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ABSTRACT

SHORT ANTENNA WITH ENHANCED RADIATION

OR IMPROVED DIRECTIVITY

BY

Chun-Ju Lin

A conventional electrically short, linear antenna has small

radiated power and low directivity. Consequently, its practical

applications are severely restricted. The purpose of this research

is to investigate the feasibility of enhancing the radiated power

or improving the directivity of a short antenna by a double impedance

loading technique. This technique consists of mounting the appro-

priately chosen lumped impedances symmetrically along the antenna

surface to implement a modification of its current distribution.

The current is adjusted in such a way to achieve either enhancement

of its radiated power or an improvement in the directivity of the

short antenna.

In the theoretical study, King's modified method is applied

to develop an approximate solution for the current distribution

along the doubly loaded short antenna. From this solution, input

impedances and typical current distributions of antennas loaded to

obtain either enhanced radiation or improved directivity are de-

termined. An expression for the optimum loading impedance to

achieve improved directivity is established. For the enhanced

radiation case, the area under the current distribution along the
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antenna with optimum loading can be increased by a factor of four

relative to than that of an unloaded antenna, and its input impedance

has a significantly increased resistive component and a zero re-

active component. Therefore, the radiated power is greatly enhanced

compared with that of the unloaded antenna. For the improved

directivity case, the current distribution has a phase reversal along

the antenna and the directivity corresponding to such a current is

improved significantly. In addition to the doubly loaded isolated

antenna, an array of doubly loaded coupled antennas is also studied,

the objective again being to achieve enhanced radiation or improved

directivity.

An experimental study on the doubly loaded antennas, for both

the enhanced radiation and improved directivity conditions, is con-

ducted to verify the theoretical results. Enhanced radiation from a.

coupled short antenna is also investigated experimentally. It is

shown that the experimental results are in good agreement with those

of the theoretical predictions. In addition to the doubly loaded

antennas, the characteristics of top-loaded antennas are also in-

vestigated experimentally for various types and sizes of end loadings.
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CHAPTER 1

INTRODUCTION

It is well known that a conventional short, linear antenna has

small radiated power and low directivity. Therefore, much research

has been conducted on improving the directivity or enhancing the

radiated power of a short antenna.

By using an approximate superposition method, Harrison [ 1]

determined the current distribution along a doubly reactance-loaded

antenna. He demonstrated that a doubly loaded linear antenna might

be tuned in such a manner that its input impedance becomes purely

real and its efficiency is increased relative to that of an unloaded,

base tuned antenna. In this thesis an improved method is employed

to solve for the current distribution on a doubly loaded short

antenna, and a more comprehensive investigation is carried out. It

is indicated that the antenna doubly loaded by appropriately chosen

impedances has a nearly uniform current distribution between the

loading points and that its input impedance has an increased re-

sistive component (by a factor of two to four relative to that of

an unloaded antenna) and a reactive component which vanishes. The

power radiated by the short antenna is therefore increased signif-

icantly.

In the improved directivity case, La Paz and Miller [2:]

first attempted to determine the maximum directivity theoretically

available from a linear source antenna by solving for the

1
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corresponding optimum antenna current distribution. Later, Boukamp

and De Bruijin [3 ] pointed out that arbitrarily high directivities

might be achieved from a linear antenna by properly adjusting its

current distribution. A similar conclusion was reached by Riblet

[4 1. Although no methods were suggested by the above investigators

for implementing the required optimum current distributions, their

researchsSimply that various degrees of improvement in the antenna

directivity may be achieved by careful adjustment of the antenna

current distribution. In this thesis, the optimum current dis-

tribution is implemented by utilizing a double impedance loading

technique, and an expression for the optimum loading impedance is

developed.

By applying King's modified method[fl[6]an approximate solution

for the current distribution along the doubly loaded antenna is

developed in Chapter 2 in terms of the antenna dimensions, its

excitation frequency, and the impedance and position of the double

loading. The input 1mpedance of antenna is also established in this

chapter. Based on these solutions for the current distribution and

input impedance, the optimum loadings for enhanced radiation and

improved directivity are investigated and the numerical results are

presented in Chapters 3 and 4. An extensive study of a doubly loaded

array is conducted in Chapter 5 to investigate the characteristics

of doubly loaded, coupled short antennas as related to the enhanced

radiation and improved directivity.

An experimental study of the doubly loaded antennas (both for

isolated and coupled antennas) is also performed in this research.





It is observed that the experimental results closely verify the

theoretical prediction. In addition to the doubly impedance loaded

antennas, short linear antenna end-loaded with various sizes and

shapes of loading are also experimentally studied carefully in this

thesis.
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CHAPTER 2

CURRENT DISTRIBUTION ON A DOUBLY LOADED SHORT ANTENNA

2.1 Geometry of the Doubly Loaded Short Antenna:

The terminology short antenna refers to a linear antenna which

is not physically small, but rather one which is electrically small as

measured in wave lengths. A criterion for such an antenna may be de-

2l| a 1

where so is the free-space wave number and h is the half-length

of the antenna.

The geometry of the short, doubly loaded, linear antenna is as

indicated in Fig. 2.1. The short cylindrical antenna is assumed to be

constructed of a perfect conductor of radius a and half-length h.

An ideal, harmonic voltage source of angular frequency w and poten-

tial Vo excites the cylinder at its center 2 = 0 (the antenna is

assumed to lie along the z-axis of cylindrical coordinates), and the

two identical lumped impedances ZL are loaded symmetrically on the

antenna surface at z = d and z = —d. The gaps in the cylinder at

the locations of the source and the loading impedances are assumed to

be of length 26. Since both the source and the loading impedances

are considered to be idealized point elements, then 6 is assumed to

approach zero in the subsequent mathematical analysis.

It is taken that the half-length h of the cylindrical antenna

is very much greater than its radius a. As a result of this thin-wire

4
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6

assumption, and due to the rotational symmetry of the cylinder, the

antenna current will flow primarily along the axial or z-direction.

The dimensional restrictions and axial current approximation of

h >> a

2n
< __

Béi< l (or A 8 << 1)

o

T(z) = 212(2) .... axial antenna current

allow important simplification and lead to an approximate solution for

the distribution of current along the antenna. It is well known [7]

that subject to these restrictions 12(2) can be assumed to be con-

centrated along the axis of the cylinder when calculating the vector

potential at its surface with negligible error.

2.2 Boundary Conditions for Calculating the Antenna Current:
 

The current excited on the cylinder is symmetric about its

center (2 = 0) and must vanish at either of its extremities (z = :h).

A pair of boundary conditions on the antenna current may therefore be

expressed as

I z = I -zz(> z(>

(2.2)

Iz<:h> = 0

From the boundary condition that the tangential component of

electric field should be continuous at the surface of the antenna, it

follows

E:(r = a+) = E:(r = a') (2.3)

where E:(r = a+) is the induced electric field just outside of the

+

surface of cylinder at r = a which is maintained by the current and
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7

charge on the antenna, and E:(r = a') is the electric field just in-

side its surface at r = a .

2.3 Integral Equation for the Antenna Current:

Since the cylindrical antenna is assumed to be constructed of

. . . i . .
a perfect conductor, 1ts Internal Impedance 2 per unit length is

equal zero, and the electric field inside the conductor surface at

r = a' is nonvanishing only at z = 0 and z = id, i.e.

ZLI (d)

———E——— for -d-0 < z < -d+6

26

a V0

Ez(z) = - 33 for -0 < z < 0 (2.4)

2 I (d)

L z

20 for d-0 < z < d+6

where Iz(d) and Iz(-d) are the antenna currents at the impedance

a , .
elements at z = :d, and Ez(z) 18 equal to zero for every other po1nt

on -h S 2 S h. The total voltage drop along the antenna is therefore

-Ih Ea(z)dz = V - I (d)Z - I (-d)Z .

-h z o 2 L 2 L

By the symmetry condition of the antenna current, eq. (2.2),

Iz(-d) = Iz(d), and the last result may be expressed as

-fh Ea(z)dz = v - 2I (d)Z .
-h z o z L

As indicated earlier, the loading impedances and source are considered

as point elements of length 20 a 0, such that

. h a

22:3 -f_h Ez(z)dz vo - Iz(d)ZL - Iz(-d)ZL (2.5)
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8

By the properties of the Dirac delta function and by equations (2.4)

and (2.5), then in the limit when 26 ~ 0

a

Ez(z) — -v05(z) + Iz(d)ZL[6(z-d) + 6(z+d)] (2.6)

where 6(2) is the Dirac delta function.

The induced field just outside the surface of the antenna is

given by

A

5—>
1

132(2) - (-V<b)z - (at 2

For the case of a time-harmonic excitation where all quantities vary

'wt

accordingly to the implied time-dependence factor eJ , then

31(2) = -<v¢> - M (2.7)
Z Z 2

where O is the scalar potential at the surface of the cylinder main-

tained by the charge on the antenna, and A = E Az(z) is the vector

potential at the cylinder surface maintained by the current in the

antenna (it is assumed that the current is concentrated along the

cylinder axis).

The Lorentz condition may be applied to relate m and A as

82

O

V'A+j

8
I

Since T(z) = E 12(2) axially directed, then A'= 2 Az(z) has only

one component Az(z) and the Lorentz condition becomes

5A 82
Z

S?- +-j 59 ¢ = 0 . (2.8)
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Substituting O in terms of AZ, according to eq. (2.8), into eq. (2.7)

results in

. . 2

E;<z) = - [:7 + eilAzm . (2.9)

«
f
fi
s
f
é

In order to satisfy boundary condition eq. (2.3)

E:(r = a+) = E:(r = a') (2.3)

expressions eq. (2.6) and eq. (2.9) are equated to yield a second-

order inhomogeneous differential equation for the vector potential at

the antenna surface as

2

[51—2 + eo]Az(z) = T {-V06(z) + ZLIZ(d)[6(z-d)
+ 6(z+d)]}. (2.10)

The complementary solution of eq. (2.10) is obtained easily as

C L=- +
Az(z) v0 (CICOSBOZ C 2SinBoz) (2.11)

where V0 is the velocity of light and C1 and C2 are arbitrary

CONS tants .

Since the particular integral for an equation of the form

2

2
ilz+ay=f(x)

dx

is given by yp(x) = i’I: f(s)Sin a(x-s)ds then eq. (2.10) has a

particular solution of the form

A:(z) = CASinBolzl + CSSinBOIZ-d| + C6SinBo|z+d|.

Substituting this directly into eq. (2.10), the arbitrary constants

C4, C5 and C6 are determined and A:(z) is obtained as



 

.
.
.
.
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zLIZ(d). v

A:(z) = - %;{§9 SinBOIZI - ———§—-(Sin80|z-d| + Sin80|z+d|)].

The general solution to differential equation (2.10) is thus

= C pAz(z) Az(z) + AZ(Z)

1. V0= - v0 [ClCOSBOz + CZSInBOz +-§- SInBolzl

ZLIZ(d)

- -——7?——- (Sins Iz-d| + SinB |z+d|)]. (2 12)
o o

By the symmetry of the antenna current, 12(2) = Iz(-z), it can be

shown that the vector potential is also symmetric about the center of

the cylinder, 1 e., Az(-z) = A52). It is therefore obvious that

arbitrary constant C2 should be equal to zero, and eq. (2.12) becomes

1_ VO ZLIz(d)

Az(z) = - v [CICosBOz +~§— SInBO|z| - ——-§-- (Sinfioiz-dl

+ Sin80|z+d|)]. (2 13)

At 2 = h, result (2 13) becomes

, V Z I (d)

g _ 1_ _Q . _ L z . _

Az(h) v0 {CICOSBOh + 2 SInBoh ———7r——-[81n80(h d)

+ SinBO(h+d)]} (2.14)

By combining equations (2.13) and (2.14), the arbitrary constant C1

is eliminated from eq. (2.13), and an expression for the vector poten-

tial difference at the surface of the antenna is obtained as

- =-‘1— ' -Az(z) Az(h) v0 SecBOh{jvoAz(h)(CosBOZ CosBOh)

ZLIz(d)

2

V

_ .9
2 SinBo(h-‘zl) + [ZSinB h CosB d C038 2

o o o

- CosBOh(SinBO|z-dl + Sinaolz+d|)]}. (2.15)



 

.
T
.

T
1
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According to the dimensional assumptions h >> a and Boa << 1,

the Helmoltz integral for the vector potential at the antenna surface

can be simplified as the line integral over an axial current distribution

with negligible inaccuracy, i.e.

p'o h
= __ ' ' ' - s SAz(z) 4n I-h 12(2 )Ka(z,z )dz for h z h

where “o = the permeability of free Space

-jBOR

R

e

Ka(z,z') = Green’s function

 

R =~/, 2 ... distance between an observation point

on the surface of antenna at z and

an element of current on its axis at z'.

(z-z')2 + a

If the left hand side of eq. (2.15) is replaced by the Helmholtz in-

tegral expression, an integral equation for Iz(z) is obtained as

Ih I (z')K (z z')dz'
-h z d ’

' V

= - 1%1'SecBoh{ijAz(h)(CosBoz - CosBoh) - 39 SinBo(h-|Z|)

0

Z I (d)

...};EL——-[231ne h CosB d C058 2 - CosB h(SinB lz-dl
2 o o o o o

+ Sinao|z+d|)]}. (2.16)

where C is the characteristic impedance of free space

0

= {“0 = 120w ohms.

co

Kd(z,z') is the difference kernel of kernel Ka(z,z') and

Ka(h,z'), i.e.



I
E

I
!
i
t
/

7
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Kd(z,z') = Ka(z,z') - Ka(h,z')

e'jBOR 'jBoRh

R

0

:
F
W

 
 

R g f(z-z')2 + a2 ’ Rh = f(h-z')?" + a2

Eq. (2.16) is a modified form of Hallen's integral equation [8] for

the antenna current 12(2), and is valid for -h S 2 S h.

2-4 Approximate Solution of the Integral Equation:
 

It is found that the current distribution on the doubly loaded

short antenna can be approximated quite accurately by obtaining an

approximate solution to integral equation (2.16) according to King's

modified method [5][6]. This method consists essentially of assuming

the current excited on the antenna to be proportional to the vector

potential difference (referred to the end of the antenna). In other

words, it is assumed that the ratio of vector potential difference to

antenna current is relatively constant along the cylinder. Since

Az(z) - Az(h) vanishes at z = ih, then Iz(z = 1h) = 0 and the

induced current satisfies the boundary condition at the end of the

antenna. The application of this method to the solution of integral

equation (2.16) is the subject of this section.

By a peaking property of the difference kernel Kd(z,z')

' = | _ '

Kd(z,z ) Ka(z,z ) Ka(h,z )

. 6(z-z') - 6(h-z')

and by applying the Helmholtz integral it is found that



 

v
5
.
3
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“O h

Az(z) - Az(h) = Zfi’I-h Iz(z')Kd(z,z')dz'

u

~ 4—3 [12(2) - 1201)]

4n
or 12(2) - Iz(h) .. J; [Az(z) - Az(h)].

