
ABSTRACT

RADIATION OF SPHERICAL AND CYLINDRICAL ANTENNAS

IN INCOMPRESSIBLE AND COMPRESSIBLE PLASMAS

BY

Cheng- Chi Lin

The interaction of an antenna with a plasma becomes one of

the most interesting and important topics in science and engineering,

since the communication between a space vehicle and a ground sta-

tion has become involved with the ionosphere or an ionized gas. The

performance of an antenna in an ionized gas or plasma is entirely

different from its performance in free space. The purposes of this

study are to investigate theoretically and experimentally the radiation

of a spherical antenna and a cylindrical antenna when immersed in a

plasma and to detect the existence of an electroacoustic or a longi-

tudinal plasma wave excited by the antenna.

_ In the theoretical analysis, spherical and cylindrical dipole

antennas are used as the radiating sources. The surrounding plasma

is assumed to be a weakly ionized gas type and is treated either as

a lossy, cold (incompressible) plasma or as a lossy, hot (compres-

sible) plasma. Two rather different physical models and two different

sets of basic equations are adapted for these two kinds of plasmas.

When the antennas is immersed in a lossy, cold plasma, the plasma
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is characterized as a lossy medium with equivalent permittivity and

conductivity. For this case, Maxwell's equations are adequate to

treat the problem. When the antenna is placed in a lossy, hot plasma,

the plasma is regarded as a one-component electron fluid with the

motion of positive ions neglected. The basic equations for this case

are Maxwell's equations and the linearized moment equations which

are derived from the Boltzmann equation assuming that the perturba-

tion of the plasma due to the source being small.

The spherical antenna imbedded in a lossy, cold plasma of

finite extent is studied first and then extended to the case of lossy,

hot plasma of finite extent. These two problems are solved directly

from the basic equations mentioned above and the radiated field in

the far-zone of antenna is obtained explicitly as a function of the

antenna dimensions and the plasma parameters.

The cylindrical dipole antenna immersed in a lossy, cold

plasma of infinite extent is examined next. King-Middleton's theory

and King's modified method are employed to determine the approxi-

mate current distribution on the antenna and after that the input im-

pedance of the antenna is determined as a function of the antenna

dimensions and the plasma parameters. This problem is not ex-

tended to the hot-plasma case because of its complexity in the

mathematical development. Finally, an existing theory of a cylin-

drical dipole antenna immersed in a lossless, hot plasma is briefly
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reviewed. Extensive numerical results were obtained and compared

with the experimental results.

In order to conduct an extensive and accurate experimental

study on the interaction of an antenna with a hot plasma, a great deal

of time and effort was exerted to produce a large volume of stable,

high-density plasma. In our experiment, the hot plasma was pro-

vided by a mercury arc discharge which was created in three dif-

ferent plasma tubes. A novel method of placing a spot fixer in the

mercury pool was used to stabilize the plasma. The spherical and

cylindrical antennas were used as the radiating sources and they

were fed through a large ground plane. The radiation fields from

both antennas and the input impedance of the cylindrical antenna are

measured as a function of the plasma parameters. The hetrodyne

receiving system was used for the antenna radiation measurement

while the standard SWR method was adopted for the antenna impe-

dance measurement.

It is shown both theoretically and eXperimentally that the

radiation from a plasrna-coated spherical antenna can be enhanced

if the antenna is operated at a frequency much lower than the plasma

frequency and the dimensions of the antenna and the plasma layer

are apprOpriately chosen. This phenomenon may prove useful for

overcoming the blackout problem suffered by a reentry vehicle, or
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may offer a novel method of low-loss tuning of a small antenna.

The experimental results on the input impedance and the

radiation pattern of the cylindrical antenna tend to indicate that in

addition to the usual electromagnetic wave an electroacoustic or a

longitudinal plasma wave can be excited by the antenna in the hot

plasma.
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CHAPTER 1

INTRODUCTION

The research described in this dissertation deals with the

radiation of spherical and cylindrical antennas imbedded in incom-

pressible and compressible plasmas. The first part of the disser-

tation studies the radiation from a spherical antenna when it is

covered by a finite layer of plasma. This study is motivated by

a newly discovered phenomenon that the antenna radiation can be

enhanced if the antenna frequency is lower than the plasma frequency

of the coating plasma layer. The second part of the dissertation

investigates the interaction of a cylindrical antenna with a plasma.

One of the main objectives of this investigation is to detect the

excitation of an electroacoustic wave by an antenna and the effect

of this wave on the characteristics of the antenna. Additional intro-

ductions on these studies are given below.

It is well known that when an antenna is covered by a layer

of plasma with a plasma frequency higher than the antenna frequency,

the antenna radiation is reduced drastically. The conventional

approach to overcome this blackout phenomenon is to raise the

antenna frequency to exceed the plasma frequency of the plasma



volume. This approach is usually hampered by the practical

limitation of available high-frequency sources. In the first part of

this dissertation, a new phenomenon on the enhanced radiation from

a plasma-coated spherical antenna is studied. It is shown both

theoretically and experimentally that the radiation from a spherical

antenna covered by a spherical layer of plasma can be enhanced if

the antenna frequency is adjusted to be much lower than the plasma

frequency of the plasma layer and the dimensions of the antenna and

the plasma layer are properly chosen.

The phenomenon of the enhanced radiation from a small

antenna covered by a plasma layer was reported first by Messiaen

and Vandenplas‘l) in 1967. These authors also predicted a series

of resonance peaks on the antenna radiation and a significant effect

(2' 3) studiedof the plasma sheath on the radiation. Chen and Lin

the same phenomenon on a cylindrical antenna of various lengths

covered by a finite volume of lossy, hot plasma. Instead of find-

ing a series of resonance peaks, they observed a strong enhancement

on the antenna radiation over a wide band of antenna frequencies which

are much lower than the plasma frequency of the plasma volume. They

also found a negligible effect on the antenna radiation due to the plasma

sheath or the DC potential of the antenna. Although the phenomena of

enhanced radiation observed by Messiaen and Vandenplas and by Chen

and Lin are similar, the detailed results are different. The effects

of the dimensions of the antenna and the plasma layer on the pheno-

menon of enhanced radiation have not been investigated before. In



this study the phenomenon of enhanced radiation is examined more

carefully by conducting both theoretical and eXperimental studies on

a plasma-coated spherical antenna. The spherical geometry is

adopted to make the theoretical study tractable. In the experiment

an imaged hemisphere on a ground plane was used as an antenna and

a mercury arc discharge was used as the coating plasma. In the

theoretical models, the spherical antenna is first assumed to be

covered by a lossy, cold plasma layer with the plasma sheath on

the antenna surface ignored. The study is then extended to a lossy,

hot plasma layer with the plasma sheath included. The theoretical

results based on these models are in satisfactory agreement with

the experimental observation.

When an antenna on a reentry vehicle is covered by a plasma

layer and suffers blackout, a possible scheme of overcoming this

problem will be to reduce the antenna frequency to a value which is

much lower than the plasma frequency and in the range for the en-

hanced radiation. Another potential application of this phenomenon

is the low-loss tuning of a small antenna. Theoretically, the plasma

can be made lossless so that this tuning scheme may prove to be more

effective than any conventional impedance tuning.

The second part of the dissertation investigates the interaction

of a cylindrical antenna with a plasma. When an electromagnetic

radiating source is immersed in a hot plasma, an electroacoustic

or a longitudinal plasma wave may be excited in addition to the usual



electromagnetic wave. Numerous theoretical papers have been

(4)
published on the subject. Cohen was the first one to show the

possible excitation of an electroacoustic wave by a radiating source

(5) (6) studied thein a hot plasma. Hessel and Shamoys and Fejer

. . (7) . .
electroacoustic wave exc1ted by a small source. Chen investi-

gated the effect of an erectroacoustic wave on the radiation of a

(3)
cylindrical antenna. Wait examined the electroacoustic wave

excited by a slotted-sphere antenna. There are many other theore-

tical papers which are not mentioned here.

In contrast with the abundance of theoretical papers, extremely

few experimental studies have been published. The relevant experi-

mental studies are the observation of electroacoustic wave by

Whale”) in a rocket flight, Schmitt'suo) observation of Tonks-

Dattner's resonance excited by an antenna, and the experiments on

a cylindrical antenna in a hot plasma conducted by Jassby and

2

(11) and by Chen, Jackson and Lin‘1 ' 13). Nevertheless.Bachyski

to our best knowledge, no extensive experimental study has been

conducted to study the electroacoustic wave excited by an antenna

in a hot plasma.

In this part of study an extensive experimental investigation

was conducted to: (I) detect the existence of an electroacoustic

wave in a hot plasma, and (2) study the effect of this electroacoustic

wave on the circuit and the radiation properties of an antenna. Two

approaches: (1) to measure the antenna input impedance as a



function of the plasma parameters, and (2) to measure the antenna

radiation field as a function of the plasma parameters, have been used

to detect the electroacoustic wave. In our experiment, the hot plasma

was provided by a mercury arc discharge which was created in two

plasma tubes. The cylindrical monopole antennas were used as the

radiating sources.

A simple theory on a cylindrical antenna immersed in a lossy,

cold plasma of infinite extent is developed. The antenna input impe-

dance is obtained as a function of the antenna dimensions and plasma

parameters. The significant finding of this theoretical study is the

observation of a peak resistance and a change of reactance from

capactiviet to inductive when the antenna frequency approaches to

the plasma frequency. The comparison between this theory and

the experiment indicates that the effect of the electron collision

frequency on the antenna input impedance is significant in the neigh-

borhood of plasma frequency.

The experimental results are also compared with another set

of theoretical results obtained by Chen”). The agreements on the

antenna input resistance and the observation of peak radiation near

the axial direction of the antenna tend to indicate the existence of an

electroacoustic wave excited by the antenna and its significant effect

on the characteristics of the antenna.



CHAPTER 2

RADIATION FROM A SPHERICAL ANTENNA IMBEDDED

IN A LOSSY, COLD PLASMA OF FINITE EXTENT

2. 1 Introduction

The radiation of a spherical antenna when surrounded by a

layer of lossy, cold plasma is studied in this chapter. This study

is motivated by a newly discovered phenomenon which indicates

that the radiation from an antenna can be enhanced if the plasma

frequency of the plasma is considerably higher than the antenna

frequency and the dimensions of the antenna and the plasma layer

are appropriately chosen.

When an antenna is covered by a layer of plasma with a

plasma frequency higher than the antenna frequency, the antenna

radiation is reduced drastically, a phenomenon known as the black-

out. The conventional approach to overcome this blackout phenome-

non is to raise the antenna frequency to exceed the plasma frequency

of the plasma. This approach is usually hampered by the practical

limitation of available high frequency sources. The new phenomenon

on the enhanced radiation from a plasma- coated antenna to be



studied in this chapter may serve as a solution to the blackout

problem encountered by a reentry antenna.

The phenomenon of the enhanced radiation from a small

antenna covered by a plasma layer was reported first by Messiaen

and Vandenplas(l) in 1967. These authors also predicted a series

of resonance peaks on the antenna radiation and a significant effect

)
of the plasma sheath on the radiation. Chen and Lin(z’ 3 have investi-

gated the same phenomenon on a cylindrical antenna of various

lengths covered by a finite volume of lossy, hot plasma. Instead

of finding a series of resonance peaks, they observed a strong en-

hancement on the antenna radiation over a wide band of antenna

frequencies which are much lower than the plasma frequency of

the plasma volume. They also found a negligible effect on the

antenna radiation due to the plasma sheath or DC potential of the

antenna. Although the phenomena of enhanced radiation observed

by Messiaen and Vandenplas and Chen and Lin are similar, the

detailed results are different. Neither the effects of the dimensions

of antenna nor the size of the plasma layer on the phenomenon of

enhanced radiation have been investigated before. This unusual

phenomenon of enhanced radiation to be studied in this chapter

may be attributed to the coating of antenna with a dielectric of

negative permittivity which is the simple model of an overdense

plasma.



In our study, the spherical geometry is adopted for the sake

of making the theoretical study tractable. In this theoretical model,

the spherical antenna is assumed to be covered by an uniform, lossy

and cold plasma and the plasma sheath on the antenna surface is

ignored.

Based on the finding of our study in this chapter, it appears

feasible that when an antenna on a reentry vehicle is covered by a

plasma layer and suffers a blackout, a possible scheme of over-

coming this problem will be to reduce the antenna frequency to a

value which is much lower than the plasma frequency and in the

range for the enhanced radiation. Another potential application of

this phenomenon is the low-loss tuning of a small antenna. Since

only a lossless plasma with a negative permittivity is needed for

this purpose, this tuning scheme may prove to be more efficient

than any conventional impedance tuning.

2. 2 Geometry and Statement of the Problem

The geometry of the problem is shown in Fig. 2. l. A

spherical antenna of radius a is covered by a spherical layer of

uniform lossy plasma with a thickness of b-a. The antenna sur-

face is perfectly conducting except for a narrow equatorial gap

between w/Z - 91 5 0 _<_ 1r/Z + 9 Across this gap a voltage ofl O

amplitude V and frequency a) is applied. The spherical coordinates

(7, 0, 4’) are adopted and the rotational symmetry is assumed. The
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Region 1: cold plasma ((10, E, 0' )

Region II: free space ((10, 60)

Fig. 2. l A spherical antenna covered by a lossy,

cold plasma layer.



10

plasma is assumed to be a weakly ionized gas and canzbe considered

 

a)

as a lossy medium with a permittivity of E = 60(1 - JZLZ)’ a conducti-

noeZ v 00W

vity of 0' = 2 2 , and a permeability of p = "'0 where a) and

e a) + u

(up are the antenna and plasma frequencies, e and me are the charge

and mass of electrons. no is the density of plasma, V is the collision

frequency of electrons with neutral particles, and 60 and “o are the

permittivity and permeability of free space. The total space exclud-

ing the antenna is divided into two regions. Region I is the plasma

layer and the rest of the free space is Region II.

The assumption of infinitesimfl driving gap is made to simpli-

fy the problem because only the radiated fields of the antenna are to

be sought in this study. If the input impedance of the antenna is

also to be determined, the assumption of a finite driving gap is

needed to avoid the divergence of some series appeared in the mathe-

matical expre s sion s .

2. 3 Solutions to Maxwell's Equations in the Plasma Region

The basic equations which govern the system are Maxwell's

equations. Maxwell's equations in Region I (plasma layer, a E r E b)

are

* *

V : .’x El Jaw-0H1 (Z. 1)

inil a mail (2.2)

where E and H are the electric and magnetic fields and § is the

complex permittivity given by



ll

§=€(l-jf-€-). (2.3)

The suppressed time dependence is exp(joot).

