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ABSTRACT

SHORT ANTENNA WITH ENHANCED RADIATION
OR IMPROVED DIRECTIVITY

By

Chun-Ju Lin

A conventional electrically short, linear antenna has small
radiated power and low directivity. Consequently, its practical
applications are severely restricted. The purpose of this research

is to investigate the feasibility of enhancing the radiated power

or improving the directivity of a short antenna by a double impedance

loading technique. This technique consists of mounting the appro-
priately chosen lumped impedances symmetrically along the antenna
surface to implement a modification of its current distribution.
The current is adjusted in such a way to achieve either enhancement
of its radiated power or an improvement in the directivity of the
short antenna.

In the theoretical study, King's modified method is applied
to develop an approximate solution for the current distribution
along the doubly loaded short antenna. From this solution, input
impedances and typical current distributions of antennas loaded to
obtain either enhanced radiation or improved directivity are de-
termined. An expression for the optimum loading impedance to
achieve improved directivity is established. For the enhanced

radiation case, the area under the current distribution along the
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antenna with optimum loading can be increased by a factor of four
relative to than that of an unloaded antenna, and its input impedance
has a significantly increased resistive component and a zero re-
active component. Therefore, the radiated power is greatly enhanced
compared with that of the unloaded antenna. For the improved
directivity case, the current distribution has a phase reversal along
the antenna and the directivity corresponding to such a current is
improved significantly. 1In addition to the doubly loaded isolated
antenna, an array of doubly loaded coupled antennas is also studied,
the objective again being to achieve enhanced radiation or improved
directivity.

An experimental study on the doubly loaded antennas, for both
the enhanced radiation and improved directivity conditions, is con-
ducted to verify the theoretical results. Enhanced radiation from 4
coupled short antenna is also investigated experimentally. It is
shown that the experimental results are in good agreement with those
of the theoretical predictions. In addition to the doubly loaded
antennas, the characteristics of top-loaded antennas are also in-

vestigated experimentally for various types and sizes of end loadings.
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CHAPTER 1
INTRODUCTION

It is well known that a conventional short, linear antenna has
small radiated power and low directivity. Therefore, much research
has been conducted on improving the directivity or enhancing the
radiated power of a short antenna.

By using an approximate superposition method, Harrison [ 1)
determined the current distribution along a doubly reactance-loaded
antenna. He demonstrated that a doubly loaded linear antenna might
be tuned in such a manner that its input impedance becomes purely
real and its efficiency is increased relative to that of an unloaded,
base tuned antenna. In this thesis an improved method is employed
to solve for the current distribution on a doubly loaded short
antenna, and a more comprehensive investigation is carried out. It
is indicated that the antenna doubly loaded by appropriately chosen
impedances has a nearly uniform current distribution between the
loading points and that its input impedance has an increased re-
sistive component (by a factor of two to four relative to that of
an unloaded antenna) and a reactive component which vanishes. The
power radiated by the short antenna is therefore increased signif-
icantly.

In the improved directivity case, La Paz and Miller [ 2]
first attempted to determine the maximum directivity theoretically
available from a linear source antenna by solving for the

1
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corresponding optimum antenna current distribution. Later, Boukamp
and De Bruijin [ 3 ] pointed out that arbitrarily high directivities
might be achieved from a linear antenna by properly adjusting its
current distribution. A similar conclusion was reached by Riblet
(4 ]. Although no methods were suggested by the above investigators
for implementing the required optimum current distributions, their
researches imply that various degrees of improvement in the antenna
directivity may be achieved by careful adjustment of the antenna
current distribution. 1In this thesis, the optimum current dis-
tribution is implemented by utilizing a double impedance loading
technique, and an expression for the optimum loading impedance is
developed.

By applying King's modified method[5][6]an approximate solution
for the current distribution along the doubly loaded antenna is
developed in Chapter 2 in terms of the antenna dimensions, its
excitation frequency, and the impedance and position of the double
loading. The input 1impedance of antenna is also established in this
chapter. Based on these solutions for the current distribution and
input impedance, the optimum loadings for enhanced radiation and
improved directivity are investigated and the numerical results are
presented in Chapters 3 and 4. An extensive study of a doubly loaded
array is conducted in Chapter 5 to investigate the characteristics
of doubly loaded, coupled short antennas as related to the enhanced
radiation and improved directivity.

An experimental study of the doubly loaded antennas (both for

isolated and coupled antennas) is also pzrformed in this research.
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It is observed that the experimental results closely verify the
theoretical prediction. In addition to the doubly impedance loaded
antennas, short linear antenna end-loaded with various sizes and
shapes of loading are also experimentally studied carefully in this

thesis.
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CHAPTER 2

CURRENT DISTRIBUTION ON A DOUBLY LOADED SHORT ANTENNA

2.1 Geometry of the Doubly Loaded Short Antenna:

The terminology short antenna refers to a linear antenna which
is not physically small, but rather one which is electrically small as
measured in wave lengths. A criterion for such an antenna may be de-

where Bo is the free-space wave number and h is the half-length
of the antenna.

The geometry of the short, doubly loaded, linear antenna is as
indicated in Fig. 2.1. The short cylindrical antenna is assumed to be
constructed of a perfect conductor of radius a and half-length h.
An ideal, harmonic voltage source of angular frequency ® and poten-
tial Vo excites the cylinder at its center 2z = 0 (the antenna is
assumed to lie along the z-axis of cylindrical coordinates), and the
two identical lumped impedances ZL are loaded symmetrically on the
antenna surface at z =d and 2z = -d. The gaps in the cylinder at
the locations of the source and the loading impedances are assumed to
be of length 25. Since both the source and the loading impedances
are considered to be idealized point elements, then & 1is assumed to
approach zero in the subsequent mathematical analysis.

It is taken that the half-length h of the cylindrical antenna

is very much greater than its radius a. As a result of this thin-wire

4



28
|
A z=d
!
I.(2)
z
25

I (2)

ﬁf

z zZ=-d

.

Fig. 2.1 The Doubly Loaded Short Antenna




ante

1)
[

tna

€n

A

W
s



6
assumption, and due to the rotational symmetry of the cylinder, the
antenna current will flow primarily along the axial or z-direction.

The dimensional restrictions and axial current approximation of

h >> a
2
< =
Bsi< 1 (or x @ << 1)
o
?(z) = %Iz(z) .... axial antenna current

allow important simplification and lead to an approximate solution for
the distribution of current along the antenna. It is well known [7]
that subject to these restrictions Iz(z) can be assumed to be con-
centrated along the axis of the cylinder when calculating the vector

potential at its surface with negligible error.

2 2 Boundary Conditions for Calculating the Antenna Current:

The current excited on the cylinder is symmetric about its
center (z = 0) and must vanish at either of its extremities (z = +h).
A pair of boundary conditions on the antenna current may therefore be
expressed as

I (z) = -z
L& =1_(-2)

(2.2)
I_(#h) = 0

From the boundary condition that the tangential component of
electric field should be continuous at the surface of the antenna, it

follows
i + a -
Ez(r =a ) = Ez(r a-) (2.3)

where Ei(r = a+) is the induced electric field just outside of the

+
surface of cylinder at r = a which is maintained by the current and
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a -
charge on the antenna, and Ez(r = a ) 1is the electric field just in-

side its surface at r = a .

2.3 1Integral Equation for the Antenna Current:

Since the cylindrical antenna is assumed to be constructed of
. . . i .
a perfect conductor, its internal impedance z per unit length is
equal zero, and the electric field inside the conductor surface at

r = a  is nonvanishing only at z =0 and z = +d, i.e.

’iLI (d)
—2%  for -d-§< z < -d+b
26
. ]
E_(2) ={ - 3§ for -6<z<§ (2.4)
ZLIZ(d) for d-§ < z < d+§
26

where Iz(d) and Iz(-d) are the antenna currents at the impedance
a
elements at 2z = +d, and Ez(z) is equal to zero for every other point

on -h <z < h., The total voltage drop along the antenna is therefore
-jh E°(z)dz =V_ - I (d)z - I_(-d)Z, .
-h 2z o z L z L

By the symmetry condition of the antenna current, eq. (2.2),

IZ(-d) = Iz(d), and the last result may be expressed as
-jh E*(2)dz =V - 21 (d)z. .
-h 2z o z L

As indicated earlier, the loading impedances and source are considered

as point elements of length 26 - 0, such that

h a
3 - = - - - .5
zglm j_h E-(2)dz =V_ - 1 (2 -1, (-d)z; (2.5)
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8
By the properties of the Dirac delta function and by equations (2.4)

and (2.5), then in the limit when 26 = 0
a
E_(z) = -V 6(z) + IZ@)zL[s(z-d) + 6(z+d)) (2.6)

where 6(z) 1is the Dirac delta function.
The induced field just outside the surface of the antenna is

given by

A
A

i
E,(2) = (Fa), - D),

For the case of a time-harmonic excitation where all quantities vary

jw
accordingly to the implied time-dependence factor e’ t, then

El(z) = -@We) - jwa (2.7)
Z YA V4

where ¢ 1is the scalar potential at the surface of the cylinder main-
tained by the charge on the antenna, and A=3 Az(z) is the vector
potential at the cylinder surface maintained by the current in the
antenna (it is assumed that the current is concentrated along the
cylinder axis).

The Lorentz condition may be applied to relate ¢ and A as
2
I
VA+j o %= 0

Since ?(z) =2 Iz(z) axially directed, then A=3 Az(z) has only

one component Az(z) and the Lorentz condition becomes

dA
—Z+3520=0. (2.8)
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9
Substituting ¢ in terms of Az’ according to eq. (2.8), into eq. (2.7)

results in

2
i i 2
E (2) = - [Q;E +81A_(2) . (2.9)

3

o”nlE

In order to satisfy boundary condition eq. (2.3)
i + -
E(r=a) =E(r=a) (2.3)

expressions eq. (2.6) and eq. (2.9) are equated to yield a second-
order inhomogeneous differential equation for the vector potential at

the antenna surface as
2
32 2 jBo
[;;E +8.a,(2) = 52 {-V 8(2) + 2,1 ()[6(z-d) + 6(z+d)]}.  (2.10)

The complementary solution of eq. (2.10) is obtained easily as

c - . i_
Az(z) v (CICOSBoz + C

2SinBoz) (2.11)

where v, is the velocity of light and C1 and C2 are arbitrary

constants.

Since the particular integral for an equation of the form
2
d 2
—%+8y=f(x)
dx
. . p 1 rx .
is given by y (x) = 2 jo f(s)Sin a(x-s)ds then eq. (2.10) has a

particular solution of the form
Ap(z) = C,Sinf |z| + C.SinB |z-d| + C_SinB |z+d|.
z 4 o 5 o) 6 o

Substituting this directly into eq. (2.10), the arbitrary constants

C,, C. and C, are determined and A:(z) is obtained as

4’ 75 6
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2, 1,(d)
___E———(Sineolz-dl + SinBo|Z+d|)]-

.V
A:(z) = - %;[39 SinBolzl -

The general solution to differential equation (2.10) is thus

A(2) = Ai(z) + A:(z)

. A
:--l— i _0 i
v [CICosBoz + 0231nBoz + 7 SlnBolzl
ZLIz(d)
- ——%— (sinB_|z-d| +sinB_|2+d])]. (2.12)

By the symmetry of the antenna current, Iz(z) = Iz(-z), it can be
shown that the vector potential is also symmetric about the center of
the cylinder, i.e., Az(-z) = AJZ)' It is therefore obvious that

arbitrary constant C, should be equal to zero, and eq. (2.12) becomes

2
i v, 2,1 ()
A (2) = - v [cicosB z + 5= simd_|z| - =——=— (SinBolz-dl
+ SinBo|z+d|)]. (2.13)

At z = h, result (2.13) becomes

XQ Z. 1 (d)

- . i . _ Lz . -
A, (h) v {clcOseoh +7 Simd h - = [Slnﬁo(h d)
+ SinBo(h+d)]} (2.14)

By combining equations (2.13) and (2.14), the arbitrary constant C1

is eliminated from eq. (2.13), and an expression for the vector poten-

tial difference at the surface of the antenna is obtained as

A (2) - A (W) = - -v‘—o secB_h{jv A_(h) (CosB _z - Cosp_h)

ZLIz(d)

2

v
-2 sing_(h-|z|) +

i d
2 [251n80h CosBo CosBoz

- CosSoh(SinBo|z-d| + SinBo|z+d|)]}. (2.15)
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According to the dimensional assumptions h >> a and Boa < 1,
the Helmoltz integral for the vector potential at the antenna surface
can be simplified as the line integral over an axial current distribution

with negligible inaccuracy, i.e.
M'O h [
= ° ' ' -h € <
Az(z) =% l-h Iz(z )Ka(z,z )dz for h z h

where uo = the permeability of free space

-3BR
R

e

Ka(z,z') = Green's function

R=/

2 2 ... distance between an observation point
(z-2') + a

on the surface of antenna at 2z and
an element of current on its axis at z'.

I1f the left hand side of eq. (2.15) is replaced by the Helmholtz in-

tegral expression, an integral equation for Iz(z) is obtained as
Ih I (z")K,(z,z')dz’
-h "z a "’

. \'}
- l%g SecB_h{jv_A_(h) (CosB 2 - CosB h) - 52 SinB_(h-|z|)

2.1 (d)
+ Lz (2sinP h CosB d CosB z - CosB h(SinB |z-d|
2 o o o) o o

+ SinBo|z+d|)]}. (2.16)

where Co is the characteristic impedance of free space

= {uo = 120m ohms.
c0

Kd(z,z') is the difference kernel of kernel Ka(z,z') and
Ka(h,z'), i.e.
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Kd(z,z') = Ka(z,z') - Ka(h,z')
_ E'jBOR E:jBORh
= - )

R

= /kz-z')z + a2 ’ Rh B /kh-z')z + a2

Eq. (2.16) is a modified form of Hallen's integral equation [ 8] for

the antenna current Iz(z), and is valid for -h <€ z < h.

2.4 Approximate Solution of the Integral Equation:

It is found that the current distribution on the doubly loaded
short antenna can be approximated quite accurately by obtaining an
approximate solution to integral equation (2.16) according to King's
modified method [5][6]. This method consists essentially of assuming
the current excited on the antenna to be proportional to the vector
potential difference (referred to the end of the antenna). In other
words, it is assumed that the ratio of vector potential difference to
antenna current is relatively constant along the cylinder. Since
Az(z) - Az(h) vanishes at 2z = +h, then Iz(z = +h) = 0 and the
induced current satisfies the boundary condition at the end of the
antenna. The application of this method to the solution of integral
equation (2.16) is the subject of this section.

By a peaking property of the difference kernel Kd(z,z')
] = ] - 1
Kd(z,z ) Ka(z,z ) Ka(h,z )

~ 6(z-2') - 6(h-2'")

and by applying the Helmholtz integral it is found that



Nl



13
p'oh
A (2) - A () =22 [T 1 (2')K,(z,2")dz’

v
~ e (1@ -1 ()]

4n
or I(z) -1 (h) - ;; [Az(z) - Az(h)].

