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ABSTRACT

TRANSIENT TWO-PHASE FLOW
THROUGH
POROUS MEDIA

by Kuang-ming Lin

This thesis presents an analytical investigation
by which the movement of the interface for transient two-
phase flow through porous media can be determined. Two
approaches, one-dimensional flow and two-dimensional flow,
are considered in the analysis of the problem. In the
one-dimensional flow, the governing equations are solved
simply by a finite-difference method, It is found that
the results are not very satisfactory near the outflow
seepage face. Therefore, two-dimensional flow is
emphasized. The essential idea utilized in two-dimensional
flow is to treat the interface as a distribution of
sources and to apply the concept of Green's function to
the governing differential equation in obtaining the
solution. For purposes of illustration, a case of con-
fined finite aquifer of rectangular shape is considered,
The two interacting fluids are assumed incompressible and
immiscible. A Control Data 3600 computer is used for all

the numerical computation.
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

The object of this thesis is to investigate
analytically the unsteady flow patterns which exist in
porous media when two adjacent fluids of different
densities are in a non-equilibrium state. The primary
consideration is given to the determination of the
movement of the interface separating the fluids. The
analytical treatment of such a problem is generally very
difficult, and only a handful of solutions of special
cases are available., Some of the more important of these
with respect to this investigation are described in
part C of this chapter and are also listed in the
Bibliography. Practical engineering situations in which
the results of this investigation may be applied occur in
the problems of sea-water encroachment into fresh-water
aquifers and in the area of petroleum recovery techniques.,

In this thesis, the physical arrangement in which
the problem is formulated consists of a rectangular porous
medium, confined in the horizontal direction, together
with two adjacent 1liquid reservoirs as indicated schema-
tically by Figure 1. For the problems to be considered

1
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the horizontal dimension of the rectangle is actually some
twenty times the vertical dimension, so that the inter-
faces and the flow are much more nearly horizontal than

they appear in Figure 1.
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Figure 1.--Geometry of the Problem

When the piezometric head of one of the 1liquid reservoirs
is suddenly changed by a certain amount and then kept at

a constant value, the flow of liquid through the porous
medium is unsteady and the interface moves toward a new
equilibrium position. Such a condition is observed fre-
quently in nature when a heavy rainfall occurs or during

a drought when the heavy withdrawal of ground water supply
takes place. It is the purpose of this thesis to apply an
analytical treatment to the problem of the establishment

of flow through a porous medium and especially the motion
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of the interface under such conditions during the transient
state,

Darcy's law is a fundamental law upon which the
mathematical theory of flow through porous media is
formulated. The investigation as reported herein analyzes
the problem from two different assumptions, one-dimensional
flow and two-dimensional flow. The former is presented in
Chapter ITI and the latter in Chapter III. In the one-
dimensional analysis, the directions of the velocities are
assumed to be in the x-direction only. Since the hori-
zontal dimension is twenty times the vertical in Figure 1,
this would seem to be a reasonable assumption over most of
the region. The resulting governing differential equations
are replaced by the corresponding finite-difference
equations, and these are solved numerically. The results
thus obtained show that this apprcach is not completely
satisfactory, and the need for two-dimensional analysis
is apparent. The inaccuracy of the one-dimensional
approach stems from the fact that the velocities near the
out-flow seepage face change their directions very rapidly,
thus making the one-dimensional flow assumption invalid.
The emphasis, therefore, will be placed on the two-
dimensional analysis, which describes more realistically
the physical situ.ation° The one-~dimensional analysis is
not totally without merit, however, since it does apply
over the major part of the region and also serves as a

guide to the two-dimensional analysis.



4

The essential idea employed in the two-~dimensional
analysis is to consider the interface as a distribution of
sources and to apply the concept of a Green's function to
the governing differential equations in obtaining a
solution. The resulting solution is in the form of a
double infinite series, With the aid of a modern high
speed computer, such as the Control Data 3600 system at
Michigan State University, sufficient convergence can be
obtained in a reasonable amount of time to yield a solution

within the range required by engineering accuracy.