From the symmetry of the antenna it can be seen that there

is no variation in the 4> direction and the magnetic field has only a

4) component. Thus, Eqs. (2.1) and (2. 2) can be easily reduced to

three scalar equations such as

.9. E 3’51: _ . H z 4
3r (r 19) " 89 - - J60 “or l¢ ( 0 )

l . .

m 58(8meHlo) = 1°“; E1.- “-5)

8

--a-;(rH1¢) = ngrEle . (2.6)

Differentiating Eqs. (2. 5) and (Z. 6), and substituting them into

Eq. (2.4) leads to a partial differential equation,

2

 

8 1 8 1 8 , 2 _

:2- (rchb) + -Z' ‘33 [m '55 (81n9rH1¢)]+ k (rHl¢) - 0

r
(2. 7)

where k is the complex prOpagation constant given by

k2 = mzuog . (2.8)

If we write

k = 8 - jo. , (2.9)

8 and a. can be expressed as

i l

2 2 4 ’- 3

50 a) 20) up

Sufi 1-—L—Z2+ l--—LZ + (2.10)

2

(DH! w+v w(w+V)
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I 1

Z Z '2' E

50 (0 200 mp4

a, = :2? -l+—£—Z2+ 1-—-E—Z2+ 2 Z Z (2011)

(1) HI u) +v w (w +1!)

with

: 'J . 2. 2BO 0) H060 ( l )

To solve Eq. (2. 7), we use the method of the separation of variables.

Since H is independent of 4), we can assume

1¢

rHl¢ = R(r)@(9) (2.13)

where R is a function of r alone and 9 is a function of 0 only. The

substitution of Eq. (2.13) in Eq. (2. 7) leads to

Z Z

r d R z 2 1 d [ l d .

ZR dr _ 6 d6 sine d6 (2.14)

where n is any integer. Equation (2. 14) generates two ordinary

differential equations,

 

d l d . ..
d—e- [m “56' (6811199 '1' n(n+l)9 - 0 (2015)

Z d2
E... R + 1(er - n(n+l) = 0 . (2016)
R drz

Let us consider Eq. (2. 15) first. Making the substitutions,

u: cose, ’Jl-u =sin9, d =- l-ug- .

:18 du

Eq. (2. 15) can be reduced to

ug—f+[n(n+l)- 12] 9: 0. (2.17) ——-2

du

Z dze

(l'u) Z
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Equation (2. 17) is a special form of the associated Legendre's

 

equation,

2 2
d

(l - xz)—Z - 2x91 + [n(n+l) - m ]y = 0. (Z. 18)
2 dx 2

dx 1 -x

The solution to Eq. (2.18) is

m

Y - Pn (X)

and this function is called an associated Legendre function of the

first kind of order n and degree m. These functions are actually

related to the ordinary Legendre functions Pn(x) by the relation,

9- de (x)

Pm(x) = (-l)m(l-xz)2 ——’-‘-—- . (2.19)
n dxm

In order to have finite solutions on the interval -1 E x E 1

the parameter n must be zero or a positive integer and that the

integer m can take on only the values -n, -(n-1), . . ., 0, . . ., (n-l),

n, i.e., n_>_ 1m).

Thus a solution to Eq. (2. 17) can be obtained as

e = Pl(u) = Pl(cos s) (2, 20)
n n

where 11 must be a positive integer and n z 1.

Note that only one solution for this second-order differential

equation (2. 17) has been considered. The other solution becomes

infinite on the axis, and so it should be excluded from this problem

since the axis is included in the geometry.
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Other properties of the associated and ordinary Legendre

functions that will be useful to us in the later development and

numerical calculation are listed as follows:

1. P (cos 9) is zero at e = "/2 if n is even.

5
1
—
0
5
1
—

2. P (cos 9) is maximum at e = "/2 if n is odd, and

the value of this maximum is given by
N

"
1

N
l
b

+
forn= 1,5,9...

"
1

N
I
:

4
.

N
l
"

0
-
0

(2.21)

N

2

N
H
:

+

forn= 3,7,11000

H

N
H
!

4
.

N
'
O
—
i

H

or n

1 2 4 I‘(E+l) 2

[P (08 = — -——-— for n : odd (2.22)

n 1r n 1

I12 +2)

where I‘(x) is the Gamma function with argument x.

3. The associated Legendre functions have orthogonality

propertie 8,

+1 1 1 0 for n ¥ 1

S Pn(u) P! (u) du = (Z. 23)

-1 Zn(n+1)
2n+1 for n = l .

4. A recurrence formula for the ordinary Legendre

functions is

dPn+1 (u) dPn(u)

du 11 du

 - (n+1) Pn(u) = 0, (2.24)
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and from (2.19)

d

P;(cos 9) = 35- Pn(cos 9) . (2. 25)

Combining Eqs. (2. 24) and (2. 25) we obtain an expression,

 

sine [€089 Pikos 9) - Pi+l(Cose)] -.- (n+l)Pn(cos6). (2.26)

5. The differentiation formula is

d l l 1
de- [pn(cos 9)] = silne [n Pn+l(C°8 9) - (n+l)cosGPn(cosG)] .

(Z. 27)

 

Going back to the differential equation (2. 16), we make the substi-

tution,

R = 3} . (2.28)

1.2

Equation (2. 16) then becomes

  

dle 1 de 2 (n+-;-)2

- - ._____ = 2 2Z + 1' dr + k 2 R1 0 . ( . 9)

dr r

This is a form of Bessel's equation,

2 2

_1d .1 L” + (k2- _“ )y = o. (2.30)
2 x dx 2

dx x

The solution to Eq. (2.29) can then be expressed as

v

R = A H“) (kr) + B H(1 2.

l n n+§ n n (kt) ( 31)NT
..
.

2

where A and B are arbitrary constants, H(l)1(kr) and H‘ :(kr)

n n n+5 n+5

are the Hankel functions of the first and second kinds with order



l6

n+%, which represent the radially inward and outward traveling

waves respectively. Combining Eqs. (2. l3), (2, 20), (2. 28) and

(2. 31) we have

H - J- 020 P1(cosB) A Hm (kr) +13 Hm (kr) (2 32)
1¢_~/—rn:l n nn+§ nn-i—g: ° '

The other two components of the electric field can be determined

easily from Eqs. (2. 5) and (2. 6).

Substituting Eq. (2. 32) into Eq. (2. 5) and using Eqs. (2.27)

and (2. 26) we obtain

(1)

_ ' (2) (1)
Elr _ _177 z n(n+l)Pn(cosO)[Aan+%(kr)+Ban+%(kr)].

(D a 1' 11:1

(2. 33)

To derive E19, two differentiation formulas of the Hankel functions

5L (1) _ n+1 (1) (1)

dx Hug: (X) - - 4x Hn+%(x) + Hn_%(x) (2. 34)

d (2) n+1 (2) (2)
... ___ _ a

2, 3

dx Hn+_;_(X) x Hn+%(x) + Hn-%(x) ( 5)

are needed.

The substitution of Eq. (2. 32) into Eq. (2.6) and the utili-

zation of Eqs. (2. 34) and (2. 35) lead to

A

N

. (n 1

E16: 3 2 Z Pn(cosO) An[nI-I ) (kr) - kr Ha) (kr)]

mgr n=1

A
11";~1

2.

n

1 1

+ Bn [nHr(1+)%(kr) - kr H;_)%(kr)] . (2. 36)

The solutions to Maxwell's equations in this region under rotational

symmetry can thus be summarized as
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(D

_ .1. (2 ) (1)
Hl¢(r,6) - 'fr r:11:n(cos 9) AnHn+%(kr) + Ban+%(kr)] (2,32)

°° (2 ) (1)
(r,9) — 3 2 2‘. n(n«l-1)Pn(cos 6)[AH +%(kr)+BnHn+2}er

mgr n=1

(2.33)

-' °° 1 (2) (2)
le(r,9): —LIW_2' Z: Pn(cos 6){Ann+3[nH(kr)- ern_%(krfl

mgr n=1

+ Bn nH(l) (kr) .. kr H( )(kr) (2 36)
an+% n-i '

and

E14): lee H19: 0. (2.37)

2.4 Solutions to Maxwell's Equations in the Free-Space Region

Maxwell's equations in Region 11 (free space, r 2 b) are

v = -' 7x EZ 3(1)}:on (2. 38)

V -o = _ ->

Since Region II is unbounded, no reflected or inward traveling wave

exists in this region. Following the same analysis as in Sec. 2. 3,

the solutions to Maxwell's equations in this region can be written as

H 0 - 0; C P1 0 Ha) 2 40“(a ) - (fr M n n(cos ) “yuan (. )

°° (2)
Ezr(r,0) = 3 2 2 Cnn(n+l)Pn(cose)Hn+%(fior) (2.41)

(0601' n=1

_. oo 12)

Eze(r, 6) = 3 2 2 CnPn(cos 0)[nHan+%(flor)- 80anz_;(por]

wear n=1

(2. 42)
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where Cn is an arbitrary constant, 11 is a positive integer, and 80

is the wave number of free space given by Eq. (2.12).

2. 5 Boundary Conditions for Calculating the Radiation Fields
 

In order to determine the constants An’ Bn and Cu, the

boundary conditions at r = a and r = b are applied.

The voltage applied across the gap is given by

2 1 1r

E16(a' 9)a d9 = S; Ele(a,6)ad6 , (2.43)

because E19 is zero on the surface of the conducting sphere except

at the gap between; - 91 _<_ 6 5% + 91. Since the Legendre polynomials

form a complete set of orthogonal functions, any function f(x) on the

interval -1 f x f 1 can be expanded in terms of them. The electric

field on the surface of the sphere can thus be expanded in a series

of Legendre polynomials as

a)
1 o.

Ele(a, 9) .. 2 ann(cosO) (2.44)

n=1

where

2n+1 " 1
: ——

C 0 2’
bn 2110”“ So Ele(a, 6)Pn(cos 0) 81119 d6 ( 45)

If the gap between the two halves of the sphere is assumed to be

small,

P111(cos6) as Piw) 123- algegg+sl

(2.46)

sine Rs 1 9 is small .

1
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Combining Eqs. (2.43), (2.45) and (2.46), we have

(2n+l) P:(0)V

bn -.- 2n(n+1) a (2.47)

 

From Eq. (2, 36) we obtain

00

_ 1' 1 (2) (2)
Ele(a, 9) _ mg 3 2 Z Pn(cos 9){An[an+%(ka) - kaHn_%(ka)]

a n=1

(1) (l)
+ Bn [an+%(ka) - ka Hn_%(ka)]} . (2.48)

The combination of Eqs. (2.44), (2.47) and (2.48) gives

FA+FB=FV (2.49)

1n n2 3

where

nH(2) (ka) - ka Ha) (ka)rr
)

n

l n+§ n-%

_ (l) (1)
F2 — an+%(ka) - kaHn-%(ka)

2n+l. 1

F : 3005 Jet Pn(0)m .

The continuity of the tangential components of E and H fields at the

plasma-free space interface (rzb) leads to

E16(b’e) = Eze(b.9) (2.50)

Hl¢(b,0) HZ¢(b,9) . (2.51)

Using Eqs. (2. 36), and (2.42), Eq. (2.50) gives

0 = o (2. 52)FA+F

n 6n4 Bn"F5

where

(kb) - kb H“
n-

F = nH(Z)
)

. 4 n %(kb)

.6
12
.
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HO) (1)
5 an+%(kb) - kan %(kb)

F6 = é—[nHH”) (a b) - a10H"?; (aIn].
n+§o

From Eqs. (2. 32) and (2.40), Eq. (2. 51) can be expressed as

- = 2. 3F7An+F8Bn F9Cn 0 ( 5)

wher e

7 n+§

_ (1)
F8 - Hn+%(kb)

_ (2)
F9 - Hn+%(pob)'

The notations Fi' i = l, . . . , 9, are used just for convenience. Thus,

the constants An, Bn and Cn can be solved from Eqs. (2. 49), (2. 52)

and (2. 53) as

 

 

 

VF36F(F F F )

_ 8 5 9

An _ A (2. 54)

VF341:"(F -F F )

_ 9 6 7

B11 — A (2. 55)

VF34F(F F F )

8 5 7

= 2Cu A ( .56)

where

A = F1(F6F8- F94F)+F2(F9- F6F7) . (2.57)

Up to this point the E and H fields in Regions I and II are completely

determined as functions of r and 6.
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The quantity of main interest in this study is the radiated

field in the far zone of the antenna. Thus, the field E at (rzR,

29

8:900) can be expressed as

, oo F(FF-FF)
o _ -v 3 4 8 5 7 1 (2

E2961, 90 )- —L-§7-2 E A 1311(0) [an

wER n=1

(n=odd)

v

(l3 R)
 

.5
1”

..
.

o

(2)
- (30R Hm mom] . (z. 58)

N
I
H

It can also be rearranged as

 

n 2

E (R 900)_ 4§~faV :3) 2n+1 “2“) (F4Fs' F5F7’
. _ __ _____.

20 116 R372 n=1 2n(n+1) F(2+'l") A

o 2 2

(n=odd)

, (Z)
[n Hn+%(poR) - (30R Hn_%(floR)] .

(2. 59)

2. 6 Numerical Results
 

The radiated power from the antenna which is proportional to

the square of E62(R' 90°) as expressed in Eq. (2. 59) has been numeri-

cally calculated as a function of the antenna and plasma parameters.

Figure 2. 2 shows the radiated power from a spherical antenna of

0.635 cm radius driven at various frequencies as a function of the

plasma density of the plasma layer. The radius of the spherical

plasma layer is 7. 62 cm and the electron collision frequency is

assumed to be 0. 03 GHz. The distance between the radiating and

receiving antennas is 0. 7 m. In this figure the radiated power at

each driven frequency is normalized to its free-space radiated power.
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At all antenna driven frequencies we invariably observe that the

antenna radiation is reduced as the plasma density is increased

and it reaches the cut-off point as the plasma frequency is increased

to the neighborhood of the antenna frequency. After the plasma

frequency exceeds the antenna frequency, the antenna radiation

starts to build up somewhat for higher antenna frequency cases

(e. 3.. 1. 8 ~ 1. 4 GHz). This trend becomes more outstanding for

lower frequency cases. For example, when the antenna frequency

is 0. 8 GHz, the antenna radiation builds up to the level of fr ee-space

radiation after going through the cut-off. If the antenna frequency

is further decreased to 0. 4 or 0. 3 GHz, the antenna radiation can

build up to a level about 20 db higher than the fr ee- space radiation

after passing the cut-off. The phenomenon of this enhanced radia-

tion is the most interesting finding of this study. Physically it means

that if an antenna is operated at a frequency much lower than the

plasma frequency of the plasma layer, its radiation will recover

from the cut-off and then be enhanced greatly over the free- space

radiation level . This phenomenon can be applied directly to solve

the blackout phenomenon by simply scaling down the driving frequency

of the vehicle antenna when its radiation is cut off by a surrounding

plasma layer. The phenomenon of this enhanced radiation probably

can be attributed to the tuning effect of the plasma layer on the

antenna input impedance. When the antenna frequency is lower than

the plasma frequency, the equivalent permittivity of the plasma is
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negative and the plasma layer may act as an inductor to tune out the

large capacitive reactance of the input impedance of a small antenna.

