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ABSTRACT

MODIFICATION OF BACKSCATTERING OF
A LOOP BY IMPEDANCE LOADING

by Juang-Lu Lin

In this thesis the modification of the backscattering of a loop
by the impedance loading method is investigated theoretically and
experimentally.

First of all, the resonant phenomena of a loop when illuminated
by an electromagnetic wave is studied. Next, the backscattering of
a circular conducting loop is considered and the impedance loading
method is applied to minimize its backscatter. Finally, the mini-
mization of the backscattering of a rectangular loop is investigated.

In the theoretical analysis, a new me thod based on a differential
equation for the loop current is developed for the case of a circular
loop. For the case of a rectangular loop an existing method is applied
with slight modification. Throughout the entire analysis, the principle
of superposition is applied to simplify the problem of an illuminated
loaded loop to the combination of an illuminated solid loop and a
radiating loop. The major objectives of the theoretical analysis are
to determine the induced current on a loaded loop, the scattered field
from a loaded loop and the optimum impedance which, when loaded on
the loop, makes the backscatter of the loop vanish.

Extensive experimental study was also conducted. The resonant
pPhenomena of a solid loop was investigated carefully. The impedance

loading technique was then applied to the circular and the rectangular
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loops to minimize their backscatters. In the course of this experiment,
the backscatter of a loop was successfully minimized to the noise level.
The major finding of this study is to show theoretically that the
backscatter of a conducting loop can be eliminated by a properly chosen
impedance loading, and to verify experimentally that indeed the back-
scatter of a loop can be minimized by a practical arrangement of the
impedance loading technique. This investigation should prove
significant in the understanding of the scattering phenomena of a

conducting loop and in the practice of radar camouflage.
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INTRODUCTION

In recent years much research has been conducted on reducing
the radar cross sections of metallic objects. The conventional
techniques include the use of radar absorbing material and the method
of reshaping the body. Recently the impedance loading method has been
found to be especially effective in reducing the radar cross sections of
metallic objects with dimensions of the order of a wavelength. In this
thesis, the minimization of the backscattering of a conducting loop, both
circular and rectangular, by an impedance loading method is investigated.

Historically, Kouyoumjianland West:on2 are the first ones who
investigated the backscattering cross sections of a thin solid circular
loop with a result of fairly good agreement with the experiment. The
methods employed by them are quite complicated and involved tedious
computation. For our purpose, a mathematically simpler method has
been developed. Our theoretical results also agree with experimental
results quite satisfactorily. For the case of the solid rectangular loop,
the method used by Chen and King3 was adopted in obtaining first-order
solution for current distribution. Experimental results and those of
theory appear to be in good agreement.

In solving the problem, the principle of superposition is
employed. Based on the superposition principle, an illuminated loaded
loop can be considered as the combination of an illuminated solid loop
and a radiating loop. In this study, the two cases are solved separately
and then combined together to yield the final solution for an illuminated

loop.



For the minimization of the backscattering of a circular loop,
a consideration is given to the perfectly conducting loop which is loaded
symmetrically with two identical lumped impedances and is assumed to
be illuminated by a plane wave at normal incidence. The induced current
on the loaded loop is determined as a function of loop dimensions and
loading impedance. The backscattered field produced by the loaded
circular loop is calculated as a function of the loading impedance among
other parameters. It is then possible to find an optimum impedance which
makes the back scattered field equal to zero. An explicit expression
for the optimum impedance for zero backscattering is obtained as a
function of loop dimensions. Some numerical examples are included.
The theory is later verified by an experiment.

A theory on the minimization of the backscatter of a conducting
rectangular loop by the impedance loading method is developed in the
last chapter. A rectangular loop loaded symmetrically with two identical
lumped impedances at the centers of the long sides of the loop is assumed
to be illuminated by a plane wave at normal incidence. The zeroth order
and the first-order solutions of the induced current are evaluated as
functions of the loop dimensions and the loading impedance. Based on
the induced current, the backscattered field can be calculated. An
optimum impedance which leads to zero backscattering from the rectangular
loop is then found as a function of loop dimensions. Some numerical
examples are included. An experiment was performed for the case of
a square loop loaded with two identical reactive impedances and
illuminated by a plane wave with vertical polarization at normal incidence.
The experimental results indicate that it is possible to reduce the back-
scatter of a conducting, square loop to the noise level if the loading

impedance is properly chosen.



CHAPTER I

BACKSCATTERING OF A SOLID LOOP

1.1. Definition of Backscattering Cross Section

An electromagnetic wave incident upon a metallic object will
induce time-varying distributions of oscillating charges and currents
in the object. The induced charges and currents will, in turn, main-
tain an electromagnetic field which is known as the scattered field.
To characterize the reradiating properties of an object, total scattering
cross section o is defined as
pS

1

S

[0 =

Where P° is the total scattered power and Si is the scalar magnitude

of the real part of the incident complex Poynting vector at the location
of the object. In radar, transmitter and receiver are installed at the
same location so that only the power scattered by the object in the
direction of the transmitter-receiver is observed. In this sense,
backscattering cross section of an object is defined as a measure to
characterize the quantity of the power scattered back toward the source
by the object. In symbol, the backscattering cross section of an object
is defined as

Bk
O'BI lim 4TTR2 ——7
R-»u) ,EL |

where E° is the magnitude of the backscattered field and E' is that

of the incident electric field.



1.2. Experiment

A number of methods are available for measuring the back-
scattering cross section of an object. In this research the cancellation
method was used. The prinicple of this method is to cancel the signal
received by the receiving antenna when the scatterer is absent. After
this the scatterer is put in place. The signal received by the receiving
antenna with the scatterer present will then represent the scattered
field by the scatterer.

In this section experimental arrangement and the measuring
technique of the backscattering cross section of rectangular and circular
loops are discussed. The loops are illuminated by a plane wave for
the cases of normal and horizontal incidence. Resonant phenomena of
loops are also investigated.

1.2.1., Description of the Experimental Arrangement and the

Measuring Technique

The experimental setup is shown in Figure 1.1. The experiment
was conducted inside of an anechoic chamber (0.8mx1l,4mx0.7minsize)
which is firmly mounted on a wooden frame. A horn antenna (HP
X890A) is projected into the anechoic chamber through one of the
narrow sides of the chamber. A cellular plastic column made of
styrofoam is used as scatterer support. The support is placed in the
far zone of the horn antenna and its height is so chosen that the
scatterer on the support is on the axis of the antenna. The circuit
diagram of the experiment is also shown in Figure 1.1, The klystron
generator (F X R type X760A) modulated by a 1 KC square wave
generator (HP 715A) is used as the R.F. source. The isolator

(Polytechnic Res. and Dev. Co. type 1203) is used to protect the possible
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Figure 1.1. Experimental setup and circuit diagram.
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backward energy from damaging the R.F. generator. Frequency is
measured by a frequency meter (HP X532A). A variable attenuator
(HP X375A) and slotted section (HP X810B) are used to control and
probe the wave from the source. A hybrid T (HP X845A) is used to
separate the incident wave to the antenna and the reflected wave back
from the antenna. Two other terminals of the Hybrid T are connected
to a matched load through an E-H tuner (HP X880A) and to a detector.
The output of the detector is then measured by a SWR meter (HP 415B).
The horn antenna in this experiment serves both as the radiating
element and the receiving probe. In the experiment, a series of

measurements have been made with various sizes of loops,

By the arrangement mentioned above, a plane wave with vertical
polarization can be made to illuminate the loop either normally or
horizontally, When the scatterer is absent, the reading of the SWR
meter can be set to zero by adjusting the E-H tuner. After this
balancing process is completed, the scatterer is introduced. The
reading of the SWR meter will then indicated the back scattered field
by the scatterer.

1.2.2. Measurement of the Backscattering Cross Section of

Circular Loops

To measure the backscattering cross section of metallic
circular loops, a total of 35 circular loops with radius ranging from
0.3 cm to 3.5 cm were constructed as experimental models. The
diameter of the wire is 0.1 cm. The frequency of 9.61 GC was used.
The loops are mounted upright on the support which is located 26 cm
(= 8\) away from the horn antenna. The loops are, therefore,

considered to be in the far zone of the radiating element. Theoretically,
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the distance between the antenna and the scatterer should be made as
great as possible. However, to obtain a detectable scattered field
from the scatterer one has to compromise for a finite distance. The
radiated wave from the horn antenna at the location of the scatterer
is then approximately a plane wave with a vertical E field.

In the experiment the plane of the loop is first oriented
parallel to the horn aperture so that the loop is illuminated by a
plane wave with vertical polarization at normal incidence. For the
case of horizontal incidence, the loop is turned 90o from the vertical
incidence position making its plane perpendicular to the horn aperture.
The geometries of these two cases are shown in Figure 1.2. In Figure
1.3 and 1.4, relative backscattering cross section of the circular
loops ¢ are plotted as functions of loop dimension ﬁob where By is
the wave number and b is the radius of the loop. Figure 1.3 shows
the backscattering cross section of the circular loop illuminated by
a plane wave at normal incidence and Figure 1.4 shows that of
horizontal incidence case. It is observed from these two figures
that the first resonances for both cases occur when the half of the
loop periphery is near —é— wavelength (i.e., when ﬁob = 1). The
first resonant peak in the case of normal incidence appears to be
higher than that of the horizontal incidence case.
1.2.3. Measurement of the Backscattering Cross Section of

Square Loops

The same technique used for the circular loops was adopted
to measure the backscattering cross sections of the square loops. A
number of square loops ranging from 0.5 cm x 0.5cm to 3.5cm x
3.5 cm in size were constructed as experimental models. The

diameter of the metallic wire is 0. 06 cm. The experiment was
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conducted with the same setup described in previous sections and at
the same frequency.

The backscattering cross sections of square loops are plotted
as functions of loop dimensions poh (where 2h = one side of the square
loop) in Figures 1.5 and 1.6. Figure 1.5 shows the backscattering
cross section of square loops illuminated by the plane wave at normal
incidence, and Figure 1.6 shows the backscattering cross section for
the case of horizontal incidence.

Once again it is observed that the first resonances of both
normal and horizontal cases occur when half of the loop periphery is

near %wavelength (i.e., when Boh = 0.8).

1.2.4. Measurement of the Resonances of Loops

The backscattering cross sections of a circular and a square
loop described in the last two sections have a common nature that the
first resonance tends to occur when the half of the loop periphery is
near -;—wavelength and the second resonance at 5 wavelength and so
on, At these resonant conditions the induced currents on the loops
are maximum and likewise the scattered fields. However, it is
anticipated that the loops with the same periphery but different
geometrical shapes may have different resonant sizes. To testify
these conjectures five kinds of rectangular loops were constructed.
The five kinds of rectangular loops have the ratio of hl/hZ equal to
1, 1.5, 2.0, 2.5, and 3.0 where h1 and h2 are the short and the long
side of the loop. The loops are illuminated by a plane wave with
vertical polarization at normal incidence. The experiment was
conducted inside of an anechoic chamber at the frequency of 9. 61

GC with the same experimental setup mentioned previously.
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The experimental results are shown in Figures 1.7 and 1. 8.
Figure 1.7 shows the first resonance curves of the loops. The resonant
curve of a straight wire which corresponds to a loop with hl/hZ =0
is also included in the figure. The scattering cross sections of the loops
are plotted as functions of the loop sizes. From the peak of the curve
the resonant size of the loop is determined.

It is observed that the first resonances of the loops with various
shapes indeed occur when the half peripheries of loops are near %—
wavelength. It is also seen that the first resonant size of a loop is
dependent of its geometrical shape. These phenomena are summar-
ized in Table 1.1. It is true that the first resonant size of a loop tends
to increase as the loop becomes broader or the ratio of hl/hZ becomes

larger.

Table 1.1.
first resonant
Loop Geometry size™ (_1Z periphery)
straight wire (hl/h2 = 0) 0.433\
rectangular loop (hl/hZ = —;—) 0.513x
1
/ ——
rectangular loop (hl/hZ =138 25) 0.516\
rectangular loop (hl"/hZ = é—) 0.53 \
1
rectangular loop (hl/h2 =15 ) 0.561X\
rectangular loop (‘hl/h2 = —i— ) 0.61 X\
circular loop i 0.705x

* For the wire -;_-periphery corresponds to the total length
For rectangular 1oop% periphery = 2(h1+h2)
For circular loop% periphery = b where b = radius

Radius of wire of which the loops are made of = a = 0,01\
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The second resonance curves of the loops are shown inFigure
1.8. It is observed that the second resonance peaks are not clearly
observable in the loops with large ratio of hl/hZ' The second
resonances of the loops occur when the half peripheries of loops are
in the neighborhood of El wavelength, The second resonant sizes

2

of the loops are summarized in Table 1. 2.

Table 1. 2,

Loop Geometry Second resonant size

(17 periphery)

straight wire (h /h, = 0) 1. 44\

W

rectangular loop (hl/hZ ) 1.67)

1
rectangular loop (hl/hZ T55) 1.68\

p—
.

rectangular loop (b, /h, = l?) 1. 58\
rectangular loop (hl/hz = 1—1——5- ) not clear
rectangular loop (hl/hZ = *i‘ ) 1.73X\
circular loop not clear

1.3. Theory

A theory is presented here to calculate the backscattering
cross section of a solid circular loop and a solid rectangular loop
when they are illuminated by a plane wave with vertical polarization
at normal incidence.

Some numerical results are obtained and are compared with

the experimental results in Section L. 2.
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24
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17
1 straight wire (hl/h?_ = 0)

1]

1/3)
3 rectangular loop (hl/h2 =1/2.5) / \

1/2.0) // \\\\

1/1.5) ///

2 rectangular loop (hl/hZ

1]

5 rectangular loop (hl/h.?.

6 rectangular loop (h1/hz =1/1) /
7 cicular loop /
/
radius of wire = 0.01 X\ /

1.0 1.3 1.5 1.7 (\)
1/2 loop periphery in wavelength

Figure 1. 8. Scattering cross sections of loopsas functions
of loop s1zes (second resonance curves)
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1.3.1. Backscattering from a Solid Circular Loop

The backscattering cross section of a circular metallic loop
was first explored by Kouyoumj 'La.n1 who used a variational method to
determine approximate formulas for the backscattering cross sections
of thin wire loops. Numerically he was able to calculate the back-
scattering cross sections of a circular loop illuminated by a plane wave
at either normal or horizontal incidence. A good agreement between
the theory and the experiment was obtained in this study. The weakness
of this method is the tedious computation. Later Weston'2 investigated
the same case by solving the wave equation in toroidal coordinates to
obtain general expressions for the electromagnetic field., Numerical
values for an arbitrary incident angle were determined and his analysis
is deemed as a generalization of earlier work by Kouyoumjian.

These two methods are too complicated to serve our purpose
of solving the case of a loaded circular loop developed in the next
chapter. A mathematically simpler method has been developed in

this research.

