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ABSTRACT

MODULATION OF MACROPHAGE-TRYPANOSOMA CRUZI

INTERACTION BY LACTOFERRIN

 

By

Maria De Fatima C. Lima

Chagas' disease is a chronic debilitating illness caused by the

flagellated protozoan Trypanosoma cruzi. This disease currently
 

affects 20 million people in Latin American countries. In its acute

phase Chagas' disease presents intense inflammatory cell infiltrates

around ruptured parasitized cells. Lactoferrin, an iron-binding

protein, is secreted by neutrophils (cells present in acute chagasic

lesions) upon stimulation. Lactoferrin levels increase during

inflammatory conditions. In this work, evidence is presented that

lactoferrin modulates the outcome of the interaction between mouse

peritoneal macrophages or human monocytes and the intracellular

amastigote or bloodstream trypomastigote forms of I;_££ugi, increasing

the ability of the phagocytic cells to bind and kill the parasites.

The latter capacity was found to be dependent on the presence of iron

in the protein. Pretreatment of human monocytes, mouse peritoneal

macrophages and amastigotes with lactoferrin also increased their

mutual association. These phagocytic cells and amastigotes present

receptors for this protein. Pretreatment of macrophages with

lactoferrin and subsequent exposure to agents that bind to the

protein, prior to exposure to parasites, did not abrogate the

lactoferrin effects, whereas complete inhibition of the effect was
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seen when the blocking agents were present in the medium together with

lactoferrin and cells. The lactoferrin effect was also abrogated when

the parasites were pretreated with lactoferrin, exposed to blocking

agents and then incubated with the phagocytic cells. Macrophages

exposed to lactoferrin killed parasites at a faster rate than cells

not exposed to the protein. This effect appeared to be due to the

production of oxygen metabolites, since parasite killing was inhibited

by scavengers of 02 , H202 and 102. The ability of lactoferrin to

stimulate phagocytic function was also observed when invasive

trypomastigotes were used instead of amastigotes. Some differences,

however, were observed: a) macrophages required a longer lactoferrin

treatment (24 hr) for the effect to be seen (as opposed to 1 hr when

amastigotes were used); b) the mechanism of killing involved primarily

hydrogen peroxide production since only catalase was found to inhibit

the effect. The role of lactoferrin iron ions in the ability of this

glycoprotein to stimulate macrophage functions was studied next.

Apolactoferrin (iron free lactoferrin) or lactoferrin at 20% or 100%

iron saturation increased the uptake of amastigotes by macrophages.

While the latter two preparations were able to stimulate parasite

killing, apolactoferrin has lost this ability. Complete restoration

of the effect on killing was afforded by the addition of ferric and

ferrous ions and partial restoration with zinc ions. Cupric ions were

ineffective. Transferrin, another iron-binding protein, was unable to

increase the uptake or killing of the parasite by macrophages. Iron

and the OH'radical were involved in the lactoferrin mediated killing

effect, since, in the presence of chelators of the former and

scavengers of the latter, killing was inhibited. In another series of
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experiments, it was found that lactoferrin levels were increased in

the sera of mice infected with l;_grugi. The protein was also found

bound to amastigotes from the spleen. These results demonstrate that

lactoferrin may contribute to the clearance 0f.l;.E£!£i by phagocytic

cells via stimulation of parasite uptake and killing and that

lactoferrin function is dependent upon its iron content.
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PREFACE

Tropical diseases are the great forgotten maladies of our times.

No matter that in the third world, where 75% of the world's population

lives, they remain one of the major causes of death. This is not the

world to which I came to do research nor is it the world that I

remember when I think of home. For I too am among the privileged,

having had access to adequate shelter, food, and education, which is

more than two-thirds of the people living in my country can expect,

even today. Given my many privileges, it is fitting that I chose for

my studies one of the six diseases singled out by the World Health

Organization Special Programme for Research and Training in Tropical

Diseases, Chagas' disease.

The work which I carried out in this country, using the many

facilities which I now take for granted, is not likely to lead

directly to a cure for this disease, nor has it contributed to

producing a vaccine, the hope of many. My work, however, is a piece

of the puzzle of scientific knowledge necessary to a complete

understanding of a complex biological process. I can only hope that

this piece falls in the right place.
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INTRODUCTION



INTRODUCTION

1. Chagas' disease: an overview

Trypanosoma cruzi is the flagellated protozoan that causes

Chagas' disease, or American trypanosomiasis (1), a chronic debilitat-

ing illness mostly confined to Latin American tropical and subtropical

countries. However, some cases have been reported from temperate

areas of North America (2,3). Recently, the disease, which was

limited to rural areas of the affected countries where the vector,

bugs of the family Reduvididae, is normally encountered, has been

spreading to more populated areas via transmission by blood

transfusion. It has been estimated that up to 20% of blood donors in

nonendemic urban areas are infected with I;_g£ugi_(4). About 65

million people are at risk of I;_££ggi infection (5). Of these, 15 to

20 million are actually infected. Approximately 10% of the infected

individuals, are expected to develop chronic chagasic cardiopathy. In

some areas, chronic Chagas' disease may be responsible for up to 10%

of the deaths among the adult population (6).

The life cycle of the parasite begins when triatomine bugs

deposit feces containing the metacyclic trypomastigote forms of the

parasite on the skin of the host. Man acquires the infection by

rubbing the contaminated feces into broken skin, mucosa, or the lesion

left by the insect bite. The trypomastigotes then gain access to

local cells where they transform intracellularly to amastigote forms

and multiply by binary fission. After extensive multiplication, some





of the parasites differentiate into trypomastigotes and, upon cell

rupture, escape. Released amastigotes, which are thought not to be

infective, are disposed of by phagocytic cells. Trypomastigotes, on

the other hand, can infect neighboring cells or reach the circulation

where they can be ingested by the vector. Once back in the vector,

the trypomastigotes migrate to the anterior portion of the digestive

tract where they transform into epimastigotes, the dividing form in

the insect. In the hindgut, epimastigotes transform into metacyclic

trypomastigotes, the infective stage for mammalian hosts.

The acute phase of Chagas' disease encompasses the clinical signs

found within the first four months of infection in man and can be

diagnosed by the demonstration of parasites in the blood (7). Fever

is an early symptom, and is usually accompanied by malaise and

headaches (8). Systemic alterations include subcutaneous edema,

increase in the volume of the lymph nodes, hepatomegaly, splenomegaly,

and often acute myocarditis with characteristic alterations in the

electrocardiographical pattern (9). Anemia with low levels of iron,

leukocytosis with neutropenia and lymphoCytosis are also present (10).

Clinical symptoms of Chagas' disease are not always evident. The

infection usually takes a more severe course in children and a higher

mortality index is found during early infancy (9). In general,

mortality during the acute disease is low, around 5 to 10% (9).

The large majority of patients lapse into a phase of asymptomatic

infection that can last for years. Some of the subjects present mild

anomalies, such as cardiac conduction disturbances and esophageal and

colonic disperistalsis (10).



Chronic manifestations of the disease are commonly found many

years after the initial infection and include progressive diffuse

fibrosing myocarditis that leads to cardiomegaly, cardiac failure,

arrythmias, and thromboembolic phenomena (10). Once symptomatic, the

course of the disease is grave, with death occurring within a year

(10). In some countries, the digestive system of some patients may

also be compromised, presenting megaesophagus with dilation and loss

of peristaltic movements and megacolon with dilation and obstruction

(11).

On a cellular level, the response of the host to I;_g£ugi is of

an inflammatory nature. Vianna (12) reported that the intact,

parasitized cells were rarely surrounded by inflammatory infiltrates.

However, immediately following the rupture of the parasitized cell, a

focal inflammatory infiltrate was observed in the immediate area (12).

Mononuclear cells predominate in these infiltrates although

polymorphonuclear cells and eosinophils are also present (13). The

first cells to appear in inflammatory foci are polymorphonuclear cells

which sometimes contain phagocytized parasites, followed by an influx

of mononuclear cells, lymphocytes and monocytes (14). The cellular

infiltrate is accompanied by intense vascular dilation, congestion,

edema and sometimes necrosis. In the chronic phase, the intensity of

the infiltrate does not relate to the number of parasites (15). It

consists predominantly of lymphocytes and is accompanied by fibrosis

(15).

II. Factors influencing parasite-host cell interaction

Host-cell binding and penetration by I;_cruzi are vital to assure

the initial infection as well as to perpetuate the parasite in the



host. However, the mechanisms by which the parasite obtains an

intracellular location remain to be elucidated. Treatment of the host

cells with trypsin (16),oC-mannosidase (17), OC-galactosidase (18),

and N-acetyglucosaminidase (19) decreases the ability of the parasite

to bind to these cells. These results suggest that a glycoprotein(s)

might be relevant in the interaction between host cells and parasites.

This point is further supported by the observation that treatment of

the host cells with lectins results in inhibition of parasite

interiorization (20).

With respect to the parasite, ongoing protein synthesis (21), DNA

synthesis (22), glycoprotein synthesis (16) and glycoprotein

processing (23) are necessary for host cell infection, since

inhibitors of these processes inhibit parasite interiorization into

the host cells. The presence of sugar residues on the cell surface of

different stages of I;_££ugi_has been demonstrated by using lectins

(29,25,26).

That sugar residues may be playing a role in the parasite-host

cell interaction has been shown by the fact that N-acetyl glucosamine

pretreatment of the parasite inhibits interiorization of the parasite

into bovine endothelial cells (27). Some lectins have been reported

to exert the opposite effect (28) For example, concanavalin A, wheat

germ agglutinin, and phytohemagglutinin have increased parasite

attachment to and uptake by macrophages (20,28). Moreover, treatment

of the parasite with exoglycosidases markedly enhances their uptake by

phagocytic cells and their ability to infect nonphagocytic cells

(17,18,19).



Several glycoproteins have been isolated from the surface of 1;

$5951 in attempts to pinpoint the Specific ligand(s) involved in host

cell attachment. A 90 kd surface glycoprotein (29) present on all

stages of the parasite and found in sera of chagasic patients (30) has

been shown to induce partial protection in mice against challenge with

trypomastigotes (31). A complex of glycoproteins with an approximate

MW of 85 kd, which is specific for the trypomastigote stage, has been

purified by wheat germ agglutinin affinity chromatography (32).

Antibodies against this complex have been obtained and the IgG

fraction extensively inhibits interiorization of trypomastigotes into

LLC-MK2 cells (33). Recently, a gene fragment coding for an antigenic

determinant of this protein has been cloned (34). The peptide was

shown to consist of three highly conserved 9—amino acid repeats. This

type of repetitiveness resembles the surface peptides of Plasmodium

falciparum (34). The ability of this peptide to induce protection

against challenge by I;_cruzi has not been determined.

III. Role of inflammatory cells in Chagas' disease

Studies have been conducted with inflammatory cells both to

establish their roles in production of host defense and their ability

to interact with I; 55251, Human neutrophils are able to take up and

kill ];_grggl_amastigotes jg_vlt£g (35). The mechanisms of

cytotoxicity of these cells for parasites have been linked to their

ability to produce toxic oxygen metabolites. Human neutrophils can

also destroy antibody-coated epimastigotes, trypomastigotes or

insect-derived metacyclic trypomastigotes extracellularly (35-41) via

toxic oxygen metabolites (42).



Human eosinophils are also able to ingest and destroy amastigotes

(43) and, in the presence of specific antibodies, can destroy

trypomastigotes (39) and insect—derived metacyclic trypomastigotes

(41) via ADCC. Eosinophil cationic proteins play a role both in the

intracellular and extracellular destruction of I;_c§ugj_jg_vit£g

(39,43).

Macrophages play a dual role in Chagas' disease; they can serve

both as a host cell harboring the parasite, contributing to parasite

dissemination in the body, and as effector cells implicated in the

destruction and clearance of parasites from infected tissues. Trypo-

mastigotes can enter macrophages by either phagocytosis (44) or cell

membrane penetration (45). After being phagocytized, parasites are

found initially within phagosomes, to which lysosomes may fuse (44).

After 24 hours, amastigotes are found in the cytoplasm of the macro-

phage (44), suggesting an escape from the phagosomes via their ability

to cross membranes. 0n the other hand, amastigotes can not penetrate

cell membranes and their only means of entry is by phagocytosis.

Unlike trypomastigotes, amastigotes have never been seen outside of

phagocytic vacuoles (46), and, in the vacuoles, they can be killed by

intermediates of oxygen reduction, mainly H202 (46,47).

Several agents have been found to stimulate the uptake and

killing of trypomastigotes by mouse peritoneal macrophages. Human

fibronectin, a cell surface protein which is increased in inflammatory

states, increases the uptake of I;_££ugj_by macrophages (48) and

fibroblasts (49). I;_grugi_possesses receptors for this protein (48),

which could possibly act by bridging the cells, thus increasing their

association. Exposure of macrophages to lymphokines generated by



antigen-stimulated sensitized spleen cells from mice infected with I;_

ggugi_or BCG (50) results in the destruction of internalized

parasites. Trypanocidal activity is also induced in these cells by

incubating them with supernatants of lymphocytes stimulated with

concanavalin A or bacterial lipopolysaccharide (50). Leukotriene B4

and leukotriene C4, products of the metabolism of arachidonic acid,

are produced in increased amounts by inflammatory cells, such as

polymophonuclear leukocytes and macrophages, after stimulation with

phagocytic or chemotactic stimuli (51). These metabolites have been

shown to increase the capacity of macrophages to associate with I;

grugi_and also to stimulate their cytotoxic activity (52,53).

Interferon-3’, the T cell product implicated in macrOphage activation

(54), has also been shown to enhance the capacity of macrophages to

take up and kill trypomastigotes (55). Treatment of trypomastigotes

with specific antibody enhances their uptake by unstimulated

macrophages in vitrg (56), but does not modify their intracellular

fate (44,56). In contrast, specific antibody will enhance parasite

killing by activated macrophages (56).

A similar trypanocidal activity has been seen when human

monocyte-derived macrophages were exposed to I:_gguzirstimulated

peripheral blood lymphocytes from patients with chronic Chagas'

disease (57). Lymphokines generated by stimulating these lymphocytes

with antigens unrelated to the parasite or with concanavalin A were

also active. In contrast, supernatants collected after incubation of

lymphoid cells from normal donors with I; £5251_antigen did not induce

parasitocidal activity (57,58).



IV. Mechanisms of phagocyte toxicity

Microbial killing by phagocytic cells involves a multiplicity of

mechanisms, all of which are set in motion by two cellular events:

degranulation and the respiratory burst. Degranulation is the process

of fusion between the primary phagosomes and the lysosomes (59). The

lysosomes contain enzymes and other agents that participate in the

killing and degradation of ingested microorganisms. Neutrophils

present two major types of intracellular granules (50); 1) the

azurophil or primary granules, that contain a diverse array of

substances, including acid proteases, glycosidases, 5'-nucleotidases,

arylsulfatase, neutral proteases, cationic proteins, myeloperoxidases,

lysozyme and acid mucopolysaccharides, and 2) the specific or

secondary granules, that contain lactoferrin, alkaline phosphatase, a

vitamin-Blz-binding protein, lysozyme and collagenase. This spectrum

of enzymes is enough to degrade many of the diverse lipids,

polysaccharides, and proteins present in microbes.