Since Iz(h) = 0, then
Iz(z) ~ Az(z) - Az(h)

and the induced antenna current Iz(z) is therefore taken to be of

the form
I,(z) = C_(CosB z - Cos8 h) + CsSinBo(h-|z|)

+C.[25in8 h CosB d CosB z - CosB h(SinB |z-d|
1 o o o (o] [e]

+ SinBo|z+d|)]. (2.17)
Note that in eq. (2.17)
I(z=+h) =0

implying that the boundary condition at the antenna extremities is
automatically satisfied, and the current is symmetric as it should be.
The approximate solution (2.17) is further optimized by forcing it to
satisfy integral equation (2.16) at =z = 0.

The complex constants Cs’ Cc’ and Ci are evaluated by sub-
stituting the approximate current distribution Iz(z) of eq. (2.17)

back into integral equation (2.16) as
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rh h .
¢/ (CosB z' - CosB h)K,(z,2")dz" + c_[7 sing_(h-|2')K,(z,2") dz"

h . . .
+ Cif_h[251neoh CosB d CosB z' - COSBOh(SlnBo|z'-d| + SlnBolz'+d|]Kd(z,z')dz'

\')
o i bm . 20 s
= -j Co SecBoh{JvoAz(h)(CosBoz CosBoh) -3 SlnBo(h-|z|)
ZLIz(d)
+ - [28in60h CosBod CosBoz - CosBoh(SinBO|z-d| + Sineo|z+d|)]}.

(2.18)
The complex kernel Kd(z,z') may be expressed in terms of its real

and imaginary parts, i.e.

S'jBOR e'jBoRh

] = - —
Kd(z,z ) R Rh
= ] s '
Kdr(z,z ) + JKdi(Z’Z )
where K, (z,z2') = 1 CosB R - i CosB
r dr 7’ R o Rh ° oRh
K. (z,2') =~ SinB R_ - = SinB R
i’ oRh R o

Since Kdr(z,z') becomes very large when 2z' is near z, it
follows that the principle contribution to the part of the integral
that has Kdr(z,z') as kernel comes from elements of current near

z' = z. On the other hand, K remains small when 2z = z'. This

di
suggests that the principal contribution to the part of the integral
that has Kdi(z,z') as kernel comes from all elements of current that
are at some distance from z. Due to this peaking property of kernel
Kdr(z,z') and non-peaking property of kernel Kdi(z,z'), the various

integrals on the left hand side of equation (2.18) may be verified

numerically to have the following approximate representation:
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f?h(COseoz' - CosB h)K, (z,2')dz' . (CosB_z - CosB _h) (2.19a)
Iﬁh(COSBOZ' - COSBoh)Kdi(z,z')dz' - (COSBoz - CosBoh) (2.19b)
f?hSinBo(h-lz'l)Kdr(z,z')dz' ~ sing_(h-|z|) (2.19¢)
[hosing_(h-|2' K, (z,2")dz" - (Cosp _z - CosB_h) (2.19d)

h . ] . ] : ' L '
f-h[251nBohCosBodCosBOz CosBoh(SlnBO|z -d|+81n80|z +d|)]Kdr(z,z )dz

~ L2Si h d i - i
L SlnBo CosSo CosBOz CosBoh(Slnﬁolz d| + S1nBo|z+d|)] (2.19e)

h
. d ) : ' _ : L} L] ]
I-h[281nBOhCosBo CosBoz CosBoh(Slnﬁolz d|+81n80|z +d|)]Kdi(z,z Ydz

.. (CosB z - CosB h) (2.19f)
o o

where (2.19a), (2.19c) and (2.19e) are based on the characteristics of
kernel Kdr(z,z'), and the remainders, (2.19b), (2.19d) and (2.19f),
are based on numerical considerations. It can be shown numerically
that these remainders are roughly proportional to the shifted cosine
function (CosBoz - CosBoh)-

These properties suggest that equation (2.18) can be split into
three parts by equating corresponding terms on the right and left hand

sides as follows:
h ' ' ' h ' ’ '
c [T, (CosB _z' - CosB h)K, (z,2')dz'+j C_[7, (CosB z' - CosB h)K,, (z,2")dz
+3cC fh sinf (h-|z'|)K, (z,2')dz"' + j C fh [2SinB h CosB d CosB z*
sV -h o di "’ iv -h o o o

. (] . 1 1 1)
- CosBoh(Slnsolz -dl + SlnBolz +d|)]Kdi(z,z Ydz

= %ﬁ v A (h)SecB h(CosB _z - CosB h) (2.20a)
h vao
csf_hSinso(h-|z'l)xdr(z,z')dz' = j g secBh SinBo(h-lzl) (2.20b)

(o}
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h . ' . ' . ' (] '
Cif_h[281n80h CosBod CosBoz - CosBoh(SlnBolz -d| + SlnBolz +d|)Kr(z,z )dz

L4 . . .
-] C SecBoh[281nBoh CosBod CosBoz - CosBoh(SlnBo|z-d| + SlnB°|z+d|)]

[o]
(2.20c)

The approximate current distribution Iz(z) automatically satisfies
the boundary condition Iz(z = +h) = 0. 1In order to optimize the
approximate solution, the unknown coefficients are evaluated by forc-
ing the integral equation to be satisfied at z = 0 (which has the
advantage of providing accurate input impedances). This is implemented

by equating 2z to zero in the last results as
h ' ' ' h v ' '
Ccf_h(CosBoz CosBoh)Kdr(o,z ydz' + jCCI_hECosBoz CosBoh)Kdi(o,z Ydz
+ jC jh SinB (h-lz'I)K 0,z"')dz' + jC Ih (2sinB h CosB d CospP z'
sY -h o di "’ iv -h o o o

: ' : ' ' '
- CosBoh(SlnBolz d| + SLnBo|z +dl)]Kdi(o,z )dz

4m :
= E; voAz(h)(SecBOh-l) (2.21a)
h 2nvO
Csf_hSinBO(h-lz'I)Kdr(o,z')dzv - e SecB_h Sind h (2.21b)

h . ' : ' _ . ] v |
CiI-h[281nBoh CosBod CosBoz CosBoh(S1nBo|z d|+81nBo|z +d|)]Kdr(°’z )dz

 4m

= -j C ZLIz(d)SecBoh SinBo(h-d). (2.21c¢)

o
Equations (2.2la ~ c) are solved for Cs’ Ci’ and Cc in terms of

the antenna dimensions, the excitation frequency, the impedance and
position of the double loading, and the undetermined constant terms
Iz(d) and vector potential Az(h) as

j2mv

—2 secB h SinB h (2.22a)
(o] (o)

C =
S goTsdr
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- 4m )
Ci = -j CT, ZLIz(d)SecBoh SlnSO(h-d) (2.22b)
o idr
VT
4m o sdi .
C. T T [voAz(h)(SecBOh-l) + 57— SecB h SinB h
o cd sdr
Tiai
- ZLIZ(d)SecBoh SlnBO(h-d)] (2.22c)

idr

where
1, =" sing -]z K, (0,2")dz’
sdr -h" "o dr 7

_ rh . v o , '
Tidr I_hEZSlnBoh CosBod CosBoz CosBoh(SlnBolz dl

+ SinBolz'+d|]Kdr(o,z')dz'

h
T4 = [, (Cos8_z' - CosB h)K,(0,z")dz’

cd
T = Ih SinB (h-|2'|)K (o0,z")dz'
zdi -h o di "’

_rh . ' . '
Tidi I_h[ZSLnBOh CosBod CosBoz CosBoh(S1nBo|z -dI

. ] ] ]
+ SLnBolz +d|)]Kdi(o,z )ydz'.

The unknown constant quantities Iz(d) and Az(h) may be

evaluated by applying the conditions
I (z=d) =1 (d)
z z

M
A () =72 [N 1K (h,2')de!

where
‘jaoRh
Ka(h,z') =<

B

Ry =V (h-z')? + a2




18
To evaluate Iz(d), Cs’ Ci and Cc are substituted into eq. (2.17)
and, by using the condition Iz(z=d) = Iz(d), the current Iz(d) is

obtained in terms of Az(h) as

L@ = g - 5~ [vA_(h)(Sec8 h-1) + 32 SecB h SinB_h] (CosB_d-CosB h)
o cd 1 sdr
2ﬂV
+j SecB h SlnB h SlnB (h-d) (2.23)
T
o sdr 1
where
_bnm T di
D= l+g7— _idi, (SecB_h Sin_(h-d) (CosB _d - CosB_h)
o cd "idr
. 8n .2
+ ] T, ZLSeCBOh CoSBod Sin Bo(h-d).
o idr

Having evaluated Iz(d) as in (2.23), it may be substituted back into
eq. (2.22) and by using eq. (2.17), and the redltion

B
__O_h ' 30 . .
Az(h) = I_hlz(z )Ka(h,z ydz', Az(h) is determined completely as

A (h) = “oTcavo {Tsdi D AnZLT1d1 sd1 D
z 2T D, 'T 5T CT 3
o cd 2 sdr cd 1 1dr sdr
- AﬂTidiZL D } +3 uovoTsa 5
Tiar?1%0Tsar 4 2 TsdrP2
M 2T, V T |
jolisdo esdip o yyp (2.24)
gz D.D.T Taa 3 4
1dr21P2 s ar

where

- h 1 ' ]
T_ = [ (CosB 2' - CosB MK (h,z')dz
Toa = IThSinBo(h—lz'l)Ka(h,z')dz'

h
= i d ' h(Si '-d
I_h[281n80h CosBo CosBoz CosBo (SlnS°|z |

+ SinBolz'+d|)]Ka(h,z')dz'



l,.llj
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Tca QﬂTidiT aZL
D, =1 - ===(SecB h-1) + < (SecB h-1) (Cosp d
2 Tcd o T (T )ZC D lo] fo)
idr*"cd’ ®0'1
- CosPp h)SecB h SinB (h-d)
o o o
QﬂZLTia
j ———— h-1 h Si - -
+] T..T DG (SecB0 )SeCBo SmBo(h d) (COssod COSBoh)
idr ecd 1%0
2 . .
D3 = Sec Boh SlnBoh(CosBOd - CosBoh)SlnBO(h-d)
D, = Se 28 h SinB h S'nZB (h-4d)
4 €% RS R,
D5 = Seceoh SlnBoh .

The values of Iz(d) and Az(h) are completely determined by ex-
pression (2.23) and (2.24), and the evaluation of the complex coeffi-
cients Cs’ Cc’ and Ci is consequently completed.

By combining equations (2.17), (2.22), (2.23), and (2.24) the
distribution of current excited on the short, doubly loaded antenna

may finally be expressed in the form
V0
1,(2) = £5{FC4(CosB z - Cos8 h) + F0451n80(h-|z|)
- j Fc.[2sinB h CosB d CosB z - CosB h(SinB |z-d|
2 o o o o o

+ Sin80|z+d|)]} (2.25)
where

FCS = FC1 - FC3

T 2. T . T
ca (T D L idi sdi D

Tchsdr TcdDZ sdi” 5 30D1Tchidr 3

ZzDT D.T Z.T T
d s
-3 33D4T1 L)+ ; 22 .y gt (TSdiD3+JD4)](SecBoh-1)+T
1 idr 2 12 idr ‘cd

Fc, = ——([

sdiDS}
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Z
L , 1
FC, = 3 SecBoh Slneo(h-d){ FCl(CosBod - CosBoh)

idr 30D1

DS
+3sopT SlnBo(h-d)}
1 sdr
T
idi
FC, = ——
3 Tcd
DS

Tsdr

FC2

FC, =

This result expresses the antenna current distribution in terms of the
antenna dimension, its excitation frequency and the impedance and

position of the double loading.

2.5 Input Impedance of Doubly Loaded Short Antenna:

The input impedance of the antenna is defined as

v

—_90 -
Zin - Iz(z=o) Rin +3 Xin ’

From eq. (2.25), this impedance can be expressed in the form
. . -1
Z,. 60{FC5(1 - CosSoh) + FC,SinB h-j 2FC281nB°(h-d)} (2.26)

The input impedance of result (2. 26) is expressed in terms of the
antenna dimensions, the excitation frequency, and the parameter of

the double loading. Expressions (2.25) and (2.26) for the antenna
current distribution and i1nput impedance of a doubly loaded short
antenna are the main results of this chapter, and they will be utilized
in the subsequent chapters for the study of short antennas with en-

hanced radiation and high directivity.



CHAPTER 3

SHORT ANTENNA WITH ENHANCED RADIATION

3.1 Introduction:

A conventional short, linear antenna has a very small input
resistance and a large capacitive input reactance. For an antenna
having h < 0.1 XO’ the input resistance is extremely small compared
with that of a longer antenna, i.e., one of near resonant length.
The power radiated by the antenna is strongly dependent upon its in-
put resistance, since this resistance determines the degree of match-
ing between the transmission system and the antenna. The radiated
power of the short antenna is therefore very small due to the mis-
match between its small input resistance and the characteristic
impedance of a typical transmission system which might be used to
excite the antenna. It is the purpose of this research to enhance
the power radiated by a short antenna by increasing the input re-
sistance while simultaneously tuning its input reactance to zero.

In order to enhance its radiated power, the antenna should be
operated at reasonance (since zero input reactance is required).
This resonance condition can be implemented by inserting a low-loss
series inductor at the input terminals or by loading low-loss lumped
inductors on the cylindical wire antenna. In the latter case, a
high Q capacitor may also be inserted at the input terminals for
tuning purposes as will be indicated in Sec. 3.4. The conventional
base tuning arrangement, however, cannot increase the input resis-
tance to the antenna, and therefore it is ignored in this study except

for comparison purposes.
21
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The double impedance loading is implemented by lumped in-
ductors in this study. It has been found that a purely non-dissi-
pative optimum loading may be utilized at various positions along
the surface of the cylindrical antenna. Of course, the terminology
non-dissipative loading refers to an ideal lossless inductor which
cannot be realized physically. A very low-loss or high Q inductor
is mcunted on the antenna to implement an optimum loading in the
experimental investigation. By tuning the inductor to its optimum
value at a fixed position along the antenna surface, the input
reactance Xin of the antenna is eliminated and its input resis-
tance is increased by a factor of the order of two to four (2 ~ 4)
cver its value for an unloaded antenna (maximum increase is by a
factor of 4), and the radiated power of the short antenna is there-
fore enhanced significantly. It has also been found that for some
prcper choices of loading impedances and locations, the input
impedance of a short antenna can be adjusted to have a large resis-
tive component and an inductive reactive component. This case
appears rather attractive since the antenna can now be tuned to
reasonance at its terminals with a high-Q series capacitance which
is more readily implemented than a high-Q inductor.

The details of all these configurations are discussed in the

following sections.

3 2 Radiated Power and Radiation Resistance:

The power radiated by a short antenna can be obtained easily

from the well known result [7],
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r

Eq

. r

1 (3.1)

r

e

where R, is the distance from the observation point to the center

of the antenna, and superscript r indicates the radiation field.

E; s B; and Ag are expressed in spherical coordinates. The total
time-average power radiated by the antenna is thus given by
nRSwz T
P = i d .
ed. T T f0|Ae| Sind de (3.2)

r .
where A6 can be expressed in terms of the antenna current Iz(z)

(given by eq. (2.24)) as

-3 R
r : u'0 h e JBO
= o — : " ~— )
Ae = Sinb I_h Iz(z ) R dz
by e'JaoRo h 38,2" Cos®
= e — — 1 ' '
T Sing [ I (z')e dz (3.3)
0 -h
subject to the usual approximations,
R = RO - 2'CosH for phase factor
R = RO for amplitude terms
According to the definition of a short antenna, Boz' is much smaller
+jaoz'Cose
than one, therefore e can be well approximated by the
leading terms of a power series expansion as
+jB.2'Cos®
e O =1+ jBOZ'Cose - % Béz'ZCosze .