Since Iz(h) = 0, then

12(2) ~ Az<z> - A200

and the induced antenna current 12(2) is therefore taken to be of

the form

12(2) = CC(CosBOz - CosBoh) + CSSInBO(h-|zl)

+ C [ZSinB h CosB d C038 2 - CosB h(SinB Iz-dl

1 o o o o o

+ SinBO|z+d|)]. (2.17)

Note that in eq. (2.17)

Iz(z = :h) = 0

implying that the boundary condition at the antenna extremities is

automatically satisfied, and the current is symmetric as it should be.

The approximate solution (2.17) is further optimized by forcing it to

satisfy integral equation (2.16) at z = 0.

The complex constants CS, Cc’ and C1 are evaluated by sub-

stituting the approximate current distribution 12(2) of eq. (2.17)

back into integral equation (2.16) as
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Ph ._ 1 1 h - 1 I I
CCj_h(CosBOz CosBoh)Kd(z,z )dz + CSI_hSInBO(h-|z |)Kd(z,z )dz

h . . .
+ Cif-hEZSIHBOh CosBOd CosBoz' - CosBOh(SInBO|z'-d| + SinBolz'+dI]Kd(z,z')dz'

V

. 4 . .
= -j EE'Sec80h{jvoAz(h)(CosBOz - CosBoh) - 32 SlnBO(h'|Z|)

zLIz(d)

4---3r-—-[23in80h CosBod CosBOz - CosBoh(SinBOIz-d| + SinBolz+d|)]}-

(2.18)

The complex kernel Kd(z,z') may be expressed in terms of its real

and imaginary parts, i.e.

e'jBoR SLjBORh

E 'R.

I ' I

Kdr(z,z ) + JKdi(z’z )

Kd(z,z')

l
' “ — - —

where Kdr(z,z ) CosBOR Rh CosBORh

l l

' =-—— ' - —-S' .Kdi(z,z ) Rh SinBoRh R InBOR

Since Kdr(z,z') becomes very large when 2' is near 2, it

follows that the principle contribution to the part of the integral

that has Kdr(z,z') as kernel comes from elements of current near

2' = 2. On the other hand, K remains small when 2 = z'. This
di

suggests that the principal contribution to the part of the integral

that has Kdi(z,z') as kernel comes from all elements of current that

are at some distance from 2. Due to this peaking property of kernel

Kdr(z,z') and non-peaking prOperty of kernel Kdi(z,z'), the various

integrals on the left hand side of equation (2.18) may be verified

numerically to have the following approximate representation:
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[Eh(CosBoz' - CosBOh)Kdr(z,z')dZ' ~ (008302 - COSBOh) (2°19a)

f§h(005802' - CosBOh)Kdi(z,z')dz' ~ (COSBOZ - COSBOh) (2°19b)

IEhSinBo(h-Iz'|)Kdr(z,z')dZ' ~ SinBo(h-|2|> (2°19C)

f§h31n30(h-|z'|)Rdi(z,z')dz' ~ (CosBOz - CosBoh) (2 19d)

h , g . | . l I I

I-hE2SInBOhCosBOdCosBOz CosBoh(Sin80|z -d|+SInBOIz +d|)]Kdr(z,z )dz

N [ZSinB h CosB d C058 2 C058 h(SinB |z-d| + SinB |z+d|)] (2.19e)
O O O O 0 O

h
- d I - I _ ' I I I

f_h[281nBOhCOSBO CosBoz CosBOh(SInBO|z d|+SInBO|z +d|)]Kdi(z,z )dz

N (C038 2 - CosB h) (2.19f)

o o

where (2.19a), (2.19c) and (2.19e) are based on the characteristics of

kernel Kdr(z,z'), and the remainders, (2.19b), (2.19d) and (2.19f),

are based on numerical considerations. It can be shown numerically

that these remainders are roughly proportional to the shifted cosine

function (CosBOz - CosBoh),

These properties suggest that equation (2.18) can be split into

three parts by equating corresponding terms on the right and left hand

sides as follows:

Ccfh (C038 2' - CosB h)K (z z')dz'+j C Ih (C098 2' - CosB h)K (z z')dz'

-h o 0 dr ’ c -h o 0 di ’

+ j C fh SinB (h-Iz'|)K (z z')dz' + j C fh [ZSinB h CosB d 0058 2'

s -h 0 di ’ i -h o o o

. u . | v 1

- CosBoh(S1nBO|z -d| + SinBOIz +dl)]Kdi(z,z )dz

= %E voAz(h)SecBOh(CosBOZ - CosBoh) (2:208)

va

o

Q
0

 

CSIEhSinBO(h-|z'|)Kdr(z,z')dz' = j SecBoh SinBo(h-|z|) (2.20b)
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h . . . g . u v v
Cif_h[281n80h CosBod CosBOz - CosBoh(S1nBO|z -d| + SInBolz +dI)Kr(z,z )dz

4n
= u . . d - ’ - a

j E-'Sec80h[231n80h CosBo CosBoz CosBoh(SinBoIz dl + SInBo|z+d|)]

o

(2.20c)

The approximate current distribution 12(2) automatically satisfies

the boundary condition Iz(z = :h) = 0. In order to optimize the

approximate solution, the unknown coefficients are evaluated by forc-

ing the integral equation to be satisfied at z = 0 (which has the

advantage of providing accurate input impedances). This is implemented

by equating z to zero in the last results as

Ccfh (C058 2' - CosB h)K (o z')dz' + jC Ih [C088 2' - CosB h)K (o z')dz'
-h o 0 dr ’ ' c -h o 0 di ’

+ jC jh SinB (h-Iz'I)K (0 z')dz' + jC fh [2SinB h CosB d C088 2'

s -h 0 di ’ i -h o o o

- ' I- - I+d I I

CosBoh(SinBO|z dI + SInBolz I)]Kdi(o,z )dz

 

4n

- Co VOAZ(h)(SeCBOh-1) (2.21a)

h 2nV

- v y | = . O .

csf_hslneo(h-|z |)Kdr(o,z )dz J Co SecBoh SlnBoh (2 21b)

h . I o I _ ' I I I

CiI-hEZSIHBOh CosBod CosBOz CosBoh(S1n80|z d|+51n80|z +d|)]Kdr(o,z )dz

. a= -J g zLIz(d)SecBOh SinBO(h-d). (2.21c)

0

Equations (2.21a ~ c) are solved for Cs’ Ci’ and CC in terms of

the antenna dimensions, the excitation frequency, the impedance and

position of the double loading, and the undetermined constant terms

Iz(d) and vector potential Az(h) as

j2nV

_ o . .

s — E-¥-- SecBoh SInBoh (2 22a)

0 sdr

C



l7

 

 

. 4n .

Ci — -J Q T, ZLIZ(d)SecBOh Sin80(h-d) (2.22b)

o 1dr

V T
_ 4n 0 sdi .

cc - g T [voAz(h)(SecBoh-l) + 21 SecBoh SlnBoh

0 cd sdr

idi .

- Z I (d)SecB h S1nB (h-d)] (2.22c)

. L z o o

1dr

where

T = fh SinB (h-|z'|)K (o z')dz'
sdr -h ‘ 0 dr ’

T, = Ih [ZSinB h CosB d 0088 2' - CosB h(SinB ‘z'-d|

1dr -h o o o o o

+ SinBO‘z'+d|]Kdr(o,z')dz'

T = Ih (C058 2' - CosB h)K (o z')dz'

cd -h o o d ’

T = fh SinB (h-|z'|)K (o z')dz'

zdi -h 0 di ’

_ h . . . 1
Tidi f-h[231n80h CosBod CosBoz CosBOh(SInBo|z dI

. I I I

+ SLnBOIZ +d|)]Kdi(o,z )dz .

The unknown constant quantities Iz(d) and Az(h) may be

evaluated by applying the conditions

I (z=d) = I (d)

z z

u

-Oh.-I II
Az(h) — 4n I-h1é(z )Ka(h,z )dz

where
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To evaluate Iz(d), C5’ C1 and CC are substituted into eq. (2.17)

and, by using the condition Iz(z=d) = Iz(d), the current Iz(d) is

obtained in terms of Az(h) as

 

oT

Iz(d)= QT4nD[voAz(h)(SecBOh-1) +—2° Sdi SecBoh SinBooh](CosBd-CosBoh)

0 cdD l sdr

2TrVo

+ j FIT-2T SecBoh SinBOh SinBo (h- d) (2.. 23)

o sdr l

where

4n T'd'

D = 1 + , 1 1 z SecB h SinB (h-d)(CosB d - CosB h)
1 Q T T, L o o o o

0 cd 1dr

. 8n , 2

+ J Q T, ZLSBCBOh COSBOd Sin Bo(h-d).

o 1dr

Having evaluated 12(d) as in (2.23), it may be substituted back into

eq. (2.22) and by using eq. (2.17), and the reéltion

u

=__9_h I 11 . .
Az(h) 4n f_h12(z )Ka(h,z )dz , Az(h) IS determined completely as

  

 

 

T

A (h) = H'oTCaVo { sdi D _4fizLTidiTsdi D

2 2C T D T 5 Q0T 3
0 cd 2 sdr cdD 1T idrTsdr

_ j ATTTidiZL D } + j “ovoTsaD5

TierlcoTsdr 4 2CoTsdrD2

2fiu Z T, V T ,

_ j o L 1a 0 { sdi D + j D } (2°24)

QZT D D T Ted 3 4
1dr 1 2 sdr

where

T = Ih (C058 2' - CosB h)K (h,z')dz'

ca -h o o a

T a = IEhSinBo(h-Iz'|)Ka(h,z')dz'

= fh [ZSInB h CosB d CosB 2' - COSB h(Sin5 IZ'-d|
-h o o o o o

+ SinBolz'+d|)]Ka(h,z')dz'



[
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I
I
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a 41'fl‘idiT aZL

D = 1 --—E—(3ece h-l) + C (SecB h-l)(CosB d
2 TCd O T (T )Zg D O o

idr cd 0 1

- CosB h)SecB h SinB (h-d)

o o o

AHZLTia
+ ' h-l h ' - d -

J T. T D C (SecBo )SecBo 51n80(h d)(CosBo CosBoh)

1dr cd 1 o

2 . .
D Sec Boh SinBoh(CosBod - CosBoh)SInBO(h-d)

U

n SECZB h SinB h SinZB (h-d)

o o o

(
3 fl SecB h SinB h

o o

The values of Iz(d) and Az(h) are completely determined by ex-

pression (2.23) and (2.24), and the evaluation of the complex coeffi-

cients Cs’ Cc’ and Ci is consequently completed.

By combining equations (2.17), (2 22), (2 23), and (2.24) the

distribution of current excited on the short, doubly loaded antenna

may finally be expressed in the form

  

  

V

- .2 _ ' -
Iz(z) - 6O{FC5(CosBOz CosBoh) + FC481n80(h lzl)

- j FC [2s1n8 h CosB d C088 2 - CosB h(SinB |z-d|
2 o o o o o

+ Sin80|z+d|)]} (2.25)

where

PC = 1 {[Tca (T D - ZLTidiTSdL_ D

l Tchsdr TcdDZ sd1 5 30D1TCdTidr 3

2 D T D T Z T T

L 4 idi 5 sa L ia sdi .
_ ________. - + h-l +

3 30D T ) J D J 30D D T (T D3 JD4)](SECBO ) TsdiDS}
1 idr 2 1 2 idr cd
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Z

_ . 1

F02 - T. SecBoh Sin80(h-d){30D FC1(CosBod - CosBoh)

1dr 1

D

+ j --2—-- SinB (h-d)}

30D T o

l sdr

T

_ idi

FC3 - T___ FC2

cd

D

. 5

FC ‘1,

4 I‘sdr

This result expresses the antenna current distribution in terms of the

antenna dimension, its excitation frequency and the impedance and

position of the double loading.

2.5 Input Impedance of Doubly Loaded Short Antenna:
 

The input impedance of the antenna is defined as

V

o .
= ——————— = + .

Zin Iz(z=o) Rin J Xin

From eq. (2 25), this impedance can be expressed in the form

. . . -1

Zin — 60{FC5(1 - CosBOh) + FCQSInBOh-j 2FCZS1nBo(h-d)} (2.26)

The input impedance of result (2 26) is expressed in terms of the

antenna dimensions, the excitation frequency, and the parameter of

the double loading. Expressions (2.25) and (2 26) for the antenna

current distribution and Input impedance of a doubly loaded short

antenna are the main results of this chapter, and they will be utilized

in the subsequent chapters for the study of short antennas with en-

hanced radiation and high directivity.



CHAPTER 3

SHORT ANTENNA WITH ENHANCED RADIATION

3.1 Introduction:
 

A conventional short, linear antenna has a very small input

resistance and a large capacitive input reactance. For an antenna

having h S 0.1 A0, the input resistance is extremely small compared

with that of a longer antenna, i.e., one of near resonant length.

The power radiated by the antenna is strongly dependent upon its in-

put resistance, since this resistance determines the degree of match-

ing between the transmission system and the antenna. The radiated

power of the short antenna is therefore very small due to the mis-

match between its small input resistance and the characteristic

impedance of a typical transmission system which might be used to

excite the antenna. It is the purpose of this research to enhance

the power radiated by a short antenna by increasing the input re-

sistance while simultaneously tuning its input reactance to zero.

In order to enhance its radiated power, the antenna should be

operated at reasonance (since zero input reactance is required).

This resonance condition can be implemented by inserting a low-loss

series inductor at the input terminals or by loading low-loss lumped

inductors on the cylindical wire antenna. In the latter case, a

high Q capacitor may also be inserted at the input terminals for

tuning purposes as will be indicated in Sec. 3.4. The conventional

base tuning arrangement, however, Cannot increase the input resis-

tance to the antenna, and therefore it is ignored in this study except

for comparison purposes.

21
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The double impedance loading is implemented by lumped in-

ductors in this study. It has been found that a purely non-dissi-

pative optimum loading may be utilized at various positions along

the surface of the cylindrical antenna. Of course, the terminology

non-dissipative loading refers to an ideal lossless inductor which

cannot be realized physically. A very low-loss or high Q inductor

is mounted on the antenna to implement an optimum loading in the

experimental investigation. By tuning the inductor to its optimum

value at a fixed position along the antenna surface, the input

reactance Xin of the antenna is eliminated and its input resis-

tance is increased by a factor of the order of two to four (2 ~ 4)

over its value for an unloaded antenna (maximum increase is by a

factor of 4), and the radiated power of the short antenna is there-

fore enhanced significantly. It has also been found that for some

prcper choices of loading impedances and locations, the input

impedance of a short antenna can be adjusted to have a large resis-

tive component and an inductive reactive component. This case

appears rather attractive since the antenna can now be tuned to

reasonance at its terminals with a high-Q series capacitance which

is more readily implemented than a high-Q inductor.

The details of all these configurations are discussed in the

following sections.

3 2 Radiated Power and Radiation Resistance:
 

The power radiated by a short antenna can be obtained easily

from the well known result [7].