Macrophages and monocytes can also destroy ingested

microorganisms. Qualitatively, the spectrum of proteolytic enzymes

produced by macrophages shows similarities with that of neutrOphils

although there may be differences in the level of the activity of

certain enzymes (61). MacrOphages can compensate for this deficiency

by increasing protein production upon differentiation, especially when

stimulated (60).

Another mechanism of killing used by phagocytes is the

respiratory burst, a metabolic pathway dormant in resting cells (62)

whose function is to produce a group of highly reactive microbicidal

agents by the partial reduction of oxygen. The first event in this
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pathway is an increase in oxygen uptake (63) upon stimulation of the

phagocyte. Stimulation of phagocytosis has also been shown to cause

an increase in glucose oxidation via the hexose monophosphate shunt

(63), a metabolic pathway in which glucose is oxidized to carbon

dioxide and a five carbon sugar with NADPH+ serving as electron

acceptor. NADPH oxidase has been implicated as one of the components

of the membrane complex that reduces 02 to 0; , a metabolite

associated with phagocytosis by neutrophils (64). In addition to

NADPH oxidase, cytochrome o559 (65) and ubiquinone (66) are also

believed to be a part of this complex. Nonactivated macrophages have

a weaker respiratory burst than granulocytes, but can be immuno-

logically activated, a phenomenon that increases the affinity of the

NADPH oxidase for NADPH and brings the activity of the enzyme to

levels comparable to that of neutrophils (67).

The first product of the reduction of 02, 02: , is dismutated

spontaneously to H202, a reaction that occurs primarily at low pH.

The reaction may also be catalyzed by superoxide dismutase at pH 7.0

(58)- H202 is a well known toxic agent (69), whose action can be

potentiated by two different mechanisms: peroxidation, leading to the

production of hypohalous acids, and the Fenton reaction, which

generates 0H' and 102. In the first of these mechanisms, H202,

halide, and myeloperoxidase, present in the granules of the

neutrophils, eosinOphils and monocytes, react to form hypohalous acids

of which hypochlorous acid is the most common due to the availability

of C1' in cells. These compounds are very toxic to microorganisms via

halogenation and oxidation of cell surface components (68).

Macrophage granules are devoid of this peroxidase, possibly having
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lost this enzyme during the process of monocyte differentiation (60).

Macrophages, however, can also acquire it by endocytosis as has been

shown in the killing of eosinophil peroxidase-coated Trypanosoma cruzi
 

and Toxoplasma gondii by resident peritoneal macrophages (70,71).
 

In the Fenton reaction, H202 can form OH' radicals and 102 in the

presence of Fe++ as illustrated below:

+ 1
H202 + Fe++ iFe ++ + 0H“ + 0H° + 02

or, if Fe+++ is present,

ire+++ + o; Fe++ + 02

Fe++ + H202 Fe+++ + OH’ + OH' + 102

The latter is the Haber-Weiss reaction and also requires the presence

of 0;. . Neutrophils, monocytes and macrophages have been shown to

produce 0H“ (68,71,142). Hhether 102 is produced jg_vivg_is not yet

clear, though the killing of Toxoplasma gondii by macrophages (72,73)
 

and by the enzymatic system, xanthine-xanthine oxidase (which produces

these latter metabolites in vitro) (74), has been inhibited by

scavengers of 102.

The toxicity of DH’ is partly due to its ability to react with

membrane lipids by hydrogen atom abstraction, forming a peroxy

radical. This radical can in turn, affect adjacent lipids in the

membrane (75). Hydroxyl radical can also attack DNA and proteins

forming the same peroxy radical in a chain reaction. Recently, it has

been shown that iron is involved in the decomposition of lipid

peroxides to peroxy radicals, thus amplifying the reaction and

contributing to the membrane damage (75).
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The role of oxygen metabolites in the killing of I; gguzj_by

phagocytic cells is suggested by the parasite's inability to detoxify

these metabolites. Catalase, an enzyme which decomposes H202. is

absent in the parasite (76) and glutathione peroxidase levels are low

(77). A cyanide-sensitive superoxide dismutase has been reported in

I;.££!£l (78) and a cyanide-insensitive but H202 and azide-sensitive

superoxide dismutase has also been found (79). In agreement with the

presence of superoxide dismutases and the lack of an efficient

mechanism to degrade H202, I; £5251_is found to be susceptible to the

toxic effects of H202. Trypomastigotes and amastigotes have been

found to be sensitive to H202 whether enzymatically generated

(35,80,81) or added as a reagent (35). Lymphokine- and IFN-stimulated

macrophages kill I:_gruzi_by mechanisms involving H202 (55,80).

Coating 1;_gguzi_ with eosinophil peroxidase enables macrophages to

kill trypomastigotes in a process inhibitable by both cyanide and

catalase (70). Killing of amastigotes by unstimulated neutrOphils and

macrophages was also shown to be due to H202 (35.45)- I;_££E£i_i5

not the only parasite susceptible to these metabolites since the

mechanism of killing by activated macrophages of two other

intracellular pathogens, Leishmania donovani and Toxoplasma gondii,
 

was also found to be mediated by these compounds (82).

V. Lactoferrin: general considerations

Lactoferrin, present in the specific granules of neutrophils

(83), is an iron-binding glycoprotein with a molecular weight of 76 kd

(84,85). It was first described in milk (86) and is primarily found

in various secretions (87) such as tears, saliva, nasal and bronchial

secretions, urine, seminal fluid, and cervical mucus. Although
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lactoferrin is found in different types of exudates, two main cell

types produce it: epithelial cells in glandular tissue and myelocytes

of the granulocytic series in the bone marrow (88). Lactoferrin

isolated from a variety of different sources appears to be the same

protein (89,90).

Transferrin, an iron binding molecule found primarily in serum,

has a significant amino acid homology with lactoferrin (91), but these

two proteins do not cross react immunologically (92) and bind to

different receptors on cells (92,93).

In the presence of one mole of bicarbonate, lactoferrin binds two

moles of Fe+++ per mole of protein (94,95). However, the glycoprotein

has also been found to form complexes with other metals such as

chromium, manganese, cobalt (96), zinc (97), and copper (95).

Lactoferrin binds Fe+++ with an affinity that, at physiological pH, is

260 times greater than that of transferrin (94). The binding of Fe+++

to lactoferrin is stable to low pH (4.0), whereas transferrin releases

its Fe+++ at pH 5.7 (94).

The concentration of lactoferrin in serum ranges from 0.1 to 1.5

pg/ml in normal non-inflammatory states (98,99). It rises at the

onset of inflammation and is increased in the cerebrospinal fluid of

patients with meningitis (100,101) or cerebrovascular insults (102)

and in the plasma of individuals with acute bacterial infections

(103,104). Burn patients also have higher levels of lactoferrin in

their plasma (10-40,p9/ml) (105). In burn patients with complicating

bacterial infections, lactoferrin values are higher than in burn

patients without infections (106). Lactoferrin levels are also

increased in the plasma of cystic fibrosis patients suffering from
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acute inflammation of the lungs (107) and in rheumatoid states (108).

This has been correlated to an increase in degranulation of

polymorphonuclear cells jg_situ. Patients with Sjogren's syndrome, an
 

autoimmune disease characterized by chronic inflammation of unknown

cause, also have increased levels of lactoferrin in their saliva

(109). This is thought to represent increased synthesis of the

protein by glandular cells since saliva contains only a few

neutrophils.

In the presence of zymosan and Staphylococcus albus (110), latex
 

beads coated with 196 (111), Escherichia coli (112) or Treponema

denticola (113), neutrophils can release up to 90% of their granular

contents of lactoferrin (111). Some investigators have correlated the

increase in lactoferrin concentration in acute inflammatory states

with increased neutrophil turnover or greater numbers of neutrophils

in the blood (114). In keeping with this hypothesis is the observa-

tion that in patients with spontaneous or chemotherapeutically-induced

neutropenia, plasma levels of lactoferrin are lower than normal

(115,116). These levels increase in patients that go into remission

after treatment, and are noticed before concomitant increases in

neutrophil counts are achieved (47).

Unlike transferrin, plasma levels of lactoferrin do not correlate

well with iron storage in the host since there is no correlation

between lactoferrin concentration in iron-deficient subjects and in

those who are iron replete (118). Van Snick et al (110) reported the

involvement of lactoferrin in the hyposideremia of inflammation. They

observed that neutrophils release apolactoferrin upon zymosan-induced

phygocytosis. The released lactoferrin was able to bind iron to
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saturation, indicating that it had been released from the cell

iron-free. The Fe-lactoferrin was then shown to bind monocytes. .13

‘1119 studies showed that apolactoferrin injected into rats can cause a

marked decrease in the plasma levels of iron. Lactoferrin was found

to accumulate in the reticuloendothelial system. In contrast, when

human apotransferrin was injected into rats, it increased iron levels.

Endotoxin injected into rats decreases the level of iron in the plasma

and simultaneously increases levels of lactoferrin in several organs,

mainly the liver and lungs. Hhen 59Fe citrate is injected 30 minutes

before the endotoxin, the isotope is found to be associated with

lactoferrin extracted from these organs. These findings suggest a

possible mechanism by which iron is accumulated in the

reticuloendothelial system during inflammation. It is possible that

this is the same mechanism by which iron is made unavailable to

microorganisms in the blood, depriving them of this metal essential

for their growth.

A bacteriostatic effect was, in fact, one of the first physio-

logical functions attributed to iron-depleted lactoferrin (119-123).

The antimicrobial ability of apolactoferrin was reversed when an

excess of iron was supplied to the nutritionally-deprived

microorganisms. Apolactoferrin has also been found to be bactericidal

for some species of bacteria: Streptococcus mutans and Vibrio cholera
 

(124), Pseudomonas aeruginosa and Escherichia coli (125), and
  

Legionella pneumophila (126). The antimicrobial activity of
 

lactoferrin was verified by the inability of bacteria to grow when

transferred to iron-rich medium (124). Consistent with the protective

effect of lactoferrin are the findings that two patients suffering
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from recurring bacterial infections had severely reduced levels of

lactoferrin in their neutrophil granules (127,128).

VI. Lactoferrin: cell binding and its consequences

Several cells of the immune system have receptors for lactoferrin

on their surface and the engagement of the ligand in each of the cells

leads to different biological effects. Mouse peritoneal macrophages

have 2x107 receptors/cell with a Ka of 9x105L/mole (92) as determined

by Scatchard plots of the binding of 125I-labeled lactoferrin. The

binding is specific and cannot be inhibited by transferrin, although

the latter protein also binds to these cells (129). Human monocytes

have a slightly higher receptor density (2x108/cell) with a comparable

affinity constant of 3.75 x 105L/mole. The binding is specific and is

inhibited by ethylenediaminotetraacetic acid and mannose (93).

The binding of lactoferrin to monocytes has been described to

increase their cytotoxic activity for tumor cells (130). Both 20%

Fe-saturated and 100% Fe-saturated lactoferrin were effective, whereas

transferrin was not. The binding of lactoferrin to monocytes and

macrophages has a potent inhibitory activity on granulopoiesis in

vit§g_and in lilfl (131). Eight percent Fe-saturated lactoferrin is

inhibitory at 10'13M, whereas 100% Fe-saturated is inhibitory at up to

10‘17M. Lactoferrin acts on an Ia bearing subpopulation of

macrophages responsible for the production of colony stimulating

factor (132). The inhibitory effect is complex since lactoferrin

inhibits release of prostaglandin E2 and acidic isoferritins from

macrophages. These molecules are in themselves inhibitory for

granulopoiesis (133,134,135). Transferrin, in its iron-saturated

form, has no effect on the release of granulopoietic factors from
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macrophages, although it suppresses the release of granulocyte

macrophage colony stimulating factor from 0KT4+ T lymphocyte

subpopulations (136). However, the relevance of these observations 1Q

3119 has been recently questioned (137,138).

Lactoferrin also binds to the surface of neutrophils following

secretion from the lysosomal granules (139). The binding of lacto-

ferrin to the neutrophil surface promotes their adhesiveness to each

other and to endothelial cells. In one study, neutrophils were found

to contain 1.35x106 receptors/cell with a Ka of 5.2x106L/mole (140),

whereas in another study two kinds of binding sites were demonstrated:

a low capacity and high affinity site (3.9x104/cell with a Ka of

2.2x109L/mole) and a higher capacity and low affinity site

(7.2x104/cell with a Ka of 6x108L/mole) (141). This discrepancy

remains to be explained.

VII. Lactoferrin: its role in production of oxygen metabolites

Lactoferrin has been shown to be involved in the formation of

some reductive oxygen intermediates. It increases 0H“ production by

human neutrophils, neutrophil particulate fractions and the

xanthine-xanthine oxidase enzymatic system (142). This observation

has been confirmed by some laboratories (143,144) and denied by

another (145). Lactoferrin has also been shown to promote red blood

cell lysis by activated neutrophils (146). While agranular

neutrophils were unable to lyse the target cells, they were able to

generate the same amounts of 0; as intact cells. Supplementing

agranular cells with lactoferrin reverted the lytic capacity to a

level comparable with that of intact neurophils, suggesting that

lactoferrin had an effect beyond the production of 0; in the cells
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(146). On the other hand, lactoferrin without iron or at low level of

iron saturation (0-4%) has been shown to inhibit lipoperoxidation of

bovine brain liposomes initiated by Fe salts. Apotransferrin was

equally effective (147).

The physiological functions of lactoferrin are far from being

completely defined. Because of its ability to tightly bind iron and

its low concentration in serum, this glycoprotein does not appear to

serve as an iron transport protein. Upon binding to receptors in the

membrane of several cell types, it induces different types of cellular

activities that appear to be contradictory. It is evident that much

more must be studied about this protein to ascribe it a Specific role

in biological processes.

VIII. Research goals

A heavy inflammatory cell infiltrate is found in acute chagasic

lesions. These cells are prone to be continuously stimulated jg_§itu_

by several factors, such as by parasites, as they are released from

bursting infected cells, and by products released from the

inflammatory cells themselves as they come into contact with the

parasites. Lactoferrin, a protein secreted by stimulated neutrophils

during inflammation, is one of these products and might therefore

modulate the activities of other cells found in the lesion.

The focus of this work was to define any modulatory effect that

lactoferrin might have on the interaction of phagocytic cells and

mammalian forms of l;_g£ugi and to examine the relevant mechanisms.

The first chapter describes the outcome of jg_vitrg_interaction

between mouse peritoneal macrophages or human monocytes and the

intracellular amastigote forms of Trypanosoma cruzi in the presence of
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lactoferrin. The possible similarities and differences in the fate of

this form and that of bloodstream trypomastigotes were explored in

Chapter 11.

Since lactoferrin is an iron binding molecule, the contribution

of this metal to lactoferrin's effects on macrOphage-parasite

interactions was investigated by selectively removing and adding iron

to lactoferrin preparations. The results of these studies are

presented in Chapter III.

The possibility that lactoferrin might be found ig_vivg_in the

course of I; cruzi infection was studied next, using a mouse model.

These results are presented in the Appendix section.

Closing this thesis, a summary will highlight the conclusions

derived from this work, their significance and perspectives.
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CHAPTER I

LACTOFERRIN EFFECTS ON PHAGOCYTIC CELL FUNCTION.

