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ABSTRACT

RCT FILTER SYNTHESIS

by

Ronald L. McNally

A general basis for the synthesis of active RCF

(resistor-capacitor—gyrator) filter is presented where

all gyrators are grounded.

The approach requires the analysis of three term-

inal RC sections cascaded through active (unbalanced)

grounded gyrators. Two important theorems are established

as a consequence of this analysis:

1. If the RC sections satisfy the following conditions:

i) Each RC section is connected;

ii) For the input and intermediate RC sections the

edges corresponding to the conductances form a

connected graph when the input and output termin—

als (of the section) are grounded;

iii) For the last or output RC section, the edges cor-

responding to the conductances form a connected

graph when the input terminals are short circuited;

iv) All RC sections, except the output section,
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contain at least two terminals in addition to the

ground terminal;

v) All RC sections contain one or more conductances;

then the RCP filter is stable and remains stable irrespec-

tive of RC component or gyrator parameter variation.

2. The minimum number of real poles of the voltage-ratio

transfer function of a low-pass RCF filter can be

determined from the gyrator placement.

It is demonstrated that the Calahan [CA] and

Horowitz [TH] polynomial decompositions can be derived

one from the other. Both polynomial decomposition methods

are extended to include those polynomials which contain

distinct negative real zeros.

It is also established that fourth degree low-

pass (high-pass) voltage-ratio transfer functions of the

form Tv = k/P(s) (TV = ks4/P(s)), where P(s) is strictly

Hurwitz, can always be realized with two-gyrator RCr net-

works.

Realization procedures using a computer program

are established for realizing fourth or higher degree RCF

 

[CA] Calahan, D. A., "Restrictions on the Natural Frequen-

cies of an RC-RL Network," Journal of the Franklin

Institute, Vol. 272, pp. 112-133 (August 1961).

[TH] Thomas, R. E., "Polynomial Decomposition in Active

Network Synthesis," IRE Transactions on Circuit

Theory, CT-8, pp. 270-274 (September 1961).
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filters from the voltage-ratio transfer functions.

Practical examples are realized and displayed in the

form of tables.
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CHAPTER I

INTRODUCTION

1.1 Background

In the technical literature very little theoreti-

cal work has appeared concerning the synthesis of RCF

filters. Calahan [CA1] has published some basic work on

polynomial decomposition which is applicable to one-

gyrator RCF networks. He also has shown that, whenever

possible, a one-gyrator RCP filter realization of a

transfer function is always less sensitive to parameter

variations than an equivalent RC-NIC filter realization

of the same transfer function [CA2]. To the best of the

author's knowledge, no work has appeared in the litera-

ture on RCF filters containing more than one gyrator.

1.2 Purpose

The purpose of this thesis is to provide a theo-

retical basis for RCF filter synthesis using one or more

gyrators and also to develop realization procedures for

synthesizing low—pass voltage-ratio transfer functions

with RC networks and one or more gyrators. This problem

is of practical interest since the use of gyrators



provides a means of realizing complex natural frequencies

without inductors. The elimination of inductors is de-

sirable for the following reasons:

i) the design of high quality inductors is dif-

ficult and costly at low frequencies

ii) inductors cannot be "grown" in integrated

circuits

iii) inductors are difficult to miniaturize in

micro-miniature circuit technology.

Two other methods for eliminating inductors in

filter realizations are the use of NIC's (negative im-

pedance converters) and controlled sources. Both of

these methods introduce the possibility of instability

into the network realization whereas ideal gyrators,

being passive components cannot cause a network to be—

come unstable. This property also holds for active

gyrators in a restricted network topology as is shown in

this thesis.

The use of one—gyrator filter synthesis is not

possible, in most cases, due to rather stringent require-

ments on the transfer function [CA1]. By allowing more

than one gyrator, these requirements can be relaxed or

removed completely as is shown in Chapter IV. It is al—

ways possible to replace an inductor by a capacitor

loaded gyrator or by using two grounded gyrators and one

capacitor [HT]. The latter, although it is a practical

method, is somewhat extravagant as the realization of a



fourth degree voltage-ratio low-pass transfer function

would require four grounded gyrators. It is shown in

this thesis that such fourth degree voltage-ratio low-

pass transfer functions can be realized with at most two

grounded gyrators.

1.3 Summary of Chapters

In Chapter II, the basic form of the denominator

polynomial of voltage-ratio transfer functions TV is es-

tablished for various RCP network configurations. Sepa-

rating the denominator polynomial of a given TV into

these basic forms constitutes the first step in any RCF

network synthesis procedure. A theorem is proved which

establishes the stability of RCF filters consisting of

a broad class of three terminal RC sections cascaded

through active gyrators. Another theoren is proved which

establishes the minimum number of real poles for a trans—

fer function TV corresponding to a RCF network consisting

of low-pass RC ladders cascaded through gyrators.

In Chapter III, the derivation of the Calahan

[CA1] and the Horowitz [HO] polynomial decomposition

(separation into forms suitable for network realization)

methods from each other is established. Extensions of

these decomposition methods to polynomials containing

distinct negative real zeros, in addition to complex

zeros, are also established. The use of these



decomposition methods is demonstrated with sample filter

realizations.

In Chapter IV, a theorem is proved which estab-

lishes that any low-pass voltage-ratio transfer function

TV which has a strictly Hurwitz fourth degree denomina-

tor, can always be realized with a two-gyrator RCF filter.

Analytic and computer realizations are given to sample

problems. In addition, sample computer realizations

are given for some fifth and sixth degree low-pass vol-

tage-ratio transfer functions. An extended version of

Calahan's angle condition is conjectured for cases where

the number of gyrators is greater than one. Finally, a

theorem is proved which establishes a two-gyrator RCP

network realization for high-pass voltage-ratio transfer

functions of the complex variable 5, Tv(s), when TV(%)

has a two-gyrator RCP realization.

1.4 Preliminary Definitions

Definition 1.4.1 An RC admittance function is a real
 

rational function in the complex variable 5 of the form

N(s)/D(s) where the zeros of N(s) and D(s) alternate

along the negative real axis and the largest zero of N(s)

is less than or equal to zero and greater than the larg-

est zero of D(s).

Definition 1.4.2 An RC impedance function has the pro-
 

perties of the reciprocal of an RC admittance function.



Definition 1.4.3 An RL admittance function has the pro-
 

perties of the reciprocal of an RC admittance function.

Definition 1.4.4 An RL impedance function has the pro-
 

perties of an RC admittance function.

Definition 1.4.5 A passive, ideal, (or balanced) gyra-

tor is a 3 or 4 terminal network component which is

represented by Fig. 1.4.1 and has the admittance matrix

— _

O a

-a 0 (1.4.1)

  

where a2 > 0.

Definition 1.4.6 An active or unbalanced gyrator is a
 

3 or 4 terminal network component which is represented

by Fig. 1.4.2 and has the admittance matrix

  (1.4.2)

where a &> 0.

Definition 1.4.7 A polynomial in the complex variable 3
 

is called strictly Hurwitz if it has all of its zeros in

the open left half of the s—plane.



Four terminal case

 

C v G 

Three terminal case

Fig. 1.4.1 Gyrator representations.



CHAPTER II

THE DERIVATION OF SOME PROPERTIES

OF RCT FILTERS

In this chapter, the properties of Open-circuit

voltage-ratio transfer functions, T for grounded RCPV’

(resister capacitor gyrator) networks are considered.

The reason for developing these prOperties is to use

them in synthesizing low pass filter configurations.

The results, however, are applicable in the synthesis

of band pass and high pass configurations, since the

desired properties are developed in a more general con-

text than the low-pass case. Initially an (n+1)-terminal

RC network in which ideal gyrators are embedded is

analyzed. Since the denominator polynomial of the trans—

fer function T for such general networks does not give
V

any clue to the realization of T it is necessary toV'

impose certain restrictions on this general network con-

figuration. However, properties to be developed for

this more general class of networks are applicable to

the more restricted classes of RCF networks. From the

practical point of view, the RCP network is restricted

to RC sections cascaded through RC bridged and grounded



gyrators. Further simplification is achieved by cascad—

ing grounded RC sections through grounded gyrators only.

A theorem is proved for a class of networks es-

tablishing the invariance of the denominator polynomial

of Tv when active gyrators replace ideal gyrators. An-

other theoren is proved which establishes the stability

of a class of RC-(active gyrator) networks. Finally,

when the RCF network is restricted to low-pass RC ladder

sections interconnected through active or passive gyra-

tors, a theoren is established which gives the minimum

number of real poles that the transfer function T can
V

have.

2.1 The General Form of the Denominator Polynomial for

RC Transfer Functions.

Consider an (n+l)-node connected RCF network in

which each gyrator has three terminals. It is a known

fact [KTK] that for the complete solvability of a network

containing ideal gyrators, a formulation tree should

exist such that both the edges corresponding to a gyra-

tor are included in this tree or in its co-tree. If

this topological condition is not satisfied, then the

network cannot have a complete solution.

In order to insure that the branch equations for

the RLF network can be written in a suitable form, the

following assumptions are used throughout the thesis.



Assumptions:

i) The RC portion of the given RCF network is

connected

ii) The P portion of the given RCF network con-

tains no circuits.

Under the above assumptions both the edges corresponding

to a gyrator can be included in a formulation tree. For

such a formulation tree the branch equations for the

RC? network can be written in the following form:

          

I = YV

Or, in detail,

1 ”'7 F - d 7] “‘ ‘
1 V1

-d
1 V2

I = < RC admittance + d2 L I

' matrix _a ’

2

0

0Ln

0

-a V

By assumption, the RC portion of the RC? network

is connected, hence the admittance matrix Y in Eq.
RC

2.1.1 is symmetric and non-singular; in fact, it is

positive definite for real and poitive values of the com-

plex variable "s". For this reason the quadratic form

associated with the admittance matrix Y can be written as
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T_T T_T
x YX — x YRCX + x er — x YRCX (2.1.2)

Since YT is skew symmetric, the quadratic form associated

with Yr vanishes identically and therefore Eq. w.l.2

implies that the admittance matrix Y (although nonsym—

metric) is positive definite for all real and positive

values of "s". This proves that Y is non-singular. The

entries in the first and the last position in the first

and the last position in the first column of Y.1 are

11' An1

represent cofactors of order (n-l) of Y. In Eq. 2.1.1,

All/A and Anl/A, respectively, where A = IYI and A

if In = 0, then Vl = (All/A)Il’: Vn = (Anl/A)I,' and the

Open circuit voltage-ratio transfer function is given by

Tv = Anl/All (2.1.3)

The forms for A and All are identical, as can be seen

from Eq. 2.1.1, and therefore, except for specific cases,

only the properties of A will be discussed.

Theorem 2.1.1. If an (n+1)—terminal single gyrator RCF
 

network satisfies assumptions i and ii, then

i i+1_ 2
A — A(RC) + a1A(i'i+l' RC) (2.1.4)

where A(;,RC) denotes the determinant of the RC admit-

tance matrix in Eq. 2.1.1 in which the i-th row and the

j-th column are deleted. Proof: Consider the expression

of the admittance matrix given in Eq. 2.1.1
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_ _ _ l i+1

RC : :

Y = admittance + .....' a1 1

matriC o o o—alo i+1

    

Forming the determinant of a sum of matrices, one obtains

_ _ i _ 21+1
A _ lyl — A(RC) + alA(i+l,RC)( 1)

2i+1 i i+1
+ aLA( ’i+1’RC)

(2.105)

'0.

i+1

lA(l.
IRC) (’1)

From the symmetry property of the RC admittance matrix,

= A(l:l,RC). Therefore Eq. 2.1.5one has A(ii1,RC)

takes the form

i i+1

(2.1.6)

This completes the proof.

Note: The expression for All corresponding to Eq. 2.1.6

is

l i i+1
A = A(1,RC) + aLA( 1+1,RC) (2.1.7)
11

If i = 1 the second term in equation 2.1.7 does

not occur since the syrator constant cl (appearing in

two places) is removed with the first row and the first

column of Y. In this case

All = A(i,RC)

and the effect of the gyrator on the open-circuit voltage-

ratio transfer function, TV = Anl/A is lost.

11'
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It is desirable to use no more gyrators than are

necessary, therefore the following assumption will be

added to (i) and (ii).

Assumption:

iii) The RC? network will contain no gyrator

branches connected directly across the im-

put terminal vertices.

Calahan has shown [CA1] that the zeros of the

numerator of the sum of RC and RL immittance functions

obey certain angle conditions. Since this Theoren is

applicable to Eq. 2.1.6 and will be used in later develOp-

ments, it is simply stated here. (For proof, see [CA1]).

Theorem (After Calahan)
 

Let the polynomial N(S) be of the form

In

(S +pi) H (S + Si)(S = 9.).N(S) =

1 i=1 1i "
:
1
5

then N(S) is the numerator of the sum of an RC and an RL

immittance function if the only if

(a) for n = 0,

ll
M
D

k
fl
fi

arg(Si) s

i l

(b) for n > 0, pi > 0 and arg(Si) S —

I
I
M
D

where the imaginary part of Si is

>Im(Si) O



13

Theorem 2.1.2. In Theoren 2.1.1, let
 

m

l(s+ci)][i:l(s+ai+jbi)(s+ai-jbi)]A=[

i ll
:
1
5

with c., a. real and b. > 0, then

1 1 1

U
‘

-l i m n

2 tan ——-= Z arg(a.+jb.)$ —
O a 0 I l l 2

1-1 1 1:1

and ci > O for n # 0

Proof: From Thorem 2.1.1

2 . .

A = A(RC) + alA(l 1+1
i’i+1'RC)

Dividing both sides of the above equation by A(:,RC) one

 

can form

1 1+1

A = A(RC) + a2 A(i’i+l'RC)

' ' l i

A(:,RC) A(:,RC) A(i,RC)

The right hand side of this equation can be recognized

as the sum of an RC and an RL admittance function, i.e.

A

-w-——-= y + y
A(:,RC) RC RL

with Calahan's Theorem this completes the proof.

Theorem 2.1.3. If an (n+l)-terminal RCF network satis-
 

fies assumptions (i), (ii), and (iii) and contains two

gyrators F1 and F2 such that the edges corresponding to

P1 are the i-th and (i+l)-th edges of the formulation



l4

tree while those corresponding to F2 are the j-th and

(j+l)-th edges of the formulation tree; then

i+1

A = A(RC) + mi A(., 1+1,RC)

+ azA (j jii’RC) + aza2A(i i+1 j j+1 RC)

  

2 '3 la 1 'i+l’j’ j+l’

j _ lj+1
+ 20102A(:+1: j+lIRC) 2a1a2A(L lj ’RC)

(2.1.8)

Proof: The form of the Y matrix is

r-1 i+1 j j+1

RC -a a1 i

Y = admittance + l i+1

matrix

a J
2 .

_ j+1

L “2 J

Forming the determinant of Y, one has

i+1
A = A(RC) + a A( . ,RC)

1 1

_ i j+1
alA(i+l,RC) + a2A( j ,RC)

2 1 1+1
-d2A(.j+1’RC) + a1 A(i,i+l,RC)

2 j j+1 i

+0‘2 A(j j+l’RC) + O‘1“‘2 A(j+k'i+1'Rc)

j+1 i+1 _ _ i+1
+ala2 A( j , i ,RC) aldzA (j+1' i ,RC)

_ j+1 i _ 2 i i+1 j

O‘1"‘2 ( ' 'i+l’RC) O‘10‘2 A(i'i+1'j+1'RC)

2 i i+1 j+1 _ 2 i j j+1

+a 1“2 A(i'i+1' j 'RC) O‘20‘1 A(i+1'j'j+1'RC)
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i+1 j j+1

l Ijlj+llRC)

(1 1+1 j j+12 2
+ alaz A i'i+1'j’j+1'RC) (2.1.9)

Due to the symmetry property of Y certain terms will

RC’

be cancelled and Eq. 2.1.9. reduces to Eq. 2.1.8. Hence

the proof.

Equation (2.1.8) is unsuitable for practical

synthesis procedures due to the presence of terms cor-

responding to a In the following sections further
1“2°

developments will be considered for a restricted class

of RC? network configurations to remove this difficulty.

2.2. RC Networks Cascaded Through Bridged Gyrators.

In this section a restricted class of RC net-

works is considered. As is shown in Fig. 2.2.1, 3-ter-

minal RC networks are cascaded through bridged gyrators.

For this class of networks the properties of the deter-

minant A of the admittance matrix Y are given in the

following theorem.

Theorem 2.2.1. If three grounded RC sections are cas-
 

caded through two grounded gyrators P1 and P2, where the

gyrators are bridged with capacitors and/or resistors as

shown in Fig. 2.2.1 and where the complete network sat-

isfies assumptions i, ii, and iii, then



l6

_ 2 i i+1
A — A(RC) + a1 A(i,i+l,RC)

2 j j+1
+ a2 A(j'j+l'RC)

2 2 i i+1 j j+1

+ O‘10‘2 A(i'i+l'j’j+l'Rc) (2.2.1)

Proof: Since both the RC sections and the gyrators are

grounded, a Lagrangian formulation tree in the corres—

ponding network graph can be chosen such that it contains

both the edges corresponding to the gyrators. The Y

matrix is of the form

   

i i+1 j j+1

- . : -’ - | I—
Y I | I Ia _ a

l ___'Y.l_(s_’____:___ _Ll___.L_
’+1

1 ‘Yl(5)I- I -al| I

_ | I

Y ' . l Yb l-Y (s) +' I“2

3 ___ ____ _L__“Ln_
j+1 ‘F‘_' y_( )‘T | _a1'

I 25 | I 2I

l I YC I I

.L. l l __ __ l I_J

(2.2.2)

where Y (s) = c.s + b. and c., b. > 0 i = 1,2

1 1 1 1 1

Let .