This over simplified eXplanation is by no means adequate as we can

see from more results in other figures.

Figure 2. 3 shows the similar phenomenon of Fig. 2. 2 for the

case of lower electron collision frequency (0. 003 GHz). Since the

loss of the plasma is lower, the antenna radiation is cut off more

drastically and the radiation is enhanced greater for lower antenna

frequency cases. Figure 2.4 also shows the similar phenomenon of

Fig. 2. 2 but for a higher electron collision frequency (0. 12 GHz).

This figure indicates that a higher loss in plasma makes the cut-

off phenomenon less outstanding and the enhancement of radiation

slightly lower.

To investigate the effect of the electron collision frequency

on the phenomenon of enhanced radiation, the same antenna (0. 635 cm

radius) with the same plasma layer (7. 62 cm radius) driven at O. 3

GHz is considered. The antenna radiation is plotted as a function of

pr/wz for various v/w in Fig. 2. 5. It is evident that for a lower

collision frequency higher enhancement of radiation is obtained at

a lower plasma density. If the collision frequency is increased, a

lower enhancement of radiation is obtained at a higher plasma density

and over a wide range of (spa/m2.

The effect of the thickness of plasma layer on the phenomenon

of enhanced radiation is shown in Fig. 2.6. The same antenna
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(0. 635 cm radius) is driven at 0.4 GHz and the electron collision

frequency is assumed to be 0. 03 GHz. The antenna radiation is

plotted as a function of pr/mz for various values of plasma layer

thickness. When the thickness of the plasma layer is the same as

the antenna radius (0.635 cm), an enhancement of 15 db is obtained.

A maximum enhancement of about 23 db is obtained when the thick-

ness of the plasma layer is about 1 3/4 inches. As the thickness

is further increased, the enhancement of radiation decreases. When

the thickness of the plasma layer approaches to infinity, the antenna

radiation remains zero after passing the cut-off point. This point

is expected since the phenomenon of enhanced radiation does not

occur if the antenna is placed in a plasma of infinite extent.

The effect of the antenna size on the phenomenon of enhanced

radiation is indicated in Fig. 2. 7. The antennas of various radii are

assumed to be covered by a plasma layer of Z-inch thickness and

driven at 0. 4 GHz. The electron collision frequency is assumed to

be 0. 03 GHz. The antenna radiation is plotted as a function of

(spa/m2. In this figure it is observed that the phenomenon of enhanced

radiation becomes less significant if the antenna size is increased.

This indicates that for a large antenna, the phenomenon of enhanced

radiation may not be observed.

With a fixed radius of 3 inches for the spherical plasma layer,

the effect of the antenna size or the thickness of plasma layer on the

phenomenon of enhanced radiation is shown in Fig. 2. 8. The antennas
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of various radii are driven at 0.4 GHz. The electron collision fre-

quency is assumed to be 0. 03 GHz. The antenna radiation is plotted

as a function of (cpl/(1)2. In this figure it is also observed that the

phenomenon of enhanced radiation become less significant if the

antenna size is increased and at the same time the thickness of the

plasma layer is decreased. No resonance peaks are observed even

when the thickness of the plasma layer is very thin.

It should be noted that in the numerical calculation only the

first five terms, i. e., n = 1, 3, . . ., 9, on the right-hand side of

Eq. (2. 59) are summed up for that series. The numerical results

indicate that the n=1 term is the dominant term. All the numerical

calculations are made by using a CDC 3600 computer.
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CHAPTER 3

RADIATION FROM A SPHERICAL ANTENNA IMBEDDED

IN A LOSSY, HOT PLASMA OF FINITE EXTENT

3. 1 Introduction
 

In Chapter 2, a theory for a spherical antenna imbedded in

a lossy, cold plasma of finite extent was developed. In this chapter,

the surrounding plasma medium is allowed to have the temperature

effect and the excitation of an electroacoustic wave within this medium.

Another modification to the earlier analysis is to assume the existence

of a dielectric coating surrounding the spherical antenna. As an

idealized approximation the plasma sheath is regarded as a lossless

dielectric coating which is perfectly rigid to the electroacoustic

wave. While such a model is highly idealized, it does permit an

analysis to be carried out in a relatively tractable manner.

A number of related investigations of the stated problem have

(8)
been published recently. Wait has studied theoretically a slotted-

sphere antenna immersed in a lossy, hot plasma of infinite extent.

(
Messiaen and Vandenplas l ) have investigated theoretically and

experimentally on a spherical antenna imbedded in a lossless, cold
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plasma of finite extent. Both papers assumed the existence of a

plasma sheath surrounding the sphere. Since the plasma layer

surrounding the antenna of a reentry vehicle and the laboratory-

produced plasma are hot, lossy and finite in nature, all these

characteristics of the plasma including the plasma sheath are con-

sidered in the present study. Because the theoretical model used in

the present study is somewhat different from the models used by

previous investigators, quite different results are obtained.

Based on this theoretical analysis, a similar enhancement

phenomenon on the antenna radiation as discussed in Chapter 1 has

also been observed. In addition to this enhancement phenomenon,

a series of resonance peaks on the antenna radiation has been found

when the plasma layer is thin and the collision frequency of the

plasma is low compared with the driving frequency. Also the res-

onance peaks and the enhancement phenomenon are effected by the

thickness of plasma sheath. These two phenomena are carefully

examined and extensive numerical results on the antenna radiation

are obtained as a function of the antenna dimensions and plasma

parameters .

3. 2 Geometry and Statement of the Problem

The geomdrical configuration is shown in Fig. 3. 1 using

a spherical coordinate system (r, 6, o). A spherical antenna of

radius a is covered by a rigid dielectric sheath whose outer surface
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Z

)

-e\s,
I (1’, 9, ¢)

 

 
 

III

Region I: dielectric coating ((10, 6d)

Region 11: hot plasma

Region 111: free space (11°, 60)

Fig. 3. 1 A spherical antenna covered by a lossy,

hot plasma layer.
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is at r = b. The permittivity of this sheath is Ed and the permeability

is 110 which is taken to be the same as that of the free space. Over

the sheath, there is a spherical layer of uniform, los sy and hot plasma

with a thickness of (c-b). The plasma is assumed to be a weakly

ionized gas type and it can be regarded as a one-component electron

fluid.

The spherical antenna is perfectly conducting except for a

_<_ 9 _<_ 1r/2 + 9 Across thisnarrow equatorial gap between 1r/2 - 9 1'
1

gap the antenna is driven by a constant voltage generator with a

voltage of V and an angular frequency of (0. The total space exclud-

ing the antenna is divided into three regions. Region I is the dielec-

tric coating (plasma sheath), Region II is the hot plasma layer and

the rest of the free space is Region III.

In this study rationalized MKS units are used. The rotational

symmetry and the infinitesimal driving gap are assumed. Further-

more, the time dependences for the radiating source and all the

fields are assumed to be exp (jolt).

3. 3 Fields in Dielectric RegiorLLPlasma-Sheath Region)

The basic equations which govern Region I (dielectric layer,

a _<_ r 5 b) are Maxwell's equations,

—6

a — -. 3.

a — i 3. Z
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where E and I; are the electric and magnetic fields, “0 is the

permeability of free space, and E is the permittivity of the di-

d

electric medium. Following the procedures in Sec. 2. 3, it is easy

to obtain the solutions to Maxwell's equations in this region as

_l__ °° (2 ) (I)
H1¢(r,9) = «fr n4:21Pnn(cose)[AHn+%(fldrr)+13nHn+%(Bdr)]

(3. 3)

' °° (2 ) (1)
E1r(r,9)=;€—J;—37§ :Inmuwn(cosB)[AnHn+%(fldr)+BnHn+§(sdrn

d (3.4)

_. co 2

Emma): —3372 2: Pi(cose){An[nH(’,.(sdr) sdrH(z_)_;(sdr)]

mEdr n=1

+ Bn[anléwdr)-sdrH‘_’%(sdrm

(3. 5)

and

E = H = H = 0 (3-6)
lo 1r 16

where An and B11 are arbitrary constants, n is a positive integer,

H“)xiii-(pdr) and HS:)_1_2(Bdr) are the Hankel functions of the first and

second kinds with.order “i3: Pn(cose) is the ordinary Legendre

function, Pi(cose) is the associated Legendre function of the first

kind of order n and degree 1, and pd is the wave number in this

dielectric medium given by pd: (ml flozd.

3.4 Fields in Hot-Plasma Region

In Region II (plasma layer, b 5 r _<_ c), the plasma medium is

regarded as a one-component electron fluid. That is, the ions are
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neglected in the equation of motion, yet their presence is required

to neutralize electrically the plasma. The plasma is also assumed

to be a weakly ionized gas having an average number density of

electrons no which is regarded as constant in the plasma region.

The density deviation of the electrons from the mean is denoted as

nl and their mean induced velocity is 27. The collision frequency of

electrons with neutral particles of the gas is v.

In its unperturbed state the plasma is assumed to be homo-

geneous and neutral, and perturbation of the plasma due to the

source is sufficiently small that the linearized equations are appli-

cable. No static electric or magnetic field is present.

For harmonic time dependence of expOmt), the basic equa-

tions which govern this region are Maxwell's equations,

-. *

Vx E2 = '30)“on (3. 7)

v -O = - -' . -O

x HZ enov +Jw€o E2 (3. 8)

_. en1

V e E2 : - —€— (3. 9)

o

v - HZ = o (3. 10)

and the linearized continuity and force equations,

v . -. . :
3ono( v)+anl O ( ll)

2

-9 e -9 V0

- = - ... - —— v 3. Z(V+Jw)v m Ez no nl ( l )

where e and m are the magnitudes of charge and mass of electrons,
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p0 and 60 are the permeability and permittivity of free space, and

v0 is the r. m. s. velocity of electrons given by

O m

where k is Boltzmann's constant and T is the electron temperature.

It should be noted that the last term in Eq. (3. 12) represents

the force due to pressure gradient, and Eq. (3.13) is valid on the

assumption of adiabatic pressure variation and one-dimensional

compression““. The above set of equations was used by Chen‘ 7 ),

but in here the source is not included in this region.

In our formulation of the problem, there are four unknown

fields E I; and :7. We will determine _I:I and n first and

2' 2' n1 2 1

then calculate E2 and 3. Taking curl of Eqs. (3. 8) and (3. 12), we

obtain two expressions as

VxVtz= -enOva+Jw€o‘7sz (3.14)

Vx '5 - -—‘-’—— Vx E (3 15)
’ ' m(v+jw) 2 °

The substitution of Eqs. (3. 15) and (3. 7) in Eq. (3.14) gives

 

Z

a)
.. z _.

v v = —P——— 3. 6x xHZ wPo€o[l+jm(V+jw)]H2 2 ( l)

2 n e

where a) is the plasma frequency defined as a) = o . Using
p p mEO

a vector identity of

VxVxfi = VW'fi2)- vz'fiZ (3.17)

2
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and Eq. (3. 10), Eq. (3. 16) can be reduced to a homogeneous wave

equation,

(vz+kez)'fi = o (3.18)

where k8 is the complex propagation constant of the electromagnetic

wave given by

Z 2

ke : a) pofi (3.19)

where 5 is the equivalent complex permittivity defined as

 

 

Z Z , Z

a) a) 30) u

§=EOI+—£‘——.(v+.) =60 (1’2 2). Z Z '

3‘” J“) m w (0(a) +v )

(3.20)

Ifwe write

ke: fle - Jae ' (3.21)

fie and 0.6 can be expressed as

l .1.
50 (1) 2 2w Z 224 z 2

pe=§731‘2 2+1'zz+22 z (3'22)
a) H: w HI (0 (w +1!)

2 Z 4 A l

50 (0 Zoo cop z 2

38:31; ..1+——L—-22+ ],--—E—Z2+ 2 Z Z .(3.Z3)

0) 4'” 0) +9 on (0) +V)

fie and ac are the wave number and attenuation constant of the

electromagnetic wave in this plasma medium, and so is the wave

number in free space defined as Bo = (ox/1F; .

From the symmetry of the antenna it can be seen that there

is no variation in the 4; direction, i. e., 3:: = O and the magnetic
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field has only a 4: component. Thus the Laplacian of the vector

)
magnetic field in Spherical coordinates can be expressed(15 as

_. A 2 2

VZHZ=¢(VH --l—csc6H)

24) r2 24)

A l a 281-12 1 8H

“Pl-3'5" a. >+z assume)
1' rsine

_ 29H 324- Z csc 24>] (. )

A

where 4) is the unit vector in 4) direction. Two identities can be

obtained through differentiation. They are

8H 2

  

a 2 2 a
'8?" .5152) = r—E (rH2¢) (3.25)

8r

8H

1 a . 2 a 1 s ,

sine 36 (“me To? ) ‘ C" “12¢: 7'56 [ sinG W (”neHN”

‘3sz 3Hz 2
: -—72 + cotO 35$ - CSC 9H2¢ (3o 26)

89

The substitution of Eqs. (3.24), (3. 25) and (3. 26) in Eq. (3.18)

leads to a partial differential equation,

 

Z
8 l 3 l 3 . Z

:3 "sz + :2: at a... as «max-Hz.” “Haw
(3. 27)

which is exactly in the same form as Eq. (2. 7). The solution to

Eq. (3. 27) can then be obtained as
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H (r 9)- ‘1— 0230 Pl(cose)[C Ha) (k r) +D H”) (k r)] (3 28)

2¢ ' - «fr n=1 n n n e n n e ° °

~1
2.

NT
..
.

The magnetic field is thus determined and n1 is the next

quantity to be determined.

Taking the divergence of Eq. (3. 12), we have

 

2

v

(v+jw)V-; = -—e—v-E -—°—V2n . (3.29)

m 2 n l

0

From the continuity equation (3.11), it gives

-9 jun-11

V ' V : - , (3, 30)

n

0

Substituting Eqs. (3. 30) and (3. 9) into Eq. (3. 29), we obtain another

homogeneous wave equation ,

(V2 + kPZ)n1 = 0 (3.31)

where kp is the complex prOpagation constant of the plasma or

electroacoustic wave expressed by

2 l 2 Z ,

k : —-2- [(0) -0.) )-J(DV]. (3. 32)

P v P

o

If we write

k = - °a (3. 33)

9 ‘5’9 J p '

8 and up can be expressed as
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ll

1 z z 2 22 2235

51)-727(0) -u)p +[(w -mp) +ml’]} (3-34)

0

-é-%
l 2 2 2 22 22

op-Uzzf-w +wp +[(w-wp) +wV] } . (3-35)

sp and up are the wave number and attenuation constant of the

electroacoustic wave in this plasma medium. Due to rotational

symmetry, the Laplacian of the scalar field nl in spherical

coordinates can be expressed as

an 3n

1 3 Z l l 3 . l
V2111: 7 '5;- (r -a-1-.-) + 'T— 55 (81119 736-) , (3. 36)

r r sine

Using Eqs. (3. 36) and (3.25), Eq. (3. 31) can be reduced to a partial

differential equation,

8 2 (ml 2 sine 39
r 1'

 [sine 58-6- (rnl)] + kpz(rnl) = O , (3. 37)

Equation (3. 37) is similar to Eq. (2. 7) but not identical in form. To

solve Eq. (3. 37), we employ the method of the separation of variables.

