	1.269	70	1.232
		1/11/68,	9700 Gauss		
270	1.197	160	1.293	40	1.286
260	1.297	150	1.289	30	1.294
250	1.218	140	1.284	20	1.301
240	1.240	130	1.276	10	1.304
230	1.257	120	1.265	0	1.306
225	1.262	110	1.250	350	1.305
22 0	1.272	100	1.233	340	1.303
210	1.281	90	1.215	330	1.299
200	1.287	80	1.210	320	1.292
190	1.291	70	1.236	310	1.283
180	1.294	60	1.257	300	1.272
170	1.294	50	1.273	290	1.256

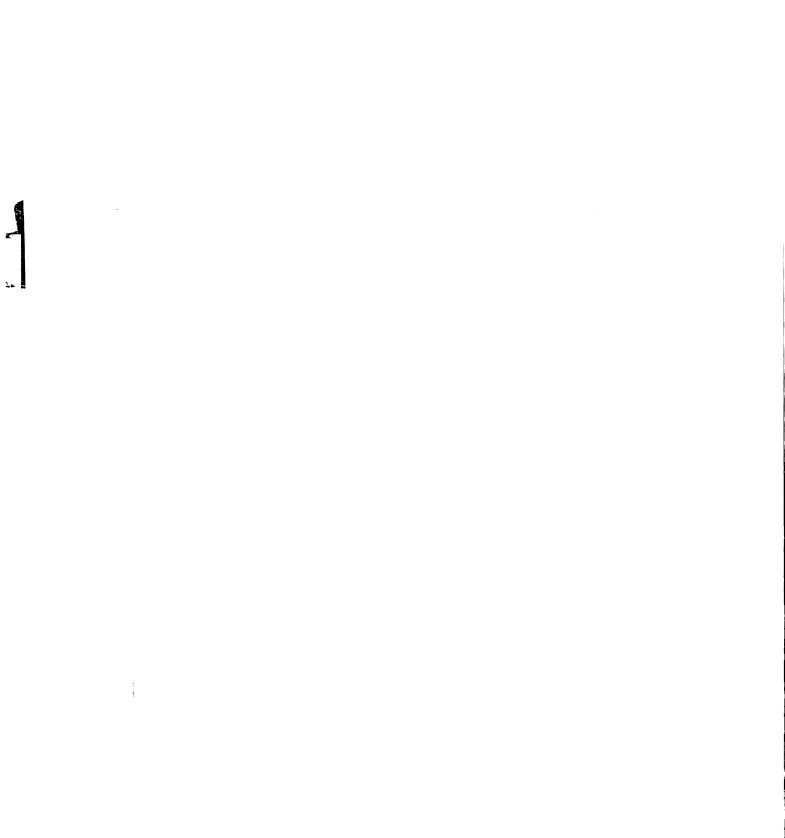


Table 3. $CoCl_2 \cdot 6H_2O$ AC plane isentropic rotations (C = 70°)

θ	T(OK)	θ	T(OK)	θ	T(OK)
		1/9/68,	6410 Gauss		
335	1.315	215	1.225	95	1.182
325	1.300	205	1.255	85	1.167
315	1.279	195	1.284	75	1.164
305	1.250	185	1.308	65	1.171
295	1.221	175	1.321	55	1.184
285	1.194	165	1.328	45	1.205
275	1.172	155	1.327	35	1.234
265	1.161	145	1.314	25	1.265
255	1.157	135	1.292	15	1.291
245	1.160	125	1.264	5	1.315
235	1.175	115	1.233	355	1.329
225	1.198	105	1.203	345	1.334
		1/9/68,	9620 Gauss		
350	1.359	230	1.221	110	1.182
340	1.365	220	1.216	100	1.208
330	1.349	210	1.200	90	1.219
320	1.313	200	1.223	80	1.227
310	1.263	190	1.283	70	1.230
300	1.206	180	1.331	60	1.230
290	1.175	170	1.363	50	1.225
280	1.203	160	1.372	40	1.217
270	1.215	150	1.357	30	1.197
260	1.222	140	1.326	20	1.232
250	1.225	130	1.278	10	1.296
240	1.224	120	1.220	0	1.341

Table 4. $CoCl_2 \cdot 6H_2O$ C-axis isentropic magnetizations

$T(_0K)$	${ t H}({ t Gauss})$	$\mathbf{I}(0\mathbf{K})$	${ t H}({ t Gauss})$	$\mathbf{I}(0^{\mathbf{K}})$	${\tt H(Gauss)}$
		1/	9/68		
1.207	6450	1.226	8290	1.238	9480
1.195	6780	1.229	8480	1.239	9620
1.196	7090	1.231	8660	1.240	9760
1.203	7370	1.234	8830	1.241	9890
1.212	7620	1.235	9000	1.241	9970
1.219	7860	1.236	9160		
1.223	8080	1.237	9320		
		1/	'6/68		
1.244	8570	1.221	7230	1.335	4310
1.242	8380	1.222	6940	1.358	3360
1.240	8190	1.236	6600	1.372	2260
1.237	7970	1.256	6200	1.372	1850
1.232	7740	1.279	5700		
1.225	7500	1.303	5080		

Table 5. $CoCl_2 \cdot 6H_2O$ antiferromagnetic-spin flop boundary points (H // C-axis)

T(oK)	H(Gauss)
1	/5/68
1.219	7140
1.273	7110
1.365	7260
1.502	7420
1.679	7440
1	/6/68
1.186	7060
1.218	7100
1.279	7120
1.353	7190
1.445	7310
1.513	7420
1.579	7540
1.664	7680
1	/9/68
1.491	7290
1.532	7380
1.588	7450
1.674	7610

Table 6. $CoCl_2 \cdot 6H_2O$ BC plane paramagnetic isentropic rotation (C = 55°)

θ	T(OK)	θ	T(OK)	θ	T(OK)
		1/6	6/68		
55	2.459	285	2.467	5	3.209
65	2.459	295	2.472	355	3.215
75	2.463	305	2.476	345	3.219
85	2.468	315	2.478	335	3.221
95	2.474	325	2.478	325	3.222
105	2.479	335	2.475	315	3.223
115	2.484	345	2.471	305	3.223
125	2.487	3 55	2.464	295	3.222
135	2.489	5	2.457	285	3.222
145	2.489	15	2.448	275	3.221
155	2.486	25	2.442	265	3.224
165	2.482	35	2.436	255	3.227
175	2.476	45	2.431	245	3.228
185	2.469	55	2.430	235	3.231
195	2.461	65	2.432	225	3.233
205	2.456	75	2.435	215	3.238
215	2.450	85	2.441	205	3.242
225	2.447	95	2.447	195	3.246
235	2.446	55	3.192	185	3.252
245	2.447	45	3.194	175	3.257
255	2.451	3 5	3.195	165	3.262
265	2.455			155	3.267
275	2.461				

