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ABSTRACT

THE RING OF CYCLOTOMIC INTEGERS OF MODULUS THIRTEEN

IS NORM-EUCLIDEAN

By

Robert George McKenzie

In this dissertation the ring of integers of the thirteenth cyclotomic field is shown to

be euclidean with respect to the field norm. The basic method, in outline, is to cover the

fundamental cell of the quotient field by numerous small subregions. Then, for each

subregion, an integral point 4 is found such that Norm(x-q) < l for all points x in the

subregion. The generation of subregions, the finding of integral points, and the bounding

of the Norm were all done by a FORTRAN program written for an electronic computer.
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Chapter 1

A Historical Perspective on the Euclidean Problem

§l Euclidean Rings and the First Question.

Over two thousand years ago Euclid gave an algorithmic procedure (still used

today) to compute the greatest common divisor of two positive integers [Eu, Book VII,

Propositions 1-3]. This procedure is called Euclid's algorithm and can be applied to

rings other than the integers. A ring for which Euclid's algorithm will give a greatest

common divisor of two elements is thus known as a euclidean ring. The precise conditions

needed to enable Euclid's algorithm to work are given in the following definition.

Definition 1.1 A ring R is said to be a euclidean ring, or euclidean with

respect to the algorithm v, if there exists a well ordered set W and a mapping

w: R—)W, called a euclidean algorithm, such that for each pair of elements a, b e R,

with b 96 0, there exists a pair of elements 4, r e R satisfying the following two properties:

a=bq+r (1.2)

WV) < Mb). (13)

Thus there are three interrelated concepts. (i) A euclidean ring is a ring satisfying

Definition 1.1. (ii) Euclid's algorithm is a process that can be used on a euclidean ring to

find greatest common divisors. (iii) A euclidean algorithm is a mapping satisfying (1.2)

and (1.3) above. A ring is euclidean when a euclidean algorithm exists for it, and in this

case, Euclid's algorithm can be used (in conjunction with its euclidean algorithm) to find



greatest common divisors. Note that the ring Z of integers is euclidean with respect to the

usual absolute value w( x ) = l x I.

The following nanual question can be asked about any ring.

Question 1.4. Is R euclidean? This will be called the euclidean question.

Note that this is a question about the existence of an algorithm and does not require

the exhibition of any specific algorithm satisfying (1.2) and (1.3).

§2 Number Fields and Two Further Questions.

Because Z is the ring of integers in the algebraic number field Q it is naun'al to pose

the euclidean question for the ring of integers of an arbin'ary number field. Because a

number field is the quotient field of its ring of integers and because it is often difficult to

describe the ring of integers simply, number theorists speak of the number field when they

mean its ring of integers. We will use this abuse of language and speak of a number field

as being or not being euclidean when we mean that its ring of integers is or is not

euclidean.

Henceforth we will let K be an arbitrary number field and R be its ring of integers

-- that is, R consists of those elements of K that satisfy a monic polynomial with

coefficients from Z. A natural generalization to R of the absolute value in Z is the absolute

value of the field norm from K to Q. Thus we have the following definition and question.

Definition 1.5. Let K be a number field with ring of integers R. If R is

euclidean with respect to Mr) = l NormK/Q(x) l we say that K is norm-euclidean.
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Question 1.6. Is K norm-euclidean? This will be called the norm-euclidean

question.

Note that the norm-euclidean question is much more detailed than the euclidean

question, for we are asking that the ring he euclidean with respect to a very specific

algorithm. Of course, if a field is norm-euclidean it is necessarily euclidean. The converse

is an interesting open question: are there fields that are euclidean but not norm-euclidean?

It is immediate that every euclidean ring is principal. Thus a euclidean number field

necessarily has class number one. The following definition will make this more precise.

Definition 1.7. Let K be a number field and I be the group of non-zero

fractional ideals of K. Let P be the group of non-zero principal fractional ideals of K. The

quotient group I/P is known as the class group. The order of UP is known as the class

number of K.

For more about fractional ideals and the class number see [Cu, Chapter III]. The

class number of a number field is finite [Cu, Theorem 20.6], and the field has class number

one if and only if the ring of integers is principal. That is, in a number field K, it is the

class number that measures whether or not R is principal. This leads us to the final

question we will ask about a number field.

Question 1.8. Does K have class number one? This will be called the class

number question.

This question is the weakest of the three, for a norm-euclidean field is necessarily

euclidean, and a euclidean field necessarily has class number one. There are class number

one fields that are not euclidean, for example Q(\IT9) [Mo].
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For a given number field K, the comparative level of difficulty of these questions is

as follows. The class number of K is reasonably easy to compute. When K has class

number one, whether K is norm-euclidean is a more difficult matter to settle. Lastly, if K

has class number one and is not norm-euclidean, it is extremely difficult to determine

whether K is euclidean.

§3 Quadratic Fields

The above questions have been considered for many families of number fields. The

family of fields quadratic over Q has been investigated successfully. For this section d will

be a square free integer, K will be the quadratic field Q0171), and R will be the ring of

integers of K. The cases with d > 0 and d < 0 are different and are dealt with separately.

Let K ,._. Q0171), where d is negative. K is called an imaginary quadratic field.

All three questions: the euclidean question; the norm-euclidean question; and the class

number question, have been settled for all of the imaginary quadratic fields.

It is a classical result that for imaginary quadratic fields K, the class number is one

if d is one of the following nine integers: d = -1, -2, -3, -7, -11, -19, -43, -67, -163.

K. F. Gauss conjectured that these are the only examples [C0, page 151]. This conjecture

was finally shown to be correct in 1967 by H. Stark [S]. Thus these are the only possible

imaginary quadratic candidates for euclidean and norm-euclidean fields.

Historically, the norm-euclidean question and the euclidean question were answered

for the imaginary quadratic fields before the class number question was. It is a classical

result that R is norm-euclidean if and only if d is One of the following five numbers:

d = -1, -2, -3, -7, -11. Finally, it is known that R is not euclidean under any algorithm for
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the remaining four values: d = -19, -43, -67, -163. An excellent proof of all this can be

found in [Lel].

Let K = Q0171), where d is positive. K is called a real quadratic field. The class

number question and the euclidean question are both open in this case. The norm-euclidean

question is completely settled for all real quadratic fields.

The class number has been computed for all reasonable values of d. Gauss

conjectured that there are infinitely many real quadratic fields that have class number one.

This difficult question is still open. A good reference is [C0, chapter 9].

The norm-euclidean question is answered for all real quadratic fields. In particular,

K is norm-euclidean if and only if d is one of the following sixteen numbers: d= 2, 3, 5, 6,

7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73. For references that these fields are all

norm-euclidean, see [Chl]. The difficult part of the previous result is that these are the

only real quadratic norm-euclidean fields. That was settled in 1950 by H. Chatland and

H. Davenport [Ch2]. Both of the above papers falsely list Q(\/9_7) as norm-euclidean.

See [B, theorem 12, pages 318-322] for the truth in this matter.

There are, however, real quadratic fields that do have class number one and that are

not norm-euclidean. Indeed, if Gauss is correct, there are infinitely many of these. For

example, there are twenty three values of d less than 100: d = 14, 22, 23, 31, 38, 41, 43,

46, 47, 53, 59, 61, 62, 67, 69, 71, 77, 83, 86, 89, 93, 94, 97. For each of these, the

euclidean question is open. That is, it is unknown whether or not the field is euclidean

with respect to some algorithm other than the norm (see [Le1]).
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Definition 1.9. Let K be a number field and R be its ring of integers. The

Dedekind zeta function, CK: is the meromorphic extension of

 

1

= , 1.13CW) 1 ER ( Norm/Q0) ), ( )

where the sum runs over the non-zero ideals I C R and s is a complex number with

Re(s) > 1.

Definition 1.10. The generalized Riemann hypothesis is: for each number

field K, all non-trivial (non real) zeros of CK satisfy Re(s) = l/2.

P. J. Weinberger [We] showed that if (i) the generalized Riemann hypothesis is

true, (ii) R has infinitely many units, and (iii) K has class number one, then K is euclidean.

As the only number fields whose ring of integers has finitely many units are the imaginary

quadratic fields, Weinberger's result says, subject to the generalized Riemann hypothesis,

that all the class number one real quadratic fields are euclidean with respect to some

algorithm.

§4 Cyclotomic Fields

The other major family of fields for which these questions have been posed is the

family of cyclotomic fields. These fields were studied systematically in the middle of the

nineteenth century in conjunction with Fermat's "last" theorem [Le4]. Thus the three above

questions are classical in tone.

Let m be a positive integer not congruent to 2 modulo 4, let Cm be a primitive rnm

root of unity, and letK = Q(§m). K is known as a cyclotomic field with modulus m.
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Here R = Z[Cm] is the ring of integers in K. It is known that K has class number one if

and only ifm is one of the following thirty numbers: m= l, 3, 4, 5, 7, 8, 9, 11, 12, 13,

15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84. Of

course, for a particular value of m the class number is a relatively straightforward

computation. The difficult portion of the above result is that these are the only values ofm

for which K has class number one. This was done by J. M. Masley and

H. M. Montgomery in 1976 [Ma]. Thus the class number question has been settled for all

cyclotomic fields.

Of these thirty fields, the norm-euclidean question has been answered ifm is one of

the following fifteen numbers: m= l, 3, 4, 5, 7, 8, 9, ll, 12, 13, 15, 16, 20, 24, 32. It

is known that Q[§32] is not norm-euclidean and that the other fourteen are. Whether

Q[C32] is euclidean with respect to some algorithm other than the norm is not known. For

the remaining fifteen values of m, both the norm-euclidean question and the euclidean

question are open.

Of course, Weinberger's aforementioned result says that all thirty of the above

fields are euclidean if the generalized Riemann hypothesis holds.

The case with m = 1 dates back to Euclid. The case m = 4 can be found in Gauss

[Ga, pages 117-118]. The first published proof for m = 3 was given by P. L. Wantzel

[Wa] in 1847. The case m = 8 was done by G. Eisenstein [Ei, pages 585-587] in 1850.

The case rn = 5 was published by J. Ouspensky [On] in 1909. It is likely that m = 12 was

done before, but the earliest published proof known is due to R. B. Lakien [La] in 1972.

The cases rn = 7,9,11,15,20 were done in a landmark paper by

H. W. Lenstra, Jr. [Le2] in 1975. Lenstra's techniques are fundamental to what follows

in this work. T. Ojala [Oj] did the case m = 16 in 1977. we will also use some of Ojala's
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techniques. Lenstra [Le3] also did the case m = 24 in 1978 using the lattice F3. Finally we

have the case m = 13 which will be shown to be norm-euclidean in this dissertation.

§5 ZIC13]

In what follows in this work, the ring Z[§13] is shown to be norm-euclidean. To

my knowledge, this is the highest degree (12) number field whose ring of integers has been

shown to be norm-euclidean. Consequentially, the method is computationaly laborious.

The basic method, in outline, is to cover F, a fundamental cell of the quotient field

K, by numerous small subregions F1;. Next, for each subregion F,5, an integral point

4 e R is found. Finally, Mx( q ) = max{ ut( z - q): z e Fx} is bounded above, where

My) = l NormK/QQ’) I. Because for each subregion F, there exists an integral point 4 e R

with M,( q) < l, R is norm-euclidean.



Chapter 2

The Theoretical Background

§0 Introduction

The objective of this work is the following theorem.

Theorem 2.1. Let C13 be a primitive 131h root of unity. Then Z[C13] is

norm-euclidean.

The method which we will use to prove Theorem 2.1 is reduction to a large, but

finite, number of cases. A computer program is used to generate and do each case. This

chapter will describe the theoretical background of both the reduction to cases and of what

is done with each case. The next chapter will describe the computer program which

implements the work of this chapter.

Sections 1 through 4 of this chapter are in direct correspondence with sections 1

through 4 of the following chapter.

§1 Passable Points and Sufficient Sets

To prove Theorem 2.1 we will need to employ methods from linear algebra,

combinatorics and analysis. We start by using linear algebra to translate the problem into

the setting of an inner product space.

The methods employed in this work will apply to any cyclotomic field of prime

modulus, so we will work in that generality. From now on, m will be an odd prime

number, C, = C». will be a primitive mth root of unity, R will denote Z[C], and K will denote
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its quotient field Q(C). K is a vector space of dimension 2s over Q, where 2s = m-l. We

will let d be a fixed positive integer. This number d will determine the size of the

subdivision to be carried out.

Let G be the Galois group of K/Q. G is isomorphic with the multiplicative group

of Z/mZ, where we will write 6 = 0,- when o(§) = CI. Note that 0} 0;; = 0}], and that 0.1

is complex conjugation, so denoting the complex conjugate of x by x—, we have that

O'.j(x) = o_j(x) = 0,-( 7).

Definition 2.2. For each x e K define the norm map \II by

2s 3 s

We) = Hojtx) = Haj-(mam = HI up) :2.
j=1 j=1 j=1

Note that \ll(x) is positive definite: that is, w(x) 2 0 with w(x) = 0 only if x = 0.

Further, if x e R, then w(x) e Z. Thus w(R) is contained in the set of non-negative

integers, a well ordered set. We now define an inner product on K.

Definition 2.3. For x, y e K we define the inner product of x and y, also

called the trace form, by

2s

(x.y)=TraceK/Q(x-y—) = 21 0'j( x-T).
J:

Note that the trace form is a rational bilinear symmetric positive definite form on K.

Note also that for the elements C1, . . . , C", which span K as a vector space over Q,

(C‘.U)=m5ij-l. (2.4)
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where 5ij is the Kronecker delta.

Definition 2.5. Let the fundamental cell, F, consist of those vectors in K

which are closer to the origin than to any other point of R. That is:

F = {xe K: forallqe R, llxllSllx-qll },

where Il-II is the distance metric induced by the trace form.

Note that

(4,4)T
llxllSIIx-qll ifandonlyif(x,q)s (2.6)

We also have the following elementary lemma which explains why the fundamental

cell is called "fundamental".

Lemma 2.7. For each x e K there exists p e R such that x—p e F.

Proof. In the topology induced by the trace form on K, R is a discrete subset.

Thus forx e K the set {llx - rll: re R} has a minimal element, say llx-p II. We will

show that for this p, x-p e F. To do this, let q s R be arbitrary and set r = q+p. Then

llx-pll s llx-rll = ||(x-p)-(r-p)l| = ||(x-p)-qll,

so that the conditions of Definition 2.5 are satisfied and x-p e F.
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Definition 2.8. Let S be a subset of K, a e Q and x e K. Define the sets (XS

andS+xby

0tS={0ts: seS} and S+x={s+x: 565}.

For our fixed positive integer d, we define translates of a shrunken fundamental

cell. We are interested in bounding translates of the norm function w on each of these

regions.

Definition 2.9. For each x e K, define the set F; by

F; = (d'1)F +x.

The following definition is one of the two central concepts necessary to prove

Theorem 2.1.

Definition 2.10. We will say, for x e K, thatx is passable when there exists

aqe Rsuchthatforallze waehavew(z-q)< 1.

An immediate consequence of the above definitions is the following lemma which

says that the property of passability is well behaved under translation by elements of R.

Lemma 2.11. For each x e K and p e R, if x is passable then x + p is passable.

Proof. Assume that x is passable and let r e R be chosen so that for each w e Fx

we have w( w-r ) < 1. Consider z e Fx+p. As F(xv) = (Fx)+p, we have that z-p e Fx.

Hence \II( (z-p) - r) < 1. Thus letting q = p+r, we have that there exists q e R such that

for each 2 e Fx+p, w( z-q ) < 1.
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We develop the concept of a sufficient set S. This is the second of the two central

concepts necessary to prove Theorem 2.1. Given Such a set S we will reduce the proof of

Theorem 2.1 to the proof that all elements of S are passable.

Definition 2.12. Let S be a subset of K. We will say that S is sufficient

when the following implication holds -- for R to be euclidean with respect to the algorithm

w, it suffices that every element x e S is passable.

For computational reasons, we are interested in finding a small sufficient set S. To

start with we have:

Proposition 2.13. 51 = (d'1)R is sufficient.

Proof. Assume that each x e (d'1)R is passable. We need to show that R is

euclidean. Let a e R and b e R be given with b ¢ 0. Let 2 = a/b. Noting that Lemma 2.7

says K = U{F+p: p e R}, we can choose p e R such that dze F+p. Then letting

x = p/d we have x e (d'1)R and z 6 F1. As x is assumed to be passable, there exists a

qe R such that w( z-q)< 1. Setting r =a-bq, then a = b q+r and

z-q = (a/b) - q = (r/b) so that w( r/b)< 1. Since w is multiplicative, we have that

ty( r) < ‘l’( b) and R is euclidean with respect to the algorithm w. Thus 51 is a sufficient

set and Proposition 2.13 is proven.

We can get a smaller sufficient set 52 in the following manner.

Proposition 2.14. The following set, 32, is sufficient.

$2 = (d-1)R (W F.
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Proof. Suppose that each element of $2 is passable. We need to show that R is

euclidean with respect to the algorithm w. Let 51 be the set of Proposition 2.13 and let

x e 51. Using Lemma 2.7 select p e R such that x-p e F. As x-p e 52 then by

hypothesis x-p is passable. Thus Lemma 2.11 says that x is passable. Hence all elements

of 51 are passable. Since 51 is sufficient, we conclude that R is euclidean with respect to

the algorithm \y and that $2 is sufficient.

The following lemma, due to H. W. Lenstra, Jr., gives an upper bound for the

radius of the fundamental cell for any prime modulus m. The bound given is the exact

radius, although we will not need that fact.

Lemma 2.15. [Le2, Proposition 3.1] For every x e F we have

"X's/1171‘" (2.16)

Note that Lemma 2.15 shows that F is a bounded set. Thus since S2 is a discrete

subset of F, 52 is a finite set. Using (2.16) and the arithmetic-geometric mean inequality

we can refine $2 to the next set S3 which is somewhat smaller. The following definition

and lemma will be used to define S3.

Definition 2.17. Define the real number L by

_2___

L=~1m-1-13 m—D—l. (2.18)

 

Lemma 2.19. Let x e K. If "x II < L, then x is passable.
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Proof. Letx e K be such that llx II <L and let 2 e Fx. Then by Definition 2.17

and Lemma 2.15 we have that ll 2 ll < x] ml . Note that definition 2.2 gives

3 S U: s

w(z) = H I 01(2) I2 = ( ( l (SJ-(z) lz) ).

j=1 j:1

Then by using the arithmetic-geometric mean inequality we have

s s

m2) s G}: I 0,-(2) I2). (2.20)

f= 1

But I 6m.j(z) | = I 0.,(2) l = | 01(2) land 61(2) 07(2) = 0j(z-7—), so that

s S . 2s 3 2s 3

G2 I 5,-(2) 12) = (jg-{Z I oJ-(z) I2) = (31-1-2 o1057)).

j=1 j=1 j=1

(2.21)

Then noting that by definition 2.3

25

2 Oj(z-T)=(z,z)<m- l, (2.22)

i= 1

we can combine (2.20), (2.21) and (2.22) to get

w(z) < l.



16

This leads to our third sufficient set, S3, which will be refined to the final sufficient

set, S, in section 4. The following proposition is a simple consequence of Proposition

2.14 and Lemma 2.19.

Proposition 2.23. The following set, S3, is sufficient.

s3 = (d'1)R (W F n {x e K: llx 12L}. (2.24)

§2 Standard Form, Reduced Points and Patterns

It is not clear how to generate the elements in S3 directly. However, combinatorial

methods can generate a slightly larger set of points, the set of reduced points.

To begin with, we need the following characterization of elements of K. This

characterization exploits the fact that while C1, . . . , Cm span K as a vector space, they are

not a basis for K.

Lemma 2.25. for every x e K, there exist unique x1,. . . , xm e Q satisfying

the following three conditions:

m

x _._ 2 xi Ci, (2.26)

i= 1

x,- 2 0 for all i , (2.27)

xi = 0 for some j . (2.28)
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Proof. First we prove existence. K is generated as a Q vector-space by

C1,. . . , Cm. Thus there existy1,. . . ,ym 6 quch that

m

x = 2 Yr? .
i=1

Since Cm - 1 = 0 and C =fi l, the zetas are subject to the relation

0 = 2 ti. (2.29)

Letj be chosen so that y; = min{yi}. Define x,- = y,- - yj Then x}: = 0, and for all i, x,- .>_ 0.

Further, using (2.29),

m m m

x=x-0 = 2 YiCi-sz C‘ = 2n?-

l=l t=1 i=1

Next we prove uniqueness. Suppose that x1, . . . , xme Q and y1, . . . , yme Q

both satisfy (2.26), (2.27), and (2.28). Then by (2.26),

m

0 = ,2“ xr-yt') Ci
3 =

But since m is a prime number, (2.29) is the only relation which the zetas satisfy. Thus we

have that

(x1 -y1)=. . . =(xm-ym)- ' (2.30)
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Since by (2.28) there exist j and k with x; = 0 and yk = 0, and since by (2.27) we

have x,- 2 0 and y,- 2 0 for each i, we can conclude from (2.30) that

(Xi'Yi)= (Xj‘Yj)=')’j50

and

(Xi‘J’i ) = (Xk-Yk ) =sz 0.

Thus x,- = y,-, and we have shown uniqueness. This concludes the proof of Lemma

2.25.

Note that forx e K with x1, . . . , xm e Q satisfying (2.26), (2.27), and (2.28),

xe Rifandonlyifxie Zforeachi.

Definition 2.31. Let x e K and let x1, . . . , xm 6 Q satisfy (2.26), (2.27),

and (2.28). When this holds, we say that x1, . . . , xm is the standard form for x.

The following definition will be of use in generating elements of S3.

Definition 2.32. Let x e K and let x1, . . . , xm be the standard form for x.

We will call x reduced when x; < 1 for all i.

- Note that by the uniqueness of the standard form, the concept of reduced depends

only on x and not on its standard form.

We have the following Lemma concerning reduced points and the fundamental cell

Lemma 2.33. Let x e K. If x e F, then x is reduced.
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Proof. Let x1 , . . . , xm be the standard form for x where xj =\0. Let p = -U.

Then p e R, so that, applying Definition 2.5 and equation (2.6) for this p, we can conclude

that

m

211x,- s ”‘71. (2.34)

Similarly, letp = 0* where k is chosen such that xk = max{ x,- }. Then, applying

Definition 2.5 and equation (2.6) for this p, we have

' m

mxk- 2 x; S $. (2.35)

i=1

Combining (2.34) and (2.35) we have

m

mxk S [2 xi]+ "’4le m- 1,

I:

and thus x is reduced since

xiSmax{xi] =ixk S 1-% .

This concludes the proof ofLemma 2.33.

The above results show that the sufficient set S3 is a subset of the set of reduced

points belonging to (d‘1)R. Thus to generate all points of S3 it certainly suffices to generate

all the reduced points belonging to (d'1)R. This is the technique which will be employed.
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Next we introduce the concept of the pattern of a reduced point of (d1)R.

Definition 2.36. Let x e (d‘1)R be reduced. Let x1,. . . , xm be the standard

form for x. For j with 0 S j < d, define a} to be the number of indices 1' such that x,- = j/d.

We will write a = (a0, . . . , ad-1) and say that a is the pattern for x.

Note that by the definition of standard form there exists some index j with xj = 0,

hence a0 2 1. It is also immediate that

m 1 d-l

2 x. = 3 ,2 J a,
l: I:

and

m 1 d—l

2 = _ 2

E1“ 42 £01 “1

(2.37)

(2.38)

(2.39)

The length restriction from Definition 2.17 for membership in S3 can now be

computed from the pattern of a point.
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Lemma 2.40. Let x e (d'1)R have pattern 0. Then

1 d-l d—l

llxllz=fi[m.z jzaj-[ ZjajT J. (2.41)

1=0 J=0

In particular, ifx 6 S3 then

a1 d1
2 -

(dL)2 s m .2 1'2 a,- - [ 201' a,-]2 s. d2 "in—1. (2.42)

1=0 j=

Proof. Since (2.4) gives

(2.38) and (2.39) yield (2.41). Lemma 2.15 and the definition of S3 in (2.24) yield

(2.42).

