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ABSTRACT

THE ORIGINS OF CONNECTEDNESS IM KLEINEN

BY

JOhn Michael McGrew

This thesis is an eXposition of the history of

the background work leading to the Hahn-Mazurkiewicz

Theorem. Examples are exhibited illustrating the various

intermediate concepts and their range of applicability

and possible generalizations. The inter-relationship

among the isolated results is demonstrated.

Chapter II explores the definition of curve given

by Jordan. Jordan's definition was a very general one,

and this is illustrated using the pathological examples

which mathematicians of the late nineteenth and early

twentieth centuries discovered in their efforts to under—

stand the essence of curve.

Chapter III examines the characterization of

curve which Schoenflies gave for subsets of the plane.

A counterexample is also discussed, which Brouwer

attempted to produce, showing that Schoenflies' character-

ization does not carry over directly to spaces of higher

dimension.
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Chapter IV treats the work of Zoretti, Janiszewski,

Nalli, Denjoy and Brouwer on irreducible continua and

the boundaries of simply connected regions. Chapter V

discusses the independent efforts of Hahn and Mazurkiewicz

to characterize Peano spaces. In Chapter VI, Carathéodory's

theory of prime ends is presented. Maria Torhorst's work

showing the equivalence of the characterizations of

Schoenflies, Carathéodory, and Hahn and Mazurkiewicz is

also included.

Chapter VII briefly outlines the results obtained

between 1914 and 1919. A few selected results from 1920

and 1921 are presented, including SierpidSki's "property

S" and Hahn's theorem on the components of Open sets.





THE ORIGINS OF CONNECTEDNESS IM KLEINEN

BY

John Michael McGrew

A DISSERTATION

Submitted to

Nflchigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1976



“'n

093':1th by
Jr“;l I

‘J



©C0pyright by

John Michael McGrew

1976



To Mary Kay,

Kay Lynn, Karen, and Catherine

ii



My fi

Divine Influe

during those

wise lost ho;

also to my ad

invaluable as

for directinc

I ap

"ith Profess

Zero contril:

:ularly in C

1 a1

telly: J.D .

twittee .

I w

Limo, KarEI‘.

aPpreciated

S‘ipport thi

”h: '
“livers

l ty

‘ n

his WOrk ‘



ACKNOWLEDGMENTS

My first debt of gratitude is to an unmistakable

Divine Influence which lifted me up and urged me on

during those many trying moments when I might have other—

'wise lost hope. A special expression of thanks is due

also to my adviser, Professor J.G. Hocking for his

invaluable assistance in the writing of this thesis and

for directing me in my research.

I appreciate, too, the many helpful conversations

with Professors P.H. Doyle and D.G. Wright. Both of

them contributed materially to the exposition, parti—

cularly in Chapter III.

I also wish to thank Professors H.S. Davis, L.M.

Kelly, J.D. Schuur, and I. Sinha for serving on my thesis

committee.

I want my wife, Mary Kay, and my daughters, Kay

Lynn, Karen and Catherine, to know how much I have

appreciated their patience, perseverance, sacrifice and

support throughout my graduate studies at Michigan State

University. Without their c00peration and encouragement

this work would have been a near impossibility.

iii



Chapter

I. Introduc

11. What Is

121. The Work

17' Prelude

The Hahi

‘1' The The

TH- Epilogu.



TABLE OF CONTENTS

Chapter Page

I. Introduction.. ........................... 1

II. What Is a Curve? ............. . ........... 12

III. The WOrk Of Schoenflies. ..... . ........... 57

IV. Prelude to the Hahn-Mazurkiewicz Theorem. 75

V. The Hahn—Mazurkiewicz Theorem............ 102

VI The Theory of Prime Ends ................. 119

VII. Epilogue. O O O O O 00000 O 0 O 0 O O O O O O O O O O ........ 133

Bibliography.... ..... . ........... . ............. 144

iv



Figure

1. Hi1

4' Pea

3- Coo

'fi 1

~.. .100

5 Mod

'3' Bas

Cur

”' Blc

9 o SeII

.0.

P01

ll
s‘.

13.

P0]

14..

089

Pal

I:
.4.

OSQ

OS:

:7.

OS:



Figure

10.

11.

12.

13.

14.

15.

l6.

17.

18.

LIST OF FIGURES

Hilbert's Space-filling Curve ............... .

Peano's Space-filling Curve ..................

Coordinate Functions for Peano's Curve .......

Moore's Space-filling Curve ..................

Modified Peano Curve ..... . ...................

Basic Configuration for Modified Hilbert

Curve.......... ...... .. ...... . ...............

Block of Sixteen.................... ..... ....

Stage Three: Modified Hilbert Curve ......... .

Serpinski's Space-filling Curve ..............

Polya's Triangle-filling Curve: Part I ..... ..

Multiplicity of Points in Polya's Curve......

Polya's Curve: Part II........... .......... ..

Polya's Curve: Part III............. ...... ...

Osgood's Simple Curve of Positive Measure:

Part I.......................................

Osgood's Simple Curve: Part II...... ...... ...

Osgood's Simple Curve: Part III.. ........ ....

Osgood's Simple Closed Curve.................

YOung's Simple Closed Curve: Part I.. ..... ...

Page

16

16

17

18

20

21

24

28

29

31

32

34

42

44

46

47

48



'3. Youn<

fl. Cros

it Home

23. Doyl

5‘30
Jani

I
—
h

L
)
.

- Modi

4b. Gene



Figure Page

19. Young's Simple Closed Curve: Part II ....... .. 49

20. The warsaw Circle.............. ............. . 59

21. Cross-sections of the Brouwer Sphere, B ...... 62

22. Homeomorphism from B to D2.. ............ .. 65

23. Doyle's Example.. ..... .........;.... ...... ... 67

24. Janiszewski's Spiral......... ............... . 85

25. Modified warsaw Circle......... ..... ......... 94

26. Generalized Jordan Curve.... ........... ...... 107

27. The Hahn Sphere ........... . ................ .. 113

28. Cross-section of M*(O,l). ..... .............. 114

29. Example of a Prime End of Third Type ......... 127

30. Example of a Prime End of Fourth Type ..... ... 128

31. Influences on the Origins of Connectedness

imkleinen..... ..... . ...... 142

vi



Writ

:nze comment

very rare, i

:rly novel 0

of novelty i,

752’ vary con.

perience, st;

cf an event ;



CHAPTER I

INTRODUCTION

Writing on the history of science, George Sarton

once commented: "... creations absolutely de novo are

very rare, if they occur at all; most novelties are

only novel combinations of old elements, and the degree

of novelty is thus a matter of interpretation, which

may vary considerably according to the historian's ex—

perience, standpoint, or prejudices. ... the determination

of an event as the 'first' is not a special affirmation

relative to that event, but a general negative pro-

position relative to an undetermined number of unknown

events." [70, p.36] In a similar vein, R.L. Wilder

made the following Observation during his 1952 retirement

address as Vice President and Chairman of Section A of

the American Association for the Advancement of Science:

"A concept doesn't just pop up full grown 'like Venus

from the waves,‘ although it may seem to, to the individual

mathematician who does the conceiving. Usually its

elements are lying in what ... we might ... call the

mathematical culture stream." [S3, p.426]
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It very often happens that several individuals

develop a significant mathematical idea independently

and almost simultaneously, each drawing his inspiration

from the "mathematical culture stream." A very good

illustration of this process is found in the concept of

connectedness im.kleinen. It was the work of many

individuals in widely scattered locations and over a

period of almost a decade, but it came to fruition within

a very short span of time and was produced in a well-

developed form by two men -- Hahn and Mazurkiewicz --

during the years 1913 and 1914. Probably due to a

communication barrier during WOrld war I, they seem not

to have been aware of each other's work until nearly 1920.

In fact, 1920 may be considered as the point where connect-

edness im kleinen came to the awareness of the mathematical

community as a property with promise, for within the next

few years the volume of literature on the subject began

to grow at an amazing rate.

In this thesis we explore the mathematical

background leading up to the Hahn-Mazurkiewicz Theorem.

Along the way, we also exhibit examples illustrating the

various intermediate concepts and their range of appli-

cability and possible generalizations. Through all of

this we demonstrate the inter-relationship among the

isolated concepts.
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In Chapter II we explore the definition of

"curve" given by Jordan. Jordan's definition turned out

to be a very general one indeed, and we illustrate this

using the pathological examples which mathematicians of

the late nineteenth and early twentieth centuries dis-

covered in their efforts to understand the essence of

curve 0

Chapter III examines the characterization of curve

which Schoenflies gave for subsets of the plane. In

this chapter we also discuss a counterexample, which

Brouwer attempted to produce, showing that Schoenflies'

characterization does not carry over directly to spaces

of higher dimension.

Chapter IV treats the work of several mathematicians

-- Zoretti, Janiszewski, Nalli, Denjoy and Brouwer -- all

contemporaries of Hahn and Mazurkiewicz -— who came very

close to defining connectedness im kleinen. Zoretti

and Janiszewski were studying irreducible continua, while

Nalli, Denjoy, and Brouwer were each examining boundaries

of simply connected domains.

Chapter V discusses the efforts of Mazurkiewicz

and Hahn, independently of each other, to characterize

Peano spaces. In Chapter VI we present the theory of

prime ends developed by Carathéodory. Maria Torhorst's

work showing the logical equivalence of the concepts
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involved in the three characterizations of simple closed

curves due to Schoenflies, Carathéodory, and Hahn and

Mazurkiewicz is also included in this chapter.

In Chapter VII we briefly outline the results

obtained between 1914 and 1919 and present a few selected

results from 1920 and 1921, including Sierpinski's

"property S" and Hahn's theorem on the components of

open sets.

There are already in existence many technical

works giving a development of the theory of connected im

kleinen (locally connected) spaces in some detail (see,

for example, Kuratowski [46], R.L. Mbore's Foundations
 

of Point Set Theory, G.T. Whyburn's, Analytic Topology,
  

or R.L. Wilder [82].) Our goal has been to investigate

and clarify only the origins of connectedness im kleinen.

In keeping with this goal, we have not attempted to trace

its development beyond 1921.

Unless otherwise stated all proofs are the

author's own. Though the results of other mathematicians

are cited frequently, the responsibility for the parti-

cular form used here rests solely with the present author.

As a general rule, proofs of such results are not repeated

in the text unless the method used is either of historical

interest or is referred to in our exposition.
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We assume that the reader has a knowledge of set

theory, and we will use the customary symbols for set

operations (e,c,u,n,-). In addition, for any set under

consideration, we use the notation CA to denote the

complement of A, the universe being understood from

context. We also assume as part of the reader's back-

ground a first year course in tOpology equivalent to the

material presented in Dugundji [19], or in Hocking and

YOung [29].

Not all authors agree on definitions and notation.

Therefore, the reader is cautioned to always make sure he

understands which ones are intended. With this in mind,

we make the following clarification. As used throughout

this thesis, a neighborhood of a point p in a tOpological
 

space X is any open subset of X which contains p.

The ball neighborhood centered at p with radius r is

denoted N(p,r). Another very prevalent definition of

neighborhood, used, for example, by Kuratowski (see [45,

p.61]), is this one: a neighborhood of p6 X is any

subset N c:X with p in the interior of N. Note that

N itself need not be Open. As we shall see, this slight

variation in the definition of neighborhood makes a

significant difference in another definition.
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We turn our attention now to the central concept

of the thesis -- connectedness im kleinen. A t0pologica1

space is connected im kleinen at the point x 6 X if,
 

for every neighborhood U of x, there is a neighborhood

V of x contained in U such that for every point p

of V there is a connected subset C of U’ with p

and x contained in C. X is said to be connected im
 

kleinen if it is connected im kleinen at each of its

points.

A set may be connected im kleinen at some of its

points and not connected im kleinen at others. The

t0pologist's sine wave, for example, is not connected im

kleinen at any of its points along the y—axis.

  

This example illustrates that a set may be connected but

not connected im kleinen. By the same tdken, a set may

be connected im kleinen without.being connected, as is

shown by considering any discrete space.
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Perhaps a little more surprising are the properties

of the next two examples. Let T be the set of rational

numbers between 0 and Zn. For each 6 6 T, let re

be the radius of the unit circle forming an angle of 9

with the positive x-axis. Let R = L) re. Then R is

BET

connected im kleinen at the origin but at no other point.

 

 
 

0n the other hand, a set may be connected im

kleinen at every point except one. Such a set can be

constructed by taking the union of the origin on the

real line with the points of the sequence {1/n}:=1. With

the relative topology inherited from the real line, this

set is connected im kleinen at every point except the origin.

As we shall point out again later, the concept

of connectedness im kleinen was originally developed to

characterize "continuous curve" -- that is, any point set

which can be expressed as a continuous image of the closed

unit interval. This characterization is embodied in

what is now called the Hahn—Mazurkiewicz Theorem, namely:
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A point set is a continuous curve iff it is compact,

connected, connected im kleinen and metrizable (see

Chapter V).

Since the term "connectedness im kleinen" has all

but disappeared from the current literature we include

a few words about its more modern counterpart, "local

connectedness." For the sake of comparison, the definition

is given here. X is locally connected at the point x E X
 

if, for every neighborhood U of x, there exists a

connected neighborhood V of x contained in U. X is

said to be locally connected if it is locally connected
 

at each of its points.

The definition of local connectedness can actually

be used for either concept depending on which definition

of neighborhood is intended. ‘With the definition of

neighborhood as used by Kuratowski, local connectedness

is precisely connectedness im kleinen. That is, if X

is connected im.kleinen at x and U is a neighborhood

of x with V the corresponding subneighborhood such

that for each point p E V there exists a connected set

Cp CIU 'with p,x 6 Op, then C = p%h Cp is a connected

neighborhood of x in the sense of Kuratowski. The

reverse implication follows as easily, since, for each

neighborhood U of a point x 6 X, the existence of a

connected subset C of U’ with x in Int(C) implies
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that there is an open neighborhood V C C with x 6 V.

This set C is a connected subset of U containing x

and any point p of V.

If, however, by a neighborhood we mean an Open

set, then the two concepts are not equivalent. The

following set K (based on an example in [29, p.113])

illustrates this distinction:

  

K is connected im kleinen at p, but it is not locally

connected at p. However, as the following theorem

shows, the two definitions are, in a certain sense,

equivalent.
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10

Theorem 1.1. X is locally connected iff it is
 

connected im kleinen.

Proof: See [29, p.114].

That is, if one of the properties holds at

every point of X then the other also holds at every

point of X.

We conclude this chapter with some basic results

from tOpology and analysis which we use implicitly in the

thesis.

Theorem 1.2. (Heine-Borel). Every closed and
 

bounded subset of En is compact. (See [69, p.42]

for a proof of the case n = 1.)

In discussing the Brouwer sphere (Chapter III)

the following fact is assumed:

Theorem 1.3. Let X and Y be subsets of En,
 

and let f:X * Y be a one-to—one continuous function from

X onto Y. If X is compact then f is a homeomorphism.

[26, p.76]

The next result is used in the proof of Theorem
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11

Theorem 1.4. A subset of a compact space is
 

compact iff it is closed. [19, p.224]

The proof of Lemma 4.9 uses the following

immediate consequence Of the definition of a convergent

sequence.

Theorem 1.5. Every sequence of positive real
 

numbers converging to zero has a monotone decreasing

subsequence.
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CHAPTER II

WHAT IS A CURVE?

The mathematicians of ancient Egypt and of

Babylon knew some basic prOperties of the circle. By the

time of Archimedes much was known about the conic

sections and several other classes of curves. Higher

(1)
order curves such as the "witch" of Agnesi the

(2)
"cissoid" of Diocles , and the "folium" of Descartes(3)

came under study long ago. In short, the study of

curves is as Old as mathematics itself. The definition

of “curve" must have seemed Obvious to these early

mathematicians. A curve was defined geometrically as

an intersection of surfaces or as the locus of a moving

point-

With the develOpment of analysis and its

applications to mechanics, a curve came to be considered

either as the graph of a function or as being defined by

means of parametric equations. A continuity condition

 

l) x 2r-tan(e), y = 2r-cosz(e), y(x2+4r2) = 8r3.