INCREASED UPTAKE AND KILLING OF AN INTRACELLULAR PARASITE

BY MURINE MACROPHAGES AND HUMAN MONOCYTES
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ABSTRACT

Mouse peritoneal macrophages (MPM) or human blood monocytes (HBM)

co-cultured with intracellular (amastigote [AMA]) forms of Trypanosoma
 

gruzi_in the presence of human lactoferrin (LF) took up greater numbers

of organisms than in the absence of LF; the proportion of phagocytes

taking up AMA was also significantly increased. Pretreatment of either

MPM or AMA with LF also enhanced cell-parasite association. By

immunofluorescence, HBM, MPM and AMA were found bind LF. Using

125

6

I-labelled LF, each AMA was determined to have approximately 1 x

10 receptors for LF. The enhancing effect of LF on cell-

parasite association was inhibited when either rabbit anti-LF IgG or at

-methyl mannoside (Gt-MM) was present during incubation of MPM or AMA with

LF or when AMA pretreated with LF were then incubated with either

LF-blocking agent. Hhile these findings seemed to suggest that LF

increased MPM-AMA association by bridging these cells, the LF effect was

not inhibited when MPM pretreated with LF were subsequently incubated with

either oc-MM or anti-LF. Furthermore, LF stimulated phagocytosis as

denoted by'a significant increase in latex particle uptake after LF

treatment of MPM. The intracellular killing capacity of HBM or MPM was

also stimulated by LF and was denoted by increased AMA destruction after

LF treatments. The possibility that LF only appeared to increase the rate

of AMA killing by simply promoting the engulfment of greater numbers of

AMA that would then be destroyed intracellularly seemed unlikely because

untreated MPM that had already taken up untreated AMA killed greater

numbers of AMA when they were subsequently incubated with LF. The results
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of experiments with scavengers of oxygen reduction intermediates and of

nitroblue tetrazolium reduction tests indicated that H202, 02: and

102 were involved in the killing of AMA by LF-treated MPM. These

results suggest that LF, a glycoprotein secreted by neutrophils in

greater-than-normal amounts during inflammation, may contribute to

macrophage clearance of AMA released from infected host cells.
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INTRODUCTION

Inflammatory cells have been postulated to play a role in the

clearance of intracellular (amastigote [AMA]) forms of Trypanosoma
 

cruzi, the etiologic agent of Chagas' disease (1, 2). Thus, unelicited

mouse peritoneal macrophages (MPM) (2, 3), human blood monocytes (HBM) (2,

4), human neutrophils (5) and eosinophils (6) have been shown to

internalize T. cruzi AMA and destroy these organisms within their

phagocytic vacuoles (2, 5, 6). However, our understanding of the

mechanisms promoting uptake of microorganisms by inflamatory cells

remains deficient. Recent work has identified fibronectin, a plasma

protein produced by macrophages (7), as a molecule that can mediate and

modulate the uptake of bloodstream forms of T. cruzi and inert particles

by unelicited murine MPM (8). This observation and the well recognized

accumulation of inflammatory cells in acute chagasic tissue lesions

(reviewed in reference 9) have directed our attention towards the possible

role played by proteins secreted by inflammatory cells in phagocytic cell

interactions with mammalian forms of I._grgzi. Lactoferrin (LF), an

iron-binding glycoprotein found in milk, saliva, gastrointestinal fluids

and blood (reviewed in reference 10), is produced and secreted in discrete

amounts by neutrophils (11, 12) -cells which accumulate at inflammatory

chagasic tissue lesions (9)- and its plasma levels increased during

inflanmatory conditions (13). This information, and the observation that

LF increases the natural killer cytotoxicity of adherent monocytes for

tumor cells (14), prompted the present study in which we tested the

ability of LF to influence the early and subsequent stages of MPM or HBM

interaction with T. cruzi AMA.
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MATERIALS AND METHODS

Animals. Four- to six-week old Crl:CD-1(ICR)BR Swiss mice were

purchased from Charles River Laboratory (Portage, MI).

Parasites. AMA forms of Tulahuén strain T. cruzi were grown

in ML-15HA medium as previously described in detail (15). The AMA

preparations used in this work consisted of 100%.organisms in the AMA form

and contained 99 to 100% viable parasites (i.e., organisms displaying

their typical vibratilein situ motion). The AMA were washed three times

by centrifugation (800 X G,20 min) with Dulbecco's modified minimal

essential medium containing 100 pg streptomycin and 100 IU penicillin per

ml (DMEM) and finally resuspended in the same medium supplemented with 1%

bovine serum albumin (BSA, Sigma Chemical Co., St. Louis, MO) (DMEM+BSA)

at 1.25 X 107 organisms per ml.

MPM and HBM. Mice sacrificed by exposure to excess ether
 

anesthesia were injected intraperitoneally with 5 ml of sterile DMEM

supplemented with 10% heat-inactivated fetal bovine serum (FBS, Hyclone

Laboratories, Logan, UT) (DMEM+FBS) containing 10 U Heparin/ml. The

methods for collecting and processing the peritoneal cells and for

preparing the resident MPM monolayers have been described (16). The MPM

monolayers consisted of >981 nonspecific esterase-positive cells with

typical macrophage morphology. Adherent MPM were further incubated under

the same conditions (5% 002 in air saturated with water vapor)

overnight. The methods for collecting and purifying HBM and for setting

up the cultures have been described (2). Cultures of these cells

consisted of >991 viable, nonspecific esterase-positive cells with typical

HBM morphology.
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Biological reagents. Batches of human LF (at 10 to 20% iron

saturation) were purchased from Sigma. The 196 fraction of rabbit

anti-human LF was purchased from Cappel Laboratories (Hest Chester, PA).

Beef erythrocyte superoxide dismutase ($00) was obtained from Miles

Laboratory (Naperville, IL) and beef liver catalase from Sigma. The

concentrations at which these reagents were used are described below with

the corresponding method.

Measurement of AMA uptake by MPM or HBM. The procedure to

measure AMA uptake by MPM has been described (2). Briefly, MPM or HBM

monolayers received 0.2 ml of AMA suspension and 0.1 ml of DMEM+BSA, and

were incubated at 37°C in a 5% C02 incubator for 2 hr. After removing

the free AMA by several washings with DEM, the cultures were fixed with

absolute methanol, stained with Giemsa and monitored microscopically (see

below). When the effect of LF was to be tested, 0.1 ml of the

corresponding LF solution in DMEM+BSA was substituted for the same volume

of DMEM+BSA. In all cases, not less than 200 MPH or HBM were screened,

recording the number of parasites associated with (i.e., bound to or

internalized by) MPM or HBM, the number of MPM or HBM associated with one

or more AMA and the number of MPM or HBM not associated with AMA. These

values were used to calculate the percentage of MPM associated with AMA

and the average number of T. cruzi per 100 MPM or HBM. Each

experimental and control condition was tested in triplicate.

Effects of anti-LF IgG and ot-methyl mannoside (or-MM). Rabbit

anti-LF IgG and ix-MM (Sigma), which bind LF, were used in five types of

protocols. Protocol No. 1: 0.1 ml anti-LE 196 (final concentration in

the culture fluid 3.3 mg IgGAml) or 0.1 ml oc-MM solution (final
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concentration in the culture 3 0.25M), 0.1 ml LF solution in DMEM+BSA (10

u9flml), and 0.1 ml of AMA suspension were added in immediate succession

to MPM cultures and incubated for 2 hr (5! C02). Protocol No. 2: MPM
 

monolayers were incubated with 10 ug LF/ml for 30 min, washed with DIEM

and then incubated with anti-LE or oc-MM (at the same concentrations as

above) for 30 min. After washing with DMEM, the cultures received the AMA

and were incubated for 2 hr. Protocol No. 3: MPM monolayers were
 

simultaneously pretreated with 10 ug LF/ml and anti-LF or oc-MM (at the

same concentrations as above) for 30 min, washed with DMEM and then

incubated with the AMA for 2 hr. Protocol No. 4: AMA were preincubated
 

with LE (10 ug/ml) at 37°C for 30 min, washed and then incubated with

anti-LF or oc-MM for 30 min. After washing with DMEM, these organisms

were added to untreated MPM cultures and incubated for 2 hr. Protocol

Ng;_§: AMA were simultaneously preincubated with LE (10 ugflml) and

anti-LF or oeMM at 37°C for 30 min, washed and, after added to

untreated MPM cultures, incubated for 2 hr. In all cases, control tests

were included in the experiments in which DNEM+BSA was substituted for the

tested reagents and normal rabbit IgG was used instead of anti-LF 196.

All conditions were tested in triplicate and the cultures were terminated

and processed as described in the preceding paragraph.

Pretreatment of MPM or AMA with LF. To study the effects of

pre-incubation of either MPM (5% C02 incubator) or AMA (water bath) with

LE on their association with the untreated counterpart, monolayers of the

former and suspensions of the latter were incubated with 10 pg LF/ml in

DMEM+BSA at 37°C for varying periods of time (see Results). After

.several washings with DMEM, co-cultures of the LF-treated cell with the
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untreated counterpart were set up as described above and in the following

section. For mock treatments, DMEM+BSA was substituted for the LF

solution.

Killing of AMA by MPM or HBM. The co-cultures of MPM or HBM with
 

AMA were set up and incubated for 2 hr as described under Measurement of
 

AMA uptake by MPM. After removing the free AMA, 0.3 ml of fresh DMEM+FBS
 

was added and the MPM monolayers were further incubated for 4 hr. These

cultures were terminated and processed for counting as described above.

Triplicate assays were set up for each experimental and control condition.

LF treatment of AMA-containing MPM. After incubating MPM cultures

with AMA for 2 hr as described under Measurement of AMA uptake by MPM,

the free organisms were removed by washing and 0.3inl of DMEM+BSA alone or

containing 10 ug LF/ml was added. These cultures were then incubated

for varying periods of time (see Results) and washed with the DMEM.

After receiving 0.3 ml DMEM+FBS, the cultures were incubated further until

4 hr had elapsed from the time the free AMA were removed. The cultures

were then terminated as described above. In some,experiments, culture

supernatants were collected at the end of the 4-hr incubation period,

centrifuged, decanted and the fluid at the bottom of the tubes was

screened microscopically for the presence of free AMA.

Effect of scavengers of oxygen reduction metabolites on AMA killing

by_MEM, The protocol described under Killing of AMA by MPM was
 

modified so that different scavengers of oxygen reduction intermediates

could be incorporated into the system. One tenth of an ml of solutions of

recrystalized beef liver catalase (to provide a final concentration in the

culture of 160,000 U/ml), $00 (3,000 U/ml), histidine (10 mM) or sodium
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benzoate (10 nM) in DIEMi-FBS and 0.2 ml DKM+FBS were added to MPM

cultures and incubated for 3 hr.After washing with DIEM, 0.3 ml of LF

solution at 10 ug/ml DNEM+BSA (containing the scavenger to be tested at

the concentrations mentioned above) was added and the cultures were

further incubated for 1 hr. The culture fluids were then removed and

replaced with 0.2 ml of AMA suspension plus 0.1 ml of DMEM+BSA containing

the corresponding scavenger (to attain the same final concentrations).

Cells and parasites were co-cultured for 2-hr. Control cultures were

included which were treated with DMEM+BSA instead of LF solution. For

heat inactivation, catalase and $00 solutions were heated at 100°C for

20 min. Six identical cultures were set up for each condition; three of

these were terminated by washing and fixation (see above) at the end of

the 2-hr co-culture period. The remainder were washed and, after

receiving 0.3 ml of DMEM+FBS containing the scavenger, were incubated,

further for 4 hr and then terminated. All cultures were monitored as

described above.

Latex bead uptake by LF-treated and mock-treated MPM. Cultures of

MPM were either pretreated with LE (10 ug/ml) for 30 min before receiving

0.2 ml of latex bead suspension containing 2.5 X 106 beads/ml (average

diameter = 1m, Sigma) and 0.1 ml DMEM+BSA or received the LF and the

latex beads at the same time. Control cultures did not contain LF. The

amount of latex beads used in these tests was smaller than usually used in

this type of test because we wanted to use as many particles as AMA were

used in the AMA uptake assay. After incubating the cultures for 2 hr (5%

C02), the monolayers were washed, fixed and stained with Giemsa. The

percentage of latex-containing MPM and the number of latex beads per 100
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MPH were calculated from parameters similar to those measured in MPM-AMA

interaction experiments.

Nitroblue tetrazolium test. MPM were incubated with DMEM+BSA alone
 

or containing 10 ug/ LF/ml at 37°C for 1 hr, washed and incubated with

AMA in the presence of nitroblue tetrazolium at 0.5 mng for 2 hr. After

washing with DIEM, the cultures received 0.3 ml fresh DiEMi-FBS and, after

another 30 min incubation period, they were fixed with absolute methanol

and tested for the presence of insoluble blue/black formazan as described

by Murray and Cohn (17).

Immunofluorescence tests for LF binding to AMA, HBM or MPM. AMA,

HBM or MPM fixed with 0.25% formaldehyde were incubated (37°C, 30 min)

with DMEM+BSA alone or containing 10 or 100 ug LF/ml. After several

washings, these preparations were incubated (37°C, 30 min) with

heat-inactivated normal rabbit serum, washed and then incubated (37°C, 30

min) with a solution of fluoresceinated anti-LF 196 (10 mg IgGAnl,

Cappel). The slides were then washed, air dried and examined with a

fluorescence microscope.

1251 labeling of LF and determination of receptors for LF on AMA.

One half ml LF solution (at 3.1 mg/ml in phosphate-buffered saline

1251 (specificsolution, pH 7.0, PBS) was mixed with 50 ul of Na

activity 15 mCi/ug I; Amersham Corp., Arlington Heights, IL) in a vial

containing 100 ug Iodogen (Pierce Chemical C0., Rockford, IL) and

incubated at room temperature for 15 min. Unbound radioactivity was

removed by gel filtration through Sephadex G-25 (Pharmacia, Piscataway,

NJ) equilibrated with PBS and the radiolabeled LF was concentrated by

ultrafiltration through collodion bags (Schleicher and Schuell, Keene, NH)
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The material used in the experiment depicted in Fig. 1 had a specific

activity of 8.74 x 105 cpm/Ug LF. The number of receptors for LF

present on the surface of T. cruzi AMA was determined as follows: in

1.5-ml conical tubes (Bio-Rad, Richmond, CA; catalog 223-9501) pre-coated

with a 20% solution of BSA in PBS, 100-ul aliquots of AMA suspension (1.2

X 107 organisms/ml in Hank's balanced salt solution containing 1% BSA)

were mixed with an equal volume of PBS containing increasing amounts of

125

125

I-labelled LF. After incubation at 37°C for 1 hr, the non-bound

125
I-LF was removed by centrifugation and two washings. Bound I-LF

was determined by measuring radioactivity in the pellet with a gamma

125I-LF was calculated by subtracting the amount boundcounter and free

from the total amount added. In competition type of experiments using

cold LF the assays were conducted as above except that an additional 100

pl of LF or human hemoglobin (Sigma) solution (both at 3.3 mg/ml in PBS)

125
was added. In these experiments, only one concentration of I-LF was

used: 250 ug/ml.

Presentation of results and statistical analysis. All results

presented in this paper are expressed as mean :_SD. Differences were

considered to be statistically significant if P<0.05, calculated by the

Mann-Hhitney “U“ test.
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RESULTS

Lack of effect of reagents on the viability of AMA, MPM or HBM.