B. General Theory--Darcy's Law

Flow through a porous medium, like any other type
of flow, obeys Newton's second law of motion, which states
that "forces must be exerted on a fluid to change either
the direction or magnitude of the fluid velocity." When
a fluid flows through a porous medium, the velocity of a
fluid element changes rapidly from point to point along
its tortuous flow path. The forces which produce these
changes in velocity vary ;apidly from point to point.

However, in a naturally porous material the porous
structure and hence the multitude of flow paths have a
random character. It is reasonable, therefore, to suppose
that the random variations in flow patterns for any parti-
cular fluid element are uniformly distributed. Also the
variations in magnitude of veliocity can be expected to be
distributed uniformly with mean zero. Thus, for steady

laminar flow the lateral forces associated with the
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microscopic random variations in velocity can be expected
to average to zero over any macroscopic volume. However,
the inertial forces in the direction of flow will not
average to zero and hence will only be negligible for low
flow rates., Fortunately, the flow in most cases of prac-
tical interest is of the slow laminar type and Darcy's
law, which is presented below, applies. The mathematical
theory of flow through porous media is always formulated
with Darcy's law being taken as the fundamental law of
flow.

In the middle of the 19th century, Henry Darcy, a
French engineer, discovered through experiments a law
governing the flow of water through filter beds., This

law expressed in vectorial form is

q = —-grad ¢ (1)

or

-yo.

)
"

In this equation, @ is the velocity vector,
<v=kn=k(§+y) : (2)

is the velocity potential, and h is the piezometric head.
For the meaning of<$ and y, refer to Figure 2. Here, the
liquid of specific weight ¥ is flowing with a flow rate

of Q (dimension L3/T) through a tube which is filled with

*A complete list of symbols with their definitions
is given in Appendix I.
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a porous medium of length L. It is seen that~$ and y

represent the pressure head and the elevation, respectively.
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Figure 2,--Generalized Darcy's Experiment

From dimensional analysis, the hydraulic

conductivity k can be expressed as

2Y

k = cd 7, (3)

The dimensionless factor c¢ combines the effects of
porosity, range and distribution of grain sizes, and
shape of grains as well as their orientation and packing,
while d, the mean grain éize, is representative of the
average pore size. The hydraulic conductivity k depends
on the properties c and d of the medium as well as on

the specific weight 7 and viscosity .« of the fluid.
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The product K = cd2 is typical of the medium alone and is
called the "permeability."

Darcy's law is invariant with respect to the
direction of flow in the earth's gravitational field.
This can be proved by the flow in the apparatus sketched
in Figure 2. This property was not recognized immediately,
since Darcy performed his experiment in a vertical pipe.
Figure 3 illustrates the vector character of Equation (1)
with the velocity potential of Equation (2) for the case
where Y = f>g is independent of position, as in a

homogeneous incompressible fluid.

Figure 3.,--Graph of Equation (1)

Since gvyy = -gg, where g is the acceleration of
n
gravity and j is a unit vector in the +y-direction, it
follows from Equation (2) that for a homogeneous

incompressible fluid

- % grad ¢ = 93 -,% grad p. (4)
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Equation (4) states that the force exerted upon the unit
mass of fluid at a point has a gravity component and a
component caused by the gradient of fluid pressure., Thus,
%w is a measure of the energy per unit mass or the
potential of the fluid at any point of the system. The
flow takes place from higher to lower energy levels. For
horizontal flow this means that the flow takes place from
higher to lower pressure, but this is not necessarily the
case when the flow is not horizontal because of the
gravitational potential.,

Darcy's law states, in view of the above
consideration, that macroscopically the velocity of the
water flowing through the porous medium is proportional
to the negative gradient of the piezometric head. The
macroscopic velocity magnitude q is a bulk velocity
smaller than the actual seepage velocity magnitude dge in

the pores, to which it is simply related by the porosity

9 as

9= Q9=

Although Darcy's law was first established by experiment,
Hubbert (1956)*, and others, have derived it from the
general Navier-Stokes equations for viscous flow. Such

derivations stem from statistical considerations and

*The number in the parentheses refers to the year
of the publication. References are listed in the
Bibliography at the end of the thesis.,



