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ABSTRAC T

MODIFICATION OF BACKSCATTERING OF

A LOOP BY IMPEDANCE LOADING

by Juang- Lu Lin

In this thesis the modification of the backs cattering of a loop

by the impedance loading method is investigated theoretically and

experimentally.

First of all, the resonant phenomena of a loop when illuminated

by an electromagnetic wave is studied. Next, the backscattering of

a circular conducting loop is considered and the impedance loading

method is applied to minimize its backscatter. Finally, the mini-

mization of the backscattering of a rectangular loop is investigated.

In the theoretical analysis, a new method based on a differential

equation for the loop current is developed for the case of a circular

loop. For the case of a rectangular loop an existing method is applied

with slight modification. Throughout the entire analysis, the principle

of superposition is applied to simplify the problem of an illuminated

loaded loop to the combination of an illuminated solid loop and a

radiating loop. The major objectives of the theoretical analysis are

to determine the induced current on a loaded loop, the scattered field

from a loaded loop and the optimum impedance which, when loaded on

the loop, makes the backscatter of the loop vanish.

Extensive experimental study was also conducted. The resonant

phenomena of a solid loop was investigated carefully. The impedance

loading technique was then applied to the circular and the rectangular
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loops to minimize their backscatters. In the course of this experiment,

the backscatter of a loop was successfully minimized to the noise level.

The major finding of this study is to show theoretically that the

backscatter of a conducting 100p can be eliminated by a properly chosen

impedance loading, and to verify experimentally that indeed the back-

scatter of a loop can be minimized by a practical arrangement of the

impedance loading technique. This investigation should prove

significant in the understanding of the scattering phenomena of a

conducting loop and in the practice of radar camouflage.
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INTRODUCTION

In recent years much research has been conducted on reducing

the radar cross sections of metallic objects. The conventional

techniques include the use of radar absorbing material and the method

of reshaping the body. Recently the impedance loading method has been

found to be especially effective in reducing the radar cross sections of

metallic objects with dimensions of the order of a wavelength. In this

thesis, the minimization of the backscatte ring of a conducting loop, both

circular and rectangular, by an impedance loading method is investigated.

Historically, Kouyournjianland Weston2 are the first ones who

investigated the backscattering cross sections of a thin solid circular

loop with a result of fairly good agreement with the experiment. The

methods employed by them are quite complicated and involved tedious

computation. For our purpose, a mathematically simpler method has

been developed. Our theoretical results also agree with experimental

results quite satisfactorily. For the case of the solid rectangular loop,

the method used by Chen and King3 was adopted in obtaining first-order

solution for current distribution. Experimental results and those of

theory appear to be in good agreement.

In solving the problem, the principle of superposition is

employed. Based on the superposition principle, an illuminated loaded

loop can be considered as the combination of an illuminated solid loop

and a radiating loop. In this study, the two cases are solved separately

and then combined together to yield the final solution for an illmninated

loop.



For the minimization of the backscattering of a circular loop,

a consideration is given to the perfectly conducting loop which is loaded

symmetrically with two identical lumped impedances and is assumed to

be illuminated by a plane wave at normal incidence. The induced current

on the loaded loop is determined as a function of loop dimensions and

loading impedance. The backscattered field produced by the loaded

circular loop is calculated as a function of the loading impedance among

other parameters. It is then possible to find an optimum impedance which

makes the back scattered field equal to zero. An explicit expression

for the optimum impedance for zero backscattering is obtained as a

function of loop dimensions. Some numerical examples are included.

The theory is later verified by an experiment.

A theory on the minimization of the backscatter of a conducting

rectangular loop by the impedance loading method is developed in the

last chapter. A rectangular loop loaded symmetrically with two identical

lumped. impedances at the centers of the long sides of the loop is assumed

to be illuminated by a plane wave at normal incidence. The zeroth order

and the first-order solutions of the induced current are evaluated as

functions of the loop dimensions and the loading impedance. Based on

the induced current, the backscattered field can be calculated. An

optimum impedance which leads to zero backscattering from the rectangular

loop is then found as a function of loop dimensions. Some numerical

examples are included. An experiment was performed for the case of

a square loop loaded with two identical reactive impedances and

illuminated by a plane wave with vertical polarization at normal incidence.

The experimental results indicate that it is possible to reduce the back-

scatter of a conducting, square loop to the noise level if the loading

impedance is properly chosen.



CHAPTER I

BACKSCATTERING OF A SOLID LOOP

1.1. Definition of Backscattering Cross Section

An electromagnetic wave incident upon a metallic object will

induce time-varying distributions of oscillating charges and currents

in the object. The induced charges and currents will, in turn, main-

tain an electromagnetic field which is known as the scattered field.

To characterize the reradiating prOperties of an object, total scattering

cross section a is defined as

ps

1

S

0‘ :

Where PS is the total scattered power and S.1 is the scalar magnitude

of the real part of the incident complex Poynting vector at the location

of the object. In radar, transmitter and receiver are installed at the

same location so that only the power scattered by the object in the

direction of the transmitter-receiver is observed. In this sense,

backscattering cross section of an object is defined as a measure to

characterize the quantity of the power scattered back toward the source

by the object. In symbol, the backscattering cross section of an object

is defined as

IESIZ
0B: lim 41rR2 ——

R—wo 11312

where ES is the magnitude of the backscattered field and E1 is that

of the incident electric field.



1. 2. Experiment

A number of methods are available for measuring the back-

scattering cross section of an object. In this research the cancellation

method was used. The prinicple of this method is to cancel the signal

received by the receiving antenna when the scatterer is absent. After

this the scatterer is put in place. The signal received by the receiving

antenna with the scatterer present will then represent the scattered

field by the scatterer.

In this section experimental arrangement and the measuring

technique of the backscattering cross section of rectangular and circular

lOOpS are discussed. The 100ps are illuminated by a plane wave for

the cases of normal and horizontal incidence. Resonant phenomena of

loops are also investigated.

1. 2.1. Description of the Experimental Arrangement and the

Measuring Technique

The experimental setup is shown in Figure 1.1. The experiment

was conducted inside of an anechoic chamber (0. 8mxl, 4mx0. 7m insize)

which is firmly mounted on a wooden frame. A horn antenna (HP

X890A) is projected into the anechoic chamber through one of the

narrow sides of the chamber. A cellular plastic column made of

styrofoam is used as scatterer support. The support is placed in the

far zone of the horn antenna and its height is so chosen that the

scatterer on the support is on the axis of the antenna. The circuit

diagram of the experiment is also shown in Figure 1.1. The klystron

generator (F X R type X760A) modulated by a 1 KC square wave

generator (HP 715A) is used as the R. F. source. The isolator

(Polytechnic Res. and Dev. Co. type 1203) is used to protect the possible
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backward energy from damaging the R. F. generator. Frequency is

measured by a frequency meter (HP X532A). A variable attenuator

(HP X375A) and slotted section (HP X810B) are used to control and

probe the wave from the source. A hybrid T (HP X845A) is used to

separate the incident wave to the antenna and the reflected wave back

from the antenna. Two other terminals of the Hybrid T are connected

to a matched load through an E-H tuner (HP X880A) and to a detector.

The output of the detector is then measured by a SWR meter (HP 415B).

The horn antenna in this experiment serves both as the radiating

element and the receiving probe. In the experiment, a series of

measurements have been made with various sizes of loops,

By the arrangement mentioned above, a plane wave with vertical

polarization can be made to illuminate the loop either normally or

horizontally. When the scatterer is absent, the reading of the SWR

meter can be set to zero by adjusting the E—H tuner. After this

balancing process is completed, the scatterer is introduced. The

reading of the SWR meter will then indicated the back scattered field

by the scatterer.

l. 2. 2. Measurement of the Backscattering Cross Section of

Circular L00ps

To measure the backscattering cross section of metallic

circular loops, a total of 35 circular loops with radius ranging from

0. 3 cm to 3. 5 cm were constructed as experimental models. The

diameter of the wire is 0.1 cm. The frequency of 9. 61 CC was used.

The 100ps are mounted upright on the support which is located 26 cm

(-- 8 A) away from the horn antenna. The loops are, therefore,

considered to be in the far zone of the radiating element. Theoretically,



7

the distance between the antenna and the scatterer should be made as

great as possible. However, to obtain a detectable scattered field

from the scatterer one has to compromise for a finite distance. The

radiated wave from the horn antenna at the location of the scatterer

is then approximately a plane wave with a vertical E field.

In the experiment the plane of the loop is first oriented

parallel to the horn aperture so that the loop is illuminated by a

plane wave with vertical polarization at normal incidence. For the

case of horizontal incidence, the loop is turned 900 from the vertical

incidence position making its plane perpendicular to the horn aperture.

The geometries of these two cases are shown in Figure 1. Z. In Figure

1. 3 and l. 4, relative backscattering cross section of the circular

loops 0' are plotted as functions of 100p dimension Bob where Bo is

the wave number and b is the radius of the loop. Figure 1. 3 shows

the backscattering cross section of the circular loop illuminated by

a plane wave at normal incidence and Figure 1. 4 shows that of

horizontal incidence case. It is observed from these two figures

that the first resonances for both cases occur when the half of the

loop periphery is near ~12- wavelength (1. e., when Bob 2 l). The

first resonant peak in the case of normal incidence appears to be

higher than that of the horizontal incidence case.

1. Z. 3. Measurement of the Backscattering Cross Section of

Square Loops

The same technique used for the circular 100ps was adopted

to measure the backscattering cross sections of the square 100ps. A

number of square lOOpS ranging from O. 5 cm x O. 5 cm to 3. 5 cm x

3. 5 cm in size were constructed as experimental models. The

diameter of the metallic wire is O. 06 cm. The experiment was
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conducted with the same setup described in previous sections and at

the same frequency.

The backscattering cross sections of square 100ps are plotted

as functions of 100p diInensions [30h (where 2h = one side of the square

100p) in Figures 1. 5 and 1. 6. Figure 1. 5 shows the backscattering

cross section of square 100ps illuminated by the plane wave at normal

incidence, and Figure 1. 6 shows the backscattering cross section for

the case of horizontal incidence.

Once again it is observed that the first resonances of both

normal and horizontal cases occur when half of the loop periphery is

near %wavelength (i. e. , when {30h : O. 8).

l. 2.4. Measurement of the Resonances of L00ps

The backscattering cross sections of a circular and a square

100p described in the last two sections have a common nature that the

first resonance tends to occur when the half of the 100p periphery is

near é—wavelength and the second resonance at E wavelength and so

on. At these resonant conditions the induced currents on the 100ps

are maximum and likewise the scattered fields. However, it is

anticipated that the 100ps with the same periphery but different

geometrical shapes may have different resonant sizes. T0 testify

these conjectures five kinds of rectangular 100ps were constructed.

The five kinds of rectangular 100ps have the ratio of hl/hZ equal to

1, l. 5, 2. 0, 2. 5, and 3. 0 where hl and h are the short and the long

2

side of the loop. The loops are illuminated by a plane wave with

vertical polarization at normal incidence. The experiment . was

conducted inside of an anechoic chamber at the frequency of 9. 61

CC with the same experimental setup mentioned previously.
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The experimental results are shown in Figures 1.7 and 1. 8.

Figure l. 7 shows the first resonance curves of the 100ps. The resonant

curve of a straight wire which corresponds to a loop with hl/hz = O

is also included in the figure. The scattering cross sections of the 100ps

are plotted as functions of the loop sizes. From the peak of the curve

the resonant size of the 100p is determined.

It is observed that the first resonances of the loops with various

shapes indeed occur when the half peripheries of loops are near :12-

wavelength. It is also seen that the first resonant size of a 100p is

dependent of its geometrical shape. These phenomena are summar-

ized in Table 1.1. It is true that the first resonant size of a loop tends

to increase as the loop becomes broader or the ratio of hl/hZ becomes

 

 

larger.

Table 1.1.

first resonant

Loop Geometry size*(17 periphery)

straight wire (bl/h2 = 0) 0. 433).

rectangular 100p (hi/hZ : ~13) 0. 513K

rectangular loop (hl/h2 :: T1125.) 0. 516K

rectangular loop (bl/h2 : -12-) O. 53 A

rectangular loop (hl/h2 : -l-1—5) 0. 561K

rectangular loop (hl/hz = -i—) 0.61 A

circular 100p 0. 705K    
For the wire é-periphery corresponds to the total length

For rectangular loop? periphery : 2(hl+h2)

For circular loop-E5 periphery : Tl'b where b : radius

Radius of wire of which the 100ps are made of = a = 0. 01).



straightwire(bl/h?:0)5rectangularloop(hl/hz=1/1.5)

rectangularloop(hl/hZ:1/3)6rectangularloop(hl/hZ=1/1)

rectangularloop(hl/hZ=1/2.5)7circularloop

rectangularloop(hi/hz=1/2)radiusofwire==0.01x

relativescatteringcrosssection
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The second resonance curves of the loops are shown inFigure

1. 8. It is observed that the second resonance peaks are not clearly

observable in the loops with large ratio of hl/hZ' The second

resonances of the loops occur when the half peripheries of loops are

in the neighborhood of g- wavelength. The second resonant sizes

2

of the loops are summarized in Table l. 2.

Table 1. Z.

 

L00p Geometry Second resonant Size

(é— periphery)

 

straight wire (hi/hZ = 0) 1. 44k

rectangular loop (hi/hZ 2 é—) 1. 67k

rectangular 100p (hl/hZ : 1.125) 1. 68k

rectangular 100p (hl/h2 : «:0 1. 58k

rectangular loop (hi/hZ : T17? ) not clear

1

rectangular 100p (,hl/h2 = T) 1. 73K

circular 100p not clear   
1. 3. Theory

A theory is presented here to calculate the backscattering

cross section of a solid circular 100p and a solid rectangular loop

when they are illuminated by a plane wave with vertical polarization

at normal incidence.

Some numerical results are obtained and are compared with

the experimental results in Section 1. 2.
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4 rectangular loop (hi/hZ

  

l7

1 straight\vire (bl/h2 = 0)

1/3)

1/2.5) / \\\

1/2.0) // \\\\

1/1 5) ///

2 rectangular loop (bl/112

3 rectangular loop (hl/h2

ll5 rectangular loop (hi/bl

6 rectangular loop (bl/hZ = 1/1) /

7 cicular100p /

/

radius of Wire 7: 0.01 it /

 

1.0 1.3 1.5 1.7 (t)

1/2 loop periphery in wavelength

Figure l. 8. Scattering cross sections of loops as functions

of loop Sizes (second resonance curves)
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1. 3.1. Backscattering from a Solid Circular Loop

The backscattering cross section of a circular metallic loop

was first explored by Kouyoumjianl who used a variational method to

determine approximate formulas for the backscattering cross sections

of thin wire 100ps. Numerically he was able to calculate the back-

scattering cross sections of a circular loop illuminated by a plane wave

at either normal or horizontal incidence. A good agreement between

the theory and the experiment was obtained in this study. The weakness

of this method is the tedious computation. Later Weston2 investigated

the same case by solving the wave equation in toroidal coordinates to

obtain general expressions for the electromagnetic field. Numerical

values for an arbitrary incident angle were determined and his analysis

is deemed as a generalization of earlier work by Kouyoumjian.

These two methods are too complicated to serve our purpose

of solving the case of a loaded circular 100p developed in the next

chapter. A mathematically simpler method has been developed in

this research.

(A) Geometry of Problem

The geometry of the problem is as shown in Figure 1. 9.

A 100p of radius b is assumed to be made of perfectly conducting

metallic wire of radius a. A plane electromagnetic wave with the E

field parallel to the plane of the 100p is incident normally upon the

loop. The dimensions of interest are

2

a<<b2, [50a <<l

where 50 is the wave number. We assume that the wire is thin

enough 'so that only the 6 component of current is induced.
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Figure 1. 9. Geometry of solid circular loop.
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(B) Differential Equation for Loop Current

Since the tangential electric field should vanish at the surface

of the loop, the following equation is valid:

(1.1)M :
1

E +E =0 for-n59

where E: is the tangential electric field maintained by the current and

the charge on the loop, E l is the tangential electric field of the incident

1:

wave.