None of the reagents used in this work, including LF, affected the

viability of MPM or HBM (determined by trypan blue exclusion) when

incubated with these cells for up to 9 hr or the viability of T. cruzi

AMA (evidenced by their typical vibrational motion in situ when

incubated with the parasites for 6 hr under the same conditions as

selected for our experiments.

Effects of LF on the interaction of AMA with MPM Presence of LF in

co-cultures of MPM or HBM and AMA during the 2-hr incubation period

increased cell-parasite association as evidenced by significant elevations

in both the percentage of phagocytes associating with AMA and the number

of organisms per 100 host cells (Table I). In the two repeat titrations

using MPM, these effects were first detectable with either 0.1 or 1 pg

LF/ml. However, because the concentration of LF producing a maximal

enhancement was 10 ug/ml, it was used in subsequent experiments. At 50

pg LF/ml, there was no significant change in the extent of AMA-MPM

association with respect to the control values.

To establish whether LF enhanced AMA-MPM interaction through an

effect on the host cell or on the AMA, or on both, experiments were

designed in which each of these cells was treated with LF, washed and then

co-cultured with the AMA with 10 pg LF/ml for various periods of time

significantly increased their association (Table II). The minimal MPM

pretreatment time required to significantly increase both the percentage

of AMA-associated MPM and the number of AMA per 100 MPM was found to be 30
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Footnotes to Table I

a This set of results is typically representative of two separate

experiments with the same protocol. The experiments with MPM and HBM were

carried out separately.

b %C, percentage of change with respect to the corresponding

control value (no LF present).

c The difference between this value and its corresponding control

value is statistically significant (P<0.05).



TABLE II

Effects of pretreatment of MPM or AMA with LE on their capacity to

associate with the untreated counterpart°

 

Pretreated Pretreatment Pretreatment siiPii containing Hue:- ofAMA

 

cell time (min) AMA (st)b per 100 m (1c)

mi 01141051 10 16.0 1 1.0 20.0 1 0.0

ion 16‘ 10 16.2 1 0.6 ( 1.3) 24.0 11.5 (20.0)

(4214 016mm 20 15.2 1 0.6 19.0 1 0.7

m LE 20 16.7 1 0.6 ( 9.9) 29.5 1 0.5" (55.3)

m MM+$A 30 16.2 1 0.5 20.5 1 0.0

mi 16 30 20.0 1 0.7‘ (20.4) 37.3 1 0.6" (01.0)

mm 00mm 60 15.2 1 0.6 20.7 1 0.5

new LF 60 22.0 1 0.6‘ (50.0) 30.3 1 0.7“ (05.0)

7044 DEM+BSA 10 10.0 1 1.6 22.3 1 0.9

4114 u: 10 23.5 1 2.5 (25.0) 33.6 1 3.3‘1 (50.7)

m 014010051 20 16.0 1 2.3 22.7 1 2.7

m LF 20 31.5 11.6‘ (07.5) 45.5 1 2.2‘I (100.4)

m ocmsn 30 20.0 1 1.3 25.5 1 3.4

m LF 30 36.0 1 2.3d (04.0) 55.0 1 2.7" (110.0)

m 01041051 60 16.5 1 1.0 25.0 1 1.9

m LP 60 36.0 1 0.6" (123.0) 60.0 1 2.6" (135.7)

 

For footnotes please see next page.

.
.
.

.
.
—
.
.
-
.
-
.
-
—
—
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Footnotes to Table II

a This set of results is typically representative of three

separate experiments with the same protocol.

b %C, percentage of change with respect to the corresponding

control value (DMEM+BSA).

c In these experiments LF was always used at a final concentration

of 10 pg/ml. The experiments in which MPM and AMA were pretreated with

LF were carried out separately.

d The difference between this value and its corresponding control

value is statistically significant (P<0.05).
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min whereas for the AMA it was 10 min (i.e., when first tested).

Next we set out to establish whether HBM, MPM or AMA bound LF. The

results of immunofluorescence tests using fluorescein-labeled anti-LP 196

showed that, although untreated HBM, MPM and AMA did not have detectable

LF on their surface, approximately 60% of the HBM, 80% of the MPM and 50%

of the AMA bound the glycoprotein when the latter was present at 100

Pgflml (Table III). Shnilar tests performed with 10 pg/LF/ml, i.e., the

concentration of LF used in our parasite-host cell interaction assays,

detected lower but significant percentages of LF-positive HBM, MPM and

similar percentages of LF-positive AMA. The presence of receptors for LF

on the surface of macrophages and monocytes has been previously

demonstrated (18, 19). The results of experiments in which we measured

125
concentration-dependent binding of I-LF to AMA revealed that LF

125
binding reached saturation levels when 96 ng I-LF was bound to 1.2 X

106 AMA (Fig. 1). Through Scatchard analysis, the data was found to

correspond to 1.06 X 106 LF receptors per AMA and Ka= 3.0 X 105

l.mol'1. To test the specificity of the 125I-LF binding to the

parasites we carried out competition type of experiments adding unlabeled

LF; control experiments were included in which unlabeled hemoglobin was

added instead of LF. In the presence of a 13-molar excess of cold LF, a

79% reduction in the uptake of 125 I-LF uptake was observed (from 29,199

1_2,766 to 6,100 :_1,732 cpm) whereas the reduction caused by

hemoglobin was insignificant (from 29,199 :_2,766 to 27,721 1 1,879

cpm).

Inhibition of the LF.enhancigg effect by agents which bind LF. To

establish whether binding of LF to MPM or AMA was required to produce the
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Footnotes to Table III

a This set of results is typically representative of two separate

experiments with the same protocol. All of the differences between the

experimental values and the corresponding control values are statistically

significant (P<0.05).
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enhancing effect, we incorporated into the system an agent known to bind

LF. Selected for this purpose were anti-LF IgG and oc-MM (18). Five

different protocols were designed to clarify not only if LF binding to the

interacting cells was a requirement but also if blocking LF bound to MPM

or AMA would prevent the enhancing effect (Table IV). As can be seen in

Table V, co-cultures of MPM and AMA incubated with LF together with either

anti-LF IgG or oc-MM (protocol No. 1, see Materials and Methods) resulted

in a marked reduction in the extent of the LF enhancing effect. Neither

anti-LE nor oc-MM affected AMA-macrophage interaction in the absence of

LF. Although Table V, shows results obtained with 0.25M oc-MM, significant

inhibitory effects were also produced by concentrations of this reagent as

low as 0.01M (data not shown). Hhen MPM cultures were pretreated with LF

and then incubated with the blocking agents before receiving untreated AMA

(protocol No. 2), no inhibition of the LF effect was seen. In contrast,

when MPM cultures were simultaneously incubated with LF and anti-LF (or 0:

-MM), washed and then co-cultured with untreated AMA (protocol No. 3), the

enhancing effect of LF was not seen. The LF effect was markedly inhibited

when AMA were pretreated first with LF, then with anti-LF or oc-MM and

finally incubated with untreated MPM cultures (Table V, protocol No. 4).

The LP effect was also abrogated when AMA were incubated with LP in the

presence of either anti-LF or oc-MM prior to being added to the MPM

cultures (protocol No. 5). Hhen normal rabbit IgG was substituted for

rabbit anti-LF 190, the LF effect was not altered significantly in any of

the five protocols and normal rabbit IgG had no detectable effect of its

own on MPM-AMA association. It is noteworthy that, in all five protocols

and in all repeat experiments, the changes in the percentage of MPM
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TABLE IV

Summary of protocols 1 through 5

 

Protocol No. 1

a) [MPM + AMA + LF + anti-LF IgG (or o:-MM)J (2 hr at 37°C) > 

b) terminate by washing and fixation

Protocol No. 2

a) [MPM + LF] (30 min, 37°C) >

b) wash, add anti-LF IgG (or oz-MM) (30 min, 37°C) >

(2 hr at 37°C) >

 

c) wash, add untreated AMA 

d) terminate by washing and fixation

Protocol No.3

a) [MPM + LF + anti-LF IgG (or oc-MM)] ‘30 "‘1": 37°“ > 

b) wash, add untreated AMA (2 hr at 37°C) > 

c) terminate by washing and fixation

Protocol No.4

a) [AMA + LF] (30 Ni", 37°C) >
 

(30 min, 37°C) >

(2 hr at 37°C)

b) wash, add anti-LF IgG (or oc-MM) 

c) wash, add these AMA to untreated MPM cultures

d) terminate by washing and fixation

Protocol No.5

a) [AMA + LF + anti-LF 190 (or oc-MM)] ‘30 “1": 37°C’ > 

b) wash, add these AMA to untreated MPM cultures (2 hr at 37°C)

c) terminate by washing and fixation

‘
i
/

‘
i
/

 



T
A
B
L
E

V

E
f
f
e
c
t
s

o
f

o
c
-
M
M

o
r

a
n
t
i
-
L
F

o
n

t
h
e

e
n
h
a
n
c
i
n
g

e
f
f
e
c
t

p
r
o
d
u
c
e
d

b
y
p
r
e
t
r
e
a
t
m
e
n
t

o
f

M
P
M

w
i
t
h

L
F

o
r

b
y

t
h
e

p
r
e
s
e
n
c
e

o
f

L
F

d
u
r
i
n
g

M
P
M
-
A
M
A

i
n
t
e
r
a
c
t
i
o
n
a

 

R
e
a
g
e
n
t
s

t
e
s
t
e
d
b

P
r
o
t
o
c
o
l

N
o
.

1
(
%
C
)
c

N
u
m
b
e
r

o
f

A
M
A

p
e
r

1
0
0

M
P
M

m
e
a
s
u
r
e
d

i
n

P
r
o
t
o
c
o
l

N
o
.

2
(
%
C
)

P
r
o
t
o
c
o
l

N
o
.

3
(
%
C
)

 0
1
4
5
3
0
0
5
4

3
7
.
5
1

1
.
7

L
F

6
5
.
3

+
4
.
3
d

L
F
,

o
c
-
M
M

3
6
.
2
1
_
1
.
6

o
c
-
M
M

3
7
.
3
:
_
2
.
3

D
I
E
M
+
$
A

2
1
.
8

0
.
9

2
.
0
d

+l

L
F

3
7
.
1

+l

L
F
,

a
n
t
i
-
L
F

1
8
.
0

+|

A
n
t
i
-
L
F

1
9
.
0

+l

L
F
,

n
o
r
m
a
l

r
a
b
b
i
t

1
9
0

3
5
.
0
1
1
.
5
d

N
o
r
m
a
l

r
a
b
b
i
t

1
9
0

2
0
.
0

1
.
2

+1

(
7
4
.
1
)

(
-
3
.
5
)

(
-
0
.
5
)

(
7
0
.
2
)

0
.
9

(
-
1
7
.
4
)

1
.
4

(
-
1
2
.
8
)

(
6
0
.
6
)

(
-
8
.
3
)

1
L
5
1
0
£

3
8
.
7

3
3
.
8

1
8
.
3

1
7
.
5

3
8
.
7

3
3
.
5

1
9
.
0

3
5
.
2

1
9
.
5

+| +l +| +| +|

1
.
6
d

1
.
0
d

1
.
3

0
.
5

1
.
6
d

(
1
2
1
.
1
)

(
9
3
.
1
)

(
4
.
6
)

(
1
2
1
.
1
)

2
.
7
d

(
9
1
.
4
)

1
.
3

(
8
.
6
)

1
.
7
d

(
1
0
1
.
1
)

0
.
4

(
1
1
.
4
)

2
0
.
2

3
3
.
5

2
2
.
0

2
1
.
0

2
0
.
2

3
3
.
5

2
2
.
3

2
2
.
2

3
8
.
0

2
1
.
0

+I +| +l +| +|

3
.
3

2
.
0
d

1
.
9

1
.
4

3
.
3

2
.
0
d

2
.
2

1
.
9

1
.
9
d

1
.
4

(
6
5
.
8
)

(
8
.
9
)

(
4
.
0
)

(
6
5
.
8
)

(
1
0
.
4
)

(
9
.
9
)

(
8
8
.
1
)

(
4
.
0
)

 

F
o
r

f
o
o
t
n
o
t
e
s

p
l
e
a
s
e

s
e
e

n
e
x
t

p
a
g
e

55



56

Footnotes to Table V

a The sets of results for each protocol are typically

representative of two to three separate experiments with the same

protocol. For protocol No. 1, the experiments with oc-MM and anti-LF were

carried out separately. For the description of protocols No. 1, 2 and 3

see Materials and Methods.

b The final concentrations of LF, oc-MM, anti-LF IgG and normal

rabbit 190 used in these experiments were 10 pg/ml, 0.25M, 3.3 mg/ml and

3.3 mg/ml, respectively.

c See footnote b_under Table II.

d The difference between this value and the corresponding control

(DMEM+BSA) was statistically significant (P<0.05).
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containing AMA were of the same direction as those shown in Table V and VI

for the number of AMA per 100 MPM (data not shown).

Effects of LE on latex bead uptake by MPM. To determine if the

enhancing effect of LF on MPM was unique for AMA, we performed identical

experiments using latex beads. The results indicated that the presence of

LF during incubation of MPM with the beads or LF treatment of the MPM

prior to adding the particles significantly enhanced particle uptake

(Table VII).

Effects of LF on AMA killing by HBM or MPM. Hhile the results
 

presented above demonstrate the increased capacity of LF-treated MPM to

take up AMA and latex particles, they did not reveal whether LF-treated

MPM would also di5play increased killing capacity. To test this

possibility, we set up experiments with HBM or MPM in which 10 pg LF/ml

was present during the 2-hr cell-parasite interaction period and monitored

the decrease in parasite load 4 hr after removing both LF and the

non-bound AMA. Selection of the 4-hr incubation period was based on

previous results revealing that untreated MPM destroyed a small number of

AMA 6 hr after initiation of the MPM-AMA interaction (2). The results

presented in Table VIII showed that HBM and MPM destroyed significantly

larger numbers of AMA after exposed to LF. In separate experiments, MPM

that had been pretreated with LF for 60 min and then incubated with'

untreated AMA for 2 hr cleared a larger number of parasites than

mock-treated MPM over the 4-hr period (Table IX). At this point, we were

curious to find out whether pretreatment of the AMA with LF would also

lead to their more rapid destruction by untreated MPM. The results

presented in Table VIII showed that this was indeed the case. Of
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Footnotes to Table VI

a The sets of results for each protocol are typically

representative of two to three separate experiments with the same

protocol. For the results obtained when LF was present during AMA-MPM

interaction, see Table IV, protocol No. 1. For the description of

protocols 4 and 5 see Materials and Methods.

b,c,d See footnotes b,c,d under TBPIE IV-
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Footnotes to Table VII

3 Each set of results is typically representative of two separate

experiments with the same protbcol.

b Step A consisted of incubating MPM cultures with the indicated

solution at 37°C for 30 min and was immediately followed by step 8,

which consisted of incubating these MPM with the indicated solution plus

latex beads for 2 hr.

c See footnote b_under Table II.

d
The difference between this value and the corre5ponding control

(DMEM+BSA) is statistically significant (P<0.05).
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Footnotes to Table VIII

a This set of results is typically representative of two separate

experiments with the same protocol.

b DNEM+$A alone or containing 10 pg LF/ml. LF was present during

the 2-hr co-culture of phagocytic cells with AMA.

c The percentage of AMA killed during the 4-hr period was

calculated by the equation:

% AMA killed 3 2-hr value - 6-hr value X 100.

