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ABSTRACT

TRANSIENT TWO-PHASE FLOW

THROUGH

POROUS MEDIA

by Kuang-ming Lin

This thesis presents an analytical investigation

by which the movement of the interface for transient two-

phase flow through porous media can be determined. Two

approaches, one-dimensional flow and two-dimensional flow,

are considered in the analysis of the problem. In the

one-dimensional flow, the governing equations are solved

simply by a finite-difference method. It is found that

the results are not very satisfactory near the outflow

seepage face. Therefore, two-dimensional flow is

emphasized. The essential idea utilized in two-dimensional

flow is to treat the interface as a distribution of

sources and to apply the concept of Green's function to

the governing differential equation in obtaining the

solution. For purposes of illustration, a case of con-

fined finite aquifer of rectangular shape is considered.

The two interacting fluids are assumed incompressible and

immiscible. A Control Data 3600 computer is used for all

the numerical computation.
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

The object of this thesis is to investigate

analytically the unsteady flow patterns which exist in

porous media when two adjacent fluids of different

densities are in a non-equilibrium state. The primary

consideration is given to the determination of the

movement of the interface separating the fluids. The

analytical treatment of such a problem is generally very

difficult, and only a handful of solutions of special

cases are available. Some of the more important of these

with respect to this investigation are described in

part C of this chapter and are also listed in the

Bibliography. Practical engineering situations in which

the results of this investigation may be applied occur in

the problems of sea-water encroachment into fresh-water

aquifers and in the area of petroleum recovery techniques.

In this thesis, the physical arrangement in which

the problem is formulated consists of a rectangular porous

medium, confined in the horizontal direction, together

with two adjacent liquid reservoirs as indicated schema-

tically by Figure 1. For the problems to be considered

1
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the horizontal dimension of the rectangle is actually some

twenty times the vertical dimension, so that the inter-

faces and the flow are much more nearly horizontal than

they appear in Figure l.
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Figure l.--Geometry of the Problem

When the piezometric head of one of the liquid reservoirs

is suddenly changed by a certain amount and then kept at

a constant value, the flow of liquid through the porous

medium is unsteady and the interface moves toward a new

equilibrium position. Such a condition is observed fre—

quently in nature when a heavy rainfall occurs or during

a drought when the heavy withdrawal of ground water supply

takes place. It is the purpose of this thesis to apply an

analytical treatment to the problem of the establishment

of flow through a porous medium and especially the motion
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of the interface under such conditions during the transient

state.

Darcy's law is a fundamental law upon which the

mathematical theory of flow through porous media is

formulated. The investigation as reported herein analyzes

the problem from two different assumptions, one-dimensional

flow and two-dimensional flow. The former is presented in

Chapter II and the latter in Chapter III. In the one—

dimensional analysis, the directions of the velocities are

assumed to be in the x—direction only. Since the hori-

zontal dimension is twenty times the vertical in Figure 1,

this would seem to be a reasonable assumption over most of

the region. The resulting governing differential equations

are replaced by the corresponding finitewdifference

equations, and these are solved numerically. The results

thus obtained show that this approach is not completely

satisfactory, and the need for tw0ndimensional analysis

is apparent. The inaccuracy of the one-dimensional

approach stems from the fact that the velocities near the

out-flow seepage face change their directions very rapidly,

thus making the one-dimensional flow assumption invalid.

The emphasis, therefore, will be placed on the two-

dimensional analysis, which describes more realistically

the physical situation. The one-dimensional analysis is

not totally without merit, however, since it does apply

over the major part of the region and also serves as a

guide to the two-dimensional analysis.
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The essential idea employed in the two~dimensional

analysis is to consider the interface as a distribution of

sources and to apply the concept of a Green's function to

the governing differential equations in obtaining a

solution. The resulting solution is in the form of a

double infinite series. With the aid of a modern high

speed computer, such as the Control Data 3600 system at

Michigan State University, sufficient convergence can be

obtained in a reasonable amount of time to yield a solution

within the range required by engineering accuracy.

B. General Theory-—Darcy's Law
 

Flow through a porous medium, like any other type

of flow, obeys Newton's second law of motion, which states

that "forces must be exerted on a fluid to change either

the direction or magnitude of the fluid velocity." When

a fluid flows through a porous medium, the velocity of a

fluid element changes rapidly from point to point along

its tortuous flow path. The forces which produce these

changes in velocity vary rapidly from point to point.

However, in a naturally porous material the porous

structure and hence the multitude of flow paths have a

random character. It is reasonable, therefore, to suppose

that the random variations in flow patterns for any partin

cular fluid element are uniformly distributed. Also the

variations in magnitude of velocity can be expected to be

distributed uniformly with mean zero. Thus, for steady

laminar flow the lateral forces associated with the
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microscopic random variations in velocity can be expected

to average to zero over any macroscopic volume. However,

the inertial forces in the direction of flow will not

average to zero and hence will only be negligible for low

flow rates. Fortunately, the flow in most cases of prac-

tical interest is of the slow laminar type and Darcy's

law, which is presented below, applies. The mathematical

theory of flow through porous media is always formulated

with Darcy's law being taken as the fundamental law of

flow.

In the middle of the 19th century, Henry Darcy, a

French engineer, discovered through experiments a law

governing the flow of water through filter beds. This

law expressed in vectorial form is

‘5’ -=grad (0' (l)

or

-V<o.”C?

In this equation, q’is the velocity vector,

cp=kh=k<§+y> - (2)

is the velocity potential, and h is the piezometric head.

For the meaning of‘$ and y, refer to Figure 2. Here, the

liquid of specific weight 'r is flowing with a flow rate

of Q (dimension L3/T) through a tube which is filled with

 

‘A complete list of symbols with their definitions

is given in Appendix I.



a porous medium of length L.

6

It is seen that
.2

r
and y

represent the pressure head and the elevation, respectively.
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From dimensional analysis,

Figure 2.-~Generalized Darcy's Experiment

conductivity k can be expressed as

k = cd
21
A o

the hydraulic

(3)

The dimensionless factor c combines the effects of

porosity, range and distribution of grain sizes, and

shape of grains as well as their orientation and packing,

while d, the mean grain size, is representative of the

average pore size. The hydraulic conductivity k depends

on the properties c and d of the medium as well as on

the specific weight 7 and viscosity Au of the fluid.
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The product K = cd2 is typical of the medium alone and is

called the "permeability."

Darcy's law is invariant with respect to the

direction of flow in the earth's gravitational field.

This can be proved by the flow in the apparatus sketched

in Figure 2. This property was not recognized immediately,

since Darcy performed his experiment in a vertical pipe.

Figure 3 illustrates the vector character of Equation (1)

with the velocity potential of Equation (2) for the case

where )’= f>g is independent of position, as in a

homogeneous incompressible fluid.

 

Figure 3.--Graph of Equation (1)

Since g‘7y = -g3, where g is the acceleration of

l‘

gravity and j is a unit vector in the +y-direction, it

follows from Equation (2) that for a homogeneous

incompressible fluid

" 1% grad ‘9 = 93 3%,- grad p- (4)
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Equation (4) states that the force exerted upon the unit

mass of fluid at a point has a gravity component and a

component caused by the gradient of fluid pressure. Thus,

'Em is a measure of the energy per unit mass or the

potential of the fluid at any point of the system. The

flow takes place from higher to lower energy levels. For

horizontal flow this means that the flow takes place from

higher to lower pressure, but this is not necessarily the

case when the flow is not horizontal because of the

gravitational potential.

Darcy's law states, in view of the above

consideration, that macroscopically the velocity of the

water flowing through the porous medium is proportional

to the negative gradient of the piezometric head. The

macroscopic velocity magnitude q is a bulk velocity

smaller than the actual seepage velocity magnitude qse in

the pores, to which it is simply related by the porosity

E) as

q = eqse°

Although Darcy's law was first established by experiment,

Hubbert (l956)*, and others, have derived it from the

general Navier-Stokes equations for viscous flow. Such

derivations stem from statistical considerations and

 

‘The number in the parentheses refers to the year

of the publication. References are listed in the

Bibliography at the end of the thesis.
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simplications of the complicated microscopic flow picture.

Although they do not contribute to the formulation of a

new law, they confirm the earlier belief that Darcy's law

is of the nature of a statistical result giving the empi-

rical equivalent of the Navier-Stokes equations. The

Navier-Stokes equations for two-dimensional flow of

incompressible fluid are:

au an an ___ ___1 92 A". 2

at + ax + 3y lo ax + ,0 Wu

2V av av = __i 32 .££ 2 _
9t+' ax+'w3§ P ay"p er 9.

One can summarize the statistical averages by the approxi-

mate assumptions

2 u v
V7 u = - c-—§ and 'v V’= — c«—§

L L

where L may be thought of as being a characteristic length,

for example, the pore size d of the medium. Assuming

0
.
!

6___33 ..u — 93¢ v —

the Navier—Stokes equations become

  

  

_aaw ala¢2la¢2___1,ag £6319
2x(at) + ax[2(ax) +2(ay) J - / ax+fd2 3x

__§_a¢ a 3:192 $2.92 ___-__1£.2 AEBJ’...3Y(2t) + ay[2(ax) +2(ay)] {a 8Y+fd2ay g.

If,11, /0 are constant, and if

I. u

x
h
a
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integration of the equations leads to

  _ g: . IRS—$2 . (31;)2] + 752 -1“; + gy = f(t). (5)

This equation reduces to the Darcy law in the case of

steady flow provided the inertia terms in the square

brackets, here representing the kinetic energy of the

fluid per unit mass, can be neglected. Equation (5) with

2.9
at:

then reduces to

set equal to zero and f(t) constant for steady flow

Q = (p + 3'y) + constant.K—

J“

which is equivalent to Equation (2), if we identify k with

K2’

x41 °

usually presented in a rigorous approach, it is sufficient

Although the above derivation omits some arguments

for present purposes. For the detailed discussion of

these equations, see the book by Muskat (1946). For the

problem under consideration here and outlined previously,

the governing equations and boundary condition are

summarized as follows:

The two-dimensional Darcy's equation in an

isotropic medium is

—-> K C

q -:“—(Vp- fgjh (6)

The continuity equation in general form for a porous

medium is

V°F5=—9—ién <7)

 

’See, for example, Collins (1961).
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For incompressible fluids, /7= constant. Then Equation

(7) becomes

V’c'f: o. (8)

The boundary conditions relevant to the problem

are described in the following:

At solid boundaries normal velocities will vanish,

which implies that the normal derivative of w must vanish

there. Therefore, since w = kh, we have

.
‘
3
’

v = O and -§L— = 0 (Bl)
n n

where n indicates the direction normal to the solid

boundaries.