154

Table 7. $MnCl_2 \cdot 4H_2O$ AC plane isentropic rotations (C = 45°)

θ	$\mathtt{T}(0\mathtt{K})$	θ	T(OK)	θ	T (0 K)
-		2/6/68,	6410 Gauss		
10	1.079	260	1.080	110	1.122
360	1.097	250	1.063	100	1.111
355	1.107	240	1.043	90	1.096
350	1.115	230	1.037	80	1.079
345	1.122	220	1.037	70	1.060
340	1.126	210	1.040	60	1.041
335	1.130	200	1.050	50	1.036
3 3 0	1.133	190	1.070	45	1.035
320	1.135	180	1.091	40	1.035
315	1.135	170	1.110	35	1.036
310	1.134	160	1.123	30	1.039
300	1.129	150	1.131	2 5	1.042
290	1.122	140	1.135	20	1.049
280	1.110	130	1.134	15	1.058
270	1.096	120	1.130		
		2/	6/68		
75	1.054	200	1.018	320	1.135
80	1.066	205	1.015	325	1.133
85	1.078	210	1.013	330	1.130
90	1.088	215	1.016	335	1.124
95	1.097	220	1.016	340	1.116
100	1.107	225	1.016	345	1.107
105	1.115	230	1.017	350	1.066
110	1.121	235	1.018	355	1.081
115	1.127	240	1.022	360	1.096
120	1.131	245	1.026	355	1.081
125	1.133	250	1.042	360	1.096
130	1.135	2 55	1.054	5	1.051
135	1.135	260	1.066	10	1.034
140	1.134	265	1.077	25	1.016
145	1.132	270	1.088	30	1.016
150	1.129	27 5	1.098	35	1.014
155	1.123	280	1.107	40	1.015
165	1.104	285	1.114	45	1.015
170	1.093	290	1.120	50	1.016
175	1.078	295	1.126	55	1.018
180	1.063	300	1.130	60	1.022
185	1.048	305	1.133	65	1.026
190	1.031	310	1.135	70	1.040
195	1.017	315	1.135		

Table 8. $MnCl_2 \cdot 4H_2O$ BC plane isentropic rotations (C = 55^0)

θ	T(0K)	. θ	I(OK)	θ	T(OK)
		8/21/67,	6690 Gauss		
65	0.899	185	0.987	305	1.038
70	0.909	190	0.971	310	1.045
75	0.919	195	0.954	315	1.057
80	0.933	200	0.939	320	1.052
85	0.948	205	0.924	325	1.052
90	0.963	210	0.910	330	1.050
95	0.977	215	0.897	335	1.046
100	0.991	220	0.886	340	1.041
105	1.005	225	0.878	345	1.033
110	1.017	230	0.873	350	1.022
115	1.028	235	0.872	355	1.011
120	1.038	240	0.876	360	0.999
125	1.047	245	0.882	5	0.984
130	1.053	250	0.891	10	0.968
135	1.057	255	0.904	15	0.952
140	1.058	260	0.919	20	0.936
145	1.058	265	0.934	25	0.921
150	1.056	270	0.950	30	0.905
155	1.052	275	0.966	35	0.892
160	1.045	280	0.981	40	0.882
165	1.037	285	0.994	45	0.874
170	1.027	290	1.007	50	0.869
175	1.015	295	1.020	55	0.868
180	1.001	300	1.029	60	0.870

Table 8. (Cont.)

θ	T(0K)	θ	T(OK)	θ	T(OK)
		8/21/67,	9970 Gauss		
55	0.858	180	0.973	305	1.050
65	0.858	185	0.943	310	1.063
65	0.857	190	0.912	315	1.072
70	0.857	195	0.883	320	1.076
7 5	0.856	200	0.865	325	1.077
80	0.854	205	0.858	330	1.075
85	0.852	210	0.857	335	1.068
90	0.864	215	0.858	340	1.058
95	0.899	220	0.859	345	1.044
100	0.933	225	0.860	350	1.025
105	0.959	230	0.860	355	1.005
110	0.986	235	0.861	360	0.981
115	1.009	240	0.861	5	0.953
120	1.029	245	0.861	10	0.926
125	1.045	250	0.860	15	0.899
130	1.058	255	0.859	20	0.878
135	1.067	260	0.857	25	0.872
140	1.072	265	0.853	30	0.871
145	1.073	270	0.870	35	0.872
150	1.070	275	0.904	40	0.873
155	1.063	280	0.937	45	0.875
160	1.052	285	0.965	50	0.878
165	1.037	290	0.992	55	0.879
170	1.019	295	1.014		
175	0.997	300	1.034		

!

Table 9. MnCl₂·4H₂O C-axis isentropic magnetizations

$\mathbf{I}(\mathbf{o}_{\mathbf{K}})$	${ t H}({ t Gauss})$	$T(_{0}K)$	${ t H}({ t Gauss})$	$\mathbf{I}(0^{\mathbf{K}})$	${ t H}({ t Gauss})$
		8/	21/67		
0.875	6640	0.839	7690	0.847	8430
0.867	6780	0.839	7740	0.848	8480
0.862	6860	0.839	7800	0.848	8520
0.858	6940	0.839	7860	0.849	8570
0.856	7010	0.840	7920	0.849	8660
0.852	7090	0.841	7970	0.849	8740
0.850	7160	0.842	8030	0.850	8830
0.847	7230	0.843	8080	0.850	8910
0.843	7300	0.843	8130	0.851	9000
0.841	7370	0.844	8190	0.851	9080
0.841	7430	0.845	8240	0.851	9160
0.840	7500	0.845	8290	0.852	9240
0.840	7560	0.846	8340	0.854	9620
0.839	7620	0.845	8390	0.855	9970
		3/	1/68		
1.007	6410	0.965	8080	0.963	9160
0.991	6780	0.964	8290	0.963	9400
0.980	7090	0.963	8480	0.965	9620
0.972	737 0	0.962	8660	0.965	9760
0.969	7620	0.962	8830	0.967	9970
0.967	7860	0.963	9000		
		3/	1/68		
1.123	4910	1.011	7620	1.003	9000
1.101	5410	1.007	7860	1.003	9160
1.078	5970	1.005	8080	1.003	9400
1.056	6410	1.004	8290	1.003	9620
1.039	6780	1.003	8480	1.003	9760
1.025	7090	1.003	8660	1.003	9890
1.014	7370	1.003	8830		
		3/	1/68		
1.171	4980	1.049	7620	1.039	9000
1.154	5410	1.045	7860	1.039	9160
1.126	5970	1.043	8080	1.039	9400
1.106	6410	1.041	8290	1.039	9620
1.086	6780	1.040	8480	1.039	9760
1.068	7090	1.040	8660	1.038	9970
1.056	7370	1.039	8830		

Table 9. (Cont.)