9
simplications of the complicated microscopic flow picture.
Although they do not contribute to the formulation of a
new law, they confirm the earlier belief that Darcy's law
is of the nature of a statistical result giving the empi-
rical equivalent of the Navier-Stokes equations. The
Navier-Stokes equations for two-dimensional flow of

incompressible fluid are:

2u _2u ou _ _ _1 9p a2
9t+hax+ 2Y - ,o ax+ P vV u

v v oV 1 o o 2
-g?+ll—éLx+V?§ = -7'—5—5+7vv—go

One can summarize the statistical averages by the approxi-

mate assumptions

u 2 v
Vus= - c — and vV =-=2¢C ;7

where L may be thought of as being a characteristic length,

for example, the pore size d of the medium. Assuming

. .29 - .29
u = 2 X Vo= oY

the Navier-Stokes equations become

- 229 2 1 2%2 ,129%2y_ __19p, 4<c 29
ax(at)+ax[2(ax) +2(ay)]— Y ax+/”d2 =
__2 (29 2 1292 1,292y _ __13p _Mc 29 _
375t 3y S 35y AT YA
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integration of the equations leads to

-22 .22, (252, R &2 L gy = £(8). (5)
ot 2 o X oY r K

This equation reduces to the Darcy law in the case of
steady flow provided the inertia terms in the square
brackets, here representing the kinetic energy of the

fluid per unit mass, can be neglected., Equation (5) with

%%% set equal to zero and f(t) constant for steady flow

then reduces to

¢ = (p + ¥y Y) + constant

K_
M
which is equivalent to Equation (2), if we identify k with
K Y
M

usually presented in a rigorous approach, it is sufficient

Although the above derivation omits some arguments

for present purposes, For the detailled discussion of
these equations, see the book by Muskat (1946). For the
problem under consideration here and outlined previously,
the governing equations and boundary condition are
summarized as follows:

The two-dimensional Darcy's equation in an

isotropic medium is

—

= - K - 3
T =-—(vp - La). (6)

The continuity equation in general form for a porous

medium is

V°F-c;=-9—i£€.' (7)

*See, for example, Collins (1961).
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For incompressible fluids, /9= constant. Then Equation

(7) becomes

V°q = 0. (8)

The boundary conditions relevant to the problem
are described in the following:

At so0lid boundaries normal velocities will vanish,
which implies that the normal derivative of ® must vanish

there. Therefore, since ® = kh, we have

v, =0 and g—g =0 (B1)
where n indicates the direction normal to the solid
boundaries.

If there is a sharp interface between region 1 and
region 2, the pressure on both sides of the interface will
be the same. Therefore, the following expression for the
elevation Y of a point on the interface may be derived by
equating the two expressions for Py and P, obtained by

solving h = £ + v for Po

g
Y = ?2):1 77 :i h, = h,]
or
Y = ?1[% h, - h,] (B2)
where T° T2 - Y1
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If the liquid 2 is under hydrostatic condition,
the total head h2 will be constant in region 2. In this
case, if we take region 2 for the reference state, we may

set h2 = 0, and Equation (B2) becomes

Y = - =% n_. (B3)

r 1

Also, normal velocities are the same on both sides of the

interface, and we have

(v,) = (v2)n° (B4)

C. Review of Literature

In the study of flow through porous media, the
location and the movement of the interface between two
fluids are of particular interest to hydrologists and
petroleum engineers. Badon-Ghyben (1888) and Herzberg
(1901) stated the hydrostatic equilibrium condition for a
fresh water lens floating on top of salt water in a porous
aquifer., Since then several researchers have investigated
the more relevant case that either one of the two fluids
or both are in motion. The most common assumption among
researchers in this field is that the salt water is static,
Todd (1953) and Kitagawa (1939) combined this assumption
with the one-dimensional form of Darcy's law to determine
the position of the interface as a function of steady
fresh-water discharge. This is similar to the case of
gravity seepage, the problem in which the Dupuit (1863)-
Forchheimer (1886) theory is utilized. Hubbert (1940)
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established a general description of the flow of two
fluids at either side of a steady interface between fluids.
For the case when only one fluid is in motion, the hodo-
graph method has been applied to several particular cases.,
A "hodograph" is a representation of a dynamical system in
which the co-ordinates are the velocity components of the
particles of the system. Noteworthy of investigators
reporting on this method are Henry (1959), Glover (1959),
and Kidder (1956).