2-hr value

d Values given under the 2- and 6-hr columns were measured in

cultures terminated immediately after removal of the free AMA (i.e.,

after 2 hr of AMA-MPM interaction) and 4 hr later, respectively.

e See footnote 9 under Table II.

f The difference between this value and the corresponding control

was statistically significant (P<0.05).

9 This extent of killing was statistically different from that seen

with cells mock-treated with DMEM+BSA (P<0.05).
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particular interest was the observation that untreated MPM that had taken

up untreated AMA also killed the organisms at a faster rate if LF was

added to the culture (Table X). It is noteworthy that, in all of the

experiments designed to monitor AMA killing, free AMA were virtually

undetectable in the culture medium at the end of the experiment, rendering

unlikely the possibility that reductions in parasite load could have

resulted from detachment of surface-bound organisms.

Mechanism of killing of AMA by LF-treated MPM. A recent report
 

from our laboratory has documented that the killing of T. cruzi AMA by

MPM involves H202 (2). To test whether LF-treated MPM killed the

parasites by a similar mechanism, we set up experiments using scavengers

of oxygen reduction intermediates. Catalase (scavenger of H202) did

not affect the enhancing effect of LF on MPM-AMA association but

completely abrogated parasite destruction (Table XI). Heat-inactivated

(100°C, 20 min) catalase did not inhibit killing. Histidine (scavenger

of 102) and $00 (scavenger of 02’) had no effect on AMA uptake by

LF-treated MPM but partially inhibited killing. Heat-inactivated SOD had

no effect on either parameter. That 027 was indeed produced by MPM

that had internalized AMA was confirmed by a) the observation that, among

the AMA-containing MPM, 83% of the cells gave a positive nitroblue

tetrazolium reduction test whereas only 44% were positive if mock-treated

with medium and b) the finding that only 15% and 12% of these cells,

respectively, gave a positive nitroblue tetrazolium test if S00 was

present before and during cell-parasite interaction.
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Footnotes to Table X

a This set of results is typically representative of two separate

experiments with the same protocol.

b Percentage of reduction in parasite load during the 4-hr period

(reference value 27.8).

c LF (10 pg/ml) or DhEM+BSA was added immediately after removal of

the free AMA and left in the cultures for the indicated amounts of time.

After removing the LP by washing, the cultures were incubated with fresh

DMEM+FBS for the remainder of the 4-hr period.

d The value shown in this line was obtained immediately after

removal of the free AMA, i.e., after 2 hr of co-culture of MPM and AMA.

All other values in this table were obtained 4 hr later.

e This extent of killing was statistically different from that

produced by cells mock-treated with DMEM+$A (P<0.05).
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Footnotes to Table XI:

a This set of results is typically representative of two separate

experiments with the same protocol.

b This percentage represents the reduction in parasite load during

the 4-hr period.

c The difference between this value and the corresponding control

(DMEM+BSA) is statistically significant (P<0.05). In each experiment, all

LF effects (2-hr values) are statistically comparable.

d The difference between this extent of killing and that seen in

the control (DMEM+BSA) is statistically significant (P<0.05).

e The difference between this extent of killing and that seen with

LF alone is not statistically significant (P<0.05).
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DISCUSSION

These results show that LF increases the uptake and intracellular

destruction of intracellular forms of a protozoan pathogen by HBM or MPM.

Concentrations of LF enhancing the interaction of the phagocytic cells

with T. cruzi AMA ranged from 0.1 to 10 pg/ml. These levels compare

with normal human plasma concentrations of 1.5 11.8 pg/ml (20), and

pathological levels varying between 4 and 28 pg/ml in cases of burn

injury (21), 12 to 22 pg/ml in cases of chronic myeloid leukemia in

relapse and 5 and 12 pgflml in two cases of hypersplenism secondary to

hepatic cirrhosis (20). At higher concentrations -50 pg/ml- LF did not

produce an enhancing effect (Table I) and we thought this might owe to

saturation of LF receptors on the surface of MPM and AMA and that at

lower, effective concentrations, LF might bridge the interacting cells.

For this hypothesis to be valid two conditions had to be met: i) LF would

have to bind to the surface of both the AMA and the phagocytes and ii)

pretreatment of either MPM or AMA would have to increase association of

the treated cell with the untreated counterpart. The results of our

immunofluorescence studies showed that HBM, MPM and AMA indeed could bind

LF. Of note, the results obtained with HBM and MPM are in agreement with

those of other investigators who reported that radiolabeled LF binds to

HBM as well as to MPM (15, 19, 22-23). The results of the experiments in

125
which we measured concentration-dependent binding of I-LF to AMA and

determined the ability of cold LP to compete with radiolabeled LF for

binding sites on the parasites indicated that LF bound specific receptors

on the AMA surface. As to the second condition, the pretreatment of
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either AMA or MPM with LF did result in significantly enhanced association

of these cells with the untreated counterpart. Hhile these results

appeared to support the hypothesis that LF bridged phagocytes and AMA,

additional experiments were carried out to confirm it. If LF increased

the association merely by bridging MPM and AMA, blocking agents such as

anti-LF and oc-MM would be expected to inhibit at least in part the effect

both when present during LF incubation with either cell and when used to

treat MPM or AMA that had already been treated with LF (i.e., immediately

before being exposed to the untreated counterpart). The results showed

that, whenever the experimental conditions allowed the blocking of LF by

oeMM or anti-LF IgG in the fluid phase (i.e., during cell treatment;

protocols No. 1, 3 and 5), AMA-MPM association was indeed inhibited

(Tables V and VI). However, when MPM were pretreated with LF, washed, and

then incubated with either blocking agent (protocol No. 2), the LF effect

was not significantly inhibited. This observation implied that LF binding

to the MPM surface was necessary for this cell to display the enhancing

effect and that subsequent treatment with either blocking agent could not

inhibit it or reverse it. Because bridging in protocol No. 2 should have

been substantially prevented by anti-LE or oc-MM but was not, we surmised

that bridging was probably not the major factor underlying the LF effect.

In comparing the results obtained with all five protocols we noticed

that the LF effect had been seen every time that the MPM had been directly

exposed to LF either present in the fluid phase (even if blocked

afterwards) or unhindered on the AMA surface. The notion that LF contact

with the MPM was required to produce the enhancing effect was supported by

the results of protocol No. 4, showing that blocking LF bound to AMA prior
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to addition to the MPM cultures abrogated the LF effect (Table VI).

Hence, we formulated a new hypothesis, that LF activated MPM, and

proceeded to test it. First, we observed that MPM treated with LF either

prior to or during incubation with latex beads took up significantly

greater numbers of particles than did mock-treated MPM (Table VII). There

was also an increase in the proportion of MPM taking up latex beads.

An independent indication of HBM or MPM activation by LF was

provided by the results of the experiments in which parasite killing was

monitored, particularly under a condition (6-hr cell-parasite interaction

period) allowing minimal AMA killing by untreated HBM or MPM (2). Both

HBM and MPM di5posed of relatively large numbers of AMA, significantly

greater than those killed by mock-treated cells, regardless of whether LF

was present during the initial 2-hr cell-parasite interaction (Table VIII)

or used only to treat MPM or AMA prior to their interaction with the

untreated counterpart (Table IX). The large, significant difference

between the extents of AMA killed by HBM or MPM exposed to LF (>75%) and

by mock-treated phagocytes ((16.4%) denoted the ability of LF to increase

the cytolytic capacities of HBM and MPM. A similar increase in cytolysis

was seen when untreated MPM were exposed to AMA which had been treated

with LF in an otherwise identical experiment (Table IX). Consequently,

the MPM appeared to mount the LF effects (i.e., for uptake and killing)

regardless of whether the glycoprotein was presented to them in the fluid

phase or bound to the AMA surface.

If indeed LF activates MPM, untreated MPM which have already

engulfed AMA would be expected to display an increased killing capacity

after treated with the glycoprotein. This was in fact the case as



73

evidenced by the greater percentages of parasites killed by AMA-containing

MPM when they were treated with LF (Table X). These results, together

with those of Ambruso and Johnston (24), who postulated that LF can

activate neutrophils, make it tempting to speculate that LF may be a

common activator of different types of inflammatory cells.

Although activation of MPM by LF might by itself account for the

entire LF effect, a possible contributory role of LF bridging can not be

totally ruled out and the lack of effect of 50 pg LF/ml (Table 1) remains

to be explained. Conceivably, this high concentration could be

supraoptimal, reminiscent of the lack of effect of excess doses of

concanavalin A on lymphocyte proliferative responses.

The results of experiments in which scavengers of intermediates of

oxygen reduction were present in cultures before, during and after MPM

interaction with AMA indicated that H202 was the chemical species

mediating most of the parasite killing, although 02‘ and 102 also

played a role (Table XI). Previous studies with unelicited MPM showed

that these cells could kill T. cruzi AMA via H202 and that neither

SOD (scavenger of 02‘) nor histidine (scavenger of 102) had

significant inhibitory effects (2). The present results, showing that the

latter two oxygen metabolites were also involved in AMA killing by

LF-treated MPM, suggest that additional cytolytic resources available to

MPM could be recruited to the action upon LF stimulation. Production of

02‘ by LF-treated MPM that had internalized AMA was also evidenced by

the reduction of nitroblue tetrazolium to formazan; the percentage of

cells containing AMA and formazan among LF-treated MPM was much greater

than among mock treated MPM. Interestingly, LF has been shown to induce
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production of DH’in human neutrophils (24).

LF shares with fibronectin (8), another glycoprotein produced by an

inflammatory cell, an ability to enhance macrophage interaction with I;_

25251. Conceivably, other proteins of inflammatory cell origin may play

a role in the uptake and clearance of T. cruzi and perhaps other

microorganisms as well, contributing to host resistance mechanisms against

infections.
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GMWERII

LACTOFERRIN EFFECTS ON THE INTERACTION OF BLOOD FORMS OF

Trypanosoma cruzi HITH MONONUCLEAR PHAGOCYTES
 



ABSTRACT

Pretreatment of mouse peritoneal macrophages (MPM) or human blood

monocytes (HBM) with lactoferrin (LF) -a glycoprotein secreted by

neutrophils, whose levels increase in inflammatory conditions- modified

the outcome of the interaction between these cells and blood

(trypomastigote) forms of Trypanosoma cruzi. A 24-hr LF pretreatment

was required for MPM to di5play an increased capacity to take up the

organisms whereas HBM -whose density of surface LF receptors is greater

than that of MPM- required a pretreatment of only 2 hr. Since the extent

of trypomastigote incorporation by untreated MPM was not significantly

affected by treating the former with LF, and indirect immunofluorescence

tests failed to reveal the presence of LF receptors on the surface of

these organisms, it appeared that the effect of LF was mostly on MPM.

Hhen MPM were treated with LF for 2 hr and then exposed to the-

trypomastigotes for 2 hr, the numbers of parasites per 100 MPM recorded 70

hr later were smaller than those of mock-treated MPM, but there was no

significant difference in the proportions of MPM taking up parasites. MPM

which had ingested trypomastigotes and were then treated with LF also

cleared the organisms faster than mock-treated MPM. Lactoferrin

pretreatment also increased the trypanocidal capacity of HBM. H202

was involved in parasite killing by LF-treated MPM since catalase

prevented it. These results show that a neutrophil product can facilitate

the uptake and disposal of blood forms of T. cruzi by'mononuclear

phagocytes and suggest that LF may influence host defense mechanisms

against infection with this parasite.
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INTRODUCTION

Although inflammatory cell infiltration is one of the early

developments in the pathology of Chagas' disease (reviewed by Andrade A

Andrade, 1979 and by Romaha, 1963), its precise role in host defense or

pathogenesis remains to be defined. Several investigators have examined

interactions between some types of inflammatory cells and mammalian forms

of Trypanosoma cruzi. This yielded information about the ability of

macrophages or monocytes to take up and destroy bloodstream (trypomastigo-

te)(Alcantara A Brener, 1980; De Almeida Maria, Alcantara A Brener, 1982;

Kierszenbaum, Knecht, Budzko A Pizzimenti, 1974; Nathan, Nogueira,

Juangbhanich, Ellis A Cohn, 1979; reviewed by Scott A Snary, 1982) and

intracellular (amastigote) forms of the parasite (Carvalho, Meirelles, De

Souza A Leon, 1981; Villalta A Kierszenbaum, 1984, 1984a), and the

capacity of eosinophils and neutrophils to destroy these organisms via

antibody-dependent cell-mediated cytotoxicity (Kierszenbaum, 1979;

Kierszenbaum A Hayes, 1980; Okabe, Kipnis, Calich A Dias da Silva, 1980)

or after phagocytosis (Kierszenbaum g£_gl., 1974; Kierszenbaum, Villalta

A Tai, 1986). There have also been reports concerning biochemical factors

and reactions involved in the uptake of blood forms of T. cruzi by

macrophages (Connelly A Kierszenbaum, 1984, 1985; Villalta A Kierszenbaum,

1983, 1983a; Hirth A Kierszenbaum, 1982, 1983). Some of our recent

efforts have focused on proteins associated with inflammatory conditions

and their ability to modulate the outcome of the interaction of the two

mammalian forms of T. cruzi with inflammatory-type cells (Hirth A

Kierszenbaum, 1984; Villalta A Kierszenbaum, 1986). He first examined the
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effects of lactoferrin (LF) -an iron-binding glycoprotein produced by

neutrophils in increased amounts during inflammatory conditions

(Pryswansky, Macrae, Spitznagel A Cooney, 1979)- on the fate of

amastigotes in mononuclear phagocytic cells (Luna A Kierszenbaum, 1985).

In this paper we report the effects of LF on mononuclear phagocyte

interaction with the trypomastigote form.



83

MATERIALS AND METHODS

Animals. Four to six-week-old Crl:CD-1(ICR)BR Swiss mice were purchased

from Charles River Laboratory (Portage, Michigan).

T. cruzi. Tulahuéh strain trypomastigotes were isolated from blood of

mice infected intraperitoneally 2 weeks previously with 2 X 105

trypomastigotes. The organisms were separated from the blood cells by

density gradient centrifugation over Isolymph (Gallard Schlesinger, Carle

Place, New York) (Budzko A Kierszenbaum, 1974) followed by chromatography

through a diethylaminoethyl-cellulose column (Villalta A Leon, 1979). The

flagellates were washed with Dulbecco's modified minimal essential medium

containing penicillin (100 units/ml) and streptomycin (100 pg/ml) (DMEM)

and resuspended at 1 X 107 organisms/ml in the same medium supplemented

with either 1% bovine serum albumin (Sigma Chemical Co., St. Louis,

Missouri) (DMEM+BSA) or 10% fetal bovine serum (Gibco, Grand Island, New

York) (DMEM+FBS). Parasite viability was always >99.8%.

Mouse peritoneal macrophages (MPM). Unstimulated mice were sacrificed

by excess ether inhalation. The methods for collecting the resident

peritoneal macrophages and for setting up monolayers of these cells on

Lab-Tek microscope slide tissue culture chambers have been described in

detail elsewhere (Zenian A Kierszenbaum, 1982). These monolayers were

incubated at 37°C for 18 hr in a 5% COZ-in-air incubator (saturated

with water vapor) and washed immediately before being subjected to the

appropriate treatment. These cultures consisted of >98%

nonspecific-esterase-positive cells with typical macrophage morphology.