§3 The Fundamental Cell and Patterns

This section will establish that whether a reduced point, x e (d'1)R, belongs to the

fundamental cell is determinable solely from the pattern, a, of x.

Basic to working with patterns is the symmetric group I‘. We will define F and

give important examples and elementary properties of these permutations next.
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Definition 2.43. Let I‘ be the mth symmetric group, i.e., the set of permutations

of {1, . . . , m}. The group F acts on the vector space K in the following manner: For

xe KandPe l‘with

m

x = z xiCj,

i=1

we define P(x) to be

m

p(x) = 2 xi (3P0), (2.44)

i=1

Each P e I‘ acts linearly on K. This action is well defined, for it respects the

relation (2.29). That is,

m m

P(0>= P( 2 U) = 2 W) = 0. (2.45)
i=1 i=1

Finally, if Q 6 I‘ is such that Q = P4, then

m

P(x) = 2le ti. (2.46)
1 =

This is to say that each P e F acts on K by permuting the spanning set C1, . . . , Cm, hence

the coordinates of each x e K with respect to this spanning set are permuted by P4.
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Note that the set of reduced x e (d'1)R with given pattern a is precisely an orbit

under the action of I‘ on K.

Patterns are invariant under permutations. In general, any property which is

invariant under all permutations is a property which depends only on pattern.

Note also that the galois group G acts on K as a group of permutations. In

particular, recalling that O'flC) = C}, then for x e K with

m

x = 2 xi 0'.

i= 1

we have that

m

0,-(x) = 21x.- C01
1 =

Thus as a permutation, 61(1) 5 ij modulo m. Hence we may think of G as embedded in F.

The other important example of a permutation on K is multiplication by C. That is,

forxe K with

m

x = inci,

i=1
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we have that

m

CI = 2 It Ci“-
i= 1

Thus multiplication by I; can be realized as the permutation P e l‘ where P(i) .=. i + 1

modulo m. This can also be thought of as a circular shift of the coordinates xi.

The above permutations generate the affine group modulo m. This group will play

a significant role in the next section.

Definition 2.47. We will define A, the affine group modulo m, to be the

group of all P e I‘ satisfying, for a, B e Z, with (a,m) = 1,

P(i) 5 ion 4» B (modulo m) (2.48)

It is immediate that the affine group A is generated by the galois group G and

multiplication by C.

The following lemma concerning the symmetric group I‘ is of note.

Lemma 2.49. I‘ is a group of isometries for the trace form. That is, for each

x, y e KandPe I‘,(x,y)=(P(x),P(y)).

Proof. Since C1, . . . , Cm span the vector space K, it suffices to show that

(030') = (P(Ci).P(cj')). But

(Pay), 13(0)) = ( ch’ CAD): mapwpo') ‘ 1: msij ' 1: (Ci: Q )
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We will uncover some relationships Jetween the fundamental cell F and the

symmetric group 1". First we show that F is F-invariant

Lemma 2.50. Ifx e F andP e I‘ then P(x) 6 F.

Proof. Let x and P be as above and note that by the previous lemma we have

II 1: II = II P(x) ll. Note also that R is invariant under P: that is, if q e R then P(q) e R and

P'l(q) e R as well. Thus for an arbitrary q e R we have

||P(x) ll= le IlSlIx-P'1(q) ||= llP(x-P'l(q)) Il= IIP(x) -q|l.

Thus from definition 2.5, P(x) must be an element of F, and the proof of Lemma 2.50 is

complete.

Next we shall work on a series of computational results which will enable us to

determine membership in the fundamental cell entirely from a point's pattern.

To start this process, we will need a better characterization of the fundamental cell.

The following collection of elements of R, defined by H. W. Lenstra, Jr. in [Le2, p461],

will be of use.

Definition 2.51. For every subset A of {1, . . . , m}, define eA to be

Q4: 2 Ci.

£511

The relationship between the points eA and the symmetric group F is given in the

following elementary lemma.
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Lemma 2.52. For every subset A of { 1,. . . , m} and every P e I‘,

P(eA) = eP(A)'

Next we have the exact description of the fundamental cell. The following lemma

states that the fundamental cell is the intersection of half spaces determined by the eA.

Lemma 2.53. [Le2, Lemma 3.3] Let x e K. Then 1: e P if and only if for

every subsetAof{1,. . . , m},

(x, eA) 3 9563—841. (2.54)

The following two definitions and lemma give a preliminary computational method

of determining membership in the fundamental cell.

Definition 2.55. Let x e K, P e F, and y =P(x). Let yl, . . . ,ym be the

standard form fory. Ifyl 2. . . Zym, we say thatP ordersx and thatyl 2 . . . 2y”, is

an ordering of x.

Note that by the uniqueness of standard form guaranteed by Lemma 2.25 and by

the order relationship yl 2 . . . 2 ym, an ordering y1 2 . . . 2 ym is uniquely determined by

the point x although the permutation P may not be.

Definition 2.56. Let x e K and let yl 2. . . 2y", order x. For k with

O S k S m, define the function gx(k) by

m k

ngt) = 1921” - ”1,21)’: +54% (257)
1 = l =



h. .5“ u
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Note that since the ordering yl 2 . . . 2 ym is unique, the function gx is dependent

only on x and not on its ordering.

Lemma 2.58. Letx e Kand letyl 2 . . . By”, order x. Then x e F if and only

iffor each k with O S k S m, gx (k) 2 0.

Proof. We will use Lemma 2.53. To this end, let A be a subset of {1, . . . , m}

containing k elements. Then

(eAaeA) =k(m’k)9

and

m

(x,eA) =m Z Xj-k.2 xi.

je A "1

Thus, applying (2.54), we have that x e P if and only if for all subsets A of

{1,. . . ,m} wehavethat

But the yi's are a permutation of the xi's such that yr, . . . , y; are the k largest of the xi‘s.

Further, the sum of all the xi's is the same as the sum of all the yi's. 'Ihus x e F if and

only if (2.57) holds and the proof of Lemma 2.58 is complete.
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In order to apply Lemma 2.58 to patterns, we will need the finite differences of the

function gx(k). An elementary computation gives the following lemma whose proof is

omitted.

Lemma 2.59. For i with 0 S i S m - 1, we have

m

. - 1 .

Agx(l ) = - m yi+1 + fl2—- l +'21Yj' (2.60)

J:

ForiwithOSiSm-Z, we have

A281“) = m(y.-+1-y.-+2)-1. (2.61)

Finally, we can translate the concept of belonging to the fundamental cell F into

terms totally determinable from the point's pattern.

Proposition 2.62. For x e (d'1)R reduced with pattern a, x e F if and only if

gx(k) 2 O for the following d + 1 values of k = k,-

d - 1

k,-= izjai’ OSde.

(2.63)

Further, 330:4) = g,(0) = o, gx(ko) = gx(m) = o, and forj with (1.1 s j s '1,

, d- 1

8109'): wig-.1) + a,- [1391 “’31- 19.1 + 3,720: 0i} (2.64)
I:
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Proof. Note that kj 2 kj+1, so that

k' - l

81:09) = gx(kj+l) + . 12 Ang).

l=kj+1

Thus by using (2.60) we have

k-l 1 m

8x(kj) = gx(kj+1) + . 2 [Wym + ’12— i + .EIYj} (2.65)
1:1:16}...

Also, for i with kj+1 + 1 S i+1 S kj , we have yi+1 = j/d. Then, since kj - kj+1 = aj,

(2.65) yields

. 1 m k--1

8x(kj) = gx(kj+i) + 0} [— afi- "L;— + 2 )7]: t i . (2.66)

J=1 l=kj+1

andalso

k--1 . 1

. '2, i. = 21,-(19.1 + “5—) (2.67)

l=kj-i-l

Combining (2.66) and (2.67) yields (2.64).

Lastly, using Lemma 2.58, we need only show that gx(k) 2 0 for those k with

k aé kj for any j. Thus we will suppose that k is such that k =fi kj and that 1 S k S m. But

then there is aj with kj+1< k < k} and aj> 1. Also for those 1' with kj+1 < i S kj we have

y: =j/d. 'Ihus Lemma 2.59 says that Azgxm = -1 forr' with kj+1 S iS kj-2. But this says
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that g,(i) is concave downward for i with kj+1 S iS kj. Hence the minimum value of gx(i)

must occur at the end points: i = kj+1 or i = kj. By hypothesis we have that gx(kj+1) 2 0

and gx(kj) 2 0. Thus gx(k) .>. O and this concludes the proof of Proposition 2.62.

§4 The Final Sufficient Set -- Points from Patterns

The preceding sections show that, given a reduced point x e (d'1)R, x is an element

of the sufficient set S3 if and only if its pattern a satisfies (2.42), (2.63) and (2.64). These

are the last of the checks for membership in the final sufficient set, S, which can be done at

the pattern level.

It is time to consider all points belonging to a specific pattern. Here the action of

the affine group A of Definition 2.47 needs to be taken into account.

We have the following lemma which explains our interest in the affine group A.

Lemma 2.68. The norm map w is A-invariant. That is, for x e K and P e A we

have

\V( P00) = \V( x ). (269)

Proof. Let 0t, [3 e Z be such that (0t,m) = 1. Let P e A be given by

P(t)=ia+B. Then ifxe Kis

m

x= 211'?)

i=1
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we have that

m

P(x) = Z x.- CW5).
i = 1

But if of e G, we have that

m m

01(P(x)) = 2 xi 0'00”” = €13 2 xi CU“ = C15 016(x)

i= 1 i= 1

So that, combining (2.70) with Definition 2.2, we have that

J=1

23 23 23

mm» = H 01(P(x))= [[11:13] [[11101de

Butas 23 =m-1 andm is odd,

23

2113 = B’%"'—1)so modulom.

i=1

And, as ((1121) = l,

2323

II one) = II 0,-(x) = \v(x).

i=1 j=1

(2.70)

(2.71)

(2.72)

(2.73)

Then, combining (2.71), (2.72) and (2.73) we have ty(P(x))=\V(x) and the proof of

Lemma 2.68 is concluded.
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An immediate consequence of Lemma 2.68 is the following proposition. .

Proposition 2.74. Let x e K and P e A. Then x is passable if and only if P(x)

is passable.

Proposition 2.74 says that the property of passability needs to be determined only

modulo the action of the group A. In particular, if S is a A-invariant sufficient set, and S '

is a subset of S consisting of one representative of each orbit in S under the action of A,

then S' is sufficient.

It is not clear how to pick a single representative of each A-orbit. However, since

A is 2—transitive on {1, . . . , m}, each orbit contains a representative with selected first

and last coordinates. These ideas will be made more precise in what follows.

The following two definitions will be used to single out one representative of each

A-orbit.

Definition 2.75. Let a = (a0, . . . , 04.1) be a pattern and j' and j" be integers,

not necessarily distinct, satisfying the following three conditions:

0 S j',j" < d, (2.76)

aj'Z l & aj~2 1 (2.77)

a," 2 2, ifj'=j". (2.78)

Then we say that the pair (i'j’)a is a selection for the pattern a.
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We will drop the subscript for the selection when it is clear which pattern is

intended.

Definition 2.79. Let (i’J') be a selection for the pattern 0. Suppose that

y e (d'1)R is reduced with pattern a. If y = (y1, . . . , ym) in standard form with y1=j’/d

and ym=j"/d, we say that y is (i'j") selected.

The (1",1'”)a selected points are simply all those points, with a given pattern, which

have first and last coordinates equal to j’ld andj"/d respectively.

Given a pattern, a, and a selection, (i'J')a, the collection of (j'j")a selected points

will be the representatives of the A-orbits. The following lemma says that for each A-orbit,

there is a representative which is (i’J')a selected.

Lemma 2.80. Let (i’j")a be a selection for the pattern 0. Then for each

x e (d'1)R, reduced with pattern a, there exists a Q s A such that Q(x) is (1",1'")a selected.

Definition 2.81. For each pattern a, let a selection (i'j”)a be fixed. Let

2: = { ye (d‘1)R: y has pattern a & is (i'j")a selected }. (2.82)

This gives us our final sufficient set.

. Proposition 2.83. The following set S is sufficient:

s = (d-1)R F) F f) {xe K: man} 0 2. (2.84)
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For any choices of selections, we get a sufficient set, S, in this manner. However,

different selections will result in a larger or smaller set.

For a fixed pattern, a = (a0, . . . , 04.1), whose points lie in $3, the number of such

points is given by the multinomial coefficient:

m d—l -1

( =m! H of!) . (2.85)
(10.. .ad,1 =0

Let UT)“ be a selection for the pattern a. Let bj be defined by:

aj jaéj'andjaéj"

bj= aj—l j=j'orj=j"whenj'=fij" (2.86)

a,--2 j=j'=j" '

The number of (j'J")a selected points with pattern a is given by the following

multinomial coefficient:

d—l-2 '1

( m ]=(m-2)! [11] 12,-t} . (2.87)
b0. . . bd,1 '=o

Thus the ratio of number of these elements of S3 to number of elements of S is

1114—) ifj'¢j" , (2.88)
01-: ajn
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01'

 ifj' = j" . (2.89)

Thus, in both cases, we want to choose the selection (1",1'")a such that a," and a]... are

minimal subject to (2.76), (2.77) and (2.78).

§5 Passing Points -- Finding a Nearby Integer

To prove Theorem 2.1, we need to show that all the points in our sufficient set S of

(2.84) are passable. Recalling Definition 2.10, we have the following definition.

Definition 2.90. Let x e K and q e R. We will say that x is passed by q

when for all z e F, we have that w(z-q) < 1.

Given an x e S, we can then split the problem of showing that x is passable into

the following two parts:

Find a q 6 R which might pass x.. (2.91)

Given a q 6 R, does q pass x? (2.92)

Combinatorial methods will be used to produce q's for (2.91). Analytic methods

will be used to decide (2.92). We will discuss (2.91) in this section.

To intelligently select q's which might pass a given point x, we will first note that

the norm function w is continuous with respect to the trace form. The value of w at O is
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MO) = 0. Thus \I’ is small in a neighborhood of O. In particular, the proof of Lemma 2.19

shows that if ll 2 l < rim-1, then “1(2) < 1.

Thus if q 6 R is such that ll x-q II is small, we can expect that w(z-q) will be small

for all z e F3;. Of course, by Definition 2.5 we have that II x II S ll x-q II for all q e R. Thus

4 = 0 is the place to start.

By Lemma 2.53, F is the intersection of the half spaces determined by the eA,

where A is any subset of {1,. . . , m}. Thus q = (2,4 are reasonable second choices.

However, there are 2'" subsets of {1, . . . , m}, and there are 2'" - 1 distinct such eA, so

a certain degree of selectivity is indicated

Lemma 2.58 says that to determine if a given x e K lies in F, we need only check

gx(k) 2 0 for k = 0, . . . , m. This is equivalent to checking that

(Lek) 5%.

where ek = 341(k) and where A(k) is a subset of {1, . . . , m} which consists of the indices

of the k largest coordinates of x in standard form. This gives the first set of points q 6 R

for which (2.92) will be checked.

Definition 2.93. Let x e S and suppose that P e F is such that y = P(x) orders

x. Define the set N1(x,P) by

O

m

N1(x,P)= {ek'pz ZCP’IU): ISkSm}.

r=k+l

Note that em}: = O, as the sum is empty.
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While the actual ordering of any x e K is unique, the choice of permutation P e I‘

such that P(x) orders x is not necessarily unique. This leads to the second collection of

"nearby" q 6 R.

Definition 2.94. Let x e S. Define the set N2(x) by

N2(x) = U{ N1(x,P): P(x) ordersx }.

The final collection of q s R which might pass x will be selected more

exhaustively. Recalling that the collection of (2,4 is the set of points which in standard form

have coordinates chosen from the set {0,1}, we have the following definition.

Definition 2.95. Let f be a positive integer. Define the set N3(f ) by:

N3(f) = {qe R: q=(q1,. . . , q,n)instandardform&qiSf}.

The set of all 424 is thus N3(1).

§6 Bounding the Norm w on a Sphere

We turn finally to the analytic portion of this work. Given a x e K and q s R, we

wish to bound w(z-q) for all z e Fx. We will translate the question into one concerning a

function from R3 to R. Our work is a generalization of the work of T. Ojala in [Oj].

First some preliminary definitions. Recall that the Galois group G consists of the

isomorphisms O'j, where 01(C) = U and (i,m) = 1, and that 3 = (m-1)/2.
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Definition 2.96. Let x e S and q 6 R. Define the real numbers C} by

Cj = l 01(q-x) | forj where 1 S j S 3. Define the function f,” from R3—)R by

S

fx,q(21, . . . , 25) = 'H1(6j+2j).

1:

Definition 2.97. Let the real number r be given by

_ 1 \l m2 - 1

' - a ‘22— -

Definition 2.98. Let the real number MI“ be given by

3

M,“ = sup{ fx,q(z1,...,zs): .2192 S r2 }.

I:

The following lemma phrases passability in terms of the behavior of the real

function fx,q.

Lemma 2.99. Let x e S and q e R. IfMM < 1, then x is passed by q.

Proof. Suppose that x is not passed by q. Thus there exists a z e P, such that

ty(z-q)g 2 1. Since 2 e F, then z-x e Fx-x = (d'1)F. Hence Lemma 2.15 says that

llz-xllSéV "Ln-l.
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Then, noting that

23 S

(z-x, z-x ) = 2,11 Oj(z—x) 12: 2121: oj(z-x)12,
J:

we can set 2,- = I Oj(Z-x) I. Then

S

.2 ij S r2.

J = 1

Since by Definition 2.2

S 2

1 s war-q) = H I o,<z-q) I .
J' = 1

then, by taking square roots,

3

1 s H I 6,-(z-q) I.

j= 1

But

8 3

I11 I 01(z-q)| = HI 1 Ojfz-x) - oj(q-x) I.

J = J =

(2.100)

(2.101)

(2.102)



and Definition 2.96 yields

loj(z-x) - oj(q-x) l S | (SJ-(z-x) |+ loj(q-x) l = C} + 2,; (2.103)

Thus, combining (2.101), (2.102), and (2.103) results in

3

1 s “1'11 (cj+zj) = fx,q(zl, . . . , 2,). (2.104)
I =

But (2.100) and our hypothesis yield that

’ fx,q(Zl, . . . , 25) S Mx'q < 1. (2.105)

As (2.104) and (2.105) are in direct contradiction, Lemma 2.99 is proven.

Next we will apply a simple Lagrange multiplier argument to help bound Mm-

Lemma 2.106. Let x e s and q e R be such that x-q ae 0. Let 21, . . . ,2, be

real numbers such that 212 + . . . + 232 S r2 andfx,q(21, . . . , 23) =Mx.q- Then 21, . . . , zs

satisfy the following three conditions:

2120 (forlSsz), (2.107)

S

2 z,-2 = r2, (2.108)

i=1

Zi(7-i+ci)=7-j(zj+cj) (forlSiJSs). (2.109)
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Proof. Since x - q 96 0, then we have that c; = I oj(x-q) |> O for all j. Thus, as

21, . . . , 23 maximizesqu, we have that 2,-2 O and that

s

Mx'q= fx’q(21, . . . , ZS) = H1(Cj+Zj) > O.

I:

The gradient ofqu is

meoe. . . .y.) = ( II (c,-+y,-) . . . .. .l'I <c,-+y,-> ). (2.110)
J#1 J¢s

Thus fo,q(zl, . . . , 23) at 0, and the maximum offm must occur on the boundary of the

sphere of radius r. Thus

2 z-2 = r2.

i=1]

La

3

801,. . . .ys)= (Zlyjzrrz. (2.111)
J:

Then 21, . . . , zs is the maximum offm subject to the constraint g = 0. Thus there exists a

Lagrange multiplier A if 0 with

fo,q(z1,. . . , 25) = AVg(21, . . . , zs).
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But this yields, for 1 S i S 3,-that

H (Cj+zj')) = 212i.

1

So, forlSiSs,

S

Mm: fx,q(zl,. . . , 2,) = .H1(c,-+zj) = 27tz,(c,~+z,-). (2.112)

J:

As the left hand side of (2.112) is independent of i, (2.109) follows and Lemma 2.106 is

proven.

Next we have a proposition which will give an algorithm which is used in practice

to compute an upper bound on M1.4:

Proposition 2.113. Let x e S and q 5 R be such that x-q if: 0. Let z1, . . . , 23

be real numbers such that 212 + . . . + 252 S r2 and fx,q(z1, . . . , 25) = M1“. Let the index

k be chosen such that c = ck = min{cj} and let [3 be a positive real number. Let the positive

real numbers [3} be defined by, for 1 S j S s,

Bj(Bj+c,-)=B(B+c). (2.114)

Let the positive real number 7 be defined by

1/2
s -

_ 7: r13 [121512) . (2.115)
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Then 2]: S [3 implies that 2k 2 y, and Zk 2 [3 implies that zk S 7.

Proof. Using Lemma 2.106 we have that y = z}- and x = Z], satisfy the hyperbolic

relation

y(y+61)=X(X+c). (2.116)

An elementary computation yields that

$3: 723—; (2.117)

£22- 0'2-62
dxz- 2W. (2.118)

Since (:1: 2 c, the graph of (2.116) is increasing and concave upwards in the first quadrant.

Further, (2.114) says that the point (x,y) = (13,131) also lies in the first quadrant on the

graph of (2.116).

If I]: S B, the above remarks show that the secant line from the point (0,0) to the

point ([3,8]) passes above the point (stlj) on the curve. Thus

“
I
?

I
V

a
l
e

and hence

Zj S ifm.



But then

sothat

S -1

21:2 2 '25“ 2 1512) = 72-

i=1

The remaining case is done by reversing the inequalities in the above argument.

This concludes the proof of Proposition 2.113.

Proposition 2.113 gives a method for translating upper bounds on 2k into lower

bounds, and translating lower bounds into upper bounds. As each 2,- is an increasing

function of 21:. this gives upper and lower bounds on all of the zfs. Thus we have both

bounds on Mm-

Lastly, we have a proposition which will enable us, working from an arbitrary

positive real number, to get bounds on Mm-

Proposition 2.119. Let x, q, c, B, and B,- be as in Proposition 2.113. Let the

positive real number A be defined by

S 1/2

7t: (1'2 8,2] . (2.120)

1.er Athen Mx’q Sfx'q(B1, . . . , B3). conversely, iffZ 2.111611 Mx'q fo’q(Bl, . . . , B5).
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Proof. Equation (2.114) defines each Bj as a continuous, strictly increasing

function of B. Thus equation (2.120) defines A as a continuous, strictly increasing

function of B. Since 21,-)0 as B—>O and 1-900 as B—)°°, there exists a unique value of B,

call it Bo, such that the corresponding value of 3. is equal to r.

Conversely, let 21, . . . , 25 be real numbers such that z12 + . . . + 232 S r2 and

fx,q(21, . . . , 23) = MN]. Let 2 = max{Zj}. Then by equations (2.107) and (2.109), if k

is an index such that z = 2k. then c = ck. Thus from equation (2.108), B0 = 2. Further, as

A is an increasing function of B, B < 2 if and only if 3. < r.

But equation (2.127) defines fx,q(B1, . . . , B.) as a function of B, and it is clear that

this is also a continuous, strictly increasing function of B. Thus B < 2 if and only if

fx,q(Bl. . . . . B5) <fx,q(z1, . . . , 23): M14. Thus Proposition 2.119 is proven.