I
YB I

— _ a -Y (S)

Yb ‘ _______ [_?__%_.____

-a2-Y2(sfl

I

l Yc

A. l __  
Then Eq. 2.2.2 can be written as

 



l7

 

 

 

     

 

         

    

—’\/\/— r-JVVT

R1 R2

—II— —-II——
C C
1 ___ 2 _.__

r---j r j r 1

° I RC 4: 0‘1 T RC ( 0‘2 “f RC T—'0

I I | I i

I I l I I I

I I l I | I

G ) , l l I L

L_____i L____I L_____I' °
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Fig. 2.2.1 Three terminal RC networks cascaded through

RC-bridged-gyrators.
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i

Y= - '—:a:”—‘1_1‘1-
1+1 1 Yl(s)

  
If the determinant of Y is expanded about the first i

rows using Laplace's expansion, one has

A = Aa(RC) A (RCFZ)
b

2 2 i i+1

or

_ — _ 2 i - i+1
A — Aa(RC)Ab(RCP2) Yl(s) Aa(i,RC) b(i+l,RCF2)

2 1 1+1
+ a1 Aa(i,RC)Ag(i+l,RCF2).

This expression is equivalent to

_ 2 i i+1
A — A(RCTZ) + al A(i,i+l,RCF2). (2.2.3)

1 1+1
Since (RCPZ) and A( l,RCI‘Z) correspond to matrices

i’i+

of RC networks containing only one gyrator, Eq. 2.2.3

can be written as

_ 2 j j+1

2 1 1+1 2 i i+1 j j+1

+ a1[A(i’i+l'RC) + a2 A(i'i+1'j'j.+l,RC)]

(2.2.4)

This completes the proof.



19

The form of Eq. 2.2.4 is essentially suitable

for synthesis procedures; however, if each term of the

expansion could be identified with a specific RC section

appearing in Fig. 2.2.1, then the hynthesis would be

facilitated. For this purpose the bridged gyrators will

be replaced by unbridged gyrators. This change also

allows active or unbalanced gyrators to be used in place

of passive gyrators.

2.3 RC Networks Cascaded with Gyrators

In this section 3-terminal RC networks cascaded

through passive or active gyrators are considered. The

complete network, as shown in Fig. 2.3.1, is assumed to

satisfy assumptions i, ii, and iii. The properties of

these networks are contained in the following theorems.

Theorem 2.3.1. If grounded RC networks a, b, c,... are
 

cascaded through grounded gyrators only, as shown in

Fig. 2.3.1, then the following hold:

Case 1. For one gyrator and two RC networks

_ 2 1 1+1
A — Aa(RC)Ab(RC) + a1 Aa(i,RC)Ab(i+l,RC)

(2.3.1)

Case 2. For two gyrators and three RC networks

A = Aa(RC)Ab(RC)AC(RC) (2.3.2)

2 1 1+1
+ a1 Aa(i,RC)Ab(i+l,RC)AC(RC)
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j+12
A j A+ 1 a(RC)Ab (3. ,RC) C(j+l,RC)

2 2 1 1+1 j j+1

+ 0112 Aa(i'RC)Ab(i+1'j'RC)Ac(j+lRC)

j g i+1

Case 3. For three gyrators and four RC networks

A = A

+

Proof:

Case 1. In

i+1

 
and

A = A

a

a(RC)Ab(RC)AC(RC)Ad(RC) (2.3.3)

Aa(%,Rc)Ab<¥jiQ

I
—
‘
N
N
M

l
—
‘
N

l
—
‘
N

0
0
M
N
M

I
I
-
‘
N

,RC)Ac(RC)Ad(RC)

Aab(RC)A (j, RC)AC (jil,Q RC)Ad(RC)

k+1

d(k+l'RC)

Q Aa(RC)Ab(RC)AC Ik.RC)A

i+1 j

Aa(i’ RC) Ab(k+l' j

(i+1

b i+l’

Q Q

N
M

D
O
N

D
U
N
N
N

,RC)Ac (j:11,RC)Ad(RC)

k+1

d(k+l’RC)

k+1

d(k+l’RC)

j+1 k

j+1 'k'

Aa(:,RC)AQ Q RC)Ac(k,RC)A

k
Aa (RC)Ab (3.,RC)Ac (j:1,,k0. Cl IRC)A

i i+1 j k+1

Aa‘i'RC)A (' d(k+l’b 1+l’j RC)A
RC)Q Q Q

L
O
N

,RC)AC(

this case the admittance matrix is

 

1 i+1

Y I j
a

G.
_- —_-OL—| __l__

1|
Y

1. I 21

(RC)A (RC) + a2 A (i. ,RC)Ab Ii+1 RC) (2 3 4)
b l a 1+1' ' °
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Case 2. Replace Yb in case 1 by

  

. F'- | .

_ 1+1 ii+l j| jt;_i

Y =

b

j Y

j+1 __ _ 2.431-

"“2 Y

I. l i

then from Case 1

A (Rcr) = A (RC)A (RC) + a2 A (j RC)A (j+1 RC)
b b c 2 b j' c j+1’

and

— i+1 _ i+1
Ab(i+l,RCI‘) — Ab(i+l'RC)AC(RC)

2 1+1 j j+1

+ 0‘2 Ab(i+l’j'RC)Ac j+l'RC)

i+1

If now Ab(RC) and Ab(i+l,RC) are replaced respectively by

i+1
i+1,RCI‘), then Eq. 2.3.4 becomes Eq. 2.3.2.Ab(RCP) and Ab(

Case 3. Replace YC in case 2 by

k k+1

  

then from Case 1

2 k k+1

and

—— j+1 _ j+1
AC (j+l,RCT) _ Ac(j+l,RC)Ad(RC)

2 +1 kj k+1

3Ac(j+l’k+a d(k+l’RC)
,RC)A
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j+1 . ——
If now AC(RC) and Ac(j+l,RC) are replaced by AC(RCF) and

j+1

AC (j+1

,RCF), respectively, then Eq. 2.3.2 becomes Eq.

2.3.3

This completes the proof.

Note: The above Theorem could be extended to the general

case; however, the number of terms in the expansion for

A is 2n which becomes prohibitively large for the number

of gyrators n 2 3.

Theorem 2.3.2. For the two gyrator case of Theorem 2.3.1,
 

with the terms of Eq. 2.3.2 in the array

 

 

9 [Aa(RC)A::b(RC)CAC (RC)

:Aa ( RC) %(l+l, RC)AC (RC) 6

I
(2.3.5)

9 ZAba(RC)A (3°.RC)AC (3'111.RC)

2 2 1+1 j j+
alaz Aa(i,RC)Ab(k+1,3j,RC)AC(j1,RC 4

the sum of each indicated pair forms a polynomial

n m

N(S) = n (s + Ci) n (s + a + jb)(s + a - jb)

i=1 i=1

with ci 2 O and

Proof: Consider the pair

N(S) = Aa(RC)Ab(RC)AC(RC)

2
1+1+ al Aa(i,RC)Ab (i+1,RC)AC (RC)
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which can be written

N(S) = A (RC)[A (RC)A (RC) + a2 A (i+1 RC))]
c b c l a i+l’

(2.3.6)

From Theorem 2.1.2, the terms within brackets in Eq.

2.3.6 can be replaced by

P(S) =

|
|
=
1
2
°

m

(s + ci) .H (s + a + jb)(s + a - jb)

1 1: (2.3.7)

with ci > 0 and

AC(RC) is the determinant of an RC admittance matrix and

so has non positive real zeros. Therefore Eq. 2.3.6 can

be written as

n 2 n

N(S) = H (s + ci)[ H (s + Ci).H (s + a + jb)(s + a - jb)]

i=£+l 1:1 1:1

with C1 > 0 and

The proof of the remaining three pairs follows similar

lines. Q.E.D.

Theorem 2.3.3. Consider the three gyrator case in
 

Theorem 2.3.1 with the terms in Eq. 2.3.3 represented

by the power of ai in the following array
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'F l

2

l W

a2

2

2

_a3 7

———a2 a2 a
1 2

l 3

2a2

2 3

(- E2 0.2 0.2

l 2 3

In this array the sum of each indicated pair (from Eq.

2.3.3) forms a polynomial

(s + a + jb)(s + a — jb)

l"
:
3
3n

N(S) = H (s+c.)

=1 l i

R

g — and ci 2 0

m

with 2 tan 2

Proof: The proof is similar to that used in Theorem

2.3.2 and will not be repeated here.

Note: Theorems 2.3.2 and 2.3.3 establish necessary con—

ditions which must be satisfied by any polynomial decom-

position technique used in the synthesis of two and

three gyrator RCP networks of the form shown in Fig.

2.3.1.

Theorem 2.3.4. If in Theorems 2.3.1, 2.3.2, and 2.3.3
 

the passive gyrators are replaced by active gyrators,

then the form of A remains invariant.

Proof: Consider the Y matrix;
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I E. > 0

Y = i+1 -§.T l

B.
l 1

1 B.,§. real
1 1

  
l

l b(
L— _

where Y; and §b have the same form as Y. If the deter-

minant of Y is expanded about the first i rows, then

A = A6(RCT)A£(RCF)

~ — i — i+1

+ Bi Bi Aa(i,Rcr)Ab(k+l.Rcr).

However taking ai = “éi Bi , one has

A = A (Rcr)A (Rcr) + a2 A (1 Rcr)A (i+1 Rcr)
a b i a i' b i+l’ '

Since an arbitrary active gyrator can always be replaced

by an equivalent passive gyrator, A has the same form

for active as well as for passive gyrators. Q.E.D.

2.4 Stability of the Transfer Function.

In the preceeding section, networks such as that

in Fig. 2.3.1 were shown to have equally stable trans-

fer functions using either balanced or unbalanced gyra—

ors. That is, A and All are invariant when passive

gyrators are replaced by active ones.

Complete stability can be shown for grounded RC

sections cascaded with grounded gyrators (passive or

active) where each RC section has the following

prOperties:
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1. Each RC section is connected.

2. The graph corresponding to the conductances contains

all the nodes of the section and is either connected

or is connected when the two terminal nodes of the

RC section are connected (shorted) to the ground

node. For the last section it is connected when

the input node is connected to the ground.

3. Any RC section, except the last, has at least two

nodes in addition to the ground node.

4. Each section contains one or more conductances.

Three important classes of RC sections which satisfy

the properties l-4 are low and high-pass RC ladders and

Twin-T or Bridged-T RC notch filters.

Theorem 2.4.1. Let an RC section, with admittance mat-
 

rix Y satisfy conditions 1-4:
s!

Case 1. If the section is an intermediate or leading

section, then

A (?,J,RC) > o for s = o
s i 3

Case 2. If the section is the last or output section, then

A (? RC) > o for s = 0
s i'

where i is the input terminal and j is the output ter-

minal of the RC section.

Proof:

Case 1. The YS matrix is
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Note that Ysls=0 —

From condition 2, when both the input and output terminal

is connected to the ground, the conductance graph becomes

connected. This corresponds to the ith row and column

and the jth row and column being removed from the matrix

G. In general a conductance matrix is positive semi-

definite. However, for a connected graph it is positive

definite, hence it is nonsingular. It follows, there-

fore, that As(i,g,RC)> 0 for s = 0. If i and j are the

. i j
only nodes in Ys’ then As(i,j ,RC) = 10

Case 2. From condition 2, when the input terminal is

connected to the ground, the conductance graph becomes

connected. This corresponds to the ith row and column

being removed from the matrix G. For a connected graph

a conductance matrix is positive definite. Therefore

A (?,RC) > o for s = 0.
S].

If i = j, then AS(:,RC) I

|
—
'

Q.E.D.

Theorem 2.4.2. If a network is made up of RC sections
 

satisfying conditions 1-4 cascaded through grounded

gyrators, then All is strictly Hurwitz.

Proof: The proof iS established using an induction on

the number of gyrators. Consider first the one gyrator

case:
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A — l — i+1
11 — Aa(l,RC)4b(RC) + 8131 Aa(b :,Rc)Ab(i+l'RC)

(2.4.1)

Since conductance matrices are positive semi—definite,

  

 

one has

(i+1

A11|s=o 2 8131 Aa(1 1'RC)Ab(11RC)Is-o

However from Theorem 2.4.1

1 i (i+1

A ( p-IRC)| _ > O and ,RC) > 0
a 1 1 —0 Ab(k+1 Is: 0 (2.4.2)

Therefore

All] _ > 0 (2.4.3)

s-O

If Eq. 2.4.1 is rewritten as

l i+1

All _ Aa(1’RC) + 8 § Ab(i+l'RC)

1*1 ’ 1 1 1 1 A (RC)
Ab(RC)Aa(l,i,RC) Aa(l,i,RC) b

(2.4.4)

Then the right hand side of Eq. 2.4.4 can be recognized

as the sum of RC and RL admittance functions. Consider

the real part of the first term in Eq. 2.4.4 when s = jw

 

 

Aa<},Rc> n him»
Re 1 = Re ij + Z W + h

ho, hi, hm 2 o

Aa(]1',RC) n 11.12

Re 1 i = hoo + )3 7;;

a(1,1,Rc) s=jw 1:1 Ci + w (2.4.5
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From condition 4, at least one hi or h0° must be nonzero.

Therefore Eqs. 2.4.4 and 2.4.5 imply that

l
A A ( ,RC)

Re 11 . 2 Re a l > O

l 1 l i

  

x=jw s=jw

(2.4.6)

where Ab(RC) and Aa(1'i’RC) are the determinants of RC

admittance matrices and can have no zeros on the jw axis

except at the origin. Therefore Eq. 2.4.3 and 2.4.6

imply that All has no zeros on the jw axis. Since All

is the numerator of a sum of RC and RL admittance func-

tions, it is the numerator of a positive real function

and can therefore have no zeros in the right-half of the

s-plane. Hence All is strictly Hurwitz. This completes

the proof for the one gyrator case. Assume now that All

is strictly Hurwitz for K gyrators. Let Y be the admit-

tance matrix of (K+2) RC sections satisfying conditions

1-4 cascaded through (K+1) gyrators:

R . ‘1

  
where Yb is the admittance matrix of the last (K+1) RC

networks cascaded through K gyrators. From Y’All is:

l= ~ 11
All Aa(l,RC)Ab(RcT) + 8181 Aa( i,RC)A
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where, by assumption, Ab(i:1’RC) is strictly Hurwitz.

Observe first that All|s=0 > 0. This can be shown

as follows: Aa(l’RC)ls=0 2 0, since a conductance matrix

i
is positive semi-definite. Also Aa(l’1 ,RC)]s=0 > 0 by

Theorem 2.4.1 and Ab(RC )Is=0 z 0, since a conductance

matrix is positive semi-definite. Furthermore,

i+1 . i+1 . .
Ab(k+l)RCI‘)IS=O > 0 Since Ab(i+l,RCF) lS strictly Hur-

witz by assumption. From the above inequalities and

Eq. 2.4.7 one obtains

 
  

~ 1 1 1+1

A11ls=o B181 Aa‘l'i'RC)4b(1+1'RCF)ls=o > 0

(2.4.8)

The second observation is the positiveness of Allls=jw°

This can be shown as follows: Consider the ratio

A A (1 1 RC) (RC?)
11 _ a 1'1' + g 8 4b

1 1+1 - i n+1 n+1 i+1
Aa(i,RC)Ab(i+l,RC) Aa(i,RC) Ab(i+l.RCP)

(2.4.9)

Now (RCFL/ (i+1 RC?) is positive real if all the
Ab Ab i+l'

gyrators are passive. However by Theorem 2.3.4. the

form of A and All is invariant when passive gyrators are

i+1
replaced by active gyrators. Therefore Ab(RCF)/Ab(i+l,RCF)

i+1

is positive real and the real part of Ab(RCP)/Ab(i+l,RCP)'s=jw

is greater than zero. The first expression on the right

hand side of Eq. 2.4.9 can be recognized as an RL admit-

tance function with the following real part when s = jw:



O
T
,

94

h

A
)

(
7
)
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l i
Aa(lliIRC) h- h

____+__

+.15 Cl 5

co

 

t
h
b

P

Re i . .
Aa(i,RC) s=jw 1

(2.4.10)

where Ci’ hO’ hi' h 2 0. From condition 4 at least one
00

hi or hO is nonzero. Therefore

 

Aa(i,%,RC) n hi ci

Re 1 l = ho + Z 2 2 > 0 (2.4.11)

From Eqs. 2.4.8, 2.4.9, and 2.4.11 it follows that

Re All > O

1 1+1

Aa(i,Rc)Ab(i+l.RcP) s=jw (2.4.12)

 

i+1 . . . . i
Ab(i+l,RCT) lS strictly Hurw1tz by assumption, Aa(i,RC)

is the determinant of an RC admittance matrix and so has

negative real zeros except possibly at the origin. There—

fore All is the numerator of a positive real function

with no zeros on the jw axis. Eq. 2.4.8 shows that All

can have no zeros at the origin and hence A1 is strictly
l

Hurwitz. This completes the induction and the theorem is

now proved.