(A) Geometry of Problem

The geometry of the problem is as shown in Figure 1. 9.
A loop of radius b is assumed to be made of perfectly conducting
metallic wire of radius a. A plane electromagnetic wave with the E
field parallel to the plane of the loop is incident normally upon the

loop. The dimensions of interest are

a2<<b2, B, @ << 1

where ﬁo is the wave number., We assume that the wire is thin

enough 80 that only the 8 component of current is induced.
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Figure 1.9. Geometry of solid circular loop.
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(B) Differential Equation for Loop Current

Since the tangential electric field should vanish at the surface

of the loop, the following equation is valid:
+ E, =0 for -t =06 =n7¢ (1.1)

where Eta is the tangential electric field maintained by the current and

the charge on the loop, E 'is the tangential electric field of the incident

t

wave.,

The symmetry of the geometry gives

1° (8) = -1 (7 - 6)
(1.2)
S m
Ig £3)=0

whe re I° (8) is the induced current in the loop. The tangential component

of the incident E field along the loop is
E, = EO cos 6 (1.3)

Vhe r e E_ is a constant electric field.
The current and the charge on the loop maintain a tangential
1 C g :
€' St xjc field at the surface which can be expressed as
a s

El= - (V$))y - jwAf (1.4)
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where d>s is the scalar potential maintained by the charge on the loop

and ASe is the tangential component of the vector potential maintained

by the current on the loop. ¢s can be expressed as

s 1 " S,n1y € R .
$°(8) = 4 f q°(8') =——x—— bd® (1.5 )
o

where qS(G') is the density of charge induced on the loop at 6 = 6°',

and

z 2
Y
R:b«/4sin28 o 4, 2 = b 2 -2cos (6-6')+23s
z z y:

b
(1.6)

Assume ¢S(6) can be approximated as

(I)S
0°(8) = g2— (o) (1.7)
(o]

wvhe re q?': is the ratio between scalar potential to charge density and

can be defined as

8 = 4ne 0 (1.8)
q(8)
With ¢,
¢ s
s _ 1 q (0)
‘V‘“Jr:b " Twe. b 90 1.9
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From the equation of continuity

S
N al, (9)
s .1 S 1 (¢]
q (9) =jg V1T =i 50 (1.10)
it leads to
—_— . 2
. <I>; ; 8% 1, (6)
(Ve )e = > > (1.11)
r=b 41T€ wb 06

I o]

Writing Aes in terms of the induced current Ies(e) on the

loop, we have

7 -jB,R
Ae‘"(e) = Z% S. 15‘ (") E—RO— cos (6 - 8') bd o' (1.12)

If Aes(e) is assumed to be proportional to Ies (8), (1.12) can be

rew ritten as

s
#o(bi

S S
Ag(8) = ——— 15(6) (1.13)

Vhe re <I’is is the ratio between the tangential component of vector
POte mitial to the current and is defined as
4m A;(e)

d° - —

(1.14)
LK, Ies(e)

With (].11) and (1.13), (1.4) can be written as



. %8 s ]
K 3°1° (0)
-E2 - q & — + BSb%a® 17 (6) (1.15)
41T€owb L 96
where
S
s 4 1.16
Qa = E ( . )
q

The substitution of (1.3) and (1.15) in (1.1) gives

9 2.2 s _ 18
( 27 +P, b )Ie(e) = K° E_ cos 0 (1.17)

for -mn=06=n1x

where
N
2 2 s 2
B,“=B, a = B ;‘s— (1.18)
q
S 4neowb2
K = —j ————s—- (1.19)
()
q
(C)

Solution for Loop Current

The solution for Ies(e) can be expressed as

S

] .
1,°(0) = C,° cos B,bO+ C sin g b6 + P°(6) (1.20)
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where Cls and CZS are arbitrary constants, and ps(e) is a particular

integral, C?_S is zero due to the symmetry and PS(G) can be found to be

s K E,
P (6) = —5 53— COs 6 (1.21)
B b -1
Thus, (1.20) can be written as
s s K> Eo
Ie (9)=Cl cos ﬁsb9+——2—2— cos © (1.22)
B, b -1

If the boundary condition of Ies (%) = 0 is applied to (1.22), we

obtain

c,” =0 (1.23)

Iy (6) = —22—0 cos 6 (1. 24)

(D) Backscattering Cross Section

With the induced current found in (1. 24), the vector potential

1 . . C
™ Tthe direction of the incident wave and at the far zone of the loop can

be < alculated as
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T
[ 2 -iBoR)
8 . _° 5 (o' & - - -
Ay = I S 2.1e (6') cos 6

1
™ Rl bdo6
)
m -jB, R K°®
o eJﬁo 1 o 2
1 B b1
s
where R, = R2+b‘2
1 o

and R0 is the distance between the center

of the loop and an observation point on the axis of the loop as shown
in Figure 1.10.

The back scattered field in the far zone is

E®= -juA®
y y
go e-J PRy K® Eo
= -j—F/ B.b (1. 26)
4 Mo R, 8 2 b2 o1
s
Ho
whe re L, = - = 120m and B_ is to be determined ina
o

follow ing section.

The Poynting power density of the scattered field can be
fou nd to be

2
||
p = —Y
2¢
o]
2
E 2 K°®
- 22 (g, b)° =2
32 o 2 2.2

(1.27)
R, B, b -1
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Figure 1.10. Geometry for the calculation of radiation
field of a solid circular loop.
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The backscattering cross section is then found to be

2
, |EZ]
op = lim 4n R, —LZ—
o
2
Trc'oz 2 Ks
E (8. b)° | ——— (1. 28)
4 (o} B 2 bZ o1
s
Substitution of (1.19) in (1.28) yields
' 2
3,2 2 2.4 2 1
o, = 41 ¢ "€ “w b (B D)
B o o o ’q)s @ 2 b2 - 1)
q s
2
2 6 1
= A TT(‘30 b) S 2.2
7 (B, > - 1)
or
- ’2
B 6 1
— =7 (8, b) (1.29)
A ° d:qs (552b2-1)’

Yhe xre )\ is the wavelength,

(E) Determination of @: and <I>is

(i) Using the equation of continuity (1.10) and (1. 24), qs(G) can be

fou g to be



sin 6 (1.30)

for -m=6=n

With (1.5) and (1. 30) , <1>: defined in (1.8) is found as

S
$7(0 )
@: = 4TT€O T_O_
q (6))
'n' -jBOR
5 sin @' -e—R—- bdo!
-
- (1.31)
sin 0
(o]

where

2
a_

R = b\/Z-Zcos(eo-G') +bZ

Choosing 60 = % , the point of maximum charge density, ‘1’; becomes
2
™ -jBSbJZ-Zsin9'+:—2
$° = S sin ' = 46
a T, ] X
2 -2sin0'+ -
b

3
)

= 5 sinO'Kl(G', >d6' (1.32)

U‘lN
¥
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2

Py

where Jﬁsb 2 -2sin6 +bz
e (1.33)

aZ
K1 (e" ;2')‘ «/ y2

2.2sine'+a7
b

In actual calculation of @; » By will be replaced by B as an

approximation.

(ii) Similarly, q)is is obtained by making use of (1.12)

and (1.14) as

S
Ag (6))

S
% T Hy 10 )
(3] o

S‘" 0! o -on PR de
cos cos (8 _ - 0) R
i} (1.34)

cos 6
o

where

2
a_

R = b\/Z-Zcos(Go-e') +b2

C hoosing 60 = 0, the point of maximum current, ‘P.ls becomes
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J 2
: P L2
. -jBg b 2 -2cos 8 +b2
) e .
@is =‘S cosze' > de
-1 «/2-2cose'+a—2
b
d 2 aZ
=25 cos 6'K2(9',—2) de!
0 b
(1. 35)
where
J a?
2 -jﬁsb 2 -cos 8 +—
K, (0,2 ) = ¢ b
2 ’ b2 J 22
2 - 2 cos 6'+—2
b (1.36)

In actual calculation of @is , ps will be replaced by B, as an approxi-

mation,

(F) Numerical Results

To calculate the theoretical results of backscattering cross

section, ®° and @.ls are numerically calculated for the case of

2
a . . s s
- 0.00179 as functions of B b. Numerical results of ‘I’q and <I>.1

& re shown graphically in Figure 1.11 and Figure 1.12, It is observed
that @: and CI).ls vary only weakly over the range of interest. This
A g rees reasonably well with our original assumption of @: and @is

be Lng constant. The numerical result of backscattering cross section
o

" > is plotted as functions of (3ob in Figure 1.13 incomparison with the

a

< >< perimental results.
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R &

-
-4

2
. s : a“” _
Figure 1.11. ¢ q 288 function of B b ( ;Z = 0.00179).

WT-
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R ®°
e

Figure 1.12. <I>is

as a function of Bob(

2
2
bZ

= 0.00179),



relative backscattering cross section o

33

2a

107

oocooo theory

experiment

Figure 1.13. Comparison between theory and experiment for
circular loops illuminated by plane wave at
normal incidence.
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The theory predicts fairly well for the loops with Bob
smaller than 1.5 which is the range of interest. For a larger loop
the present theory fails to give accurate solution. A refined theory
would give better results but we find the present theory adequate for

further theoretical development.

1.3.2. Scattering from a Solid Rectangular Loop

To study the backscattering from a solid rectangular loop
an approach which is different from that used for a circular loop
will be used. The first order solution will be obtained by using the

method developed by Chen and K'mg3,

(A) Formulation of Problem

The geometry of the problem is as shown in Figure 1.14.
A rectangular loop with short side ¢h, and long side 2h, is
assumed to be made of perfectly conducting metallic wire of radius
a. A plane electromagnetic wave with the E field paralld to the
plane of the loop is incident normally to the loop. The dimensions
of interest are
2

2 2 2 2
a << h1 and h2 , [30 a << 1

where ﬁo is the wave number. We assume that the wire is thin enough

So that only the tangential component of current is induced.

(B) Integral Equations for Loop Currents

Since the tangential electric field should be continuous at

the surface of the loop, we obtain the following equation:



—

BEER by —
e — e I
ILY f
r_/L S ,
o i2 |
I h
i|Ix 2
// ! # l
H l
d 1
- . _ ¥
X
Za—> fo— 4 \
]
r s
oI
1° 1 b
2y
s s
Ijx I3x
- =5 —_—
dx'3

Figure 1. 14.

Geometry for solid rectangular loop.
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For side 4
E4ti+E4,? =0 (1.37)
E,, = E, (1.38)
where E‘}t-l is the tangential electric field of the incident wave and

4ta is the tangential E field at the surface of side 4 maintained by

the induced current and charge on the loop.

E

Due to symmetrical configuration, it follows that

L) = 1,5 () (1.39)
s S

I]x (x) = - I3X (X) (1'40)

a, (y) = a, (y) (1.41)

q,” ®) = -q; (%) (1.42)

where I4yS (y) is the induced current in side 4 and les (x) is that in

side 1, etc., whereas q.ls denotes the induced charge on side i,

i=1,2,3, and 4. E4ta can be expressed as
E2 = - (765) - ju@Al) (1.43)
at T 7 g Jym IR,y .
—s
where A4 is the vector potential at the surface of side 4 contributed

by the induced current in the loop; ¢4S is the scalar potential at the
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surface of side 4 maintained by the induced charges on the loop. In
—_

symbols, A4s and ¢4s can be expressed as

— s s A s A

A4_A4xx+A4Y y (1.44)
S S S S S

by = by Oyt byt by (1.45)

where A4i is the vector potential at the surface of side 4 contributed
by the induced currents in sides 1 and 3. The induced currents in
sides 2 and 4 do not contribute to A4; because they do not have x

component. A43 carries the same meaning as A except that the

s
4x
contribution is made by the induced currents in sides 2 and 4.

¢4f is the scalar potential at the surface of side 4 maintained
by the induced charges on side i, i =1, 2,3, and 4. A4§ can be

expressed in terms of current by Helmholtz integrals as

. M h, ] o o Taq
A, (y)=—— y 1, (y') ——— dy'
4y 4m Jh 4y T44 .
2
HO ‘S~h2 S -Jpor‘l"
t o= I, (y" dy'
41 h 2y r42
2
v h2 <
_ _O 1 | 1
2

(1. 46)
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where . ,
P Taa P Taz
K, .(y,y') = + (1.47)
1A T4y Ty
2 2
- (. .
Tuq = «/ (y y) +a (1.48)
2 L2
- [
ryo = '\/ (y y) + 4h1 (1.49)
With (1. 44) and (1.45) , (l.43) can be rewritten as
E 2= -_.@.(¢s+¢>s)-ijs-—§-(¢s+¢s) (1.50)
4t ay 42 44 4y 9y 41 43
By the Lorentz condition, it follows that
9 A, (y)
. N AN .
] s _JWw &, s s, _ Jw 4y
%42 TPy TT 2 VBt Ay o (1.51)
By By oy

After substituting (1.51) in (1.50) and after rearranging, (l.50)

becomes
a jw 82 2 s 0 s s
Ege = gz(ayz "o >A4Y‘Y"s‘; (941 + ¢43) 0-52)
o

Substitution of (1.38) and (J.52) in (1.37) gives

2

82 2 s J.BOZ JBO 0 s s
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Similarly, the differential equation for the vector potential at
side 1 can be obtained as follows:

For side 1

Elt+Elt= 0 (1.54)
b
E; = 0 (1.55)
where Elt1 is the tangential E field of the incident wave and Eli is the

tangential E field at the surface of side 1 maintained by the induced
current and charge on the loop.

Eli can be expressed as

Eyy = - (V) -ju(al), (1.56)

where ¢]s is the scalar potential at the surface of side 1 maintined by
R
the induced charges on the loop and AlS is the vector potential at the

surface of side 1 contributed by the induced currents in the loop. In
Y

symbols, A s

1 and ¢>ls can be expressed as

A
S S S A

Al = Alx x+Aly y (1.57)
S S S S S

S = 9t O, FO 3ty (1.58)

where AI: is the vector potential at the surface of side 1 contributed
by the induced currents in sides 1 and 3; while A1; is that contributed

by the induced currents in sides 2 and 4. ¢lis is the scalar potential
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at the surface of side 1 maintained by the induced charges on side i,

i=1,2,3 and 4.

Al

where

= e (0 d3) - JwA D -

s .
Alx can be expressed in terms of

current as

With (1.57) and (1. 58), (1.56) can be rewritten as

) 0

ox 1x 9x

By the Lorentz condition, we have

s Ho hl s e-J l30r“
- — P, 1
x®) = Iz y Ix &9 N dx
..hl
u b L S E
+ -‘G S I3x(X') - dx'
13
-h
1
Ho hl s
- _° 1 1 1
alires S\ le(x)KZA (x, x') dx
-hl
IRy ELSSE!
e e
K,,(x, x') = -
2A T ryg
>
r :\/(x-x')2+a“
11
ryy = «/ (x' - x)2 + 4h22

(54 ¢3)

(1.59)

(1. 60)

(1.61)

(1.62)

(1.63)



S
. Y
AN SN l
d] o3 = F VA THA) =Y = (1.64)
‘30 [30 d0x

Substituting (1. 64) in (1.63), we can rearrange (l.63) as

2
a j W 0 2 s ) s s
E; = ';_Z(&—Z + 8, )Alx 3w (912 + 414) (1.65)
o]

With (1.55) and (1.65), (1.54) can be rewritten as

2 iB
9 2 o) 0 s s
<ax_2 +BO Alx(x) = % (¢)12+¢14) (1.66)

Due to symmetry, we note that

Ay (y) = A, (-y) (1.67)

and

Ali(x) == Ay 2 (-%) (1. 68)

With (1.67), the general solution for A4;(y) in (1.53) is then

A4j’(y) = 7.5 [C: cos ﬁoy + 64s(yZl (1.69)

where C4s is an arbitrary constant, Yo is the velocity of light in free

space and 94S(y) is a particular integral which can be found as
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es<)—5‘-’ Sy—a- S(s) + &,5(s)| sin B_(y - 5) ds (1.70)
a5 ") s ®4 (8) + 045(s) ] sin B (y :

Similarly, with (1. 68) the general solution for Alj(x) in (1.66) can be

expressed as

AI:(X) = v_0-1- [cls sin B.x + els(xﬂ (1.71)

where Cls is an arbitrary constant and Gls(x) is a particular integral

which can be found as

X
Gls(x) = - 50 ais[q)lzs(s) + ‘*’145(’5{] sin B (x - s) ds (1.72)

With (1.46) and (1. 69), it follows that

h2
4 s _ s . .