Proposition 2.119 gives us a method which avoids accumulation of numerical error

while we iterate Proposition 2.113. That is, our B's will be selected via Proposition 2.113

and then the 1's calculated via Proposition 2.119. Then if A is larger than r,

fx,q(B1, . . . , 13:) is an upper bound on Mm, and if it is smaller than r,f,4(B1, . . . , BS) is

a lower bound on Mx.q- Finally, if k is close to r, thenfx,q(B1, . . . , 133) is close to MM.



Chapter 3

A Description of the Program and Its Algorithms

§0 Introduction

In the previous chapter we developed a plan of attack to prove that K = Q(Cm) is

norm-euclidean for prime m. Due to the large number of computations involved, a

computer program, written in 1977 ANSI standard FORTRAN, was written to carry out

this plan. This chapter consists of an informal description of the program and a verification

that it does carry out the plan of attack outlined in the previous chapter. Throughout this

chapter we will use bold type for the program's names for variables and routines. The

program listing can be found in Appendix A and flowcharts for each routine in Appendix

B. We will proceed on a procedure by procedure basis.

§1 The Control Routine

The control routine handles bookkeeping and directs the generation and checking of

the points of the sufficient set.

First three files are Opened for the program to write onto: (i) buginfo, onto which

all debugging information is written; (ii) flunk, onto which all points which are not passed

are written; and (iii) runinfo, onto which output is written periodically to reassure the

operator that the program is still running.

The next task performed is to input the following three quantities: (i) m, the value

of the modulus; (ii) d, the size of the partition; and (iii) above, a bound for the final

checker.

46
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Next, all of the counts are initialized, and six flags are inputted to control the

printing of periodic information. Finally, the three procedures which need initialization are

given their initialization call. This completes the initialization section of the control routine.

After initialization is the pattern generation loop. Immediately before the loop the

pattern generator is initialized and the first pattern is returned. The top of the loop checks to

see if the pattern generator has returned a pattern or if all patterns have been generated. If

all patterns have been generated, the program proceeds to the finalization section. Else a

count of the number of returned patterns is incremented, and the cell checking routine is

called to determine if the pattern lies in the fundamental cell or not. If the pattern lies within

the fundamental cell, the pattern is written onto the runinfo file, and the point generation

loop is executed Finally, the bottom of the pattern generation loop generates a new pattern

and loops back to the top.

The point generation loop is invoked from within the pattern generation loop. A

count is kept of the number of points generated and each point is checked after generation.

There are three point checkers which are invoked successively until the point either passes

one of them or is flunked by all three. If the point passes a check the program proceeds to

the bottom of the point generation loop. Else, after each flunk a counter of the number of

points which have flunked that checker is incremented and the next checker is called. If the

point flunks all three checks, its coordinates are written onto the flunk and runinfo files.

The end of the control routine writes all counts onto the runinfo file. If no point

flunked the third and final checker, all points have passed and a congratulatory message is

written, else a consolation message is written. Finally all files are closed and the program

terminates.
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§2 The Pattern Generator

The pattern generator generates and returns patterns for all points in the sufficient

set S defined in (2.83). To do this, it first generates all reduced patterns. Then it subjects

them to a norm check. Only those patterns whose norm is larger than the L of Definition

2.17 and smaller than the bound on the radius ofF of Lemma 2.15 are returned.

The ordering of Definition 3.06 and the algorithm implicit in Proposition 3.07 are

standard and may be found in [N, ch. 5, pp 40-46]. The proofs given are the creations of

this author. They are elementary and are included here for the sake of completeness.

Additional norm calculations have been intertwined with the combinatorial algorithm in

order to minimize the running time of the program.

The pattern generator is called with three input variables and four output variables.

The input variables are m, d, and pflag. The meanings of m and d are the same as that in

the control loop. The logical variable pflag controls the printing of debugging

information. The output variables are a, flag, sum, and count. The pattern is returned in

the integer array a. The logical variableflag indicates if all patterns have been returned or

not. The meaning of the integer variable sum will be given below. Finally the integer

variable count counts the t0tal number of patterns generated -- including those which flunk

the norm checks and are not returned.
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There are two internal integer constants: (bound and ubound. These are the

constants on the left and right sides of the inequalities (2.42) and are used to check the

norm of a pattern. The two important internal variables are ssum and mnorm. If the

point x e (d'1)R is given by x1, . . . , xm in standard form with pattern

a= (ao, . . . , ad.) ), then the values of sum, ssum, and mnorm are given by:

m d-l

sum= 2 dx; = 2 M}, (3.01)

i=1 j=0

m d-l

ssum = 2 (cm-)2 = 2 12a], (3.02)

i=1 j=0

and

mnorm = (dllx ”)2 = m * ssum - sum " sum. (3.03)

Thus sum is the sum of the coordinates of a point x with pattern a, ssum is the

sum of the squares of the coordinates, and mnorm is the square of the norm with respect

to the trace form; All three quantifies have been multiplied by an appropriate power of d so

that they are integers. The variables sum and ssum are used to compute mnorm, and

mnorm is the expression which appears in the middle of the inequalities (2.42).

The pattern generator has two entries: (1) spgen to initialize and create the first

pattern, and (ii) pgen to create the next pattern.

The initialization section spgen computes the two constants for later use: lbound

and ubound. It then computes the first pattern a and the values of sum and ssum for this

pattern. There are two methods to compute the first pattern a: (i) the user may input an
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arbitrary starting pattern, or (ii) the user may allow the machine to select its own starting

pattern. The machine starting pattern is

(do, . . . , 04-1) = (m, 0,. .. , 0). (3.04)

After selection of starting pattern, flag is set equal to .true. and the pattern generator

returns to the calling program

The next pattern section pgen generates the next pattern a and the new values of

sum, ssum, and mnorm for this pattern. If lbound is less than mnorm and mnorm is

less than or equal to abound, then the inequalities (2.42) are satisfied. Thus flag is set

equal to .true. and the routine returns to the calling program. Else by Lemma 2.40 the

pattern cannot belong to the sufficient set S and the routine loops to compute another

pattern. If there are no more patterns, the value offlag is set equal to .false. and the

routine returns to the calling program.

In order to verify that all patterns for the sufficient set S are considered, we will

need the following ideas.

First recall from Definition 2.36 that a pattern a = (ao, . . . , 04.1 ) is a d-tuple of

non-negative integers whose sum is m under the additional restriction that do is positive.

To eliminate this last restriction, we will subtract one from the first coordinate as follows:

Definition 3.05. Given a point x e (d'1)R with pattern a = (ao, . . . , 04.1 ), the

essential pattern of x (or of a) is the d-tuple b = ( bo, . . . , (74.1 ) where b0 = ao-l and

forj) 0, bf: 01'.

Every d-tuple of non-negative integers b = ( b0, . . . , bd.1 ) which sum to m-l is

the essential pattern of the pattern a = ( 1+bo, b1, . . . , bd.1 ). Thus to generate all patterns
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a, it suffices to generate all essential patterns b. To do this we totally order the set of

essential patterns.

Definition 3.06. Let b = ( b0, . . . , bd.1 ) and c = ( c0, . . . , cd.1 ) be essential

patterns with b =16 c. Define k = max[ j: bj ¢ cj }. Then if bk < ck, we say that b < c. This

ordering is called the (reverse) lexicographic ordering.

It is clear that the machine starting pattern (3.04) is minimal with respect to this

ordering.

The essential patterns are generated in lexicographic order. To do this, we need to

characterize the immediate successor of an essential pattern.

Proposition 3.07. Let b = ( b0, . . . , bd.1 ) be an essential pattern. Define i by

i= min{j: bj> O }. If 1' = (H then b is maximal. Else, when i< d—l, define the d-tuple

C=(co.....Cd-1)by

bj j>i+l

bjil j=i+1

Cj: 0 O < j Si (3.08)

bi-l j=0

Then c is the essential pattern that is the immediate successor of b.

Proof: Ifi= d-l, then b= ( O, . . . , 0, m-l )which is clearly maximal.
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For the other case, note that by the definition of i, b,- is positive, so that all of the

cj's are non-negative integers. Further, from (3.08) and the definition of 1’, Ci: 0 for

O<jSiandbj=Ofor0Sj<tZ Clearlywealsohave

d-l d-l

2 C)“: 2 b}: m-l.

j=0 1:0

Thus c is an essential pattern.

Now, as bj= cj forj > i+ 1 and bi“ < cm, we have b < c. Thus c is a successor

to b. We need show that it is the immediate successor. Thus suppose that

e=(eo,. . . ,e44)isanessentialpatternwithbSeSc.

Since bj = c; forj > H 1, we must have bj = e,- = C} by Definition 3.06. Similarly,

since bi+1 + 1 = cm, we have two cases.

Case 1. bi+1 = em. In this case we will show that b = e. To see this note that

b}: e; forjz i+l. Hence since b S e, then b,- Seg. But forj < i, we have that bj=0.

Thus

d—l d1

2e}: S 2e} =m-1.

d1 -1 -

m-1= 2b}: 2111-5

' =i J=l j=0J=0 1'

Hence equality holds throughout. In particular,

1-1

2 e; = 0.

J=0
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But as 8} .>. 0, this implies that forj < i we have e,- = 0 = bj. Thus we have that ej = bj for

jqé iand hence ei= bi, and thus e = b.

Case 2. ei+1= ci+1. In this case we will show that e = c. We will argue by

contradiction and thus suppose that e < 0. Define k = max{ j: ej at cj }, so that ek < ck.

Note that since both the refs and Cj'S add up to m-l, we have that k > 0. But by the case 2

assumption, k S 1'. Thus using (3.08) we have that 0 S ek < ck = 0 which is impossible.

This completes the proof of Proposition 3.07.

Proposition 3.07 gives the method used for computing the next pattern. First

i=min{ j: bj> O} is computed. Then the next essential pattern is generated by

incrementing bi“, setting bo equal to bi-l, and, if i > 0, setting bi equal to 0.

We also have the relationship between the old and new values of sum and ssum,

whose proof, being immediate, is omitted.

Lemma 3.09. Let a be a pattern and let sum and ssum be defined by (3.01) and

(3.02) respectively. Let b be the essential pattern for a, define 1': min[ j: bj > O }, and

suppose i< d—l. Let the values of sum and ssum for the immediate successor to a be

denoted by newsum and newssum respectively. Then

newsum = sum + (i+1) - ibi (3.10)

and

newssum = ssum + (i+1)2 - izbi. (3.11)
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Lemma 2.40, Definition 3.04, and Proposition 3.07 show that the pattern

generator, when started with the machine starting pattern, returns the pattern of all points in

our sufficient set.

§3 Checking The Fundamental Cell

The cell checker determines whether a pattern lies within the fundamental cell or

not.

Recall that the sufficient set S consists of points x e K which satisfy the four

restrictions: (i) x e (d‘1)R, (ii) llx IIZL, (iii) x e F, and (iv) x e 2. As the pattern

generator only returns patterns satisfying (i) and (ii), this cell restriction is the last one

computable in terms of the pattern of a point.

Further note that the pattern generator only returns patterns of reduced points. As

Lemma 2.33 says that all members of the fundamental cell F are reduced, no points of our

sufficient set S will be skipped by considering only reduced points.

The cell checker is called with five input variables and one output variable. The

input variables are: m, d, a, sum, and pflag. The meanings of m and d are as usual.

The variables a and sum are defined in the pattern generator and have the same meanings

here. The variable pflag is a logical variable to control the printing of debugging

information. The output variable is flag. This is a logical variable whose value indicates

whether the pattern lies in the ftmdamental cell or not.

The cell routine has two entries: scell for initialization purposes and cell to

perform the actual checking.

The initialization section scell simply stores the values of m-l and (H in m! and

d1 respectively.
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The cell checking section cell is based on Proposition 2.62. The d-l values of k,

defined in (2.63), are computed starting with kd-1 and ending with k1. Translating (2.63)

into a recursive statement, we get

’9': of + kj+1. (3.12)

In order to use only integer arithmetic, the routine calculates h = d*gx instead of g;

(the division by 2 in the definition of gJr will be taken care of momentarily). As we need to

check if gx is non-negative, this will not affect things.

Writing h(j) = d*gx(k,-), equation (2.64) translates into

h0')=h(i+1)+aj(3um + day-al- m j - d kj+1).

Now using (3.12) we can recursively define h(/) by

ho)=h(i+1)+91%"ifi’ll-ajmjmkj-sum). (3.13)

Note that since m is odd, 0} ( m + aj) is even, so this is indeed a calculation which can be

performed using integer arithmetic.

Thus the cell checking routine initializes k and 1: equal to 0 andj equal to (11. Then

it calculates the next values of k and h using (3.12) and (3.13). If his negative, then the

pattern a cannot lie in the fundamental cell and the routine returns withflag set equal to

.false.. Else j is decremented. Ifj is less than 1, all checks have been successfully

passed and the pattern a does lie in the fundamental cell. Thusflag is set equal to .true.

upon return.
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§4 The Point Generator

The point generator generates all points of the sufficient set S which have a given

pattern. To do this, it first makes a selection for the pattern which is designed to minimize

the number of points to be generated. Then the routine generates all points in lexicographic

order with this pattern and selection. The final restriction on membership in the sufficient

set is thus accounted for by this routine.

Definition 3.15 and Proposition 3.21 are from [R, sect. 2.17, pp 65-67]. They

have been slightly modified to handle the repetitions of coordinates in points with a given

pattern. The proof given for Proposition 3.21 was suggested to us by B. Sagan.

Additional sorting calculations have been intertwined with the combinatorial algorithm in

order to minimize the running time of the program.

The point generator is called with four input variables and three output variables.

The four input variables are m, d, a, and pflag with their usual meanings. The pattern a

has already been passed by the cell checker. The three output variables are x, sort, and

flag. The integer array x holds the coordinates of the point returned. These coordinates

are multiplied by (I so that they are integers. The integer array sort is used to order the

coordinates of the point in x. The logical variable flag indicates if all points have been

generated or not.

The significant internal variable is mart. This is an integer array and is the inverse

of sort. It is used to compute the new value of sort for the next point generated.

The point generating routine has two entries: (i) spoint for initialization purposes,

and (ii) point to generate the next point.
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The initialization section spoint is called once for each pattern. It makes the

selection for the pattern and generates the starting point. Recall that a selection ( j'. j " )a

for a pattern a = ( a0, . . . , ad.1 ) is a pair of indices, not necessarily distinct, such that:

aj’Z 1 & aj"21 "j'aéj"

'I'

af22 j'=_]

As remarked in the previous chapter, the number of points generated is minimized

by choosing a selection ( j', j" ) which minimize a," and of subject to the above restriction.

Thus the initialization section first searches for indices 3 and 33 such that as is the

smallest positive of and ass is the second smallest positive a}. If as > 1, then the selection

chosen is (j',j")= (s, s ). Else as =1 and the selection chosen is (j',j")= (s, 33).

In both cases, x1 is set equal to j' and xm is set equal to j”. These coordinates remain fixed

throughout the generation of all ( j', j ") selected points by the pattern generator. Next the

middle coordinates x2, . . . , xm-1 are filled in in weakly increasing order: that is with

sz. . . Sxm-1.

Then the array sort is computed. This array orders the coordinates of the point x,

such that

xsort(1) 5 xsort(2) S . - - 5 xsort(m)-

Next the inverse array mort is computed. The final action of the initialization section

spoint is to setflag equal to .true. and return to the calling program.

The next point section point generates the next point x and the new values of mort

and sort for this point. The points are generated in lexicographic order. If there are no

more points for this pattern, the variable flag is set equal to .false. and the program
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returns. Else the next point is created by successively transposing coordinates. During the

creation of the next point, the arrays mort and sort are updated.

In order to verify that all points for the pattern a are considered, we will need the

following ideas.

Definition 3.14. Leta be a pattern and ( j ', j ") be a selection for the pattern a.

The set of all x e (d'1)R which have pattern a and are ( j ', j ") selected will be denoted 9.

Throughout the remainder of this section, for each x e 52 we will let x1, . . . , xm

be the standard form for x. Note that for each x e 9, since x is ( j', j”) selected we have

x1 = j'ld and xm = j"/d. In particular, each x e (2 is uniquely determined by the middle

coordinatesxk for2Sk Sm-l.

The following definition parallels that of Definition 3.06 and totally orders 9. Note

that this ordering is, for no good reason, from the opposite end of the m-tuple.

Definition 3.15. Let x e Q and y e D . If x #y we define

k =min{ i: xnéy; }. Then ika<yk, we will say thatx<y. This ordering is called the

lexicographic ordering.

In order to create the immediate successor of a point, we will concentrate our

attention on the places where the coordinates increase. Thus we have the following

definition.

Definition 3.16. Let x c-: Q. We define the set 1,, called the ascent set, by

Is: [ ke Z: 2SkSm-2andxk<xk+1}.
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The following lemma identifies the maximal element of 9. Its proof, being

immediate, is omitted.

Lemma 3.17. Let x e Q. Is is the empty set if and only if x is the largest

element of Q.

When x e Q is not maximal, the last ascent in the coordinates x; is of special

significance. Thus we have the following definition.

Definition 3.18. Let x e D be not maximal. Define the index is by

ix=maxl k:ke 1,}

Note that Lemma 3.17 shows that is is well defined.

Definition 3.19. Letx e D be not maximal. Let 1': ix. Then xi+1,. . . , xm-1

is called the tail of x. Note that

xi+12 1:32 2 . . .2 xm-1.

To create the immediate successor of x e Q, the rightmost coordinate of the tail

which is strictly larger than x,- is also of significance.

Definition 3.20. Let x e Q be not maximal. Let i = ix. We define the index jx

jx=max{j: i<j<mandxj>xg }.

Note that since x,- < n+1, jx is a maximum over a non-empty set and hence well

defined. Also we have is < jx < m.
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Proposition 3.21. Let xe Qbenot maximal. Leti=ix andj=jx. Lety e K

be defined by first interchanging the coordinates x,- and xj, and then by inverting the order

of the (i+1)St through (m-l)St coordinates. That is, y= ( y1, . . . , ym ) where

xk 1 S k <t' or k = m

xj k =1

yk = , . (3.22)

x,- k = l + m -j

Xi+m-k k=fii+m~jandi<k<m

Then y e 9 and y is the immediate successor to x.

Proof. Since y is a permutation of x, y has the same pattern. As the first and last

coordinates were left unchanged, y has the same selection as x and hence y e (2.

For k < i, by (3.22) we have yk =xk. Also xi < x}: yi, so that x < y. Thus we

need to show that y is the immediate successor to x.

Suppose that z s Q is the immediate successor to x. Thus x < z S y. We will

show z=y. Asxk=ykfor 1 Sk<i, we havexk=zk=ykinthis range.

To show that z,- = yi, note that x; S z,- S ys- = xj. But if x; = 2:, then the last

coordinates of z are a rearrangement of the tail of x. Since the tail is weakly decreasing,

any rearrangement would make x > 2. Hence 21' is an element of the tail ofx larger than xi.

It must be the smallest such, since any larger choice makes 2 > y. Thus zi =xj = y,- as

claimed.

Finally, in z we must arrange the remaining elements of x in weakly increasing

order (if not, z > y as before). But the remaining elements of y are in weakly increasing

order, since swapping x,- and x; leaves the tail in weakly decreasing order, and then y is
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obtained by inverting the order of these elements. Hence 2;, = yk for k > i, and Proposition

3.21 is proved.

Note also that inverting the order of the (i+1)St through (m-l)St coordinates can be

accomplished by interchanging the (i+l)St and (m-l)“ coordinates, then interchanging the

(i+2)"d and (m-2)"d, and so on.

Proposition 3.21 gives the method used to compute the next pattern. First i = is

and j = jx are computed. Then x,- and x; are swapped. Then the loop to invert the tail is

initialized by setting i equal to i+1 and j equal to m-l. Then whilst i< j, x,- and x; are

swapped, i is incremented, andj is decremented.

Lastly, we handle the updating of the arrays sort and mort. First note that sort is

a permutation of the indices { 1 , . . . , m }, and recall that the permutation group I‘ acts on

K by permuting the C's -- not the coordinates xi. Thus, as mort is the inverse of sort, we

have that mart is an ordering of x in the sense of Definition 2.55. We need to keep track

of orderings under the action of the permutation group I‘. The following lemma is

immediate.

Lemma 3.23. Let x e K and Q e F be a permutation such that Q orders x. Let

P e I‘ be any permutation. Then QP'1 orders P(x).

A quick consequence of this is the following lemma which tells how to update sort

and mort when two coordinates of the point are interchanged.
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Lemma 3.24. Let x e Q. Let mart be a permutation which orders x. Let i and j

be distinct integers with 1 < i, j < m. Let y 6 Q be obtained from x by interchanging x,-

and xj. Let newmort be the permutation which orders y. Then

mort(j) k = i

newmort(k) = mort(i) k = j (3.25)

mort(k) else

Lemma 3.24 shows how to update mart and hence sort as x is changed, since x is

modified by repeated transpositions. Then the inverse relationship sort is updated by

setting sart(mart(i)) = i and sort(mort(])) = j.

§5 The First Checker

The first checker attempts to pass the point x. It uses the ordering computed by the

point generator to create the set of m "nearby" integers N1 of Definition 2.93. It uses

single precision complex arithmetic and a single iteration of the algorithm implicit in

Proposition 2.113 to bound the M“, of Definition 2.98 for each q 6 N1. As a starting

value for Proposition 2.113 it uses B = rNE where r is defined in Definition 2.97. To

account for floating point error, it will pass x only if it computes that MM < 0.99.

The code for the first checker has been written with a view towards minimizing

execution time. Thus many invariant calculations are performed outside of loops and

stored in temporary locations.

The first checker is called with five input variables and two output variables. The

five input variables are m, d, x, sort, and pflag. The meanings of m, d, and pflag are

as usual. The integer arrays x and sort contain the point to be passed and sorting
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information respectively. They were created by the point generator. The two output

variables are flag and count. The logical variable flag indicates if the point x is passed.

The integer variable count counts the number of times Mm is bounded.

The first checker can be entered at schekl for initialization purposes, or at checkl

to try to pass a particular point.

The initialization section schekl computes internal constants for use with all points

and then returns. The eight significant internal constants are radius, lower, lawer4,

lowrad, bound, bndZs, e, and ed.

The double precision constant radius is set equal to the r of Definition 2.97. The

real constant lower is set equal to rNE, the starting lower bound for Proposition 2.113.

The real constants (mean! and lowrad are set equal to 4*Iower and 2*lower*radius

respectively. These are computed here as they are used inside loops later. The real

constant bound is set equal to 0.99. This is the upper bound used to pass points. The real

constant bnd23 is set equal to bound*2~", as, to speed execution, what is actually bounded

is (23mm.

The complex array e is set equal to the 11" conjugate of the ith power of C:

803/) = 01(0) = C”-

The complex array cd is set equal to e/d.

The point passing section checkl is called to try to pass the point x.

The first task is to convert the integer array x into a complex array xq, where

xq(i) = cfix-q), and q = O.
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Recall that the integer array x consists of the coordinates of x multiplied times d.

That is, x(i) = d-x; where x1 , . . . , xm is the standard form for x. Thus for j with

lSjSa

m m

xq(i) = 0,-(x-0) = 2 xiCif = 2 x(i)*ed(i,j).

i=1 i=1

Next comes the main loop. This computes an upper bound on (25)Mx,q for q 5 N 1.

At the head of the loop count is incremented. Next xq is updated to handle the next

qe N1.

To understand how to get the next q 5 N1, recall that mart orders x in the sense of

Definition 2.55 and that sort is the inverse of mart. Recall also that,

N1=13i,mart315i5mi

where

m

ei,mort= 2 930"“)-

' k=i+l

Thus we have the recursive relationship, for i < m, of

ei,mort = ei+l,mort '1' Csort(i+l) - (3.26)
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Thus if it is not the first time through the loop, the new value for xq(j) is computed

from the old by subtracting oj(C30"(i+1)). That is, if i < m, the first checker redefines

1:40) by

xq(j) := xq(j) - e(sort(i+l),j).