Since the antenna current is symmetric about its center 2z =0,

then Iz(z) = Iz(-z) and the second term of the power series
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integrates to zero such that equation (3.3) becomes

-jB. R
W 00 h
al=-2°5 " sine [ 1.(z)( - 1822t %cos20)dz (3.4)
h 2 2°0

n

6 4m RO

Since Boh << 1 for a short antenna, then the second term in the
integral of eq. (3.4) is normally very small compared with the first.
Thus Ih Iz(z')dz' >> = I B Cos 9 I (z )dz', provided only that
the lef;hside of the 1nequa11ty is not forced to approach zero by

reversing the phase of the current along the antenna. Eq. (3.4)

can therefore be approximated by the expression

. uo e jBORO h
M o —— — ] ]
Ae a7 R Sinb I Iz(z Ydz
0 -h
M -JB,R
0 00,
" aR. © Sinf Ac (3.5)
0
where
= f 1 (2')dz’ the area under the current
z distribution

By substituting eq. (3.5) into eq. (3.2), the radiated power is

obtained as

. o 2 2
Py 5 A% a|?. (3.6)
3

The radiation resistance of the antenna can be defined as

2 Prad.
Rad. ° 2
I (z=0)
YA
and therefore
2
A . la
Read, " 7727, AT - 3.7
3AOIz(z-0) Iz(z— )

The results of eq. (3.6) and (3.7) are very useful relations in the

following sections.
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3.3 Doubly Loaded Short Antenna with Increased Input Resistance and
Zero Input Reactance:

Since the input impedance of the doubly loaded antenna is a
function of the impedance and position of the loading, the dimensions
of the antenna, and its excitation frequency, it is difficult to
formulate an expression for the optimum loading impedance required
to make xin = 0 and simultaneously maximize Rin based on the
already complicated equation (2.24). Therefore the optimum impedance
lecading which will increase the input resistance and simultaneously
provide zero input reactance will be determined by using a high speed
computer to calculate and examine the antenna current and input
impedance, for given antenna dimensions, with various impedances
(low-loss inductors of various Q) loaded at different locations

along the cylinder.

3.3.1 Typical Current Distribution

Suppose that the short antenna is loaded by an optimum non-
dissipative impedance of reactance [XL]OP at a fixed position
along its surface such that its input reactance xin is tuned to
zero. It is found from eq. (2.24) by numerical calculation that
the current distribution on the antenna has the general form indicated
in Fig. 3.1. The amplitude of the current is almost constant between
the loading points along the antenna, and decreases to zero between
the loading points and the extrémities of the antenna. The phase
of the current is minimum and nearly constant at all points along

the antenna.
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‘Iz(z)
xL xL
C— I 1D z
| | T | |
z=h z=-d z=0 z=d z=h

Fig. 3.1. Typical current distribution along antenna with
optimum reactance loading to make xin = 0.

The current distributions along antennas with h = O.IXO
and d = 0.5h, 0.7h and 0.9h for the case of an optimum reactance
loading are plotted in Figures 3.2 to 3.4. It is found that the
area under the current distribution becomes greater as the loading
points are shifted toward the extremities of the cylinder. Since
the radiated power is approximately proportional to the square of
the area under the current distribution, this indicates that the
radiated power may be enhanced more significantly if the loading is

located near the end points of the antenna (provided that the

optimum impedance is non-dissipative as discussed in Section 3.5).

3.3.2 Input Impedance, Radiation Resistance, and Optimum Loading
Impedance

The input impedance of the doubly loaded antenna is expressed

by eq. (2.26) of Chapter 2 as

. -1
zZ, = 60{FC5(1 - CosB h) + FC,Sin8 h - j2F0281nBO(h-d)} .

in 4

From this equation, the input impedances are calculated and plotted
in Fig. 3.5. The case of both zero and optimum non-dissipative
impedance loadings at positions d = 0.5h, 0.7h and 0.9%h along
antennas of different length and constant diameter are considered

at a frequency f = 200MHz. It is demonstrated by these numerical



27

(g0 = p 010 = y) sBurpeot 19y30 30 3Byl Yyatm paiedwo) UOTITPuUO)
uojIeTpEY padueyuy 03 Burpuodsalio) UOTINGTIISTE IUIIIND BUUIIUY [BOTII0AYL Z°¢ 814

c«\n uor3rsod

01’0 600 80°0 00 900 s0'0 w0 £0°0 200 1070 )

0
z'0
90
o0c = X PO 9°0
ooz = X o 80

00s="°r"x)
01
' %0 =y
— Tll" R

C W ©

oswaoo.o - uN_ ZHA 00 = 3

1/1 @pn3jrdwe Juaiand aAjIe[al

Xew



Xt O0

«)



28

“uz70 = p ‘%10 = u) sBurpeOT 19430 JO IBY3 y3TM paiedwo) UOTITPUOD
uotjeTpey padusyuy o3 Surpuodsaiio) uUOTINQTIISIQ IUSIIND PUUIIUY TEITIBIOAYL ¢°¢ 814

ox\n uot3jtsod

01°0 60°0 80°0 L0°0 90°0 S0°0 %0°0 €0°0 z0°0 10°0 00°0

oz.o =Y

uL'o=rp

(@

Ounzn00°0 = vz

< ?_E'—\r

1/1 spn3itrdwe 3Jualind 3ATIe[al

Xew,



29

“(46°'0 = p ,o,:.o = y) sBurpeoT 13430 JO 3IBY3 YItm paiedwo) uoy3ITPuod
uotjeTpey padueyug 03 Bujpuodsaiio) UOTINGTIISTQ IUSIIND BUULIUY [BITISIOAYL 4'¢ *B1d

- o,Qu uot3rsod
1°0 60°0 80°0 L0°0 90°0 s0°0 %0°0 €0°0 20°0 10°0 0

10 =y

i,

_ u6'0=p ———————————————~
1

_P W : —1©

Oyz000°0 = ®z ZHA 00 = 3

>

1/1 @pn3trdwe 3Jualind 3ATIB[AL

xew



n



o

11 30 juauodwod 3ATIOBI

u

00z~

009-

008~

0001~

00z1-

0z'0

81°0

y38ua BUULIUY JO SUOTIDUN SEB SUOTITSOJ PIXTJ Ie sBUTPROT 2ATIdEAY

(3uswadueyua) wnuiidg pue 013z 103 saduepadw] Indul euUIIUY [BOTIBIOAYL ¢ “B1d

04\: y38uay TEOTI309[2 BUUIIUE

Z1°0

ol 0 80°0

90°0

oxuﬁmoo.o =-®
ZHA 00Z = 3

ut

u u
Tx 0+ ="

ot

(4

og

oy

0s

)

‘z 30 juauodwod 3ATISTSAT

u






31

results that the input resistance is increased as the loading position
is shifted toward the extremities of antenna. It is also indicated
that the input resistance to a short antenna with optimum reactance
loading is increased by a factor of two to three relative to that

of an unloaded conventional antenna.

The radiation resistance and input impedance of a short
antenna with a lossy optimum impedance loaded at d = 0.7h are
listed in Tables 3.1, 3.2 and 3.3 for various value of loading Q.
These numerical results indicate how the radiation resistance and
input resistance are affected by the Q of the'loading impedance.

The optimum loading reactances [xL]op for antenna with
different half-lengths h, constant radius a, and various loading
positions d are presented in Fig. 3.6 and Fig. 3.7. It is in-
dicated that the optimum loading reactance [xL]op is a decreasing
function of antenna length for a fixed loading position d/h, and
[xL]op increases for fixed h as the loading position is moved

toward the extremities of antenna.

3.3.3 Radiated Power Compared with that of Unloaded Antenna

It has been demonstrated in eq. (3.6) of Sec. 3.2 that the
radiated power is approximately proportional to the area beneath
the current distribution along the antenna. By investigating the
current distributions along antennas having both zero and optimum
non-dissipative loadings, as in Fig. 3.2 to Fig. 3.4, the radiated
power of the antenna with optimum loading can be enhanced by a factor
of one to four relative to that of the unloaded antenna. This con-

clusion is reached by considering the matching between the antenna
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Table 3.1 Input Impedance and Radiation Resistance of Short Antenna

Doubly Loaded by Reactances XL of Various Q.

v, = 1 volt, f = 200 MHz, a/ko = 0.00212,d/h = 0.7, h/)\0 = 0.05, XL = 1450

0
Q Radiation Z,, =R +3IX_
Resistance Rin xin

100 3.79665 30.49565 -5.0386
200 4.45551 17.80993 -4.57154
300 4.67505 13.57864 -4.47566
400 4.78479 11.46267 -4.43894
500 4.85063 10.193 -4.42050
600 4.89452 9.34653 -4.40971
700 4.92587 8.74189 -4.40273
800 4.94938 8.28841 -4.39790
900 4.96766 7.9357 -4.39438
1000 4.98229 7.65352 -4.39171
1100 4.99425 7.42265 -4.38963
1200 5.00422 7.23026 -4.38796
1300 5.01266 7.06747 -4.38659
1400 5.01990 6.92793 -4.38546
1500 5.02616 6.807 -4.38451
1600 5.03165 6.70118 -4.38369
1700 5.03649 6.60781 -4.38298
1800 5.04079 6.5482 -4.38237
1900 5.04464 6.45056 -4.38183
2000 5.04810 6.38373 -4.38135
© 5.11391 5.11391 -4.37369
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Table 3.2 Input Impedance and Radiation Resistance of Short Antenna
Doubly Loaded by Reactances X, of Various Q.

L
vy = 1 volt, f = 200 MHz, a/hy = 0.00212, d/h = 0.7, h/x0 = 0.075,
X, = 1080
Q Radiation Zin = Rin + j xin
Resistance Rin Xin
100 10 43993 28.51376 -8.65307
200 10.78496 19.82499 -8.28564
300 10.89967 16.92681 -8.19977
400 10 95697 15.47745 -8.16371
500 10.99132 14.60777 -8.14427
600 11.01422 14.02795 -8.13223
700 11.03057 13.61379 -8.12408
800 11.04283 13.30315 -8.11821
900 11.05237 13.06155 -8.11379
1000 11.05999 12.86826 -8.11035
1100 11 06623 12.71012 -8.10759
1200 11.07143 12.57833 -8.10534
1300 11.07583 12.46681 -8.10346
1400 11.07960 12.37123 -8.10187
1500 11.08287 12.28839 -8.10051
1600 11.08573 12.2159 -8.09933
1700 11.08825 12.15195 -8.0983
1800 11.09049 12.10951 -8.09739
1900 11.09250 12.04423 -8.09658
2000 11.09430 11.99845 -8.09586
® 11 12860 11.1286 -8.08302
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Table 3.3 1Input Impedance and Radiation Resistance of Short Antenna

Doubly Loaded by Reactances XL of Various Q.

v, = 1 volt, £ = 200 MHz, a/)\0 = 0.00212, d/h = 0.7, h/)\0 =0.1, XL = 850

0
Q Radiation Zin = Rin + ] xin
Resistance Rin xin
100 18.81215 31.92312 5.67854
200 19.00825 25.566 6.01933
300 19.07317 23.44536 6.10916
400 19.10554 22.38480 6.14916
500 19.12493 21.74840 6.17274
600 19.13785 21.32410 6.1817
700 19.14707 21.02101 6.19727
800 19.15398 20.79369 6.02473
900 19.15936 20.61688 6.21044
1000 19.16366 20.47574 6.21495
1100 19.16717 20.35970 6.2186
1200 19.17010 20.26326 6.22161
1300 19.17258 20.18165 6.22414
1400 19.17471 20.1117 6.2263
1500 19.17655 20.05107 6.22816
1600 19.17816 19.99803 6.22977
1700 19.17958 19.95122 6.23119
1800 19.18084 19.90962 6.23245
1900 19.18197 19.87239 6.22358
2000 19.18299 19.83889 6.23458
© 19.20230 19.2023 6.25314
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input impedance and the transmission line which excites the antenna.

3.3.4 Radiation Pattern

The radiation fields of the short antenna with optimum

impedance loading are obtained from eq. (3.1) and eq. (3.5) as

-3B R
Ef = -j EQ_ euiiP 5 7S
] 2)\0 Ry c
8 %o e-jeoko
B = -j 53— =— A (3.8)
@ ZAO R, c

Since the current distribution Iz(z) of eq. (2.24) depends only
upon the dimensions of antenna, its excitation frequency, and the

impedance and position of the loading, eq. (3.8) can be expressed as

r
=E F(
Ee OF 6)
r
EQ = BOF(B)
-jB.R
Gt ar 040
where E = -j T £ A
0 )\0 Ro c
By “380Ry
BiE i A
0 )\0 RO c
F(8) = Sind

The radiation pattern of the short antenna with optimum reactance

loading is consequently similar to that of an unloaded short antenna

as indicated by Fig. 3.8. It is roughly independ of the imped
and position of the loading inductors.
0°

8

9

180
Fig. 3.8 Radiation Pattern of the Short Antenna with
Optimum Reactance Loading.
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3.4 Loaded Short Antenna with Increased Input Resistance and
Inductive Input Reactance:

By investigating the current distribution of eq. (2.24) and
input impedance of eq. (2.26), for different non-dissipative impedance
loadings, it is found that the input resistance of the short antenna
can be increased to a very large value, while the input reactance
simultaneously changes from capacitive to inductive. This newly
observed phenomencn occurs when the reactance of the non-dissipative
loading (having fixed position) is further increased beyond its
value [xL]op for which X = 0. In this case, the antenna can
be tuned easily to resonance by a high Q series capacitor at its
input terminals. Consequently, the matching between antenna aﬁd
transmission system is improved, with the result that the power
radiated by the short antenna is significantly enhanced relative to

that of an unloaded short antenna.

3.4.1 Tvypical Current Distribution

If a short antenna is loaded by an appropriate non-dissipative
impedance at a given position along its surface, such that its input
resistance is increased and its input reactance becomes inductive,

the current distribution of eq. (2.24) has a general form presented

in Fig. 3.9.
‘12(2)
= < =
|
z=h z=-d z=0 z=d z=h

Fig. 3.9 Current Distribution along Antenna with Increased
Input Resistance and Inductive Input Reactance.
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The amplitude of the current is small at the input terminals, in-
creases almost linearly to its maximum value at the loading points
and then decreases to zero at the extrémities of the antenna. The
phase of the current is almost constant along the antenna.

The current distributions along antennas with h = 0.1)\0
and d = 0.5h, 0.7h and 0.9h for appropriately chosen loading re-
actances are plotted in Fig. 3.10. These optimum reactances (and
the corresponding current distributions) are chosen in such a way
that the input resistance to the antenna is increased to approx-
imately six times that of an unloaded antenna, the criterion for
this choice being in this case to match the antenna input resis-
tance to the characteristic impedance of the exciting transmission

system.

3.4.2 nput Impedance

By using eq. (2.26), the input impedance of a short antenna
with increased input resistance and inductive input reactance are
obtained numerically as in table 3.4. It is found that the in-
ductive input reactance is a stronger function of the loading

impedance than is the input resistance.