23

r _ _. r

B9 - ije(R0,0)

(3.1)
l r

B v0 Ee(RO,0)

9
'
1

where RO is the distance from the observation point to the center

of the antenna, and superscript r indicates the radiation field.

r r r . . .
B and A are expressed 1n spherical coordinates. The total

6 ’ ¢ 0

time-average power radiated by the antenna is thus given by

2 2
T'TUJ

R0

rad. £0

E

 I lAgl Sine d0 (3 2)

0

r .
where A can be expressed in terms of the antenna current 12(2)

0

(given by eq. (2 24)) as

-‘R

r ° M'0 h e 380
=..—— ’ '_ I

Ae 4n Sine I-h Iz(z ) R dz

00 e’JaoRO h jeoz'COSe

=-—— ' ' I

4n R Sine f Iz(z )e dz (3‘3)

0 -h

subject to the usual approximations,

R = R0 - z'Cose for phase factor

R = R0 for amplitude terms

According to the definition of a short antenna, 802' is much smaller

+jBOZ'Cose

than one, therefore e can be well approximated by the

leading terms of a power series expansion as

+jB z'C050

e O = 1 + jBOZ'Cose -'% Bgz'ZCosze .

Since the antenna current is symmetric about its center 2 = 0,

then 12(2) = Iz(-z) and the second term of the power series
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integrates to zero such that equation (3.3) becomes

u
15R

r 0 e 0 0 h 2 .2______ . . _l 2 .
Ae - 4n R0 Sine f h12(2 )(1 2 802 Cos 0)dz (3.4)

Since 80h << 1 for a short antenna, then the second term in the

integral of eq. (3.4) is normally very small compared with the first.

Thus I I z(z' )dz' >>-SI$8 2Cos 29 I Z(z' )dz' , provided only that

the leff side of the inequality is not forced to approach zero by

reversing the phase of the current along the antenna. Eq. (3.4)

can therefore be approximated by the expression

 

, ”0 e'jBORO h
n.--....... ' I I

Ae 4n R Sine I Iz(z )dz

0 -h

u -J’BR
_ 0 0 0 .

~ 4fiRO e $1n0 AC (3.5)

where

Ac = I Iz(z')dz' the area under the current

distribution

By substituting eq. (3.5) into eq. (3.2), the radiated power is

obtained as

C n
- O 2 2

The radiation resistance of the antenna can be defined as

 

2 Prad.

Rrad. = 12( =0)

2 z

and therefore

2

2 n

Rrad = 2 :0 lAcI2 ~ _;fi£l—— ' (3“7)
3AOIz(z=0) Iz(z=0)

The results of eq. (3.6) and (3.7) are very useful relations in the

following sections.
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3.3 Doubly Loaded Short Antenna with Increased Input Resistance and

Zero Input Reactance:
 

Since the input impedance of the doubly loaded antenna is a

function of the impedance and position of the loading, the dimensions

of the antenna, and its excitation frequency, it is difficult to

formulate an expression for the optimum loading impedance required

to make Xin = 0 and simultaneously maximize Rin based on the

already complicated equation (2.24). Therefore the optimum impedance

loading which will increase the input resistance and simultaneously

provide zero input reactance will be determined by using a high speed

computer to calculate and examine the antenna current and input

impedance, for given antenna dimensions, with various impedances

(low-loss inductors of various Q) loaded at different locations

along the cylinder.

3 3.1 Typical Current Distribution

Suppose that the short antenna is loaded by an optimum non-

dissipative impedance of reactance [xLlop at a fixed position

along its surface such that its input reactance xin is tuned to

zero. It is found from eq. (2.24) by numerical calculation that

the current distribution on the antenna has the general form indicated

in Fig. 3.1. The amplitude of the current is almost constant between

the loading points along the antenna, and decreases to zero between

the loading points and the extremities of the antenna. The phase

of the current is minimum and nearly constant at all points along

the antenna.
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(112(2)

 

xL xL 

22
‘

N

I

z=h J=-d o z=d z=hN

ll

Fig. 3.1. Typical current distribution along antenna with

optimum reactance loading to make xin = 0.

The current distributions along antennas with h = 0.1710

and d = 0.5h, 0.7h and 0.9h for the case of an optimum reactance

loading are plotted in Figures 3.2 to 3.4. It is found that the

area under the current distribution becomes greater as the loading

points are shifted toward the extremities of the cylinder. Since

the radiated power is approximately proportional to the square of

the area under the current distribution, this indicates that the

radiated power may be enhanced more significantly if the loading is

located near the end points of the antenna (provided that the

optimum impedance is non-dissipative as discussed in Section 3.5).

3.3.2 Input Impedance, Radiation Resistance, and Optimum Loading

Impedance

The input impedance of the doubly loaded antenna is expressed

by eq. (2.26) of Chapter 2 as

. . -1
zin = 60{FC5(1 - CosBOh) + FC4SInBOh - jZFCZS1n80(h-d)} .

From this equation, the input impedances are calculated and plotted

in Fig. 3.5. The case of both zero and optimum non-dissipative

impedance loadings at positions d = 0.5h, 0.7h and 0.9h along

antennas of different length and constant diameter are considered

at a frequency f = 200MHz. It is demonstrated by these numerical
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results that the input resistance is increased as the loading position

is shifted toward the extremities of antenna. It is also indicated

that the input resistance to a short antenna with optimum reactance

loading is increased by a factor of two to three relative to that

of an unloaded conventional antenna.

The radiation resistance and input impedance of a short

antenna with a lossy optimum impedance loaded at d = 0.7h are

listed in Tables 3.1, 3.2 and 3.3 for various value of loading Q.

These numerical results indicate how the radiation resistance and

input resistance are affected by the Q of the loading impedance.

The optimum loading reactances [XLJop for antenna with

different half-lengths h, constant radius a, and various loading

positions d are presented in Fig. 3.6 and Fig. 3.7. It is in-

dicated that the optimum loading reactance [XL1op is a decreasing

function of antenna length for a fixed loading position d/h, and

[ijop increases for fixed h as the loading position is moved

toward the extremities of antenna.

3.3.3 Radiated Power Compared with that of Unloaded Antenna

It has been demonstrated in eq. (3.6) of Sec. 3.2 that the

radiated power is approximately proportional to the area beneath

the current distribution along the antenna. By investigating the

current distributions along antennas having both zero and optimum

nOn-dissipative loadings, as in Fig. 3.2 to Fig. 3.4, the radiated

power of the antenna with optimum loading can be enhanced by a factor

of one to four relative to that of the unloaded antenna. This con-

clusion is reached by considering the matching between the antenna
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Table 3.1 Input Impedance and Radiation Resistance of Short Antenna

Doubly Loaded by Reactances XL of Various Q.

v0 = 1 volt, f = 200 MHz, a/AO = 0.00212,d/h = 0.7, h/AO = 0.05, XL

Q Radiation zin = Rin + j xin

Resistance Rin xin

100 3.79665 30.49565 -5.0386

200 4.45551 17.80993 -4.57154

300 4.67505 13.57864 -4.47566

400 4.78479 11.46267 -4.43894

500 4.85063 10.193 -4.42050

600 4.89452 9.34653 -4.40971

700 4.92587 8.74189 -4.40273

800 4.94938 8.28841 -4.39790

900 4.96766 7.9357 -4.39438

1000 4.98229 7.65352 -4.39171

1100 4.99425 7.42265 -4.38963

1200 5.00422 7.23026 -4.38796

1300 5.01266 7.06747 -4.38659

1400 5.01990 6.92793 -4.38546

1500 5.02616 6.807 -4.38451

1600 5.03165 6.70118 -4.38369

1700 5.03649 6.60781 -4.38298

1800 5.04079 6.5482 -4.38237

1900 5.04464 6.45056 -4.38183

2000 5.04810 6.38373 -4.38135

m 5 11391 5.11391 -4.37369      

1450



Table 3.2 Input Impedance and Radiation Resistance of Short Antenna

Doubly Loaded by Reactances XL of Various Q.

v0 = 1 volt, f = 200 MHz, a/AO = 0.00212, d/h = 0.7, h/A0 = 0.075,

XL = 1080

Q Radiation Zin = Rin + j Xin

Resistance Rin in

100 10 43993 28.51376 -8.65307

200 10.78496 19.82499 -8.28564

300 10.89967 16.92681 -8.19977

400 10 95697 15.47745 -8.16371

500 10.99132 14.60777 -8.l4427

600 11.01422 14.02795 -8.13223

700 11.03057 13.61379 -8.12408

800 11.04283 13.30315 -8.11821

900 11.05237 13.06155 -8.11379

1000 11.05999 12.86826 -8.11035

1100 11 06623 12.71012 -8.10759

1200 11.07143 12.57833 -8.10534

1300 11.07583 12.46681 -8.10346

1400 11.07960 12.37123 -8.10187

1500 11.08287 12.28839 -8.10051

1600 11.08573 12.2159 -8.09933

1700 11.08825 12.15195 -8.0983

1800 11.09049 12.10951 -8.09739

1900 11.09250 12.04423 -8.09658

2000 11.09430 11.99845 -8.09586

w 11 12860 11.1286 -8.08302
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Table 3.3 Input Impedance and Radiation Resistance of Short Antenna

Doubly Loaded by Reactances XL of Various Q.

v = 1 volt, f = 200 MHz, a/1O = 0.00212, d/h = 0.7, h/IO . 0.1, xL = 850

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

Q Radiation Zin = Rin + j xin

Resistance Rin xin

100 18.81215 31.92312 5.67854

200 19.00825 25.566 .01933

300 19.07317 23.44536 .10916

400 19.10554 22.38480 .14916

500 19.12493 21.74840 .17274

600 19.13785 21.32410 .1817

700 19.14707 21.02101 .19727

800 19.15398 20.79369 .02473

900 19.15936 20.61688 .21044

1000 19.16366 20.47574 .21495

1100 19.16717 20.35970 .2186

1200 19.17010 20.26326 .22161

1300 19.17258 20.18165 .22414

1400 19.17471 20.1117 .2263

1500 19.17655 20.05107 .22816

1600 19.17816 19.99803 .22977

1700 19.17958 19.95122 .23119

1800 19.18084 19.90962 .23245

1900 19.18197 19.87239 .22358

2000 19.18299 19.83889 .23458

w 19.20230 19.2023 .25314      
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input impedance and the transmission line which excites the antenna.

3.3.4 Radiation Pattern

The radiation fields of the short antenna with optimum

impedance loading are obtained from eq. (3.1) and eq. (3.5) as

‘35 R

Er = -j Eo—e—— 0 0 A

0 2A0 R0 c

r , u e'JBORo

B = -j —.—-‘— A (3.8)

I 2A0 R0 c

Since the current distribution 12(2) of eq. (2.24) depends only

upon the dimensions of antenna, its excitation frequency, and the

impedance and position of the loading, eq. (3.8) can be expressed as

. = EE6 OF(0)

B; = BOF(0)

-jB R

where E = -j EQ_ E—— O O A

0 10 R0 c

u 'JBORO
B=-j_g_e_ A

0 210 R0 c

F(e) = Sine

The radiation pattern of the short antenna with optimum reactance

loading is consequently similar to that of an unloaded short antenna

as indicated by Fig. 3.8. It is roughly independent of the impedance

and position of the loading inductors.

00

0

 

O
180

Fig. 3.8 Radiation Pattern of the Short Antenna with

Optimum Reactance Loading.
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_3.4 Loaded Short Antenna with Increased Input Resistance and

Inductive Input Reactance:
 

By investigating the current distribution of eq. (2.24) and

input impedance of eq. (2.26), for different non-dissipative impedance

loadings, it is found that the input resistance of the short antenna

can be increased to a very large value, while the input reactance

simultaneously changes from capacitive to inductive. This newly

observed phenomenon occurs when the reactance of the non-dissipative

loading (having fixed position) is further increased beyond its

value [ijop for which Xin = 0. In this case, the antenna can

be tuned easily to resonance by a high Q series capacitor at its

input terminals. Consequently, the matching between antenna and

transmission system is improved, with the result that the power

radiated by the short antenna is significantly enhanced relative to

that of an unloaded short antenna.

3 4.1 Typical Current Distribution

If a short antenna is loaded by an appropriate non-dissipative

impedance at a given position along its surface, such that its input

resistance is increased and its input reactance becomes inductive,

the current distribution of eq. (2.24) has a general form presented

  
 

in Fig. 3.9.

12(2)

Ki; 2

l T I I

z=h z=-d z=o z=d z-h

Fig. 3.9 Current Distribution along Antenna with Increased

Input Resistance and Inductive Input Reactance.



numm

ganv

0.va

 



39

The amplitude of the current is small at the input terminals, in-

creases almost linearly to its maximum value at the loading points

and then decreases to zero at the extremities of the antenna. The

phase of the current is almost constant along the antenna.

The current distributions along antennas with h = 0.1K0

and d = 0.5h, 0.7h and 0.9h for appropriately chosen loading re-

actances are plotted in Fig. 3.10. These optimum reactances (and

the corresponding current distributions) are chosen in such a way

that the input resistance to the antenna is increased to approx-

imately six times that of an unloaded antenna, the criterion for

this choice being in this case to match the antenna input resis-

tance to the characteristic impedance of the exciting transmission

system.

3.4.2 Input Impedance

By using eq. (2.26), the input impedance of a short antenna

with increased input resistance and inductive input reactance are

obtained numerically as in table 3.4. It is found that the in-

ductive input reactance is a stronger function of the loading

impedance than is the input resistance.

3.4.3 Radiated Power

Since the input resistance of the short antenna in this case

can be increased by a much greater factor than for the case described

in Sec. 3.3, the degree of matching with its transmission system is

consequently improved significantly as the antenna is tuned to

reasonance by a non-dissipative series capacitor at its driving

point. Theoretically, therefore, more power is radiated by this
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Table 3.4 Input Impedance of Short Antenna with Increased Input

Resistance and Inductive Input Reactance.

 

h = 0.07510, a = 0.002121

0
h = 0.110, a = 0.002121

0
 

 

  

 

 

 

 
 

 

loading 2, (for d = 0.5h) Loading X Z (for d = 0.5h)

Reactance 1“ Reactance L in

0 4.3810 - j 608.58 0 8.116 - j 468.287

700 9 641 + j 72.322 600 19.36 + j 190.30

800 11.772 + j 291.736 700 25.43 + j 463.33

900 15.044 + j 592.851 800 36.397 + j 883.67

1000 20.53 + j 1031.74 900 60.135 + j 1614.56

1100 31.028 + 1 1730.99 1000 132.122 + j 3201.50

XL Zin(for d = 0.7h) XL Zin(for d = 0.7h)

0 4.381 - j 608.58 0 8.116 - j 468.287

1100 11.59 + j 25.307 900 21.63 + j 89.38

1200 14.77 + j 236.85 1000 29.32 + j 325.86

1300 20.53 + j 569.52 1100 45.945 + j 747.74

1400 33.32 + j 1169.06 1200 98.03 + 3 1713.40

XL Zin(for d = 0.9h) XL Zin(for d - 0.9h)

0 4.381 - j 608.58 0 8.116 - j 468.287

.3100 17.943 + j 206.2 2500 23.24 + j 20.865

.3200 27.95 + 1 605.7 2600 31.177 + 3 210.15

.3300 64.23 + j 1642.44 2700 50.567 + 1 588.9

2800 136.93 + j 1725.83      
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short antenna than by the antenna of Sec. 3.3. For the practical non-

ideal case, this is not always true, since the powers dissipated in

the loading inductors and tuning capacitor are larger than in Sec.