2r-sin2(e)-tan(9), or x3 = y2(2r-x).2) x = 2r-sin2(6). Y

3t 3t 3 3
3) X = , y = , X + y = 3xy.

l+t3 3

  

12
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13

was assumed, of course, and usually some differentiability

conditions as well. However, during the final decades

of the nineteenth century the complacent acceptance Of

"curve" was shattered. The discovery of pathological

functions was the cause. One such was described by

Georg Cantor in 1878 [11]. Cantor showed that one can

establish a one-to-one correspondence between the points

of a line and those of a surface. (The basic idea is to

take a decimal number t = 0.ala2a3a4... and map it onto

the point of the square with coordinates (x,y), where

x = 0.a1a3a5... and y = 0.a2a4a6"'.) But Eugen Netto

[62] (in 1879) and others showed that such a correspondence

was necessarily discontinuous. This may have encouraged

Camille JOrdan in his Cours d'analyse of 1887 to give a

very general definition, namely, a curve is a continuous

image of a line segment. It had been shown in 1861 by

K. Weierstrass that there are continuous functions of a

real variable that possess no tangent line at any point.

The examples known at that time were one—dimensional,

and it seems that they caused Jordan little concern.

Only three years after he first published it, however, it

was shown that JOrdan's definition provides some very

strange "curves" indeed.

One of the most unsettling revelations of the time

was the discovery of "space-filling" curves. In 1890.

Guiseppe Peano published a description of two continuous
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functions -- one from the unit interval onto the unit

square and the other, a similar one, from the unit

interval onto the unit cube [66]. Peano's original

construction was purely arithmetic. In fact as will be

readily seen, it was merely a clever modification of

Cantor's one-tO—One correspondence.

In his construction, Peano represented each

number in the interval 01g tug 1 as an infinite series

in powers of 1/3. That is,

a a a

t=—%+—§-+...+—§-+...

3 3 3

where ai e {0,1,2} for each i = 1,2,--°. He then

defined a sequence of Operators, k,k2,k3,..., on the

digits ai, by

7
?

(
D II

o 2 -. a."

1 1

kn . k(kn-la.)
l l

D
) II

Next, to each t, a point of the unit interval, he let

correspond the point (x,y) of the Cartesian plane, where

b b ,b

x=—-3-l—+——§—+...+—2+...

3 3

c c c

y=—3-]'-'+—%'+ooo+—%+ooo

3 3
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15

and the digits bi and ci are given by

a a al+a

_ _ l _ 2 _ 3

a2+a

b3 = k (as), . ,

a +8. +...+a a +3. +...+a

_ 2 4 2n-2 _ l 3 Zn-l ...

bn — k (a2n-1)' Cn — k (a2n)’

Although these representations are not necessarily unique,

Peano demonstrates that the correspondence is nonetheless

well—defined and the coordinates x and y are con-

tinuous functions Of t.

Peano included no geometric illustrations in his

paper, presumably so that no one would think he had

arrived at a false proof through the misinterpretation

of a diagram. One cannot but believe, however, that Peano

was led to the discovery of his curve by studying just

such diagrammatic representations. In any event, his

paper leaves the reader with very little intuitive feeling

for what has happened! It was not until 1897 that even

a set of equations for Peano's curve was published (see

E. Cesaro [15]).

A year after Peano published his results, David

Hilbert [28] provided a someWhat simpler and geometric

example of a space-filling curve. It is Hilbert's

simplification (or some modification of it) which we

most often call the Peano curve.
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we give here a pictorial description of the first

three stages of Hilbert's construction:

  

 
 

  

  
   

r
—
l

          

(a) (b)

Figure l

 

(d

In 1900, Arthur Schoenflies [71] and E.H. Moore

[53] each gave a geometric representation of Peano's

original construction as follows:

 
 

 

 

m N

 

     
  

e) ‘ m)

Figure 2

   
E7 ‘7 ‘7 ‘71

HKAKAKAB

‘QEEBEBH

VHEHBHE

AEHBHBE

VHBEEUB

AEEBHBH

HBHBHBEB

i3!""7“7"5i

  

 

5
8

a
n
s
!

   

 

 E
'
s
!

 

  

7
'

   

 

F
E
E

   

(d



Mc

coordinate

curve (see

factions

of Hilber‘

curve is ;

t=l arr

Figure 4

construct

I

 

 



17

Moore gave a proof of the fact that the

coordinate functions X(t) and Y(t) of the Peano

curve (see Figure 3) are continuous, nowhere differentiable

functions Of t. He also described a simple modification

of Hilbert's curve such that the resulting continuous

curve is a closed curve, that is, such that t = 0 and

t = l are both mapped to the same point of the square.

Figure 4 indicates the first three stages Of this modified

W

N

M

construction.
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Figure 3
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Figure 4

It will be noted that neither Hilbert's curve nor

Peano's curve is a one-to—one image of the unit interval.

In fact each point of the square is the image of one, two,

or four points of the unit interval. If we consider the

unit square as having its lower left-hand corner located

at the origin of a Cartesian coordinate system,then for

Hilbert's curve, all those points in the interior Of the

square whose coordinates are Of the form 4%74%) have

exactly four pre-images in the unit interval; those

points of the interior with only one coordinate (either

one) of the form -%E and those points of the boundary Of

2

the square with both coordinates of that form (with the
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exception of the corner points) have exactly two pre—

images: and those points of the square with neither

coordinate of the form -€E, plus the four corner points

and those boundary point: with only one coordinate of

the form -€E have exactly one pre-image. (Note: for

Peano's cuive, we need only replace 2 by 3 in the above

description.)

Hilbert makes the observation in his paper that

by a suitable change in the partition lines one can

achieve a mapping such that the pre-image of any point

of the square contains at most three points of the unit

interval. Hans Hahn, in his paper entitled fiber die
 

Abbildung einer Strecke auf ein Quadrat, published in

1913 [20], describes such a modification for Peano's

curve (see Figure 5). He was obviously familiar with

Hilbert's curve, and one gets the impression from his

paper that the construction we give here, or a similar

one, was generally known, though Hahn gives no specific

reference to where it might be found, and, as far as can

be determined, such a construction does not appear in

the literature.
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Figure 5

In contrast to the simplicity with which Hahn

carries out the modification for Peano's curve, the

necessary changes in Hilbert's construction must be made

more carefully. We include here a description of how

this can be done. (In Figure 6, the lettering in

parentheses is assumed if the direction of the "horseshoe"

is reversed.)

 

 

 B(C) C (B)

 

A(D) D (A)

  

   
 

Figure 6
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The basic idea is to offset the division lines in

Hilbert's example so that at any stage of the construction

at most three regions of the square meet at any given

point.

By a block of four we shall mean any group of four
 

rectangles which together form a subdivision of one of

the rectangles resulting from the previous stage of

construction. By a block of sixteen we shall mean any

group of sixteen rectangles which together form a sub—

division of one of the rectangles occurring two stages

back in the construction. (Examples: Figure 6 is a

block of four and Figure 7(b) is a block of sixteen.)

 

 

 

 
 

      
 

(a) (b)

Figure 7
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Figure 6 illustrates the basic configuration to

be used throughout our construction. The labeling of

the regions A,B,C, and D given there will be used to

refer to the position of each region in a block of four

relative to the directed "horseshoe" configuration of

the curve. That is, if a E f-1(A), b e f-1(B).

c 6 f_l(C) and d E f-1(D), then a < b < c < d.

We proceed by induction. Let p be a fixed

positive real number less than %.

Stage 1: We divide the square into two equal

parts by constructing a horizontal division line between

the midpoints of the two vertical sides. Within p

units of the midpoint of this division line, we construct

two non—intersecting vertical lines -- one separating

the upper half of the square into two parts and the

other separating the lower half of the square. We now

label the regions A,B,C,D, and construct the horseshoe

as in Figure 6.

Suppose now that the first k - 1 stages have

been completed. Consider any block of four in the

resulting configuration. We divide each of the regions

labeled B and C into two non-empty parts by inserting

a division line in each which meets their common boundary

and is located within p°h units of the midpoint of that

boundary line, where h is the length of the boundary
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line. Now divide region A such that the division line

is parallel to the common boundary between A and D

and located within p-h__ units of the midpoint of the

rs

segment EE’ (see Figure 7(a)), where h__ is the length

rs

of the segment FE; Similarly divide the region D.

These and all other division lines will be constructed

so that in the resulting subdivision of the square, no

four regions will meet in a single point.

We now complete the subdivision by adding eight

more division lines to form a block of sixteen. We

specify how this is done for region A only, the rest

being completed in the same fashion. On the division

line already constructed in region A, erect two more

division lines to form, within A, a block of four.

Each of these two new division lines is to be located

within p-h’ units of the midpoint of the former division

line, where h’ is the length of that division line.

NOW label this new block of sixteen as shown in Figure 7(b)

and form the horseshoe of the previous stage into the

curve shown in Figure 7(b). Figure 8 illustrates

stage 3 of the construction.
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Figure 8

Notice that the success of the Hilbert curve

(and the Peano curve itself) depends on the fact that the

mesh of the subdivisions tends to zero. (In fact the

mesh of any of the subdivisions is precisely the length

of a diagonal of any one of the squares of the subdivision.)

One naturally asks, "Is this true of the construction

presented above?" Yes: This is precisely the reason

for introducing the constant p into the construction.

At the end of the first stage of the construction, the

maximum possible length of the sides of the resulting

rectangles is % + p. (This is actually an attained

upper bound for the lengths of the sides.) At the end

of the second stage, the lengths are all less than
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(2]: + p)2, and at the end of the kth stage the lengths

are all less than (% + p)k, which tends to zero as k

tends to infinity provided p is strictly less than %,

as we have specified.

The announcement of Peano's curve initiated a

line of research which continued sporadically for more

than two decades. The first phase of this research

consists only of a series of elaborations of the examples

of Peano and Hilbert. This phase lasted for nearly

twenty years. Then in 1912 new examples of space—filling

curves began to appear, the first of which is the one

described below due to waclaw SierpiHSki.

Sierpinski [77] takes a slightly different

approach to defining a space—filling curve. He first

proves

Theorem 2.1. There exists a unique f, a

function of the real variable t, which is bounded and

even and satisfies the functional equation:

1

(1) f(t) +f(t+§) =0.

for all real numbers t, and the equation:

(2) 2f(t/2) + f(t + 1/8) = 1,

for 0.3 t.g l.
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The proof of this theorem utilizes the two

auxiliary functions e(t) and T(t), both periodic

of period 1, defined by

r-

e(t) = 1 . ¢(t) = 1/8 + 4t on o‘g t < %

9(t) = —1. T(t) = l/8 - 4t on $.g t < %

a9(t)=-l, 'r(t)=l/8+4t on égt<2

L9(t) = 1 , T(t) = l/8 - 4t on gig t < 1. 
With a little manipulation of equations (1) and

(2), Sierpinski establishes the following facts:

i. f is periodic of period 1:

\

 

ii. 1 l l
i — i f(l/8 4" 4t) on O _ t S Z

l l 1 l

f(t) — <

l l l 3
‘5 + '2 f(l/8 + 4t) on '2' S t S Z

l l 3
\§-§f(l/8+4t) on Z<t$l.

iii. for all real numbers, t,

f(t) = 2“ [l-f(T(t))]-

By successive replacement of t by T(t) in

iii, one obtains

2

<3) f(t) = 3121:; — 9<t>ézemt>> +_B(t)-B(T(:;)-9(T (t))

n ' n(-1)g;e(t)-9(T(t))°---'9§T (t)) - f(wn(t)).
2n+1

+
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Since f is bounded, the last term in the sum on the

right hand side of (3) tends to zero with increasing n,

and therefore the infinite series

(4) _<3_<_tl_ e<t)-9(T(t)> + e(t)-e('r(t))oe(rr2(t))
2 22 23

converges to f(t) for all real numbers t. This

establishes the uniqueness of f as asserted in the

theorem. The existence follows by defining the value

of f(t) to be the value to which the series (4) con—

verges, then demonstrating that all of the conditions

of Theorem 1 are satisfied by this function.

Sierpinski next asserts

Theorem 2.2. The equations
 

x = f(t)

(5) ogtgl
1

Y — f(t - 5)

define a continuous space-filling curve.

(We omit any indication of the proof since it

involves only standard arguments.)

The curve given by (5) is in fact a closed curve.

Figure 9 shows a simple geometric interpretation of

. . I .

Sierpinski's curve.
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G. Polya [67] gives a construction of a curve

filling a right triangle, such that eadh point of the

tziangle has at most three distinct pre-images in the

unit interval. His construction uses the binary

representation of the numbers in the unit interval.

Polya starts with a right triangle whose legs

are of unequal length. (See Figure 10) The vertices

of the triangle are labeled O,M, and E, where M

is the vertex at the right angle, E determines the

longer leg and O the shorter leg. A perpendicular

is then dr0pped from M to the hypotenuse OE. Denote

the base of this perpendicular by P0. MP0 divides

triangle OME into two smaller triangles, MPOE and

MPOO. Label the smaller of these two triangles,

triangles MPOO, ‘with a O, and label the larger

triangle MPOE, ‘with a l. NOte that each of the two

new triangles is similar to triangle OME.

HI

I]
no 
  

IO)

10 ‘ ...
O] 00 '00 on 00)

000     
   

(a) (b) (C)

Figure 10
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From point P0 construct two more perpendiculars,

POP1 and POP’, to ME and M0 repsectively, and

label each of the four new triangles 00 or Ol, 10 or

11, according as it is the smaller or larger subtriangle

of the smaller or larger triangle of the previous sub—

division. This process is continued indefinitely and a

O or 1 added to the binary sequence associated with

each triangle according as it is the smaller or larger

subtriangle created by the introduction of a new

perpendicular. Figure 10 illustrates the first three

stages of this process.

The limit of this construction gives a corres-

pondence between binary sequences and points of the

triangle, which, as Polya shows, gives us a well—defined

continuous surjection from the closed unit interval to

the triangle OME.

It is still not evident that no more than three

points of the unit interval are mapped to the same point

of the triangle. In fact, it is not true that such is

the case for all right triangles with unequal legs.

But Polya demonstrates that if the triangle is chosen so

that, for a = the angle MOE, l/cos2 a is not an algebraic

integer, then the desired condition does indeed hold.

The proof of this fact is very elegant and shows an

interrelationship between geometry and algebraic number
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theory. We will present it in essentially the form in

whidh Polya originally gave it. But first we make one

observation.

Let m(p) denote the maximum number of subtriangles

tO‘WhiCh a point p of the triangle OME can'belong at

any stage of the construction. Figure 11 illustrates

all the possible values m(p) can assume -— namely,

1.2.4.5, and 8.

  
 

 

 

 
 

 

o

m(p) = l

p

M

m(p) = 2

 

 

 

m(p) = 8

Figure 11
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Now let L be the length of the hypotenuse, OE.

we‘will consider only those points of the subdivision

lines which fall on OE and determine their distances

from O.

E

  
   

Figure 12

At the first stage of construction (see Figure 12),

only one such point, q1 (= P0), is introduced. Its

distance from O is

t-cos2 a = zoRl(cos2 o),

where R1(cos2 a) denotes "R1 is a function of cos2 a,"

not "R1 times cos2 a."

In the second and third stages two more such

points, q2 and q3, are introduced along OE, and

their distances are given by

(z-cos2 o.)cos2 o = L-cos4 a = z-R2(cos2 o)

and
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(L-zocos2 0L)cos2 a + locos2 a = z-(2 cos2 a - cos4 a)

L-R3(cos2 a)

respectively.

In this way Polya generates a sequence of

polynomial functions in cos2 a,

22 2

Rl(cos a), R2(cos a),...,Rn(cos o),...,

and a sequence

22 2

£R1(cos a), LR2(c9s a),...,LRn(cos a),...,

representing the distances (as measured from O) corres-

ponding to the points of the subdivisions lying on the

hypotenuse OE.

Because of the similarity to triangle OME of

all of the subtriangles of each subdivision, the same

analysis applies to each of these subtriangles. If there

is a point of the triangle having four pre-images in the

unit interval, then at some stage it must belong to eight

subtriangles and will lie on the common hypotenuse of

two triangles which together form a rectangle containing

all eight of these subtriangles. Let the length of this

diagonal be 3’. Then for some positive integers u

and v,

2 2 a
z’Ru(cos a) + z’RV(cos a) = L ,

that is,

(*) Ru(cosz a) + Rv(cos2 a) — 1 = o.
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Since R and RV are polynomial functions with no

constant terms, (*) can only be satisfied if l/cos2 a

is an algebraic integer. Thus to insure that no point

has four pre-images one could, for example, choose

cos2 a = g. In fact, it suffices for cos2 a to be

any positive fraction < lflyfi which, in reduced form,

does not have 1 as its numerator and '(*) will not be

satisfied.