T2

= -l%TT—[C4S cos Boy+ 9:(&

o
(1.73)

Similarly, with (1.59) and (1. 66), we obtain
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1
Z e (X)) = 5 les(x') K, 5 (%, x') dx'

= - L:;}—Tl [Cls sin Bx + Gls(x]
o

(1.74)
(C) Zeroth Order Solutions for Loop Currents
For the first approximation, we assume that
s
A, (y) H
LD 0.9
I,.(y)
4y
and
Al)sc(x) #o
— P (x) (1.76)
s 47 s
I,
where @s(y) and <I>s(x) are defined respectively as
Ay l(y)
& (y) = X Ay " (1.77)
° Hoo 1, 3(y)
4y
and
AL x)
d (x) = dm _1x7 7 (1.78)
S M 5]
o le(x)

Substituting (1.75) in (1.73), we obtain

s -jém s s
I,y = Q_CJFZ‘_Y)[C“ cos By + 6, (yZ, (1.79)



By looking closely at (1.45) and (1. 59}, we note that fl

contributions to A_}ys(y) aind A

L

Sy

1x (@Y ale

~—
3

located at y' = y and x' = x respectively,

dite

It

assume that ¢ (y) and @S(x) are constant o
s €

except at the corners.

To determiine C and C

wiil be used.

‘

1
)

to the curveld «

1s then reasonahiis

For simplicity, we assumie thet

S
4 1

(a) Current at the corners being contimuonus.

le €.,

I T N
Ry L

4 A Tl

(hY Charge around the corvers beirng coatinuoas.

L. e.,

The substitution of {1,743, {1.30) anat {1,815

S

S ,
C Cos ﬁ()hz + 94

4

q4s(y) and qf(x) can be

continuity.

{t

;

L

]2‘1, : '..l NS .'ll

Hond as 1ollows 'by‘

1k

(R

in (.32 vt

1_{ the o ratian

N3

ver the entive cooma



J -j4m s . 89~”1S(Y) -
= 5 éo‘i’b -C4 ﬁo sin Boy + oy (1.85)
s N S (i
a ) = 5 e T &)
i e . aols(x)
= " C (I;—— Cl BO CcCOs BOX + T (1.86)
0°s

Combining (1.85) and (1. 86) with boundary condition (1.83), we

have

s 80 °(y) | . 80 °(x)|
- Cy By sin B by "oy = Cp Bcos by 0
y=h, x:hl
(1.87)

. . . S S .
Solving (1.84) and (l.8&87) 1or C4 and Cl’ we obiain

|

s
C«'-}S - B [cot B h clus B h,=sinp h,j a—:\i—(i
oL o 1 o 2 o 2 o
x:hl
ay - h tan (30}11 sin (30h2-cos Bohz

2

Els(hl) + ef(h;J (1.88)
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s 1
C = - X
1 ;30 sin ﬁohl tan ﬁohz - cos BOhI]

—_—
86 °(x) 80, (y)
ox oy
X = hl y= h2

- B, tan B h, Els(hl) + 94s(h2] (1.89)

—_—)

For the zeroth order solutions, we assume that 64S(y) in

(1.70) and Ols(x) in (1.72) can be approximated respectively as

0,7 (y)
f(] (1.91)
0

With (1.90) and (1. 91) substituted in (1. 88) and (1.89) , we obtain

(1.90)

"c:ol %

NN

- EJ cosﬁh
[C—}‘L) - _E- co:ﬁ(h +h) (1.92)

_ E sin 3 h
[:c SJ . 2 ° 2 (1.93)
1 o {30 cos ﬁo(hl + hZ)

Consequently, the zeroth order solutions for the currents are

obtained as

cos B h )

o) o1 S
[4y(Y_L ‘%— { _B— cous {jo(hl + hZ) cos Boy + e4 (Y)j (1. 94)
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sin [3012

- y E )
S _ =4 o . s -
[le(x)—] - t"_o%s_{ B, cos B (b +h,) sin fx + e1 (x)j (1.95)

If (1.90) and (1.91) are applied to (1. 94) and (1. 95), we have

. E_ cos Bh, cos By -cos B (h, +h,)
1 Sy _ 47 "o o'l 0 o 1 2 1. 96
l--:})'('\)]O() éo s Bo cos po (hl * hZ) ( )

g )] Sidn Eo sin Bohz ‘ 0. 97)
Elx(y oo L, B Tcosp, (A +h) sin Bx .

(D) First Order Solutions for Loop Currents

To obtain the first order solutions for the currents, the
method used by Chen and King is adopted.
The following equations are needed:

From (1.69) and (1. 71)

Ay, ()= ;‘—j[c:’ cos By + ef(y)]

s - s . s
Alx (x) = ;‘L [Cl sin Box + 01 (x):‘l

O

From (l1.75) and (1.76), we have

-j4m s s
[I4y(yﬂ0 - —%—QO : [c4 cos By + 0, (a



s _ -j4m s . s(x)“
Elx(x):}o = Zﬁg[cl sin B x +el 3

From (1. 85) and (1. 86) we have

96 ,,°(y)
s 4 s . 4
[% ‘Yﬂo = Jz?f;[ - Cy By sin Byt —37—"]

aels(x)
[ql (x):| —ng B cos ;3 x + T E—

—

First order currents are formulated as follows:

M
s _ S 4 s _o
E4Y(YJ1 “[145; (Y]O BT {A4y T qw

,(/)
oy
N
|
—
N
<
<
L~ |
(@
o
>
=
<
(o N}
<
—

(1.98)

(1.99)



49

In effect, (1.98) and (1. 99) can be rewritten as

h
l_I_s()]'f 21 S(;j -—ng[} Sl K., (y, v dy! (1.100)
4y ) l_4y S0 R ) ny Cay ] A WY ey :

h
_ _ 1
S s 1 S | ' '
EIX(X),II S ZElx(x)_Jo - T Xhl[llx(x )]O K, , (5 x') dx' (1.101)

The substitution of the zeroth order solutions in (1.100) and

(1.101) yields

[4Y(y:| { [ccospy+ o, *(y)

cf h,
= q)s h cos BOY KlA (Y’ Y')dY
2
| hZ s N
-3 5 0,°(y") K (v, y')dy'}
S "hZ

S

-j4m c, s Tca(y) ZGS( ) | (v}
cos By -——mm |+ y) - ——
{ © d :] 4 s )

S

—qu—{c Ly + 207 () - N (y)}

(1.102)
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where
s Tca(Y) _
L °(y) = 2cos By - T (1.103)
s n %(y)
N, (y) = —35— (1.104)
b2
T y) = g_h cos B y' K, (v, y')dy' (1.105)
2
ho
nls(y) = Sl 94s(y') K A (v, y') dy! (1.106)
_hz
C S
E s(xz] kA z[c s sinﬁx+es(x):l .
1x 1 - Lo Py 1 0 1 $s
h by
‘S‘ sin ﬁox' KZA(X’ x')dx' - %— g Gls(x')KZA(x, x‘)dx‘}
N S --h1
1
-j4m s T s dls(’”
= ‘é—o'%-s—{cl [2- sSin ﬁox ——35——]"'291 (X)——H)g—k
~-j4m s s s s
= —éiozs—{cl M,°(x) + 26°(x) - D, (x)}
(1.107)

where
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s Ts*d(x)
M, (x) = 2 sin Bx- —gp—
s
d,®(x)
s 1
R
h1
Ts*c{x) = g sin ﬁox‘ KZA(x,x')dx'
-h
1
hl
d.%(x) = S 8.°(x") K, , (x, x')dx"
1 - h 1 2AY

The scalar potentials ¢4ls and ¢43s in (1.45) can be expressed in

!

terms of the charges as

s s 1

P41 * O3 = Toe
o

1
+ 4Te

o

B 1

T 4vwe

o

where

h . e'Jﬁor41
S q; (x') - dx'
'h, 41
Shl . e-350r43
q, (x') ————— dx'
Jn, 3 T43

(1.

(1.

(1.

(1.

(1.

108)

109)

110)

111)

112)
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-jBOr‘}l 'jﬁor43
€ e
K, oy, x") = - -
lB r41 r43
- A e
ry = N by -9 4 (b - x)
- 2 "2
r43~\/(h2+y) +(hl-x)
Similarly,
h _.
s ] . 2 CPom12
= e— 1
P12 t 04 T Tne f 9 () —
o Y, 12
2
1 h2 -JBor
S‘ (x') ¢
4te q4 rl4
-h
2
h
_ 1 S’Z s( VK. (%, y') dy’
4e qy X7) Kyplx y') dy
'hz
where
“BoTy2 BT 4
K (X, Yl,\ = ° + €
2 2
r, = (h, - y)" + (h +x)

(1.113)

(1.114)

(1.115)

(1.116)

(1.117)

(1.118)
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T, = J (hy - y)° + (b - x)° (1.119)

With (1.51) and (1.112), (1.45) can be rewritten as

s _ 8 s 8 8
Py = Oy t Oy, t oy t oy,
h
. 3A, 5(y) 1
1
= L:;_ gY t oc S\ qls(x') K, gly, x')dx!
B y o “-h
o 1 (1.120)
Similarly, with (1.64) and (1.116), (1.58) becomes
s _ s s s s
¢ = b thyz th, ey,
s h
= J%‘ o ¥ l SZ Q. (y') Kyp(x, y')dy'
8 ox 4me ) h 4 2B\
o ° 2 (1.121)

If we substitute the zeroth order solutions in (1.120) and (1.121)

we obtain
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. W - . 8,67 (y)
%, (y) = 5 v, ['04 sin By + T—:I

hl
l 8 1 1 !
+ —‘ﬁ?o— S‘ El (x H K].B(y’ x') dx

-h1 0
h
, 98,°(y)  ¢® S-l ' .
= -(;4 sin B Y+E 5y + q,s h cosﬁoxKlB(y,x)x

8 O
-hl
20 ,%(y) T_.(y) £ %(y)
_ s .. ....1 "4 s “cd 1
= 'C4 s'lnBOY'*fB'O _3)' + Cl T + T
96, (y)
. 1
= -C, (sin By + 5 gy +C,°L,%(y) + F °(y)
(1.122)
where
T .(y)
L,%(y) = —C‘ﬁ— (1.123)
8
. £,%(y)
Fl (Y) = T (1.124)
8
b
Tcd(y) = S cos Box' KIB(y,x') dx' (1.125)



s 1 1 861 (x") ' : 2
£, (y) =5 § —s— K gly,x")dx (1.126)
o -h1
s N s s s s
Op(¥) = b F o3 F b, H Oy
jw aAle 1 hz s
= 25 ax T dme S g (v') Kpplx y)dy”
B o “h
o 2
W s 39 % (x)
= _JT "',_l { C p cos ﬁ x + T——
B, o
41T€ S [q4 (y' ] KZB(X’ y')dy!'
. , 90°%x) ¢ 43 £, (x)
= Cl cos Box +-E— o - 3 Ts*a(x) t—3—
o s 8
96 ° (x)
1 1
= ClS cos ﬁox +—é; 5% - C4s Mzs(x) + Fzs(x)
(1.127)
where
(x)
¢
M’ (x) = —if:— (1.128)
£, (x)

F O (x) =—§— (1.129)
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h
2
Ts*a(x) = y sin ﬁoy' KZB(x, y')dy!' (1.130)
T2
h 8
1 090, (y')
s 1 4 1 1
f2 (x) = Fo S:h T— KZB(x,y)dy (1.131)
2

The boundary conditions to be used for the first order solutions

are:

(a) Current at the corners being continuous

s
14 (y=nh

y ,) = -les(x.-.hl) (1,132)

(b) Scalar potential at the corners being continuous

i. e.,

s s
¢, (y=h,) = ¢, (x=h)) (1.133)
Substitution of (1.102) and (1.107) in (1.132) gives

s, s s s
C4 I.J1 (hz) + 264 (hZ) - N1 (hz)

_l:clS Mls(hl) + zels(hl) - Dls(hl):] (1.134)

With (1.122) and (1.127), (1.133) becomes
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s . 1 864S(y) sS_ s s
- C4 sin ﬁohz +_6; T + Cl LZ (hZ) + Fl (hZ)
Y=h2
98.%(x)
S 1 1 s 8 S
= Cl COs ﬁohl +Fo T -C4 MZ (h1)+F2 (hl)
x=h

(1.135)

Solving (1.134) and (1.135) for c4s and cls , we obtain

—

[265(h,)+ 26 °(h)) =N °(h,) - D (b )] [cosph, - Lzs(hzzl

98, (y) 96 5 (x)
s 1 4 1 1 s s
+ M, (hl)[po 3y "B T ex +F1(h2)'Fz(hZ’]
s - y=h, x=hy
0 MMn))[sin ﬁth—M;(hl):l-Lls(hZ)E:os B.h, -Lzs(hzﬂ
(1.136)
r— g = )
265 (h,)+ 26°(h)) - N (h,) - D (b)) [[sinp b, - M3 (h)) ]
265 (y) 96 ° (x)
s 1 4 1 1 s s
" Ll(hz)[b: —— ok e +F](h,)-F,(h)
s y=h, x=h -
Cl ) S S S s
M (h))[sin g h, - Mz(hlz} - Li(h,)[cos ph) - L, (hz:)l
(1.137)

For the first approximation, we assume that
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0,°0 = o) - 2

4 4 . By

0,%(x) = EIS(’J = 0
0

(1.138)

(1.139)

Then, (1.106), (1.109), (1.124) and (1.129) can be rewritten as

Eo h
- 2
S o S ') dy! : 1.140
N (y) = 35— Kialysy')dy' = 3 ea(?) (1.140)
°  -h
2
where
b
T .y) = S' K, aly: y') dy! (1. 141)
-h,
Dls(x) =0 (1. 142)
Fls(y) =0 (1.143)
s
F,%(x) =0 (1. 144)
With (1.138) and (1. 139), (1.136) and (1.137) can be simplified
respectively as follows if only the terms with the order of 51— are

retained in both numerator and denominator:

S
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1 s
E cos Bohl + N B
C4s - ?2 ——
1 o cos Bo(h1 + hZ) +$- G

S

1 s

g SinBh,tz= H
c,®l = s
1 B 1
1 cos ﬁo(hl +h2) +$— G

s

o

where

1
B =-3 [:2 Teglhy) + Ty, (hy) cos pohl]

1 . .
5 [Ts*d(hl) sin Bohz + ZTS*a(hl) sin ﬁohl

Q
!