Several major contributions in the analysis of
unsteady flow with emphasis on the movement of interface
are those of DeWiest (1959), DeJosselin DeJong (1960),
Kidder (1956), and Bear and Dagan (1964). DeWiest, in his
work, discusses the gravity flow with a free surface. The
idea of considering the unsteady flow as a perturbation in
time of the final steady state is used. The perturbation
velocity potential satisfies Laplace's equation in a
dimensionless hodograph plane. The boundary-value problem
is then set up mathematically and a numerical example
worked out. DeJosselin DeJong based his work on the con-
cept of replacing the two different fluids by one hypo-
thetical fluid and of treating the different fluid
properties by use of singularities along the interface.

By knowing the position of the interface and the boundary
conditions at a certain moment, the subsequent motion of
the interface can be computed. He gives a mathematical

example for a two-fluid system contained in a confined
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infinite aquifer of uniform thickness with interface
initially at a vertical position., Kidder treats the case
in which the interface motion is caused by gravitational
force acting on the two liquids. A general solution is
obtained by direct potential theory methods and employs a
method of approximation similar to that used in the linear
theory of water waves. The method is applicable only when
the initial slope and curvature of the interface are not
too large. In a very recent publication, Bear and Dagan
derive approximate expressions for the movement of the
interface in a confined coastal aquifer caused by a sudden
change in the rate of seaward flow of fresh water. The
solutions are based on the Dupuit assumption. The range
of validity of each solution is determined by comparing
it with results of experiments.

In the present work, the solution to the problem
of determining the movement of the interface in the tran-
sient state is obtained by successively making use of the
one-dimensional flow assumptions and the two-dimensional
flow assumptions. In one-dimensional flow, the governing
differential equations are replaced by finite-difference
equations, and these are solved numerically. In two-
dimensional flow, the interface is considered as a dis-
tribution of sources along it, and the concept of Green's
function is utilized in solving the problem, A case of
finite aquifer of rectangular shape with interface ini-
tially of the parabolic shape is solved. The two liquids

are assumed incompressible and immiscible.



CHAPTER II

ONE-DIMENSIONAL ANALYSIS

A. Derivation of the Equations

For the first approximation one-dimensional flow
is assumed, since the vertical component of the velocity
is negligible in the major portion of the flow field.

The simplifications which are made in this part
of the analysis are: incompressible flow, sharp inter-
face, the specific geometry shown in Figure 4, and an
isotropic porous medium. The profile of the porous medium
is of rectangular shape with length b and depth d. For
the example worked out % = 20 so that the interface in
Figure 4 is much more nearly horizontal than it appears
to be in the figure, and the one-dimensional flow
assumption therefore seems reasonable. For this dis-
cussion y is measured positively downward as shown in
Figure 4. Hence, in the equations of Chapter I, y must
be replaced by d - Y. The two fluids are of specific
weights ¥ , and 72..

The initial interface position Yo(x) is assumed
to be that corresponding to equilibrium conditions with
the fluid in reservoir 1 at a level of a, above the top
of the rectangular region, while the level in reservoir 2

15
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Figure 4.--Flow Geometry for One-dimensional Analysis

is zero.

Then at t = 0, the level of reservoir 1 is

suddenly lowered to the new level "a," which then is

maintained while the interface moves toward region 1

(upward and to the left in Figure 4) approaching the new

equilibrium position Yoo(x).

the transient motion of the interface,

The problem is to investigate

Because the one-

dimensional analysis appeared to be inadequate, only the

early part of the transient motion was worked out in the

numerical example to be presented below.

