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ABSTRACT

THERMODYNAMICS AND DIFFUSION IN POLYMER SOLUTIONS

CONTAINING ASSOCIATING SPECIES

BY

Joe Su-Shien Lin

Thermodynamic and diffusion data of polymer—solvent

systems in the literature indicate that agreement between

theory and experiment is far from satisfactory. One type

of polymer solution which offers interesting insights and

for which little has been published is the associating

polymer solute in dilute solution. Although association

and/or strong intermolecular interactions have been cited

by a few researchers as the cause of otherwise unexplain-

able experimental results, little effort has been made to

study the effects of association of polymer molecules on

solution properties. As a result, there exists at present

no satisfactory theory which describes accurately the

thermodynamic and diffusion properties of polymer solutions

containing associating species.

An association theory is proposed in this work to

describe the thermodynamic and diffusion properties of

dilute solutions of an associating polymer solute in an

inert solvent. Application of the association theory leads

to the prediction that the osmotic pressure of a dilute

solution containing associating polymer solute can be

expressed as:
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which is similar to the van der Waals equation not only in

form but also in the physical significance of the corres-

ponding parameters. The term (K/a)/X2 accounts for effects

of intermolecular attraction between polymer molecules and

the parameter E represents molar excluded-volume of polymer

molecules in solution. The theory also suggests that the

experimentally observed osmotic second virial coefficient

can be split into two parts: (1) The ”true” second virial

coefficient which is directly related to the excluded—

volume of polymer molecules and (2) An association term

which accounts for the effects of association.

Based on the same theory, the concentration dependence

of the diffusion coefficient of such a solution can be

described by the equation:

D = D°

m

Xasso(l + kdfig + ...)

where XasSO is a complex function of polymer concentration

that reflects the variation of the average size of diffus-

ing species due to intermolecular association. The equa-

tion correctly predicts that the diffusion rate first

decreases sharply with concentration and then attains an

almost constant value or passes through a shallow minimum

depending on the magnitudes of the thermodynamic and

hydrodynamic interactions between solution components.
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A Mach—Zehnder diffusiometer was used to measure the

diffusion coefficients of eight polymer-solvent mixtures at

34.0°C. Osmotic pressures and osmotic second virial coef—

ficients at 34.0°C were determined with a Hallikainen auto-

matic membrane osmometer. Monodisperse (MW/MN < 1.05)

polytetrahydrofurane (PTHF) with and without OH end-groups

were chosen for this work. Two solvents (bromobenzene and

methyl-ethyl-ketone) having different capability for block-

ing the formation of hydrogen bonds were employed to study

the solvent influence upon association behavior.

The experimental results indicate that the OH

end—groups indeed affect thermodynamic and diffusion prop-

erties of dilute polymer solutions significantly. Data

from this work as well as from the literature are used to

test the validity of the association model with good

results.
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I. INTRODUCTION

The dependence of the rate of diffusion of polymer

molecules on concentration has long been of considerable

empirical and theoretical interest. However, present under—

standing of the diffusion process in polymer-solvent systems

is far from satisfactory, and estimates of diffusion coeffi-

cients are often unreliable except in some limiting cases

such as in infinitely dilute solutions of nonassociating

solutes. Although methods are available for predicting the

concentration dependence of diffusion coefficients in dilute

polymer solutions, they are for the most part valid only for

non—electrolyte, non-polar polymer solutions. This situa-

tion results in large part from the lack of a usable kinetic

theory of polymer solutionsanuifrom the lack<mfreliable

experimental data. Difficultiesixlunderstanding polymer

solution behavior arise from the complex naturecflfpolymer

molecules “343.,the enormous size and very large number of

internal degrees of freedom of polymer chains, Unapolydis-

persity of polymer samples, etc.).

Using irreversible thermodynamics as a theoretical

basis for description, two factors contribute to the rate

of diffusion of polymer molecules in solution: (1) A thermo—

dynamic factor which is related to the driving force of the

1
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diffusion process, and (2) A hydrodynamic factor which

describes the resistance to movement of diffusing compon-

ents through the surrounding medium. The concentration

dependence of diffusion rate is, therefore, determined by

the concentration dependence of these two factors.

Although methods for predicting the concentration depen-

dence of diffusion coefficients in polymer solutions from

thermodynamic and hydrodynamic properties have been avail—

able for some time, a recent and probably the most rigorous

method was proposed by Vrentas and Duda [IA-l]. Their

result suggests that the diffusion coefficient is a linear

function of concentration in the dilute concentration

region and that the concentration dependence of diffusion

coefficient is determined not only by thermodynamic and

hydrodynamic factors, but also by volumetric effects due to

the mixing process. The predicted concentration dependence

of the diffusion coefficient according to the method pro-

posed by Vrentas and Duda is generally in good agreement

with experimental data. Diffusion data in the literature

indicate that the only exceptions are those polymer-solvent

mixtures in which association or strong intermolecular

interaction occurs [lA-Z, 3, 4].

Disagreement between theory and experiment can be

found not only in diffusional properties, but also in the

thermodynamics of dilute polymer solutions. For example,

the well—known excluded volume theory of dilute polymer

solution predicts that the osmotic second virial
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coefficient should decrease slowly with increasing polymer

molecular weight. This prediction is generally obeyed by a

great number of polymer—solvent systems. However, in some

cases the observed osmotic second virial coefficients are

found to decrease or even change sign with decreasing molec-

ular weight. It has been suggested [IA-5, 6] that this

inconsistency, like those observed for the transport

properties of dilute polymer solutions, is caused by inter—

molecular association between polymer molecules in solution.

Historically, the concept of associating organic com—

pounds has been largely ignored throughout the development

of polymer physics. The reasons for that can be traced

back to the very beginning of the discovery of macromole-

cules. The idea that macromolecules themselves are asso-

ciates of smaller organic colloids was dismissed so

thoroughly about fifty years ago [lA-7], that very few

investigators have reconsidered association as an important

phenomena in polymer solutions. Furthermore, the theories

of polymer solutions as developed by Flory and Huggins

[IA-8] appeared to explain solution properties very well

without the assumption of association. As a result, the

idea of intermolecular association in polymer solution

became unattractive and not very useful to polymer

researchers. Nevertheless, as macromolecular solutions

have been studied more extensively in the past decade, much

evidence indicates that there are many polymers which

associate with themselves in solution and existing theories
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which do not take the effects of this association into

account are Often inadequate to describe solution

properties.

This work is aimed at studying the effects of

intermolecular association on the concentration dependence

of thermodynamic and diffusion properties in polymer solu—

tions. An association model, which takes into considera-

tion intermolecular association, is proposed by the author

and the advantages of this theory over non-association

theories are discussed. Data for osmotic pressures and

diffusion behaviors from this work as well as from the

literature are used to test the validity of the association

model with good results.



II. THEORETICAL BACKGROUND

A. Thermodynamics of Polymer Solutions
 

Raoult's law is often used as a convenient reference

state to which the thermodynamic properties of solutions

can be compared. Ideal solution behavior requires that the

following two conditions be fulfilled:

The entropy of mixing is given by

AS = — R (n2 ln X1 + n2 ln X2) (II-l)

where hi and Xi are the number of moles and mole fraction

of component 1, respectively, and the superscript I indi—

cates the solution is ideal; and
I

The heat of mixing is zero.

AH = O (II—2)

Deviations from ideality may arise from failure of either

of these conditions. Traditional ideas about non—ideality

Of solution properties concentrated on the dissimilarity of

interaction energies between solute and solvent molecules

of "different chemical nature." This eventually led to the

concept of the ”regular solution” which in turn serves as a
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starting point for the investigation of polymer solution

properties.

The "regular" solution was first introduced by

Hildebrand [2A-l] to characterize solutions which possess

the entropy of mixing of an ideal solution. By inspecting

experimental data of several mixtures, Hildebrand [2A-2]

concluded that for most mixtures, except those in the

neighborhood of the critical point, thermal agitation

causes practically random mixing and thus the primary

requirement for the formation of regular solutions is ful-

filled. In solutions with non-vanishing heats of mixing,

Hildebrand argued, the excess entropy of mixing at constant

pressure (due to volume expansion) is balanced by the cor—

responding enthalpy of mixing and consequently, both cor—

rections can be neglected in calculating isothermal excess

free energy. In seeking an explanation for the departure

of actual solutions from regular behavior, it is therefore

of importance to study the influence of deviations from

"random distribution" on the thermodynamic functions of the

system. (By random distribution we mean that the local

composition is identical with the bulk composition of the

solution.)

It has been well known that polymer solutions show

extremely large deviations from ideal solution behavior.

Excess thermodynamic properties remain large even if the

heat of mixing of the solution is negligible. This Obser-

vation led to the conclusion that polymer solutions are
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Characterized by large excess entropies of dilution, mainly

due to the great difference in size between polymer and

solvent molecules.

Polymer solutions differ from mixtures of spherical

solute and solvent particles by the linking of the solute

particles into polymer chains. The number of ways of

arranging segments of polymer chains in solution is, of

course, different from that of arranging spherical solute

molecules, and hence no longer gives the ideal entropy of

mixing. Polymer solution thermodynamics usually deals with

the effect of chain connectivity on the thermodynamic

properties of solutions. In fact, a large part of the

development of polymer solution thermodynamics has been

centered on the effects of the difference in size between

polymer and solvent molecules.

1. Flory-Huggins Theory

The Flory—Huggins Theory [2A-3] of polymer solutions

originates with and conserves important features of the

theory of regular solutions for mixtures of spherical

molecules of equal size. According to classical thermody-

namics of solutions, the free energy of mixing is given by

AG = AH - TAS (II—3)

m m m

Thus, one approach to understanding the thermodynamics of

polymer solutions is to consider methods of calculating AHm,

the heat of mixing, and ASm, the entropy of mixing.
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The heat of mixing is related to the formation in the

mixture of contacts of a new type, (A-B), which replace

some of the (A—A) and (8-8) contacts of the pure components

according to the quasi—chemical process:

%(A-A)+5§(B—B) —> (A—B) (II-4)

AHm is thus proportional to an interchange energy (Aw),

which is in turn related to the energy Eij required to

break and form the contacts in equation (II-4):

£fih1x;Aw = 1/2(€AA + EBB) - EAB (II—5)

By assuming a lattice mode1,* Flory was able to derive the

following equation for the entropy of athermal mixing:

AS = - k (n1 ln¢1 + n2 ln¢2) (II-6)
m

where O1 and $2 are the volume fractions of solvent and

polymer solute, respectively, and are defined by equations

(II—7):

n1/(n1 + r n2) (II-7a)
¢1

(1’2
r nz/(n1 + r n2) (II-7b)

Here r is the ratio of partial molar volume of polymer

 

* Huggins [2A-4] reached the same conclusion as the result of Flory's

without the assumption of fluid lattice.
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solute to that of solvent and n1 and n2 are the number of

molecules of solvent and solute, respectively. The entropy

of mixing expressed by equation (II-6) is just the config—

urational or combinatorial entropy associated with the

large number of ways of arranging the segments of polymer

Chain molecules and solvent molecules. It depends only on

the concentration of the mixture and does not take into

account that effects caused by the difference in structural

and chemical nature between polymer and solvent molecules.

In AGm it iscxflg/AHnlwhich depends on the nature of

the molecules (according to the original Flory—Huggins

Theory), which is Characterized by the dimensionless

parameter:

)’=:ZAw/k T (II-8)

Here Z is the lattice coordination number. According to

Flory, AHm can be expressed by:

AH = k T X n ¢ (II-9)

Substituting equation (II—6) and (II-9) into equation

(II-3), one gets:

AGm = k T(n1 1nd)l + n2 1nd)2 +Xl n1 4 ) (II—10)

It was soon found experimentally that X1, as determined

from vapor pressure measurements of AGm, was not the same

as found from AHm. To account for this, Aw was
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interpreted [2A-5] to be an interchange free energy with

enthalpic and entropic contributions, i.e.,

1w ‘t AwG = AwH - TAwS

and X1 = XH + XS = zin/k T - zAws/k (II-ll)

Equation (II-ll) suggests that X1 varies inversely with

temperature if both Aw and Aws are independent of tempera-
H

ture. An important assumption of the theory is that volume

Changes taking place during mixing, AVm, are neglected.

Thus, not only LS'UuatotalAVm zero, but so are any volume

effects on the heat and entropy of mixing. Experimental

results [2A-6] also showed that the entropic contribution,

X is dominant compared to the enthalpic contribution XH.5.

It becomes clear that the noncombinatorial entropy of mix—

ing, which may be caused by the different chemical nature

and/or difference of size between polymer and solvent

molecules, is extremely significant to polymer mixtures and

can be considered as a characteristic property of polymer

solutions.

It is convenient to study thermodynamics of polymer-

solvent systems by measuring the change of chemical poten—

tial of the solvent in solution due to the addition of an

infinitesimal amount of polymer solute. Differentiation of

equation (II—10) for LGm with respect to nl and multiplica-

tion of the result by Avagadro's number NA gives:
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o _ _ _ -1 2 *
pl - ul _ R T(ln(l $2) + (l r ) ¢2 + xl¢2) (II 12)

where U is the Chemical potential of the solvent in the
1

solution and u; the chemical potential of the pure solvent.

By using a series expansion of ln(1 — ¢ ), equation (II—12)
2

can be rewritten:

o _ _ l 1 _ 2 '3 ___ _

ul - ul - R T(:2/r + (6 'K) $2 + ¢2/3 + ) (II 13)

The sum of the second and higher order terms of $2 in

equation (11-13) is defined by Flory as the "excess rela-

tive chemical potential" of the solvent:

. o _ _ 1 _ ,2 3 ___ _
(ul - u1)E - R T((§ X1) ¢2 + ¢2/3 + ) (II 14)

In general, the excess function (u1 - ui)E has two contri—

butions, namely enthalpic and entropic contributions.

Therefore equation (II—l4) can be generalized (with neglect

of o; and higher order terms) as:

(ul - “3’12: = R T(k1 —‘i’l) (pg (11-15)

Here k1 and W1 are introduced as energy and entropy

parameters such that:

- 2 . '_—’- 2 _
AH — R T k O , ASl-R W1 ¢2 (II 16)

The interaction parameter of the preceding treatment X1 may

then be related to these parameters by comparing equations



12

(II-l4) and (II-15), i.e.,

) (11—17)

A Characteristic parameter of polymer solution can then be

defined as:

a = kl T/‘gl (II—18)

Hence the excess Chemical potential may be rewritten as:

o _ .2 -(U1 - “1)E — — R T(l - B/T) ¢2 (II 19)

Equation (II-l9) predicts that the excess chemical potential

of the solvent vanishes when the solution is at ”theta”

condition, i.e., T = 6. Under this special condition, the

enthalpic and entropic effects compensate each other, and

the interaction parameter X1 has a value of 0.5.

Despite the fact that the Flory-Huggins Theory fails

to explain many important features of polymer solution

thermodynamics [2A-6], the theory has been applied very

extensively because of its simplicity. The Flory—Huggins

Theory serves as an excellent reference state for polymer

solutions just as ideal solution theory is used as a

reference state for small molecule solutions.
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2. Corresponding States Theory

The principle of corresponding states of pure liquids

rests on the assumption that the potential energy of

attraction of a pair of molecules, C, can be expressed by

some universal function w (possibly the often used 6—12

potential function) together with two characteristic

factors d*, 6* of the molecular species.

C(d) = 6*1b(d/d*) (II—20)

Here d is the distance between two interacting molecules

and the scale factors €*, d* represent the coordinates of

the minimum of C(d). Thus, the properties of a given

liquid can in principle be determined (if the universal

function is known) by these two parameters. The parameters

are conveniently embodied in a Characteristic temperature

T* and a characteristic pressure P*. For monomeric liquids

they are commonly expressed as:

T*
E*/k

(II-21)

p* = €*/d*3

where k is the Boltzmann constant. Prigogine and collabor-

ators [2A-7] assumed that the principle of corresponding

states was also obeyed by polymeric liquids with a polymer

molecule considered as a succession of quasi-spherical seg—

ments. For polymeric liquids, it is predicted that the

contact between two neighboring segments is also described

by equation (II-20), in which C(d) is the potential energy
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and d the distance between the two interacting segments.

However, in order to predict the properties of a polymeric

liquid accurately, a third parameter C/q, together with c*

and d* is necessary to characterize the random configura-

tions of chain—like polymeric molecules in a liquid.