3.4.3 Radiated Power

Since the input resistance of the short antenna in this case
can be increased by a much greater factor than for the case described
in Sec. 3.3, the degree of matching with its transmission system is
consequently improved significantly as the antenna is tuned to
reasonance by a non-dissipative series capacitor at its driving

point. Theoretically, therefore, more power is radiated by this
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Table 3.4 Input Impedance of Short Antenna with Increased Input

Resistance and Inductive Input Reactance.

h = 0.075k0, ar= 0.002127\0

h = O.IXO, ar= 0.00212)\0

Loading z. (for d = 0.5h) Loading X z (for d = 0.5h)
Reactance m Reactance L in
0 4.3810 - j 608.58 0 8.116 - j 468.287
700 9.641 + j 72.322 l 600 19.36 + j 190.30
800 11.772 + j 291.736 700 25.43 + j 463.33
900 15.044 + j 592.851 800 36.397 + j 883.67
1000 20.53 + j 1031.74 900 60.135 + j 1614.56
1100 31.028 + j 1730.99 1000 132.122 + j 3201.50
XL Zin(for d = 0.7h) | XL Zin(for d = 0.7h)
0 4.381 - j 608.58 0 8.116 - j 468.287
1100 11.59 + j 25.307 900 21.63 + j 89.38
1200 14.77 + j 236.85 1000 29.32 + j 325.86
1300 20.53 + j 569.52 1100 45.945 + j 747.74
1400 33.32 + § 1169.06 1200 98.03 + j 1713.40
XL Zin(for d = 0.9h) XL Zin(for d = 0.9h)
0 4.381 - j 608.58 0 8.116 - j 468.287
3100 17.943 + j 206.2 2500 23.24 + j 20.865
3200 27.95 + j 605.7 2600 31.177 + j 210.15
3300 64.23 + j 1642.44 2700 50.567 + j 588.9
2800 136.93 + j 1725.83
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short antenna than by the antenna of Sec. 3.3. For the practical non-
ideal case, this is not always true, since the powers dissipated in
the loading inductors and tuning capacitor are larger than in Sec.
3.3, and therefore, the radiated power may sometimes be reduced more

than the former case.

3.5. Conventional Top-Loaded (or End-Loaded) Antenna:

In Sec. 3.3, it is indicated that the current distribution
along a short antenna with optimum double reactance loading is al-
most constant between the loading points, and it is further in-
dicated in Sec. 3.2 that the power radiated by the antenna is
approximately proportional to the square of the area beneath the
antenna current distribution. Therefore, if the loading position
is shifted to the end of the antenna, or if the antenna is end-
loaded by an optimum reactance, the current will remain nearly con-
stant along the entire length of the antenna, and the radiated power
will be increased by four times relative to that of the unloaded
antenna. Since the end loaded antenna represents an extremely
difficult theoretical problem, only an experimental study will
be conducted in Chapter 6. Various types of end and impedance
loadings will be studied experimentally to investigate the char-
acteristics of end-loaded antennas.

3.6 Comparison of Doubly Loaded Antenna with Unloaded Base-Tuned
Antenna for Radiated Power and Efficiency:

In Sec. 3.1, it is indicated that the input power supplied

through a transmission system to a double loaded antenna which is
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tuned to resonance is always greater than that supplied to an unloaded
antenna which is base tuned.

I1f the double loading or base tuning inductors are non-ideal
(it is assumed that the capacitor for tuning the doubly loaded antenna
to resonance is an ideal capacitor), and consequently dissipate a
certain fraction of the input power, the efficiency of the antenna
should be considered. The efficiency of an antenna is defined as

(Pin B Pdissip.)

P,
in

Efficiency = X 100%

Therefore, the effiencies of the optimum doubly loaded antenna (only
the doubly loaded antenna with increased input resistance and zero
input reactance will be discussed in this section, since the efficiency
for case with increased input resistance and inductive input reactance
is similar to the former one if the tuning capacitor is assumed to be
ideal) and the base tuned, unloaded antenna designated as (Eff)

op

and (Eff)no’ respectively, are calculated as

2
I (z=d) (RL)
E, ) =[1-2-2% 9P 1 x 100%
f£.7op Ii(z=0) (Rin)op
_ in’no
(Eff )no (R, ) Rb] X 100%

where
(XL)o
(RL) = —=9P - resistance of optimum double loading
op Q . . .
inductors [xL]op with given Q.

= resistance of base tuning inductor Xb with
given Q.

D'X
o

Rb=
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The efficiencies of antenna with fixed dimensions, for both the
optimum doubly loaded and the base tuned cases, which result with
different Q values for the inductors are indicated in Fig. 3.11.
From these numderical results, it is evident that the antenna
efficiencies are very nearly equal for both the doubly loaded and
the unloaded (or base-tuned) antennas. The power radiated by the
doubly loaded antenna is therefore greater than that of the base
tuned antenna, since the input power for the former case is always
greater than for the latter if the antennas are driven by matched
generators. The same conclusion is indicated by the numerical re-

/(P

sults presented in Fig. 3.12, where the ratio (Prad.)op rad.)no

is plotted for various value of Q for the optimum reactance

X,) . and the base tuning reactance X, when the antennas are

L'o b
driven by matched generators. It is demonstrated that (Prad )op
is always greater than (P ) under these conditions.
rad.” no

3.7 Bandwidth of Short Antenna with Enhanced Radiation:

The optimum loading reactance for enhanced radiation and the
reactance of a fixed inductance loading are indicated as a function
of frequency in Fig. 3.13 for an antenna of fixed dimensions. The
fixed loading inductance is chosen such that its reactance XL is
equal to the optimum reactance [xL]op at a frequency of 200 MHz.

It is observed that the optimum loading reactance is a decreasing
function of frequency. The reactance of the fixed inductor, however,
is directly proportional to frequency. As indicated in Fig. 3.13,

the optimum reactance [XL]op is 850 Q at f = 200 MHz for an
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antenna with a = 0.125 inch, h = 15 cm. As the frequency is varied
to 200 MHz + 10 MHz, the actual reactance of the fixed inductance
(L = 0.676u Henry) varies to 850 0 + 50 Q, while the optimum re-
actance varies to 850 Q + 50 Q. This implies that the difference
between the actual reactance of a fixed inductor and the optimum
reactance for enhanced radiation is + 100 Q for a frequency dif-
ference of + 10 MHz. For a 5% variation in frequency the reactance
of a fixed inductor varies by 11.8% from the optimum reactance.
This result appears to imply that the bandwidth associated with a
lumped inductor implementation of the optimum loading reactance
will be quite narrow.

The input impedance of an unloaded antenna and an antenna
doubly loaded with a fixed inductance of L = 0.676u Henry are
ccmpared in Fig. 3 14. It is noted that the impedance of the
doubly loaded antenna varies with frequency much more strongly
than does that of the unloaded antenna. This implies again that
the bandwidth of the doubly loaded antenna with enhanced radiation

is relatively small.
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CHAPTER 4

SHORT ANTENNAS WITH IMPROVED DIRECTIVITY

4.1 Introduction:

It is well known that a conventional short linear antenna has
low directivity since its radiation pattern has a very large beam-
width. 1In this research, a double impedance loading technique is
applied to appropriately modify the antenna current and thereby
improve its directivity.

In 1943, La Paz and Miller [2] attempted to determine the
maximum directivity theoretically available from a line source
antenna by solving for the corresponding optimum antenna current
distribution. Later, Bouwkamp and De Bruijin [3] pointed out that
arbitrarily high directivities might be achieved from a linear
antenna by properly adjusting its current distribution. Similar
results for antennas of different geometries were also derived by
Riblet [4] in 1948. 1In 1949, Chu [9] indicated that several problems
inherently associated with highly directive antennas are an un-
usually high q, a narrow bandwidth, and a low efficiency.

Although no methods were suggested for realizing the required
optimum current distributions, the research of the above investigators
implies that various degrees of improvement in directivity, with
associated degradation of the radiated power, may be achieved by
careful adjustment of the antenna current distribution.

It is the object of this research to investigate the possibility
of physically realizing the optimum current distribution to improve

the directivity of a short linear antenna. This current distribution
50
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is implemented by doubly loading the antenna by a pair of lumped
impedances.

Through the use of an optimum impedance loading it is found
that an optimum current distribution is realized when the phase of
the current is reversed along the short antenna. The directivity
corresponding to such a distribution of current is improved sig-
nificantly. It is found that such a current distribution results
in an antenna having poor efficiency and small radiated power, and
that these characteristics are closely associated with the improved
directivity.

A theory is developed to predict the optimum loading impedance
for improving the directivity of a short antenna and to determine its
input impedance, current distribution, efficiency, and radiated power

in the following sections.

4.2 Radiation Field of a Short Antenna with Improved Directivity:

For calculating the radiation fields of a short antenna with
increased directivity, a mathematical approach similar to that in
Sec. 3.2 is applied. Eq. (3.4) can be used directly subject to the

same assumptions and approximations, i.e.,

W -jBoRo h 1 2 2 )
= .-2& . 1 , .
Ae m Ro Sind Io Iz(z )1 2 Boz Cos 0)dz 4.1)

"

where Iz(z') is the current distribution of eq. (2.24). The well

- -
known E and B-fields in the radiation zone of the antenna

r r
Ee=-ije
r 1 r

B¢ v Ee

(o}
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are therefore obtained as

r - J Co e-JBORO
Ee = )\o Eo— A F(Boh,e)
(4.2)
I O e-jBoRo
B¢ = X E__ A F(Boh,e)
o o
where
h ] ]
A = I 1 (z')dz' ..... the area below the current
° z distribution of eq. (2.24)
) B 2
F(Boh,e) = SinB(1 - x Cos 8) 4.3
and
1ph 2,20
B = 2 Boz 1 (z')dz

By investigating eq. (4.3), it is observed that the radiation
pattern is a strong function of the ratio B/A. From numerical
results for the current distribution Iz(z) expressed by equation
(2.24), it is found that the antenna current has approximately a
variable-amplitude and constant-phase distribution along the antenna.
This implies that although the amplitude of the current varies from
point to point along the antenna, its phase is almost constant except
for the possibility of a rapid 180° phase reverse that may be accounted
for by changing the sign of the amplitude. By using this constant-
phase variable-amplitude approximation, the current distribution Iz(z)

of eq. (2.24) may be represented approximately by some real function
je

f(z) multiplied by a constant phase factor e o’ i.e.,

i0
I(2) = f(2)e °
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where f(z) may take both negative and positive values. Therefore,
the ratio B/A 1is approximately equal to a real number, i.e.,

1 oh 2

30, 8,21 (2")dz’

= = real number. (4.4)
fo Iz(z')dz'

B
K=a
The radiation pattern of the doubly loaded, short antenna is the

graphical representation of
F(B_h,0) =SinB(1 - K COSZG) (4.5)

in polar coordinates. Different radiation patterns are therefore
obtained by specifying different values for the real constant K.
The radiation patterns for K = 0,1, 2, 2.33, 3, 10, 46 and 5 are
plotted in Fig. 4.1 through Fig. 4.4.

It should be recalled that the directivity of an antenna is
the ratio of the maximum radiation intensity to the average radiation
intensity. 1In other words, the directivity is the ratio between
the radiated power Pmax. when the antenna is assumed to radiate

with its maximum power in every direction and the total radiated

power Prad of the antenna, i.e.,
<
, . max. dQ' max. Max. radiation intensity
D(directivity) P 1 Average radiation intensity (4.6)
rad. — P
4m rad.
where
dp
= 41 —
Pmax dQ' max.
24 = ,
%% = RoRo .8t L., power radiated per unit solid angle

and
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B.W. | D(db) | “max
90° | 1.76 | %°
5s® | 3.424 | 90°

42 4.4 90°

N = O =

180°

Fig. 4.1 Theoretical Radiation Patterns of Short Antennas with
K=0, 1, and 2.
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K B.W. | D(db)| “max

2.33 | 38° |4.48db] 90°

3 36° f.387db| 90°
K:

1.0 0.5

Fig. 4.2 Theoretical Radiation Patterns of Short Antennas with

K= 2.33 and 3.

o

180

b
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K B.W. D (db) emax
10 34° |4.62 af 33°12
46 35° [4.3 dbl 34°23

Fig. 4.3 Theoretical Radiation Patterns of Short Antennas with
K = 10 and 46.
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B.W. | D(db) [®max

36° [4.15db]35°16"

180°

Fig. 4.4 Theoretical Radiation Pattern of Short Antennas with

K~ o,
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bnd o 1 -— —% . . .
S = E(E X H') 1is the Poynting's vector in the radiation zone.

The directivity of an antenna in db is defined as

Ddb = 10 1og10(D)db. 4.7)

The beamwidth of an antenna radiation pattern is defined as the angle
between the two half-power points of its major lobes.
From eq. (4.2), the total power radiated by an antenna for

each specified K 1is obtained as

2 pm 1 o —%
= —_ X . i
Prad. ZﬂRo o 2(E H) Ro Sinb de
LS
: 2 om 3 2.2
=—2a" [ sin’8(1 - K Cos“0)“de
\ o
o
4 2
= 01[105 (3K” - 14K + 35)) (4.8)
C nAZ
where C =2
1
o
The average radiation intensity is then %; Prad . By differentiating
eq. (4.3) with respect to 6, the angle of maximum radiation, emax s

is obtained as

=1 for o< K<
max. 2

s Cos ' /ZKa1 for K24
max. ——3K

This means that for K > 4, the major lobe is in off-broadside

direction. The maximum power intensity is therefore determined as
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dp 2~ =r 20 1 =2 =%
—_— = . = — X
dﬂ'max. RoRo Sm3x. RoRo Z(E H )max
-1 59 a%[sind (1 - K Cos 20 )2]
2 12 max. max.
o
C1/2ﬂ for o< K< 4
_ (4.9)
“\2C 3
1 (K-1)
p 27K for K24
Therefore, the directivity for each specified K 1is obtained as
125 3 L for o< Ks4
D(directivity) = (3K "-14K+35)
70 (x-1)°
2
7 3rP-14k435)K for K =4
The maximum directivity for the case of emax = 90° (or o S K s 4)
is therefore determined from eq. (4.9) by letting g% = 0. This
leads to K = 2.33 as the optimum value. The case for K 2 4 is
not discussed further since its major lobe is in off-broadside
direction.
The directivity in db 1is obtained by substituting eq. (4.9)
into eq. (4.7) for o< K<4 and K 2 4 respectively, as
10 loglo[lg5 3 L for o< K<s4
(3K -14K+35)
Ddb = 2 (K-1)3 (4.10)
—_— 2
10 1og10[9 for K2 4

(3K2-14K+35)K

The directivity and beamwidth of the short antenna, as de-

termined by eq. (4.5), (4.9) and (4.10) are tabulated in Fig. 4.1

through Fig. 4.4 for the various values of K.