The applicable equations are Equation (1), which

may be written as

—

q = -k'Vh,

(9)
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and Equation (8), which is repeated here

V°qg = o. (8)

The one-dimensional flow analysis supposes that in
either of the two regions the flow velocity is horizontal
and independent of y. If Ql is the total volume flow rate
through a cross section x = constant of region 1, con-
sidered positive for flow to the right, and u, is the
horizontal velocity component there, positive for flow to
the left, then Ql = =u.Y since Y is the distance down to

1

the interface, or Q1 = -uld at a section to the left of
the point where the interface intersects the bottom of
rectangle in Figure 4. Similarly the flow rate and velo-

city in region 2 below the interface are related by

Q2 = -(d - Y)u2°

Applying the assumptions indicated above and shown

by Figure 4, Equation (9) becomes

dh1
uy, = -k Fx

in the zone 1, and we have
Q1 = k.Y =, (10)

If zone 2 is assumed to be static, the boundary condition

(B3) of Chapter I, part B applies, whence

dh
1 Y2 - ¥1 ay dy
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(The sign change is necessary because Y is now positive
downward.) When this is substituted into Equation (10),
that equation can be integrated to yield
Ik

if we impose the condition that ¥ = 0 at x = 0. This is

2

Y = x (12)

the equation of the steady interface for any specified
value of Ql’
Substituting Equation (B3), with a sign change,

into Equation (10) and integrating with respect to x, we

have
Q = lﬁ:’.‘j for 0 £ x € x
1 -~ 2T x 0
where we have used the condition h, = 0 at x = 0., For

1
x > x,, integration of Equation (10) for Y = d = constant

with x = b when hl = a, glves
Ql(x - b) = kld(h - a)

or

k,d(h, - a)
_ 1 1 < <
1 = PP X b,

Q for X

0

If these two expressions for Q, are equated with x = x

1 1’
noting from (B3) that h; = T°d, the following relation
between the level "a" in reservoir 1 and the co-ordinate
xl, where the transient interface intersects the bottom of
the aquifer, is established

= 32(1 + 2. (13)

a
d xl
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The resulting Ql for this relation is, after solving for

;2 and substituting into one of the equations for Q1
1

= e aGre
Ql = §kld(b)l_' X7
VP VPR P (14)
- 1'd 271" b °
Darcy's equations are:
obhy
Ql = le-a—x— (15)
> M
02 = k2(d -Y) 5% ° (1s6)

The continuity equation for region 1 is, after
integrating two-dimensional form of Equation (8) from the

upper boundary to the interface,

Y E;ul <2Vi 3 Y
Jo(ax*’ ay)dy = —6()_1: odY

= temporal rate of decrease

of fluid caused by inter-
face movement

which then reduces to

oY1
5% Y) + uy

Y

( 5T

%*9 = 0 (17)

where the bar indicates a mean value,
u
For one-dimensional flow, 5 i = constant across

the cross section and since Ql = Yu

1

*See p. 35 of "Advanced Mechanics of Fluids" by
Hunter Rouse (editor).
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Therefore, Equation (17) becomes

2% oY

3 x -0 >t ° (18)
Similarly, for region 2

29, oY

a X + 9 ?‘E ° (19)

Adding (18) and (19) and integrating with respect

to x yields

+ Q = f(t)o

Q 2

1
Alternatively, a definite integration with respect to x

from O to b yields, after substituting (14) through (16)

x
1 h h b h
JO [k._LY----a—-:L + k (d—Y)a 2:Idx +J k d—i—l dx

X 2 2 X x, 1 px
Q, =Q, + Q, = lk-gE]"[—zé— - 1] = constant (20)
s | 2 =251 T d = °

Equation (20) indicates that Qp remains constant during
the transient state. The expression in Equation (20) is

equivalent to that in (14) as can be seen by solving (13)
x
for —% and substituting in (14). This is to be expected,

since at Xy € x € b the entire discharge is in zone 1,

B. Numerical Example

As a specific example, we will consider the porous

medium in Figure 4 with the following properties:

X x
.% = 20, _% = 0.5, _% = 0,95, ]“ =.jﬁg;:_2:l =.l_

71 40 °
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We tak = U .; th ince k. = =L and x, = =22
eae/(,(l-/uz, <=.-n,snce1-/u:l an 2_,1(——2—,
we have k2 =-§;gk1, Initially, an equilibrium condition
1
a
prevails and Equation (13) yields 2. 1.5] corresponding

d
to Xy = 0.5b. The elevation a, is then suddenly lowered
to'% = 1,026 corresponding to an equilibrium interface
with X, = 0.95b. At the initial steady state the flow