The symmetry of the geometry gives

193 (e) = - 16S (1r - e)

(1.2)

8 7T

16 #2)“)

Where 18(0) is the induced current in the loop. The tangential component

0f the incident E field along the loop is

E 2 EO cose (1-3)

Whe re E0 is a constant electric field.

The current and the charge on the 100p maintain a tangential

l . . .
e ectric field at the surface which can be expressed as

Eta: 4W9), -ij“;, (1.4)
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where (1)8 is the scalar potential maintained by the charge on the loop

and AS9 is the tangential component of the vector potential maintained

by the current on the loop. (1)8 can be expressed as

10
We) = 1 S qsie')-‘3——R°——-bde' (1.5)

411'6

o

 

 
 

 

and

2 2
_ 1

Rum/43mge e +—a— =bN/2—2cos(0-9')+i—
2 b2 b2

(1.6)

Assume (68(9) can be approximated as

$5

¢fiei = If;— <%e> (L?)
O

Whe re (1)5 is the ratio between scalar potential to charge density and

can be defined as

 a; = 4n€o ¢§9> 0.8)
q (9)

With (1.8)

(1)3 s

s _ 1 q (9)
“74> )ejr:b - I‘ll—Tile: b -—a-e—— (1.9)
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From the equation of continuity

 

s
.x 81 (0)

s .l s . l 0

9(91-JB’V'I - Jag—‘35— (1.10)

it leads to

8 ch: 3’ 3215(9)

(V4; )9 = 2 2 (1.11)

__kr=b 41160 wb 80 

Writing A S in terms of the induced current 163(9) on the

C
D

loop, we have

u -st

[5188(0) = 3% 5 193(9) 53—33—— cos (9 .. e') de' (1.12)

If Aes(6) is assumed to be pr0portional to 188 (9), (1.12) can be

rewritten as

it (PS
0 iS S

A9(6) :7;- 19(9) (1.13)

Whe re (Ills is the ratio between the tangential component of vector

pote ntial to the current and is defined as

 

5

4n A (9)

1 “o 16 (e)

Wlth (1.11) and (1. 13), (1.4) can be written as

 



 

 

__ ___1

a “It: 6210S (0) 2 2 s 5
-Et 2 2 + (3 b 0. I6 (6)

4n€0wb 89

where

 

The substitution of (1. 3) and (1.15) in (1.1) gives

{-97 +sz2)Ies(6) = KSE c039
as S O

for-nSGSTT

 

where

<I>.S
2 2 s 2 1

BS ‘50 a - 50 Es—

q

s 41T€Owb

K =-_)

(1)5

C1

(C)
Solution for L00p Current

The solution for Ies(9) can be expressed as

s s s . 3

I9 (9): C1 cos fisb9+ C2 Sin fisbe +P (6)

 

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)
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where C1S and C2S are arbitrary constants, and PS(0) is a particular

integral. C2S is zero due to the symmetry and PS(9) can be found to be

 

 

s K E0 '

P (9) = cos 9 (1.21)
2 2

(SS b -1

Thus, (1. 20) can be written as

s 5 KS E0
10(6):Cl cos [38b0+ ‘3sz 1 cosG (1.22)

s

If the boundary condition of ISS (g) = 0 is applied to (1. 22), we

obtain

(31 = 0 (1.23)

 16(9): 2 2 ° c039 (1.24)

(D) Backscattering Cross Section

With the induced current found in (1. 24), the vector potential

i . . . .

n the direction of the inc1dent wave and at the far zone of the loop can

be Q alculated as



A‘l

U.
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“IT

H 7: -J°l30R1
s _ o s , , e

AY — TV S 219 (6 ) cos 0

 

__ I
-1 R1 bde

2

. S

“O e-JfiORl K O

= 4 R 2 2 (1.25)

1 (as b -1

 

where R1 = ‘J BC;2 + b2 and R0 is the distance between the center

of the 100p and an observation point on the axis of the 100p as shown

in Figure 1.10 .

The back scattered field in the far zone is

 

E = —ij S

Y

to e-J F3oRl KS E0

= -j —— s b . (1.26)
4 0 R1 ‘3 2 b2 _1

s

#0
Where (,0 = E— = 12017 and [is is to be determined in a

0

f0 1 lowing section.

The Poynting power density of the scattered field can be

fol—1 nd to be

 

 l. 27)

2 2 2 (
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Figure l. 10. Geometry for the calculation of radiation

field of a solid circular loop.
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The backscattering cross section is then found to be

 

 

 

 

2

2 IE SI
0' 2 11m 417 R —X-—

1 IE0 I

2 2

Trz"’0 2 KS

= (B b) —————— (1.28)
4 o l3 2 b2 _1

s

Substitution of (1.19) in (1. 28) yields

l 2

3 2 2 2 4 2 1
0' = 417 g e w b ((3 b)
B o o o .435 (5 2 b2 _1)

q s

2

2 6 l

2 X it (50 b) s 2 2

<I>ql (135 b -1)

or

o- l2
B 6 1

: TI’ (5 b) (1. 29)

x2 0 <1): (6521324),

Whe re A is the wavelength.

(E) Determination of (I): and if

(i) Using the equation of continuity (1.10) and (1. 24), qs(0) can be

found to be



 

O .

—-—2——— sin e (1.30)

With (1. 5) and (1.30), e: defined in (1.8) is found as

 

 

 

 

s

S t (90)
(Pg = 4TT€O s

q (90)

TT ejBOR

5 sin 0' R bd0'

-'rr

: (1.31)

sin 6

o

Where

J .2R=b 2--2cos(£30-9')+—2

b

Choosing 00 = g— , the point of maximum charge density, 433 becomes

2

17 -jfiSbN/2-23in9'+%§

(1)8 = 5 Sin 9' e (19'

q -n / a7-

2 - 2 sin 9' + —-2-

b

N

:5 sinG'Kl(9', >d0' (1.32)

0
‘
"
)
:

N
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J 2

a_. _ . , __
where 2 3138 b 2 2 Sin 9 + b2

K1(9, 3).. J a" (1.33)

2 - 2 sin 9' +7

b

In actual calculation of <1): , (33 will be replaced by (30 as an

approximation.

(ii) Similarly, (I)? is obtained by making use of (1. 12)

and (1.14) as

S

¢s= 411' A9 (60)

l “o 198 (60)

5‘” 6' e e' equsR bde'cos cos ( o - ) T

‘" (1.34)

cos 0

o

Where
 

\/ -—Z

a
— I

R—b 2-2cos(9O-6)+bZ

Choosing 90 = O, the point of maximum current, (Ills becomes



3O

/ Z

-j[3$b 2-2c059'+§7

e

 

 

 

 

 

.TT
b

(118 =3 cosze' 2 d0'
1

-1, K/Z-Zcose'+%
b’

w 2 a2

=25 cos 9'K2(9',—2-) de'

0 b ,

(1.35)

where

f a22 -jfisb 2-cosG'+-—7

K (9' 9—) e e b
2 ’ b2 J a:

2 - 2 cos 9' +—-2-

b (1.36)

In actual calculation of (Ills , {is will be replaced by (30 as an approxi-

mation.

(F) Numerical Results

To calculate the theoretical results of backscattering cross

section, (1)3 and (1118 are numerically calculated for the case of

._2 : 0. 00179 as functions of Bob. Numerical results of (I): and (1318

are shown graphically in Figure 1.11 and Figure 1.12. It is observed

that (I): and <1>is vary only weakly over the range of interest. This

agrees reasonably well with our original assumption of CI): and (Ills

be ing constant. The numerical result of backscattering cross section

0-

\2 is plotted as functions of (Bob in Figure 1.13 in comparison with the

X

e xperimental results .
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.
1
)
—

-
I
r
-

2
. s . a _

Figure 1. 11. (I) q as a function of [30b (32 — 0. 00179) .

d
.
-
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RC1).

 

 
Figure 1.12. <I>is as a function of Bob(

2

3.

b2

 

= 0.00179).
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2a

   
oocooo theory

experiment

 
Figure l. 13. Comparison between theory and experiment for

circular loops illuminated by plane wave at

normal incidence.
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The theory predicts fairly well for the loops with Bob

smaller than 1. 5 which is the range of interest. For a larger loop

the present theory fails to give accurate solution. A refined theory

would give better results but we find the present theory adequate for

further theoretical deve10pment.

1. 3. 2. Scattering from a Solid Rectangular L00p

To study the backscattering from a solid rectangular 100p

an approach which is different from that used for a circular 100p

will be used. The first order solution will be obtained by using the

method developed by Chen and King?

(A) Formulation of Problem

The geometry of the problem is as shown in Figure 1.14.

A rectangular 100p with short side 2hl and long side 2h2 is

assumed to be made of perfectly conducting metallic wire of radius

a. A plane electromagnetic wave with the E field paralldto the

plane of the loop is incident normally to the loop. The dimensions

of interest are

2 2 22 2
a << h1 and h2 , [30 a <<l

Where 50 is the wave number. We assume that the wire is thin enough

So that only the tangential component of current is induced.

(B) Integral Equations for Loop Currents

Since the tangential electric field should be continuous at

the surface of the 100p, we obtain the following equation:



 

 

 

 

 

 

 23—.-

      
S

IZY

S S

/ 13x I3x

+— -£ ———a-
 

dxT

 
 

Figure 1. 14. Geometry for solid rectangular loop.



36

For side 4

E43+quI = o (1.37)

E4: = EO (1.38)

where E4: is the tangential electric field of the incident wave and

E4: is the tangential E field at the surface of side 4 maintained by

the induced current and charge on the loop.

Due to symmetrical configuration, it follows that

Izy(y) = I4Y<y1 (1.39)

S S

11X (X) 2: - 13X (X) (1°40)

q; (y) = q: (y) (1.41)

qls (X) - - q: (x) (1.42)

where I S (y) is the induced current in side 4 and I
s . .

4y x (x) is that in
1

side 1, etc., whereas qiS denotes the induced charge on side i,

i = l, 2, 3, and 4. E4: can be expressed as

a 8 _AS

E4t = -(V €134 )y-Jw(A4)y (1.43)

_‘\s
where A4 is the vector potential at the surface of side 4 contributed

by the induced current in the 100p; 4348 is the scalar potential at the
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surface of side 4 maintained by the induced charges on the loop. In

——_.\

symbols, A45 and 048 can be eXpressed as

E52A8§+A89 (1.44)
4 4x 4y

S S S S S

C1’4 ‘ ¢41+¢42+¢43+¢44 (1'45)

where A4: is the vector potential at the surface of side 4 contributed

by the induced currents in sides 1 and 3. The induced currents in

sides 2 and 4 do not contribute to A4: because they do not have x

s . .
component. A carries the same meaning as A4y except that the

3

4x

contribution is made by the induced currents in sides 2 and 4.

s . . . . .
((94.1 is the scalar potential at the surface of Side 4 maintained

by the induced charges on side i, i: 1, 2, 3, and 4. A4: can be

expressed in terms of current by Helmholtz integrals as

S no h2 S P‘Jfio r44

A (y)=—- S I (y') -’-——-—— d)"
4y 411’ 4y r -

.hZ 44

“o 5312 S 615614:

+ —- I (y') dy'
4w -h 2 r42

2

u h3

= ~53 5 I S (y‘) K (y 1") CW
4n -h 4y 1A ’

2
(1.46)
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where . .

-J 130 r44 -3130 r42

K (v. y') = + (1.47)

M r44 r42

2
r44 = \/ (y' - y) + a (1.48)

2 2
_ I __ ‘

r42 - ’\/ (y y) + 4h1 (1.49)

With (1. 44) and (l. 45) , (1.43) can be rewritten as

Ea=-—§-(¢S+¢S)-iwAS-—?—(¢S+¢S) (1.50)
4t By 42 44 4y ay 41 43

By the Lorentz condition, it follows that

8 A S (Y)
S s _ 'w “A s ‘3 s _ iii) 4y

¢42 + 4’44 ‘ 2 v (A42 + A44) “’ 2 (1'51)
[30 60 By

After substituting (l. 51) in (l. 50) and after rearranging, (1. 50)

becomes

a fl .332 2- S 8 s s

E4t : F32(ay2 +50 )A4y1Y1‘5; (¢4l+¢43)
(1.52)

o

Substitution of (l. 38) and (l. 52) in (l. 37) gives

 

2 . .

8 2 s ”30 ”30 8 s s



39

Similarly, the differential equation for the vector potential at

side 1 can be obtained as follows:

For side 1

Elt+Elt: 0 (1.54)

i _
E1t — 0 (1. 55)

where E1; is the tangential E field of the incident wave and E1: is the

tangential E field at the surface of side 1 Inaintained by the induced

current and charge on the loop.

Eli can be expressed as

E1: = - (WIS 1X -iw(A15)x (1.56)

where $18 is the scalar potential at the surface of side 1 maintined by

s

1

surface of side 1 contributed by the induced currents in the loop. In

_A

the induced charges on the loop and A is the vector potential at the

“is 5
symbols, Al and 01 can be expressed as

_\
s S A S A

A1 -. Alx x+A1y y (1.57)

s s s s s

4’1 ‘ ct’11 +812 J“ 4’13+ 4’14 “'58)

where A1: is the vector potential at the surface of side 1 contributed

by the induced currents in sides 1 and 3; while A S

1y

by the induced currents in sides 2 and 4. $1? is the scalar potential

is that c ont r ibuted
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at the surface of side 1 maintained by the induced charges on side i,

i=1,2,3and4.

s .
A can be expressed in terms of current as
1x

s #0 hl s e-J BOTH
_. __ ' ____.___ '

Alx(x) _ 4w 5 le (X) r11 dx

-h
l

110 h1 s e J13653
._ l I

+ 4" S I3X(x) r dx

13
-hl

l
l

d
b
l

‘
2

=
1
0

L
I
E
D
-
l

.
—
a

 

 

S l I I

le(X)K2A (x, x)dx (1.59)

'hl

where

e'Jf‘orii e'J F361'13

K (x, x') 2' —— - —-—————— (1.60)
2A r11 r13

.7

r11 2 N/(x-x')2+a” (1.61)

r13 = \/(x' -x)2+4h2‘2 (1.62)

With (1. 57) and (l. 58), (l. 56) can be rewritten as

Ea---§-(¢S+¢S) 'AS—Q—<¢S+ 5) (163)It ‘ 8x 11 13 'J“) 1x‘ax 12 4’14 °

By the Lorentz condition, we have



. 8A S
_b. ._\ 1

¢1f+¢138= LEV. (A118+A13S) 1' u; ‘——)‘{_ (1'64)

(30 (30 8x

Substituting (1. 64) in (1. 63), we can rearrange (1. 63) as

. 2
a w 8 2 s 3 s s

Elt = "L26 (52 +50 >A1x ‘5; (4’12 +4’14) (1'65)

0

With (1. 55) and (1. 65), (1. 54) can be rewritten as

 

2 15

<_6_2 +502 A 8“" = O 5%? (¢1:+¢1:) (1'66)8x 1x to

Due to symmetry, we note that

A4;(y) = A4;(-y) (1.67)

and

S

Alx

(x) =_A1:(-x) (1.68)

With (1. 67), the general solution for A4:(y) in (1. 53) is then

A4:(y) : 6: E48 cos fioy+ 945(yZ| (1.69)

where C4S is an arbitrary constant, V0 is the velocity of light in free

space and 645(y) is a particular integral which can be found as
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68(y) 25:9 .5), 3- ¢ S(s)+c)> S(s) sin{3(y-s)ds (1.70)

4 L30 0 as 41 43 o

8(x) in (1. 66) can beSimilarly, with (1. 68) the general solution for Alx

expressed as

Alibi) = ‘72-1— [of sin pox + 913mg (1.71)

where C18 is an arbitrary constant and 913(x) is a particular integral

which can be found as

x

618(x) : -31) 3%[¢128(S) + ¢14S(SZJ sin [30(x - 3) ds (1.72)

With (1.46) and (1. 69), it follows that

4w 3 2 s

= - Jig—EEC: cos 50 y + 94553]

(1.73)

Similarly, with (1. 59) and (1. 66), we obtain
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1

—- A (x) : S les(x') K2A(X,x') dx'

= - L23:- [Cls sin (30x + 918(x]

o

(C) Zeroth Order Solutions for Loop Currents

For the first approximation, we assume that

A4S(y) “o

—é——= 1:,- w
I (Y)
4y

and

A 8(x) u

s 417 s

le (X)

 

4w A4y (y)

(195(1') = u S

0 I4y(y)

and s

A (X)
4

(1)5(X) : [:1—1T 1:

o le(x)

Substituting (1. 75) in (l. 73), we obtain

3 -'4Tr s s

I4y(y) = WEC‘} COS fioy+64 (ya

(1.