If there is a sharp interface between region 1 and

region 2, the pressure on both sides of the interface will

be the same. Therefore, the following expression for the

elevation Y of a point on the interface may be derived by

equating the two expressions for p1 and p2 obtained by

solving h ='—2 + Y for p.

 

 

r

Y = 72 2:1 71[ :: h2 '- hl]

or

Y = fi£§f r12 - hl] (132)

where F— 3'2 - Y1



12

If the liquid 2 is under hydrostatic condition,

the total head h2 will be constant in region 2. In this

case, if we take region 2 for the reference state, we may

set h2 = 0, and Equation (B2) becomes

Y=-—1ho (B3)

1" 1

Also, normal velocities are the same on both sides of the

interface, and we have

(V ) = (V2)no (B4)

C. Review of Literature
 

In the study of flow through porous media, the

location and the movement of the interface between two

fluids are of particular interest to hydrologists and

petroleum engineers. Badon-Ghyben (1888) and Herzberg

(1901) stated the hydrostatic equilibrium condition for a

fresh water lens floating on top of salt water in a porous

aquifer. Since then several researchers have investigated

the more relevant case that either one of the two fluids

or both are in motion. The most common assumption among

researchers in this field is that the salt water is static.

Todd (1953) and Kitagawa (1939) combined this assumption

with the one-dimensional form of Darcy's law to determine

the position of the interface as a function of steady

fresh-water discharge. This is similar to the case of

gravity seepage, the problem in which the Dupuit (1863)-

Forchheimer (1886) theory is utilized. Hubbert (1940)
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established a general description of the flow of two

fluids at either side of a steady interface between fluids.

For the case when only one fluid is in motion, the hodo-

graph method has been applied to several particular cases.

A "hodograph" is a representation of a dynamical system in

which the co-ordinates are the velocity components of the

particles of the system. Noteworthy of investigators

reporting on this method are Henry (1959), Glover (1959),

and Kidder (1956).

Several major contributions in the analysis of

unsteady flow with emphasis on the movement of interface

are those of DeWiest (1959), DeJosselin DeJong (1960),

Kidder (1956), and Bear and Dagan (1964). DeWiest, in his

work, discusses the gravity flow with a free surface. The

idea of considering the unsteady flow as a perturbation in

time of the final steady state is used. The perturbation

velocity potential satisfies Laplace's equation in a

dimensionless hodograph plane. The boundary-value problem

is then set up mathematically and a numerical example

worked out. DeJosselin DeJong based his work on the con-

cept of replacing the two different fluids by one hypo—

thetical fluid and of treating the different fluid

properties by use of singularities along the interface.

By knowing the position of the interface and the boundary

conditions at a certain moment, the subsequent motion of

the interface can be computed. He gives a mathematical

example for a two-fluid system contained in a confined
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infinite aquifer of uniform thickness with interface

initially at a vertical position. Kidder treats the case

in which the interface motion is caused by gravitational

force acting on the two liquids. A general solution is

obtained by direct potential theory methods and employs a

method of approximation similar to that used in the linear

theory of water waves. The method is applicable only when

the initial slope and curvature of the interface are not

too large. In a very recent publication, Bear and Dagan

derive approximate expressions for the movement of the

interface in a confined coastal aquifer caused by a sudden

change in the rate of seaward flow of fresh water. The

solutions are based on the Dupuit assumption. The range

of validity of each solution is determined by comparing

it with results of experiments.

In the present work, the solution to the problem

of determining the movement of the interface in the tran-

sient state is obtained by successively making use of the

one-dimensional flow assumptions and the two-dimensional

flow assumptions. In one-dimensional flow, the governing

differential equations are replaced by finite—difference

equations, and these are solved numerically. In two—

dimensional flow, the interface is considered as a dis—

tribution of sources along it, and the concept of Green's

function is utilized in solving the problem. A case of

finite aquifer of rectangular shape with interface ini-

tially of the parabolic shape is solved. The two liquids

are assumed incompressible and immiscible.



CHAPTER II

ONE-DIMENSIONAL ANALYSIS

A. Derivation of the Equations

For the first approximation one—dimensional flow

is assumed, since the vertical component of the velocity

is negligible in the major portion of the flow field.

The simplifications which are made in this part

of the analysis are: incompressible flow, sharp inter-

face, the specific geometry shown in Figure 4, and an

isotropic porous medium. The profile of the porous medium

is of rectangular shape with length b and depth d. For

the example worked out-g = 20 so that the interface in

Figure 4 is much more nearly horizontal than it appears

to be in the figure, and the one-dimensional flow

assumption therefore seems reasonable. For this dis-

cussion y is measured positively downward as shown in

Figure 4. Hence, in the equations of Chapter I, y must

be replaced by d — Y. The two fluids are of specific

weights Y 1 and 72.. I

The initial interface position Y0(x) is assumed

to be that corresponding to equilibrium conditions with

the fluid in reservoir 1 at a level of a0 above the top

of the rectangular region, while the level in reservoir 2

15
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Figure 4.--Flow Geometry for One—dimensional Analysis

is zero. Then at t = 0, the level of reservoir 1 is

suddenly lowered to the new level "a," which then is

maintained while the interface moves toward region 1

(upward and to the left in Figure 4) approaching the new

equilibrium position Y°o(x).

the transient motion of the interface.

The problem is to investigate

Because the one-

dimensional analysis appeared to be inadequate, only the

early part of the transient motion was worked out in the

numerical example to be presented below.

The applicable equations are Equation (1), which

may be written as

—+

q "'th, (9)
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and Equation (8), which is repeated here

V“; = o. (8)

The one-dimensional flow analysis supposes that in

either of the two regions the flow velocity is horizontal

and independent of y. If 01 is the total volume flow rate

through a cross section x = constant of region 1, con-

sidered positive for flow to the right, and u1 is the

horizontal velocity component there, positive for flow to

the left, then 01 = -ulY since Y is the distance down to

the interface, or Q1 = -uld at a section to the left of

the point where the interface intersects the bottom of

rectangle in Figure 4. Similarly the flow rate and velo-

city in region 2 below the interface are related by

02 = "(d - Y)u20

Applying the assumptions indicated above and shown

by Figure 4, Equation (9) becomes

in the zone 1, and we have

01 = k Y'-——u (10)

If zone 2 is assumed to be static, the boundary condition

(B3) of Chapter I, part B applies, whence

db
1 3’2- 3’1 dY dY

ai- = y1 a; = Ta)? (11’
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(The sign change is necessary because Y is now positive

downward.) When this is substituted into Equation (10),

that equation can be integrated to yield

2
20

Y = 1 x (12)

I“?

if we impose the condition that Y = 0 at x = O. This is

the equation of the steady interface for any specified

value of 01'

Substituting Equation (B3), with a sign change,

into Equation (10) and integrating with respect to x, we

have

Q — .l.El.E£f for 0 é x e x

l " 2 I“ x 0

where we have used the condition h = 0 at x = 0. For

1

x 7>x0, integration of Equation (10) for Y = d = constant

with x = b when h1 = a, gives

Ql(x - b) = kld(h - a)

or

k1d(h1 - a)

= ‘é (é
Ql x _ b for X0 x b.
 

If these two expressions for Q are equated with x = x
1 1’

noting from (BB) that h = I‘d, the following relation
1

between the level "a" in reservoir 1 and the co—ordinate

x , where the transient interface intersects the bottom of
l

the aquifer, is established

== 3%(1 + JR). (13).2

d xl
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The resulting Q1 for this relation is, after solving for

‘EE and substituting into one of the equations for Q1

1

 

_. .1. 9. .19..
01 " 21“1‘1(1:)17xl

— k (3m - 3k (33) (14)
7 l d 2 l b °

Darcy's equations are:

l9h1

Q1 - le-b—JE- (15)

9%
02 = k2(d—Y) ax . (16)

The continuity equation for region 1 is, after

integrating two-dimensional form of Equation (8) from the

upper boundary to the interface,

Y ggul £9v1 a ‘Y

Jo(—aX + a y)dy —- - efijody

= temporal rate of decrease

 

of fluid caused by inter—

face movement

which then reduces to

  

u

(iiY)+u13:+9%—%=o (17)

where the bar indicates a mean value.

u

For one-dimensional flow, 7§_% = constant across

the cross section and since 01 = Yul

 

‘See p. 35 of "Advanced Mechanics of Fluids" by

Hunter Rouse (editor).



 



  

 

 

901 aY
a x = - a -a—E o (18)

Similarly, for region 2

302 BY
3 x = + 6 E o (19)

Adding (18) and (19) and integrating with respect

to x yields

+ Q = f(t).
Q 21

Alternatively, a definite integration with respect to x

from 0 to b yields, after substituting (14) through (16)

x1
hl h2 b h

J01[1(1ng + k2 (d-Y)aax2de +J k (ii—3'- dx
  

x1 1 39x

d2

1k .—

1 + 02 = 3kl-EJ7[I‘d — l] — constant. (20)

Equation (20) indicates that QT remains constant during

the transient state. The expression in Equation (20) is

equivalent to that in (14) as can be seen by solving (13)

x

for'—% and substituting in (14). This is to be expected,

since at xl'4 x é’b the entire discharge is in zone 1.

B. Numerical Example

As a specific example, we will consider the porous

medium in Figure 4 with the following properties:

X

l§-=2o, —-11-)=o.5, ..%=o°95, I‘= )2—2’131_
(71 4O '
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Ky Kar

We takedxl = ° then since k = 1 and k = 2
1 x42’ ’ ' 1. X11 2 A2

we have k2 =-§;gkl. Initially, an equilibrium condition

1
a

prevails and Equation (13) yields-—% = 1.517 corresponding

to x1 = 0.5b. The elevation a0 is then suddenly lowered

to‘% = 1.02617 corresponding to an equilibrium interface

with x2 = 0.95b. At the initial steady state the flow

_ l .
rate is QO --§6kldI" according to Equation (20), and

during the transient state and at the final steady state

_ 1
QT " 38kldI-‘ 0

Introduction of the following dimensionless

variables allows for considerable simplification:

   

Q Q
1 2 r . x

521%., 512%", Y fit " =3,
T T

h’— klhl hi— k2h2 t, — QTt

- , -- , "" O

1 QT 2 QT 9d2

Equations (15), (16), (l8), (19), (20), and (B2) become:

 

 

 

 

. ah'
.f21 = y' B E' (21)

X

h/

322 = (1-y’)9,2 (22)

93c

399”} = —Y—: (23)
x t

352,2 = 7—3-17 (24)

x t

511 + 9.2 = 1 (25)
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’-QT (' ’) (2)Y fi—qu—‘hl-hzo 6

The initial and final positions of the interface are

computed from Equation (12), using the values of Q0 and

QT respectively, given above in the paragraph preceding

Equation (21), as:

I2 ’

Y0 = 0.1x (27)

y’ 2 = o oszex’ (28)w o 0

Immediately after the reservoir surface of liquid 1 is

changed, the value of Q1 on the interval b a X'a 0.5b is

the final Ql = QT because Q2 = 0 here and Q + Q
1 2"QT“

constant. Hence.521 = l on this interval, and since y' =

l on this interval, Equation (21) integrates to yield

(hf)0 = x' + constant. Therefore, we have for the initial

distribution of hi to the left of x = 0.5b immediately

after the lowering of the liquid 1 level to its final

value:

(h ) = x’ + 19 0.5b é-x'S b. (29)

I

The distribution of hi and h2 to the right of x = 0.5b is

obtained by substituting (21) and (22) into (25) together

with (27) yielding, after substituting the numerical data,

I 2069 o I ‘ 4

(h ) =-———-./§' - 0.0455x o - x - 0.5b (30)
1 o {35

and

(hé) -0.0455x’ o E x 5 0.5b. (31)

0

ll
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Computed results of (29), (30), and (31) are plotted in

Figure 5.