- T__(h,) cos B_h; - 2 T _4(h,) cos 5°h2]

1 .
B = - 5 [T,,(h,) sin B h, + ZTS*a(hl):]

(1.145)

(1.146)

(1. 147)

(1.148)

(1.149)

Substituting (1.81), (1.145) and (1.146) in (1.79) and (1. 80), we obtain

cos ﬁohl +% B®
s

=

1, 5| = T { 2
o) -

cos Bo(h1 + hZ) +%— G
s

sin ﬁohz + L u°

I s(x] - ‘j4"{ Zo % sin B x+6%5(x)
1x 1 éo% Po  cos ﬁo(h1 +h2) n °© 1

]
s

(E) Evaluation of Particular Integrals 94S(y) and Ols(x).

cos ﬁoy+92(y§(l. 150)

} (1.151)

Integration by parts enables us to rewrite G4S(y) and Bls(x)

in (1.70) and (1. 72) respectively as
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E Y 5
S (o] S S .
94 (Y) = E 'S;) a_s Eb‘ll (5) + ¢43 (Szl sin ﬁo()’ - S)dS
_ Eo + S0 80 .
- '6;_ ¢41 ( ) + ¢43 ( ) sin BOY
+ B, foy E’4ls(5’ + 4>43S(s)] cos B (y - s) ds
E

B—O- + BO SZ [}415(8) + ¢43s(s):] cos ﬁo(y - s)ds

[}

(1.152)

Equation (1.152) is arrived due to the condition of

¢4 (0) = = ¢,5°(0) (1.153)

Similarly

Gls(x) = -S; -a—aé-[bl Zs(s) + ¢14S(SZI sin ﬁo(x - s)ds

X
Epl‘f;_(O) + ¢lz(oﬂ sinB x+p, SO Epl 5 (0)+ ¢1:(oﬂ cos B (x - s)ds

X
2¢,5(0) sinB x+8_ SO EpIZ(s)wlZ(sEI cos B (x - s)ds

(1. 154)
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Equation (1.154) is obtained because

s s
¢, (0) = ¢,,(0) (1.155)
For the first approximation, we substitute (1.138) and (1.139) in (1. 85).
and (1. 86).
s 47T€o s
q4 (y) = 'T C4 sin ﬁoy (1.156)
S 4me s
q,°(x) = 35—0 C,” cos B x (1.157)
The substitution of (1.157) in (1.112) yields
s s ClS hl
¢41 (Y) + ¢’43 (Y) = T gh cos ﬁoxl KIB(Y’ xl)dxl
1
c’
R Tcd(Y)
s
(1.158)
Similarly, with (1.156), (1.116) can be rewritten as
s s -C4s h2 .
¢12 (x) + ¢14 (x) = _'q,s— b sin BOY' KZB(X’ Y')dY'
2
-c S
(1.159)

Ei T sk a(X)
S

With (1.155), (1.159) yields
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2¢,,(0) = - - T .. (0) (1.160)

Substituting (1.1 58) in (1.1 52), we obtain

S Eo clspo /
94 (y) = Eo— + T . Tcd(s) cos Bo(y - s)ds (1.161)

Similarly, with (1.158) and (1.159), (l.154) becomes

CS CS X

0,°(x) = -—gs— T, (0) sin B x - ;s = foTs*a(s) cos B (x - s)ds
(1.162)
With (1.146), (1.161) becomes
. 1 s
E sin ﬂohz + F H B E
re s ZI _ o, s o o
[P0, 7 1 % P
cosB (hy +h,)+5 G ° °
s
Syo TCd (s) cos ﬁo(y - s)ds
. 1 s
E B sin ﬁohz + g H _
- _2[1 t3- S : tog(y) |
Po s cos [30(h1 + hz) 3 G cd ]
s (1.163)

where

y

tcd(y) = SO Tcd(s) cos ﬁo(y - s)ds (1.164)
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Similarly, the substitution of (1.145) in (1.162) gives

E cos ﬁohl + 61_ B°®
EGIS(XZI oA -
1 Bo

s cos B(h, +h,) tg G
S

X
. [Ts*a(O) sin Box + ﬁo 50 Ts*e(s) cos po (x - s)dﬂ

_ O

1 s
E cos pohl + 5: B

P (I’s cos ﬁo(h1 + hZ) + 61_ G]
s

. [:Ts*a(o) sin ﬁo x + Bot (xﬂ

sxa
(1.165)
where
X
ts*éx) = 50 Ts*a(s) cos Bo(x - s)ds (1.166)

With (1.163), (1.150) becomes
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. E
s _ _J4m _o
E}Y (Y):Ill X2 B, *

| 1 . e
Eos B h, cos B,y - cos {30(}11 + hz):|+ i- EBS cosBy-f sinph, tcd(Y) - (J:l

1 s
- F Bo H tcd(Y)
| S S —_
cos B (h +h,) + g G
S
. o
go S Bo

1 s 1 s
cos ﬁohl Cos ﬁoy - cos ﬁo(hl + hZ) + az P41 (y) + @s P42(y)

cos ﬁo(hl + hZ) + (}; G
s

(1.167)
where
P4ls(y) - BS cos ﬁoy - ﬁosinﬁohztcd(y)-G (1.168)
s s
Py y) = - B Ht 4(y) (1.169)

Similarly, with (1.65), (1.51) becomes
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. E
I s(:-:ﬂ = —15—- ir o
[lx 11 go s Bo

. . 1 . .
sin ﬁohz sin ﬁox+a):[ H® sin Bx+ EI‘S*a(O) sin Box + B, tex ix[l cos ﬁohl}

1 s .
+ p B Ers>-'=a(0) sin Box + Bots*a (XZl
s

1
cos [SO(h1 + hZ) t3F G

s
- -j4m E0
c’oq)s [30

. h . + 1 p S + 1 p s()

smﬁo 2smﬁox 6; 11(x) ;T 12 (%

S

cos Bo(h1 + hz) + -&—’l— G
S

(1.170)

where

s
P11 (x)

s . : N
H" sin B x +[Ts*a(o) sin B x + B ts>?~a(xa cos ﬁohl
(1.171)

P, S(x) - BS[TS* ,(0) sin p x + Bots*a(xﬂ (1.172)

E s(yil and I:I S(xﬂ involve the double integrals which complicate
4y T b '
the problem.

In order to avoid the double integrals, the following method is

devised at the expense of decreasing the accuracy. First of all,
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substituting (1. 138) to (1. 144) in (1.102), we obtain

1 s
cos pohl +— B

[I S(YE] _ -j4w {_ _Fig , s X
4y 10 % s Ps cos {SO(h1 t hy) +$ls- G
(y) E E
2 cos By- =2 +2 2-—-2 T (Y)}
: R Te
_ 4w f:_o X
502 Po

2 |cos Bohl cos ﬁoy - cos {SO(hl + h(._,l]'F(I)—1 l:Z B® cos BY - eG
s

-~ CcOSs ﬁohl Tca(y) + cos ﬁo(hl + hz) Tea(}il

1 s
ey [:GTea(Y) - B Tca(yﬂ

S _

cos B (h) +hy) g G
S

E
(o]
X
K TN

) 1
ZIE:os Bohl cos ﬁoy - cos [30(h1 +h2‘)‘J+:5— U41 (y) +$LZ U42 (y)

cos B,(hy +hy) +61; G (1.173)
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where

s S
U41 (y) = 2B cos Boy - 2G- cos ﬁohl Tca(y) +cos Bo(hl +h2)Tea(y)

(1.174)
s s
Uy V) =GT_ (y)-B"T_(y) (1.175)
Similarly, the substitution of (1.138) to (1.144) in
(1.107) gives
. 1 s
. e [ E, SRRt H T_ ()
I (x) = = = ® 2sin @ x- —>—
tx 5% | P h, +h))+ 1 ° 7
10 o's o cosﬁo( 1 1 2)+———G S
d
s
_nim Zo
t’o s Bo
s
. . 1 s . . H
2 sin Bohz sin ﬁox +$S- [ZH sin [30x - sin Boh?_ Ts*d(x) - ?sTs*d(x)
1
cos [3o(h1 + hZ) + az G
. . 1 s 1 s
e 2 sin ﬁohzs1nﬁox+$ 811 (X)+F 81> (x)
_ =j4m o} s S
Tt d_ B
o"s o 1
COS ﬁo(hl + hz) +_¢Z G
(1.176)
where
(1.177)

s _ s . .
g11 (x) = 2H" sin ﬁox - sin ﬁoha Ts*d(x)
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glzs(x) = - H° Ty q(®) (1.178)

(F) Backscattering Cross Section ofa Solid Rectangular Loop

The vector potential, maintained by the induced current in
the solid rectangular loop, at an arbitrary point on the axis of

the loop and in the far zone of the loop (Fig. 1.15) can be expressed

as
h -iB R
A=A - o §2 ZIS'eJﬁO dy'
- y - 41 4Y (Y) R y
-h
2
“o e-JpoRo hZ s
¥ = —_— 1 1
Y 5= " y E‘“’ (y):l dy
o -h 11
2
(1.179)
where
5
R = '\/RO":L y'2+h12 = R_ (1.180)

Substituting (1.167) in (1.179), we have

-JIB R

E\ﬂ . Zuo e e o o Jl
Y11 7 P 0 R | ‘ G
11 o"o o @s cos B_(h) + hy} + q,sj]

(1.181)
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Figure 1.15. Geometry for the calculation of radiation field
of a solid rectangular loop.
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where

h
2
_ 1 s
Iy = S E°S Bohy cos y' - cos Bylhy *+hy) g By Gy
_hz

1 s
+ P, 5 )] dy'
<I>sZ a2 7 (1.182)

J1 will be evaluated later. Consequently the backscattered

electric field due to the solid rectangular loop is

[ =]

11

"
by |
< w
g -
1
€
r—1
>
L

"
(3]
=

o

—

o ‘1>S [cos Bo(hl + hz) +_¢_C;_]
(1.183)

The backscattering cross section is found to be

2
s
og = lim 4t ROZ —lE—IZ—
Ro“‘ @ |Eo|
J1 2
= léw

®_[cos B_(h) +h)) + gis:]

(1.184)
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B

the experimental results for the case of the square loop where

is plotted as the function of Boh in Figure 1. 16 to compare with

_ _ _ 5,15 _
hl—h?_—h— > cm and a = 0.03 cm.

The agreement between the theory and the experiment is fairly good
over the range where ﬁoh is small.

A simpler method in obtaining the backscattering cross section
is also presented here. The vector potential at an arbitrary point

on the axis of the loop and in the far zone of the loop is calculated

on the basis of E S(y)‘;[ .
4y 10

h -ip R
AS—AS‘“b SZZIS'eJBO dy'
= A T 4o 4y (y') R y
_hz
M -JBO o hZ
== 2 S 1,0y dy!
2w Ro 4y Y
-h, 10

(1.185)

Substituting (1. 173) in (1.185) , we lnve

B
s . Zuo R o o JZ
y ST o TR, & ho+h.) +-2
0 © sEosﬁo(l 2 q’;]

(1.186)
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000000 theory

experiment

Figure 1. 16.

1.0 1.5 2.0

——l
BF

Comparison between theory and experiment
for a square loop illuminated by a plane
wave at normal incidence.
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where

h2.
JZ = 5 [2 cos Bohl cos Boy' - 2 cos ﬁo(h1 + h?_)
_h2

U S(y') U Ei(y')
41 42
+ + l dy'
: <I>JZ

S
S
(1.187)

The evaluation of J2 will be presented later.

The backscattered electric field is, therefore, calculated as

BT el - el

10

10

-jB_R
e o o JZ

o Ro <I>S I:cos ﬁo(hl + hz) +§G;:]

2E

(1.188)
Based on (1.188), the backscattering cross section of a solid
rectangular loop is found to be
i
. 2 |E
o, = lim 4R -
o o
2
JZ
= 16w (1.189)

lcbs E:OS l3o(hl * hZ) ¥ %:I
s
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(G) Expansion Parameter o

From (1.77) we have

_ 4y
¢ y) = - —F—

Considering the zeroth order current

cos ﬁphl cos ﬁoy - cos ﬁo(hl + hz)

. E
rI s(y):] - j4m o
[_4)' 00 o s _B; cos [30(h1 + hz)

we obtain h

.'hz

Eos ﬁohl cos poy' - cos Bo(hl + hZ:)] KIA(Y’ y')dy!'

@s(y) =

cos ﬂohl cos Boy - cos Bo(hl + hz)

cos Bohl Tca(y) - cos [30(h1 + hZ) Te

(y)

a

cos Bohl cos ﬁoy - cos ﬁo(h1 + hZ)

For a loop with {3O(h1 + hZ) = '17; ’

at y = 0. We can then set

the point of maximum current is

(1.190)

CI’S =I:<I>S(Y£l - cos ﬁohl Tca(o) - cos Bo(hl * hZ) Tea(o)
y=o

cos B h, - cos [So(h1 + hy)
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For a loop with {30(}11 + hZ) = -Tzr » the point of maximum

current is at y = (h1 + hz) —-2— , SO we set

@, {@s(yﬂ

wl >

y:hl +h2-

N N
cos ﬁohl Tca(hl + hZ ol ) - cos Bo(hl +h2) Tea(hl +h2 -4 )

cos pohl sin (E}O(h1 + hZ) - cos [30(h1 + hZ)

(1.191)

(H) Evaluation of J, and JZ

1
Since

h
2
_ . 1 s
J1 = y , Eos ﬁohl cos Boy - cos f}o(h1 + h?.) +—(I)s P41 (y")

h
+ 1 P 5 1 d 1
<1>_Z 42 (y') | dy
s
where
s B s . . _
P41 (y) = B cos [30}' ﬁo sin ﬁohz tcd(y) G

Pgp () = - B H” tq()
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2 .
J1 = ﬁ_o cos pohl sin Bohz - th cos [3o(h1 + hz)

» L [2B sinph,-p sinBh b  -2h,G
‘I>s Bo o 2 o o 2 cd 2

S

1
" 22 P Ped
s
(1.192)
whe re
hZ
Ped = S teg 1) Ay
'hz
hZ y?
= S [g Tcd(s) cos 50 (y' - s) d{l dy'
-h‘2 0
(1.193)

J1 is difficult to evaluate because of the triple integral involved.

Equation (1.187) shows that

hZ
J, = S [Z cos pohl cos ﬁoy' - 2 cos [30(h1 + hz)
-h,
S s
Uy (v') U, (v)
. _4l . 42 2 :I dy"
<I)s @5
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S S
Uy (¥) = 2B" cos By - 2G - cos B h) T__(y) + cos B_(h; +h,) T__(y)

U4zs(y) = GT_,(y)- B°® T )
or

- 4 5
I2 = B, °°° Bohy sin Byh, - 4h, cos B (h; +h,)

1 [ 4B% .
+ 5—; [To sin ﬁohz - 4h2 G - cos ﬁohl tca

1 s
+ cos 5o(hl * hZ) teaZ'Jr & 2 [G tea. - B tca:l
s

(1.194)
where
hZ
. 1
tea = Sl Tca(y ) dy! (1.195)
‘hz
hZ
tca = SA Tea(y ) dy (1.196)
-h

2



CHAPTER II

MINIMIZATION OF BACKSCATTERING OF A CIRCULAR LOOP

2.1. Introduction

The backscattering cross section of a metallic circular loop
was studied in the previous chapter. It was found that when the loop
is of resonant size, the induced current on the loop is maximum and
likewise the backscattered field. In radar camouflage it is desirable to
minimize the backscattering cross section of a loop, in particular, that
of a resonant loop. Many investigations have been made in the recent
years on the technique of minimizing the radar cross section of a
metallic object. Two conventionally used techniques are to utilize radar
absorbing material and to reshape the bady to change the reflection
patterns. Recently, a new method called the impedance loading method
has been developed. This method was found to be especially effective in

reducing the backscattering cross sections of metallic objects with

dimensions of the order of a wavelength. Using this method Chen4-6and
others7’ 8 have investigated the minimization of the backscattering from

a cylindrical object. Liepa andSeriior9 have applied the same technique
to reduce the radar cross section of a conducting sphere.

The basic principle of the impedance loading method is to control
the amplitude and phase of the induced current on the metallic object by
inseting appropriate impedances at appropriate points on the object in
such a way that the backscatter maintained by the induced current is
minimized.

In this chapter, the minimization of the backscattering of a

conducting, circular loop by an impedance loading method is investigated.

78
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A perfectly conducting, circular loop which is loaded symmetrically
with two identical lumped impedances, is assumed to be illuminated
by a plane wave at normal incidence.

The induced current on the loaded loop is determined as a
function of loop dimensions and loading impedance. The backscattered
field maintained by the induced current in the loaded loop is calculated as
a function of the loading impedance. It is then possible to find an opti-
mum impedance which makes the back scattered field equalto zero. An
explicit expression for the optimum impedance for zero backscattering
is obtained as a function of loop dimensions. Some numerical examples
are included.

Analytical study on the radiation of a loop is rare in the literature.
Storer10 studied a loop antenna using a method of Fourier series ex-
pansion based on a Hallan's integral equation. This method is too -
complicated for our problem. A new method which is simple enough for
our purpose is developed in this research. This new methopd is based
on a differential rather than on an integral equation. The theory is
later verified by an experiment.

