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ABSTRACT

_ ENUMERATION OF SYMMETRIES

LOCALLY-RESTBIIRICTED TREES

By

Kathleen A. McKeon

In this thesis, symmetries are enumerated in unlabeled trees

with certain restrictions on their degrees. The vertices of a d-tree

have degree at most d. The vertices of a (1,d)-tree have degree 1 or

d. Trees of these types give rise to significant examples in

polymer chemistry. For example, (1,4)-trees represent the alkanes

and 4-trees represent the carbon. skeletons of alkanes.

A two-variable generating function is used to determine both

exact and asymptotic formulas for the number of symmetries in

d-trees and (1,d)-trees for d =- 3,4. Tables containing the exact and

asymptotic number of symmetries are provided for all four types of

trees.
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INTRODUCTION

The enumeration of trees is an important problem in graph

theory with a distinguished history as well as applications to

theoretical chemistry. The first major work in this area was

performed by Cayley who determined exact formulas for the number

of labeled trees [089], the number of rooted trees [057] and the

number of free trees [075,081]. These results were extended and

an asymptotic analysis of the numbers was provided by Polya [P37]

and Otter [048]. In this thesis, both exact and asymptotic formulas

are determined for the number of symmetries in unlabeled trees

with certain restrictions on their degrees.

The definitions and notation used in this thesis follow those

of Palmer [Pa85] and are given below.

A graph 6 consists of a finite nonempty set V of vertices

and a set E of edges which are unordered pairs of distinct vertices.

The cardinality of V is called the order of 6 while the cardinality

of E is called the size of G. An edge e joining the vertices u and v

is denoted by uv and the vertices u and v are said to be adjacent.

The degree of a vertex v is the number of vertices adjacent to v. An

end-vertex has degree one.

A walk in a graph G is a sequence of vertices w1,w2, ,w
m

such that wi is adjacent to w for i - 1 to m - 1. A path is a walk

1

i+1
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in which no vertices are repeated. The length of a path is the

number of edges used. The distance between a pair of vertices u

and v is the length of the shortest u - v path. A cycle is a walk with

at least 3 different vertices that has no repeated vertices except

the first and last. A graph is connnected if every pair of vertices

is joined by a path.

A tree is a connected,acyclic graph. A rooted tree has one

vertex, called the root, distinguished from the others. Similarly,

an edge-rooted tree has one edge, called the root edge,

distinguished from the others. A planted tree is a rooted tree in

which the root has degree one. An unrooted tree is also called a

free tree. In a d-tree, all vertices have degree at most d. In a

(1,d)-tree, the vertices have degree 1 or d.

The eccentricity of a vertex v is the distance to a vertex

farthest from v. The center of a graph consists of all vertices of

minimum eccentricity. The center of a tree contains either one or

two vertices. .

The complete graph of order n, denoted Kn, has all possible

edges present. The complete graph on two vertices, K2, consists of

two vertices which are joined by an edge.

Two graphs G1 and 62 are isomorphic if there is a one-to-one

function (i) from the vertex set of G1 onto the vertex set of stuch

that for any two vertices u and v of G1 we have u and v adjacent in

G1 if and only if (Mu) and ¢(v) are adjacent in 62- The function (j) is

called an isomorphism and is said to preserve adjacency. In

unlabeled graph enumeration, isomorphic graphs are considered

equivalent and are counted as one graph.
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An isomorphism from a graph G to itself is an automorphism

or symmetry of G. The set of automorphisms of G forms a

permutation group denoted by I‘(G) and is called the automorphism

or symmetry group of G. An automorphism of a rooted tree must

leave the rooted fixed and an automorphism of an edge-rooted tree

must leave the vertices of the root edge fixed.

Cayley's work [075] was motivated by the problem of

enumerating isomers of alkanes, compounds of carbon and hydrogen

atoms which have. valencies of 4 and 1 respectively. The alkanes

have the general formula CkH2k+2 and can be represented by

(1,4)-trees. They are the best documented family of chemical

compounds and provide a model for much of chemical theory

[GoK73].

Generalizing (1,4)-trees, we have (1,d)-trees which give rise

to other meaningful examples in polymer chemistry. There is a

correspondence between (1,d)-trees and d-trees that also has

chemical significance. While 4-trees correspond to the carbon

skeletons of alkanes [GoK73]. d-trees in general correspond to

skeleton polymers, i.e., polymer molecules that have been stripped

of their reactive end-groups [GoT76].

The problem addressed in this thesis, the enumeration of

symmetries in (1,d)-trees and d-trees for d - 3,4, is also motivated

by chemistry. In the study of collections of molecular species, it

is almost always the average of some property over an appropriate

class of trees that is required. In computing such an average, it is

necessary to assign weights to the various trees in the class so as

to reflect the (not usually equal) proportions in which they are
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formed by the chemical process involved. The proper assignment of

weights to the trees often involves the orders of their

automorphism groups [GoL75]. Consequently, chemists are

interested in the orders of the automorphism groups of large trees

of various species such as (1,d)-trees and d-trees.

The tool used to do the counting is a two-variable

logarithmic generating function, an approach that seems to have

originated in the work of Etherington [Et38]. For a given class C of

trees, let t(x,y) be the generating function in the two variables x

and y such that the coefficient of ymxn is the number of trees T in

C of order n in which m is the logarithm base 2 of the order of the

automorphism group of T. In t(x,2), the coefficent of xn is the sum

of the orders of the automorphism groups of all such trees.

The technique used to do the counting was developed by P6lya

in [P37], perfected by Otter [048] and described as a twenty step

algorithm for counting various types of trees by Harary, Robinson

and Schwenk [HRS75]. The generating functions t(x,y) and t(x,2)

satisfy functional equations from which recurrence relations for

their coefficients are determined. By applying an adaption of the

twenty-step algorithm and treating t(x,2) as an analytic function,

the asymptotic behavior of these coefficients is determined.



CHAPTER I

ENUMERATION OF SYMMETRIES

1 r in F

Symmetries are enumerated in four types of trees : d-trees

and (1,d)-trees for d =- 3,4. Throughout this thesis the type of tree

will be specified only when the statement being made does not

appy to all four types.

For the planted trees of each type, a two-variable

logarithmic generating function is defined as follows:

(1.1.1) T(x,y) - 2 2 Tm'nymxn_

[131 m

For d-trees, Tm," is the number of planted trees T of order

n + 1 in which m =- logZIF(T)|. Every (1 ,3)-tree, planted or free, has

an even number of vertices and the order of a (1 ,4)-tree, planted or

free, is equal to 2 modulo 3. This is taken into account in the

definition of T(x,y) for (1,d)-trees. For (1,3)-trees, Tm,n counts

planted trees on 2n vertices with 2"1 symmetries while for

(1,4)-trees Tm,n counts planted trees on 3n - 1 vertices with 2'“

symmetries.