2.5 Minimum Number of Real Poles of TV for low-Pass RC

Ladders Cascaded with Gyrators.

Theorem 2.4.2 considered in the preceeding section

establishes the absolute stability of the transfer func-

tion TV for RcF networks satisfying conditions 1-4.

Necessary conditions on the number of real zeros of All
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with respect to the number of capacitors and the gyrator

placement can be established if the RC sections are low—

pass RC ladders. This is given in the following theorem.

Theorem 2.4.1. If:
 

i) A connected network is composed of (n+1) low pass RC

ladder networks cascaded through n grounded gyrators.

ii) The edges corresponding to the capacitors and the

input voltage driver form a Lagrangian tree in the

complete network graph.

iii) The total number of capacitors in the first RC sec-

tion, third RC section, and so on alternately is

denoted as #C(l). The total number of capacitors

(2)
remaining is denoted as #C

then has at least
A

11

[#cm — #cm (2.5.1)

real zeros.

Proof: The admittance matrix is of the form

Y = Cs + G + F (2.5.2)

Now the admittance matrix Y' corresponding to All can be

obtained from Y by removing from Y the first row and

column:

Y' = C's + G' + F' (2.5.3)

Condition ii ensures that C is diagonal with positive

diagonal entries. Conditions i and ii ensure that G' + F'

is tridiagonal. Let C' + F' = H' then
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Y' = C's + H'

since C' is diagonal with positive diagonal entires,

[C']-l/2 exists and is diagonal with positive diagonal

entries, and the determinant of [C']-l/2 3(‘[c']"l/2

differs from A by a constant. Let Y" =
11

[C']-l/2 Y' [Qflfl/Z then

Y" = U s + [C'J'l/2

Y" = U s + H"

The zeros of All are therefore the eigenvalues of -H".

The proof follows as an adaption of a method described

1/2
by Frame [FR]. Since the diagonal matrix [C']- has

all positive diagonal entries, the sign matrix of Y" =

[C']-l/2 Y' [C']—l/2 is the same as that for Y'.

The rest of the proof can best be facilitated by

a specific case before the general proof is completed.

Consider the network in Fig. 2.5.1 where the Y

matrix is

— .
—

 

G1 "G1
| |

_Gl ClS+Gl+G2 _GZ| I

__ -G2 C25+G | 81 |

—81) C3s+G3 G3 |

Y = | -G C +G | B

_ ________|_______48__%_|___2____
‘ 82 | CSS+G5 -G

: ‘ -G5 C6s+G5+G  
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For this case

)_s+al —bl ' I -)

| I

-bl s+a2 |Cl_—_-—|- ——_—-

-Cl Is+a3 -b3 |

Y" = '3’: 3*31‘iz____

_—{ -52 l s+a5 -b5

I ) -b5 s+a6  
Multiplying the third and fourth column of Y" by -l,

i.e. multiplying those columns corresponding to the

second RC network the fourth RC network and so on alter-

nately, one obtains

  

";+al —bl | I

-bl s+a2 |--cl :

" "' —.§l—':s:;37 "1.3— ‘r “ "—

= 1..., (.2

—_ _ _ —:—__ :C: _ Isa—$5—

1.... | |"b5 S+a6_

This results in a symmetric sign matrix and at worst

changes the sign of the determinant. Now forming the

determinants of the principal minors one obtains
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PO é 1

Pl : s + a1

P2 = (S + a2)Pl biPO

P3 = -(s + a3)P2 - clclPl

P4 : -(s + a4)P3 - b§P2

P5 : (s + a5)P4 - c252p3

P6 = (s + a6)P5 - b§P4 = 1 k All

The polynomials P6 through PO constitute a Sturm sequence.

The Cauchy index [T0]

= v<-oo> - V(°°)

*
U
I
’
U

U
1

8
H
8

6

gives a minimum number of real zeros of P6, where V(a)

denotes the variation of sign in the Sturm sequence at

S = as

"oo +oo

PC + +

- +
P1

P2 + +

P3 + -

P4 + +

P5 - +

P6 + +

‘V(-m) = 4 V(+w) = 2

Therefore for the network under consideration All must

have two or more real zeros. In the general case one

would have
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Po(s) = l

P1(s) (s + al)PO K capacitors

2 in the first

P2(S) (S + a2)P1(s) - blP0(s) RC section

9 (s) = (s + a )P (s) - b2 p (s)
K K K-l K-l K-2

PK+1(S) = "(S + aK+l)PK(s) ‘ B181 PK-1(S)

2
P (s) = -(s + a )P (s) - b P (s)
K+s K+2 K+l K+l K z—k capacitors

. in next RC

: section

_ _ _ 2
P£(s) - (s + a£)P£_l(s) bR-lP _2(s)

I may be more negative

terms or may not be

2
= i — .—Pn(s) k All (s aK)Pn_l(s) bn-an-2(S)'

Therefore,

V(-w) V(w)

P0 + +

- +

P1

+ always changes + never changes

- +

Pk .t +l

+

Pk+1 ‘ -

1

Pk+2 does not change + always changes

p i i

P i

+1 I always changes + does not change

i ;

: i  
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From PK to P , (2—k) sign changes were lost in V(-m) and

(Rrk) sign changes were gained in V(+m). In the same

way the number of sign changes lost and gained can be

calculated for the 4th RC section, the 6th RC section

and so on. Since g-k is the number of Capacitors in the

second RC section, it follows that for n, the total num-

ber of capacitors,

(2) = #Cm
V(-w) n — #C

V(+oo) = #C(2)

V(-oo) V(+oo) = #C(l) " #C(l)

From which it follows that

00 P

I ——-g'1 = #C(1) - #C(2)
.—m n

and so Pn has at least

|#C(l) - #C(2)| real zeros. Q.E.D.

Theorem 2.5.2. Low-pass RC ladders cascaded through
 

gyrators form a low-pass network.

Proof: The Y matrix is tridiagonal and the C matrix is

diagonal. Therefore no 3 terms appear in the off diag-

onal entries of Y. Anl is the determinant of the matrix

obtained from Y when its first row and last column is

removed. This matrix is upper triangular and if diagonal

entries are the lower off diagonal entries of Y. There-

fore Anl is not a function of s. The proof follows from

Tv = Anl/All'
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2.6 Conclusion.

In this chapter an analysis of RCF networks was

carried out which developed certain necessary conditions

on RCF filters. The one gyrator case was shown to have

an angle condition [CA1]. The transfer function of RCF

networks composed of "notch" filters or low-pass ladders

cascaded through passive or active gyrators was shown to

stable. Finally a theorem was proved giving a minimum

number of real poles in the transfer function for a cer-

tain class of low-pass RCF filters.

be



CHAPTER III

DEVELOPMENT OF REALIZATION FORMULAS FOR

ONE-GYRATOR RCT FILTERS

In the second chapter of this thesis, the general

form of the denominator polynomial for the open circuit

voltage ratio transfer function of RCr networks contain-

ing one or more gyrators is established. Calahan [CA1]

has given necessary and sufficient conditions under which

a given set of complex frequencies may be realized as the

natural frequencies of a network consisting of two inter-

connected 2—terminal networks, one being RC and the other

RL. His network configuration, however, can be reduced

to the form under consideration in this thesis, as shown

in Fig. 3.0.1.

In this chapter, a new derivation of Calahan's

polynomial decomposition [CA1] is given. This derivation

also indicafiflSthe relationship between two seemingly

different polynomial decomposition methods which are

referred to, in the literature, as the Horowitz [HO] and

as the Calahan [CA1] polynomial decompositions. That is,

it is shown how these two decomposition methods can be

developed from each other. Methods of extending the

41
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Calahan and Horowitz decomposition methods to polynomials

which have distinct negative real zeros are established.

Examples are given to illustrate how these decomposition

methods can be utilized to realize low pass voltage ratio

transfer functions TV. Furthermore it is shown that all

polynomials with distinct negative real zeros (if any)

can be realized as the natural frequencies of two RC

networks connected through a gyrator, the latter loaded

with a negative resistor as shown in Fig. 3.0.2. How-

ever, such a network will not be stable unless the denom-

inator polynomial of TV is Hurwitz.

3.1 Calahan's Decomposition

Calahan [CA1] has shown that any real polynomial

N(S) with all complex zeros,

m

N(S) = H (s + sl)(s + si) (3.1.1)

where the imaginary part of si satisfies Im(si) > 0, can

be separated uniquely into

2 2
N(S) = a (s) + b (5) (3.1.2)

such that the degree of a(s) is one greater than that of

b(s) and the polynomials a(s) and b(s) have alternating

real zeros. Any polynomial decomposition of the form in

Eq. 3.1.2 which satisfied the above conditions will be

hereafter referred to as Calahan's decomposition.
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Calahan has also shown that the rational function

a(s)/b(s) is an RC admittance function if, and only if

I
I
M
B

arg(s.) 5 fl/2 (3.1.3)
1 i

i

As will be shown, a development of the Calahan

decomposition different from Calahan's [CA1] original

lengthy derivation can be obtained from the Horowitz [HO]

decomposition. Therefore, Horowitz's decomposition will

be described briefly.

Horowitz [HO] has shown that if a real polynomial

P(S) has no non-positive real zeros, then P(S) can be ce-

composed uniquely as

p(5) = i[A2(s) - sB2(s)] (3.1.4)

such that A(s)/B(s) and sB(s)/A(s) are RC admittance func-

tions. In order to establish the Horowitz decomposition,

as indicated by Thomas [TH], consider the even polynomial

P(sz) which can be written as

P(sz) = 1 F(s)F(—s) (3.1.5)

where the plus (minus) sign holds if P(s) is of even (odd)

degree and the polynomial P(S) is strictly Hurwitz. In—

deed, by hypothesis, P(s) has no zeros on the non-positive

real axis, and hence the zeros of P(s2) have quadrantal

symmetry and none can be on the imaginary axis. Thus, F(s)
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can be formed by rejecting the right half-plane zeros of

P(sz). If P(s) is now separated into even and odd parts

2
F(s) = A(sz) + sB(s ) (3.1.6)

one obtains

ll 1
+

P(s ) F(5)F(-S)

2 2(
[A2(sz) - s B 52)] (3.1.7)ll 1

+

P(sz)

and if $2 is replaced by s, the desired form

2
P(s) = 1 [A (s) - sB2(s)] (3.1.8)

is obtained. The rational functions A(s)/B(s) and sB(s)/A(s)

are RC admittance functions since A(s)/sB(sz) is a Foster

function [TO].

Returning to the development of Calahan's decom-

position, Horowitz's decomposition is used in establish-

ing the following Theorems.

Theorem 3.1.1. Given a real polynomial P(s) with all
 

complex zeros, there exists a decomposition of the form

I 2 ' 2

P(s) = [A (s)] + (8+ a)[B (8)]

where the zeros of A'(s) and B'(s) alternate and -a <

min{zeros of A'(s)}.

Proof: First "shift" the zeros of P(s) into the right

half plane with the transformation 5' = s + a where a is

a sufficiently large positive constant. This yields

P'(s') = P(s' — a)
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Then "folding" the zeros of P'(s') into the left half

plane by the transformation A = -s', one has

P"(A) = P'(-A) = P(-)( -a)

Since P(s) has no real zeros, P"(A) = P(—A -a) does not

have. Therefore the Horowitz decomposition of P"(A)

yields

p"(1) = 212(1) - A 132(1)

"Folding" and "shifting" P"(A) back to P(s) with the

transformation 5 = —A-d, the desired decomposition is

obtained in the following form:

P(s) = A2(-s-a) + (s + a)B2(-s-a)

Note that since A(A) and B(A) have negative real zeros,

due to the properties of the Horowitz decomposition, P(s)

can be written as

n 2 2 n-l 2

P(s) = H (-s-d + z ) + b (s + a) H (-s-a + z )

. a. . b.

i=1 1 i=1 1

or

n 2 2 n-l 2

P(s)=n(s+a-z)+b(s+d)H(s+a-z)
. a. . b.

i=1 1 i=1 i

From the properties of the Horowitz decomposition, one has

or
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Therefore, if we let

n

A'(s) = H (s + d - z ) = t A(-s-d) (3.1.9)

i=1 1

and

n-1

B'(s) = H (s + a - zb ) = i B(-s—a) (3.1.10)

i=1 i

it follows that the zeros of A'(s) and B'(s) do in fact

alternate; and the minimum zero of A'(s) is greater than

-a. Therefore P(s) = [A'(s)]2 + (s + 0L)[B'(s)]2 and the

Theorem is proved.

Note: If a - 2a is greater than zero, then the rational

n

functions A'(s)/B'(s) and (s +a)B'(s)/A'(s) represent RC

and RL admittances respectively. However, since 2a is

n

a function of a, (a - za ) may not be greater than zero.

n

Theorem 3.1.2. Given a real polynomial P(s) with no real
 

zeros, the decomposition

R<s>=[A'(s)12 + (s + on)[13'(s)12

considered in Theorem 3.1.1 reduces to the Calahan decom-

position

P(s) = K2(s) + §2(s)

as a approaches infinity.

Proof: The proof is established using an induction on

n where P2n(s) denotes a real polynomial of degree 2n

with complex zeros.
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2
Part I. Let n = 1. The polynomial P2(s) = (s + 201s +pi),

where pi > Oi, can be "shifted" and "folded" into P§(A)

by the transformation A = -s-a:

2 2
+2(a- 0)). +01 -20a+pi).Pam = <1 1 1

To obtain the Horowitz decomposition of P£(A), consider

4

95(12) = (A + 2(a — ol)A + a2 - 2011 + pi)-

This polynomial can be written as

P"(A2) = F (A)F (-A)
2 l l

where F1(A) = (A2 + alA + b1) is strictly Hurwitz and

 

b = /’2 2
l a 201a+pl > 0

(3.1.11)

 

a1 = /251-7(a-ol) > 0

If F(A) is now separated into even and odd parts, then

2
A1(A2) = A +b and Bl(A2) = a Hence A1(A) = A + b

l 1' 1

and Bl(A) = a1. Performing the inverse transformation

A = -s-a, one obtains Al(-s-a) = -S-a+bl and B1(-s-a) = al.

The polynomial P2(s) can now be written as

P2(s) = (s + a-b1)2 + (s + a)ai (3.1.12)

A Lemma is necessary

  

Lemma 3.1.2. Let bi = / 2a -Zoia+p? and ai = /2bi-2(a-oi),

l



49

then Lim a - b. = 0., Lim a. = 0 and Lim/d a. = w.
i 1 1 1 1

Proof of Lemma: Consider the expression (a - oi). Since

 

 

 

 

bi = /g2 - ZCia + pi2 , 2

20,+ p. a

. /2 2 . 1 1
Lim a - a -201a + pi = Lim = o

d+w d+® 20. + 2

1+1+—£ 0i
a ——

2

a

or

Lim (d — b.) = 0.

From the above result it follows that

 

Lim a. = Lim /20. — 2(a - O.) = 0

a+oo a-roo l 1

However Lim/BL a. does exist. Indeed

a+oo l

 

 

Lim /E'a. = Lim /E /20. - 2(d-o.) or

a+oo 1' a+oo '1 l

l 2 l 2

(26) /2(o§ - oi ) /
Lim /E'ai = Lim

a+oo a+oo 1/2

2 2 l/2
+ .-

Ed. 20i0( + bi) + (o: Oi)]

where

2 2 2 .
p. - O. = w. . This proves the lemma.

1 i 1

Continuing with the proof, Eq. 3.1.12 can be

written as

2
1 (3.1.13)

_ 2

P2(s) — (s + 01) + w
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This concludes the proof for part I.

Before continuing with Part II observe that

Ai(s) = (s + a - cl) and Bi(s) = a Also observe thatl.

the limits:

I

Lim A.(s) = (s + g ) = A (s)

a+m l l l

I

Lim B (s) = Lim a = 0

a+oo l a+oo ‘1

Lim /EB'(s) = A = R (s)
a+m 1 1 1

hold for n = 1.