2.2. Theory

Based on the principle of superposition, a loaded circular loop
illuminated by a plane wave at normal incidence can be considered as the
combination of (A) a solid loop illuminated by a normally incident
plane wave, and (B) a loop driven by two identical voltages at 6 = 0
and 8 = m, The situation is shown graphically in Figure2..1.1. Essentially,
case (A) is the scattering of a solid circular loop and case (B) is the
radiation of a circular loop antenna. The case (A) has already been
solved in Chapter 1 and its results are rewritten here for further

development. The problem of case (B) will be solved in this chapter.
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After this the results of case (A) will be combined with that of case

(B) to produce the final solution for the problem of the scattering from

a loaded loop.

2.2.1. Scattering from a Solid Circular Loop

The following equations from Chapter 1 are needed

s K IEo
Ie (8) = —>—> —— COs 5] (1.24)
ps b™ -1
for -=m =606 =7
4 -BoRl s
s . -0 e o
E =-j— Bb (1.26)
y 2 Po R, ﬁszbz-l

where Ies(e) is the induced current on the solid circular loop and E s
is the backscattered field on the axis and in the far zone of the loop

maintained by the induced current.
2,2.2, Radiation from a Circular Loop

The geometry of the problem is as shown in Figure
2.1.2. The loop is driven by two identical voltages V at 6 = 0 and
® = m. The dimensions of interest are
2 2.2

a2<<b . Boa << 1

where {30 is the wave number. We assume that the wire is thin enough

so that only the 8 component of current is induced.
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Figure 2.1.2. Geometry of a radiating
loop.
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(A) Differential Equation for Loop Current
The total tangential electric field should vanish at the surface
of the loop except at the gaps at 6 = 0 and 6 = v where voltages of V

are maintained. Assuming that the gaps are very small, we obtain

the following equation:

E} = < 6(0) - —— 8(r - 6) (2.1)

for -mr=0=n¢

where Eta is the tangential electric field at the surface of the loop
and §(6) is a Dirac delta function. Due to the symmetrical configura-

tion, the following conditions exist:

Ier (9) =-19r (m - 9) (2. 2)
r m
Ig (£3) =0 (2. 3)

where Ier (6) is the current on the loop. This symmetry condition
simplifies the problem and we only need to consider a half of the

loop. In the right-half of the loop, (2.1) reduces to

a Vv
Et =35 5(6) (2. 4)

for -% =0 =

(V]

The tangential electric field maintained by the current and the charge

on the loop can be expressed as
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E:‘ = - (Veo')y -juhg (2. 5)

where ¢' is the scalar potential maintained by the charge on the loop

and Aer is the tangential component of the vector potential maintained

by the current on the loop. ¢r(6) can be expressed as

r 1 4 r e-jpoR
¢ (8) = e f q (8") —R bdo! (2. 6)
o) -

where qr(e') is the charge density induced on the loop at 6', and

2

1
R = b«/ 4 sin® & -26 + 12- as mentioned in Chapter 1.
b

Assume that ¢' (6) can be approximated as

@1‘
¢7(6) = z—3— q' (o) (2.7)
(o]
where ‘I>qr is defined by
r o (6
) = ane, () (2.8)
q (9)

& is considered to be independent of § because <t>r(6) in (2. 6)
is mainly contributed by the induced charge qr(e') in the vicinity
of 6'= 6,

With (2.7), it leads to

]
V—

7 ¢ -9 L 299 2
L S (2.9)
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By the equation of continuity,

— ) ater(e)

q" (8) = j = —a5— (2.10)

(2. 9) can then be rewritten as

iy <I>qr ; azler(e)
(Vo )] = ! (2.11)
] 902

Relating Aer to the induced current Ier(B) on the loop, we have

U -JB.R
d #05 r(ory) & 6') bde' 2.12
Ae(e)—a- - Ie(e)—R—cos(e- j bd (2.12)
2
- 1
where R = b«/4 sin2<e 26>+ 27-
Assume Aer(e) can be approximated as
A S(0) = “_°<I>r1”(e) (2.13)
0 T 47 i 6 '
where q)ir is defined by
Ag (0)
dF - 4m er_ (2.14)
l o Ie (6)

‘bir here is presumed to be independent of 6 since (2.12) shows that

main contribution to the vector potential at 6 is due to the current

element located in the vicinity of 0,

With (2.11) and (2.13), (2.5) can be rewritten as



_jcbr 82 2 r r
E? - 9 > 5~ + B b7’ | I5(0) (2.15)
t 4me wb 90
where
r d)ir
- 2.
a = o7 (2.16)
q

The substitution of (2.15) in (2. 4) gives

2

9 2,2 r B rV
( > + Br b >Ie (0) = K 5 5 (9) (2.17)
a6
™ < T
for -2- <0 =< >
where
L, ®F
2 2 r 2 i
ﬁr = Bo a = Bo r (2.18)
é
q
r 4wcowb2
K = j — (2.19)
)
q

(B) Solution for Loop Current

The solution for Ier(e,n can be expressed as

Ier(e) = clr cos B b0 4 C ¥ sin B_bo + PT(0) (2.20)

2
where Clr and CZr are arbkitrary constants, aad pr(e) is a
particular integral. C T is zero due to the symmetry and P(9)

2

can be found to be
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PT(6) = —=% sinp_blo| (2.21)
r
2B b
r
The application of the boundary condition of Ier(%) = 0 gives
r - K'v ™
C1 = ———— tan ﬁrb > (2.22)
28 b
r
Finally, we have
r K'v ™ ™
IG ) = - m sec Brb > sin prb (7 - |9 l) (2.23)
r

for -t =0 =+

The above expression for Ier(G) is extended to cover the whole range
of -m =6 =w by making use of the condition Ier(e) = -Ier(v-e).
With the current found in (2.23), the vector potential on the axis of

the loop and in the far zone of the loop can be calculated as

r “o % r e-JﬁoR1
o —— ! . = [
Ay = Io S 219 (6') cos 6 R bd®6
™ 1
"2
-jB R
Vi o 1 r
- _2 e K—)V (2. 24)
47 R 2, &
1 B. o -1
r
2 2 . .
where R1 = Ro + b and RO is the distance between the center

of the loop and an observation point on the axis of the loop.
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The radiated electric field in the far zone of the loop is

Eyr = - wAYr = - =2 = KV (2. 25)

K’ and {Sr are determined in a following section.

2.2.3. Total Current and Total Back Scattered Field

Total current can be obtained by superposing Ies(_e)

upon as follows:
Ier(e) foll

S
I5(6) = I4(8) +1,7(6)

K°E
= ———52 cos 6
ﬁszbz -1
- KrY secﬁb%Sihﬁb(%- Iel)
28_b“ T r
T (2. 26)
for -m =60 =7
Based on the principle of superposition, V is found to be
s r,..
vV = [:Ie (0) + Ig (OZ] ZL (2.27)

With (1.24) and (2.23), V is determined as
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2 b° 2 K°E_

Zprbz +2Z K tanp b 3 ps?‘ b% -1

(2. 28)

V =

The substitution of (2.28) in (2. 26) yields a final expression

for Ie(e) as

1,(8) = ———o cos 8
6 pSZbZ -1

r T
ZLK sec ﬂrb Vi . of T le I
- 2 TI’ sin FS1‘ 2

2pb°+2Z K tanpb T

(2.29)
for .m =0 =n
Total E field in the far zone of the loop can be obtained as
E =E° +E T
y y y
. S
u -JB,R; K E b
= -jw _C_)_ € > X
2
4 R] b -1
s
r
4 ZLK 5rb
Tt 73 2 T m
(Br b~ - 1) (2|3rb + ZLK tan ﬁrb —2—)
(2.30)

2.2.4. Optimum Impedance for Zero Back Scattering

To minimize the backscattering to zero, total field in (2. 30)

is set equal to zero. This leads to
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r
4Z K'B b
L r — =0 (2.31)

(B,b° - 1) (28_b° + z K tang b I)

T +

Solving (2.31) for ZL’ we obtain the optimum impedance for zero back

scattering as

[z ] ) - Znﬁrbz (;3r‘2b‘2 - 1) 232
L o Kr[4prb + (;3rb2 - 1) tan B b %] '

With (2.19) [ZI] can be expressed as
0

ity Noat 1) 8T
[:zL] = > d - (2.33)
0o 2[4 B+ (B, D" -1) tanp b T |

2.2.5. Determination of <I>qr and ‘I>ir

(A) By making use of (2.23) and the equation of continuity, we have

r
814" (0)

= % L KzTV secﬁrb % cos ﬁrb<% - lel)

(2.35)

— for -w =0 =0

+ for 0=6=n1¢

<I>qr is then defined as
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-iBR 4 -iB,R
™ e m e
-5 cos ‘3rb(7+ 6') —R bd6'+50cos Brb(f- 6') —R bd6'
- S
q
™
cos 6,0(2 -2,
(2.35)
where
J 2(% - ¢ a.2
R=bn 4sin (—2——) + 25
b
Choosing 60 = % » the point of maximum charge, <I>qr becomes
y 2
r_ m - 1 2 1
cbq —jo cos B b(3 0') K, (e,b—z)de (2. 36)
where
J .
-jﬁob 2-2sin0'+—
b
a e
K (9', ) =
3 ;2' J =
2-2sinB'+ -
b
J
—Jﬁob 2 + 2 sin 6'+—-—Z—
e b
J
2+ 2sin 6' + >
b (2.37)

In the actual calculation of @qr, B, will be replaced by [30

as an approximation.
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(B) Similarly, ®" can be obtained by making use of (2.23) as

r
or.dn A el
i " wu r
o Ie ()
T -jﬁOR
S‘ sin B b (% - e I) cos (8, - 6") e—R- bde"
-
sin B b (%- I 0 I)
(2. 38)
where
2
_ o
R=b\/4sin2( 26)+a—2-
b
Choosing

0 for ﬁrb =1
6 =
o

™ A

> - 36 for Brb =1

. . , r
where 0, is the point of maximum current. <I’.l then becomes

T
2
——1—;§ sinBrb(%-IG‘l)cosG'K4(8',32-)d8'
smﬁrbz— - b
r
(I)l - for g b =1

2
5 sing b( - |0'])sin(F+0') K, (0,25 ) a0
m™

o

for ﬁrb =1 (2.39)



93

where \/ az
- b Z-Zcose'+-—2
2 o N
Kyl T2) = (2. 40)
4( bz) J =
2 -2cos 0'+ —
b
2
-iB,b «/2 -2 sin(z% +e.)+a7_
b
KS(G"EZ (2.41)

b 2

)ze
N/Z-ZSin(-‘% +e1) +25
b

In the actual calculation of @, B_will be replaced by B as an

approximation.

2.2.6. Numerical Examples
To show the theoretical results graphically, <I)qr and <I>.lr

are numerically calculated for the case of a‘z/b2 = 0.00179 as
function of ﬁob. The optimum impedance, I:ZJ , is then

o
calculated as a function of B b for the case of aZ/b2 = 0.00179.
Numerical results of <I’qr and Cbir are shown graphically in Figure
2.2 and 2.3 respectively. The numerical result of [Zl] is

o

shown in Figure 2.4. In Figure 2.2 and 2. 3, @qr and @.lr vary
only weakly over the range of interest. This agrees reasonably
well with our original assumption of <I’qr and <I>.Lr being constant.

In Figure 2.4 the following facts are observed:
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(1) In general, the optimum impedance for zero back

scattering needs both a resistive and a reactive component.

(2) It requires a negative resistance around ﬁob =1.25

and a reactance with negative slope around Bob = 1.

2.3. Experiment

As mentioned in previous section, the optimum impedance for
zero backscattering, in general, requires a negative resistance.
Practically, it is difficult to implement. To simplify the problem,
an experiment was conducted for the case of a circular loop loaded
with two purely reactive impedances.

In this section, experimental arrangement and experimental
results are discussed. The comparison between the theory and the

experimental results is also given.

2.3.1. Experimental Setup and Measuring Technique

The experimental setup is shown in Figure 2.5. The
experiment was conducted inside of an anechoic chamber which
is constructed on the top of an aluminum ground plane (10' x 12',
0.125" in thickness). In the experiment, the R.F. signal is
radiated from a horn antenna (Scientic Atlanta model 12-17)
located at one end of the ground plane and the circular loop is
placed at the other end. With this arrangement, a plane wave is
incident normally upon the loop. A slot is cut at the central part
of the ground plane. A thin wire probe (Central Res. Lab.

MX-1019/u) protruding out of the ground plane is movable along
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scatterers
[ ]
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T probe scatterers
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TTT7T7777 77777777777 ﬂf/////////////// 7777
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1.72 GC
RE ‘ directional
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mixer >
square
w. gen. detector SWR
termination meter

Circuit Diagram

Figure 2.5. Experimental setup and circuit diagram.
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the slot. The loop is loaded with a pair of identical coaxial lines

(characteristic impedance Zc = 50 n) underneath the ground plane.
This simple device provides a purely reactive loading to the loop.
The approximate impedance of the coaxial cavity can be calculated

from the well known expression Z_ = jZC tan pol where Zc is the

L
characteristic impedance of the coaxial cavity, B, is the wave
number and £ is the length of the coaxial cavity.

The circuit diagram is also shown in Figure 2.5, The
method of cancellation is employed in the experiment. The R.F.
signal is generated from a microwave oscillator (GR 1360),
modulated by a 1 KC square wave generator. The output of the
R. F. oscillator is connected to the horn antenna., When the scatterer
is absent, the signal received by the probe is cancelled by a refer-
ence signal from the R. F. oscillator through a line stretcher
(GR874-LK20L) and an antenuator (ARRA 2414-20). The cancal-
lation of the probe signal by the reference signal is accomplished
by the combination of these two signals in a mixer after going through
a directional coupler. After the cancellation process is completed,

the loop is introduced. The output of the mixer or the reading of

SWR meter will then represent the backscattered field by the loop.

2.3.2. Experimental Results

A circular loop (diameter = 5.15 cm) was constructed as as
an experimental model using cylindrical wire of 0.1 cm radius.
The experiment was performed at various frequencies (1.6 GC -
2.5 GC). Experimental results are shown in Figures 2.6 - 2. 20
in which the backscattering cross sections of the loop wire plotted

as functions of loading impedances at each specified frequency.
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The backscattering cross section of the loaded loop is represented
by a solid curve and that of the solid loop by a solid straight line.
It is observed that if the loading impedance (or the length of the
coaxial line) is properly adjusted, the backscatters of the loop can
be minimized to the noise level. At each frequency about 15 db
reduction in the back scattering cross section was obtained. It
was also observed that the scattering in the off broadside direction
was reduced when the backscatter in the broadside direction was

minimized.

2.4. Comparison Between Theory and Experiment

To check the accuracy of the theory, the optimum reactive
impedance for the minimum backscattering was numerically cal-
culated and then compared with the experimental results.

The theoretical value for the optimum reactive impedance

is calculated as follows:

(1) In the expression for the total back-scattered field,

equation (2. 30), the loading impedance Z is replaced by jXL,

(2) An expression for the total backscattered field is
numerically obtained for a particular frequency as the function
of XL’

(3) A computer program is then set to calculate the

particular value of X which gives the minimum value of the total

backscattered field,

(4) Thus the optimum reactive impedance, E(L—l , 1is
—o

obtained as a function of Bob.



101

The experimental value for the optimum reactive impedance
was obtained by taking into account of the stray capacitance which
exists at the end of the coaxial line.

The experimental and theoretical results of the optimum
reactive impedance for the minimum backscattering are shown
graphically in Figure 2,21. The dotted curve represents the ex-
perimental results and the solid curve represents that of the theory.