Since n1 is independent of 4), we can assume

rnl = R(r)9(9) (3. 38)

where R is a function of r alone and 8 is a function of 9 only. The

substitution of Eq. (3. 38) in Eq. (3. 37) leads to

53.21.”er _1_
Rer p ‘ “seine d0

1 _d_. (sine Eli—5'6 ) = n(n+l) (3.39)
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where n is any integer and n(n+l) is the separation constant. Equa-

tion (3. 39) generates two ordinary differential equations,

 

 

l d . <19

sine d8 (31116 35 ) +n(n+l)® - 0 (3'40)

2 Z

_r__ d R + k Zrz - n(n+1) = O (3.41)
R 2 p '

dr

Let us consider Eq. (3.40) first. Making the substitutions,

u 2 C089 , ‘Jl-u = 51119 , i = - ‘Jl-u ad;

d9

Eq. (3.40) can be reduced to

2

2
(1-u )i—g— - Zu @- +n(n+l)@ = 0. (3.42)

du du

Equation (3.42) is a standard form of the ordinary Legendre's

equation. A solution to this equation can be obtained as

9 = Pn(u) = Pn(cose) (3.43)

where n must be a positive integer and n 3 0. Note that only one

solution for this second-order differential equation (3.42) has been

considered. The other solution becomes infinite on the axis, and

so it should be excluded from this problem since the axis is included

in the geometry.

Since Eq. (3.41) is exactly in the same form as Eq. (2.. 16),

its solution can be easily written as

A V V

(k r) +F H‘1
2

R=~/i-[EH
p nn

n n (k r)] (3. 44)

PJ
.

«S
t.



 45

where En and En are arbitrary constants. Combining Eqs. (3. 38),

(3. 43) and (3.44) we have

n = l .330 p (cose)[1~: Hm (k r)+F H“ (k r)] (3 45)
1 ano n n n+§7 p n n+-; p ° '

V

Now 132 and n1 have been determined explicitly from Eqs. (3. 28)

and (3.45). We now aim to express E2 and I? in terms of these

two known quantities. From Eq. (3. 12) we have

-0 -e _, V02

V = W E2 ' m “I “'4‘”

The substitution of Eq. (3. 46) in Eq. (3. 8) leads to

2

"f: _
l -> jevo

2. E VxH2+ 

w§(v+jw) vn1 (3‘47)

where 5 is given in Eq. (3. 20). The substitution of Eq. (3.47)

in Eq. (3.46) gives

2

- -e 1 -> v0 60

v = . . x H - ——-—.— Vn . 3.48

mwm) we V 2 no€(v+3w) 1 ‘ )

Under rotational symmetry two vector differential operations in

spherical coordinates can be expressed as

.. A

VXsz 1' 

a , *1 8

sin6_ .8—9- (SmeH )- 9; '5; (13H )2(1) (3.49)

(3. 50)

A

where rand 6 are unit vectors in r and 9 directions. Combining

Eqs. (3.47) to (3. 50), we obtain
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. Z 8

E - 1 1 3— 'eH Jev° n1 351
2:”wa rsinO 86 (am 24)) + m€(v+jw) 3r ( ° )

Z

3

E - '1 13—(rH )+ Jev° 1:1 (3 52)
29- jg); r 3r 24> (DEW-Um) r 86 °

2

V ’ -e l l 3- (sinGH ) V0 60 an]

r' m(v+jo) jog rsinG 36 2o noi(v+jw) 8r

(3.53)

2

v———" llint-H)- v°e° if: (354)
6— m(V+jm) p): r 8r 24> noEW-i-jw) r 36 ' °

Using Eqs. (2. 34), (Z. 35) and (3. 45) we obtain

an 00

1 _ -1 (Z) (2)E.— - r72 :oPn(cosG)IEn[ (n+1)Hn+%(kpr) - kpl' Hn-%(kpr)]

(1) (l)
+ Fn[(n+1)Hn+_z,_(kpr) - kpr Hn_%(kpr)] }.

(3. 55)

Using Eqs. (2. 25) and (3.45) we have

3n 00

l _ _L 1 (2) (1)
W .. «fr 2 Pn(cose) [Ean+%(kpr) + Fan+%(kpr)] (3.56)

n: 1

because for n=0, P:(cose) : 0. It is noted that the first terms on

the right-hand side of Eqs. (3. 51) to (3. 54) can be obtained easily

following the same procedures in Sec. 2. 3 while the second terms on

the right-hand side can be obtained by using Eqs. (3. 55) and (3. 56).

Since we are interested in E and v1' for the later development,

29

only Eqs. (3. 52) and (3. 53) are expressed more explicitly as follows:



47

oo
-' 1 Z Z

Eze(r,6) = —172 Z} Pn(cose){Cn[ anIéR r)-k rH( ) (ker)]1
e e n--

mgr n=1 2

(l) (l)
+ Dn[an+%(ker) - ker Hn_% (ker)] }

. z
Jev 00

+ ° [ z P;(cose)[E H‘2 (k r)+F H”)
3 z 1

m£(u+jm)r n=1 n “+7 P n n

V

 

(kpr )1

(3. 57)

N
T
.

(D

. (2)
_ -e —%— Z n(n+1)P (cosB)[C H 1(k r)

(Irma)- m<u'+jw) w§r3 7‘ n=1 “ n “+3 e

(1)
+ Dan+% (ker)]

vo 6 °° (2)
+ ° 3R 2 Pn(cose){En[(n+1)H

no§(v +10)!‘ n=0

 

n PJ
.

(1)

n

(k r) - k rHu)+F (n+1 H

n[ ) p p n-%
(kpr )1 1

J
.

(3.58)

3. 5 Fields in Free-Siace Region

The basic equations which govern Region 111 (free space,

r 2. c) are Maxwell's equations,

Vx§3 = Junta-H3 (3.59)

v x H3 = 50360153 (3.60)

Since Region III is unbounded, no reflected or inward traveling wave

exists in this region. Following the same analysis as in Sec. 2. 3,

the solutions to Maxwell's equations in this region can be written as

2

(k r) - kpr H;_)%(kpr)]
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(I)

_ _1_ 1 (2)
H3¢(r,9) - «fr :1 GnPn(cose)Hn+%(Bor) (3.61)

2
E3r(r,6)-- —)—37—n:21 Gnn(n+1)Pn(cosG)H:l+)%(fior) (3.62)

E39(r,9)= —'L7—n:21 anPn(cosGXnHa)4,1“30r)-(3orH(Z)%((30r)]

(3.63)

and

E34): H3r= H39: 0 (3.64)

where Gn is an arbitrary constant and n is a positive integer.

3.6 Matching of Boundary Conditions at Interfaces
 

In order to determine the arbitrary constants An' Bn’ Cn’

D , E , F and G , the boundary conditions at r = a, r = b and

n n n n

r = c are applied.

Following the same procedures of Sec. 2. 5 in matching the

boundary condition on the antenna surface (r = a), we can obtain

easily an expression as

MlAn + MZBn = M3V (3.65)

where

- (2) 11(2)
Ml - an+%(sda) - adaHwasa)

M2 - nHH‘n’mda) - sda H‘M’ysa)

. l Zn+l

M3 - JOQEd «fa in) Zn(n+l)
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The continuity of the tangential components of E and H fields at the

dielectric-plasma interface (r = b) is

Ele(b,9) = E26(b'9) (3.66)

(b,9) . (3.67)Hl¢(b,9) H24>

Using Eqs. (3. 5) and (3. 57), Eq. (3.66) gives

M4An + 1.153]n + M6Cn + M7Dn + M8En + M9Fn = o (3.68)

where

- E (Z) (Z)

 

 

_ Q (1) (l)

_ (2) (2)
M6 - - [an+%(keb) - kean_%(keb)]

- (l) (1)
M7 _ - [an+%(keb) - keb Hn_%(keb)]

CV 2

_ 0 (2)

M8 v +jm Hn-l—i-(kpb)

CV Z

M = ° Hm (k b)

From Eqs. (3. 3) and (3. 28), Eq. (3.67) can be expressed as

= 3.6MloAn + Mlan + Mlzcn + M13Dn 0 ( 9)

where

M = Hm
10 n+§ (fidb)
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_ (

_ (2)
M12 - - Hn+%(keb)

_ (1)

M13 ' ' Hn+§(keb) °

The continuity of the tangential components of E and H fields at the

5

plasma-free space interface (r = c) leads to

 

 

E29(c,6) = Emma) (3.70)

HZ¢(c,9) : H3¢(c,8) (3.71)

Using Eqs. (3. 57) and (3.63), Eq. (3.70) gives

: 2M14Cn + MISDn + Mlen + M17Fn + M180n O (3.7 )

where

M = -[ nH(Z) (ke c) - ke cH(Z) (keC)]
14 n+§ -%_-

_ (l) (1)
M15 - -[ an+%(kec) - kecHn_%(kec)]

e 2.

v

_ o (2)

M16 v+jw Hn+%(kpc)

ev 2

_ o (1)

M17 ’ wry.) Hn+%(kpc)

_ _§_ (2)

M - [an+l(poC)-POCHn1050C”
18 '2

60

From Eqs. (3.28) and (3.61), Eq. (3.71) can be expressed as

= 3. 3M19Cn + MZODn + M216n 0 ( 7 )
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where

M19 - H112 (kec)

M20 = Hifléfiec)

M21:Hr(12+2-(fioc) °

In the present analysis, it is assumed that the normal com-

ponent of the mean electron velocity vanishes at the interfaces at

r = b and r = c. These rigid boundary conditions require that

vr(b,0) _ 0 (3.74)

and

vr(c,9) = 0 . (3.75)

Using Eq. (3.58), Eq. (3.74) gives

Macn + M23Dn + M24En + M251?n = 0 (3.76)

where

(L)

= _2 (2)
M22 n(n+1) a) Hn+%(keb)

‘22 (1)
M23 = n(n+1) w Hn+;j(keb)

_ . Z (Z) (2)
M24 — Jev [(n+l)Hn+%(kpb) - kprn_z1(kpb)]

_ . (l ) (1 )
M — JevoZ [(n+l)Hn1(kpb)-kanl(kpb.)]

25 p “'3

Similarly from Eqs. (3. 58) and (3. 75) we obtain

: 3,M26Cn + M27Dn + M28En + M29Fn 0 ( 77)
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(1)

- _E (2)
M26 - n(n+l) m Hug: (kec)

‘32 <1)M27 = n(n+l) w Hn+%(kec)

_ . Z (Z) (2)
M28 - Jevo [ (n+1)Hn+%(kpc) - kpc Hn_%(kpc)]

_ . 2 (I) (1)
M29_ Jevo [(n+l)Hn+%(kpc)-kchn_%(kpc)].

It should be noted that the summation of the first term on the right-

00 co

hand side of Eq. (3. 58) can be changed from Z to 2 because the

n=1 n=o

n = 0 term makes no contribution to the series. Thus we can equate

the two series in Eq. (3. 58) to yield Eqs. (3. 76) and (3. 77) by using

the rigid boundary conditions imposed by Eqs. (3. 74) and (3. 75).

Furthermore, the notations for the coefficients Mi' i = 1, Z, . . ., 28,

29, are used merely for convenience.

By matching the boundary conditions on the interfaces, we

end up with seven algebraic equations for seven unknowns. For

convenience, the matrix representation for these equations is used.

Combining these equations, we can form a matrix equation as

[M]

   

M

0
0
0
0
0
0
0
0

V

_

 

(3. 78)
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where [M] is the matrix which can be expressed as

 

1 M2 0 o o o o

4 M5 M6 M7 M8 M9 0

10 M11 M1.2 M13 0 0 O

= 3s[M] o 0 M14 M15 M16 M17 18 ( 79)

° 0 M19 M20 0 ° 21

° 0 M22 M23 M24 M2.5 °

° 0 M26 M27 M28 M2.9 0

From Eq. (3. 78) we obtain the arbitrary constants as

- A 7 TM vq
n 3

B o
n

C 0

n -1
Dn = [M] O (3.80)

E o
n

F o
n

G o
n    

where [M] -1 is the inverse matrix of [M] .

Up to this point all the fields in Regions I, II, and III are

completely determined as functions of r and 9.

The determination of the arbitrary constants An’ Bn’ . . ., Gn

can be done from Eq. (3. 80) by getting the inverse matrix [ M] -1

through ordinary determinant operation or numerical calculation using

a computer.



54

3.7 Radiated Field in Free-Space Region
 

Since our main interest in this study is the radiated field

in the free-space region, we determine the arbitrary constant Gn

only. In order to determine Gn’ the ordinary determinant method

is employed. From the seven algebraic equations in the last sec-

tion we can form

[
>
|
[
>

v
—
N

(3.81)

where Al and A represent for two determinants as follows:

  

2

M1 M2 0 o o o 0

M4 M5 M6 M7 M8 M9 0

M10 11 M12. M13 0 0 0

A1 = o 0 M14 M15 M16 M17 M18

0 0 M19 M20 0 0 M21

0 0 M22 M23 M24 M25 0

0 0 M26 M27 M23 M29 0

M1 M2 0 o o o M v

M4 M5 M6 M7 M8 M9 0

M10 M11 M12 M13 0 0 0

A2 = o 0 M14 M15 M16 M17 0

o 0 M19 M20 0 o o

0 0 M22 M23 M24 M25 0

° 0 M26 M27 M28 M29 0   
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After some steps of determinant operation, 61 and A2 can be ex-

pressed as

: - 2Al M21(MZM10 M1M11)A4 (3.8 )

92' VM31‘419‘1‘451‘410 ' M4M11)‘33 ”'83)

where

M M
14 20

A3‘ ‘M15' M19 "M24M29' MZSMZB)

M M
22 20

' ‘M23' M19 "M161“29 M17M28)

M M
26 20

+‘Mz7' M19 )‘M16M25 'M17M24)

  

A _ M Mlz‘MlMs' M4M2) A 13‘M1M5' M4M2) A

4’6MM-MM 5'7'MM MM 6
111 102 111 102

+MA-MA

8 7 9 8

and

A-(M MHMM MM) 16(M MM)
5’ 15' M21 24M29' 25 28 ' 23M29' 25 27

1M7‘M2328' M24M27)

M19M18

A6= ‘M14' M21 )‘M24M29' M25M28" MM16‘Mzz29' M25M26)

17‘MzzM28' M24M26)

M19M18

A7= ‘M14' M )‘M23M29" M25M27HM17‘M22M27' M23M26)
21
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M M
20 18

"M15' M21 "M22M29'M25M26)

A=(M -J—HMM MM)+M (M MM)
8 14 M21 23M28' 24 27 16 22M27' 23 26

M M
20 18

"M15' M21 )‘MzzM28' M24M26)

Combining Eqs. (3. 81), (3. 82) and (3.83) we have

(3 _ v M3M19‘M5M10' M4M11) :3 (3 84)

11 M21‘M2M10'M1M11) A4 °

From Eqs. (3.63) and (3.84) the field E
o

39at(r—R, 6- 90 )canbe

expressed as

 

o v °° M31‘419‘1‘451‘A1o' M4M11) A3

Ee‘R'9°)' 32 z M(MM-MM) Z—in)
ODEOR n=1 21 2 10 1 11 4

(n=odd)

[nH‘i’1(soR) - sRH"_1(som].