The law of corresponding states of polymeric liquid

was made possible by Prigogine by introducing the concept

of "intermolecular degrees of freedom.” The cohesive

energy is proportional to Z6* (Z is the coordination num—

ber of the molecule) for a monomeric molecule, but to qZ€*

for a polymeric molecule where qZ is the number of external

contacts made by the r—segments of a polymer chain.

q should be less than r because some of the possible ex-

ternal contacts of the segments are used up by covalent

bonding within the chain. For a lattice model:

qz = r(Z - 2) + 2 (II-22)

and q is approximately equal to r if the lattice coordina-

tion number is l0 or greater. The expansion of the liquid

plays a very important role in the theory. It is caused by

the thermal vibrations of the molecules acting against the

cohesive energies. However, not all thermal vibrations

have an effect on expansion. Only the external degrees of

freedom of movement of the molecule as a whole count. If

segments within a polymer chain can rotate freely about

bonds between segments, the total number of external

degrees of freedom of the molecule, expressed as 3c, are:
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3c = r-+3 (r 2 2) (II-23)

In other words, the addition of each successive segment to

a dimer increases the external degrees of freedom of the

molecule by one. If the polymer chain is completely rigid,

then 3C = 5, and the number of external degrees of freedom

of the molecule is independent of r. Therefore, c depends

on the flexibility Of the polymer chain and can be con-

sidered as the ”effective number of segments" if each seg-

ment were to have three external degrees of freedom like a

monomeric molecule. Formally, what appears in the theory

is not C, r, or q alone, but ratios like c/q or c/r, which

are the number of external degrees of freedom per unit

length or polymer chain (and which are taken as a measure

of chain flexibility).

At least three molecular parameters now Characterize a

polymeric liquid: d* and 6* dealing with individual seg-

ments, and the so-called "structural factor" C/q (approxi-

mately equal to c/r) which has to do with the whole mole-

cule. The structural factor was introduced by Prigogine

into the Characteristic temperature T* and pressure P* of

polymeric liquids by equation (II—24):

(II—24)

p* = (r/q)d*3
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Prigogine and coworkers went one step further in

applying corresponding states theory to polymer mixtures

by assuming the same universal potential function (equation

(II-20)) to characterize all like-like and like—unlike con-

tacts. A polymer mixture can then be treated as a “pseudo—

pure” liquid characterized by some kind of average charac-

teristic temperature <T*> and pressure <P*>. One can then

predict thermodynamic properties of the mixture providing

the corresponding properties of both solute and solvent are

known. This can be done by first introducing the "surface

fractions” of component 1 (solvent) and component 2

(solute):

ql xI q2 X2
X1 = x ; X2 = (II—25)

ql 1 I q2 x2 ql x1 + qz x2

  

The average <C/q> for the mixture is then defined as:

C1 C2
<C/q> = X — 4- X2— (II-26)

1 ql qz

Similarly, the average potential energy <C*> and average

distance <d*> between two neighboring segments for the

”pseudopure" liquid can also be evaluated, and the average

characteristic temperature and pressure of the mixture are

expressed by:

(3*) < *> (5*)

<c/q> k ' P = <r/q><d*>3
 <T*> = (II-27)
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Thermodynamic properties of the mixture can then be

expressed in the same form as those of pure liquids.

The corresponding states theory predicts [2A-6, 8]

that the interaction parameter X1 in equation (II—10) can

be expressed by:

X, = - (U/R T) v2 + (CF/2R) T 2 (II-28)

Here -U is the energy of vaporization of solvent, CP is

the configurational heat capacity of the solvent:

: C + R (II-29)

P, liq. - CP, gas

where R is the gas constant and v and T are defined by:

T = l - (T*2/T*1) (II-30)

v2 = (32/4 + 9 32) (II-31)

6 and D are cohesive energy and size difference parameters,

and they are defined by:

E

(Cg/C?) - l (II—32)

E (dg/df) - l (II-33)

Thus the enthalpic and entropic contributions to the x1

parameter are found to be:

d C

2 P 2
xH = k1 = ((-U + T Cp)/R T) v - T/2R H‘T’ T (II—34)
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_I

dCP 2

— (CP/R) v2 + < C + T — /2 R) r (II-35)
P dT

Inspecting these equations one can see that the

noncombinatorial excess properties are caused by the fol-

lowing two effects:

(1) Energetic effect: This effect is due to the

cohesive energy and size difference between

solvent molecule and polymer segment. This kind

of effect is exactly the same as in monomeric

mixtures.

Structural effect: This effect is found to play a

very important role in polymer mixtures and is

directly related to the structure and chemical

nature of the molecules. This effect is specific

to polymeric mixtures and it is caused by the

significant difference of size or chain length

between polymer and solvent. As pointed out by

Prigogine [2A-7], the structural effect depends

primarily on the configurational specific heat

and its derivative with respect to temperature.

This explains clearly why in a rigid lattice

approach like that used in the simplified lattice

model, the structural effect vanishes.

The recognition of the structural effect on

thermodynamic properties of polymer mixtures has proved to
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be the key to the success of the corresponding states

theory. Many important observations of polymer solution

thermodynamics can be explained very well based on such

structural arguments [2A—6fZ8,9]. The corresponding states

theory is more rigorous than other theories since it allows

volume change during mixing process. The theory also gives

the temperature and pressure dependence of the interaction

parameter X1 [2A-9], and predicts a concentration depend—

ence for X1 which is completely ignored by the

Flory-Huggins Theory.

The corresponding states theory seems to explain some

thermodynamic behavior of polymeric liquids/mixtures very

well. However, the application of the theory is somewhat

limited to qualitative interpretation of experimental

results due to, probably, the difficulty of determining the

molecular parameters d*, 6*, and c/q. The theory is found

to be most useful in predicting thermodynamic properties of

oligomer series when the three molecular parameters are

known for a reference liquid [2A-lO].



2O

3. Solubility Parameter Theory

Solubility parameter theory [ZA-lla], like the

Flory-Huggins Theory, originated from the concept of regu-

lar solutions. According to the theory, the polymer (2) -

solvent (1) interaction parameter X1 of equation (II-10) is

related to the so-called "solubility parameters," 5, of

the two components through:

—l (6 _ 5 )2 + 8 (II-36)

where Oi is defined as the square root of the “cohesive

energy density" of component i:

1

,.V’§

5. =[=§—] (II—37)

Here LE: and Vi are the molar energy of vaporization and

molar volume of component i. The quantity 8 is an empiri-

cal constant found necessary for systems in which the dif—

ference in size and/or shape between solute and solvent is

radical [ZA—llb]. 8 was found to have a value of approxi-

mately 0.34 for polymer-solvent systems [2A-12].

Similar to the treatments in the Flory-Huggins Theory,

the parameter X1 can be split into enthalpic and entropic

contributions, i.e., X and XS , where:
H

- 5.)2 (II—38)
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x = B (II-39)

The parameter XH is related to the heat of mixing of the

polymer with the solvent. The use of equation (II—38)

allows only positive values for XH. Thus the theory pre—

dicts that a polymer is soluble in a solvent when the solu—

bility parameters of the two components have nearly the

same value. This approach for selecting good solvents for

a particular polymer has proved to be very successful.

However, exceptions were observed in some cases. Later

refinements of the theory [2A-12, 13] suggested the useful-

ness of separating the cohesive energy densities into non—

polar, polar and hydrogen bonding parts, i.e.
I

5i = 5? + 5? p + 5? (II-4O)
1, hp 1,

A more general expression for X” can then be written as:

V1 _ 2
XH =R—rr- [(61, np - 62’ np)2+(61,p 62,p)+(61, " (S

H

(II-41)

All three contributions to the solubility parameters for

most solvents and commercial polymers can easily be found

in the literature [2A-l4].

The parameter XS was originally introduced to correct

the supposed inadequacy of the Flory combinatorial entropy

approximateion. According to the original derivation

[2A-16]:
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x5 =32- (II-42)

where Z is the coordination number of the quasi-lattice

model and is expected to have a value between 10 and 12.

The difference between 0.34 and l/Z is explained by

Guggenhaim [2A-15] to be due to the excluded—volume effect.

The difference might also be explained as the result of the

structural effects discussed in the corresponding states

theory.

Although the solubility parameter theory is based on

the assumption that the volume Change in mixing process is

negligible, Patterson [2A-l6, l7] argued that the theory

can also take into account the effects of the volume Change

of mixing. According to Patterson and co—workers, the sim-

ple solubility parameter theory has great similarity to the

more rigorous corresponding states theory, and predicts

many of the important observations of polymer solution

thermodynamics as well. The comparison given by Patterson

between the solubility parameter theory and the correspond—

ing states theory provides a strong theoretical basis for

the solubility parameter theory.

Besides the theoretical background, the solubility

parameter theory overcomes the serious defect of the

Flory—Huggins Theory that the interaction parameter X1 can—

not be predicted or calculated from basic data for the

pure components, but must be determined experimentally.

It seems likely that solubility parameter theory will
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continue to be widely applied, particularly in the polymer

industry, for the foreseeable future.

4. Excluded Volume Theory

Excluded volume theory takes a completely different

approach from the other three theories to explain the

thermodynamic properties of polymer solutions. The theory

says that if one can predict the average dimensions of

polymer molecules in an infinitely dilute solution, it

should be possible to determine the thermodynamic properties

of the solution because both are affected by interactions

between solvent and polymer segments in the solution.

Consider a polymer molecule in an infinite solvent

medium. The dimension of the polymer molecule (either the

mean—square end—to-end distance <R2> or the mean-square

radius of gyration <SZ>) is determined by the position of

each successive segment in the solution. As one would

expect, the direction of a given segment, for example the

jth segment, is strongly affected by the direction of its

predecessor (i.e., the (j-l)th segment) due to bond angle

restrictions. It is also influenced to some extent by the

directions of other neighbors (the(j-2)th, etc.) due to

hindered rotations. It is reasonable to assume that one

bond has no appreciable influence upon the rotation of

another bond when they are far apart. Thus, such interac-

tions between bonds are referred to as "short-range inter-

ference." However, two or more segments remote from one
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another along the chain cannot occupy the same volume at

the same time because of their finite volume. In other

words, repulsive forces will act between these segments

when close to one another. This repulsive force will be

altered by the existence of solvent molecules and be

affected by the temperature of the solution. Interactions

of this sort are usually referred to as the ”excluded—

volume effect” and are of long—range nature. It is quite

obvious that two types of excluded volume can be distin-

guished: the intramolecular and intermolecular excluded

volumes. The polymer chain with only short-range interfer-

ences is called the ideal or unperturbed chain, and its

molecular dimension is called the unperturbed dimension.

The term "unperturbed" indicates there is no excluded

volume effect.

According to excluded volume theory, the average

polymer molecular dimension and thermodynamic properties

such as osmotic virial coefficients may be expressed in

terms of two basic parameters. One is the unperturbed

mean-square end-to-end distance <R2>o, and the other is

the excluded-volume parameter, usually designated by z.

The quantity 2 is proportional to the effective excluded

volume for a pair of chain segments at infinite dilution

and also to the square root of the number of segments in

the chain n, i.e.:
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_ 3 Vz 2
Z — (m) B n (II—43)

3

= ( 3 ) /2 B n2 

2 H <R2>

o

where a is the effective bond length and 8 is the "binary

cluster integral" for a pair of segments. It represents

the effective volume excluded to one segment by the

presence of another. Generally, B will have large positive

values in good-solvent systems (where preferential attrac-

tions occur between the polymer segment and solvent mole-

cule) and small negative values in poor-solvent systems.

The conclusion of the theory can be summarized by

expressions for the molecular dimension and for the osmotic

second virial coefficient, A2.

aé = 1 + g z — 2.075 22 + 6.459 22 — --- (II-44)

a; = 1 + 1.276 2 - 2.082 22 + ——— (II-45)

where, a; and a; are defined by the expressions:

afi = <R2>/ <R23. (II-46)

a; - <SZ>/ <szg. (II—47)

and

A = (N n2 8/2 M2) h (z) (II-48)
2 A
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Here, NA is the Avagadro constant and the function h(z) is

given [2A-18] by:

h(z) = 1 - 2.865 2 + 14.278 22- -—— (II-49)

Equations (II-44) to (11-49) represent the exact theory

of the excluded—volume effect within the framework of the

two-parameter theory. Since the quantity (NA n2 8/2 M2) is

independent of polymer molecule weight M, and h(z) is a

decreasing function of M, the excluded volume theory pre—

dicts that A2 decreases very slowly with increasing polymer

molecular weight. Furthermore,equations(II-44) and (II—45)

predict that A2 = 0 and h(z) = l at the theta temperature

(8 and z vanish).

The excluded volume theory seems to be able to provide

a correct description<xfthe qualitative aspects of solution

properties insofar as it is concerned with very dilute

solutions of flexible—chain polymers. However, as pointed

out by Yamakawa [2A-18], the theory breaks down for stiff

chains and for concentrated solutions. In addition, the

theory is expected to be valid only for |z|$0.15, i.e., the

very vicinity of the theta condition, since the series

h(z) of equation (II-49) converges very slowly. All of

these restrictions, along with the fact that the theory is

unable to predict solution properties without prior knowl-

edge of the two parameters n28 and n52 (which can only be

obtained experimentally) make the theory less attractive

than solubility parameter theory.
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B. Diffusion in Polymer Solutions
 

The Characteristics of polymer solutions change

greatly over large concentration range. At the infinitely

dilute extreme, the polymer molecules are widely dispersed

in the solvent, and there are no interactions between

individual polymer chains. As the polymer concentration is

increased, polymer molecules interact hydrodynamically with

each other even though the domains of individual polymer

molecules do not yet overlap. This Concentration range is

traditionally referred to as the dilute solution region.

As the polymer concentration is further increased, the

domains of the polymer molecules begin to overlap, there is

a considerable amount of polymer-polymer contact, and

entanglements are formed between polymer chains. Such

solutions are referred to as "concentrated" even though in

terms of molar concentration, they might be quite dilute.

Although the rate of diffusion of polymer molecules

in solution has long been of considerable empirical and

theoretical interest, present understanding of diffusion in

polymer solutions is still far from satisfactory. There

exists no general theory which is capable of describing the

complete range of the complex diffusion behavior exhibited

by polymer-solvent mixtures. Until recently, reasonable

estimates of diffusion coefficients were possible only for

self—diffusion and for infinitely dilute binary solutions,

and methods for predicting the concentration dependence of
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diffusion rates were available only for dilute, non—electro-

lyte, non-associating polymer solutions. This situation

results in large part from the lack of a usable kinetic

theory of polymer solutions and from the lack of reliable

experimental data.

In the following discussion, diffusional properties in

infinitely dilute and dilute polymer solutions will be con-

sidered. First, various theories for predicting diffusion

coefficients at infinite dilution are presented, and

second, the theoretical approach of Vrentas and Duda to

describe this concentration dependence of binary diffusion

coefficients in the dilute concentration region is

reviewed.
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l. Diffusion in Infinitely Dilute Polymer

Solutions

a. The Kirkwood-Riseman Theory

The Kirkwood—Riseman Theory [28—1] of transport

processes provides a general description of frictional

properties of dilute solutions of flexible polymer mole-

cules. The frictional properties of dilute polymer solu—

tions are different from those of small molecule solutions,

in that for each solute molecule there are a large number

of "centers Of resistance" to the flow of the solvent

medium instead of just one. "Hydrodynamic interaction"

always occurs between the resistance centers. According to

the theory, the hydrodynamic interactions between segments

cause velocity perturbations in the fluid and therefore

affect the frictional and diffusion coefficients of polymer

molecules in solution. Based on this concept, Kirkwood and

Riseman derived the following equation for the transla-

tional diffusional coefficient in infinite dilution:

 

kT 8
c _ _ _

D ——n:(1+3X) (1150)

where

1

’2

x = (2“), Q (II-51)

(12 H31 n05

Here, Do is the diffusion coefficient at infinite dilution,

n is the number of segments in a chain, 5 is the effective

bond length, and no the solvent viscosity. The quantity C

is the frictional coefficient of a segment and is dependent
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on the fluid medium and the structure of the segment unit.

Equations (II-50) and (II-51) are derived based on the

assumption of a random flight (unperturbed) polymer Chain,

and therefore are valid only for infinitely dilute solutions

at the theta condition. The parameter X is a measure of

the hydrodynamic interactions between segments. When X=O,

there is no hydrodynamic interaction, and this is referred

to as the "free-draining” case. In the free-draining case

(or when the molecule is small, i.e., n is small), polymer

molecules behave hydrodynamically as rigid spheres, and

the theory predicts that D0 is inversely proportional to

polymer molecular weight. The other limiting case (X=m)

corresponds to very large hydrodynamic interactions between

segments, and is referred to as the "non-free—draining"

case. For non-free—draining polymer—solvent systems,

equation (II—50) can be reduced to:

8kT

3n; X (II—50')
 (00),:

The subscript 6 indicates equation (II—50') applies for

theta solutions only. Substituting equation (II-51) into

equation (II-50') gives:

(D°)
= 0.196 kT = 0.196 kT (II-52)

___—1—

where <R2>O is the mean square end—to-end distance of the

unperturbed polymer chain. The theory predicts that for

the non-free-draining case D0 is inversely proportional to
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the square root of polymer molecular weight, but is

independent of the frictional coefficient (Q). For non—

theta solutions, Raju [28-2] has suggested that a correc-

tion factor (2-2Y) be multiplied to the right hand side of

equation (II-52) for the diffusion coefficient at infinite

dilution.