Figure 13 represents Polya's version of the

geometric picture of the first three approximations to

this space-filling curve.

   

Figure 13

Some other related questions about the nature

of curve also arise out of the work of Cantor and his

successors. One such question is whether or not one can

construct a one-to-one function from the unit interval
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onto the unit square given by parametric equations

x=cp(t) and y=¢(t), ogtgl,

where one of them, say m, is a continuous function of t.

The answer to this question was given in the affirmative

in 1913 by H. Hahn [20].

Hahn's construction involves assigning the values

of m on a sequence of mutually disjoint, nowhere dense,

perfect subsets of the unit interval, and extending this

function to the whole unit interval in a very natural way.

Let P be an arbitrary nowhere dense perfect

subset of the unit interval. Let d denote the comple-

mentary intervals determined by P. Separate the intervals

d into two nonempty sets of intervals (10 and d . Let

1

Po and P1 be arbitrary nowhere dense perfect subsets

of the intervals do and d1, respectively.' Assign

the value m(t) = % for t in P0 and m(t) = g for

t in P1. NOW separate the complementary intervals

determined by PC into two collections of intervals doo

and dol' ‘with the requirement that all those intervals

with endpoints in the set P be among the intervals dol'

Similarly separate the complementary intervals determined

by P1 into two collections of intervals dlo and dll

with the requirement that those intervals with endpoints

in P be among the intervals dlo°
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Hahn thus arrives at the following induction

hypothesis, which we quote in its entirety:

Suppose the intervals d.1 i 1 with
12...

n

n indices 0 and 1 are already defined,

as well as the sets P. . . with n-l

1112...1

n-l

such indices, and this according to the following

rules:

1. Each interval di i i i

l 2"' k-l k

(k.S n) lies in an interval d. i i
11 2... k-l

(with the same first k-l indices).

2. The sets Pi i .
1 2.0.1k

always lie in the interior of the intervals

(k'g n-l)

d. . . and these intervals are separated
1112. 0 .1k

by them into the intervals d and
1112...1k0

d. . . .
1112...1kl

3. Each set P. . . (k‘g n) is
1112"'lk .

perfect, nowhere dense, and no two of these

sets have a point in common.

4. If an interval di i i (k g n)

1 2"’ k

borders on a point of a set P. . . (h g k),

J132'°'3h

then the indices i112...ik coincide with first

k places of one of the two binary expansions of

jl ' j2 jh 1
—‘+_+oo.+—+—T—o‘

2 22 2h 23+1

follows, that there exist only the following

From this it easily

two possibilities for an interval d. . .

1112. 0 .1k
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(k.g n): (a) both of its endpoints belong

to the same set P. . . (h < k): (E)
31.320.th _

one of its endpoints belongs to the set

Pi i
1 2"' k-l

(h S'k). We further assume:

. the other to a set P.
1 3132"'Jh

5. For every k'g n there are only

finitely many intervals d

(B).

. . . of type
1112...1k

Condition 5 deserves further explanation. Its

purpose is to insure that each of the sets Pi i i
12.0.1.1

is disjoint from all the other sets (h'g n).P.. .

J132"'3h

That is, suppose there were, for some k'g n, an

infinite number of intervals d. . . of type (B).
1112"'1k

Consider the collection of endpoints of these intervals

which belong to P . This is an infinite set
iliz. O O .k-l

of points of the unit interval, hence it must'have a

cluster point p (also an element of P. - - ).
1112"°1k-l

But since there are only a finite number of sets

P. . . (h < k-l), this implies that every neighbor—
Jljzooojh '-

hood of p must contain an infinite number of points

of some one of these sets. That is, p is a limit

point of P. . . for some h < k - 1. But

J132‘”3h . '“

P. . . is closed, therefore p is an element of
3132...jh

this set, contradicting the fact that the intersection

of and Pi . . is empty.P. . .

3132...jh 112"'lk-1
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Using the induction hypothesis, Hahn proceeds

to define the sets P. . and the intervals
1112...1n

d . To each t in the set Pi

 

i1120001n1n+1 112...1n

is assigned the value

i i i

1 2 n 1

m(t) = + +ooo+ + o

2 22 2n 2n+1

Notice that the assignment of the subscripted indices to

an interval di i i i is made so that if the

l 2"' n n+1

interval contains points of the set P. . . (h < n),

J132"'3h "

then 11’12""'ln’1n+l c01nc1de With the first n + 1

places of one of the two binary expansions of

j j j

——1—+—3—+...+—-1—}:-+ hl+l°

2 22 2 2

 

That m is continuous is clear from the con-

struction, and it is not difficult to see that m can

be extended in a most natural way to a surjection from

the entire unit interval to itself. This is accomplished

by assigning to each t, not in one of the sets

P for any n, the value
1112...ln

j j j
31 +—_§—+...+_‘£+...

2 2

where, for all k > O, t is in the interval d. . . .
3132"'jk

Although Hahn does not specify a corresponding

definition of ¢(t), a few Observations suffice to

indicate what an apprOpriate choice might be. First,
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note that for each x, 0.3 x‘g 1, w—1(x) is a set

whose cardinality is the cardinality of the continuum.

This is clear if x has a finite binary expansion.

But suppose x is given by the expansion

where the sequence of i 's does not terminate in an

infinite succession of 0's or of 1's.

Hahn has this to say about how one can choose

the intervals di 'di i ,...,di i i ,...-

1 1 2 1 2"' n

We select two intervals dO and call

(0) (1)
them 60 and 50 , and likewise two

intervals d1, which we denote by 5i0)

and oil); we insist that in each of the

(1)(o)
and 50two intervals 50 be contained

points of Po and in each of the two in—

oiO) oil) be contained pointstervals and

of P1° From among the subintervals into

(k1)
which 6. (k

1
1

P. , we consider two intervals d. and two
11 110

l,il = 0,1) is separated by

(kll)

1' which we denote by 6. O ,intervals di 11

l

(klo) (kll) . .
and 6ill and 5111 , respectively; again

we insist that in each of these intervals
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(k1k2)

6. - be contained points of the set P. . .
1 1 1 1

l 2 1 2

Proceeding in this was we arrive at intervals

(klk2'°°kn)

6. - - , such that in each interval
1112...1

(kk...k) (kk...kO)

5. 4 2 . n lie the four intervals 5. 1 2 . n ,

1 1 ...1 1 1 ...1 O

l 2 n l 2 n

5(klkz...knl) 6(klkz...knO) and 6(klkz...knl)

1112...1nO 1112...1n1 1112...1n1

In this way one can set up a correspondence

between the sequences of 0's and 1's, k k ,k ,...,

1' 2'°°° n

(k1) (klkz)

and the sequences of intervals 51 '5i i ,...,

(klkz...k ) 1 1 2

6- - - n ,°--. Each such sequence of intervals
1112...1n

determines a distinct point p which is common to all of

the intervals of the sequence, and furthermore p is an

element of m-l(x). But since the cardinality of sequences

k k2,...,kn,..., is the cardinality of the continuum,1.

the cardinality of m-1(x) is also the cardinality of

the continuum. Thus there exists a one—to-one function

wx from m-l(x) onto the unit interval. We can there-

fore define W to be wx on w-1(x). On the sets

P one can define W to be an appropriate

j1j2’°'jk

analog of the well-known Cantor ternary function. (See,

for example, [69, p.48].)

Another question which was asked at least as

early as 1887 by Jordan is whether or not a Jordan curve

is necessarily a set of measure zero. (By a Jordan
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curve we mean a one-to-one and continuous image of the

unit interval.) Jordan showed that the "area" of a

rectifiable curve is always null, but until 1903 it

was not known whether or not the "exterior area" of an

arbitrary JOrdan curve was necessarily zero.

By the exterior area of a set is meant what we

currently refer to as the (Lebesgue) outer measure of a

set. That is, if one considers an arbitrary covering,

{sala E I], of a plane point set, M, by Open squares,

and if aa is the area of sa, then the outer measure

of M is

inf Z) a ,

QEI a

where this infimum is taken over all possible coverings

of M. by Open squares. (See, for example, [69, p.54].)

We note in passing that it was apparently Peano who

first introduced the notion of exterior area around 1887.

In 1903, W. Osgood [64] and H. Lebesgue [47],

independently gave almost identical examples of a Jordan

curve whose outer measure is positive. The construction

reminds one of the familiar lakes of wada described by

YOneyama [84] in 1917. We give here a description of

Osgood's version of the construction.
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Begin with a square in the plane, one of whose

diagonals (say, through the vertices labeled A and B)

is extended infinitely in either direction. One can

think of the two regions thus created exterior to the

square as being bodies of water -- one of them fresh

water and the other salt water. One then proceeds to

dig canals through the square as indicated in Figure

14, dividing the square into nine equal squares, which

we number for convenience in describing the construction

(again, see Figure 14). Where the fresh water and salt

water canals meet inside the square, erect thin (but

strong) dikes. These dikes are indicated by the bold

lines in Figure 14. It is the dikes which will form

segments of the JOrdan curve under construction.

  

     
  

 

 

   
  

 

  

A

1 2 3

6 5 4

7 8 9

B
        

Figure 14
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Now divide the unit interval into 17 equal

segments. Starting at point A map the segment

0.S t < 1/17 continuously along two consecutive sides

of square 1. The segment 1/17 g t‘g 2/17 is mapped

in the obvious way onto the bold line connecting squares

1 and 2. The segment 2/17 < t < 3/17 is mapped con-

tinuously along two consecutive sides of square 2, and

the segment 3/17 g tig 4/17 is mapped onto the bold

line connecting squares 2 and 3. In general, the segment

(2k-2)/17 < t < (2k-l)/17 is mapped along two sides of

square k, while the segment (2k-1)/17 g t.g 2k/17

is mapped onto the bold line connecting squares k and

k + 1. This completes the first stage of the construction.

The next stage mimics the first stage, using each

of the nine smaller squares in place of the larger square.

The result is pictured in figure 15. This time each of

the segments of the unit interval which were mapped

along the sides of the numbered squares is divided into

17 equal segments, each of length 1/172, and mapped in

an analogous way onto the sides of the new squares and

along the new bold lines introduced at this stage of the

construction.
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Figure 15

This construction is carried on ad infinitum.

The desired JOrdan curve C is then taken to be the union

of all the bold lines of the construction together with

the limit points of this union.

It follows immediately from the construction

that C is indeed a JOrdan curve and that every point

of the square belongs to either the network of canals or

to C. As yet, however, it is not clear that this curve

has the desired prOperty —- namely, that its outer measure

is positive. This property is assured by selecting the

widths of the canals at each stage of the construction as

follows.
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Let 6 be a positive number less than 1. At

the kth stage, choose the width of the canals introduced

 

 

at that stage to be -———£———. The total area remaining
2.32k—1

in the square after these canals are dug is

' k-l e
1 _ {2..—£— + 2.3 . e +...+ 2-3 °-—-~——J

Ak = 32k. 2 3 2.33 2.32k-1

3k

= [1 - {§ +-J% +. .+-%%]]2

3 3

and in the limit Ak tends to

a € .12 e 2

6

Since 1 - 5 > 5. ‘we have that the outer measure of C

2

is greater than g?" which is positive. We note the close

relationship between C and the generalized Cantor set,

which can have arbitrary positive measure less than 1.

Even though C possesses the very unsettling

prOperty of having positive measure, it is still a nowhere

dense subset of the square, and hence cannot be considered

a space—filling curve in any reasonable sense of the word.

But note the similarity with the construction of the Peano

curve. As Schoenflies ([71, p.256]) Observed, if one

maps the "discarded" segments of the unit interval in

Osgood's construction to a diagonal of each of the

subsquares instead of along two sides of those squares,
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the resulting figure is precisely that of the Peano curve

with multiple points pulled apart (see Figure 16).

I —'-'-7 r'_— -. I _'-'-4

I I I j I I

| I I I '

I. ._ .. __ _. .1.J_.__ _. a

Figure 16

Osgood was also able to construct a simple closed

curve having the same property. This is accomplished by

dividing an annulus into an even number of equal sectors

bounded by radii. In one of these sectors is constructed

a quadrilateral (see Figure 17) such that no two of its

vertices lie on the same radius and with one vertex, A,

on one side of the sector and the Opposite vertex, B,

on the other side. The curve C is constructed in this

quadrilateral in a manner analogous to the Jordan curve

described above. The resulting curve is then reflected

about the radius through the point A, and this reflection

process is continued until the entire annulus is traversed.
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Figure 17

Another example of a simple closed curve having

positive measure was given in 1905 by Grace Chisholm

YOung [85]. In this same paper Mrs. YOung points out

some general principles behind the construction of such

curves. First she makes the fOllowing observations:

(1) A simple closed curve is the boundary of

a simply connected region;

(2) If one joins two points of a Jordan curve

by another Jordan curve, a simply connected

region is enclosed.

Her attempt to give a general method is someWhat

misleading so we shall only present her example. The

basic idea is to construct two simply connected sub-

regions of a bounded simply connected region such that

their common boundary has positive measure.
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The procedure Mrs. Young uses is similar to

(in fact, based on) that used by Osgood. Begin with a

square region in the plane. Divide this region into

three subsets (disjoint except for their boundaries) --

X a cross with base on one side of the square, Y1,
l'.

a band of uniform width around the perimeter of the square

(with the exception of that part of the perimeter occupied

by the cross), and 51' the union of four small squares,

one at each corner of the cross (see Figure 18).

 

 

    
X.
  

  
      
 

Figure 18

Figure 19 illustrates the second stage of the

construction. In each of the squares which make up 81'

the construction of the first stage is repeated, the only
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added requirement being that the base of the cross must

lie on the boundary of X (= X1). If we label the four

4 .

new crosses, X(l),x(2),x(3),x(4), then Int(X U L) X(1))

2 2 2 2 1 i=1 2

will be denoted X2. Similarly, if the four new uniform

bands are labeled Yél),Y§2),Yé3),Yé4), then

4 .

Int(Yl U L) Yél)) will be denoted Y2, and the union

i=1

of the sixteen small square regions will be denoted $2.

This construction is carried out ad infinitum. Note

that the widths of the uniform.bands and the widths of

the segments of the crosses can be chosen in such a way

D

that the intersection Si has positive area.

1 1

 

 

 

 

  

 

 

 

         

       
     

 
 

 

    

          

    
 

Figure 19
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Evidently unaware of the earlier papers of Osgood,

Lebesgue and YOung, Sierpinski [78] published an example

in 1913 of a Jordan curve having positive measure.

Sierpinski's curve has the additional prOperty that any

segment of it also has positive measure. (The "dikes"

in Osgood's construction each have measure zero.)

Sierpinski starts with a right isoceles triangle,

T, with vertices A,B, and C, such that the base AC

has length less than 1. The area of the triangle is

denoted by T. It is easy to verify that there is a

unique inscribed rectangle, R, with its shortest side

on AC and having area, B, equal to T2.

Removing R from T leaves the three smaller

triangles, To (containing the vertex A), T1

(containing the vertex B), and T2 (containing the

 

  
 



vertex C)

triangle

rectangle
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vertex C), each of which is similar to triangle T. In

triangle Ti (1 = 0,1,2) is inscribed the unique

2
rectangle Ri (as above) with area Bi, equal to Ti.

 

710 T12

   

T02 T20

  oo ' ‘01 T21 T22

 

This process is repeated indefinitely. In

particular, at the kth stage the configuration consists

of the triangles T .T
oo...oo 00--~01'T00-..02'Too...01'-°-'

T .. . ,T.. . ,T. . . ,...,T ,

1112...1k_10 1112"’lk-11 1112...1k_12 22...20

T22...21,T22...22. Each finite sequence, 11,12....,1k,

consisting of 0'5, 1'3 and 2's, corresponds to one

of the vertices of the triangle T. . . , namely the
1112. 0 01k

common vertex of all the triangles in the sequence

To 0 0 9T- 0 0 9T. . . p.