 

(3.85)

Equation (3. 85) can be rearranged as

00 n 2

(R, 90°) fd—ff z .211— :2. M19(M5M10'M4M11)

E39 = 2 n=12n(n+1) n 1921\4(M-M M )
«60R (n-odd) I‘(z+2) M21 10 1 11

A

. _2 (Z) (2)
A4 [nHo+%(soR) - soRHo_’1<som] . (3.86)

3. 8 Numerical Results

The radiated power from the antenna in the broadside direction

which is proportional to the square of E93 (R, 90°) as expressed in
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Eq. (3. 86) has been numerically calculated as a function of the

antenna dimensions and plasma parameters. In a realistic situation,

the presence of the plasma sheath on the antenna surface is taken into

(8)
account by the adoption of a concentric dielectric layer which

separates the plasma from the metallic surface of the antenna. This

adoption can also account for an actual dielectric coating. For a

usual plasma sheath, its thickness may be of the order of several Debye

lengths. In the present numerical calculation, the plasma sheath is

regarded as an electron-free region extending from r = a to r = b.

A convenient parameter to describe the thickness of the sheath is

v

o

the dimensionless quantity 8 defined by b - a = (NI-3w )s. It is to be

V

O

noted that («[3111 ) is of the order of a Debye length in the plasma and,

thus, 8 may be regarded as the ”Debye thickness" of the sheath‘8 ).

 

 

The permittivity of the sheath can then be assumed to be the same

as that of the free space, i. e., 6d = 60. Furthermore, in the numeri-

cal analysis only the first five terms, i. e., n = l, 3, . . . 9, on the

right-hand side of Eq. (3. 86) are summed up for that series and for

the large arguments, z > 10, the asymptotic forms of the Hankel

functions of the first and second kinds have been used. The numeri-

cal calculation was made by using a CDC 3600 computer .

Figures 3. 2 to 3.4 show the radiated power from a spherical

antenna of radius 2. 54 cm driven at various frequencies as a func-

tion of the plasma density of the plasma layer with the Debye

thickness s as the running parameter. The radius of the spherical
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plasma layer is 7 cm (or the thickness of plasma layer is 4.46 cm

minus the thickness of plasma sheath) and the distance between the

radiating and receiving antennas is O. 915 m. The electron collision

frequency is assumed to be O. 12 GHz and the ratio of the r. m. s.

electron velocity to the velocity of light in free space, vo/co, is

assumed to be 0. 01. In these figures the radiated power at each

driven frequency is normalized to its free-space radiated power.

At all driven frequencies we invariably observe that the antenna

radiation is reduced as the plasma density is increased and it reaches

the cut-off point as the plasma frequency is increased to the neighbor-

hood of the antenna frequency. After the plasma frequency exceeds

the antenna frequency, the antenna radiation starts to build up some-

what for higher antenna frequency cases of 0. 8 GHz and l. 2 GHz.

This trend becomes more outstanding for lower frequency cases of

0.4 GHz and 0. 3 GHz. At 0.4 GHz and 0. 3 GHz, the antenna radiation

can build up to a level 15 db to 21 db higher than the free-space

radiation after passing the cut-off. Physically it means that if an

antenna is Operated at a frequency much lower than the plasma fre-

quency of the plasma layer, its radiation will recover from the cut-

off and then be enhanced greatly over the free-space radiation level.

This phenomenon of enhanced radiation is similar to that discussed

in Chapter 1 especially when the thickness of the plasma sheath is

in the order of one Debye length, i. e., s = l. The effect of the

plasma sheath on the antenna radiation can be observed from these
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figures. When the thickness of the plasma sheath is increased the

phenomenon of enhanced radiation after passing the cut-off is more

outstanding for both higher and lower frequency cases.

The set of Figs. 3. 5 to 3. 6 shows the similar phenomenon

as the set of Figs. 3. Z to 3.4 but for the case of a smaller antenna

(1. 27 cm radius). The radius of the plasma layer is again 7 cm.

For a smaller antenna, we observe that the antenna radiation is

enhanced greater for both higher and lower frequency cases. A

strong enhancement of 15 db over free-space radiation for the case

of O. 8 GHz in Fig. 3. 7 is rather interesting since it tends to indi-

cate that the phenomenon of enhanced radiation can occur even for

a higher frequency case if a suitable value is as signed to the plasma

parameters.

The effects of the electron collision frequency, the antenna

size, the thickness of the plasma layer and the thickness of the

plasma sheath on the phenomenon of enhanced radiation can be

observed from two sets of figures, Figs. 3.8 to 3.11 and Figs. 3. 12

to 3. 15. In Figs. 3. 8 to 3. 11 the radiated powers from spherical

antennas of various radii, Z. 54 cm, 3. 81 cm, 5. 08 cm and 6. 38 cm,

driven at O. 4 GHz are shown as functions of the plasma density of

the plasma layer with the Debye thickness 8 as the running para-

meter. The radius of the spherical plasma layer is fixed as 7.62. cm

and the distance between the radiating and receiving antennas is

0. 7 m. The electron collision frequency is assumed to be 0. 03 GHz
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and the ratio of the r.m. s. electron velocity to the velocity of light

in free space, vo/ co, is assumed to be 0. 01. In these figures the

radiated power is normalized to its free-space radiated power. For

FigS. 3.12 to 3.15 the same set of parameters is used except the

electron collision frequency is changed from O. 03 GHz to O. 003 GHz.

The main points of observation on the enhanced radiation from the

antenna can be summarized as follows:

(1) A higher loss in plasma makes the cut-off phenomenon less

outstanding and the enhancement of radiation slightly lower .

(2) For fixed radius of the spherical plasma layer the

phenomenon of enhanced radiation becomes less significant as the

antenna size is increased and the thickness of plasma layer is reduced.

(3) For fixed antenna size the increase of the thickness of

the plasma sheath which is equivalent to the decrease of the thickness

of the plasma layer makes the enhanced radiation more outstanding.

(4) Besides the above observations on the general behaviors

of the enhanced radiation which are consistent with the phenomena

observed in Chapter 1, an interesting finding is made on a series of

resonance peaks which occur when the thickness of the plasma layer

is thin and the electron collision frequency is low compared with

the driving frequency. In Figs. 3. 8 and 3. 9, the antenna sizes are

small with radii 2. 54 cm and 3. 81 cm and the plasma layers are

thick, no resonance peaks are observed. When the antenna size is

increased to S. 08 cm radius and the plasma layer becomes rather thin
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in Fig. 3.10 the resonance peaks start to show up at (spa/(1)2 = 1. 3.

If the antenna size is further increased to 6. 35 cm radius, and the

plasma layer is further shrunk, more resonance peaks occur at

pr/wz = 0. 7, l. 3 and l. 5. This indicates that if the thickness

of the plasma layer is made thin the resonance will occur. Physi-

cally, it may be attributed to the electroacoustic resonance in this

thin plasma layer. Since the wave length of the electroacoustic wave

is rather small, it can set up the standing wave only when the plasma

layer is thin. A large plasma layer will make the electroacoustic

wave to set up an attenuating traveling wave instead. since the

plasma is lossy in nature. In Figs. 3.12 to 3.15, the plasma

medium is made less lossy (v/ 211 = O. 003 GHz). The resonance

peaks start to show up for the smaller antenna and thicker plasma

layer cases and more resonance peaks occur for the larger antenna

and thinner plasma layer cases. This might be due to the fact that

since the plasma medium is now less lossy, the electroacoustic

wave will suffer less antenuation and even for a larger plasma

layer it is still possible to set up the standing wave for the resonance

within this layer. There are two other possibilities for producing

the resonance peaks. They are: (1) the cavity resonance due to

the electromagnetic wave in the spherical plasma layer, and (2.)

the cavity resonance due to the electromagnetic wave in the plasma

sheath region. It is unfortunate that in the present analysis there is

no way to identify those resonance peaks with those three different
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causes. From Fig. 2. 8 we found that under the same conditions but

a different theory, no resonance peak was observed even when the

thickness of the plasma layer was made very thin. This fact tends

to indicate that those resonance peaks observed in Figs. 3.10 to

3.15 are due to an electroacoustic wave in the plasma layer or an

electromagnetic wave in the plasma sheath region.
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CHAPTER 4

EXPERIMENTAL INVESTIGATION ON THE RADIATION

FROM A SPHERICAL ANTENNA IN A HOT PLASMA

4. 1 Introduction
 

The radiation from a spherical antenna imbedded in a finite,

spherical plasma layer has been studied theoretically in Chapters 2

and' 3. In order to confirm the theoretical results, an eXperimental

investigation on the subject has been conducted.

The main purpose of this experimental investigation is to

detect the strong enhancement on the antenna radiation over a wide

band of antenna frequencies which are much lower than the plasma

frequency of the plasma volume. This phenomenon has been pre-

dicted theoretically and it has also been confirmed in this experi-

mental study.

In our experiment. the hot plasma was provided by a mercury

arc discharge which was created in a hemi-spherical pyrex tube.

Hemi- spherical antennas were used as the radiating sources and a

large metal plane was used as an image plane.
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4. 2 Experimental Setgp
 

The experimental setup for the antenna radiation measurement

is schematically shown in Fig. 4.1. The plasma tube is made of a

hemi- spherical pyrex glass tube with a radius of 3 inches. A small

mercury pool with a floating spot fixer is located at one end of the

tube. The open end of the tube is sucked to the ground plane when

the tube is being pumped. With this arrangement the ground plane

acts as the anode and the mercury pool as the cathode of the plasma

tube and the discharge is maintained by a DC voltage. The‘ discharge

current can be varied from zero to about 8 amperes, corresponding

to a plasma density of about 2 x 1017(m3)-l. The electron temper-

ature and the pressure of the plasma are about 20, 0000K and 3 x 10"3

mm Hg. respectively. A spherical monopole antenna is fed into the

center of the plasma tube through the ground plane and is driven by

a RF signal. The antenna is DC blocked from the rest of the system

to insure a floating potential for the antenna. The radiation of the

antenna through the plasma is measured by a fixed receiving antenna

on the ground plane. The output of the receiving antenna is connected

to a hetrodyne receiving system. The distance between the radiating

and receiving antennas is O. 915 m. The radiating antenna with the

plasma tube and the receiving antenna are all enclosed in a micro-

wave anechoic chamber. Figure 4. 2 shows the photograph of this

plasma tube under operation inside of the microwave anechoic

chamber. The photograph of the experimental setup outside of the

microwave anechoic chamber is shown in Fig. 4. 3.
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Fig. 4. 2 A hemi-sPherical plasma tube (3-inch radius) under

operation inside of a microwave anechoic chamber.

 

 
Fig. 4. 3 Experimental setup outside of a microwave anechoic

chamber.
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4. 3 Experimental Results and Comparison with Theories
 

The experimental results of the radiation from two spherical

antennas of radii Z. 54 cm and l. 27 cm driven by various frequencies

are plotted in comparison with the corresponding theoretical results

in Figs. 4.4 to 4. 7. At each driven frequency the antenna radiation

is measured as a function of the plasma density and the radiated

power is normalized to the value when no plasma is present (free-

space radiation). The antenna radiation is measured at R = 0. 915 m

and in the broadside direction of the radiating antenna.

In Figs. 4.4 and 4. 5, the corresponding theoretical results

are calculated from E29(R = 0. 915m, 90°) in Eq. (2. 59) under the

assumption of a cold plasma and an electron collision frequency of

0.12 GHz. In Figs. 4.6 and 4. 7, the corresponding theoretical

results are calculated from E39(R = 0. 915m, 90°) in Eq. (3. 86)

under the assumptions of a hot plasma, v/ Zn = 0.12 GHz, vo/Co =

0.01 and s = 1. Figures 4.4 and 4. 5 are based on the lossy, cold-

plasma theory studied in Chapter 2 while Figs. 4.6 and 4.7 are

based on the lossy, hot-plasma theory developed in Chapter 3. The

theoretical value of the radiated power is also normalized to the free-

space radiation. The comparison of two theories (lines) with the

experiment (dots) indicates a very close agreement. The agreement

between the experiment and the lossy, hot-plasma theory is somewhat

better than the agreement between the experiment and the lossy,

cold-plasma theory. It should be noted that only four cases are
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considered in Figs. 4.6 and 4. 7 because the numerical result ob-

tained from the lossy, hot-plasma theory, require extensive com-

puting time.

In the experiment, the antenna radiation was observed to be

enhanced about 15 db over the free-space radiation when the antenna

frequency was 0. 3 or O. 4 GHz and the plasma frequency was at least

twice higher than the antenna frequency. It was also observed in the

experiment that when the antenna frequency was higher than 0. 8 GHz

no enhancement above the free-space radiation could be obtained after

passing the cut-off point. All these phenomena are well predicted by

the theory. Also in the experiment, the DC potential of the antenna

was varied betweeni 20 volts to see the effect of the plasma sheath

on the phenomenon of enhanced radiation. Except for a slight effect

due to the bias circuit, negligible effect by the plasma sheath had

been observed. Furthermore, no resonance peaks was found in the

experiment.

4. 4 Discus sion
 

In this study, the phenomenon of enhanced radiation from an

antenna coated by a layer of plasma is confirmed theoretically and

experimentally. It appears feasible to apply this phenomenon in

overcoming the blackout problem of a reentry antenna or in providing

a low-loss tuning for a small antenna.

There remains two facts which should be pointed out. The

first is the appropriate size of plasma layer for a possible
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enhancement in radiation. In our experiments and most of numerical

examples, the size of plasma layer was made bigger than the antenna

size for structural convenience. This does not mean that a large

volume of plasma is always needed for a possible enhancement in

radiation. In fact, it has been shown in Fig. 2. 6 that even for a plasma

layer with a thickness equal to the antenna radius can lead to a 15 db

enhancement. Furthermore, in Figs. 3. 10 to 3.15 we observe

resonance peaks when the thickness of the plasma layer is very thin.