The values which m may assume in the sum (1.1.1) depend on

5
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both d and the type of tree. Since an automorphism of a rooted tree

must leave the root fixed, the order of the automorphism group of a

planted (1,3)-tree or 3-tree is of the form 2'“ where m is an

integer. In the case of (1,3)-trees, m ranges from 0 to n - 1. ln

3-trees, m ranges from 0 to (n - 1)/2. Similarly, the order of the

automorphism group of a planted (1,4)-tree or 4—tree has the form

2i(3!)i. Thus in these two types of trees, m corresponds to an

ordered pair of integers (i,j). The ranges of i and j are as follows.

For (1,4)-trees, O s i s n-2 and Os j s n -1-i while

0 s i s (n -1)/2 and 0 S] s (n -1- 2i)/3 for 4-trees.

Note that when y - 1 is substituted in (1.1.1), T(x,1) counts

planted trees of the specified type. Substituting y - 2 in (1.1.1)

results in a one-variable generating function which counts

symmetries in planted trees of the specified type. Define

m

(1.1.2) sn - atm’nz

and

(1.1.3) T(x,2) - Z snx".

n31

Then for (1,3)-trees, for example, Sn is the total number of

symmetries in all planted (1,3)-trees on 2n vertices.

Similarly, t(x,y) can be defined for free trees. However, we

actually only work with t(x,2). Thus, we define

I



(1.1.4) t(x,2) - Z snxn

I131

which counts symmetries in free, i.e., unrooted, trees. For d-trees,

sn is the number of symmetries in all such trees on n vertices. For

(1,d)-trees, the relationship between n and the number of vertices

is the same as in T(x,y).

| 2 E I' I B I I'

To obtain formulas for the number of symmetries in these

trees, functional relations satisfied by T(x,y), T(x,2) and t(x,2) are

now derived.

First observe that rooted and planted trees of a specified

type can be formed from planted trees of that type. A rooted tree

in which the root has degree k is formed by taking a collection of k

planted trees and identifying their roots to form the root of the

new tree. Adding a new vertex adjacent to the root of this rooted

tree results in a planted tree in which the degree of the vertex

adjacent to the root is k + 1. Based on this observation, relations

expressing T(x,y) in terms of T(x,y), T(x2,y2) and T(x3,y3) are

denved.

W The generating functions T(x,y) and T(x,2)

which count symmetries in planted (1 ,3)-trees satisfy



(1.2.1) T(x,y) = x +-;- T(x,y)2 + (y '13) T(x2,y2)

and

(1.2.2) T(x,2) a x +15 T(x,2)2 + %- T(x2,4).

Emmi: The vertex adjacent to the root of a planted (1,3)-tree

has degree 1 or 3. The term x counts the symmetries in a planted

K2,the only planted (1,3)-tree in which the vertex adjacent to the

root has degree 1.

To count symmetries in those trees in which the vertex

adjacent to the root has degree 3, two cases must be considered.

Suppose T is the planted (1,3)-tree formed from the planted

(1,3)—trees T1 and T2 in the manner described above. If T1: T2,

then we have |I‘(T)| - |I‘(T1)| |I‘(T2)|. Then 1/2(T(x,y)2- T(x2,y2))

counts symmetries in this case. If T1 - T2, then we have

|F(T)| - 2|1"(T1)|2. This case is handled by yT(x2,y2) with the factor

of y accounting for the additional factor of 2 in the group order.

Now (1.2.2) is obtained by substituting y - 2 in (1.2.1). //

The same techinique is used to derive the following

functional relations which are satisfied by T(x,y) and T(x,2) for

d-trees and (1,4)-trees.

W The generating functions T(x,y) and T(x,2)

which count symmetries in planted 3-trees satisfy



(1.2.3) T(x,y) . x tug T(x,y)2 + x T(x,y) + x (y - -;—)T(x2,y2)

and

(1.2.4) T(x,2) x +§- T(x,2)2 + xT(x,2) + 32—x T(x2,4).

mm The generating functions T(x,y) and T(x,2)

which count symmetries in planted (1,4)-trees satisfy

(1.2.5) T(x.y) - x + ~1— Tlx.y>" + l (y - l) may?) T(x.y)
6x x 2

1. 109231- 1— 3 3

+x(y y+3)T(x.y)

and

1_ 3 i 2 1.3; 3(1.2.6) T(x,2) - x + 6x T(x,2) + 2x T(x ,4)T(x,2) + 3x T(x ,8).

WThe generating functions T(x,y) and T(x,2)

which count symmetries in planted 4—trees satisfy

(1.2.7) T(x,y) - x .1? T(x,y)3 + 2;- T(x,y)2 + x (y - é) T(x2,y2)

+ x <1 + (11-13) T(xzf) > Tom

I093! 3 3

up ’-y+%-)T(x.y)

and
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(1.2.8) T(x,2) .. x +% T(x,2)3 +§ T(x,2)2 + -32—x-T(x2,4)

+ x (1 + g-T(x2,4)) T(x,2) + 153le3,8).

Using the following lemma which relates the order of the

automorphism group of a free tree to the orders of the

automorphism groups of the vertex and edge-rooted versions of the

tree, t(x,2) is expressed in terms of T(x,2), T(x2,4), T(x3,8) and

T(x4,16).

MFor any tree T.

(12.9) mm - 2.1me - 2. 1111211 + (1113)]

1 2

where the first sum is taken over all different vertex-rooted

versions T1 of T and the second sum is taken over all different

edge-rooted versions T2 of T. If T has a symmetry edge, an edge

whose vertices are interchanged by some automorphism of T, then

T:3 - T. If T does not have a symmetry edge, then T3 is the empty

graph and |I‘(T3)| =- 0.

am: Let n*(T) be the number of different ways to root T at

a vertex, i.e., the number of orbits of the vertices as determined by

the automorphism group of T and let q*(T) be the number of

different ways to root T at an edge. Let s(T) be the number of

symmetry edges in T. Note that since T is a tree, s(T) is 0 or 1.
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Lemma 1.2.5 is a variation of a lemma due to Otter [048]:

For any tree T,

(1.2.10) 1 = n*(T) - q*(T) + s(T) .

As in'the proof of (1.2.10), the vertex and edge-rooted

versions of T can be paired up such that the paired vertex and

edgewooted versions of T have the same automorphism group.

Recall that an automorphism of a rooted graph must leave the root

fixed while an automorphism of an edge-rooted graph must leave

the vertices of the root edge fixed. For each vertex v that is not in

the center of T, match the version of T that is rooted at the vertex

v with the edge-rooted version that is rooted at the first edge on

the path from v to the center of T.