Next c(i). the magnitude of xq(j), is computed. Concurrently with this

computation, the minimal c(j) is determined and stored in cmin.

Next comes the calculation applying Proposition 2.113. This computes an upper

bound for 2):.

Recall that k is an index such that 2k = max{Zj}. Thus 21‘ 2 lower. Solving

(2.114) for B} yields that

 

 

13‘ _ '6')“ + ‘1 612 + 4*lower*(cmin+lower)

J - 2

We store in temp] the value independent ofj:

temp] := 4*lawer*(cmin+lawer) = lower4*(cmin+lawer).

What is computed is not Bj but temp2 = 2B,; Thus we set

 

temp2 := -c(j) + \/ c(j)*c(j) + temp]
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Define length by

S S

length: 201392 = 2 (temp2)2,

j: 1 j: 1

then Proposition 2.113 says that

2*lower*r _ lawrad

\(length - 1] length '

This upper bound for Zk is called upper.

Next upper bounds for the zjs are calculated along with an upper bound, ubound,

for the value of (20%“. This can be done as (2.109) defines zj as an increasing function

of 21;:

 

._ -ci + \( c;2 + 4*zk*(cmin+zk)

Z] — f .

Using temp] as before,

temp] = 4*upper*(cmin+upper),

we conclude that

 

2(2j + 6}) S ej+ \/ (:12 + temp] .
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Thus, defining ubound by '

 
s

ubound= H ( c(j) + \/ c(j)*c(j) + temp] ),

j=1

we have that

S

(2S)Mx,q= (2%,,(21 , . . . ,zs) = [I 2(zj+c,-) s abound.

1' = 1

Finally, if abound is less than bndZs, the point passes. That is, flag is set equal

to .true. and the first checker returns to the calling program. Else the first checker loops

for the next q 6 N1. IfN1 has been exhausted the point has not passed. Thus flag is set

equal to .false. before the first checker returns.

§6 The Second Checker

The second checker attempts to pass the point x. It computes the set N2 of

Definition 2.94. Then, for each q 6 N2, the actual bounding of Mx.q is done in the

separate routine named slick.

The strategy of using separate checkers minimizes the running time of the program.

The earlier, less exhaustive, checkers are also faster. Only when it is clear, by flunking the

previous checker, that more attention is needed to pass a given point, is that point turned

over to the next checker for a more detailed examination.
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The second checker is called with four input variables and two output variables.

The four input variables are m, d, x, and pflag, and the two output variables areflag and

count; all with the usual meaning.

The initialization section schek2 computes two internal constants for later use and

then returns.

To understand the operation of the point checking section check2 we will need the

following ideas. Throughout the rest of this section, the point x e S will be fixed, with

x1 , . . . , xm being its standard form. We start with a definition.

Definition 3.27. Let j be such that 0 S j < d. Define the set A] by

A}: {1: xi=§ }

Note that ifx has pattern a = (00 , . . . , as“ ), then a,- is the number of elements in

The following pair of definitions will result in the set N2 of Definition 2.94.

Definition 3.28. Let j be such that OSj< d. Define pie R and, for each

subsetA :Aj, pi“; e R by

pj= EC" and FLA: ZU-

ieAj ieA
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Definition 3.29. Let j be such that 0 S j< (1. Define qje R and, for each

subset A :Aj, 41,11 6 R by

qj= 2p: and qj,.4=pj.A+ 2m.

iZj i>j

Note that for any two subsets A c; A; and B c A}, we have qjsq - q”; =pjs4 - P133.

It is also evident that qo = 0. It is this collection of q's which forms the set N2.

Proposition 3.30.

N2={qj,A: OSj<dandAgAj}. (3.31)

Proof. Immediate from the definitions.

Now we can describe the second checker. The first task of the second checker is to

determine the sets Aj. These are stored in the integer array b where

Aj= [ b(j,i): lSiSaj }.

Next comes the main loop. This 100p is indexed with the variablej which runs from d-l

down to 0. For each value ofj, all non-empty subsets A c; Aj are generated. This is done

by generating all non-empty subsets I c; [1, . . . , q 1. These are stored in the integer

array ii, which is the characteristic function of the set I.

The subsets I are generated in lexicographical order by treating it as a binary

number with each array element, ii(k), as one binary digit and simply adding and carrying.

If a carry occurs past the afh digit, then all non-empty subsets I g { 1, . . . , a}: } have been
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found and the routine loops for the next j. Else the set I is given by I = { k: ii(k) = 1},

and the corresponding setA is given byA = { b(j,k): ii(k) = 1].

Next count is incremented. Then the next q 6 N2 is found by modifying the

previous one to account for this subset A c Aj. In particular, the second checker defines

q = qu by setting

Q(bUsill == 170'),

for i with 1 S iS a}. Here we have that e1 , . . . , cm is the standard form for q, and the

array entry q(i) is the value of ei, which is either 0 or 1. Note that as i runs from 1 to a},

then b(j,i) runs over all elements of Aj. Also for A = Aj, which is the last A generated for

each j, qj_,4 = Qj+1,¢ = qj+1. Thus empty subsets need not be considered.

Finally, once the qe N2 has been found, the routine slick is called to see if x

passes with this q. The routine slick returns this information in the logical variableflag

which is returned equal to .true. when x has passed and returned equal to .false. when x

has not passed. Thus flag is tested, and if the point has passed, the second checker

returns to the calling program. Else the second checker loops to calculate the next subset

AgAj.

Finally, if all the digitsj have been exhausted, the second checker has considered

all q 6 N2 and x has not passed. Asflag must be .false. at this stage, the second checker

simply returns.
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§7 The Third Checker

The third checker attempts to pass the point x. It computes the set N3 of Definition

2.95. Then, for each q 6 N3, the actual bounding ofMm is done in the separate routine

named slick.

As the set N3 is essentially an exhaustive listing of R, the method used to generate

N3 is essentially the method used to generate the sufficient set S by the control routine.

That is, the third checker first generates patterns and then points from patterns. The third

checker consists of a control routine check3, a pattern generator pgen3, and a point

generator point3. We will describe the control routine check3 in some detail and only

indicate how the pattern and point generators differ from their counterparts described in

sections 2 and 4 respectively.

The third checker is called with five input variables and two output variables. The

five input variables are m, d, f, x, and pflag, and the two output variables are flag and

count. The only one needing explanation is the integer variable 1', which controls the size

of the set N3.

The third checker check3 has but a single entry named check3 and does not need

to be initialized. The routine slick, which is used by the third checker, must have been

initialized (using the entry sslick) before the third checker was called.

The first task of the third checker is to initialize the point checking routine slick

(using the entry xslick) for this point.

Next is the pattern generation loop. Patterns are generated with the bound 1+f

substituted for the d of the control routine. Immediately before the loop the pattern

generator is initialized and the first pattern is returned. The top of the loop checks to see if

the pattern generator has returned a pattern or if all patterns have been generated. If all
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patterns have been generated, the point has not passed and the third checker returns to the

calling program. Next the point generation loop is executed. Finally, the bottom of the

pattern generation loop generates a new pattern and loops back to the top.

The point generation loop is invoked from within the pattern generation loop. The

points generated are stored in the integer array q. Immediately before the loop the point

generator is initialized and the first point is returned The top of the loop checks to see if

the point generator has returned a point or if all points have been generated. If all points

have been generated, the program exits the point generation loop and returns to the pattern

generation loop. Else a count of the number of points generated is incremented and the

point checker slick is called. If the point passes the check, the third checker returns to the

calling program. Else, the bottom of the point generation loop generates the next point for

that pattern and loops back to the top.

The pattern generator pgen3 is essentially the pattern generator of section 2. It has

been modified by the removal of all norm calculations and returns all patterns that it

generates. It is called with f+1 in place of d. Thus it returns the pattern of all integers

qe R,whereq1, . . . ,qm isthestandardformforqandOSqSfl

The point generator point3 is essentially the point generator of section 4. It has

been modified by the removal of all selection calculations. It thus permutes all coordinates

q1 through qm, not just q2 through qm.1 as the point generator of section 4 does. It is also

called withf+1 in place of d. Recall that the point generator of section 4 returns integers x

stored in the array x where x(i) is the 1‘“ coordinate ofx multiplied times d. Thus the point

generator of section 4 returned x where O S x(i) < d. Thus the change from x e (d‘1)R to

q e R is. accomplished by assuming that the q returned by the point generator point3

contains the exact coordinate of q.
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§8 Slick, the Point Passer

The point passer bounds the value of MJr,q. Using double precision arithmetic, it

uses Proposition 2.119 to compute bounds on the value ofM1.4: To start it uses the value

B = r, where r is defined in Definition 2.97. For further values of B, it applies Proposition

2.113, yielding successive upper and lower bounds for Mm. To account for floating point

error, it will pass x only if it computes that MM < 1 - 105. The point passer will flunk x if

one of three events occur: (1) it computes that MM, > 1 + 1045, (ii) the algorithm of

Proposition 2.113 fails to converge, or (iii) if the algorithm of Proposition 2.113 converges

to a value in between 1 - 10'6 and l + 1045.

The point passer is called with five input variables, m, d, x, q, and pflag; and one

output variable,flag. The integer array q contains the integer q 6 R with respect to which

x is to be passed.

The point passer has three entries: (i) sslick for global initialization purposes, (ii)

xslick for initialization purposes for a particular x, and (iii) slick to try to pass a particular

point x with respect to a particular integer q.

The global initialization section sslick computes internal constants for use with all

points x and integers q and then returns. The eight significant internal constants are

radius, radsqd, difbnd, cntbnd, akbnd, nokbnd, e, and ed.

_ The double precision constant radius is set equal to the r of Definition 2.97. The

double precision constant radsqd is set equal to r2. The double precision constant difbnd

is set equal to 1040, a bound to indicate that convergence has occurred. The integer

constant cntbnd is set equal to 100, a bound to indicate that convergence has not occurred.

The double precision constants okbnd and nokbnd are set equal to 0.999999 and
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1.000001 respectively. These are the upper and lower bounds used to respectively pass or

flunk points.

The double precision complex array e is set equal to the 11" conjugate of the :1“

power of C, and the double precision complex array ed is set equal to e/d as in the first

checker. Each array is stored as two double precision arrays containing the real and

imaginary parts separately.

The initialization section xslick is called once for each point x. Its task is to

convert the integer array x into double precision arrays realx and imagx. Here the parts

of the 11" conjugate of the point x are given by

realx(j) := real(oj(x)) & imagx(i) := imag(oj(x)).

After the initialization section xslick has been called, the point passing section

slick can be called repeatedly for differing q's to try to pass the point x e S.

First c(j), the magnitude of oj(x-q), is computed. Concurrently with this

computation, the minimal c(j) is determined and stored in cmin. Finally, the starting

value of B = r is stored in the variable approx and the number of iterations in count is

iniu'alized at 0.

Next comes the calculation applying Proposition 2.119. The values of B; are

computed and kept in the variable temp2. Simultaneously, the values for length and

bound are computed. Here

3

length: 2 B12

i=1
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and

S

bound: H ( Cj+ Bj ) =fx.q(Bl ’ - - - i (33)

i=1

Then the variable diff is set equal to length- radsqd. This is tested in accordance

to Proposition 2.119 to see if we have an upper bound on Mx.q or a lower bound. To

allow simultaneously for convergence to the true value, we check for an upper bound when

diff is greater than or equal to -dijbnd, and for a lower bound when diff is less than or

equal to +difbnd.

If bound is less than akbnd, then the point passes, flag is set equal to .true.,

and the routine returns to the calling program. If bound is greater than nokbnd, then the

point flunks andflag is set equal to .false. before the routine returns.

Lastly, the absolute value of diff is checked. If this is greater than diflmd, then

convergence has not yet occurred. Thus a new value of approx is computed, in

accordance with Proposition 2.113, by

approx "' radius

‘1 length

 approx :=

Then the routine loops. Of course, there is a fail-safe limit on the number of

iterations so that the routine cannot loop forever. This is stored in cntbnd.

On the other hand, if the absolute value of diff is less than or equal to difbnd,

then the routine has converged and the value of bound is approximately 1 -- that is, is

greater than akbnd and less than nokbnd. As these cases are not decidable, the point is

flunked if this occurs. Thusflag is set equal to .false. and the routine returns.



Chapter 4

Bounding the Growth of Floating Point Error

§0 Introduction

The program written to pass all the points of the sufficient set S involves arithmetic

of two kinds. The generation of points and patterns uses only integer arithmetic. Thus it is

not subject to floating point error. The estimation of the maximum M14 is done in an

s-dimensional real vector space and may induce floating point error. The algorithms used

in the routines checkl and slick make allowance for floating point error. The purpose of

this chapter is to prove that those allowances are sufficient.

First some notation to be used throughout this chapter. Real numbers will be

denoted by Latin letters (with the exception of our mth root of unity, which will still be

denoted by C). Their machine floating point approximations will be denoted by bold Latin

letters. In general, the program's names for quantities will be used. For example, the r of

Definition 2.97 will be denoted radius, with its machine representation denoted radius.

The errors in the machine approximations will be denoted by subscripted e's. The

symbol 8 will stand for machine erro -- for the machine on which the program ran, the

single precision value of 6 is 2‘24 while the double precision value of 8 is 2‘53 .

Subscripted 8’s will stand for arbitrary errors smaller, in absolute value, than the machine

error 8.

It is assumed that all operations are carried out with extra precision, and that the

error occurs when quantities are rounded back to the machine word length. Quadratic error

76
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terms will be neglected throughout. For the sake of brevity of exposition, equalities will be

used when approximations are (technically) meant.

A certain amount of preliminary processing of invariant quantities was removed

from within loops in order to minimize the running time of the program. For the purpose

of analyzing the growth of floating point error, we will assume that these calculations are

performed within the loops. Also, the variable names in the following discussion have

been slightly modified from the actual names in the program for the sake of clarity of

exposition.

This chapter will start with two preliminary sections. The first bounds the size of

various quantities. The second gives a general error estimation used extensively later. The

last four sections deal with the actual numerical calculations.

§l Bounding size

We assume throughout this chapter that x e S (see Proposition 2.83) and that

x1, . . . , xm is its standard form. We will let x(i) be the machine representative for d-xi.

Recall that this means that each x(i) is an integer. We will assume throughout this section

that q 6 N30) (see Definition 2.95). We first wish to bound lo,(x) I, where of is an

element of the Galois group G.

Lemma 4.01.

16,-(x) I s %‘1' . (4.02)
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Proof. Since x e F, lemma 2.15 says

’m2 -l
“x H S T. (4.03)

But, from the definition of the Trace form,

23 3

||xll2= Z 16,-(x) 12:2 21610012.

j: 1 j: 1

Hence, for each j,

16,-(x) I sLuxn ,
\/_2

and equation (4.02) follows.

Next we wish to bound 6": Icy-(x - q) I.

Lemma 4.04.

61.5 Tm'1 .111, (4.05)
‘18

Proof. By Definition 2.93,

m

0j(q)= 2 WC".

i=1
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where qi e Z with 0 S q,- Sf. Setting y,- = qi-f/2, we have

m

Oj(4)= 2 )’i C”.

i=1

where Iyi I Sf/2. Thus,

2 m m 2 m2

II o,(q ) II = m .21in - ( fly.) 5 . (4.06)

I: l =

Thus, combining (4.03) and (4.06), we have that

llx-q us \/-’"—1-2'—1—+%i.

Hence, in a similar manner as in Lemma 4.01, equation (4.05) follows and lemma 4.04 is

proven.

A slight modification of the proof of Lemma 4.04 yields the following lemma,

whose proof will be omitted.

Lemma 4.07. Let cmin = min{cJ-: 1 SjS 3 }. Then

cm s N / fi‘ml— s»??? (4.08)

Lastly, we need to bound the output of Proposition 2.113.
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Lemma 4.09. Let approx be a positive real number. Define

 

tem __ —cj + \j c} + 4-approx-(approx+cmg,,)

p} ‘ 2 7

 

3

length: 2 temp,2 ,

j: 1

 

and

newa rox _ approx-radius

pp \I length

Then

92“,“ approx S temp,- S approx ,

J

2 2
(approx) S length S s-(approx) ,

and

radius

«1?

 

S newapprox S radius .

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Proof. Letting y = tempj, we have that y is the positive solution to equation

(2.116) where x= approx and c = Cmin- Using equations (2.117) and (2.118), we have

that the secant line from (0,0) to (x,y) has greater slope than the tangent line at (0,0). Thus
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the left-most inequality of (4.13) follows. The right-most inequality of (4.13) is clear from

(4. l 0).

Noting that, for some j, of = ems-n, (4.14) follows from (4.13). Equation (4.15) is a

direct consequence of (4.14). Thus Lemma 4.09 is proven.

§2 A preliminary error estimation

Lemma 4.16. Let a1, . . . , an and b1,. . . , bu be real numbers. Let

a(l), . . . , a(n) and b(l), . . . , b(n) be their machine representations with errors given

by a(i) - a5: a; and b(i) - bi: 131‘- Let the partial sums be recursively defined by

si = 5121+ aibi, s(i) = s(i-1)+ a(i)*b(i), 31 = a1b1, and s(l) = a(1)*b(1). Then the

error, s(n) - 3", on the summation can be approximated by:

n , n

2 (brat + 0431' + arbi51,i) + 2: 81:52,): (4.17)

i= 1 k = 2

Proof: Let t,- = aibi. There exist real numbers 81;, with l 81,,- IS 8, such that:

1(1')=ll(i)"I b(i)=(0i+0li)(bi+l5i)(1+51,i)-

Thus, if we define t,- by t,- = t(i) - t;, we have

’t,‘ = aiBi + bias + ‘i51,i . (4.18)

Define a,- by 0;: s(i) - 3;. Then, for some 82,,- with l 82,,- IS 8

s(i)=3(i-l)+t(i) =(si-1+0i-1+ti+1:i)(l +521).
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Thus,

O',‘ =O'i-1 + Ii + 3152,; .

A simple induction gives

n n

on: 2 1,4 2 ska”. (4.19)

i=1 k=2

Combining (4.18) and (4.19) yields (4.17), and Lemma 4.16 is proven.

§3 Initializing the single precision routine checkl

We will assume throughout the next two sections that q 6 N1(x,mort) (see

Definition 2.93). Note that N1(x,mart) : N3(f) withf= 1.

The subroutine checkl does two different things. It runs through those q which

belong to N1(x,mart). Secondly, it puts an upper bound on the value of Mm]. It is this

process which will be analyzed in the next two sections.

A summary of the initializing stages of the algorithm follows. We refer the reader

to §5 of Chapter 3 for a more precise description and to Appendix A for the program

listing.

This section will analyze the following steps. First is an initialization, which is

done in double precision with the results rounded back into single precision variables.

Next the conjugates of x and of x- q are computed as complex numbers. Then the

magnitudes, Cj , are computed.
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We will follow each result with the values for m = 13, when d = 6 and d = 7.

These are the values of m and d for which the program was run. These values will be

expressed, except as otherwise stated, in multiples of machine error, 8.

We will start with the error on x as a complex number. In order to make the

estimate as sharp as possible, we will use the following definitions.

Definition 4.20. Let the real number 0 be defined by 0 = 27t/m.

Definition 4.21. Let k and j be integers with lSk Sm and 1Ssz. We

define the real numbers P”, N”, and MI:J by

P” = 2 cos(ij0) , (4.22)

l

1 S i S k

cos(ij0) > 0

Nu = 2 cos(ij0) , (4.23)

l

l S i S k

cos(ij0) < 0

and

MAI: max{ Pu; -NkJ'} . (4.24)



Lemma 4.25. Let realx(j) be the machine representation of Re(oj(x)). Let

51.}: realx(j)- Re(oj(x)). Then

m m

teljls%l(2 2 |cos(i0)l+ Z Mk,,)6

Table 1. 81: the error on realx(j).

i=1

 

 

j d=6 d=7

1 43. 6844 1168 44. 9325 3773

2 40. 6735 2500 41. 8356 2572

3 40. 1307 0182 41. 2772 9330

4 39. 5999 1409 40. 7313 4020

5 39. 1547 1817 40. 2734 2440

6 38. 9436 4966 40. 0563 2537
 

 

Proof. We use Lemma 4.16. If the real part of ed(ij) is given by realed(i,j),

then the error on this is given by (d'1)cos(ij0) 81,“, as cd is calculated with double

precision and the result rounded back to a single precision quantity. Thus, as

m

realx(j) = 2 x(i) "' realed(isi) .

i= 1

the error on the summation can be approximated by

m m k

2 xicos(ij0)(81,iJ+82,iJ)+ 2 [2 xicos(ije)]83,kj. (4.27)

i=1 k=2 i=1
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Now, the first term of equation (4.27) is bounded by

i=1

d1 m
27}[ 2 lcos(i0)| ]8 (4.28)

To bound the second term of equation (4.27), we need to bound the quantity

k

| 2 x,- cos(ij0) I (4.29)

i=1

But (4.29) is maximized when there is no additive cancellation within the summation. That

is, for some choice (+ or -) of sign, x; is (d-1)/d for those values of i when cos(ij0) has

that sign, and x,- is 0 for those values of i when cos(ij0) has the opposite sign. Then

Definition 4.21 yields that the second term is bounded by

m

£314 2: MN) 5- (4°30)
k=2

Combining the bounds (4.28) and (4.30) with the error (4.27) yields (4.26). Thus Lemma

4.25 is proven.

Definition 4.31. Let k and j be integers with lSkSm and 1Ssz. We

define the real numbers I"); °, N'2 , and M'kJ as in Definition 4.21 by replacing cosine

with sine throughout.

Now the result analogous to Lemma 4.25 can be given.
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Lemma 4.32. Let imagx(j) be the machine representation of Im(oj(x)). Let

82‘): imagx(j) - Im(oj(x)). Then

"I m

|€2J|S%L(2 2 lsin(i0)|+ Z M'kJ') 5 (4.33)

i=1 k=2

Table 2. 82: the error on imagx(j).

 

 

j d=6 d=7

1 50. 0637 9637 51. 4941 9055

2 44. 0401 0265 45. 2983 9131

3 41. 9722 6918 43. 1714 7687

4 41. 0932 3891 42. 2673 3145

5 40. 8378 3755 42. 0046 3290

6 40. 9792 7505 42. 1501 1148  
 

The next task of the routine checkl is to compute x- q. Again, we will do the real

part and simply give the result for the imaginary part. Also, to sharpen the estimate, we

will use the following definitions.

Definition 4.34. Let k be an integer with IS k Sm. We define the real

numbers Pk, Nk, and Mk by

Pk=max{ 2cos(i9)2 K<;{l,...,m}and#K=k}, (4.35)

ieK

Nk=min{ Zeosae): K;{1,...,m}and#K=k}, (4.36)

ieK
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and

Mk = max{ Pk, - N), }. (4.37)

Lemma 4.38. Let realxq(i) be the machine representation of Re(o,(x-q)). Let

83‘,- = realxq(l') - Re(oj(x-q)). Then

m m-l

|83J|S|£1JI+((m-l)‘\/m7i-l- + 2 lcos(i0)l+ ZMk)-8 (4.39)

=1i=1 k

Table 3. 83: the error on realxq(j).