D0 = 043—6—53- (2 _ 27) (II—53)
0 <R2>é

o o

where the parameter Y is defined by the relation:

[0] = xv Mv (II-54)

Here [n] is the intrinsic viscosity of the solution and M;

is the viscosity average polymer molecular weight. In gen-

eral, Y varies from 0.5 for a theta solvent to 0.8 for a

good solvent [2B-3]. Thus (2-2Y) represents a small cor-

rection for the so—called "excluded-volume effect" of

polymer solutions. Raju‘s D0 data for styrene-acryloni-

trile copolymer solutions [28-2] are in agreement with

equation (II-53).

b. Flory's Theory

The principle behind Flory's theory of transport properties

of polymer molecules in infinitely dilute solutions [2B—4]

is similar to that of the Kirkwood-Riseman Theory in that

both assume a relative velocity (i.e., the velocity of the

solvent with reference to the molecule) gradient along the
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radius of the molecule. This is illustrated in Figure l.

The ”depth of penetration" of the molecule by the flow

should be dependent on the structure of the polymer segment,

the size and shape of the polymer molecule in solution, and,

according to Flory, can be characterized by the variable

C/flc. The parameterc/no can be considered as the "effec-

tive size" of one segment since it increases with polymer

molecular weight provided <R2>;é remains constant. Thus,

the lower the ratio c/no, the closer the solvent flow will

penetrate to the molecular center, leading to the free-

draining case. Flory argued if the ratio 6/00 is great

enough such that the solvent flow is excluded from the

inner more densely populated regions of the molecule

(which is believed to be the case for polymer solution) a

condition of comparative insensitivity of the flow pattern

t/no should be approached. Flory then concluded that the

frictional coefficient f0 of the molecule as a whole (at

fixed no) should be independent of the frictional coeffi-

cient C of a segment in the limit of sufficiently large

C/no. Based on the above discussion, Flory suggested that

the molecular frictional coefficient should depend only on

the size <R2>lg and not otherwise on the nature of the poly-

mer if the molecular weight is sufficiently large. That

is:

1

fO/T)o = P<R2>’i (II-55)
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Figure 1A. A Free-Draining Molecule During

Translation Through Solvent.*

 
Figure 18. Translation of a Chain Molecule with

Perturbation of Solvent Flow Relative

to the Molecule.*

 

*Arrows Indicate flow vectors of the solvent relative to polymer chain.
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where P is a universal constant. A random flight model was

used to show that P should have a value of 5.11.

Using similar arguments, Flory also proposed that the

intrinsic viscosity [fl] depends primarily on the ratio

<R2>3/2 /M, consisting of a volume divided by the molecular

weight:

[n] ="“<R2>H/2 /M (II-56)

where 9 is another universal constant and has a theoretical

value of 3.62 x 1021. However, experimental results show

that P is approximately equal to 2.5 X 1021.

Combining equations (II-55) and (II—56), one gets:

 

 

-1
/A 3

£0 = p * ”L/ (11-57)

(M[n]) 3

Thus,

1
-1 A

1.0 = 52 = m 97/) (11-58)
f0 00(M[n]) 3

According to equation (II-57), the molecular frictional

coefficient f0 should vary with M to the 0.5 power in a

theta solvent, and slightly greater than 0.5 (but never

greater than 0.6) in a good solvent. Flory has suggested

that f° is related to the molecular weight by:

1 l

£0 = Kf M(3 + a ) (II-59)

where Kf is a constant, and a' is given by:
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a' = (Y - %)/3 (II-60)

The parameter Y is defined by equation (II—54). Therefore,

the theory predicts that Do should vary inversely with M to

a power between 0.5 and 0.6. Equation (II-58) allows one

to estimate the value of DO provided the viscosity of the

solvent no, the polymer molecular weight M and the intrin-

sic viscosity [0] of the system are known.

c. Johnston's Theory

Recently Johnston and Rudin [28—5] derived a simple

expression for the diffusion coefficient of an infinitely

dilute polymer solution. By combining the well known

Einstein equation for the concentration dependence of

solution viscosity [2B—6], with the Mark-Houwink equation

(equation (II-54)), the mean radius of pseudo-spherical

polymer molecules in solution, Re, can be related to the

viscosity average molecular weight M; by the expression:

—1+Y _ 3
Kv Mv — (10 H NA/3) Re (II-61)

where Re is defined by the relation

y=§nR (II-62)3

e

Here, X is the mean volume occupied by a single polymer

molecule in solution. Johnston went one step further by

assuming that Re is the same as the equivalent hydrodynamic

radius of a non-free-draining pseudo-spherical polymer
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particle, Re, defined by the equation:

0 _ -f — 6 H no Rf (II 63)

The frictional coefficient at infinite dilution f0 can then

be rewritten as:

10 H NA )_V3

 

f° = 6 n n (0 3 K ELF}, (II-64)

V V

and the diffusion coefficient at infinite dilution D0 is

expressed by:

kT 10 R NA 1/

D0 _ a 11-65
6 H no (3 Kv M;+Y) ( )
  

Equation (II-65) is in exactly the same form as equation

(II—58) of Flory's theory, and the corresponding universal

constant P-19V3in equation (II-58) can be expressed as:

-1 y, l 10 R NA 1A
P 0 - 6 (___§_——) (II—66)

According to equation (II-66), the universal constant

P-1¢V3has a value of 9.80><106 which is about three times

as high as the theoretical value 3.39><106 predicted by the

Flory theory. The difference between the two theories might

arise from Johnston's assumption that R8 = Rf. However,

Johnston showed that D0 values evaluated according to equa-

tion (II—65) agree with experimental values within ten per-

cent for over 40 polymer-solvent systems.
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d. Fedors' Empirical Relation

Recently, Fedors proposed the following empirical

relationship for the estimation of the self-diffusion

coefficient of pure liquids [28—7]:

4.5 x 10'9 (V* - V) T

no V* 1'./3

 

D“ = (II-67)

where D11 is the self-diffusion coefficient in units of

cmZ/seC., V* and V are the molar volumes of the liquid at

the critical temperatureenuitemperature T(°K), respectively,

and no is the viscosity of the liquid at temperature T

expressed in Poises. The correlation constant 4.5 x 10-9 and

the exponent 4/3 in equation (II-67) were determined by

Fedors by correlating data taken from the literature. The

relationship is found to be valid not only for small molecu-

lar liquids, but also for high molecular weight polymeric

liquids. Fedors suggested that critical molar volumes for

polymeric liquids (which are generally not measurable) can

be calculated using a group contribution method which he

described [2B-8].

He also proposed that the limiting diffusion coeffi-

cient of an infinitely dilute solute (D0) can be related to

the self-diffusion coefficient of the solvent Q1 by the

symmetrical relationship [28—9, 10].

1
o —o 6 _ _ é _

D (V3 — v2) - D11 (V? V1) (II 68)

Here, V3 and V? are the molar volumes at the critical
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temperatures for the solute and solvent, respectively, V;

is the partial molar volume of the solute in infinitely

dilute solution, and V1 is the molar volume of the solvent.

Fedors mentioned that equation (II—68) is suitable for both

liquid-liquid and gas-liquid systems.

Combining equation (II-68) with equation (II—67), one

gets:

3

4.5 x 10'9 (v; — v,)/2 T

D0 = , 1 (II—69)

v*/3(v* V°)2
n01 2’2

 

from which the diffusion coefficient at infinite dilution

can be estimated directly, given no, V and V”1 2. Equation

(II-69) was tested by Fedors for some 52 solutes in eight

different solvents. The average percent error was found to

be 22.3 percent. The most serious errors occur in those

systems in which one or both of the components associate to

form moltimers. The simple expression of equation (II-69)

seems to offer a reasonable correlation between the

limiting diffusion coefficient Do and properties of pure

solute and solvent.
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2. Diffusion in Dilute Polymer Solutions

Most diffusion data in the literature indicate that the

diffusion rate of a polymer in solution varies linearly

with concentration in the dilute region. In general,

diffusivities are found to increase with increasing polymer

concentration, although there are some systems which show

the opposite behavior. These later systems are of special

interest in this work, and are considered in detail later.

Whichever the case, the diffusion coefficient for dilute

polymer solutions can conveniently be expressed by a

series expansion of the following form:

D = D0 (l + kd pp + -——) (II-70)

where pp is the polymer mass concentration. Thus the dif-

fusion coefficient for dilute solutions can be predicted

from a knowledge of the parameters D0 and kd.

Recently Vrentas and Duda [ZB-ll] showed that the param-

eter kd can be predicted using the equation:

(II-71)

Here A2 is the osmotic second virial coefficient, Mk is the

number average molecular weight of polymer, and V3 is the

partial specific volume of the infinitely dilute polymer.

The quantities b1 and k5 are defined by series expansions

for the concentration dependence of the partial specific

volume of the solvent (V1) and the frictional coefficient

of the polymer.



(l + b pp + ---) (II—72)

f = f0 (1 + k pp + —--) (II—73)

ks accounts for the effects of intermolecular hydrodynamic

interactions on the frictional properties of polymer

molecules in solutions.

According to equation (II-71), kd includes three

contributing effects: (1) the thermodynamic term ZAzfifi;

(2) the hydrodynamic term ks; and (3) volumetric effects

b1 and 2V;. Volumetric effects generally are insignificant

but become important when kd is small. When the thermo—

dynamic effect dominates the hydrodynamic effect, kd is

positive and the diffusion rate increases with concentra-

tion. On the other hand, the diffusion rate decreases with

concentration if the hydrodynamic effect becomes dominant.

It should be pointed out that equation (II—70) is valid

only for non—electrolyte non-associating polymer-solvent

systems because the concentration dependence of the dif—

fusion coefficient of electrolyte and/or associating poly-

mer solutions is, in general, nonlinear even within the

dilute region.



III. EXPERIMENTAL METHOD FOR MEASURING OSMOTIC PRESSURES

OF DILUTE POLYMER SOLUTIONS

A. Experimental Apparatus and Principle of Operations
 

Measurement of osmotic pressures in determination of

number average molecular weights has not been used exten-

sively in the past because of the time-consuming nature of

the Classical method and the attendant errors caused by the

lengthy observation period. Bruss and Stross [3A—l] have

discussed some of the dynamic methods described in the

literature [BA-2, 3, 4] with attention to the errors

caused by solute permeation of the membrane and the

importance of completing the measurement as rapidly as

possible.

A Hallikainen automatic membrane asmometer (Model

1361 - Code D, designed by Shell Development Co.) was used

in this work to measure osmotic pressures of polymer solu-

tions. The instrument needs only 10 cc sample solution,

which is then isolated in the osmometer cell using the

inlet and outlet valves. After a period of about 6 to 20

minutes, depending upon the permeability of the membrane,

the osmotic pressure is observed on a Veeder-Root type

counter which reads osmotic pressure head of the solvent

used. A built-in recorder, the pen of which is directly

41
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driven by a balancing servo, enables the operator to follow

the servo balancing of osmotic pressure and degree of mem—

brane permeation, if any.

Figure 2 is a schematic diagram of the sample flow

scheme. The osmometer cell consists of two cavities sepa-

rated by a semipermeable membrane. The sample cavity

includes a thin metal diaphragm which is responsive to

volume Changes and has suitable valves to admit and isolate

a sample. The solvent cavity is connected to a servo—

driven plummet in a vertical tube of solvent. The plummet

is capable of Changing the solvent head, thus causing sol—

vent to flow through the membrane in either direction

depending upon the differential pressure. Displacement of

the metal diaphragm caused by flow through the membrane is

sensed as a capacitance change of an oscillator circuit,

causing a servo to null the solvent head for zero osmotic

flow. At null balance the servo comes to rest with the

solvent meniscus depressed by the amount of the osmotic

pressure. The mechanical counter geared to the plummet

servo registers this depression and hence the osmotic

pressure. The recorder shows the entire balancing cycle

and (by the slope of the curve following the maximum indi—

cated osmotic pressure) the degree of solute permeation

through the membrane. A more detailed description of the

experimental procedure is given by Rolfson and Coll [BA-5].
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B. Membrane Conditioning
 

An important factor in osmotic pressure measurements

is the careful conditioning of the membrane to the particu-

lar solvent employed. Membrane materials of the greatest

interest to the polymer chemist and other research workers

Concerned with osmotic pressure measurements are the

swellable organo—colloid materials. Membranes made of

these materials swell to a different extent in each

solvent. Thus, the permeability of a membrane will vary

with the solvent.

The membranes are generally packed with a solution

which prevents bacterial growth. This solution must be

removed from the membranes. When aqueous solutions are to

be employed, the membranes should be rinsed under running

water and then laid for sixty minutes in distilled water

before use. If the solvent to be used is different from

water the membranes must be conditioned; first for removal

of all water, and second for uniform permeability to the

type of solvent. The following conditioning procedures

were used in this work with successful results. The mem-

brane must be handled gently with a soft, smooth instrument

or gloved hands. It must not be allowed to dry during or

after conditioning.

Ethanol drying procedure. (The wash intervals
 

indicated are the minimum recommended. Longer washes may

be used without adverse effects.)
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(1) Wash in distilled water for one hour

(2) Wash in 25% ethanol/water for % hour

(3) Wash in 50% ethanol/water for % hour

(4) Wash in 75% ethanol/water for % hour

1

(5) Wash in pure ethanol for 5 hour

(6) Wash in fresh, absolute alcohol for % hour

In order to condition a membrane to another solvent,

condition in 25% increments of increasing solvent concen-

tration. For some solvents, it has been found necessary to

condition the membrane through an intermediate solvent

(e.g., from ethanol, through toluene, to dimethyl—

formamide).

To condition from ethanol to a solvent.
 

(1) Wash in 25% solvent/ethanol for % hour

(2) Wash in 50% solvent/ethanol for % hour

.
.
.

(3) Wash in 75% solvent/ethanol for 1 hour

(4) Wash in pure solvent for 1 hour

After conditioning, the membrane should be stored in fresh,

cool solvent until ready for use.

The permeability of a membrane is better retained if

it is not heated prior to use. For high temperature oper-

ation, the membrane is installed on the cell block and the

temperature control is set before the main power is turned

on. As the cell heats the membrane is conditioned to the

new temperature.



(1)

(2)

(4)

(6)

(7)

(8)

(9)

(10)
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C. Experimental Procedure
 

Part a: Start-Up Procedure
 

Install the membrane.

Set the desired operating temperature by adjusting the

SET POINT potentiometer. The minimum operating temper-

ature should be at least 10°C above ambient temperature

for satisfactory temperature control.

Turn on main power and wait about 1% hours for thermal

stabilization.

Flush both solvent and sample cell with clean solvent.

Make sure that any air trapped in the cells is

removed.

Run the manometer plummet down until the mechanical

counter reads zero.

Make the solvent meniscus in the manometer tube

coincide with the reference position index mark by

using a syringe to insert extra (or withdraw excess)

solvent through the SOLVENT OUTLET.

Adjust the oscillator so that the recorded pen is on

the chart reference line. This will be the base line.

Fill the sample funnel with the sample polymer solu-

tion. Open the OUTLET VALVE to allow the sample to

flow into the sample cell, then firmly close.

Turn on the heater and wait for thermal equilibrium.

Close the sample INLET VALVE and immediately open

sample OUTLET VALVE. The pen will move to the bottom



(3)

(4)

(5)
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of the chart. Wait for a few minutes and then close

the sample OUTLET VALVE. The resulting osmotic pres—

sure is indicated by the difference between the base

line reading and the new steady—state reading.

Part b: Recommended Procedure for Molecular Weight

Determination.

 

 

Flush sample and solvent chambers with pure solvent

from the same container. All solvent used, both the

pure and that mixed with the solute, should be from

the same supply.

Make two or three blank runs, each of 10 to 15 minutes

duration, with pure solvent on both sides of the

membrane. These readings will indicate the

reproducibility of the base line.

Make a sample solution of 0.5 grams per 100 cc of

solvent. Flush the sample cell thoroughly with two

funnels full of this solution.

Fill sample cell with above solution and make a trial

run. This will indicate the concentrations to use for

the molecular weight determination and indicate the

presence of solute components small enough to pass

through the membrane.