Part II. Assume now that the theorem is true for n = k-l,

which is the same as assuming the limits

Lim Afi(s) = Ah(s) n = k-l

a-Hzo

Lim B'(s) = 0 n = k-l

a+oo n

Lim VEB'(s) = E (s) n E k-l
a+w n n

hold. Consider the expression of P2n(s) for n = k,

where

P ( ) H ( 2 + 20 + 2) and 2 > o 2
2k 3 ._ 5 18 pi p1 1 '

i—l

Performing the transformation A2 = -s - a one has

P" (A2) - R (A4 + 2( - c )12 + a2 — 20 a + 2
2k ’ i=1 a 1 1 pi )

This polynomial can be written as
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n 2 _ 4 _ 2 2 _ 2 _
P2k(A ) - (A + 2(a 0k) + a 20k + pk)Fk_l(A)Fk_l( A)

where Fk_l(A) is formed for the case n = k-l. Collecting

the terms corresponding to the left half plane zeros one

 

 

has

Fk(A) = (A2 + akA + bk)Fk_l(A)

where bk = /32 - Zoka +‘ofi

ak = /2bk - 2(d - 0k)-

Let the even and odd parts of Fk_l(A) be denoted as

Ak_l(A2) and Bk_l(A2). Therefore the even and odd parts

of Fk(A) can be written respectively as

2 2 2 2

(A + bk)Ak_l() ) + A akBk_l(A )
2

Ak(A )

and

2 2 22

Bk(A )

Transforming P3k(A2) back to P s) with the transforma-
2k(

tion A2 = -s - a one obtains

P (s) = A2(-s - a) + (s + a) BZ(—s - a)
2k k k

where

Ak(-s - a) = (-s-a+bk)Ak_l(-s-a) + (-s—d)akBk_l(-s-a)

and

Bk(-s-a) = (-s-d+bk)Bk_l(-s-a) + a (-s-a)

kAk-l
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Now since Ai(s) = 1 Ak(-s-a), Bi(s) = i’Bk(-s-a) and the

degree of Ak(A) is one greater than the degree of Bk(A),

the polynomial P2k(s) can be written as

P2k(s) = [Ai(S)]2 + (s+a> B];(s)12

where

Afi(s) = [(s+a-bk)Afi_l(s) - (s+a)akB'k- l(5)]

(3.1.14)

and

B£(s) = [(s+oL—bk)B'_l (s) + akA'_l (5)] (3.1.15)

In order to find the expression for P (s) ascx approaches

2k

infinity one can form the limits

gig Ai(s) = gig [(s+a--bk)Ak_ l( )-B'(S+a)akk- 1(8)]

213 Bi(s) = gig [(s+a-bk)Bi_l(s)+akAfi_l(s)]

and

313 /5Bi(s) = 212 [(s+a-bk)faB'Bk-—1(S)+/—akAk-l(S)1

The above limits reduce to

Lim Ai(s) = (s+ak)Ak_l(s) -UJkBk_l(S) = Ak(S)

a+oo

(3.1.16)

Lim Bi(s) — 0

a—mo

Lim y/EBIL(S) = (s+Ok)Bk_l(S) + kak_l(s) = Bk(S)

a-Pm

(3.1.17)
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using the assumption that the theorem holds for n = k-l

and Lemma 3.1.1. The expression for P (s) in the limit
2k

is

p (s) = 212(5) + §2(s) (3.1.18)
2k k k

This completes the induction.

Now A'(s) and /&B'(s) have alternating real zeros

for all finite real values at d. Since the zeros of a

polynomial are continuous functions of the coefficients

and the coefficients are continuous functions of a, the

zeros of A'(s) and /&B'(s) must remain real in the limit.

Suppose the zeros at A'(s) and /&B'(s) do not alternate

in the limit, then either of the following cases occur:

i) A'(s) and /EB'(s) have some coincident zeros

in the limit

ii) A'(s) and /&B'(s) have no coincident zeros

but the zeros no longer alternate in the

limit.

Case 1 cannot happen since P(s) has all complex zeros.

Case ii cannot happen as it implies that A'(s) and /EB'(s)

have coincident zeros for some finite a. This completes

the proof.

It is interesting to note that Eqs. 3.1.14, 3.1.15,

3.1.16 and 3.1.17 establish recursion relations which can

be used to calculate Afi(s), B$(s), Ah(s), and Bh(s).

Collected and rewritten here for convenience they are:
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A

 

  

 

 

A$(s) é l B$(s) é l (by definition)

I : _ I _. 'An(s) - (s+a bn)An-1(s) (s+a)aan_l(s) L

I : _ I I

Bn(s) ‘ (s+a bn)Bn-l(s) + anan-1(S) ((3.1.19)

_ 2 _ 2
where bk - /C Zoka + pk

ak = /2bk — 2(d-ok)

and

Ao(s) é l B6(s) é 1 (by definition)

An(s) : (s+cn)An_l(s) - wan_l(s)

_ _ _ J(3.1.20)
Bn(s) — (s+0n)Bn_l(s) + wn n-l(s)

_ 2 _ 2
where wk — pk Gk J

n 2 2 2 2
Theorem 3.1.3. Given P (s) H (s + 20.s + p. ),p. > 0.

2n i=1 i 1 i 1

then the zeros of the polynomials AA(s) and A$_l(s)

appearing in Eq. 3.1.19 alternate along the real axis.

Proof: From the recursive relation Ag(s) = (s+d—bn)Ag_l(s) -

(s+a)aan_l(s) the following list of properties can be

stated, from which the proof is established.

I I I ' ' ' '

l. An(s), An-l(s)' and Bn_l(s) have pOSitive coefficients

for the highest powers of s as can be seen from Eq.

3.1.13.

2. The zeros of Afi—1(s) are larger than -a. This is es-

tablished in Theorem 3.1.1.
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Ah_l(s) and BA_l(s) have alternate real zeros. This

is established in Theorem 3.1.1.

A$(s) has an odd number of zeros larger than the

largest zero of A$_l(s). This follows since 1, 2, and

3 imply that Afi(s) is negative at the largest zero

of A$_l(s). However 1 implies A$(s) is positive for

real and sufficiently large values of s.

Afi(s) has an odd number at zeros between each zero

of AA (5). This follows since the sign of Afi(s) is
-l

the negative of the sign of B$_l(s) at each zero of

I l I

An_l(s), and An-1(S) and Bn-l(s) have alternate zeros.

The degree of A$(s) is one greater than Afi—1(S)'

Returning to the proof of the theorem, from proper-

ties 4, 5, and 6 it follows that Afi(s) has one zero which

is larger than the largest zero of Afi-1(S) and one zero

between each zero Ah_l(s). The last zero must therefore

be smaller than the smallest zero of A$_l(s). This ends

the proof.

Theorem 3.1.4. Consider the polynomials BA, An and En
 

in Eq. 3.1.19 and Eq. 3.1.20, then

i) the zeros of BA(s) and B5_ (5) alternate
1

ii) the zeros of Ah(s) and Ah_l(s) alternate

iii) the zeros of Bh(s) and §h_l(s) alternate

Proof: The proof follows an identical line to the proof

for Theorem 3.1.3 and will not be repeated here.
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A procedure for the derivation of Calahan's de-

composition based on the Horowitz decomposition is now

established through the use of the foregoing theorems.

These theorems provide recursive formulas for obtaining

the Calahan decomposition and they also establish some

of the properties of the polynomials appearing in these

recursive relations. The conditions under which

AA(s)//EBA(S) and Ah(s)/Bh(s) are RC admittance functions

have yet to be derived. It is possible to develOp the

conditions for which Ah(s)/§h(s) is an RC admittance

function without regarding the conditions for which

AA(s)//_aBfi(s) is an RC admittance function. The next

three theorems establish consitions for which Afi(s)//EBA(S)

is an RC admittance function and also establish the fact

that if Ah(s)/§h(s) is not an RC admittance function then

Afi(s)//EBA(S) cannot be an RC admittance function for

any value of a.

2) with

 

"
:
2
5

_ 2 5'
Theorem 3.1.5. Let P2n(s) — (s +2015 + pi

i 1

pi > 012 and let the polynomials Afi(s) and B$(s) be de—

rived from Eqs. 3.1.19. The rational function AA(s)//3Bn(s)

is an RC admittance function if, and only if, Afi(0) > 0

and Ai(0) > 0 for k = l,2,...,n-1.

Proof: Consider the if part of the theorem. Let AA(O)Z O

and Afi(0) > 0, for k = 1,2,...n-l, and assume that
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A$(S)//EB$(S) is not an RC admittance function. Since

the zeros of A$(s) and B$(s) alternate along the real

axis, the above assumption implies that Ag(s) or both

A$(s) and Bfi(s) have some positive real zeros. The re—

lation AA(0).: 0 implies A$(s) must have an even number

of zeros in the right half plane or possibly one at the

origin and at least one in the right half-plane. Theorem

l(S)

alternate along the real axis, therefore AA-1(s) must

3.1.3 established that the zeros of Afi(s) and AA_

have at least one positive real zero. However, the re-

lation Ak-l(0)-3 0 implies that Afi_1(s) has an even num-

ber of positive real zeros, and therefore from Theorem

3.1.3 Ai_2(s) has some positive real zeros. Continuing

this reasoning, one can conclude that Ai(s) must have

some positive real zeros. However sine Ai(s) is of de-

gree one, it follows that Ai(0) < 0. Hence the contra-

diction.

Consider now the only if part of the theorem. If

A$(S)//EE$(S) is an RC admittance function, then AA(s)

has all negative real zeros or has at most one zero at

the origin. Therefore A$(O) i 0. Since, from Theorem

3.1.3, the largest zero of Ai(s) is greater than the

largest zero of Ai_l(s) k1 = 2,...,n; The zeros of

Ai(s) k = 1,...,n-l are all in the left half plane, and

Ai(0) > O for k = 1,2,...,n-l.

This completes the proof.
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In order to establish the conditions under which

both AA(s)//EBA(S) and Afi(s)/§h(s) are RC admittance func-

tions it is also necessary to consider the definition of

1 B

 

4 = tan- A as a single valued function.

. . . -l B
Definition 3.1.1. Let 4 = tan X-where

O 3 ¢ 1 2 when B 1 0 and A 1 0

% < 4 i n when B 1 0 and A < 0

1T<<I><3TT

— 2 when B < 0 and A i 0

2% <4k < 2n when B < 0 and A > 0

 

Theorem 3.1.6. Let A£(s) and Bi(s) be the polynomials

defined in Eq. 3.1.13; then AA(s)//§Bh(s) is an RC admit-

tance if, and only if,

n

O < ¢n : 2

0 < 4k < % k = 1,2,...n-1

-1 /EB£(0)

where 4k = tan —XTT§T— as defined in Definition 3.1.1.

k

Proof: Consider first the if part of the theorem. From

Definition 3.1.1

implies AA(0) l 0 and

O A '
6
'

A

N
|
=
I

N
I
Z
I

implies A£(0) > 0 for k = l,...,n-l.

Therefore it follows from Theorem 3.1.5 that AA(s)//EBA(S)

is an RC admittance function. Consider now the only if

part of the theorem. If A$(S)//EBA(S) is an RC admittance
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function then Afi(s) has non positive real zeros and B$(s)

has negative real zeros. From Theorems 3.1.3 and 3.1.4

it is known that the largest zero at A$(s) is greater

than the zeros of Ai(s) for k = l,...,n-l and the largest

zero of BA(s) is greater than the zeros of Bfi(s) for

k = 2,...,n-l. Note that Eq. 3.1.19 yields Bl(s) = a1,

where al is positive as it follows from the properties of

the Horowitz decomposition. Therefore one can conclude

that AA(O) : 0, 35(0) > O, and A£(0) > 0 Bfi(0) > 0 for

k = l,...,n-l. Consequently from Definitions 3.1.1 it

n n
follows that 0 < 4n 1 7 and 0 < 4k < 2 for k = l,...,n-l.

This completes the proof.

Theorem 3.1.7. Let Ag(s) and B$(s) be the polynomials
 

defined by Eq. 3.19. If AA(S)//EBA(S) is an RC admittance

function for some a= a', then AA(s)//EBA(S) is an RC ad-

mittance function for all a >cf. Conversely, if

AA(s)//EBA(S) is not an RC admittance function for some

a it cannot be an RC admittance function for a i a.

Proof: The following Lemma is needed.

Lemma 3.1.7. AA(s)//EBA(S) is an RC admittance function
 

only if a > bi i = l,2,...,n

Proof of Lemma: If a <13, then

.. 5 a

- b

0‘ 1

m
m
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and by Theorem 3.1.6, the rational function AA(s)//EBA(S)

cannot be a RC admittance function. On the other hand,

since the Horowitz decomposition is unique, Ag(s) depends

only on a and not on the ordering of the complex zeros

of P2n(s), i.e.,

 

n
_ 2 2 2 2

P2n(s) — .H (s + 2015 + pi ), 01 > 01

i=1

where

b. = /62 + 20.a + p.2

1 1 1

Therefore, a must be greater than b1' i = 1,...,n. This

proves the Lemma.

Returning to the proof of the theorem one observes

from Lemma 3.1.7 that, only the case a > max {bi} need

i

be considered.

Consider now the ratio

I _ I /— I
/EBn(0) = (a bn)/ERn_l(0) + aanAn_l(0)

A'(O) (d-b )A' (0) - fine My (0)
n n-l n n-l

 

n

which is formed from Eq. 3.1.19. This ratio can be re-

written as

 
 

 

  

/EB$‘1(0) /aan

“535(0) _ Afi-1(07 + a‘bn
_A:707_- — 1 - /aan /aB;_l(0)

_ I

(0 bn) An_1(0)
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Introducing

1(4n = tan.1 (v5hn(O)/Ag(0)) and en = tan— man/ (Cl-kin) ) I

defined in Definition 3.1.1, the above expression can be

written as

tanbn_l + tanen

 

 

tan 4 =
n 1 tan4n_ltanen

From this result it follows thatchn = ¢n-l + an and hence

n n _ /E a.

4n = 2 9i = 2 tan 1 _ g .

1:1 i=1 a 1

Therefore to complete the proof it is sufficient to show

that /E ai is a decreasing function of a, and a-bi is an

increasing function of a. Indeed, considering the

 

  

 

 

derivatives

‘ 2] 2

a (C1 bi) = 8[ £2 20ia+pi = a1

3a 3a Zbi

and

3/5 ai = 3[73'/2bi-2(a-ciA] = ai(bi-G)

3a 3a /a b

the following observations can be made:

The terms a1 and bi appearing in the above derivatives

are positive as they follow from the properties of the

Horowitz decomposition. (For proof see Theorem 3.1.1

and Eq. 3.1.11). Therefore (a-bi) is an increasing



62

function of a, while /5 ai is a decreasing function of

a since a > max {bi}. Therefore /5 ai/(a-bi) and

k —1
4n = 2 tan (/5 ai/(a-bi)) is a decreasing function of

i=1

a, a > max {bi}.

H

and 0 < 4. <-—

i 2A
»
:

The theorem follows since 0 <<4n :

is necessary and sufficient for A'(s)//HB'(s) to be an

RC admittance function. This completes the proof.

Corollary 3.1.7
 

AA(S)//EB$(S) is an RC admittance function only

if Ah(s) §h(s) is an RC admittance function.

Proof: The proof follows immediately from the limits

Lim A'(s) = X (s), Lim ./E B'(s) = 'B' (s) and
n n n n

a+oo a+oo

Theorem 3.1.7.

The conditions for which Ah(s)/Bh(s) represent an RC

admittance can be developed directly from Eq. 3.1.20 and

Theorem 3.1.4. A Theorem which establsihes these con-

ditions follows.

Theorem 3.1.8. Let Ah(s) and §h(s) be the polynomials
 

defined by Eq. 3.1.20. Then Afi(s)/§h(s) represents an

n

RC admittance, if and only if 2 tan

i=1

8

1 —£ < % where

0-1—-

w. = a - oiz and 01 > 0.
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Proof: From Eq. 3.1.20 one can form the ratio

 

 

Bn(0) = An_l(0)wn+ Bn_1(0)0n

An(0) An_l(0)on- wan_l(0T

or

(1:2 + Bn_1(0)

B (0) o A (0)
n _ n 11"].

An(0) 1 _ 22 Bn-lidY

on An- (0)

Introducing as before

 

B (0) w
_ -l k _ -l k

@k — tan Ak(0) and 9k — tan 3;

where tan.1 2 is defined in Definition 3.1.1 one has

B (0) n n w
—l n

-1 k

tan = X 0- = 2 tan ——

An(0) i=1 1 k=1 0k

Consider first the "only if" part of the theorem.

n -1 wk n - Bn(0) n
Assume kEltan a; > 7, then tan XgTfiT > f and from

Definition 3.1.1, Ah(0) < 0 and/or §h(0) i 0. If

Ah(0) < 0 then Ah(s) has some zeros in the right half

plane and Ah(s)/§h(s) is not an RC admittance function.

If §h(0) i 0 then Bh(s) has a zero at the origin or in

the right half-plane. Since the zeros of Ah(s) and Bh(s)

alternate and the degree of Aa(s) is one greater than

the degree of 55(5), Ah(s) must have some zeros in the
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right half-plane and Ah(s)/§$(s) is not an RC admittance

function. Consider now the "if" part of the theorem.

 

Assume

"15(0) n _ (1).

n-1 n = 2 tan 1 3i i %

K (0) i=1 i
n

Then 55(0) > 0 and A (0) > 0. Note also that 01 > O

n n_ w.

i = 1,...,n, otherwise 2 tan 1 -£-would be greater than

i=1 i

g as can be seen from Definition 3.1.1. Therefore

m
l

—1 k(0)
 

tan

W
I

0

A

R
4
:

and Bk(0) > 0, Ak(0) > 0 k = 1,2,...,n-l. Suppose

Xh(0) : o and Kk(0) > o k = l,...,n-l, but Ah(s)/Bh(s)

is not an RC admittance function.

An(s)/Bn(s) not an RC admittance function implies

An(s) or An(s) and Bn(s) have some zeros in the right

half-plane. Since An(0) : 0, An(s) must have an even

number of zeros in the right half-plane or possibly one

at the origin and at least one in the right half-plane.