If T has a symmetry edge, the center of T consists of two

vertices, u and v. Since the edge uv is a symmetry edge, rooting T

at v is equivalent to rooting T at u. Hence if the version of T that is

rooted at the vertex v is paired with the version of T that is rooted

at the edge uv, then the difference of the two sums in (1.2.9) is 0

and T3 :- T. Thus, (1.2.9) holds in this case.

If T does not have a symmetry edge two cases must be

considered. If the center of T consist of two vertices u and v,

match the version of T that is rooted at the vertex v with the

version of T that is rooted at the edge uv. In this case and the case

that the center of T consist of just one vertex u, there is one

vertex-rooted version of T that cannot be paired with an

edge-rooted version. This is the tree that results from rooting T at
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the vertex u which is in the center of T. Since T does not have a

symmetry edge, the vertices in the center of T are all fixed points

of the automorphisms of the unrooted tree T. Hence this extra

vertex-rooted version of T has the same automorphism group as T

and (1.2.9) holds in this case also. //

This lemma can be extended to a statement about the

generating functions that count symmetries by multiplying (1.2.9)

by x" and summing over all trees of the appropriate order. Summing

the result over all n 2 1 gives t(x,2) on the left side. The first sum

on the right side gives the series that counts symmetries in rooted

trees and the second sum gives the series that counts symmmetries

in edge-rooted trees while |1"(T3)|xn sums to the series that counts

symmetries in trees with a symmetry edge.

The equations satisfied by t(x,y) can now be stated.

Ihggrem 1,2,5 The generating function t(x,2) for

symmetries in free (1,3)-trees is given by

(1.2.11) t(x,2) . 3‘; T(x,2)2 - 5‘;- T(x,2)3

+ 51’— T(x2,4) + 151- T(x3,8).
2x 3x

Em: First we determine an expression for the series that

counts symmtries in rooted trees. As previously described, this

expression can be found by using planted (1,3)-trees to build rooted
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(1,3)-trees. The series for rooted (1,3)-trees is equal to

(1.2.12) T(x,2) +9”?! T(x3,8) + [f- (T(x2,4) T(x,2) - T(x3,8))]

{-3-};- (T(x,2)3 - 3 T(x2,4) T(x,2) + 2 T(x3,8))]

Symmetries in rooted (1,3)-trees in which the root has

degree 1, i.e., in planted (1,3)-trees, are counted by T(x,2). To

count symmetries in rooted (1,3)-trees in which the root has

degree 3, three cases must be considered. Suppose T is the rooted

tree formed from the planted (1 ,3)-trees T1, T2 and T3. The second

term of (1.2.12) counts symmetries in the case that all three trees

are the same. The case that exactly two of the three trees are the

same and the case that all three are different are handled by the

first and second bracketed terms of (1.2.12) respectively.

A tree rooted at an edge can be formed by identifying the

edges incident to the roots of two planted trees. That edge is the

root edge of the edge-rooted tree. When the two trees which are

combined are the same, that edge is a symmetry edge. Thus,

(1.2.13) 1— (T(x,2)2 + T(x2,4))
. 2x

counts symmetries in edge-rooted (1,3)-trees and
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(1.2.14) 3- T(x2,4)

X

counts symmetries in (1,3)-trees that have a symmetry edge.

Combining (1.2.12),(1.2.13) and (1.2.14) as in lemma 1.2.5 and using

the functional relation (1.2.2) to. simplify gives equation (1.2.11).//

The following theorems give the functional equations

satisfied by t(x,2) for d-trees and (1,4)-trees.

WThe generating function t(x,2) for symmetries

in free 3-trees is given by

(1.2.15) t(x,2) - T(x,2) Hg- T(x,2)3 + 33-25- T(x2,4) T(x,2)

3 2 13x 3 1 2
—T ’4 _ T ’8 o — T x’2 .

+ 2 (X )+ 3 (X ) 2 ( )

WThe generating function t(x,2) for symmetries

in free (1,4)-trees is given by

.3. 2 - .1- 2(1.2.16) t(x,2) .. T(x,2) + 2x T(x ,4) 2x T(x,2)

 + I 2 T(x,2)“ +3-3- T(x2.4) 11x2)2
24 x 4 x

+—9 T(xz.4)‘*+—71 T(x‘.16)
2 2

8x 4x

+—13 T(x3,8) T(x,2).
2

3x
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Ihegrem 1,2,9 The generating function t(x,2) for symmetries

in free 4-trees is given by

(1.2.17) t(x,2) =- T(x,2) 4.3- T(x2,4) - jlf T(x,2)2

x 4 3x 2 2

+ 24 (x 2) + 4 (x ) (x 2)

“
7
‘
3

+ %‘- T(x2,4)2 + 414 T(x4,16)

i
n

n
u
n
:
‘
l
q
u
n
a

+ lg!- T(x3,8) T(x,2).

Wines

From the functional equations (1.2.1), (1.2.3), (1.2.5) and

(1.2.7), recurrence relations for Tmm, the coefficient of ymx" in

T(x,y), can now be determined. Let 8", 0n and Dn be the coefficients

of x2", x3" and x4" in T(x2,4), T(x3,8) and T(x4,16) respectively. That

is,

2m

(1.3.1) en - 2 Tmz ,

m

3m

(1.3.2) on =- 2"; Tm’n2

and
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4m

(1.3.3) Dn . Z Tmm2 .

m

Then as a consequence of equations (1.2.11),(1.2.15),(1.2.16) and

(1.2.17), 5", the coefficient of x" in t(x,2), can be expressed in

terms of Sn, 8,1,0n and D".

Note that throughout this section the subscripts on the

variables are always non-negative integers. Otherwise one can

assume the value of the variable is zero.

First the formulas for Tm," and sn will be given for

(1,3)-trees. For n 2 2 and O s m s n - 1, Tm," is expressed in terms

of Am, where A is defined as follows.
n m,n

r

0, if m = n -1

(1.3.4) Am," a <

-1

1.: - _
ZTi'kTm_i’n.k,1fm¢n 1.

 

(1.3.5) T =A +T _ -

For n 2 2,
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' .1-1

1 1

“'35) Sn'EéskSn-k+1'§:28isiSn-i-l+1
Isl ISI

3 13
—B — .

+2 m+3 CALL

2 3

Next the equations for Tm," and sn are given for 3-trees. Here

To.1 and T02 are both equal to 1 and for n 2 2 and O s m s (n - 1)/2.

I 21(1.3.7)
Tm." + 1 ' E k.1 2i TLk Tm - i,n - k + Tm."