3.3, and therefore, the radiated power may sometimes be reduced more

than the former case.

3.5. Conventional Top-Loaded (or End-Loaded) Antenna:

In Sec. 3.3, it is indicated that the current distribution

along a short antenna with optimum double reactance loading is al-

most constant between the loading points, and it is further in-

dicated in Sec. 3.2 that the power radiated by the antenna is

approximately proportional to the square of the area beneath the

antenna current distribution. Therefore, if the loading position

is shifted to the end of the antenna, or if the antenna is end-

loaded by an optimum reactance, the current will remain nearly con-

stant along the entire length of the antenna, and the radiated power

will be increased by four times relative to that of the unloaded

antenna. Since the end loaded antenna represents an extremely

difficult theoretical problem, only an experimental study will

be conducted in Chapter 6. Various types of end and impedance

loadings will be studied experimentally to investigate the char-

acteristics of end-loaded antennas.

3.6 Comparison of Doubly Loaded Antenna with Unloaded_§ase-Tuned

Antenna for Radiated Power and Efficiency:

In Sec. 3.1, it is indicated that the input power supplied

through a transmission system to a double loaded antenna which is
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tuned to resonance is always greater than that supplied to an unloaded

antenna which is base tuned.

If the double loading or base tuning inductors are non-ideal

(it is assumed that the capacitor for tuning the doubly loaded antenna

to resonance is an ideal capacitor), and consequently dissipate a

certain fraction of the input power, the efficiency of the antenna

should be considered. The efficiency of an antenna is defined as

(Pin - Pdissip.)

P.

in

 

Efficiency = X 100%

Therefore, the effiencies of the optimum doubly loaded antenna (only

the doubly loaded antenna with increased input resistance and zero

input reactance will be discussed in this section, since the efficiency

for case with increased input resistance and inductive input reactance

is similar to the former one if the tuning capacitor is assumed to be

)ideal) and the base tuned, unloaded antenna designated as (Eff op

and (Eff)no’ respectively, are calculated as

 

 

2

I (z=d) ( )

(Eff )O = [1 - 2 3 (:L ;P J x 100%

' p Iz(z=0) in op

(E ) =[ in)“ J x 1007
ff. no (Rm)no + Rb °

where

(X )

(RL)op = ——L—22 = resistance of optimum double loading

Q - . .
inductors [ijop w1th given Q.

O
'
X

U
‘

= resistance of base tuning inductor Xb with

given Q.

Rb:
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The efficiencies of antenna with fixed dimensions, for both the

optimum doubly loaded and the base tuned cases, which result with

different Q values for the inductors are indicated in Fig. 3.11.

From these numberical results, it is evident that the antenna

efficiencies are very nearly equal for both the doubly loaded and

the unloaded (or base-tuned) antennas. The power radiated by the

doubly loaded antenna is therefore greater than that of the base

tuned antenna, since the input power for the former case is always

greater than for the latter if the antennas are driven by matched

generators. The same conclusion is indicated by the numerical re-

/(Psults presented in Fig. 3.12, where the ratio (Prad.)op rad.)no

is plotted for various value of Q for the optimum reactance

(XL)op and the base tuning reactance Xb when the antennas are

driven by matched generators. It is demonstrated that (Prad )Op

is always greater than (P ) under these conditions.
rad. no

3.7 Bandwidth of Short Antenna with Enhanced Radiation:
 

The optimum loading reactance for enhanced radiation and the

reactance of a fixed inductance loading are indicated as a function

of frequency in Fig. 3.13 for an antenna of fixed dimensions. The

fixed loading inductance is chosen such that its reactance XL is

equal to the optimum reactance [xLlop at a frequency of 200 MHz.

It is observed that the optimum loading reactance is a decreasing

function of frequency. The reactance of the fixed inductor, however,

is directly proportional to frequency. As indicated in Fig. 3.13,

the optimum reactance [XL]Op is 850 0 at f = 200 MHz for an
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antenna with a = 0.125 inch, h = 15 cm. As the frequency is varied

to 200 MHZ‘: 10 MHz, the actual reactance of the fixed inductance

(L = 0.676u Henry) varies to 850 0 1:50 Q, while the optimum re-

actance varies to 850 0‘: 50 O. This implies that the difference

between the actual reactance of a fixed inductor and the optimum

reactance for enhanced radiation is‘: 100 Q for a frequency dif-

ference of i 10 MHz. For a 5% variation in frequency the reactance

of a fixed inductor varies by 11.8% from the optimum reactance.

This result appears to imply that the bandwidth associated with a

lumped inductor implementation of the optimum loading reactance

will be quite narrow.

The input impedance of an unloaded antenna and an antenna

doubly loaded with a fixed inductance of L = 0.6760 Henry are

compared in Fig. 3 14. It is noted that the impedance of the

doubly loaded antenna varies with frequency much more strongly

than does that of the unloaded antenna. This implies again that

the bandwidth of the doubly loaded antenna with enhanced radiation

is relatively small.



Z
.
i
n

o
f

X
.
i
n

r
e
a
c
t
i
v
e

c
o
m
p
o
n
e
n
t

2000

1800

1600

1400

1200

1000

800

600

400

200

-200

-400

-600

-800

-1000

-1200

49

2a - 0.004241

0

 

 

 

 

   

 

 

 
Fig. 3.14

Frequency (MHz)

Theoretical Input Impedances for zero and Reactive

Loading (L = 0.6763henry) as Functions of Frequency

   

x1. I Zjn xL ' I 4' 60

CHF 1 J MD ,’

_._d30.7h_..l

..__ h-0.1>. I v 50

I

‘1 Non-dissipative loading / ..40

inductor with inductance

{L L - 0.676u henry

._ 1..

X.
4» 1n

.. 1“ ..20

1.

’d

4:-
/

+10

/

Jr ’ I / ... a—

”:d ‘— ..—

-'—: ti : 3 tr .; :7 0

100 120 140 160 240

 
r
e
s
i
s
t
i
v
e

c
o
m
p
o
n
e
n
t

I
I
I

R
.

o
f

i
n



CHAPTER 4

SHORT ANTENNAS WITH IMPROVED DIRECTIVITY

4.1 Introduction:
 

It is well known that a conventional short linear antenna has

low directivity since its radiation pattern has a very large beam-

width. In this research, a double impedance loading technique is

applied to appropriately modify the antenna current and thereby

improve its directivity.

In 1943, La Paz and Miller [2] attempted to determine the

maximum directivity theoretically available from a line source

antenna by solving for the corresponding optimum antenna current

distribution. Later, Bouwkamp and De Bruijin [3] pointed out that

arbitrarily high directivities might be achieved from a linear

antenna by properly adjusting its current distribution. Similar

results for antennas of different geometries were also derived by

Riblet [4] in 1948. In 1949, Chu [9] indicated that several problems

inherently associated with highly directive antennas are an un-

usually high q, a narrow bandwidth, and a low efficiency.

Although no methods were suggested for realizing the required

optimum current distributions, the research of the above investigators

implies that various degrees of improvement in directivity, with

associated degradation of the radiated power, may be achieved by

careful adjustment of the antenna current distribution.

It is the object of this research to investigate the possibility

of physically realizing the optimum current distribution to improve

the directivity of a short linear antenna. This current distribution

50
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is implemented by doubly loading the antenna by a pair of lumped

impedances.

Through the use of an optimum impedance loading it is found

that an optimum current distribution is realized when the phase of

the current is reversed along the short antenna. The directivity

corresponding to such a distribution of current is improved sig-

nificantly. It is found that such a current distribution results

in an antenna having poor efficiency and small radiated power, and

that these characteristics are closely associated with the improved

directivity.

A theory is developed to predict the optimum loading impedance

for improving the directivity of a short antenna and to determine its

input impedance, current distribution, efficiency, and radiated power

in the following sections.

4.2 Radiation Field of a Short Antenna with Improved Directivity:

For calculating the radiation fields of a short antenna with

increased directivity, a mathematical approach similar to that in

Sec. 3.2 is applied. Eq. (3.4) can be used directly subject to the

same assumptions and approximations, i.e.,

u -JBORO h 1

L _ _2.E__ - v _ _
A9 - 2” R0 sine f0 12(2 )(1 2 8

r
1 2

o2'200828)dz' (4.1)

where Iz(z') is the current distribution of eq. (2.24). The well

known E and B-fields in the radiation zone of the antenna

r r
Ee--JwAe

r _ l_ r

B¢ - v E9



52

are therefore obtained as

 

 

r - j Co e-JBORO

Ee - 10 le— A F(Boh,9)

(4.2)

r 3 HO e-JBoRo

B¢ - 7. R— A F(80h,8)

o o

where

h I I

A = I 12(2 )dz ..... the area below the current

0 distribution of eq. (2.24)

. B 2

F(80h.8) = Sin8(1 - K'Cos 9) (4.3)

and

...];hziz I l
B - 2 [0 602 12(2 )dz .

By investigating eq. (4.3), it is observed that the radiation

pattern is a strong function of the ratio B/A. From numerical

results for the current distribution 12(2) expressed by equation

(2.24), it is found that the antenna current has approximately a

variable-amplitude and constant-phase distribution along the antenna.

This implies that although the amplitude of the current varies from

point to point along the antenna, its phase is almost constant except

for the possibility of a rapid 180o phase reverse that may be accounted

for by changing the sign of the amplitude. By using this constant-

phase variable-amplitude approximation, the current distribution 12(2)

of eq. (2.24) may be represented approximately by some real function

j0

f(z) multiplied by a constant phase factor e o, i.e.,

je

12(2) = f(z)e °
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where f(z) may take both negative and positive values. Therefore,

the ratio B/A is approximately equal to a real number, i.e.,

1 h 2

-2- f0 (eoz') Iz(z'>dz'

K = § = h ; real number. (4.4)

I I (z')dz'

o z

 

The radiation pattern of the doubly loaded, short antenna is the

graphical representation of

. 2

F(80h,8) = Sin8(1 - K Cos 0) (4.5)

in polar coordinates. Different radiation patterns are therefore

obtained by specifying different values for the real constant K.

The radiation patterns for K = 0,1, 2, 2.33, 3, 10, 46 and a are

plotted in Fig. 4.1 through Fig. 4.4.

It should be recalled that the directivity of an antenna is

the ratio of the maximum radiation intensity to the average radiation

intensity. In other words, the directivity is the ratio between

the radiated power Pmax. when the antenna is assumed to radiate

with its maximum power in every direction and the total radiated

  

power Prad of the antenna, i.e.,

£12I
. . . _ max. 8 d0 max. Max. radiation intensity_

D<dlreCtIVIty) P 1 Average radiation intensity (4'6)
rad. -— P

4n rad.

where

dP
4n ——

Pmax d0 max

%% = RSRO - gr ... power radiated per unit solid angle

and
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Fig. 4.1 Theoretical Radiation Patterns of Short Antennas with

K = 0, 1, and 2.
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Fig. 4.2 Theoretical Radiation Patterns of Short Antennas with

K = 2.33 and 3.
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Fig. 4.3 Theoretical Radiation Patterns of Short Antennas with

K 3 10 and 46.
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13.11. D(db) emax
 

     36 4.15db 35°16'
 

 

  

 

 

 
180°

Fig. 4.4 Theoretical Radiation Pattern of Short Antennas with

K.*'¢.
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-or 1 —o —o* . .

S = 3(E X H ) is the Poynting's vector in the radiation zone.

The directivity of an antenna in db is defined as

Ddb = 10 log10(D)db. (4.7)

The beamwidth of an antenna radiation pattern is defined as the angle

between the two half-power points of its major lobes.

From eq. (4.2), the total power radiated by an antenna for

each Specified K is obtained as

 

2 n 1 4 ~*

= 2n — x - 'Prad. R0 0 2(E H ) RO Sine d0

TTQ
- 2 n 3 2 2

= —§—9 A f Sin 9(1 - K Cos 8) d8
1 o

o

4 2

- cllm5 (3K - 14K + 35)] (4.8)

g nAZ

where C = O
l 2

A
o

The average radiation intensity is then %; Prad . By differentiating

eq. (4.3) with respect to 0, the angle of maximum radiation, emax ,

is obtained as

 

:1:
for OSKSzi'

max. 2

= Cos-1./2K+l for K 2 4

max. 3K

This means that for K > 4, the major lobe is in off-broadside

direction. The maximum power intensity is therefore determined as
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dP 2.. «r Zn 1 -' -°*
—— = . = o— X

dfl|max. R0R0 Smax. R0R0 2(E H )max.

= 1-59 A2[Sin0 (1 - K C0520 )2]
2 X2 max. max.

0

C1/2fl for o S K s 4

= (4.9)

E-C—l- K4 3 f K >_ 4
n 27K or

Therefore, the directivity for each specified K is obtained as

 

 

125 2 1 for o S K s 4

D(directivity)
g (3K —14K+35)

19 (K- 1) 3
2

9 (3K2-14K+35)K f°r K 4

The maximum directivity for the case of 9 = 900 (or 0 S K S 4)

max.

is therefore determined from eq. (4.9) by letting 2% = 0. This

leads to K = 2.33 as the optimum value. The case for K 2 4 is

not discussed further since its major lobe is in off-broadside

direction.

The directivity in db is obtained by substituting eq. (4.9)

into eq. (4.7) for o S K S 4 and K 2 4 respectively, as

 

 

10 loglo'lg2 2 1 ] for o S K S 4

(3K -14K+35)

Ddb = 70 (K-1)3 (4 10)

10 iogloflg— 2 for K 2 4

(3K -14K+35)K

The directivity and beamwidth of the short antenna, as de-

termined by eq. (4.5), (4.9) and (4.10) are tabulated in Fig. 4.1

through Fig. 4.4 for the various values of K. For K = o, the
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radiation pattern is just that of a conventional short antenna

(B.w. = 90°), and the directivity is D = 1.7db (emax. = 90°).