Flush the sample cell, and record another run with pure

solvent. Check the final value with that of step (2).

If this reading is below the initial base line, then

there has been solute permeation into the solventside.



(6)

(7)

(9)

(10)
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Make up several concentrations (using the result of

step (4)) that will provide on-scale experimental

points.

Starting with the most dilute solution, flush the

sample cell using two funnels (about 14 cm3). Retain

the last 2 cm3 in the cell.

Take a 5 to 10 minute osmotic pressure reading.

Repeat steps (7) and (8) using sample solutions of

increasing concentration until at least five experi-

mental points have been determined.

Check the base line before, after, and several times

during operation as a means of determining reference

stability. Where readings are taken over an extended

period of time, evaporation of solvent as well as

ambient temperature changes may cause a slight shift

in the base line. Make a plot of the base line posi—

tion as a function of time and use it to correct

readings for which the shift has been appreciable.
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D. Error Analysis
 

The main cause of error results from the permeation of

solute molecules through the membrane. This became partic-

ularly evident when the solute molecular weight was too low.

When solute permeation is detectable, extrapolation of

osmotic pressure to zero time is necessary to minimize

error. The relatively poor temperature control system of

this instrument might also cause observable error. Thisvnns

minimized by setting the controller at least 10°C higher

than room temperature. The repeatability of osmotic pres-

sure measurements in this work is found to be within

1 0.02 cm.



IV. EXPERIMENTAL METHOD FOR MEASURING

DIFFUSION COEFFICIENTS OF DILUTE POLYMER SOLUTIONS

A. Experimental Apparatus
 

A Mach—Zehnder interferometer described by Bidlack

[4A—3] was used to study binary diffusion in the polymer

solutions. The technique involves forming a sharp inter-

face between a more concentrated polymer solution with a

less concentrated solution in an optical cell where diffu—

sion occurs. The cell is immersed in a constant tempera-

ture bath, and the diffusion process is followed by measur-

ing the rate of change of refractive index of the solution

with the Mach-Zehnder [4A-1] interferometer. The two

solutions of slightly different concentrations are care-

fully layered, one On top of the other, into the cell and

free diffusion allowed to take place after a sharp inter-

face is formed between the solutions. The diffusion coef-

ficient obtained in this way is assumed to be that of a con—

centration which is the average of the two solution

concentrations.

A diagram and photograph of the interferometer are

shown in Figures 3 and 4. The various components of the

interferometer are supported by ordinary laboratory bench

carriages stationed along a continuous rail composed of

50
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three optical benches. These in turn are bolted to an

I-beam mounted on a concrete block on rubber cushions to

dampen outside disturbances and vibrations.

Monochromatic light from a Cenco quartz mercury arc

lamp source, filtered to isolate the 5461 °A green mercury

line, is collimated and then split by a half—silvered mir—

ror (1). Half of the beam is reflected to a full reflect-

ing mirror (2), and the other half passes through a full

reflecting mirror (3). The two beams are then combined at

a half-silvered mirror (4). Constructive interference of

the two beams occurs when the path lengths 1—2—4 and 1-3-4

are identical or differ by a whole multiple of the wave—

length of the incident light. The mirrors are adjusted to

give straight, vertical, parallel fringes.

The interference beam is arranged so that it can be

photographed directly by a camera. The camera consists of

a three-foot long aluminum tube (3.5 inches diameter) con—

taining a lens (343 mm focal length) set in the end towards

the interferometer. The image is focused on a type M,

3% x 4% inch Kodak plate located at the opposite end. A

lever mechanism on the plate holder allows fourteen succes—

sive exposures per plate. The magnification factor of the

camera was found to be 1.929.

The diffusion cell is fixed in a water bath maintained

at 34.0i0.1°C by a proportional temperature controller.

The water bath consists of an 18 X 18 X 18 inch stainless

steel tank covered with 3/4 inch plywood and resting on the
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cement block without touching the interferometer. Two

round optical flat windows, 3 inches in diameter, are

clamped and sealed into the water bath and aligned to allow

passage of the light beams through the bath and cell win—

dows. Distilled water is used as the temperature control-

ling medium.

Figures 5 and 6 show a photograph and a diagram of

the diffusion cell. The main body of the cell consists of

a % x 3% inch slot cut into a stainless steel plate with

optical flat windows clamped over the slot to form a

sealed Channel. The channel is situated to allow both

light beams to pass through it; thus, a vertical concentra-

tion gradient in the solution across one of the beams

results in a fringe displacement pattern that is a direct

plot of refractive index versus distance. All parts of the

cell which are in contact with the liquid solutions are

stainless steel or glass.

A frame is bolted to the cement block and positioned

above the bath so the cell can be hung from the top and

immersed in the bath. Two small position pins located on

the frame insures that the cell is always placed in the

same position.

The cell is provided with two inlets (one on the top

and the other in the bottom) and two outlets directly

across from each other about one-third of the way up the

channel sides. The two solutions of slightly different

concentrations are slowly flowed simultaneously into the

 



 

  
 

   
 

Figure 5. Photograph of Diffusion Cell for Measurement of

Diffusion Coefficients.
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Figure 6. Diagram of Diffusion Cell.
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cell, the denser solution through the bottom inlet and the

lighter through the top, and out through the two outlets.

A sharp boundary is thus formed between the two layered

solutions. This boundary is located in the center of the

lower beam. All the valves are then Closed and the

the solutions allowed to diffuse freely.
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B. Experimental Procedure
 

The following procedure was found to be the most

successful for measuring the binary diffusion coefficient

in liquid polymer solutions:

(1)

(2)

(3)

All cell valves except valve 2 are Closed and,approxi-

mately 30cc<ifthe less dense solution is placed in

reservoir A. Some of this solution is then allowed to

flow into the cell through valve 1 until the liquid

level is about one inch above the outlets. Valve

1 is then Closed.

Valve 4 is then opened slightly and liquid is forced

into the exit line by means of the syringe plunger

until the liquid level in the cell is just above the

outlets. Valve 4 is then closed and more solutionzfinmn

reservoir A is allowed to flow through valve 1 into

the cell as in step (3). More liquid is forced into

the exit line through valve 4, and the whole procedure

repeated until liquid drips from the outlet line.

This is done to ensure that liquid completely fills

the exit line without air bubbles. This procedure is

repeated using valve 3 until solution drips from the

exit lines by siphon action.

Valve 1 is opened next until the cell is completely

filled with solution from reservoir A, then valve 2

is Closed. Valve 5 is opened very slowly and solu—

tion allowed to flow into the line that connects



(4)

(5)

(6)

59

valve 5 to reservoir B. Valve 5 is Closed when the

line is filled with solution. Caution should be taken

to prevent solution from entering reservoir B. At

this point, all the exit and entrance lines including

the cell are filled with the less dense solution.

Reservoir B is then filled approximately to the same

level as reservoir A with the more dense solution.

During the filling, care should be taken to make sure

that there are no air bubbles trapped between the

syringe and the entrance line.

The cell is then placed in position in the water bath.

The reservoir valves (1 and 5) are opened one full

turn followed slowly by valve 3, until the rate of

flow from the exit line is one drop every 8 seconds.

The opposite outlet valve (4) is then opened and

adjusted until the combined exit flow rate is one drop

every 4 seconds. It is very important to maintain

balanced flow rates into upper and lower halves of the

cell as well as through both outlets.

Since the cell is originally full of less dense

solution, it generally takes two to four hours for

the more dense solution to rise to the level of the

exit slits. The formation of a sharp interface is

viewed through a telescope. Boundary formation is

aided by the boundary sharpening slits in the two

outlets. These slits allow the liquid to flow evenly

out the entire width of the cell.



(7)

(8)
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When a satisfactory boundary is formed, valves 3 and

4 are closed followed by valves 1 and 5. The solu-

tions are allowed to diffuse for some time (depending

on the diffusion rate) until the fringes can be seen

distinctly across the diffusion zone. Then the mirror

which is used to reflect the image of the fringes into

the telescope is swung away from the beam so that it

is in view of the camera. The interference fringe

patterns caused by the diffusion process are photo-

graphed at predetermined time intervals. A typical

series of exposures taken for one run is shown in

Figure 7.

After the run is completed, the cell is drained and

rinsed with solvent and acetone and dried with air.
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C. Theory and Calculations
 

 

 

Consider a differential volume \. \\

. . . . X) 0 \~ dx ‘\

element in the difoSing section of \\

the cell as shown in Figure 8. By ‘\ + ‘\ >

\ \FU

- . X20 ______ 0

setting up a material balance on the ~\F \.9

. . . \ \:
differential volume element which 6

\ \0

describes the mass transfer in and x< 0 \~ \‘

\ \

out of the element, we obtain \\ ~\

\ \

\ \  

N

 

3 C _ l 3C (IV—l) Fig. 8: Diffusion Cell

23xz I D it Coordinates

with the following boundary conditions:

Case I (x>0) i) x + m t 2 0 C — c1

ii) t = 0 C = C1 w > x > 0

iii) x = 0 c = (C1 + C1)/2 t 2 0

Case II (x<0) i) x + -w t 3 0 c = c2

ii) t = 0 c = c2 0 > x > -m

iii) x = 0 c = (c1 + C2)/2 t 2 0

where C is the concentration and x is defined in Figure 8.

In order to solve equation (IV-l), it is necessary to

make the following assumptions: (1) the concentration

dependence of the diffusion coefficient D is negligible

over the small concentration range involved, and (2) the

diffusion gradient has the properties of normal distribu-

tion curves.
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Equation (IV-l) may be solved with Laplace transforms or by

other means to give the following identical solution for

both case I and case II.

 

) (IV—2)
 

where 9315 the concentration at the zero position in the

cell, and as a result of assumption (2) above, is equal to

%(C1 + C2). The refractive index, n, may be assumed pro-

portional to the concentration, so that:

o l erf. ( x

n - n / 4Dt

 

) (IV-3)
 

I

N
I

Essentially the fringe pattern is a plot of refractive

index versus distance in the

 

cell so that the refractive

index difference may be rep-

o
-
—
—
+

resented by the number of

       
fringes displaced. For the

 
 

A

relationship between the xk

 

method development and the x.

 

fringe pattern, refer to

 
Fig. 9, where J is the x0

total number of fringes

crossed from top to bottom;             
k is the local fringe number

in the top half of the cell, Figure 9. Fringe Pattern



64

and j is the local fringe number in the bottom half. Let

x. and xk be the measured distance corresponding to fringes

J

j and k respectively.

Thus, where x > 0

and equation (IV-3) becomes

 

x

—L = erf—l (35—2—3) m-“

/ 4Dt J

Similarly, where x < 0

n - nO - J _ 2.

n - n - 2J

2

and

x. —1 J _ 2.

————l— = erf (——3——l) (IV-5)

/ 4Dt

The exact midpoint of the diffusion zone is difficult

to determine; however, the distance, X + xk j' is ea511y

determined by difference measurements. Therefore:

x. x _ —l . -l
I + k — erf (J 3 2!) + erf (2k 3 J) (IV—6)

/ 4Dt J 4Dt

The cell distance is not equal to the distance measured on

the photographic plate because of the magnification of the

image by a factor, M. Therefore:



 

x. + x x.' + x '
k k

3 = 3 (IV-7)

/ 4Dt M 74Dt

where xj' and xk' are distances on the photographic plate.

Hence

x.' + x ' 2

j k

]
_1J—2J -12k—J

(——3———)+ erf (———j——J

l [

4M2 erf

Dt (IV—8)
 
 

For each exposure, value of the function

2

]

x.' + x '

[ A3 k

erf-1(g—fi—El)+ erf-1(EEELJE)

 

were determined for several j's and k's and averaged. The

averages for several exposures were plotted versus exposure

time, and the slope of the resulting line was determined.

Thus,

D = E1283 (IV-9)

4M2

See Appendix A for details of a sample calculation.

This diffusion coefficient is assumed equal to the

mutual diffusivity at the average concentration,

_ 1

co - 1(C1 + C2).

The distances on the photographic plate were measured

with an optical comparator made from a Gaertner microscope

fitted with a traveling eyepiece. The traveling eyepiece

could scan a total distance of 5 centimeters by turning a
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crank and the distance traveled was indicated on a vernier

scale accurate to 0.0001 centimeters.
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D. Calibration
 

For this study, the accuracy of the interferometric

technique was established by measurement of the concentra-

tion—dependent diffusion coefficient for the binary system

of sucrose-water at 25.0°C. This particular system was

chosen because accurate, widely accepted diffusion data are

availableftu'comparison. The accuracy of the method used

in this work was tested by comparing diffusion coefficients

at 25.0°C for four aqueous sucrose solutions with those

reported by Gosting and Morris [4D—1]. The data of Gosting

and Morris have been carefully checked by several investi-

gators [4D—2, 3, 4], and are thought to be accurate to

:0.2 percent. Gosting and Morris fit their data to the

following empirical relationship using the least square

technique:

DS=5.226 (1 — 0.0148 co) x 10'6 i 0.002 (IV-10)

where DS is the binary diffusion coefficient for sucrose-

water system at 25.0°C, and cO is the concentration of

sucrose solution in grams of sucrose per 100 cm3 of solu-

tion. A comparison of results are summarized in Table I.

It is concluded that the precision of the interferometer is

no worse than i 2 percent.
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E. Error Analysis
 

Some sources of error in measurement of diffusion

coefficients include:

(1) The accuracy in determining the fraction of a fringe

when measuring the total fringes for a particular

exposure. The percentage error increases as the

total number of fringes decreases.

(2) The assumption that the concentration dependence of

diffusion coefficient is negligible over the narrow

concentration range involved in the experimental run.

(3) The accuracy of the magnification factor of the

camera.

(4) Error in measuring distances between fringes on the

photographic plate.

(5) The accuracy in determining the slope defined by

equation (IV-9).

The average percentage error of diffusion coefficients

obtained in this work is estimated to be within i 2 percent.



V. THERMODYNAMICS OF ASSOCIATING POLYMER SOLUTIONS

A. Methods for Detecting Association of Polymer

Molecules in Solution [SA—l]

 

 

The purpose of this section is to review the methods

available for a quantitative evaluation of solutions con-

taining associating polymer molecules. A quantitative

description is needed for correct interpretation of

associating solution properties.

The phenomenon of association is discussed in the

literature under different names: aggregation, self—asso-

ciation, multimerization, complex formation, etc. All

processes leading to the formation of complexes of higher

particle weight from molecules of lower molecular weight

via physical bonds can be called sociation processes.

They may occur between like molecules or unlike molecules.

The sociation process between like molecules is called

"multimerization." Solvation is restricted to the socia-

tion process between solute and solvent. A non-multimer-

ized molecule is called a unimer. Like unimers of molecu-

lar weight MI can multimerize to form a particle of weight

Mn. The multimerization number n describes the number of

unimers in a multimer particle. Homologue series of poly-

mer molecules with like constitution are considered as

70
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like molecules.

Basically, two groups of methods can be used to

detect and determine multimers: group specific methods and

molecule specific methods. Group specific methods look at

the structure of a group and its interaction with other

groups. Typical examples of group specific methods are

spectroscopic methods (such as infrared or ultraviolet) and

nuclear magnetic resonance. Molecule specific methods look

at the molecule as a whole, e.g., their molecular weight

and/or their volume. Typical examples are membrane and

vapor pressure osmometry, light scattering, ultracentrifu-

gation, viscometry and gel permeation chromatography.

A multimerizing polymer molecule may have only few

associogenic groups. Because these are only a small frac-

tion of the total groups present, they may escape detection

by group specific methods which typically become insensi-

tive at levels of about 1% "impurities." The particle

weight of the multimers may, however, increase drastically.

One associogenic group in a polymer with a degree of poly—

merization of one thousand represents only 0.1% of the

total groups, but the particle weight increases 100% if

dimerization is complete.

Obviously, molecule specific methods are the prime

choice for the detection and determination of multimeriza—

tions. It should be remembered, however, that they are

influenced by intermolecular interactions only. Informa-

tion on intramolecular association and the structure of
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multimers is difficult to get from molecule specific

methods. Therefore, both molecule and group specific

methods must be employed in order to elucidate the multi—

merization process.
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B. Types of Association in Polymer Solutions

Two basic types of association may be distinguished:

open and Closed association. Open association [58-1, 2] is

a consecutive association in which all types of multimers

appear:

A1+ A ——‘ A4 (V-l)

A1 + AL4;::: An

where A1 represents i-mer and Ki is the association

equilibrium constant of the formation of i—mer. Closed

association exhibits an all—or—none process in which only

unimers and n-mers are present:

where KC is the equilibrium constant of the n-merization

process.