The second is that antennas on a space vehicle are usually

matched under free-space condition and in our study this fact was

not taken into account. This is not very important because a more

important fact is that even a matched antenna when covered by a

plasma will suffer a blackout and after that the antenna radiation can

not be recovered by any tuning or impedance matching. Thus, the

method discussed in this paper may offer a possible solution to the

blackout problem.
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CHAPTER 5

RADIATION OF A CYLINDRICAL ANTENNA IMMERSED

IN A LOSSY, COLD PLASMA OF INFINITE EXTENT

5. 1 Introduction
 

A cylindrical antenna is one of the most commonly used

radiators. When it is used on a space vehicle, it is often operated

in a plasma region. The electrical properties of a cylindrical

antenna in a plasma medium thus become important in view of

practical and academic reasons. In this chapter, the electrical

properties of a cylindrical dipole antenna immersed in a lossy,

cold plasma of infinite extent is studied.

Many workers have theoretically investigated the electrical

characteristics of a cylindrical antenna immersed in a hot plasma

of infinite extent. Chen( 7) studied a thin cylindrical antenna of

finite length with a sinusoidally distributed current in a hot plasma.

(16)
Balmain treated the problem of an electrically short antenna with

a triangular current distribution immersed in a hot plasma. Their

results gave the antenna resistance only valid for cop/w < 1 where

88
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(0p and m are the plasma and antenna frequencies. Kueh1(l7'18 '19 )

studied the same problem, but solved the Boltzmann equation instead

of using the simpler hydrodynamic plasma equations. An interesting

result of his work is the existence of the antenna resistance for

cop/(s > 1. Since the Poynting-vector and induced-emf methods which

require a certain prescribed current distribution have been adopted

to calculate the impedance of the antenna in those papers, the antenna

reactance was not determined. Meltz, Freyheit and Lustigao) in-

vestigated an infinite cylindrical antenna covered by a set of coaxial

plasma layers, based on a variational formulation. They were able

to deduce both the antenna resistance and the antenna reactance for

a wide range of cop/(s. There are many other theoretical papers

which are not mentioned here.

To our best knowledge, there is no theoretical paper which

accurately determines the complete impedance of a cylindrical

antenna of finite length immersed in a hot plasma of finite or infinite

extent. This problem is intractable both mathematically and physi-

cally. In this study a simpler cold-plasma model is chosen to make

the analysis tractable.

(21)
Employing the King-Middleton theory and King's modified

22

method( ), the complete input impedance of a cylindrical antenna is

determined as a function of antenna dimensions and plasma para-

meters. The effect of the collision frequency on the antenna impedance

is carefully examined.
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5. 2 Geometry and Statement of the Problem

The geometry of the problem is shown in Fig. 3. l. A cylin-

drical dipole antenna of radius a and length 2h is center-driven at

z = 0 by an idealized delta function generator with a voltage of V and

an angular frequency of m. The antenna surface is assumed to be

perfectly conducting except at the small gap 26 at the center of the

antenna. The antenna is immersed in an infinite, homogeneous and

cold plasma. The plasma is assumed to be a weakly ionized gas and

can be characterized as a lossy medium with a permittivity of

 

0) n e

E = E (l -—E— z).a conductivity of 0' = o v , and a per-

0 2 m 2. Z

a) +1: 6 w +V

meability of p = no where cop is the plasma frequency, no is the

density of plasma, u is the collision frequency of electrons with

neutral particles, e and me are the charge and mass of electrons,

and Go and "o are the permittivity and permeability of free space.

In order to employ the quasi-one-dimensional theory, the

following dimensional restrictions on the antenna are made:

h>>a

(5.1)

fla, : -Z—-:—a— (<1

where p is the wave number and k is the wave length in this medium.

Based on these thin-wire assumptions, the current can be con-

sidered(23) to be concentrated along the axis of the antenna when

calculating the field or vector potential at a point in the medium.

Even in the vicinity of the antenna surface, the error caused by

this approximation is insignificant.
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I (z) I

z

  

I (z) I plasma

2 (Hour. 6)

perfect __

conductor /'

(cr=cx)) d______ z:-h
  

Fig. 5. 1 A cylindrical antenna immersed in an infinite,

lossy and cold plasma.
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In this study rationalized MKS units are used. Cylindrical

coordinates (r, 8, z) are adopted and the rotational symmetry is

assumed. The time dependences for the radiating source and all

the fields are assumed to be exp(jm t).

5. 3 Basic Equations
 

The basic equations which govern the system are Maxwell's

equations. For harmonic time dependence of expfimt), Maxwell's

equations in this infinite, homogeneous and lossy medium can be

written as

8

-’ p
VOE :— 5.2g ( )

Vx-é = -j0)-é (5-3)

Vx—é = p. 3.8 +10}: 6E (5.4)

O O

v-‘fi = o (5.5)

where E and .15 are electric and magnetic fields, i is the complex

permittivity given by

6 = 6(1 4%). (5.6)

s

and-3 and p3 are the volume densities of the source current and

charge which are related by the continuity equation,

*8

v-J +jwps= o. (5.7)

It is convenient for this case to solve the Maxwell's equa-

tions by introducing the vector potential A and the scalar potential

cb. From Eqs. (5. 5) and (5. 2) '15 and '2': can thus be defined in terms
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of these potential functions as

‘15 = VxX (5.8)

-vq; -flX, (5.9)P
H

II

The substitution of Eqs. (5. 8) and (5.9) into Eqs. (5.4) and (5. 3)

leads to two inhomogeneous wave equations,

2-9 -0 ->

v 161+sz = -1101“ (5.10)

2 2 9
V<b+k<1>=-%— . (5.11)

subject to the Lorentz condition of

v-K+l(§- = o (5.12)

where k is the complex propagation constant given by

z 2
k = 00 not . (5.13)

If we write

k: fi-ja, (5.14)

p and u can be expressed as

 

 

2 2 4 l l

90 0) 20) mp 3 2

(0+9 (0+1! 00(0)+V)

z z 1.1.

50 a) 241) (04 J3 3

.=— -1+—£—+ 1-—£—+ P (5.16)
42 2 2 2 2 2 2 2

«0+1: 00w 00(0)+v)

where 8 is the wave number in this lossy medium, a. is the attenua-

tion constant, and 80 is the wave number in free space defined as

B =00N/p6 . (5.17)
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Equations (5.10) and (5. 11) are also called Helmholtz's equations.

The general solutions to Eqs. (5. 10) and (5. 11) are given by

  

  

-* -’ P -'D ~> ..ij —> -> -ij

A(1') 2 :0; [‘S‘V.J8(rl)eR dV'+‘g'K8(rl)eR dSI]

(5.18)

-a l
3 "’ -ij

¢(r)=m[&fp(r')e:R dV'++vs'n (1")‘3 ds’

(5.19)

where 123 and n8 are the surface densities of the source current and

charge, R is the distance between the observation point and the source

. -ij o ' .

point, and e /41rR is the Green 8 function.

For the case of a thin-wire linear antenna we have

3"(?')dv' +E8(?')ds'= 212(2')dz' (5.20)

p°(?')dv' + n°('r")ds' = q(z')dz', (5.21)

since the antenna current flows primarily along the axial or z-

direction.

Using Eqs. (5. 20) and (5. 21), Eqs. (5.18) and (5.19) can be

reduced to

 A(r):4_1r z 12°(z') dz' (5.22)

0m: 4+, Elam-J;— (5.23)

where I2 and q are the source current and charge densities per unit

length along the antenna.

Using the Lorentz condition Eq. (5.12), Eq. (5. 9) becomes
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‘5': = -¥%V(V.X)-jm2, (5.24)

k

Thus E and E fields are expressed in terms of A only. If we can

determine A from Eq. (5. 22), all the fields are then obtained from

Eqs. (5.8) and (5.24).

5. 4 BoundarLConditions
 

(24) that the boundary con-It is shown by King and Harrison

ditions for an antenna immersed in a lossy medium are the same as

for an antenna in free space. The King-Middleton's method is then

adopted to solve the present problem.

Due to the symmetry about the origin and the end condition of

the antenna, a pair of boundary conditions on the antenna current can

be expressed as

I (z) : I (-z)

z z (5.25)

12(1-1'1) = 0

From the boundary condition that the tangential component of

electric field should be continuous at the surface of the antenna, it

follows

Ea(r = a-) = Ei (r = a”) (5.26)
Z Z

where E;(r = a+) is the induced electric field just outside of the

antenna surface at r = a+, which is maintained by the current and

charge on the antenna, and E:(r = a') is the electric field just inside

the antenna surface at r = a-.
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5. 5 Integral Equation for the Current
 

Since the cylindrical antenna is assumed to be constructed

of a perfect conductor, its internal impedance per unit length 21

is equal to zero and the electric field inside the conductor surface

at r = a- vanishes except at the small gap, i. e.,

a 0 for -h:z:-6and6:z:h

EZ(Z)= (5.37)

-2‘—:5- for -6<z<6

where V is the applied voltage and 26 is the gap width.

The applied voltage across the gap at z = 0 is

6 a

V: -( E (z)dz . (5.28)
Z

“-6

In the limit of a slice generator where 26 -> 0, the tangential electric

field on the antenna surface can be expressed as

lim 123(2) = - v 0 (z) (5.29)
26*0 z o

where 6 (z) is the Diracdelta function.

Since the current flows only in the axial direction, from

Eq. (5. 22) the vector potential has only the z-component, i. e. .

X = zAz. (5.30)

From Eqs. (5. 30) and (5. 24) we obtain the induced electric field

on the antenna surface as
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k2 azz

i - 07‘ 2
122(2) = - E[ + k J Az(z) . (5.31)

In order to satisfy the boundary condition given by Eq. (5. 26),

Eqs. (5.29) and (5. 31) are equated to yield a second-order inhomo-

geneous differential equation for the vector potential at the antenna

surface as

 

2 2

8 2 _ jk

[322 + k] Az(z) - - -0)_ V06 (z) . (5.32)

The complementary solution of Eq. (5. 32) is obtained easily as

c _ jig ,

Az(z) _ - (1) (clcoskz +czsinkz) (5.33)

where c1 and c2 are arbitrary constants, and the parameter

(- i5 ) is added merely for convenience.

Since the particular integral for an equation of the form

(1

-—Z + bzy - f(x)

is given by

l x

Yp(x) = b S f(s)sinb(x-s)ds ,

o

the particular solution of Eq. (5. 32) can be verified to be

A:(z) = ”1245.) v0 sink|z|. (5.34)

The general solution to Eq. (5. 32) is then
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c P
Az(z) Az(z) + Az(z)

sinkz +31 sinkIzI].
, i}:

(1) [clcoskz+c2 2

(5.35)

From Eq. (5. 22) we obtain the vector potential on the antenna sur-

face as

p.

A(Z):

Z fi
l
o

h

" Sh Iz(z')Ka(z,z')dz' (5.36)

where Ka(z, z') is the kernel defined as

-ij

R

e
 

Ka(z, z') =

and

 

R = [(z-z') +32

By the surnmetry of the antenna current, Iz(z) = Iz(-z), it can be

shown from Eq. (5. 36) that the vector potential is also symmetric

about the origin, i. e., Az(z) : Az(-z). It is obvious that the arbi-

trary constant c2 should be equal to zero and Eq. (5. 35) reduces to

Az(z) = -35 [clcos kz Jr; sinklzl]. (5.37)

By letting z = h in Eq. (5. 37), c1 can be determined as

1

cl " cos kh

 [11:3 A201) -321 sinkh] . (5.38)

Using Eqs. (5. 36) and (5. 37) we can write an equation such as,
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411' h

= - $[01K08 kz - coskh) +§ (sink)zl - sinkh)]. (5.39)

o

The substitution of Eq. (5. 38) in Eq. (5. 39) leads to

 

h
'4 k V .

Shlz(z')Kd(z. z')dz' = 011L020)! kh ['2' 3131(0) - )z))

- IE9- Az(h)(coskz - cos kh)] (5.40)

where Kd(z, z') is the difference kernel defined as

Kd(z. 2') = K301. 2') - Kaah 2')

 

and

 

Rh = Jfll-z') +az .

Equation (5. 40) is an integral equation for the antenna current

which is valid for -h 5 z 5 h and convenient for the further develop-

ment.

5. 6 Approximate Solution of the Infigral Equation

The current distribution on the antenna can be determined

quite accurately by solving the integral equation (5. 40) approximately

following King's modified method .(ZZ). In this method the antenna

current is assumed to be proportional to the vector potential dif-

ference (the difference between the vector potential at a point on
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the antenna and that at the end of antenna). In other words, it is

assumed that the ratio of the vector potential difference to the

antenna current is relatively constant along the antenna. Since

Az(z) - Az(h) vanishes at z = i h, it is consistent with the end con-

dition of Iz(z = ih) = 0.

By the peaking property of the kernels

Ka(z, 2') ~ 6 (z-z')

saw. 2') ~ 0 (h-z')

and from Eq. (5. 39) it follows that

411'

)1; [Az(z) - Az(h)] ~ Iz(z) - 1201).

Since 1201) = 0 as imposed in Eq. (5. 25), then

12(2) ~ Az(z) - Az(h)

and the antenna current can be assumed to have the form

12(2) = A Ic(z) + B 18(2) (5.41)

where A and B are arbitrary constants and

Ic(z) = cos kz - coskh

18(2) sink(h - (2|) .

Note that Eq. (5.41) satisfies the boundary conditions given by

Eq. (5.25).
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Since the difference kernel is a complex function, it can be separated

into real and imaginary parts as

 

  

l _ I ' I
Kd(z,z) — Kdr(z' z ) +jKdi(z, z) (5.42)

where

e'aR e-
I .. - _—Kdr(z’ z ) _ R cos BR Rh cos fiRh

-aR e-aRh

' - - a a

Kdi(z,z) - R sinpR + R), sin[3Rh

Substituting Eqs. (5.41) and (5.42) into Eq. (5.40) we have

h

 

ShlAIc(z') + B13(z')][Kd1—(z’ z') + j Kdi(z, z')]dzl

.. j4flk [X sin k(h- Izl) - E A (h)(C°3 kz ' COS kh)]
' mpocoskh Z k z

(5.43)

Since Kdr(z' 2') becomes very large when z' is near z, it

follows that the principal contribution to the part of the integral that

has Kdr(z' z') as kernel comes from elements of current near 2': 2.