Since by Theorem 3.1.4 Ak(s) and Ak_l(s) have alternate

real zeros, An_l(s) must have some zeros in the right

half plane. By this process one concludes that Al(s)

must have some zeros in the right half-plane. However

Al(s) is of degree one and therefore Al(0) < 0, hence the

contradiction. This completes the proof.



65

The preceeding theorems show clearly that the

Calahan decompositions can be established from the Horo-

witz decomposition. Conversely, by using the Calahan

decomposition the Horowitz decomposition can be estab-

lished. This is proved in the following theorem.

Theorem 3.1.9. Let P(s) be a real polynomial of degree
 

n with all the real zeros (if any) positive, then the

Horowitz decomposition

P(s) = 1 A2(s) - s B2(s)

can always be obtained from the Calahan decomposition

Proof: Using the transformation 5 = -A2 the polynomial

P(s) takes on the form

, _ _ 2
P2n(A) — P( A )

Now Pén(A) has no real zeros since the zeros zis of P(s)

are not negative real or zero by hypothesis and the zeros

of Pén(A) are Ai = 1 /:zis i = 1,2,...,n. Therefore the

Calahan decomposition can be formed to yield

2' (A) = [A m12 + [B (1)12
2n n n

From Eq. 3.1.14 the following ratio can be formed

 

 

 

wn Bn_l(A)

+

Bn(A) = on+A An_l(A)

An(A) wn Bn_l(A)

' o +A An_l(A)
n
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from which

-1 B (A) n 4-
tan n — -l _l . .

Now since Pén(A) = P(-A2), Pén(A) is symmetric about the

imaginary axis. It follows that

tan = 2 (tan + tan _
An(A) i=1 Gi+A Oi+A

  

where 2k complex aeros are located symmetrically about

the imaginary axis and 2 zeros are on the imaginary axis.

 
 

 

Since

w w l 2w
-l i -l i _ - 1

tan o-+A + tan :ET:AI — tan 1? 2 2

1 1 A ’0- -w
i i

the above equation can be written as

2

B (A) k w-A 2 w-
-1 n -l i -l 1

tan = 2 tan + 2 tan ——

AnZAS 1=1 A2-0.2-w.2 1:1 4
i i

From which it follows that

_ B (A) -1 B (-1>

4 (A) = tan n = — tan n
n An(A) An(-A)

Now An(A) equals zero for those values of A where ¢n(A)

equals an odd multiple of 1 Similarly, Bn(A) equals2.

zero where 4n(A) equals an even multiple of %. Since

¢n(A) = -4n(-A), the polynomials An(A) and Bn(A) must

have zeros placed symmetrically about the origin, with one

of them having a zero at the origin. From the equation
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I
I
M
E
O

_ -1.._ 1
<I>n(0)— tan ()—.9.2

j l

Bn(A) has a zero at the origin if l is even and An(A) has

a zero at the origin if 2 is odd. From the above dis-

cussion, Pén(l) can be written as

n/2 n/2 - 1

Pi (A) = n (-s-a.2)2 - s n (-s-b.2)2
n ._ i ._ 1

1—1 1—1

or n-1 n—1

“3" ‘3"

P(s) = - s n (-s-ai)2 + n (-s-bi2)2

i=1 i=1

Now the zeros of An(x) and Bn(l) alternate on the real

axis as implied by the Calahan decomposition. Therefore

one can write for each case

or

Therefore P(s) can be written as

P(s) = i [A2(s) - s B2(s)] where

A(s)/B(s) and s B(s)/A(s) are RC admittance functions.

This completes the proof.

3.2 Decompositions for Polynomials with Real Zeros

In the preceeding section the Calahan decomposi-

tion was shown to exist for polynomials with no real zeros.
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The Horowitz decomposition is known to exist for poly-

nomials with no nonpositive real zeros. In this section

a method is developed for systematically decomposing

those polynomials with negative real zeros. To the best

of the author's knowledge this type of decomposition has

not been considered in the literature.

Theorem 3.2.1. Let P2j(s) and P2k(s) be two polynomials
 

with the following Calahan decompositions

_ — 2 — 2

P2j(s) — [Aj<s)1 + [Bj<s)1

P (s) = [X(s)12 + [§(s>12
2k k k

if

P2n(s) = P2k(s)P2j(s)

then

P2n(s> = [Xn<s>12 + [fin‘SHZ

where

An(s) = Xj(s)Xk(s) - §j(s)§k(s) (3.2.1)

and

§n(s) = Kj(s)§k(s) + §j(s)z‘ik(s) (3.2.2)

Proof: Consider Eq. 3.1.19. It is repeated here for con-

venience:

An(s) = (s + on)Xh_l(s) - wn§h_l(s)

§h(s) = (s + on)§h_l(s) + wnXh_l(s)
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where

X6(s) l and §$(s) E 0

It can be seen that An(s) and Bn(s) can be obtained

directly from

n 2 2
P2n(s) = H (s + Zois+pi ) =i=1 i (s+oi+jwi)(S+Gi-jwi)

"
:
1
5

1

Indeed, since

P2n(S) = [Kh(S) + j§5(S)J[Kh(S) - j§h(8)]

one has

(S + Oi + jwi)

n

55(5) + j§h(s) = .21

i

The recursion relation (Eq. 3.1.14) holds as can be seen

from the following expressions

[55(8) + j§5(5)] = [s + on+ jwn][Kh_l(s) + j_h_l(5)]

(S + 0n)Xh—1(S) En-l

3
’

m
V

II

(s)-w

n

w m II (s + on)§h_l(s) + wan-l(s)

From the associative and accumulative laws of complex

numbers the proof follows:

[Aj(S) + JBj(S)][Ak(S) + JBk(S)]

= Aj(s)Ak(s) - Bj(s)Bk(s)

+j[Xj(s)§k(s) + §j(s)Kk(s)]
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k k

Theorem 3.2.2. Let P (s) = n (s+a.) n ((s+c.)2+ w.2)
n ._ 1 . i 1

1-1 1:1

where a > O a # a i f ' and g tan-1(w /o )< 1

i ' i j 3' i=1 i i 2'

then there exists a decomposition such that

Pn(s) = Ak+£(s)Ak(S) + Bk+£(s)Bk(s)

where Ak+£(S)/Bk+£(s) and Ak(s)/Bk(s) are RC admittance

functions.

Proof: ConSider Ak+£(s) and Bk+£(s) from Eq. 3.1.1 and

Eq. 3.1.2

Ak+£(s) = Ak(S)A£(S) - Bk(S)B£(S)

_ _ _ _ _ (3.2.3)

Bk+£(s) = Ak(s)B£(s) + Bk(s) A£(s)

From Eq. 3.2.3 one can form the ratios

 

§é+£(5) = Xk<8> _ §£(S)

A£(s)Bk(s) Bk(s) 32(5)

and

§k+2(s) §k(s) §£(s)

  

K£(S)Kk(s) + Xk(s) + 31(8)

Adding the rational functions and clearing the denomina-

tors one obtains

Kx+2(S)Ak(S) + Bk+2
(s>§k<s> = X£<s)tfik2<s> + Bk2‘5’1

(3.2.4)

Now it can be observed that the left hand side of Eq.

3.2.4 is of the desired form. To obtain a decomposition



71

of P(s) in this form, one may calculate the Calahan de-

composition of

k
2 2 _ — 2 —2

-E [S + oi) +pi ] — Ak (S) + Bk(S)

i—l

— 24 —

and set A£(s) = N(s + ai). One can now select B£(S)

i=1

such that A£(s)/B£(s) is an RC admittance function, the

degree of §k(s) is one less than the degree of.K£(s) and

E (0) _ E (o)

X (0) + tan 1 “k < 1 °2, Ak(0) 2

 

 

This can always be done since the zeros of Kg(s) are dis-

tinct by hypothesis and §£(s) can be modified, if neces-

sary, by the multiplication of an arbitrary constant so

that the angle condition is satisfied. Now using Eq.

3.2.3, Ak+£(s) and Bk+

is an RC admittance function since

2(s) can be calculated. Ak(s)/Bk(s)

 

_ E (0) k _ w.

tan 1 _k = 2 tan 1 —£ < %

Ak(°) i=1 i

by hypothesis. Ak+2 /Bk+£(s) is an RC admittance func-

tion since

E (0) fi (0) E (0)
-l k+2 l g k N

tan 31—7—5- - tan r— + tan m <

as can be seen from the ratio
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_ E'gw) + Ekm)

Bk+ (0) _ Ki(0) Ai(o)

Kk+£(0) “ §i(0) §k(0)

1‘ WW

and Since Ak+£(s) and Bk+£(s) form the Calahan decompOSi-

 

tion of the polynomial

[Ak+£ (sn2 = {[Xi(s)12+[fiz(s)12}{[Xk<s)12

+[§k(s)]2}

<s)12+[‘B‘k+£

This completes the proof.

Theorem 3.2.3. Given P(s) = P(l)(s)P(2)(s) with no non-
 

positive real zeros, where P(l)(s) and P(2)(s) have

Horowitz decompositions of the form

P(l)(s) = [Amen2 - s[B(l)(s)]2H
-

and

P(2)(s) — [A(2)(s)]2 - s[B(2)(s)]2 .I

l
+

Then P(s) has Horowitz decomposition

P(s) i [A2(s) - s 32(5)]

where

A(s) = A(l)(s)A(2)(s) + s B(l)(s)B(2)(s)

and (3.2.5)

A(l)(s)B(2)(s) + B(l)(s)A(2)(s)B(s)



73

Proof: From the Thomas method of decomposition we have

P(AZ) = P(l)(A2)P2(A2) = F(1)(A)F(l)(-A)F(2)(A)F(2)(-A)

with

2’<x) = [A‘l’<x2)+ B‘l’(x2)1[A‘2’<x2>+ B(Z)(A2)]

F(A) = F‘l’<x)F‘2’<x) = [A(l’<x2)A‘2’<x2)

+ A2B(l)(A2)B(2)(A2)] = A[A(l)(A2)B(2)(A2)

+B(l)(A2)A(2)(A2)]

From which the even and odd part of F(A) are

A(xz) = A(l)(A2)A(2)(A2) + A2B(l)(A2)B(2)(A2)

and

B(A2) = A[A(l)(A2)B(2)(A2) + B‘l’<x2)A‘2’(x2)1

In these relations replacing A2 by 5 yields the desired

result. This completes the proof.

Theorem 3.2.4. Given P(s) = A(2)(s)P(l)(s) where A(2)(s)
 

has distinct negative real zeros and P(l)(s) has no non-

positive real zeros, then

P(s) = A(3)(S)A(l)(s) _ s B(3)(S)B(l)(s)

where

A(i)(s)/B(i)(s) and sB(%)(s)/A(i)(s)

are RC admittance functions for i = 1,3.

Proof: From equation (3.2.5) one has
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A(3)(s) := .A(l)(s) + s B(l)(s)

A(2)(s)B(l) (s) 3115(3) A(l)(s)

(3.2.6)

and

s 13(3) (5) = s 13(2) (5) + s 13(1) (5)

A(25(s)A12)(s) AT2)(s) A(l)(s)

(3.2.7)

Subtracting Eqs. 3.2.6 and 3.2.7 and clearing the denom—

inators one can obtain

A(3)(S)A(l)(s) - s B(3)(s)B(l)(s) = A(2)(s) {[A(l)(s)]2

- s [B(l)(s)]2}

which is of the desired form. To obtain a decomposition

of P(s) in this form, one may calculate the Horowitz de-

composition of P(1)(s) = i [A(l)(s) 2 - s[Bl(s)2] and

select B2(s) such that A(2)(s)/B(2)(s) and s B(Z)(s)/A(2)(s)

are RC admittance functions. Then one may calculate A(3)(s)

and B(3)(s) using Eq. 3.2.5. A(l)(s)/B(1)(s) and

sB(l)(s)/A(l)(s) are the desired RC admittance functions

since they are derived from the Horowitz decomposition

of P(l)(s). A(3)(s)/B(3)(s) and sB(3)(s)/A(3)(s) are

also RC admittance functions since they are also derived

by the Horowitz decomposition of a polynomial P(3)(s) =

P(l)(s)P(2)(s) where P(l)(s) and P(2)(s) have the Horo-

witz decompositions

Pun.) = {[A(l)(S)]2 - s [B‘l’(s>12}
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P‘2’(s) = i{[A(2)(S)]2 — s [B(2)(S)]2}

This completes the proof.

3.3 Realization Techniques Using Calahan and Horowitz

Type Decompositions.

In the preceeding sections, relationships between

two of the existing decomposition techniques are estab-

lished. Furthermore these decomposition techniques are

extended to polynomials containing distinct negative

real zeros as well as complex zeros. In this section

these techniques are used to synthesize low-pass RC net-

works. The extended Horowitz decomposition can be used

for RCNIC and RCF-R filter synthesis. Therefore the

configurations corresponding to RCNIC and RCT-R networks

are established as well as the configurations for RC?

networks.

3.3.1 RCF Filter Realizations

Given the open circuit voltage-ratio transfer

function TV= kN(s) D(s) where D(s) has a Calahan type

decomposition

D(s) = Xk(s)§3(s) + §k(s)§5(s)

It will be shown that a RCr network of the form shown in

Fig. 3.3.1 can be realized.

It is well known that the open-circuit voltage-

ratio TV for a network as shown in Fig. 3.3.1 is [MI]



76

 

TV = ‘“ Yziazzib

Y 2
22d + a leb

Therefore Tv = kN(s)/D(s) is written in the form

-aklNl(s) k2N2(s)

Bj(s) Ak(s)

V A.(s) Bk(s)

§17T+°‘2‘17—TTj s a Ak s

 

 

where klk2N1(s)N2(s) = kN(s), and the functions Y22a’

YZla’ ZZlb' and Z21b can be identified as

Y = A.(s) Y = klNl(s) Z = k2N2(s)

22a Bj(s) ’ 21a Bj(s) ' 21b Ak(s)

1 Bk(s)
and Z = ——- -——§—-. Note Y22a and leb are RC

llb 2 A

a

driving point functions, as required, from the proper-

ties of the Calahan decomposition. The realization is

completed when the "a" network is synthesized from

and Y and the "b" network from Z and Z .
'Yzia 22a 21b llb

The realization of RC networks from -Y21 and Y22 or 221

and Z22 is well known and will not be explained here.

A low pass filter example follows.

Example 3.3.1 Given the open circuit voltage ratio TV

k

(s+l)[s+2)2+sz]
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Realize a low pass RC gyrator filter of the form shown

in Fig. 3.3.1.

Realization: First one must decompose the denominator

polynomial into the form established in Theorem 3.2.2.

From P(s) = (s+1)[(s+2)2 + 22] let

Ki(s) = 5+2, §i(s) = 2, and K (s) = s+l.

Selecting gl(s) = %, i.e., such that §l(s)/§l(s) is an

RC admittance function and

 

tan-l Bl(0) + tan.1 Bl(0) < E

Al(0) £130; 2

or

-1 2 -1 1/2 1

tan 3 + tan 1 < 7

one can now calculate A2(s) and 82(5) using Eq. 3.2.1

to obtain

X2(s) = s + 38 + 1, §2(s) = (2.55 + 3), and

P(s) = (52+3s +1) (5 + 2) + 2(2.55 + 3).

Arranging TV into the form

= 1/(2.5s + 3) 2/(s+2)

V (52 + 35 + 2)/(2.55 + 3) + 2/(s+2

 

one can detect that

_ 2

Y22a — (s + 3s+2)/(2.55+3),
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221 = 222 = 2/(s+2), and a = l.

The network realization is shown in Fig. 3.3.2.

3.3.2 RCVNIC Realizations

. . . . _ kN(s)
Given the open Circuit voltage ratio Tv - 5(5)—

where D(s) has a Horowitz type decomposition

D(s) = A(3)(s)A(l)(s) + s 8(3)(S)B(l)(s)

It will be shown that a RCF network of the form shown

in Fig. 3.3.2 can be realized. It is known that the

voltage-ratio transfer function T for a network as
V

shown in Fig. 3.3.3 is [CA3],

21a)(221b)
i k (-Y

V

T = - (Y )(z )
V 22a llb

V k

 

and so TV is arranged as

i klNl(s) k2N2(s)

A(l)(s) A(3)(s)

l _ s B(l)(s) B(3)(s) k .1

A(l)(s) A(3)(s) V kv

 

 

from which one can identify

—Y21a=klNl(s)/A(1)(s), Y22a = SBl(s)/A(l)(s),

= k2N2(s)/A(3)(s), and z (B(3)(s)/A(3)(s))kv.
221b(5) llb =
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RC RC

       

Fig. 3.3.1 General one-gyrator RCF filter.
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‘
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w
n

1

. , )7 1
All values are in mhos and farads.

2

v = (s+l)(s+2)2+22)

 

T

Fig. 3.3.2 Realization of RC? filter for Example 3.3.1.
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Y22a and leb are RC driVing pOint functions from the

properties of the Horowitz decomposition. Therefore

using standard RC network realization techniques [GU],

a network of the form shown in Fig. 3.3.3 can be realized.

Note: One could also divide numerator and denominator

of TV by sB(l)(s)/B(3)(s) and obtain similar results.