Combinations of these types of equilibria are of

course possible. However, discussions throughout this

paper will be restricted to open association because open
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association seems to be the most important type for

synthetic polymer molecules in solutions. Moreover, it has

been shown [SB—2] that a curve fitting using closed associa-

tion models can very often be replaced by using an open

association model with only one equilibrium constant.

Association may be further subdivided according to the

variation of the number of associogenic sites per molecule

with the degree of polymerization in polymer homologeous

series. The number of groups capable of association may be

constant for each molecule, regardless of its length. A

simple example is a linear unipolymer Chain with associat-

ing endgroups. This type of association can thus be

called ”end-to-end” association. This term should not

imply that this type of association occurs exclusively via

endgroups. It should merely indicate that the number of

associogenic groups per polymer molecule is independent of

its length.

On the other hand, the number of associogenic groups

may increase proportionally to the Chain length. Associo-

genic groups may be special groups or sequences of consti-

tutional or configurational groups. This type of associa-

tion can thus be called "segment-to-segment" association.

In the case of end-to—end association, the proper

choice for describing the polymer concentration should be

molar concentratiion, whereas in segment-to-segment asso-

ciation the association equilibrium constants have to be

based on the mass concentrations. This work deals
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exclusively with open end-to-end association. For those

who are interested in segment-to-segment and/or closed

associations, references can be found elsewhere [SB—2, 3, 4].
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C. Thermodynamics of Solutions Containing Associating

Polymer Species

 

 

The present section is concerned with strong orienta-

tional effects of polymers on the thermodynamics of polymer

solutions. Important and typical examples are solutions

containing associating polymer molecules with specific

functional endgroups. The foundation of most existing

polymer solution theories (such as those discussed in

Chapter II) are based primarily on the assumption that the

polymer molecules are homogeneously distributed throughout

the solution. This assumption is expected to break down

when strong intermolecular interaction (e.g., hydrogen

bonding) occurs between polymer molecules. Since the

interaction energy of hydrogen bonding is very large com-

pared to other intermolecular energies, methods like the

perturbation approach applied in statistical thermodynamics

to account for effects of weak intermolecular interactions

often become useless. In fact, there exists at present no

satisfactory theory of strong orientational effects from

which one may deduce the thermodynamic properties and

especially the excess functions from intermolecular forces

and properties of the pure components.

In the history of thermodynamics of solutions, the

earliest and probably the most popular approach for

describing solution properties of associating solutions is

the "chemical approach" first proposed by Dolezalek [SC-l].

Although Dolezalek's association model gained some success
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in interpreting the negative deviations from Raoult's law

in some systems, his oversimplified picture of associating

solutions also drew serious criticism. However, it remains

as a good basis for the treatment of associating solutions

in which specific interactions do exist between molecules.

The remaining part of this section is dedicated to

presenting an association model developed by the author for

dilute solutions of associating polymers in inert solvents.

This association model describes favorably the thermodynamic

properties of associating polymer solutions, and provides

good explanations for some discrepancies that exist between

experimental data in the literature and theoretical

predictions of existing polymer solution theories.

Consider a polymer-solvent mixture in which polymer

molecules associate with each other to form larger particles

according to the open associating process described by

equation (V-l). The solvent molecules of the system are

assumed to form no associates with either solvent or poly-

mer molecules. It is also assumed that there is no overall

volume Change of solution due to intermolecular association

and the association constant is independent of molecular

size,

K = K = - - - = K = K (V—3)

All i-mer concentrations can be related by the association

constant, K.
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1-1 i (v—4)

where C1 is the molar concentration of i—mer. Since the

true molar concentration of polymer solute, CP, is the sum

of the molar concentrations of all i—mers,

Also since the

less than that

—
.
I

therefore, the

-1

C + K C2 + K2 C; + --- + K” C? (V-S)

molar concentration of (i+l)—mer is always

of i-mer (otherwise Cp will not be finiteL

true molar concentration of polymer solute

can be expressed as:

CP

C1

(V-7)
 

1 - K C1

which can be rewritten:
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C = ———————— (V—8)

It can be seen from equation (V-5) that Cp represents the

concentration of ”kinetically independent" polymer molecules

per unit volume of solution.

The osmotic pressure of a polymer solution can be

expressed in terms of a virial expansion according to

statistic thermodynamics [SC-2].

H

0 RT

1 2
= _— p p -—— —MN + A2 p + A3 p + (V 9)

where A2, A3, etc., are the osmotic virial coefficients, H

is the osmotic pressure of the polymer solution at concen-

tration pp (in grams of polymer per unit volume of solu-

tion), and MN is the number average molecular weight of poly-

mer solute. For most non-associating polymer-solvent sys-

tems, plots of H/Dp versus pp are found to be linear in'Hue

dilute concentration range as predicted by equation (V-9).

The slope of the plot is equivalent to the second virial

coefficient, and extrapolation of the plot to zero concen-

tration gives the reciprocal of the number average molecu—

lar weight of the polymer. Equation (V-9) also predicts

that for a non-associating theta solution (a theta solu-

tion is defined as a solution in which all virial terms in

equation (V-9) vanish), H/pP R T is independent of concen-

tration and is equivalent to the reciprocal "true" number
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average molecular weight,

TT

pp R T

)
1

( M- (V-lO)

e N

However, for associating polymer—solvent systems, the true

number average molecular weight in equation (V-lO) should

be replaced by pp/Cp,

—l—) = ——l-—.=£ 1 (v-11)

P P P (MN)app,8

 

Equation (V—ll) also serves as the definition of the

apparent number average molecular weight at theta condition.

It should be noted that (MN)apg 0 is an increasing function

of concentration with its functionality depending on the

type of association [SC-3].

In analogy to non-associating systems, we may write

[SC-4]:

 "'%_T = (RN):pp,8 + A; pp + A5 p; + ... (V-12)

for associating systems not at theta condition. By doing

so, we actually assume that all intermolecular associating

forces between polymer molecules can be separated from all

other interactions of the components. The superscript star

is added to individual virial coefficients because they are

different from the corresponding virial coefficients

defined in equation (V-9) in that those in equation (V-12)
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are for the associated complexes (multimers).

Since the mass concentration of solute is given by:

= 2 C M. = M 2 iC. (v-13)

where erepresents the average molecular weight of i-mer.

Substitution of equation (V-8) and (V-13) into equation

(V-ll) yields:

— — P N

(M ) = M + _ (V—14)
N app,0 N (MN)app,9

 

Equation (V-l4) is the concentration dependence of

apparent number average molecular weight for theta solu-

tions with consecutive associations. The result has been

previously derived by Meyer and van der Wyk [SC—5], and

also by Solc and Elias, using a more rigorous approach

[SC-4]. It is convenient to define a, the “degree of

association” as:

 

n

X 1 Ci —
._ (M )

a = 1-1 = N-app,8 (V-15)

“ M

Z Ci N

i=1

Combining equations (V-14) and(V-15) gives:

4Kp 1

(i: 0.5 [1 + (l + )5] (V-l6)
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When there is no association (K=0)cxequals 1.0. It

can be seen from equation (V-l6) that the degree of asso-

ciation is an increasing function of polymer concentration.

Equation (V-l4) can be rearranged to:

(M ) = M" — Kpp/(MN)ap“B (v-17)
N app, 8 N __ Kpp

M (1+- )

N “‘N)apge

 

 

Realizing that a = (M /MN, equation (V-l7) can be
N)aPP.e

reduced to a more compact form:

 

 

Kpp

OLM

_ -1 -—_1 N

M (l + ———)

N M
a N

Equation (V-18) is a more convenient form of equation

(V-14), since (M ) is an explicit function of concen-

tration in equation (V—18). It describes the variation of

the number of kinetically independent molecules as a func—

tion of concentration in the absence of all other interac-

tions. Substituting equation (V-18) into equation (V-12),

 

one gets:

Kop

0M

11 - _1_ * * 2 _ N _
Pp R T — (—N A pp + A3 pp + .. ) Kpp (V 19)

MN (1 +—'_-—)
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or

H '- (—l- + —-7—A2MN + ___—A3 MN + ) - K/OL (V'ZO)
R T ‘ y y 13 "' y (y + K/O)

where

V represents the average volume occupied by one mole of

nonassociated polymer molecules (unimers).

According to excluded volume theory, the third virial

coefficient A3 is Closely related to the second virial

coefficient A2 by the relation:

A3 a g A? MN (V-22)

where g is a constant for a particular polymer-solvent

system and is a measure of "goodness” of the solvent. The

value of g should range from zero for a theta solvent to

an asymtotic limit of 4/3 for a good solvent [SC-6]. If

we assume that the relation between A2 and A3 (equation

(V-22)) is also valid for A5 and Ag and g = 1, equation

(V—20) can be approximated to:

 

ll _ 1 K/a

RT ‘ y — B ’ y (y + K/a) (V'ZB)

—2

where B = A5 MN (V—24)

In a very dilute solution or when the association is

relatively weak,
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K/a << V (V—25)

and equation (V-23) can be reduced further to:

RIT = §———§ _ —VT (V-26)

The assumption of g 1 made to arrive at equations (V—23)

and (V-26) introduces minor error in evaluating the osmotic

pressure of moderately concentrated solutions. However,

the error should be negligible for dilute polymer solutions

in which we are most interested.

Zimm [SC-7] pointed out the exact formal correspond-

ence between the osmotic pressure equation (i.e., equation

(V—9)) and the virial equation of state of an imperfect gas.

It is interesting to note that a similar formal correspond—

ence also exists between equation (V—26) and the well-known

van der Waals equation of gas,

__ = _____ _ __ (V-27)

where v is the molar volume of the gas under pressure P

and temperature T. The parameter b accounts for the finite

volume of the gas molecules with its value depending on the

size and nature of the gas molecules and the term a/v2 is

a correction made to account for the attractive forces that

exist between molecules. The analogy between the two

equations is hardly surprising considering the similarities

that exist between the two systems. The osmotic pressure
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equation derived according to the associating polymer

solution model is analogous to the van der Waals equation,

not only in form but also in the physical meaning of the

corresponding parameters. In equation (V-26), the term

(K/OPV2 accounts for effects of intermolecular attraction

of polymer molecules via specific (such as hydrogen bond-

ing) and/or non-specific (such as van der Waals) interact-

ing forces. The meaning of parameter E in the association

model is not very clear from its definition (i.e. equation

(V-24)). To understand the physical significance of B, we

have to first understand the physical meaning of A2 the

second virial coefficient. In fact, Zimm [SC-7] has shown

that A2 can be directly related to g, the volume excluded

to a particular polymer molecule due to the presence of

other polymer molecules in solution, by the relation

2

3
: I
C
.

 

(V-28)

Z
N

where NA is the Avagadro constant and MN the number average

molecular weight of polymer molecules. The parameter B,

therefore, represents molar excluded—volume of polymer

molecules in solution since

B = A2M§ = NAB/2 = Molar excluded volume (V-29)

The difference between V and B can therefore be considered

as "molar free volume" of polymer molecules in solution.

Taking a linear expansion of equation (V-l4) for
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-1

 

for (ENLxm 0 followed by substitution into equation (V-12)

yields:

II 1 K 2K2 2

=F+ (A*—-_r) p + (A*+-—3—) p +
ppRT MN 2 MN P 3 MN P

(V—30)

_ 1 2
— M; + (A2)obs pp + (A3)Obs pp + ...

where

(A2)Obs = A3 .. g7 (v—31)

N

2

(A3be = A»); + £33?— (v-32)

N

As can be seen from equations (V-3l) and (V-32), the

observed virial coefficients of an associating polymer—

solvent system have two contributions: a term identified

with association, and a second term which might be

identified with all other interactions.
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D. Presentation of Osmometry Data and Discussions

The osmotic pressure of PTHF—MEK solutions were

measured using a Hallikainen automatic membrane osometer

(Model 1361 - Code D) designed by Shell Development Co.

The details of the osmometer and the experimental pro-

cedures were discussed in Chapter III. Sartorius regener—

ated cellulose (Code SM-11539) with pore size <5 mm was

employed throughout this work. Four monodisperse poly-

tetrahydrofurane (PTHF) samples, designated as Al, A2, El,

and BZ, were purchased from Polymer Laboratories, Ltd.

(Church Stretton, Shrewsbury, U.K.), and their character—

istics are listed in Table II. The polymer samples were

used without further purification.

Table II. Characteristics of PTHF Samples.

 

 

Polymer Code Mn Polydispersity End—Groups

Al 281,000 <1.05 -CH3

A2 30,000 <1.05 —CH3

Bl 7,660 <1.05 -OH

B2 2,500 <1.05 -OH

 

The results are listed in Tables III and IV and also

plotted as Figure 10. As can be seen from Figure 10, the

agreement between experimental data and theoretical pre-

dictions of the association model is good. The signifi—

cant difference in the characteristics of the two plots in
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Table III. Concentration Dependence of Reciprocal Apparent

Number Average Molecular Weights of PTHF-AZ-MEK

Solutions at 34.0°C

 

. +“
M/Dp RT X 10

 

(moles/grams)

 

 

 

Concentration

Polymer (grams/d1)
Ca1culated* Experimental

PTHF-AZ 0.0521 0.3551 0.3570

0.1190 0.3857 0.3916

.1640 0.4055 .3988

.2553 0.4450 .4414

.3036 0.4657 .4680

.3538 0.4876 .4839

Root Mean Square Deviation: 0.0047

MN = 29,900 grams/mole

A2 = 0.0043 mole CC/gram2

*Calculation based on equation (VI-9) using least square technique to

fit the data.
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Table IV. Concentration Dependence of Reciprocal Apparent

Number Average Molecular Weights of PTHF-Bl-MEK

at 34.0°C.

 

+4

II/pp RT X 10

 

 

 

Polymer Cknfgjgg:vgfyi (moles/gram)

Calculated* Ca1cu1ated+Experimenta1

PTHF-Bl 0.0235 1.0719 1.0643 1.0677

0.0336 1.0208 1.0271 1.0259

0.0449 0.9797 0.9900 0.9898

0.0749 0.9196 0.9168 0.9082

0.0802 0.9140 0.9076 0.9197

0.1074 0.8999 0.8781 0.8754

0.1226 0.9008 0.8749 0.8729

0.1990 0.9695 0.9962 0.9966

Root Mean Square 0.0184 0.0059

Deviation

*Cglculated using association model (equation (V-26))

(MN: 7,660 grams/mole, A§==0.015 mole cc/gramz, K==l.07x 107 cc/mole)

ICalculated using non-association model (equations (V—9) and (V-22)

(MN: 8,570 grams/mole, A§=~0.0483nmde cc/gramz, g = 0.997).
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Figure 10. Concentration Dependence of Reciprocal Apparent

Number Average Molecular Weight of PTHF-MEK

Solutions at 34.0° C.

O PTHF-Bl—MEK

A PTHF—AZ-MEK
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Figure 10. Concentration Dependence of Reciprocal Apparent

Number Average Molecular Weight of PTHF-MEK

Solutions at 34.0° C.

O PTHF-Bl-MEK

A PTHF—AZ—MEK
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Figure 10 seems to indicate that PTHF-B1 molecules

associate to form complexes via OH end-groups in MEK. NO

evidence indicates any detectable association between

PTHF-A2 molecules.

The second virial coefficient A2 of the PTHF—Bl-MEK

solution is found, based on the non—association model, to

be negative and much smaller than A2 of PTHF-AZ-MEK

solution. This finding conflicts with excluded volume

theory [SD—1], which predicts that A2 should decrease

very slowly with increasing polymer molecular weight.

Similar findings have also been reported by other investi-

gators for polyvinyl chloride-cyclohexanone solution

[SD-2] and for polyethylene oxide-benzene and -acetone

solutions [SD-3, 4, 5]. Although the excluded volume

theory allows A2 to have a small negative value when weak

intermolecular attraction exists in the system, large

negative A2 and change of sign of A2 from positive for

higher molecular weight to negative for lower molecular

weight polymer are not predicted and cannot be explained

by the theory. It is concluded, therefore, that the

excluded volume theory should be restricted to non-asso-

ciating polymer-solvent systems only. Moreover, A2 is

traditionally regarded as a measure of "goodness” of

solvents for polymer solutes, and a large negative value

of A2 for PTHF-MEK solution at 34.0°C would mean MEK is a

non—solvent to PTHF. This conflicts the observation that

MEK is a theta solvent to PTHF at 25.0°C (that means MEK
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should be a better-than-theta solvent to PTHF at the

higher temperature). In fact, PTHF dissolves readily in

MEK to form a homogeneous solution at 34.0°C. The author

suggests that it is A*, instead of (A2) which should be
obs'

used as a measure of solvation power of solvents for asso-

ciating polymer—solvent systems in which polymer molecules

associate with each other mainly via their end-groups.