+T -lT
LIP—L, D. 2 111,-”-

2 2 2 2

 

- n-'-2 -1

1 1
(1.3.3) 5 =8 +— 33.3 .. -—'233

n n 61-1 j-l l ] n-l-j-l 2k:1 k n-k

+§B4J3C +§D
2 fl. 3 n-1 2 n-1

2 3

And now we have the equations for Tm," and sn for

(1,4)-trees. Recall that the group order of a planted (1,4)-tree

has the form 2i(3!)l' and in Tm’n, m corresponds to the ordered pair

of integers (i,j). Hence, we write Tm," as TM,n where 0 s i s n - 2
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andosjsn-1-i. ThenTo,1=To'o’, =1 andforn22,

- 1 - k

(1-3-9) Ti.i.n " g22 Zzz Edi Ta,b,ch,d,lTl-a-c,j-b-d,n-k-|-1
k-1la1 a b

- "1'2 23 2b Ta.b,kTi - 28.1 - va" ' 2" T 1

   

2

1sks-"—

2

1sksl a

2

+T,, -T, .. 4.11,. .
I_|-1n+1 I-th+1 3L.L"+1

3'3'3 3’3'3 3'3’3

To write the formula for smwe first define

.1

(1.3.10) Un - E Sk Sn _k for n 2 2.

Then for n 2 2,

.1. .22(1.3.11) sn=Sn—2UnH-1-4kZUan.k+2

" 2

-1 - i n - ' - ' +1
1

“—3 2 Si SjSkSn-i-j-k+2
24 i=1 i=1 k=1
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Finally, the equations for Tm,n and sn are given for 4-trees.

As in planted (1,4)-trees, the group order of a planted 4-tree has

the form 2‘(3!)I. Thus, Tm," :- Ti”jn where O s i< (n - 1)/2,

O s j s (n -1 -2i)/3. Both To,o,1 and To.o.2 are equal to 1 and

forn22,

(1-3-12) Ti,j,n+1' 1:12: 2222a,,Tbk0,,le i--,acjbd,--nk1

1

T —T
+ 121,2,24'3 1.1.2“ Liv—1,2

2 22 333 3 3 3

2:22 -1--r
a,,bkTbs—1.13mi 2 Lin.

2 2’2 2’2’2

1?.
+2....1gg1-ab'k Iajbnk Ijn

1.2 -
'2, 2221:.than 2.1-1.3.

'1 a 2 2’2 3’3'3

Forn25,

--3n

(1.3.13) Sn=Sn+-'4':: XZSiSjSSk n-i-j--k1

4ia1 III-1

+—:UkB__ +13128|pmg+—:BB ”211

8I=--1

3 71
'-2-Un+'§28£+—4—Dn_ .

2 4
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LALNumeLlQaLBfiulIs

For each type of tree, values of Tmm, Sn and sn were computed

using the CDC Cyber 750 in the Computer Laboratory at Michigan

State University. The computation of these numbers was limited by

the available accuracy of 14 single precision and 29 double

precision floating point digits and by storage restrictions. Another

limiting factor was the time required to compute the values using

the recurrence relations. For example, in the case of (1,3)-trees,

the Fortran programs used to compute Sn for n s 50 took 52 seconds

while an additional 300 seconds were required to compute See-

The effect of these limiting factors is seen in the maximum

value of n for which the numbers could be computed. Due to the

difference in the number of possible group orders for the four types

of trees, this maximum value of n varies greatly among the

different types of trees. For (1,3)-trees, the maximum value of n

was 50 while for 3-trees, it was 70. In both these cases, the

available accuracy was the most significant limiting factor. For

(1,4)-trees, the maximum value of n was 22 while it was 36 for

4-trees. In these two cases, the most significant limiting factor

was the storage restriction.

Values of Tm’n, Sn and sn appear in the following tables.
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Coefficients of T(x,y) for Planted (1,3)-trees.Table 1.

Tm,n 

1
0
1

1
2
3

1
1
1

1
2
2
1

1
2
3

1
2
3
4

1
4
3
3

1
6
7
7
1
0
1

1
2
3
4

1
2
3
4
5
6
7

1
9
4
4
.
6
1
1

1
2
8
8
1
4
3
1

1
1

1
2
2
2

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8 
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Table 1. (cont'd.).

 

11

12 1

20

85

126

61

27

.
3

_
L

(
O

.
.
.
L

4
N
0

13

135

239

273

187

—
L

A
O
C
D
Q
V
G
U
I
-
b
w
m
é

G
O
O
D
N
C
D
U
I
-
h
w
m
é

o
m
o
o
x
l
o
w
u
s
w
m
-
s

o
o
x
l
o
w
n
p
w
r
u
-
s

N 0
1

14

580

500

246

112

33

11

—
L
.
—
l



Table 2.
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Coefficients of T(x,2) and t(x,2) for (1,3)-trees.

 

n Sn sn

4 10 8

5 14 56

6 42 24

7 90 168

3 354 240

9 758 608

10 2290 920

11 6002 5680

12 18410 6104

13 51310 18416

14 154106 43008

15 449322 148152

16 1384962 325608

17 4089174 980840

18 12475862 2421096

19 37746786 7336488

20 116037642 19769312

21 355367310 58192608

22 1097869386 164776248

23 3393063162 502085760

24 10546081122 1427051544

25 32810171382 4261678656

26 102465452754 12615722288

27 320522209490 37914214232

28 1005428474218 113567513528

29 3159128678510 343641240328

30 9947763312410 1039134670952

31 31374858270154 3164525151512

32 99133809899138 9638997662848

33 313680433887702 29494412007120

34 994070600867778 90400450050120

35 3154447132624578 278010905513408

 

 



Table 3. Coefficients of T(x,y) for Planted 3-trees.
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n m Tm,n

4 0 2

1 1

5 0 3

1 3

6 0 6

1 5

7 O 11

1 11

3 1

8 O 22

1 22

2 1

3 1

9 O 43

1 48

2 4

3 3

10 O 88

1 101

2 13

3 5

11 0 179

1 221 ,

2 37

3 13

4 1

12 0 372

1 480

2 103

3 25

4
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Coefficients of T(x,2) and t(x,2) for 3-trees.

 

n
Sn

Sn

4 4 8

5 9 4

6 16 14

7 41 21

8 78 35

9 179 49

10 382 158

11 889 191

12 1992 425

13 4648 828

14 10749 1864

15 25462 3659

16 59891 8324

17 142793 17344

18 340761 39601

19 819533 87407

20 1975109 199984

21 4784055 453361

22 11617982 1053816

23 28316757 2426228

24 69185852 5672389

25 169516558 13270695

26 416268547 31277150

27 1024543728 73874375

28 2526631078 175419550

29 6242969248 417535487

30 15452300967 997758788

31 38310417739 2390172398

32 95126958081 5743235470

33 236548880263 13832781125

34 589014148511 33401381861

35 1468545756633 80825852570
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Coefficients of T(x,y) for Planted (1, )-trees.Table 5.

Ti,j,n 

1
2
2
4

3
1
2
0

._.