A low pass filter example is given in the following.

Example 3.3.2 Given the open circuit voltage ratio

transfer function Tv

k
T = 2

(s+l)(s + 4s+9)

V

 

realize an RCVNIC low pass network as shown in Fig.

3.3.3.

Realization: First one must decompose the denominator

polynomial into the form shown in Theorem 3.2.4:

P(s) = (s+l)(82+25+9) = (s+1)[(s+3)2 - 5(52)]

where A(l)(s) = (s+3), B(l)(s) = 2, and A(2)(s) = s+1.

One can select B(2)(s) = 2 so that (s+l)/2 and 2s/s+l

are RC admittance functions. Now one can calculate

A(3)(s) and 8(3)(s) using Eq. 3.2.2, to obtain

A(3)(s) = 82+ 85+3, B(3)(s) = 25+8

and

P(s) = (52+ 85+3)(s+3) - s(2s+8)(2)



At this stage rearranging T into the form

 

V

_ .. .3 j:
T _ 25+8 25

V 2
l - s +85+3 5+3

25+8 25

_ ._ 2 -— =

The parameters KV—l, Y22a — (s +85+3)/(25+8), Y21a 3/(25+8),

221 = 3/25, and 211 = (s+3)/25 can be identified. The

network given in Fig. 3.3.4 is the realization of TV.

3.3.3 RCF(—R) Filter Realizations

Given an open circuit voltage-ratio transfer

function TV = k %%§%-where D(s) has a Horowitz type de-

composition D(s) = A(3)(5)A(l)(s) - 58(3)(s)sB(l)(5), real—

ize an RCF(-R) filter as is shown in Fig. 3.3.5.

Realization: The open circuit voltage-ratio transfer

function for a network as shown in Fig. 3.3.1 is

—O.

_ Y12aZZlb
T
V 2

Y a+a Z

 

22 llb

However T kN(s)/D(s) can be rearranged to obtain

 

v

K1N1(s) K2N2(5)

T =__B(1)(S) A_(3)(S)

V A‘l)(s) - 583(8)

B(l)(s) A(3)(s)

Now every negative RL impedance can be realized as a

positive RC impedance and a negative R, as can be shown

by the general expression
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Fig. 3.3.3 General RCNIC filter
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T = 2
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Fig. 3.3.4 RCNIC realization for Example 3.3.2.



83

 

 

  

 

n ais

-ZRL(S) = _ [ Ro 'F.§ s+b ]
i-l i

n n aibi

-Z (5) + R + z a. = 2 = Z (5)

RL 0 i=1 1 1:1 s+bl RC

or

-ZRL(S) ZRC_R

that is

K Nl(5) K N2(s)

T = l Bl(5) 2 B2(s)

V l

A—(S) R + z
1 ' RC

B (5)

where R is selected sufficiently large so that

_ 533(5)

A3(S)

tion. At this point the following identifications can

+ R = ZRC is a positive RC admittance func—

be made:

Y12a = K1N1(s)/B‘l)(s), Y22a = (A‘l’(s)/B‘1’(s) - R),

Z21b = K2N2(s)/B(2)(s), and leb = ZRC'

The network whose configuration is as shown in Fig. 3.35

can be realized with standard RC transfer function

synthesis techniques.

Example 3.3.3

Given the same open circuit voltage-ratio transfer

function TV as in example 3.3.2 realize a RC gyrator



negative R filter as shown in Fig.

Realization:

TV =

or

TV

But every negative RL impedance can be realized as a

84

3.3.5.

From example 3.3.2

k
 

(52+ 85 + 3)(5+3)-5(25+8)(2)

 

 

 

k

(5+3)(25+8)

52+85 + 3 2s

25 + 8 5+3

positive RC impedance and a negative R.

 

 

 

 

 

That is

25 _ 6 _

”5:3‘+2‘2’§fi 2

Therefore

k

_ (5+3)(25+8)

Tv’ 2
5 +85 + 3 + 6 _ 2

25+8 5+3

(Y )(Z )
From TV = 21a2 11b

Y22a+ “ leb

one obtains

2
-Y = __3__ Y = 5 +85 + 3

21a 25+8 ' 22a 25+8

Z = Z = —9— and a = 1
11b 21b 5+3

The realization is shown in Fig. 3.3.6.

_ 2’
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Fig. 3.3.5 General RCT-R filter.
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All values are in mhos or farads.

 
T = 18

v (s+l)(sz+45+9)

Fig. 3.3.6 RCP-R realization for Example 3.3.3.
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3.4. Conclusions

In this chapter, Calahan's decomposition is

developed starting from the Horowitz decomposition. The

development of the Horowitz decomposition from the Cala-

han decomposition is also given. Polynomial decomposi-

tions of the Calahan and Horowitz-type are developed for

polynomials which contain some negative real distinct

zeros. No systematic methods have been given in the

literature for such decompositions. Sample low-pass

transfer functions were synthesized by using Calahan

and Horowitz-type decompositions. Finally, a low-pass

RCP-R filter was synthesized using a Horowitz-type decom-

position. This particular filter configuration, which

has not appeared in the literature, can be utilized to

synthesize any pole configuration (zeros of denominator)

as long as the real poles (if any exist) are negative

and distinct.



CHAPTER IV

LOW-PASS RC1" FILTER REALIZATIONS

In Chapter II, it is established that the natural

frequencies of a one-gyrator RCP network obey a rather

restrictive angle condition. In Chapter III, it is demon-

strated that this angle condition (satisfied with an in-

equality) is, in fact, sufficient to permit realization

of single-gyrator RCF low-pass filters. However, the

poles of most low-pass voltage-ratio transfer functions,

T do not obey this angle condition beyond the third
v!

degree case. This has necessitated, in practice, factor—

ing the denominator of T into polynomials each of which
V

do satisfy the angle condition, and then realizing each

polynomial with an RC? section. These sections must then

be connected through isolation amplifiers not only to

realize TV, but also to prevent loading effects. It is,

of course, always possible to realize such filters with

active devices such as NIC's, -R'5, or controlled sources

along with RC networks. Such realization techniques are

well represented in the literature [LI] [SK] [YO] [HA].

However, in all these techniques the possibility of in—

stability is introduced into the network realization. As

87
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is shown in Chapter II, RC networks satisfying the con-

ditions of Theorem 2.4.2 cannot become unstable.

In the first two sections of this chapter, it

will be established that forth degree low-pass voltage-

ratio transfer functions, whose denominator polynomial

being strictly Hurwitz, can always be realized with a

two-gyrator RCF network satisfying Theorem 2.4.2. An

example realized by the proposed method is compared with

a computer realization. Also computer realizations are

given for three practical low-pass filter networks.

In section 4.3, some necessary conditions, in the

form of an extension of Calahan's angle condition, are

conjectured and feasibility arguments are used to support

them.

In section 4.4, computer realizations of two-

gyrator RCP networks are given for some fifth and sixth

degree low-pass voltage-ratio transfer functions which

are of practical interest. In addition, a sample three-

gyrator RCP computer realization is given to illustrate

extensions of the method.

In section 4.5, the established methods of low-

pass RCP filter realizations are extended to both the

band-pass and the high-pass RCF filter.

4.1 Two-Gyrator RCr Realizations for Fourth Degree Low-

Pass Transfer Functions

In Chapter II the expression
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_ 1
A — Aa(1,RC)Ab(RC)AC(RC)
ll

i+1~ 1 i

+alal Aa(1,i,RC)Ab(i+l:RC)AC(RC)

+1

+1'RC)

- 1 j

+d2a2 Aa(l,RC)Ab(j,RC)A
j

C(j

i+1 j. ~ 1 i j+1

+dlald2a2 Aa(l,i,RC)Ab(k+1,J,RC)Ac(j+1:RC)

is established for the denominator polynomial of the

voltage-ratio transfer function of the network given in

Fig. 4.1.1.

Consider the network in Fig. 4.1.2. This network

satisfied the conditions for Theorem 2.4.2, and it has

the following admittance matrix

  

" _ '7

G1 G1

—G1 ClS+Gl a1

-a1 CZS+G2 -G2

Y:

-G2 C3S+G3 a3

L_ -a3 C4S+G4

(4.1.1)

Let Y' denote the resultant matrix when the first row

and column are deleted from Y, one has

A = det(Y') (4.1.2)
11

and
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Fig. 4.1.1 General two-gyrator RCF filter.

Gl a1 G2 d2

HWT Tm” ' 1

C1 C2 C3 I C4

G
  

Fig. 4.1.2 Fourth degree low-pass RCF filter
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'— “(IC18+Gl a1

-a C S+G -G

Y' = a

G2 C3S+G2 2

L "a2 C4S+G4

From the relations

Y' = CS + H

and

Y" = C-l/ZY'C-l/z (4.1.4)

one can obtain

5 + x1 'Xsal/al

-szdl/al S + X2 -1/X2X3

Y" = —

X2X3 S + X VX a /d

3 6 2 2

- X6a2 a2 S + X4

L _.

(4.1.5)

with

x1 = Gl/Cl X4 = G4/C4

X2 = Gz/Cz X = O‘10‘1/C1‘32 (4.1.6)

X3 = G3/C3 X = d2d2/C3C4

From Eq. 4.1.6 it follows that



92

Conversely, if all the X_ are positive, one can calculate

i

all the element values in terms of G1, alai, and a252'

This results in the set of equations

cl = Gl/Xl c3 = 52/x3

C2 = o‘1‘”‘1/X5Ci C4 = O‘20‘2/X6C3 (4.1.7)

52 = czx2 G4 = c3/x4

Forming the determinant of Y", one obtains from Eq. 4.1.4

1
det(Y") = det(C- )All (4.1.8)

and from Eq. 4.1.3

det (Y") = S(S + xl)(s + X2 + X3)(S + X4)

+ X5(S + x4)(s + x3) + X6(S + Xl)(s + x2) + sz6

(4.1.9)

Therefore the synthesis problem is now reduced to finding

a set of positive Xi (i = 1,2,...,6) for a monic poly-

nomial P(S) = det (Y") where the low-pass voltage—ratio

transfer function is

TV = k/P(S) = Anl/All = alaZGle/All (4.1.10)

with All = det(C)det(Y").

Note 1: Every network realization of T = k/P(S) repre-
V

sents two possible network realizations since

_ H _ I I I

All — det(Y ) — det (U Y U )

where U' has the form
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_. H

U' = /l

/

/

Ll’ -

In terms of the network shown in Fig. 4.1.2 a second

  

realization can be obtained by interchanging the follow-

ing parameter values:

and G

l 4

Cl and C4

C2 and C3

a a and a a

Note 2: The zero frequency gain for the network in Fig.

2.1.2 is given by

D

T ___ _41‘ = GiGzo‘if‘z 1

V 8:0 11 5:0 Gledla2 + G2G4alal + aldlazaz

 

which can be calculated from the Y matrix in Eq. 4.1.1.

Since the denominator polynomial is dependent on the pro-

ducts aldl and a282, it is apparent that unbalanced or

active gyrators can be used to improve the voltage gain.

For example, a1 = 10 and d1 = %6-would give ten times the

voltage gain that could be achieved for a1 = dl = 1.

Theorem 4.1.1. Let P(S) be a real strictly Hurwitz poly-
 

nomial of degree four, then P(S) can be put in the form
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P(S) = [(s + al)(s +A2) + Kl][(s + a2)(s + a3) + K2]

(4.1.11)

where the parameters al,a2,a3,Kl, and K2 are all positive

and 0 < a2 < a1 + a3.

Proof: Consider first the polynomial

2 2 2
P(S) = [(S + o + “1][(S + o + wz] (4.1.12)

1) 2)

which has all complex roots. If 01 = 02 Eq. 4.1.12 is

already in the desired form. Therefore assume, without

loss of generality, that 01 < 02. Hence,

P(S)
2 2

[(S + 01) + wl][(s + ol)(s + 202 - cl)

2 2

+ wz + (02 - Ol) ]

2 2 . .
where 202 - 01 and wz + (02 - 01) are p051tive. Select-

ing a1 = 01, a2 = 01. a3 = 202 - 01' K1 = mi and K2 =

2 _ 2 ' < < <w2 + (02 01) the relations 0 al S a2 1 a3, 0 K1'

and O < K2 hold. This proves the theorem for the case

where P(S) has all complex roots.

Consider now the real polynomial

P(S) = (S + zl)(S + 22)(S + z3)(S + 24).

Since P(S) is strictly Hurwitz, one can select a so that
2

0 < a2 < minimum {Re(z.)} (r.1.13)
. i
l=llooo,4
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Now if z and z are real, one has
1 2

(S = zl)(S + 22) = (S + a2)(s + 21 + 22 - a2)

+ (21 - a2)(z2 - a2)

and if 21 and 22 are complex conjugates, letting

Zl = 22 = 01 = 3 ml, one has

+ (O - a

2

"a2)+‘” 1 2
(S + zl)(s + 22) = (S + a2)(s + 20 1

1

Note that all the constant terms in both expansions are

positive. Indeed, this is evident from Eq. 4.1.13. The

same type of representation holds for (S + 23)(S + 24)

and therefore

P(S) = [(S + a2)(s + a1) + Kl][(S + a2)(S + a + K2]3)

where a1,a2,a3,Kl, and K2 are positive as required. The

condition 0 < a + a is satisfied since

2 <"1‘1 3

a2 < minimum 4{Re(zi)} implies a2 < Re(zl) + Re(22) -

_pooo'

a2 = al. This completes the proof.

Theorem 4.1.2. Given the polynomial
 

P(S) = [(s + al)(s + a2) + Kl][(S + a2)(s + a3) + K2]

where all the parameters are positive and O < a2 < a + a3,

then there exists Xi > O (i = l,...,6) such that

1
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P(S) = S(S + Xl)(S + x + x3)(s + x4)2 +x5(s+x3)(s+x4)

+ X6(S + X1) (8 + X2) + X5X6

Proof: Let P(S) be written in the form

p(5) = (s + a2)ZS(S + a + a3) + Kl(S + a2)(S + a3)
1

2
+ K2(S + al)(S + a2) + a a3(S + a2) + K1K2

1

(4.1.14)

In order to identify the Xi parameters it is desirable

to put P(S) in the following form

_ 2 —

P(S) — (s + a2) 5(5 + a1 + a3) + hl(s + a1 + a3 a)(S + a2)

+ h2(S + d)(S + a2) + hlh2 (4 1 15)

with hl,h2, a +a3 -d, and a positive. Director compari-

son of Eq. 4.1.14 and 4.1.15 leads to the equations

hl + h2 = Kl + K2 + ala3

h1h2 + K1K2 (4.1.16)

h1(al + a3 - a) + h2(a) = Kla3 + Kza1 + ala3a2

That the relation (hl + h2)2 > 4 hlh2 holds follows im-

mediately from Eq. 4.1.16. Therefore h1 and h2 are real

and positive. In order to continue with the proof the

following lemma is needed.

and a a be

K2' 1 3
Lemma 4.1.2. Let, in Eq. 4.1.16, Kl’
 

positive, then
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max{hl,h2} > max{Kl,K2} + ala3

and

Amin{hl,h2} min{Kl,K2}

l _.

then from Eq. 4.1.16 one obtains

min{KProof of Lemma: Let h'

max{K K } + a a
1' 2 1 3'

hl + h2 = hi + hi

hlhz < h'hé (4.1.17)

From which it follows that

hl(h1 + hi - hl) < hihé (4.1.18)

or

(hl - h1)(hl - hi) > 0

Without loss of generality, let hl be less than h2. Then

from Eq. 4.1.19 and Eq. 4.1.17 it follows that

I I

hl < hl and h2 > h2 .

This proves the lemma.

Returning to the proof of the main theorem, from

Eq. 4.1.16 one can write

(h2 - hl)a = Kla3 + K2al + ala3a2 - hl(al + a3)

(4.1.20)
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Now the condition 0 < a < a1 + a3 is necessary if all

the Xi are to be positive. Let h2 be greater than hl,

then the condition 0 < (h2 - hl)a < (h2 - hl)(al + a3)

is necessary if all the Xi are to be positive.

First consider the condition (h2 - hl)a > O.

From Eq. 4.1.20 it follows that

(h-h)OL=(Kl-h +(K2 l -hl)al + a a a > 0

1>a3 2 1 2 3

since h < min{K1 l,K2}.

Consider now the condition (h2 - hl)a < (h2 - hl)

(a3 + a1). From Eq. 4.1.20 this is equivalent to

Kla3 + Kzal + ala3a2 < h2(a3 _ a1).

On the other hand, sinc a < a + a it follows that

2 1 3'

K + K a + a a a )a

1a3 2 1 1 3 2 < (K1 + a
la3)al + (K2 + ala3 3

or

Kla3 + K2al + ala3a2 < max{Kl,K2} + ala3](a1 + a3).

From lemma 4.1.2 h2 > max{Kl,K2} + ala3 and therefore

1 + alaza4 < h2(al + a3) or

(h2 - hl)a < (h2 - h1)(al + a3)

Eq. 4.1.15 is now established with
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— 2 -

P(S) - S(S + a2) (5 + a1 + a3) + hl(s + a1 + a3 a)(s + a2)

+ h2(S + a)(S + a2) + hth (4.1.21)

where all parameters including a1 + a3 - a are positive.