For K = l, the major lobe becomes sharper (B.W. = 550), and the

directivity is improved from the original 1.76db to 3.424db

(Gmax. = 900). When K = 2, although side-lobes appear, it is

found that the beamwidth becomes relatively narrow (B.W. = 420)

and the directivity is increased to D = 4.4db (emax = 900). For

K 2 33, the beamwidth is equal to 380 and the antenna has the

highest directivity D 4.48db in the broadside direction

(8 = 90°). For K 3, the side lobes grow larger and the

max.

directivity is decreased to 4.387db (emax. = 900). For K = 10,

the lobe in the broadside direction becomes a minor lobe, and the

minor lobe in the off-broadside direction becomes a major lobe

with the maximum radiation in emax. = 33°12’, and with a directivity

equal to 4.64db (B.W. = 34°). For K = 46, the broadside field is

decreased even more than the case of K = 10, and with D = 4.3db,

emax. = 34°23' and B.w. = 35°. As K 4 m, the broadside field

vanishes completely and the radiation pattern has four symmetrical

lobes (shown as in Fig. 4 4), each having B.W. = 360, and the

directivity is equal to 4.15db (Smax. = 35°16'). Since the most

interesting radiation field is the broadside field (emax. = 90°),

therefore, it is found that the most desirable radiation pattern

is achieved for the optimum value of K = 2.33. But for mathematical

simplicity, the value of K = 2 will be used in the numerical examples

in the following sections.

It is now evident that to have an improved directivity the

value of K should closely approximate 2.33. From eq. (4.4), this
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-h

condition requires Jo Iz(z')dz' to be very small, thus implying

phase-reversal of the current along the antenna.

4.3 Optimum Loading Impedance for Improved Directivity:

From the results of the previous section, it is evident that

by properly choosing the real constant K, or by properly adjusting

the current distribution Iz(z), given by eq. (2.24), the directivity

of a short linear antenna can be significantly improved relative to

that of a conventional short antenna. Since the current distribution

12(2) of eq. (2 24) is a function of the antenna dimensions, the

excitation frequency, and the impedance and position of the loading,

the optimum loading impedance for improved directivity can be de-

termined from eq. (4 4) and eq. (2 24) if K is specified and the

antenna dimensions and its excitation frequency are given.

An expression for the optimum loading impedance [ZLJOp is

obtained as follows:

Eq. (4.4) can be rewritten as

1 2 h .2 , , h , ,
3 80 f0 2 12(2 )dz = K‘fo 12(2 )dz (4.11)

It is recalled that the current distribution 12(2) on the doubly

loaded short antenna was given in eq. (2.24) as

Sin 80(h - ‘21)12(2) ' FC5(C03802 - Cos 80h) + FC4

- ’ - h ’ -dj FC -ZSin 80h Cos Bod Cos Boz Cos 80 (Sin Bolz I

2

+ Sin Bolz+d|)].

By substituting this expression into eq. (4.11) for a given value of

K and carrying out the integration, a simple equation is obtained,
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after some rearrangement, as

FC5D6 + FC4D7 - J FC2D8 = 0 (4.12)

where

l 2 2 2 2
= 0— + - . - 0D6 Boh(2 3 80h )Cos Boh (80h 2)Sin Boh 2K(Sin 80h

- B hCos 8 h)

0 O l

-22 -
D7 — 80h + 2(CCs Sch 1) 2K(1 - Cos 80h)

_ 2 2 2 2

D8 - 2(Boh - 2)Cos Bod + 2(2 - 80d )Cos 80h

 - 4K Sin28 h Cos s d + 4K(l - Cos B h Cos 8 d)Cos B h.
0 O O 0 0

Since FCZ’ PCA and FC5 are all functions of the loading impedance

Z eq. (4.12) can be rearranged, after a great deal of algebraic
L,

manipulation, into a quadratic equation for ZL’ the solution to

which gives the optimum loading impedance [zLjop’ i.e.,

2 _
3121 + 1322L + B3 - 0 (4 13)

where

g - + -

Bl D6D9(D12D9 D13 + D14°10°9 D14°11 D18D15D16D12)

+ D18D6D15(D16D13 ’ D17°10°9 ' ”17°11) + FC4°9°7<D10°9 + D11)

- i D (D + D D D + D D )
15°8 16°12°9 ' D16°13 17 10 9 17 11

B = D6(2D1 D - D + 2D D D + D D - D D D D

2 2 9 13 14 10 9 14 11 18 15 16 12 ' D18D15D17D10)

+ FC4D7(2D10D + D

9 11) ' 3 D
(D16D12 + D

15D8 17°10)

B3 ‘ D6°12 + D6°14°10 + FC4°7°1o
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T
'di

D =-———l—————— Sec 8 h Sin 8 (h-d)(Cos B d - Cos s h)
9 30 Tchidr o o o o

+-—-‘l-- Sec 8 h Cos 8 d SinZB (h-d)

15 Tidr o o o

 

 

 

 

 

ca

D10 1 - T (Sec 80h - 1)

cd

T. T (SecB h-l)

: idi ca 0 .

D11 C—-fif-——- + j Tia) 30 T T Sec 80h Sin 80(h d)(Cos Bod Cos 80h)

cd idr cd

(Sec 8 h-l) T

g 0 ca

D12 T T (r Tsdi D5 + j D5Tsa)
cd sdr cd

D = (Sec Bob-1) Tca Tidi Tsdi D3 + j D Tca idi

13 3O Tcd Tsdr T 2 T. 4 Tcd idr

cd idr

Tia sdi

+1 (————D +1D)]
T. T 3 4
idr cd

D = Tsdi D5

14 Tcd Tsdr

D ' Sec 80h Sin 80(h-d)

15 30 T.
idr

= d - hD16 Cos 80 Cos Bo

D

D17 = 3 T Sln 80(h-d) + D16D14

sdr

idi

D - ————
18 Ted

The quantities T. ., T , Tidi idr T , T , T , T. and FC

cd’ sdr sdi ca 18 4

are all defined in Chapter 2.

By solving eq. (4.13), the optimum loading impedance is

obtained as

r
v
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2
= 432/131) 1/032/31) -4(83/Bl)

op 2

 

[2L] (4. 14)

By investigating the numerical results obtained from equation

(4.14), it is found that only one value of optimum loading impedance

[ZLjop is of interest, i.e.,

 

2

-(B /B) -(/(B /B) -4(B ls)

 

The other root to equation (4.14) is extraneous since it does not

result in a phase reversal in the antenna current and therefore can-

not result in any impogvement in its directivity.

The optimum loading impedances for different antenna lengths

and various loading positions d are plotted in Fig. 4.5 and 4.6

for the case of K = 2.0. Since the resistive component of the

optimum loading impedance is very small (always smaller than 1/10000

of the reactive component), only the reactive component is shown in

these Figures, and the optimum loading impedance can be treated

approximately as a pure reactance. From these Figures, it is observed

that the optimum impedance has its smallest value when the loading

position is approximately d = 0.7h, and increases rapidly as the

loading position is moved toward either the driving point or the

extremity of the antenna,

4.4 Typical Current Distribution on Antenna with Optimum Loading:

When a short antenna is loaded by an optimum non-dissipative

impedance (inductor), as determined from eq. (4.12) for K = 2.0,

at fixed position along its surface, the antenna current Iz(z) of
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eq. (2.24) has the general form indicated in Fig. 4.7.

I z1.01

   

 

 

 

 

z=o

r~_, z

I "1 o I I

z=-h z=-d r_._.__._.1L90.......1 z=d z=h

1 o
. ._ 0 1

I O .

_______ _l 1,-90 l.-_____.—

)phase

Fig. 4.7. Current Distribution on an Antenna with Optimum

Loading for Improved Directivity.

The antenna current has zero amplitudes at points (z =‘: 20) be-

tween the driving point (z = o) and the loading points (z = i d),

at which points the phase of the current is reversed by 1800. The

total area under the current distribution along the antenna is there-

fore almost equal to zero, i.e., A a 0, resulting in a very small

input resistance and significantly reduced radiation power.

The current distribution of eq. (2.24) for antennas of various

lengths with optimum loading impedances [zLjop at several different

positions, are plotted in Fig. 4.8, 4.9 and 4.10.

4.5. Input Impedance of Short Antenna with Increased Directivity:

By using eq. (2.26), the input impedances of short antennas

having both optimum and zero loadings are evaluated numerically as

indicated in Fig. 4.11 and 4.12. By investigating these Figures,

it is found that the input impedance of the antenna with optimum

loading has a very large reactive component and a very small re-

sistive component compared with those of the unloaded antenna. The

large input reactance is mainly contributed by energy storage in the
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optimum (inductive) reactance loading, and the small input resistance

is due to the current phase-reversal which occurs along the antenna

with optimum loading.

4.6. Radiated Power and Efficiency of Antenna with Optimum Loading:

By applying equation (4.8) directly, the power radiated by

the antenna with optimum loading is obtained as

2

C IAI
; 0 TT 2 2 . 3

Prad. - *12 fou - K Cos 9) Sin 8 d8 (4.16)

0

Therefore, the radiated power is approximately proportional to IAIZ,

i.e.,

2 h , , 2

Prad. ~ IAI |f0 12(2 )dz I... area below 12(2).

Since the current distribution associated with high directivity re-

quires a phase reversal along the antenna, then consequently the

integral A = I: Iz(z')dz' nearly vanishes and the power radiated

by the short antenna with optimum loading is very small.

The efficiency of the antenna with optimum loading is also

relatively poor. This can be observed as follows. The efficiency

of the doubly loaded antenna is determined in Sec. 3.6 as

2

I (z-d) ( )

Efficiency = (1 - 2 -§* R: 02) X 100%

I (z=o) in

(XL)
= ____2£

where (RL)op Q .

Since (XL)op has values between 2000 and 7000 ohms for antenna with

 

half-lengths between h = 0.02510 and h = 0.210 and a = 0.0021210,

and Rin has values between 0 and 0.5 ohms while Iz(z=d) and

Iz(z=0) are comparable, then unless Q is very high most of the input



74

power to the antenna will be dissipated in the loading inductors.

The efficiency is therefore relatively poor.



CHAPTER 5

DOUBLY LOADED COUPLED SHORT ANTENNAS

The study of coupled, doubly loaded, short antennas involves

an investigation of a closely spaced parasitic array of short cylin-

drical dipoles. It is the objective of this research to enhance the

radiation or improve the directivity and radiation pattern of the

short antenna array. Two identical parallel antennas doubly loaded

by lumped impedances are investigated in this chapter. The theory

developed in this chapter is based on the modified method of King

and Wu [6 j, and the investigation of King and Sandler [10].

5.1 Geometry of the Doubly Loaded Short Array:
 

The geometry of two identical, doubly loaded, short antennas

is as indicated in Fig. 5.1. Antenna 1 and antenna 2 are assumed to

be constructed of two perfect conductors of the same radius a and

length 2h (h is the half-length of antenna), and the distance be-

tween these two antennas is b. Two ideal, harmonic voltage sources

of equal angular frequency w and potentials V10 and V20 excite

the cylinder 1 and 2, respectively, at their centers 2 = 0 (the

antennas are assumed to be oriented parallel to the z-axis). In

antenna 1, the two identical lumped impedances ZLl are loaded

symmetrically on the antenna surface at z = d and z = -d. A

second pair of identical lumped impedances ZLZ are loaded on the

surface of antenna 2 as indicated in the figure. The gaps in the

cylinders at the location of the sources and the loading impedances
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are assumed to be of length 26. Since both the sources and the

lumped loading impedances are considered to be idealized point

elements, then 6 is assumed to approach zero in the subsequent

mathematical analysis.

The dimensionsof interest for both antenna 1 and 2 are the

same as those for the isolated linear antenna in Chapter 1, i.e.

80h

h/XO = E;- S 0.1

h >> a

B a << 1

o

b > a & b < h ... closely spaced array

where 10 is the free-space wavelength and so is the correspond-

ing wave number.

As a result of the above thin-wire assumption, and due to

the symmetry of the cylinders, the currents on both antennas will

flow primarily along the axial or z-direction, i.e.

11(2) = 2 112(2) ... axial antenna current in element 1.

12(2) = 2 122(2) ... axial antenna current in element 2.

These dimensional restrictions and axial current approximations lead

to a well known result [7 j that 112(2) and I (2) can be assumed

22

to be concentrated along the axis of cylinders 1 and 2, respectively,

when calculating the vector potential at their surfaces with neg-

ligible error.



78

5.2 Boundary Conditions for Calculating the Antenna Current
 

Distributions:
 

The currents 112(2) and I2 (z) on cylinders l and 2,

2

respectively, are symmetric about the cylinder centers (2 = o) and

must vanish at either of their extremities (z = 1h). A pair of

boundary conditions for each antenna current may therefore be ex-

pressed as

Imz (Z) = I111202)

for m = 1,2 . (5.1)

Imzkth) = 0

Since the tangential component of electric field should be

continuous at the antenna surfaces as

i + a _

Emz(r a ) - Emz(r a ) for m 1,2 (5.2)

i +

where Emz(r = a ) is the induced electric field just outside the

I + O O D .

surface of cylinder m at r = a which is maintained by the

a - ,

currents and charges on both antennas, and Emz(r = a ) is the

applied electric field just inside their surfaces at r = a .

5.3 Integral Equations for Antenna Current Distributions:

The arguments and mathematical procedures for obtaining the

2nd-order inhomogeneous differential equations for the vector

potential at the surfaces of antennas 1 and 2 are same as Sec. 2.3.

The equation (2.10) can be applied directly here for two vector

potentials Alz(z) and Azz(z): they are
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8 A12 2 jBo

322 + 801.12 - T {-V106(z) + 112(d) ZL1[6(z-d) + 6(z+d)]} (5.3)

2 . 2

622 + 801122 - T {-v206(z) + 122(d) ZL2[6(z-d) + 6(z+d)]} (5.4)

where A12 is the vector potential at the surface of antenna 1 due

to currents on antennas 1 and 2, and A is the vector potential
22

at the surface of antenna 2, due to the currents on both antennas.

1 (id) and 1 (id) are the load currents at the impedance

12 22

elements 2L1 and ZL2 at z = id, and 6(z) is the Dirac delta

function.

The complementary solutions of eq. (5.3) and (5.4) are obtained

easily as

= - L '

Alz(z) v (CIICOSBOz + CIZSinBOz)

C = .. . '
A22(z) %; (CZZCOSBOZ + CZISinBOz)

where V0 is the velocity of light in free-space, and C11, C22,

C12 and C21 are arbitrary constants. The particular solution of

equations (5.3) and (5.4) are found as

v z I (d)

p a _ .1. .19. - - .1:le— -
Alz(z) v0 [ 2 SinBOIZI 2 (SinBolz d| + Sin80|z+d|)]

v z 1 (d)

1132(2) = - 1— Egg SinBOIZI - ———-L2212 (SinBo|z-d| + SinBo|z+d|>] -v 2

o

The general solutions to differential equations (5.3) and (5.4) are

thus
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Alz(z) = A:z(z) +-AEz(z)

. V

_ ] + . 10 .
vCECllCOSBOz C12Sin802 +'—§- SinBOlzl

ZLlllz (d)

- -——7f—————(SinBoIz-d| + Sin80|z+d|)] (5-5)

22(2) = 9122(2) + Apz (Z)

V20
- 1.. - ___. -
V0 [CZZCOSBOZ + C2181n802+ 2 Slneolzl

Z I '(d)

- ‘Lgagé———(Sin80|z-d| + Sin80|z+d|)] , (5,6)

By the symmetry of the antenna currents Imz(z) = Imz(-z) for

m = 1,2, and it can be shown that the vector potential is also

symmetric about the center of either cylinder, i.e. Amz(z) = AmZ(-z).