C. Finite—difference Solution Procedure

The difference equations corresponding to Equations

(21) through (26) are:

 

 

  

  

(h’) - (h/)°(£11)1 j = y; j 1 i+l,j , 1 l’laj (21A)

3
’

2(AX )

(h’) - (h')‘
(522)1 j - (1 - Y; j) 2 1+1’j 2 i-l’j (22A):

’ 2(AXI)

(521)i+1,j ' (522’1-1.j = yiaj+1 ' YiAJ (23A)
2m)“

At’

2(Axl)

At,

(S)1>i,j + (522)i.j z 1
(25A)

, QT ,. '
Ym’ . gammy“ ““ ”12):.9" (26A)

In these equations, the index i refers to the x' increments

while j refers to the t' increments. The numerical

computations are carried as follows:

1) Choose suitable intervals for Ax’ and At’.

2) From Equation (23A) compute, starting with j = 0
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, _ (521)1+1,j“ (£21)i-l,j +y:

,j+1 _ I 13:) o

2(9E7)

At

 

3) Substitute Equations (21A) and (22A) into

Equation (25A), replacing j by j + 1. Equation

(26) is then substituted into the resulting

 

I

equation to eliminate (h1)i+l,j+l and (hl)i-1,j+l’

yielding

I /

(h2)i+l,j+1 - (h2)i-1,j+1 = 1 n 0095 ’ o

2(Ax') Ax’ 1’j+1

I I

(Y1+1,j+1 ‘ Y1~1,j+1)°

4) The equation obtained in step (3) is then

substituted into Equation (22A), giving

(311)1,j+1 = (yi,j+l) °

0.95

[1 *‘Z;" (yi+l,j+l ” Yi-l,j+l) (1 ' Y1,j+1)] °

5) (I? ) is then obtained from Equation (25A).
2 i,j+l

6) Repeat the steps(2) through (5) for new increments

of j.

D. Results and Discussion

A numerical example with Ax' = l and At, = 1 was

carried out, and the resulting interface locations corres-

ponding to t' = 1 and t' = 2 are shown in Figure 6. This
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increment in x’ is equivalent to dividing the entire

length of the rectangle into twenty intervals. Since the

initial interface occupied only half the length, it amounts

to dividing the initial interface into ten equal horizontal

intervals. The time interval was selected arbitrarily, to

be checked for reasonableness by requiring that the calcu-

lated motion of the interface during the time interval be

small compared to the distance from the initial equilibrium

position Y0(x) to the final equilibrium position Yoo(x).

These computations are designated as Case 1. Observation

of Figure 6 reveals that the computed values of Y tend to

go above the final steady state near the right-hand end of

the flow field. This is not likely to be the case, since

oscillation is not anticipated. The difficulty may be

attributed to the relatively steep slope of the interface

in this region, where the vertical component of the velo-

city is not negligible and therefore the one-dimensional

analysis is not a good approximation. An attempt to

improve this discrepancy was made by taking smaller inter-

vals (Ax’ = 0.02, At, = 0.02) in the difference equations.

The results of this as shown by Figure 7 disclose a

similar tendency. Here, the locations of the interface

computed for t = 0.02 and t = 0.04 are plotted. This

is designated as Case 2. Another calculation was made

after interchanging the initial and final positions of the

interface, i.e., making the final steady-state position of

the interface in the previous case the initial position of
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the interface in this case. The result of this for

t' = 1 and t’ = 2 as given by Figure 8 indicates that

the values of Y tend to fall far below the final steady

state near the right end. This is designated as Case 3.

Again, we are unable to overcome the difficulty mentioned

in the previous case. All the data pertaining to Figures 5

through 8 are listed in Tables 1, 2, and 3.

The results obtained in these analyses lead to the

conclusion that the one-dimensional approximation cannot

be valid near the outflow end, though it may possibly be

a good approximation elsewhere. The two-dimensional

analysis will be used in the next chapter to yield a

refined solution.
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x/d

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0030

0.32

0.34

00 36

0.38

0.40

Note Y

Y

1

2

TABLE 2

Y1 Y2

0

0.0157

0.0482

0.0655 0.0562

0.0794 0.0700

0.0900 0.0825

0.1005 0.0930

0.1103 0.1028

0.1195 0.1120

0.1272 0.1180

0.1344 0.1260

0.1423 0.1330

0.1489 0.1400

0.1552 0.1475

0.1613 0.1545

0.1672 0.1610

0.1739 0.1680

0.1794 0.1730

0.1847 0.1775

0.1899 0.1830

0.1950 0.1875

is the interface position for t

is the interface position for t
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x/d

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

TABULATION FOR FIGURE 7

0.1999

0.2048

0.2105

0.2151

0.2196

0.2240

0.2284

0.2326

0.2368

0.2409

0.2450

0.2490

0.2529

0.2568

0.2606

0.2653

0.2680

0.2717

0.2763

0.2788

= 0.02

0.04

0.1920

0.1970

0.2010

0.2060

0.2110

0.2160

0.2215

0.2255

0.2300

0.2345

0.2385

0.2430

0.2470

0.2510

0.2550

0.2590

0.2630

0.2670

0.2715

0.2760



x/d

\
O
G
D
Q
O
‘
U
M
P
U
J
N
I
-
‘
O

Note Y

Y

1

2

TABLE 3

Yo

0

0.229

0.324

0.397

0.459

0.512

0.562

0.607

0.648

0.688

0.725

0.760

0.794

0.827

0.858

0.888

0.917

0.945

0.973

1.000

33

Yoo

0

0.316

0.447

0.548

0.633

0.707

O. 775

0.837

0.895

0.949

1.000

is the interface position for t

is the interface position for t

TABULATION FOR FIGURE 8

Y1

0.306

0.364

0.429

0.486

0.536

0.584

0.627

0.667

0.706

0.742

0.776

0.810

0.842

0.872

0.902

0.931

0.958

0.986

0.393

0.458

0.512

0.560

0.606

0.647

0.686

0.724

0.759

0.792

0.825

0.857

0.887

0.916

0.944

00971



CHAPTER III

TWO-DIMENSIONAL ANALYSIS

A. Formulation of the Boundary-value Problem

The one-dimensional analysis as presented in the

previous chapter gives a reasonable result in the major

[portion of the flow field. The inaccuracy near the out-

flow seepage face is caused by the fact that the vertical

component of the velocity in this region is no longer

negligible. It is, therefore, the purpose of this chapter

to analyze the problem with the assumption that the flow

is two-dimensional. To make the problem mathematically

tractable, a porous medium of rectangular shape with

length b and depth d, as shown in Figure 9 will once

again be considered. In this chapter the y-co-ordinate

is again measured positively up from the bottom, as it

'was in Chapter I, and the sign change required for y in

Chapter II is not needed. The assumptions of incompressible

flow and a sharp interface are also made. The specific

geometry with the appropriate boundary conditions is shown

in Figure 9. Note that the boundaries AF and CD8 are

impervious.

Region 1 is occupied by a fluid of density :1

while region 2 is occupied by that of density-igg, where

34



 

 



 

 

 

 

35

 

 

 

   

 

  

 

   

Y

A

b V

x ’H II
F (¢l)¥=0 A

I’I11{/’([[ // rv //I // 441 z/ / I/I’lllzj/fi

.f.‘ ‘4 2. - J \ a _ I

,;_ ,V¢1“0, ,gl k2a2ky

.Region 1?, , Q _ ’7 2:3

a1 ,‘ n.1,; " “ ' ' ‘

.. ' I ‘ a . d

(plzklal _ .: 7. . 2

f -", I r =

.. _-._;V2.‘P2k232

_ . 1_ " Region 2

[If/llIla/If/b’Ii'l‘l’.’/'./~/./:I/./////./.r-//.II//.///.//C://///////////

($2)Y=O

Figure 9.--Geometry of Flow and Boundary Conditions

Xé :>‘yi. The method of solution applies at any time of

the transient motion to calculate the next step of the

motion when the two fluids are in a non—equilibrium state.

In the example to be presented the initial interface

position is a parabolic approximation to the known equili-

brium configuration for a certain total discharge rate Q.

Transient motion of the interface is then examined under

the assumption that at t

to a higher value and maintained constant.

0 the discharge rate is changed

Such a change

in discharge rate could be produced physically by raising

the level of the fluid in reservoir 1, and this would

cause the interface to move to the right. The boundary
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conditions indicated are obtained from the fact that the

reservoirs are under static conditions and that the sur-

faces AF and CDE are impervious. Under static conditions

the total head is independent of y since the pressure head

increases with depth by an amount equal to the decrease in

elevation. Thus on FE we have $1 = kla1 and on EC $2 =

k Since the normal derivative must be zero at the
£232.

impervious top and bottom boundaries, we have (<01)y = 0 on ‘

AF and ED and (€92)y = O on DC, where the subscript denotes

the partial derivative with respect to y. The boundary

condition for w on AB is derived below as Equation (38).
l

Darcy's law for homogeneous two-dimensional flow

through porous media is valid everywhere in the porous

medium except along the interface. Therefore, we have

  

h 9h

u -k a 1’ V = “k 1,

1 1 ax 1 1 a y

(32)

9% ah2

u.2 = “kg—9‘? V2 = “’92-'57

where the subscripts refer to the appropriate zones.

If we introduce the velocity potentials $1 = klhl

and ¢ = k2h2 into Equations (32) we have

 

 

2

gml 9‘91
111 = - , v = ___,

9x 1 BY

(33)

_ aq’2 9‘92

“2 " " ax’ V2 ‘ ““57

or in vector form 3’ = -VCP. (34)
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Since the continuity equation must be satisfied,

we have, from Equation (8) for incompressible flow, the

Laplace's equation

2
K] o = o. (35)

Equation (35) applies in regions 1 and 2, respectively,

but does not apply across the interface.