(1.

(1.

(1.

(l.

74)

75)

76)

77)

78)

.79)



-1 ,1

I S'X‘ __ ”—147? i“ 5 (1 J“ ’11.) b’xh‘l1

1x1) __ £03169) '11 b' 1711“ 1‘ 3

By looking clos‘ely at (1. 46) and (1. 5'7}. we note that. 1.1;.-

D,. . 5
contributions to A‘ly (y) and Alx (x) are (111:: to the curren‘ (“Mr 1‘), .

located at y' 2 Y and X' I: x 1'1;sr.)t—w,i'im-_.1y. '[t is then reasonsxlrdx

assume that (I) (y) and (Fahd are constant over the.~ entire (LUNEZIV

s ..

except at the corners. For simplicity. we assuring that

r ‘ 7 ' '\' S -‘ 5 ' u

.10 dete rniine (5 and (_ , the: inilowmg boundary a a»:

4 ”l

wi’il be used.

(a) Current at the corners be ing ror:t§r=.um1s.

1.9., '14V5{y and} 14113.31 111)

(b) Charge around the i,'('.>;':r.(_-.1‘s 116: v1; 1,,ontim_1<“ms.

1. 11,71 h > <1, h >

.‘ 1..

The substitutiirm of (1. 77“}, (1.50} (1:111 (1.81) Ert (1.5L;- 5%.

. s ,
C, cos 13(th + B

4 4

s s L L, . - . .
q4 (y) and ql(x) can be {round as follows by 11:3 1:13,; UH; minimum

continuity.

1
. 1 1



L ~1'47T S . 8845“,) r
: b.) god’s ~C4i3031ni30y "i" T (1.8?)

s _ 1. _a_ s
ql (X) ‘ U 8X 11K ()5)

. _.4n "7' q 8018(x)

= ‘2; —J—-— Cl‘ (3 cos Bx+ ———,—-— (1.86)
C, (1)3 o 0 dx

0

Combining (1. 85) and (1. 86) with boundary condition (1. 83), we

 

 

 

have

8 ' 3943(y) S 3615(XV

- C4 130 8m 130 hZ + ”71y : C1 F3O COS BO hl + 8X

): hz
X:h1

(1. 87)

. . ,. s s ,
Solvmg (1. 84) and (1. 87) 101‘ C4 and Cl’ we obtain

5 l
60 (x)

C S 2: 1 _ __l____
4 130 [:c ot (30111 cos [30112 -- sln (30112] - dx

X~111

39 SW)
_ 4 + .1 X

By tan [3011l sin (3th - cos (30112

IY: hZ

s 8
E1011) + 94 (112—{J (1.88)
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s 1

C = . . - X
1 130 Sin 130111 tan fiohz - cos £10113

8 s
891 (x) 864 (y)

8x - 8y

X:h1 y: h2

_ 50 tan {30112 E15011) + 645012]

 

For the zeroth order solutions, we assume that 948w)

(1. 70) and 618(x) in (l. 72) can be approximated respectively as

0
1
‘
]

:
1

Y)”151;:—

S

C11” o (
a
l
l

With (1. 90) and (1. 91) substituted in (1. 88) and (1. 89),

. E cos 13h
[C 5‘1 2 _ __(_)_ o 1

4 «k 60 cos (30(111 +112)

 

 

[:C 8:] -- 1:32 Sin (5th

1 0 (30 cos 130(h1 + 112)

(1.89)

in

(1. 90)

(1.91)

we obtain

(1. 92)

(1.93)

Consequently, the zeroth order solutions for the currents are

obta. ine d a s

 

s ~1 -'477 E0 cos [3111 s \

E4Y(YZ_L 1‘— a?; -1;— COS ‘30 (111 +112) COS BOY '1' 94 (Y)j (1.94)
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[ s ‘1 -'471' E0 sin 60112 . 9 s 1 ..

I (X)... : C { 8; cos 130(111 + 112) Sm 130x+ l (flj (1'93)

If (1. 90) and (1. 91) are applied to (1. 94) and (1. 95), we have

 

[:14S(y)—l : .4? 143—0 cos Bohl cos (Soy —hcos :0 (111 + hZ) (1. 9(3)

y —~‘OO C’o s 130 COS fio( 1+ 2)

r“ s J _.41T E0 sin (3th

E1X(Y) 00 _. Zo$s 6; cos (30 (h1 + h

 2) sin 50x. (1.97)

(D) First Order Solutions for LOOp Currents

To obtain the first order solutions for the currents, the

method used by Chen and King is adopted.

The following equations are needed:

Fron1(l. 69) and (l. 71)

s __ _-_l -. s __ s

A4y1y1~ V [9, mm BUY 1 94 M]

O ..

s :— L11- 5 . s

A1X(x) - V0 [C1 8111 Box + 01(x):|

From (1. 75) and (1. 76), we have

—'4w 8 s

[I4Y(Y[]O : 3:5.— [C4 COS BOY + ()4 (Y3!
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' s
s _ -j477 s . (x)

[11): (x):}0 —- («fps [C1 Sin (30x + 61

..—-

From (1. 85) and (1. 86) we have

s —| 477 S . 8848“,)

[44(1’) = W[ - C4 130 S”) 1303’ + Ti]

89 S(x)
s 417 S 1

[:ql (30:10 2 Wéo811: C1 [30 cos {30x + 8x -I

.al

First order currents are formulated as follows:

)1:

s _ s 477 s _ _2

E4y(y:)1 —[I4y (yilo + H 058 {A4y 417

2

S 1 1 I (’
S [I4y(y):lOK1A(y. NW] (1.98)

1 _.

° Sh [les(x'flo KZA (x, x'). dx') (1. 99)
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In effect, (1. 98) and (l. 99) can be rewritten as

S

h

1- 5( T’s zri S1 _ 3— SZ I 5(r') K ( ')d' (1100)
4y YJI“ L4), 1),) 0 "' (I, _h2 -4), ) 0 1A Y’Y Y °

h_. _' l

E1:(X),,il 'f-f 2[le(x) - Els— 39h [Il:(x'):} K2A(X’ x') dx' (1.101)

‘ 1 0

The substitution of the zeroth order solutions in (1.100) and

(1.101) yields

3

l

i%_{ 2 [C45 cos (30y + 648(fl

o s

 

(:4S he

_ . 1 1 1

‘13s 5:11 cos 1301’ KIA (Y1Y)dY

2

1 h2 s 1

I 1 I 1

s ~hZ

1
1

W
I

11
>.

:
1

F
M 0

L
‘
-

m

.1
"

n O i
n

O
D

~
< 1

o 9
.

+ N

s
h
o
w

“
i 1

w

l
l

6
‘
!

1
1
A

:
1

m

0

4
3
m

1
—
4

L

)
1
—

U
)

A E + {
\
a

C
D

”
9
‘
0
1

\
< l 7

F
—
U
)

A E

W
—
I

(1.102)
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where

S Tca(y) 1

L1 (y) = 2 cos 80y - T (1.103)

S nlsm

1‘2

Tcam = 111 cos aOy'K1A1111r'1dy' (1.1051

- 2

s 112 s

r1111) = S 94 (y') K1A (1%)“) dy' (1.106)

_ 2

T (x) d (x)
- 411' S *d . S 1

'—" if {C1 [2 811’) Box ~—%;—~—] "1' 291 (X) -T—j

#477 s s s s

43— C M (x)+29 (x)-D (x))
40 Si 1 1 1 1

(1.107)

where
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T>’< (X)
s . 51d

M1(x) = 2 Sin {30x - T (1.108)

s

1 dls<x1

h1

Ts=1<d(x) : 5 sin Box' K2A(x,x')dx' (1.110)

-h
1

hl

dls(x) : 5‘ 018(x') K2A(x,x')dx' (1.111)

-h

The scalar potentials (1)415 and (1:438 in (l. 45) can be expressed in ‘

terms of the charges as

 

 

1 hi 311301.41
s s _ s 1 e ,

<1’41 + ‘1’43 ‘ 4TT€ .) q1 (X) r dx
0 --h1 41

1 Shl S e'Jflor43

+ q (x') ———————-— dx'
4w€0 'hl 3 r43

1 Shl s

= . q (1111K (y,x'1dx'
41160 -11 l 13 (1.112)

where
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8’1801'41 P'Jfior43

K (y1x’) - - ‘ (1.113)
1B r41 r43

_ 2 2

r41= J (hZ — y) + (hl - x') (1.114)

2 2
r43 = «/(h2+y) +(hl -x') (1.115)

Similarly,

h _.

s s 1 2 s 1 e Jfiorlz 1

4’12 + 4’14 = 4115 q2 (X) r dy
o -11 12

2

h _.

1 2 S e 3130114

4'11’6 5‘ q4 (x') r dy'

_h 14

2

h

_ 1 52 S K ( 1 d 1

"hz
(1.116)

where

( e'JBor12 e'Jfior14

K x, 1"): + (1.117)
2B r12 r14

 

2 2

12 - (h2 - y') +(h1+ x) (1.118)'
1 l



53

 

r14 : 1J(h2 - y')2+ (h1 -x)2 (1.119)

With (1. 51) and (1.112), (1.45) can be rewritten as

S

 

_ s s 3

‘1’4 ‘ 4’44 “1’42 +4’41 “1’43

h
. 3A r"(11) 1

: )1.) 4y 1 S s

2 3Y + 41m h q1 (x') KlB(y, x')dx'

50 ° '1 (1.120)

Similarly, with (‘1. 64) and (1.116), (1. 58) becomes

8 __ s s s 8

‘1’1 “ 4’11 +‘1’13 “1’12 +4’14

“ ”2‘ MI: + I )h2 81 '1K 1 '1d '
' ax 4m.- h q4 Y 213 x')’ Y

130 ° ' 2 (1.121)

  

If we substitute the zeroth order solutions in (1. 120) and (1. 121)

we obtain



 

 

S . 1 3948(y) C18 hl 1 1 1

= .C34 8111 fioy+5— -—-ay—— + <I> cosfiox KIB(y,x)dx

O s -h

1

h

1 1 8618(x')
‘. I I

+ 5 fl 5‘ ax! K1B(Y1x ) dx

8 o -h

1

as 3(1) T (y) f 3(1)
= -C Esme/144- 4 + C 5 cd + 1

4 I o '56 8y 1 s s

39 3(1)
8 . 1 4 s s s

'-' '04151n50Y+‘3—— T +C1 L2 (Y)+F1 (Y)
o

(1.122)

where

T (Y)
d

LZS(Y) - -%— (1.123)

s

s

8 f1 (Y)

F1(Y) = T (1.124)

s

h1

Tcd(y) = y cos Box' K1B(y,x') dx' (1.125)

-hl
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S 1 hi 8918(x')

f1 (Y) = 13— 5 -——————ax, K1B(y, x )dx

0 -h1

s _ s s s s

‘1’11’9 ‘ 4’11 + 4’13 + 4’12 + 4’14

La 3A1: 1 ha s , ,

z 2 8x + 4116 cl4 9") K2139“ V )d”

(‘30 o -h2

'w _. 3918 (x)

= ‘L'Z— 'Q‘J' { C13 ‘30 C08 BOX '1' .732...”—

130 0

T—Ffleo 5:228E14 (Y :1 K2B(x. Y ")dY

s 1 39181") C43 289‘)
: C1 C08 (30X ‘1'? T - T TS *a(x) +T

o s

s 1 3618(x) s s s

= C1 cos Box+—6;- ———a-x—-——— -C4 M2(x)+F2(x)

where

T (X)3::
M23(x) : .15:

f 51x)
S

F2 (X) :T

(1.126)

(1.127)

(1.128)

(1.129)
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1

{
/
3

:
3
.

N

Ts*a(x) — sin fioy' KZB(X" y')dy' (1.130)

1 3948(Y')

T K2B(x, y')dy' (1.131)m

N
U
)

E 1

o
w
l
"

:
r

I

The boundary conditions to be used for the first order solutions

are:

(a) Current at the corners being continuous

s _ __ _ s _
I4y (11-112) _ le(x_.h1) (1.132)

(b) Scalar potential at the corners being continuous

s __ s _
414 (yzhz) — <1)l (x—hl) (1.133)

Substitution of (1.102) and (1.107) in (1.132) gives

3 s s 8
C4 L1 (hZ) + 264 (hZ) - Nl (hz)

_. _ s s. s _ s
— I: 1 M1 (hi) + 291(h1) D1 (111)] (1.134)

With (1.122) and (1.127), (1. 133) becomes
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89 (Y)
s . 1 4 s s s

v- C4 81115th +73; T '1' C1 L2 (112) + F1 (1'12)

Y:h2

as 8(x)
_ s l l s s s
- C1 C08 {30111 +3; T -C4 M2 (hl)+F2 (1’11)

xzh

1 (1.135)

Solving (1.134) and (1.135) for c4S and CIS , we obtain

r——_ M

1:29:92) + 2918911) ‘ le(h2) " D18(h1):1[C°S 13obi ' L592]

  
894S(y) 1 8015(x) S S

Mi‘h’ié a-T "a: 711—- ”1““2"F2“‘111
y=h x=h1

4 - s . s s s
Ml(h1)l:sm (5th — M2 (111)] - 111(112) cos 130111 — L2 (1123

 

(1.136)

r—.

—‘—_1

@:(h2)+ 2915(111) - le(n2) -Dls(nlfl[:sin sonZ-Mzsmlfj

395(Y) 3980‘)
s 1 4 1 1 s s

Mutual-1157,,— ‘Eg—sz— +F11h21'F2<h1’

~— y=h xzh ----*
s 2 l

M15011) sin 80112 — M23011] - 1.13012) cos (30111 — 1125012]

  

(1.137)

For the first approximation, we assume that
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E
3 ~ 3 _ __2_

94 (y) — @(a 0 - Bo (1.138)

913(x) z Elsbg] = o (1.139)

0

Then, (1.106), (1.109), (1.124) and (1.129) can be rewritten as

51. 11
3 5° S 1 d 1 E0 (1 140)N1 (Y) - T K1A(Y1 Y) Y - 6373—0 Tea(Y) -

-hz

where

h2

Tea(Y) = S K1A(Y: Y') dY' (1. 141)

-hz

D1381) _ o (1.142)

Flsw): o (1.143)

F2591) = o (1.144)

With (1.138) and (1.139), (1.136) and (1.137) can be simplified

respectively as follows if only the terms with the order of —1— are

<I>
S

retained in both nmnerator and denominator:
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l s

E cos Bohl + E)— B

C34s : "8'?“ s 7T
l 0 cos (30(hl + 112) +3; G

1 s

 

S - E0 Sin B0112 "1' as— H

C1 1 _ 15; 1
cos (30(h1 + hz) +3— G

whe re

8

l

_ - 2 [2 Tcd(h2) + Tea(h2) COS Bohlj

1 . .

~2- [Ts*d(h1)81n (3th + 2Ts*a(h1)51n fiohl

- Tca(h2) cos 130111 - 2 redunz) cos (30112:)

1 .
_ .2 [Tea(h2) 8111 (30112 + 2TS*a(h1)]

(1.

(1.

(1.

(1.

(1.

145)

146)

147)

148)

149)

Substituting (1. 81), (1.145) and (1.146) in (1. 79) and (l. 80), we obtain

1

1

cos fiohl +7;— Bs

  

: -J'41T {- 2:2 5 cosp y+98(yj(1 150)

é04’s 13o 1 O 4

COS (30031 ‘1' ha) +5— G

S

  

. E Sin Bohz "'1' 31— HS

: £114" { T32 1 S 1— sin Box+9f(x)

0% 0 cos 130(h1 + 112’ +——

(I)
5

)(1.151)

(E) Evaluation of Particular Integrals 848(y) and 618(x).