The conflicts existing between experimental results

and theoretical predictions discussed in the preceeding

paragraph can be explained by the association model pre—

sented in section C of this chapter. If we accept the

prediction by excluded volume theory that the second virial

coefficient is insensitive to polymer molecular weight and

the assumption made earlier that the association constant

K is independent of polymer molecular weight, equation

(V-31) predicts that a plot of (A2) vs. Mgzshould be
obs

linear with intercept equivalent to A3 and slope -K.

Equation (V-3l) suggests that the observed second virial

coefficient (A2)obs decreases with decreasing polymer

molecular weight when the association term K/M; is signifi-

cant comparing to the virial term A3. According to the

equation, the observed second virial coefficient is also

expected to change its sign from positive to negative as

the polymer molecular weight continues to decrease such

that the association term becomes greater than the virial

term A3. In order to verify the validity of these

predictions the data of Yamada and co-workers [SD-3] for
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the second virial coefficient of polyethyleneglycol (PEG)

solutions were replotted in a manner as suggested by

equation (V-3l). Figure 11 shows that the agreement

between the straight—line prediction and experimental

results is surprisingly good. In aqueous or methyl

alcohol solution, the OH end-groups of PEG are surrounded

by solvent molecules, and are most likely to form hydrogen

bonds with them. Intermolecular association of PEG mole-

cules via OH end-groups is therefore expected to be very

weak. Among the four solvents under study, the associa-

tion constant of PEG is found to be greatest in acetone.

Figure 11 also suggests that water is a better solvent for

PEG than the others because PEG has the highest A; value in

water.

The larger and positive A; of the PTHF-Bl-MEK solu—

tion, when compared to the value of A2 for PTHF—AZ—MEK

solution, is consistent with excluded volume theory,

although the difference between the two values is greater

than what would be expected. A possible explanation for

the discrepancy is that some of the normally non-associat-

ing intermolecular attraction forces actually contribute

to the association mechanism when hydrogen bonding occurs.

Thus, some of the non-associating effects in A2 are

actually shifted to the association term.

According to excluded volume theory, the value of g

defined by equation (V-22) should vary from zero for a

theta solvent to a asymtotic limit of 4/3 for a good
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Figure 11. Molecular Weight Dependence of Observed Second

Virial Coefficient of PEG Solutions (Replotted

from reference [SD-3].
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solvent. This prediction is again not confirmed by the

data of Nord and co-workers for polyvinyl alcohol—acetate

copolymer in aqueous solution [SD-6]. Inspection of their

data indicates that the g values of their eighteen systems,

evaluated according to equation (V—22), varied from 0.32

to 1.41, even though all of these systems have large nega-

tive second virial coefficients which suggests that these

systems are on the verge of precipitation. Elias and

Gerber [SD-7] have argued that the initial slope of the

n/pp RT vs. pp curve should not be equated with the

second virial coefficient and any interpretation of solu—

tion properties based on negative second and positive

third coefficients is questionable.

The molecular weight of the PTHF-Bl sample determined

in this work is found to be much smaller than indicated by

the manufacturer, while the agreement for the molecular

weight of PTHF-A2 sample is extremely good (see Tables III

and IV). Again, this is suggested to be a result of

association. Figure 10 demonstrates how one can be misled

with a limited number of data, especially when they cover

only a rather narrow concentration range, if the solution

under study is an associating system. As indicated by the

dotted line in Figure 10, extrapolation of data taken

within concentration range 0.20 ~ 0.35 g/dl will yield a

polymer molecular weight of 25,000 g/mole for the PTHF—Bl

sample, which is identical to the manufacturer's value.

Figure 12 demonstrates the superiority of the
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Figure 12. Comparison of Osmotic Pressure Data Fittings

Based on Various Solution Theories for PTHF—Bl—

MEK Solution at 34.0°C.

Association Theory of This Work

----- Flory-Huggins Theory
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association model over the Flory—Huggins theory for

associating polymer-solvent mixtures. As can be seen from

Figure 12, the one-parameter Flory-Huggins equation (equa—

tion (II-12)) cannot fit osmotic pressure data for PTHF—

Bl-MEK solution. Based on the theory, x115 assigned a

value of as high as 2.5 to best fit these data. This is

contrary to what the theory predicts that X1should have a

maximum value of 0.5.

The idea of associating polymer molecules in

solution gains more support from Rquopf's osmotic pres—

sure data for polyvinylchloride (PVC) solutions [SD-8].

Their results show that the number average molecular

weight of their PVC sample, determined by extrapolation of

the 11/0p RT vs. 0 plot to zero concentration, varies with
P

solvent used and with solution temperature. These results

clearly indicate that PVC molecules associate in solution

and the degree of association is a function of solvent and

temperature.



VI. DIFFUSION IN ASSOCIATING POLYMER SOLUTIONS

A. Thermodynamic Basis of Diffusion in Solution
 

General diffusion theories normally have been

developed either on the basis of a physical model of the

diffusion process or using irreversible thermodynamic argu-

 

ments. The latter approach is adopted here, both to avoid

dependence on a possible unrealistic model and because the

results are consistent with available kinetic theory and

experimental data [6A-l, 2].

The thermodynamic approach is based on three postulates

in addition to conservation and symmetry arguments: (a)near

equilibrium behavior, (b) linear relations between fluxes

and affinities, and (C) microscopic reversibility [6A-3].

The first step in the development of flux relations is to

recognize that diffusion is an irreversible process, and

thus results in an overall increase on entropy. A quanti—

tative expression for this increase will yield the desired

relations between mass fluxes and concentration gradients.

For a n+1 component mixture, it can be shown [6A-4]

that:

+

E D. J. (VI-1)
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where JS is the overall entropy flux relative to the mass

average velocity vm, q is the total heat flux and Ji the

mass flux of species 1 relative to the mass average

velocity. T is the absolute temperature and “i the chemi-

cal potential of species 1. In addition:

+

Z J. V(u) (VI-2)

where RS is the volumetric rate of entropy production.

Clearly RS vanishes at thermodynamic equilibrium; that is,

when the Chemical potential gradients V(ui),r p are zero.

)

The 7(“NI p can then be considered as the "driving forces”

for entropy production.

The preceding arguments can be generalized to any

"driving forces” or affinities, Xk, and the corresponding

"fluxes," Pk, of irreversible processes:

RS = E Kk xk (VI-3)

The second law of thermodynamics requires that the

entropy production resulting from all the simultaneous

irreversible processes be positive. However, it may happen

that a system undergoes simultaneous processes such that:

Fj xj < 0, while all other Pi xi > 0 (i # j) (VI—4)

provided that the sum
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2 Pk x > 0 (VI—5)

These irreversible processes are called ”coupled processes."

Thermodynamic coupling allows one or more of the processes

to progress in a direction contrary to hat described by its

own affinity. For example, in thermal diffusion, the dif—

fusion of matter against its concentration gradient is

accompanied by a negative entropy production, but this

effect is compensated by the positive entropy production due

to the flow of heat. This example makes it clear that any

particular flux in a system depends upon not only its own

affinity, but also all other affinities existing in the

system.

Thermodynamic considerations alone cannot, howeverugive

the form of the dependence of the fluxes on the driving

forces. It is quite natural, at least if the system is

Close to equilibrium, to assume that each flux is a linear

homogeneous function of each driving force:

F. = Z W.. X. (VI-6)

j 13 3

Linear laws of this kind are often called the "phenomenolo-

gical relations.” In addition to being the simplest

physically interesting assumption, this relation is consist-

ent with other common flux laws (for example, Newton's law,

Fourier's law and Fick's law). Like these relations, it is

only a first approximation to real behavior. But also like

these others, it is normally a good approximation. The
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coefficients Wij are called the ”phenomenological coeffi-

cients," and depend on the state of the system. The coef—

ficient Wii may stand for the heat conductivity or diffusiv—

ity, while the coefficients Wij (with i#j) describe the

”interaction” of the two irreversible processes i and j.

The phenomenological coefficients have been shown to be

symmetric by Onsager on the basis of statistical mechanical

arguments [6A-5]: that is:

 

These relations are referred to as the “onsager reciprocal

relations,” and although their validity is still in some

doubt, large deviations form equation (VI—7) are quite

unlikely. It should be noted that for the Onsager recipro-

cal relations to be valid, the J1 and Xi must both be

independent [6A—6] (i.e., for a system of n+1 components,

there are only n independent Ji and Xi)°

Returning to the mass flux problem due to chemical

potential gradients V(ui)T,p, according to equation (VI-6),

one can write for n+1 components:

C
.

I
I I

I
L
M
S

J1 wij V(Uj)r,p (i = l, "’ n) (VI-8)

For practical purposes, Chemical potential gradients are

awkward. Equation (VI-8) can be rewritten in terms of

mass fraction gradients. Since

113': Uj (6.11, (02, ...wn, T, p) (VI-9)
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where oi is the mass fraction of component i, therefore

 

n

V(U.) = : (8&3) Vwk (VI-10)

=1 k (UR, gfk’n

T,P

Here, component n+1 is chosen as the solvent.

 

Combining equations (VI—10) and (VI-8), one obtains:

n n Bu

Ji = — 2 W1. [ Z ra-VJ—j) V ]

3:1 3 k—l k w£,22k,n wk

T,P

n n 3U.

= - z [ z 1' (A j) 1 v6

k=1 3:1 3 "I 002, 2%k,n k

T.

(VI-11)

by:

n

z w.. -—71) (VI—12)

where p is the mass density of the mixture. It can be

seen from equation (VI—12) that, in general, Dr; # DEi'

If we rewrite equation (VI-10) in terms of mass density

gradients:

n 3p.

= __l - .
V<ij3P 2:1(apk)92'flfk»n Vok (VI 10 )
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then

n 0
J1 = - E Dik Vok (VI-1T)

k=l

where

p D an.

D. = z w.. (—:l) (VI-12')
1k j=l 1] 80k pg Qik,n

T,P

The superscripts on diffusivities indicate that their mag-

nitudes depend upon the Choice of driving force. It must

be noted that in general:

a o
Dik ¢ Dik (VI—13)

In fact,

p. _ _ n 0

D9. = D9.+ p (v — v.) Z 0 D (VI—l4)

13 13 n 3 k=1 k ik

where Vi is the partial specific volume of species i for

mass concentration units. It is the Dfijwhich are normally

measured experimentally. It has also been shown [6A-3]

that DIi should be always positive, while the ”interacting

coefficients” may be positive, zero, or negative. In other

words, the mass flux of species i could be either acceler-

ated, not affected, or decelerated by driving forces other

than its own.

 



107

8. Theory of Diffusion in Solutions Containing

Associating Polymer Solutes

 

 

According to the open association model discussed in

Chapter V, an associating polymer solution can be regarded

as a multi-component system containing polymer unimer,

associated multimers and solvent, instead of a binary

system. The associated multimers are assumed to be identi—

cal in their chemical properties, but distinguishable in

size. It is also assumed that the shape of the multimers

is the same as the shape of unimer in solution. Thus, the

translational properties of individual unimers and multi-

mers in solution depend primarily on their sizes (as dis-

cussed in Chapter LI,Part B). The ratio of the concentra—

tion of unimer to multimers changes drastically with

overall mass concentration of polymer. Therefore, we

expect to see the observed diffusion coefficient, which is

a measure of diffusion of unimer and multimers, change

significantly with overall polymer concentration. The

functionality of D(Op) should, of course, depend on the

type of association.

Based on the irreversible thermodynamic arguments

presented in the previous section, the following set of

equations can be written to describe mass flux processes

due to concentration gradients existing in an isobaric,

isothermal n+1 component system if the "phenomenological

laws" are valid:



J1 = — Df, V01 — sz V62 — ... — Dfn Vpn (VI-15a)

= _. * n - 1|: ._ _ ~k _J2 D21 Vp1 D22 V02 ... D2n Von (VI 15b)

: - * - * ‘ "’ o o o " * -Jn Dn1 V01 Dn2 702 Dnn Von (VI 15n)

where J_ and V0. are mass fluxes and mass concentration

1 1

gradients of diffusing species 1, respectively.

J J ...1, 2, , etc., are mass fluxes of unimer, dimer, ...,

respectively. Component n+1 is Chosen as the solvent.

Equations (VI-15) are of little use because it is impossible

for one to measure separately the mass fluxes of unimer

and multimers. The measurable quantity is the overall

mass flux, J , which is the sum of all mass fluxes Ji’

obs

Summing equations (VI-15) gives:

n

Jobs = .2 Ji

1:)

(VI—16)

n n n

= _ (121 D31) Vo1 - (131 th) V02 - ... - (1:1 Diann

Equation (VI-16) can be written in a more compact form as:

JObs = — D1 V01 - D2 V02 - ..w-Dn Von (VI-17)

n

where ( Z ng) is replaced by Dj.

i=1

Since the molar concentration of i-mer Ci is related
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to the molar concentration of unimer C1 by:

'-1

C, = K1 C1 (VI-18)
i l

and

Ci = pi /M1 = pi /i MN (VI—19)

 where Di is the mass concentration of i—mer and MN is the -

number average molecular weight of unimers, the mass con—

centration of i-mer can be expressed in terms of mass con—

centration and number average molecular weight of unimer:

 
0 = K‘ (_ )1 (VI—20)

Differentiation of equation (VI-20) with respect to unimer

mass concentration gives the expression for mass concentra-

 tion gradient of i-mer:

VD. = 12 (=—‘—)i’1 VD (VI—21)

Substituting equation (VI-21) into equation (VI—17) yields:

J = - (D
2

2 n-1

obs 1 + 4YD2 + 9Y D3 + ... + n Y Dn)vp1 (v1-22)

where Y is a dimensionless concentration and is defined as

KP

Y = eel (VI—23)

MN

For non-associating systems, i.e., K=0, Y should be zero,



110

and the unimer concentration would equal the overall con—

centration. Equation (VI—22) would then reduce to:

J = D1VO1 = - Dobs Vop (VI-24)
obs

as it should for a binary system. Equation (VI—22) cannot

be applied directly to interpret experimental results since

it is not possible for one to measure either the concentra-

tion or concentration gradient of unimer. It is therefore

necessary to convert unimer concentration gradient into

overall polymer concentration gradient. Since

 

1'1

Pp ' .23 01
i=1

(VI—25)

= (l + 2Y + 3Y2 + ... + nYn- ) 01

therefore

2 2 n—1

VDP= (l + 4Y + 9Y + ... + n Y ) V01 (VI-26)

Substitution of equation(VI-26) into equation (VI-22)

yields:

- (D1 + 4YD2 + 9Y2D3 + ... + nZYn’1Dn)

J = Vo

obs 1 P

(l + 4Y + 9Y2 + ... + nZYn’ ) (VI-27)

Comparing equation (VI-27) to equation (VI—24), it can be

seen that;
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-1

(D1 + 4YD2 + 9Y2D3 + ... + n2Yn Dn)

D =
b -1

O S (l + 4Y + 9Y2 + ... + n2Yn )

(VI—28)

n .2 1-1

= Z ( 1 Y ) D.

1:1 “ 2 j-l 1
z j Y

Thus, the observed diffusion coefficient is a weighted

average of diffusion coefficients of all diffusing species

in solution. The weighting factor Hi of the diffusion

coefficient D1 is found to be:

 

E 2 j-1 (VI—29)

' Y

In general, the diffusion coefficient of i-mer Di is a

function of concentration and can be expressed as:

o .

D. = D.(l + k(1) o + ...) (VI-30)
l 1 d P

where D9 is the limiting diffusion coefficient of i-mer at
1

zero concentration and 6;)

constant of D1. Substitution of equation (VI-30) into

the concentration dependence

equation (VI-28) gives:

) D% (1 + kd p + —-— ) (VI-31) 

Both experimental results [6B—l, 2] and theoretical
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prediction (see Chapter II, part B) have shown that the

limiting diffusion coefficient is inversely proportional to

the molecular weight of the diffusing molecule by the

relation:

D9 = G M73 (VI-32)

Elias [6B-3] showed that the parameter a should satisfy

the equation:

a = (l + Y)/3 (VI-33)

in which Y is defined by the relation:

[0], = K M (VI—34)

Normally, Y ranges from 0.5 for a theta solvent to 0.8 for

a good solvent. Therefore, the parameter a should range

from 0.5 to 0.6. For systems in which association between

polymer molecules is significant, the so-called'excluded

volume effect” is expected to be minimal and the parameter

a can be approximated by 0.5. Thus:

 

_1 -1

( M ”)4 = 12 (VI—35)

Substituting equation (VI—35) into equation (VI—31) gives:
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n 1'5Y1‘1 (i)
D b = D3 2 ( 1) (1 + kd pp + -—-)

O 5 i=1 E j2 Y].

1=1

(VI-36)

n .