1 .
rate is QO B EﬁkldI" according to Equation (20), and
during the transient state and at the final steady state
_ 1
QT = %kldr °
Introduction of the following dimensionless

variables allows for considerable simplification:

Q Q
1 2 ’ ’ X
'Q1=Q_’ ‘Q2=6" y =% x-3
T T
L L Johy o Ont
= ) = ) = °
17 o 2 T T D a2

Equations (15), (16), (18), (19), (20), and (B2) become:

2, = ¥ ::}’ (21)

1, = a- y)zzz (22)

aaf}’l . %LL (23)

aaﬂ,z - -%1; (24)
x t

.Ql + Q, =1 (25)
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Q

’ T ' ’
Yy’ = —?I]'"(hl - hy)e (26)

The initial and final positions of the interface are
computed from Equation (12), using the values of Qo and

QT respectively, given above in the paragraph preceding

Equation (21), as:

12 4

YO = Oolx (27)
vy, % - 0.0526x" (28)
w o (-]

Immediately after the reservoir surface of liquid 1 is
changed, the value of Q, on the interval b 2 x 2 0,5b is
the final Q1 = Qg because Q2 = 0 here and Ql + Q2 = QT =
constant. Hence.Szl = 1 on this interval, and since y =
1 on this interval, Equation (21) integrates to yield
(h;.)o = x’ + constant. Therefore, we have for the initial
distribution of h, to the left of x = 0.5b immediately

1
after the lowering of the 1liquid 1 level to its final

value:
(hj)g = x'+ 19 0.5b € x < b. (29)
The distribution of hi and hé to the right of x = 0.5b is

obtained by substituting (21) and (22) into (25) together

with (27) yielding, after substituting the numerical data,

’ 2.69 A ’ < <
(h,), = === /x" - 0.0455x 0 £ x < 0,5 (30)
1’0 (20
and
(h'z)o = -0,0455x" 0< x < 0,5b. (31)
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Computed results of (29), (30), and (31) are plotted in

Figure 5.

C. Finite-difference Solution Procedure

The difference equations corresponding to Equations

(21) through (26) are:

L) =y Plse1,3 7 Padyoyg (21A)
11,3 i,) 2(Ax")
(hl) - (h!)
<2, g = -y 2 1+1,] 241, (22n)
’ ’ 2(Ax’)
(’Q‘l)i+1,j - (-(22)1-1,j _ Yi,9e1 T Y44 (23)
2(Ax’) At
205 1.4 = S04,y 4 _ Y1941 T Y409 (24A)
2(Ax’ ) At!
)y 4 + <£22>i,j = 1 (25a)
, QT ’ /
Yi,5 = Fal g,y = o)y 4l (zen)

In these equations, the index i refers to the x  increments
while j refers to the t’ increments. The numerical
computations are carried as follows:

1) Choose suitable intervals for Ax’ and At’.

2) From Equation (23A) compute, starting with j = 0
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, 8y, - 824y o
Yi,3¢1 = Yi,5 °

28X
At

3) Substitute Equations (21A) and (22A) into
Equation (25A), replacing j by j + 1. Equation
(26) is then substituted into the resulting

/ /
equation to eliminate (hl)i+1,j+1 and (hl)i—l,j+1’
yielding
! /
(hy)i,1,941 = (hpdig 341 0.95 . .
. 1 ==Y 501
2(Ax ) Ax ?

/ ’
(Y3,1,5+1 = Yi-1,5+1)°
4) The equation obtained in step (3) is then

substituted into Equation (22A), giving

L

(jll)i,j+l = (¥ 341)

0.95
[1 MWL FFS L S Tl £ IS DR PS DR yi,j+1)J .

5) (f2.) is then obtained from Equation (25A),
2°1,j+1
6) Repeat the steps(2) through (5) for new increments

of j.