Integration by parts enables us to rewrite 943(y) and 018(x)

in (1. 70) and (1.72) respectively as
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Y

63(y) 2 E2 -5 i E) S(s) + 4) S(3] sin {3 (y - s)ds

4 so 0 as 41 43 o

E

_ o s s .

~ E; + E41 (0) + ¢43 (OJ Sin [Boy

+ Bo S: E4ls(s) + ¢43S(s)] cos BOW - 3) ds

E
o s s

= E;— + B 5: E41 (3) + (1343 (5):] cos [30(y - s)ds

O

(1.152)

Equation (1.152) is arrived due to the condition of

¢418(0) : ' ¢43s(0) (1.153)

Similarly

X

615(x) : -5; Egg-[4)] 28(5) + ¢14S(s)—‘I sin BO(X - s)ds

H

x

[1913(0) + ¢1:(O)-] sin Box+ [30 5;) E128”) + 4915(0)] cos (30(x - s)ds

X

2¢1:(O)sinfiox+fio So Eblz(s)+¢1:(sEl cosfio(x—s)ds

(1. 154)



61

Equation (1.154) is obtained because

5 s

¢12(0) - ¢14(0) (1. 155)

For the first approximation, we substitute (1.138) and (1.139) in (1. 85).

and (1.86).

4156

qs()=- ° cssinp (1155)
4 y 58 4 oy '

s 4Tr€o s
q1 (x) = T C1 cos BOX (1.157)

The substitution of (1.157) in (1.112) yields

5 8 C18 hl

441 (y) + 443 (y) = TS- Sh cos BOX' K1B1y,x*)dx'

_ 1

GIS

: T Tcdw)

5

(1.1.58)

Similarly, with (1.156), (1.116) can be rewritten as

s s -C4S hz .

¢12(X)+ ¢14 (X) : T Sh Sln BOY' K2B(X9 Y'idY'

b ' 2

-c S

= (1.159)
4

25— T54 a1(x)

S

With (1.155), (1.159) yields
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.c8

_ 4
2¢12(0) _ T TS}. (0) (1.160)

‘3

Substituting (1.1 58) in (1.1 52), we obtain

8 E0 C1830 Y -
94 (y) = B;— +T o Tcd(s) cos Bo(y - s)ds (1.1.61)

Similarly, with (1.153) and (1.159), (1.1 54) becomes

5 X

CS c

 

 

 

s 4 . 4 o

91 (x) : - 3;- Ts>i=a(0) Sin 60x - (I) 50T5>3<a(3) cos [30(X-S)dS

5

(1.162)

With (1.146), (1.161) becomes

. h + 1 Hs

E 3‘“ 80 2 6‘ s E
s o s o o

1.94”] = ‘6‘+ E," ‘3‘

— 1 0 cos (30(h1 + hZ) + £— 0 S O

s

.5: Ted (3) cos (30(y - s)ds

' h +—1— HS
E [3 8m B0 2 (I) ——7

: "2):1+E)£)' S t (Y) 1'

Bo s cos [30(hl + hZ) + 3}— G Cd __1

8 (1.163)

where

Y

tcd(y) : So Tcd(s) cos 50(y — s)ds (1.164)
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Similarly, the substitution of (1.145) in (1.162) gives

E cos fiohl + 51- BS

[Bibi = «be S
1 BO 5 cos (30(h1 + hZ) + 51— G

s

x

. [T92 3(0) sin (30x + (30 50 Tefltés) cos [30 (x - s)dEl

1 3

E0 COS {30111 + a); B

(30 <I>S cos (30011 + 112) + 7121' G]

S

. [Ts>i<a(0) sin (30 x + Bots>:<a(xfl

(1.165)

where

X

ts*éx) = 3;) TS*a(s) cos (30(1): - 3) ds (1.166)

With (1.163), (1.150) becomes



E‘YSMJU :

 

1

 <I>
...____. S
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I 1 s . fl...“
Eos pohl cos {30y - cos [30(h1+ h2fl+ E— [B cos (30y - (30 Sin fiohztcdhr) - G]

S

' *2- 50 HS th(Y)

cos 50011 + 112) + 3}- G

S

. 1 s 1 8
cos fiohl Cos [30y - cos [30(111 + hZ) + 5; P41 (y) + $5? P42”)

 

_-———.q .

 

 

where

13.11%)

1342800

cos (30(h1 + hZ) + 51- G

s

s .
B cos (30y — posmfiohztcdhr) -G

- BO HSthW)

Similarly, with (1.65), (1.51) beconrles

 
(1.167)

(1.168)

(1.169)



65

—-.

sinfih sinfix+1{Hssin5x+ T (O)sinfix+fit (xii cosflh
o 2 o 5; o s*a o OS"< ol

  
1 s .

+ 37 B ETS>::3(0) s in (30x + Bots>1<a(XZl

s

 

 

 

 

—-——
_1

h h 1 Gcos (30(1+ 2) +(I)S

_ 1411 E0

g065 flo

sih' +1PS)+—71Ps()“8625‘“56)‘ 6' 11(X (1) 12K

S s

1

cos (30(h1 + hz) + 76; C

(1.170)

where

Plls(x) = HS sin (30x +[TS*a(O) sin (30x + (30 ts,:.‘a(x)] cos [30111

(1.171)

s s -
P12 (x) - B [Ts*a(0) Sin (30x + 601:5”?in (1.172)

E4 S(yfl and (:11 S(xfl involve the double integrals which corrlplicate

Y ‘ 11 X 11

the problem.

In order to avoid the double integrals, the following method is

devised at the expense of decreasing the accuracy. First of all,
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substituting (1.138) to (1.144) in (1.102), we obtain

1 3
cos fiohl +— B

. E <1)3 _ -_]4Tl' o , s

[141' (Vii " é ( T3; 1 X
cos 30011; 112) +3;-

S

 

T (y) E E
ca 0 O

[2 COS poy ' ”ES—'1 "L 2 '53??? Tea(Y)}
O S

 

F—
.

2 cos Bohl cos (30y - cos {30(h1 + hail+6}— [235 cos (30y - 2G

8

" COS F3ohl Team + COS Boihl + 112) Teawji

 S  
1 s

+ "5'2 [GTes‘Y’ ‘ B Tcawj

cos {30(h1 + hZ) @1— G

s

 

_ j4Tr E0

‘ — x

éoés F3o

'
l l2[cos 130111 cos soy - cos 501111 +15%}; U4ls<y) +37 114,56)

S

cos 60(61 + hz) + 61— G
S (1.173)
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where

s _ s ‘ _ _
U4:1 (y) — 2B cos (30y - 2G- cos fiohl Tca(y) +cos (30(h1+h2)Tea(y)

(1.174)

U S( —GT () 133T ( (1175)
42 Y) - ea y 7 ca y) °

Similarly, the substitution of (1. 138) to (1. 144) in

(1.107) gives

[les(xfl

10

. l 5

Sin (3th +-—— H

"j4 EB (PS [ZSinfi x- ————TS>:6(X)J

{’0qu 50 cos (30(h1+h2)+___l__G O (1)5

(I)
S

 
 

s

1. . s . . H

2 Sin (3th 8111 (30x +3)— [ZH Sin (30x - BID (3th ng<d(x) - 328T8*d(x)

 

where

glls(xl

. . 1 s 1

Z 5111 B0112 SlnBOX‘l‘E— g1]. (X)+(';—-2- g12 (X)

S

S

.1
<1
S

cos (30(h1 + hZ) + G

S

S

 

cos (30(hl +112) +% G

3

(1.176)

s . .
2H Sln (30x - Sln fiohz Ts’l‘d(x) (1.177)
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81256:) = - HS Ts*d(x) (1.178)

(F) Backscattering Cross Section ofa Solid Rectangular LOOp

The vector potential, maintained by the induced current in

the solid rectangular 100p, at an arbitrary point on the axis of

the 100p and in the far zone of the 100p (Fig. 1.15) can be expressed

 

 

 

as

h -' R

AS—AS-ig 52 21 s'eJBO d'
_ y 7 4n 4y (Y) R y

sh

2

#0 e—JBoRo h2 s

2’ __ _________ I 1

' 271' R S E437 (VJ dy
o -h 11

2

(1.179)

where

J. 2 2 2
_ l 2.

R _ R0 + y +h1 RO (1.180)

Substituting (1.167) in (1.179), we have

211 “JQORO .1

[AS] = j o E e 1

Y C. F3 0 R . .1 ) 9...]
11 o o 0 (PS cos (30(h1 . h2’ + (1,8

(1.181)
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 4v

      

 

Figure 1. 15. Geometry for the calculation of radiation field

of a solid rectangular loop.
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where

h

J- 2 h ' (h+h)+—l—BS(')1— cos Bolcosy -cos (30 1 2 (1’3 41y

.112

1 s

+——z P m] dy'
<I>S 47* (1.182)

J1 will be evaluated later. Consequently the backscatte red

electric field due to the solid rectangular loop is

[12%]
ll

5;] win]
11 V 11

II N t
r
] C
D

p
—
c

o (1’s [cos [30(h1 + hz) +43%]

(1.183)

The backscattering cross section is found to be

2

8

(TB :- lim 4n RO2 E—lr

R0” CD iEol

J1 2

'2 161T
 

cps cos (30(111 + hz) + £2]

(1.184)
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“B

the experimental results for the case of the square loop where

is plotted as the function of (30h in Figure 1. 16 to compare with

_ __ _ 5.15 __

hl—hZ—h— 2 cm and a—0.03 cm. 

The agreement between the theory and the experiment .is fairly good

over the range where [Bob is small.

A silnpler method in obtaining the backscattering cross section

is also presented here. The vector potential at an arbitrary point

on the axis of the loop and in the far zone of the loop is calculated

on the basis of E S(y):l .

43’ 10

 

 

h .' R

AS—As—ffl Szzlswemo d'
" y ‘ 41r 4y Y) R Y

.h2

H -JBOR0 h2

=—"- e I S(') W
1r RO 4y y

-h2 10

(1.185)

Substituting (1.173) in (1.185) , we have

2M 7.130130 J
E s z j o F e 2 __ G

y C (3 7o R

o 0 ° ° ¢SE°Sfiolh1+hzl+o§l

 

 

(1.186)
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Figure 1.16.
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C
C
L

oooooo theory

experiment

1.0 1.5 2.0

——‘>

(30h

Comparison between theory and experiment

for a square loop illuminated by a plane

wave at normal incidence.
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where

112

: ' .-J2 5 (:2 cos fiohl cos (Boy 2 cos 130(h1 + h2)

.h2

 

114186)) + 1142865] dy'

<1: 4,2
S J

S

+

(1.187)

The evaluation of J2 will be presented later.

The backscatte red electric field is, therefore, calculated as

is.) ~ll
10 10 10

E51

~15 R
e o 0 J2

2E G

o <I>S [:cos 130(h1 + hz) +$;j

 

 

(1.188)

Based on (1.188), the backscattering cross section of a solid

rectangular loop is found to be

2 IE3 I.2
0‘ = lim 41TR. —-——Z—

0 o

2

J2
= 1611' (1.189)

 

7 G
(158 cos (30(11l + hz) + 38:]
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(G) Expansion Parameter p5

From (1.77) we have

 

_ 4v
<I>s(y) —- —

Considering the zeroth order current

 

[-1 3(3)) - j41r E0 cps flphl cos [50y - cos [50(h1 + hz)

4y _ C 73—
l_ 00 o s 0 cos (30(h1 + 112’

we obtain h

I _ l I
-h E03 fiohl cos [30y cos 80(h1 + hail K1A(y, y )dy

. 2

 (1)8(3') =

cos Bohl cos 80y - cos 130(h1 + hz)

cos fiohl Tca(y) - cos 80011 + 112) Tea(Y)

cos Bohl cos [30y - cos [30(h1 + hZ)

For a loop with 130(h1 + hZ) S 12: , the point of maximum current is

at y = 0. We can then set

(138 =[¢S(Yl:l _ COS pohl Tca(o) - COS F50(hl + hZ) Tea(o) (1.190)

Y=0 cos Bohl - cos (30(h1 + hz)
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For a loop with 130(h1 + ha) 2 127 , the point of maximum

, so we set

i
t
s
-
I
7

current is at y = (h1 + hz) -

X k

- cos Bohl Tca(h1 + hZ - Z ) - cos (30(h1 + hZ) Tea(h1 + hZ -174 )

 

cos flohl Sln {50(h1 + hZ) - cos (30(h1 + hZ)

(1.191)

(H) Evaluation of J and J2
1

Since

h
2

_ . .1. 5J1 - 5 2, [:cos (30111 cos [30y - cos [30(h1 + hZ) + (1)8 P4l(y1),

h

+ 1 P S I d 1

57 42 (y) Y

s

where

s s .
P41 (y) = B cos (30y - (30 Sln (3th tcd(y) - G

P4258) - 80 HS tcdly)
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_ 3 .
J1 - 3; cos Bohl Sin [3th - th cos (30(h1 + hz)

 

1 2138
+ $— [ 80 $111 flohz - (30 $111 £3th bCd --2h2G]

1
~, —-zq) (30H bCd

8

(1.192)

where

h

2

de : S‘ th (Y') dY'

'h2

h2 y?

2 l [l Tcdisl COS 150 (y' ' S) dil dy''h2 0

(1.193)

Jl is difficult to evaluate because of the triple integral involved.

Equation (1.187) shows that

h

  

2

J2 : S [:2 cos Bohl cos fioy' - 2 cos [30(h1 + ha)

7112

s s

U41 (Y') U42 (y'):| '

+ 2 dy

<I> (I)
S S
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s __ s

U41 (y) - 213 cos [30y - 2G - cos 80111 Tca(y) + cos (30011 +h2) Team

U458!) = G Team - 136 Team

or

_ 4 .
Jz - 132 cos Bohl sm (3th - 4h2 cos 130(h1 + ha)

1 4B8 .
+ 5; [To sm (3th - 4h2 G - cos fiohl tca

1 s

+ COS (30011 + h2) tea]+ <1) 2 [G tea - B 1:ca]

S

whe re

2

= I 1

tea f Tca(y ) dy

.h2

h2
: l I

tea 5‘ Tea“, ) dy

-h

(1.194)

(1.195)

(1.196)



CHAPTER II

MINIMIZATION OF BACKSCATTERING OF A CIRCULAR LOOP

2. 1. Introduction

The backscattering cross section of a metallic circular loop

was studied in the previous chapter. It was found that when the loop

is of resonant size, the induced current on the loop is maximum and

likewise the backscattered field. In radar camouflage it is desirable to

minimize the backscatte ring cross section of a loop, in particular, that

of a resonant loop. Many investigations have been made in the recent

years on the technique of minimizing the radar cross section of a

metallic object. Two conventionally used techniques are to utilize radar

absorbing material and to reshape the body to change the reflection

patterns. Recently, a new method called the impedance loading method

has been deve10ped. This method was found to be especially effective in

reducing the backscattering cross sections of metallic objects with

dimensions of the order of a wavelength. Using this method Chen4-6and

others7’ 8 have investigated the minimization of the backscattering from

a cylindrical object. Liepa andSen’ior9 have applied the same technique

to reduce the radar cross section of a conducting sphere.

The basic principle of the impedance loading method is to control

the amplitude and phase of the induced current on the metallic object by

inseting appropriate impedances at appropriate points on the object in

such a way that the backscatter maintained by the induced current is

minimized.

In this chapter, the minimization of the backscattering of a

conducting, circular 100p by an impedance loading method is investigated.
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A perfectly conducting, circular 100p which is loaded symmetrically

with two identicallumped impedances, is assumed to be illuminated

by a plane wave at normal incidence.

The induced current on the loaded loop is determined as a

function of loop dimensions and loading impedance. The backscattered

field maintained by the induced current in the loaded loop is calculated as

a function of the loading impedance. It is then possible to find an Opti-

mum impedance which makes the back scattered field equalto zero. An

explicit expression for the Optimum impedance for zero backscattering

is obtained as a function of loop dimensions. Some numerical examples

are included.

Analytical study on the radiation of a l00p is rare in the literature.