It is therefore obvious that arbitrary constants C12 and C21

should be equal to zero in order to satisfy this symmetry condition;

equations (5.5) and (5 6) therefore become

A1z (z) = - i;[cuCos80z + Véo SinBolzl - ELLEE—(2(Sinsolz--d|

+ Sin80|z+dl)] (5.7)

22(z) = - i—[CZ20Cosez +—208inBo|zl-ELZ;3££31(SinBOlz-dl

vo

+ Sin80|z+dl)] (5.8)

at z = h, results (5.7) and (5.8) become

V Z I (d)

= _ j_, h +__lg_ , _ L1 12 . h-d

Alz(h) vO{CllCOSBO 2 SinBOh '——7{—-——{Sin80( )

+ SinBo(h+d)]} (5'9)
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v z I (d)
= _ j 20 . L2 22 .

A22(h) v0{C22Cos80h +-—§— SinBOh ..-——3f————{sin8o(h-d)

+ SinBO(h+d)]}. (5.10)

By combining equations (5.7) and (5.9), the arbitrary constants is

eliminated from eq. (5.7), and an expression for the vector potential

difference at the surface of antenna 1 is obtained as

. V Z I (d)

_ = j__ 10 M L1 12 C

Alz(z) Alz(h) vO SecBOh{ 2 oz + 2 088oh Soz

z I (d)
L1 12

+ [ 2 P - U1]FOZ} (5.11)

where

M = Sin8 (h - '2')

oz 0

g 0 - + a - o - - 0

s02 SlnBolz d| sih80|z+d| sin80(h d) SinBo(h + d)

F = C058 2 - C088 h

oz 0 o

P = Sin80(h - d) + Sin80(h + d)

= -' A .

U1 J vo 12(h)

Similary,

v z 1 (d)

- -L .22 +_1.2_22___
A22(2) A22m v0 sec°oh{ 2 Moz 2 COSBoh $02

2 1 (d)
L2 22 .

- [ 2 P - 021802} (5.12)

where 02 ' -j voA22(h)'

According to the dimensional assumptions h >> a and Boa << 1,

the Helmoltz integral for the vector potential at the antenna surface

can be simplified as the line integral over an axial current distribu-

tion with negligible inaccuracy, i.e.
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u

Alz(2) = ZfiEIfih 112(2')K11(z,z')dz' + Ifih 122(2')K12(z,z')d2'] (5.13)

22 4n

where

u = the permeability of free space and

0 _ B R

e j 0 11

K (2,2') = ———

11 R11
0 I o

e-jBOR12 ... Green s functions

K (2,2') = —-

12 R12

I g I

K21(z,z ) K12(2,z )

for two identical linear

K22(2,z ) = K11(2,2 ) antennas

 

R = R =./
11 22 (2-2')2+a

u

A (z) e —9{j°h Ilz(z')K21(z,2')dz' +-j°h 122(2')K22(z,z')dz'] (5.14)

2 ... the self-distance between an

observation point on the sur-

face of antenna at z and an

element of current of same

antenna on its axis at z'.

 

R12 = R21 ='/(z-z')2+b
2 ... the mutual distance between

an observation point on the

surface of one antenna at z

and an element of current of

another antenna on its axis

at 2'.

If the left hand side of eq. (5.11) is replaced by the Helmholtz

integral expression (5.13), an integral equation in terms of

112(2) and 122(2) 18 obtained as

H:

O h 1 1 1 h I I 1

ZEEI-h Iiz(z “(81107"z )dz +’I-h 122(2 )Kd12(z’z )dz 1

. V z I (z) z I (d)
= 1. Sec8 h f 10 M + L1 12 _ 1 L1 12

v o 2 2 2
O

S C038 h

02 02 o

P - 013F021

(5.15)
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where

1 = 1 _ 1
K 11(2.2 ) K11(2.z ) K11(h,z )

'jBoR11 ’jBoR11h
=_e__ _.§._

R11 R11h

1 = 1 _ 1
Kd12(z,2 ) K12(2,2 ) K12(h,z )

-JBOR12 -jBOR12h

=5?— -2.—

R12 R12h

 

R11h g“ (h-z')2+a2

 

= 2 2
R12h /1h-z') +b

U1 can be also replaced by the Helmholtz integral as

U1=-ij (h)
0 12

h
e -j :n[fhh112(2')K11(h,z')dz' +-j_h 122(2')K12(h,z')dz'] (5.16s)

Similary, equation (5.12) becomes

EQ{Ih I (z')K (z z')dz' +'Ih I (2')K (2 z')dz']

4n -h 12 d21 ’ -h 22 d22 ’

v2 2 I (d) z I (d)
_j + L2 22 _ L2 22 _

v0 Secsoh {% M02 2 stCoseoh I 2 P 021802}

(5.17)

where K = K and

d22 d11’ K821 g Kd12’

U2 a -j v0A22(h)

I I I h I I I

= -j :n[j°h 112(2 )K21(h,z )dz +-j_h 122(2 )K 22(h,z )dz 1 (5.166)
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Equations (5.15) and (5.17) are a pair of coupled integral equations

for the currents 112(2) and 122(2) on antennas l and 2, respectively,

and are valid for -h S 2 S h.

5 4 Approximate Solution for the Antenna Currents:

The application of King and Sandler's method to the solution

of integral equations (5.15) and (5.17) is the subject of this

section. This method is mainly based on the King's modified method

which consists essentially of assuming the current excited on the

antenna to be proportional to the vector potential difference (re-

ferred to the end of the antenna).

By a peaking property of the difference kernels Kd11(z,z')

I

and Kd22(z)z )

u I _ I
Kd11(z,z ) K11(2,z ) K11(h,z )

N 6(2-2') - 6(h-z')

Kd22(z,z') = K22(Z,Z') - K22(h)z')

~ 6(2-2') - 5(h-2')

it is found from the left hand sides of equations (5.15) and (5.17)

(z) and I (z)for both large and small Bob that the currents I 22

12

may be taken as the form

= + .

112(2) Gl Foz + Bl Moz C1 Soz (5 18)

= + + 5.19

122(2) CZ Foz BZ Moz C2 Soz ( )

where 61’ CZ, 31’ 32’ C1 and C2 are arbitrary complex constants.
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Note that in results (5.18) and (5.19)

I (z = :h) ll

0

H A N

II II

01h)

such that the boundary condition at the antenna extremities is auto-

matically satisfied, and the currents are symmetric as they should

be. By substituting equations (5.18) and (5.19) into the integrals

at the left hand side of eq. (5.15) and eq. (5.17) and by separating

the Green's function into real and imaginary parts, the integrals in

the left hand sides of (5.15) and (5.17) can be expressed in a gen-

eral form as

2% IEhEGmFoz' + BmMoz' + CmSoz'jKdll(z’z')dz'

+ :fi’ 1:hEGnFoz' + BnMoz' + CnSoz'JKd12(z’z')dz'

= 2% It-1h[GmFoz' + BmMoz' + Cmsoz'JKdllr(z’z')dz.

-j ;% EhEGmFoz' + BmMoz' + CmSOz,]Kdlli(z,2')dz'

+' gg'flhtcnpcz' + BnMoz' + Cnsoz'JKd12r(z’z')dz'

-j Eg-I§h[GnFoz' + BnMoz' + CnSoz'JKd12i(z’z.)dz. (5"20)

for m = 1,2 and n = 1,2 but m # n, and where Foz" M , and

02

S , are same as F , M and S except 2 is replaced by

02 oz 02 02

I: I _ h,'

K r(2,2 ) K11r(z,z ) K11r( .2 )

= CosBOR1

1 _ COSBoRllh

R11 Rllh
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I = I _ I

Kd12r(z’z ) K12r(z’z ) K121:0“z )

= CosBOR12 - CosBOR12h

R12 R12h

Kd11i(z’z') '[K111(z’z') ' K111(h’z')]

= SinBOR11h - SinBOR11

Rllh R11

Kd12i(z'z') ‘EK121(Z’Z') ' K121(h’z')]

SlnBoR12h _

R12h R12

SinBoR12

Since (2,2') becomes very large when 2' is near 2,
Kdllr

it follows that the main contribution to the part of the integral

that has Kd11r(z,z') as kernel comes from elements of current

I = I I

near 2 2. On the other hand, Kd12r(2,z ), Kdlli(z’z ), and

(2,2') remain relatively small when 2 = 2'. This su ests
88

KdlZi

that the principle contribution to the part of the integral that

(2,2'), K (2,2') and K (2,2') as kernel come

has dIZiKc1111 d12r

from all the elements of current that are some distance from 2.

Due to this peaking property of kernel K (2,2') and non-
dllr

peaking property of kernels (2,2'), K (2,2') and
Kdlli der

Kd121(2,z'), the various integrals on the right hand side of

equation (5.20) may be verified numerically to have the following

approximate representation:
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h = I I I

$-11 Foz' Kd11(z 2 ”)dz Ihh FOZ'EKdllr-(z’z ) + Kdni(2,z )sz

Ydu(z)Foz

Ydu(o)Foz

= YduFoz (5.21)

j‘h F0 (2,2 ")dz = ‘1’ (2)F é I (0)12 = I F (5 22)
-h Kd12 de 02 de 02 de 02 °

[h MO (2,2 )dz = Y (2)M
-h Kdllr dvr 02

(0)11 f B h s E

vr 0: or o 2

0 TT

der(h - 4 )Moz for Boh > 2

= derMoz
(57.23)

h d - ( )F ' Y F - Y F 5 24
I-hMo Kdlli (2’ z ) z dvi 2 oz dvi(o) oz - dvi oz ( ° )

h
.

f-hoM2 «d12(z 2 ')dz' Ydf(z)Foz - ‘i’df(o)Foz YdfFoz (5.25)

h °
' d ' = = I: .

J.-h Soz'Kdllr(z’z ) z der(z)soz der(o)soz dersoz (5 26)

[lbwS Mdll (Z 2 ')d2' ' dei(2)F (o)Fooz - Y F (5.27)
oz de1 dwi 02

h , , .

d 3 B I: .I-h Soz,Kd12(z,z ) z ng(z)Foz Yd8(o)Foz deFoz (5 28)

where Ydu(z), Yde(2), der(z), dei(z), Ydf(z), der(z), and ng(z)

are very nearly constant parameters which may be evaluated as

Ydu(z) = (CosBoz - CosBoh)-1{Ca(z,h) - Ca(h,h)

- CosBohEEa(Z,h) - Ea(h.h)]}
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Yde(z) = (CosBOz - CosBoh)-1{[Cb(z,h) - Cb(h,h)]

- cossoh[2b(z,h) - Eb(h,h>]}

wdvr(z) = [Sineo(h-|z|)]'15b{31nsoh[ca(z,h) - Ca(h,h)]

- Cossoh[sa(z,h) - Sa(h,h)]}

vdvi(z) = (CosBoz - Coseoh)lizn{31neoh[ca(z,h) - Ca(h,h)]

- CosBoh[Sa(z,h) - Sa(h,h)]}

Ydf(z) = (CosBOz - Cossoh)'1{51nsoh[cb(z,h) - Cb(h,h)]

- CosBoh[Sb(z,h) - Sb(h,h)]}

vdwr(z) = [SinBOIz-dl + SinBolz+d| - SinBo(h-d) - Sinso(h+d)]‘1

x &h{Da(z,h) - Da(h,h) - [SinBO(h-d) + SinBo(h+d)][Ea(z,h)

- Ea(h,h)] + Fa(z,h) - Fa(h,h)}

wdwi(z) = (CosBOz - Cossoh)1$zn{na(z,h) - Da(h,h) - [SinBo(h-d)

+ sineo(h+d)][Ea(z,h) - Ea(h,h)] + Fa(z,h) - Fa(h,h)}

wdg(z) - (CosBoz - Cossoh)’1{nb(z,h) - Db(h,h) - [SinBo(h-d)

+ SinBO(h+d)][Eb(z,h) - Eb(h,h)] + Fb(z,h) - Fb(h,h)}

and where

h e-jBoRll

Ca(z,h) = f—h CosBoz' E—_ dz'

11

h e-jBoR12

Cb(z,h) = f-h CosBoz' Ef— dz'

12

h e-jBokll

Sa(z,h) = I-h SinBolz'l E_— dz'

11



h e-JBORIZ

= - I __ I
Sb(z,h) f_h SlnBo|z | R dz

12

-JBoRll

h e

E (z,h) = I ‘-- dz'

a -h R11

-jaoR12
h e

E (z,h) =j‘ —— dz'
b -h R12

h e-JBoRll

B ' ' _ !
Da(z,h) f—h SinBOIz -d|R dz

11

h e-jBoRIZ

= - I_ , I
Db(z,h) j_h SlnBo|z le dz

12

h e-jBoRll

= ' ' _ I

Fa(z,h) f-h Sinfiolz +d|R dz

11

h e-jBoRIZ

z - I __ I
Fb(z,h) I-h 31n50|2 +d|R dz ,

12

For Ca(h,h), Sa(h.h), Ea(h,h), Da(h,h) and Fa(h,h), the R11 is

replaced by Rllh’ and for Cb(h,h), Sb(h,h), Eb(h,h), Db(h,h) and

Fb(h,h), the R is replaced by R Equations (5.23), (5.26)

12 12h.

and the real part of equation (5.21) are based on the characteristics

l .

of kernel Kd11r(z,z ), i.e.

h I I

K d ~

J‘-h Foz' dllr(z’z ) z Foz

h I
d ' ~ M

I-h Moz'Kdllra’z ) 2 oz

h ' I

I-h Soz'KdllrW’z )dz ~ 8oz

and equations (5.24), (5 25), (5.27), (5.28) and the imaginary part

of equation (5.21) are based on numerical considerations. It is

found numerically that these equations are approximately proportional

to the shifted cosine function Foz' The essentially constant
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Parameters Ydu(2) a Yde(z) ! der(2) 9 YdVi(Z) 2 der(2) ’ Ydf(z) : ydWi (Z)

and ng(z) can be replaced approximately by their values at z = o,

X
. g E. e - —9while der(z) der(o) for 80h S 2 and der(z) der(h 4 )

W

> - .for Sch 2

Substituting equations (5.21) through (5.28) into equation (5.20),

the vector potential difference is therefore obtained as

4n _

u—{Amz(z) - Amz(h)] - (GmYdu + GnY +j B Y + BY +j c“1,de
de m dvi n df i

+ + +
Cn‘ydgfl‘oz YduerMoz dercmsoz

for m = 1,2, n = 1,2, m # n. (5.29)

Equations (5.16a) and (5.16b) also can be expressed as

V t I h I I

;-Am (h) J]h1mz(z )K11(h,z )dz +-f_h Inz(z)K12(h,z )dz

0

= G Y + B Y + C Y + A Y + B Y + C Y

m u m v m w n e n f n g

for m = 1,2, n = 1,2, m f n. (5.30)

where Y = C (h,h) - E (h,h)CosB h

u a a o

*
6 I! c (h,h)SinB h - s (h,h)CosB h

a 0 a 0

>
6 ll Da(h,h) - Ea(h,h)SinBo(h-d) + Fa(h,h)

- Ea(h,h)SinBO(h+d)

w
e I Cb(h,h) - Eb(h,h)CosBoh

0
6 I Cb(h,h)SinBOh - Sb(h,h)CosBoh

~
€ ll Db(h,h) - Eb(h,h)SinBO(h-d) + Fb(h,h)

- Eb(h,h)SinBO(h+d).
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Instead of substituting equation (5.29) into equations (5.15)

and (5.17) as in Chapter 2, it is expedient to substitute (5.29)

directly into differential equations (5.3) and (5.4). This procedure

results in the following general result:

L1'o d2 2
...... — + -4” (dz, so )[Amzm Ammo]

d2 2
= — + - + °

(d22 80 ){(Gmwdu + GnYde J Bm‘ydvi + BnYdf

+ ' Y + + Y
J Cm dwi Cnng)Foz dVerMoz + dercmsoz}

-janBO

=-—————— - - ‘ +£0 [Vm06(z) ZLmImz(d)[6(z d) + 5(z.d)]}

A

- -E B 2A (h) ... for m = 1,2, n = 1,2 but m # n.