Human blood monocytes (HBM). Blood was drawn from healthy donors. The



methods to purify monocytes and to prepare adherent monolayers on Lab-Tek.

tissue culture chambers have been described (Villalta A Kierszenbaum,

1984a). These monolayers were incubated at 37°C for 2 hr in a 5% C02

incubator and washed with DMEM prior to further treatments. These cultures

consisted of>99%.nonspecific-esterase-positive, trypan-blue-excluding

monocytes.

Pretreatment of MPM or HBM with LF. Monolayers of MPM or HBM were
 

incubated at 37°C for variable periods of time with 0.3 ml of DMEM+FBS

alone or containing varying concentrations of LF (see Results). Unless

otherwise stated, LF was removed from the cultures by three washings with

DMEM prior to incorporating T. cruzi into the cultures (see below). The

batches of human LF (at 10% iron saturation) were purchased from Sigma.

Pretreatment of trypomastigotes with LF. Nine volumes of parasite
 

suspension were mixed with one volume of DMEM+BSA alone or containing LF

solution at ten times the desired final concentration in the reaction

mixtures and incubated at 37°C for 2 hr . After washing the trypanosomes

twice with DMEM by centrifugation (800 X G, 4°C, 20 min), they were

resuspended in DMEM+BSA at 1 X 107organisms lml.

Determination of T. cruzi uptake by MPM or HBM. All experimental and
  

control conditions were tested in triplicate. Lactoferrin-treated or

mock-treated MPM or HBM monolayers received 0.3 ml of the appropriate

parasite suspension and incubated at 37°C and 5% CO2 for 2 hr . After

removing the free parasites by three washings with DMEM, the cultures were

fixed with absolute methanol and stained with Giemsa. Not less than 200

cells were screened microscopically (X1000), recording the total number of

screened cells, the number of parasites associated with the screened cells
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and the number of MPM or HBM associated with one or more trypomastigotes.

These values were used to calculate the percentage of MPM or HBM with

parasites and the average number of organisms per 100 cells.

Determination of parasite killing by MPM or HBM. Co-cultures of :1;

55251 and MPM or HBM were incubated at 37°C and 5% CO2 for 2 hr as

described in the preceding subsection. After removing the parasites, 0.3

ml of fresh DMEM+FBS was added and the cell monolayers were further

incubated under the same conditions for various periods of time. These

cultures were terminated and processed for counting as described above.

All tests were performed in triplicate. In some experiments, untreated

MPM which had already internalized untreated parasites were tested for

their capacity to kill the latter after LF was added to the culture

medium. In this case, MPM monolayers were co-cultured with the parasites

as described above and, after removing the free flagellates, 0.3 ml of

DMEM+FBS alone or containing 10 pg LF/ml was added. Replicates of these

cultures were then incubated at 37°C for various periods of time, washed

with DNEM and terminated by fixation as described above. In some

experiments, catalase (recrystallized beef liver catalase, Sigma) was

added in 0.4 ml MM+FBS to attain a final concentration in the cultures

of 160,000 units/ml and remained present in the culture medium throughout

the incubation period. Heat-inactivated (100°C, 20 min) catalase was

used in control assays.

Immunofluorescence assay for LF. Binding of LP by T. cruzi

trypomastigotes was tested by incubating parasites fixed with 0.25%

formaldehyde in phOSphate-buffered saline pH 7.0 (PBS) smeared on

microscope slides with solutions containing 10 or 100 pg LF/ml in
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DMEM+BSA for 2 hr . After washing three times with PBS, the smears were

incubated with fluorescein-labeled rabbit anti-human LF IgG (Cappel

Laboratories, Nest Chester, Pennsylvania) at 37°C for 30 min, washed

again with PBS, air dried, and examined by fluorescence microscopy.

Presentation of results and statistics. All results are expressed as

the mean 1_1 S.O. Differences were considered to be significant if

P50.05 as determined by Student's “t“ test. The sets of results

presented in the tables are typically representative of two to four repeat

experiments.
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RESULTS

Effects of LF on the uptake of T. cruzi trypomastigotes by MPM or

HBM1Pretreatent of MPM with 10 pg LF/ml altered their capacity to take

up blood forms of T. cruzi as revealed by increases in both the

percentage of parasite-containing MPM and the average number of organisms

per 100 MPM; these increases were seen immediately after removing the

non-bound parasites (i.e., at 0 hr) (Table 1). Although this effect was

consistently produced by a 24-hr pretreatment of the MPM with LF, a

relatively small but nevertheless significant increase was seen in some

experiments (0.9., the one represented in Table 1) after a 12-hr

pretreatment. Experiments performed with HBM showed that these cells were

also capable of greater parasite uptake when pretreated with LF but, in

this case, the effect was seen after pretreating the HBM with either 10 or

100 pg LF/ml for only 2 hr (Table 2, results obtained at 0 hr).

No significant change in the extent of parasite interaction with

untreated MPM was seen when the trypomastigotes were pretreated with up to

100 pg LF/ml for 2 hr (data not shown). This negative result led us to

test whether or not the parasite would bind LF. The results of indirect

immunofluorescence tests failed to produce any evidence of such binding

when the flagellates were incubated with up to 100 pg LF/ml.

Effects of LF on trypomastigote killing by MPM or HBM. The results of

experiments in which the MPM were pretreated with 10 pg LF/ml for 2 hr,

washed, and then exposed to T. cruzi for 2 hr in the absence of LF,

showed that the number of parasites per 100 MPM was significantly smaller

than that of mock treated MPM when measured 70 hr later, but not 22 or
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Footnotes to table 1

MPM were incubated with LF for 6, 12 or 24 h, washed and

cultured with the parasites for 2 h. After removing the

non-bound organisms, one third of the MPM cultures were fixed

whereas the remaining cultures received fresh medium and were

incubated for an additional 10 or 22 h.

(%C), percent increase in parasite uptake by LF-treated MPM

(calculated with respect to the value obtained in the absence of

LF). A %C value is shown where it was statistically significant

(P50.05).

{%R), percent reduction in parasite load calculated with reSpect

“to the corresponding value obtained immediately after removing

the non-bound organisms (O-h values); a %R value is shown where

it was statistically significant (P50.0S).
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46 hr later (Table 3).However, the percentages of infected MPM showed

insignificant variations during the 70-hr period. Similar results were

obtained when 10 pg LF/ml was present in the MPM cultures during the 2-hr

period that these cells were exposed to the trypomastigotes (Fig. 1).

Because in our experimental system free parasites usually appear in the

culture medium approximately 4 days after MPM infection (Lima and

Kierszenbaum, unpublished results), and this would have complicated the

interpretation of the results, measurements were not made after 70 hr.

In addition to enhancing parasite uptake by MPM or HBM, pretreatment

of MPM with 10 pg LF/ml for 24 hr and of HBM with 10 or 100 pg LF/ml for

2 hr increased their cytotoxic capacities (Table 1, results obtained

after 10 or 22 hr and Table 2, results obtained after 10 hr). As seen in

Table 1, the reductions in the parasite contents of LF-treated MPM over

the 10- and 22-hr incubation periods after the removal of free flagellates

were significantly greater than those effected by MPM which had been mock

treated with medium alone. Similar results were obtained when HBM were

used (Table 2). Two alternative explanations were compatible with these

observations: LF-treated cells could destroy more parasites simply

because they had initially taken up larger numbers of organisms or because

they had been activated. To test these possibilities, we measured the

effect of LF on the cytotoxic capacity of MPM after parasite

internalization. The results revealed that substantial parasite growth

had occurred in the mock-treated MPM over a 72-hr period whereas the

LF-treated MPM were able not only to contain growth but also to destroy

many organisms (Table 4).

Mechanism of parasite killing, Killing of the intracellular, amastigote
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Footnotes to Table 3

The MPM cultures were incubated with 10 pg LF/ml for 2 h, washed and

then incubated with trypomastigotes for 2 h. After removing the free

organisms, some cultures were fixed (0 h) and the rest received fresh

DMEM+FBS and were further incubated for the indicated periods of

time.

See footnote § under Table 1.
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Figure 1

TIME, hr
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Footnotes to Table 4

MPM monolayers were incubated with the parasites for 2 h and washed

to remove the non-bound organisms. Hhereas some cultures were

immediately terminated by fixation (top row of values), the remainder

received either 01EM+FBS or the same medium containing 10 pg LF/ml,

and were further incubated for the indicated periods of time before

termination.

See footnote § under Table 1.

A negative %R represents an increase in the parasite load of MPM.
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form of T. cruzi by unstimulated MPM was previously found to be mediated

by 11202 (Villalta A Kierszenbaum, 1984a). To find out if LF-treated

MPM killed the blood forms of this parasite by a similar mechanism, MPM

were first pretreated with 10 pg LF/ml for 24 hr, then incubated with the

flagellates for 2 hr, and later on washed with and incubated in fresh

medium for an additional 24 hr, having catalase -a scavenger of H202-

present or absent during these steps. As can be seen in Table 5,

catalase, but not heat-inactivated catalase, markedly inhibited parasite

killing by LF-stimulated MPM. Catalase and heated catalase had no effect

of their own on parasite internalization by MPM whether or not these cells

had been treated with LF.
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Footnotes to Table 5

MPM monolayers were treated with LF in the presence or absence

of catalase or heat-inactivated catalase (HI-catalase) for 24 h,

washed and incubated further with T. cruzi for 2 h in the

presence or absence of catalase or HI-catalase. After removing

the non-bound organisms, the cultures were either fixed

immediately (0 h) or incubated for an additional 22 h with fresh

medium containing catalase or HI-catalase before termination.

See footnotes under Table 1.
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DISCUSSION

The conditions inducing increased trypomastigote uptake varied

depending on whether MPM or HBM were used. MPM had to be pretreated with

LF for at least 24 hr for the phenomenon to be seen (Table 1) whereas HBM

required only a 2-hr pretreatmnet (Table 2). Van Snick and Masson (1976)

determined the average number of LF receptors per MPM to be 2 X 107 per

cell and Bennett and Davis (1981) found the corresponding value for HBM to

be 2 X 108; the presence of a greater number of LF receptors on the HBM

could explain why these cells responded faster than MPM to LF in terms of

increased parasite uptake.

The number of receptors for LF on the trypomastigotes, must be

relatively small, if any, because indirect immunofluorescence tests to

detect bound LF on these organisms were systematically negative. The lack

of receptors for LF on trypomastigotes and the fact that pretreatment of

this parasite form did not alter its uptake by untreated MPM rendered

unlikely the possibility that LF could have increased parasite uptake by

establishing a molecular bridge between the two cells.

Hhether LF was present during the 2-hr period of MPM-T. cruzi

interaction or the MPM were pretreated with LF for 2 hr, the percentages

of MPM with parasites did not vary significantly during the 70-hr

observation period (Fig. l and Table 3). Instead, the number of parasites

per 100 LF-treated MPM was significantly reduced during the same period of

time. These findings, viewed in the light of the concomitant increase in

the parasite load of mock-treated MPM, indicated that LF-treated MPM had

an increased capacity to kill T. cruzi trypomastigotes. Indicating that
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the reduction in parasite load fostered by LF involved parasite killing

was the ability of catalase to inhibit this effect (Table 5). This enzyme

has been shown to inhibit trypomastigote destruction by MPM stimulated by

interferon gamma (Hirth, Kierszenbaum, Sonnenfeld A Zlotnik. 1985). The

development of enhanced cytotoxicity by LF-treated MPM was time-dependent,

requiring preincubation with 10 pg LF/ml for a period of 12 to 24 hr

before being detectable (Table 1). However, HBM developed a similar

capacity after only 2-hr of pretreatment with the same concentration of LF

(Table 2). This kinetic difference might also be a function of the

density of LF receptors on the surface of phagocytic cells alluded to

above.

Hhen the MPM were pretreated with LF for 2 hr, 0 reduction in their

parasite load was seen 70 hr after removal of the free parasites (Table

3). However, this effect occurred much earlier (i.e., after 10 hr) when

the MPM were pretreated with LF for 24 hr (Table 1). Hhile these results

stress the stimulatory effect of LE on MPM cytotoxicity, they do not

provide a definitive explanation for the noted kinetic difference.

Trypomastigotes were also destroyed at faster rates when MPM which

had already ingested the flagellates were treated with LF (Table 4). This

finding reinforces that LF increases the cytotoxic capacity of MPM and

indicates that enhanced killing was not necessarily dependent on the

initial uptake of a larger number of organisms. The involvement of

H202 in parasite killing by LF-treated MPM was denoted by the

inhibitory effect of catalase (Table 5). The results, however, do not

clarify whether H202 was directly toxic for the parasite or acted

indirectly, via production of other toxic 02 reduction intermediates.



103

Of interest in this context is that H202 is also involved in

trypomastigote killing by MPM when these cells are stimulated with

interferon gamma (Hirth g£_gl1, 1985). Thus, H202 would play a role

in T. cruzi destruction within MPM following activation by different

stimuli.

Unlike amastigotes (Lima A Kierszenbaum, 1985), trypomastigotes did

not bind LF. Furthermore, the macrophages required a longer (24 hr)

pretreatment with LE to display enhanced uptake and killing of

trypomastigotes than to achieve similar effects with amastigotes (1 hr).

These differences, for which we can not provide an explanation at the

present time, are possibly related to the distinct biological features of

these two life cycle stages of T. cruzi.

The noted activities of LF might be related to the level of iron

saturation, its cationic property, or to both. Finally, it is noteworthy

that the concentrations of LF found to enhance phagocyte interaction with

T. cruzi are within the range found in the plasma of patients with

inflammatory conditions (Hansen, Karle, Andersen, Malmquist A Hoff, 1976;

Zenian A Kierszenbaum, 1982; Lima A Kierszenbaum, 1985) similar to those

occurring in T. cruzi infection and might be involved in host defense.

These possibilities deserve further study.
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LACTOFERRIN EFFECTS ON PHAGOCYTIC CELL FUNCTION.