Storer10 studied a loop antenna using a method of Fourier series ex-

pansion based on a Hallan's integral equation. This method is too ~

complicated for our problem. A new method which is simple enough for

our purpose is deve10ped in this research. This new method is based

on a differential rather than on an integral equation. The theory is

later verified by an experiment.

2. 2. Theory

Based on the principle of superposition, a loaded circular l00p

illuminated by a plane wave at normal incidence can be considered as the

combination of (A) a solid loop illuminated by a normally incident

plane wave, and (B) a loop driven by two identical voltages at 6 = 0

and 9 = 1r. The situation is shown graphically in Figure 2.1.1. Essentially,

case (A) is the scattering of a solid circular loop and case (B) is the

radiation of a circular loop antenna. The case (A) has already been

solved in Chapter 1 and its results are rewritten here for further

deve10pment. The problem of case (B) will be solved in this chapter.
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After this the results of case (A) will be combined with that of case

(B) to produce the final solution for the problem of the scattering from

a loaded loop.

2. 2.1. Scattering from a Solid Circular L00p

The following equations from Chapter 1 are needed

 1a (8): 2 2° cos 8 (1.24)

o 1 KSE

o
 
 (l. 26)

where 198(9) is the induced current on the solid circular loop and E S

is the backscattered field on the axis and in the far zone of the loop

maintained by the induced current.

2. Z. 2. Radiation from a Circular LOOp

The geometry of the problem is as shown in Figure

2.1.2. The 100p is driven by two identical voltages V at 0 : O and

6 = 11'. The dimensions of interest are

2 2

az<<b2 . (30a <<1

where 80 is the wave number. We assume that the wire is thin enough

so that only the 9 component of current is induced.
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Figure 2.1. 2. Geometry of a radiating

loop.
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(A) Differential Equation for Loop Current

The total tangential electric field should vanish at the surface

of the 100p except at the gaps at 0 = 0 and 0 : 1r where voltages of V

are maintained. Assuming that the gaps are very small, we obtain

the following equation:

Ea = —%’- 6(6) "11:— 66: - e) (2.1)

for-1750517

where E: is the tangential electric field at the surface of the loop

and 6(6) is a Dirac delta function. Due to the symmetrical configura.

tion, the following conditions exist:

1‘r

I6 (9) ---I6 (17 - 0) (2.2)

Ir(:h%) = o (2.3)

where Ier (9) is the current on the 100p. This symmetry condition

simplifies the problem and we only need to consider a half of the

100p. In the right-half of the 100p, (2.1) reduces to

a V

Et = To' 6(8) (2.4)

is 5.".for-2 0 2

The tangential electric field maintained by the current and the charge

on the 100p can be expressed as
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a. r . r

Et 2 -(V¢)e -JwA8
(2. 5)

where ¢r is the scalar potential maintained by the charge on the 100p

and A r is the tangential component of the vector potential maintained

0

by the current on the loop. ¢r(0) can be expressed as

 

1T -jB R

r 1 r e 0
<1) (0) _ 4n€0 S- q (9) R bd0

where qr(0') is the charge density induced on the loop at 9', and

 

 

J 2 0 - 0' a2
R = b 4 sin 2 + —-2- as mentioned in Chapter 1.

b

Assume that ¢r(0) can be approximated as

 

(Dr

4179) = 75,—3— 4"(9)
o

where (I); is defined by

(Pr = 4TrE ¢r(9)

q 0 que)

‘1) r is considered to be independent of 9 because ¢r(0) in (2. 6)

is mainly contributed by the induced charge qr(9') in the vicinity

Of 9': 9.

With (2. 7), it leads to

 

(2. 6)

(2. 7)

(2. 8)

(2. 9)
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By the equation of continuity,

  

 

 

r
81 (0)

r . 1 r 1 0

q(9)—J;3\7°I ~1w0 89 (2.10)

(2. 9) can then be rewritten as

r 2 r

"I <I> . 8 I9 (0)

(V4313) = 4 .‘L J, 2 (2.11)
r=b T76o tab 80

Relating A9r to the induced current Ier(0) on the 100p, we have

r ”o Tr r e-JBOR
- _._. _ a _ 1\ I

A6 (0) —. 417 5:” 19(0') R co.: (0 0 )bd9 (2.12)

2
_ 1

where R = bN/4 sin2'<e 29>+ :2—

Assume Aer(0) can be approximated as

Ar6)—‘—J—9<I>r1r(0) (213)
0 ( 7 471’ i 0 '

where (Dir is defined by

A 179)
or = 24.2: -9.—-— (2.14)

l #0 I9 (9)

‘13.: here is presumed to be independent of 0 since (2.12) shows that

main contribution to the vector potential at 0 is due to the current

element located in the vicinity of 0.

With (2.11) and (2.13), (2. 5) can be rewritten as
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a -jcbr 82 2 r r

E s q 2 ”—2 + (30b (1 10 (0) (2.15)

t 4weowb 80

where r

r (bi
..

2.a — <1>r ( 16)

q

The substitution of (2.15) in (2. 4) gives

2

 

 

a 2 2 r .. rV

< 2 + (3r b>1e (0) .. K ~13- 6(0) (2.17)

00

Tr < <1:

£01 -2-_9_2

where

, or
2 2 r 2 1

Br — so a 2 Bo -7 (218)
<1)

9

r 4w€0wb

K :j r (2.19)

<1)

9

(B) Solution for LOOp Current

The solution for 18170) can be expressed as

19"(0) s of cos 81060 4 c 1' sin (Brbd 4 pr(0) (2. 20)
2

where C1r and C2.r are arbitrary constants, and Pr(0) is a

particular integral. C . r is zero due to the symmetry and 131(0)
2

can be found to be
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pr(0) = 1; sin firblel (2.21)

zero

The application of the boundary condition of 197127.) 2 0 gives

r - KrV 71'
Cl "—' —T tan firb :- (2.22)

28 b
r

Finally, we have

r KrV T1" 17 i
10 (e) = .. :5? sec prb 2- sin or“? - (e I) (2.23)

r

for-TrSG-‘Sw

The above expression for Ier(0) is extended to cover the whole range

of -7r 5 0 $11- by making use of the condition Ier(0) = -Ier(7r -0).

With the current found in (2. 23), the vector potential on the axis of

the lOOp and in the far zone of the 100p can be calculated as

 

r “o :2— r e.J 0R1
~ _ __ 1 l 1

Ay _. 4n 218 (0 ) cos 0 ——————R1 b d 0

‘2

M —JfioR1 r

‘ 417 R 2 2 . (° )
1 Br b - l

 

where R1 = \/ R02 + b‘2 and R0 is the distance between the center

of the loop and an observation point on the axis of the loop.
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The radiated electric field in the far zone of the loop is

-jl3 R

u o l

r . r . o e K V
E : _ wA : _ w __ ___.____.. 2. 25

y J y 1 2 ( )

Kr and pr are determined in a following section.

2. 2. 3. Total Current and Total Back Scattered Field

Total current can be obtained by superposing 193(6)

upon Ier(0) as follows:

S

19(0) = 19(0) +Ier(6)

 

KSE
o

= “—27—“ COS 9
BS b - 1

r

- KY secpbgsinfirb(%- lei)

28 b“ r

r (2.26)

for - 7r 5 0 S 17

Based on the principle of superposition, V is found to be

s r .
V .. [19 (0) + 19 “£121. (2.27)

With (1. 24) and (2. 23), V is determined as



89

2 (3 152 ZLKSE

r O (2. 28) 
 

V :

2 r

Zfirb + ZLK tan Brb 2 (38 b -l

[
:
1 N N

The substitution of (2. 28) in (2. 26) yields a final expression

for 19(0) as

K871:I (9) = cos 8
0 ‘35sz _ 1

 

Tl”r

- ZLK sec Brb 7 sinsb<l- lel>:|

2 prbz + ZLKr tan prb 321 r 2

 

 

(2.29)

for -11 S 0 S 11

Total E field in the far zone of the 100p can be obtained as

E = E S + E r
Y Y Y

., s

#0 e-JBORl K Eob

: -J(,) —- K

411 R] 1328132 _ 1

r
4 ZLK firb

T' + 2 2 2 r 11
(Br b - 1) (2131b + ZLK tan Brb -Z-)

(2.30)

2. 2.4. Optimum Impedance for Zero Back Scattering

To minimize the backscattering to zero, total field in (2. 30)

is set equal to zero. This leads to
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4zLKr8 b

r - 0 (2.31)
211 + 2 r 11'

(Brb - 1) (ZBrb + ZLK tan Brb -2-)

Solving (2. 31) for ZL, we obtain the optimum impedance for zero back

scattering as

 

(:2 :1 _ - 21181132 (831)2 - 1) (2 32)

L 0 Kr[:4prb + 11(13rb2 - 1) tan firb 71%] °

With (2.19), [:21] can be eXpressed as

O

160 V or ((3er2 — 1) 41> r

[2.1] = 2 2 q (2.33)

0 2E1 orb + 11(13r b - 1) tan pro %]

2.2.5. Determination of <I>qr and (Fir

(A) By making use of (2. 23) and the equation of continuity, we have

r

rm) _ __1__ 810 (9)

q 7' J wb 86

. l KrV 11 V.., 235' s.- -.- sass-6 - 1.1)
(2.35)

-for-11$950

+‘F0r 0.59.517

<I>qr is then defined as
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490R 1 -100R

_ .11 1 EL..___ 1 IT..- I e________ ISW cos Brb(2+ 0) R bd0 +§Ocos (3rb(Z 0) R bd0

or —
9 1r

ssls- 9.)
(2.35)

where

J 2 8o - 9' a2

R = b 4 Sin <—-2——) + ~2-

b

Choosing 00 = g , the point of maximum charge, <I>qr becomes)

1‘ 2
I‘ _ 1T. - 1 1 a I ,

(bq -30 cos Brb(2 0)K3 (0, Ez)d0 (2.36)

where

J 32—j(30b 2-251n0'+—-

b
a e

K (6', ) :
3 :2 J a2

2 - 2 sin 0' + -—2-

b

J1130b 2+2 Sin 0'+-§

e b

J 2 + 2 sin 0’ + --2—

b (2.37)

In the actual calculation of (qu, Br will be replaced by so

as an approximation.
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(B) Similarly, (Fir can be obtained by making use of (2. 23) as

 

 

r

q." _ 31 __A9(6)
i -u r

0 I0 (0)

11 -j(30R

S sin Brb(-121- I9' I) cos (0O - 0') E—R—- bd0'

~11"

. 11
em Brb (2 - I 00 I)

(2.38)

where

f 2 - 0' a2

R = b 4 sin ( 2 )+ —-2—

b

Choosing

0 for Brb $1

6 2

0

TT X

s - :11; W firb Z]

. . . r
where 60 [S the pOlnt of nlax1muin current. <1).l then becomes

.
2

l
_ _ 1 5

'

““11 mew.)....K,(.,§.)..

(ID-1r:

for firbsl

Tr

2

) sinsrsls- l9'|)sin(z%+9') K5(9'.iz)doi

'
' b

for firb 21 (2.39)
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where \/ a2

-jpb 2-2c050'+—-z

a2 8 0 b

K 6', —— = (2.40)

2 - 2 cos 9‘ + —-2-

b

2

_. J . _)(_ , a

2 JISOb 2-231n(4b +0)+b7-

K4953: (2.41) 

 

b 2

)ze

~/2-2sin(-4)T‘D-+e')+3-Z-

b

In the actual calculation of (Dir , (3r will be replaced by 50 as an

approximation.

2. 2. 6. Numerical Examples

To Show the theoretical results graphically, <I>qr and (Fir

. 2 2

are numerically calculated for the case of a /b = 0. 00179 as

function of Bob. The optimum impedance, [2;] , is then

0

calculated as a function of Bob for the case of aZ/b2 : 0. 00179.

Numerical results of (qu and (Dir are shown graphically in Figure

2. 2 and 2. 3 respectively. The numerical result of [Z1] is

0

shown in Figure 2.4. In Figure 2. 2 and 2. 3, (qu and (Fir vary

only weakly over the range of interest. This agrees reasonably

well with our original assumption of (qu and (1)11. being constant.

In Figure 2.4 the following facts are observed:
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(1) In general, the Optimum impedance for zero back

scattering needs both a resistive and a reactive component.

(2) It requires a negative resistance around {Bob = 1. 25

and a reactance with negative 510pe around (Bob = 1.

2. 3. Experiment

As mentioned in previous section, the optimum impedance for

zero backscattering, in general, requires a negative resistance.

Practically, it is difficult to implement. To simplify the problem,

an experiment was conducted for the case of a circular 100p loaded

with two purely reactive impedances.

In this section, experimental arrangement and experimental

results are discussed. The comparison between the theory and the

experimental results is also given.

2. 3. 1. Experimental Setup and Measuring Technique

The experimental setup is shown in Figure 2. 5. The

experiment was conducted inside of an anechoic chamber which

is constructed on the tOp of an aluminum ground plane (10' x 12',

0.125" in thickness). In the experiment, the R. F. signal is

radiated from a horn antenna (Scientic Atlanta model 12-1.7)

located at one end of the ground plane and the circular loop is

placed at the other end. With this arrangement, a plane wave is

incident normally upon the 100p. A slot is cut at the central part

of the ground plane. A thin wire probe (Central Res. Lab.

MX-1019/u) protruding out of the ground plane is movable along
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the slot. The loop is loaded with a pair of identical coaxial lines

(characteristic impedance ZC = 50.1) underneath the ground plane.

This simple device provides a purely reactive loading to the loop.

The approximate impedance of the coaxial cavity can be calculated

from the well known expression Z = jZC tan [501 where ZC is the
L

characteristic impedance of the coaxial cavity, [30 is the wave

number and 1 is the length of the coaxial cavity.

The circuit diagram is also shown in Figure 2. 5. The

method of cancellation is employed in the experiment. The R. F.

signal is generated from a microwave oscillator (GR 1360),

modulated by a 1 KC square wave generator. The output of the

R. F. oscillator is connected to the horn antenna. When the scatterer

is absent, the signal received by the probe is cancelled by a refer-

ence signal from the R. F. oscillator through a line stretcher

(GR874-LK20L) and an antenuator (ARRA 2414-20). The cancal-

lation of the probe signal by the reference signal is accomplished

by the combination of these two signals in a mixer after going through

a directional coupler. After the cancellation process is completed,

the loop is introduced. The output of the mixer or the reading of

SWR meter will then represent the backscattered field by the loop.

2. 3. 2. Experimental Results

A circular loop (diameter : 5. 15 cm) was constructed as as

an experimental model using cylindrical wire of 0. 1 cm radius.

The experiment was performed at various frequencies (1. 6 GC -

2. 5 GC). Experimental results are shown in Figures 2. 6 - 2. 20

in which the backscattering cross sections of the loop wire plotted

as functions of loading impedances at each specified frequency.
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The backscattering cross section of the loaded loop is represented

by a solid curve and that of the solid loop by a solid straight line.

It is observed that if the loading impedance (or the length Of the

coaxial line) is properly adjusted, the backscatters of the loop can

be minimized to the noise level. At each frequency about 15 db

reduction in the back scattering cross section was obtained. It

was also observed that the scattering in the off broadside direction

was reduced when the backscatter in the broadside direction was

minimized.

2.4. Comparison Between Theory and Experiment

To check the accuracy of the theory, the Optimum reactive

impedance for the minimum backscattering was numerically cal-

culated and then compared with the experimental results.

The theoretical value for the optimum reactive impedance

is calculated as follows:

(1) In the expression for the total back-scattered field,

equation (2. 30), the loading impedance ZL is replaced by jXL,

(2) An expression for the total backscattered field is

numerically obtained for a particular frequency as the function

of XL'

(3) A computer program is then set to calculate the

particular value of X which gives the minimum value of the total
L

backs catte red field,

(4) Thus the Optimum reactive impedance, E1] , is

---0

obtained as a function of Bob.
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The experimental value for the Optimum reactive impedance

was obtained by taking into account of the stray capacitance which

exists at the end of the coaxial line.

The experimental and theoretical results of the Optimum

reactive impedance for the minimum backscattering are shown

graphically in Figure 2. 21. The dotted curve represents the ex-

perimental results and the solid curve represents that of the theory.