T(OK)	H(Gauss)	T(OK)	H(Gauss)	T(OK)	H(Gauss)
		2/	20/68		
1.129	9970	1.131	8570	1.157	7230
1.129	9620	1.131	8380	1.169	6940
1.130	9240	1.132	8190	1.185	6600
1.130	9080	1.134	7970	1.201	6200
1.130	8910	1.137	7740	1.220	5700
1.130	8740	1.144	7500	1.232	532 0
		3/	2/68		
1.235	5080	1.113	7740	1.106	9080
1.207	5700	1.110	7970	1.106	9240
1.186	6200	1.107	8190	1.106	9480
1.167	6600	1.106	8380	1.106	9690
1.149	6940	1.106	8570	1.106	9970
1.134	7230	1.106	8740		
1.121	7 500	1.106	8910		
		2/	20/68		
1.218	5700	1.134	7740	1.130	8910
1.199	6200	1.132	7970	1.130	9080
1.182	6600	1.130	8190	1.130	9240
1.166	6940	1.130	8380	1.129	9620
1.152	7230	1.129	8570	1.129	9970
1.142	7500	1.130	8740		
		2/	20/68		
1.164	9400	1.165	8380	1.213	6940
1.164	9240	1.166	8190	1.228	6600
1.164	9080	1.169	7970	1.246	6200
1.165	8910	1.174	7740	1.266	5700
1.165	8740	1.184	7500	1.282	5320
1.165	8570	1.198	7230		
		2/	20/68		
1.336	5250	1.231	7500	1.203	8910
1.320	5700	1.219	7740	1.203	9080
1.298	6200	1.207	8190	1.202	9240
1.278	6600	1.205	8380	1.201	9620
1.262	6940	1.204	8570	1.199	9970
1.246	7230	1.204	8740		

ţ

Table 9. (Cont.)

T(oK)	${ t H}({ t Gauss})$	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$	$\mathtt{I}(0\mathtt{K})$	${\tt H(Gauss)}$
		2/	20/68		
1.392	57 00	1.285	7740	1.260	8910
1.372	6200	1.273	7970	1.261	9080
1.347	6600	1.266	81 90	1.262	9240
1.328	6940	1.262	8380	1.266	9620
1.312	7230	1.261	8570	1.274	9970
1.298	7500	1.260	8740		
		2/	20/68		
1.293	9400	1.278	8380	1.335	6940
1.289	9240	1.279	8190	1.353	6600
1.286	9080	1.283	7970	1.371	6 2 00
1.283	8910	1.293	7740	1.393	5700
1.280	8740	1.304	7500	1.417	5080
1.279	8570	1.317	7230		
		2/	20/68		
1.449	5410	1.402	7500	1.426	8740
1.435	5700	1.404	7740	1.433	8910
1.418	6200	1.407	7970	1.439	9080
1.406	6600	1.411	8190	1.445	9240
1.402	6940	1.416	8380	1.465	9620
1.402	7230	1.421	8570	1.486	9970

Table 10. $\mathrm{MnCl_2} \cdot 4\mathrm{H_2O}$ specific heat maxima (H // C-axis)

T(OK)	H(Gauss)
2/2	0/68
1.458	5410
3/1	/68
1.210	9970
3/2	/68
1.220	9320
1.225	8480
1.238	7980
1.303	7230

Table 11a. $CoBr_2 \cdot 6H_2O$ BC plane isentropic rotations (C = 60°)

Θ	T(OK)	θ	T(OK)	Θ	T(0K)
		1/22/68,	6410 Gauss		
90	1.281	220	1.214	350	1.307
100	1.301	230	1.197	0	1.291
110	1.311	240	1.198	10	1.275
120	1.317	250	1.231	20	1.256
130	1.320	260	1.262	30	1.238
140	1.317	270	1.288	40	1.216
150	1.313	280	1.304	50	1.196
160	1.305	290	1.318	60	1.195
170	1.294	300	1.326	70	1.224
180	1.280	310	1.327	80	1.258
190	1.266	32 0	1.327	90	1.287
200	1.250	330	1.325		
210	1.233	340	1.318		
		1/22/68,	8830 Gauss		
350	1.373	230	1.230	110	1.320
340	1.375	220	1.259	100	1.300
33 0	1.372	210	1.294	90	1.275
32 0	1.365	200	1.319	80	1.251
310	1.352	190	1.340	70	1.224
3 00	1.337	180	1.353	60	1.223
290	1.318	170	1.362	50	1.234
280	1.295	160	1.367	40	1.266
270	1.270	150	1.366	30	1.297
260	1.246	140	1.360	20	1.321
250	1.221	130	1.351	10	1.344
24 0	1.219	120	1.338	o	1.358

Table 11b. $CoBr_2 \cdot 6H_2O$ AC plane isentropic rotations (C = 22^0)

θ	$\mathtt{T}(0_{K})$	θ	$\mathbf{T}(0\mathbf{K})$	θ	T(0K)
		1/17/16,	6410 Gauss		
210	1.259	330	1.304	90	1.359
220	1.274	340	1.285	100	1.365
230	1.292	350	1.266	110	1.365
240	1.310	0	1.253	120	1.358
250	1.329	10	1.246	130	1.344
260	1.344	20	1.247	140	1.324
270	1.355	30	1.254	150	1.303
280	1.362	40	1.268	160	1.281
290	1.363	50	1.285	170	1.263
300	1.357	60	1.307	180	1.250
310	1.344	70	1.327	190	1.242
32 0	1.325	80	1.345	200	1.242
		1/17/68,	8830 Gauss		
70	1.314	200	1.296	330	1.310
80	1.351	210	1.293	340	1.271
90	1.382	220	1.281	350	1.239
100	1.401	230	1.234	360	1.276
110	1.405	240	1.271	10	1.294
120	1.396	250	1.312	20	1.296
130	1.374	260	1.350	30	1.294
140	1.341	270	1.381	40	1.282
150	1.305	280	1.399	50	1.235
160	1.264	290	1.405	60	1.272
170	1.233	300	1.397	70	1.313
180	1.281	310	1.378		
190	1.293	320	1.347		