 

 

j d=6 d=7

1 118. 1433 718 119. 3914 978

2 115. 1324 851 116. 2945 858

3 114. 5896 619 115. 7362 534

4 114. 0588 742 115. 1903 003

5 113. 6136 782 114. 7323 845

6 113. 4026 097 114. 5152 854
 

 

Proof. We use a modification of Lemma 4.16, as realxq(i) is obtained from

realx(j) by repeated subtraction of the terms which comprise the conjugates of q. In

particular, there exists a permutation P e I‘ such that for each q, there is an integer k with

l S k < m and

k

realxq(i) = realx(j) - 2 reale(P(i)sj).

i=1
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Thus we define the partial sums by

n

s(nsj) = realx(j) - 2 reale(P(i),j)

i=1

and

n

s”: Re(oj(x)) - 2 cos( P(i)j0 ).

i=1

Then an = 3,.-1j - cos(P(n)j0) and s(nj) = s(n-lJ) - 8(1’(HM). Thus if the error O‘n.j

is defined by any: s(nJ) - 5N, we have

s(no) = ( 6.1,,- + 0.1,,- - (1+81,.,;)'cos<P(n)je) ) (H62...)

Thus we have the following recursive relation on the 6's:

on = (n-1,; - COS(P(n)j9)51.nJ + an52.nJ .

where 00‘,- = 81 j. An induction yields that

n n

Onj=81j- 2 cos(P(i)j0)81,iJ- + 2 3kJ-82ch.

i: 1 k = l
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Hence we can conclude that

m-l m-l

lesjlsleiyl+6( 2 lcos(P(i)j0)|+ Z lskJ-l).

i=1 k=1

Now, the first term inside the parenthesis in (4.40) is bounded by

m

2 l cos(i0) l

i=1

To bound the second term, we need to bound the quantity

k

lskd- I = l Re(o,(x)) - 2 cos( P(i)j0 ) I

1': 1

(4.40)

(4.41)

(4.42)

By Lemma 4.01, the first term of (4.42) is bounded by equation (4.02). The

second term of (4.42), in absolute value, is maximized when there is as little additive

cancellation as possible within the summation. Thus by Definition 4.19, the second term

of (4.42) is bounded by Mk. Hence the second term inside the parenthesis in (4.40) is

bounded by

m-l

25417—989- (4.43)

Using the bounds (4.41) and (4.43) on the error in (4.40) yields (4.39). Thus Lemma

4.38 is proven.
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Definition 4.44. Let k be an integer with l S k Sm. We define the real

numbers P'k, N 'k. and M 'k as in Definition 4.19 by replacing cosine with sine

throughout.

Now the result analogous to Lemma 4.38 can be given.

Lemma 4.45. Let imagqu) be the machine representation of Im(o,-(x-q)). Let

84‘,- = imagxq(j) - Im(oj(x-q)). Then

m m-l

l€4J|S|e2J|+((m-1)‘\/m7j-l- + 21s1n(i0)l+ EMU-8 (4.46)

=1i=1 k

Table 4. E4: the error on imagqu').

 

 

j d= 6 cl: 7

l 124. 2113 529 125. 6417 470

2 118. 1876 592 119. 4459 478

3 116. 1198 257 117. 3190 334

4 115. 2407 954 116. 4148 879

5 114. 9853 940 116. 1521 894

6 - 115. 1268 315 116. 2976 680
 

Next, the bound on the error in computing the cjs.

Lemma 4.47. Let 85‘; = c(j) - Cj . Then

 

lesjlsf(e33)2+(e4j)2 ”(N/"172:1 +35%»
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Table 5. 85: the error on c(j).

j d=6 d=7

l 185. 9082 662 187. 8049 176

2 179. 4802 904 181. 1925 142

3 177. 6237 220 179. 2826 649

4 176. 6253 960 178. 2557 791

5 176. 1307 550 177. 7470 255

6 176. 0832 077 177. 6981 615

Proofi

00') = (1+51J)'

 

\/(1+82,,-)[(1+53.)(Re(s;<x-q»+e3,,-)2+<1+64J)(Im(o,-(x-q»+24,,-)2] .

As the squared quantities are positive, there exists a 85J: such that

 

c0) = (1+51J)(1+55J) \j(Re(oytx-q))+e3,j)2+(1m(6,(x-q))+84,j)2 .

To estimate the square root, define the function

f(u,v)=\( u2 + v2 .

Then the increment infcan be bounded by

 

IAfstl Au2 + M2 . (4.49)
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Letting u = Re(O’j(x-q)), Au = 83,]; v = Im(oj(x-q)), and Av = 64,}, we have that

f(u,v) = c; , and

c(f) = (1+51J)(1+55J‘) ( Cj + Af ).

Thus

85J=Af+(81J+55J)Cj (4.50)

Combining (4.49) and (4.50) with Lemma 4.04 yields (4.48) and Lemma 4.47 is proven.

Lemmas 4.07 and 4.47 yield the following lemma.

Lemma 4.51. Let cmin=min{cj: lSsz }. Let cmin be the machine

representation of cmin and let 85m), = cmin - Cmin- Then

 

max 2 2‘ 2 m -1 m

lesmls ,- {‘((€3,,') +(E4j) }+fi(‘\/T+fi)5 (4-52)

Table 6. 85min: the error on cmin.

 

d= 6 cl: 7 I

177. 3373 990 179. 2340 505

This concludes the initialization of the algorithm of checkl. Our bounds on the

error in the c(i)'s determine how far the algorithm of checkl has been perturbed from the

theoretical algorithm of Proposition 2.113. '
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§4 Point passing by the single precision routine checkl

A summary of the remaining stages of the routine checkl follows.

Once the values of the cfs are computed and stored in the c(i)'s, the routine

checkl applies Proposition 2.113 to compute an upper bound for Mm- The routine starts

with a lower bound, lower, for the B of Proposition 2.113. This is transformed to an

upper bound, upper, for B. Lastly, the upper bound, ubound, for M“, is computed

from upper. We will show that the relative error on ubound is less than 1045.

The next lemma gives the bound on the error in the value of lower.

Lemma 4.53. Let 86=lower-radiu3/\/3. Then

 

radius

I e | S 8 . 4.546 fl ( )

Iablel. 861 the error on lower.

 

d= 6 ti: 7

0. 1800 2057 5 0. 1543 0335 0

Proof. The proof is immediate as the calculation is performed in double precision

. and rounded back to the single precision quantity lower.

Next the routine checkl applies Proposition 2.113. The error in the Bj's of

Proposition 2.113 is bounded in the following lemma.



Lemma 4.55. Define temp],- by

94

 

temp1j=-Cj +\j 01:2 + 4-lower-( lower + cmin) . (4.56)

Let temp] (j) be the machine representation of temij and define the error €7J by

E7J= temp] (i) - templj. Then

 

 

  
 

le7jlszle6|+2le5jl+Ies,,,,,-,,I+(8-’“ji“‘+2oj+cm,~,,)8
S

Table}. 87: the error on temp] (i).

j d = 6 d = 7

1 568. 3945 397 573. 8273 219

2 555. 5385 882 560. 6025 151

3 551. 8254 514 556. 7828 163

4 549. 8287 993 554. 7290 449

5 548. 8395 175 553. 7115 376

6 548. 7444 228 553. 6138 097

Proof.

(4.57)

temp] (i) = (1+51,,')[-(Cj +35j)+(1+52,j) {(1+53.i) ((1+54J)(Cj +65.192 +

(1+85J)(1+86j)4(lower+£6)(l+87J)(lower+e6+cmin+85mn) ) }"2 ].



95

As the quantities inside the square root are positive, this can be regrouped, pulling two 8's

outside the root and absorbing two in with the (Iower+t57) and (anin+€5,nzin) terms, so that

temp](i)= (1+ 513') ['(Cj + 25.)) + (1 + a1)-

 

  

\/(c,- + 85")2 + 4(lower + (x2)((lower + a2) + (0min + a3)) ]; (4.58)

where

l on IS 28 , (4-59)

l (12 | S | 85 I + lower~8 , ' (4.60)

and

1013 l Slesm-n l +cmin-8. (4.61)

Defining the function

f(u,v,w) = \I u2 + 4v(v+w) = \/ uz-w2 + (2v-t-w)2 ,

we have that

d _ udu +2 2v+w)dv+ 2vdw _

f- 7(a,v,w) u,v,w) f(u,v,w) ‘
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Thus,

|Af|SlAu|+2|Av|+lAwl (4.62)

Applying (4.62) to (4.58) with u = Cj , Au = e 5"; v = lower, Av = (12, w = cmin,

and Aw = (13, we have that

templti) = (1+ 51.)) ['(Cj+ 85)) + (1 + a1) (f+ An] -

so that

temp](i) = temp1j+ Af— £5J +fa1 + temp],- 81‘}. (4.63)

Combining (4.59), (4.60), (4.61), (4.62), and (4.63) we get

I87J|S2l£6|+2|85J|+|85,min|+

( 2-lower + cmin + 2f + temp],- ) 8

Finally, we need to boundfand temp]j. Asf= c]: + temp]j, it will suffice to bound

temp]j. We use Lemma 4.09 with approx = lower and temp,- = temp]j/2. Equation (4.13)

says

radius

1/3 . templj S 2-lower = 2 (4.64)

Combining the last two equations yields (4.57), and the proof of Lemma 4.55 is complete.
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The next task of the routine checkl is to sum the squares of the temp] (j)'s. This

quantity is stored in length, whose error will be bounded next.

Lemma 4.65. Let 63=length - length. Then

| 83 I S 4.radzus
 

. 2

(iqd—gm—a . (4.66)

3

Z Ian-I +(232+6s-4)-

i=1

Table 2. 83: the error on length.

 

d=6 d=7

2396. 3272 16 2072. 1575 44

Proof. We will use Lemma 4.16. Equation (4.17) translates as

s kS

83: 2 templj (2 £7J+temp1j51J) + 2 2 (templj)2 52J‘

j=1 k=2j=1

Using the bound of (4.64) results in (4.66), and Lemma 4.65 is proven.

The next quantity computed by checkl is upper.

Lemma 4.67. Let £9 = upper - upper. Then

S

|£9 l S .

8-radtus

 | 83 I + 3-radius-8 (4.68)
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Table IQ. 89: the error on upper.

 

d = 6 cl: 7

4077. 0923 66 4112. 9440 48  
 

Proof. As lawrad is computed in double precision and rounded back to a single

precision quantity, lawrad= 2-lower-radius-(1+81). Thus

upper=<1+60<1+62><1+83> 2"”‘”""'“d‘“‘ . (4.69)

length + £3

 

 

 

 

Letting

f(u) ___ 2-101‘tJI—e;_-radiu3 ’

we have that

df= - lowe'fli‘“ du . (4.70)

u-xl u

and

upper=f+Af+(81+82+83)-f (4.71)
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Letting u = length and Au = 83, we need a lower bound on length. We use Lemma

4.09 with approx = lower and temp,- = temij/Z. Equation (4.14) says

4-lower2 S length . (4.72)

Thus, applying this to (4.70), we have

lAflS—rflé-ui-legI-J——
— | 83 | .

8-lower2 8-radiu3

Directly from Lemma 4.09, we have that upper S radius. Applying this and (4.72) to

(4.71) yields (4.68) and Lemma 4.67 is proven.

Next, the routine checkl calculates values for temp2(i). These are only slightly

modified from the calculations for tempIO'). so we will simply give the bound on the

error and omit the proof.

Lemma 4.73. Define temij by

 

temp2j=cj +\l cjz + 4'lowers( lower + 0min) . (4.74)

Let tempZ (j) be the machine representation of temij and define the error 810‘} by

810J=temp2(j) - temp2j. Then

|810J|S2|£9|+2|85j|+Iesmin|+(8-radius+4cj-+cmi,,) (4.75)



Table 11. 810: the error on temp2(j).
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k
.

 G
N
U
-
b
W
N
D
-
e

d=6

8738. 7906 26

8725. 9346 74

8722. 2215 37

8720. 2248 85

8719. 2356 04

8719. 1405 09

d=7

8815. 6799 90

8802. 4551 84

8798. 6354 85

8796. 5817 13

8795. 5642 06

8795. 4664 78  
 

Lastly, the routine checkl computes the value of ubound. The relative error in

this calculation is bounded in the following proposition. We use relative error here as we

are looking for an error of less than 0.01 on Mx.q when it is close to 1, and we actually

compute 23M“).

Proposition 4.76. Let £11=(ubound- ubound)/ubound. Then

 

S

leulS( ‘5. Elam-tunes) (4.77)
2-rad1us J 1

Table 12. 611: the relative error on ubound.

 

d=6 d=7

811 14 5392. 6810

8-811 0. 0086 6608

17 1110. 7572

0. 0101 9900  
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Proof. Define ubound(0) = 1 and

ubound(n) = ubound(n-l) "' temp2(n)

Let pa = ubound(n) - uboundn. Then

ubound(n) = ( uboundn-1 + Pn-l )( temPZn + 810,» )( 1 + 5n ).

so that p1: 810,1 and

Pa = (tempznmn-l + (uboundn-l)310,n + (uboundn)5n -

Inductively,

n e . n

pn=uboundn( 2 #35]— + 2 81-) . (4.78)

j: 1 j: 2

Thus we need a lower bound on temij. From (4.74), it is clear that

temp2j2 2-upper. But from Lemma 4.09, upperz radius/43. Combining this with

(4.78) yields (4.77), and Proposition 4.76 is proven.

Proposition 4.76 shows that when the routine checkl computes that ubound is

less than 0.9923, then ubound is less than 23. As Proposition 2.113 shows that ZSMM is

less than or equal to ubound, we can conclude in this case thatnebassedm

§5 Initializing the double precision routine slick

Throughout the next two sections, we assume that q e N3(f) (see Definition 2.95).
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The subroutine slick is concerned solely with determining Ms”. It is called from

the two latter checkers: check2 and check3. It uses Proposition 2.119 to compute either

an upper or lower bound on M“I, and it uses Proposition 2.113 to obtain the next

approximation.

A summary of the preliminary stages of the algorithm follows. We refer the reader

to §8 of Chapter 3 for a more precise description and to Appendix A for the program

listing. First the constants angle, radius, and radsqd are computed. Next the arrays e

and ed are computed. After this initialization, the conjugates of x and x- q and the

magnitudes, Cj , are computed.

As before, we will follow each result with two sets of values: (i) m = 13, d = 6,

f= 2; and (ii) m =13, d= 7, f=1. These are the values of m, d, andf for which the

program was run.

We start with three elementary preliminaries, whose proofs will be omitted.

Lemma 4.79. Let 812 = angle - 0. Then

|812 IS 205 .

Lemma 4.80. Let 813 = radius - radius. Then

1813 IS 2-radiu3-8.

Lemma 4.81. Let 814 = radsqd- (radius)2. Then

I 814 l s 2-radius-l £13 I + (radius)2-8 .
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Table 13. the errors on angle, radius, and radsqd.

 

812

813

514 

d=6

0. 9666 4389

0. 8819 1710

0. 9722 2222

d=7

0. 9666 4389

0. 7559 2894

0. 7142 8571   

The errors for £17 and d'ICij will be bounded next. As the calculations for the

imaginary parts are entirely analogous to those for the real parts, those results will be given

without proofs. First, the error in representing CU. Note that this is independent of d and

f.

Lemma 4.82. Let 815,”: reale(i,j) - Re(CiJ'). Let h be the integer satisfying:

(i) 0 S h < m, (ii) h 2 ij (modulo m). Then

I e15,”- | s h-I sin(h0) I .( 1212 I + 0-5) + | cos(h0) 1-5 .

Ilfable 14. the error on reale(i,i) and image(i,j).

 

§
~

‘
O
fl
Q
Q
U
t
-
h
d
fi
N
r
—
b

 

815

1. 5592 8875

2. 9546 6173

4. 4387 1855

5. 7775 7133

5. 5560 3676

3. 0529 3905

3. 3999 3858

8. 4405 5237

12. 5562 7939

14. 5144 7625

13. 6943 4816

8. 9714 4872

l. 0000 0000

816

1. 7486 0416

2. 4703 3282

1. 5170 3108

2. 9916 7613

6. 0896 9774

8. 6863 1047

10. 0941 4294

9. 3456 4278

5. 5625 0100

2. 7404 4956

9. 8834 0312

15. 87.12 9505

0.00000000  
 

(4.83)
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Proof.

reale(i,j) = (1+51,,-J) cos( (1+82,gJ)h(0+812) ) .

Lettingf(u) = cos(u), u = M9, and Au = h£12 + 12082,”; we have that

reale(isi) = (1+51,iJ) ( cos(he) - (11812 + h952,i‘,‘)sin(h0) ) .

Equation (4.83) follows immediately.

Lemma 4.84. Let £15,”: image(i,j) - Im(Cii). Let h be as above. Then

I 8:15,,-J- l s h-I cos(h0) I -( I 212 I + 6-8) +1 sin(h0)l-8 . (4.85)

Next, the error in representing d'lfiil'.

Lemma 4.86. Let £17“-J= realed(i,i)- Re(d'lcii). Let h be as above. Then

1817,1'JIS%( 1215);,- I + I cos(h0) I-8) . (4.87)



Table 15. 817: the error on realed(i,j).
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:
-

\
O
O
O
Q
O
‘
U
J
I
k
U
J
N
t
—
t

 

d=6f=2

0. 4074 5746 3

0. 5871 2108 0

0. 7598 7587 2

l. 0220 2937 0

l. 0507 5791 8

O. 6706 4681 1

0. 7284 8006 7

l. 5315 1051 9

2. 1518 1404 7

2. 4391 6882 1

2. 3770 6881 9

1. 6428 1745 8

0. 3333 3333 3

d=zf=1

0.3492 4925 4

0.5032 4664 0

0.6513 2217 6

0.8760 2517 4

0.9006 4964 4

0.5748 4012 3

0.6244 1148 6

1.3127 2330 2

1.8444 1204 0

2.0907 1613 2

2.0374 8755 9

1.4081 2924 9

0.2857 1428 6  
 

Lemma 4.88. Let 813,”: imaged(i,j) - Im(d'1§ii). Let h be as before. Then

|813JJ|S12( |815,iJ'I + I Sin(h0) l-5) .

IableJfi. 813: the error on imaged(i,j).

 

-
fi
"

\
O
O
O
Q
Q
U
I
h
U
J
N
t
—
s

 

d=6f=2

0.3688 8788 9

0.5488 8611 5

0.4182 8999 2

0.6544 4873 0

1.1254 7006 6

1.4876 0435 6

1.7222 4310 1

1.6681 2757 4

1.0829 1954 0

0.6221 9307 3

1.7843 9783 1

2.7226 6970 4

0. 0000 0000 0

d=zf=1

0. 3161 8961 9

0. 4704 7381 2

0. 3585 3427 9

0. 5609 5605 4

0. 9646 8862 8

1. 2750 8944 8

l. 4762 0837 2

1. 4298 2363 5

0. 9282 1674 9

0. 5333 0834 8

1. 5294 8385 5

2. 3337 1688 9

0. 0000 0000 0  
 

(4.89)
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The following computations on the errors of realx(i). imagx(i). realxq(fl,

imagxq(i), and c(j) exactly parallels the work in the third section of this chapter. Thus

we will give only the results and omit the proofs. We start with a bound on the machine

representations of (SJ-(x).

Lemma 4.90. Let realx(j) be the machine representation of Re(oj(x)). Let

819‘,- = realx(i)- Re(oj(x)). Then

”1 m m

|£19J|S(d-l) 2 Iel7s-Jl+d7:1-( Z lcos(i0)|+ ZMkJ)8 (4.91)

 

i= 1 1': 1 k = 2

1.3M. 819: the error on realx(j).

d=df=2 d=lf=l

115. 2812 947 118. 5750 460

112. 2704 080 115. 4781 340

a
w
h
u
w
u

\

 

111. 7275 848

111. 1967 971

110. 7516 012

110. 5405 327

114. 9198 016

114. 3738 485

113. 9159 327

113. 6988 336
 

Lemma 4.92. Let imagx(i) be the machine representation of Im(oj(x)). Let

82w: imagx(i) — Im(0',(x)). Then

m m m

|e2oJlS(d-l) Z 1e13,,JI+%1( 2 Isin(i0)|+ 2 M'u) 8 (4.93)

i=1 ' k=

 



Table 18. 820: the error on imagx(j).
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 o
m
a
w
w
w

\

d=6,f=2

114. 2313 688

108. 2076 751

106. 1398 416

105. 2608 113

105. 0054 099

105. 1468 474

d=7,f=l

117. 4951 222

111. 2993 229

109. 1724 085

108. 2682 631

108. 0055 645

108. 1510 431
 

 

Next we bound the error in the machine representation of o,(x-q).

Lemma 4.94. Let realxq(i) be the machine representation of Re(oj(x-q)). Let

821‘,- = realxq(j) - Re(o,(x-q)). Then

m
T

|€21J| S |£19J° l+f2(l 811ml + 81 cos(ie) |+ 5M”) + 5-m-‘\/ %41 (4.95)

i=1

Table 12. 821: the error on realxq(j).

 

 

j d=6f=2 d=zf=1

1 411. 5296 215 283. 8965 929

2 400. 6578 243 276. 8692 256

3 397. 9171 693 275. 2119 773

4 396. 5806 274 274. 2631 472

5 395. 8547 730 273. 6649 021

6 395. 5820 022 273. 4169 519
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Lemma 4.96. Let'imagxqfi) be the machine representation of Im(oj(x-q)). Let

822‘,- = imagqu') - Im(o,(x-q)). Then

m

2.

|£22J l S l 820‘,- l +fZ(l £16,1'J'I + 8| sin(i0) |+ 8M',-J-) + 8-m-‘\/ r_nfl_1 (4.97)

i= 1

Table 20. 822: the error on imagxq(j).

 

 

j d=6f=2 d=zf=1

1 407. 2393 853 281. 1965 139

2 387. 4753 480 268. 1305 429

3 380. 7841 642 263. 6919 533

4 377. 6800 760 261. 6752 789

5 376. 2679 242 260. 8342 052

6 375. 9011 978 260. 7256 018
 

 

Lastly, bounds on the error in the machine representation of the Cj's.

Lemma 4.98. Let C] = loj(x- q) I. Let c(j) be the machine representation of c]:

and let 8233': c(j) - Cj . Then

|£23JIS'\[(821J) 2 + (£22J) 2 + 2(‘\’ r%_l_ + mT{)8 (4.99)

 



Iablell. 823: the error on c(j).

 

 

j d=6,f=2 d=7,f=1

1 602. 6413 438 414. 0696 199

2 581.0485 401 399. 9064 591

3 574. 4345 320 395. 6335 710

4 571. 3243 721 393. 5541 026

5 569. 8251 159 392. 5407 135

6 569. 3747 589 392. 2863 114
 

 

Lemma 4.100. Let 823”). = cmin - Cmin- Then

- 2 _ .

1823,»... I $me 1 \/(621j)2+(€22.;)2} +%(\/%+%) (4.101)

 

W. 823mg": the error on cmin.

 

d=6,f=2 d=zf=1 l

588. 6308 652 405. 4987 528

This completes the beginning error analysis on the algorithm of the routine slick.

It determines, in effect, how far the algorithm implemented by slick has been perturbed

from the theoretical algorithms of Proposition 2.113 and Proposition 2.119 that slick is

designed to implement.
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§6 Point passing by the double precision routine slick

A summary of the concluding stages of the algorithm of the routine slick follows.

We refer the reader to §8 of Chapter 3 for a more precise description and to Appendix A for

the program listing. Given a value for approx, the routine slick computes the

corresponding values of temp2(i). Simultaneously, the values of bound and length are

computed. Then, length and bound are tested. If the point has neither passed nor

flunked, a new value of approx is computed and the routine loops.

Next will follow a sequence of conditional results, based on the quantity

624 = approx - approx . (4.102)

We first bound the error on temp2(i). as in Lemma 4.55. As the prOof is entirely

analogous, it is omitted

Lemma 4.103. Let E25J= temp2(i) - temij. Then

IE25JIS|824|+l823j|+%-le23,ninl+(5-radius+c,- +é-cmin )8 (4.104)

Next we bound the error on length, as in Lemma 4.65. Again, as the proof is

entirely analogous, it is omitted

Lemma 4.105. Let e26=length - length. Then

2+3

3

H525 IS 2-radius- 2 |e25J1 + s——-212(radius)2-8 (4.106)

i=1



111

Next we bound the relative error on bound, as in Lemma 4.76, omitting the proof.