The boundary conditions along the seepage face AB

and the interface BD are derived as follows. The pressure

is continuous across these faces. Therefore, the condition

q’1 “’2
p=(Tc-;-y)X1=(TCE-y))(2 (36)

has to be imposed on them. For the vertical seepage face

AB, where $2 = k2a2, Equation (36) becomes

)‘2 3’2

1 1 71 2 X1 1

To further simplify the analysis, let /u2 =./Ul°. Then,

  

since

K‘X KL?’
1 2

k = and k =

1 ,1X1 2 3111

we have‘jigk = k ; and, if we introduce k' = (Jig - l)k ,

‘31 1 2 y]. 1

Equation (37) reduces to

 

‘If the two liquids are fresh water and salt

water, respectively, the viscosities are practically the

same a
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w = k - k’y. (38)
1 232

Similarly, for the interface BD

Y2
¢ = ¢ - k 0--

3‘1

1 2 1 - l)y = $2 — k y. (39)

Also, normal components of the velocities along the

interface are the same on both sides and therefore

g3¢1 a“)

9n1 9%

N

(40)  

since positive n1 and n2 are chosen outward from the

respective regions and are therefore in opposite

directions on the interface. We introduce the stream

function 1p defined by

uz—a-Eé v=-aw (41)
 

ay’ 2x

which with ¢ satisfies the Cauchy-Riemann equations

.23 ... -22 .22. z .252. (42)
2y ax’ ax 2y°

Differentiating Equation (39) with respect to s, the

distance along the interface, yields

 

2Q’1 9¢2 ,9
25 = ‘3‘? -k3—§ (43)

where s is defined positive from D toward B. In terms of

EP, Equation (43) becomes

_Qfi 2 _EE -1621 (44)

£932 29n2 3
S

where we have used Equation (42) with local x and y axes
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in the s and n directions. Since 2W = — 23L, this

2 9n2 anl

becomes

210]. = 2&2 _klaio (45)

3n1 anl as

Also, Equation (40) becomes

a 1 2W2
l = W . (46)

255

In summary, the problem, in terms of 1;) , is to

solve the governing equation V 22f = 0 with the boundary

conditions shown in Figure 10. Subscripts x and n denote

F WZQ A
 

Region 1

    
Figure lO.--Boundary Conditions in Terms of 2//

partial derivatives. The boundary conditions on Walong

EF and AC are obtained from those on w shown in Figure 9,

by using Equations (42). These equations also imply that



‘31.

40

z? is constant along the top and bottom. If we arbitrarily

set '4’: 0 along the bottom, then along the top IP is

equal to the total discharge Q, since along EF-{%¥L is

equal to u. The interface condition along DB was derived

above as Equation (45). To simplify the problem one step

further, a function ‘g7is introduced, defined by 1}):

W'% . Then v27? = v 2270 and the problem is to find a

function 12 which satisfies Laplace's equation in region 1

and in region 2 with the boundary conditions shown in

Figure 11.

F (#0 A
 

Region 1

  
  

Figure ll.--Boundary Conditions in Terms of I?

B. Solution Procedure with Green's Function

Since a discontinuity exists along the interfaces

DB and BA, the governing differential equation does not

apply across them. The interface, with normal velocity

discontinuity as shown in Figure 11, can be considered as
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 G=0

Figure l2.--Boundary Conditions for G

a distribution of sources with sources intensity IP( I, 7)

-232- Hereper unit length, equal to the discontinuity in 377.

:§(s) and 77(5) are the rectangular co-ordinates of the

source point specified by the arc—length parameter s. The

details of solution for '4)are presented in Appendix V.

The results are quoted below in Equations (47) to (49).

The solution for 1P(x,y) in either region is given in

terms of a Green's function G(x,y; f,’2) as’

B

1?(xq) = -];<qu;§,7)/0(§,7Mm +

A

2p.211.

where G is, for each value of ,E and $7, a solution of

(47)

Laplace's equation

‘See, for example, L. V. Kantorovich and V. I.

Krylov, "Approximate Methods of Higher Analysis,"

pp» 71-72. and pp. 496-97 for Equations (47) and (48).
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926 + 226
= 0

2x?- 3y2

in the whole rectangle, satisfying the boundary conditions

shown in Figure 12.

The required function G is given by the double

trigonometric series of Equation (48)

 

 

«>4 00

4

G(an; 9 ) = "' Z Z d o

E 7 nzbd m=1 n=0 n

(48)

C05 BLIP-C sin m COS m sin M

b d b d

23 + 12.

b2 d2

where

04 = 1/2 if n. = o d = 1
n ’ n 1 + SnO

or

6% n = 1, if n f 0 6n0 = Kronecker delta.

When we introduce the source strength f9: kairfi

on DB and f): -k’ on BA, Equation (47) takes the form

2} (x,y)

B

- [D G[x,y; f(s).7Z(s)] k'—S% ds -

A

k’fB G(x,y; b,7 )d7

I!

A

"k/fD G[x,y;§(7),7]d7 (49)
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since on DB Y(s) = .7(s). Substituting Equation (48) into

(49) then yields

 

  

I oo nTrx . mny

4k 03 cos b Sin d .

? (X,Y) = - 2 Z >_ 0( n 2 2

n bd m=l n=0 -2_ + m

b2 E?

d (50)

Ocos nn :3 )sin-I-nflc—ilz-d7.

‘

If (50) is made dimensionless, we have

 

 

 

1} I: .‘P = - Z Z ”(n COS2 b :1: 2d .
4k d b m=1 n=0 n + m 0—)

2 (a) d
n

(51)

1

[0 cos 21b:- sin Bial- d(-%).

J

The function 97 in Equation (51) is computed

numerically, and the movement of the interface is derived

from it. A detailed account of the numerical solution is

explained below. The Control Data 3600 Computer of the

Michigan State University Computer Center was used for all

the numerical computation. The computing procedures are

as follows:

1) Assume an initial interface position DB.

2) The interface position is expressed in the form

of a group of discrete points (xi, yi). The

intermediate points among these discrete points

are computed by interpolation using Newton's



3)

4)

5)

6)

7)
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divided difference formula. This formula is

listed in Appendix II. These values are stored

in the memory of the computer for later use.

The integral in Equation (51) is evaluated along

the interface using Simpson's rule with intervals

of-égL : 0.001. The results of part (2) are

utilized in obtaining the values of-J%.

4) in Equation (51) is then computed along the

interface at the intervals of 9% = 0.1 except

the points near the end B where intervals of'éfi

= 0.01 are used.

The numerical data giving 1? at points on the

interface is then differentiated with respect to

E.

d

velocity of particles on the interface.

dimensionless arc-length to obtain the normal

The results of (5) are then multiplied by the

 dimensionless time increment Ask to obtain the

dimensionless displacement 9% of the interface

in the normal direction. The horizontal and

vertical components of this displacement are

obtained by multiplying-Ag by the direction

cosines of the normal.

The new position of the interface is then obtained

by adding these horizontal and vertical components

of the normal displacement to the corresponding

initial co-ordinates of the interface. (Note that

these x and y components are not actual x and y
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components of the displacement of material

particles, since particles would also have some

velocity components tangential to the interface,

computed from the normal derivative of E/ and

therefore discontinuous at the interface.)

8) These co-ordinates are then substituted again in

Newton's divided difference interpolation formula

to obtain the intermediate points.

9) Parts (2) through (8) are then repeated to obtain

the subsequent positions of the interface.

In Appendix III, the entire computational schemes

are presented in the form of Flow Diagrams so that the

computer instructions can be easily programmed from them.

Two sample FORTRAN Programs are presented in Appendix IV

for reference.

C. Numerical Example

For the purpose of illustration, a numerical

example, with the following data is presented:

b
a» = 20, —'Q— - 300

The initial interface position was obtained from

the equilibrium position calculated by Henry (1959) for

a discharge rate represented by-Eég : 40.025. Co-ordinates

of eleven points along the initial interface are shown in

Table 5. Additional points on the interface were obtained

by interpolation as described in step (2) of the procedure

given in the preceding section. At time t = 0 it is
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assumed that the discharge rate is suddenly increased

and maintained during the transient motion of the inter-

I

face at a rate represented by-Eag = 30.

D. Results and Discussion

Table 4 shows the values of 9? (labeled PSI)

between-é = 0.1 and1§ = 0.8 along the initial interface,

the results of step (4) of the first computation cycle.

The number k in the table indicates the number of terms

in the double series of Equation (51); thus k = 60 means

a partial sum with m going from 1 to 60 while n goes from

zero to 60, a total of 3,660 terms in the double sum.

Since the results for k = 50 agree with those for k = 60

to approximately four significant figures, it is hoped

that sufficient convergence was obtained to give results

accurate to approximately four significant figures. This

result is plotted in Figure 13, showing that the relation

between. 'LIJIand-x is linear except at the points beyond
d

«é = 0.80, which are computed separately and given in

Table 6.

Two cycles of the calculation outlined in part B

were performed to obtain the interface positions at times

corresponding to-EEL equal to ten and twenty. The

resulting interface positions are plotted along with the

initial interface position in Figure 14, based on Table 5,

Which gives the position co-ordinates of eleven points on

the interface after the motion. It appears from Figure 14

that the motion during the second time increment was
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considerably smaller than during the first. This plot

shows a more reasonable motion of the interface than was

obtained by the one-dimensional analysis. However, a

closer examination of the region near the right-hand end

of the flow field shows still some discrepancy.

In the region between‘fi = 0.8 and«% = l, the

computations were performed at intervals‘éfi = 0.01. The

results for E? are given in Table 6 with the series

carried out to k = 110 in order to get sufficient

convergence. The results are also plotted in Figure 15,

and it is seen that the linear plot of Figure 13 extends

to about-x = 0.89. Beyond this point the results become
d

erratic and unreasonable. The position of the part of

the interface between-é = 0.8 and-é = 1 after-Eg— = 10

is shown in Figure 16, based on Table 7. Near the right-

hand end the large displacement shown is in the region

where the solution is erratic. Perhaps a better result

could be obtained by taking a smaller interval in the

interpolation formula and the numerical integration.