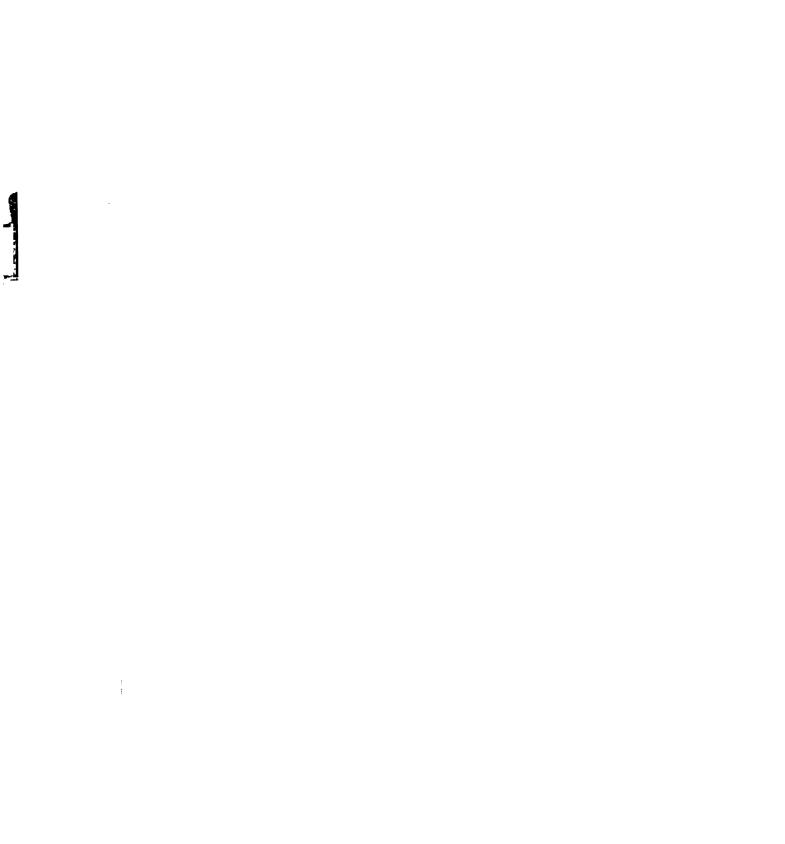


Table 12. CoBr₂·6H₂O C-axis isentropic magnetizations.

T(OK)	${\tt H}({\tt Gauss})$	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$
		1/	22/68		
1.254	6410	1.249	8080	1.288	9160
1.243	6780	1.268	8290	1.288	9320
1.238	7090	1.279	8480	1.291	9620
1.232	7 370	1.285	8660	1.296	9970
1.231	7620	1.285	8830		
1.233	7860	1.288	9000		
		1/	22/68		
1.258	4910	1.210	7500	1.285	9080
1.255	5080	1.209	7620	1.288	9240
1.249	5410	1.208	7860	1.289	9400
1.245	5700	1.228	8080	1.293	9550
1.236	6200	1.265	8380	1.293	9620
1.222	6780	1.273	8570	1.295	9760
1.216	7090	1.278	8740	1.297	9890
1.211	7370	1.282	8910	1.298	9970
		1/	17/68		
1.291	6410	1.269	7860	1.327	8830
1.280	6780	1.302	8080	1.328	9000
1.273	7090	1.309	8290	1.328	9160
1.267	7370	1.324	8480	1.334	9620
1.265	7620	1.325	8660	1.333	9720
		1/	22/68		
1.864	5080	1.793	7090	1.798	8660
1.852	5410	1.783	7370	1.802	8830
1.843	5700	1.773	7690	1.806	9240
1.832	5970	1.768	7860	1.809	9620
1.826	6200	1.765	8080	1.811	9970
1.818	6410	1.771	8290		
1.804	6810	1.788	8480		
		1/	22/68		
2.549	5080	2.492	7500	2.464	8740
2.537	5700	2.486	7740	2.465	8910
2.526	6200	2.480	7970	2.470	9080
2.516	6600	2.475	81 90	2.474	9240
2.506	6940	2.469	8380	2.476	9620
2.499	7230	2.466	8570	2.477	9970
		1/	24/68		
2.267	5080	2.205	7500	2.193	8740
2.254	5700	2.199	7740	2.201	8910
2.240	6200	2.194	7970	2.204	9080
2.230	6600	2.188	8190	2.206	9240
2.221	6940	2.184	8380	2.208	9620
2.213	7230	2.183	8570	2.209	9970

Table 12. (Cont.)

$T(_0K)$	${ t H}({ t Gauss})$	$T(_{0}K)$	${ t H}({ t Gauss})$	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$
		1/	24/68		
3.107	5350	3. 055	7860	3.022	9240
3.087	5970	3.047	8190	3.012	9620
3.082	6600	3.040	8480	3.004	9970
3.071	7090	3.034	8740	3.004	9970
3.062	7500	3.027	9000		
		1/	26/68		
2.636	1680	2.559	6940	2.522	8660
2.631	2260	2.555	7090	2.520	8740
2.628	2710	2.552	7230	2.518	8830
2.623	3360	2.549	7370	2.518	8910
2.615	3860	2.548	7500	2.518	9000
2.608	4310	2.545	7620	2.522	9080
2.602	4720	2.542	7740	2.524	9160
2.595	5080	2.539	7860	2.525	9240
2.590	5410	2.538	7970	2.525	9320
2.584	5700	2.534	8080	2.526	9480
2.579	5970	2.532	8190	2.526	9620
2.574	6200	2.530	8290	2.526	9760
2.570	6410	2.527	8380	2.527	9970
2.567	6600	2.525	8480		
2.563	6780	2.523	8570		