D. Results and Discussion

A numerical example with Ax' =1 and At' = 1 was
carried out, and the resulting interface locations corres-

ponding to t' = 1 and t’ = 2 are shown in Figure 6. This



25
increment in x' is equivalent to dividing the entire
length of the rectangle into twenty intervals., Since the
initial interface occupied only half the length, it amounts
to dividing the initial interface into ten equal horizontal
intervals. The time interval was selected arbitrarily, to
be checked for reasonableness by requiring that the calcu-
lated motion of the interface during the time interval be
small compared to the distance from the initial equilibrium
position Yo(x) to the final equilibrium position Yoo(x).
These computations are designated as Case 1. Observation
of Figure 6 reveals that the computed values of Y tend to
go above the final steady state near the right-hand end of
the flow field. This is not likely to be the case, since
oscillation is not anticipated., The difficulty may be
attributed to the relatively steep slope of the interface
in this region, where the vertical component of the velo-
city is not negligible and therefore the one-dimensional
analysis is not a good approximation. An attempt to
improve this discrepancy was made by taking smaller inter-
vals (Ax' = 0,02, At' = 0,02) in the difference equations.
The results of this as shown by Figure 7 disclose a
similar tendency. Here, the locations of the interface
computed for t = 0,02 and t = 0.04 are plotted. This
is designated as Case 2, Another calculation was made
after interchanging the initial and final positions of the
interface, i.e., making the final steady-state position of

the interface in the previous case the initial position of
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the interface in this case., The result of this for

t'=1and t’

2 as given by Figure 8 indicates that

the values of Y tend to fall far below the final steady
state near the right end. This is designated as Case 3.
Again, we are unable to overcome the difficulty mentioned
in the previous case. All the data pertaining to Figures 5
through 8 are listed in Tables 1, 2, and 3.

The results obtained in these analyses lead to the
conclusion that the one-dimensional approximation cannot
be valid near the outflow end, though it may possibly be
a good approximation elsewhere. The two-dimensional
analysis will be used in the next chapter to yield a

refined solution.
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x/d

0
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

Note

Y1 is the interface position for t

Y

2

TABLE 2
Y, Y2

0
0.0157
0.0482
0.0655 0.0562
0.0794 0.0700
0.0900 0.0825
0.1005 0.0930
0.1103 0.1028
0.1195 0.1120
0.1272 0.1180
0.1344 0.1260
0.1423 0,1330
0.1489 0.1400
0.1552 0.1475
0.1613 0.1545
0.1672 0.1610
0.1739 0.1680
0.1794 0.1730
0.1847 0.1775
0.1899 0.1830
0.1950 0.1875

is the interface position for t
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x/d

0.42
0.44
0.46
0.48
0.50
0,52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0,72
0.74
0.76
0.78
0.80

TABULATION FOR FIGURE 7

Yy

0.1999
0.2048
0.2105
0.2151
0.2196
0.2240
0.2284
0.2326
0.2368
0.2409
0.2450
0.2490
0.2529
0.2568
0.2606
0.2653
0.2680
0.2717
0.2763
0.,2788

0.02

0.04

0.1920
0.1970
0.2010
0.2060
0.2110
0.2160
0.2215
0.2255
0.2300
0.2345
0.2385
0.2430
0.2470
0.2510
0.2550
0.2590
0.2630
0.2670
0.2715
0.2760
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TABLE 3 TABULATION FOR FIGURE 8

x/d YO YOO Yl Y2

0 0 0

1 0.229 0.316 0.306

2 0.324 0.447 0.364 0.393
3 0.397 0.548 0.429 0.458
4 0.459 0,633 0.486 0.512
5 0.512 0,707 0.536 0,560
6 0.562 0.775 0.584 0.606
7 0.607 0.837 0.627 0.647
8 0.648 0,895 0.667 0.686
9 0.688 0.949 0.706 0.724
10 0.725 1.000 0.742 0.759
11 0.760 0.776 0.792
12 0.794 0.810 0.825
13 0.827 0.842 0.857
14 0.858 0.872 0.887
15 0.888 0.902 0.916
16 0.917 0.931 0.944
17 0.945 0.958 0,971
18 0.973 0.986
19 1.000