1112...1k 1112...1k0 1112...1kOO
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Similarly, to each infinite sequence, il,i2....,ik,...,

consisting of 0'3, 1'5 and 2's, there corresponds

the unique point common to all the triangles in the

sequence

Ti IT. 0 ,T. . . ,...,T_ i i’ooo

11121123 112°”k

Thus Sierpinski arrives at a very natural mapping m

from the unit interval to the triangle T by defining

m(t) to be the unique point common to the triangles

T. ,T. . ,T. i i ,...,T ,..., where one of the

11 1112 11 2 3 1112...1k

ternary representations of t is

i i i
l 2 3 k
3 + 2+ 3+OOO+ +....

This function is well-defined since, if there are two

distinct ternary representations of a given point of the

unit interval, the corresponding sequences of triangles

converge to the same point of the triangle T. It is also

one-to-one. That is, two sequences of triangles converge

to the same point of T if and only if one of them

corresponds to the sequence of indices il'i2’°"'ik'

1,0,0,..., while the other corresponds to the sequence

11,12....,ik,0,2,2,..., for some il,i2,...,ik, elements

of the set [0,1,2]. Furthermore, as is easily shown,

m is continuous, and therefore the image of m is a

JOrdan curve.
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If a represents any finite sequence of 0'5,

1'5 and 2's, then it is apparent from the construction

that

Tao = a2

and since

o0 + o1 + Td2 < d

it follows that

- 1 _ - 1 _

Tao < i TC]. and Ta2 < -2- Ta.

Also by construction, the hypotenuse of Tel is the

smaller side of the rectangle Ra whereas the longer

side of Ra forms one of the legs of To It follows,0.

then, that

_ 1 _

Tal < 2 To'

By a simple induction, T i 1 <-%; T and so,

1 2" n 2

- —2 1. -2

R. . . — T. . . <'—- T .

1112...1n 1112...1n 4n

Since there are 3n rectangles removed at the nth stage,

§=23§ < z<§>nez=4ez.
G.

Because the hypotenuse AC was chosen to have length less

than 1, T < i and therefore,. S < T. This proves

that the Jordan curve determined by g) has positive measure.

It follows from the fact that all of the triangles are
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similar and that between any two points of the curve

there is located a triangle To' for some a, that the

segment between any two points of the curve has positive

measure .

The examples of pathological curves given in this

chapter have another property in common —- namely they

each contain connected subsets, which have no tangent lines

at any of their points. One well-known geometrical

example of a tangentless curve was given by Helge von

Koch in 1906 [43]. The von Koch curve is constructed

from a straight line segment by "bumping out" the middle

third of the segment to form a point and then, starting

with each of the four resulting straight line segments,

repeating this process indefinitely.
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Another way to construct this curve is to start

with an isoceles triangle ABC with an obtuse angle at

B of 120°, and remove from it an equilateral triangle

having one vertex at B and one side on the side AC.

This separates triangle ABC into two smaller isoceles

triangles, each similar to triangle ABC. Repeat the same

process with each of the two new triangles and continue

indefinitely. The limit set of the boundary at each

stage of the construction will readily be recognized as

the von Koch curve.

As Konrad Knopp [42] observed in 1917, Osgood

type curves and Peano type curves can also be constructed

using this same principle. For the Osgood curve select

any obtuse triangle ABC, angle ABC being the obtuse

angle, and remove from it obtuse sub-triangles in a

manner similar to the construction of the von Koch curve

such that the sum of the areas of the triangles removed

converges to a value less than the area of triangle ABC.

This is, of course, merely a modification of Sierpinski's

construction which we have already discussed (see page 50).

The Peano curve related to von Koch's curve is precisely

the construction given by Polya (see page 29)-

All of these examples illustrate the generality

of JOrdan's definition of curve. That is, the point

sets which fall under this definition possess some rather
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unexpected properties -- properties not conforming to

our common notion of what a curve should be. It was the

study of examples such as the ones given in this chapter

that set the stage for a precise point set characteriza-

tion of "curve" in the sense of Jordan's definition.

We shall consider this development in Chapter III.
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CHAPTER III

THE WORK OF SCHOENFLIES

One important work by Arthur Schoenflies seems

to form the foundation for the study of curve from a

topological viewpoint during at least the first decade

and a half of the twentieth century. This is the two

part paper which appeared in 1900 and 1908 in Deutsche

Mathematiker Verein, Jahresbericht under the title, Die

Entwicklung der Lehre von den Punktmannigfaltigkeiten

([71] and 775]). These two volumes were an attempt by

Schoenflies to summarize the principal thrust of point

set theory and develOp a general theory of continuous

curves as point sets. His results are done for the case

of planar point sets, and then in Part II comments are

given at the end of each chapter as to how some of these

results might be extended to include higher dimensional

point sets.

Much of the Entwicklung is devoted to discussing
 

"invariants" -- characteristics of a general point set

which are not altered by a continuous transformation of

the set -- under the "wider group" (the continuous

57
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transformations of the plane into itself) and under the

"narrower group" (the homeomorphisms of the plane into

itself). The need to find invariants was prompted, as

Schoenflies explains, by Cantor's discovery of a one-to-

one function from the unit interval to the unit square.

This demonstrated the startling fact that the cardinality

of the line is the same as the cardinality of the plane.

The question thus arose: "What are the essential

differences between the line and the plane?" And so

began the search for invariants.

Among the invariants which Schoenflies discussed

were connectedness (Zusammenhang), limit point (Grenzpunkt),

closed and bounded set (abgeschlossene Menge), and perfect

set. These are all invariant under the wider group. If

one restricts one's attention to the narrower group,

then the following properties are also invariant: closed

curve, order of points on a curve, and region (the famous

invariance of domain first proved in the general case by

Brouwer [6] in 1911).

One important concept Schoenflies described in

this work and then used to give a characterization of

simple closed curves in the plane is that of accessibility.

According to Schoenflies, a point m in the boundary of

a region G is accessible from G if, for every point
 

g E G, there is a path joining m and g and contained
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entirely within G (with the exception of the point m).

m is said to be accessible from all sides with respect

to G if. for each arc a in G with endpoints in

Fr(G), and for each component G’ of G - a which

contains m in its boundary, m is accessible from G’.

The following example illustrates the fact that

a point may be accessible from a region without being

accessible from all sides with respect to that region.

Let T be the "warsaw circle" (situated in the right

half plane as shown in Figure 20), and let m. be the

point (O,-1). Then m is accessible from'both of the

regions of which T is the boundary, but if G' is the

subset of the right half plane indicated in Figure 20.

then m is contained in the boundary of G’ 'but is not

accessible from G’. If p is the point (O,-2), how-

every, then p is accessible from all sides with respect

to both the unbounded region G and the bounded region I.

  

  
 

Figure 20
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As Schoenflies proved, necessary and sufficient

conditions for a closed and bounded subset M of the

plane to be a simple closed curve are (i) that it separate

the plane into exactly two regions, and (ii) that each

point of M. be accessible from all sides with respect

to each of these regions. It was interesting to us to

find that, in the presence of condition (ii), condition

(1) can be weakened considerably. That is, because of

the following result, we can replace (i) by (i’): M

separates the plane into at least two regions.

Proposition 3.1. Condition (ii) implies that M
 

separates the plane into at most two regions.

2399;: Suppose M separates the plane into at

least three regions, R1,R2, and R3. Let q and q’

be two points of M. By condition (ii), there is a path

£1 from q to q’ contained in R1 U {q,q’] and there

is a path £2 from q to q’ contained in R2 U [q.q’}.

In the bounded region determined by ‘1 u £2 there is a

point m1 of M and in the unbounded region determined

by £1 U 22 there is a point m2 of M. Thus, there

must be a path 13 in R3 U [ml,m2} from m1 to m2.

But £3 must intersect 11 U 12 in at least one point.

This, however, is a contradiction, since £1 U £2 is a

subset of R1 U R2 U (M - {ml,m2}). D
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One immediately asks if conditions (i) and (ii)

also characterize spheres of higher dimension than 1.

The answer is no, as the example of a torus in 3-space

clearly demonstrates. What further conditions, then,

must one impose on a set to insure that it be a sphere?

With the torus in mind, a logical requirement might be

that the set have the same homology as a sphere.

Perhaps tacitly assuming such an added hypothesis,

L.E.J. Brouwer attempted in 1911 to produce a counter-

example (see [8]). A slightly modified version of his

example, which we shall call the "Brouwer sphere", B,

can be eXpressed as the union of the following sets of

points in cylindrical coordinates:

[(p.e.z):o < p < 1. z = 2 + cos 9+ (l—./cosze)sin(Tr/P)}:

[(l,e,z):0_<_ z S 2 + COS 9]:

[(0.e,z):1<z 3];

V
\

{(P: 610) :OSP 1)°V
\

Various cross-sections of B through the z-axis are

given in Figure 21.

Brouwer claims that at the point H with

coordinates (0,0,2) 'there is a singularity in the sense

that there exists a sequence of points of B converging

to H which cannot be joined by a simple arc lying

entirely in B. This claim is certainly not true. To
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see why, first separate B into a countable number of

levels by planes parallel to the base plane 2 = 0 and

converging to the plane 2 = 2 (for example, 2 = 2.: %.

2.: %, 2 : é,...). Within any given level there can

be at most a finite number of points of the sequence.

These points can be joined in B by a simple arc lying

entirely in the given level and not intersecting any

of the previously constructed arcs. Furthermore, one

can pass from one level to any other level along a

simple arc. Now, to construct the desired simple arc

containing all the points of the sequence, start with

the furthest level above H containing points of the

sequence and construct a simple arc in that level con-

taining all the points of the sequence within that

level. Then pass along a simple arc to the furthest

level below H containing points of the sequence and

construct an arc there which contains all the points

of the sequence within that level. Proceed next to the

furthest level above H containing points of the sequence

not already used in the construction. Alternating above

and below H in this way, the arc under construction

will eventually converge to the point H and will pass

through all the points of the given sequence.
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In fact, the Brouwer sphere is homeomorphic to the

standard 2-sphere. To prove this it is clearly sufficient

to exhibit a homeomorphism from the top of the cylinder

onto a plane disc. Such a homeomorphism can be accomplished

in two stages. First inject the tOp of the cylinder onto

a concave hexagonal planar region. (See Figure 22.)

Equations for this map are as follows: for p = O,

1_g z.g 3, let x = 0, and y = z - 2; for O'g e < n,

o<pgl, let

x = —p, and y = (1 -./cos2 e)sin(n/p) + (1—p)cos e:

and for n < e < 2n, 0 < p'g 1, let

x = p, and y = (1 -./cos2 e)sin(n/p) + (l+p)cos e.

The only points where continuity is in question are those

for which p = 0.

Let p be a point of the Brouwer sphere B

with coordinates (9.9.2) = (0,0,20), and let

G _ a.)

be a sequence of points of B converging to p. Then

pi converges to O and zi converges to 20. Let

e > 0 be given. Then there is a positive integer N

such that for all i.2 N, pi <.e/3 and [zi-zo] < 9/3.
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Case 1: pi = 0. Then

[(Zi-2)-(zo—2)] = [zi-zo] < 8/3.

Case 2: pi > O and 0's ei.g n. Then

 

d(f(pi).f(P)) = p§+[(1-./coszei)sin<vr/pi)+<1-pi)cos 91 -(zO-2) 12

 

._. pig (zi—Z—picos 91’ - (20-2) 12

 

2 2

\/pi+[ (zi-zO - picos 91 ]

h
\ pi + [zi-zo[ + [pi cos ei]

< 8/3 + e/3 + 6/3 = e.

Case 3: pi > O and w < 6i < 2n. Then

%i+[(l-./coszei )sin(7T/pi)+(l+pi)cos 61'. -(zO-2) ]2

= Ail-Fl: (Zi-2+pi COS 6i)- (20-2) ]2

 

d(f(pi).f(p))

 

 

'2 2
¢éi+[(zi-zo)+pi cos 6i]

< Pi + Izi-z I + [pi cos ei]
... OI

< 6/3 + 6/3 + 8/3 = so

This establishes the continuity of the function at p.

The definition of the hOmeomorphism is completed

by identifying the sides of the hexagon labelled "a"

and those labelled "b" (see Figure 22) in the obvious

way, to produce a disk.
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Though the Brouwer sphere fails to be the counter-

example Brouwer intended, the following example (due to

P. Doyle) does have the same homology as the sphere and

yet is not homeomorphic to the 2-sphere since it is not

connected im'kleinen. Consider the surface K of a cube

‘with the Warsaw circle T embedded in one of its faces.

All of the points of T are accessible from one of its

complementary regions on K, but some fail to be

accessible from the other. Delete the domain with re-

spect to which accessibliity fails, and let Ko be the

resulting surface. Now take another c0py of Ko and

identify the points of T on one c0py of K0 ‘with the

corresponding points of T on the other. This gives us

the desired counterexample. (See Figure 23 for a some-

what simplified version.)
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Perhaps the most important contribution contained

in the Entwicklung, from the point of view of the present
 

work, is Schoenflies' characterization of the most general

point set in the plane which is a continuous image of

the closed unit interval, that is, a continuous curve.

Earlier we discussed the fact that Schoenflies was able

to characterize the simple closed curve in the plane by

means of the accessibility of its points. By adding

one additional hypothesis to that of accessibility,

Schoenflies arrived at the following result.

Theorem 3.2. A closed and bounded, connected,
 

'planar point set M is a continuous image of the unit

interval iff the following conditions hold:

(i) If G is any component of the complement

of M, and p is any limit point of G con—

tained in M, then p is accessible from

all sides with respect to G: and

(ii) If e is an arbitrary positive number, the

complement of M has at most a finite

number of components whose diameters exceed

E).

Schoenflies divides the proof of Theorem 3.2 into

four cases (see [75, p.200]). For historical interest

we indicate here an outline of its development. (The
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entire proof is quite lengthy, taking up some 30 pages

of Schoenflies' paper.)

The first step is to prove the theorem for the

simplest case, the set M. being the boundary of only

one region and containing no surface-filling subsets.

In the second case, M is assumed to contain one surface-

filling piece. The next stage is to prove the theorem

for the case where M separates the plane into an

arbitrary (but finite) number of components and contains

an arbitrary (but finite) number of distinct surface-

filling pieces. Finally, the proof is demonstrated for

the case where the complement of M contains an infinite

number of components and/Or there is an infinite number

of distinct surface-filling pieces contained in M.

That condition (i) alone is not sufficient is

shown by the following set:
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The example of Figure 23 suffices to show that even

with the addition of condition (ii) this characterization

is not strong enough to cover sets of higher dimension

than 2.

Accessibility is another invariant under the

wider group in the following sense:

Theorem 3.3. (Schoenflies). If the boundary

1" of a planar region G is the continuous image of a

circle or of a circular arc, then every point of F

is accessible from all sides with respect to the region

G.

Proof: See [75, p.189].

The concepts Schoenflies introduced to establish

Theorem 3.3 -- namely, simple sequence of points and

path-distance -— are of interest to us because of the

influence they had on the develOpment of uniform

connectedness im kleinen (see Chapter IV).

To begin with, Schoenflies gave the following

iefinition. Let {tv};l be a sequence of distinct

>oints of I‘ having the unique limit point tw' such

.hat with increasing v, the distance between tv and

decreases. Assume that the points tv (though not

ecessarily tw) are all accessible with respect to a

egion G. Thus each tv can be joined to a point m
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f G by a path 1‘), and, in fact, this can be done

,n such a way that no two of the paths have any other

>oint than m in common. (The point In is assumed to

>e distinct from tw.) With m as center, construct a

:ircle which contains no tv' either in its interior

or on its boundary. This circle intersects the path I.

in the point kv' Using the order of the points on the

circle, a subsequence of the k 's can be selected,

say [kviL such that Vi < vi+l for all 1, and taking

a fixed orientation from the point kO on the circle,

k precedes k for all i.

vi Vi+l

sequence {kv ], is the subsequence {tV ] of the

i 1

sequence {tv}' [tv ] is what Schoenflies called a

1

Corresponding to the

simple sequence.

One immediate consequence of this definition is

that every convergent sequence has a simple subsequence.

Schoenflies used this fact implicitly in the proof of

the theorem .

The second concept, path-distance, is important,

not only for its role in the proof of Theorem 3.3, but

also for the part it played in some of the work of Brouwer

hinting at the concept of uniform connectedness im

kleinen. Given two points p and q on the boundary of

a region G, the Bath-distance (Wegdistanz) between p

and q with respect to G is the infimum of the lengths
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f all paths in G connecting p and q. Thus, in

Iua.illustration below, the path-distance between p

nd (1 is 2 with respect to G but the path-
1’

istance between them is l 'with respect to 62.