On the other hand, K 1 remains very small when 2' is near 2. Thisd'

suggests that the contribution to the part of the integral that has

Kdi(z' 2') as kernel comes from all the elements of current along

the antenna. Due to this peaking property of kernel Kdr(z' z')

and non peaking property of kernel Kdi(z’ 2'), various integrals on

the left hand side of Eq. (5.43) can be equated to the functions on

the right hand side of Eq. (5. 43) in the following manner:
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S (cos kz' - cos kh)Kdr(z, z')dz' ~ (cos kz - cos kh) (5.44a)

(cos kz' - cos kh)Kdi(z’ z')dz' ~ (cos kz - cos kh) (5.44b)

"-h

h

(‘ sink(h - (z'|)K (z,z')dz'~sin(3 (h - (2|) (5.44c)
V-h dr 0

(sh sink(h - )z'))Kdi(z, z')dz' ~ (cos kz - cos kh) (5.44d)

“-h

where Eqs. (5. 44a) and (5.44c) are based on the characteristics of

kernel Kdr(z’ z'), and Eqs. (5.44b) and (5.44d) are justified from

numerical calculation. Indeed, it can be shown numerically that

the integrals on the left side of Eqs. (5.44b) and (5.44d) are roughly

proportional to the shifted cosine function (cos kz - cos kh).

These properties suggest that Eq. (5.43) can be split into two

parts by equating the corresponding terms on the right and left hand

sides of this equation as follows:

 

 

h

SJAIC(z')Kd (z,zz') + j BIB(z')Kdi(z, z')]dzl : ——Po<34:8kh Az(h)(cos kz

- cos kh) (5.45)

511131 (z')Kd1'Z(z'z')dz'zwiZLflSZkh sink(h - (2)) (5.46)

"-h 0

Equations (5.45) and (5.46) can be rearranged as

S: I(:(z') 18(z') 4"

I ' I I.- __
[A—I: (z ) Kd(z, z ) +jBIc(z) Kdi(z' 2 )]dz — pocoskh Az(h)

(5.47)
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h I (z')

3

Sh B 18(2) Kdr(z, z')dz' =

_jQZWRWI

m pocos kh

  

(5. 48)

The current Iz(z) can be expressed in terms of a reference

current Iz(zo) and a distribution function f(z) that is unknown. Let

Iz(z) = Iz(zo)f(z) . (5.49)

From Eq. (5.49) we have

 

 

 

I (z') = I (z )f(z') . (5.50)

z z 0

Then

- f(Z') ._
Iz(z') - 12(2) f(z) - 12(2) 8(2. 2')

and

Iz(z')

g(z.z') = 1 (z) (5.51)
Z

It has been shown by Kingu‘l) that a function \|J(z) can be defined as

It (2)

(1(2) = 31 z = 0+ )(z) (5.52)
o Iz(2)

where 4: is the constant part of 41(2) and is called as the expansion

parameter. (Hz) is roughly constant in the central part of the antenna

but increases rapidly at the ends of the antenna. Usually 7(z) is

chosen to be close to zero at the point of maximum current. It can

be shown that 7(z) remains very small over the central part of the

antenna and has a large value only at the ends of the antenna. There-

fore, we can let
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\P = M2 ) = -- (5.53)

where 21 is the point of maximum current on the antenna. It has

been commonly assumed that z = 0 when h S X/4 and zl= h - X/4

1

when h > k/4. Using Eqs. (5. 52), (5. 36) and (5. 51) we can express

(Hz) in another form as

M2) = fhg(Z.Z')K(z,z')dz' (5.54)

".11

where K(z, 2') stands for an arbitrary kernel. Thus from Eqs.

(5. 53) and (5. 54) we obtain an expression for the expansion para-

meter,

4) = M21) = f[g(z.z')1<<z.z')] dz'. (5.55)
-h z:

z,

Using Eq. (5. 55), Eqs. (5.47) and (5.48) can be reduced to

 

. 411'

A ‘de +13 1.2 - 3:33:13 Az‘h’ (5'56)

_ iZWkV

B"Pd3 - wuocos kh (5° 57)

where

4’61 = 5J1 [gd1(zs Z')Kd(Z, 3.)] (12'

-h zzz

1

q’dz : (h [gdz(zs z')Kdi(zs 2.)] dz.

u_h Z:
Z

1
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4’03 = 6[gd3(z'z')Kd1-(z'z')] dz'

  

  

”-11 2:21

and

( z!) _ Ic(z') _ cos kz'- coskh

gd1 2' - Ic(z) - cos kz - coskh

( z') - 18(2') _ 31111411 " 121)

8oz 7" ’ Ic(z) ‘ cos kz - coskh

18(2') sink(h - )z'D
 

gd3(z'z') 1 (z') ' sink(h-Iz1) .

From Eq. (5. 36) we have

31 Az(h) : ~S‘hlz(z')Ka(h,z')dz' (5.58)

o c

The substitution of Eq. (5.41) into Eq. (5. 58) gives

31A(h)=AT +131 (5.58)
p. z c s

0

where

h

'rc = 5 Ic(z')Ka(h,z')dz'

-h

'1“B = S:I8(z')Ka(h,z')dz' .

Substituting Eq. (5. 58) into Eq. (5. 56), an expression is obtained

as

A = B T01) (5.59)
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where

 

From Eq. (5. 57) we obtain

j21rkV

B

41d300 pocos kh

(5.60) 

The combination of Eqs. (5.41), (5. 59) and (5.60) leads to the

current distribution along the cylindrical antenna as

J anV

¢d3w Hocoskh [sin k01- )Z)) 1‘ T(h)(cos kz - cos kh)]

(5.61)

 

1(2):

2

Equation (5. 61) is the final expression for the antenna current.

5. 7 Input Impedance of the Cylindrical Antenna
 

The input impedance of the cylindrical dipole antenna is

defined as

v .

Zin’ 12(z=0) ' Rin+JXin

where Rin is the input resistance and Xin is the input reactance of

the antenna.

From Eq. (5.61), this impedance can be obtained as

¢d3w pocoskh

Zin = j21rk[ sinkh + T(h)(l - cos kh)] (5° 62)

 

where the symbols can be expressed more explicitly as follows:
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TB- jnlldzcoskh

¢dlc°8 kh - Tc

 T0?) =

 

2‘2h .

T = ( (cos kz'-cos kh)Wdz'

c ”-h (h-z') +a

. 2 2

Ts = (h sink(h- lz'hWfi—l dz'

v-h (h-z') + a

exp(-jk)/(zl-z')2-I:2-)

 

 

 

 

l
q, = - 5 (cos kz' - cos kh)[
d1 coskz1 coskh -h {‘21- 2)) + a

. 2 2
_ ex - k‘lh-z') +a ]d2,

701-2 ')é+ .2

 

 

 -1 exp(- of/(zl -z')2+a2

2 2

41‘” = coskz -coskh 8ink(h- l2.) —T_'_z__7——sinp'[(zl-z') +3
1 -h (21 -z) +a

- °7‘ES;‘LH_JW sinfl'IOi-z')z+ az]dz'

(h-z') +a

J 2 2'
l h . exp(-o. (zl-z) +a ) r . 2.

5‘ sink(h-)z'l) fl_ cosp (zl-z )+a

 

 

 

 

 

 

 

¢d3 = aink(h-)zln
Jul-2,)

2 2

- E$90—J0211u-é')7—+-a—zcos BJ(h-z')2+a2]dz'

(h-z') +a

zl = 0 when h§%

X k
21: h-Z when h>z.
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5. 8 Numerical Results
 

The input impedance of a cylindrical dipole antenna as ex-

pressed in Eq. (5. 62) has been numerically calculated as a function

of the antenna dimensions and plasma parameters. All the integrals

given in Eq. (5. 62) are numerically evaluated by the Simpson's rule

using a CDC 3600 computer. The theoretical results on the input

impedances ,of cylindrical monopole antennas of various lengths are

then calculated from zin/Z where zin is given by Eq. (5. 62), and

graphically shown in Figs. 5. 2 to 5. 5. The input impedance is plotted

as a function of (spa/(1)2 with v/m as the running parameter. The value

of (0132/01)2 is directly prOportional to the plasma density when the

antenna frequency is kept constant, and ”/00 is the ratio between the

collision frequency and the antenna frequency. The antenna is assumed

to be driven at the frequencies of l. 8 and 2. 0 GHz.

In Figs. 5. Z to 5. 5, the solid lines represent the antenna

input resistances while the dotted lines stand for the antenna input

reactances. Observing from these figures, the effects of the collision

frequency on the antenna input impedance can be summarized as

follows:

(1) For low plasma density (mpz/mz < 0.4) and low collision

frequency (ll/00 < 0. 01), as the plasma density is increased

the antenna resistance decreases and the antenna reactance

becomes more negative in such a way that the antenna behaves



(Z)

(3)

(4)

(5)
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progressively shorter electrically. The collision fre-

quency has almost no effect on the antenna impedance.

For low plasma density (pr/mz < 0.4) and high collision

frequency (ll/(1) > 0. 01), the antenna still behaves progressively

shorter electrically as the plasma density is increased. The

collision frequency has small effect on the antenna resistance

but still no significant effect on the antenna reactance.

2

For 0.4 < (cpl/(o < 0. 85 and V/a) < 0.01, the antenna behaves

as the same in case (1).

For 0.4 < mpz/wz < 0. 85 and v/a) > O. 01, as the plasma den-

sity is increased the antenna resistance tends to increase

monotonically and the antenna reactance behaves in an opposite

way. The effect of the collision frequency on the antenna

impedance becomes more obvious over this range. The in-

crease of the collision frequency causes the increase of the

antenna resistance and makes the antenna reactance less

negative. This implies that over this range there is more

energy transferred from the electromagnetic wave to the

electron gas of plasma.

In the range of 0. 85 < pr/(sz < 1. 15, there are sharp peaks

of antenna resistance and a sharp change from capacitive to

inductive for the antenna reactance when the plasma frequency

approaches the antenna frequency. Over this range, there is
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tremendous energy transferred from the electromagnetic wave

to the electron gas of plasma.

(6) When mpZ/wz > 1.15, both antenna resistance and reactance

decrease rapidly as the plasma density is increased.

The significant findings of this study are: (1) the peaking of

antenna resistance at a) ~mp due to the collision,and (2) the change

of sign for the antenna reactance at (1) ~wp.
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CHAPTER 6

EXPERIMENTAL INVESTIGATION ON THE RADIATION

 

 

OF A CYLINDRICAL ANTENNA IN A HOT PLASMA F“

. !
6. 1 Introduction 1

i
The radiation of a cylindrical antenna in a hot plasma has

{I

been studied theoretically by many researchers as mentioned before. a";

In contrast with the abundance of theoretical papers, extremely few

experimental studies have been published. The relevant experimental

(9)
studies were the observation of electroacoustic wave by Whale

in a rocket flight, Schmitt'sum observation of Tanks-Dattner's

resonance excited by an antenna, and the experiments on the antenna

in a hot plasma conducted by Jassby and Bachyskiu”

Jackson and Linuz' 13). Nevertheless, to our best knowledge, no

and by Chen,

extensive experimental study has been conducted to study the electro-

acoustic wave excited by an antenna in a hot plasma.

The purposes of this experimental investigation are to

(I) detect the existence of an electroacoustic wave excited by an

antenna in a hot plasma, and (2) study the effect of this electro-

acoustic wave on the circuit and the radiation properties of an

115
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antenna. Two approaches, (1) to measure the antenna input impedance

as a function of plasma parameters, and (2) to measure the antenna

radiation field as a function of plasma parameters, have been used to

detect the electroacoustic wave.

In order to conduct an accurate experiment on the interaction of

an antenna with a hot plasma, a great deal of time and effort was exerted

to produce a large volume of stable, high-density plasma. In our

experiment, the hot plasma was the mercury arc discharge which

was created in two plasma tubes. The cylindrical monopole antennas

 

were used as the radiating source.

6. 2 Experimental Setups
 

Two experimental setups have been used in the present investi-

gation. One setup consisting of a large plasma tube with the dimensions

of l4-inch diameter by l8-inch length was designed primarily for the

antenna impedance measurement. The other setup using a smaller

plasma tube of 6-inch diameter by 12-inch length was designed for the

purpose of the antenna radiation measurement. The construction of

the plasma tubes and the details of these two setups are described

below.

6. Z. 1 Construction of a Large Volume of Stable,

High-Densiy Plasma

 

 

To conduct an accurate experiment on the interaction of an

electric source with a plasma at a convenient frequency range, a
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large volume of stable, high-density plasma is required. Conventional

laboratory-produced plasma are either a gas afterglow discharge or a

mercury glow discharge. A gas afterglow discharge is not a continuous

plasma and it is usually of low density. A mercury glow discharge can

only give a small volume of high-density plasma. In the present investi-

gation, a mercury arc discharge was employed. A mercury are dis-

charge can give a large volume of high-density plasma. However, it

is inherently unstable due to its moving hot spots on the mercury pool.

A novel method of placing a spot fixer on the mercury pool of the plasma

tube was used to stabilize the plasma. Using this device, a stable plasma

with the plasma frequency of l to 5 GHz can be obtained and the plasma

tube can be operated continuously for many hours.

6. 2. 2 Experimental Setup for the Measurement of

Antenna Impedance in a Hot Plasma

 

The schematic diagram of the experimental setup for the

antenna impedance measurement is shown in Fig. 6.1. The plasma

tube is made of an open-end pyrex bell jar with the dimensions of

l4-inch diameter and 18-inch length. The upper end of the tube

is the anode with a cylindrical monopole antenna feeding through its

center. The lower end of the tube is the cathode which consists of

a mercury pool. A floating metallic ring is placed at the middle of

the mercury pool to fix the moving hot spots of the mercury arc.

An ignition circuit is indalled in the mercury pool for the purpose

of starting the plasma. Between the anode and the cathode a DC
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power supply circuit is connected. Under the normal operation

the discharge current can run from 0 to 120 amperes. The pumping

system consists of a mechanical pump and a mercury diffusion pump.

The tube is continuously pumped during the experiment and the pressure

of the plasma is kept around 10-3mm Hg. The antenna input impedance

was measured by employing the standard SWR method. A photograph m

of this plasma tube under operation is shown in Fig. 6. Z.

6. 2. 3 Esmerimental Setup for the Measurement of I

Antenna Radiation Through a Hot Plasma

 

 

 The experimental setup for the antenna radiation measure-

ment is shown schematically in Fig. 6. 3. The plasma tube is made

of a pyrex glass tube with the dimensions of 6-inch diameter and

lZ-inch length. A small mercury pool with a floating spot fixer is

located at one end of the tube. The open end of the tube is sucked

to the ground plane when the tube is being pumped. The pressure of

the plasma is kept around 10"3 mmHg. With this arrangement the

ground plane acts as the anode and the mercury pool acts as the

cathode of the plasma tube. A DC power supply circuit is connected

between the anode and the cathode. Under the normal operation

the discharge current can run from 0 to 10 amperes. A cylindrical

monopole antenna is fed through the ground plane and into the center

of the plasma tube. The radiation of the antenna through the plasma

is measured by a movable receiving antenna which is connected to a

hetrodyne receiving system. The distance between the radiating and
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Hetrodyne

Receiver

Local

R . F. Gen.