Lemma 4.107. Let 827 = (bound- bound)/bound. Then

S

I827|S (ra‘elitgus Z( IE23J| + |825J|+Cj8)+(3-1)8) (4.108)

1=1

 

Finally, we bound the error on diff. The proof, being elementary, is omitted.

Lemma 4.109. Let £23 =diff— diff. Then

1223 I s I 614 I + I e26 I + 23-(radius)2-8 (4.110)

Finally, we can show that the algorithm of the routine slick is correct. The first

step is to show that if I diff l is large, then the sign of diff accurately reflects the sign of

diff, and hence the appropriate conclusions on the order relationship between bound and

Mm can be drawn.

Proposition 4.111. If diffz 10'10 and baund< 1-10'5, then Mx,q< 1. In

particular. slamming.

Proof. We will first show that if diffz 10'“), then diff> 0, so that

length > (radius)2. To do this, it suffices to show that if 824 = 0, then |e23 |< 1040.

Applying Lemmas 4.103, 4.105, and 4.109 with 824 = 0, we get the following values of

825;. 826. and 828-



Table 23. 825: the error on temp2(j) when 824 = 0.

 

 

j d=6f=2 o=zf=1

1 913. 4161 587 627. 4290 200

2 891. 8233 550 613. 2658 591

3 885. 2093 470 608. 9929 710

4 882. 0991 870 606. 9135 027

5 880. 5999 309 605. 9001 136

6 880. 1495 738 605. 6457 114  
 

Table 24. £25 & 823: the errors on length and diffwhen 824 = 0.

 

  

d=df=2 d=1f=l

£25 4708. 5818 86 2776. 5729 16

223 4711. 8874 72 2779. 0014 87

5-823 5. 2312-10'13 3. 0853-10‘13

 

As this shows that, in both cases, 1823 IS 10‘“), we can conclude that

length > (radius)2. Thus we have, by Proposition 2.119, that Mx,q< bound. Thus, to

prove Proposition 4.111, it suffices to show that 1827 IS 10'6 when 624 = 0. Using

Lemma 4.107, the following table gives the relative error on bound -- first as multiples of

machine error, 8, secondly as a real number.

IableZi. 827: the relative error on bound when 824 = 0.

 

  

d=6f=2 d=zf=1

£27 4 9293. 6718 9 3 9534. 8587 4

5-227 5. 4727-10-12 4. 389310-12
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Thus Proposition 4.111 is proven.

The following result, dual to Proposition 4.111, is proven in the same way. Thus

its proof is omitted.

Proposition 4.112. If diffS — 10-10 and baund> 1 + 105, then MM> 1. In

Particular.W

Lastly, we show that when ldiff I is small, the temp2 (j)'s are good

approximations to the solution of (2.107), (2.108), and (2.109), and hence bound is a

good approximation to Mm]. More precisely, we have the following proposition.

Proposition 4.113. Suppose that ldiffl S 1040. If bound< 1 -10'5, then

Mx,q< 1. In particular,WConversely, if bound) 1 + 1045, then Ms,q> 1.

In particular. amalgam“

Proof. Each temp2j is an increasing function of approx. Thus length is an

increasing function of approx. Setting x= approx, yj = temij, and l = length we have that

dl s d -

a? 2 29 fi‘ -
J' = 1

Further, as yj = x for some j, and all of the yj's are positive, we have that

51:22:.
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Let x0 be the solution to l(x) = (radius)? Then we have

radius
 51,700) 2 240 2 2 (4.114)

In particular, suppose that I diff | S 10'“). Then, taking approx to be exactly equal to

approx, Table 24 shows that I diff - difir I S 1040, so that I diffl < 210'“). But

diff: length - (radius)2= l(x) - l(xo) . (4.115)

Thus we have a bound on the change in the function value of 1. Using the lower bound

(4.114) on the derivative, we can conclude that

_‘IS_.. 2-10-10 . (4.116)

2-radtus

Ix-onS

Now let us analyze the calculations which the routine slick performs from a

slightly different viewpoint. Rather than assuming that approx is an exact value, let us

view it as an approximation to xo. That is, we suppose that we have the same value in

approx, but approx = x0 and 824 = approx - x0. Thus equation (4.116) gives an upper

bound on 824 which is summarized in the following table.

Iablelfi. 824: the error on approx.

 

d=6f=2 d=zf=1

8224 1.111010-9 1.2961-10'9

£24 1000 6855. 34 1167 4664.56   
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As l(xo) = (radius)2, the temij's are the exact solutions to equations (2.107),

(2.108), and (2.109). Thus using the bounds on 824 of Table 26 and Lemma 4.103, the

differences between the exact tempZJ-‘s and the computed temp2(j)'s are given in the

following table.

jljable 27. 825: the error on temp2(j).

 

 

j d=6f=2 d=1f=l

1 1000 7768. 75 1167 5291. 99

2 1000 7747. 16 1167 5277. 82

3 1000 7740. 54 1167 5273. 55

4 1000 7737. 43 1167 5271. 47

5 1000 7735. 94 1167 5270. 46

6 1000 7735. 48 1167 5270. 20
 

 

Finally, as the temij's solve equations (2.107 ), (2.108), and (2.109),

bound = Mm- Thus to prove our Proposition, we need only show that the relative error on

bound is less than 105. But, for the values of 824 given in Table 26, Lemma 4.107 gives

the following values for 827.

m. 827: the relative error on bound.

 

  

d=6f=2 d=mf=1

227 3 3357 3014. 6 4 5400 2377. 3

64:27 3. 7034-10-8 5. 0404-10-8

 

As both values are less than 10‘, Proposition 4.113 is proven.



Chapter 5

Conclusions and Open Questions

§1 A summary of runs

The program written to implement the work of the previous three chapters has been

run three times. All three runs were on a Sun 3/160 minicomputer of the Mathematics

Department at Michigan State University.

From January 16, 1988 to January 25, 1988, a preliminary version of this program

ran with m = 13 and d = 7. There were three principal differences between the preliminary

version and the final version described in this dissertation: (i) The preliminary checkl did

all of its calculations, including initialization, in single precision arithmetic. (ii) In the

preliminary version, the routine check3 was run separately from the main program. (iii)

The preliminary slick only applied Proposition 2.113 and not 2.119, and thus had

somewhat different logic.

During this run, the pattern generator considered 18,110 patterns and reported back

7,887 as potentially lying within the fundamental cell. The cell checker determined that

1,486 of these patterns did indeed lie within the fundamental cell. The disposition of the

points generated is summarized in the following table.
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Table 22. Run summary (d = 7).

 

checker points estimations passed

1 90,980,978 154,100,673 90,709,723

2 271,255 1,301,787 269,414

3 1,841 212,136 1,841   
 

In February 1988, another preliminary version of the program ran with m = 13,

d = 6, andf= 1. There were two main differences between this version and the previous

version: (i) For this run, the routine check3 was incorporated within the main program.

(ii) The sufficient set used was the set of all reduced points with a given selection whose

norms were larger than the L of Definition 2.17. This second modification was undertaken

due to our temporary lack of a proof ofLemma 2.33, as it is relatively easy to show that the

set of reduced points is sufficient. This resulted in a larger than necessary sufficient set.

During this second run, the pattern generator considered 6,098 patterns and

returned 4,931 as having norm larger than L. The disposition of the points generated is

summarized in the following table. Note that the third checker was run twice, with

differing values off.

M30. Run summary (d = 6).

 

 

checker points estimations passed

1 110,782,378 469,070,258 108,554,018

2 2,228,360 18,013,137 2,176,783

3 (f=1) 51,577 24,619,110 51,570

3 (f= 2) 7 323,802 7 
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Finally, the exact program described in this dissertation and whose listing appears

in Appendix A, was run with m = 13, d = 6, and f= 2. The run started on July 20, 1988

and finished on July 21, 1988.

During this final run, the pattern generator considered 6,098 patterns and reported

back 2,806 as potentially lying within the fundamental cell. The cell checker determined

that 661 patterns did belong to the fundamental cell. The disposition of the points

generated is summarized in the following table.

Table 31. Run summary (d: 6,f= 2).

 

checker points estimations passed

1 20,450,056 86,045,968 15,200,578

2 5,249,478 22,093,825 5,237,325

3 12,153 5,338,621 12,153   
 

In addition, a run was made with m =11 on ztgu]. With J: 5 andf: 2, all

105,918 points were passed, with only 671 being reported to the second checker and 4 to

the third. Of course this is no surprise, as Lenstra [Le2] proved in 1975 that this ring was

norm-euclidean.

§2 Conclusions

The basic method of proof described in this dissertation of subdividing the quotient

field into regions and working analytically on each region is not ours. However, the ideas

of using shrunken copies of the fundamental cell of the trace form and a single subdivision

are. These techniques have two principal advantages: (i) Only a single subdivision of the

quotient field is necessary, so that the number of cases is computable beforehand (ii) The
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fundamental cell of the trace form is quite closely approximated by its circumscribed

sphere, so that the bound on the norm computed on the sphere is quite likely to be very

close to the true bound on the shrunken copy of the cell in question.

Of course, the greatest difficulty in any attack along this line lies in its

computational complexity. That is, considerable effort must be expended in order to both

reduce the total number of cases and to handle each case as efficiently as possible.

For the method of proof employed in this dissertation, it is the size of the variable d

which governs how well the algorithm runs. In particular, extreme values of d are ill

advised.

As the value of d becomes smaller, it becomes more difficult to pass points. In

addition, as d decreases, the hunt for an appropriate "nearby" q becomes more extensive

and the number of unsuccessful norm estimations grows, and hence the running time

increases. This occurs because the regions on which the norm must be bounded become

too large.

In particular, for different portions of one region, different "nearby" integers q must

be chosen. This is seen most easily in the extreme case, when d = 1. For this case, the

sufficient set consists of only one point, x = 0, and thus the only region is the fundamental

cell itself. Now for each q 6 R, two-q) = Mp) 2 1 unless q = 0. Thus q = 0 is the only

hope of passing the fundamental cell. However, there are elements of the fundamental cell

whose norm is strictly larger than 1.

However, as (1 tends towards infinity, the size of the sufficient set S tends towards

infinity. Thus running time also will increase without bound The following table gives

the size of the sufficient set S as a function of the size of d , for the case m = 13.
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Table 32. The size of S when m = 13.

 

 

d #S

3 22,407

4 384.802

5 3,109,997

6 20,450,056

7 90,980,978

8 384,695,212

9 1,246,250,676 
 

Thus we need to choose d minimal, subject to the restriction that points still pass.

Trial runs have shown that a value of d = 6 is optimal when m = 13.

Lastly, some comments concerning the bounds on numerical error obtained in

Chapter 4. As shown in Table 12, the relative error on ubound is somewhat high in the

d = 7 case. This, however, should not be grounds for concern. On one hand, such error

analysis as was performed always assumed the worst case. In practice, error almost never

reinforces itself throughout a large calculation, and it is the fundamental stability (or lack

thereof) of the underlying algorithm which determines the size of the error. On the other

hand, the estimations used in the proofs were not as absolutely sharp as they might have

been. Thus we feel confidant that a considerably more exhaustive analysis would bring the

critical figure down from 0.0102 to below 0.01.

§3 Other attacks on ZlC13]

The method of attack described in this dissertation is not the only method which we

used to try to prove that Z[C13] is norm-euclidean. It is instead the cumulation of many

different attempts which were made.
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The first attempt made was very similar to the method presented In essence, it was

the method which T. Ojala [Oj] used on Z[C16]. It is outlined below.

The field Q(Cm) is represented as a n = (p( m ) dimensional vector space over Q. A

fundamental cube, C, is given by

C={ (x1,... ,xn): 0st-S1}.

Then the norm function is maximized on the circumscribed sphere containing this cube. If

the maximum is found to be too large, the parent cube is subdivided by bisecting each of its

bounding hyper-surfaces, and the norm bounding process is repeated on the 2" resulting

offspring cubes. When all of the offspring cubes of a given parent pass the norm

bounding, then the parent cell also passes.

There are two principal benefits of this process: (i) As the number of subdivisions

increase, the size of the cell shrinks. Thus the norm bounding process becomes more

accurate. (ii) For a given cube Co, what is maximized is not I Norm(z) l for z e Co, but

rather INorm(z-q) I for z 6 Co and some integer q 6 R. Thus for different cubes, one

can choose different q's.

There are, however, drawbacks to this method which rendered it unworkable on

Z[C13]. The first and most obvious difficulty is the potential combinatorial explosion

inherent in repeated subdivisions. From each parent cube, 4096 (212) offspring are

generated. Ojala [Oj] reported that in his simpler ring, up to five levels of subdivisions

were carried out. It seems likely that the situation would be much worse here.

The second drawback to this method is geometric. The analytic techniques used

here to bound the norm function work on a sphere. One would expect that the supremum

of the norm function on a cube would be significantly less than the supremum of the same

function on the circumscribed sphere. A rough measure of the difference might be the ratio
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of the volumes of the cube and its circumscribed sphere. It is well known that, as

dimension increases, this ratio tends to zero. In particular, the fit in a twelve dimensional

space is sure to be quite poor.

We also made a second, quite different, attempt on Z[C13].

As previously mentioned, P. J. Weinberger [We] showed, subject to the

generalized Riemann hypothesis, that all class-one fields with infinitely many units are

euclidean. The basic method of proof is an induction using the minimal algorithm (for

reference on the minimal algorithm, see [Lel], as [Mo] is unreadable). The generalized

Riemann hypothesis is used in a starting stage of the induction.

Several attempts have been made to remove the dependence of this argument on the

generalized Riemann hypothesis. Lenstra [LeS] has isolated the difficulty, and the work of

Gupta, Murty, and Murty [Gu] showed promise of proving Weinberger's result

independent of any unproven hypothesis. However, technical difficulties arose and the

result which Gupta, Murty, and Murty arrived at does not apply to the ring of integers of a

number field

It seemed to us that the difficulties which impeded Gupta, Murty, and Murry came

about, in part, from the generality of their approach. Thus, working on a very specific and

very well behaved ring such as Z[§13] might be easier. Unfortunately, this proved not to

be the case. We believe, however, that the real truth in these matters lies with an attack

along these lines
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Thirdly, we tried an attack based on a bootstrapping method The basic idea was,

in outline, to select an intermediate field O, with Q c O c K. Then, treating K as an

extension of degree n over O, we attempt to prove that K is euclidean with respect to the

map \ll, where

1V(x) = II NonnK/¢(x) II ,

and II" is the trace form from O to Q.

For example, if O is chosen so that n = 2, we could hope that methods devised to

work on quadratic fields would work in this case, as K is quadratic over O. That is, we

are pretending that O is Q, and that |I~|l is the usual absolute value.

We were unable to carry this attack through to conclusion. In particular, for a

cyclotomic field of prime modulus, the maximal real quadratic subfield, K+, is the unique

subfield with (K:O)=2. Here, INormK/K+(x) I= Ix I2, so that, in some sense,-the

"absolute value" properties of Il-Il have already been exhausted in dropping from K to K+.

In general, if we choose O to be too close to K, then O is too complicated to behave

like Q. Conversely, if we choose O to be too close to Q, then the degree of K over O is

too high for simple methods to apply. However, some modification of this line of

approach might work.

§4 Open cyclotomic questions

There are, as was mentioned in Chapter 1, fifteen class-one cyclotomic fields for

which the norm-euclidean question is still open. Of these, only two have prime modulus --

m = 17 and m = 19. The techniques used here can be applied directly to these fields. A

reasonable choice of d for these fields would seem to be approximately half of the
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modulus. However, the size of the sufficient sets in these cases is significantly larger than

the m = 13 case. The following tables give the size of the sufficient set for various values

of d for the two Open prime moduli.

Table 33. The size ofS when m = 17.

 

#3

2,280,738

95,996,878

160,374,512

22,821,184,489

201 ,443,970,380

l,487,745,013,098

8,248,634,581,516

 

c
h
Q
t
h

N

   

Table 34. The size of S when m = 19.

 

d #S

3 19,974,286

4 1,563,544,538

5 39,334,715,702

6 742,913,975,156

7 8,870,097,807,556

8 83,105;562,335,066

9 578,304,732,608,758   

Thus we could expect the running time in the m = 17 case to be about 70,000 times

that in the m = 13 case, and the m =19 case to be perhaps 400 times beyond that. Further,

as m increases so does 3, so that the time consuming floating point operations will be

correspondingly more complex. Allin all, we suspect that simply stepping up to a super

computer would prove insufficient to overcome the added complexity.
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Attacking the composite moduli with our methods presents different problems. For

the prime modulus m , we made but little use of any relations on the roots of unity, as there

was only one.

For composite moduli there are more relations, as the dimension of Q(Cm) as a

vector space over Q is (p(m ). If for no other reasons than that of computational

complexity, it seems necessary to exploit these additional relations. It does not seem

necessary to abandon the ideas of patterns and generating selected points from them.

Instead it seems advisable to modify the pattern and point generation algorithms to exploit

the additional relations -- perhaps while continuing to work with points expressed in terms

of m -tuples.

We hope to be able to successfully handle some, if not all, of the remaining

cyclotomic fields at some future date.
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Appendix A

The Program Listing

*************************************************

*

* VERSION

*

*

9.2

*

*

*

*

*************************************************

TUESDAY, 26 JULY, 1988

C23456789012345678901234567890123456789012345678901234567890123456

C

2500

2600

2700

2800

2900

2950

0
0
0
0
0
0
0
0
0

1 2 3

IMPLICIT INTEGER (A-Z)

DIMENSION A(0:20), X(20), SORT(20)

DIMENSION PFLAG(10), CFLAG(10), XFLAG(10)

LOGICAL FLAGl, FLAGZ, FLAG3, FLAG4, FLAGS, FLAG6

LOGICAL PFLAG

INITIALIZE

FILE

FILE

FILE

OPEN (1,

OPEN (9,

OPEN (3,

WRITE (*,2500)

FORMAT (' INPUT

READ (*, 2600) M

FORMAT (I8)

WRITE (*,2700)

FORMAT (' INPUT

READ (*,2800) D

FORMAT (18)

WRITE (*,2900)

FORMAT (' INPUT

READ (*,2950) F

FTfidflTP (I8)

MEANINGS OF THE

COUNTl

COUNT2

COUNT3

COUNT4

COUNTS

COUNT6

COUNT7

COUNT8

'FLUNK' )

'RUNINFO'

'BUGINFO'

4 5 6

)

)

THE MODULUS NOW')

THE TILING MESH NOW')

CHECK3 BOUND NOW')

COUNTS:

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

OF

OF

OF

OF

OF

OF

OF

OF

PATTERNS PGEN LOOKS AT

PATTERNS PGEN REPORTS

PATTERNS PASSING ALL CHECKS

POINTS GENERATED

FIRST CHECKS MADE

POINTS FLUNKING FIRST CHECKER

SECOND CHECKS MADE

POINTS FLUNKING SECOND CHECKER

126
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3000

3100

10

127

COUNT9 NUMBER OF THIRD CHECKS MADE

COUNlO NUMBER OF POINTS FLUNKING THIRD CHECKER

COUNTl

COUNT2

COUNT3

COUNT4

COUNTS

COUNT6

COUNT7

COUNT8

COUNT9

COUNlO O
O
O
O
O
O
O
O
O
O

MEANING OF THE PRINT FLAGS

PFLAG = PRINT ON/OF

CFLAG = NUMBER OF PRINTS

XFLAG = NUMBER OF PRINTS (STORED FOR RUNINFO PRINT)

PATTERN GENERATOR

CELL BOUND CHECKER

POINT GENERATOR

FIRST CHECKER

SECOND CHECKER

THIRD CHECKER

SLICK\
I
Q
U
D
W
N
H

DO 2, I=l, 7

‘WRITE (*,3000) I

FORMAT (' INPUT COUNT NUMBER',I4)

READ (*,3100) XFLAG(I)

FORMAT (I8)

CFLAG(I) = XFLAG(I)

PFLAG(I) = (XFLAG(I).GT.0)

CONTINUE

INITIALIZE SUBROUTINES

CALL SCELL (M,D,A,SUM,FLAG2,PFLAG(2))

CALL SCHEKl (M,D,X,SORT,FLAG4,COUNT5,PFLAG(4))

CALL SCHEK2 (M,D,X,FLAGS,COUNT7,PFLAG(5),CFLAG(7))

CALL SSLICK (M,D,X,X,FLAGS,PFLAG(7))

NOTE: CHECK3 DOESN'T NEED TO BE INITIALIZED

TOP OF PATTERN GENERATION LOOP

CALL SPGEN (M,D,A,SUM,FLAG1,COUNT1,PFLAG(1))

CONTINUE

IF (FLAGl) THEN

INCREMENT PATTERN COUNTER

COUNT2 = COUNT2 + 1

CHECK TO SEE IF PATTERN IS WITHIN FUNDAMENTAL CELL

CALL CELL (M,D,A,SUM,FLAG2,PFLAG(2))

IF (PFLAG(2)) THEN

CFLAG(Z) = CFLAG(2)-1
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PFLAG(Z) = (CFLAG(Z).GT.0)

ENDIF '

IF (FLAGZ) THEN

INCREMENT WITHIN CELL COUNTER

COUNT3 = COUNT3 + l

WRITE (9,1000) COUNT3, COUNT4, COUNT6,

COUNT8, COUNlO, ( A(I), I=0, D-l )

FORMAT (5I10,3X, 9I3)

TOP OF POINT GENERATION LOOP

CALL SPOINT (M,D,A,X, SORT,FLAG3,PFLAG(3))

CONTINUE

IF (FLAG3) THEN

INCREMENT POINT COUNTER

COUNT4 == COUNT4 + 1

INVOKE FIRST CHECKER

CALL CHECKl (M, D, X, SORT, FLAG4 , COUNTS, PFLAG (4) )

IF (PFLAG(4)) THEN

CFLAG(4) = CFLAG(4)-1

PFLAG(4) = (CFLAG(4).GT.0)

ENDIF

IF (.NOT.FLAG4) THEN

WE HAVE FLUNKED FIRST CHECK

INCREMENT COUNTER

COUNT6 = COUNT6 + 1

INVOKE SECOND CHECKER

CALL CHECKZ (M, D: X:

FLAGS, COUNT7, PFLAG (5) , CFLAG (7))

IF (PFLAG(5)) THEN

CFLAG(S) = CFLAG(5)-1

PFLAG(S) = (CFLAG(S) .GT.0)

ENDIF

IF (.NOT.FLAG5) THEN

WE HAVE FLUNKED SECOND CHECK

INCREMENT COUNTER

COUNT8 = COUNT8 + l

INVOIG THIRD CHECKER

CALL CHECK3 (M,D,F,X,

FLAG6,COUNT9,PFLAG(6) ,CFLAG(7))

IF (PFLAG(6)) THEN

CFLAG(6) = CFLAG(6)-1

PFLAG(6) = (CFLAG(6) .GT.0)

ENDIF

IF (.NOT.FLAG6) THEN
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WE HAVE FLUNKED EVERYTHING!