Except for this erratic behavior very near the

end, the two—dimensional analysis predictions seem

reasonable, and the unreasonable behavior occurs in a

much smaller part of the field than was the case with the

one-dimensional analysis.
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TABLE 4

K320

VALUES OF PSI ALONG INITIAL INTERFACE FOR Y/03001 TO 008

Y/D

0010

0020

0030

0040

0050

0060

0070

0080

0010

0020

0030

0040

0050

0060

0070

0080

0010

0020

0030

0040

0050

0060

0070

0080

0010

0020

0.30

0040

0050

0060

0070

0080

0010

0020

0030

0040

0050

0060

0070

0080

52

(TABUEATION FOR FIGURE 33)

PSI

~0553055545737E-02

“0115720761094E*01

~0176355510117E*Ol

~0236459464657E-01

-02955960623OOE‘01

*0351179062585E‘01

~0398317114792E‘01

-0448916755369E“01

-0582795472379E’O2

~0119473692097E-01

“0180447219584E‘01

~0241584277297E-Ol

~030189554OOSSE‘OI

~0360999112490E‘01

“0414043748577E-01

-0453687964662E-01

*0594017702912E-02

~01206897914O7E-01

-0181970215872E-01

-0243173068215E~01

~0303962968195E-OI

-0363412571118E~01

-04l9695166318E-01

“0471293439819E-01

-0599469170993E-02

~0121334O40316E-01

~0182704867486E-Ol

~0244030406335E-01

-0305048160917E-Ol

~0365143438139E—01

-0422962561803E-01

-0474693501048E-01

~0602848758412E-02

~0121729893888E-01

-0183163778540E-01

~0244519188225E-01

~0305669839261E‘Ol

~0366O90105235E-Ol

‘0424703593511E-01

-0477747216275E-01

DIFFERENCE

-0553055545737E‘02

*0115720761094E~01

“0176355510117E-01

-0236459464657E-01

-0295596062300E-01

-0351179O62585E-01

-0398317114792E-01

-0448916755369E-01

-0297369296528E-03

~0375293100216E*03

~0409l70946587E’O3

-0512481264217E-03

-0629947775480E~03

-0982004990918E-03

-0157266337832E~02

-0477120928750E-03

-01122223053SZE-03

-0121609931060E*03

-0152299629015E‘03

~0158879091494E*03

-0206742814506E-03

*0241345862385E*03

-0565141774161E‘03

-0176054751595E—02

~054Sl46807563E-04

-0644248907542E-04

-0734651612234E-04

~0857338122863E~04

~010851927ZO93E‘03

-0173086702496E~O3

~0326739548669E*03

~0340006123239E-O3

-033795874l744E~04

-0395853574002E-04

-0458911054018E-O4

-0488781888642E-O4

-0621678341326E-O4

-0946667O96301E-O4

~0174103171055E-O3

-03053715227l4E-O3
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TABLE 4--CONTINUED

Y/D PSI DIFFERENCE

K860 0010 ~0605041735282E‘02 -0219297686504E-04

0020 ~0121992332453E-01 -0262438561556E-04

0030 *0183459515629E"01 -029573708617OE‘04

0040 ~0244866174082E-OI -03469858529645-04

0050 ~0306114952320E“01 -0445113055328E-04

0060 -0366647209405E-Ol -0557Io4167470E-O4

0070 ~0425997797727E“01 ~0129420421224E-03

0080 ~0481022714914E‘01 -032754986297AE-03

NOTE K INDICATES THE NUMBER OF TERMS IN EQUATION (51 )0 FOR EXAMPLE0

K860 MEANS THAT 60X60=3600 TERMS ARE CARRIED OUT IN THE SUMMATI<



TABLE 5

AT 1:0

AFTER T=10

NOTE 000 10

20

54

MOVEMENT OF INTERFACE POSITION--CASE 4

(TABULATION FOR FIGURE 14)

Y/D

00000

00100

00200

00300

00400

00500

00600

00700

00800

00900

00982

.19738456E

029700272E

039645103E

049560301E

.59399079E

070233221E

.81574804E

(AT T

-.22710731E-02

.97638290E-01

00

00

00

00

00

00

00

THE DATA FOR SECOND SET OF VALUES

CORRESPOND TO THE FIRST 9 VALUES IN THE

FIRST SET

CONTROL DATA 3600 WAS USED FOR T =

IBM 1620 WAS USED FOR T = 10

X/D

00000

0380237352438E+01

0720449719549E+01

0102063710230E+02

.128079950071E+02

0150093691478E+02

0168104934459E+02

0182113678999E+02

0192119925101E+02

.198123672759E+02

.200000000000E+02

061477886E-04

.36941965E 01

.71083374E 01

.10122245E 02

012735916E 02

.14949369E 02

016762655E 02

.18174974E 02

.19186239E 02

(AFTER T=

0)

0 AND

10)



TABLE 6 VALUES OF PSI FOR INITIAL INTERFACE POSITION Y=O0BIO T0 00982

K8 20

Y/D

0810

0820

0830

0840

0850

0860

0870

0880 1

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0932

0810

0820

0830

0840

0850

0860

0870

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982
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(TABULATION 0F FIGURE 15)

PSI

*0452184037582E-01

“0453708840054E-01

‘04531444030005‘01

“045017956219IE‘01

~0444540875447E“01

“0435993889711E‘01

‘0424344879320E'01

‘04094438074175‘01

‘0391188634036E‘01

*0369530592252E*01

-0344483332432E‘01.

~03161163339685‘01

-0284569470103E‘OI

-0250050968927E“01

~0212836335268E“01

~0173264630052E‘01

~0131732188562E-01

-0886840445251E“02

~07993519B7516E‘02

“0457766126623E‘01

*0463284042831E“OI

-0469820578153E*01

~0476526464969E‘01

‘0482256676085E‘01

~0485752950466E*01

‘0485827919299E‘01

‘0481503599367E‘01

~047207453694IE‘01

-0457O93757883E-01

‘0436321422130E“01

-0409600791230E~01

-03768492037IZE*01

~0338044417331E“01

~0293274613025E‘01

-0242819787385E-01

-0IB7233390643E-OI

~0127392746388E‘01

~0115018000693E-01

DIFFERENCE

-0452184037582E-OI

-04537OBB40054E-01

~0453144403OOOE*01

~04SOI79562191E-01

-0444540875447E-01

-04359938897IIE~01

~04243448793205‘01

-04O94438074I7E-01

-0391188634036E‘01

-0369530592252E~01

-0344483332432E-Ol

~0316116333968E*01

-0284569470103E901

-0250050968927E‘01

~0212836335268E-01

-0I73264630052E-01

-0I3I732188562E~01

~0886840445251E-02

~07993519875IEE‘02

-05582089043025-03

-0957520277560E-03

-0166761751556E-02

~0263469027785E‘02

~0377158006362E*02

~04975906075855‘02

~0614B3O399820E-02

-07205979I9470E~02

-0808859029086E-02

-0875631656367E-02

-0918380896939E“02

~0934844572679E-02

~0922797336O9BE-02

-0B79934483979E-02

~0804382777569E-02

-0695551573343E-02

~0555012020792E~02

~0387087018644E-02

'0350828019422E-02



Kg 30

K: 40

Y/D

0810

0820

0330

0340

0350

0860

0870

0380

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982

0810

0320

0830

0840

0350

0360

0870

0880

0890

0900

0910

0920

0930

0900

0950

0960

0970

0980

0982
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TABLE éfi‘CONTINUED

PSI

‘0472920946682E‘OI

~0473523386BIZE~01

“0474514539543E-01

‘0477125641155E‘OI

-048186144323OE‘01

-048825045306IE‘OI

-0494889206624E‘OI

“04997335044395‘01

-.500545813906E‘OI

~0495342207585E“OI

~0482702450587E*OI

~0461712520708E~01

‘0431911012289E‘01

‘0393110517856E‘Ol.

‘0345345048154E‘OI

-0288942944855E‘Ol

“0224660673521E‘01

-0I53785767827E*Ol

-0138980940221E‘OI

-.4aoa713677ose~01

-.4as7353330595-01

~.4630333381955-01

-,433190414735£~01

-.¢aao9vo965105~01

-.48977404eoooe-ox

«.4942710758585-01

~0500631167379E-01

~05069482850528‘01

-.5098146123645~01

~.5057925263345-01

~.492239518324E~01

-04678353433855‘01

~.432035788072E~01

~0384418794943E-01

-.324799319184£-01

~02539810023308-01

~0l74167838861E-01

~0157412018762E-01

DIFFERENCE

~0151548200578E-02

-010239343983IE-02

-0469396139124E‘03

-0599176182746E-O4

0395232855233E-O4

-0249750259176E-03

-0906128732822E-03

~0182299050724E‘02

~0284712769651E-02

~0382484497008E-02

-0463810284607E-02

~0521117294746E-02

-0550618085806E-02

~0550661005327E-02

-0520704351235E-02

~0461231574678E’02

-0374272828783E-02

~0263930214380E-02

~023962939527OE-02

*0795042102254E-03

.-0122119466416E-02

-0I351879865IIE*02

-0110687735834E~02

-0623565328176E-03

~0152359293683E-03

07181307683065‘04

~0897662939693E~O4

~0640247II4468E-03

-0l44724047826E*02

~02309OO762475E‘02

-0305269976168E‘02

-03592433IO966E-02

~0389252702102E*02

-039073746794OE-02

-0358563743255E*02

-0293203288136E-02

~0203820710343E~02

-0IB4310785382E-02



K2 50

K8 60

Y/D

0810

0320

0330

0840

0350

0860

0870

0380

0390

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982

081 O

0820

0830

0800

0850

0860

0870

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982
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TABLE 6--CONTINUED