DISTINCT ROLES IN MODULATION 0F MACROPHAGE INTERACTION HITH

A PARASITE (Trypanosoma cruzi)
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ABSTRACT

The present studies on the role of iron in the ability of

lactoferrin (LF) -a neutrophil glycoprotein whose levels in body fluids

increase in inflammatory conditions- to stimulate macrophage functions

unveiled two distinct modes of action involved in modifying uptake and

killing. The presence of iron was not a requirement for LP to enhance the

capacity of mouse peritoneal macrophages (MPM) to take up Trypanosoma

Egg51_amastigotes (AMA) or latex particles. In contrast, iron was

required to be in the molecule in order to stimulate AMA killing by the

MPM. Thus, ApoLF was incapable and LF lost its ability to enhance AMA

killing in the presence of the iron chelator deferoxamine. Shnilar

results were obtained by using diethylenetriaminepentaacetic acid, an iron

chelator which is not incorporated into cells, suggesting that iron had to

be a part of the LF molecule while LF was on the MPM membrane. Moreover,

ApoLF did increase MPM killing of AMA when ferric ions were restored to

the molecule. Such restoration was demonstrable also when iron was added

to the culture medium after MPM treatment with, and removal of the

non-bound, ApoLF. Interestingly, ferrous and ferric ions were equally

effective in restoring activity to ApoLF and, though to a lesser extent,

also zinc. Transferrin did not alter the capacity of MPM to either take

up or kill the AMA, suggesting that the noted LF effects were probably

specific for the latter protein. Immunofluorescence studies revealed that

ApoLF and LF at either 20 or 100% iron saturation bound to approximately

the same proportion of MPM, and that the fluorescence intensity of

positive cells was comparable in all three cases. Thus, the lack of
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effect of ApoLF on MPM killing is unlikely to be due to ApoLF not binding

to MPM. Killing of internalized AMA by LF-treated MPM, known to be

mediated at least in part by H202, OE'and 102, was found in this

work to involve also OH' Hhile providing information concerning the

requirements for LE to enhance macrophage killing of T. cruzi, these

results also evidence a clear separation of the uptake and killing

functions of macrophages which depends on the activating stimulus.
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INTRODUCTION

Lactoferrin (LF), is a typical example of a secretion product of

an inflammatory-type cell, the neutrophil (1; reviewed in reference 2),

which can modulate the functions of another inflammatory cell. For

example, LF has been reported to inhibit the production of colony-

stimulating factor by human monocyte-derived (3) and mouse (4, 5)

macrophages, and to increase monocyte tumoricidal activity (6). He

previously reported that treatment with lactoferrin (LF) increases the

capacity of mouse resident peritoneal macrophages (MPM) to interact with

amastigote forms of Trypanosoma cruzi (AMA), the causative agent of
 

Chagas' disease (7). In this case, the LF effects translated into greater

uptake of this parasite, followed by killing at a significantly faster

than normal rate. This model system of macrophage interaction with a

microorganism was used in the present work to explore the molecular

requirements for LF to evoke the above-mentioned effects. LF is an

iron-binding protein (reviewed in references 8 and 9) and the presence or

absence of iron ions in the molecule has been shown to be an important

factor in determining its ability to inhibit colony-stimulating factor

production by human macrophages (3, 5). For these reasons, we examined

whether iron was a requirement for LP to enhance the uptake and killing of

T. cruzi by MPM. The results presented in this paper established that

the presence or absence of iron in the LF molecule affords a clearcut

distinction between these two macrophage functions that is emphasized by

different molecular requirements.
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MATERIALS AND METHODS

Parasites. Tulahuén strain T. cruzi amastigotes were

prepared as described in detail previously (10). Parasite 505pensions at

2.5 X 107 organisms/ml were prepared in minimal essential medium with

Hank's salts containing 100 IU penicillin and 100 pg streptomycin per ml

(FEM) plus 1% BSA (NEM+BSA). All of the suspensions used in this work

consisted exclusively of amastigotes (>99% viable).

Reagents. Human LF was purchased from Sigma Chemical Co. (St.

Louis, MO) and was verified to be 20% iron saturated as described by

Ambruso and Johnston (11). Iron-free LF (ApoLF) was prepared by first

incubating a mixture containing 500 pg/ml LF and 0.25M deferoxamine

(Ciba-Geigy, Sumnit, NJ) in phosphate-buffered saline pH 7.2 (PBS) at

37°C for 1 hr; deferoxamine was removed by dialysis at 4°C vs. PBS.

This material was determined to be iron-free. LF was saturated with

ferric ions by incubating a mixture containing 1 mg/ml LF in PBS with lmM

ferric citrate at room temperature for 24 hr. Excess iron ions were

removed by dialysis vs. PBS (4°C, 24 hr, three changes of PBS). The

solutions of these proteins were aliquoted and stored at -20°C until

used. Human Transferrin at 0% and 100% iron saturation were purchased

from Calbiochem (La Jolla, CA). All necessary dilutions of these reagents

were made in MEM+BSA.

Mouse peritoneal macrophages (MPM). The methods to obtain MPM

from Crl:CD-1(ICR)BR Swiss mice (Charles River Laboratory, Portage, MI)

and to prepare monolayers of these cells have been described elsewhere(7).
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The cultures routinely consisted of >98% nonspecific-esterase positive

cells with typical macrophage morphology.

Pretreatment of MPM with LP or ApoLF. Monolayers of MPM were

incubated at 37°C for 1 hr with 0.2 ml of MEM+BSA alone or containing 10

pg/ml of Apolactoferrin (ApoLF) or LP at 20% or 100% iron saturation.

The monolayers were then washed three times with MEM and used in the

assays to determine macrophage-parasite interactions (see below).

Determination of MPM association with AMA. All experimental and

control conditions were tested in triplicate. MPM cultures treated with

either LF or MEM+BSA received 0.1 ml of AMA suspension plus 0.2 ml of

MEM+BSA and were incubated at 37°C in a 5% COz-in-air atmosphere for 2

hr. After removing the free organisms by five washings with MEM, the

cultures were fixed with absolute methanol and stained with Giemsa. At

least 200 cells were examined microscopically (X1000) on each culture.

The number of parasites associated with these cells and the number of MPM

with and and without parasites were recorded and used to calculate the

mean percentage of MPM with parasites and the average number of organisms

per 100 MPM.

Determination of MPM killing of AMA. A replicate set of

cultures initiated as described above was further incubated -after

renoving the non-bound AMA- with 0.3 ml of MEM supplemented with 10%

heat-inactivated (56°C, 1 hr) FBS dialyzed vs. PBS (4°C, 24 hr)

(1EM+dFBS) at 37°C (5% C02) for an additional 6 hr. Termination and

processing of these cultures were as described above.

In experiments designed to test the iron dependency of the

observed LF effects on MPM function, MPM were simultaneously incubated
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with LF and various concentrations of deferoxamine (see Results) at

37°C for 1 hr. These reagents were washed off with MEM prior to exposing

the MPM to AMA.

To investigate the mechanism(s) underlying our observations, a

protocol was used in which deferoxamine, diethylenetriaminepentaacetic

acid (DTPA), urea, thiourea or oc-ketobutyric acid was present in the

medium from 2 hr after placing the MPM into the culture chambers until

termination of the experiment.

In experiments designed to test the effect of cation restoration

of the LF effects on MR! association with and killing of AMA, the relevant

cation (see Results) was added to the culture medium immediately after

M04 pretreatment with ApoLF and the cultures were further incubated for 1

hr. After washing three times with MEM, the parasites were added. The

rest of the experiment proceeded as described above for determination of

both MPM association with and killing of AMA.

Indirect immunofluorescence assay for LF. The method to

establish LF binding to both MPM and AMA has been described (7).

Latex bead uptake by ApoLF- or LF-treated and mock-treated MPM.

Cultures of MPM were incubated at 37°C (5% C02) for 1 hr with ApoLF or

with LF at 20% or 100% iron saturation and washed three times with MEM

before receiving 0.3 ml of latex bead suspension (8.3 X 106 beads/ml

MEM+BSA; average bead diameter 1 pm, Sigma). After further incubation

for 2 hr and removal of the free heads, the cultures were fixed with

methanol, stained with Giemsa and examined microscopically (X1000) to

establish the percentage of MPM with latex beads and the number of beads

per 100 MPM.
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Presentation of results and statistics. All results are

expressed as the mean 1_1 5.0. Differences were considered to be

significant if P50.05 as determined by the Mann-Whitney “U“ test. The

sets of results presented in the tables are typically representative of

two to three separate repeat experiments.
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RESULTS

Effects of iron content on the capacity of LP to enhance MPM

association with or killing of AMA. In previous work, we showed that LF
 

at 20% iron saturation enhanced the capacity of MPM to associate with and

kill T. cruzi AMA (7). In the present work, this effect was reproduced

and, furthermore, found to be also induced by LF at 100% iron saturation 1

(Table I). However, iron removal from the molecule prior to its use in E‘

the treatment of MPM virtually abrogated the enhanced killing effect but (#1

failed to alter the capacity of these cells to associate with AMA. ApoLF ‘ )

recovered its capacity to enhance parasite killing afteg iron replacement,

achieved byinixing ApoLF with ferric citrate (excess iron ions were

removed by dialysis). Ferric ions alone, in the absence of ApoLF, had no

detectable consequence on the extent of either MPM-parasite association or

killing. To confirm the iron requirement for LF to enhance AMA killing,

we used an alternative approach in which the MPM were incubated with LF in

the presence of the iron chelator deferoxamine and then exposed to the

parasites. A representative set of results is presented in Table 11,

showing that the extent of parasite killing by LF-treated MPM was reduced

from 73% to 44% and 10% in the presence of 0.5mM and 5mM deferoxamine,

re5pectively. The lowest concentration of deferoxamine tested, 0.05mM,

was ineffective in curtailing the stimulatory effect of LF on parasite

destruction. Deferoxamine alone had no detectable effect on either MPM

association with and killing of AMA at any of the tested concentrations.

In some experiments, we used DTPA, an iron-chelating agent which, unlike

deferoxamine, can not enter cells (12). As shown in Table III, DTPA was

as effective in inhibiting the LF-induced enhancement of AMA killing as
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Footnotes to Table I

aCultures of MPM were incubated with the solution of the

indicated material(s) at 37°C for 1 hr, washed with MEM and then

incubated with AMA for 2 hr. Half of the cultures were then terminated by

fixation whereas the other half received MEM+dFBS and was incubated for an

additional 6 hr. ApoLF or LF were used at 10 pg/ml.

bThe difference between this value and the corresponding control

was statistically significant (P50.05). Values in brackets represent

the actual decrease in the average number of parasites per 100 MPM.

Values in parentheses represent the percentage of reduction in parasite

contents occurring over the 6-hr time interval. Values in brackets and

parentheses are shown only where the difference was statistically

significant with re5pect to the corresponding 2-hr value.
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Footnotes to table III

aHhen designed to be present, DTPA or deferoxamine was added to

the culture medium 2 hr after placing the MPM in the culture chambers and

remained present until the end of the experiment, including washings.

Otherwise, the protocol was as described in the footnote to Table I.

bSee footnote to Table I.
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deferoxamine. It is noteworthy that, under the tested conditions, neither

deferoxamine nor DTPA had any detectable effect on MPM or AMA viability as

determined by trypan-blue exclusion and vibratile in situ motion,

re5pectively. Hhen results obtained in repeat experiments were compared,

the extents of the noted effects sometimes varied. However, the effects

themselves were always readily reproducible and statistically significant.

He considered the possibility that the absence of iron in the LF

molecule might have affected its ability to be bound by MPM and conducted

 
several types of experiments to test it. Hhen MPM were incubated with 1

solutions containing the same concentrations of ApoLF, LF at 20% iron

saturation and LF at 100% iron saturation, the percentages of cells

binding these proteins, determined by immunofluorescence, were 76 :_4,

84 :_6 and 86 :_8 percent, re5pectively; the control value obtained

with MPM incubated with MEM+BSA alone was 0 :_O percent. The intensity

of the fluorescence of the positive MPM was comparable in all three cases.

Moreover, MPM pretreated with ApoLF, LF at 20% iron saturation and LF at

100% iron saturation increased the capacity of MPM to ingest latex beads

similarly (from a control level of 57 1.3 percent to 125 :_11, 107 :_

11 and 135 1_2 percent, re5pectively). This had also been the case with

AMA uptake (Table I). In an alternative approach, we incubated the MPM

first with ApoLF and, after washing the cells exhaustively, incorporated

ferric ions into the system in an amount sufficient to have saturated the

initial amount of LF. The result was enhanced AMA killing (Table IV).

Iron added to MPM cultures which had been mock-treated with MEM+BSA alone

had no detectable consequence.

The latter protocol was used to find out also whether other
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Footnotes to Table IV

aStep A: cultures of MPM were incubated with the solutions of

the indicated materials at 37°C for 1 hr and washed with MEM. Step 8:

the cultures were further incubated with the indicated solutions at 37°C

for 1 hr, washed and then incubated with AMA for 2 hr. Half of the

cultures‘were terminated by fixation whereas the other half received

MEM+dFBS and was incubated for an additional 6 hr. ApoLF or LP were used

at 10 uglml.

bSee footnote to Table I.
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cations previously reported to bind LE (13, 14) could also restore the

capacity of ApoLF to induce greater AMA killing. As shown in Table IV,

ferrous but not cupric cations afforded total restoration, and zinc had

only a partial effect.

To test whether the effects of LF on MPM interaction with I;

95251 AMA were characteristic of this protein or were shared by another

iron-binding protein, parallel experiments were performed using

iron-saturated LF, ApoLF, transferrin and apotransferrin. Neither

transferrin, tested at concentrations ranging from 1 to 10,000 pg/ml, nor

1,000 pg apotransferrin per ml could enhance MPM association with or

killing of T. cruzi whereas the effects of apoLF on MPM-AMA association

and those of iron-saturated LF on both association and killing were

readily seen (Table V). In related experiments we tried to restore the

ability of ApoLF to enhance killing of T. cruzi AMA by pretreating the

MPM with a 10pg/ml solution of this protein in the presence of 1000pglml

iron saturated transferrin and later exposing these macrophages to the

parasites. Hhereas ApoLF, ApoLF in the presence of transferrin or

transferrin itself were not able to stimulate killing of AMA by MPM, this

ability was readily demonstrated by a solution of 100% iron saturated LF

(data not shown).

Effects of scaveggers of hydroxyl radical on AMA killing by

LF-treated MPM. 'He have previously shown the involvement of at least

1

 

H202, 05 and

MPM (7). There have been reports that LF stimulates OH' production by

02 in the killing of T. cruzi AMA by LF-treated

neutrophils (11) and iron ions have been shown to play a role in the

formation of OH' radicals via the Haber-Heiss reaction (15).
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Footnotes to Table V

aCultures of MPM were incubated with the indicated solutions at

37°C for 1 hr, washed with MEM and then incubated with AMA for 2 hr.

Half of the cultures were terminated by fixation whereas the other half

received MEM+dFBS and was incubated for an additional 6 hr.

Transferrin was 100% iron saturated.

bSee footnote to Table I.
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Therefore, we looked into the possible involvement of OH’ in AMA killing

in our assay system. The results indicated that thiourea and oc-ketobu-

tyric acid, both scavengers of OH' radicals (12, 16), significantly

reduced the extent of the enhancement of MPM cytotoxicity induced by.LF

(Table VI). Urea, a thiourea analog lacking this scavenging property, was

ineffective. At the tested concentrations, thiourea, urea and oeketo-

butyric acid did not affect the viability of MPM or the AMA to any

appreciable extent (data not shown).
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Footnotes to Table VI

aHhen designed to be present, thiourea, urea or oc-ketobutyric

acid was added to the culture medium 2 hr after placing the MPM in the

culture chambers and kept in it throughout the entire experiment,

including washings. Otherwise, the protocol was aS'described in the

footnote to Table I.

bSee footnote to Table I.
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DISCUSSION

The observation that iron-containing LF but not ApoLF enhanced the

capacity of MPM to kill T. cruzi, together with the recovery of such

activity afforded by iron restoration to ApoLF, contrasted with the lack

of an iron requirement for this glycoprotein to enhance MPM-parasite

association (i.e., binding and internalization). This difference infers

at least two separate mechanisms for the noted stimulatory effects of LF.

The increased capacity of MPM to take up AMA or latex beads after MPM

incubation with either ApoLF or LF attributed this property to the

glycoprotein itself. Since both ApoLF and LF were found to bind to the

MPM surface and receptors for LP have been shown to be present on the

surface of both MPM (17) and T. cruzi AMA (7), any of these molecules

could have conceivably established a molecular bridge between MPM and AMA,

facilitating parasite uptake in a manner similar to opsonization.