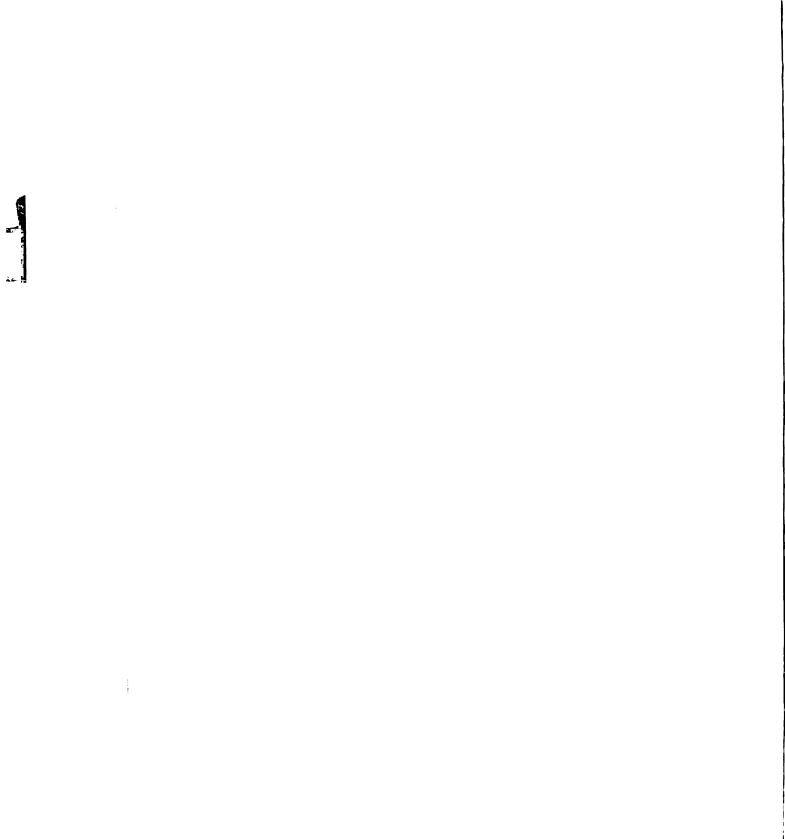


Table 13. $CoBr_2 \cdot 6H_2O$ antiferromagnetic-spin flop boundary points (H // C-axis).

T(0 K)	${ t H}({ t Gauss})$	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$
	1/1	7/68	
L.180	7670	1.906	8150
1.211	7680	1.962	8200
L.270	7690	2.030	8270
L.331	7740	2.098	8320
L.417	7790	2.224	8470
L.506	7830	2.337	8590
L.564	7870	2.506	8790
L.651	7930	2.739	9070
.755	8010		
	1/2	2/68	
L.260	7860	1.850	8180
1.296	7890	1.970	8290
L. 3 51	7900	2.062	8380
L.425	7940	2.195	8530
L.485	7970	2.383	8740
L.5 3 9	8000	2.485	8870
L.610	8040	2.607	9030
L. 7 05	8050	2.730	9240
L.777	8100	2.771	9260

Table 14. Specific heat maxima (H // C-axis, $CoBr_2 \cdot 6H_2 O$)

H(Ga	uss)	T(OK)
	1/24/68	
2.	981	8380
	030	7090
	087	5350
	1/26/68	
2.	938	9970
	989	8290
	109	4310
	125	3090
3.	143	1970
3.	152	0
	1/27/68	
2.	941	9100
	923	9420
2.	930	9550
	916	9360

Table 15. FeCl₂·4H₂O isentropic rotations

θ	T(0K)	θ	T(OK)	θ	T(0K)
		4/25/68,	AB Plane, B	= 220	
330	1.078	210	0.973	90	1.097
32 0	1.092	200	0.968	80	1.096
31 0	1.085	190	0.977	70	1.078
300	1.039	180	0.995	60	1.051
290	0.989	170	1.023	50	1.021
280	1.061	160	1.054	40	0.997
270	1.095	150	1.083	30	0.983
260	1.090	140	1.097	20	0.979
250	1.072	130	1.088	10	0.988
240	1.045	120	1.043	0	1.008
230	1.014	110	0.996	350	1.036
220	0.991	100	1.061	3 40	1.066
		5/1/68, H	BC Plane, B =	20	
70	1.045	190	1.022	310	0.990
80	1.096	200	1.013	320	0.991
90	1.130	210	1.002	330	1.004
100	1.109	220	0.991	340	1.020
110	1.055	230	0.991	350	1.030
120	1.006	240	1.013	3 60	1.036
130	0.982	250	1.056	10	1.034
140	0.982	260	1.106	20	1.024
150	0.995	270	1.138	30	1.011
160	1.011	280	1.117	40	0.998
170	1.020	290	1.065	50	0.995
180	1.025	300	1.016	60	1.015

Table 16. FeCl₂·4H₂O B-axis isentropic magnetizations.

167

$T(_{0}K)$	${\tt H(Gauss)}$	$\mathbf{I}(0\mathbf{K})$	${ t H}({ t Gauss})$	$\mathbf{I}(0^{\mathbf{K}})$	H(Gauss
		5/	2/68		
0.693	6600	0.678	8190	0.679	9240
0.686	6940	0.678	8380	0.680	9400
0.680	7230	0.678	8570	0.684	9620
0.679	7500	0.679	8740	0.692	9820
0.679	7740	0.679	8910		
0.678	7970	0.679	9080		
		5/	1/68		
0.991	1910	0.683	6940	0.677	8570
0.955	3360	0.679	7230	0.677	8740
0.919	4310	0.678	7500	0.678	8910
0.878	5080	0.677	7740	0.679	9080
0.740	5700	0.677	797 0	0.681	9240
0.709	6200	0.677	8190		
0.692	6600	0.677	8380		
		4/	26/68		
1.111	1560	0.912	6940	0.918	8740
1.102	1910	0.906	7230	0.925	8910
1.056	3360	0.903	7 500	0.934	9080
1.014	431 0	0.901	7740	0.943	9240
0.977	5080	0.902	7970	0.953	9400
0.952	5700	0.904	8190	0.970	9620
0.933	6200	0.907	8380	0.988	9820
0.920	6600	0.912	8570	1.008	10060
		4/	25/68		
1.030	2820	0.780	7500	0.826	9080
0.956	431 0	0.776	7740	0.839	9240
0.901	5080	0.779	7970	0.853	9400
0.863	5700	0.782	8190	0.876	9620
0.833	6200	0.792	8380	0.900	9820
0.812	6600	0,798	8570	0.925	10060
0.795	6940	0.806	8740		
0.786	7230	0.815	8910		
		4/	25/68		
1.189	3040	1.102	7230	1.173	8910
1.169	3710	1.107	7500	1.185	9080
1.148	4310	1.113	7740	1.197	9240
1.126	5080	1.121	7970	1.208	9400
1.113	5700	1.130	8190	1.228	9620
1.104	6200	1.140	8380	1.248	9820
1.100	6600	1.150	8570	1.267	10060
1.100	6940	1.161	8740		