PSI

-0481634665775E-01

‘0487147646396E‘OI

*0493299794303E‘01

‘0497661655689E“OI

‘0498873843368E‘01

~049796216454OE~01

~0497808570639E‘OI

-0500798562876E“01

”0506720480247E*OI

‘0512978024577E‘01

~05157186OI¢26E~OI

‘0510197363445E*OI

‘0492309120069E-OI

-0460339127058E‘OI

-04l4321020340E-01

-0353883813827E-OI

*0278702420605E‘01

‘0191220144316E‘01

-0172729686939E‘OI

-0485827322533E‘OI

~0489249962920E‘OI

*0493560598668E‘01

~0499627180303E-OI

“0505022735364E‘01

*0506885582625E-01

“0505629894935E-OI

~0504551362523E~OI

-05069282730405-01

~0512968505820E‘01

-0518915871333E-OI

-0519284426817E‘OI

‘0508612640420E‘01

*0482110196281E‘OI

-043BI7778017SE-01

-0377589277676E-OI

-0299859439787E-01

’02061868866885‘01

-01861471868I4E‘OI

DIFFERENCE

1-07632980669005-04

‘014123129404IE‘O3

~0526645610997E“03

*0946724095236E’03

“01077674685825-02

9 0 8188 I 1 354522E“ 03

’03637494733185’03

‘01673955011975‘04

02278043123155’04

-03163412211585*03

’09926074590183‘03

-01795784512115‘02

‘0244737766847E“02

-02830333898675‘02

'0299022253974E‘02

“02908449464525‘02

'02472141827245‘02

'01705230545235‘02

‘01531766818085‘02

-04I9265676101E“03

~0210231652090E-O3

~0260804363286E-O4

-0I9655246I603E~03

-0614889199831E-03

-0892341808139E-03

-0782132428867E-03

-0375279964835E-03

-0207792791120E-O4

0951875335901E-06

-03I972699OTIBE-03

-0908706337ZI4E-O3

~0163035203517E-02

~02177IO692235E-02

-0238567598357E-02

-0237054638459E-02

-0ZIIS70191826E*02

-0I49667423742E-02

~0134I74998722E-02



K: 70

K: 80

Y/D

0310

0820

0830

0800

0850

0360

0870

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982

0810

0820

0830

0340

0850

0860

0870

0580

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982

58

TABLE 6--CONTINUED

PSI

“048723309IB3OE‘OI

“0492770942314E‘OI

“04963586672095‘01

~0500081645529E-OI

~0505883439895E‘OI

“0511448045057E‘OI

‘0513168679303E‘01

~0511243153218E‘Ol

-05099OZOI7IO4E-OI

*0512766537460E‘01

~0519274954102E-01

-0523762289595E‘OI

‘0518802227132E-01

‘0498314128214E‘OI

‘0458036090546E‘OI

-0397633889501E“01

“0317970749391E‘OI

*0219‘85890513E“OI

‘0198128739656E“OI

‘0488057376664E‘01

-0493395512865E“OI

*0499160038438E‘OI

“0502793829161E‘OI

*0506330617296E‘01

~0512I72595030E“OI

~0517383527884E“01

-05179I6155295E‘01

~0515100689212E‘OI

-0514382958980E“01

-0518859315431E‘01

~05252795111595‘01

-0525285820899E‘OI

-0510266760015E-Ol

-0474280648501E‘OI

‘0415139840159E‘01

‘03338314104485‘01

“0231252241239E‘OI

‘0208794458089E‘OI

DIFFERENCE

‘0140576929884E‘03

“03520979398755“03

-02798068544585‘03

’04544652256375‘04

-08607045219985“04

-04562462436305‘03'

'07538784366335‘03

-06691790695335-03

-0297374407644E*03

02019683688605-04

'0359082769144E~04

’04477862776185‘03

‘01018958671035‘02

-01620393193705‘02

‘01985831037055‘02

”02004461182915‘02

“01811130960095‘02

‘01329900382665‘02

*01198155284353‘02

‘0824284834394E‘04

~062457054BIIZE~04

-02801371229O7E‘03

~0271218363203E‘03

~0447I77408212E-04

-0724549963721E-O4

~0421484858634E*03

~0667300207177E-03

-0519867210649E-03

-0161642152310E-03

0415638678540E-04

-0ISI722156264E-O3

-0648359377024E-03

-0II95263I7942E-02

~0162445579557E‘02

-0175059506550E-02

~01586066106O7E-02

-0117663507264E~02

-0106657184326E-02



K: 90

K3100

Y/D

0310

0320

0830

0840

0850

0860

0870

0 880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0982

0510

0820

0830

0800

0850

0360

0370

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0930

0982

59

TABLE 6--CONTINUED

PSI

-.490242524080E‘Ol

“04943264OIIO9E~OI

"0499569622698E-OI

~0505279BI4039E-OI

“0508639785854E‘OI

‘05I2372014I7IE‘OI

*0518449229319E‘OI

-052245044567IE'OI

‘0520947900208E*OI

~0517753752758E‘OI

-0519113687056E-OI

'0525386022244E‘01

-0528972172862E-OI

“0519190544233E‘OI

“0487641899512E-OI

-0430385188425E“01

-0348078925490E“OI

*0241740687696E-OI

“021830680939IE‘01

-.49o7034238025-01

-.496302525367E-01

-.sooz97199484£-01

-.sos769oeoaaée~ox

-.511102328077E~01

~0514012544823E-01

~0518433598423E‘01

~0524399327172E‘01

-0525873816587E‘01

’0522253125819E‘OI

-0520503985230E*OI

*052507I716605E‘OI

-0530854861470E“OI

-0525663235152E‘OI

'0498755067463E‘OI

-0443733745582E’01

“0360955859047E-OI

“0251251792681E-OI

-0226889534304E-OI

DIFFERENCE

~0218534741391E~03

~0930888245435E‘04

*0409584254165E‘04

-0248598487819E*03

-02309I6855799E-O3

-01994I9I46160E‘04

~010657OI43544E-03

-04534290374O7E-03

~0584721099600E-O3

~0337579377636E-03

~0254371625495E-04

-0106511088235E-04

-0368635195635E-03

~0892378422577E-03

-013361251013OE~02

~0152453482682E-02

-0I42475150373E-02

~0104884464556E-02

~095123513029BE-03

~0460399764228E~04

-0I976124258365“O3

~0727576789373E¢04

-04B9266803932E-O4

-0246254222478E-03

~0164053O64513E-03

0156308942678E*05

~0194888150872E-03

~0492591637347E-03

-0449437306088E-03

~0139029818460E*03

0314305634682E-04

-0188268861169E-03

-0647269092049E-O3

-0IIII31679480E~02

~0133485571590E-02

~0128769335610E-02

-0951110498601E-03

-085827249I314E-03



K8110

Y/D

0310

0320

0330

0340

0850

0860

0870

0880

0890

0900

09I0

0920

0930

0940

0950

0960

0970

0980

0982

60

TABLE 6--CONTINUED

PSI

‘0491299317750E’OI

‘0496833540572E-01

”050208933I203E‘OI

“0506107013513E‘OI

“0511997619338E‘OI

‘0516395901053E‘OI

-0519187912083E*OI

-0524676420639E‘OI

-0529053012535E‘01

~0526936291033E‘01

~0522959259382E“01

-0525058360916E‘01

‘0531482673861E‘01

~0530391057327E‘OI

~0507855853444E-OI

"0455636362247E-01

-0372563408215E-OI

-0260020843823E*OI

-0234770094637E-OI

DIFFERENCE

-0595893907317E-O4

~0531015202811E-04

~0179213l715816-03

-0337932669943E-04

-.8952912594545-04

-023833562409oE-03

-0754313659869E-04

-0277o9345887oE-o4

-03179l9594643E-03

-.463316521619E-03

-.245527414339E-03

.1335569322735-05

-.627812387407E-04

-0472782217003E-o3

-0910078598288E-03

~0119026166614E-02

~0116075491680E-02

-.8769051101865-03

-.7aaoseoaaaaaa-oa
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AT T=0

AFTER

NOTE

T

TABLE 7

10

IBM

61

MOVEMENT OF INTERFACE POSITION-‘CASE 5

(TABULATION FOR FIGURE 16)

Y/D

00800

00810

00820

00830

00840

00850

00860

00870

00880

00890

00900

00910

00920

00930

00940

00950

00960

00970

00980

00982

079570146E

080075022E

080438676E

080908718E

081980150E

082977453E

082755685E

083931947E

0853363045

082782176E

079248004E

081427781E

087429744E

085858187E

065180278E

021100515E

-042161320E

-011432038E

“091320570E

030086771E

1620 WAS USED

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

00

01

X/D

019211993E+02

019290055E+02

019364119E+02

019434183E+02

019500247E+02

019562308E+02

019620362E+02

019674405E+02

019724427E+02

019770419E+02

019812367E+02

019850391E+02

019884412E+02

019914431E+02

019940447E+02

019962461E+02

019980472E+02

019994481E+02

020004487E+02

020000000E+02

019212544E 02

019291271E 02

0193662865 02

019437256E 02

019503400E 02

019565676E 02

019626150E 02

0196803015 02

019729976E 02

0197845605 02

019839256E 02

019876964E 02

019898685E 02

.19939886E 02

020060454E 02

020331728E 02

020843441E 02

021754384E 02

024120897E 02

020903355E 02

FOR THE COMPUTATION.
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CHAPTER IV

CONCLUSION

This thesis has presented an analytical method by

which the movement of the interface for transient two-

phase flow in a porous medium can be predicted. Darcy's

law is a well-established fundamental principle based

upon which all problems concerning the flow through porous

media are formulated. The use of Darcy's law in this con—

tinuity equation then yields Laplace's equation, and the

resulting boundary value problem is solved.

Two approaches are used in solving the problem.

The first of these is to consider the flow as one-

dimensional while the other is to consider the flow as

two-dimensional.

The results of the onemdimensional analysis are

represented by Figures 5 through 80 These results indi-

cate that the velocity near the outflow seepage face

cannot be approximated by the onemdimensional assumption,

and the need for two—dimensional analysis is necessary.

In the beginning of this investigation, the

relaxation method was tried in solving the two-dimensional

problem. However, it was found that this method would be

unsuitable, if not impossible, for use with digital
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computer, because the relaxation patterns in the vicinity

of the interface change with the movement of the interface.

This has led to the adoption of the present method. The

results, as are represented by Figures 13 through 16, make

available an analytical method which can be compared with

field measurements and model tests. Although two dif-

ferent sets of data are used in the two approaches, the

results are qualitatively the same except near the out-

flow seepage face. Comparison of Figures 8 and 16 reveals

that while in the one-dimensional analysis reasonable

results are obtained up to about-é : 2 from the end, a
d

reasonable result is obtained up to about-5d = 0.1 in the

two-dimensional analysis.

The digital computer is utilized only for the

two-dimensional analysis. The computation time for

obtaining the results shown in Table 4 was about 60

minutes, while for Table 6 it was 160 minutes. For

Tables 5 and 7, the time was just a fraction of a minute.

It appears, therefore, that a computer which equals or

excels Control Data 3600 in processing speed should be

used.

The method presented here can be applied to the

problem with an initial interface of arbitrary shape. It

can also be applied, with some modification, to the

problem with different geometry. The problem in which

the compressibility of fluids is taken into account and

the effect of miscibility on the flow field present other

possibilities for future study.
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APPENDIX I

LIST OF SYMBOLS

The following symbols are used throughout this

 

66

thesis:

Symbol Definition Dimension

al,a2 surface levels of liquid reservoir L

b length of porous medium L

d depth of porous medium L

f(t) some function of time

9 acceleration due to gravity L/T2

h,h1,h2 piezometric head L

3 unit vector in the vertical direction

K permeability of porous medium L2

k,kl,k2 hydraulic conductivity L/T

kl product of hydraulic conductivity and

buoyancy L/T

m,n integers

n1,n2 normals to a surface

p pressure in fluid F/L2

Q discharge per unit width in porous 2

medium L /T

73 local velocity vector L/T

5 distance along the interface L

t time T
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Symbol Definition Dimension

u,u1,u2 x components of‘3’ L/T

v,vl,v2 y components of a. L/T

x horizontal co~ordinate L

Y vertical co-ordinate of interface L

y vertical co-ordinate L

'7, 71, 7% specific weights of fluids F/L3

F = 72 "' 2’1

3’1

/9 density of fluid M/L3

fl( 3 ,7 ) intensity of source

f horizontal co-ordinate along interface L

7 vertical co~ordinate along interface L

1? modified stream function L2/T

EV stream function L2/T

¢,¢1,¢2 velocity potentials L2/T

9 porosity of porous medium

A! viscosity of fluid M/LT

G( ) Green's function

( ) etc. partial derivatives of a function ( )

with respect to x, etc.