.
.
n
a
l
l
l
l
i
l
l
fl

1
2
2
1
1
1

1
2
2
3
3
4

4
2
3
1
2
1

1
4
.
2
1
3
3
2
1

1
2
2
3
3
3
4
5

5
3
4
1
2
3
2
0

1
6
3
4
3
4
1
3
5
3
1

1
2
2
3
3
3
4
4
4
5
6

6
4
5
2
3
4
1
2
3
1
1 



27

Table 5 (cont'd.).

Ti,j,n 

1
9
3
1
5
7
1
7
2
8
8
2
1
2
2

1
2
4
4
6
0
6
6
2
2
1
7
3
6
6
6
5
3
1

1
1

1
2
2
1

2
3
1

2

1
2
2
3
3
3
4
4
4
4
5
5
6
6
6

1
2
2
3
3
3
4
4
4
4
5
5
5
5
6
6
6
7
8

7
5
6
3
4
5
1
2
3
4
2
3
0
1
2

8
6
7
4
5
6
2
3
4
5
1
2
3
4
1
2
3
1
1 
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Coefficients of T(x,2) and t(x,2) for (1,4)-trees.

 

n Sn sn

4 96 144

5 1560 1584

6 4848 32544

7 28848 30528

8 248352 188928

9 1446240 4030848

10 12905664 12029184

11 99071040 66104064

12 649236480 524719872

13 4924099200 2364433920

14 49007023872 28794737664

15 304778309376 194617138176

16 2301818168832 962354727936

17 18389782387200 6901447938048

18 138110895596544 112061234884608

19 1094304243348480 366020989931520

20 8691945066848256 2592919032274944

21 68039592521668608 19913392024584192

22 541189487303208960 140498248288886784
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Coefficients of T(x,y) for Planted 4-trees.Table 7.

Ti,j,n 

0
1
0

6
8
1
2

0
0
0
1

0
.
1
2
0

2
8
2
1
5
1

1
1

0
0
0
0
1
1

0
.
1
2
3
0
4
1

0
0
0
0
1
1

0
1
2
3
0
1

52

0
0
0
0
4
1
1
2

0
1
2
3
0
1
1
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Ti,j,n

(cont'd.).Table 7

 

3
4
9
4
1
1
0
1
1
1
2

1
1
7
1

5
3

1
2

0
0
0
0
0
1
1
1
1
2
2

0
1
2
3
4
0
1
2
3
0
1

10

0
0
0
0
0
1
1
1
1
2
2

0
1
2
3
4
0
1
2
3
0
1

11

542

1 180

612

127

22

270

243

28

1 1

0
0
0
0
0
1
1
1
1
2
2
2

0
1
2
3
4
0
1
2
3
0
1
2

12
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Coefficients of T(x,2) and t(x,2) for 4-trees.

 

n Sn sn

4 10 8

5 17 28

6 38 20

7 106 43

8 253 143

9 716 249

10 1903 546

11 5053 1223

12 13786 2703

13 39293 8107

14 107641 18085

15 302807 44013

16 860099 114919

17 2450684 327712

18 7038472 800937

19 20316895 2146066

20 58849665 5827711

21 171217429 15923828

22 499926666 43886143

23 1464276207 121888966

24 4301706250 340209504

25 12671810107 955859391

26 37419912977 2700771322

27 110759884262 7652412896

28 328525197554 21784431688

29 976350258323 62248194140

30 1784634824592906960957827

 



CHAPTER II

ASYMPTOTIC BEHAVIOR

An adaptation of the Monty-step algorithm [HRS75] is used

to study the behavior of the coefficients of T(x,2) and t(x,2) for

large values of n. In the asymptotic analysis, the generating

functions T(x,2) and t(x,2) are regarded as power series in the

complex variable x. For each type of tree, let p be the radius of

convergence of T(x,2).

Observe that in a planted d-tree or (1,d)-tree, the maximum

possible group order for each n is ((d - 1)!) Mn“) where a ist

for (1,d)-trees and (d -1)'1 for d-trees. This maximum group

order is attained by a planted (1,d)-tree in which every end-vertex

except the root .is at the same level in the tree. While such trees

do not exist for all values of n, they do exist for infinitely many

values of n. This observation leads to the following lemmas

concerning p.

M For all four types of trees, the radius of

convergence p of T(x,2) satisfies 0 < p < 1.

Em: Note that as previously stated, T(x,1) is the series

32
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that counts the planted trees of the specified type. It follows from

the above observation that the coefficients of T(x,2) are bounded

above by the coefficients of T(((d - 1)!)“x,1), which has a positive

radius of convergence [P37], [048]. Hence p > 0.

The upper bound on p is obtained by considering the behavior

of T(x,2) as x approaches p from below. As in step 4 of the

twenty-step algorithm, the functional equation for T(x,2) and the

monotonicity of T(x,2) show that T(p,2) < co. This together with the

fact that Sn 2 1 for infinitely many n shows that p < 1. //

WT(xk,2k) has radius of convergence ok > p for all

k _>. 2.

15.9.0.1: Let M - logz((d - 1)!)“. By the earlier observation, for

infinitely many n, Sn 2 2M(" ' 1). Thus, p < 2"“.

For k - 2, T(x2,22) s T(2Mx2,2) which converges when

x s (p2'M)‘/2. This shows <32 2 (p2‘M)"2. Hence since p < 2'”, we

may conclude that 02 > p. The result is then shown for k 2 3 by

induction on k. //

As a result of the functional relations for t(x,2) and lemma

2.1.2, we can conclude that p is also the radius of convergence of

t(x,2) and that t(p,2) is finite.

In step 5 of the twenty-step algorithm a new function F(x,y)

is defined by replacing each occurrence of T(x,2) in its functional

relation by the variable y. The appropriate definitions of F for each

type of tree are as follows.
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For (1 ,3)-trees,

(2.1.1) F(x,y) = x + 1- y2 + 1 T(x2,4) -
2 2

For 3-trees,

(2.1.2) F(x,y) :- x + '15 xy2 + xy + %T(x2,4) -

For (1 ,4)-trees,

(2.1.3) F(x,y) - x + L3y + — T(x2 ,4) y +—3T(x3,-8)

6x 2x 3x

For 4-trees,

(2.1.4) F(x,y) = x + g- xya +13 xyz + xy(1 + g- T(x2,4))

+32-’-‘-T(x2 ,4) + L—g" T(x3,8) -

W F(x,y) satisfies the following conditions:

(i) F(x,y) is analytic for all y and for all x in a neighborhood

of x = 0 which contains x - p.

(ii) F(x,T(x,2)) .. 0 for all x with |x| 5 p.

(iii) The first partial derivative of F with respect to y,

Fy(x,y) satisfies Fy(p,T(p,2)) a 0 and if |x| 5 p but x at p, then

Fy(x,T(x,2)) at 0.
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(W) Fyy(p.T(p.2)) 1* 0-

(v) x - p is the unique singularity of T(x,2) on its circle of

convergence.