For

K = o, the
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radiation pattern is just that of a conventional short antenna
(B.W. = 90°), and the directivity is D = 1.7db N 90°) .
For K =1, the major lobe becomes sharper (B.W. = 550), and the
diréctivity is improved from the original 1.76db to 3.424db
(Bmax' = 900). When K = 2, although side-lobes appear, it is
found that the beamwidth becomes relatively narrow (B.W. = 420)
and the directivity is increased to D = 4.4db (Bmax. = 900). For
K = 2.33, the beamwidth is equal to 38° and the antenna has the
highest directivity D = 4.48db in the broadside direction
(emax' = 900). For K = 3, the side lobes grow larger and the
directivity is decreased to 4.387db (emax. = 900). For K = 10,
the lobe in the broadside direction becomes a minor lobe, and the
minor lobe in the off-broadside direction becomes a major lobe
with the maximum radiation in emax. = 33°12", and with a directivity
equal to 4.64db (B.W. = 34°). For K = 46, the broadside field is
decreased even more than the case of K = 10, and with D = 4.3db,
8 ., =34°23" and B.W. =35°. As K~ =, the broadside field
vanishes completely and the radiation pattern has four symmetrical
lobes (shown as in Fig. 4.4), each having B.W. = 360, and the
directivity is equal to 4.15db (emax. = 35°16'). Since the most
interesting radiation field is the broadside field (emax. = 900),
therefore, it is found that the most desirable radiation pattern
is achieved for the optimum value of K = 2.33. But for mathematical
simplicity, the value of K = 2 will be used in the numerical examples
in the following sections.

It is now evident that to have an improved directivity the

value of K should closely approximate 2.33. From eq. (4.4), this
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‘h
condition requires Jo Iz(z')dz' to be very small, thus implying

phase-reversal of the current along the antenna.

4.3 Optimum Loading Impedance for Improved Directivity:

From the results of the previous section, it is evident that
by properly choosing the real constant K, or by properly adjusting
the current distribution Iz(z), given by eq. (2.24), the directivity
of a short linear antenna can be significantly improved relative to
that of a conventional short antenna. Since the current distribution
Iz(z) of eq. (2.24) is a function of the antenna dimensions, the
excitation frequency, and the impedance and position of the loading,
the optimum loading impedance for improved directivity can be de-
termined from eq. (4.4) and eq. (2.24) if K 1is specified and the
antenna dimensions and its excitation frequency are given.

An expression for the optimum loading impedance [ZL]op is
obtained as follows:

Eq. (4.4) can be rewritten as
l 2 ph ,2 ' [ h ' '
58 [o 21 (@hdz' =K [) 1 (2")de (4.11)

It is recalled that the current distribution Iz(z) on the doubly

loaded short antenna was given in eq. (2.24) as

I,(2) = FCy(CosB_z - Cos B_h) + FC,Sin B_(h - Iz

4

- - -d
j FC,_2Sin B _h Cos B d Cos B_z - Cos B h(Sin Bolz |

2

+ Sin Bolz+d|)].

By substituting this expression into eq. (4.11) for a given value of

K and carrying out the integration, a simple equation is obtained,
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after some rearrangement, as

FCsD, + FC,D, - j FC2D8 =0 (4.12)
where

_ 1,22 2.2 . .

D, = eoh(z -3 Boh )Cos Boh + (Boh - 2)Sin Boh - 2K(Sin aoh
- B hCos B h)
(o] (o]

- a2 .
D, = Boh + 2(Ccs B h - 1) - 2K(1 - Cos Boh)

_ 2,2 2.2
Dg = 2(B_h" - 2)Cos Bod + 22 - Bod )Cos B _h

- 4K Sin’B h Cos B d + 4K(1 - Cos B h Cos B d)Cos B h.
(o) (o] [e] (o] [o]

Since FC FC

2 and FC5 are all functions of the loading impedance

4

ZL’ eq. (4.12) can be rearranged, after a great deal of algebraic
manipulation, into a quadratic equation for ZL’ the solution to

which gives the optimum loading impedance [ZL]op’ i.e.,

2 _
B2, + B2 +By =0 (4.13)
where

By = DgDg(Dy5Dg = Dyy +DyD10Pg + D10y - DygPysPy6Py2)

+ D1gDeDy5(D1gPy3 = DyP19Pg - DyyPyy) + FC, DD, (DyDy + D))

- j DysPg(Dy(Dy,Dg = Dy(Dyg + D)D) 5Dy + DDy ,)
By = Dg(2D),Dg = Dyy + 2D, D oDy +D),D15 - D1gP15P16P12 = P1gP15°17010°

+ FC,D,(2D)oDg + Dy;) - J DygDg(Dy D)y + Dy3D00)

By = DgDyy + DDy D1o *+ FCD;D,
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T
idi
D =——="2_ Sec B hSinP (h-d)(Cos B d - Cos B h)
9 30 Tchidr o o o o

2
b —d i -
5T Sec Boh Cos Bod Sin Bo(h d)

idr
ca
D10 1 - T (Sec Boh -1
cd
T, T (Secf h-1)
- idi "ca o X . .
D11 (———;———— + 3 Tia) T T Sec Boh Sin Bo(h d) (Cos Bod Cos Boh)
cd idr “cd
(Sec B h-1) T
- o ca
Do =TT 1 G Teqi D5 + 3 DsTy )
cd “sdr cd
- (Sec B h-1) T . Tias Teas D3 490D T.a Tidi
13 30T T 2 4T , T,
cd “sdr T T cd “idr
cd idr
Tia Tsdi
22 == +
+iT - G Dy +3iD]
idr cd
D - Tsdi DS
14 Tcd Tsdr
- Sec Boh Sin Bo(h-d)
15 30T

idr

= d -
D16 Cos Bo Cos Boh

Sin Bo(h-d) + D

17 16D14

Dig ° T

The quantities Tidi’ Tidr’ T

are all defined in Chapter 2.

T , T, and FC
ca

cd’ Tsdr’ Tsdi’ ia 4

By solving eq. (4.13), the optimum loading impedance is

obtained as
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2
i -(32/31) 1\/632/31) -4(33/31)
op 2

(z] (4.14)

By investigating the numerical results obtained from equation
(4.14), it is found that only one value of optimum loading impedance

[ZL]op is of interest, i.e.,

2
) -(BZ/BI) -/(BZ/BI) -4(133/31)
op 2

[zL] (4.15)

The other root to equation (4.14) is extraneous since it does not
result in a phase reversal in the antenna current and therefore can-
not result in any impogvement in its directivity.

The optimum loading impedances for different antenna lengths
and various loading positions d are plotted in Fig. 4.5 and 4.6
for the case of K = 2.0 Since the resistive component of the
optimum loading impedance is very small (always smaller than 1/10000
of the reactive component), only the reactive component is shown in
these Figures, and the optimum loading impedance can be treated
approximately as a pure reactance. From these Figures, it is observed
that the optimum impedance has its smallest value when the loading
position is approximately d = 0.7h, and increases rapidly as the
loading position is moved toward either the driving point or the

extremity of the antenna.

4.4 Typical Current Distribution on Antenna with Optimum Loading:

When a short antenna is loaded by an optimum non-dissipative
impedance (inductor), as determined from eq. (4.12) for K = 2.0,

at fixed position along its surface, the antenna current Iz(z) of




65

ﬁoﬁ.o o oxmmﬂ.o = y) £3187139211Q paaoadu] 103 aouw3deay SurpeoT wnwiidQ [EOTIRIOSYL Gy 814

- Yy/p uor3irsod Surpeo]

{1304 6°0 80 Lo 9°0 S0 %0 €0 z°o

>

ZHWO0Z = 3

X 6L0°0=4

o,A §Z0°0=y4

®Z

0001

000Z

000€

000%

0005

0009

000L

0008

do 1

['x] @oue3deay Burpso wnwyado



66

o, o
(X270 ~ "Xsz1°0 = y) £37ATI2211Q pasoadwl 103 3dueldoesy Suipeot wnwiidg Te2138102yL 9°4 ‘814

~ y/p uoratsod Suipeot
Q1 6°0 8°0 L0 9°0 S0 #°0 £°0 z°0 1°0

O z1z00%0 = ®
e

ZHA 002 = 3 QN,-K

O sr1-0=y
Oy z-0=y

ST 0=y

ox ST1 0=y

()]

0001

000Z

000€

000%

{"x] eous3ovey Surpeor wnmyado

do



67

eq. (2.24) has the general form indicated in Fig. 4.7.
1, (2|

) ) SN
! ! 0 | z
z=-h z=-d ——-——==-$9= - . - z=d z=h
! ] 00 ]
] o ]
_______ J + =90 b e ——
phase 4

Fig. 4.7. Current Distribution on an Antenna with Optimum
Loading for Improved Directivity.

The antenna current has zero amplitudes at points (z = + zo) be-
tween the driving point (z = o) and the loading points (z = + d),
at which points the phase of the current is reversed by 180°. The
total area under the current distribution along the antenna is there-
fore almost equal to zero, i.e., A = 0, resulting in a very small
input resistance and significantly reduced radiation power.

The current distribution of eq. (2.24) for antennas of various
lengths with optimum loading impedances [ZL]op at several different

positions, are plotted in Fig. 4.8, 4.9 and 4.10.

4.5, Input Impedance of Short Antenna with Increased Directivity:

By using eq. (2.26), the input impedances of short antennas
having both optimum and zero loadings are evaluated numerically as
indicated in Fig. 4.11 and 4.12. By investigating these Figures,
it is found that the input impedance of the antenna with optimum
loading has a very large reactive component and a very small re-
sistive component compared with those of the unloaded antenna. The

large input reactance is mainly contributed by energy storage in the
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optimum (inductive) reactance loading, and the small input resistance
is due to the current phase-reversal which occurs along the antenna

with optimum loading.

4.6. Radiated Power and Efficiency of Antenna with Optimum Loading:

By applying equation (4.8) directly, the power radiated by
the antenna with optimum loading is obtained as

2
¢ lal

rad. XZ
o

P j2(1 - K Cos 26y %sin 0 do (4. 16)

Therefore, the radiated power is approximately proportional to |A|2,

i.e.,

Pad - |A|2 = |f2 Iz(z')dz'l... area2 below Iz(z).

Since the current distribution associated with high directivity re-
quires a phase reversal along the antenna, then consequently the
integral A = I: Iz(z')dz' nearly vanishes and the power radiated
by the short antenna with optimum loading is very small.

The efficiency of the antenna with optimum loading is also
relatively poor. This can be observed as follows. The efficiency

of the doubly loaded antenna is determined in Sec. 3.6 as

I17(z-d) (R,)
Efficiency = (1 - 2 —g R OPy x 100%
Iz(z=o) in

X))

= ——= 0P

where (RL)op Q .

Since (xL)op has values between 2000 and 7000 ohms for antenna with
half-lengths between h = 0.025)\o and h = O.ZXO and a = 0.00212xo,

and Rin has values between O and 0.5 ohms while Iz(z=d) and

Iz(z=0) are comparable, then unless Q 1is very high most of the input
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power to the antenna will be dissipated in the loading inductors.

The efficiency is therefore relatively poor.



CHAPTER 5
DOUBLY LOADED COUPLED SHORT ANTENNAS

The study of coupled, doubly loaded, short antennas involves
an investigation of a closely spaced parasitic array of short cylin-
drical dipoles. It is the objective of this research to enhance the
radiation or improve the directivity and radiation pattern of the
short antenna array. Two identical parallel antennas doubly loaded
by lumped impedances are investigated in this chapter. The theory
developed in this chapter is based on the modified method of King

and Wu [6 ], and the investigation of King and Sandler [10].

5.1 Gecmetry of the Doubly Loaded Short Array:

The geometry of two identical, doubly loaded, short antennas
is as indicated in Fig. 5.1. Antenna 1 and antenna 2 are assumed to
be constructed of two perfect conductors of the same radius a and
length 2h (h is the half-length of antenna), and the distance be-
tween these two antennas is b. Two ideal, harmonic voltage sources
of equal angular frequency w and potentials v10 and V20 excite
the cylinder 1 and 2, respectively, at their centers 2z =06 (the
antennas are assumed to be oriented parallel to the z-axis). 1In
antenna 1, the two identical lumped impedances ZLl are loaded
symmetrically on the antenna surface at z =d and z = -d. A
second pair of identical lumped impedances ZL2 are loaded on the

surface of antenna 2 as indicated in the figure. The gaps in the

cylinders at the location of the sources and the loading impedances

75
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= d
ZLl "!?-' ' Z _T_ -i- ZLZ

Ilz(z) ‘ l IZz(z)

z
28 26
+ _l_ 4 +
Vio . z=0 V20
K3 T
2a =+ — - e—2a
Ilz(z) IZz(z)
26 26
z —2Z =d— z
L1 L2
T 1

.\

Fig. 5.1 The Doubly Loaded Coupled Short Antennas
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are assumed to be of length 28. Since both the sources and the
lumped loading impedances are considered to be idealized point
elements, then &6 1is assumed to approach zero in the subsequent
mathematical analysis.

The dimensionsof interest for both antenna 1 and 2 are the

same as those for the isolated linear antenna in Chapter 1, i.e.

e 50h
h/)\o = o S 0.1
h >> a
Ba<l1
o
LP >a & b<h ... closely spaced array

where xo is the free-space wavelength and Bo is the correspond-
ing wave number.

As a result of the above thin-wire assumption, and due to
the symmetry of the cylinders, the currents on both antennas will

flow primarily along the axial or z-direction, i.e,

fl(z) =2 Ilz(z) ... axial antenna current in element 1.
Iz(z) =2 Izz(z) ... axial antenna current in element 2.

These dimensional restrictions and axial current approximations lead

to a well known result [7 ] that Ilz(z) and I, (z) can be assumed

2z
to be concentrated along the axis of cylinders 1 and 2, respectively,

when calculating the vector potential at their surfaces with neg-

ligible error.
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5.2 Boundary Conditions for Calculating the Antenna Current

Distributions:

The currents Ilz(z) and Izz(z) on cyiinders 1 and 2,
respectively, are symmetric about the cylinder centers (z = o) and
must vanish at either of their extrémities (z = +h). A pair of

boundary conditions for each antenna current may therefore be ex-

pressed as

Imz(z) = Imz(-z)

for m=1,2 . (5.1)
Ingth) =0

Since the tangential component of electric field should be

continuous at the antenna surfaces as

i + a _
Emz(r a) Emz(r a’) for m 1,2 (5.2)

i +
where Emz(r = a ) 1is the induced electric field just outside the
+ . . . .
surface of cylinder m at r = a which is maintained by the
a -
currents and charges on both antennas, and Emz(r = a”) 1is the

applied electric field just inside their surfaces at r = a~.

5.3 1Integral Equations for Antenna Current Distributions:

The arguments and mathematical procedures for obtaining the
2nd-order inhomogeneous differential equations for the vector
potential at the surfaces of antennas 1 and 2 are same as Sec. 2.3.
The equation (2.10) can be applied directly here for two vector

potentials Alz(z) and Azz(z): they are
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2 o2
3 Alz 2 JBo
— +BAL, =g (V@ +1, (d) 2 ,[6(z-d) +8(z+)]} (5.3)
2 a2
2 AZZ 2 JB0
2 +BA, =% {-vzoa(z) +1, (d) sz[a(z-d) + 6(z+d)]}  (5.4)
where Alz is the vector potential at the surface of antenna 1 due

to currents on antennas 1 and 2, and A is the vector potential

2z

at the surface of antenna 2, due to the currents on both antennas.

I. (4d) and 1, (4d) are the load currents at the impedance

1z 2z
elements ZLl and ZL2 at z = +d, and 6(z) 1is the Dirac delta
function.