Laplacian operator



APPENDIX II

FORMULAS USED IN NUMERICAL APPROXIMATION

A. Newton's Divided-difference Interpolation Formula

x u f(y) = f(y0) + (y - y0)f(y0,y1) + (y - y0)(y - yl)

f(yo,y1,y2) + (y - yo)(y - y1)(y - y2)f(y0,yl,y2,y3) +

. . . + (y‘- yo)(y - yl) . . . (y — yn_1)f(y0,y1,

. . . yn)

where f(yo,yl), f(y0,yl,y2) . . . etc. are the divided

differences of f(y) defined as

f(y0) - f(y1)

 

 

f(Y $Y ) = _
O l y0 y1

f( ) f(y0.y1) - f(y1.y2)

YO,Y1,Y2 = ‘ _

y0 y2

f(yo.y1.y2. . . . yn> =

f<Y0$yl$y29 ° ° ° ynwl) ' f(Y1,Y2, ° ° ° YD)

Y0 _ yn
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B. Simpson's One-third Rule for Numerical Integration

 

b

h

a f(x)ds =-§-(fO + 4f1 + 2f2 + 4f3 + 2f4 + . . .

4fN_1 + fN)

C. Numerical Differentiation Formulas

 31] g yn+1 - yn-l if x # x0, x # xN

dx x=xn xn+1 - xn-l where N is the end point,

n = 0 and n = N.

91] c’———y1- YO
dx x=x '

o x1"‘o

gay] I; yN " yN-l

dx x=xN xN ' xN-l



APPENDIX III

FLOW CHART FOR COMPUTATION

( Input data on

interface position

[Interpolation] -Store in

memory

 

 
 

 

   
 

 
 

 T1 0

Enter a point

of the interface

 

   

  

   

 

 
 

 

 

 

    

   

call

0

Clear a storage

space for SUM

j ,

Compute a term _ '
Specify the - Numerical

in the series.. parameter integration

m and n 
 
 

  
  

V

Add the result

to SUM
   

  

  

  

  

Does

<kUM have the desire-

accuracy?

  

 

  

Are all

4 he points on interfac

computed?
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G)

 

Print the

value of SUM   

  7 .

lDifferentiate the value

SUM along interface
 

 7

Compute the new

interface position

 

   

 
7

Print the

interface position

 

 

  

STOP

Repeat the process as desired



APPENDIX IV

SAMPLE FORTRAN PROGRAMS

Two sample FORTRAN programs, without input data,

are presented here. Comment statements are inserted

wherever necessary to interprete the sequences of FORTRAN

statements.

PROGRAM PSI executes the computation of Equation

(51) and the steps (1) through (4) as is indicated in

Chapter III.

PROGRAM NEW POSN carries out the computation of a

new interface position as is indicated by steps (5)

through (7) in Chapter III.

Although these FORTRAN programs are written

exclusively for execution by a Control Data 3600

computer, they can also be used for any other computer

adopting the standard FORTRAN language.
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PROGRAM PSI

c COMPUTATION OF PSI ALONG THE INTERFACE

101

102

103

110

123

125

FORMATI5X91HY015X03HPSI917X010HDIFFERENCE/)

FORMAT(1H00580295X0E1801205X0ElB.121

FORHAT(/1H002HKSoI4/)

FORMAT(4(EIB¢1201X1)

FORMAT(2X051801202X9E180l2)

FORMAT¢/////)

DIMENSION Y(21)0X(21)9P$I(21)uXPRIME(21)oYPRIME(21)9XBAR(IOOO)

DIMENSION DIV1(11)oDIVZCIOIoDIV3C9)001V4(8)CD1V5(7)ODI

1V6€61001V7151oDIV814)oDIV9(3)oDIVIO(2)

DIMENSION SUMI(20).$UM2(20)001FFC(20)9 SIGMAQ61961)

C INPUT OF THE INTERFACE DATA

C THE

150

151

152

153

154

155

156

157

158

159

165

21

31

READ 1230(Y(I)vX(I)0181c8)

FOLLOWING STATENENT STARTS THE EXECUTION 0F INTERPOLATION PROCESS

DO 150 1181911

DIVI(III*O-O

DO 151 1231010

DIV21121=000

DO 152 133109

DIV311313000

DO 153 1481.8

DIV4CI4D=OQO

DO 154 158197

DIV511513000

DO 155 168106

DIV611613000

DO 156 17.195

DIV71171=000

DO 157 183194

DIV811813000

DO 158 193193

DIV9II91=OoO

DO 159 1103102

DIVIOIIIOI=OOO

DO 165 JBARBIQIOOO

XBARCJBARIIOoO

131

1131

DIVI‘11)=(X(I+II*X(III/(Y([+11‘YCI)I

I'1+1

II8II+1

IF1I-101101021

III

II'I

1231

DIV2(12)8(DIV1(II+1I’DIVI(III)/(Y(I+2)-Y(I))

IlI+1

11311+1

12812+1

1F(I- 9)2.2.31

I31

1231

I381



3

mm

0a

4»

m—

0»

~00»

.3

D~<U~~uvuaou<ma~N+uufOH<NA~Nv.\a<.~+wul<.~vv

~l~+u

~NI~N+~

~Uuuu+~

~fl.~t Dvu0mob~

HI—

~Uuu

~00—

O—<#A~b~u~0~(wn~U+~VIO~<UAmwvv\a<n~+bvt<.~uv

al~+u

~UI~D+~

ubflah+u

~1a~l 4vb0b0m~

~I~

ubflu

umuu

D~<ma~UvI~Uu<bn~b+uelO~<haa».«\a<.~+mvl<.~55

~n~+~

nbuub+~

uuuuu+~

“1.“! fivm0m00~

~I~

umnu

n0!»

On<oauoauAO~<maum+uut0~<mn~m..\a<n~+mvl<.~.C

~I~+~

~mu~m+u

nfiuno+~

uflanlmuo.o.4~

ul—

mom“

uduu

O~<dn~4uuaon<0~~0+ualou<og~0..\a<n~+dul<~~vv

~u~+~

~0h~0+u

~0u~4+~

~fl.~lb.d.4.m»

nu—

aqua

"Gnu

O~<m~~mvuaon<4~~4+uulU~<qAH4.v\~<~—+mol<.—oo

~I~+~

~4u~4+~

~Eu~0+u

~1anlucmom0ou

~I—

umnu

~0u~

O~<Q.nouuaom<maum+polo~<manmo.\~<.~+oul<a_.v

~I~+~

~0I~Q+~

~0I~0+n

~1.~IN.0000~OO—

an»



75

1931

110:1

10 DIV1011101=101V9119+1)‘DIV9(I9)1/(Y(1+10)‘Y(I)1

13141

19819+1

IlOBIIO+1

IFCI-1110¢10016

16 YBAR=00001

JBAR=1

17 XBARIJBAR1=X(1)

PROD=CYBAR-Y(1))

XBAR(JBAR)8XBAR(JBAR)+PROD*DIV1(1)

PROD=PROD*(YBAR-Y(2))

XBAR(JBAR)8XBARCJBAR)+PROD*DIV2(1J

PROD=PROD*(YBAR-Y(3))

XBAR(JBAR)=XBAR(JBAR)+PROD*DIV3(1)

PROD=PROD*(YBAR~Y(4))

XBAR(JBAR)8X3AR<JBAR)+PROD*DIV¢(1)

PRODaPROD*(YBAR-Y(5))

XBARtJBAR)=XBAR(JBAR)+PROD*DIV5(1)

PROD=PROD*(YBAR-Y(6))

XBAR(JBAR)=XBAR(JBAR)+PROD*DIV6(1)

PROD:PROD*(YBAR-Y(7))

XBAR(JBAR)=XBAR(JBAR)+PROD*DIV7(1)

PRODcPROD*(YBAR-Y(8))

X8AR<JBAR1BXBAR(JBAR)+PROD*DIV8(1)

PROD=PROD*(YBAR-Y(9))

XBAR(JBAR)8XBAR(J8AR)+PROD*DIV9(1)

PROD=PROD*(YBAR-Y(10))

XBAR(JBAR)8XBAR(JBAR)+PROD*DIV10(1)

YBAR=YBAR+00001

JBAR=JBAR+1

IF(JBAR-1000)1701791698

1698 PRINT 110u(XBAR(JBAR)oJBAR81 01000)-

PUNCH 1100(XBAR(JBAR)QJBAR=1 01000)

HITH THE ABOVE STATEMENTcTHE INTERPOLATION PROCESS IS COMPLETED AND THE VALUE

OF X8AR( 1 ARE STORED

THE FOLLOWING STATEMENT STARTS THE SUMMATION 0F SERIES

DO 164 IBAR=1020

SUHIKIBARI=OoO

SUMZCIBARI8000

164 DIFFCCIBAR)800O

DO 166 "810121

DO 166 NA=10121

166 SIGMA1M0NA)8000

PRINT 125

PRINT 101

ASPECTIZOOO

SUM=OOO

PSUM‘OOO

ASUH‘DOD

K‘IO

GOTO 1734



1699

1700

1701

1702

1703

THE

1704

1710

1712

1714

1750

1751

1752

1753

1754

1755
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DO 1770 M31935

DO 1760 NA=N40N5

NINAfiI

IF(N)170101701017O2

ALPHABOO5

GOTO 1703

ALPHA'IOO

FH=H

FN=N

B=ALPHA*COSF(FN*301415927*XBAR(JBARIIASPECTI

DENO-FN*FN+FM*FM*ASPECT'ASPECT

BIB/DEMO

IF(IBAR-1)17569170401756

FOLLOWING STATEMENT STARTS THE NUMERICAL INTEGRATION

SIGMA¢M.NA)=0.O

C8400

JBAR1=JBAR

DO 1714 L810982

JBARGL

FL‘L

YBAR1=FL/10000

TERN1=C*COSF(FN*30I415927*XBAR(JBARI/ASPECT)

TERRIBTERM1*SINF(FN*301415927*Y8AR11

IF(C~400117120171001712

C‘ZOO

GOTO 1714

C8600

SIGMA(HoNAI'SIGNACHQNA)+TERHI

JBARtJBARI

M38M/2

”I22M3*2

IF("2’N’17510175091751

TERHZ'IoO-COSF(00982*FM*3o1415926536)

GOTO 1752

TERflza-IoO‘COSF(0.982*FN*301415926536I

N2¢CN+II/2

N38N2*2

IF(N3-N-1)17540175301754

TERHZBTERMZ/(EM*301415926536)