Em: Part (i) is a consequence of lemma 2.1.2 since T(x",2k)

is analytic at x - p for k 2 2. That F(x,T(x,2)) - 0 for |x| < p follows

directly from the definition of F and the functional equation for

T(x,2). That Fy(x,T(x,2)) a: 0 if |x| 5 p but x a: p can be shown by

combining the techniques of Otter [048] and step 10 of the

twenty-step algorithm [HRS75]. The justification of the remaining

statements of this lemma is described in steps 6 through 13 of the

twenty-step algorithm. //

As a consequence of lemma 2.1.3, x - p is a branch point of

order 2 of T(x,2) and therefore, as in step 14 of the twenty-step

algorithm, T(x,2) and t(x,2) both have expansions in (p - x)"2 near

x =- 0.

1. 2

(2.1.5) T(x,2) =- T(p,2) - b1(p - x)2 + b2(p - x) + b3(p - x)2 +

1. 2

(2.1.6) t(x,2) - t(p,2) + a1(p - x)2 + a2(p - x) + a3(p - x)2 +

fr I

The asymptotic formulas for the coefficients of T(x,2) and

t(x,2) are found by evaluating the contribution of (p - X)“ in the

above expansions (2.1.5) and (2.1.6). Note that by the binomial
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theorem and the definition of the gamma function, if s at 0, -1, «2,...

then the coefficient of xn in (1 - x)'8 is

(22.1) Us + n)

[(3) F(n + 1)

From Stirling's formula, this latter expression is equal to

s-1

(2.2.2) l}_(s,T (1 + gig—)- + 0(1/n2)).

Lemma 2.1.3 allows the application of P6lya's lemma, step

17 of the twenty-step algorithm, which uses the above

observations to give the asymptotic formulas for the coefficients

of T(x,2) and t(x,2).

Inegrem 2,2,1 The asymptotic behavior of the number of

symmetries in planted d or (1,d)-trees is given by

b .1. :9.

(2.2.3) sn ~ -‘- (2)2 n 2 p‘".
1C2

WThe asymptotic behavior of the number of

symmetries in free d or (1,d)-trees is given by

:5.

2

1

3a 35'”

2.2.4 —L ‘n.( ) sn~ 4 (1‘)!) p
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Formula (2.2.3) accounts for the contribution of -b1(p - x)"2

to the coefficient of x". For the free trees, it will be shown that

a1 - 0. Thus formula (2.2.4) accounts for the contribution of

a3(p - x)"’2 to the coefficient of x". As can be seen by (2.2.2), in

both cases the relative error in the asymptotic approximation is

0(1/n). Note that for planted trees, the asymptotic number of

symmetries is of the form cn'3/2p'" where c is a constant. For free

trees, the asymptotic number of symmetries has the form cn'5/2p°".

Formulas (2.2.3) and (2.2.4) can be refined by taking into

account the contribution of additional terms of the expansions

(2.1.5) and (2.1.6). When the contribution of one additional term is

added,

 

-3

"'_ b 12b p+3b

(2.2.5) 8 ~\/En2p"(—L+ 3 1)

n 11: 2 16n

and

é.
3 3a 45a - 60ap

2 -n
2.2. ... L _§. _3___5...

(6) Snfiw‘w" 32n )

23 [I i I E ! .

Evaluation of these asymptotic formulas requires

computation of p, b1, b3, a3 and as. The relations F(p,T(p,2)) - 0 and

Fy(p,T(p,2)) a 0 combine to provide equations from which p and

T(p,2) can be computed. The corresponding equations for the four

types of trees are as follows.
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For (1 ,3)-trees,

(2.3.1) p 4% (1 - 3 T(p2,4)).

For 3-trees,

(2.3.2) p (T(p,2) + 1) = 1.

For (1 ,4)-trees,

(2.3.3) p =35 (T(p,2)2 + 3 T(p2,4)).

For 4-trees,

(2.3.4) p( %- T(p,2)2 + T(p,2) + % T(p2,4) + 1) = 1.

The following method is used to obtain equations for the bi's

and the ai's. Using both the functional relation for T(x,2) and

its expansion in (p - x)“2 to evaluate Tx(x,2)(T(p,2) - T(x,2))

provides the means for determining the bi's. To illustrate, from

equation (1.2.2) for (1,3)-trees, after a bit of work, we have

(2.3.5) Tx(x,2) (T(p,2) - T(x,2)) = 1 + 3xTx(x2,4).

When the expansion (2.1.5) is used to substitute for T(x,2)
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and Tx(x,2) and the Taylor series expansion about x = p is used to

substitute for 3xTx(x2,4) in (2.3.5), coefficients of (p -x)"/2,

(p - x)°, (p - x)"2,... can be compared to express the bi's in terms

of T(pk,2k) and Tx(pk,2k) for various values of k. In a similar

manner, tx(x,2) is evaluated to obtain expressions for the ai's in

terms of the bi's and to show a1 = 0. The equations for b1 and a3

are given below. Since the equations for b3 and a5 are much more

complicated, they are omitted.

In the expansions of T(x,2) and t(x,2) for (1 ,3)-trees,

 

(2.3.6) b1 - \/2(1 + 39Tx(pz.4))

and

2 37) b?. a = -— -( 3 3p

In the expansions of T(x,2) and t(x,2) for 3-trees,

 

3 2

(2.3.8) b, - -‘p-\/ 2(T(p.2) + an up .4))

and

3

b p
1

(2.3.9) as =—3- .

In the expansions of T(x,2) and t(x,2) for (1,4)-trees,
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b \/ T(P.2)(69Tx(9214) ' 2) 1' 4p + 26p2Tx(p3,8)

1

 

 (2.3.10)

T032)

and

3

b T ,2

(2.3.11) 8 I i)- .

3 2

3p

In the expansions of T(x,2) and t(x,2) for 4-trees,

 

 

b 1 \/ 2 (NM) + ap"T,(p2.4)(1 + T(p,2)) + 131141311335»
1 ._(2.3.12)

9 1 + T(p,2)

and

(2313) a bfprTrp.2)+1>
 

3 3

The numerical methods necessary to actually compute values

of p, T(p",2") and Tx(pk,2k) for various k depend on d. First we will

deal with the case that d - 3.

Note that the functional equations (1.2.1) and (1.2.3) are

actually quadratics in T(x,y) which can be extended to quadratics in

T(x",2k) for k 2 1. Thus, applying the quadratic formula and the

mononicity of T(x“,2") results in the following equations for

T(x",2") when |x| 3 p.