The agreement between theory and experiment is reasonably good.
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CHAPTER III

MINIMIZATION OF BACKSCATTERING OF A

LOADED RECTANGULAR LOOP

3.1. Introduction

A theory of the minimization of the backscatter of a metallic

rectangular lOOp by impedance loading method is developed in this

chapter. A rectangular 100p loaded symmetrically with two identical

lumped impedances at the centers of the long sides of the lOOp is

assumed to be illuminated by a plane wave at normal incidence. The

induced current on the loaded 100p is determined as a function Of the

loop dimensions and the loading impedance. Based on the induced

current, the backscattered field can be calculated. It is then possible

to find an optimum impedance which leads to zero backscattering from

the lOOp as a function of loop dimensions. Some numerical examples

are included.

3. 2. Theory

Based on the principle of superposition, the problem of the

scattering from a loaded loop illuminated by a plane wave at normal

incidence can be considered as the combination of the scattering of

a solid loop and the radiation of a driven loOp as described in Chapter

H. Thus the following two cases will be considered separately and

the results will then be combined to yield the final solution for the

scattering from loaded loop:

(A) A solid rectangular loop illuminated by a normally incident plane

wave.
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(B) A rectangular lOOp driven by two identical voltages at the centers

of the long sides.

The situation is illustrated in Figure 3.1. In fact, case (A)

is the scattering of a solid rectangular 100p and case (B) is the

radiation of a rectangular 100p antenna. Case (A) has already been

solved in Chapter 1 and its results are quoted here for further theoretical

development. Case (B) will be considered in this section. The results

of Case (B) will be superposed upon those of case (A) to Obtain the

solution for an illuminated, loaded rectangular loop.

3. 2. 1. Scattering from a Solid Rectangular Loop

The following expressions from Chapter 1 are needed for

further deve10pment:

I E

s -1411 O
I :

cos Bohl cos [30y - cos (30(h1 + hZ) + E:- P418(y) + 31-? P4Za(y)

s

 

cos (30(h1 + hz) + 51— G

s   
‘_ (1.167)"—"
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le(x) — ZJT IX

11 o

 

 

_._ . 1 s 1 s
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S : 3411 o

Ewwfllo ’5 (I) 5o XOS

-———1

1 1 s

2Ecos fiohl cos [30y - cos {30(hl + h2):I + E; U418(y) + g—z- U42 (Y)

s

 
cos [30(hl + hz) + $— G

s

 

 

   

 

 

(1.173)

E 5(in : 1'4“ Eo X

1x 10 goq)s £3o

—. . 1 s 1 s ——‘

2 Sin (3th s1n (30x + @— g11 (x) +Ezg12 (x)

s
s

l

-—-—. cos (30(h1 + hz) + 5: G

(l. 176)

[ 3:] e'jBoRo J1

E = 2 E

11 0 RO <I>S cos (30(hl + hz) + 51— G]

8

(1.183)

s e-jBORo J2

13:] = 2E

I: 10 0 R6 cps cos 80(11l + hz) + g1— G]

5

(1.188)

where I4ys(y) and llxs(x) are the induced current on side 4 and side 1

of the rectangular lOOp reSpectively. Es is the backscattered field

on the axis and in the far zone of the lOOp maintained by the induced
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Figure 3. 2. Geometry of a radiating loop.
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currents. The subscripts outside the brackets in the above expressions

are referred to the order of solutions.

3. 2. 2. Radiation from a Rectangular LOOp

(A) Geometry of Problem

The geometry of the problem is as shown in Figure 3. 2. A

rectangular loop with short side 2h1 and large side th is assumed to

be made of perfectly conducting wire of radius a. Two identical

voltages V are connected across the gaps at the centers of the long

sides of the loop. The dimensions of interest are

2 2 Z

a << 111 andh2 , [30a <<1

where (30 is the wave number. We assume that the wire is thin enough

so that only the tangential component of current is induced.

(B) Integral Equations for Loop Currents

The tangential electric field should vanish at the surface of

the loop except at the gaps at the centers of the long sides where

voltages of V are maintained. Assuming that the gaps are very small,

we obtain the following equation:

For side 4

a

E“ =-V6(y) (3.1)

where E4: is the tangential electric field at the surface of side 4

and 6(y) is a Dirac delta function. Due to symmetrical configuration,

if follows that



124

Izyrm = I4yrm (3.2)

ler(x) =-I3Xr(x> (3.3)

qzrm = qfly) (3.4)

qflx) = -q3r(x> (3.5)

where I4yr(y) is the induced current on side 4 and ler(x) is that on

side 1, etc. qir denotes the induced charge on side i, i = 1, 2, 3, and 4.

E4: can be expressed as

_\

E45 = - (174515), - jw<A4r) Y (3. 6)

where A41. is the vector potential at the surface of side 4 contributed

by the currents in the loop; ¢4r is the scalar potential at the surface of

side 4 maintained by the induced charges on the loop.

In symbols, A r and ¢4r can be expressed as
4

(3.7)

4’4 = <1’41r + c1’4in + c1’43r + ‘1’44r (3'8)

where A4}: is the vector potential at the surface of side 4 contri-

buted by the currents in sides 1 and 3. The currents in sides 2 and

4 do not contribute to A4xr because they do not have x component.
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Similarly, A4},r has the same meaning as A4xr except that the contri-

bution is made by the currents in sides 2 and 4. ¢4ir is the scalar

potential at the surface of side 4 maintained by the charges on side

i, i=1, 2, 3, and 4.

r .
A can be expressed in terms of current as

 

 

 

4y

r #0 hZ r (BI-31301.44

_ __ I I

"hz

“o hZ r -Jfior42

+ 2;; 5 12y (Y') r dY'

h 42

- 2

#0 h2 r

.. __ I / 1 l

'hz

where . .

e-Jfior44 e-mor4z

K (Y. Y') = + (3.10)

1A r44 r42

r =N/(y' -y)2+a2 (3.11)
44

2 2

r42='\/ (y' -y) +411l (3.12)

With (3. 7) and (3. 8), (3. 6) can be rewritten as
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r __ _8_ r r . r _8_ r r

E4t - -8y (4)42 + (1)44 ) - J(‘)A4y - 8y ((1)41 + 4’43 )

(3.13)

By the Lorentz condition, it follows that

r r 'w “J r —" r jw 8A4yr(y)~

4°42 +4’44 = Z V'iAziz “‘44 )= 2 8y
(3,, 50

(3.14)

After substituting (3.14) in (3.13) and after rearranging, (3.13)

becomes

Ea_ __j_w_( 82 2)A 1' _8.( r+ r) (315)
4t " 2 WE +50 4y (Y)'ay 1’41 4’43 '

The substitution of (3.15) in (3.1) gives

 

 

 

 

. z . 2

2 16 V 1B
8 2 r o o 8 r r

(“Tay +130 )A4y1Y)"‘—“'"‘w 51”" w ‘5?(¢41+¢43)

(3.16)

where

¢ r+¢ r’ l .1111 r(')eror4l dx'
41 43 4175 q1 x r

_h 41

1

1 hl r e’Jfior43

l

4Tr€ 5. C13 (x') r dx

0 h 43

" 1

1 hl r
_ I I I

' 4Tr€O .1 q1 (X ) K1B(y’x ) d"

-h
l (3.17)
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where

-jBor4l 41301.43

K (y.x')= e - e———— (3.18)

1B r41 r42

2 , 2
r41= N/(hz-y) +(h1-x) (3.19)

2 2

r43: ~/(h2+y) +(h1-x') (3.20)

Similarly, the differential equation for the vector potential at

side 1 can be obtained as follows:

Since the tangential electric field should vanish at the surface of

side 1, we have

a—Elt -0 (3.21)

where Elta is the tangential E field at the surface of side 1 maintained

by the current and charge on the 100p.

a

can be expressed as
E1t

a

Elt
= - (v ¢1r) -jw(A1r) (3-2?->

X X

where ¢1r is the scalar potential at the surface of side 1 maintained

_;

by the induced charges on the loop and A1r is the vector potential

at the surface of side 1 contributed by the currents in the loop.

-‘ r r
In symbols, A1 and (bl can be expressed as

9 (3.23)

¢1r=¢11r+¢12r+¢13r+¢14r (3'24)
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where Alxr is the vector potential at the surface of side 1 contributed

by the currents in sides 1 and 3; while A r is that contributed by the

1y

currents in sides 2 and 4. (bur is the scalar potential at the surface

of side 1 maintained by the induced charges on side i, i = l, 2, 3 and

r .
4. Alx can be expressed in terms of current as

 

 

r #0 h1 r e-Jfiorll

Alx = Z}? 5 I1x (x') _r dx'
_h 11

1

no hl 1. 81130113

+ T 1 13x1”) dx'W -h r13

1

“0 hi r

= 7}"? 5‘ 11X (x') KZA (x,x') dx'

'hi (3.25)

where . .

fiflorll 'Jfiorl3

I — E...___._ _ E__.____K2A(x,x ) — r11 r13 (3.26)

r11:“/ (X' --X)Z+&12 (3-27)

r13 = [(x' - x)2 + 4h22 (3. 28)

With (3. 23) and (3. 24), (3. 22) can be rewritten as

Ea=-—§-¢ r+c1> r>-”wA ‘23-’— ¢ 1L”+cp 1' (329)
It 3x 11 13 3 1x ax 12 14 > '

By the Lorentz condition, we have



._\. __1 . 3A
r r_ jw . r r _ 3w 1x

4’11 +4’13 “ 2 V (A11 +A13 1" 2 3x (3°30)
 

Substituting (3. 30) in (3. 29), we can rearrange (3. 29) as

 

2
' 2

Ema: ' ‘31.): (3:2 + B0)A1xr "58; (“1’12r + ‘11:) (3'31)

0

where 61>er and ¢14r can be expressed in terms of charge as

 

 

 

 

 

¢ r+¢ r___1_ hZ r I 9;?11—2 d I

12 14 ‘ 47r€ qz (Y) r Y
o -h 12

2

hz r 84130114

4“ S <14 (1") r dy'

o -h 14

2

1 ha r
_ l 1 l

_ 411.60 5 C14 (Y ) KZB (X, Y ) dy

'hz (3.32)

where

-j(30r12 -jfior14

K (x.y')=e————- + e (3.33)

2B r12 r14

. , 2 2
r122J1h2'Y)+(hl+x) (3.34)

2 2
r14 = N/ (h2 - y') + (h1 - x) (3.35)

With (3. 31), (3. 21) can be rewritten as



 

2 '(3

(87' + 5021A1xrix) = on "5'8; ( ‘1’12r + ‘11:) (3'36)

Due to symmetrical configuration, we note that

r r

A4y (y) = A4}, (-y) (3.37)

(x) = - A r(.x) (3.38)
r

A 1x1x

(3. 37) implies that A r(y) is an even function of y and,

4y

therefore, the general solution for A r(y) in (3.16) can be expressed as

4V

0

where C4:r is an arbitrary constant, and 64r(y) is a particular integral

which can be found to be

64r(Y)=% sin B01Y1 - j: 5%[4541r(8)+¢43r(5flsin(30(Y-S) ds

(3.40)

Similarly, (3. 38) implies that A Xr(x) is an odd function of x and,
1

therefore, the general solution for Alxr(x) in (3.36) canbe expressed

as

Alxr(x) -_- EZOiEC1r sin (30x + 611' (x):] (3.41)
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where Clr is an arbitrary constant and 61r(x) is a particular integral

which is found as

91r(x) = — SO 5%[¢12r(s) + ¢14r(sfl sin (30(x - 8) ds (3.42)

With (3. 9) and (3. 39), it follows that

h

41v r 2 r

f,— A4y (y) = 5 1,,y (y') K1A (y. y') dy'
o

-hz

- 411' r r
: ZLo—[C‘l cos Boy+ 64 (yj

(3.43)

Meanwhile, with (3. 25) and (3. 41) we obtain

h

4w r l r

”—- A1X(x) =5 I1X (x') KZA (x,x') dx'

0 -h
1

-'41r r . r

= —J§-O—[Cl Sln Box+ 61 (35)]

(3.44)

(C) Zeroth Order Solutions for Loop Currents

At the first approximation, we assume that
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A r 11

fl = __0_ @(y) (3.45)

I r(y) 411 r

4y

A r [.1

fl 2 _4_° q; (x) (3.46)
r' TT r

I1x(x)

where <I>r(y) and <I>r(x) are defined respectively as

4,, A4 r(1r)

<1> (y) = __ __L__ (3.47)

r “0 I4Yr1y)

A r(x)
<I>r(x) = :47 —l-"—r—— (3.48)

0 1x (x)

Substituting (3.45) in (3. 39), we obtain

I4y(y) :fl [C4]: COS BOY + e4r(fl (3.49)

O 1‘

Similarly, the substitution of (3.48) in (3.43) gives

ler(x) = fig-111$?) E311. sin (30x + 611.05.] (3. 50)

As we can see from (3. 9) and (3. 25) respectively that A4yr(y) is

primarily contributed by the current elements in the neighborhood of

y and that A xr(x) is mainly due to the current elements located
1
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nearby x. It is, therefore, quite reasonable to assume that ¢r(y) in

(3. 47) is independent of y and ¢r(x) in (3. 48) independent of x. For

simplicity, we assume that

<I>r(y) = <I>r(x) = <1> (3.51)
1‘

The boundary conditions for determining C41. and Clr are

(a) Current at the corners being continuous.

. r _ r _ ,
1.e., 14y (y: hz) - -le (x- hl) (3.52)

(b) Charge around the corners being continuous.

i.e., q4r(y = h2) = qlr(x = hl) (3.53)

The substitution of (3. 49),(3. 50) and (3. 51) in (3. 52) yields

r r . r
C cos (3th + 94 (h2) = - C 811'). Bohl — 91 (hl) (3.54)
4 1

q4r(y) and q1r(x) can be found as follows by making use of the

equation of continuit y.

8 r

ay 14), (Y)

c
r
e
-

q4r(y)

(3. 55)
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q,"<x> - 1 ~—— I (x)

861r(x)

= ~15 43—;04: [Clr (30 cos fiox+ -——-—-8x:1 (3-56)

Combining (3. 55) and (3. 56) with boundary condition (3. 53), we

 

 

 

have

r . ae4r(y) r 881173;)

.. C4 flOSlnfiOhZ + -———a—);-—— : C1 (Socos fiohl-f T

y: 1'12 x=h1

(3.57)

Solving (3.56) and (3. 57) for (34" and clr, we obtain

r 1 39111..) 894%)

C' _—_ ' h 'T4 Botcotfiohl cos (3th - Sin (30 2] 8x y

X: 1'11 yzhZ

1 I‘ 1‘

+ [61 (h1)+ 6‘4 (112)]

tan [1 h1 sin (3 b2 - cos (3 h2

0 O 0 (3.58)

r 1

C1 :(3 [sinfihtanph -cos(3h X
o o 1 o 2 o 1:1

I‘ I‘

391 (x) 884 (y)

8X - 8y

X ‘—" 1'11 y: [‘12

)

.. (30 tan Boh2E1r(hl) + 64r(h2fl 2 (3. 59)

J
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F01 ze Ioth order solution, we assume that 94 r(y) in (3. 40)

and 61r(x) in (3. 42) can be approximated respectively as

W
0

Es <5)
0

With (3. 60) and (3. 61) substituted in (3. 58) and (3. 59), it follows that

[of] _ :21 tan (30011 + hZ) (3.62)

o

4 V 1

, — (3-63)
I: 1 :10 2 cos (30(h1 + h2)

sin (30 lyl (3.60)u

N
)
<

(3.61)1
1

O

 

Consequently, zeroth order solution of currents are obtained as

[My(y‘]0 %—-[ tan( h1+h2)cos fioy+84y(yEI (3.64)

=-:4: Sinfiox + e r 3 65
erX 2 cos Bo(h1+h;) 1 (X) ( ° )

 

If (3. 60) and (3. 61) are applied to (3. 64) and (3. 65), we have
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. ' h + h - ly l)

r __ JZTTV sm 50( 1 2 3 66

[14y (yfloo - goclir cos (30(hl + hZ) ( ' )

. sin (3 x

1 r = 121717 0 (3.67)

E 1" (XZiOO éocbr C05 86th + h2T

(D) First Order Solutions for Loop Currents

To obtain first order solutions of currents, the following

equations are needed:

From (3. 39) and (3. 41)

A4yr(y) : 6‘1— 13:41. cos (Soy-t 64r (yZJ

From (3. 49), (3. 50) and (3. 51), it follows that

__ #411 _._ r y

E48111, ‘ “2:?le4 BM ‘1']

Elxnxfl = if;%— [Cir sin (30x + 91r(x):l

O



137

From (3. 55) and (3. 56)

11 89 r(y)

[qu - fi[ «2: .0 a.“ 47—]
O O r

r 411 r 891r(x)
[:q1 (xfl = T1060r C1 (30 cos (30x + ————--8X:1

0

First order currents are formulated as follows:

r _ r 4Tr r _o

[:14), (yZl —l:I4y (yflo +“Tor {A4y - 4n

1

h

51 1: I4yr(y'flo KlA (Y! Y') dyi}

-111
(3.68)

r I‘ 411
“o

[11" (xii :[le m] + TEE—i AIX' 4?

l 0

r 1 1 1. 5 [11x (X310K2A(X’ x ) dx i

-hl - (3.69)

In fact, (3. 68) and (3. 69) can be rewritten as

h
2

1:14;”):1 gZE4;(Y)] '21:.) [I4yr(>")] K1A(y.y')dy' (3.70)

1 O I‘ _h2 O
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h
1

[le11313 -:-’ zfilxflxfl “(1}- 5 [11:13:13 K2A(x,x') dx' (3.71)

1 0 r —h1 0

Substituting zeroth order solutions in (68) and (69) yields

[:14Yr(YZil zi-Egr: {2[C4r cos (30y + 64r(y)-l

C: hz

' E— 5 COS Boy. K1A(Y: Y')dY'

1' ~h
2

l hz r

- q.— ) 94 (y') K1A(Y.Y') dy'}

r -h2

6%?— [C4rL1r(y) + 294r(y) - Nlro’fl

O r

(3.72)

where

r Tca(Y)

L1 (y) : 2. COS Boy - T— (3.73)

r

r nlrly)
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h
2

Tca(Y) = 5‘ C05 BOY' K1A(y,y') ch“ (3. 75)

.h2

h2

n1r(y) : S 9437“,.) K1A(Y: Y') d)" (3. 76)

‘hz

-'4 .