GOTO 1755

TERNZIC-TERNEI/(FM*301415926536)

SIGMA(HoNA):SIGMA(HcNAI+TERM2

SIGMA(HoNAISSIGMA(M9NA)*O.OOI/300

C WITH THE ABOVE STATEMENToTHE NUMERICAL INTEGRATION IS COMPLETED

1756

1760

1716

1765

1770

TERH=B*SIGMA(M0NAI

‘SUNBSUM+TERM

CONTINUE

A=SINFIFH‘301415927*YBAR)

PSUM=A*SU"

A5UH=ASUN+PSUM

SUM=OOO

IF(H*K1)177D¢176591765

N421

CONTINUE
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13124 PSI=(’1001*A$PECT*ASUM

SUMI‘IBARI=SUM11IBAR1+P$I

IIUITH THE ABOVE STATEMENTOTHE SUMNATION OF SERIES IS COMPLETED AND VALUE OF P

(DOHPUTED

DIFFC(IBAR)85UM1(IBARI-SUM2(IBAR1

SUMZCIBARI=SUM1CIBARI

IF(IBAR‘ 1117239172601728

1726 PRINT 1039K

17728 PRINT IOZOYBARQSUMI(IBARIODIFFC(IBAR)

PUNCH 123OSUMICIBAR)OSUMZCIBAR)

YBARIYBAR+001

IBAR=IBAR+1

JBARzJBAR+IOO

ASUHSOQO

SUM=OOO

IF(IBAR- 8117300173001732

IL780 YBAR=00982

18AR319

JBAR=982

ASUM'OOO

5W3000

GOTO 1730

1730 IFIK-10116990169901731

1731 N48K1+2

GOTO 1699

1732 K=K+10

IF(K- 60117340173401736

1734 YBAR=0010

IBARSI

JBARGIOO

M5=K

N5=K+1

KIRK-10

IF(K1)17379173791735

1735 N4=K1+2

GOTO 1699

1737 N481

1739 GOTO 1699

1736 STOP

END



78

PROGRAM N WPOSN

110 FORWAT(4E1408)

122 FORMAT(2X.E14.8)

123 FORMAT(2X9E140892X9E1408)

124 FORMAT(9X91HY015X91HX/1

125 FORMAT(18X.E14.8.9X.E14.8)

126 FORMAT(1HX)

DIMENSION Y(21).x<21).PSI(21).XPRIM (2110YPRIM (21).XBAR(100 )

DELS=0.0

DO 99 JBAR=10009009100

DO 96 131924

95 READ 126

99 READ 110,XBAR(JBAR)

DO 90 IBAR=109

98 READ 1229PSI(IBAR)

DO 60 1:198

JBAR=I*100

60 X(I+1)=XBAR(JBAR)

X(1)=n.0

Y(1)=OOO

DO 70 1:199

70 Y(I+1)=Y(I)+0.1

DELTT=10.0

DO 25 1:1.9

IF(I-1)27.26.27

26 DELX=X(I+1)-X(I)

DELY=Y(I+1)-Y(I)

DEPSI=PSI(I+1)-PSI(I)

GOTO 80

261 DY=DELYIDELS

Dx=DFLX/DELS

DDSI=DEPSI/DELS

GOTO 24

27 IFtI- 9)29.28.29

28 DELX=X(I)-X(I-l)

DELY=Y(I)-Y(I-l)

DEPSI=PSI(I)-PSI(I—1)

GOTO 80

29 DELX=X(I+1)-X(I-1)

DELY=Y(I+1)-Y(I-1)

DEPSI=PSI(I+1)-PSI(I-1)

GOTO 80

S0 DELsszRTF(DELX*DELX+DELY*DELY1

GOTO 261

24 FACTR=DY/300

DPSI=DPSI*4.O/(301415926 *3.1415926 )

DELTY=(DPSI+FACTR)*DX*DELTT

DELTX=(DPSI+FACTR)*DY*DELTT

7 YPRIM(I)=Y(I)-DELTY

~5 XPRIM(I)=X(I)+DELTX

DO 97 1:199

97 PUNCH 1259YPRIM(I)0XPRIM(I)

END

NOTE ... IBM 1620 wAS USED FOR THIS PROGRAM



APPENDIX V

GREEN'S FUNCTION FOR LAPLACE'S EQUATION

AND POISSON'S EQUATION

A. Definition'

In the mixed boundary-value problem, let the

boundary L of the region B be separated into two parts,

L and L2, and let it be
1

required to find in B a har-

monic function u satisfying

on the boundary L the

conditions:

u = fl(M) on L1,

£3u _

The solution to this problem 
can be reduced to finding

some singular particular

solution of the problem, which will be called Green's

function for the mixed problem in the region B with pole

at M0(xo, yo) and denoted by Gg(x,y; x0,y0) = Gg(x,y).

 

'The discussion in part A is abridged from L. V.

Kantorovich and V. I. Krylov, Approximate Methods of

Higher Analysis, 1952.
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The Green's function is defined by the following

requirements:

1. For each fixed point M0(x0,yo) in B, Gg(x,y) as

a function of x and y must be harmonic in B,

with the exception of the point MO.

2. In the neighborhood of the point MO, Gg(x,y)

must have the representation:

'1' h(X,Y) ,

fi
s
h
-
1

1
Gg(x,y) --55 In

 

where r = 'VQX - x0)2 + (y — yo)2 is the distance

between the variable point M and the pole M0, and

h(x,y) is a function harmonic everywhere in B

including even the point M0.

3. On the contour L of region B, Gg(x,y) satisfies

the boundary conditions

Gg(x,y) = O on L1

and

5271 Gg(x,y) = 0 on L2.

If the Green's formula’ is applied, we have

9(; u

j;(u-7§—g - Gg€%H)ds + u(xo,y0) = O.

From this, if we take into account the boundary

conditions to which we have subjected Gg(x,y), it will

‘

*Ibid., Equation (1), p. 480.
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follow that

QC;

u(xo,y0) jél u 9 n ds + ];2 G9 2n ds,

and this last equation permits the computation of u at

any interior point MO of the region if the Green's

function Gg(x,y) is known everywhere in B, and the values

1

For the problem with the rectangular region, we

of u and«é§% are known on L and L2, respectively.

find the solution of the Poisson equation

2
K7 u = f(x,y)

with the boundary conditions

u = 0 for y = 0,-y = d

= 0 for x = 0, x = b.

3.
1%

Let us now seek by Fourier's method' the

fundamental function of the equation

V211 = >\Uo

Then we have

nnx mn
um n(x,y) = cos ——— sin-~—x

I
b d

and

2 2

A= ~11? RTE-“7%
b d
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The function f(x,y) can be expanded in a double

Fourier series,

“3 d>

n .
f(x,y) = 2:1 220 (cos-BS25 sin-agham’n

where

b d

a =5;fofof(f,7)sinm—n-¥cosn—T%Edfd7.
m,n

The solution u can then be stated' thus:

 

‘7 a

u(x,y) = - Z. Z gin 2 sing-Ex cos 2%.

m=1 n=0 n
2025 +-E§)

b d

(On substituting in the above equation the

 

 

expression for a , we obtain
m,n

00 00

Z Z 4 cos __ngx sin Md b d f

u(X,y) = - -77—- f( , ) '

m=0 n=01tbd (£+L“_E) O O 7

b d

nnrg . mniz
cos b sin d <1de

[b d 4 0° 9°

- [—TX I °
0 O n bd m=0 n=0

cos ngx sin-9%x cos-32%: sin«EEgL

2 2 ]f(f,7)dfd7.

n +‘E2

E7 d

If the function of four variables in the square bracket be

considered separately,

 

’Ibid., p. 69.



 

by means of this function the solution Of the problem can

be very simply expressed:

b d

u(x,y)=fo[06(x,y;§,7)f(§,7)d13d7.

The function G(x,y: f, 7) is the Green's function for a

rectangle.‘

B. Application to the Problem of Chapter III

In the problem Of Chapter III, the boundary portion

L1 consists of the top and bottom of the rectangle of

Figure 11, and the equation is Laplace's equation instead

of Poisson's equation, so that the right-hand side f(x,y)

is zero everywhere except at points on the interface.

Since the interface is a line of sources, we have in

effect taken it as the limiting case of a narrow zone,

 say of uniform width w on which f( E ,7) = f( {#7)

where ’0( f, ’7) is the source strength. Then the area

integral

 

‘See pp. 384-86 in R. Courant and D. Hilbert,

Methods Of Mathematical Ph sics, Vol. I, Interscience

PuSlishers, New York, 1953.
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firea of G(x,y; f ,7 )f( f , ’Z)dA

- Zone

becomes the line integral

 

. (3,7)

jInterface [G(x,y,:§,>Z) w ~ 1(wds)

which in the limit (as w approaches zero) reduces to the

line integral

G(x,y; f, ’2) f( I, 7)ds

to which must be added the integral along BA of Figure 11,

the portion of L2 where the normal derivative is pres—

cribed to be different from zero. The remaining part of

and L will be zero in this case
1 2

because of the boundary conditions on 9?.

the integrals along L

Another way of looking at the problem is to note

that each term of the series of Equation (50) satisfies

Laplace's equation. Hence the series should satisfy

Laplace's equation at interior points not on the inter—

face, if it converges sufficiently. Each term of the

series also satisfies the homogeneous boundary conditions.

It remains only to show that the whole series satisfies

the inhomogeneous boundary condition pr = -k' on BA and

the prescribed discontinuity condition on the interface.

Since the Green's function is the sum of 3% ln-%

and a function h(x,y) harmonic in the whole rectangle,

the required normal derivative discontinuity can only be

furnished by the logarithmic term. What we have to show

in order to justify Equation (47) is that



85

B A

_ _1 1 _ f .1 .1.f(x,y) — _[6 2n 1n r lfl(,§,’2)ds k B (2n 1n r)dy

has the prescribed normal derivative discontinuity, a jump

of (0( f .77) on DB and a jump Of -k' across BA.

This can be shown from the potential theory‘ which

states that the potential of a simple distribution on a

curve

f(x,y) = .]C I’ln-l ds
r

if the curve has a continuously turning tangent and ¢r

is bounded and integrable, is continuous for all finite

points of the plane including passage through C. If C

has continuous curvature and ‘7 is continuous, then the

normal derivatives of f approach limits when P approaches

A on C from either the positive or negative side, which

satisfy the equations

where A is point on the curve C.

From this relation,

 

f f

‘9 2 -.ii_1 = -2n(£[. = - g

9 n1 9 n1 2%

which is the required jump condition for f(x,y) along DB

or BA.

 

'Quoted from W. J. Sternberg and T. L. Smith,

The Theory of Potential and Spherical Harmonics,

University of Toronto Press, 1944.



 