= D0 g B. (l + k(1) D + ---)
. 1 d P

121

where

n5 1-1

B. s 1 Y _ 1 (VI-37)

l E j2 y)“

1:1

Equation (VI—36) can be further reduced to:

o n n (i)
_ '1‘ V ___

Dobs - D1 [.L Bi + .“ B1 kd 0P + ]

i=1 i=1

n (.) (VI—38)

n E B k 1

0 i=1 i d
= D ( z B ) [1 + p + —--l

1 . n P

i=1 E Bi

H
.

—
I

Equation (VI-38) can be rewritten in a simpler form as:

 

0 m
= --- —39Dobs D asso (1 + kd op + ) (VI )

where

n n p5 Yi-l

= I B. = Z n 2 . 1 (VI-40)
asso i=1 1 i=1 2 j YJ'

j=1

m

and the parameter kd can be regarded as the linear concen-

tration dependence constant of the average diffusion coef—

ficient of all diffusing associated and non-associated

species. k2 is caused by thermodynamic and hydrodynamic
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interactions as well as by association effects. It should

be noed that in equation (VI—39) D3 has been replaced by

D0 because significant association between polymer mole-

cules at infinite dilution is most unlikely and therefore

there should be no difference between D0 and D1. The

association term in equation (VI—39) is a decreasing func-  
tion of concentration. It decreases sharply in the

infinitely dilute region and gradually levels off. This is

illustrated by Figure 13. In general, the association {-4

term dominates in the infinitely dilute region, while the

intermolecular thermodynamic— and hydrodynamic-interaction

term (1 + k3 DP + —-—) becomes important at higher concen-

trations. It is noteworthy that for non-associating

systems, Y is zero, X = 1.0, and equation (VI-39) can

asso

be reduced to:

 
D = D0 1 k —-- VI-4lObs ( + d Op + ) ( )

as expected. According to equation (VI-25):

K0
_ Y

X = ——5 = -——-———— (VI-42)

EN (1 - Y )2

or

1

(1 + 2x1 — (l + 4x)1
2X (VI-43)
 

The other root of Y is rejected since it violates the

constraint that Y has to be less than 1.0 (see Chapter V,
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Figure 13. Sample Calculation of ancentration Dependence

of D/Do, X and (1+k p + -—-).
asso d P

D = D° X (1+km p + -—-).
asso d P
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part C).

Equation (VI—40) and (VI-43) enable one to calculate

.8850 as a function of overall polymer mass concentration

providing prerequisite knowledge of the association equilib—

rium constant K and the true number average molecular weight

of the polymer sample MN are known. In practice, K and MN

can be determined from osmotic pressure and/or light

scattering data. Equation (VI—36) also provides a method

for determining D0 of associating polymer solutions.
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C. Presentation of Interferometry Diffusion and

Discussions

 

 

Figures 14, 15 16 show the concentration dependence of

diffusion coefficients of various PTHF-solvent systems.

For non-associating systems (Containing polymer with CH3

end—groups) linear extrapolations were applied to determine  
D0 and kd. For associating systems (containing polymer

with OH end-groups) equation (VI—39) was applied (using a

least square technique) to fit the experimental data. The

results are also summerized in Table V. The concentration

dependence constant (kd) increases with polymer molecular

weight in both non—associating PRHF-MEK and PTHF—BB systems

(see Figure 14). This finding indicates, according to the

 thermodynamic- hydrodynamic—interaction arguments of the

non—associating polymer solution theory (i.e., equation

(II-71)), that the increase of molecular weight of diffus-

ing polymer molecules has stronger effect on improving the

driving force than on increasing the frictional force.

Equation (VI-37) for associating systems predicts

that the diffusion coefficient should increase sharply with

decreasing concentration near the zero concentration inter—

cept. This is due to the reduction of the average size of

diffusing polymer molecules as a result of dissociation of

polymer multimers accompanied with dilution process. The

data for the four associating polymer mixture are shown

on Figures 15 and 16, along with the expected extrapola-

tions according to the theory. Although the interferometric
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Figure 14. Concentration Dependence of Diffusion Coeffi—

cients of Non-Associating PTHF Solutions at

34.0°C.

PTHF—Al in MEK--Q;

PTHF-Al in BBu—A;

PTHF-A2 in MEK--A;

PTHF-A2 in BB---.,
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Figure 15. Concentration Dependence of Diffusion Coeffi-

cients of Associating PTHF—MEK Solutions at

34.0°C.

PTHF-Bl in MEK». ;

PTHF-B2 in MEK--O

(The curves were determined based on equation

(VI-39) using least square tehcnique.)



122

0
6

o
b

 

u
w
h
o

_
N
0

A
_
o
a
v
c
o
z
o
L
E
O
O
C
O
O

 lb

)
9

A

 

N
O

8
LO (O

o o 3 8
(DEBS/BLUD)QOL x C)

[\.

O

 

 



123

Figure 16. Concentration Dependence of Diffusion Coeffi-

cients of Associating PTHF—BB Solutions at

34.0°C.

PTHF-Bl in BB--';

PTHF-B2 in BB——A _

(The curves were determined based on equation

(VI-39) using least square technique.)



124

 

)
l
l
"

A
:
6
5
E
3
5
8
6
6

 

o

fluNQOLXO

Kl

(Des/

 

o
O)

 



T
a
b
l
e

V
.

S
u
m
m
a
r
y

o
f

D
i
f
f
u
s
i
o
n

C
o
e
f
f
i
c
i
e
n
t

D
a
t
a

f
o
r

P
T
H
F
-
S
o
l
v
e
n
t

S
y
s
t
e
m
s

a
t

3
4
.
0
°
C
.

 

D
0
X
1
0
3
c
m
2
/
s
e
c
)

(
P
r
e
d
i
c
t
e
d

b
y

F
e
d
o
r
s
'

R
e
l
a
t
i
o
n
)

P
o
l
y
m
e
r

K
/
M
N
x
1
0
-
”

S
o
l
u
t
e
-

S
o
l
v
e
n
t

D
0
X
1
0
6
(
c
m
2
/
s
e
c
)

(
c
c
/
g
m
)

(
E
x
p
e
r
i
m
e
n
t
a
l
fi

P
e
r
c
e
n
t
a
g
e

D
e
v
i
a
t
i
o
n

m

k
d
(
o
r

k
d
)

1
0

(
C
C
/
g
m
)

 

A
l
-
M
E
K

—
-

0
.
4
6
4
3

0
.
4
4
4
4

4
.
2
8
6

0
.
9
1
7
6

A
Z
-
M
E
K

—
-

1
.
2
7
1
0

B
l
-
M
E
K

B
Z
-
M
E
K

2
.
7
1
9
0

5
.
2
0
0
0

0
.
1
5
1
6

1
.
3
6
0
0

—
7
.
0
0
2

2
.
6
9
1
4

4
.
7
1
1
0

1
.
0
1
5

9
.
4
0
4

—
0
.
0
9
3
3

0
.
4
2
5
3

1
.
3
7
1
0

1
.
2
9
7
0

125

A
l
-
B
B

0
.
1
7
4
5

—
1
5
.
1
0
6

A
Z
—
B
B

—
-
—

0
.
3
9
3
6

0
.
5
3
3
9

-
3
5
.
6
4
5

B
l
—
B
B

0
.
0
6
5

0
.
8
0
0
9

1
.
0
5
6
7

—
3
1
.
9
3
9

B
Z
—
B
B

0
.
2
0
0

1
.
8
2
5
0

1
.
8
4
9
6

—
1
.
3
4
8

 R
o
o
t

M
e
a
n

S
q
u
a
r
e

D
e
v
i
a
t
i
o
n

1
6
.
6
8
7

0
.
3
4
1
7

0
.
8
0
0
9

1
.
3
1
9
0

 

*
T
h
e

e
x
p
e
r
i
m
e
n
t
a
l

D
0

v
a
l
u
e
s

o
f

a
s
s
o
c
i
a
t
i
n
g

P
T
H
F
—
s
o
l
v
e
n
t

s
y
s
t
e
m
s

w
e
r
e

d
e
t
e
r
m
i
n
e
d

a
c
c
o
r
d
i
n
g

t
o

t
h
e

a
s
s
o
c
i
a
t
i
o
n

t
h
e
o
r
y

(
e
q
u
a
t
i
o
n

V
I
—
3
9
)

a
n
d

t
h
o
s
e

o
f

n
o
n
—
a
s
s
o
c
i
a
t
i
n
g

P
T
H
F
-
s
o
l
v
e
n
t

s
y
s
t
e
m
s

w
e
r
e

d
e
t
e
r
m
i
n
e
d

b
y

l
i
n
e
a
r

e
x
t
r
a
p
o
l
a
t
i
o
n

(
e
q
u
a
t
i
o
n

I
I
-
7
0
)
.

 

 



126

method will not provide data at low enough concentration in

all cases, the data clearly indicate increased diffusion

coefficients at lower concentrations.

As it has been shown by Figure 13, the association

theory predicts that the effect of association on diffusion

rate becomes much less significant at higher concentrations

than it is in the infinitely dilute region. For the four

associating PTHF-solvent systems, however, the remaining

not-so-significant association effect at higher concentra-

tion seems to compensate other effects and, as a result,

the diffusion rate is found to be independent of polymer

concentration within this concentration region (see Figures

14 and 15). Equation (II—70) and (II—71) of the non—asso-

ciation theory are not able to describe the complex nature

of the diffusional property of associating polymer—solvent

mixtures.

Scattered evidences on associating systems seemed to

indicate that the association of polymer molecules is

restricted to very peculiar polymer/solvent/temperature

combinations. This might not be true. The association

theory projects that there exists a very narrow range of

effective association strength K/MN within which the

association of polymer molecules is detectable. For low

K/MN, the association effect would be insignificant com-

pared to other interactions. On the other hand, if K/MN

is high, the association process would be complete at such

low concentrations that accurate diffusion measurements are
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not possible. The latter is exactly the case for the four

systems under study. In fact, without the osmotic pressure

data which provide clear evidence of polymer molecular

association, one would likely fit the diffusion data of

these four systems with a non-association model. It is

therefore concluded that the interferometry method of dif-

fusion coefficient measurements is not a good choice for

detecting intermolecular association.

The finding that the diffusion coefficient increases

sharply with decreasing polymer concentration in dilute

associating polymer solutions casts doubt on the reliabil-

ity of some D0 values reported in the literature, since

these values have been obtained by linear extrapolation.

This might also explain the lack of agreement between D0

values observed in some laboratories and those predicted

by theoretical considerations. Unfortunately, accurate

measurements of diffusion coefficients in the infinitely

dilute region is difficult (or impossible in some cases)

by using traditional apparatus. The association phenomena

might therefore be overlooked. In Figure 15 and 16, only

limited evidence shows that the D(DP) curves shall

increase with decreasing polymer concentration. In order

to support the association arguments, therefore, it is

worthwhile and also interesting to compare the D0 values

of these associating systems determined from the associa-

tion model with corresponding D° values predicted by

existing theories. Fedors’ empirical relation, presented
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in Chapter II, part B, was chosen for this purpose because

it needs no extra experimental data besides the viscosity

of the solvent and is the easiest method to apply. It can

be seen from Figure 17 that the Fedors' relation correlates

DG data of all eight PTHF-solvent systems satisfactorily

(see also Table V) if D0 values of associating systems were

determined according to the associating model. It should

be mentioned, however, the constant parameter on the right

hand side of equation (II-69) was determined to be

3.28 x 10-9 (using a least square technique), instead of

4.5 x 10-9, for the best correlation. More reliable data

will be needed to confirm the exact value for the parameter.

The distance between open Circles and the 45° line in

Figure 17 shows the deviation of D0 values of the four

associating systems, if they were determined by linear

extrapolation, from Fedors' prediction. This illustration

provides good explanation for the observation that the

predicted D0 values are higher than they were determined

in the laboratory in some systems [6C—l, 2].

It is interesting to point out that the limiting

diffusion coefficient D0 of the four associating systems

under study, when determined according to the association

model, have values about 1.5 to 2.0 times as much as they

will be if the non—association model was to be applied.

This might explain the finding reported by a number of

investigators that a ”unimer—trimer” [6C-l] or a "unimer-
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Correlations Between Experimental Do Values of

PTHF—Solvent Systems and Fedors' Empirical

Relation.

Non—associating systems ——————— — A

Associating systems (determined according to

association model) -----------

Associating systems (determined by linear

extrapolation) ------------- - C)
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tetramer" [6C-2] model interpreted their diffusion data

reasonably well.



 

VII. CONCLUSIONS AND RECOMMENDATIONS

An association model is presented which provides an

explanation for some conflicts between experimental obser-

vations and existing thermodynamics and diffusion theories

of non-associating systems. The osmotic pressure equation

derived in Chapter IV based on the association model is

found to be analogous to the van der Waals equation, not

only in form, but also in the physical meaning of the cor—

responding parameters. This result is hardly surprising

considering the similarities between the two systems. The

diffusion equation based on the association model predicts

that for associating polymer-solvent systems, the diffusion

coefficient should first decrease with increasing polymer

concentration and then increase slightly, remain constant,

or decrease slowly with concentration, depending on the

sign of the intermolecular interaction parameter k3. This

prediction is consistent with experimental observations.

It is worthwhile to point out that both Osmotic pressures

and diffusion data from this work were found to fit the

association model very well, and more importantly, the

association constant K and the number average molecular

weight MN determined from different measurements are in

good agreement, indicating that the association model is
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self-consistent.

The following recommendations are proposed for further

work:

(1) Data should be obtained for polymer samples with

identical structures and average molecular weights,

but with different functional end—groups. The purpose

would be to elucidate the effects of association upon

thermodynamic and transport properties in polymer

solutions. A family of H/DP RT vs. pp curves of such

polymer-solvent systems should provide an excellent

test of predictions made by the association model.

Polymer molecules would be expected to associate to a

different extent in the same solvent if they have dif—

ferent functional end—groups. Therefore D(pp) curves

of such systems should be similar in their shapes,

but different in magnitudes. However, these systems should

have identical D0.

(2) Obtain experimental data for trace-diffusion

coefficients of the polymer samples in the same

solvents. The advantages of this are:

(a) To overcome the difficulty in obtaining accurate

diffusion coefficients in the dilute concentra—

tion region. Tracer diffusion coefficients must

extrapolate to the mutual diffusion coefficients

at infinite dilution and tracer coefficients

should be measurable at much lower concentrations.
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To determine the limiting diffusion coefficient

Do with greater accuracy to justify existing

theories for the estimation of Do.

To test the validity of the association model

proposed in this work. Although the model fits

the data from this work, as well as from the

literature with good results, more systematic

data are needed to test the model more

extensively.