INCREMENT COUNTER & WRITE POINT

COUNlO = COUN10 + 1

WRITE (1,1100) (X(I), I=1,M)

FORMAT (20I3)

ENDIF

END THIRD CHECK FAIL

ENDIF

END SECOND CHECK FAIL

ENDIF

END FIRST CHECK FAIL

GET NEXT POINT

CALL POINT (M,D,A,X,SORT,FLAG3,PFLAG(3))

IF (PFLAG(3)) THEN

CFLAG(3) = CFLAG(3)-1

PFLAG(3) = (CFLAG(3).GT.0)

ENDIF

GOTO 20

ENDIF

END POINT LOOP

ENDIF

END PASS CELL CHECK -- GO TO NEXT PATTERN

CALL PGEN (M,D,A,SUM,FLAG1,COUNT1,PFLAG(1))

IF (PFLAG (1) ) THEN

CFLAG(1) = CFLAG(1)-1

PFLAG(l) = (CFLAG(l).GT.0)

ENDIF

GOTO 10

ENDIF

END PATTERN GENERATION LOOP

WRITE (9,1300) M,D,F

FORMAT (' MODULUS / DIVISION / CHECK3 BOUND ',5X,3I5)

WRITE (9,1400) (XFLAG(I), I=1,7)

FORMAT (' PRINT COUNTS ',7I5)

WRITE (9,1500) COUNTl, COUNT2

FORMAT (' PATTERNS LOOKED AT / REPORTED ',2I10)

WRITE (9,1600) COUNT3, COUNT4

FORMAT (' PATTERNS PASSED / POINTS GENERATED',2I10)

WRITE (9,1700) COUNTS, COUNT6

FORMAT (' CHECK #1 -- CHECKS / FLUNKS ',2110)

WRITE (9,1800) COUNT7, COUNT8

FORMAT (' CHECK #2 -- CHECKS / FLUNKS ',2I10)

WRITE (9,1900) COUNT9, COUNlO

FORMAT (' CHECK #3 -- CHECKS / FLUNKS ',2110)

IF (COUN10.EQ.0) THEN
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WRITE (9,2000)

2000 FORMAT (' \CONGRATULATIONS, \DR. \BOB! \ALL POINTS PASS.')

ELSE

WRITE (9,2100)

2100 FORMAT (' \CURSES, FOILED AGAIN! \SOME POINTS FLUNK.')

ENDIF

CLOSE (1)

CLOSE (9)

CLOSE (3)

END

SUBROUTINE SPGEN (M,D,A,SUM,FLAG,COUNT,PFLAG)

c PATTERN GENERATOR. RETURNS THE RESULT IN THE ARRAY A(I).

c THE MULTISET \(\( 0**A(0), 1**A(1), ... \)\) CORRESPONDS TO A

c AND THE POINT x = (1/D) SUM \( X(I)*E(I) \). WHERE

c A(I) = #\( J: X(J) = I \).

c SINCE THE PATTERNS ARE FOR POINTS IN STANDARD FORM,

c WE ALWAYS HAVE A(0)>0

c \THUS WE INTERNALLY GENERATE PATTERNS B(J) ON M—l DIGITS

c AND RETURN A(J)=B(J) WHERE A(0)=B(0)+1

c THE METHOD USED TO GENERATE PATTERNS Is TO CARRY A 1 FROM THE

c FIRST NON ZERO 3(1) TO B(I+1) AND IF I>0, DROP THE REST

c OF B(I) TO 3(0).

C23456789012345678901234567890123456789012345678901234567890123456

C 1 2 3 4 5 6

IMPLICIT INTEGER (A-Z)

DIMENSION A(0:20), B(0:20)

LOGICAL FLAG, TFLAG, PFLAG

REAL RM, RD, TEMP

SAVE

C LBOUND AND UBOUND DETERMINE A SHELL OUTSIDE OF WHICH THE

C PATTERNS DO NOT NEED TO BE CONSIDERED.

C IF X IS WITHIN THE SPHERE DETERMINED BY LBOUND, THEN

C THE (1/M) CELL HAS NORM .LT. 1 BY ARITH-GEOMETRIC MEAN.

C THE SPHERE DETERMINED BY UBOUND IS THE CIRCUMSCRIBED SPHERE

C CONTAINING THE FUNDAMENTAL CELL.

C INITIALIZE

M1 3 M-1

D1 = D-l

RM = REAL(M)

RD = REAL(D)

TEMP = SQRT(RM-1.) * ( RD - SQRT( (RM+1.)/12. ) )

LBOUND = TEMP * TEMP

UBOUND = D*D * ( (M*Mr1)/12 )

IF (PFLAG) THEN

WRITE (3,5000) TEMP,LBOUND,UBOUND
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FORMAT (' INIT PGEN: TEMP,LBOUND,UBOUND',F12.8,2I8)

WRITE (3,5010)

FORMAT (' ')

ENDIF

IF TFLAG THEN INPUT A STARTING PATTERN

WRITE (*,1000)

FORMAT (' I WISH TO INPUT A STARTING VALUE T/F')

READ (*,1100) TFLAG

FORMAT (L8)

BYPASS STARTING PATTERN INPUT

TFLAG = .FALSE.

IF (TFLAG) THEN

GET PATTERN FROM HUMAN

DO 2, I=0,D1

WRITE (*,1200) I

FORMAT (' INPUT THE MULTIPLICITY OF #',I3)

READ (*,1300) A(I)

FORMAT (I8)

CONTINUE

TOP OF VERIFICATION LOOP

CONTINUE

DISPLAY AND CHECK THE PATTERN

WRITE (*,1400) (A(I), I=0,Dl)

FORMAT (20I3)

SUM=0

SSUM=0

WSUM=0

DO 4, I=0,D1

IF (A(I).LT.0 .OR. A(I).GT.M) THEN

FAULTY PATTERN

GOTO 150

ENDIF

WSUM = A(I)+WSUM

SUM = I*A(I)+SUM

SSUM = I*I*A(I)+SSUM

CONTINUE

IF (WSUM.EQ.M .AND. A(0).GT.0) THEN

PATTERN IS OKAY -- DOUBLE CHECK WITH HUMAN

WRITE (*,1500)

FORMAT (' THIS IS CORRECT T/F')

READ (*,1600) TFLAG

FORMAT (L8)

IF (TFLAG) THEN

EVERYTHING COOL -- RETURN
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B(O) = A(O) - 1

DO 5, J=1, D1

B(J) = A(J)

CONTINUE

FLAG = .TRUE.

RETURN

ENDIF

ENDIF

FIX A USER SELECTED NUMBER IN THE PATTERN

CONTINUE

WRITE (*,1700)

FORMAT (' INPUT THE INDEX OF THE ONE TO FIX NOW. ')

READ (*,1800) I

FORMAT (18)

WRITE (*,1900)

FORMAT (' INPUT THE CORRECT VALUE NOW. ')

READ (*,2000) A(I)

FORMAT (I8)

GOTO 100

END OF PATTERN VERIFICATION LOOP

ENDIF

END OF HUMAN INPUTED PATTERN SECTION

COMPUTER GENERATED FIRST PATTERN

DO 6, I=0,D1

A(I) = 0

B(I) = 0

CONTINUE

SUM = 0

SSUM = 0

A(O) = M

3(0) = M1

FLAG = .TRUE.

ENTRY PGEN (M, D, A, SUM, FLAG, COUNT, PFLAG)

IF (PFLAG) THEN

WRITE (3,5100) (A(I), I=0,Dl)

FORMAT (' PGEN: OLD PATTERN ',ZOI3)

WRITE (3,5200) (B(I), I=0,Dl)

FORMAT (' PGEN: OLD B PATTERN ’,2013)

ENDIF

COUNT = COUNT+1

I=0

FIND A NON ZERO B(I)
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DO WHILE (B(I) .EQ.0)

CONTINUE .

IF (B(I) .EQ.0) THEN

I=I+1

GOTO 12

ENDIF

REPEAT

IF (PFLAG) THEN

WRITE (3,5300) I

FORMAT (' PGEN: NON ZERO SLOT',I3)

ENDIF

IF (I.EQ.Dl) THEN

OUT OF PATTERNS (DON'T NEED NO X(I) .GE.

FLAG = .FALSE.

IF (PFLAG) THEN

WRITE (3, 5400)

WRITE (3, 5400)

FORMAT (' ')

ENDIF

RETURN

ENDIF

CARRY THE 1 UPWARDS AND DROP THE REST DOWN.

COMPUTE NEW SUM & SSUM

SUM = -I*B(I) + I + 1 + SUM

SSUM = -I*I*B(I) + (I+1)*(I+1) + SSUM

B(I+1) = B(I+1)+1

B(O) = B(I)-1

IF I .GT. 0 THEN ZERO A(I)

IF (I.GT.0) THEN

B(I) = 0

ENDIF

MNORM = M*SSUM - SUM*SUM

IF (PFLAG) THEN

WRITE (3,5500) (B(I), I=0,Dl)

FORMAT (' PGEN: NEW B PATTERN',20I3)

WRITE (3, 5600) SUM, SSUM, MNORM

FORMAT ( ' PGEN: SUM, SSUM, MNORM' , 3I8)

ENDIF

D!)

CHECK OF X LYING WITHIN THE SHELL TWEEN LBOUND & UBOUND

IF ( ( MNORM .LE. LBOUND ) .OR. ( MNORM .GT.

THIS PATTERN UNACCEPTABLE

GET ANOTHER

GOTO 200

UBOUND) ) THEN
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ENDIF

A(O) = 8(0) + 1

DO 14, J=1, D1

A(J) = B(J)

CONTINUE

IF (PFLAG) THEN

WRITE (3,5700) (A(I), I=0,Dl)

FORMAT (' PGEN: NEW PATTERN',20I3)

WRITE (3,5800)

WRITE (3,5800)

FORMAT (' ')

ENDIF

RETURN

END

SUBROUTINE SCELL (M, D, A, SUM, FLAG, PFLAG)

GIVEN A POINT X'S PATTERN A WHERE

X = SUM \( X(I)*E(I)/D \)

A(I) = #\(X(J): X(J)=I\)

SUM = SUM \( X(I) \)

THIS SUBROUTINE WILL RETURN:

FLAG — .TRUE. IF POINT IS IN THE FUNDAMENTAL CELL

FLAG .FALSE. IF POINT IS NOT IN THE FUNDAMENTAL CELL.

NEW VERSION 16 \MARCH 1988

USES CONCAVITY & ONLY PERFORMS D-l CHECKS

THE VARIABLE H IS D*G FROM CHAPTER 2

C23456789012345678901234567890123456789012345678901234567890123456

C

5000

1 2 3 4 5 6

IMPLICIT INTEGER (A-Z)

DIMENSION A(0:20)

LOGICAL FLAG, PFLAG

SAVE

M1

D1

M-l

D-l

RETURN

ENTRY CELL (M, D, A, SUM, FLAG, PFLAG)

IF (PFLAG) THEN

WRITE (3,5000) (A(I), I=0,Dl)

FORMAT (' CELL: CHECKING PATTERN',20I3)

 



5100

5200

10

5300

0
0
0
0

135

DO 10' J = D1, 1' —1

K

H

K + A(J)

((A(J)+M)*A(J)*D)/2 + H - (M*J+D*K-SUM)*A(J)

IF (PFLAG) THEN

WRITE (3,5100) J,K,H

FORMAT (' CELL: J/K/H',3I8)

ENDIF

IF ( H .LT. 0 ) THEN

THE POINT IS OUTSIDE OF THE CELL.

IF (PFLAG) THEN

WRITE (3,5200)

WRITE (3,5200)

FORMAT (' ')

ENDIF

FLAG = .FALSE.

RETURN

ENDIF

CONTINUE

THE POINT HAS PASSED ALL TESTS & IS WITHIN THE CELL.

FLAG = .TRUE.

IF (PFLAG) THEN

WRITE (3,5300)

WRITE (3,5300)

FORMAT (' ')

ENDIF

RETURN

END

SUBROUTINE SPOINT (M,D,A,X,SORT,FLAG,PFLAG)

THIS ROUTINE CONVERTS THE PATTERN IN A INTO THE POINT IN X.

IT HAS BEEN MODIFIED TO NOT GENERATE UNNECESSARY POINTS.

IT SEARCHES FOR THE TWO DIGITS USED WITH THE

LEAST MULTIPLICITY AND PUTS THESE IN X(l) & X(M).

IMPLICIT INTEGER.(A-Z)

DIMENSION A(0:20) ,B (0:20) ,X(20) ,SORT (20) ,MORT (20)

LOGICAL FLAG,SFLAG,SSFLAG,PFLAG

SAVE

SFLAG = .TRUE. MEANS NO SMALLEST YET,

SSFLAG = .TRUE. MEANS NO SECOND SMALLEST YET.
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C

5000

5100

1 2 3 4 5 6

M1 = M-l

Dl = D-1

SFLAG = .TRUE.

SSFLAG = .TRUE.

FIRST STORE THE PATTERN IN B SO WE CAN WORK WITH IT.

DO 2, I=0,D1

B(I) = A(I)

CONTINUE

IF (PFLAG) THEN

WRITE (3,5000) (A(I), I=0,Dl)

FORMAT (' SPOINT: A ',20I3)

WRITE (3,5100) (B(I), I=0,Dl)

FORMAT (' SPOINT: B ',20I3)

ENDIF

S = DIGIT WITH SMALLEST NON ZERO MULTIPLICITY

SS = DIGIT WITH SECOND SMALLEST.

START LOOP THROUGH THE DIGITS

DO 4, I=0,Dl

IF (B(I).GT.0) THEN

DIGIT I HAS NON ZERO MULTIPLICITY

IF (SFLAG) THEN

NO SMALLEST SAVED YET, SO THIS IS IT.

S = I

SFLAG = .FALSE.

ELSE

IF (B(I).LE.B(S)) THEN

A NEW SMALLEST.

SS = S

SSFLAG = .FALSE.

S = I

ELSE

IF (SSFLAG) THEN

NO SECOND SMALLEST SAVED YET.

SS=I

SSFLAG = .FALSE.
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ELSE

IF (B(I).LT.B(SS)) THEN

A NEW SECOND SMALLEST

SS=I

ENDIF

END NEW SECOND SMALLEST

ENDIF

END NO SECOND SMALLEST

ENDIF

END NEW SMALLEST

ENDIF

END NO SMALLEST

ENDIF

END DIGIT I HAS NON ZERO MULTIPLICITY

CONTINUE

END LOOP ON DIGITS

IF (PFLAG) THEN

WRITE (3,5200) S,SS

FORMAT (' SPOINT: S/SS ',2I4)

ENDIF

IF (B(S).GT.1) THEN

SMALLEST MULTIPLICITY IS .GE. 2

8(8) = B(S)-2

X(l) = S

X(M) = S

ELSE

SMALLEST MULTIPLICITY IS 1

3(3) = B(S)-1

B(SS) = B(SS)-1

X(l) = S

X(M) = SS

ENDIF

END FIX FIRST & LAST DIGITS

BEGIN INITIALIZE THE POINT

J = 1

DO 8, I=0,D1

DO 6, XX=1,B(I)

J = J+1

X(J) = I

CONTINUE

CONTINUE
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END INITIALIZE THE POINT (MIDDLE DIGITS)

NOW SORT THE POINTS SO X(SORT(1)) <= X(SORT(2)) <= ...

DO 10, I=2,Ml

SORT(I) = I

CONTINUE

I=2

CONTINUE

DO WHILE ( ( I.LE.M1 ) .AND. ( X(l).GT.X(SORT(I)) )

IF ( I.LE.Ml ) THEN

IF ( X(l).GT.X(SORT(I)) ) THEN

SORT(I-l) = SORT(I)

I = I+l

GOTO 11

ENDIF

ENDIF

END DO WHILE

SORT(I-l) = 1

I=Ml

CONTINUE

DO WHILE ( ( I.GE.1 ) .AND. ( X(M).LT.X(SORT(I)) ) )

IF ( I.GE.1 ) THEN

IF ( X(M).LT.X(SORT(I)) ) THEN

SORT(I+1) = SORT(I)

I = I-l

GOTO 12

ENDIF

ENDIF

END DO WHILE

SORT(I+1) = M

END SORTING OF POINTS

BEGIN MORT, THE INVERSE OF SORT.

DO 16, I=1,M

MORT(SORT(I)) = I

CONTINUE

END MORT, THE INVERSE OF SORT

IF (PFLAG) THEN

WRITE (3,5300) (X(I),I=1,M)

FORMAT (' SPOINT: X ',20I3)

WRITE (3,5400) (SORT(I),I=1,M)

FORMAT (' SPOINT: SORT ',20I3)

WRITE (3,5500) (MORT(I),I=1,M)

FORMAT (' SPOINT: MORT ',20I3)

WRITE (3,5600)

WRITE (3,5600)

FORMAT (' ')

ENDIF

FLAG = .TRUE.

)
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HAVE THE FIRST POINT & RETURN

RETURN

ENTRY POINT (M,D,A,X,SORT,FLAG,PFLAG)

GET NEXT POINT

IF (PFLAG) THEN

WRITE (3,5700) (X(I), I=1,M)

FORMAT (' POINT: X ',20I3)

ENDIF

FIRST FIND X(I) SUCH THAT

X(I) < X(I+1) >= X(I+2) >= ... >= X(Ml)

I = Ml-l

DO WHILE ( X(I) .GE. X(I+1) )

CONTINUE

IF ( X(I) .GE. X(I+1) ) THEN

IF (I.EQ.2) THEN

POINT IN INVERSE LEXICOGRAPHICAL ORDER. RETURN

FLAG = .FALSE.

IF (PFLAG) THEN

WRITE (3,5800)

WRITE (3,5800)

FORMAT (' ')

ENDIF

RETURN

ENDIF

I = I-l

GOTO 20

ENDIF

REPEAT

J = I+l

FIND COORDINATE X(J) SUCH THAT X(J) > X(I) AND X(J+1) <= X(I)

THAT IS, THE MINIMAL X(J) > X(I) WITH J > I.

DO WHILE (J.LT.M1)

CONTINUE

IF (J.LT.M1) THEN

IF ( X(J+1) .LE. X(I) ) THEN

EXIT

GOTO 23

ENDIF

J=J+1

GOTO 22
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ENDIF

REPEAT

CONTINUE

IF (PFLAG) THEN

WRITE (3,5900) I,J

FORMAT (' POINT: I,J ',214)

ENDIF

NOW SWAP X(I) & X(J)

NOTE: X(I) IS THE MORT(I)TH SMALLEST & ETC.

K = X(I)

X(I) = X(J)

X(J) = K

K = MORT(I)

MORT(I) = MORT(J)

MORT(J) = K

SORT(MORT(I)) = I

SORT(MORT(J)) = J

NOW INVERT TAIL OF THE LIST: PUT IN INCREASING ORDER.

I+1

Ml

I

J

DO WHILE (I.LT.J)

CONTINUE

IF (I.LT.J) THEN

K = X(I)

X(I) = X(J)

X(J) = K

K = MORT (I)

MORT(I) = MORT(J)

MORT(J) = K

SORT(MORT(I)) = I

SORT(MORT(J)) = J

I=I+1

J=J-1

GOTO 24

ENDIF

REPEAT

IF (PFLAG) THEN

WRITE (3,6000) (X(I), I=1,M)

FORMAT (' POINT: NEW X ',20I3)

WRITE (3,6100) (SORT(I), I=1,M)

FORMAT (' POINT: SORT ',2013)

WRITE (3,6200) (MORT(I), I=1,M)

FORMAT (’ POINT: MORT ',20I3)

WRITE (3,6300)

WRITE (3,6300)

FORMAT (' ')

ENDIF

 
""l
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RETURN

END

SUBROUTINE SCHEKl (M,D,X,SORT,FLAG,COUNT,PFLAG)

IMPLICIT INTEGER (A-Z)

DIMENSION X(20), SORT(20)

DIMENSION XQ(10), C(10)

DIMENSION E(20,10), ED(20,10)

LOGICAL FLAG, PFLAG

REAL C, CMIN

REAL UPPER, UBOUND, LOWER, LENGTH

REAL TEMPl, TEMPZ

REAL LOWER4, LOWRAD, BOUND, BNDZS

COMPLEX E, ED, XQ

DOUBLE PRECISION ANGLE, RADIUS

DOUBLE PRECISION DTEMP, REALE, IMAGE, REALED, IMAGED

SAVE

ERROR DISCOVERED IN RADIUS: (TS, 5 JAN, 1988)

SINCE WE NEED USE ONLY ONE OF EACH CONJUGATE PAIR

OF COMPLEX ISOMORPHISMS, WE CAN DIVIDE THE RADIUS BY THE

SQUARE ROOT OF 2.

23456789012345678901234567890123456789012345678901234567890123456

1 2 3 4 5 60
0

0
0
0
0

M1 M-1

D1 D-1

s = M1/2

ANGLE = 6.28318 53071 79586 D0 / DBLE(M)

RADIUS = DSQRT( DBLE((M?Mr1)/24) ) / DBLE(D)

DTEMP = RADIUS / DSQRT( DBLE(S) )

LOWER = REAL( DTEMP )

LOWER4 REAL( 4.0D0 * DTEMP )

LOWRAD REAL( 2.0D0 * DTEMP * RADIUS )

BOUND = .99

BNDZS = BOUND * 2**s

DO 4, I=1,M

DO 2, J=1,S

DTEMP

REALE

IMAGE

E(I,J)

ANGLE*MOD(I*J,M)

DCOS( DTEMP )

DSIN( DTEMP )

CMPLX( REALE, IMAGE )

REALED REALE / DBLE(D)

IMAGED IMAGE / DBLE(D)

ED(I,J) = CMPLX ( REALED, IMAGED )

2 CONTINUE

4 CONTINUE

IF (PFLAG) THEN

WRITE (3,5000) ANGLE,RADIUS,BND2$
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FORMAT (' SCHEKl: ANGLE,RADIUS,BND28',3F12.6)

WRITE (3,5100)

WRITE (3, 5200) J

FORMAT (' ')

FORMAT (' SCHEKl: CONJUGATE NUMBER', 12)

DO 6, I=1,M

WRITE (3,5300) E(I,J),ED(I,J)

FORMAT (' SCHEKl: E/ED',2(2(F12.6,1X),4X))

CONTINUE

CONTINUE

WRITE (3,5400)

WRITE (3,5400)

FORMAT (' ')

ENDIF

RETURN

ENTRY CHECKl (M,D,X,SORT,FLAG,COUNT,PFLAG)

XQ(J) = JTH CONJUGATE OF X AS A COMPLEX NUMBER

IF (PFLAG) THEN

WRITE (3,5500) (X(I), I=1,M)

FORMAT (' CHECKl: X ',20I3)

ENDIF

DO 12, J%1,S

XQ(J) = ( 00' 0. )

DO 10, I=1,M

XQ(J) = X(I)*ED(I,J) + XQ(J)

CONTINUE

CONTINUE

THE MAIN LOOP

DO 30, I=M,1,-1

COUNT = COUNT+1

IF (I.LT.M) THEN

SUBTRACT OFF A NEARBY LATTICE POINT

DO 20, J=1,S
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XQ(J) = XQ(J) - E(SORT(I+1),J)

CONTINUE

ENDIF

FIND THE MINIMAL C(J) = \!XQ(J)\!

CMIN = 999999.

DO 22, J=1,S

C(J) = ABS(XQ(J))

IF ( C(J) .LT. CMIN ) THEN

CMIN = C(J)

ENDIF

CONTINUE

TEMPl = (LOWER+CMIN)*LOWER4

LENGTH = 0.

IF (PFLAG) THEN

WRITE (3,5600)

FORMAT (' ')

WRITE (3,5700) I

FORMAT (' CHECKl: I ',I4)

WRITE (3,5800) (J,XQ(J), J=1,S)

FORMAT (' CHECKl: J, XQ ',I4,2F12.6)

WRITE (3,5900) CMIN

FORMAT (' CHECKl: CMIN ',F10.6)

WRITE (3,6000) (J,C(J), J=1,S)

FORMAT (' CHECKl: J, C ',I4,F12.6)

WRITE (3,6100) LOWER

FORMAT (' CHECKl: LOWER ',F12.6)

ENDIF

DO 24, J:1,S

TEMP2 = ( SQRT( C(J)*C(J)+TEMP1 ) - C(J) )

LENGTH = TEMP2*TEMP2 + LENGTH

IF (PFLAG) THEN

WRITE (3,6200) J,TEMP2

FORMAT (' CHECKl: J,TEMP2 'I4,F12.6)

ENDIF

CONTINUE

UPPER LOWRAD / SQRT(LENGTH)

TEMPl (UPPER+CMIN)*UPPER*4.