Table 17. Specific heat maxima (H // B-axis, FeCl₂·4H₂O)

T(0K)	H(Gauss)
4/	26/68
1.121	0
1.056	2820
1.055	2820
1.020	3860
4/	29/68
0.972	4310
0.941	4640
0.912	4830
5/	1/68
0.769	8070
5/	2/68
0.752	9570
0.766	10010
0.755	8760
0.748	9230
0.740	9820
0.761	7500
0.759	6620
0.759	5990
0.755	10000
0.759	9240
0.756	10060
5/	6/68
0.762	9620
0.756	9000
0.765	8080
0.756	8740
0.758	7 500
0.759	6600
0.760	5970
0.763	5970
0.765	5500

Table 18. $MnBr_2 \cdot 4H_2O$ C-axis isentropic magnetizations.

T(0K)	H(Gauss)	T(OK)	H(gauss)	T(OK)	H(Gauss)
		3/	6/68		
1.022	1620	0.952	6600	0.913	8570
1.018	2030	0.945	6940	0.909	8740
1.015	2540	0.938	7230	0.905	8910
1.006	336 0	0.933	7500	0.902	9080
0.990	4310	0.929	7740	0.899	9240
0.978	5080	0.924	7970	0.895	9480
0.966	5700	0.920	8190	0.892	9690
0.958	6200	0.916	8380	0.888	9970
		3/	6/68		
0.907	9810	0.952	8570	1.030	6600
0.910	9690	0.959	8380	1.045	6200
0.915	9550	0.967	8190	1.062	5700
0.920	9400	0.976	7970	1.079	5080
0.926	9240	0.985	7740	1.109	4090
0.932	9080	0.995	7500	1.149	1210
0.938	8910	1.005	723 0		
0.945	8740	1.017	6940		
		3/	6/68		
1.185	1850	1.025	7230	0.946	9080
1.174	2660	1.014	7500	0.939	9240
1.165	3200	1.003	7740	0.934	9400
1.135	4310	0.994	7970	0.928	9550
1.108	5080	0.984	8190	0.922	9690
1.087	5700	0.975	8380	0.918	9820
1.068	6200	0.968	8570	0.913	9970
1.052	6600	0.960	8740		
1.037	6940	0.953	8910		
		3/	6/68		
0.914	9970	0.964	8740	1.044	6940
0.919	9820	0.972	8570	1.058	6600
0.924	9690	0.980	8380	1.075	6200
0.930	9550	0.990	8190	1.093	5700
0.936	9400	0.999	7970	1.111	5150
0.942	9240	1.009	7740	1.145	4180
0.949	9080	1.020	7500	1.190	1910
0.956	8910	1.031	7230		

Table 18. (Cont.)

T(OK)	H(Gauss)	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$	$T(_{0}K)$	${ t H}({ t Gauss})$
		3/	6/68		
1.249	1910	1.073	7230	0.979	9080
1.236	2710	1.059	7500	0.972	9240
1.225	3260	1.048	7740	0.964	9400
1.192	4310	1.037	7970	0.957	9550
1.166	5080	1.026	8190	0.950	9690
1.141	5700	1.014	8380	0.944	9820
1.120	6200	1.006	8570	0.937	9970
1.104	6600	0.996	8740		55.5
1.088	6940	0.988	8910		
		3/	6/68		
0.938	9970	1.000	8740	1.091	6940
0.945	9820	1.010	8570	1.107	6600
0.952	9690	1.020	8380	1.124	6200
0.959	9550	1.030	8190	1.145	5 7 00
0.966	9400	1.041	7970	1.165	5080
0.974	9240	1.052	7740	1.199	4220
0.982	9080	1.063	7500	1.248	1970
0.991	8910	1.077	7230		1970
		3/	6/68		
1.342	1850	1.151	7230	1.042	9080
1.329	2660	1.138	7500	1.033	9240
1.319	3100	1.124	7740	1.024	9400
1.282	4310	1.110	7970	1.014	9550
1.252	5080	1.098	8190	1.005	9690
1.226	5700	1.085	8380	0.996	9820
1.204	6200	1.074	8570	0.988	9970
1.185	6600	1.064	8740		
1.167	6940	1.053	8910		
		3/	6/68		
0.990	9970	1.066	8740	1.169	6940
0.998	9820	1.078	8570	1.186	6600
1.006	9690	1.088	8380	1.205	6200
1.015	9550	1.100	8190	1.226	5700
1.026	9400	1.112	7970	1.248	5080
1.035	9240	1.125	7740	1.285	4180
1.045	9080	1.140	7500	1.334	1910
1.055	8910	1.154	7230		

Table 18. (Cont.)

T(0K)	${ t H}({ t Gauss})$	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$	$\mathbf{I}(0\mathbf{K})$	${\tt H}({\tt Gauss})$
		3/	6/68		
1.511	1850	1.308	7230	1.189	9080
1.499	2660	1.292	7500	1.177	9240
1.442	4310	1.280	7740	1.167	9400
1.409	5080	1.264	8190	1.155	9550
1.384	5700	1.238	8380	1.144	9690
1.363	6200	1.226	8570	1.134	9820
1.344	6600	1.212	8740	1.123	9970
1.325	6940	1.201	8910		
		3/	6/68		
1.298	9890	1.377	8740	1.485	6940
1.302	9820	1.390	8570	1.501	6600
1.312	9690	1.401	8380	1.519	6200
1.323	9550	1.414	8190	1.541	5700
1.334	9400	1.427	7970	1.565	5080
1.344	9240	1.440	7740	1.603	4040
1.355	9080	1.453	7500	1.650	1850
1.366	8910	1.468	7230		
		3/	6/68		
1.974	1850	1.795	7230	1.679	9080
1.963	2710	1.781	7500	1.668	9240
1.953	3100	1.768	7740	1.656	9400
1.921	4310	1.755	7970	1.645	9550
1.891	5080	1.740	8190	1.633	9690
1.868	5700	1.728	8380	1.622	9820
1.846	6200	1.715	8570	1.607	9970
1.829	6600	1.704	8740		
1.802	7090	1.691	8910		