 

The accessible points of the boundary T of a

simply connected region G possess the following

properties:

(i) The points of I‘ which are accessible

from G are dense in T. (See [81, p.96].)

(ii) If {tv} is a simple sequence of points

of T such that the path-distance nv

(with respect to G) between tV and

tv+1 converges to zero with increasing

v. then the limit point tw is accessible

with respect to G. (See [75. p.177].)
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.A.direct consequence of (ii) is the following

>r0perty.

(iii) Let {tv} be a simple sequence of points

of I‘ with tw as its limit point. Let

m be a point of G such that for each

v there is a simple path Ev from m

to tv' Then for any v. the path

2V U £v+1 separates G into two reg1ons,

I and E . Let I be the one which

v v v

contains neither 2 nor 2 . Let

v- 1 v+2

T 'be T O Fr(I ). Then t is access-

v v w

ible from G whenever the diameters of

the sets TV converge to zero with

increasing v- (See [75, p.178].)

These three prOperties are the machinery

Schoenflies used to prove Theorem 3.3.

The work of Schoenflies discussed in this chapter

was, in a sense, a pioneering effort. In the next

chapter we will present some of the results leading up

to the Hahn-Mazurkiewicz Theorem -- results which, to

a large degree, were built on the foundation laid by

Schoenflies. We will also discuss briefly a definition

of curve, due to Cantor, which appeals more to geometric

intuition than does the definition given by Jordan.
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Zantor's definition succeeds in excluding space-filling

:urves, but it still does not eliminate all pathology.

 

 



CHAPTER IV

PRELUDE TO THE HAHN-MAZURKIEWICZ THEOREM

Between 1909 and 1913, Ludovic Zoretti published

a series of 8 papers ([88],[89],[90],[9l],[92],[93],

[94], and.[95]) in an attempt to clarify, and make

precise, the concept of "line". Zoretti's eXpress

intention was to characterize those point sets which

best generalize the notion of a simple arc. The dis—

cussion which follows is based primarily on two of these

papers, [88] and [94], since the remainder of them con-

tain only isolated results which were incorporated into

[94].

In the early 1900's, there were two commonly used

definitions of line, or curve -- one due to Cantor and

the other to Jordan. According to Cantor, a continuum
 

is any perfect, well-chained point set. A set F is

well-chained if for every two points a and b of F

and for every positive real number e. there is a set

of p01nts [s0 = a,sl, ""Sk-l'sk = b] contained in F

with the distance between 51 and si+1 less than c

for 1.: O,1,...,k-l. A Cantor line is defined to be a

linearcmntinuum, that is, a continuum having no interior

75
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points. On the other hand, a line, or curve, according

to Jordan, is any set which is the continuous image of

a closed line segment.

In [88], Zoretti asked the question: "How are

these two definitions related?" It was already well-

known that they are not identical notions, and that, in

a sense: they are independent. Consider, for example,

‘the fandliar topologist's sine wave (the curve

sin(n/x), for O < x $11, 'with the addition of its

limit points on the y-axis). This fails to be a JOrdan

line since it is not a continuous image of a line seg-

ment, a fact with which Zoretti was familiar. But it

is a Cantor line as is easily seen. An example of a

Jordan line which is not a Cantor line is the unit

square, since it has a non-empty interior.

Zoretti also suggested the following example of a

Cantor line:
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Th construct the example, take two perfect,

0 g_x g l of

At each point

nowhere dense subsets of the segments

the x-axis and 0 g y _<_ l of the y-axis.

of these nowhere dense sets, erect a perpendicular (of

length one) to each axis. The fact that the sets were

chosen to be perfect insures us that the result will

be a Cantor line.

Zoretti conjectured that it is highly unlikely

that this example is also a Jordan line. This conjecture

is easily shown to be true if one has at his disposal

the work of Hahn and Mazurkiewicz, which we will examine

later, but Zoretti's own work falls short of being able

to prove it.

The next question Zoretti asked was, "What are

the minimum conditions that one needs to add to each of

these definitions of line in order that they define the

same concept?" He then restricted his attention to

finding the equivalent in Cantorean terms of the notion

of a simple JOrdan line, that is, one without multiple

points.

[88] would almost assuredly have fallen into

obscurity except for the fact that Zoretti here intro-

iuced, for the first time in print, the notion of an
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irreducible continuum. A continuum C is said to be

irreducible between two of its points, a and b, if

there is no prOper subcontinuum of C containing both

a and b. We say simply that C is an irreducible

continuum if there are points a and b in C such

'Uhat C is irreducible between a and b. It is

\vithin the class of irreducible continua that Zoretti

saw some hOpe of finding a natural definition of line —-

one which fits our intuition of what a line should be.

This search led him to define the notion of a simple

irreducible continuum. An irreducible continuum C

is simple if there do not exist two distinct pairs of

points, (a,b) and (c,d), such that C is irreducible

between a and b and at the same time between c

and d. Otherwise C is said to be non-simple. For

example, the closed unit interval along the x-axis in

E2 is a simple irreducible continuum between (0,0)

and (1,0). The topologist's sine wave mentioned above

is irreducible between the point (1,0) and any point

on the y—axis between y = -l and y = l, and is,

therefore, a non-simple irreducible continuum.

In his original paper ([88]) Zoretti had tried

to get at this same concept in a somewhat different

way,lnrdefining what he meant for an irreducible

conthnnmlto be absolutely closed. An irreducible

continuum C ((2 E2) is said to be absolutely (or
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completely) closed, if, for every point m of C, given

any disk D (in E2) with center at m, there is a

disk D' with center at m such that whenever p and

q are in. C n D’ and the irreducible subcontinuum '53

of C 'between p and q contains m, then '53 is

contained in D. In [88], Zoretti proved that given two

points p and q of an irreducible continuum, there

exists a unique irreducible subcontinuum between p and

q, 'which he called the "arc" ‘55. This definition of

arc has the disadvantage in the general case of not

allowing the establishment of a linear ordering of its

points. However, for simple irreducible Continua,

Zoretti's definition corresponds to the usual definition

of a simple arc. Zoretti also proved ([94, p.251]) that

an irreducible continuum is absolutely closed iff it

is simple.

Observe that the form of the definition of

absolute closure is remarkably close to that of connected-

ness im kleinen. This leads us to ask, "Are the two

ideas identical in the setting of irreducible continua?"

We first note that, in general, a set may be

well-chained and yet not be connected. For example,

consider the set S = [(x,l/x2):x # 0}. S is an example

of a continuum in the sense of Cantor which is not a

conthnnmlin the sense of JOrdan. (Jordan replaces the
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condition of being well-chained by that of being "d'un

seul tenant," which, for closed sets, is equivalent to

connectedness.) Note that S is unbounded. The set

of all rational numbers in the interval [0,1] is an

example of a bounded set which is well-chained and yet

is totally disconnected. The rationals, however, fail

to be a continuum even in the sense of Cantor since they

do not constitute a closed set.

The following well-known theorem, first proved

by JOrdan ([36, p.25]), though in a less general setting

than is given here, shows that, under certain restrictions,

being well-chained is equivalent to being connected.

Theorem 4.1. A compact subset C of a metric

space is well-chained iff it is connected.

In the proof we use the following theorem:

Theorem 4.2. If p and q are two points of a
 

connected space C, and [0a] is a collection of Open

(in C) sets covering C, then there is a finite sub-

collection {Oi}§=l of elements of [0a) such that

p 601, q 60 , and 0i noj is nonempty iff li - j)Sl.

Proof: See [29, p.108].

Proof of Theorem 4.1. (=). If C is not

connected, then C is the union of two disjoint closed
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subsets C1 and C2, of C. Each is compact and so they

are a finite distance a > 0 apart. Let p E C and1’

q 6 C2. Then there does not exist an e/2-chain between

p and q. Therefore, C is not well-chained.

(4:). It is an immediate consequence of Theorem

4.2 that every connected subset of a metric space is well-

chained. D

In answer to the question of whether or not

absolute closure and connectedness im kleinen are the

same we prove the following prOposition.

Proposition 4.3. Let C be an irreducible
 

continuum. Then C is absolutely closed iff it is

connected im kleinen.

3599:: (=). Suppose C is absolutely closed.

Let m be a point of C and let D be a disk with

center at m. Let D’ be the disk corresponding to D

in the definition of absolute closure, and let p be

any point of C 0 D’. Then the arc '55 is contained

in D. Thus every point of D’ lies in a connected

subset of C containing m and cOntained in D. That

is, C is connected im kleinen at m.

(¢=). This direction can be more easily proved

with the help of the following theorem.
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Theorem 4.4. (Janiszewski). Every continuum
 

contains an irreducible subcontinuum between any two

of its points.

Proof: See [30, p.606], or [48, p.296].

Suppose C is connected im kleinen at m. Then

let 6 > 0 be given and choose 5 > 0 such that for

p in C n N(m,6) there exists a connected subset P

of C n N(m,g/2) with p and m in P. Then by

Theorem 4.4 there is a subcontinuum P’ of P irreduc-

ible between p and m. Let q be another element

of C n N(m.6). By the same reasoning as above there

is a continuum Q in C n N(m,e/2), containing q and

m, and there is an irreducible subcontinuum Q' of Q

between q and m. Thus P’ u Q’ is a subcontinuum

of C H N(m,e) containing p and q and so the arc

BE (in the sense of Zoretti) is also contained in

N(mo €)0 D

Note that unless the continuum C of the above

prOposition is irreducible we cannot guarantee that the

arc between two of its points is unique, and as a result

we can get no handle on the size of that arc. In fact,

without the hypothesis of irreducibility, the prOposition

fails.
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For example, consider the following set:

 

 

 

L[]

L.

]__—

L:,-

[—  
This is the tOpologist's sine wave augmented by con-

structing a ruler function on the y-axis from —1 to l.

The augmented set is connected im kleinen, but, for

points m on the y-axis, there is no unique irreducible

continuum connecting m with any other point p of

the continuum. What is worse, there is always an irre-

ducible subcontinuum of diameter 2 containing m and

any point p of the continuum not on the y—axis.

As we have noted, Zoretti abandoned the

definition of absolutely closed irreducible continuum

in favor of the equivalent notion of a simple irreducible

continuum. He was intent on proving a particular point

-- that his "baby", the irreducible continuum, was the

most natural mathematical counterpart to the intuitive

notion of a line. The singlemindedness of his point of

view apparently blinded him to value of his earlier

definition.
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The uncompromisingly harsh criticism he received

from L.E.J. Brouwer for the mistakes in his 1909 paper

seems to have discouraged Zoretti from publishing his

research. In any case it is a fact that, after 1912,

Zoretti published virtually no new journal articles, but

rather spent his time in writing several texts -- not

in topology, or point set theory, but in the more applied

areas of mathematics. His interests seemed to focus on

teaching.

It was during a set of lectures on analytic

continuation given at the College de France in 1908-1909

that Zoretti first publicly introduced the concept of

an irreducible continuum. At least one of the students

attending those lectures was greatly impressed by their

content. In the preface to his thesis [32], in 1911,

Z. Janiszewski gave explicit credit to Zoretti's "beautiful

lessons" for inspiring him to take up the torch and do

his research on the theory of irreducible continua.

In this thesis, Janiszewski introduced the

following new concepts. A continuum K is called a

continuum of condensation of the continuum C if
 

C - K = C. This gives rise to two types of points in

C. The points of first type are those which belong to
 

no continuum of condensation of C. Those of second type

are the points of C which belong to at least one

continuum of condensation of C. The points of first
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type are further separated into two classes. Class I

consists of those points p of first type for which

some neighborhood of p contains no points of second

type. Class II consists of all those points of first

type which are not in class I.

The following example in E2 illustrates these

definitions (see Figure 24). Let Cn be a circle with

center at the origin and radius l/n. Let Sn be the

set (in polar coordinates) [(r,e):r = l/(n+l) +

<v/e)<1/(n(n+1))), 92w}. Let c = (32 Cn) u (5 sn) u
n= n=l

[(0,0)]. Let p be the point (l,w). Then C is an

 
Figure 24
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irreducible continuum between p and the origin.

Further, point p is in class I and the origin is in

class II. Each of the circles Cn' for n.2 2, is a

continuum of condensation of C. Thus, for example,

the point (%,W/2) is of second type.

As Hahn later proved, the points of first type

in a compact irreducible continuum are those, and only

those, at which the continuum is connected im kleinen

(see [25, p.219]). This is not true of an arbitrary

continuum. In the unit square 0, every point is of

second type, yet Q is a connected im kleinen continuum.

A less trivial example is the union M of the following

subsets of the plane:

MX = [(x,0):ogx_<_ 1],

Mo = [(O,y):0 < Y < 1}:

Mn = [(l/n,y) :0 < Y ,<_ l}, n = 1,2,3‘,---.

The point (0,0) is a point of second type, since it

belongs to the continuum of condensation MD of M,

but M is connected im kleinen at (0,0).

In the same year, but shortly after Janiszewski

finished his thesis, a little-known Italian mathematician

named Pia Nalli published a paper [61] in which he defined

a prOperty equivalent to connectedness im kleinen in a

different, though somewhat more general, setting than
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that of Janiszewski's work. Nalli was concerned primarily

with the question: "What plane point sets are simple

closed curves?" This led him to an examination of the

boundaries of plane domains.

It should be noted that to Nalli a domain is

a bounded, closed, connected point set with nonempty

interior and such that each of its points is a limit

point of interior points of the set. This definition

excludes such sets as the following:

or \

where in the second set the dashed line is the boundary

of the set, not contained in the set.

Nalli's property, which he called condition (c)

(presumably for "continuous curve" since there is no

mention of any conditions (a),(b),(d),(e), etc.), is

as follows.. Let A be a closed, bounded point set in

E2 such that each of its points is a limit point of

interior points of A. (Note that A need not be

connected.) Let F be the frontier of A. F is said
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to satisfy condition (c) if, given any point a of F
 

and any neighborhood S of this point, one can find a

neighborhood 8' of a, contained in S, such that for

any point b of F n S' and any 6 > 0, it is possible

to construct an e—chain in F n S between a and b.

Although Nalli was concerned only with the

boundary F of A, condition (c) automatically holds

in the interior of A. Thus we can consider (c) to be

a condition on the entire set A.

Unbeknown to Nalli, condition (c) is precisely

what he needed to characterize continuous curves among

compact, connected subsets of the plane. We prove this

in the following prOposition.

Proposition 4.5. Let F be a compact subset
 

of the plane. F satisfies condition (c) iff. F is

connected im kleinen.

Proof: (=). Let a be an element of F and

let N be a ball-neighborhood with center at a. Let

0 be a smaller ball-neighborhood centered at a. Let

0' be the corresponding neighborhood of a given by

condition (c). Let b be an element of 0' n F. For

every positive integer n, select a l/2n-chain,

n
. . , ' ' b.n,i 1:1 in 0 n F connecting a and Let S{c

n k

be the set of accumulation points of M = L)( LP{cn i)).

n=1 i=1 '
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Claim: S is a closed, connected subset of

5 n F containing a and b. That S is closed and

contains a and b is clear. Suppose S is not

connected. Then there are two nonempty closed subsets,

E1 and E2, of 5 n F, such that El n E2 = 0 and

El U E2 = 8. Since E2 is normal there are open sub-

sets, 01 and 02, of B2 such that 51 n 52 = 0 and “a

El C 01 and E2 C202 (see [19, p.145]). Then

F — (01 U 02) can contain at most a finite number of «n

elements of M -- otherwise it would contain an accumu-

lation point of M. Let 50 be the minimum of the

distances of these points from 5 and 5 , let
1 2

5' = d(51,5 and let 5 = min(5’/2,50/2). There2)!

exists an integer m such that 1/2n < 6 for all n'2 m.

Therefore, if a is in El' all but a finite number

of elements of M must be contained in 01. But this

implies that E is the empty set, since a finite set

2

has no accumulation points, and we arrive at a contradiction.

Hence S is connected. Consequently F is connected

im kleinen at a.

(<2). Let a be an element of F, N any

neighborhood of a and 0 a ball-neighborhood of a

contained in N. Let 0' be the neighborhood of a

corresponding to 0 in the definition of connectedness

im kleinen. Let b be an element of 0’ and let S

be a connected subset of 0 containing a and b. Then
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by Theorem 4.1, for every positive number e, there is

a e-chain in S between a and b. Since a is

arbitrary, F satisfies condition (c).