The agreement between theory and experiment is reasonably good.
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CHAPTER Il

MINIMIZATION OF BACKSCATTERING OF A
LOADED RECTANGULAR LOOP

3.1. Introduction

A theory of the minimization of the backscatter of a metallic
rectangular loop by impedance loading method is developed in this
chapter. A rectangular loop loaded symmetrically with two identical
lumped impedances at the centers of the long sides of the loop is
assumed to be illuminated by a plane wave at normal incidence. The
induced current on the loaded loop is determined as a function of the
loop dimensions and the loading impedance. Based on the induced
current, the backscattered field can be calculated. It is then possible
to find an optimum impedance which leads to zero backscattering from
the loop as a function of loop dimensions. Some numerical examples

are included.

3.2. Theory

Based on the principle of superposition, the problem of the
scattering from a loaded loop illuminated by a plane wave at normal
incidence can be considered as the combination of the scattering of
a solid loop and the radiation of a driven loop as described in Chapter
L. Thus the following two cases will be considered separately and
the results will then be combined to yield the final solution for the

scattering from loaded loop:

(A) A solid rectangular loop illuminated by a normally incident plane

wave.
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(B) A rectangular loop driven by two identical voltages at the centers
of the long sides.

The situation is illustrated in Figure 3.1. In fact, case (A)
is the scattering of a solid rectangular loop and case (B) is the
radiation of a rectangular loop antenna, Case (A) has already been
solved in Chapter 1 and its results are quoted here for further theoretical
development. Case (B) will be considered in this section. The results
of Case (B) will be superposed upon those of case (A) to obtain the

solution for an illuminated, loaded rectangular loop.

3.2.1. Scattering from a Solid Rectangular Loop
The following expressions from Chapter 1 are needed for

further development:

ES(Y] _ _jan EOX
4y i, L% By

cos B_h) cos By - cos B (h; +hy) + 51: P, %y + ng P,,%(y)
8

cos (3o(h1 + hZ) + 31— G
8

o (1.167)

. E
8 _  =j4m o)
Elx (}ﬂ - g‘o X ﬁ X
11 o
sin B h, sin B x +— P, 5(x) + —= P._%(x)
o2 '3 Fu 32 "1z

s
1

cos Bo(h1 +h2) + :i_ G
s

- - (1.170)
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} E
s _ 34 _o
l:I‘”'(yﬂlo i 5

O s

1 1
2[(:05 Bohl cos Boy - cos E}o(h1 + hz):l + '6: U4ls(Y) + F U425(Y)
8

cos B (b +h,)+ 3 G
S

(1.173)
1 s(x) _ -j4m o »
[:lx ]10 rao s [30
. . 1 s 1 s
2 sin pth sin p x + ¥ g, (x) +?2- g12 (x)
8
S
cos B_(h, +h,) + 3 G
8
(1.176)
[ -jﬁoRo Jl
Es:, = 2 =
11 o R, @ [cos p (b, +h,) + 31: G]
(1.183)
-jpoRo J
[Eﬂ =2E  —¢ : I
10 o ®_[cos p (h; +h,) + 3 G:|
(1.18)

where I4ys(y) and les(x) are the induced current on side 4 and side 1
of the rectangular loop respectively. E® is the backscattered field

on the axis and in the far zone of the loop maintained by the induced
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Figure 3.2. Geometry of a radiating loop.
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currents. The subscripts outside the brackets in the above expressions

are referred to the order of solutions.

3.2.2. Radiation from a Rectangular Loop

(A) Geometry of Problem

The geometry of the problem is as shown in Figure 3.2. A
rectangular loop with short side ?.hl and large side Zh.2 is assumed to
be made of perfectly conducting wire of radius a. Two identical
voltages V are connected across the gaps at the centers of the long
sides of the loop. The dimensions of interest are

2 2 2 2 2
a << hl andh2 , ﬁoa << 1

where B, is the wave number. We assume that the wire is thin enough

so that only the tangential component of current is induced.

(B) Integral Equations for Loop Currents

The tangential electric field should vanish at the surface of
the loop except at the gaps at the centers of the long sides where
voltages of V are maintained. Assuming that the gaps are very small,
we obtain the following equation:

For side 4

a
E, = -V é(y) (3.1)

where E4ta is the tangential electric field at the surface of side 4
and 6(y) is a Dirac delta function. Due to symmetrical configuration,

if follows that
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Ly, () = 1,.7() (3. 2)
ler(x) =-I3xr(x) (3. 3)
a, (y) = q,7(y) (3.4)
q, " (x) = -q57(x) (3. 5)

where I4Yr(y) is the induced current on side 4 and ler(x) is that on
side 1, etc. q.lr denotes the induced charge onside i, i =1, 2,3, and 4.

E4ta can be expressed as

a _ r .
E4t = = (v¢4 ) 'Jw(A4 )
y y

(3.6)

—_
where A‘lr is the vector potential at the surface of side 4 contributed
by the currents in the loop; ¢4r is the scalar potential at the surface of
side 4 maintained by the induced charges on the loop.

In symbols, A4r and ¢4r can be expressed as

Ty (3.7)
r r r r
P T Oy Oy toy3 t Oy (3-8)
where A4xr is the vector potential at the surface of side 4 contri-

buted by the currents in sides 1 and 3. The currents in sides 2 and

4 do not contribute to A4xr because they do not have x component.
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Similarly, A4yr has the same meaning as A4xr except that the contri-
bution is made by the currents in sides 2 and 4. ¢4.lr is the scalar
potential at the surface of side 4 maintained by the charges on side
i, i=1,2,3, and 4.

r .
A can be expressed in terms of current as

4y
. M h, . e‘jpor44
Agy ) =71 Iyy (0') PV dy'
_hz
uo A2 BTy
+ =2 5‘ I, “(y") dy'
4 2y y r y
-h 42
2
o b, .
- = 1 , 1 1
-hZ
where ) ]
e'Jpor44 e'Jpor42
K, (y,¢9)s ——m 4+ ————— (3.10)
1A r44 r42
2 2
r44=J(y'—y) + a (3.11)
2 2
r42=«/ (y' - y)" +4h) (3.12)

With (3.7) and (3.8), (3.6) can be rewritten as
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r_ 0 r r . r 9 r r
Ege ==y (9g2° 04 ) md0h, " =50 (047 + ¢437)
(3.13)
By the Lorentz condition, it follows that
r
. — — : oA (y)
r r_ jw . r ry_ Jjw 4y
%2 T4y =z V (A42 Ay )= =732 By
Po Bo
(3.14)

After substituting (3.14) in (3.13) and after rearranging, (3.13)

becomes
. 2
a W 0 2 2] r r
Fat T2 ( oy Do ) Ay gy (e te")  G13)

o

The substitution of (3.15) in (3.1) gives

.2 .2
2 BV B
) 2 r _ o o 9 r r
(—Z'ay + B )A4y(”’"' o 0 +—3 ay(¢’41 t 43 )
(3.16)
where :
r r 1 §1 r e-J50r41 '
®41 t %43 T Toe q) " (x") T dx
o h 41
1
. h . e'jpor43
c 1
41e S‘ q3 (x') r dx
o h 43
1
1 hl r
- 1 1 1
" are S' 9 (') Ky gly, x) dx
-h

1 (3.17)
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where

iByTy) ~3BoTy43

K, nly,x') = oo—m — - e (3.18)
1B r41 r42

_ 2 Y-
Ty T '\/(hz-y) + () - x') (3.19)

2 2
Ty3 = «/(h2+y) + (b - x') (3. 20)

Similarly, the differential equation for the vector potential at
side 1 can be obtained as follows:
Since the tangential electric field should vanish at the surface of

side 1, we have

a_
E =0 (3. 21)

where Elta is the tangential E field at the surface of side 1 maintained

by the current and charge on the loop.

a
can be expressed as

Elt

Ejy =- e -ju@a’ (3. 22)
X X

where ¢1r is the scalar potential at the surface of side 1 maintained
JEEN

by the induced charges on the loop and Alr is the vector potential

at the surface of side 1 contributed by the currents in the loop.

= r r
In symbols, Al and ¢>l can be expressed as

¢ (3. 23)

(3. 24)

©
—
i
©-
y—
Pt
H
+
©
—
[a¥]
Lo ]
+
©
[u—
w
Lo ]
+
6
p—
VN
o}
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where Alxr is the vector potential at the surface of side 1 contributed

by the currents in sides 1 and 3; while Aly

T is that contributed by the

currents in sides 2 and 4. ¢lir is the scalar potential at the surface

of side 1 maintained by the induced charges on side i, i=1,2,3 and

r .
4. Alx can be expressed in terms of current as

TR . P
Alx s ar 5 le (x') r dx!
11
-h
1
. Dy . JPom13
+ — S\ I (x") dx'
4 3x r
“h 13

Ko hl r
v S le (x') KZA (x, x') dx!'
-h

where . .
-Jporll -Jpor13
K., (x,x') =< S
2A Ty T3

r“:'\/(x' -x)2+a2

r,y = \/(x' -x)2 +4h22

With (3. 23) and (3.24), (3.22) can be rewritten as

By the Lorentz condition, we have

(3. 25)

(3. 26)

(3. 27)

(3. 28)

(3.29)



- . 0A
jw I1x

+A13r)= 2 Tox

r r jw
o1 t o3 =5 v'<A11

Substituting (3. 30) in (3.29), we can rearrange (3. 29) as

. 2
a _ W 9 2 r 9 r r
Ejy =- Z( 2 t B, )Alx " Bx (,¢12 Ty )

where ¢12r and cbl4r can be expressed in terms of charge as

r r 1 hz r e“Jporlz
- s 1
%12 P4 T Tne 5 9, (') T dy
° “u 12
2
1 h, . JPoT1a
1 1
- 5 q, (y") = dy
'n 14
2
1 h?_ r
_ 1 1
- 41!'6 S q4 (Y ) KZB (X, Y ) dY'
-hz
where
“IBsT12 =iByT1g
e e
K,o(x,y") = +
e T12 T14
2 2
ro =~/ (hz-y') +(hl+x)

Tig = N/ (h2 - y’)2+ (h1 - x)2

With (3.31), (3.21) can be rewritten as

(3. 30)

(3.31)

(3. 32)

(3.33)

(3. 34)

(3.35)



2 B
2 o ) r r
(a_xZ +B, )AL = g (e e, (3.36)

Due to symmetrical configuration, we note that

r

- .3
y (-y) (3.37)

r —

r
X

Alxr(x) =-A (%) (3. 38)

(3.37) implies that A r(y) is an even function of y and,

4y

therefore, the general solution for A4yr(y) in (3.16) can be expressedas

A4yr(y) = ;Jo- [C4r cos By + 94r(y‘_)—] (3.39)

where C4r is an arbitrary constant, and 64r(y) is a particular integral

which can be found to be

6,"(y) =% sinp_lyl- jj -8%[¢41r(s)+¢43r(sﬂsin B,(y - s) ds
(3. 40)

Similarly, (3.38) implies that A xr(x) is an odd function of x and,

1
therefore, the general solution for Alxr(x) in (3.36) canbe expressed

as

AL T(x) = g;i[clr sinp x+0 (x)] (3. 41)
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where Clr is an arbitrary constant and Glr(x) is a particular integral

which is found as

91 r(x) = - So é%l:‘blzr(S) + ¢14r(sﬂ sin ﬁo(x - 8) ds (3.42)

With (3.9) and (3. 39), it follows that

h
4 r 52 r, , 1) dy!
“—0A4Y (y) = Iy ) Ky (ysy') dy
-hz
-j4
- _g_L[c4r cos By + e4r(y]
o
(3.43)
Meanwhile, with (3.25) and (3. 41) we obtain
h
4w r 1 r, , , .
I-T_Alx (x) =§ le (x)KZA (x, x') dx
° -h
1
-j4 r . r
= —Jio—v[cl sin B_x + 61 (;i]
(3.44)

(C) Zeroth Order Solutions for Loop Currents

At the first approximation, we assume that
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A, “ly)
_4};_ = ﬁ Qr(y)
Iyy ()

Ay () o (x)
Il;(X) 41 r

r
® (y) = am M
T L T

4y
41 Alxr(x)
@r(x) = o =
o le (x)

Substituting (3.45) in (3.39), we obtain

Ly =T [ o ror e 0,70
or

Similarly, the substitution of (3.48) in (3.43) gives

ler(x) = Z:cj,%Tx_) [clr sin B_x + elr(xﬂ

(3. 45)

(3. 46)

(3.47)

(3. 48)

(3. 49)

(3.50)

As we can see from (3.9) and (3. 25) respectively that A4yr(y) is

primarily contributed by the current elements in the neighborhood of

y and that Alxr(x) is mainly due to the current elements located
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nearby x. It is, therefore, quite reasonable to assume that d’r-(y) in
(3.47) is independent of y and @r(x) in (3.48) independent of x. For

simplicity, we assume that

@r(y) = @r(x) = & (3.51)

r

The boundary conditions for determining C4r and Clr

(a) Current at the corners being continuous.

. r - r -
i.e., I4Y (y = hz) = -le (x = hl) (3.52)

(b) Charge around the corners being continuous.

i.e., a,(y = h)) = qlr(x = h)) (3.53)

The substitution of (3.49)}(3. 50) and (3.51) in (3. 52) yields

c,t cos B hy + 8, (h,) = - C, sin B_h, - Glr(hl) (3. 54)

4

q4r(y) and qlr(x) can be found as follows by making use of the

equation of continuity.

a, (y) = f;ga—

4y
20, *(y)
_ 1 _-j4rm r 4
= G _lréo 3 l:—C4 By sin By + 3y ]

(3. 55)
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r

L 9 )
w 9x le (x)

q; " (x)

i -jdn r 96, " (x)
T W Zi@r_ l—:cl ﬁo cos Box+ T] (3.56)

Combining (3.55) and (3.56) with boundary condition (3.53), we

have
_— 86, % (y) N 88, " (x)
- Cy Bysinfhy + —55— = C) BocosBhyt ——
y= hZ x= h1
(3.57)
Solving (3.56) and (3.57) for C," and clr , we obtain
r r
- . 80,7 (x) 90,7(y)
4 po[?otﬁohl cos pohz-sin ﬁohﬂ ox ay
X = hl y:h2

1
r , r
¥ t h i h h [91 (hl) ¥ 64 (hz)]
an ﬁo 1 sin [30.2 - cos Bo 2

(3.58)
c = l
1 B, [5inp_h, tanﬁoﬂz-cos B b x
20, 7 (x) 20, " (y)
0x ) ay
X = 1'11 Y=h2

r r )

- B, tan BthEl (hy) + 8, (hzﬂ ? (3.59)

)
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For zeroth order solution, we assume that 64r(y) in (3.40)

and 61 r(x) in (3.42) can be approximated respectively as

o]

0

e -
0

With (3. 60) and (3.61) substituted in (3. 58) and (3. 59), it follows that

XZ sin Bo Iyl (3.60)

|
o

(3. 61)

1

E:J:I '—-2\5 tan B_(h; + h,) (3. 62)
0

4 Vv 1
l:'l :l 2 cos ﬁo(hl +h,) (3.63)
0

Consequently, zeroth order solution of currents are obtained as

[:I‘Wr(yﬂo i ii% [— % tan B (h) +h,)cos B y+ 64Y(YE] (3. 64)
r i-hr TI sinﬁox r A .
l:llx ("] T & | Z cosp (n, +hy T 0, (%) (3.65)

0 o r (o] 1 2

If (3.60) and (3.61) are applied to (3. 64) and (3. 65), we have



136

. sin B_(h +h2-|y|)
1 r(y] LAY o' 1 (3. 66)
l:_ 4y 00 c‘o(br cos [SO(hl + hZ)
. sin B _x
1, © - -jerv o 3.67
l: a (XUOO % cos Bylhy thy) G0

(D) First Order Solutions for Loop Currents

To obtain first order solutions of currents, the following

equations are needed:

From (3.39) and (3. 41)