“'0 O mz

(5.31)

By differentiating the F , M , and S , the various delta function

oz 02 oz

terms are obtained as

2

-d—2 F = ’8 C088 2

CZ O 0

dz

d2
2——E M = -28 C038 h 6(z) - B M

OZ 0 O 0 OZ

dz

d2 23:3 302 e -30 (31n80|z-d| + SlnBo|z+d|) + 280[5(z-d) + 6(z+d)lo

Substituting the above results into eq. (5.31) and equating the co-

efficients of the corresponding delta function terms, three inde-

pendent equations are obtained as
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(B Y CosB h = L—23 v (5.32)
m dvr 0 Co mo

Y = j 3T3- 2 1 (d) 5 33
m dwr Co Lm mz ( ° )

r .

COSBth‘ydqu + YdeGn + J deiBm + Yden + deicm + ngcnJ

+ Y c Esme (h+d) + SinB (h-d)] = 5‘51 A (h) (s 34)
L dwr m o 0 no mz ‘°

where m = 1,2 and n = 1,2 but m ¢ n.

From eq. (5 32), the arbitrary constants B and B are completely

 

 

 

l 2

determined by setting m = 1 and 2, i.e.

iZn v10
B = = V D (5.35)

1 Co derCOSBOh 10 0

B2 = V20 0 (5°36)

where

D = J 2T7
o QOderCosBoh

Constants C1 and C2 can be expressed in terms of 112(d) and

122(d), respectively, by setting m = 1 and 2, i.e.

C =12:le I (d) (5.37)

1 Q Y 12

o dwr

Z
217 L2 .

C2 j C Y 122(d) . (5.38)

o dwr

Since

112(d) = G1(CosBod - CosBoh) + BISinBO(h-d)

+ C (SinZB d - 28in8 hCosB d) (5.39)

l o o o
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122(d) = 62(CosBOd - CosBoh) + BZSinBO(h-d)

+ C2(Sin28 d - 28inB hCosB d) (5,40)

0 O 0

then C1 and C2 can be expressed in terms of G1 and GZ’

respectively, i.e.

 

 

 

= +
C1 G1D1 D2V10 (5’41)

C2 = 6203 + D4V20 (5.42)

where

jfiQL

D1 = C T (CosBod - CosBoh)

0 c1

jznz

D = ————L1 D SinB (h-d)
2 Q T o o

0 cl

= - ' - ° 1.2—1:
Tcl der (SinZBOd ZSinBOhCosBOd) Co 2L1

j2fizL2
D = (CosB d - CosB h)

3 C T o o
0 c2

jznz

D = L2 D SinB (h-d)
4 C T o o

0 c2

T = Y - (SinZB d - 23in8 hCosB (1)12E Z .

c2 dwr ‘ o o 0 CO L2

Equation (5.34) can produce two independent equations for the cases

of m = l and n = 2, and m = 2 and n = 1; they are

- + + ' + +
COSBohEYduGl YdeGZ J deiBl Ydez + j deicl ngc2]

. . _ 33 .
+ derCl[SinBo(h+d) + SinBO(h-d)] - ”o Alz(h) (5 43)
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CossOhEYdUG2 + Ydec;1 + J deiBZ + Ydel + j deic2 + ngCI]

. . 4n
+ derczbmeomw) + SinBo(h-d)] ”o A2201). (5.44)

Substituting equations (5.30), (5.35), (5.36), (5.41) and (5.42) into

(5.43) and (5.44), two equations of G1 and CZ are obtained as

GlTsl + GZT$2 = WIVIO + w2v20 (5.45)

GIT$3 + GZT$4 = W3V10 +W4V20 (5.46)

where

TSl = CosBOhCYdu + j deiDI) + 2D1derSinBOhCosBod - (Yu + Dle)

T$2 = CosBOhCi’de + ngD3) - (Ye + DBYg)

TS3 ‘ CosBOhCi’de + ngDl) - (Ye + DlYg)

T54 = CosBOhCYdu + j deiD3) + 2D3derSinBOhSinBOd - (Wu + D3Yw)

W1 = DoYv + DZYw - j(DO‘i’dvi + deiD2)COSBOh - ZderDZSinBohCosBod

wz = DoYf + D4Yg - (Do‘i’df + ngD4)CosBOh

w3 = Dowf + DZYg - (Do‘l’df + ngD2)COSBOh

W“ = DoYv + D4Yw - j(DOYdvi + deiD4)COSBOh - ZderDASinBOhCosBod .

From equations (5.45) and (5 46), G1 and G2 are determined as

c =wv, +wv (5.47)

(5.48)C
) II

S < + 2 <
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where

= w3T52 - w1Ts4
 

 

 

 

5 Tssz3 ' Ts4T81

w = w4TSZ - w2Ts4

6 TsZTSB - Ts4Tsl

w z w1Ts3 ' w3Tsi
7 -

’ T$2Ts3 Ts4Tsl

W = w2Ts3 - w4Tsl

8 TsZIs3 - Ts4Tsl

Constants C1 and C2 are therefore also determined as

= +

C1 (“501 1’2”10 + W6D1V20

C

2 ' w7D3V10 + (WBDB + D4>V20

Finally, the approximate solutions for 112(2) and 122(2) are

completely determined as

+ +

I12(2) GlFoz BlMoz Clsoz

[wrF + D M + (WSD + +
5 oz 0 oz D2)So (Foz + DlSoz)w6v20

(5.51)

l zJVIO

: -+

122(2) G2Foz BZMOZ + C2802

+

(Foz D3Soz)w7VlO

+WF+M+ D+ .

E 8 02 Do 02 (NS 3 D4>Sozlv20

(5.52)

Equations (5.51) and (5 52) express the.antenna current distributions

in terms of the antenna dimensions, their excitation frequency, and

the impedance and position of the double loadings.
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5.5 Input Impedance of the Antenna Coupled with a Doubly Loaded

Parasitic Element:
 

The input impedance of antenna 1 is defined as

V

Z. = ———lQ:—— = . + j X. .

in 112(2-0) in in

If antenna 2 is a doubly loaded parasitic element with zero driving

potential or V20 = o, the input impedance of driven element 1 is

obtained directly from eq. (5.51) as

_ -1
(Zin)v20=o — [wSFOZ(o) + DOMOZ(0) + (wSD1 + D2)Soz(o)] . (5.53)

When antenna 2 is doubly loaded parasitic element center loaded by

an impedance 20’ V20 = 422(0) 20 and the impedance zin of the driven

element is obtained from eq. (5.51) and eq. (5.52) as

(2 ) - {1 + [w8FOz(o) + DoMoz(o) + (W8D3+D4)Soz(o)]zo}
in I.

v20 I20(°)7‘o

x £w5F02<o> + DoMoz(o) + <w5D1+D2>soz<o>T1

{1 + [w8FOz<o> + DOMOz<o) + (wan3 + D4)soz<o>]zO

+ [Foz(o) + n soz(o>][Foz(o> + DBSoz(o)]zO}'1.
1

(5.54)

5.6 Radiation From Coupled Short Antennas:
 

The well known radiation fields in the far zone of a linear

antenna system are given by

r r

E = - A
a J m e

r 1 r

= -—-E
B¢ v 6
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in terms of spherical coordinates.

10.95”)

zone due to the antenna currents 112(2) of eq. (5.51) and 122(2)

The vector potential A;(z) at point P(R in the far

of eq. (5.52) can be expressed as

-jR -jR
u 1 2

r = - _2 . h . e . h , e d .

“9(R10’9’9) 4n SineU-h I12“ ) R1 dz +I-h 122(2 ) R2 2

(5.56)

where R1 and R2 are distances between an observation point in far

zone and the source points on antenna 1 and antenna 2, respectively,

and R10 and R20 are the distances between the center points of the

antennas and the point P as indicated in Fig. 5.2.

 

ant. 1 ant. 2

Fig. 5.2. Geometry for Calculation of Radiation Field

Since Bob << 1, the distance R can be approximately expressed

20

in terms of R10 as

R20 = R10 - b CosY ... for phase factor

R ; R ... for amplitude terms

20 10

where Cos? = Sine Coso.
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By using the same procedures of Sec. 3.2 and taking the three leading

terms of the power series of the Green's functions in eq. (5.56),

the odd terms of the series integrate to zero due to the symmetry of

the antenna currents. Equation (3.4) can therefore be applied

directly to eq. (5.56) to yield

 

 

-jB°R1° h 1 2 2
r = _ .2 . .e__ . - _ I 2 IAe(R10,9,¢) 2n Sln9{é10 f0 112(2 )(1 2 502 Cos e)dz

e-jBoR10 jB bCosY 1 2 2 2

+ ——- e ° f I (z')(1 - — 8 z' Cos e)dz' .
R10 0 22 2 o

(5.57)

The radiation fields E; and B; are then obtained as

- R

r j Co e jBO 10

E = -- B F(B h,9,¢) (5.58)

6 1 R o

o 10

. -' R

r J no 8 J80 10

B = l R B F(8 h,9,¢) (5.59)

¢ 0 10 o

where

jB hCos¢Sin8

F(80h,9,¢) = Sin8{1 - § 00829 +-§ e O (1 - % 00829} (5.60)

l h 2 ,2 , ,
A 2 Jo Boz 112(2 )dz

- h I I
B IO 112(2 )dz

_h ..
C Io 122(2 )dz

D - l’fh 522'2
'd'.

2 o 0 122(2 ) 2

Since the phases of the currents on both elements are essentially

constant, it is possible to write
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% a real constant K1 [same argument as in eq. (4.4)]

c
a
n
:

real constant K2 [same argument as in eq. (4.4)]

E; J's

B K3e

where a is the phase difference between 112(2) and Izz(z), and

K is a real number.

3

Equation (5.60), therefore, becomes

jBObCos¢Sin0

 

 

 

 

. 2 -

F(Boh,8,®) = Sin6{l - K1Cos 9 + KBeJa e (1 - K2C0826)}.

(5.61)

Equation (5.61) will be used in the discussion of Section 5.8.

5.7 Enhancement of Radiated Power:

The average power flow at P(R10,9,¢) is obtained as

a 2

§ —lee(sarxo r"‘)=l|EgI is (5 62)
av. 2 9 H¢ 2 Q ' O

0

From equations (5.58) and (5.61) E; is obtained as

r . j Co e-JBoRlO 2 ja jBObCos¢Sin9 2

£9 = x -§—— B sinefl - K1Cos e + K3e e (1 - KZCos 9)}

o 10

jBObCos®Sin8 .

and since it is assumed that Bob << 1, then e = 1 and

r j go e.JBORlO 2 la 2
E = -——— B Sine{1 - K Cos e + K3e (1 - K Cos 9)}. (5.63)
9 10 R10 1 2

Since Boh << 1, unless the phase of the antenna current is reversed

h I I h 2 2
>> ' ' 'f0 112(2 )dz I0 802 112(2 )dz

h I!) 112.2 I '

Io 122(2 )dz >'Io Boz 122(2 )dz
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this means that K << 1, K << 1 and eq. (5.63) can be approximated

 

l 2

as

r j Co e-JBORIO

Ee - l E—— (B + C)Sin8. (5.64)

o 10

The total time-average power radiated by the antenna is thus given

 

by

—+ 2

. |Er|
Prad‘ = 2171110 I:% 2 ’f “r Sine d9

0

=54; IBICIZ. (5.65)
no

Equation (5.65) shows that the power radiated by the coupled antenna

2

is roughly proportional to ‘3 + Cl . Since B and C are simply

the areas under the current distributions along the antennas 1 and 2,

respectively, the radiated power Prad may be enhanced by maximizing

the area under the currents Ilz(z) and 122(2) while at the same

time adjusting them to have a minimum phase difference. This can be

accomplished by appropriately choosing the loading impedances XL1

and XL2 located at the fixed positions (11 and (12 along the

surfaces of antennas 1 and 2.

The current distributions I (z) and 122(2) for antennas
12

which are optimumly loaded with optimum reactances {XLljop and

[XLZJOP to have maximum areas and minimum phase difference, are

plotted in Fig. 5.3 through Fig. 5.6 for various antenna spacings.

From these figures, it is observed that the typical forms of the

current distributions on the coupled antennas loaded with the optimum

reactances exhibit nearly uniform amplitude distributions between
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the loading points. Under the optimum condition of enhanced radiation,

the shapes of I z(z) and 122(2) are quite similar and the phase

1

difference between them is minimum as shown in Fig. 5.1. Thus, the

radiated power under this condition can be enhanced to about four

times that of an isolated antenna.

The input impedances of the driven antenna coupled to a

parasitic element, both loaded with the optimum reactances, are

determined from eq.(5 53) and shown in Table 5.1. It is indicated

that under the optimum condition of enhanced radiation the input

resistance is increased and the input reactance is reduced as com-

pared with the case of an isolated loaded antenna.

5.8 Improved Directivity:
 

For simplicity, only the case of g = g' is considered in this

section. Under this condition, eq. (5.61) can be expressed as

F(Boh,9.¢) =5 Sin9(1 - K Cosze)[1 + K3ejo’(1 + j BobCos¢Sin9)] (5.66)
l

jB bCos¢Sin9 .

since e O = 1 + j BobCos¢Sin6 for Bob << 1.