Elxnxii =35;— izEClr 5‘“ po+61r(xfl
1

c r h)

- ‘4'):— 5 sm (3 x' K2A(x,x') dx'

'hl

h

1 1 r
- $— 91 (x') K2A(X’ x') dx'

r -h

' T (X (1 r(x)
'- 4W . *d 1

5:3; {Clrigsm Box-$11
291r1X1'T}

-'4TT r r r r

= 5:3; E31 M1 (x)+ 291 (x) - Dl (xi,

(3. 77)

where

r . Ts*d(x)
M1 (X) = 28111 BOX -——-§——-— (3.77)

r
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1. d1 (X)

D1 (X) = T

h1

Ts>l<d(x) : 5 sin (Sox' K2A(x, x') dx'

-h
1

h1

d1r(x) S1 91r(x') K2A(x,x‘) dx'

.111

With (3.14) and (3.17), (3. 8) can be rewritten as

   

h

. 8A r(y) 1
r __ Jw 4y r

(134 (Y) "' B 2 8y + 4.1160 3‘ ql (x')KlB(y, X')dX'

o -h
1

Similarly, with (3. 30) and (3. 32), (3. 24) can be rewritten as

r 'w 8A1):(X) 1 ha r

¢1(X) = ESL-z T + 411—5— 5 C14 (Y') KZB(X’ Y') dY'

o O -h
2

(3.78)

(3. 79)

(3.80)

(3.81)

(3.82)

If the zeroth order solutions are substituted in (3. 81) and

(3. 82) respectively, we obtain
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r .w _-.'1 r . 8941's)

(1)4 (3,):ng vO EC4 Bosmfioy+ 8y :1

O

 

E

O

hi
1

+ 411 .1 Elrix'fl K113iy'x'1d"l

-111 0

r . 1 864r(y) clr 111

-h

1

1 h1 891r(x')

+ EB—o' 5' ax! K1B(Y2 x') dx'

-hl

r
1'=-c ramp 7+; 894 (Y) +0 rTCdW) + f1(y)

4 o (30 By 1 Er 5r

86 r( )
_ r . l 4 Y r r r
_ — C4 SinBOY+;3——'-a-y—— + C1 L21Y)+Fl (Y)

0
(3.83)”

where

T (Y)
d

Lzrm = 435— (3.84)
I‘

r f1r(y)
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h
1

Tcd(y) = 5 cos Box' K1B(y,x') dx' (3.86)

-h

1

f r 1 hl 891r(x')

1 (Y) = E;- S T K1B1Yox') dx' (3087)

-h

1

. _. 89 r(x)

¢1r(x) =_J_2_w 3L [Clrflo cos (30x + ——-la—x————-]

(3 o
O

 

h

1 2 r 1 1 1

+ 411’60 E14 15’] K211891111y

..h2 0

 

ae r(x) c r f 1’00

=Crcosfix+—l— 1 - 4 T (x)+ 2

1 0 50 8x Er s*a 6r

‘Crcos x+_1_ ___391r(x) -Cer()+Fr()
‘ 1 50 (30 8x 4 2 X 2 x

(3.88)

where

T (x)

M2r(X) 1' “—3-— (3.89)
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r farm
F2 (x) _ T (3.90)

h2

Ts*a(x) = 5 sin fioy' K2B(x, y') dy' (3. 91)

‘hz

12 (x) = 5: ————a—YT——- K231“ ) dy (3.92)

'hz

The boundary conditions to be used for the first order

solutions are:

(a) Current at the corners is continuous

ie 1 r(=h)=-1 r(52:11) (393)
° ” 4y Y 2 1x 1 °

(b) Scalar potential at the corners is continuous

' r — h — r — h (3 94)
10809 (1)4 11" 2) - (1)1 (X— 1) °

The substitution of (3. 72) and (3. 77) in (3. 93) gives

r r r r

04 L1 (hz) + 264 (112) - Nl (ha)

= - Elerrml) + 20117111) - D1915] (3.95)
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With (3. 83) and (3. 88), (3. 94) becomes

  

39 rm
r . 1 4 r r r

-C4 Sin BOh2+Eg T +C1 L2 (h2)+Fl (ha)

1'th

ae r(x)
_ r _1__ 1 r r r
— C1 cos flohl + 80 ————8x - C4 M2 (hz) + F2 (hi)

x=h

(3. 96)

Solving (3.95) and (3.96) for c4Jr and of, we obtain

m)—

E64r(h2) + 261r(h1) - Nlr(h2) - 131171113] [cos (30111 - L2r(hz)]

ae r(y) 69 r(x)
r 1 4 1 1 r r

+Ml (111)163—57— "5'; 6x ”“1 (1121-112 (‘11))

y=h2 x=h

 

  1
h—— _

erail) [sin (30112 - M29111] - L1r(h2)[cos pohl — L2r(hzfl

(3.97)

F

Ee4r(n2) + 261r(h1) - Nlr(h2) - 13117111] [sin ‘3th - Mzra‘llfl

1 4r 1 r r

+ L1 “‘21 so 8y " 5: 8x' + F1 “‘2’ ’F2 (1113:)

 h—  y=h2 x=h1

 

M1r(hl) Ein floh2~M2r(hlfl - 1.117112) cos (301:1 - Lzr(hzfl

(3. 98)
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For our first approximation, we assume that

94r(y) ‘2’ [949,4] = 1g- sin (30 Iyl (3.99)

0

1
1

O (3.100)81%;) 1.: [811(31):]

0

Then (3. 74), (3. 78), (3. 85) and (3. 90) can be rewritten as

1'

where

_Y_ hz .Y.
2 .

N1 (1') =‘o—S sm Bolv'l K1A<y.y') dy' = —-§— 13am (3.101)
r -h

r

2

hz

Tsa(Y) = 5‘ sin (30 lyll K1A(y’ 3,1)in (3.102)

-hz

r

D1 (X): 0
(3.103)

r ,

F1 (Y) = 0
(3.104)

Y. 112 + for y' > o

2
F2 (X) - T :1: cos (5 y' K2B(x’ y!) dyu

'hz
- for y' < O

V

2 32.. Tba(x) (3.105)
r
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where

hZ + for y' > 0

_ I I 1
Tba(x) -. S t cos (30y K2B(x, y ) dy

1
-112 — for y < 0

(3.106)

Using (3.99) to (3.106), c4r in (3.97) and c r in (3.98) can be
1

obtained as follows if only the terms with the order of 5L are

r

retained in both numerator and denominator:

- (3.107)

1 cos Bo(h1 + hz) + $9

r

 

r

3’2. [sin (30(111 + hz) + 3"]

[Cf] .

1'

111%]
[C11] = (3.108)

1 cos (30(11l + hz) + if?

r

 

where

r 1 .

B = - 2- [Tsa(h2)cos Bohl + 2 Tcd(h2) Sin (5th

+ Ts*d(h1) cos (3th + 2 Tba(hl) sin (Bohfl

(3.109)
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1 . .
G = 2 EI‘S*d(h1)sm (3th + 2Ts*a(h1) Sin fiohl

- Tca(h2) cos (Sohl - 2Tcd(h2) cos 130112]

(3.110)

:
[
1

ll

r _ .121 sin fiohz [Tsa(h2) + ZTs*a(h1):)

+ 90112 11.4112) + ”ba‘hlfl 1
<3 I“)

With (3. 51), (3. 107) and (3.108), (3.49) and (3.50) can be

rewritten as

r

1% [s in (30(hl + ha) + g—]

r
 

Eurwfl =Zig{ ' o C” 13oy 1 941.1”)

1 o r cos (50(hl + hZ) + E-

r
(3.112)

414-51

cos (30(h1 + hZ) +%

 

E1591 4%"; i
sin pox + 911751)}

(3.113)

(E) Evaluation of Particular Integrals 64r(y) and 91r(x):

Integrating by parts, we can rewrite 94r(y) and 91r(x) in

(3.40) and (3.42) as



148

Y

e4riy) = 3;. sin solyl - SO 5% E41161” 943r(s)]sin sow-s)ds

= X2: sin poly) + E41r(o) + ¢43r(ofl sin (30y

+ 90 S: [441?» + 443%] cos (sow - s)ds

V . r
= 7 em (3013’) + (30 S: E41r(s)+ (1)43 (8E) cos (30(y - s)ds

(3.114)

(3.114) is derived based on the relation of

¢41r(o) s - ¢43rr(o) (3.115)

Similarly,

X

61r(x) - 50 5%- El 2r(s) + ¢14r(sfl sin (30(x - 8) ds

x

r r . r r

E612 (o)+ (1)14 (oil Sin fiox+ (30 50 E312 (s)+ 4514 (Bil

° cos (30(x - 8) ds

x

= 2 ¢12r(o) sin fiox+po 50 E31 Zr(s)+¢l4r(x)—J cos (30(x- s)ds

(3.116)
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based on the relation of

r

415(0) = 414 (o) (3.117)

For the first approximation, we substitute (3. 99) and (3.100) in

(3. 55) and (3. 56). This leads to

4116 + for y > 0

qr1Y1=+TFO -Crsin(3y:i:lcos(3y
4 4 o 2 o

r - for y < 0

(3.118)

r 41T€o r
ql (X) = '1’T C]. COS [30X (3.119)

The substitution of (3.119) in (3.17) gives

r h

<1) r()+ct> r()=+Cl £1 cospx'K (x')dx’
41 Y 43 Y 745—- o 113 Y'

r -h
1

c1r
: r _ Tcdw) (3.120)

Similarly, with (3.118), (3.32) can be rewritten as
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r r C4r hz
_ ° 1 I 1

(1)12 (X)+¢14 (X) "' ”-3;— S SlnfiOYKZB1st)dY

'hz

V h
-2- 2

+ E— S t cos (Boy' K2B(x, y')dy'

r
-h

2

+ for y' > 0

- for y' < O

— - Tr Ts*a(x) +6; ba(x)

(3.121)

With (3.117), (3.121) yields

V

26 r() - C4r T (o)+ '3 1' (o) (3 122)
12 ° ‘ ' E; s*a 35' ba °

Substituting (3. 120) in (3.114), we obtain

r V Clrfio
04 (y)=7 sin 5011’) +T 0 Tcd(s)cos 130(Y‘31d5 (3.123)

1‘

Similarly, with (3.121) and (3.122), (3.116) becomes
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011’(x) : 51_{ l:_ C4r Ts*a(o)+\% Tba(ofl sin (30x

1’

X

r V
- C4 50 Ts*a(s) cos (30(x - s) ds + 2

X

- SO Tba(s) cos (30(x - s) ds }

(3.124)

With (3.108), (3.123) becomes

8 r :1 V .[4 .2. MC...)

V . 13r
- 2 [Sin 50011 + hz) + 47:] (3 y

r 52 S T d(s) cos (3 (y-s)ds
I‘ O C O

 

cos (30(hl + hz) + £—

r

(3 1‘

sin poly] Eos (30(111 +h21+£fl - 21>? sin (30011 +h2)+§:]tcd(y)

 

N
I
<
1

cos (30(hl + hz) + EG—

r

(3.125)

where

Y

tcd(y) : 50 TCd(s) cos [50(y - 5) ds (3.126)
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Similarly, the substitution of (3.107) in (3.124) gives

1‘

sin (30(h1+ hZ) + £—

Elrg = <1; 2X r Ts*a(o)+Tba(°) 51“ pox

1 cos (30(hl + hz) + FE—

r

 

 

Br

 

sin (30(h1 + hz) + $—

+ Gr ts*a(x) + tba(x)

cos (30(h1 + hZ) + E)—

r

(3.127)

where

x

ts*a(x) : 5‘ Ts*a(s) cos (30(x - 5) ds (3.128)

0

x

tba(x) : 5)) Tba(s) cos (30(x - 3) ds (3.129)

With (3.125), (3.112) becomes
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r _ '211V

E4)! WE)“ _1_535: x

(_—

sinfi (h +h - lyl)+ 1 BrcosBOy-Gsinfi 1y)

0 l 2 E o

r

—

  
+ (30 sin (30(h1 + hZ) tcd(y):] + fi (30 Br tcd(y)

——-— r —_—4

 

cos (50(h1 + hz) + EG—

r

sin (30011 + h2 - lyl) + 1}— P41r<y) +£72— P42r(y)
r

  

: 1211V 1‘

Locpr 1 G
cos (30(hl + hz) + E—

r

(3.130)

where

r r . .