From Eq. 4.1.21, one choice of Xi is

i 2 2

x2 = 9 x5 = hl (4.1.22)

X3 = a1 + a3 - a X6 = h2

This completes the proof.

Example 4.1.4. Let, in the voltage-ratio transfer func-
 

tion TV = k/P(S), the polynomial P(S) be given as

P(S) = ((s + 1)2 + 22)((s + 2)2 + 42)

Notice that

tan-1(2/1) + tan—1(4/2) > n/2

and so no one- gyrator realization is possible. TV is to

be realized as a low-pass filter with the configuration

shown in Fig. 4.1.2.

Realization: Using the method established in Theorems

4.1.1 and 4.1.2, P(S) can be put in the form

P(S) = [(s + 1)?‘ + 22][(S + 1)(S + 3) + 17]
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or

p(5) = S(S + 1)2(s + 4) + 20(s + 1)2 + 4(s + 1)(s + 3)

+ (4)(l7)

From Eq. 4.1.20, it can be seen that

h + h = 24

:
S
‘

2
3
‘

ll

(4) (l7)

h2(a) + hl(4 - 0:) = 32

or

h1 = 3.28

h2 = 20.72

a = 1.082

P(S) can now be put in the following form

P(S) = S(S + 1)2(s + 4) + 20.74 (s + 1) (s + 1.082)

+ 3.28(S + 1)(s + 2.918) + (3.28)(20.72)

One choice of Xi’ for P(S), is

X1 = 1 X4 = 1

X2 = 1.082 X5 = 3.28

X3 = 2.018 X6 = 20.72

with
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G1 = 1 C1 = 1

C2 - .3048 G2 = .33

C3 = .1132 C4 = .427

G4 = .427 alal = l

azdz = l

where all component values are either in mhos or farads.

The corresponding network configuration is in Fig. 4.1.2.

4.2 Computer Synthesis of Low-Pass Fourth Degree Filters

In the preceeding section an analytical method

of realizing fourth degree low-pass voltage-ratio trans-

fer functions with the network configuration shown in

Fig. 4.1.2 is established. It is also possible to realize

low-pass filters by solving the set of nonlinear equations

in Xi defined by the coefficients

Indeed, since

P(S) S(S + X1)(S + X + X3)(S
2

+ X6(S + X1) (S

+ X5X6

Equating the coefficients

expressions, one can obtain a set

of the following form:

4 3 i
of P(S) = S + Z P.S ,

. 1

i=1

+ X4) + X3(S + X3) (S + X4)

+ X (4.2.1)2)

of P(S) in these two

of nonlinear equations
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P0 = Po(xi) s X5x6 + X6X1X2 + x5x3x4 3

P1 = P1(Xi) E x6(Xl + x2) + X5(X3 + X4)

+ xlx4(x2 + X3)

) (4.2.2)

P2 = Px(xi) : x6 + x5 + x1(x2 + x3 + X4) (

+ x4(x2 + x3)

P3 = P3(xi) 5 X1 + x2 + X3 + x4 J 
Since there are four equations and six unknowns, there

is no unique solution. A computor program (described

in Appendix A) has been written to solve such nonlinear

equations. An error criterion E is used to test the

validity of the solutions. The error criterion used is

taken in the form

Pi(xi)

P . O

3

E = Z

= i

1 (max{PO,Pl,P2,P3})ll -

0

A solution is accepted when E is sufficiently small, so

that each coefficient is accurate to at least 8 places.

Example 4.2.1. Let Tv be the same as in Example 4.1.1.
 

Realization: Using the computer program, with X1 = X4 = 1

~

and aldl = a2d2 = l preset, the following results were

obtained:
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X1 = 1. G1 = 1.

X2 = 1.0823371 C1 = 1.

X3 = 2.9176629 G2 = .32975942

X4 = 1. C2 = .30467350

X5 = 3.2822021 C3 = .11302177

X6 = 20.717798 G4 = .42706533

C4 = .42706533

where the component values are either in mhos or farads.

These results agree up to three significant figures with

those found in Example 4.1.1, however, they are much more

accurate, as Example 4.1.1 was calculated with a slide

rule. For comparison purposes it is interesting to note

that the error coefficient E is

E = .065 for Example 4.1.1

8
E < 10- for Example 4.2.1

Considerable freedom is available in the choice

of Xi to solve Eqs. 4.2.5. One can, to some extent, take

advantage of this freedom by specifying additional con-

straints. For example a useful constraint is G1 = k G4,

and it can be written in terms of the parameters Xi as

- '

X1X2X6 ‘ k X3x4x5 (4.2.3)

or

G162 2“2 = k. G2G40‘15‘1

c c c c c c c c (4°2°4)
1 2 3 4 3 4 1 2
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where K' = kazdz/aldl. It is evident from 4.2.4 that

different ratios of Gl/G4 are also possible by modifying

the ratio azaZ/aldl for a given set of Xi.

Computer solutions with various Gl/G4 ratios are

offered in Tables 4.2.1, 4.2.2, and 4.2.3 to the Linear

Delay, the Butterworth, and the Chebyshev fourth degree

low-pass voltage-ratio transfer functions. The polynomial

coefficients for the Linear Delay filter are from Van

Valkenburg [VA2, the polynomial coefficients for the

Butterworth filter are from formulas in Van Valkenburg

generated to the necessary eight place accuracy with a

computer program, and the polynomial coefficients for

the Chebyshev filter are from formulas in Guillemin [GU]

for the case 52 = 1/5. Both the Butterworth and Cheby-

shev filter coefficients are for filters with a cut-off

frequency of /15 radians. This cut-off frequency was

selected so that the coefficients of P(S) would roughly

compare to those for the Linear Delay filter.

The solutions presented are by no means exhaustive,

but they are representative of the several hundred solu-

tions obtained while developing the computer algorithm.

In order to test the practicality of the solutions,

a frequency response curve for a Butterworth realization

(generated with a computer program) is shown in Fig. 4.2.2.

This curve is for the case G = G = l. in table 4.2.2
1 4

with all the component values rounded off to three
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significant figures. As can be seen from the graphs

(Fig. 4.2.1 and Fig. 4.2.2), the difference between the

theoretical and actual frequency response is that

i .02 d b from 0 to 100 radians/sec for both cases.

4.3 Conjectured Necessary Conditions

In the second chapter, Calahan's angle condition

[CA1] is seen to be a necessary condition for a one—

gyrator RCP network. In the third chapter this angle

condition, satisfied with the inequality, is also seen

to be sufficient for a one-gyrator RCF low-pass filter

realization. An angle condition extended to the case of

n gyrators is conjectured to be as follows:

Let TV = k/P(S) be the voltage-ratio transfer

function of an RCF network consisting of low-pass RCF

ladders cascaded through n grounded gyrators, then

r w.

H tan 1 —i < n 1 (4.3.1)
. o. 2

i=1 i

where

1 r 2

P(S) = II (S + ai) II [(S + a.) + mi]

i=1 i=1 1

Arguments: The case n = l is already proved [CA1].

For the case n = 2 with P(S) of degree 4 or 5, Eq. 4.3.1

isis always satisfied since P(S) = det(C-1)All and All

strictly Hurwitz. (For proof see Theorem 2.4.2).
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For the cases where n 2 2 and P(S) is of degree

greater than five, it appears impossible to supply an

analytic proof. For this reason a random analysis pro—

gram was carried out on the computer for the case where

P(S) was of sixth degree using the two networks shown

in Fig. 4.3.1 and Fig. 4.3.2, respectively. It is not

necessary to consider the other possible configurations

which yield P(S) of sixth degree, since by Theorems

2.4.2 and 2.5.1 such P(S) must be strictly Hurwitz and

 

have at lease two real zeros thereby satisfying the con-

jecture. For networks 1 and 2 the parameters Xi are

defined as:

 

X1 = Gl/Cl X6 = G4/C4 1

x2 = Gz/Cl x7 = G4/C5

x3 = GZ/Cz X8 = Gs/Ce > NjZWZr:)l

X4 = G3/C3 X9 = 1 1/C2C3 . .

X5 = G3/C4 X10 = O‘25‘2/Csce J

X1 = G1/C1 X6 = Ge/Cs 1

X2 = Gz/Cz X7 = O‘15‘1/‘31‘32

x3 = 52/c3 x8 = azaz/c3c4 > szw3r:)2

x4 = G4/C4 X9 = O‘25‘3/‘35‘36 . .

x5 = G4/C5 J 



112

 

 

    

G1 G2 0‘1 G3 G4 0‘2

0—“NAVT—J\Av -—N/v——- so

c1 c2 c3 c4 c5 €61 G6

6 0

Network 1

Fig. 4.3.1 Two-gyrator sixth degree RCF low-pass filter.
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Network 2

Fig. 4.3.2 Three-gyrator sixth degree RCF low-pass filter.
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From each set of X1 the corresponding set of element

values can be calculated in terms of G1 and the para-

meters .~..

0Li 0‘1

A description of the method used in the random

analysis program is as follows: Each Xi is selected

randomly using a uniform distribution (computer library

random number generator) and then the polynomial

r
2 2

(S + a1) n [s + Gi) + wi]

2

P(S) = n

=1 i=11

is obtained from which the summation

-1
tan (wi/Gi) (4.3.4)6

' ll

I
I
M
H

i l

is formed by computing the zeros of the polynomial.

In using this program, the range for each Xi was

adjusted after some preliminary runs, so as to maximize

6 in Eq. 4.3.4. It was observed that the conjecture was

not violated in a sample of several hundred runs for

each network.

Networks 1 and 2 were also analysed by a program

which starts from a randomly selected set of Xi and ad—

justs the X1 sequentially so that 4, in Eq. 4.3.4, is

maximized within a bounded set of Xi‘ Due to the ex-

treme time requirements (each iteration required the

solution for the zeros of a sixth degree polynomial)

only a few runs were made using this program. In no
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case, however, was the conjecture violated. In addition

it was also observed, through several examples, that the

proposed angle condition could not have been made

stricter.

Finally attempts in realizing T = k/P(S) with
V

network configurations which do not satisfy the conjec-

ture have not been successful, whereas when the net-

work configuration satisfied the conjecture and Theorem

2.5.1, realizations have been found on the computer in

a straightforward manner. (See Appendix A for the com-

puter algorithm.) Some examples follow in the next

section.

4.4 Computer Realizations for Fifth and Sixth Degree

Low-Pass Transfer Functions Using RCF Configura-

tions.

Although an analytic proof of the existence of

network realizations satisfying TV = k/P(S), where P(S)

is strictly Hurwitz and has degree greater than four,

has not been established; realizations have been ob-

tained, using the computer algorithm discussed in Appen-

dix A to solve the nonlinear equations (similar to Eq.

4.2.2) derived from P(S) = det(Y"). In the following

examples, computer realizations for three practical low-

pass voltage-ratio transfer functions, are given.

Example 4.4.1. Let TV = k/P(S)S where

P(S) = S5 + 1554 + 10583 + 42082 + 9458 + 945

(4.41.)
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The coefficients for P(S) are for a Linear Delay (Thomson)

filter and are taken from Van Valkenburg [VA]. Consider

the network in Fig. 4.4.1 which has an admittance matrix

  

G1 "G1

-G1 C S+Gl a1

'a1 CZS+G2 -G2

= -G2 C3S+G2 a2

-d2 C4S+G4 -G4

-G C S+G +G
4 5 4 5

L _J

The matrix obrained by deleting the first row and column

  

of Y is

—ClS+Gl a1

-61 C25+G2 -G2

—G2 C3S+G2 a2

Y' = -a2 C3S+G4 -G4

L_ -G4 CSS+G4+G§_

The determinant All = det(Y') has a minimum of one real

zero (for proof see Theorem 2.5.1). Other possible two—

gyrator five-capacitor RCP low-pass filter configurations

have minimums of two or more real zeros in All and they

cannot be used since P(S) is known to have only one real
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zero [VA]. The matrix Y' can now be pre and post mul-

1/2
tiplied by c‘ to obtain

S + Xl Vx7al/al

-¢x al/al S + X - VX X

7 2 2 3

y" = '-

V 2X3 S + X3 VX8a2/d2

- VX8a2/d2 S + X4 - VX4X5

- VX4X5 S + X + X

.L 5 3  
(4.4.2)

where All = det(C)det(Y") and

X1 = Gl/Cl X5 = G4/C5

x2 = GZ/Cz x6 = GS/CS (4.4.3)

X3 = Gz/C3 X7 = O‘151/‘31‘32

X4 = G4/C4 C8 = O‘232/C3C4

The parameters Xi must be positive since the capacitors,

conductances, and the parameters Gigi i = 1,2 are all

p051tive. Conversely, if Xi > 0 and alal,a202 and G1

are known then the network elements are
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C1 = Gl/Xl C4 = O‘2‘”‘2/C3x8

C2 = O‘1‘3‘1/‘31X7 G4 = C4x4

(4.4.4)

52 = czx2 c5 = G4/X5

c3 = 52/x3 G5 = C5X6

If a set of positive X. can be found such that

1

det(Y ) = P(S), then the transfer function TV = A4l/All

k/P(S) has been realized since All = det[(C)(Y")]. The

nonlinear equations in Xi' defined by det(Y") = P(S),

can be solved by the computer (see Appendix). Since

there is considerable freedom in the choice of Xi

(det(Y") = P(S) yields five equations in eight unknowns)

additional constraints can be added such as G1 = k G5.

Expressing this constraint in terms of Xi’ one has

_ I

X1X2X5X8 — K X3X4X6X.7

, _ ~ ~

where K — k dzdz/alal.

Computor realizations for three different values of K

are
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G1 = 1- G1 = 1- G1 = 1.

C1 = .19772492 C1 = .16552402 C1 = .16965992

G2 = 2.1143563 G2 = 1.2299518 G2 = 2.8729672

C2 = 1.1606858 C2 = .97598661 C2 = 1.3117841

C3 = 1.0804736 C3 = .36074834 C3 = 1.4740298

G4 = .13470185 G4 = .17139153 G4 = .075790874

C4 = .049224786 C4 = .11972908 C4 = .02652635

G5 = 1. G5 = .1 G5 = .01

C5 = .33105995 C5 = .094977605 C5 = .040669095

6131 = 6252 - l. 6161 = 6252 = l. 6151 = 6262 = 1.

All the element values given above are in mhos. or in

farads. The realized network is given in Fig. 4.4.1.

Example 4.4.2. Let TV = k/P(S) where

6 5 4 3
P(S) = s + 215 + 2105 + 12605 + 47252

+ 103958 + 10395. (4.4.5)

The coefficients for P(S) are for a sixth degree linear

delay filter and are taken from Van Valkenburg [VA].

Consider the network in Fig. 4.3.1. This network satis—

fies the necessary conditions established in Theorem

2.5.1 and so is suitable to realize T . The admittance
V

matrix for this network is



 

Y":

1 1

-G1 ClS+Gl+G2 -G2

-G2 CZS+G2 01

-&l C3S+G3 -G3

-G3 C4S+G3+G4 -G4

-G4 CSS+G4 62

-&2 C6S+G

(4.4.6)

Forming Y" directly from this matrix, one obtains

s+xl+x2 “565765 —.

"(X2X3 S+X3 ”X9ai/a1

”(2531751 S+X4 ‘/§4§6

“/5456 S+X5+x6 '/§6§7

-/x S+X

where det(Cl/ZY"C

 
1/2
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) = All

 

(4.4.7)

10“2/“2 8  
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x1 = Gl/Cl x6 = G4/C4

x2 = 52/01 x7 = G4/C5

x3 = 02/c2 x8 = G6/C6 (4°4°8)

x4 = G3/C3 x9 = “1&1/C2C3

x5 = G3/C4 X10 = O‘25‘2/‘35Cs

The relation Xi > 0, (i = l,...,10) clearly holds since

all the network parameters are positive. Conversely,

if a set of positive Xi is found such that det(Y") = P(S),

then the network parameters can be solved in terms of

G1, 6161 and 0202 giVing the realization of TV. The

equations for the network parameters are:

C1 = Gl/Xl C4 = G3/X5

G2 = C1X2 G4: C4x6

C2 = G2/X3 C5 = G4/X7 (4.4.9)

C3 = O‘10‘1/‘32x9 C6 = O‘20‘2/‘35x10

G3 = C3X4 G6 = C6x8

The nonlinear equations in Xi defined by

det(Y") = P(S) (4.4.10)

can be solved by a computer program to realize TV = k/P(S).

Since the relation det(Y") = P(S) yields six equations

in ten unknowns, considerable freedom in the choice of
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Xi is possible. A useful constraint which can be added

1 = k G6' Expressing this constraint in terms of

the Xi one has

is G

X X X X X = K'X X X X X (4.4.11)

1 3 4 6 10 2 5 7 8 9

where K' = ka & /aldl. Computor solutions for three

ratios of Gl/G6 are:

G1 = 1. G1 = 1. G1 = 1.