If g = K3eja is not close to -l, the radiation pattern is similar

to that of a single doubly loaded antenna for improved directivity

as discussed in Chapter 4 and no further discussion is needed. How-

ever, if C = -B can be implemented eq. (5.66) becomes

2 , 2

F(Boh,9,¢) = j Bob(l - K1Cos 9)Cos¢ Sin 9. (5.67)

The radiation patterns in the plane of ¢ = o are plotted

in Fig. 5.7 for various values of K The directivity and beam-1.

width are also indicated in the same figure. By comparing with the
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Fig. 5.7 Theoretical Radiation Patterns of Coupled Short

Antennas with K = 0, 1, 2 and I under Conditions

of K I K2, K I 1 and a I n. (o = o)

1 3
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radiation patterns shown in Chapter 4, it is observed that the doubly

loaded coupled array has a higher directivity than that of a corres-

ponding single antenna if the condition of Ih I (z')dz' = ~fh I (z')dz'

o 12 o 22

is met.

5.9 Discussion:
 

The approximate theory developed in this chapter for the doubly

loaded coupled antennas has been checked by the existing theories [ 5]

for the case of Z ' Z = 0. When 2 = 2

L1 ” L2 L1 L2, the theory is still

quite accurate, however, the accuracy of the theory starts to de-

crease when the difference between ZL1 and 2L2 increases. The

reason for this discrepancy is due to the completely different

current distributions on the antennas when le is greatly different

from 2L2'



CHAPTER 6

EXPERIMENTAL STUDY OF SHORT ANTENNA WITH HIGH

DIRECTIVITY 0R ENHANCED RADIATION

An experimental study of doubly loaded short antennas (both

for single and coupled antennas) is presented in this chapter. In

order to compare these experimental results with the theoretical

results presented in the previous chapters, an antenna of particular

dimensions, a = 0.125 inch and h = 15 cm, which was used in numerical

calculation is used in the following experiments. The current dis-

tributions and input impedances of an antenna with different optimum

impedance loadings at proper positions along the antenna are measured

and are compared directly with the corresponding theoretical results.

The excitation frequency is usually fixed at 200 MHz. In addition

to the doubly loaded antennas, experiments have also been conducted

to study the cases of an end-loaded antenna and an antenna with

double impedance and end loadings.

6.1 Experimental Setup:

The experimental setup for measuring the current distributions

and input impedances of the antennas is shown schematically in Fig.

6.1. Photographs of the inside and outside views of the anechoic

chamber are shown in Fig. 6.2 and Fig. 6.3.

An 8' wide, 6' high, 6' long anechoic chamber was constructed

with wooden frames enclosed completely with an aluminum ground plane

on one wall and B.F. Goodrich type VHF-8 microwave absorbers covering

the remaining five walls. A driven linear antenna (monopole) and

109
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anechoic chamber
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Fig. 6.1 Experimental Setup



 
Fig. 6.2 The Inside View of Anechoic Chamber

II

I.

 
Fig. 6.3 The Outside View of Anechoic Chamber
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array element are simply the extensions of the movable centerwires of

the coaxial lines connected to the ground plane. Thus, the antenna

length can be adjusted freely by sliding the centerwires inside of

the coaxial lines and into the anechoic chamber. The driven antenna

is excited by an R.F. OSC. at 200 MHz and with the square wave

amplitude modulation of l KHz. The coaxial line which excites the

antenna has a characteristic impedance of 75 0 and its outer con-

ductor has physical dimensions of 1 inch outer diameter and 0.875

inch inner diameter. The outer conductor of the coaxial line is

directly connected to the ground plane. The center conductor has

a diameter of 0.25 inch and its free end, which protrudes the ground

plane, serves as the antenna.

The lumped impedance is mounted on the antenna as indicated

in Fig. 6.4. Since the antenna is separated by a piece of insulating

material at the loading position, the loading impedance is actually

the parallel combination of the externally mounted inductor L (non-

ideal inductor) and the unknown stray capacitance C existing at the

loading location. The loading impedance may be determined from the

following simple circuit. The impedance Z at angular exciting
L

frequency w is obtained as

L Z = R + j w L

C -Z L 1+ij(R+ij)

L

R wL

where R = —— .

J Q

The frequency can be adjusted to make the current minimum at the

 

 

loading point. At this frequency, the suceptance, l/ZL becomes
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Fig. 6.4 Structure of Monopole Antenna
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Fig. 6.5 Structure of Current Probe
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2

zero. This critical frequency can be determined to be mo I (L-RZC)/LZC.

The stray capacitance C can then be expressed as C = L/(R2 +-w:L2)

and ZL is determined as

(R + ij) (R2 + 6:12)

z=RL+jX= -L 2 2 2
L R+L(w:-w)+ijR

 

(6.1)

The current probe, which is connected to a flexible 50 O

coaxial line passing through the hollow center conductor of the

excitating coaxial line to the instruments outside the chamber, is

supported by a plastic guide in the antenna slot and can be moved

freely between the driving point z = o (the point at the ground

plane) and the loading point z = d. The detailed construction of

the current probe is shown in Fig. 6.5. The relative amplitude of

current can be measured by moving the current probe along the slotted

antenna. The phase of antenna current is obtained by comparing the

probe signal with the reference signal from the R.F. Oscillator.

A charge probe is inserted into the region between the outer

and inner conductors of the exciting coaxial line. This probe is

supported by a movable carriage and can be moved along the slotted

outer conductor of the exciting coaxial line. The standing wave

ratio and the phase shift of the wave pattern in the coaxial line

can be measured by this charge probe. The input impedance of the

antenna can then be determined as,

1 - j S taanLmin

 

° X 2 (6.2)2 . =

1n S j taanLmin. c

where S is the standing wave ratio and Lmin is the distance

between the first voltage minimum and the antenna driving point
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and Z is the characteristic impedance of coaxial line.

c

6.2 Doubly Loaded Short Antennas:

The experimental investigation of the current distribution

and input impedance of an antenna both for enhanced radiation and

improved directivity is presented in this section. An antenna, having

the dimensions of a I 0.125 inch and h I 15 cm, is loaded with a

reactance XL of various values at d I 0.7h and excited at a

frequency of 200 MHz. The loading impedance ZL I RL + j XL,

determined from eq. (6 I), is plotted in Fig. 6.6 in such a way that

XL is expressed as a function of RL for the variance inductors L

with the same Q = 75 at f I 200 MHz. The measured value is

compared with the theoretical value. From here on, the reactive part

of ZL’ XL’ will be used as the equivalent loading reactance in the

following sections and RL will be omitted in the expression of the

loading impedance ZL'

6.2.1 Enhanced Radiation Case
 

In Sec. 3.3 of Chapter 3, it has been shown that the typical

current distribution of an antenna with optimum loading reactance

[XL]op at the position of z I d for enhanced radiation is a uniform

distribution between the loading points which decreases to zero be-

tween the loading points and the extremities of the antenna. Under

this condition, the input resistance is increased to two to three

times that of an unloaded antenna and input reactance is tuned to

zero. The experimental results for the antenna current distributions

with various loading reactances of XL I 0, 500, 800 and 900 0, at

d I 0 7h, are plotted in Fig. 6.7. By examining these curves and
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comparing with the theoretical results shown in Fig. 3.3, it is found

that the experimental result for X I 800 Q is correlated to that of
L

the theoretical results for X I 850 0. This gives a quite satisfactory
L

agreement between theory and experiment. As the loading reactance is

increased to 900 O, the current distribution becomes similar to the

case discussed in Sec. 3.4. The experimental input impedance of the

antenna, determined from eq. (6.2), is plotted in Fig. 6.8 as a

function of XL, which is calculated from eq. (6.1). This experimental

result is compared with the theoretical results of eq. (2.26) for an

inductor with Q I 75 and Q I I. It is observed that the experi-

mental results compare well with the theoretical results for the case

of Q I 75. The higher experimental input resistance is mainly con-

tributed by the loading resistance RL present at the loading points

(z I 1d), since it is indicated in Fig. 6.6 that the loading resistance

RL determined by eq. (6 1) has a value greater than that of the

theoretical one. The higher input resistance is therefore expected.

6,2,2 Improved Directivity Case

In Sec. 4.4 of Chapter 4, it has been indicated that the

typical current distribution along an antenna Optimumly loaded for

improved directivity has a phase reversal between the loading points

(z I :d) and the driving point (z I 0). At the point of phase

reversal, the antenna current goes to zero. The total area under

the current distribution along the antenna is, therefore, almost

equal to zero. As a result, the input impedance has a small input

resistance and a very large input reactance. By examining the

experimental results of the current distributions shown in Fig. 6.9
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for XL I 0, 1250, 1500 and 1900 0, it is observed that the optimum

reactance X for high directivity is around 1900 0. This result
L

is in agreement with the theoretical result shown in Fig. 4.9. In

Fig. 6.8, it is shown that the input resistance for XL I 1900 is

110 0 while the theoretical value is 35 O. The deviation is mainly

attributed to the difference in the experimental and theoretical

values of the loading resistance as shown in Fig. 6.6.

6.3 End-Loaded Short Antennas:

The current distributions and input impedances of an antenna

loaded with various types of end loadings are experimentally in-

vestigated in this section. The end loadings include circular

plates, rectangular bars, cylindrical bars, and helixes of various

diameters and lengths. The antenna has the same dimensions and

excitating frequency as that of the antenna used in the previous

section (Sec. 6.2). The photographs of various end loadings are

shown in Fig. 6.10.

6.3.1 Current Distributions on the Antenna

The current distributions along the antenna with various

types of end loadings are plotted in Fig. 6.11 through Fig. 6.15.

It is indicated in Figs. 6.11 and 6.12 that the current distributions

on an antenna with rectangular and cylindrical bar loadings are almost

the same as long as the lengths of bars are the same. It is also

shown in Figs. 6.13 to 6.15 that the current distribution is a

strong function of the diameters of circular plates and helixes used

as end loadings. In Fig. 6.13, the current approaches a uniform

distribution as the diameter of the circular plate is increased to
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12 cm. In Figs. 6.15 and 6.16, it is shown that when the helix

diameter is approximately the same as that of the antenna, the current

distribution resembles that of the unloaded antenna with an equivalent

half length of h' I h + hl’ where h is the antenna length and h1

is the height of the helix. As the diameter of the helix is in-

creased to four or five times that of the antenna, the current dis-

tribution becomes nearly uniform along the antenna. In Chapter 3, it

has been indicated that the power radiated by the antenna is approx-

imately proportional to the square of the area under the current dis-

tribution on the antenna. Consequently, the circular plates and

helixes are desirable end loadings for obtaining enhanced radiation.

6.3.2 Input Impedances
 

The measured input impedances of antennas with various types

of end loadings are listed in Table 6.1 through Table 6.5. It is

indicated that the input resistance is increased and the input re-

actance simultaneously decreased as the length of the bar or the

diameters of the helix and the circular plate are increased.

By examining the current distributions and input impedances,

it is concluded that by using the end-loading techniques, the power

radiated by the antenna may be enhanced by a factor of one to four

compared with that of an unloaded antenna if the dimensions of the

end loadings are appropriately chosen. However, an end-loading is

not capable of reducing the input reactance to zero and cannot in-

crease the input resistance by a factor larger than four. It is

clear that the technique of doubly loading as discussed in Chapters

2 to 4 can accomplish more than the end loading technique.
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Table 6.1 Input Impedances of a Short Antenna End-Loaded

with Rectangular Bars of Various Sizes (L(cm) X

t" x 1 mm. thick).

 

 

 

 

 

 

  

 

 

a I 0.00212).o h I 0.1).9 , f I 200 MHz

Length of 2in - Rm + J X1 (0)

Rectangular Bar Rin xin

2 cm 9.336 -424.818

4 cm 10.941 -373

6 cm 11.92 -336.5

8 cm 11.86 -315

10 cm 12.328 -278

12 cm 141306 -247  
 

Table 6.2 Input Impedances of a Short Antenna End-Loaded

with Cylindrical Bars of Various Sizes (k" in.

 

 

 

 

 

 

 

 

 

  

diameter).

a I 0.00212).o h I 0.110 , f I 200 MHz

Length of zin ' Rm + 3 x13 (0)

Cylindrical Bar Rin xin

2 cm 10.018 -408.352

4 cm 11.09 -3S6.542

6 cm 12.914 ~318.338

8 cm 13.42 -286.43

10 cm 14.024 -254.2

12 cm 15.32 -223    
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Table 6.3 Input Impedances of a Short Antenna End-Loaded

with Circular Plates (1 mm thick) of various

diameters.

 

 

 

 
 

 

 

 

 

Diameter of 2in B Rin + j xin

Circular Plate (cm) Rin X1“

2 cm 6.17;, ~403.254,

4 cm 10.11 -301.9

6 cm 12.552 ~221.778

8 cm 14.538 -148.66

10 cm 13.076 - 88.634

12 cm 14.57 - 36.18     
Table 6.4 Input Impedances of a Short Antenna End-Loaded

with Helixes of Various Length3(D I 3/4").

 

 

 

 

 

 

 

Length of 2in . Rin + J xin

Helical Wire (cm) Rin xin

25 cm 9.06 -348.4

30 cm 14.24 -318.34

35 cm 14.56 -292.2

40 cm 15.66 -246.92    
Table 6.5 Input Impedances of a Short Antenna End-Loaded

with Helixes of Various Diameters (L I 37.5 cm).

 

 

 

 

 

 

  

Diameter of 2in I Rin+ j x‘n

. Helical (inch) Rin xin

5/16 inch 4.756 -356.7

11/16 inch 13.473 .249,4

13/16 inch 14.870 -244.696

1 1/16 inch 22.848 -135.61   
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6.4 Short Antenna with Double Impedance and End Loadings:

A short antenna which is doubly loaded and also end-loaded by

various loadings is discussed in this section. Since it is difficult

to measure the current distribution between the loading point z I d

and the end point z I h, only the current distribution between 2 I o

and z = d is measured in this experiment. The current distribution

between d S 2 S h is assumed to take that same form as that on the

antennas of the previous section.

6 4.1 Current Distribution

The current distributions of doubly loaded antennas having

various types of end loadings at z I h and various loading re-

actances XL at d = 0-7h are plotted in Fig. 6.16 through Fig.

6.23. These figures indicate that the loaded antenna can have

typical current distributions appropriate to improved directivity

(see Fig. 4.7) or enhanced radiation (see Figs. 3.1 and 3.9) if the

appropriate corresponding loading reactances XL are mounted at

z I d along with various end loadings at z = h It is also in-

dicated that the current distribution is mainly controlled by the

loading reactance XL.

6 4,2 Input Impedances
 

The input impedances of antennas with various loading

implementations are listed in each figure for various loading re-

actances X .

L

6.5 Doubly Loaded Coupled Antennas:
 

The experimental results for the current distributions and in-

put impedances of coupled antennas doubly loaded by various reactances
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XL are shown in Fig. 6.24. By investigating these curves, it is

observed that the coupled antennas doubly loaded with XL1 I 980 O

on the driven antenna and XLZ I 1040 on the parasitic element have

uniform current distributions between 0 S 2 S d on both antennas.

The input resistance is greatly increased and the input reactance

is decreased to a value much smaller than that of unloaded coupled

antennas. These physical phenomenon observed are in good agreement

with the theoretical prediction for enhanced radiation. This is

evidenced by comparing Fig. 6.24 with Fig. 5.6 which shows graphically

the corresponding theoretical results developed in Chapter 5.
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