Table 19. Cs₂MnBr₄·2H₂O Isentropic magnetizations

T(0 K)	H(Gauss)	$\mathbf{T}(0\mathbf{K})$	${ t H}({ t Gauss})$	$\mathtt{I}(0\mathtt{K})$	${ t H}({ t Gauss})$
		3/	20/68, н //	[ĪĪĪ]	
1.026	9600	1.041	8570	1.052	7230
1.030	9400	1.043	8380	1.053	6940
1.032	9240	1.045	8190	1.055	6600
1.035	9080	1.047	7970	1.055	6200
1.037	8910	1.049	7740	1.057	5700
1.039	8740	1.050	7 500	1.060	5080
		3/2	1/68, н // [ī ī ī]	
2.210	9120	2.208	9240	2.284	7500
2.204	9240	2.216	9080	2.293	7230
2.197	9400	2.225	8910	2.304	6940
2.185	9620	2.232	8740	2.313	6600
2.179	9760	2.241	8570	2.326	6200
2.168	9970	2.250	8380	2.338	5700
2.181	9760	2.258	8190	2.353	5080
2.189	9620	2.267	7970		
2.201	9400	2.275	7740		
		3/	20/68, н 📗 [1 1 1 ₁	
1.031	97 9 0	1.029	8570	1.025	6940
1.031	9620	1.028	8380	1.024	6600
1.030	9400	1.028	8190	1.023	6200
1.030	9240	1.027	7970	1.022	5 7 00
1.030	9080	1.027	77 4 0	1.020	5080
1.029	8910	1.026	7500	1.020	0000
1.029	8740	1.026	723 0		
		3	20 68, н 📗 [I I I]	
1.036	4800	1.041		1.040	9080
					9080 9240
1.038 1.039	5700 6200	1.041 1.045	7970 8190	$1.040 \\ 1.040$	9240 9400
1.039	6600	1.045	8380	1.040	9400 9620
	6940	1.041	8570	1.040	9620 9760
1.040				1.039	9760 9970
1.040	7230	1.041	8740 8010	1.038	9970
1.040	7500	1.040	8910		

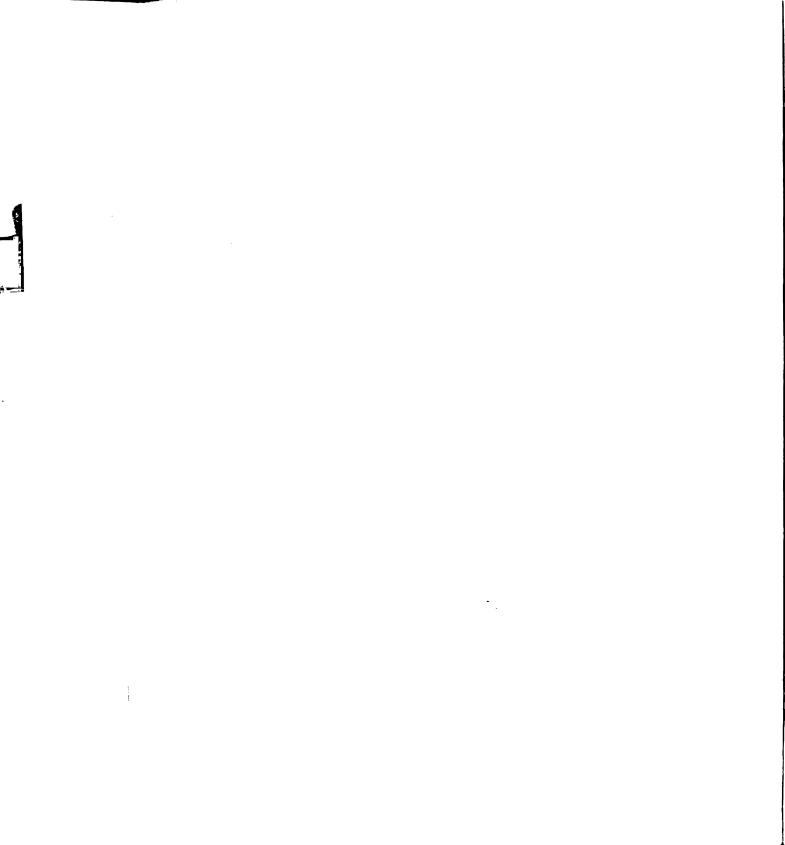


Table 20. $Cs_2MnBr_4 \cdot 2H_2O$ specific heat maxima (H // [$\overline{1}$ $\overline{1}$])

$\mathbf{I}(\mathbf{o}^{\mathbf{K}})$	${ t H}({ t Gauss})$
3/	21/68
2.584	9200
2.542	9920
2.642	8080
2.692	7010
2.751	5420
2.795	3860
2.828	1970
2.834	0000

Table 21. $NiCl_2 \cdot 6H_2O$ AC plane isentropic rotation (A' = 110°)

θ	T(OK)	θ	T(OK)	θ	T(OK)
		4/9	9/68		
80	1.059	200	1.068	320	1.067
90	1.057	210	1.066	330	1.071
100	1.058	220	1.063	340	1.072
110	1.059	230	1.061	350	1.073
120	1.060	240	1.060	360	1.072
130	1.062	250	1.059	10	1.072
140	1.065	260	1.058	20	1.070
150	1.068	270	1.059	30	1.067
160	1.070	280	1.061	40	1.065
170	1.070	290	1.062	50	1.063
180	1.070	300	1.063	60	1.062
190	1.069	31 0	1.065	70	1.061

Table 22. $NiCl_2 \cdot 6H_2O$ A'-axis isentropic magnetizations.