For (1,3)-trees,

 

(2.3.14) T(x",2") = 1 - J1 - (2k * ‘- 1)T(x2k,22k) - 2x".
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For 3-trees,

 

(2315) T(x",2") .. 1 - x" - \[1 - 2xk - x2k(1 + (2k * ‘- 1)T(x2k,22k))_

k

X

In each of the above equations, T(x",2") is expressed in terms

of T(x2k,22k). Thus for |x| 5 p, if T(x‘6,2‘5) is estimated by a partial

sum, then equation (2.3.14) or (2.3.15) can be used repeatedly to

determine T(x3,23), T(x4,24), T(x2,22) and T(x,2).

Similarly, from equations (1.2.1) and (1.2.3) Tx(xk,2k) can be

expressed in terms of T(x",2"), T(x2k,22k) and Tx(x2k,22k). Again by

starting with a partial sum for Tx(xk,2") for k 2 16, Tx(x",2k) can

then be calculated for k < 16 and IX] < p.

Note that p is actually significantly less than 2'M where

M - ((d - 1)!)“. Calculation of successive terms of T(x‘6,2‘6) and

Tx(x‘6,2‘5) indicate that their nth terms are less than 10'27 when

x s p and n is about 20. The exact value of n for which this is true

depends on d and the type of tree. To estimate the error in the

partial sum approximation of T(x‘6,2‘6) note that the twenty-step

algorithm can be applied to determine the asymptotic behavior of

the coefficients of T(x‘6,2‘6). The coefficient of x16" is asymptotic

to C(o16)"6“ n '3’2 where C is a constant and 915 is the radius of

convergence of T(x‘6,2‘6). Thus if we disregard the factor of n‘3’2

then T(x‘6,2‘6) behaves like the geometric series 2 Cr'1 where

r = (x/o16)‘6. If x s p, then r < 1 and by comparing 016 with the

radius of T(x‘6,1), it can be seen that r is in fact closer to 0 than to

1. This provides a bound on the error in the partial sum
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approximation.

Equations (2.3.1) and (2.3.2) provide the means for

calculating p. For (1,3)-trees, p is the unique solution of

(2.3.16) g(x) .. x +13 (3 T(x2,4) - 1) = 0.

While for 3-trees, p is the unique solution of

(2.3.17) g(x) - x(T(x,2) + 1) - 1 . 0.

The following iterative method can then be used to compute

p. Given initial lower and upper bounds for p, In < p < hn, then

90 )
 2.3.18 I = l -l "

( ) n +1 n 11 9'0")

and

l

(2.3.19) h =1 -951.
n +1 11 g'(| )

Note that (2.3.19) is just Newton's Method applied to g and In.

Since 9 is increasing and concave up for |x| < p,each iteration

produces a new upper bound hn +1 such that p < hn +1< hn. Formula

' (2.3.18) is a modification of Newton's Method : the line with slope

g'(|n)/ln is used rather than the tangent line to estimate g(x). For i

these particular functions, each iteration of (2.3.18) provides a

new lower bound In +1 such that In < ln +1< p. Note that since T(x,2)
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is not defined for x < p, the lower bound is modified each time to

give a new lower bound and a new upper bound for p.

When d =- 4 the functional equations (1.2.5) and (1.2.7) are

cubics in T(x,y). Hence a numerical method is required to compute

T(xk,2") for |x| < p. For (1,4)-trees, the cubic with root T(xk,2k) is

2k22k k

)-x)z

+(6"-"2 +—)T(x3".23")+x2".

(2.3.20) G(2) - éza + ((2" -—)T(x

For 4-trees, the cubic with root T(x",2k) is

k k

(2.3.21) G(z)'%23+£2’22 +(x"(1 + (2" -—)T(x2" .22")) - 1) z

+x"<1+(2"--)T(x2"2+2") (6"-2"_)1(3"23"))

If 0 < x < p and z < T(x",2"), then Gk is decreasing and concave

up. Therefore application of Newton's method to the function Gk

starting with 20, a partial sum of T(xk,2"), produces 21 such that

20 < 21 < T(x",2"). Consequently, T(x",2") can be estimated by a

partial sum for k 2 16 and Newton's method can then be applied to

Gk to calculate T(x",2") for k < 16. As with 3 and (1,3)-trees, the

functional relations (1.2.5) and (1.2.7) supply equations for

Tx(x",2") in terms of T(xk,2"), T(x2k,22"), T(x3",23"), Tx(x2k,22k) and

Tx(x3k’23k).

Here the functions with unique root x = p are
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(2.3.22) g(x) . T(x,2)2 + 3T(x2,4) - 2x for (1 ,4)-trees

and

(2.3.23) g(x) . x(%T(x,2)2 + T(x,2) +%T(x2,4) + 1) - 1 for 4-trees.

In these two cases g(x) is increasing and concave up.

However, the modified Newton's method which worked when d = 3

does not provide a new lower bound for p. Instead the bisection

method is used to determine bounds for p. Given ln < p < hn, let

xn - (In + hn)/2. The following criteria was used to determine

the relationship between p and xn. First estimate T(xn",2") for k > 1

as described earlier. When k . 1 and Newton's method is applied

to G1 with initial guess 20, a partial sum of T(xn,2), an estimate zm

such that G1'(z,n) > 0 indicates xn > p.

2.4—W

In the computations, T(x",2") was calculated to at least 20

digits and p to at least 12 digits. The computed values of p,

b1,b3,a3 and a5 appear in the following table.
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Table 9. Radii and Constants.

 

 

Type of Tree

(1.3) 3 (1 .4) 4

p .301398653 .384173339 .116663460 .319078317

b1 2.403442218 5.076889680 1.544582575 3.844874351

a3 15.354599582 16.757111017 37.009971072 13.381537712

b3 3.588139413 14.591292087

a5 -17.824935398 ~341.927657398

 

Formulas (2.2.3) and (2.2.4) were used to determine the

asymptotic number of symmetries in planted and free d-trees while

the refinements (2.2.5) and (2.2.6) gave significantly better

results for the asymptotic number of symmetries in planted and

free (1 ,d)-trees. The exact number of symmetries is compared to

the asymptotic number in Tables 10 - 17.
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Table 10. Number of Symmetries in Planted (1,3)-trees.

Vertices Exact Asymptotic Relative Error

48 10546081122 104637 E05 -.007808

52 102465452754 101826 E06 -.006241

56 1005428474218 100021 E07 -.005186

60 9947763312410 990417 E07 -.004383

64 99133809899138 987582 E08 -.003788

68 994070600867778 990798 E09 -.003292

72 10023140394172682 999410 E10 -.002897

76 101556839584864874 101296 E12 -.002571

80 1033496930259584098 103112 E13 -.002299

84 10558761198762257586 105369 E14 -.002068

88 108257452313403277290 108055 E15 -.001871

92 1113533377484472278586 111164 E16 -.001701

96 11487547694267472245250 114697 E17 -.001554

100 118829269415696976059298 118660 E18 -.001425

Table 11. Number of Symmetries in Free (1,3)-trees.