 

 

'Mercury Mech.

Diff. Pump Pump

Plasma

JI -
Microwave } _J i=5

- . IAbsorber Rec.Ant. l-o'db Gen. (1. 7-4. 0 GC)

’7 vvvvvv

V
V

 

 

} Slotted

Line Sq. Wave

} - Gen. (1000 o)

!A A A A A. A A

Anechoic Chamber - - SWR Meter

(6' x 8' x 6') - Detector

D.C. Rawer Supply

Fig. 6. 3 ExPerimental setup for the radiation measurement

of cylindrical antenna.
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receiving antennas is 0. 7 m. The plasma tube, the radiating and the

receiving antennas are all enclosed in an anechoic chamber. Figure

6.4 shows the photograph of this plasma tube under operation inside

of the anechoic chamber. The experimental setup outside of the ane-

choic chamber is the same as that shown in Fig. 4. 3. F"

6. 3 Review of a Lossless, Hot-Plasma Theory

In order to provide another set of theoretical results for com-

(7) " '
parison with the experimental data, Chen's analysis on the inter-

4
.
.
.
.
-

 
action of a radiating source with a plasma is briefly outlined here.

In Chen's analysis, the radiating source is a cylindrical

antenna with a length of 2h and a radius of a. The antenna is center-

driven by a delta-function generator and immersed in a lossless, hot

plasma of infinite extent. The current and charge distributions of

the antenna are assumed to be

 

T“ = Imsin[ke(h- (smsjwt; (6.1)

2 7 '
qs: :jJP'oEou -o)p /(o )Imcos[ke(h- (2')] ert (6.2)

where 1m is the maximum current on the antenna, 0) and mp are the

antenna and plasma frequencies, (to and 60 are the permeability and

permittivity in free space, and ke is the prOpagation constant of the

electromagnetic wave given by
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k zé‘iw-mz (6.3)

where c is the velocity of light in free Space. In Eqs. (6. l) and

(6. 2) the distributions of antenna current and charge are assumed

to be entirely controlled by the electromagnetic mode. This approxi-

mation is necessary since the effect of the electroacoustic wave on

the antenna current and charge is still not well known.

Based on Eqs. (6.1) and (6. 2), the power density of the electro-

magnetic wave can be derived to be

151 Z cos(k hcosB)-cos(k h) I‘

I: e e ]r (6.4)
m

p :2

e val-0) /00 r2

p o

where ro is the distance between the observation point and the center

 

sin 0

A

of antenna, 0 is the polar angle and r is the unit radial vector in the

spherical coordinates.

The total power radiated as an electromagnetic wave can be

calculated by integrating 3e over a large sphere. The result is

lSI 2

m

P = {- cos (2k h)Cin(4k h)

e Jl-wp /0) e e

+ 2[1 + cos(2 keh)] Cin(Zkeh)

+ sin(2 keh)[Si(4 keh) - 251(2 16611)] } (6.5)

where Si(x) and Cin(x) are the sine and cosine integrals. The electro-

magnetic component of the antenna input resistance is obtained by
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. . . . Z . .
div1ding Pe With 1/2 Io where Io is the antenna input current and

related to I by I = I sin(k h). This gives

m o m e

30

R = 2—-===7- {- C08 (2 keh)Cin(4 keh)

sin2(keh)\/1-wp /00

+ 2[l + cos(Z keh)] Cin(Z keh)

+ sin(2 keh)[Si(4 keh) - 251(2keh)]} (6.6)

which is valid for (1) > 00p.

The power density of the electroacoustic wave can be obtained

 

 

as

2 2

3 00 I

r - 1.5. a 2. m 1
pp- 1r v 2 Z I 2 2

o 00 r 1-0) /(1)

0 P

2

cos0[cos (k hcosB) - cos(k h)

p e *
r (6.7)

2 2
1 - (c/vo) cos 0

where V0 is r.m. s. velocity of electrons and k is the propagation

P

constant of the electroacoustic wave given by

1. = 3- (oz-cs z. (6.8)
P o P

The total power radiated as an electroacoustic wave can be

obtained by integrating 3p over a large sphere. This gives
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2 2

(I)

151r (DP /

P:—
2 2 2

p (Ii-00p /0.)

under the condition of c >> v0 and a) > cop. The electroacoustic com-

 

 [ 2 keh + sin(2keh)]12rn (6. 9)

ponent of the antenna input resistance can be determined by dividing

Pp with 1/2 102. The result is

22

(1)/(n

R z—l—E’l—J-=-E_—2_—_—Z-[2kh+sin(2k h)]. (6.10)
p . 2 e 8

sin (keh) 1-(1)p /0.)

Equation (6. 10) is valid if c >> v0 and a) > (op.

The total input resistance of the cylindrical dipole antenna is

R. = R + R . (6.11)

in e p

For a monopole antenna the input resistance is Rin/ 2. Re and R

were numerically calculated to compare the experimental antenna

resistance.

The antenna input reactance should also consist of both

electromagnetic and electroacoustic components. The elctromagnetic

component can be theoretically determined from King-Middleton's

)
theory(25 once the electrical dimensions of antenna, keh and kea,

are known. The electroacoustic component of the antenna reactance

is neglected in this study due to the lack of knowledge on the effect of

the electroacoustic wave on the reactive power of an antenna. Due

to this reason only the electromagnetic component of the antenna

reactance was used in comparison with the experimental results

in a later section.
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The radiation field of an antenna in a hot plasma consists of

the fields of electromagnetic and electroacoustic radiations. The

radiation pattern of the electromagnetic wave is completely deter-

mined by the factor keh as expressed in Eq. (6.4). The electro-

magnetic radiation has a characteristic of zero radiation in the axial

direction (0 = 0°) of antenna. The radiation pattern of the electro-

acoustic wave is determined by Eq. (6. 7). The special nature of

the electroacoustic radiation is to have peak radiation in the direction

near the axial direction of antenna. If an antenna is surrounded by

a finite plasma, the electroacoustic wave may convert part of its

energy to create an electromagnetic wave at the plasma discontinuity.

This electromagnetic wave may, in turn, be detected outside of the

plasma region.

6.4 Experimental Results and Comparison with Theories

Since the purposes of this investigation are to detect the

excitation of an electroacoustic wave by an antenna and to examine

the effect of this electroacoustic wave on the circuit and the radiation

properties of an antenna, the antenna input impedance and the antenna

radiation field are measured as functions of the plasma density. The

experimental results on the antenna input impedance and the antenna

radiation field are carefully studied and compared with two theories.

The two theories are: (l) a lossless, hot-plasma theory reviewed

in the preceding section, and (2) a lossy, cold-plasma theory developed

in Chapter 5 .
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6. 4.1 Comparison of ExPeriment With a Lossless,

Hot-Plasma Theogy on Antenna Input Impedance

The experimental results on the input imPedances of cylindri-

cal monopole antennas of various lengths are graphically shown in

Figs. 6. 5 to 6. 8. The input impedance of the antenna is plotted as

a function of mpZ/mz where mp is the average local plasma frequency

in the antenna vicinity and (1) is the antenna frequency. The average

local plasma density is used here because the plasma density in the

antenna vicinity is not uniform due to the plasma sheath on the antenna

surface. Furthermore, it was found that the circuit property of an

antenna is primarily controlled by the plasma condition in the antenna

vicinity. Experimentally this average local plasma frequency was

found to be about 20% lower than the maximum plasma frequency in

the plasma tube. The value of wpz/mz is directly proportional to

the plasma density when the antenna frequency is kept constant through-

out the experiment. The antenna input impedance was measured in

the large plasma tube (14-inch diameter by 18-inch length) and at

the frequencies of 1-8 and 2. 0 GHz.

In Figs. 6. 5 to 6. 8, the solid line with solid dots is the measured

antenna input resistance and the dotted line with solid dots is the

measured antenna input reactance. The theoretical values are repre-

sented by circled dots. The eXperimental results on the antenna input

impedance can be summarized as follows:
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(1) For the case of low plasma density or (spa/(1)2 < 0.6, as

the plasma density is increased the antenna resistance decreases

and the antenna reactance becomes more negative. This phenomenon

indicates that the antenna behaves progressively shorter electrically

and also implies that no electroacoustic wave or only an electro-

magnetic wave is excited over this range. Theoretical impedance

was calculated over this range by assuming the existence of electro-

magnetic mode only. The agreement between experiment and theory

is very good. The assumption of no electroacoustic wave over this

range may be feasible since a longitudinal plasma wave will suffer a

tremendous Landau damping in this range.

(2) For the range of 0.6 <mPZ/mz < 1. 0, the antenna resistance

monotonically increases and finally reaches a peak at mp: 00. The

antenna reactance goes to a large negative value and then sharply

changes its sign at 00p: (1). The large antenna resistance over this

range may be identified as being due to the excitation of an electro-

acoustic wave. The theoretical resistance of the monopole over this

range was calculated from Rin= % (Re+ RP) where Re and RP are given

by Eqs. (6. 6) and (6. 10). Excellent agreement between theoretical

and experimental antenna resistances tends to confirm the excitation

of an electroacoustic wave over this range. For the antenna reactance

the large deviation between theory and eXperiment over this range is

probably due to the fact that the electroacoustic component of antenna

reactance was not taken into account. The assumption of the existence
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of an electroacoustic wave over this range is justified since the Landau

damping is small when mp is close to m.

(3) For the C388 of (spa/(1)Z > 1. 0, both the electromagnetic

and the electroacoustic waves are essentially cut off. If no loss

mechanism is present in the plasma, the antenna resistance should

drop sharply to zero. Experimental results, however, show that the

antenna resistance decreases rather gradually in this range. The

possible loss mechanisms are the finite collision loss of the mercury

plasma and the possible excitation of Tanks-Dattner's resonance on

the antenna surface and on the tube wall.

The weakness of this lossless, hot-plasma theory is its in-

adequacy of providing a theoretical prediction for the range of

00 < mp.

6.4. 2 Comparison of Experiment With a LossyL Cold-

Plasma Theory on Antenna Input Impedance

In Sec. 6.4.1 it is indicated that the experimental antenna

input impedance can only be compared with a lossless, hot-plasma

theory for the range of mpZ/mZ < 1. In order to have a comparison

of experiment and theory for a wide range of mpZ/mz, the same

eXperimental results of the antenna input impedance are compared

with the theoretical results obtained from a lossy, cold-plasma

theory developed in Chapter 5. These comparisons are shown in

Figs. 6. 9 to 6. 12. The effect of the collision frequency on the

antenna input impedance has been carefully studied in Chapter 5.

 



131

The theoretical input impedance of a monopole was calculated from

Zin/z where zin is given by Eq. (5. 62). The ratio between the

collision frequency and the antenna frequency, V/m, was assumed to

be 0. 15 in the numerical calculation.

In Figs. 6. 9 to 6.12, the solid lines with solid dots are the

measured input resistance and ractance. The theoretical values

are represented by the dotted lines. The comparison between

experiment and theory can be summarized as follows:

 L
.
.
.

(1) For the case of low plasma density or mpZ/m2 < 0.4, as

the plasma density is increased both eXperimental and theoretical

results indicate that the antenna behaves gradually shorter electri-

cally.

(2) For the range of 0.4 < mpZ/mz < 0.85, the antenna

resistance starts to increase and the antenna reactance continues

to be more capactivie as predicted by the theory.

(3) For the range of 0. 85 < mPZ/mz < 1.15, a sharp peak

of antenna resistance and a change of antenna reactance from

capacitive to inductive at mp: m have been observed both experi-

mentally and theoretically.

(4) For the case of pr/wZ > 1. 15, as the plasma density

is increased the antenna resistance and reactance decrease

gradually.

The agreement between the experimental results and the

lossy, cold-plasma theory appears to be quite satisfactory over a
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2 2

very wide range of ()0p /m . However, there is still a critical

weakness in this lossy, cold-plasma theory. Because the temperature

effect and the electroacoustic mode are completely ignored.

6. 4. 3 Experimental Results on Antenna Radiation Fields
 

The radiation field pattern of a cylindrical monopole antenna

placed in the middle of the smaller plasma tube (6-inch diameter by

12-inch length) was measured under various plasma densities. The

measured radiation patterns for three monopoles of different lengths

are shown in Figs. 6.13 to 6. 15. For each antenna the change in the

radiation pattern was observed as the plasma density was varied.

The main points of the observation can be summarized as follows:

2

(1) For the low plasma density case or mp /m2 < 0. 6,

the radiation field is primarily electromagnetic, since no radiation

is observed in the axial direction of the antenna and the measured

pattern resembles with that of antenna with the electrical length of

k h radiated in free space.
e

2 2 . .
(2) For the case of 0.6 <mp /m < 1. 0, a peak of radiation

starts to show in the axial direction of antenna. This radiation may

be identified as due to the electroacoustic wave, since the radiation

of an electroacoustic wave .in the axial direction of antenna will

create an electromagnetic wave at the plasma discontinuity which

exists at the tube wall.

2 2 . . .
(3) For the case of (0p /m > 1. 0. the radiation peak in the

axial direction of antenna disappears and the measured pattern is

Ft"!

 



133

again mainly of electromagnetic nature. The reason why only the

electroacoustic wave is cut off in this range is that the plasma

dimension is large in terms of electroacoustic wavelength but rather

small compared with an electromagnetic wavelength. Thus an

electromagnetic wave can still be detected outside of the plasma

. . . Ir”
tube after suffering a relatively smaller attenuation.

To compare these eXperimental results more accurately, a

theory dealing with the radiation from a cylindrical antenna through

 a finite volume of plasma is needed. Such a theory is unfortunately

intractable.

6. 5 Discus sion
 

Extensive experimental study has been conducted to investigate

the interaction of a cylindrical antenna with a hot plasma. Based on

the comparison with the lossless, hot-plasma theory, the experimental

results tend to indicate that an electroacoustic wave can be excited

when the average local plasma frequency in the antenna vicinity is

near the antenna frequency (0. 6 < mpZ/mZ < l. 0). No electroacoustic

wave can be excited if the plasma frequency is sufficiently lower

than the antenna frequency (pr/wZ < 0.6). Based on the comparison

with the lossy, cold-plasma theory, it appears that experimental

results agree quite satisfactorily with the theoretical results if a

suitable collision frequency is assigned to the plasma. The effects

of the electroacoustic wave and the collision in the plasma on the

antenna input impedance are quite simlar. While the effect of an
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electroacoustic wave on the radiation field is much more important

than that due to the collision in the plasma.

Since the laboratory-produced plasma is hot, lossy and finite,

the two theories used to compare with the exPeriment seem to be

inadequate. If an accurate comparison is needed for the experi-

mental results, a more complete theory of a plasma-imbedded

cylindrical antenna which takes into account of the plasma temperature,

collision and dimensions should be developed. It is unfortunate that

such a theory has been proved to be quite intractable.  
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