P41 (y) = B cos Boy - G sm poly) + Bo s1n (30(h1+ hz) tcd(y)

(3.131)

Furor) = ()0 Br tcdm (3.132)

Similarly, with (3.127), (3.113) becomes
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r _-'211V

152911 ‘53— X

(— _,

sin Box + £—{ Hr sin (30x + sin (30(h1 + hZ) Ts*a(°)

r

+ cos (30(h1 +h2) Tba(o)]sin (30x + sin (30(h1+h2)ts*a(x)

+ cos (30(h1 + hz) thaw”)

1 . r
+ (3.—2. { [BrTs*a(o)+ GTba10fl Sin Box+ B ts*a(x) + tha(x)}

1'

h——— —  
 

cos fio(h1 + hz) + £-

r

. 1 r 1 r
SlnfiOX'ta: P11 (X) ‘1'? P12 (X)

=-°211V r

L 5

cos (30011 + hang-

r

 

(3.133)

where

Plll‘(x) : Hr sin (30x + Ein (30(h1 + 112) Tsakaio) + cos (30(h1 + h2)Tba(o)]

sin (30x + sin (30(h1 + 112) ts>l<a(x) + cos (30(h1+h2)tba(x)

(3.134)
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r r .
p12 (x) : E Ts*a(0) + G TbawZ) Sin (30x

r

+ B ts*a(x) + tha(x) (3.135)

Eyr (yi' and [II xr(x)] involve the doubel integrals whiCh in

11 11

turn complicate the problem. In order to avoid double integral, the

following method is presented at the expense of sacrificing the

accuracy of the theory:

Substituting (3. 99) to (3.105) in (3. 72), we obtain

 

V . h h Br

7 Em fio( 1 + 2) + Eli] Tca(y)

(- [:2 cos (30y - T—

r
cos (30(h1 + hz) + £—

r

|
<
1

 

T (Y)

+Vsinfiolyl- 2 2a }

1‘

. 1 l
251n(30((h1+h2)- 1Y1)+_<D U411.(y)+-------—2 U42r1Y)

.2 r ‘1’
11V

r
 

cos (30(h1 + hz) + £3—

r

(3.136)
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where

r . .
U41 (y) = ZBr cos (30y - Sln (30(hl + hz) Tca(y) - G Sin poly)

+ cos [50(h1 + hz) Ts (y)
a

(3.137)

U42r(y) = - 13‘r Tca(y) + o Tsa(y) (3.138)

Similarly, the substitution of (3. 99) to (3.105) in (3. 77) yields

v 1+1r

.4 7111‘s] T M(x)

Exr1x] ‘21; r c. (“infiox'—%‘—
r cos (10(h1 +h2) +E— r

1'

  

10 °

. 1 r 1 r
2 Sin flex-1'3): gll (X) ‘1'? glz (X)

 

_ iZnV r
_ § §

° r cos (30(111 + hz) +£—

r

(3.139)

where

gllr(x) = ZHI‘ sin (30x - Ts*d(x)
(3.140)

g12r(x) = "' Hr TS*d(x) (3.141.)
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(F) Expansion Parameter, CIJr

With zeroth order current in (3.66), <I>r(y) in (3.45) can be

rewritten as

h2

1 sin (30(h1+ 1‘2." ly"l ) K1A (159') dy'

'hz

 {3(9)

sin (30(h1+ h2 -1Y1)

sin 13011111 + 112) Tca(y) - cos (30(hl + hz) Tsaw)

 

sin (30(hl +112 -1Y1)

For a loop with (50(hl + hz) 5% , the point of maximum current

is at y = 0 , so

<I>r = Er(y):] = Tca(°) - cot (30(h1 + hz) Tsa(°) (3.142)

y= 0

For a loop with (30(h1 + ha) 2 1T2- , the point of maximum current is

aty=(hl+h2) ->‘- , so
4

r [jg-(3')]

'
9
'

ll

_ X

y-(hl +112) -71—

-. X A
Sinpo(h1+h2)Tca(h1+h2- 4) - cos (30(h1 +h2) Tsa1hl +hZ - 4)

(3.143)
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3. 3. Total Loop Currents

By the principle of superposition we note that

1' S

Iyiy) = 14,6) + I4y (y) (3.144)

Ix(x) = ler(x) + les(x) (3.145)

V: - Iy(O)ZL = - [:I4yr(o) + I4ys(o)] Z-L (3.146)

(A) Considering the first order solutions of currents

[Luigi in (3. 130), [:14ys(y] in (1.167), [ler(x_)] in

11 11 11

(3.133) andl:11x8(xZ[ in (1.170)) V in (3.146) can be solved as

E

. o G
- J41T ZL B;- 421. E08 (30(1):) '1' 1'12) '1' 6:]

 

cps cos (30011 + hz) + Sis—j

[cosfiolh -cos(301(h +h2)+§-—P431(o)+-—- P428101]

¢S

Q—o‘br Eos (30(h1 + hZ) + 3911+ j211 ZL sin (30(hl + hZ)

r

_-

1 r 1 r
+ '6: P41 (0) +32 P42 (Oil

r

 —-—J

(3.147)
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With (3.147), (3. 130) can be rewritten as

2

I r(y) = ——-—8nZL 33 x
4y 11 £0 50

1_—

Eos pohl - cos (30(hl + hz) + $— P4ls(o) + gl—Z- P428(o) X

s
s

 
Ein 80th + h,2 - M) + 31,— P41r(y)+ (his Farsi)

1‘

r

  _

 F—
——

<I>S cos (30(hl + hz) + 5%]{goér cos (30 (hl + hZ) + 39:]

  + 12" ZL E1“ 8o1h1 + ha) + 31>— P41r(°) '1 glz P42r(o):11
—'

r

1'

Similarly, (3.133) can also be rewritten as

2

811 Z E

r _ _ L o

Elx ”all ’ to (30 x

 

l:cos Bohl - cos (30(111 + 112) + $1;- P4ls(o) +71%? P428(O‘)—"X

s

[:s in Box + 61; Pllr(x) + 4}: Plzrbcfl

r
l.—

_»

 

(— (1)8 [:cos 50(h1 + hz) + $53-31 §o<1>r[:cos (30(h1+h2) + 33-3 ——)

  —

+ j21r zL Ein 80(111 + hz) + 51- P41r(o) + (Pl—2 P42r(oa}_—J

r

r

(3.148)

(3.149)
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Thus, the total loop currents in (3.144) and (3.145) can be expressed

as the functions of the 100p dimensions and the loading impedance ZL'

(B) If consideration is given to the sub-first order solutions of currents

[I4yr(yfl in (3.136), [:ilxrocil in(3.139)’[:14y5(y)] in (1.173)

10 10 10

and [11x91xfl in (1.176), V in (3.146) is obtained as

10

E

. o G
- J41TZL _130 é]? COS (30011 '1' 1‘12) '1' E]

 

(1)8 Eos {30(h1 + hZ) + 39;]

1
L2 cos pohl - 2 cos 50(h1 + hz) + 5; U418(o)+ ;p—l-z U428(ofl

s
 

god’r cos (30(h1 + hz) + £31

+ 3'2sz 2 sin (30011 +h2)+31)— U41r(o) + 317 U4zr(o]

r
1__ r __.__J  

(3.150)

With (3.150), (3.136) can be rewritten as
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r

i
r

E COS 130111 - 2 cos [30(h1 + hz) + 51';U4ls(°)+ $17 [1428(0)] x

 
 

  

__
J—:-:1

<I>s cos (30(111 + hz) + fijxigocpr cos (30(h1 + ha) + 3):]

. . 1 r 1 r

+32112L 2 Sin (30(h1+ hz) + E- U41 (0) + $7 U42 (ofl

i——
r

—.

r

(3,151)

Similarly, (3.139) can be rewritten as

8112ZL Eo

Elx(i) = "—2"— Ta" x
10 o o

1 s 1 '

2cosfih-2cos(3(h +h)+—U (o)+—U (o)X
1: o 1 o 1 2 (I) 41 <I> 2 42

s

. l 1
E Sin (Sex + ; U11r(x) + $7 U12r(xa

r 

 

r

. ,
1 r

EJZTTZLEZ Sin (30(h1 + hZ) + 71>: U41 (o)+;1—Z

1‘

  
E C05501h1+h2)+£;](§0<1

9rcosfio(hl+h2)+c::) “’

 U42r(°);1__

(3.152)
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3.4. Total Backscattered Field

The vector potential, maintained by the induced current in the

radiating 100p, at an arbitrary point on the axis of the 100p and in the

far zone of the loop (Fig. 3. 3) can be expressed as

 

Ar-A’U—BX‘2 21 r(,)e° d'
- y — 4n 4y Y R Y

-hz

H -1floRo hZ

:- ._0. e S I r( n)d1

217 R0 4y Y Y

'hz (3.153)

where

_ 2 ,2 2.,
R _ JRO +y +111 — R0 (3.154)

3.4.1. Total Backscattered Field Based on First Order Currents

With (3.148), (3. 153) can be rewritten as

I—Ar 1. _ A r _ 41r/JOZL e o o

L J ‘ ‘ "'1" 5 E0 R x11 Y 11 o o

1 1
E05 pohl — cos po(h1+h2)+ 21>; p4ls(o) + <37 p425(o)] K1

8

 

 

F '7
G G

<I>s cos 130(h1+h2)+-5;]{ §O<I>r cos Bo(h1+h2)+ 5;]

. . l r 1 r j

+J21TZL smflo(hl+h2)+$— 1341 (o) + :2- p42 (oflj

r

L. r __} 
(3.155)
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 3x

Figure 3. 3 Geometry for the calculation of the radiation

field of a radiating rectangular loop.
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where h r r

2 . P41 (1") P42 (Y')

K1=S [:smfio(hl+h2- ly'l)+—$r——+——¢—T— dy'

-h r
2

(3.156)

K1 will be evaluated in a. following section.

The backscattered electric field due to the radiating 100p is

-jlsoRo
r _ _. r _ _ . e

[EV] — 31.01:ij - J4TTEOZL R0 x

1111

 

Eos Bohl - cos 130(h1 + hz) + RID-8.13418“) + g-l-z P428(o) K1

8
 

<I>s cos 50011 + hz) + $314.04; Eos 130011 + hz) + gr]

  + jZTI’ZL sin 130011 + hz) + 31" P4lr(o) + 317- P42r(ofl _J

'— r
r

(3.157)

The total backscattered field from a loaded rectangular 100p

is obtained with (1. 183) and (3.157)
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E31 {Bill {Bill

 
 

 

  

-jpoRo 1

= 2E e x J -j «z x
1 2 L

0 R0 (138 cos [30(h1 + hZ) + 5%]

1
E05 Bohl - cos 130(h1 + hZ) + 51- P4ls(o) + 7 1:34‘23(o):_l—__K1

§O<I>r cos (30 (h + hz) + %] +j21TZL sin so(h + hz)

+ 1 p r 1 r

E— 41 (O) + —2- p42 (0)

1—— r (1)1. __.1.

(3.158)

3. 4. 2. Total Backscattered Field Based on Sub-first Order Currents

With (3.151), (3.153) can be rewritten as

e-jfiR

[ArJ10=[AerIO %_0
° 5:1:4ylyjody'

l
l

-J'B R
41THOZL e 0 o

=———— E

@050 o R
 

O

Ecosfiolh -2cosfiol(h +h2)+$_U4$1(0)+q)—-1_2—U 4802()

s
__ G l _ _—

<I>S cos [30(h1 + hz) + 35;]{c’ocbr [cos [30(hl + hZ) + 5: G__'

 g  
+ jZTrZL 2 sin (30011 + hz) + 3}- U41r(0) + $17 U42r(°):l}

r r __

(3.159)
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where h

2

_ . , 1 r , 1 r , ,

K2 —5‘ [:ZSInfiO(h1+h2-lyl)+q)—U4l (y)+—@2U42 (y']dy

-h r r

2

(3.160)

Then, the backscattered electric field due to the radiating 100p

is obtained as

-J'F3 R
0 O

r _ r __. __. e

[E] [Y] ' WEE] ’ WEOZL R, x
10 10 10

[:2 cos (30111 - 2 cos (30011 + ha) + 3}; U4ls(o) + 317 U428(o)] K2

8

(be [:cos [-3O(h1 + hz) + 3%]{goér [:cos 130011 + hz) + 3%] fl

 

+32sz [:2 sin (30011 + hz) + $1— U41r(o) + 3% U42r(o):]}

r

—- r —‘ (3.161)
  

The total backscatte red electric field due to the loaded rectangular

100p can be calculated by superposing [Ea in (1.188) uponEEr]

10 10

in (3.160) as



s] 1210 +121.

'15 R

e

O O 1

o (ESL-cos [30(h1 + hZ) + 331: G]

2153   

o R

J2 - JZTTZLX

1 1 s

[2 cos (30111 - 2 cos (30(111 + hz) + 6; U4ls(o) +3—2— 114‘2 (0):] K2

 

  

“m

Q0<19r[cos 130(h1 + hZ) +——-1C3 + jZTTZL [2 sin Bo (h1 + hZ)

(pr

1 r 1 r
+ — U (o) + —— U (0)
or 41 (bra 42 :1

L_. _—

(3.162)

3.4. 3. Evaluations of K1 and K2

From (3.156) we note that

Z 1
5‘ Elnfio(hl+h2-1Y'l)+§—P41(Y) (1,]? 42(dey

-h

where

P41r(y) : Br (:08 BOY - G sin BOIYI + Sin $0011 + ha) th(Y)
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P42rm = Ro Br tcdw)

then

K1 = é [cos Bohl - cos 130(h1 + hag

1 r .
'+ ?r. {2 B Sin flohz - G [1" COS BthJ + Bo Sln F30011+ hZ) de}

1

+—2 fiOBb

‘13 cd (3.163)

r

where
1 -

h2 h2

bCd : Eh th(y')dy' : 5 E 0 Tcd(S) cos fiofy' - s)da dy'

2 , 'hz (3.164)

Similarly, from (3.160) , we have

h

2 . 1 r l r
K2: 5 [28111130011 +112 - ly'l)+§: U41 (Y')+(b—2- U42 (Y'E'dY'

-hz
1‘

where

r r . .
U41 (y) 2 2B cos Boy - Sin [30(h1 + hZ) Tca(Y) - G Sln BOW.)

+ cos [30(h1 + hZ) TSa(Y)

114211,.) = - 13r Tea (y) + G TS (y)
a
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Then

  

‘13
r

(3.165)

where

hZ

tca :5 Tca(y') dy' (3.166)

..h2

h2

tsa = 5‘ Tsa(y') dy' (3.167)

-h

3. 5. Optimum Impedance for Zero Backscattering

The optimum impedance for zero backscattering can be

obtained by letting total backscattered field equal to zero.

3. 5.1. First Order Optimum Impedance for Zero Backscattering

Letting Fly] in (3.158) equal to zero and solving for ZL’

' 11

we have
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-ng<I> [cospw +h2)+-(I)l: G]

 

1 o r o 1

[2.] = _.
012P428(°:lcos h1 - (hl +h2)+ S(°)+

Kli: Ro COS13o 351;},41 «D

S

211

 
. 1 1

- .11 s1n (30(111 + hZ) + F1»: P41r(o) + 37 P4Zr(ofl

rL._.   
(3.168)

3. 5. 2. Sub-first Order Optimum Impedance for Zero Backscattering

Letting [1533:] in (3.161) equal to zero and solving for ZL, we

get

[21

. 1
.. Jngocbr cos (30011 + hz) + If; G]

 

O SE2 cos Bohl - 2cos Bo(h1+h2)+§1— U418(o)+—1-2- U428(o):]

s <I>s

2n

- JZE sin 430011 +h2)+3}— U41r(o)++4711U42 r(o):]

_ r @1‘ ___J

  
(3.169)

3. 6. Numerical Examples

The numerical results are obtained for a square 100p with

E- : O. 0388 . (Pr is numerically calculated as functions of 50h

and is plotted in Figure 3. 4. The Optimum loading for zero back-

scattering [21] in (3.168) is then calculated as a function of
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 O

H
fl
p
.

 

Figure 3.4. <I>r as a function of {30h (a/h = O. 0388).
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fioh for the case of%= O. 0388. Numerical results of [21:] are

0

shown in Figure 3. 5.

3. 7. Experiment

The Optimum impedance for zero backscattering from a

rectangular loop requires both the resistive part and the reactive

part shown in Figure 3. 5. To simplify the problem, an experiment

was conducted for a conducting square loop loaded with two identical

reactive impedances. Experimentally, this reactive loading method

proved to be quite adequate in reducing the backscattering cross

section of a square loop.

3. 7.1. Experimental Arrangement and Measuring Technique

The experimental setup and measuring technique were

identical to the case of the circular loop mentioned in Chapter 2

and no further description seems to be necessary.

3. 7. 2. Experimental Results

A square 100p (side length = 5.15 cm) were constructed as

an experimental model using cylindrical wire of 0.1 cm radius. The

experiments were conducted at various frequencies. The experimental

results are shown in Figure 3. 6.to Figure 3.16 in which the back-

scattering cross sections of the square 100p were plotted as functions

of loading impedances at each particular frequency. The solid curve

represents the backscattering cross section of a loaded square 100p
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Fi ure 3. 5. Optimum impedance for zero backscattering

g from a square loop (a/h = O. 0388).



174

and the solid straight line represents that of the solid quare loop. It

is observed that if the loading impedance (or the length of the coaxial

line) is prOperly adjusted, the backscatters of the square loops can

be minimized to the noise level. About 15 db reduction in the back-

scattering cross section was obtained in the experiments. In Figure

3.17, the optimum reactive impedances for minimum backscattering

are plotted as a function of (Sch.
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