However, ApoLF and LF also stimulated latex bead uptake by MPM, suggesting

that a bridging mechanism was not necessary for MPM to denote a greater

phagocytic capacity. Nevertheless, bridging can not be ruled out as a

contributing mechanism.

The concept that enhanced AMA killing required the presence of

iron in the LF molecule was supported by several lines of evidence.

First, parasite killing was enhanced by iron-containing (whether at 20 or

100% saturation) LF but not by ApoLF. Second, enhanced killing was not

seen when the MPM were treated with iron-containing LF in the presence of

deferoxamine, an iron chelator. The magnitude of this effect was

dependent upon the concentration of deferoxamine and comparable results
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were obtained by using DTPA, another iron chelator. Third, we were able

to induce killing enhancement with ApoLF after iron restoration. It is

noteworthy that the tested concentrations of deferoxamine or DTPA were not

cytotoxic for the MPM and, therefore, could not have prevented parasite

disposal via killing the host cell.

The presence of DTPA in the culture medium during MPM treatment

with LF prevented the enhancement of AMA killing. Since this chelator can

not enter into living cells (12), these results suggest that DTPA must

acquire iron from the LF molecule in the culture medium or while the

protein is bound to the MPM surface to suppress greater killing activity.

The idea that ApoLF is binding to the MPM surface is supported by the fact

that the ability to enhance MPM killing of AMA was restored to ApoLF by

free iron ions in the culture medium gj£g[_ApoLF treatment of MPM (i.e.,

after the removal of non-bound protein).

Free iron ions did not induce greater parasite killing by MPM

(Tables I and IV), indicating that this effect required the benefit of a

carrier. Yet, a mere ability to bind and transport iron was not sufficient

since the phenomenon could not be induced with transferrin (Table V).

Hypothetically, LF could provide distinct signals to MPM, leading

to greater phagocytic and cytotoxic capacities. Binding of the

glycoprotein, regardless of the presence of iron, would increase

phagocytosis whereas iron would also be required to trigger the toxic

mechanism(s). Alternatively, surface-bound LF might initiate the process

that leads to increased killing but iron transported into cell by LF could

be essential for the effector mechanism to be mounted. However, this

possibility was not in keeping with the results of experiments in which

the MPM were simultaneously treated with ApoLF and transferrin
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[which is known to bind to surface receptors other than those for LF (17,

18) and should have transported iron into the cells], since killing was

not increased under these conditions. 0n the other hand, iron brought in

by transferrin might not have been found where ApoLF could have used it.

The present results do not specify if the presence of the

appropriate cation in the LF molecule causes the molecule to bind to a

specific MPM surface site(s) -different in some manner from that to which

ApoLF binds- enabling it to elicit enhanced cytotoxicity. However, ApoLF

did stimulate AMA killing when zinc was present instead of iron (Table

IV). This finding could be interpreted in terms of a need for LF to be in

a certain conformation (attained best with iron) necessary for the protein

to bind to the proper receptor to be active in promoting killing or the

participation of iron and/or zinc in the cytotoxic mechanism.

Iron plays a role in the generation of oxygen reduction

metabolites (reviewed in reference 15), some of which have been shown to

mediate MPM killing of T. cruzi AMA (7). Internalized LF might promote

AMA killing within MPM via iron transport. If so, this property would be

unique to LP because transferrin had no detectable effect on AMA killing

by MPM even when used at 100% iron saturation and tested over a

10,000-fold concentration range (Table V). Hhen either thiourea or

oc-ketobutyric acid, both scavengers of OH', were present in the culture

medium, the LF effect on parasite destruction was abrogated, suggesting

that this oxygen reduction metabolite was involved in the effector mech-

anism. This observation adds OH' to the list of oxygen metabolites that

are produced by stimulated MPM and are directly or indirectly toxic for

T. cruzi AMA [which until now included H202, 0; and 1O2 (7)].
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and is in keeping with a previous report that LF stimulates OH’

production by neutrophils (11). In our earlier work, we found that

sodium benzoate, a scavenger of OH', would not inhibit the stimulatory

effect of LF on AMA killing by MPM (7). The present results, showing that

two other OH' scavengers did inhibit such effect, implicated this

reactive oxygen intermediate in AMA killing by LF-treated MPM but did not

explain the negative results obtained with sodium benzoate.

He have found that LF levels are increased in the serum of acutely

infected chagasic mice and that AMA from the spleens of these animals show

intense fluorescence after incubation with fluorescein-labeled rabbit

anti-LF (Lima and Kierszenbaum, unpublished results). This finding and

the fact that LF presented to MPM on the surface of T. cruzi AMA also

enhances phagocytosis and killing (7) indicate that the conditions for the

production of the in vitro effects described in this paper are present

in an infected host.
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APPENDIX

Lactoferrin is a glycoprotein present in the neutrophil specific

granules (I) and is normally found in plasma in trace amounts (2).

Inflammatory conditions, such as bacterial infections (3,4) and

arthritis (5), are accompanied by elevated concentrations of lacto-

ferrin in plasma. Since inflammation with neutrophil infiltrates is

present in acute Chagas' disease and lactoferrin modulates Trypanosoma
 

£5251 uptake by macrophages and monocytes jg_y1£§g_(6,7,8), we

explored the possible presence of lactoferrin in infected mice and

whether it bound the parasite ig_yjyg,

In the first approach, acute and chronically infected mice were

bled and their sera separated. An indirect immunofluorescence (IFI)

test using cultured amastigote forms of I; Egggi (6) and fluorescein-

conjugated anti-lactoferrin IgG was selected to detect binding of

serum lactoferrin to the parasite. A second approach used spleens

from infected mice as a source of amastigotes, testing for the

presence of lactoferrin jg_§jgg_by direct immunofluorescence using

fluorescein-labeled anti-lactoferrin IgG.

Four week old Crl:CD-1(ICR)BR Swiss mice were purchased from

Charles River Laboratories (Portage, MI). These mice were infected

intraperitoneally (i.p.) with 1 x 105 blood trypomastigotes. The mice

were bled at different times post-infection and their sera were

pooled, aliquoted and stored at 20°C until used.

‘
5
‘
!
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The IFI was done as described previously (6) using culture

amastigotes grown in ML-15H medium. The single cell suspensions used

in the direct immunofluorescence studies were prepared in a Ten Broeck

tissue grinder in ph05phate buffered saline (PBS) from the spleens of

mice sacrified on day 12 post-infection (p.i.). The suspensions were

kept in an ice bath for one hour, and then used to prepare thin films

on microscope slides, dried and fixed in methanol. The slides were

then covered with normal rabbit IgG for 30 min, washed with PBS and

incubated with FITC-labeled rabbit anti-lactoferrin IgG or

FITC-labeled rabbit anti-human IgG as a control. After washing with

PBS, the slides were examined by fluorescence microscopy.

As shown in Table 1, sera from acutely infected mice (collected

on day 7 p.i., when no parasitemia was detectable and on day 15 p.i.,

when parasitemias attained peak levels) contained LF as detected on

the surface of cultured amastigotes after incubation with sera and

FITC-labeled anti-lactoferrin 190. No fluorescence was detected when

normal mouse serum or serum collected on day 49 p.i. were used.

Figure 1 shows splenic amastigotes displaying fluorescence after

incubation with fluorescein-labeled anti-lactoferrin antibodies.

These observations revealed that lactoferrin was produced during

the acute phase of the disease and reached levels detectable by our

indirect immunofluorescence test, and that lactoferrin can bind

amastigotes in their natural environment. Therefore, the conditions

for lactoferrin binding to amastigotes released from infected cells

are present jg_y1yg, Hhether these conditions lead to increased

parasite uptake and killing by macrophages in the host remains a

subject for further study.

-;
"
U
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TABLE I

Increased Levels of LF in Acute Chagasic Sera

 

 

’Amastigotes Percent of LF-

incubated positive

with amastigotes (by IFI)

MEM - 1% BSA 0.: 0.0 *

Normal mouse serum 0.: 0.0

Infected mouse serum,

day 7 p.i. 63.5 i 3.5

Infected mouse serum,

day 15 p.i. 70.4_: 0.5

Infected mouse serum,

day 49 p.i. O :_0.0

10 ug/ml LF 58.4 i 2.7

 

* Results are expressed as the Mean :_SD
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Figure 1

Demonstration by direct immunofluorescence of lactoferrin binding to

splenic amastigotes lg situ. Parasites were obtained from spleens of

infected mice at a time of peak parasitemia and stained by fluores-

cein-conjugated anti-lactoferrin IgG.
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SUMMARY AND CONCLUSIONS

A heavy inflammatory cell infiltrate consisting mainly of

mononuclear cells, neutrophils and eosinophils is frequently seen in

acute chagasic lesions. Secretion products of these cells may play a

role in the interaction between Trypanosoma cruzi and the same or
 

other inflammatory cells. In the course of this project, we focused

on lactoferrin, a glycoprotein secreted by neutrophils, cells present

in acute chagasic lesions. Levels of lactoferrin in the body fluids

are known to be increased during inflammatory conditions such as found

in acute Chagas' disease. This study examines the effects of lacto-

ferrin on the phagocytosis of I;_g§ggi_by macrophages and monocytes,

which are also present in chagasic inflammatory infiltrates.

First, the modulatory effects of lactoferrin on the interaction

between amastigotes or trypomastigotes with human monocytes or mouse

peritoneal macrophages were analyzed. Lactoferrin was found to

stimulate the uptake of amastigotes by either cell in a dose-dependent

manner. This stimulatory effect was maximal at 10 Mglml lactoferrin,

a level comparable with that in individuals with inflammatory

conditions. Higher concentrations of lactoferrin were found to be

supraoptimal in that they did not effectively increase host-cell

parasite association.

Pretreatment of either phagocytic cells or parasites with

lactoferrin enhanced their association, suggesting that both

macrophages and parasites bound the protein.
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Reports by other investigators that macrophages and monocytes

possessed receptors for lactoferrin were readily confirmed in this

work and the presence of receptors for lactoferrin on amastigotes was

demonstrated by binding and competition studies using 125I-labeled

lactoferrin. Since both parasites and phagocytes have receptors for

this protein, lactoferrin might have bridged the two cells and thus

increased their association. However, several lines of evidence

suggested that parasite-cell bridging was not the sole explanation for

this increase. First this enhancement was still demonstrated when

lactoferrin-treated macrophages were incubated with °C-methyl

mannoside or anti-lactoferrin IgG (agents which block lactoferrin

binding) before addition of the parasites. Second, lactoferrin

enhanced trypomastigote-macrophage association despite the fact that

these forms of the parasite do not bind lactoferrin. Finally, even

the uptake of latex beads by macrophages was enhanced by treating

these cells with lactoferrin. These findings suggest that lactoferrin

has a nonspecific effect on macrophages which stimulates them to

display a greater phagocytic activity, although bridging of parasites

and cells may still contribute to this effect.

I;_g£g51 has been shown to be sensitive to the toxicity of the

intermediates of oxygen metabolism whose production is stimulated

during phagocytosis (reviewed on page 9). Lactoferrin has been shown

to increase the production of some of these intermediates (reviewed on

page 17). Therefore, the increased parasite destruction caused by

lactoferrin could be due to the production of metabolites of the

reduction of oxygen produced by phagocytes upon phagocytosis.

Scavengers of 0; , H202, and 102 were shown to abrogate the
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lactoferrin-stimulated killing of amastigotes, and catalase, a

SCGVEOQEP 0f H202, inhibited trypomastigote killing. Therefore,

lactoferrin may enhance I; 95351 destruction by macrophages via

stimulation of the production of reactive oxygen intermediates.

Because lactoferrin is an iron-binding protein (reviewed on page

12) and iron has been implicated in the partial reduction of oxygen in

phagocytic cells (reviewed on page 9), two separate approaches were

used to investigate the contribution of iron to the lactoferrin

effects. In the first, iron was removed from the protein by

incubation with deferoxamine (an iron chelator). In the second I 
approach, macrophages were pretreated with lactoferrin in the presence

of deferoxamine and, after removal of both, exposed to amastigotes.

In both cases, it was found that macrophages exposed to Fe-depleted

lactoferrin were unable to kill the amastigotes. However, the cells

retained their ability to phagocytize larger numbers of parasites than

mock-treated controls.

The importance of iron in lactoferrin-mediated killing was

confirmed by the restoration of this effect after incubation of

apolactoferrin with ferric citrate. Lactoferrin preparations at 20

and 100% Fe-saturation were similarly active in stimulating parasite

killing by macrophages.

The inability of Fe-depleted lactoferrin to stimulate parasite

killing was unlikely to be due to a diminished ability of macrophages

to bind the glycoprotein since all lactoferrin preparations,

regardless of iron content, were found to bind these cells to the same

BXtEflt e
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The role of iron in the lactoferrin-stimulated killing of I;

ggggi_by macrophages was emphasized by the fact that while

apolactoferrin, by itself, could not induce this effect, it could do

so when its iron content was restored either before or after binding

to the host cell. Interestingly, both ferric and ferrous ions were

similarly effective. Addition of zinc instead of iron ions restored

only 50% of the killing level, and cupric ions were totally

ineffective.

The fact that Fe-saturated transferrin could not mimic the

effects of lactoferrin argues against the possibility that lactoferrin

stimulates killing of amastigotes by merely raising the intracellular

iron content of the macrophages.

Next, we set out to explore the mechanism involved in the

iron-dependent lactoferrin stimulation of parasite killing by

macrophages. It should be borne in mind that our previous work had

shown that this killing involved metabolites of the partial reduction

of oxygen. Other investigations have reported that the production of

0H° and 102 is dependent upon the presence of iron. The possible

involvement of iron and these metabolites in parasite killing of

lactoferrin—treated macrophages was studied by using iron chelators

or scavengers of OH' and 102. Both were found to abrogate parasite

killing to significant extents.

In summary, this research has shown that: a) lactoferrin can

stimulate the phagocytic and cytotoxic properties of human monocytes

and mouse peritoneal macrophages, b) some of the ensuing effects are

dependent upon the presence of iron in the molecule, and c) reactive

oxygen intermediates mediate the destruction of 11_cruzi by
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macrophages. Moreover, results described in the Appendix section

point to the fact that lactoferrin is found in increased amounts in an

jg_vivo infection with I, cruzi and that amastigotes bind to the

 

protein j__situ. These studies forward the notion that a product of

an inflammatory cell modulates the function of another inflammatory

cell type so as to increase the uptake and rate of killing of I;_cruzi

by the latter, and imply that lactoferrin may play a role in host

defense against this parasite.

This research raises intriguing questions which deserve further

attention. For example,

Hhat is the difference between amastigotes and trypo-

mastigotes that enables the former but not the latter to

express lactoferrin receptors and does this difference

assume biological significance with respect to parasite

survival and pathogenicity?

Hhat are the precise signals elicited in the macrophage upon

binding of lactoferrin? Hhat enables these cells to display

greater cytotoxicity to 11_cruzi?

The answers to these questions will contribute to the further

understanding of the effects of lactoferrin in its modulation of

macrophage -.I; cruzi interaction, and also provide further insights

into the macrophage activation pathways in general.
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