T(0K)	${\tt H(Gauss)}$	$T(_0K)$	H(Gauss)	I(oK)	H(Gauss)
		4	9 68		
1.344	1790	1.345	5410	1.345	8290
1.343	2260	1.344	6200	1.345	8660
1.344	2820	1.344	7090	1.347	9000
1.345	4310	1.344	7370		
		4	11 68		
1.839	5080	1.826	7740	1.827	9080
1.836	5700	1.826	7970	1.827	9240
1.832	6200	1.826	8190	1.826	9400
1.823	6600	1.828	8380	1.825	9620
1.829	6940	1.827	8570	1.824	9760
1.828	7230	1.827	8740	1.824	9970
1.827	7500	1.827	8910		
		4	11 68		
1.846	9970	1.859	8570	1.874	6410
1.848	9820	1.860	8380	1.874	6200
1.850	9620	1.862	8190	1.877	5700
1.852	9400	1.864	7970	1.880	5080
1.854	9240	1.866	7740	1.883	4310
1.854	9080	1.867	7500	1.887	3100
1.856	8910	1.869	7230	1.888	1680
1.858	8740	1.871	6940		
		4	11 68		
1.929	1680	1.904	6940	1.894	8910
1.928	1970	1.903	7230	1.893	9080
1.928	2260	1.901	7500	1.893	9240
1.924	3360	1.899	7740	1.892	9400
1.920	4310	1.899	7970	1.890	9620
1.916	5080	1.897	8190	1.890	9760
1.912	5700	1.896	8380	1.888	9970
1.909	6200	1.895	8570		
1.907	6600	1.894	8740		

Table 22. (cont.)

T(OK)	H(Gauss)	T(0K)	H(Gauss)	T(0K)	H(Gauss)
		4	11 68		
1.972	9970	1.988 8570		2.003	6600
1.974	9820	1.989	8380	2.006	6200
1.977	9620	1.991	8190	2.009	5700
1.979	9400	1.993	7970	2.012	5080
1.981	9240	1.995	7740	2.016	4310
1.982	9080	1.997	7500	2.021	3360
1.985	8910	1.999	7230	2.021	2820
1.986	8740	2.001	6940	2.011	1680
		4	11 68		
2.156	1680	2.134	6940	2.123	8740
2.155	2260	2.132	7230	2.123	8910
2.152	3360	2.130	7500	2.122	9080
2.148	4310	2.129	7740	2.122	9240
2.144	5080	2.127	7970	2.121	9400
2.140	5700	2.126	8190	2.119	9620
2.138	6200	2.125	8380	2.118	9820
2.136	6600	2.124	8570	2.118	9970
		4	18 68		
		•	•		
2.264	7730	2.257	8740	2.252	9620
2.263	7970	2.256	8910	2.250	9820
2.262	8190	2.255	9080	2.249	10060
2.260	8380	2.254	9240		
2.259	8570	2.253	9400		
		4	18 68		
2.268	9760	2.281	8570	2.295	6940
2.270	9620	2.283	8380	2.297	6600
2.272	9400	2.285	8190	2.300	6200
2.274	9240	2.287	7970	2.303	5700
2.276	9080	2.288	7740	2.305	5080
2.277	8910	2.290	7500	2.307	4800
2.279	8740	2.292	7230		

Table 22. (Cont.)

$T(^{0}K)$ $H(Gauss)$		$\mathbf{I}(0^{\mathbf{K}})$	${\tt H(Gauss)}$	$\mathtt{T}(0_{\mathbf{K}})$	H(Gauss)	
		4	11 68			
2.477	9690	2.494	83 80	2.514	6200	
2.479	9550	2.496	8190	2.519	5700	
2.481	9400	2.498	7970	2.522	5080	
2.483	9240	2.501	7740	2.528	4310	
2.485	9080	2.503	7500	2.533	3360	
2.488		2.505		2.535	2820	
2.489	8740	2.508	6940	2.538	1680	
2.492	8570	2.511	6600			
		4	11 68			
3.134	1680	3.118	6600	3.114	8380	
3.134	2260	3.117	6940	3.116	8570	
3.133	2820	3.116	7230	3.116	8740	
3.128	4310	3.116	7500	3.116	8910	
3.124	5080	3.116	7740	3.115	9240	
3.121	5700	3.115	7970	3.112	9620	
3.119	6200	3.115	8190	3.111	9970	

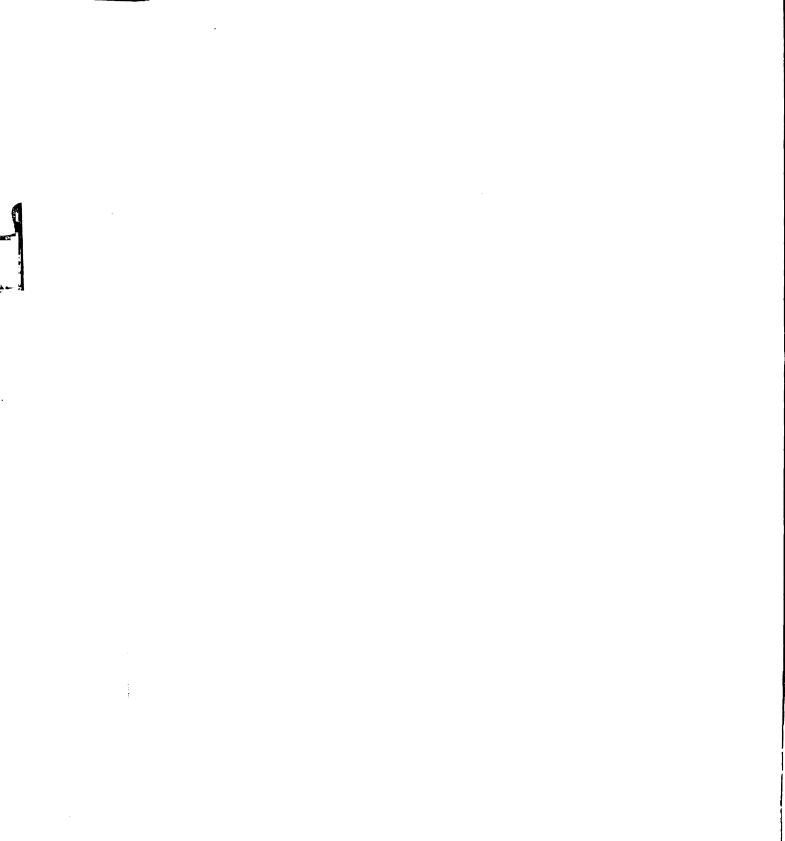


Table 23. $NiCl_2 \cdot 6H_2O$ specific heat maxima (H // A').

T(0K	H(Gauss)	s)
	4/18/68	
5.22	9 4940	
5.24	1 6410	
5.11	2 9840	
5.08	7 8950	
5.08	8 8270	
5.13	9 7550	
5.11	2 7230	
5.14	9 7230	
5.15	9 7150	
5.21	2 6600	
5.21	2 6600	
5.15	1 5120	
5.15	4 5120	
5 .26	3 2880	

				•	
	•				
					·
í					