The complementary solutions of eq. (5.3) and (5.4) are obtained

easily as

=-1— i
Alz(z) v, (CIICosBOZ + 01281n802)
c - . i )
Azz(z) vy (CZZCOSBOZ + CZISlnBoz)
where v, is the velocity of light in free-space, and cll’ 022,
C and C are arbitrary constants. The particular solution of

12 21

equations (5.3) and (5.4) are found as

\/ z2 ,I. (d
0 .. L1711
Agz(z) = - 3; [—%— Slnaolzl - -——E—E———(Sinﬁolz-dl + SinB°|z+d|)]
\' z. . I. (d)
Agz(z) = . %; [_%Q SinBolzl - —Lgilg———(Sinﬁolz-dl + SinBo|z+d|)] .

The general solutions to differential equations (5.3) and (5.4) are

thus
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1,@ =41 (@ +af ()

l—[C CosB z+C SlnB z + — 10 SinB |z|
v, 12 2 o
Z 1. (d)
- —leli———(Sins | z-a| + sing |z+d|)] (5.5)
(o] (o}
,,(2) =AY (2) + 48 (2)
i - Vo0
v [C22CosBoz + C2181n8o + > Slneolz|
z, .1, (d)
- B (sing |z-d| + sind_|z+d])] . (5.6)

By the symmetry of the antenna currents Imz(z) = Imz(-z) for

m = 1,2, and it can be shown that the vector potential is also
symmetric about the center of either cylinder, i.e. Amz(z) = Amz(-z).
It is therefore obvious that arbitrary constants C12 and C21

should be equal to zero in order to satisfy this symmetry condition;

equations (5.5) and (5.6) therefore become

(d)
AL @) = - 1—[c [CosB _z 4 10 O 5inp 2| - —Ll—li———(Sinsolz-d|
0
+ SinBo|z+d|)] (5.7)
1_ L2 22( )
(z) = - [C CosB z + 2 S1nB | | - __“3""_(Sin80|z'dl
O
+ SinBo|z+d|)] (5.8)

at z = h, results (5.7) and (5.8) become

2 .I. (d)
A () = - Lfc cosB b+ —;—0 sing h - L1 —{5i08 (h-0)
(o]

+ SinBo(h+d)]} (5.9)
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v
L, () = - 1—{c22c°s5 h + —3— Sing h - ——3—35———{slna (h-d)

+ SinBo(h+d)]]. (5.10)
By combining equations (5.7) and (5.9), the arbitrary constants is

eliminated from eq. (5.7), and an expression for the vector potential

difference at the surface of antenna 1 is obtained as

. \4 (d)
_ = J 10 1 1z
Alz(z) A, (h) v SecBoh{—E— Moz + ———3——-——0 sB hs oz
z 1. (d)
L1 1z
+ (=5 P-UulF ] (5.11)
where

M =SinB (h - |z]|)
0oz o

= Si -d| + Si +d| - Si h - d) - Si
Sz SlnBolz l SlnBolz I SlnBo( ) SlnBo(h + d)
F = CosB z - CosB h
oz o )

P = SinBo(h - d) + SinBo(h + d)

u,=-jva,

o lz
Similary,
v z. 1. (d)
A, (z) -A. (h) =1 sep h{-¥m +-L222 " g hs
2z 2z v, o z 2 o oz
z..I. (d)
L2 2z
- [ P - UZ]FOZ} (5.12)

where U2 = -j voAZZ(h)'
According to the dimensional assumptions h >> a and Boa << 1,
the Helmoltz integral for the vector potential at the antenna surface

can be simplified as the line integral over an axial current distribu-

tion with negligible inaccuracy, i.e.
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A, (2) tg[fh 1. (z")K,.(z,z')dz"' + Ih I, (2")K, , (z,2")dz'] (5.13)
1z 4m-Yy -h "1z 11 -h "2z 127 :
_Or'h ' ' ' h ] v '
A, (2) aﬂLI-h 1,,(z")K, (z,2")dz" + j_h 1, (2')K,,(2,2")dz']  (5.14)
where
po the permeability of free space and
RS
K. .(z,2") = —
11 R11
. ] N
e-JBORlz ... Green's functions
K, (z,z2') = —
12 R12

] = L
K21(z,z ) Klz(z,z )

for two identical linear

' = '
Kzz(z,z ) Kll(z,z ) antennas
= = e« o s - i
Rl1 R22 /(z-z')2+a2 the self.dlstavce between an
observation point on the sur-
face of antenna at z and an
element of current of same
antenna on its axis at z'.
= = LI i
R12 R21 /(z-z')2+b2 the mutual distance between

an observation point on the
surface of one antenna at z
and an element of current of
another antenna on its axis
at z'.

If the left hand side of eq. (5.11) is replaced by the Helmholtz

integral expression (5.13), an integral equation in terms of

I, (z) and 1 z(z) is obtained as

1z

Hor ph
wdon T

\'
=1 gecph (L0 m
v o 2

o

12(2')K

2

) 1 h 1) ] d 1
dll(z,z ydz' + I-h 122(2 )Kd12(z’z ydz']

z..I. (2) z I (d)
Ll 1z Ll 1z
Ll lz h -2tz p _
oz M 2 SozCOSBo ( 2 U1]Foz}

(5.15)
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where

" = "o_ '
Kdll(z’z ) Kll(z,z ) Kll(h’z )
-jB R -jB R
et otm
Rn1 Ri1n
" o= ' '
Kdlz(z,z ) Klz(z,z ) K12(h’z )
“BRi, B R
= & _e
Ri2 Rion
=
Rith =V (h-z') 24a?
R =/ 7 .

12h (h-z')2+b

U1 can be also replaced by the Helmholtz integral as

U1 = -] voAlz(h)
Co h h
= -j E[J\-h 1, (2K (h,z")dz’ +J‘-h I, (2K ,(h,2")dz"] (5.16a)

Similary, equation (5.12) becomes

tg{jh I, (z")K,. . (z,z")dz' + Ih I, (z")K,. _(z,z')dz']
-h "1z d21"’ -h "2z d22*"’

Z..1_ (d) z_ I, (d)
20 L2 2z L2 2z
<z - [e €2 -
2 + 2 S zCosB h [ 2 P U2]F z}

(5.17)

where K;,, = Kyj1» Kgop = Kgpp0 30d

UZ = -] voAZZ(h)
Co h h
= -j Z;['J‘-h Ilz(z')KZI(h,z')dz' + I-h 122(7")1( zz(h’z')dz'] (5..16b)
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Equations (5.15) and (5.17) are a pair of coupled integral equations
for the currents Ilz(z) and Izz(z) on antennas 1 and 2, respectively,

and are valid for -h < z < h.

5 4 Approximate Solution for the Antenna Currents:

The application of King and Sandler's method to the solution
of integral equations (5.15) and (5.17) is the subject of this
section. This method is mainly based on the King's modified method
which consists essentially of assuming the current excited on the
antenna to be proportional to the vector potential difference (re-
ferred to the end of the antenna).

By a peaking property of the difference kernels Kdll(z,z')

L
and Kd22(z’z )

" = 'y _ '
Kdll(z,z ) Kll(z,z ) Kll(h’z )

~ 8(z-2"') - 8(h-2")

' = ' - '
Kdzz(z)z ) Kzz(z’z ) Kzz(h’z )

~ 8(z-2') - 6(h-2")

it is found from the left hand sides of equations (5.15) and (5.17)

for both large and small Bob that the currents I_. (z) and Izz(z)

1z

may be taken as the form

= + .
Ilz(z) G1 Foz + Bl Moz Cl Soz (5.18)
= + + 5.19
IZz(z) G2 Foz BZ Moz CZ Soz (5.19)
where Gl’ G2, Bl’ BZ’ C1 and C2 are arbitrary complex constants.
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Note that in results (5.18) and (5.19)

1, (z=+h) =0

Izz(z =+h) =0

such that the boundary condition at the antenna extremities is auto-
matically satisfied, and the currents are symmetric as they should
be. By substituting equations (5.18) and (5.19) into the integrals
at the left hand side of eq. (5.15) and eq. (5.17) and by separating
the Green's function into real and imaginary parts, the integrals in
the left hand sides of (5.15) and (5.17) can be expressed in a gen-

eral form as

“o fh (GF ,+BM ,+CS ,JK _ (z,2')dz'
4m Y -h" m oz' m oz' m oz'- dll
+ u—° h[GF +B M +csS ,]K. (z,z')dz'
4m ¢ -h"~"n oz' n oz' n oz'- dl2""’
= Zﬁ ?h[GmFoz' M BmMoz' + Cmsoz']Kdllr(z’z')dz.
J Zﬁ f h Gm oz' * BmMoz' M Cmsoz']Kdlli(z’z')dz'
s Sothce upyM L +cs 1K... (z,2')dz’
4m Yv-h n cz' n oz' n oz'" dl2r 7’
Mo h
- Z;-f_h[GnFoz, +BM ., *+CS_ K, (z,2")dz’ (5. 20)

for m= 1,2 and n=1,2 but m # n, and where F ,, M , and
oz oz

S , are same as F , M and S except z is replaced by
oz oz oz oz

z', and

(] = 1 - h L
Kyp1¢ (202" = K (2,27) - Ky (h,2')

) CosBoR1
R

1 CosBRyy

11 Ri1n
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' N o_ ’
Kaop (2:27) = Ky (z,27) - K, (h,2")

CosBoR1
R

) CosBoR1
R

2 2h

12 12h
] = - 1] - [}
Rypp3(2o2") = =Ky 22’y = Ky (hy2h)]

SinB R SlnBOR1

- ™o 11h 1
R)1n R
" = _ ry '
Kypp1 (22" = -[K ;. (z,2") - K}, (h,2")]
) anBoRIZh ) SlnBoR12
R12h R12
Since Kdllr(z,z') becomes very large when z' is near z,

it follows that the main contribution to the part of the integral

that has Kdllr(z,z') as kernel comes from elements of current

near z' = z. On the other hand, K (z,z"), Kdlli(z,z'), and

d12r

(z,2z') remain relatively small when 2z = z'. This suggests

Ka121

that the principle contribution to the part of the integral that

(z,z') and K (z,z') as kernel come

[}
(z,27), K d12i

has

Kdlli dl2r

from all the elements of current that are some distance from =z.

Due to this peaking property of kernel K (z,2z') and non-

dllr

peaking property of kernels K (z,2"), K (z,z') and

dlli dl2r

KdlZi(z,z'), the various integrals on the right hand side of

equation (5.20) may be verified numerically to have the following

approximate representation:



87

h L ! = * [} ]
[oh Fogr Kapy (222" d2 ! h Foz'[Ka11p (202") + Ky, (2,27 1z
Ydu(z)Foz
Ydu(o)Foz
= duFoz (5.21)
h "Vdz' = z =
J‘-h Foz'KdIZ(z’z )dz Yde(z)Foz Yde(o)Foz YdeFoz (5.22)
jh M K (z,2')dz' =Y, (2)M
-h “oz''dllr™’ dvr oz
m
;{%d r(o)M0§ for Boh < 2
o m
der(h A )Moz for Boh > 2
=Y, M (5.23)
jh M K (z,2')dz" =Y, (2)F =Y _(0)F =Y .F (5.24)
-h oz' dlli "’ dvi oz dvi oz dvi oz )
h ' [ - -
I-h MoprRap2(7:20d2" =¥y (DF = Yy (OF =Y F, 529
h ' ' = = =
I-h Soz'Kdllr(z’z )dz der(z)soz der(o)soz dersoz (5.26)
h
I-h S dlli(z z')dz’ dei(z)Foz dei(o)Foz deiFoz (5.27)
h L = =
j_h S 1Ky, (zzhde! =¥, (z)roz ng(o)Foz ngroz (5.28)
where Ydu(z), Yde(z), der(z), dei(z), Ydf(z), der(z), and ng(z)

are very nearly constant parameters which may be evaluated as

¥, (2) = (CosB_z - CosB_h)

-1
{Ca(z’h) = Ca(h’h)

- CosBoh[Ea(Z,h) - E_(h,h)]}
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¥, (2) = (CosB_z - CosBoh)-l{[Cb(z,h) - G, (h,h)]
- COSBOh[Eb(Z,h) - E, (h,h)]}

¥y (@ = [SinBo(h-lzl)]-IE%{SinBOh[Ca(z,h) - ¢, (h,h)]
- CosB_h(s,(z,h) - s_(h,h)]]
¥, . (@) = (CosB z - cOssoh)7§zn{51neoh[ca(z,h) - ¢ (h,h)]
- CosSoh[Sa(z,h) - Sa(h,h)]}
¥,e(2) = (CosB z - COSBOh)-l{SinBOh[Cb(z,h) - €y (h,h)]
- CosB_h[s, (z,h) - s, (h,h)]}
¥, (2 = [sinB_|z-d| +sin_|2+d| - sioB_(h-d) - sinB_(h+d)]™}
x Eb{Da(z,h) - D_(h,h) - [SinBo(h-d) + SinBo(h+d)][Ea(z,h)
- E_ (h,h)] + F, (z,h) - Fa(h,h)}
¥, (&) = (CosB z - cOsaoh)iiz”{na(z,h) - D_(h,b) - [sinB_(h-d)
+ 31n30(h+d)][Ea(z,h) - E,(h,h)] +F_(z,h) - Fa(h,h)}
¥y (2) = (CosB z - CosB_h) “H{D, (z,h) - D, (h,h) - [s1inB_(h-d)

+ SinBo(h+d)][Eb(z,h) - Eb(h,h)] + Fb(z,h) - Fb(h,h)}

and where
h e-jBoRll
Ca(z,h) = I-h CosBoz' Y dz'
11
h e_jBoRIZ
Cb(z,h) = I-h CosSoz' - dz'
12
. e°jBoR11
Sa(z’h) = I-h SinBo|z'| o dz'

11
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N PRz
s, (z,h) = [7 sing |2'| =— dz'
12
h e-JBoRll
= — 1]
Ea(z,h) -h Rll dz
h e'jBoRlz
= — '
E,(z.h) = [ X dz
h e'JBoRll
D, (z,h) = [7) sind |2"-d|Z— dz'
11
h e-jBoRIZ
D, (z,h) = [, sin |z'-d|z— dz"
12
h e'jBoR11
Fa(z,h) = I-h SinBolz'+d|E—— dz'
11
h e-jBoRIZ
Fy(z,h) = [, sing |2'+d|=— dz'.
12

For C_(h,h), S _(h,h), E (h,h), D _(h,h) and F_(h,h), the is

R1

replaced by R and for Cb(h,h), Sb(h,h), Eb(h,h), Db(h,h) and

1lh’

Fb(h,h), the R is replaced by R Equations (5.23), (5.26)

12 12h°

and the real part of equation (5.21) are based on the characteristics

] .
of kernel Kdllr(z’z ), i.e.

h ' '
K d ~
J‘--h Foz' dllr(z’z )dz Foz

h L} L
-~ M
J\-h Moz'Kdllr(z’z )dz oz

h ' '
I-h Soz'Kdllr(z’z ydz' ~ Soz

and equations (5.24), (5.25), (5.27), (5.28) and the imaginary part
of equation (5.21) are based on numerical considerations. It is
found numerically that these equations are approximately proportional

to the shifted cosine function Foz' The essentially constant
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parameters Y, (2), ¥, (2), ¥, (2), ¥ . (2), der(z), Yag(@> ¥4,

and ng(z) can be replaced approximately by their values at 2z = o,

A

. z n - - =2
while der(z) der(o) for Boh < > and der(z) der(h 4 )

s
> = .
for Boh >
Substituting equations (5.21) through (5.28) into equation (5.20),
the vector potential difference is therefore obtained as

4 _
;—{Amz(z) - Amz(h)] = (chdu + cn + 3B de +BY._+j¢C de

de i n df i

+ + +
Cnng)Foz YduerMoz wdwrcmsoz

for m=1,2, n=1,2, m # n. (5.29)

Equations (5.16a) and (5.16b) also can be expressed as

' 1 1 h ’ ]
;—-A my = " w1 (DK (hzhdz' + [T (2)K ,(h,2")dz

o
=Y +BY +CY +AY +BY +cCVY
m u m v m w ne n f neg
for m=1,2, n=1,2, m ¥ n. (5.30)
where Yu = Ca(h,h) - Ea(h,h)CosBoh

-€
n

C (h,h)Sinp h - S (h,h)CosB h
a (o] a o

€
]

Da(h,h) - Ea(h,h)SinBo(h-d) + Fa(h,h)

- Ea(h,h)SinBo(h+d)

€
"

¢, (h,h) - E, (h,h)CosB h

€
]

Cb(h,h)51nBoh - Sb(h,h)CosBOh

€
n

Db(h,h) - Eb(h,h)SinBo(h-d) + Fb(h,h)

- Eb(h,h)SinBo(h+d).
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Instead of substituting equation (5.29) into equations (5.15)
and (5.17) as in Chapter 2, it is expedient to substitute (5.29)
directly into differential equations (5.3) and (5.4). This procedure

results in the following general result:

H'o d2 2
in (;;E + B, )[Amz(z) - Amz(h)]
¢ 2
B (;;E M eo ){(Gmydu + Gn‘yde *J Bm‘ydvi + Bn‘ydf
* ] Cm‘ydwi + Cn‘ydg)Foz + YdVerMoz + dercmsoz}
-jomB
= 3 {vmoa(z) - ZLmImz(d)[é(z-d) + 6(z+d)]}
- éi BozAmz(h) ... for m=1,2, n=1,2 but m # n.