A4yr(y) = 6-!— l:C4r cos Boy+ 94r (yﬂ

;:(.1)'. E;lr sin B_x + elr()il

From (3.49), (3.50) and (3.51), it follows that

—
z
[

. -J4 r y

Elxr(x] . —gi%’lr— [clr sin B_x + elr(xﬂ
0
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From (3. 55) and (3. 56)

r

. 89, (y)
[q4r(yz| - T.)z—@_ [: - c4r Po sin B,y + _84y—_:l
0

or

86, T (x)

qur(le = —ng‘h Clrpo cos ﬁox + ————lax ]
0

or

First order currents are formulated as follows:

[I4Yr(yi|l i [I‘wr(yﬂo +*7_:£r_{ Ay

h

1 r
§ [I4Y (y'ﬂo K a (vsy") dy }

-hl (3. 68)
[:ler(xi,l =[11xr(x)]0 + l%:— { AlX - ﬁ

n
. S [ler(xl]oKZA (x, x!) dx! E
-hl (3.69)

In fact, (3.68) and (3.69) can be rewritten as

h
2
[14;0’):[ = 2[14;()')] -:51—5 [I4yr(y')] K alys y')dy! (3.70)
1 0 " -h, 0
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[ (x:l [ (x] 3)—5‘[1 ] K, , (%, x') dx' (3.71)

Substituting zeroth order solutions in (68) and (69) yields

[I4Yr(yﬂl =£j§r; {Z[C4r cos ﬂoy + 64r(yE]

Cy
= 6; 5 cos ﬂoyl KIA(Y’ Y')dyl
1 hz r
r -hz

nl r(Y)

. T _(y)
_ =j4m r ca
~Z?;{C4 IZCOSBOY-T|+26 (Y)_T}

r
r

—gi%w‘— [C4rL1r(y) +20,(y) - Nlr(Yﬂ

or
(3.72)
where
r caly)
Li"(y) = 2cos By - 57— (3.73)
r
r nlr(Y)
N, (y) = - (3.74)
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h

2

Tca(y) = S‘ cos Boy' KlA(y, y') dy!' (3.75)
-hz
hZ

n (y) = f 0,7(y") K, 5 (v, y') dy' (3. 76)
_hz

-j4 .
Elxr(xzy =Z.101Tr_ {ZEClr sin ﬁo+91r(xﬂ
1

Clr h1 .
- Er—- S‘ sin ﬁox' KZA(X’ x') dx!
-hl
- %_ S.hl 0 r( 1 1} dx!
- 1 X)KZA(X’X) x}
-h

. T (x a, (x)
= Zi%n: { Clr E sin BX - -s%%_):,+ Zelr(x)-lj_..}

r

-j4m r r r r '
_JWO 3 [Cl I\A1 (X) + 291 (X) = Dl (X)
(3.77)

where

2 sin ﬁox - T (3. 77)
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. d; " (x)
D]. (x) = T
hl
Ts*d(x) = S sin [30x' KZA(x, x') dx!'
-h

1

A1
dlr(x) 5 Glr(x')KZA(x,x‘)dx'

-h,

With (3.14) and (3.17), (3.8) can be rewritten as

h
. 9A , (y) 1
r _ Jw 1y 1 S‘ r, , . .
4)4 (Y) - B 2 ay + 41T€0 ql (X )KIB(Y’ X )dx
o -h

1

Similarly, with (3.30) and (3. 32), (3.24) can be rewritten as

h

. 2
47 = S+ e 5 2, (v') Kyl y') dy'

Bo °© —h‘2

(3.78)

(3.79)

(3. 80)

(3. 81)

(3. 82)

If the zeroth order solutions are substituted in (3.81) and

(3. 82) respectively, we obtain
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r W =] r 864r(y)
¢, (Y)=;—z ;‘i‘ EC4 B, sin By + T]
(0]

h
1 ! r
* Tme § [El ("'Z' K gy =) dx!
(e]
“h, 0

h

r . 1 864r(y) Clr 1
= - C4 sin By + B By + 3 cos pox'KlB(y,x')dx'
o r -h
1
. hy aelr(x')
i 5 —x  Kpplyx)dx
r o -h
1
86, " T (y) r
=-C," sin +l——‘ﬂ+chdy +f1(Y)
- 4 BoY B, dy 1 31_ ﬁr
96, (y)
4 r r
=-C, s1nﬁoy+ﬁ——ay— +C, " L, (y) + F " (y)
© (3.83)
where
T .(y)
L) = —F— (3. 84)
r
r £, (y)

Fioly) =——— (3.85)
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h

1
Tcd(y) = S cos ﬁox' KlB(y’ x') dx!' (3. 86)
-h
1
h r
1 96, (x')
r 1 1 ' '
-hl
. W -i i aelr(x)
4)1 (x) =—-]—2—‘3 v EJI B, cos B x + — ]
o
b
1 r, , 1 1
+ g ‘Y Ea4 ()] Kppley) ay
° -h, 0
. | 90, T (x) c,” £, (x)
=Cp oS Bt Hx — tE Texat T
r 1 aelr(x) r r r
= C1 cos ﬂox+a — % - C4 M.2 (x)+F2 (x)
(3. 88)
where
T (x)
M, (x) = 22— (3.89)
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N £,7(x)
F.2 (x) = _—5;_ (3.90)
h2
Ts*a(x) = S‘ sin poy' KZB(x’ y') dy' (3.91)
'hz
. | fhz 80, % (y') .
£, (x) = B—O- ey K,g(x y') dy (3.92)
'hz
The boundary conditions to be used for the first order
solutions are:
(a) Current at the corners is continuous
i e I, "(y=h,) = -1, “(x=h,) (3. 93)
tTee 4y y 2 1x 1 *
(b) Scalar potential at the corners is continuous
i "y=h,) = ¢ "(x=h 3.94
ie., 0,/ (y=h,) = ¢ (x=h) (3. 94)

The substitution of (3.72) and (3.77) in (3. 93) gives

r. r r r
C4 Ll (hz) + 264 (hZ) - Nl (hZ)

= - E:lerr(hl) +20,"(h) - Dlr(hl] (3. 95)
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With (3.83) and (3. 88), (3.94) becomes

C,% sin B _h, + — ———ae4r(Y) +C,"L.%(h,) + F,"(h,)
"Gy sinBorrtEm Ty 1 L (hp) + Fy ok,
Y=h2
98, T (x)
_ r 1 1 r., r r
= C," cos ﬁ°h1+-€ 5 -C4 M, (h2)+F2 (hl)
x=h

(3. 96)

Solving (3. 95) and (3. 96) for c4’ and clr, we obtain

—

_ —
l:264r(h2) + 2elr(h1) - Nlr(hz) - Dlr(hj | cos B h, - Lzr(hzﬂ

96, (y) 86, *(x)
r 1 4 1 1 r r
+ M, (b)) Ea—o —5— "5 o +F,"(h) - F, (h£|

y=h, x=h1

er(hl) sin B_h, - Mzr(hlﬂ - Llr(hz)[cos Bh - Lzr(hzﬂ
(3.97)
— —
Ee4r(h2) +26 (b)) - N "(h,) - Dlr(hl:)l [sin B_h, - Mzr(hlﬂ
1 89,7 (y) 96, ¥ (x)

r 1 r r
thy Mg =5y | B, T | tH ‘hz)'Fz‘hxﬂ

y=h2 x=h

e

1

M, (b)) Ein p°h2~M2r(hlz‘ - L,"(h,) cos B b, - Lzr(hz_)—_l

(3.98)
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For our first approximation, we assume that

o "n ¥[8 S| = F sinp, Iyl (3. 99)
0

n
o

(3.100)

Glr(x) ¥ [elr(x)]
0

Then (3.74), (3.78), (3.85) and (3. 90) can be rewritten as

h

v v
—_ 2 —_—
N, T(y) = -{— S' sin B_ly'| K| 4(y, ) dy' = %‘; T, (y) (3.101)

where

-h

2
hZ
Tgaly) = S‘ sin B lyt] K, Aly,y') dy! (3.102)
'hz
r
D, (x)= 0 (3.103)
Flr(y) =0 (3.104)
v h2 + fory'> 0
Fzr(x) = —é— + cos ﬁoy' KZB(X’ y') dy'
r -h, -fory'< 0
v
2
=3 Tpa(® (3.105)
r
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where
h2 + fory'> 0
- 1 1 1
Tba(x) = S‘ + cos ﬁoy KZB(X' y') dy
- 1
-h2 for y' < 0
(3.106)

Using (3. 99) to (3.106), c4r in (3. 97) and clr in (3. 98) can be

obtai ned as follows if only the terms with the order of 51-— are
r
retained in both numerator and denominator:

r
¥ Ein B(h, +hy) + g—]
lic;jl = - L (3.107)
1 cos B (b, +h,) + 7=
r
v HT
a  zl*z]
[clj - (3.108)
G
1 cos ﬁo(h1 + hz) + 3;—
where
BY = - 5[ T (h,)cos B h +2 T _y(h,) sin B h,

+ T, 4(h)) cos B h, +2 T, (h)sin pohﬂ

(3.109)
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Q
I

1 . .
> Ers*d(hl) sin pohz + ZTs*a(hl) sin ﬁohl

- Tca(hz) cos pohl - ZTCd(hZ) cos pohz:l
(3.110)

. 1? { sin B_h, [era(hz) + ZTs*a(hIZl

+ cos ﬁohz Eca(hz) + ZTba(hlﬂ } o)

With (3.51), (3.107)and (3.108), (3.49) and (3. 50) can be

rewritten as

r
z [sin B by +hy) + +
r

E4yr(y] =g'j%1 { - o cos By + 94r(y)}
1 °or cos po(h1 + hZ) + T

r

(3.112)

s

cos ﬁo(h1 + hZ) +%

I r(x) =-j41'r {
[lx :'1 g‘oér

sin ﬁox + Glr(x)}

(3.113)

(E) Evaluation of Particular Integrals 64r(y) and Glr(x):

Integrating by parts, we can rewrite 94r(y) and Glr(x) in

(3.40) and (3.42) as



148

y
64r(y) = %‘ sin ﬁolyl - SO 5% E41r(x) + ¢43r(s):ls'm po(y-s)ds

= % sinlyl + [o,7(0) + 8,570 | sin g,y
+ po S)O/ |:¢41r(s) + ¢43r(sz| cos po(y - 8)ds

VA
= = sin ﬁolyl + B, SZ E‘ur(s) + ¢43r(sﬂ cos ﬁo(y - 8)ds

(3.114)

(3.114) is derived based on the relation of

bg) (@) = - 4437 (0) (3.115)

Similarly,

X

Glr(x) - So 'ais E)l Zr(s) + ¢14r(sﬂ sin ﬁo(x - 8) ds

1]

X
r r R r r
B’lz (0) + (OZ] sin B_x + B_ 50 E’lz () + &, (sﬂ

* cos po(x - s)ds

X
2 ¢12r(o)sin ﬁox+po yo E’l Zr(s)+¢14r(xﬂ cos BO(X- s)ds

(3.116)
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based on the relation of
¢, (0) = & (o) (3.117)

For the first approximation, we substitute (3. 99) and (3.100) in

(3.55) and (3.56). This leads to

+ fory> 0
r()‘+4w€° c,’ si + ¥ cos
Q )=+ —F— | -C, sinPy* 5 cosf y
¥ -fory< O
(3.118)
r 4n€o r
9 )=+ C cospox (3.119)
The substitution of (3.119) in (3.17) gives
r r Clr hl . . ,
b4 (V) + 0537 (y) = +5— cos B_x' K, gy, x') dx
d -h
1
r
Cl
= —r Tcd(y) (3.120)
r

Similarly, with (3.118), (3.32) can be rewritten as
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c,t M2
4 .
¢1 Zr(x) +¢14r(x) = --31'— S\ sin ﬁoy'KZB(x, y') dy'
_h2
\' h
w3 2
M Ja 5 * cos B y' K,p(x, y')dy'
r
-h
2
+ fory'> 0
-fory'< 0

v
C, y
- -—3:_ Toxa®) +F Tpax)
(3.121)
With (3.117), (3.121) yields
c,t v
r 4 2
2¢1,7(0) = - g Toyua(@) 4 F= Tpylo) (3.122)
r r

Substituting (3.120) in (3.114), we obtain

r \% Cl r‘30
0, (y)=%sing [y| + — ), T_g(s) cos B (y-s)ds (3.123)

Similarly, with (3.121) and (3.122), (3.116) becomes
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r 1

91 (x) = 5:{ [. c4r Ts*a(oH-YZ— Tba(oﬂ sin pox

X

v
- c41‘ So Ts*a(s) cos Bo(x - 8)ds + >

X

. SO Tba(s) cos po(x - 8) ds }
(3.124)

With (3.108), (3.123) becomes
o," :] Voo
N = 7 singlyl

-![sinﬁ(h +h)+Br:] y
2 o'l 2 6: By

+ T 5\ Tcd(s) cos ﬁo(y-s)ds
cos B_(h, +h,) + EG— r “0
r

B r
sin g |yl Eos B.(h, +h2)+§j - ;I,f [sin B (h, +h2)+§;]tcd(y)

<

cos ﬁo(hl + hZ) + EG—

r

(3.125)
where
y

tcd(y) = So Tcd(s) cos Bo(y - s) ds (3.126)
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Similarly, the substitution of (3.107) in (3. 124) gives

r

sin Bo(hl + hz) + g—
Elr(% - @L ‘;i r T, (0)+T,_(0)|sin p_x
1

r G
cos Bo(hl + hZ) + &-,:

r

sin B_(h +h,) + 2=
+ é tog () + £ (x)
cos (30(h1 + hZ) + 3
r
(3.127)
where
x
towgy(X) = S Ts*a(s) cos ﬁo(x - s) ds (3.128)
0
x
tba(x) = S\o Tba(s) cos ﬁo(x - s)ds (3.129)

With (3.125), (3.112) becomes
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r j2nv
Ly @“ Sy,

or

sin [30(h1 + h2 - Iyl) +El— [Brcos ﬁoy-Gsinﬁolyl
r

+ Bo sin 50(}11 + hz) tcd(y)jl + @1—2- Bo BT tcd(y)

e r ——

cos po(h1 + hz) + §G—
r

. 1 1
sin _(h) +h, - |y]) + 3 P, T(y) toZ P, (y)
_ jémv t r
) g’oér (h h.) 1 G
cos B + +
o'l 2 3:

(3.130)

where
P41r(y) = BT cos Boy - G sin 6oly| + po sin Bo(h1 + hZ) tcd(y)

(3.131)

Pyo () =8, B t_yly) (3.132)

Similarly, with (3.127), (3.113) becomes
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r _ =jenVv
]

sin Box + El— { HY sin ﬁox + |sin [3O(h1 + hZ) Ts*a(o)
r

+ cos (.’,O(h1 +h2) Tba(o)js'm ﬁox + sin ﬁo(h1 +h2)ts*a(x)

+ cos po(hl t+h,) tba(x)}

1 . r
+ q)_Z' f ErTs*a(o)+ GTba(oE sin B x+B ts*a(x)+tha(x)}

r

cos Bo(h1 + h2) + EG—
r

. 1 r 1 r
smﬁox-i-q)— Pll (x) +(I)—Z P12 (x)

_-j2nV * r

cos [30(h1 + h2)+§(-i-
(3.133)

where

Pllr(X) - HY sin B x + E'm Bo(hl + hz) Ts*a(o) + cos (30(}1l + hZ)Tba(O):]

sin B_x + sin [BO(h1 +h,) ts*a(x) + cos ﬁo(hl +h2)tba(x)

(3.134)



155
P, 2r(x) = IEI‘TS*a(o) + G Tba(oz, sin pox

r

+ B ts*a

(x) + Gt . (x) (3.135)

E}yr (YZ, and [Il xr(xi] involve the doubel integrals which in
11 11

turn complicate the problem. In order to avoid double integral,

following method is presentedat the expense of sacrificing the

accuracy of the theory:

Substituting (3. 99) to (3.105) in (3.72), we obtain

Vo B'
7 [sinB,(h) +hy) + F— ] T__(y)
Sl- 1 E cos Boy - ——%2'—-
cos [30(h1 + hZ) + EG— ¥
r

1<

2 Tsa(Y)
+Vsinﬁo|y]- — 3 }
r

) 1 1

2sinBf(h) +h,)- |y )+ Uy (N +—5 U, (y)
) r d
jenv r

or G
cos ﬁo(h1 + hp) + &’:

the

(3.136)
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where
U41r(y) = 2B cos B,Y - sin BO(h1 + hz) ’I‘ca(y) - G sin polyl

+cos[3(h +h)Ts()

a

(3.137)

Uy, ()= - BY T_.(y) + G T__(y) (3.138)

Similarly, the substitution of (3. 99) to (3.105) in (3.77) yields

v
[+F] x g(®)
Elxr(le =ZL£ G <2 sin B x-—%————
10 r | cos ﬁo(h1 +h2)+3—
r
25mﬁx+§—gll (x)+12 g2 (X)
. d
_ =jenVv r
) go‘ﬁr G
cos [30(hl + h?_) + 3:
(3.139)
where
gy, (x) = 2H" sin BX = Ty ql®) (3.140)

glzr(X) = - HY Ts*d(x) (3.141)
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(F) Expansion Parameter, <I>r

With zeroth order current in (3. 66), @r(y) in (3.45) can be

rewritten as

b2
§ sin B_(h; + h, - ly' ) K 5 (v y') dy’
-hz

@ (y)
sin B_(h, +h, - {y])

sin [iof(h1 + hZ) Tca(y) - cos Bo(hl + hz) Tsa(y)

sin B _(h; +h, - |y|)
For a loop with (h, + h,) =TI , the point of maximum current
P o1 T2 <32 P

isaty=0, so

r

d = Er(y):l = Tca(o) - cot (SO(h1 + hz) Tsa(o) (3.142)
y=0

For a loop with (30(h1 +h,) = % , the point of maximum current is

aty:(h1+h2) -)fl- » SO

[27]

Lo
"

= A
y=(h +hy) -3

. A\ N
sin ['SO(h1 +h2) Tca(hl +h2- Z) - cos ﬁo(hl +h2) Tsa(hl +h2 -Z)

(3.143)
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3.3. Total Loop Currents

By the principle of superposition we note that

r S
Iy(y) = I4y(y) tly (y) (3.144)
L (x) = ler(x) + les(x) (3.145)
V= - Iy(o)ZL = - [:I4yr(o) + I4Ys(o):] Z_L (3.146)

(A) Considering the first order solutions of currents

E‘lyr(,ﬂ in (3.130), [14;‘(,:] in (1.167), I:ler(xﬂ in

11 11 11

(3.133) and[les(x] in (1.170), V in (3.146) can be solved as

E
. (o) G
- j4w ZL ﬁ—o- QI‘ EOS ﬁo(hl + hZ) + I:]

@s cos B_(h;, +h,) + %:]

[cosﬁh - cos B_(h, +h)+$— 41 (o)+ 2():,

S

r@ [osﬁ(h +h)+a—]+_]2ﬂ’zL smﬁ(h +h)

1 r 1 r
+ a: P41 (o) +;—2 P42 (OZI
r

b

(3.147)
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With (3.147), (3.130) can be rewritten as

2
4y 0 (9 Po

—
[cos B hy = cos B (h) + b)) + 4= P, %(0) + :I,LZ' P,,%(0)[x
S
8

SRS

[sin B0y + 0y - [yl + 3= P, Ty + —;@1 Py, ()]
r
r

8 [cos p (b + ) + f;]{goq»r cos B, (h, + 1) + ]

RS E'm B (h, +h,) + é: P, "(0) + ;17 p42r(o):”J
i (3.148)

Similarly, (3.133) can also be rewritten as

2

8n 2z E
I r(x) = - L o x
o] - -

e

l:cos Bohy - cos B (h, +h,) + 51: P, () +¢—12 P428(oﬂx
S

[s in B_x + 51: P T(x) + @%— P, Zr(xﬂ
r

SR

[ @s [coS ﬁo(hl + hzf + %]{ éoér [cos ﬁo(hl +h2) + %] —

boee

+jemzy Ein Bo(h; +h,) + g P, T(0) + ;—2 p42r(oﬂ}4
r
r
(3.149)



160
Thus, the total loop currents in (3.144) and (3.145) can be expressed

as the functions of the loop dimensions and the loading impedance ZL'

(B) If consideration is given to the sub-first order solutions of currents

[14Yr(yﬂ in (3.136), [ler(xﬂ in (3.139),[14;(;»):] in (1.173)
10 10 10

and [les(le in (1.176), V in (3.146) is obtained as
10

E
. o G
- J4TTZL -—po ¢r cos ﬁo(hl + hZ) + E‘;]
V = x

<I:s Eos po(hl + hz) + I%:I

[2 cos B h) - 2cos B_(h; +h,)+ %; U4ls(o) + ;1-2- U428(oﬂ
s

—

go‘br cos [30(hl + hz) + g:]

. . 1 r 1 r
+iznzy [2sin gy +hp) e U, T(0) 4 Ty U, (o)]
r

(3.150)

With (3.150), (3.136) can be rewritten as



2
8r°Z
I r(YZI - L2 x
|:4Y Lo & Bo

—

161

E cos pohl - 2 cos ﬁ}o(h1 + hz) + é:U‘ﬂS(o) + ;12

Esin ﬁo(hl + hZ -y )+%—U41r(y) +;1-2- U42r(YD
r
: r

U42$(°l—l x

Similarly, (3.139) can be rewritten as

811'ZZL

E
o]

] -

10

. 1 r
Esm ﬁox+§: U, (x) +

Po

A
<I>2

r

1
Ecos Bohl - 2 cos [30(h1 +h,) + Fa U

Uy, ) ]

NOE:

QZ

‘I’s cos ﬁo(hl + hZ) + %]x{é()@r cos ﬁo(h1 + hZ) + g:]

+j2rz, |2sin B (h) +h,) + 3}— U,, (o) + ;17 U42r(oﬂ |
— r
r

U42(o) X

(3.151)

@ Eosﬁ (h +h2)+3>_-—|{§ ‘I) cosB (h +h G] ]

. . 1 r 1 r
+ jenZ 2sinB (h, + h)) + U (o) + U (o)
L[ o'l 2 25: 41 & 2 42 :l

r

(3.152)
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3.4. Total Backscattered Field

The vector potential, maintained by the induced current in the
radiating loop, at an arbitrary point on the axis of the loop and in the

far zone of the loop (Fig. 3.3) can be expressed as

h -iB R
Ar-Ar-ESZ 21r'ero dy'
- Y - 4TI' 4Y (Y) R Y
_hz
H -JﬁoRo h2
~ _0 e S 1 r( I)d 1
2 R_ 4y V1 QY
-h, (3.153)
where
- 2 IZ 2~
R = «/Ro +y'“+h "= R, (3.154)
3.4.1.

Total Backscattered Field Based on First Order Currents

With (3.148), (3.153) can be rewritten as

_ -ip R
i—AIZJ = [}\ €I = m E Q__?_l x
(R yJ 1 £oPo o R

(e]

1 1
E:os Bh, - cosp (h +h,)+ 3 P, (o) + 22 p425(o)] K,

S

o

=
G G
4)5 cos F30(1’11 +h2)+&’_s-] é04>r cos ﬁo(hl + h2)+ Tr]

. . 1 r 1 r )l
+321rZL sxnﬁo(h1+h2)+6— P41 (o) + F P42 (o)]j
r

r

—

-

(3.155)
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i<
2 ) =
A
(e
‘<
®

3x

Figure 3.3 Geometry for the calculation of the radiation
field of a radiating rectangular loop.
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LANRITAS
f[smmh +hy - |yl ‘“ 412 dy'

r

where

(3.156)

K1 will be evaluated in a following section,

The backscattered electric field due to the radiating loop is

e

r _ . r _ .
[EY:I = -Jw[ij = -_]4TTEOZL ——ro—— X
11 11

l:cos pohl - cos ﬁo(}l1 + hZ) + %S_P4ls(°) + ;17 P425(0D K1
8

Q)s cos ﬁo(hl + hZ) + %:l{ 2;0<I>r EOS ﬁo(hl + hZ) + g';]

+j2nz_ [sin B (h, +h,) + 3 P, T(o) + 5%.‘ P,, (o) ] N
o r
r

(3.157)

The total backscattered field from a loaded rectangular loop

is obtained with (1.183) and (3.157)



165
BRI
y y y
11 11 11

-IB R,
e 1

o (I)s cos Bo(hl + hZ) + %]

2E

o R

Eos ﬂohl - cos ﬁo(h1 + hz) + 51— P4ls(o) + ;-1-2- P428(0):l K1
s
s

¢ @ [cos B (b, +h,) + %] +j2nz | sin B_(h) +h))

+-£: P41r(o) + q)_l?_' p42r(OZ|

S r —

(3.158)

3.4.2. Total Backscattered Field Based on Sub-first Order Currents

With (3.151), (3.153) can be rewritten as

u -jB R h

r r (o] e ° o 2 r
= = — S — 1 1
[A J —[AY J em R, I:I4Y ') itd
10 10 -h2 10
-JB R
. 4TTIJOZL e e o o
c"OBO ° RO

1 S 1 s
Ecos Bohl - 2 cos Bo(h1 +h2)+§; U41 (o) + :}7 U42 (o) K2

S

_Q)S cos f}o(hl +h,) + %]{c‘oq)r Ecos po(h1 + hZ) + é: G:,

——

+jenz [2sinp (b, +h,) + 5 U, (o) + ;17 U42r(o)_]}
r
r

e

(3.159)
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where h

2
- . 1 1 r 1 _1_ r 1 '
K, = § [2 sin _(h) +h, - [y’ )+ g U, (y) + =3 Uy (Yzldy
_h r r
2
(3.160)

Then, the backscattered electric field due to the radiating loop

is obtained as

'jpoRo

r _ r = s - s e
I:E] —[E-:Y:] = -jw E%;’j = J4TrEoZL —————Ro x
10 10 10

2 cos B_h) - 2 cos B(h, +hy) +g- U, (o) + ;_1_2 U,,%0 | K,
— 8
8

<I)s [cos ﬁo(hl + hZ) + gj]{goq’r [cos ﬁo(hl * hZ) + EG:‘_-J

+jenzy [:2 sin B _(h; +h,) + 3= U, T(0) + q,—lz U42r(o):]}
r
— * — (3.161)

The total backscattered electric field due to the loaded rectangular

loop can be calculated by superposing [Eﬂ in (1.188) upon[ErJ
10 10

in (3.160) as



CRCRa

-IB R
S

O O 1

X
0 és[:cos B (n, +h,) + EI: G

2E

o R

J, - jenZ

2 LX

[2 cos Bohl - 2 cos [30(}11 + hZ) + al— U4ls(o) +—q)—12— u428(0)j K2
s
s

R,

[ 1 . .
Qo(ﬁr[cos [30(hl + hZ) + -q—)-; CJ + _]ZTTZL [2 sin ﬁo(h1 + hZ)

.1_ r 1 r
*T Ua (0) + =% U,, (o):'

P
r
(3.162)
3.4.3. Evaluations of Kl and KZ
From (3.156) we note that
h
2
K, = S [sin p (b, +h, - [yh+ Lp T(y') 4+ = P )ay!
1 ot TRz Y & T4 VT B2 Ta2 VUTY
-h
2

where

r . .
P, (ly)= B' cos B,y - G sin ﬁo|y| + sin B_(h; + h,) tcd(y)
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P42r(Y) = F3o B” tcd(Y)

then

& cd (3.163)
r
where 1 :
h, h,
bcd=S:h tg(ydy' = 5 [o T_g(s) cos ﬁofy‘-S)da dy!
2 . -h, (3.164)

Similarly, from (3.150), we nave

h
2
K, = y [2sinp,hy + 1, - [y']) +é-r- U41r(y')+¢71- U42r(y'E|dY'
“h r
2

where

U41r(y) = 2BT cos B,Y - sin [30(h1 + hZ) Tca(y) - G sin poly]

+ cos B_(h; +h,) T . (y)

Uy (y) = =B T_, (y) + G T_(y)
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Then

K, = -[3—4(;- E:os ﬁohl - cos [30(h1 + hzﬂ

BT zc[l - cos B h,)
sin Bohz - sin [30(h1 + h,) ta - B,

1 r
+ cos ﬁ}o(h1 + h2) taa |t —3 ‘:Gtsa - B tca]

)
T
(3.165)
where
b,
t, = S Tca(y') dy' (3.166)
-hz
hZ
tsa = 5 Tsa(y') dy' (3.167)
'hz

3.5. Optimum Impedance for Zero Backscattering

The optimum impedance for zero backscattering can be

obtained by letting total backscattered field equal to zero.
3.5.1. First Order Optimum Impedance for Zero Backscattering

Letting EEY] in (3.158) equal to zero and solving for ZL’
11

we have



[zL:'o=

3. 5. 2.

get

B

2m
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- 7,8,8, [[cos B,(n) + b)) + 3}- 6]

1[cosﬁh -cosﬁ(h +h)+$- 41 (O)+<I>2 42(0):‘
s
-3, [sinp (b, +hy) + 3= P, T(0) + ;17 P,,"(0)]
r
— r

(3.168)

Sub-first Order Optimum Impedance for Zero Backscattering

Letting [EH in (3.161) equal to zero and solving for ZL, we

. 1
- §3,L,9, [cos B (h; +h,) + % G]

0 KZEZ cos pohl -2cos (30(h1 +h2)+£— U418(o)+gl-z U428(oa
s
8
2w
. 1 1

-JZESLn «ﬁo(hl+h2)+§; (O)+¢ 2 U42 (O)]

_— —_
(3.169)

3.6. Numerical Examples

The numerical results are obtained for a square loop with

= 0.0388. ¢
r

o)

and is plotted in Figure 3. 4.

is numerically calculated as functions of ﬁoh

The optimum loading for zero back-

scattering [ZI] in (3.168) is then calculated as a function of
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Figure 3. 4. @r as a function of p_h (a/h = 0,0388).
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ﬁoh for the case of%= 0.0388. Numerical results of[ZI] are
0

shown in Figure 3. 5.

3.7. Experiment

The optimum impedance for zero backscattering from a
rectangular loop requires both the resistive part and the reactive
part shown in Figure 3.5. To simplify the problem, an experiment
was conducted for a conducting square loop loaded with two identical
reactive impedances. Experimentally, this reactive loading method
proved to be quite adequate in reducing the backscattering cross

section of a square loop.
3.7.1. Experimental Arrangement and Measuring Technique

The experimental setup and measuring technique were
identical to the case of the circular loop mentioned in Chapter 2

and no further description seems to be necessary.
3.7.2. Experimental Results

A square loop (side length = 5.15 cm) were constructed as
an experimental model using cylindrical wire of 0.1 cm radius. The
experiments were conducted at various frequencies. The experimental
results are shown in Figure 3.6.to Figure 3.16 in which the back-
scattering cross sections of the square loop were plotted as functions
of loading impedances at each particular frequency. The solid curve

represents the backscattering cross section of a loaded square loop
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<

Figure 3. 5.

Optimum impedance for zero backscattering
from a square loop (a/h = 0.0388).
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and the solid straight line represents that of the solid quare loop. It
is observed that if the loading impedance (or the length of the coaxial
line) is properly adjusted, the backscatters of the square loops can
be minimized to the noise level. About 15 db reduction in the back-
scattering cross section was obtained in the experiments. In Figure
3.17, the optimum reactive impedances for minimum backscattering

are plotted as a function of B h-
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