UBOUND = 1.

DO 26, J=1,S

UBOUND = ( SQRT( C(J)*C(J)+TEMP1 .) + C(J) ) * UBOUND

CONTINUE

IF (PFLAG) THEN

 

 



6300

6400

30

6500

C

C

144

WRITE (3, 6300) LENGTH, UPPER, UBOUND

FORMAT ( ' CHECKl: LENGTH, UPPER, UBOUND ' , 3F12 . 6)

ENDIF

IF ( UBOUND .LT. BNDZS ) THEN

FLAG = .TRUE.

IF (PFLAG) THEN

WRITE (3, 6400)

WRITE (3,6400)

FORMAT (' ' )

ENDIF

RETURN

ENDIF

CONTINUE

FLAG = .FALSE.

IF (PFLAG) THEN

WRITE (3,6500)

WRITE (3,6500)

FORMAT (' ')

ENDIF

RETURN

END

SUBROUTINE SCHEKZ (M, D, X, FLAG, COUNT, PFLAG, CFLAG)

IMPLICIT INTEGER (A-Z)

LOGICAL FLAG, PFLAG, PFLAGl

DIMENSION A(0:20) ,B(0:20,20) ,II (20)

DIMENSION X (20) ,Q(20)

SAVE

THIS ROUTINE HANDLES REPETITIONS IN THE DIGITS OF X

SLICK IS USED TO CHECK THE POINT

C23456789012345678901234567890123456789012345678901234567890123456

C 1 2 3 4 5 6

M1 = M - 1

D1 = D - 1

PFLAGl = (CFLAG.GT.0)

RETURN

ENTRY CHECK2 (M, D , X, FLAG, COUNT, PFLAG, CFLAG)
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C INITIALIZE SLICK FOR THIS POINT

CALL XSLICK (M,D,X,Q,FLAG,PFLAG1)

DO 10, I=0, D1

A(I) = 0

10 CONTINUE

C GET PATTERN & LOCATION

C ALSO ZERO 'NEARBY LATTICE POINT' Q

DO 12, I=1, M

Q(I) = 0

J = X(I)

A(J) = A(J)+1

B( J. A(J) ) = I

12 CONTINUE

IF (PFLAG) THEN

WRITE (3,5000) (X(I), I=1,M)

5000 FORMAT (' CHECK2: X ',20I3)

WRITE (3,5100)

5100 FORMAT (' CHECK2: I A B')

DO 14, I=0,D1

WRITE (3,5200) I,A(I),( B(I,J), J=1,A(I) )

5200 FORMAT (8X,2I4,2X,20I3)

14 CONTINUE

IF (PFLAGl) THEN

WRITE (3,5250)

5250 FORMAT (' ')

ENDIF

ENDIF

C INVOKE CHECKER FOR Q = 0 FIRST!

CALL SLICK (M,D,X,Q,FLAG,PFLAG1)

IF (PFLAGl) THEN

CFLAG = CFLAG-1

PFLAGl = (CFLAG.GT.O)

ENDIF

C BEGIN DOES X PASS WITH 0?

IF (FLAG) THEN

IF (PFLAG) THEN

WRITE (3,6500)

6500 FORMAT (' CHECK2: PASSES WITH 0')

WRITE (3,6600) ‘

WRITE (3,6600)

6600 FORMAT (' ')

ENDIF

C YES! THE POINT PASSES! BRAVO!

RETURN

1
1
F
“
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ELSE

POINT DOES NOT PASS

IF (PFLAG) THEN

WRITE (3, 6700)

FORMAT (' CHECK2:

WRITE (3, 6750)

FORMAT (' ' )

ENDIF

FLUNKS WITH 0')

ENDIF

END DOES X PASS WITH 0?

BEGIN COMPUTE

J = D1

'NEARBY LATTICE POINT' Q

BEGIN LOOP ON DIGITS J

CONTINUE

IF (J.GE.0) THEN

DO 20, I=1,M

II(I) = 0

CONTINUE

K=1

BEGIN FETCH NEXT Q

CONTINUE

IF ( K.LE.A(J) ) THEN

INCREMENT THE KTH SPOT

II (K) = II (K)+1

BEGIN HAVE NEXT Q OR NEED TO CARRY

IF ( II(K).LE.1 ) THEN

BEGIN HAVE NEXT Q

INCREMENT COUNTER

COUNT = COUNT + 1

FINALIZE THE 'NEARBY LATTICE POINT'

DO 26, I=1,A(J)

Q(B(J,I)) = II(I)

CONTINUE

IF (PFLAG) THEN

WRITE (3,5300) (II(I), I=1,A(J))

FORMAT (' CHECK2: II ',20I3)

WRITE (3,5400) (Q(I), I=1,M)

FORMAT (' CHECK2: Q ',20I3)

IF (PFLAGl) THEN

WRITE (3,5450)

FORMAT (' ')

ENDIF

ENDIF

Q
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INVOKE CHECKER

CALL SLICK (M,D,X,Q,FLAG,PFLAG1)

IF (PFLAGl) THEN

CFLAG = CFLAG-1

PFLAGl = (CFLAG.GT.0)

ENDIF

BEGIN DOES X PASS?

IF (FLAG) THEN

IF (PFLAG) THEN

WRITE (3,5500)

FORMAT (' CHECK2: THIS POINT PASSES.')

WRITE (3,5600)

WRITE (3,5600)

FORMAT (' ')

ENDIF

YES! THE POINT PASSES!

RETURN

ELSE

POINT DOESN'T PASS

IF (PFLAG) THEN

WRITE (3,5700)

FORMAT (' CHECK2: FLUNKS WITH Q.')

WRITE (3,5750)

FORMAT ( ' ' )

ENDIF

ENDIF

END DOES X PASS?

K = 1

END HAVE NEXT Q

ELSE

BEGIN NEED TO CARRY

II(K) = 0

K = K+1

END NEED TO CARRY

ENDIF

END HAVE NEXT Q OR NEED TO CARRY?

GOTO 200

ENDIF

END FETCH NEXT Q

J = J-l

GOTO 100
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ENDIF

C END LOOP ON DIGITS

C HAVE RUN THROUGH OUR LIST OF 'NEARBY LATTICE POINTS'

C THIS POINT HAS NOT PASSED

IF (PFLAG) THEN

WRITE (3,5800)

5800 FORMAT (' CHECK2: THE POINT HAS FLUNKED ALL TESTS. ')

WRITE (3,5900)

WRITE (3, 5900)

5900 FORMAT (' ')

ENDIF

RETURN

END

SUBROUTINE CHECK3 (M,D,F,X,FLAG,COUNT,PFLAG1,CFLAG2)

A PROGRAM TO CHECK POINTS IN THE 1/D LATTICE

THE METHOD IS TO GENERATE ALL INTEGERS WITH COORDINATES

BOUNDED ABOVE BY SOME NUMBER 'F' & TO BOUND THE

NORM OF X-Q ON THE l/D CELL VIA 'SLICK' .0
0
0

0

C23456789012345678901234567890123456789012345678901234567890123456

C 1 2 3 4 5 6

IMPLICIT INTEGER (A-Z)

DIMENSION A(0:20), X(20), Q(20)

LOGICAL FLAG, FLAGl, FLAG2, PFLAGl, PFLAG2

SAVE

PFLAG2 = (CFLAG2.GT.0)

IF (PFLAGl) THEN

WRITE (3,5000) (X(I), I=1, M)

5000 FORMAT (' CHECK3: X ',2013)

ENDIF

CALL XSLICK (M, D, X, Q, FLAG, PFLAG2)

CALL SPGEN3 (M, F, A, FLAGl , PFLAGl)

C START OF PATTERN LOOP

12 CONTINUE

IF (FLAGl) THEN

IF (PFLAGl) THEN

WRITE (3,5100) (A(I), I=0, F)

5100 FORMAT (' CHECK3: A ',2013)

ENDIF

CALL SPOIN3 (M, F, A, Q, FLAG2 , PFLAGl)

 

 



5200

5300

5400

5500

5550

149

START OF 'NEARBY LATTICE POINT' Q LOOP

CONTINUE

IF (FLAG2) THEN

IF (PFLAGl) THEN

WRITE (3,5200) (Q(I), I=1, M)

FORMAT (' CHECK3: Q ',2013)

ENDIF

INCREMENT COUNTER & PERFORM CHECK

COUNT = COUNT + 1

CALL SLICK (M,D,X,Q,FLAG,PFLAG2)

IF (PFLAG2) THEN

CFLAGZ = CFLAG2-1

PFLAG2 = (CFLAG2.GT.0)

ENDIF

IF (FLAG) THEN

IF (PFLAGl) THEN

WRITE (3,5300)

FORMAT (' CHECK3: THIS POINT PASSES.')

WRITE (3,5400)

WRITE (3,5400)

FORMAT (' ')

ENDIF

POINT X PASSES -- RETURN (FLAG WILL BE .TRUE.)

RETURN

ENDIF

GET NEXT 'NEARBY LATTICE POINT' Q

IF (PFLAGl) THEN

WRITE (3,5500)

FORMAT (' CHECK3: POINT FLUNKS WITH THIS 0')

WRITE (3,5550)

FORMAT (' ')

ENDIF

CALL POINT3 (M,F,A,Q,FLAG2,PFLAG1)

GOTO 14

ENDIF

END OF 'NEARBY LATTICE POINT' Q LOOP

GET NEXT PATTERN

CALL PGEN3 (M,F,A,FLAG1,PFLAG1)

GOTO 12

ENDIF

END OF PATTERN LOOP

IF WE REACH HERE, WE HAVE CHECKED AS MANY Q AS

THE BOUND 'F' ALLOWS. THUS, THE POINT X FAILS.
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IF (PFLAGl) THEN

‘ WRITE (3,5600)

5600 FORMAT (' CHECK3: POINT HAS FLUNKED ALL TESTS')

WRITE (3,5700)

WRITE (3,5700)

5700 FORMAT (' ')

ENDIF

C POINT X FAILS -- RETURN (FLAG WILL BE .FALSE.)

RETURN

END

SUBROUTINE SPGEN3 (M,F,A,FLAG,PFLAG)

C PATTERN GENERATOR. RETURNS THE RESULT IN THE ARRAY A(I).

C . THE MULTISET \(\( 0**A(0), 1**A(1), ... \)\) CORRESPONDS TO A

c AND THE POINT x = SUM \( X(I)*E(I) \). WHERE

C A(I) = #\( J: X(J) = I \). UNDER THE ASSUMPTION THAT ‘

c A(0) = #\( J: X(J) = 0 \) 1.

C METHOD USED TO GENERATE PATTERNS IS TO CARRY A 1 FROM.THE

C FIRST NON ZERO A(I) TO A(I+1) AND IF I>0, DROP THE REST

C OF A(I) TO A(0). -

C23456789012345678901234567890123456789012345678901234567890123456

c 1 2 3 4 5 6

IMPLICIT INTEGER (AeZ)

DIMENSION A(0:20), B(0:20)

LOGICAL FLAG,PFLAG

SAVE

C INITIALIZE

A(0)=M

3(0) =M- 1

DO 6, I=1, F

A(I) = 0

B(I) = 0

6 CONTINUE

FLAG = .TRUE.

RETURN

ENTRY PGEN3 (M,F,A,FLAG,PFLAG)

IF (PFLAG) THEN

WRITE (3,5000) (A(I), I=0, F)

5000 FORMAT (' PGEN3: OLD PATTERN',20I3)

ENDIF

I=0

C FIND A NON ZERO B(I)
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DO WHILE (B(I).EQ.0)

CONTINUE

IF (B(I).EQ.0) THEN

I = I+1

GOTO 12

ENDIF

REPEAT

IF (I.EQ.F) THEN

IF (PFLAG) THEN

‘WRITE (3,5100) I

FORMAT (' PGEN3: INDEX I',I4)

WRITE (3,5200)

FORMAT (' PGEN3: NO MORE PATTERNS')

WRITE (3,5300)

WRITE (3,5300)

FORMAT (' ')

ENDIF

OUT OF PATTERNS

FLAG = .FALSE.

RETURN

ENDIF

CARRY THE 1 UPWARDS AND DROP THE REST DOWN.

B(I+1) = B(I+1)+1

A(I+1) a B(I+1)

B(O) = B(I)-1

A(O) = B(0)+1

IF I .GT. 0 THEN ZERO A(I) & B(I)

IF (I.NE.0) THEN

B(I) = 0

A(I) = 0

ENDIF

IF (PFLAG) THEN

WRITE (3,5400) I

FORMAT (' PGEN3: INDEX I',I4)

WRITE (3,5500) (A(I), I=0,F)

FORMAT (' PGEN3: NEW PATTERN',2013)

WRITE (3,5600)

WRITE (3,5600)

FORMAT ( ' ' )

ENDIF

RETURN

END
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SUBROUTINE SPOIN3 (M,F,A,X,FLAG,PFLAG)

C HIS ROUTINE CONVERTS THE PATTERN IN A INTO THE POINT IN X.

C23456789012345678901234567890123456789012345678901234567890123456

C 1 2 3 4 5 6

IMPLICIT INTEGER (A-Z)

DIMENSION A(0:20), X(20)

LOGICAL FLAG, PFLAG

SAVE

M1 = M-1

C INITIALIZE THE POINT

J = 0

DO 8, I=0,F

DO 6, XX=1, A(I)

J = J+1

X(J) = I

6 CONTINUE

8 CONTINUE

IF (PFLAG) THEN

WRITE (3,5000) (A(I), I = 0, F)

5000 FORMAT (' SPOIN3: A ',2013)

WRITE (3,5200) (X(I),I=1, M)

5200 FORMAT (' SPOIN3: x ',2013)

WRITE (3.5300)

WRITE (3,5300)

5300 FORMAT (' ')

ENDIF

FLAG = .TRUE.

C HAVE THE FIRST POINT & RETURN

RETURN

ENTRY POINT3 (M,F,A,X,FLAG,PFLAG)

C GET NEXT POINT

IF (PFLAG) THEN

WRITE (3,5400) (X(I), I=1,M)

5400 FORMAT (' POINT3: OLD x ',2013)

ENDIF

C FIRST FIND X(I) SUCH THAT

C X(I) < X(I+1) >= X(I+2) >= ... >= X(M)

I = M1

C DO WHILE ( X(I) .GE. X(I+1) )

20 CONTINUE
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IF ( X(I) .GE. X(I+1) ) THEN

IF (I.EQ.1) THEN

IF (PFLAG) THEN

WRITE (3,5500)

FORMAT (' POINT3: END POINT GENERATION!)

WRITE (3,5600)

WRITE (3,5600)

FORMAT (' ')

ENDIF

POINT IN INVERSE LEXICOGRAPHICAL ORDER. RETURN

FLAG = .FALSE.

RETURN

ENDIF

I = I-1

GOTO 20

ENDIF

REPEAT

J = I+l

FIND J SUCH THAT X(J) > X(I) AND X(J+1) <= X(I)

THAT IS, THE MINIMAL X(J) > X(I) WITH J > I.

DO WHILE ( (J.LT.M) .AND. (X(I).LT.X(J+1)) )

CONTINUE

IF (J.LT.M) THEN

IF ( X(I).LT.X(J+1) ) THEN

J=J+1

GOTO 22

REPEAT

ENDIF

ENDIF

IF (PFLAG) THEN’

WRITE (3,5700) I,J

FORMAT (' POINT3: POINTERS I,J', 214)

ENDIF

NOW SWAP X(I) & X(J)

K = X(I)

X(I) = X(J)

X(J) = K

NOW INVERT TAIL OF THE LIST: PUT IN INCREASING ORDER.

I

J

I+l

b4

 

-
1
3
0
!
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DO WHILE (I.LT.J)

CONTINUE

IF (I.LT.J) THEN

K = X(I)

X(I) = X(J)

X(J) = K

I=I+1

J=J-1

GOTO 24

ENDIF

REPEAT

IF (PFLAG) THEN

WRITE (3,5800) (X(I), I=1,M)

FORMAT (' POINT3: NEW X ',2013)

WRITE (3,5900)

WRITE (3,5900)

FORMAT (' ')

ENDIF

RETURN

END

SUBROUTINE SSLICK (M, D, X, Q, FLAG, PFLAG)

IMPLICIT INTEGER (A-Z)

LOGICAL FLAG, PFLAG

DIMENSION X(20) , Q(20) , C(10)

DIMENSION REALX(10), IMAGX(10)

DIMENSION REALE(20,10) , IMAGE (20,10)

DIMENSION REALED(20,10) , IMAGED (20,10)

DOUBLE PRECISION RM, RD, ANGLE, C, CMIN, RADIUS, RADSQD

DOUBLE PRECISION REALE, IMAGE, REALED, IMAGED, REALX, IMAGX

DOUBLE PRECISION APPROX, BOUND, LENGTH, DIFF

DOUBLE PRECISION TEMPl, TEMP2

DOUBLE PRECISION OKBND, NOKBND, DIFBND

SAVE

THE ARITHMETIC IS SLICKED UP TO DOUBLE PRECISION &.

CQ4PLEX NUMBERS HAVE REAL & IMAGINARY. PARTS SEPARATED .

THIS ROUTINE IS UPGRADED WITH AN ITERATIVE PROCEDURE TO

FIND THE MAXIMUM.

C23456789012345678901234567890123456789012345678901234567890123456

C 1 2 3 4 5 6

RM=DBLE(M)

RD = DBLE(D)

M1 = M - 1
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D1 = D 1

S = M]. 2

ANGLE = 6.28318 53071 79586 DO / RM

\
I

RADSQD = DBLE( (M*M - 1) / 24)

RADIUS = DSQRT( RADSQD ) / RD

RADSQD=RADSQD/ (RD*RD)

DIFBND = 1D-10

CNTBND = 100

OKBND = 1 - 1D-6

NOKBND = 1 + 1D—6

NOTE E = ZETA ** (I*J)

ED = E / D

DO 4, I=1,M

DO 2, J=1,S

REALE(I,J) = DCOS( ANGLE * MOD(I*J,M) )

IMAGE(I,J) = DSIN( ANGLE * MOD(I*J,M) )

REALED(I,J) = REALE(I,J) / RD

IMAGED(I,J) = IMAGE(I,J) / RD

CONTINUE

CONTINUE

IF (PFLAG) THEN

WRITE (3,5000) RADIUS, RADSQD

FORMAT (' SSLICK: RADIUS, RADSQD ',2F16.12)

WRITE (3,5100) OKBND,NOKBND

FORMAT (' SSLICK: OKBND,NOKBND ',2F16.12)

WRITE (3,5200)

FORMAT (' ')

WRITE (3,5300) J

FORMAT (' SSLICK: CONJUGATE NUMBER', I4)

WRITE (3,5400) (REALE(I,J), IMAGE(I,J),

- REALED(I,J), IMAGED(I,J), I=1,M)

FORMAT (' SSLICK: E,ED',4F16.12)

WRITE (3,5500)

FORMAT (' ')

CONTINUE

WRITE (3, 5600)

WRITE (3, 5600)

FORMAT (' ')

ENDIF

RETURN

ENTRY XSLICK (M, D, X, Q, FLAG, PFLAG)
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REALX(J) = REAL PART OF JTH CONJUGATE OF x.

IMAGX(J) = IMAGINARY PART OF JTH CONJUGATE OF x.

DO 18, J=1, S

0D0

ODO

REALX(J)

IMAGX(J)

DO 16, I=1,M

REALX(J) = X(I)*REALED(I,J) + REALX(J)

IMAGX(J) = X(I)*IMAGED(I,J) + IMAGX(J)

CONTINUE

CONTINUE

IF (PFLAG) THEN

WRITE (3,5700) (X(I), I=1,M)

FORMAT (' XSLICK: X ',20I3)

WRITE (3,5800) (J,REALX(J),IMAGX(J), J=1,S)

FORMAT (' XSLICK: J,REALX,IMAGX ',I4,2F16.12)

WRITE (3,5900)

WRITE (3,5900)

FORMAT (' ')

ENDIF

RETURN

ENTRY SLICK (M, D, X, Q, FLAG, PFLAG)

IF (PFLAG) THEN

WRITE (3,6000) (X(I), I=1,M)

FORMAT (' SLICK: X ',2013)

WRITE (3,6100) (Q(I), I=1,M)

FORMAT (' SLICK: Q ',20I3)

ENDIF

DETERMINE THE C(J) = \!Z(J)\! & FIND THE MINIMAL ONE.

CMIN = 1D10

DO 22' J=1,S

TEMPl

TEMP2

REALX(J)

IMAGX(J)

DO 20, I=1,M

TEMPl = TEMPl - Q(I)*REALE(I,J)

TEMP2 = TEMPZ - Q(I)*IMAGE(I,J)

CONTINUE

C(J) = DSQRT( TEMP1*TEMP1 + TEMP2*TEMP2 )

IF ( C(J) .LT. CMIN) THEN

CMIN = C(J)

ENDIF

IF (PFLAG) THEN
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WRITE (3,6200) J,TEMP1,TEMP2,C(J)

FORMAT (' SLICK: J,TEMP1,TEMP2,C',I4,3F16.12)

ENDIF

CONTINUE

IF (PFLAG) THEN

WRITE (3,6300) CMIN

FORMAT (' SLICK: CMIN ',F16.12)

ENDIF

APPROX = RADIUS

COUNT = 0

ITERATION LOOP TO COMPUTE MAXIMUM

DO WHILE (COUNT.LT.CNTBND)

CONTINUE

IF (COUNT.LT.CNTBND) THEN

COUNT = COUNT + 1

TEMPl = (APPROX+CMIN)*APPROX*4DO

LENGTH = 0D0

BOUND = 1D0

COMPUTE A NEW BOUND & LENGTH

DO 42, J21,S J

TEMP2 (DSQRT(C(J)*C(J)+TEMP1)-C(J))*.5D0

BOUND ( TEMP2+C(J) ) * BOUND

LENGTH = TEMP2*TEMP2 + LENGTH

CONTINUE

DIFF = LENGTH - RADSQD

IF (PFLAG) THEN

WRITE (3,6400) APPROX, BOUND

FORMAT (' SLICK: APPROX, BOUND',2F16.12)

WRITE (3,6450) LENGTH, DIFF

FORMAT (' SLICK: LENGTH, DIFF ',2F16.12)

ENDIF

IF (DIFF.GE.-DIFBND) THEN

IF (BOUND.LT.OKBND) THEN

IF (PFLAG) THEN

WRITE (3,6500)

FORMAT (' SLICK: THIS POINT PASSES.')

WRITE (3,6600)

WRITE (3,6600)

FORMAT (' ')

ENDIF

FLAG = .TRUE.

RETURN

ENDIF
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ENDIF

IF (DIFF.LE.DIFBND) THEN

IF (BOUND.GT.NOKBND) THEN

IF (PFLAG) THEN

WRITE (3,6800)

FORMAT (' SLICK: THIS POINT FLUNKS.')

WRITE (3,6900)

WRITE (3,6900)

FORMAT (' ')

ENDIF

THIS ONE FLUNKS. RETURN.

FLAG = .FALSE.

RETURN

ENDIF

ENDIF

APPROX= APPROX*RADIUS/DSQRT(LENGTH)

LOOP BACK & REITERATE BOUNDS

IF ( ABS(DIFF).GT.DIFBND ) THEN

GOTO 40

ENDIF

ENDIF

IF (PFLAG) THEN

WRITE (3,7000)

FORMAT (' SLICK: THIS POINT FLUNKS.')

WRITE (3,7100)

WRITE (3,7100)

FORMAT (' ')

ENDIF

FLAG = .FALSE.

RETURN

C23456789012345678901234567890123456789012345678901234567890123456

C 1 2 3 4 5 6

END
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