(5.31)

By differentiating the F , M , and S , the various delta function
[0}/ oz oz

terms are obtained as
2
——ZF = -8B CosB 2z
o o)

2
- Moz = -ZBoCosBoh 6(z) - Bo Moz

2 , .
;;5 S, = B, (SinBo|z-d| + SlnBo|z+d|) + 28 _[6(z-d) + 8 (2+d)].

Substituting the above results into eq. (5.31) and equating the co-
efficients of the corresponding delta function terms, three inde-

pendent equations are cbtained as
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(7 =120

BmderCOSBoh Qo Vmo (5.32)
¥ =382 1 (@ (5.33
m dwr : Co Lm mz -33)

r :
CosB hlY, G + ¥, G +j ¥, B +¥, B +¥ .C + ngcn]
4m

Fo s . o 4
| YaurCatSinB () + SinB, (h-d)] . A__(h) (5.34)

where m = 1,2 and n = 1,2 but m # n.

From eq. (5 32), the arbitrary constants B, and B, are completely

1 2
determined by setting m =1 and 2, i.e.
\Y
j2m 10
B, = =V_D (5.35)
1 Co derCosBOh 10 o
82 = VZODo (5.36)
where
Yant
D = 1

o QoderCosBoh
Constants C1 and C2 can be expressed in terms of Ilz(d) and
IZz(d)’ respectively, by setting m =1 and 2, i.e.

c. =1Z AN (d) (5.37)
170 ¥ 1z
o dwr
PO I E (5.38)
2 C v 2z ) )
o dwr

Since

Ilz(d) = Gl(CosBod - CosBoh) + BlSinBO(h-d)

+ C,(Sin2B8 d - 2SinB hCosB d) (5.39)
1 o o o
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1,,(d) =G,(CosB d - CosB h) + B,SinB_(h-d)

+C,(Sin28 d - 2S5inB hCosB_d) (5.40)

then C1 and C2 can be expressed in terms of G1 and G2,

respectively, i.e.

C1 = GlDl + DZVIO (5.41)
C, = G,Dy + D,V (5.42)
where
jemz,
D1 = T T (CosBod - CosBoh)
o ¢l
jorz
L1 .
D2 T D081nBo(h-d)
o ¢l
_ e C ocs j2m
Tcl der (SanBod ZSLnBOhCosBOd) Co ZLl
121z, 5
D, = (CosB d - CosB h)
3 T o o
o ¢2
jonz
L2 .
DA T T Do SlnBo(h-d)
o c2
T =V - (Sin28 d - 2SinB hCosB d)izE Z .
c2 dwr 0 o o Co L2

Equation (5.34) can produce two independent equations for the cases

of m=1 and n =2, and m =2 and n = 1; they are

- +
cOsBoh[Yduc ¥4eG, * deiB

+ +
1 p T ¥agBy Y YG ngczj

. . _ 4m .
+ derC1[81nB°(h+d) + SlnBo(h-d)] = . Alz(h) (5.43)



COsBoh[YdUG2 +¥, 6+ Y B, +Y

+ Yd

wrcz[smao(h+d) + Sineo(h-d)] o

9%

agB1 t 3 ¥YguiCy + ¥aeCyd

o,

2

2y () - (5.44)

[e]

Substituting equations (5.30), (5.35), (5.36), (5.41) and (5.42) into

(5.43) and (5.44), two equations of G, and G2 are obtained as
GlTsl + GZTSZ = wlvlo + w2v20 (5.45)
Gy T 5 + G T, = WV o + W,V (5.46)
where
Ty = CosBoh(‘i'du + j deinl) + ZDIderSinBOhCosBOd - (Yu + Dle)
Tsz = CosBoh(‘i'de + ngD3) - (Ye + DBYg)
Ts3 = CosBoh(‘i’de + ngDl) - (Ye + DlYg)
T, = CosBOh(‘Ydu +j deiD3) + 2D3derSinBthinBOd - (Yu + D3Yw)
wl = DOYV + DzYw - j(Do‘i’dvi + deiDz)CosBoh - ZderDZSinBOhCosBOd
wz = DoYf + DAYg - (Do‘i’df + ngDa)CosBOh
Wy =DY + Dng RCA PR ngDZ)CosBOh
Wa = DoYv + D4Yw - j(Do‘i’dvi + deiDA)COSBoh - ZderDASinBohCosBod .

From equations (5.45)

and (5.46), G1 and G_, are determined as

2
C) = WsVi0 * W6V (5.47)
Gy = WV o+ WV, (5.48)
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where

_WaT, - W T,

> TooTea =TTy
g - aTs2 " Maolsy

6 TsZTs3 - Ts4Tsl
W, = w1Ts3 - w3Tsl

7 -

' TSZTS3 T84T31
v o afs3 " ¥iTs

8 TsZIs3 - T34T81

Constants C1 and C2 are therefore also determined as

Cp = (gDy +D)Vyy + WD Vo

C, = W;D3Vyy + (WgDy + DIV,

Finally, the approximate solutions for Ilz(z) and Izz(z) are

completely determined as

Ilz(z) - GlFoz M BlMoz * ClSoz
= [WeF , # DM, + WDy = D)S Vg + (Fp + DS MWeVng
(5.51)
IZz(z) B G2Foz M BZMoz + CZSoz
B (Foz * DBSoz)w7V10 + [w8Foz + DoMoz + (w8D3 + DA)Soz]VZO'

(5.52)
Equations (5.51) and (5 52) express the antenna current distributions
in terms of the antenna dimensions, their excitation frequency, and

the impedance and position of the double loadings.
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5.5 Input Impedance of the Antenna Coupled with a Doubly Loaded

Parasitic Element:

The input impedance of antenna 1 is defined as

\Y
z. =—10 _ g 4+yx .
in Ilz(z-o) in in

I1f antenna 2 is a doubly loaded parasitic element with zero driving
potential or V20 = 0, the input impedance of driven element 1 is

obtained directly from eq. (5.51) as

_ -1
(Zin)v20=o - l:wSFoz(O) + DoMoz(o) + (WSD1 + DZ)Soz(o)] ) (3.33)

When antenna 2 is doubly loaded parasitic element center loaded by
an impedance Zo’ V20 = -Izéo)zoand the impedance Zin of the driven

element is obtained from eq. (5.51) and eq. (5.52) as

(Zin)vzo--lzo(o)lo = {1+ [w8Foz(o) + DoMoz(o) + (w8D3+D4)soz(°)]zo}

-1
X [wSFoz(o) +DM (o) + (w5D1+D2)S°z(o)]
{1+ [WSFOZ(O) + DOMOZ(C) + 0d8D3 + 04)soz(o)Jz0
-1
+ [Foz(o) + Dlsoz(o)][Foz(o) + D3SOZ(0)]ZO} .

(5.54)

5.6 Radiation From Coupled Short Antennas:

The well known radiation fields in the far zone of a linear

antenna system are given by

]
]
| —y
€
»
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in terms of spherical coordinates.
The vector potential A;(z) at point P(Rw,e,¢) in the far
zone due to the antenna currents llz(z) of eq. (5.51) and 122(2)
of eq. (5.52) can be expressed as
-jR -jR
ATR,,6,0) = - 22 Sind Moo e + @) - ar
610"’ 4m -h "1z Ry -h "2z R,
(5.56)
where Rl and Rz are distances between an observation point in far
zone and the source points on antenna 1 and antenna 2, respectively,
and RlO and RZO are the distances between the center points of the

antennas and the point P as indicated in Fig. 5.2.

P(R;(.0,0)

ant. 1 ant. 2
Fig. 5.2. Geometry for Calculation of Radiation Field

Since Bob << 1, the distance R can be approximately expressed

20

in terms of RlO as

R20 = Rw - b CosY ... for phase factor

RZO = RIO ... for amplitude terms

where CosY = Sin6 Cosg



98

By using the same procedures of Sec. 3.2 and taking the three leading
terms of the power series of the Green's functions in eq. (5.56),

the odd terms of the series integrate to zero due to the symmetry of
the antenna currents. Equation (3.4) can therefore be applied

directly to eq. (5.56) to yield

r o e-jBo 10 h 1.2 .2 2
= e — 1 —_— ' - - ’ ]
Ag(R (,6,0) -2 Sind " Ja1,@) @ - 58 2 cos 0 dz
-jB R .
o 10 jB bCosY h
: e © M1 @Ha -2 8% %cos?e)dz').
RIO o 2z 2 o
(5.57)
The radiation fields E; and B; are then obtained as
r J Co e-jBORlo
Eg = 5 r— B F(B_h,0,0) (5.58)
o 10
-] R
r ] Mo e JBo 10
By = T R B F(B_h,8,0) (5.59)
o 10
where
jB _hCos®?sin®
FB h,0,0) = 5ind{1 - 2 cos?g +E e © (1 - 2 cos?e} (5.60)
o B B Cc
1 ph 2,2 oy
A =g o BT, (e

- h ] '
B Io Ilz(z )dz

_rh '
c=[01,,z"de

1ph 2,2 oo
> o Bz 1,,(2)dz" .

D =

Since the phases of the currents on both elements are essentially

constant, it is possible to write
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real constant K. [same argument as in eq. (4.4))

® >
n

% = real constant K, [same argument as in eq. (4.4))

Cc. jor
g - K3€

where « 1is the phase difference between Ilz(z) and Izz(z), and

K is a real number.

3

Equation (5.60), therefore, becomes

. ) jo 1B bCosSing )
F(8,h,8,0) = Sin6{1 - K Cos“8 + Kye™ e (1 - K,Cos 8)].
(5.61)
Equation (5.61) will be used in the discussion of Section 5.8.
5.7 Enhancement of Radiated Power:
The average power flow at P(R10,9,¢) is obtained as
—r2
E,|
= = X == . .
Sav. 5 Re (B Eg 6H¢) > T f (5.62)
o
From equations (5.58) and (5.61) E; is obtained as
c - j Co e-JBoRIO 9 ja jBobCos¢Sin9 2
Eg =5 R B Sin6f1l - K Cos”8 + Kye™" e (1 - K,Cos 9) }
o 10
jBobCos®SinG .
and since it is assumed that Bob << 1, then e =1 and
r - J Co e-JBoRlo 2 ja 2
E,6 = = B $in8{1 - K,Cos"8 + Kje~ (1 - K,Cos"8)}. (5.63)
) xo R10 1 2

Since Boh << 1, unless the phase of the antenna current is reversed

h 1 v s> (h 2,2 1 !
Io Ilz(z ydz' >> Io Boz I z(z )dz

1

h g2,,2
(o] o

Ig Izz(z')dz' >> I Izz(z')dz'
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this means that K

1 << 1, K, << 1 and eq. (5.63) can be approximated

2

as

r - J Co e-jBoRlO
6 X E—g (B + C)Sinb. (5.64)
o 1

The total time-average power radiated by the antenna is thus given

by
o1 2
|EZ|
Py = 2R [T 3 2 $ . tsind do
[o]
= l‘—g |B + c|2 . (5.65)

3
o

Equation (5.65) shows that the power radiated by the coupled antenna
2

is roughly proportional to |B + C| . Since B and C are simply

the areas under the current distributions along the antennas 1 and 2,

respectively, the radiated power Prad may be enhanced by maximizing

the area under the currents Ilz(z) and Izz(z) while at the same

time adjusting them to have a minimum phase difference. This can be

accomplished by appropriately choosing the loading impedances XL1

and xL2 lccated at the fixed positions d1 and d2 along the

surfaces of antennas 1 and 2.
The current distributions Ilz(z) and Izz(z) for antennas

which are cptimumly loaded with optimum reactances [xLl]op and
[xLZJOp to have maximum areas and minimum phase difference, are
plotted in Fig. 5.3 through Fig. 5.6 for various antenna spacings.
From these figures, it is observed that the typical forms of the

current distributions on the coupled antennas loaded with the optimum

reactances exhibit nearly uniform amplitude distributions between
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the loading points. Under the optimum condition of enhanced radiation,

the shapes of I z(z) and IZz(z) are quite similar and the phase

1
difference between them is minimum as shown in Fig. 5.1. Thus, the
radiated power under this condition can be enhanced to about four
times that of an isolated antenna.

The input impedances of the driven antenna coupled to a
parasitic element, both loaded with the optimum reactances, are
determined from eq.(5.53) and shown in Table 5.1. It is indicated
that under the optimum condition of enhanced radiation the input

resistance is increased and the input reactance is reduced as com-

pared with the case of an isolated loaded antenna.

5.8 Improved Directivity:

For simplicity, only the case of % = %

is considered in this

section. Under this condition, eq. (5.61) can be expressed as

F(B_h,0,8) = Sind(1 - K Cos 0)[1 + Kyed¥(1 + B_bCosgsin®)]  (5.66)

1
jB bCospSin®
since e °© =1+ ] BobCos¢Sin9 for Bob << 1.
I1f % = K3eja is not close to -1, the radiation pattern is similar

to that of a single doubly loaded antenna for improved directivity
as discussed in Chapter 4 and no further discussion is needed. How-

ever, if C = -B can be implemented eq. (5.66) becomes
2 2
F(Boh)e’¢) = j Bob(l - K1COS e)COS® Sin 0. (5.67)

The radiation patterns in the plane of ¢ = o are plotted

in Fig. 5.7 for various values of K The directivity and beam-

1
width are also indicated in the same figure. By comparing with the
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B.W. D (db)

67 5.75
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Fig. 5.7 Theoretical Radiation Patterns of Coupled Short
Antennas with K, =0, 1, 2 and @ under Conditions

of Ky

=K2,K3x1 and o =m. (¢ = 0)
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radiation patterns shown in Chapter 4, it is observed that the doubly

loaded coupled array has a higher directivity than that of a corres-

ponding single antenna if the condition of Ih 1. (z')dz' = -Ih I, (z')dz'
o lz o 2z

is met.