Though Nalli defined condition (c) for B2 only,

the essential properties used in the proof of Proposition

4.5 hold in Euclidean n—space for any n. Therefore,

we have generalized condition (c) to n—dimensions as

follows: Let F be a bounded perfect point set in En

We say that F satisfies condition (c) if, for any

point a in F and any neighborhood S of a, one

can find a neighborhood 8' of a, with S’ c S, such

that for any given point b of F n S’, and any 9 > 0,

it is possible to construct an e—chain in F n S between

a and b. The proof that this is equivalent to connected-

ness im kleinen is identical with that for n = 2.

The work of Nalli just discussed closely resembles

some results of Arnaud Denjoy in a paper presented before

the Paris Academy of Sciences in August, 1911 [16]. The

question Denjoy was addressing was this: "What are the

special properties the plane owes to its Analysis situs

-- those which in particular, are not possessed by the

torus or the Mbebius strip?"

He claimed these properties can be taken to be

orientability and what he called "biconnectivity." As a

matter of historical interest the definition is included
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here. According to Denjoy, a closed subset M of

Euclidean n-space is biconnected if it is connected and
 

if, in addition, given any four points, A,B,C, and D,

of the set and any four continua in M, (AB),(BC),(CD),

and (DA), containing the indicated pairs of points,

it is possible, for each fixed positive number 5, to

choose a finite number of points of M, Mi,p

(i = 0,1,2,...,n: p = 0,1,2,...,m), such that

1. MO,O = A, Mb’n = B, Mm,n = C, Mm,0 = D7

M0,p E (AB), Mi,n 6 (BC), Mm,p 6 (CD),

M. 6 (DA): and
1,0

11. d(Mi,p'Mi,p+l) and d(Mi,p'Mi+l,p)

are less than 6 for all i,p.

For open subsets of En is is further required that for

each point Mi p there be a ball entirely contained in

M of radius less than 6 with center at Mi . and

,p

containing the points and M.

Mi,p+l l+llp.

As can be seen, this seems to be a particularly

cumbersome form of simple connectivity (in two-manifolds,

at least). Perhaps it is just as well that it has not

survived the test of time and indeed has relinquished its

very name to another concept (see [46, p.135]).
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0f greater interest to the present work are the

following definitions given by Denjoy. An open subset

M of En is said to be uniconnected if, for every pair
 

of points, A and B, in M and for every given posi-

tive number 6, there exists a finite chain of points

Mi (i = 0,1,2,...,n), such that Mo = A, M.n = B, and

for all i there is a ball Bi czM ‘with radius < e

and center Mi and containing Mi+1' M is said to be

uniformly uniconnected at a point P of its boundary

if it is uniconnected and for every 6 > 0, there

exist 61,62 > 0, such that whenever A and B are

within 61 of P, there is a 6 -chain in M between

2

n

A and B with diam( L) Bi) < e, where the Bi's are

i=0

as given in the definition of uniconnectedness. The

figure below is an example of a region which is uni-

connected but not uniformly uniconnected:

 

Note that uniconnectedness is equivalent to path

connectedness. Thus an alternative definition of uniform

uniconnectedness is the following: An open subset M
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n . . . . .

of E is uniformly uniconnected at a p01nt P of Its

boundary if, for every e > 0, there is a 6 > 0, such

that, whenever A are in N(P,6) n M,and B there is

a path from A to B contained in N(P,e) n M.

Using these definitions Denjoy established the

following result .

Theorem 4.6. A bounded, uniformly uniconnected

anti simply connected planar region has as its boundary a

sinmple closed curve.

Proof: See [16, p.426].

This theorem was rediscovered in 1918 by R.L.

Nknare [55], who also proved the necessity of the conditions

More will be said about this in Chapter VII.

L.E.J. Brouwer ([8], also in 1911) took a similar

aPproach to that of Denjoy when he gave a definition of

"Ixnshieldedness" (Unbewalltheit). Brouwer was studying

J"Ordan manifolds -- manifolds in En which are homeo-

nlorphic to the standard (n-l)-sphere Sn-l. Let M be

51 closed point set in En, and let G be one of the

<30mplementary regions determined by M. Then M is said

to be unshielded from G if, for any accessible point q

Of the boundary of G and any two sequences {qi};=l

and [q{ ;;1 contained in the boundary of G, all

the points of which are accessible from G, and each
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of which converges to q, the path distance in G between

q .1 and q{ tends to zero as i tends to a. Consider

the modified Warsaw circle T of Figure 25. In this

figure, the point q = (0,—1) and the sequences

__ 2 _ Q ’ _ - Q .

[qfi — (4i:l’ 1)}i=1 and [qi — (0,-l l/n)]i=1 illustrate

tfliat T is not unshielded from the region G (its

encterior). However, T is unshielded from its interior

rexgion I. T is, of course, not a Jordan manifold.

  

  
  

Figure 25

Brouwer was able to prove the following strong

result.
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Theorem 4.7. A Jordan manifold is unshielded
 

from both its interior and its exterior regions.

Proof: See [8, p.322].

In the form in which it has been defined above,

unshieldedness is not equivalent to uniform uniconnected-

ness, as the example of page 92 illustrates. However

if we modify the definition by allowing the sequences

[qi} and [qi] to belong possibly to G, we can show

that this modified version of unshieldedness is equivalent

to uniform uniconnectedness.

Our proof requires the following lemmas.

Lemma 4.8. If [qi};=l (C En) converges to go.
 

then for every sequence of positive numbers {5i}:el

converging monotonically to zero, there exists a sub—

sequence {qn }:_l of [qi} such that for all i,
i _

d(qn. ,qo) < d(qn.,q0) < éi and d(qn .qn ) < 6i for

1+1 1 l 3

all j_2 i.

Proof: For all i = 1,2,... let

B. = N(q ,6./2). Let q be the first element of
i o 1 nl

[qi} contained in B1. Suppose q ...,q have.q ,

n1 n2

already been chosen. Let qn be the first element

k+l

of [qi} contained in Bk+l and such that nk+1 > nk.

The subsequence {qn.} thus constructed is the desired

1

subsequence. U
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Lemma 4.9. Let qO be a point of the boundary
 

of a region G (in En). If G is uniformly uniconnected

at qo, then qO is accessible from G.

}:;1 be a sequence of positive

numbers which converges monotonically to zero. Let 6i

Proof: Let [ei

correspond to 61 in the definition of uniform uni-

connectedness. Then there is a subsequence [6; :;l

of [5i] such that {6;} converges monotonically to

zero. Let [qj} be a sequence of points of G con-

verging to qO and let [qn'} be a subsequence of

[qj] which corresponds to [55} as in Lemma 4.8. Now

construct a Af—chain from q to q and contained

1 n1 n1+1

in N(qo,ei). Since according to the definition of

uniconnectedness there exists such a chain which is

completely contained in a connected Open subset of G,

there is a path A. in G from q to q . contained
1 n. n.

m 1 1+1

in N(q ,e.). Thus L) z. is a path in G from q

o 1 i=1 1 n1

to qo' and so qO is accessible from G. C

Proposition 4.10. If p is a point of the boundary
 

Y of a region G in En, then Y is unshielded from

G at p (in the modified sense) iff G is uniformly

uniconnected at p.
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Proof: (=). SUppose that Y is unshielded

from G at p, and suppose also that G is not uni-

formly uniconnected at p. Let 6i = l/i for

i = l,2,--°. Then there exists a > 0 such that, for

each 61, there is a pair of distinct points, qi and

q{, in N(p,éi), which cannot be joined in G by a

path lying entirely in N(p,e). That is, the path

distance in G from qi to qi is ‘2 6. But the

O a

. con-

1 1:1

existence of the sequences [qi}:;l and {q

tradicts the supposition that Y is unshielded from

G at p.

(<=). Suppose that G is uniformly uni-

connected at p. By Lemma 4.8, p is accessible from

G. Let {qi} and [q{] be two sequences of points

in 5 each of which converges to p.

Let 6 > 0 be given, and let 5 be the positive

number which corresponds to e in the definition of

uniform uniconnectedness. Then there exist two positive

integers, N and N’, such that for all n.2 N and

n'.2 N', qn and qn, are both contained in N(Poé).

Let N0 = max(N,N'), and let n be an integer greater

than N .

0

Case 1: qn and qn, are contained in G.
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Since both qn and qn. are in N(p,6).

there is a path in G connecting qn and qn. which

is contained in N(p,e). Thus the path distance from

qn to qn. relative to G is less than 6.

Case 2: One of qn or qn. is contained in

Y (say qn)' while the other (say qfi.) is contained

in G.

Let p = d(qn,p), and let r = 5 - p. Let a

be a point in N(qn,r) such that there is a path Ll

from a to qn contained in N(qn,r). a is in

N(p,6) as is qn., so there is a path £2 from a

to qn’ contained in N(p,e). Thus £1 U 22 is a

path in N(p.€) from qn to qn,.

Case 3: Both qn and qn. are elements of Y.

By an argument similar to that of case 2 we can

construct a path from qn to qn. contained in N(p,€).

Since 6 is arbitrary, the path distance from qn to

qno tends to zero as n tends to m, and, thus, Y

is unshielded from G at p. C

It is interesting that in every neighborhood

of a point of uniform uniconnectedness there may exist

points at which the set is not uniformly uniconnected.

In Figure 25, the sequence [qi] converging to q is

an example of this phenomenon.
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Despite this example one cannot help but notice

the similarity between uniform uniconnectedness

(unshieldedness) and uniform connectedness im kleinen.

With the following proposition we have made the relation—

ship of these two concepts precise.

Proposition 4.11. A bounded region G is
 

uniformly connected im kleinen iff it is uniformly

uniconnected at each point of its boundary Y.

EEQQEF (z). Suppose G is uniformly connected

im kleinen, and let p be a point of Y. Let c > 0

be given and let 6 > 0 be the number corresponding to

e in the definition of uniform connectedness im kleinen.

Let q and q’ be points in G n N(p,5/2). Then

d(q,q’) < 5. Therefore, there exists a path A from

q to q’ with diam(!) < 6. Thus, G is uniformly

uniconnected at p.

(<=). Suppose G is uniformly uniconnected

at each point of Y. Let 3 > 0 be given, and, for

each point p E Y, let 6p (< 6) correspond to e

in the definition of uniform uniconnectedness. Since

Y is compact, N(p,5p/4) can be reduced to a finite

’

subcover N(pi.6p /4) of Y. Let 5 =

i
k

d(Y,c( L)N(p.,6 /4))) and let a = min[6’/4, 5 /4,...,

i=1 1 Pi p1

6pk/4}. (Note that 6 < €/2.)
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Let q and q’ be two points of G with

d(q,q’) < 6. It will suffice to show that there exists

a path A in G from q to q’ with diam(z) < a.

Case 1: d(q,y) < 6 or d(q’,Y) < 6. Then q

3

the uniform uniconnectedness at pj, there is a path

and q’ are both in N(p.,6p /2) for some j. So, by

j

Lj from q to q’ with diam(zj) < 6.

Case 2: d(q,Y) > 6 and d(q’,Y) > 6. Then q

and q’ are in N(q.6) C.G and hence the straight line

segment qqa c N(q,6) and diam(qq’) < a. [3

As Theorems 4.6 and 4.7 indicate, Denjoy and

Brouwer were significantly closer to the eventual point

set characterization of "curve" than were their

contemporaries. But, even so, they were somewhat limited

in their perspective. The reason Denjoy discarded this

line of research might have been summarized in a statement

he made in 1955:

"I have always found repugnant the

purely formal generalization, an easy and

sterile exercise if it does not lead to

the solution of some problem already existing

and different from that which gave birth

to the first concept." [18, p.vii]
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As we shall see (Chapter VI) the approach which

Nalli, Denjoy and Brouwer took -- that is, the study of

boundaries of regions -— was a very natural one from

the point of view of complex analysis.



CHAPTER V

THE HAHN-MAZURKIEWICZ THEOREM

Stefan Mazurkiewicz' mathematical career

began about three years before he obtained his Ph.D.

In 1910 he published a note in Compte Rendu, Paris,

under the name Etienne Mazurkiewicz, giving a tOpolOgi-

cal proof of Theorem 4.4 (see [48, p.296]), which had

earlier been proved by Janiszewski using a method

involving transfinite numbers. This first paper sig-

nals the early contact that Mazurkiewicz had with

Zoretti's work on irreducible continua.

Mazurkiewicz then went on to obtain his

doctorate in 1913 under Waclaw Sierpinski at the

University of Lwow, writing his thesis on characteriza-

tions of space-filling curves. Also in 1913, he

published two articles ([49] and [50], originally in

Polish, but later translated into French) characterizing

Jordan curves, or what later came to be known as Peano

spaces. These articles seemed to attract no attention

until Mazurkiewicz published an enlarged paper, Sur les

lignes de Jordan [51], in the first volume of Fundamenta

Mathematicae (1920) —- of which he was one of the

102
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co-founders. This article was an expansion Of the two

shorter papers into a more comprehensive study.

The original version of Mazurkiewicz'

characterization of Peano spaces was given for n-

dimensional Euclidean space. However, in [51] he

Observed that the greatest part of the reasoning can

be applied, with little or no alteration of the proofs,

to "suitable" abstract spaces. For a space to be

suitable he required that it be metric. This is no real

restriction, since, as it turns out, every Peano space

is metrizable (see, for example, [26, p.201]).

Let us examine Mazurkiewicz' characterization

of PeanO spaces in closer detail. We give here the 1913

version Of Mazurkiewicz' theorem:

Theorem 5.1. A continuum T c.En is a Jordan
 

curve iff

(i) F is bounded;

(ii) for every pair of points, A and B

of T, there exists a simple arc (AB)

(in the usual sense) contained in T

joining the two points; and

(iii) the diameter of (AB). tends toward

zero as the point B tends toward A.
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(Condition (iii) is later replaced by the equivalent

condition'(iii’): "the diameter of (AB) tends uniformly

toward zero with the distance between the points A

and B.")

Proof: See [49, p.305].

We note that conditions (ii) and (iii) are merely

a generalization to arbitrary continua of the concept

of an absolutely closed irreducible continuum, introduced

by Zoretti in 1909 (see page 78). It is a testimony to

the creative genius Of Mazurkiewicz that he was able to

recognize the value Of this concept. Zoretti himself

seems to have abandoned it in favor of the idea of a

simple irreducible continuum -- a concept which, although

equivalent, led him into a completely different vein of

thought.

In the second of his 1913 papers, Mazurkiewicz

gives the following refinement of Theorem 5.1:

Theorem 5.2. A bounded continuum F c En is a
 

Jordan curve if to every pair of points a,b 6 T’ there

corresponds a continuum C(a,b) c.r containing a and

b, such that the diameter of C(a,b) tends toward zero

with the distance between the points a and b.

Proof: See [50, p.941].
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The refinement here is only slight, amounting

to a replacement of the requirement Of a simple arc

between a and b by that of the existence Of a sub-

continuum containing a and b, but it is one step

toward greater generality. Note also that Theorem 5.2

proves only the sufficiency of the condition for T

to be a JOrdan curve. The necessity of this condition

is a trivial consequence Of Theorem 5.1. That is, the

simple arc (ab) of Theorem 5.1 between a and b

is just such a subcontinuum C(a,b).

In his presentation in Sur les lignes de Jordan,
 

Mazurkiewicz introduced the concept of "genre" of a

point. A point of a continuum C is said to be of

first genre if the "oscillation" of the continuum at
 

that point is zero. The oscillation C(p) of a continuum
 

C at a point p is defined by

0(p) = lim ( inf diam(C(x,y)))

X,y4p C(X,y)

where C(X,y) denotes any subcontinuum of C containing

x and y. A point p with 0(p) > 0 is said to be

of second genre.
 

The idea of genre of a point gives greater

mathematical precision to the condition expressed in

Theorem 5.2. Thus Mazurkiewicz was able to further

simplify the statement of his theorem.
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Theorem 5.3. A necessary and sufficient condition
 

for a bounded continuum A to be a JOrdan curve is that

all of the points Of A be of first genre.

Proof: See [51, p.191].