Vertices Exact Asymptotic Relative Error

48 1427051544 134470 504 - 057708

52 12615722288 120224 E05 -.047033

56 113567513528 109211 E06 -.038356

60 1039134670952 100573 E07 -.032148

64 9638997662848 937220 E07 -.027679

68 90400450050120 882491 E08 -.023798

72 856418820307400 838609 E09 -.020796

76 8184345855878800 808432 E10 -.018331

80 78821355356607416 775368 E11 -.016297

84 764368300213840728 753216 E12 -.014590

88 7458653276030440720 736061 E13 -.013145

92 73191173128569457416 723197 E14 -.011907

96 721899672085668985128 714074 E15 -.010840

100 7153568644231221969760 708266 E16 - 009912
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Table 12. Number of Symmetries in Planted 3-trees.

Vertices Exact Asymptotic Relative Error

15 10749 11109 E00 .033511

20 819533 839670 E00 .024572

25 69185852 706783 E02 .021572

30 6242969248 635872 E04 .018542

35 589014148511 598567 E06 .016218

40 57398241292347 582234 E08 .014377

45 5732097451950746 580603 E10 .012899

50 583553860753045319 590376 E12 .011690

55 60336483976084984447 609812 E14 .010685

60 6318602632078649428839 638076 E16 .009837

65 668812989635611814991086 674907 E18 .009112

-
m
'

 

 

Table 13. Number of Symmetries in Free 3-trees.

Vertices Exact Asymptotic Relative Error

15 3659 3306 E00 -.096398

20 199984 192467 E00 -.037587

25 13270695 131658 E02 -.007908

30 997758788 997370 E03 -.000389

35 80825852570 810687 E05 .003005

40 6907362937687 693805 E07 .004443

45 614475723485527 617618 E09 .005114

50 56409655488848540 567140 E11 .005395

55 5311321843821516910 534038 E13 .005471

60 510635048525607184087 513411 E15 .005435

65 49958747518253245317394 502254 E17 .005338
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Table 14. Number of Symmetries in Planted (1,4)-trees.

Vertices Exact Asymptotic Relative Error

32 99071040 886729 E02 -.104957

35 649236480 658419 E03 .014143

38 4924099200 494957 E04 .005172

41 49007023872 375966 E05 -.232832

44 304778309376 288131 E06 -.054621

47 2301818168832 222519 E07 -.033291

50 18389782387200 173004 E08 -.059241

53 138110895596544 135302 509 -.020335

56 1094304243348480 106372 E10 -.027947

59 8691945066848256 840194 E10 -.033365

62 68039592521668608 666426 E11 -.020531

65 541189487303208960 . 530604 E12 -.019560

Table 15. Number of Symmetries in Free (1,4)-trees.

Vertices Exact Asymptotic Relative Error

32 66104064 403949 502 -.388920

35 524719872 271748 .503 -.482109

38 2364433920 186644 E04 -.210619

41 28794737664 130459 E05 -.546935

44 194617138176 925649 E05 -.524374

47 962354727936 665358 E06 -.308615

50 6901447938048 483710 507 -.299118

53 112061234884608 355181 E08 -.683047

56 366020989931520 263123 E09 -.281125

59 2592919032274944 196473 E10 -.242271

62 19913392024584192 147751 E11 -.258030

65 140498248288886784 111827 E12 -.204070
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Table 16. Number of Symmetries in Planted 4-trees.

Vertices Exact Asymptotic Relative Error

14 39293 36783 E00 -.063881

16 302807 291494 500 -.037361

18 2450684 237300 E01 -.031697

20 20316895 197264 502 -.029066

22 171217429 166745 503 -.026119

24 1464276207 142888 504 -.024172

26 12671810107 123846 505 -.022662

28 110759884262 108381 506 -.021478

30 976350258323 956329 E06 -.020506

32 8669904767404 849899 507 -.019714

34 77481380765038 760054 508 -.019050

36 696342460242332 683469 509 -.018488

Table 17. Number of Symmetries in Free 4-trees.

Vertices Exact Asymptotic Relative Error

14 18085 12273 500 -.321363

16 114919 86334 500 -.248741

18 800937 631693 E00 -.211308

20 5827711 476779 501 -.181875

22 43886143 369013 502 -.159159

24 340209504 291592 503 -.142906

26 2700771322 234464 504 -.131865

28 21784431688 191346 505 -.121640

30 178463482459 158167 E06 -.113728

32 1480989441806 132206 507 -.107315

34 12424948660563 111592 508 -.101872

36 105244459584049 950122 E08 -.097224
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The limited range of numbers for which the exact values

could be computed for (1,4)-trees is not large enough to exhibit the

nice decline in the relative error found in the other types of trees.

In fact, for free (1,4)-trees there are large jumps in the relative

error at various points in Table 15. The explanation of this can be

found by comparing the ratio of consecutive coefficients, sn+1lsn

for both the exact and asymptotic numbers. The ratio of the

asymptotic values is steadily approaching p'1 while the ratio of the

exact values jumps around as the relative error does. This is

caused by the free (1,4)-trees that have a factor of 4! in their group

order. Examples of such (1,4)-trees are those in which the number

of vertices is of the form 5 + 6(3‘- 1). The existence of these

trees is not reflected in the asymptotic formula (2.2.4) or its

refinement (2.2.6). A similar phenomenon occurs in the case of

(1,3)-trees; however, the jumps are much smaller and their effect

is only seen when the number of vertices is less than 40.



CONCLUSION

The results presented in this thesis can be combined with

formulas for the asymptotic number of trees of the specified type

to give an asymptotic formula for the expected group order of these

trees. The relevant formulas for the number of these trees appear

in [048] and [BaKP81]. Since the number of such trees is

asymptotic to CB'"n'5’2 where B is the radius of convergence of the

series that counts the trees and C is a constant, the expected group

order is asymptotic to A(B/p)" where A is a constant. In other

words, the expected group order is asymptotic to an exponential

function of the ratio of the two radii.

Generally when the twenty-step algorithm is applied, the

planted trees simply provide a means for getting at the results for

the free trees. But removing the root from a planted (1,3)-tree of

order 2n produces a binary tree of order 2n - 1. Since these trees

have the same automorphism group, Table 10 provides values for

the number of symmetries in binary trees. Thus the results for

planted trees are also of interest.

Note that this application of the twenty-step algorithm is

independent of the value of d. Thus the solution of this problem is

theoretically possible for larger values of d. However, it becomes

unmanagable since the functional relations for the generating

51
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functions become more complex and the number of possible group

orders increases greatly as d increases.

The success of the techinique used here relies heavily on the

degree restrictions of these trees. Significant modifications

would be required to apply this method to the problem of

estimating the group order of an arbitrary tree of large order. This

is due to the fact that for each n, there is a tree on n vertices

which has (n - 1)! symmetries. Thus the series that counts

symmetries in trees does not converge.
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