5.9 Discussion:

The approximate theory developed in this chapter for the doubly
loaded coupled antennas has been checked by the existing theories [ 5]

for the case of 2 =2 , =o0. When ZL =2 the theory is still

Ll L2 1 L2’

quite accurate, however, the accuracy of the theory starts to de-

crease when the difference between ZLl and ZLZ increases. The

reason for this discrepancy is due to the completely different

current distributions on the antennas when ZL1 is greatly different

from ZLZ'



CHAPTER 6
EXPERIMENTAL STUDY OF SHORT ANTENNA WITH HIGH

DIRECTIVITY OR ENHANCED RADIATION

An experimental study of doubly loaded short antennas (both
for single and coupled antennas) is presented in this chapter. 1In
order to compare these experimental results with the theoretical
results presented in the previous chapters, an antenna of particular
dimensions, a = 0.125 inch and h = 15 cm, which was used in numerical
calculation is used in the following experiments. The current dis-
tributions and input impedances of an antenna with different optimum
impedance loadings at proper positions along the antenna are measured
and are compared directly with the corresponding theoretical results.
The excitation frequency is usually fixed at 200 MHz. 1In addition
to the doubly loaded antennas, experiments have also been conducted
to study the cases of an end-loaded antenna and an antenna with

double impedance and end loadings.

6.1 Experimental Setup:

The experimental setup for measuring the current distributions
and input impedances of the antennas is shown schematically in Fig.
6.1. Photographs of the inside and outside views of the anechoic
chamber are shown in Fig. 6.2 and Fig. 6.3.

An 8' wide, 6' high, 6' long anechoic chamber was constructed
with wooden frames enclosed completely with an aluminum ground plane
on one wall and B.F. Goodrich type VHP-8 microwave absorbers covering
the remaining five walls. A driven linear antenna (monopole) and

109
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anechoic chamber
8x 6x 6 ft.

R.F. absorber covers 5 walls

impedance loaded driven
monopole and array element

current probe aluminum ground plane

8 x 6 ft. x 1/8 inch thick
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h d ] 1
H |
. |
{ Lﬂ: : 1 k Hz
' ! 200 MHz amp. mod.
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| : variable short R. F. A. F.
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probe for ' | !
S.W.R ] I \
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] 4
! _
| I— 1 k Hz
coupling —/tl sy
collar ! ' amp. 50
! | —o det, Q
: ————0
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miniature 50 Q ]
coaxial cable (.

Fig. 6.1 Experimental Setup



Fig. 6.2 The Inside View of Anechoic Chamber

Fig. 6.3 The Outside View of Anechoic Chamber
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array element are simply the extensions of the movable centerwires of
the coaxial lines connected to the ground plane. Thus, the antenna
length can be adjusted freely by sliding the centerwires inside of
the coaxial lines and into the anechoic chamber. The driven antenna
is excited by an R.F. 0SC. at 200 MHz and with the square wave
amplitude modulation of 1 KHz. The coaxial line which excites the
antenna has a characteristic impedance of 75 (1 and its outer con-
ductor has physical dimensions of 1 inch outer diameter and 0.875
inch inner diameter. The outer conductor of the coaxial line is
directly connected to the ground plane. The center conductor has
a diameter of 0.25 inch and its free end, which protrudes the ground
plane, serves as the antenna.

The lumped impedance is mounted on the antenna as indicated
in Fig. 6.4. Since the antenna is separated by a piece of insulating
material at the loading position, the loading impedance is actually
the parallel combination of the externally mounted inductor L (non-
ideal inductor) and the unknown stray capacitance C existing at the
loading location. The loading impedance may be determined from the
following simple circuit. The impedance 2Z  at angular exciting

L

frequency w is obtained as

L 2 = R+ jwl
L 1+jwC®R+jwl)

WL
where R = — .
Q

The frequency can be adjusted to make the current minimum at the

loading point. At this frequency, the suceptance, 1/ZL becomes
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2
zero. This critical frequency can be determined to be w = (L-RZC)/LZC.
The stray capacitance C can then be expressed as C = L/(R2 + szz)

and ZL is determined as

(R + joL) RZ + wiLz)

2, =R +jX = .
L 72 7
L R+L(w§-w)+ijR

(6.1)

The current probe, which is connected to a flexible 50 Q0
coaxial line passing through the hollow center conductor of the
excitating coaxial line to the instruments outside the chamber, is
supported by a plastic guide in the antenna slot and can be moved
freely between the driving point 2z = o (the point at the ground
plane) and the loading point 2z = d. The detailed construction of
the current probe is shown in Fig. 6.5. The relative amplitude of
current can be measured by moving the current probe along the slotted
antenna. The phase of antenna current is obtained by comparing the
probe signal with the reference signal from the R.F. Oscillator.

A charge probe is inserted into the region between the outer
and inner conductors of the exciting coaxial line. This probe is
supported by a movable carriage and can be moved along the slotted
outer conductor of the exciting coaxial line. The standing wave
ratio and the phase shift of the wave pattern in the coaxial line
can be measured by this charge probe. The input impedance of the

antenna can then be determined as,

1-3s taanLmin

Z - X Z (6.2)

in S -} tanedbmin. c

where § is the standing wave ratio and Lmin is the distance

between the first voltage minimum and the antenna driving point
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and ZC is the characteristic impedance of coaxial line.

6.2 Doubly Loaded Short Antennas:

The experimental investigation of the current distribution
and input impedance of an antenna both for enhanced radiation and
improved directivity is presented in this section. An antenna, having
the dimensions of a = 0.125 inch and h = 15 cm, is loaded with a
reactance XL of various values at d = 0.7h and excited at a
frequency of 200 MHz. The loading impedance ZL = RL + 3 XL,
determined from eq. (6.1), is plotted in Fig. 6.6 in such a way that
XL is expressed as a function of RL for the variance inductors L
with the same Q =75 at f = 200 MHz. The measured value is
compared with the theoretical value. From here on, the reactive part

of 2 X

L Xy will be used as the equivalent loading reactance in the

following sections and R, will be omitted in the expression of the

loading impedance ZL

6.2.1 Enhanced Radiation Case

In Sec. 3.3 of Chapter 3, it has been shown that the typical
current distribution of an antenna with optimum loading reactance
EXL]op at the position of z = d for enhanced radiation is a uniform
distribution between the loading points which decreases to zero be-
tween the loading points and the extremities of the antenna. Under
this condition, the input resistance is increased to two to three
times that of an unloaded antenna and input reactance is tuned to
zero. The experimental results for the antenna current distributions
with various loading reactances of XL = 0, 500, 800 and 900 Q, at

d = 0.7h, are plotted in Fig. 6.7. By examining these curves and
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comparing with the theoretical results shown in Fig. 3.3, it is found
that the experimental result for XL = 800 Q 1is correlated to that of
the theoretical results for X, = 850 Q. This gives a quite satisfactory
agreement between theory and experiment. As the loading reactance is
increased to 900 2, the current distribution becomes similar to the

case discussed in Sec. 3.4. The experimental input impedance of the
antenna, determined from eq. (6.2), is plotted in Fig. 6.8 as a

function of X , which is calculated from eq. (6.1). This experimental

L’
result is compared with the theoretical results of eq. (2.26) for an
inductor with Q =75 and Q = . It is observed that the experi-
mental results compare well with the theoretical results for the case
of Q = 75. The higher experimental input resistance is mainly con-
tributed by the loading resistance RL present at the loading points
(z = +d), since it is indicated in Fig. 6.6 that the loading resistance

RL determined by eq. (6.1) has a value greater than that of the

theoretical one. The higher input resistance is therefore expected.

6,2,2 JImproved Directivity Case

In Sec. 4.4 of Chapter 4, it has been indicated that the
typical current distribution along an antenna optimumly loaded for
improved directivity has a phase reversal between the loading points
(z = +#d) and the driving point (z = o). At the point of phase
reversal, the antenna current goes to zero. The total area under
the current distribution along the antenna is, therefore, almost
equal to zero. As a result, the input impedance has a small input
resistance and a very large input reactance. By examining the

experimental results of the current distributions shown in Fig. 6.9
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for XL = 0, 1250, 1500 and 1900 Q, it is observed that the optimum
reactance X for high directivity is around 1900 Q. This result

L
is in agreement with the theoretical result shown in Fig. 4.9. 1In
Fig. 6.8, it is shown that the input resistance for XL = 1900 is
110 Q while the theoretical value is 35 Q. The deviation is mainly

attributed to the difference in the experimental and theoretical

values of the loading resistance as shown in Fig. 6.6.

6.3 End-Loaded Short Antennas:

The current distributions and input impedances of an antenna
loaded with various types of end loadings are experimentally in-
vestigated in this section. The end loadings include circular
plates, rectangular bars, cylindrical bars, and helixes of various
diameters and lengths. The antenna has the same dimensions and
excitating frequency as that of the antenna used in the previous
section (Sec. 6.2). The photographs of various end loadings are

shown in Fig. 6.10,.

6.3.1 Current Distributions on the Antenna

The current distributions along the antenna with various
types of end loadings are plotted in Fig. 6.11 through Fig. 6.15.
It is indicated in Figs. 6.11 and 6.12 that the current distributions
on an antenna with rectangular and cylindrical bar loadings are almost
the same as long as the lengths of bars are the same. It is also
shown in Figs. 6.13 to 6.15 that the current distribution is a
strong function of the diameters of circular plates and helixes used
as end loadings. In Fig. 6.13, the current approaches a uniform

distribution as the diameter of the circular plate is increased to
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(a) Rectangular Bars

(b) Cylindrical Bars

(c) Circular Plates

(d) Helixes

Fig. 6.10 Various End Loadings.
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12 cm. In Figs. 6.15 and 6.16, it is shown that when the helix
diameter is approximately the same as that of the antenna, the current
distribution resembles that of the unloaded antenna with an equivalent
half length of h' = h + h,, where h is the antenna length and h1
is the height of the helix. As the diameter of the helix is in-
creased to four or five times that of the antenna, the current dis-
tribution becomes nearly uniform along the antenna. In Chapter 3, it
has been indicated that the power radiated by the antenna is approx-
imately proportional to the square of the area under the current dis-

tribution on the antenna. Consequently, the circular plates and

helixes are desirable end loadings for obtaining enhanced radiation.

6.3.2 Input Impedances

The measured input impedances of antennas with various types
of end loadings are listed in Table 6.1 through Table 6.5. It is
indicated that the input resistance is increased and the input re-
actance simultaneously decreased as the length of the bar or the
diameters of the helix and the circular plate are increased.

By examining the current distributions and input impedances,
it is concluded that by using the end-loading techniques, the power
radiated by the antenna may be enhanced by a factor of one to four
compared with that of an unloaded antenna if the dimensions of the
end loadings are appropriately chosen. However, an end-loading is
not capable of reducing the input reactance to zero and cannot in-
crease the input resistance by a factor larger than four. It is
clear that the technique of doubly loading as discussed in Chapters

2 to 4 can accomplish more than the end loading technique.
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Table 6.1 Input Impedances of a Short Antenna End-Loaded
with Rectangular Bars of Various Sizes (L(cm) x
¥" x 1 mm. thick).

a= 0.00212)\o h = 0.1)\Q , £ = 200 MHz
Length of z;g - Rin,+ J xin @

Rectangular Bar R, X

2 cm 9.336 -424.818

4 cm 10.941 -373

6 cm 11.92 -336.5

8 cm 11.86 =315

10 _cm 12.328 -278

12 cm 14.306 =247

Table 6.2 Input Impedances of a Short Antenna End-loaded
with Cylindrical Bars of Various Sizes (%" in

diameter).
a= 0.00212)\o h = 0.17\o , £ = 200 MHz
Length of ZLQ;Z,Rig + x;_ @
Cylindrical Bar Rin x1n
2 cm 10.018 -408.352
4 cm 11.09 -356.542
6 cm 12.914 -318.338
8 cm 13.42 -286.43
10 cm 14.024 -254.2
12 cm 15.32 -223
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Table 6.3 Input Impedances of a Short Antenna End-loaded
with Circular Plates (1 mm thick) of various
diameters.

Diameter of Zin - Rin + ] xin

Circular Plate (cm) Rin X,
2 _cm 6.172 =403.254
4 cm 10.11 -301.9
6 cm 12.552 -221.778
8 cm 14.538 -148.66
10 cm 13.076 - 88.634
12 cm 14.57 - 36.18

Table 6.4 Input Impedances of a Short Antenna End-Loaded
with Helixes of Various Lengtls (D = 3/4"),

Length of Zin - Rin +J xin

Helical Wire (cm) AELQ xin
25 cm 9.06 -348.4
30 cm 14.24 -318.34
35 cm 14.56 -292.2
40 cm 15.66 -246.92

Table 6.5 Input Impedances of a Short Antenna End-Loaded
with Helixes of Various Diameters (L = 37.5 cm).

Diameter of Zin - Rin,+ . x'n
__Helical (inch) Rin Xin
5/16 inch 4,756 -356.7
11/16 inch 13.473 «249.4
13/16 inch 14.870 -244.696
1 1/16 inch 22.848 -135.61




131

6.4 Short Antenna with Double Impedance and End Loadings:

A short antenna which is doubly loaded and also end-loaded by
various loadings is discussed in this section. Since it is difficult
to measure the current distribution between the loading point z = d
and the end point 2z = h, only the current distribution between 2z = o
and z =d is measured in this experiment. The current distribution
between d < z < h 1is assumed to take that same form as that on the

antennas of the previocus section.

6 4.1 Current Distribution

The current distributions of doubly loaded antennas having
various types of end loadings at 2z = h and various loading re-
actances X, at d = 0.7h are plotted in Fig. 6.16 through Fig.
6.23. These figures indicate that the loaded antenna can have
typical current distributions appropriate to improved directivity
(see Fig. 4.7) or enhanced radiation (see Figs. 3.1 and 3.9) if the
appropriate corresponding loading reactances XL are mounted at
z = d along with various end loadings at z = h It is also in-
dicated that the current distribution is mainly controlled by the
loading reactance XL.

6 4.2 Input Impedances

The input impedances of antennas with various loading
implementations are listed in each figure for various loading re-

actances X..
L

6.5 Doubly Loaded Coupled Antennas:

The experimental results for the current distributions and in-

put impedances cof coupled antennas doubly loaded by various reactances
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XL are shown in Fig. 6.24. By investigating these curves, it is

observed that the coupled antennas doubly loaded with xLl = 980 Q

on the driven antenna and X , = 1040 on the parasitic element have

L2
uniform current distributions between 0 < z £ d on both antennas.
The input resistance is greatly increased and the input reactance

is decreased to a value much smaller than that of unloaded coupled

antennas. These physical phenomenon observed are in good agreement

with the theoretical prediction for enhanced radiation. This is

evidenced by comparing Fig. 6.24 with Fig. 5.6 which shows graphically

the corresponding theoretical results developed in Chapter 5.
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