He then went on to define a generalized

continuous curve (one where the possibilities for its

domain include not only closed intervals, but also

half lines), and finally a generalized Jordan curve --

"any continuum, bounded or not, formed solely of points

of first genre." Hence came Mazurkiewicz' final

modification of the theorem:

Theorem 5.4. Every generalized Jordan curve A
 

is the image of a generalized continuous curve.

Proof: See [51, p.193].

Note that the converse Of Theorem 5.4 is false

as the following example (due to Mazurkiewicz) clearly

shows. Let the curve A c:E2 be defined as the union

of the sets

{(Ool—t) :0 _<_ t S l},

[(t-l,0):1 < t.g 2},

[(2/t,sin2 t):2 < t}.

(See Figure 26.)
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Figure 26

We have observed that conditions (ii) and (iii)

of Theorem 5.1 are almost identical with the definition

Of absolutely closed irreducible continuum given by

Zoretti four years earlier. Why then does the credit

for the concept of connectedness im kleinen go to

Mazurkiewicz while Zoretti remains an almost forgotten

figure? Clearly Mazurkiewicz made the notion precise

and put it in a more general setting, but more to the

point, he used it. As is true with so much Of

mathematics, Mazurkiewicz built on the work of his

predecessors, Zoretti and Janiszewski, and perhaps

because of his particular training and the unique

insight he was able to bring to bear on the prOblems
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involved in characterizing Jordan curves, he brought

the work Of his predecessors into clearer focus. His

was certainly the first characterization of Jordan

curves to be published.

Theorems 5.1, 5.2, and 5.3 provide us with a

rough outline of the refinement Of the concept of

connectedness im kleinen as Mazurkiewicz developed it

over a period of seven years. The actual change in the

concept during that period seems almost insignificant.

The process appears rather to be one of focusing in on

the essence of the underlying idea. The final product

was the definition Of a point of first genre, or point

of connectedness im kleinen.

The first papers of Hans Hahn that dealt with

connectedness im kleinen, appeared in print in 1914.

In 1913 he had read a paper to the Versammlung deutscher

Naturforscher und Arzte at Vienna, Austria, entitled,

fiber die allgemeinste ebene Punktmenge, die stetiges

Bild einer Strecke ist [21]. In this paper he presented
 

four necessary and sufficient conditions for a plane

point set M to be the continuous image of a line segment.

The first three conditions were already known to be

necessary but not sufficient. They were

1. The set M is bounded:

2. The set M is closed:

3. The set M is connected.
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Hahn then added a fourth condition so that the

four conditions together were necessary and sufficient.

It is here we find the first definition of connected im

kleinen as such. Let p be a point of the set M. M

is said to be connected im kleinen at p if "to each
 

positive number a there corresponds a positive number

6 such that for every point p’ of M lying in the

6-neighborhood of p there is a closed and connected

subset Of M containing both p and p’ and which

lies entirely in the e-neighborhood of p." (Recall

that a set is connected im.kleinen if it is connected

im kleinen at each Of its points.) Thus the fourth

condition is

4. The set M is connected im kleinen.

In the process Of proving the sufficiency of

these four conditions, Hahn introduced an interesting

concept that may be called a local component Of a set.

Given a subset M of a metric space, a point p Of

M and a positive real number r, the local component

Of M at Ap_ with respoct to r is the set Of all

points x Of M for which there exists a subcontinuum

of M containing both x and p and contained in

ERECET} together with all the limit points in M of

'k

such points. We denote this set by M (p,r).
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It is interesting to note that, in constructing

a mapping from the closed unit interval onto a given

bounded, connected im kleinen continuum M in E2, Hahn

followed the pattern of Hilbert's construction of a

space-filling curve. He first selected an arbitrary

sequence of positive real numbers ri having the

property that lim ri = 0. Then he covered M with

the sets M*(p,::r, for all points p in M.

In the process of the construction, Hahn proved

the following intermediate results.

*

Lemma 5.5. Each M (p,r) is connected.

Proof: See [22, p.2442].

*

Lemma 5.6. Each M (p,r) is connected im
 

kleinen.

Proof: See [22, p.2443].

Lemma 5.7. For each point p of M and each
 

positive number r, there is an Open neighborhood U

*

Of p with U contained in M (p,r).

Proof: See [22, p.244l].

Lemma 5.8. If the bounded continuum M (c:En)
 

is connected im kleinen, then every pair of points in M

can be joined by a path contained in M.
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Proof: See [22, p.2436].

*

By Lemma 5.7, such a covering by sets M (p,r)

induces a covering by Open sets and hence the Heine-

Borel Theorem can be invoked to produce a finite sub-

(1) _ (1)

l

. * *

covering M — M (pl,l'rl)’ M2 = M (pl 2,rl),...,

M (1) *

= M (p ,r ). The next step in the construction
nl 1,n l

is to establish the fact that, given any two points

n

p and q of M, the collection [Mi(l)]i:l can be

ordered in such a way that the following conditions

are satisfied:

(1)
(i) p is contained in M1 ;

(ii) q is contained in Mn(l); and

l

... (l) (l) - _
(111) Mi 0 Mi+1 ¢ ¢: for 1 — 1,2,...,n1-1.

Using this ordering, Lemmas 5.5, 5.6, and 5.7

can be applied to give a first approximation:to the desired

"space—filling" curve. For the next stage of construction,

(1).

i 5'
M is replaced in turn by each of the M and

the above process is repeated, using r in place Of
2

rl. The induction step is now Obvious.

Hahn proved that this process does indeed give

a continuous mapping from the closed unit interval to the

set M [22, p.2439]. Thus the sufficiency of conditions

l-4 is proved for the plane.
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Surprising as it may seem, this proof does not

carry over directly to higher dimensions, since, as is

shown by the following example given by Hahn, M*(p,r)

may fail to be connected im kleinen (see Figure 27).

Let a be a plane in E3. Let 0 be a point of d,

and let g be a straight line in a passing through 0.

Now using 0 as a center, construct a circle KO of

radius 1, and circles Kn and K of radii
I n

n n+1

n+1 .

and —H— respectively, for n = l,2,-°°. Now, for

“.2 l, rotate the circles Kn and K5, in the same

direction about the line g, through angle en = W/Zn.

The set Of points through which the circumferences Of

the circles Kn and Kg pass will be denoted by Mn.

Let Nn denote the annulus between the images Of Kn

and K5. Let G be the subset of g which forms a

diameter Of the circle Ko' Now let M, be the union

of all of the above described sets, Ki’Ki’Mi’Ni’ and G.

In this example the set M*(0,l) is not connected

im kleinen. (A cross-section of M*(0,l) is given in

Figure 28.) That is, for all points of the circle Ko'

except the two points where g intersects Ko' M*(0,1)

is not connected im kleinen.

To overcome this difficulty, Hahn replaced the

*

sets M (p,r) used in the two-dimensional proof by the
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Figure 27

 

  

 



 
'\

 

 



115

**

sets M (p,r) described below. Let pO be a fixed

element Of M and let r be a given positive number.

** 'k

M (p0,r) is obtained from M (po,r) by first choosing

I o I I *

any p051t1ve number r6 < r, and cons1der1ng M (po,r6).

Since r - ro > 0, a positive number rl can be

0 * 0

selected With rO + r1 < r. Cover M (po,ro) w1th

*

the collection {M (p,rl)} * , and, with the

PEM (p0.ro)

aid of Lemma 5.7 and the Heine—Borel Theorem, reduce

(1)*

this covering to the finite subcovering [M (p1

* (1)
M (pnl

had to use the fact that the set M itself is connected

,rl),...

,rl). (Note that to invoke Lemma 5.7, Hahn

im kleinen.) Again Hahn used the notation

(1) (1). *

Now M (po,ro) is contained in

“(1)
the union of the sets MJ

*

M . , = M.(PJ r1) 3

, and since rO + r1 < r,

*

this union is contained in the set M (pO.r). If

(1)
n

M(l) = L} Mj(l), then every point of M 'is at most

j=1

a distance rO + rl from p0. Now choose a positive

number r such that rO + rl + r5 < r.

2

Since the sets Mi(1) are closed, if two of

these sets, say Mi(1) and Mj(l), are disjoint, the

distance between them is positive. Let 01 denote the

II

2

number 01/4. Let r2 denote the smaller of the two

smallest of these distances, and let r be a positive

numbers r5 and r3.
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1)
As before M( is covered with the sets

*

[M (p,r )} . Because Of the choice Of r , for
2 (1) 2

p€M

. (1) * * .

each p 1n M , M (p,r2) CiM (pO,r). Further, 1f

p' and p” belong to different sets Mi(l) and Mj(1)'

* *

then M (p’,r2) and M (p”,r2) can have a point in

common only if Mi(1) and Mj(l) have a point in

common.

(1)
The covering of M is next reduced to a

finite subcovering. For each of the sets Mi(l), that

part of this subcovering which covers it is denoted by

M (2) ,M (2)
it]. ,... i,n2

I

where without loss of generality n2 is assumed to be

the same for all 1.

Following this pattern the sequence of subsets

i =1,2,o..,n 1.0.0,.(1 = 1,2,...,nl; 2 2
(v)

M. O o

1112'...'lv l

i = 1,2,...,n: v = 1,2,...) of M is constructed

inductively. Every point of each of these subsets is

at a d1stance from pO at most rO + rl + r2 +...+ rv < r,

and each Of the sets satisfies the following prOperties:

(v)
. lies entirely in a ball
11,1(1) M 2,...,1 .

Of radius rv, where lim r = 0;

V"m



117

(v)
(ii) The two sets Mi’’,i ’,...,i’ and

l 2

ifivifl i” i” have a point in

ll 2’...) _ll

common only if the sets M111) nd Mi ,(1),

111

M.1&21’ and M. £21,,,...,Mi(,"i1) i'

11' 211'1211'12 " 6—1

and M. (V1) .” also have a point
1’’,i’ .,1
l 2 v-l

in common.

**

Now let M (po,r) be the closure of the union

of all the sets M.(V1 . . This union is clearly
11,12,...,1V

bounded (in the general setting, compact), and it can

be easily shown that it is connected. Hahn also proved

(via a very lengthy and complicated argument) that

*‘k

M (po,r) is connected im kleinen.

Once these properties were established, the

proof of the sufficiency of Hahn's four conditions

carried over directly from the planar case to the general

metric space with the substitution of M**(p,r) wherever

*

M (p,r) was used.

Hahn seems to have been unaware (at least

through 1914) of the work Of Zoretti, Janiszewski and

Mazurkiewicz, on irreducible continua and points of

connectedness im kleinen. In [22], which gives a "set

theoretic characterization of continuous curves," Hahn

does make one brief reference to an article by Zoretti
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appearing in the EncyclOpédie des sciences mathematiques,

volume II [93]. The theorem he cites is one giving

conditions under which the limit set of a sequence of

closed sets is connected. Even though Zoretti's

article gives a brief description of irreducible continua

and some of the results of Zoretti and Janiszewski, the

direction of Hahn's research would indicate that he took

little or no notice of it. This may not be surprising

since the connection with connectedness im.kleinen,

which is quite apparent in Zoretti's earlier paper, was

removed by repeated polishing.



CHAPTER VI

THE THEORY OF PRIME ENDS

The problem of mapping one simply connected

region onto another was of great interest to the complex

analysts of the late nineteenth and early twentieth

centuries. A common approach to the study of such mappings

was to first approximate the given mapping by a sequence

Of more elementary mappings which converge pointwise

on the interior Of the region to the given mapping.

Unfortunately examples were known which have the pro-

perty that they diverge at every point of the boundary

(see, for example [12, p.144]). It was of particular

interest then to determine what restrictions must be

placed on the boundary Of such a region to insure that

a conformal mapping of its interior onto the interior Of

the circle [2] = 1 would induce a homeomorphism between

the respective boundaries.

H.A. Schwartz showed [76] that this is always

the case if the boundary of the region to be mapped onto

the interior of the circle consists of a finite number

of regular analytic arcs. Painlevé later showed [65]
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that it was sufficient to require that the boundary be

piece—wise differentiable.

In 1900, W. Osgood [63, p.56] conjectured that

if the boundary Of a simply connected region were

homeomorphic to a circle then any conformal mapping of

the interior of the region onto the interior of the

circle would induce a homeomorphism between the bound-

aries. This conjecture was finally proved by C.

Carathéodory in 1912 [13] and was perhaps the motivation

 
for the concepts which we discuss below.

At about the same time Hahn and Mazurkiewicz

were developing connectedness im kleinen, Carathéodory

published a paper [14] in which he defined the concept

of a prime end of a bounded simply connected region.

He first presented his work in September of 1911 at a

meeting of natural scientists in Karlsruhe, Germany.

At least part of the development parallels some work on

conformal mappings of simply connected regions published

by Eduard Study in 1912. Because a COpy of Study's

book has not been located, the present author can only

guess at the precise nature of Study's work from the

occasional references to it which Carathéodory makes.
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Before defining a prime end, the following

definitions are needed. By a path Carathéodory meant

a finite, or countably infinite sequence of closed

straight line segments £1.22...., or Lo'£+1’£+2'°°"

such that

(i) for every i, ii has exactly one

point (an endpoint) in common with

each Of the segments Ai-l and

t and
i+1'

(ii) for every pair of indices i,j with

1<j"1l Eifl£j=¢.

The only exception to condition (ii) can occur in the

finite case when the last segment An may have a

vertex in common with the first segment to form a
J"1

closed path. If the path consists Of an infinite
 

number of segments, it is further stipulated that

(iii) lim (diam(zn)) = O, and

n48

(iv) given any sequence of points, with only

a finite number of them taken from any

one segment Of the path, at most one

of the following occurs: (a) its

limit points do not lie on the path:

or (b) i‘2 l for all i, and the

unique limit point Of the sequence is

the vertex of L which is not con-

1

tained in E -- giving rise to a
2

closed path.
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A limit point of a path not lying on the path will be

called an endpoint Of the path.

Let G be a bounded simply connected region

in the plane. (Throughout this discussion, unless

otherwise indicated, all regions and subregions will be

assumed to be bounded, simply connected regions Of the

plane.) A path k, exactly one endpoint of which lies

on the boundary Y of G, is called an end-cut of G.

A path q, both Of the endpoints Of which lie on Y,

will be called a cross-cut of G.
 

Let q1,q2,..., be a sequence of cross-cuts

of G satisfying the two conditions:

(i) NO two Of the cross-cuts have any points

in common. In particular, their end-

points are all distinct:

(ii) Each cross-cut qn separates qn_1

from qn+1 in the sense that if P

is a point of qn-l and Q is a point

of qn+1 and L is any path in G

connecting P and Q, then L has at

least one point in common with qn.

Any sequence satisfying these two conditions will

be called a chain of cross-cuts.
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Corresponding to each chain Of cross-cuts, one

can define a chain of subregions gl,g2,..., such that

qi froms part Of the boundary of 9i and gi :>gi+l

for i > 1. Note that Carathéodory refers to such a

sequence of regions as a chain only if it corresponds

to a chain of cross-cuts.

The end 69 corresponding to the chain

gl,gz,..., Of subregions of G is defined by the

following set of axioms.

Axiom 6.1: If H is an arbitrary region (not
 

necessarily a subregion Of G), then the end 69 is

contained in H iff H contains gn for some n.

Axiom 6.2: Given two chains of subregions Of

G, gl,g2,..., and hl, 2,..., with their respective

ends, 5g and ah, 6h is contained 1n 6g 1ff 6h

is contained in every gn. In this case 5h is said to

be a subend of 69.

Axiom 6.3: A sequence of points converges to an
 

end 69 iff every region gn contains all but a finite

number of the points of the sequence.

Axiom 6.4: A point P is contained in the end
 

69 iff P is contained in the closure of each region
gn
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Axiom 6.5: Two ends 6g and 6h, defined by

l,k2,...,

respectively, are identical iff each is a subend of the

the chains of subregions 91.92,..., and h

other.

A prime end is an end which contains no proper
 

subends. The prime end defined by a chain of subregions

, ,..., will be denoted b E91 92 Y g

The following are a few of the principal pro-

perties of prime ends which Carathéodory proved:

Theorem 6.6. Every infinite sequence of points
 

P1,P2,..., of the region G contains a subsequence

which converges to either an interior point of G or to

a prime end of G. [14, p.341]

Theorem 6.7. Every prime end of a region can be
 

defined by a chain of cross-cuts which lie on concentric

circles and which converge to the common center of these

circles. [14, p.343]

Theorem 6.8. A prime end of a region G contains
 

no interior points of G. [14, p.344]

Theorem 6.9. Under any conformal mapping of the
 

interior of a region G onto the interior of the circle

[zl = l, the prime ends Of G correspond to the boundary
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points of the circle in a one—tO-one fashion. Each

sequence of points Of G which converges to a prime end

Eg corresponds to a sequence Of points of [z] < l

which converges to the image of E9, and vice versa.