C1 = .30561664 C1 = .39875898 C1 = .26994128

G2 = .54369763 G2 = .58810805 G2 = .18377659

C2 = .099232055 C2 = .21466229 C2 = .031468068

G3 = 1.0379997 G3 = .47470337 G3 = 3.6152459

C3 = .37053873 C3 = .16927982 C3 = 1.7360973

G4 = .28599644 G4 = 1.0119594 G4 = 5.8383642

C4 — .4818776 C4 = .35106470 C4 = 2.5482323

C5 = .11172470 C5 = 3.5776846 C5 = 18.287234

G6 = 1. G6 = .1 G6 = .01

C6 = .42353046 C6 = .014376383 C6 = .021445128

6161 = 6262 = 1. 6161 = azdz = 1. aldl = azdz = l.

The above element values are in mhos or farads, and the

network configuration is given in Fig. 4.3.1.

Example 4.4.3. Consider Example 4.2.2 when the poly-

nomial P(S) = PiSl has the coefficients

1 “
M
O
N

0



The coefficients for P(S)

with eight digit accuracy

Butterworth filter [VA].

a cut-off at w
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15625.

12074.073

4665.0635

1142.7025 (4.4.12)

186.60254

19.318516

1.

were calculated on a computer

for a sixth degree low-pass

This was frequency scaled for

5, so the coefficients would roughly

match those in Example 4.4.2. Again the network con-

figuration in Fig. 4.3.1 is used since P(S) has no real

zeros. Computer solutions for three ratios of Gl/G6 are:

G1 = 1.0 G1 =

C1 = .24379647 C1 =

G2 = .11840130 G2 =

C2 = .020970984 C2 =

G3 = 2.9354488 G3 =

C3 = 1.6751027 C3 =

G4 = .070774711 G4 =

C4 = .63416227 C4 =

C5 = .061371579 C5 =

G6 = 1.0 G6 =

C6 = .69490787 C6 =

Q

H

9
2

1

1.0 G1 = 1.0

.33142963 C1 = 1.0010717

.30864407 G2 = 2.6430899

.043334407 C2 = .50873174

.81051727 G3 = .18560747

.72286262 C3 = .064120396

.64364059 G4 = 1.3184473

.32733992 C4 = .30267577

.71763355 C5 = 9.8780364

.1 G6 = .01

.055954909 C6 = .0040216537

= azdz = 1. aldl = dzdz = 1.
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The above parameters are in mhos. and farads, and the

network

Example

Note tha

which is

figurati

TV = k/P

contains

mum numb

TV = k/P

 L
Forming

configuration is given in Fig. 4.3.1.

4.4.4. Consider Example 4.4.2 when

12(5) = [(s + 1)2 + 2213 (4.4.13)

t Conjecture 4.3.1 yields

-1 2 n
3 tan 1 < n 7 (4.4.14)

satisfied only if n s 3. Therefore the con-

on shown in Fig. 4.3.1 cannot be used to realize

(8). Consider the network in Fig. 4.3.2 which

3 gyrators. By theorem 2.5.1, taking the maxi-

er of real poles of TV as zero, one can realize

(S). The admittance matrix is

...G1

1 ClS+Gl dl

- dl C28+G2 -G2

-G2 C3S+G2 dz

-a2 C4S+G4 -G4

-G4 C S+G4 3

-d3 C6S+G6  
Y" directly from Y, one can obtain

.

7,
-
w
a
s
.

~J
,
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S+Xl VX7al/dl

-¢Xzal7al S+X2 -/X2X3

-VX2X3 S+X3 VX8a2/az

Y = - X862 a2 S+X4 -/X4X5

-./X4X5 S+X5 VngB/d3

L. VX9d37d3 S+X6

where det(Y") = det(C-lMll and

x1 = Gl/Cl X6 = G6/C6

x2 = 52/c3 x7 = alal/clc2

_ _ ~ (4.4.15)

X3 ‘ Gz/C3 X8 ‘ 0‘2"‘2/‘33‘34

x4 = G4/C4 X9 = O‘3"‘3/C5C6

The Xi i = l,...,9 must be positive; conversely if they

are positive Eq. 4.4.15 can be used to solve for the

network components in terms of G1, aldl, a262, and

6353. The solution of the six nonlinear equations in

Xi derived from

P(S) = det(Y")

with positive Xi realizes T = k/P(S). The computer
V

solution is
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G1 = 1. G4 = .33940651

C1 = 1.3115185 C4 = .54931147

G2 = .43199501 C5 = 3.0489273

C2 = .41741739 G6 = .098963398

C3 = .25824894 C6 = .054960727

0.161 = azaz = 03543 = 1'

where all the elements are in mhos. or in farads. The

realized network is given in Fig. 4.3.2.

4.5 Band-pass and High-pass Filter Realizations

Although the purpose of this thesis is to

develop low-pass RCP realizations, it is possible, in

some cases, to extend the low-pass realization into

other filters. This is established by the following

two theorems.

Theorem 4.5.1. Let TV = k Sn/P(S), where P(S) is of

degree n. Then there exists a high-pass RC filter

 

realization of Tv if there exists an RCr low-pass

filter realization for T6 = TV(5) satisfying Theorem

2.4.3 which uses exactly two gyrators.

Proof: Since there is a network realizing T6 = TV(%)’

there is a set of positive Xi such that det(Y") = Phi-)8n

where det(Y") = det(C-1)All. From this set of Xi one

can calculate a set of components so that
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cl = 61 = a2 = dz = l. The complex variable S can now

be replaced by g to obtain realization of a RLF network

corresponding to T as shown in Fig. 4.5.1. MakingV’

extensive use of the equivalent forms in Fig. 4.5.2,

the network is transformed into the RCP network shown

in Fig. 4.5.3. Finally recognizing that the current-

ratio transfer function, without the terminating gyrators,

is the same as the voltage-ratio transfer functions and

also using Thevenin and Norton equivalents, the desired

RCr network can be obtained as shown in Fig. 4.5.4.

Q.E.D.

Corollary 4.5.1. Let P(S) be a strictly Hurwitz poly-
 

nomial of degree four, then TV = k S4/P(S) can always

be realized.

Proof: Since P(S) is strictly Hurwitz, so is S4P(%).

The transfer function T1 = k/P'(S), where P'(S) is

strictly Hurwitz and of degree four, is always realiz-

able from Theorem 4.1.1. Q.E.D.

Note: Theorem 4.5.1 can be extended to the networks

containing any even number of gyrators, however the

number two is probably the practical limit.

Note: A high-pass filter as shown in Fig. 4.5.4 satis-

fies the conditions for Theorem 2.4.2. Therefore such

a filter remains stable for R, C, or F parameter varia-

tion.



128

Theorem 4.5.2. Let T = k N(S)/P(S) where N(S) =
 

V

(S2 + a2) and T6 = k/P(S) has a low pass network realiz-

ation of the form shown in Fig. 4.5.5. Then, TV can be

realized with an RCF network.

Proof: Consider the chain matrix representation of the

network shown in Fig. 4.5.5.

.QA B7 _A B11 FA B.1

      

From which one can obtain

A = A1A2 + B1C2

Since A = l/TV, A' can be formed as

AlAZ + B1C2

A' = 1/T6 = kN(s)
 

Note that Al/Bl and l/Bl define Y22 and -Y21 respectively

for network 1. Similarly, AZ/CZ and l/C2 define 211

I _ I _

and 221 for network 2. Let Al — Al/K N(S) and B1 -

. (l). I u =
Bl/K N(S), then A 1/B1 Al/Bl defines Y22 and

l/Bi = k N(S)/Bl defines -Y(l) for the desired realiza-
21

tion. Since the degree of N(S) equals the degree of Al’

the synthesis of the network from -Y§i) and Yéé) is

possible using standard synthesis techniques. The final

realization is shown in Fig. 4.5.6. Q.E.D.
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Fig. 4.5.5 Initial network for Theorem 4.5.2.
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Fig. 4.5.6 Final network for Theorem 4.5.2.

or both are zero.
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Note: The network in Fig. 4.5.6 satisfies Theorem

2.4.2 and therefore remains stable for R, C, or F para-

meter variation.

Note: All the results of this chapter remain true if

practical gyrators which have admittance matrices of

  

the form

G11 G12

Y =

F

’G21 G22

L _

where G11, G12, G21, and G22 are pOSitive parameters,

are used rather than ideal active gyrators.

Indeed the form of Y? suggests that a practical

gyrator is equivalent to an ideal active gyrator loaded

by conductances at its ports. Consider TV = k/P(S)

where P(S) is strictly Hurwitz. Since one can find a

positive constant, y, such that

P'(s) = P(S - Y)

is strictly Hurwitz, the voltage-ratio transfer function

T1 = k/P'(S)

can be realized as a low-pass RCF filter by methods

established in this chapter. In this realization re-

placing S by S + y, the RC? filter is now modified and

it becomes the realization of
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TV = k/P(s)

In this modified network every capacitor Ci is connected

in parallel with a conductance of value yci. Since each

gyrator branch is always in parallel with a capacitor,

each gyrator branch can now be considered as being in

parallel with a conductance. This permits one to re-

place ideal active gyrators by practical ones.

For the high-pass case the process is similar

except each gyrator branch is in series with a resist-

ance. This results in a gyrator impedance matrix of

the form

  

which represents a practical gyrator.

4.6. Conclusions

In this chapter it is established that every

fourth degree low-pass voltage-ratio transfer function

whose denominator is a strictly Hurwitz polynomial, can

be realized using a two-gyrator low-pass RCP filter.

This also holds for the high-pass filter case by a

simple extension established in Theorem 4.5.1. Computer
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RCF realizations are given for some practical fourth,

fifth, and sixth degree low-pass voltage-ratio transfer

functions which utilize two gyrators. A proposed nec-

essary condition is given and supported with feasability

arguments. A computer realization using three gyrators

is given to illustrate extensions of the method. Fin-

ally, it is demonstrated that, for certain cases, the

method can be extended to high-pass and band-pass fil-

ter realizations.



CHAPTER V

CONCLUSIONS

The purpose for this thesis is to provide a

basis for RC? filter synthesis and to Specifically

develop realization procedures for low-pass voltage-

ratio transfer functions. A general basis for RCF

filter synthesis is established in Chapters II and III,

whereas synthesis procedures for low-pass voltage-ratio

transfer functions are established in Chapter IV.

The main contribution of this thesis can be

listed as follows:

1) Theorem 2.4.2 is established. As a consequence

of this theorem, it is shown that a large class

of active RCF filter realizations are stable

and remain stable irrespective of the variation

in the RC components of the gyrator parameters.

All the RCr filter realizations considered in

this thesis belong to this class defined in

section 2.4.

ii) It is proved that the Calahan and Horowitz poly-

nomial decomposition methods can be derived one

from the other.

135



iii)

iv)

v)

136

The Calahan and the Horowitz polynomial decom-

position methods are extended to polynomials

which contain distinct negative real zeros.

Low—pass RCP filter realizations are shown to

exist for voltage-ratio transfer functions Tv =

k/P(s), where P(s) is strictly Hurwitz and of

degree four. Through the use of a network trans-

formation, it is shown that high-pass RCF filter

realizations exist for the voltage-ratio trans-

fer function TV = k 54/P(s), where P(s) is a

strictly Hurwitz polynomial of the fourth degree.

Computer realization procedures are established

to realize TV = k/P(s), where P(s) is strictly

Hurwitz.

Suggestions for Future Work:

1)

ii)

iii)

To establish the necessary and sufficient con-

ditions for network realizations when the degree

of the polynomial P(s) appearing in TV = k/P(s)

is greater than four.

To establish parameter sensitivity comparisons

between the general RCr filter realizations and

The RCNIC filter realizations.

To develop analytic techniques for the realiza-

tion of TV = k/P(s) when P(s) is of degree

greater than four.



APPENDIX A

Consider the solution of a set of nonlinear

equations of the general form

p1 = Pl(xl,x2,...,x )
nv

P2 = P2(X1IXZI°--Ixnv)
(A.0.1)

Phc = Pnc(xl’x2"'°’xnv)

where the subscripts nv and no are the number of vari—

ables and the number of equations respectively. Several

computer programs have been written and applied to the

problems of the above form considered in this thesis.

One of these, a direct search scheme based on Hooke and

Jeeves [WI] pattern search, proved to be successful when

the number of variables nv is less than seven. This

program is now available from the Michigan State Univer-

sity program library [MCl].

To solve the nonlinear equations in Eq. A.0.l

when the number of variables is greater than seven, an

algorithm was adapted based on the Taylor least squares

reduction scheme [CT]. This algorithm is discussed in

the following section.

137
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A.1 Computer Algorithm

Consider the error vector F where

Fl = pl - Pl(x1,X2'ooo'Xnv)

F2 = p2 - P2(X1,X2,...,Xnv)

Fnc = pnc - Pnc(x1’x2""'xnv)

Let x be the column vector with the variables xl,x2,...

Xnv' and let 2 be a solution for Eq. A.0.l. A Taylor

series expansion of F about 2 is

BE A

0 = F(X) + 3}? (X - x) + (A.1.2)

It is interesting to note at this point that, for the

network problems considered in this thesis, the func-

tions Pi(xl’x2""’xnv) are always of the form

Pi(xl’x2"°"xnv) = gi(xl,...,xj_l,xj+l,...,xnv)xj

+hi(xl"°"Xj-l'xj+l"°"Xnv) (A.1.3)

This property, in general, also holds for the nonlinear

equations generated from passive netowrk functions.

Equation A.1.3 allows the matrix BF/Bx to be evaluated

very accurately and simply by a computer program.

In Eq. A.0.l, if nv equals nc, the matrix BF/ax

is the Jacobian of F and neglecting higher order terms

I
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of the Taylor expansion, 2 can be calculated iteratively

using the relation

x(i+l)- x(i) = — [aF/ax1‘lF (A.1.4)

where x(l) is the ith iteration. Equation A.1.4

represents the familiar Newton-Raphson method.

If nv is less than no no solutions exist in

general. However, one can use

. . T T

x(l+l)- x(1) = - [ %§—-%§] l %§}'F (A.1.5)

which gives a least squares estimate of 2 [CT].

Finally, consider the case where nv is greater

than nc. Solutions exist for this case, however, the

matrix aF/ax is not square and the matrix [8F/3x]T[3F/3x]

is singular. Therefore neither Eq. A.1.4 or Eq. A.1.5

can be used for this case. However, F can be augmented

with a set of trivial functions such that they become

zero as F becomes zero, and the relation in A.1.5 can be

used for this case. Indeed let

F

F. = /_X(x~x(i))

then Eq. A.1.5 takes on the form
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. . T Tl
x(i+1) _ x(1) = _ [ %§__%§_+ Au] 1[%§_: WVu] F

0

or

. . T T

x(1+l)- x”) = - [ ga— 13% + AuJ'l gi—F (A.1.6)

It is interesting to note that E . A.1.6 reduces to a

Newton-Raphson reduction scheme if nv equals no and 1

equals zero. On the other hand if A is large this

method has the characteristics of a steepest descent

method [CT]. In general the reduction scheme represented

in Eq. A.1.6 simply minimizes the step size as well as

the error vector F.

Let E be the error function defined by

nc

E = .2 IF” (A.1.7)

i=1

Since the Newton Raphson scheme converges rapidly in the

vicinity of a solution and the steepest descent method

converges more rapidly far from a solution, a value of

1 based on E is practical. For the examples considered

in the thesis the criterion

1 = minimum {E, /E} (A.1.8)

has worked very well.
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In order to equalize the accuracy among the co-

efficients Pi' Eq. A.0.2 is modified so that

F. = wi[pi - Pi(xl,x2,...,xnv)] (A.1.9)

where

2 II (maximum {Pj})/Pi.

The introduction of these weighing factors improves the

performance of the program as well. Two possible heur-

istic explanations for this are: the addition of the

w im ro es the ond tionin of the matric [EFT 33 + Au]
19" Cl 9 max '

or the addition of the wi promotes uniform reduction of

the terms in the error vector F.

The problem of oscillation about a solution is

prevented by introducing a damping factor a into the

reduction scheme. This is represented by the following

equation.

. . T T

x(l+l)- x”) = -a[ ’35—‘33 + u] 3%}? (A.1.10)

Initially a is set equal to 1. If the condition

E(x(i+l)) Z E(x(i))

(1+1) recalculated.holds, a is reduced by one half and x

This is repeated up to seven times before the attempt

is given up.

The algorithm described here converges rapidly
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from a good initial point x, however it does not neces-

sarily converge from an arbitrary initial point. For

this reason a Monte Carlo random search program [WI] was

written to provide a good initial point. Experience

gained using this program indicates that the Monte Carlo

initial point search becomes increasingly important as

the number of variables increases.

A flow diagram of the entire program is given

in Fig. A.1.l.

A.2 Usage

Program documentation which describes how to use

this program and the associated program source deck is

available from the Michigan State University program

library [MC2]. Unfortunately, a certain amount of

practice is required to successfully use this program

for solving a set of nonlinear equations. This is true

since the boundaries for the Monte Carlo search must be

set by the program user. If the boundaries are set

too large the region searched becomes too large and con-

versely, if they are too small, the region may not con-

tain any solutions. If no previous knowledge is avail-

able about a particular problem, it becomes necessary to

try several exploratory runs on the computer before
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satisfactory search boundaries are established. Fortun-

ately even very "rough" results obtained by hand cal-

culations or knowledge about the roots, etc., provide

sufficient information for the establishment of search

boundaries.
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