.
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1

 



3C

c/q

c/r

(c/q>

 

NOMENCLATURE

Species 1 (equations (V-l) and (V-2))

the ith virial coefficient

the ith virial coefficient of associating polymer

solutions

observed ith virial coefficient defined by

equations (V-3l) and (V-32)

van der Walls parameter defined by equation(V-27)

parameter defined by equation (VI-32)

parameter defined by equations (V-59) and (V-60)

effective bond length (equation (II—43))

molar excluded volume defined by equation (V—29)

van der Waals parameter defined by equation

(V—27)

parameter defined by equation (II-72)

molar concentration of i-mer

true molar concentration of polymer defined

by equation (V—5)

configurational heat capacity of solvent defined

by equation (II-29)

total number of external degrees of freedom of a

polymer molecule

structural factor of pure polymer melt

structural factor of pure polymer melt

average structural factor of a mixture

self-diffusion coefficient

limiting diffusion coefficient at infinite

dilution

diffusion coefficient of component i (or i—mer)

in a multi-component system
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observed diffusion coefficient of an associating

polymer solution

diffusion coefficient defined by equations (VI-12)

and (VI-12')

molar energy of vaporization of component i

flux of irreversible process k

frictional coefficient at infinite dilution

parameter defined by equation (VI-32)

free energy of mixing

constant defined by equation (V—22)

weighting factor of diffusion coefficient of

i-mer

enthalpy of mixing

partial enthalpy of solvent

function defined by equation (II—49)

entropy flux relative to the mass average

velocity

mass flux of species i (or i-mer) relative to

mass average velocity

observed mass flux

association equilibrium constant defined by

equations (V-l) and (V-3) (open association)

association equilibrium constant defined by

equation (V-2) (closed association)

Boltzmann's constant

enthalpic parameter defined by equation (II-16)

parameter defined by equation (II—70)

parameter defined by equation (II-73)

parameter defined by equation (VI—30)

parameter defined by equation (VI-39)
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parameter defined by equation (II-59)

parameter defined by equation (II-54)

average molecular weight of polymer

number average molecular weight of gnimers; true

number average molecular weight (= M )
N

number average molecular weight of polymer

apparent number average molecular weight of

polymer molecules in associating solutions under

theta condition

viscosity average molecular weight of polymer

number average molecular weight of n-mer in an

associating polymer solution

Avagadro's number

refractive index (equation IV-3))

number of segments in a polymer chain

number of moles in component i

universal constant defined by equation (II-55)

characteristic pressure defined by equations

(II-21) and (II—24)

average characteristic pressure of a mixture

heat flux (equation (VI-1))

number of external contacts of a polymer chain

universal gas constant

mean—square end-to-end distance

unperturbed mean-square end-to-end distance

radius defined by equation (II—62)

radius of a non-free-draining pseudo-spherical

polymer molecule

volumetric rate of entropy production
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ratio of partial molar volume of polymer to that

of solvent

mean-square radius of gyration

partial entropy of solvent in solution

entropy of mixing

absolute temperature

characteristic temperature defined by equations

(II—21) and (II—24)

average characteristic temperature of a mixture

time

energy of vaporization of solvent

excluded—volume per polymer molecule

mean volume occupied by a polymer molecule in

solution defined by equation (V-21)

molar volume of component 1

partial molar volume of component i at infinite

dilution

molar volume of component i at its critical

temperature

volume Change of mixing

molar volume of van der Waals gas

mass average velocity

phenomenological coefficient defined by equation

(VI-6)

interchange free energy defined by equation

(II-5)

enthalpic interchange energy (equation (II-11))

entropic interchange energy (equation (II-11))

frictional parameter defined by equation (II-51)

dimensionless concentration defined by equation

(VI-42)
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surface fraction of component i

affinity of irreversible process k

dimensionless concentration defined by equation

(VI-23)

coordinate number

excluded-volume parameter defined by equation

(II-43)

degree of association defined by equation (V—15)

expansion factor defined by equation (II-46)

expansion factor defined by equation (II-47)

binary cluster integral

empirical constant defined by equation (II—36)

parameter defined by equation (II-54)

parameter of cohesive energy difference between

solute and solvent molecules defined by equation

(II-32)

square root of cohesive energy density of compon-

ent 1 defined by equation (II-37)

non-polar part of 6i defined by equation (II—40)

polar part of 6i defined by equation (II—40)

hydrogen bonding contribution to Oi defined by

equation (II—40)

viscosity of solvent

intrinsic viscosity of a mixture

theta temperature; a characteristic parameter of

polymer solution defined by equation (II—18)

chemical potential of solvent in solution

Chemical potential of pure solvent

parameter defined by equation (II-31)

osmotic pressure
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parameter defined by equation (II—30)

mass density

polymer mass concentration

parameter defined by equation (II—33)

mass concentration of component k

volume fraction of component 1

mass fraction of component 1

contact (potential) energy between molecules i

and j

entropic parameter defined by equation (II-16)

distance between two interacting molecules

(polymer segments)

universal function of potential energy of a pair

of molecules

interaction parameter defined by equation (II—8)

(dimensionless)

parameter defined by equation (VI—40)

enthalpic interaction parameter (equation (II-11))

entropic interaction parameter (equation (II-11))

frictional coefficient of a polymer segment in

solution

universal constant defined by equation (II-56)
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APPENDIX A

Sample Calculation for the Determination of Diffusion

Coefficient

Polymer: PTHF—A2 (MN = 30,000)

‘
1Solvent: methyl-ethyl—ketone

Solution I (for the upper level of diffusion cell)

Concentration = 0.8474 g/dl

Solution II (for the lower level of diffusion cell)

Concentration = 1.1464 g/dl

  

 

Photographic Plate: Exppsure Number Time(seconds)

l 0

2 720

3 1440

4 2160

5 2880

6 3600

Total number of fringes: J = 14.6
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Exposure

4

5

6

Exposure

4

5

6

Exposure

4

5

6

Exposure

4

5

6

Exposure

4

5

6

Exposure

4

5

6

(x' -x{)(cm)

3 

H
H
F
‘

l
-
‘
O
O

F
—
‘
l
—
J
O

P
O
O

P
O
O

.9896

.0272

.0625

.9762

.0163

.0539

.9605

.0036

.0429

.9435

.9892

.0316

.9283

.9766

.0231

.9138

.9648

.0136
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O
K
O
C
D

O
K
O
C
I
)

(xé-Pxi)(cm)

((x$+ x3)

(xé-x3))(cm)

 

1.1257

1.1580

1.1898

1.1235

1.1581

1.1933

1.1183

1.1555

1.1925

1.1122

1.1511

1.1908

1.1065

1.1475

1.1897

1.1010

1.1455

1.1893

0.1361

0.1308

0.1273

0 .1473

1.1418

0.1394

0.1578

0.1519

0.1496

.1687

.1619

.15920
0
0

.1782

.1709

.16660
0
0

0.1872

0.1807

0.1757
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Slope of the plot = 1.7117 x 10‘5 cmz/sec

Diffusivity = Slope/4M2

1.7117 x 10’5/14.884

1.1500 x 10—6cm2/sec

l l l l l l J l L I l l

12 24 36 48 60 72

Time (Minutes)



 

APPENDIX B

Diffusion Data from Interferometry

 

Polymer Solvent Concentration D x 106 (cmZ/sec)

(g/dl)

PTHF—Al MEK 0.1031 0.5547

0.2045 0.5450

0.2126 0.6551

0.3892 0.5718

0.6089 0.7346

PTHF-A2 MEK 0.1806 1.1940

0.2902 1.2290

0.4237 1.2320

0.7541 1.1870

0.9969 1.1500

PTHF-Bl MEK 0.1029 1.5830

0.1759 1.4890

0.2069 1.5010

0.3632 1.4560

0.6051 1.3330

0.7286 1.3000

0.9942 1.3590

PTHF-82 MEK 0.0792 3.023

0.1128 3.098

0.2150 2.508

0.3203 2.503

0.4279 2.273

0.5721 2.563

0.8197 2.613

0.9920 2.548

PTHF-A1 BB 0.135 0.1732

0.202 0.1866

0.239 0.2210

0.303 0.1986

0.593 0.2687

PTHF-A2 BB 0.105 0.415

0.196 0.416

0.400 0.448

0.806 0.502
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Polymer Solvent Concentration D x 106 (cmz/sec)

(g/dl)

PTHF—B1 BB 0.0500 0.597

0.0825 0.502

0.2510 0.5210

0.3875 0.5420

0.6270 0.6020

0.8235 0.5520

PTHF-B2 BB 0.062 1.486

0.113 1.213

0.196 1.183

0.391 1.060

0.574 1.165

0.785 1.268

0.847 1.306

 





BI BLIOGRAPHY

150



 

(lA-l)

(IA-2)

(lA-3)

(lA-4)

(1A-5)

(1A-6)

(1A-7)

(lA—8)

(2A-l)

(2A—2)

(2A-3)

(2A—4)

BIBLIOGRAPHY

 

 

 

 

J.S. Vrentas and J.L. Duda, J. A291. Polym. Sci.,

29, 2569 (1967)

K. Raju and R.F. Blanks, J. Polym. Sci., Polym.

Phys. 29‘: 11, 583 (1979)

J.P. Kratohvil, Chem. Phys. Letters, 69, 238 (1979)

A.F. Schick and S.J. Singer, J. Phys. Chem., 53,

1028 (1950)

N. Yamada, N. Yokouchi, H. Sato and R. Nakamura,

ReEorts 93 Progress in Polymer Physics in Jagan, 8

27 (1965)

A.M. Afifi-Bffat and J.N.

Part B,_9 651 (1971)

Hay, J. Polym. Sci.,
 

H. Staudinger,

Verbindunger,

Die Hochmolekularen Organischen

Springer, Berlin (1932)

 

 

P.J. Flory, Principles of Polymer Chemistry,

Cornell University Press, New York (1953); M.L.

Huggins, Physical Chemistry of High Polymers, John

Wiley & Sons, Inc., New York (1958)

  

  

J.H. Hildebrand and 8.8. Wood, J. Chem. Phys., 1,

817 (1933)

 

J.H. Hildebrand and R.L. Scott, Regular Solutions,

Prentice-Hall Inc., Englewood Cliffs, New Jersey,

Ch. 3 (1962).

P.J. Flory, Principles of Polymer Chemistry,

Cornell Universtiy Press, New York (1953)

  

M.L. Huggins, Physical Chemistry 9£_High Polymers,

John Wiley & Sons, Inc., New York, Ch. 6 (1958)

  

151



(ZA-S)

(2A-6)

(2A-7)

(2A-8)

(2A-9)

(2A-10)

(ZA—ll)

(2A-12)

(2A-13)

(2A-l4)

(2A-15)

(2A-16)

(2A-17)

(2A-18)

(2B-1)

(2B-2)

(2B-3)

(2B-4)

 

152

E.A. Guggenheim, Discussions Faraday Soc., J5, 24

(1953)

 

D. Patterson, Macromolecules, 4, 30 (1971)
 

I. Prigogine, A. Bellemans and V. Mathot, The

Molecular Theory of Solutions, North-Holland,

Amsterdam, Ch. 16 and Ch. 17 (1957)

 

  

D. Patterson, Rubber Chem. J Tech., 40

(1967)

No. 1, 1
I

 

D. Patterson, J. Polym. Sci., Part C, J6, 3379

(1968)

R. Simha and A.J. Havlik, J. 5m. Chem. Soc., 86

197 (1964)

J.H. Hildebrand and R.L. Scott, Solubility 2: Non—

Electrolytes, Reinhold, New York (1950); (a) chapter

7, (b) chapter 20.

 

 

R.F. Blanks and J.M. Prausnitz, J J E_ Fundamentals,

J, No. l 1 (1964)

 

I

C.M. Hansen, K. Skaarup, J. Paint Tech., 39, No.

511, 505 (1967)

 

J. Brandrup, E.H. Immergut and W. McDowell, Polymer

Handbook, John Wiley & Sons, New York (1975)

E.A. Guggenheim, Proc. Roy. Soc., A183, 203 (1944)

D. Patterson, Rubber Chem. J Tech., 40

(1967)

, No. l, 1
  

J. Biros, L. Zeman and D. Patterson, Macromolecules,

4, No. l, 30 (1971)

 

H. Yamakawa, Modern Theory of Polymer Solutions,

Harper and Row Publishers, New York (1971)

  

J.G. Kirkwood and J. Riseman, J. Chem. Phys., J6

565 (1948)

I

K. Raju, Ph.D. dissertation, Department of Chemical

Engineering, Michigan State University (1977)

P.J. Flory, Principles 2: Polymer Chemistry,

Cornell University Press, Ithaca, New York (1953)

Ch. 7

  

P.J. Flory, Ibid., Ch. 14



 

(2B-5)

(2B-6)

(28-7)

(2B-8)

(2B-9)

(ZB-lO)

(2B—1l)

(BA—1)

(BA-2)

(3A-3)

(3A-4)

(3A-5)

(4A-l)

(4A-2)

(4A-3)

(4D-l)

(4D—2)

(4D-3)

(4D-4)

(SA-l)

153

 

 

 

 

 

 

H.K. Johnston and A. Rudin, Polymer Letters, 9

55 (1971)

A. Einstein, Theory of Brownian Motion, Dover, New

York (1956)

R.F. Fedors, AIChE J., 25, 200 (1979)

R.F. Fedors, Ibid., 202

R.F. Fedors, Ibid., 883

R.F. Fedors, Ibid., 716

J.S. Vrentas and J.L. Duda, J. Appl. Polym. Sci.,

20, 2569 (1976)

D.B. Bruss and F.H. Stross, J. Polym. Sci., Part A

J, 2439 (1963)

H.G. Elias, Chem. Engr. Techn., JJ, 359 (1951)

R.M. Fuoss and D.J. Mead, J. Phys. Chem., 41, 59

(1943)

H.J. Philipp, J. Polym. Sci., 6, 371 (1951)

F.B. Rolfson and H. Coll, Anal. Chem., 26 888

(1964)

L. Zehnder, Z. Instrumentenk, ll, 275 (1891)
 

C.S. Caldwell, J.R. Hall and A.L. Babb, Rev. Sci.

Instr., 28, 816 (1957)

 

D.L. Bidlack,

Engineering,

Ph.D. Dissertation, Dept. of Chemical

Michigan State University (1964)

 

 

 

L.J. Gosting and M.S. Morris, J. Am. Chem. Soc., ZJ

1998 (1949)

D.F. Akeley and J.L. Gosting, J. Am. Chem. Soc.,

12, 5685 (1953)

J.M. Creeth, J. Am. Chem. Soc., 21” 6428 (1955)

E.L. Cussler and P.J. Dunlop, J. Phys. Chem., 19,
 

1880 (1966)

H.G. Elias, Michigan Molecular Institute Manuscript

No. 23/E 141, Midland, Michigan (1973)



 

(SB-1)

(SB-2)

(SB—3)

(SB-4)

(SC-1)

(SC—2)

(SC—3)

(SC-4)

(SC-5)

(SC—6)

(Sc—7)

(SD-1)

(SD-2)

(SD-3)

(SD-4)

(SD—5)

(SD-6)

(SD-7)

154

 

H.G. Elias and H. Lys, Makromol. Chem., 96, 64

(1 66)

H.G. Elias and R. Bareiss, Chimia, 99, 53 (1967)

K. 851c and H.G. Elias, J. Polym. Sci., Polym. Phys.

Ed.., 99, 137 (1973)

H.G. Elias, The Study 69 Association and Aggregation
  

Via Light Scattering, in Light Scattering from
  

 

 

Polymer Solutions, Ed. by M.B. Huglin, Academic

Press, London (1972)

F. Dolezalek, 9. Physik. Chem., 69, 727 (1908)

W.G. McMillan and J.E. Mayer, J. Chem. Phys., 99

276 (1945)

K. 551c and H.G. Elias, J. Polym. Sci., Polym.

Phys. pg., 99, 137 (1973)

H.G. Elias and R. Bareiss, Chimia, 99 53 (1967)

K.H. Meyer and A. van der Wyk, Helv. Chim. Agta,

99, 1321 (1937)

H. Yamakawa, Modern Theory 69 Polymer Solutions,

Harper and Row Publishers, New York, 146 (1971)

  

B.H. Zimm, J. Chem. Phys., 93, 164 (1946)
 

H. Yamakawa, Modern Theory 69 Polymer Solutions,

Harper and Row Publishers, New York (1971)

  

C.A. Daniels and E.A. Collins, J.

Phys. Ed., 9 10(2), 287 (1974)

Macromol. Sci.,

N. Yamada, N. Yokouchi, H. Sato and R. Nakamura,

Reports pg Progress 9p Polymer Physics 96 Japan, 6

27 (1965)

 

 

 

A.M. Afifi—Effat and J.N. Hay, J. Polym. Sci., Part

B, 9, 651 (1971)

H.G. Elias and H.P. Lys, Die Makromol. Chemie, 69,

229 (1964)

F.F. Nord, M. Bier and S.N. Timasheft, J. 53' Chem.

Soc., 19, 289 (1951)

J. Gerber and H.G. Elias, Die Makromol. Chemie, 112
  

142 (1968)



(SD-8)

(6A-1)

(6A-2)

(6A-3)

(6A—4)

(6A—5)

(6A—6)

(6B-1)

(6B-2)

(6B-3)

(6C—1)

(6C—2)

155

G. RoBkopf, J. Polawka, G. Rehage and W. Borchard,

Ber. Bunsenges Phys. Chem., 66, 360 (1979)
 

J.O. Hirschfelder, C.F. Curtiss and R.B. Bird.,

Molecular Theory 69 Gases and Liquids, Wiley, New
  

York (1954)

S.R. deGroot and P. Mazur, Non-Equilibrium Thermo—
 

dynamics, North-Holland, Amsterdam, Netherlands

(1962)

I. Prigogine, Thermodynamics 69 Irreversible

Processes, Interscience Publishers, New York (1961)

  

 

E.N. Lightfoot and E.L. Cussler, Jr., "Chemical

Engineering Progress Symposium Series," No. 58,

Vol. 69, 71 (1965)

L. Onsager, Phys. Rev., 61, 405 (1931); 66 2265

(1931)

I 

G.J. Hooyman and S.R. deGroot, Physica, 99, 73

(1955)

R.F. Fedors, AIChE J., 99 883 (1979)
I

C.C. Han, Polymer, 20, 259 (1979)

H.G. Elias, Die Makromolekulare Chemis, 22, 264

(1969)

 

R.F. Fedors, AIChE J., 99, 716 (1979)

D.L. Bidlack, T.K. Kett, C.M. Kelley and D.K.

Anderson, J. Chem. Eng. Data, 96, 342 (1969)
 
 