[14, p.350]

A prime end is said to be of first type if it
 

contains only a single point. For example, a disk has

only prime ends of first type. Carathéodory gave the

 
following characterization of such prime ends. I

Theorem 6.10. A prime end Eg contains a single
 

point 6 iff the regions gl,g2,..., of any chain which

defines Eg’ converge to e- The point e is always

an accessible point of E9, that is, in the terminology

of Carathéodory, e is the endpoint of an end-cut of G

which converges to Eg’ [14, p.352]

The next result, though easily proved, is

important in relating the theory of prime ends to

connectedness im kleinen.

 

Theorem 6.11. A prime end Eg contains at most

one accessible point. [14, p.353]

Theorem 6.11 implies that any prime end of G

containing more than one point must contain non-

accessible points. That being the case, the boundary Of

G is not connected im kleinen.
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A point e Of a prime end Eg for which there

exists a chain of cross-cuts ql,q2,..., defining E

and such that the limit set of the sequence [qi} is

{e} is called a major point of Eg. A point of E
 

9

which is not a major point is called a minor_point Of
 

Eg' It follows immediately from Theorem 6.7 that every

prime end contains at least one major point, but, as

the example of the disk shows, a prime end need not

contain any minor points. For an example of a prime end

which does contain minor points, let G be the interior

of the Warsaw circle T. Consider a sequence Of con-

centric circular arcs in G U T with center at the point

(O,-1). The cross-cuts determined by these circular

arcs define the prime end whose underlying set is

[(O,y):-l g_y g_1}. In this prime end, (O,-l) is a

major point, but any other point is a minor point.

A prime end which contains at least one

accessible point and at least one non-accessible point

is called a prime end of oocond type. Such is the prime
 

end described above. It can be easily proved that the

accessible point of a prime end E9 is a major point Of

Eg (see [14, p.353]). Hence, it follows that a prime

end Of second type is one which contains one accessible

major point and at least one minor point.
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A prime end of third type contains only non-

accessible major points. Consider, for example, the

region G (see Figure 29) bounded by the curves

x = 0, x = l, y = sin(w/x) + x

and

y = sin(W/x) - x.

The prime end 0f G whose underlying set is the segment

of the y-axis from y = -l to y = 1 is of the third

type.

-
~
v
<

—.—--—_—

  

 
Figure 29

The fourth type are those prime ends which consist

of non-accessible major points and some minor points as

well. If we let G be the region bounded by the curves
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x = O, x = l, y = sin(w/x) + %

and

y = sin(w/x) - '

N
I
H

then the prime end whose underlying set is the segment

of the y-axis between -3/2 and 3/2 is of fourth type

(see Figure 30). In this prime end, the entire segment

Of the y-axis between -l/2 and 1/2 consists of major

points. To construct a chain of cross—cuts converging

to any such point, say the point (04:), take those

segments Of the line y = c which lie within the

region G.

 
Figure 30

I .

Caratheodory's goal was to character1ze those

regions whose boundary is the continuous, one-tO-One

image Of a circle. Because Of the close correspondence



129

between the points Of the boundary of a unit disk and

the prime ends Of a region, and because of the related

convergence properties of each, the prime ends Of first

type play a central role in this characterization. How—

ever, to complete the characterization, the concept of

multiplicity of a point is needed. A point of the

boundary Of a region G is a simple point of G if it
 

is contained in only one prime end of G. Otherwise

it is called a multiple (double, triple, etc.) point

of E .

9

Consider the region whose boundary is the

following set:

 

 
The point A is the underlying set Of two prime ends

of first type and is, therefore, a double point of each

of these prime ends. The point. B, on the other hand,

is a simple point of the prime end to which it belongs.

A characterization Of simple points is given by

the following theorem.
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Theorem 6.12. A point A of the boundary Y
 

of a region G is a simple point Of Y iff every

sequence Of points that converges to A also converges

to a prime end of G.

Proof: See [14, p.363].

The next result -- the main theorem of A

Caratheodory's paper -- shows the relationship of prime

ends to Jordan curves. 4

Theorem 6.13. The boundary Y of a region G
 

is homeomorphic to the unit circle iff Y contains only

simple points and consists only Of prime ends of first

type.

The proof of this theorem shows that this result

can be slightly generalized. Before discussing the

generalization we present the proof essentially as

Carathéodory gave it.

Proof of Theorem 6.13: The necessity of these
 

conditions is easily seen.

TO prove the sufficiency, suppose Y satisfies

the two conditions. By Theorems 6.9 and 6.12, under any

conformal mapping of G onto the unit disk [2! g_1,

every sequence of points P1,P2,... of G which

converges to a point A Of Y corresponds to a sequence
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I

P£,P2,... in [2‘ < l which converges to a point A’

of the circle [2] = 1. Since every prime end of G

consists of only a single point, it follows from the

same two theorems cited above that to every sequence

Qf.Q£.... in [z] < l converging to a point B’ of

[z] = 1 there corresponds a sequence Q1,Q2,... in

G “which converges to a well-defined point B of Y. n4

Thus the correspondence is one-tO-one.

 Let A1,A2,... be a sequence Of points of Y

which converges to a point A, and let A',A' and1 2'...

A' be their respective images under the conformal

mapping of G onto the unit disk. For each value Of

n we can find a point Pn such that Pn and its image

P5 are within l/n of An and Ag, respectively.

The sequence P1,P2,... converges tO A, therefore,

P£,P£,... converges to A’, and consequently

A£,A5,... also converges to A’. Thus the mapping

is continuous and the theorem is proved. D [14, p.366]

The fact that the boundary points are simple

was only used in proving that the mapping is one-to-one.

Without that hypothesis the conformal mapping still gives

a continuous correspondence betWeen the points of the

circle and those of the boundary G. Maria Torhorst,

in her thesis (about 1920), pointed out this fact and

restated Caratheodory's result as follows (see [80, p.63]):
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Theorem 6.14. The boundary of a bounded simply

connected region G is the continuous image of the closed

unit interval iff all the prime ends of G are of first

type.

Torhorst further proved:

Theorem 6.15. Let A be any point of the

boundary Y of a simply connected region G. Then the

following are equivalent:

(i) A is accessible from all sides with

respect to G:

(ii) A is the accessible point of a prime

end of G of first type:

(iii) Y is connected im kleinen at A.

Proof: See [80, p.63].

In short, Torhorst established the logical

equivalence Of all three then known characterizations.

That is,the boundary Y of a bounded simply connected

region G is a continuous image of the closed unit

interval iff

(i) (Schoenflies): every point of Y is

accessible from all sides with respect

to G: or

(ii) (Carathéodory): all the prime ends of

G are Of first type: or

(iii) (Hahn—Mazurkiewicz): Y is connected im

kleinen.

 



CHAPTER VII

EPILOGUE

The period between 1914 and 1920 saw very

little develOpment of the work of Hahn and Mazurkiewicz.

The few results that we were able to locate were

Obtained by two closely associated American mathematicians

R.L. Moore and J.R. Kline. (We are aware of the  
existence of another paper by Mazurkiewicz, written

in 1916, but could not obtain a COpy Of it. The

article was apparently written in Polish, anyway, and

was not, as were many of Mazurkiewicz' other papers,

translated into French or German.)

In 1917, Moore proved the following theorem.

Theorem 7.1. Every two points Of a continuous
 

curve are the endpoints Of at least one simple arc

lying entirely on that curve.

Proof: See [54, p.233].

The proof uses Hahn's definition of connectedness

im kleinen as part Of the characterization of continuous

curve. This theorem is, of course, an extension of some

133



134

Of the earlier work of Mazurkiewicz and Janiszewski

(see Theorem 4.4). Though Moore seems to have been

unaware of the fact, Hahn had already proved a similar

(if somewhat weaker) result in 1914 (see Lemma 5.8).

We have already mentioned (page 93) the next

theorem -- one which MOOre "rediscovered" in 1918.

Theorem 7.2. A bounded, simply connected, two-
 

dimensional region has a simple closed curve as its

 boundary iff it is uniformly connected im kleinen.

Proof: See [55, p.364].

Denjoy had proved the sufficiency of the

condition as early as 1911 (see Theorem 4.6), but Moore

was the first to prove its necessity. He was evidently

unaware Of the works of Denjoy and Brouwer which we

discussed in Chapter IV. Though he credits Hahn with

the definition of uniform connectedness im kleinen, it

was Moore himself who first formulated it as such and

gave it its name.

In 1919, Moore added to Janiszewski's earlier

work (see Chapter IV) the following result.

Theorem 7.3. Every bounded continuum that contains
 

no continuum of condensation is connected im kleinen.

Proof: See [56, p.174].
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The work of J.R. Kline on connectedness im

kleinen prior to 1920 can be assumed up in the following

entry from a 1918 issue of the Bulletin of the American

Mathematical Society [39]:

"Dr. Kline proves the following theorem:

"A necessary and sufficient condition that a

closed, connected, connected in kleinem [sic], plane

point set should be a simple curve is that it divide

its plane into two mutually exclusive domains."

Neither a proof nor an indication of the proof

is included with the note. The paper to which the note

refers was read at a meeting of the American Mathematical

Society in New YOrk, on April 27, 1918, but the text

of that paper was apparently never published elsewhere.

From 1920 on, articles using connectedness im

kleinen began to appear regularly in mathematical

journals in EurOpe and the United States. The first

volume of Fundamenta Mathematicae (1920) contains four

such articles, including Mazurkiewicz' own summary and

extension of his original papers which we have already

discussed. The other three articles are a paper by

Kuratowski [44], one by Sierpinski [79], and a joint paper

by Janiszewski and Kuratowski [34].
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In [44], KuratowSki gave a "purely topological"

definition Of "JOrdan curve," that is, a definition

using only the idea of limit point as the fundamental

notion. To accomplish this, he characterized in tOpo-

logical terms the concept of a point of first genre as

introduced by Mazurkiewicz. Before giving that

icharacterization, we need the following preliminary I“

definitions. A semi-continuum is any set S such that
 

for any pair of points x,y 6 S, there is a continuum , 'Qm

 C c S containing x and y. If M is any set and

p is a point of M, the constituant of M determined
 

221.2 is the largest semi-continuum contained in M

and containing p, that is, if C is the constituant of

M determined by p and S is any other semi-continuum

contained in M and containing p, then S c:C. Let

M 'be a non-empty subset Of a continuum K. .p E M is

an interior point of M relative to K if it is not a
 

limit point of K - M. M is a domain relative to K
 

if every point of M is an interior point with respect

to K. M is a connected domain relative to K if
 

every point of M is an interior point with respect to

K. M is a connected domain relative to K if it is a
 

domain relative to K and each pair of points Of M

is contained in a subcontinuum of M.
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Theorem 7.4. A point p Of a continuum C is
 

of first genre iff for every domain M (relative to C)

containing p, p is an interior point (relative to C)

of the constituant of M determined by p.

Proof: See [44, p.41].

As an immediate consequence Of Theorems 7.4 and

5.4, Kuratowski arrives at the next result, which serves

as his topological definition of a Jordan curve.

Theorem 7.5. A bounded continuum C is a Jordan
 

curve iff every domain relative to C is the union of

connected domains relative to C.

Out of 24 articles appearing in the first volume

of Fundamenta Mathematicae, fourteen were the work of W.

Sierpinski. The one we discuss here, [79], deals with

an interesting property of point sets which is related to

connectedness im kleinen. A set M (in En) is said to

possess property S if for every positive number a,
 

every connected component of M can be expressed as a

. . . . . n . .
f1n1te union of continua (1n E ) each hav1ng diameter

< e-

In Sierpinski's formulation of the property,

M. was taken to be a continuum. The generalization we

have given here is due to R.L. Moore, who, incidentally,
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was the first to call it prOperty S (in honor of

Sierpinski) (see [58]).

As the following theorem shows, prOperty S is

equivalent to connectedness im kleinen for bounded,

closed, connected subsets of En.

Theorem 7.6. A continuum C is a Jordan curve
 

iff it possesses property S.

Proof: See [79, p.44].

TO see that the two concepts are not equivalent

if the set is not closed, consider the half-Open interval

T = (O,l]. T is connected im kleinen but cannot be

expressed as the union of a finite number Of continua.

R.L. Moore [58] has shown that property S is stronger

than connectedness im kleinen but weaker than uniform

connectedness im kleinen when applied to bounded subsets

of En.

The fourth paper, [34], contains only a brief

reference to connectedness im kleinen embodied in the

following theorem on indecomposable continua.

Theorem 7L7. An indecomposable continuum is not
 

connected im kleinen at any of its points.

Proof: See [34, p.217].
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One of the most familiar results in the theory

of connected im kleinen spaces is the following:

Theorem 7.8. The space R is connected im
 

kleinen iff every component of an Open subset of R is

Open.

Proof: See [19, p.113].

This result, first discovered and proved by Hahn

in 1921 (see [23]), is also one of the earliest general

results on connected im kleinen spaces in the literature.

(Incidentally, this paper, too, appeared in one of the

early issues of Fundamenta Mathematicae.) Hahn's original

statement of the theorem was for metric spaces and his

proof, using the idea of convergence Of sequences, is

metric dependent.

The stimulus for Theorem 7.8 can be found in

the following examples. Let R be the space consisting

Of the real line with the closed segments [ghwigfi]

(n = 1,2,...) removed. R itself is an open set and

all Of the components of R are Open (in R) except

one —- the ray (-m,0], since the point x = 0 is not

an interior point of this ray. 'Of course, R is not

connected. But consider the space R’ composed Of R

(situated on the X-axis) together with the sets
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[(O,y):O < ng l}, [(x,1):x e [2%"2HEIJ’ for some

n=l,2 ...], and U [(l/n,y):0<y<l}:

n=1

 
 

m)

      

R’ is connected, but if m is the point (0,;) and

U = [r 6 R’:d(r,m) < é}, then U is open in R’ and

the component of U along the y-axis is not Open.

Hahn observed that neither of these spaces is connected

im kleinen at all of its points and was thus led tO a

formulation Of Theorem 7.8.

As we view the origins of connectedness im

kleinen in retrospect, we can see a definite pattern

of develOpment, one which has Occurred quite Often in the

history of mathematics. An unexpected example challenged

the traditional concept Of "curve". The question was

posed: "What is a curve?" Several attempts were made

to answer that question -- most notable among them the

definitions of Cantor and Jordan. In the process, more

unusual examples were discovered and partial results



141

were obtained to explain them. All Of this occurred

gradually and, out of the work done, there began to

emerge a unifying theme -— indications of which at

first appeared in isolated places here and there and in

a rudimentary form. The underlying concept, connected—

ness im kleinen, was later clarified and put into focus

by the independent efforts Of two mathematicians --

Hahn and Mazurkiewicz.

We emphasize the fact that, as is true with the

development of other mathematical ideas, connectedness

im kleinen was the end product of a synthesizing process

to which many different individuals contributed. Figure

31 illustrates some of the flow of ideas leading to,

paralleling, and coming from the notion of connectedness

im kleinen. On this chart, each solid arrow indicates a

strong influence in the direction of the arrow, while

each dashed arrow represents a significant, though in-

direct influence. Notice that there are two individuals

at the side not tied in with the rest of the chart. This,

too, is consistent with the pattern we have outlined.

Denjoy and Nalli show no definite indication in their

writings of any influence from the others represented

in the diagram. However, as we pointed out earlier, they

were working on the same kinds of problems that Carathéodory

was researching -- namely, the character of the boundaries
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of simply connected domains -— and were motivated by

the same questions.

Connectedness im kleinen, or its more modern

version, local connectedness, has proved to be a useful

mathematical concept through more than 60 years and is

still an active tool of current research. It has passed

the test Of time. Perhaps in seeking out its origins

we have gained an appreciation for the process by which

mathematics itself is develOped. This effort has cer-

tainly supported the Observation Of Wilder and Sarton

that major mathematical concepts are rarely the complete

invention Of one man but are more Often part of the

"mathematical culture stream."
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