Note Y1 is the interface position for t =1
Y is the interface position for t = 2

2



CHAPTER III

TWO-DIMENSIONAL ANALYSIS

A. Formulation of the Boundary-value Problem

The one-dimensional analysis as presented in the
previous chapter gives a reasonable result in the major
rportion of the flow field. The inaccuracy near the out-
flow seepage face is caused by the fact that the vertical
component of the velocity in this region is no longer
negligible. It is, therefore, the purpose of this chapter
to analyze the problem with the assumption that the flow
is two-dimensional. To make the problem mathematically
tractable, a porous medium of rectangular shape with
length b and depth d, as shown in Figure 9 will once
again be considered. 1In this chapter the y-co-ordinate
is again measured positively up from the bottom, as it
was in Chapter I, and the sign change required for y in
Chapter II is not needed. The assumptions of incompressible
flow and a sharp interface are also made. The specific
geometry with the appropriate boundary conditions is shown
in Figure 9. Note that the boundaries AF and CDE are
impervious.

Region 1 is occupied by a fluid of density J%l

while region 2 is occupied by that of density';%g, where

34
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Y
4
< b .
Z
Py ((Pl) =0 A
AN NSNS AN NYAXY
IR N S S Y 1
. "2 ) e = v/
A p "71 kpapky
-Reéion ' e 7T :|B
a]' ,‘ 1’__4/’ ’ "‘.: . ' . :
Lo R d
01=k1a1 . . ~ -
I . Ry
) S 3 V 2 <P2=k2a2
. ( nl,.' ! Region 2
/?//,////g/'//'/b'/ /"/‘//'//"/'/./";/1/r1/~//“//.///;///';t////////,/,/,
(‘~P2)y=0
Figure 9.--Geometry of Flow and Boundary Conditions
Xé => ¥,- The method of solution applies at any time of

the transient motion to calculate the next step of the
motion when the two fluids are in a non-equilibrium state.,
In the example to be presented the initial interface
position 1s a parabolic approximation to the known equili-
brium configuration for a certain total discharge rate Q.
Transient motion of the interface is then examined under
the assumption that at t = 0 the discharge rate i1s changed
to a higher value and maintained constant. Such a change
in discharge rate could be produced physically by raising
the level of the fluid in reservoir 1, and this would

cause the interface to move to the right. The boundary
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conditions indicated are obtained from the fact that the
reservoirs are under static conditions and that the sur-
faces AF and CDE are impervious. Under static conditions
the total head is independent of y since the pressure head
increases with depth by an amount equal to the decrease in
elevation. Thus on FE we have @1 = klal and on BC ¢2 =

k Since the normal derivative must be zero at the

£2%2°
impervious top and bottom boundaries, we have (‘Pl)y = 0 on
AF and ED and (<P2)y = 0 on DC, where the subscript denotes
the partial derivative with respect to y. The boundary

condition for ®. on AB is derived below as Equation (38).

1
Darcy's law for homogeneous two-dimensional flow
through porous media is valid everywhere in the porous

medium except along the interface. Therefore, we have

h oh
u = -k a 1, v = - -—-—1-’
1 1 ox 1 1l oy
(32)
h oh
w, = -k o2, v, = k2
2 2 OXx 2 2 9Y

where the subscripts refer to the appropriate zones.
If we introduce the velocity potentials ®; = k;h,

and ¢2 = k2h2 into Equations (32) we have

P ®
Y“$w = - 2 ]3 v, = -'ja—l,
2 X 1 oY
(33)
PR 0%,
4 ot T V2t T3y

or in vector form @ = VAL (34)
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Since the continuity equation must be satisfied,
we have, from Equation (8) for incompressible flow, the

Laplace's equation
2
Ve = o. (35)

Equation (35) applies in regions 1 and 2, respectively,
but does not apply across the interface,

The boundary conditions along the seepage face AB
and the interface BD are derived as follows. The pressure

is continuous across these faces. Therefore, the condition

%1 %2
po= G- ¥y Sl e v, (36)

has to be imposed on them. For the vertical seepage face

AB, where ¢2 = k2a2, Equation’ (36) becomes

¥2 r2
(pl = lelaz - y(—}—-l' - l)kl. (37)

To further simplify the analysis, let/u2 =-/VI" Then,

since
KY KY
1 2
k = e— and k =
1 A 2 U
Y2 ' 72
we have f;;kl = k,; and, if we introduce k = (WFI - l)kl,

Equation (37) reduces to

*If the two liquids are fresh water and salt
water, respectively, the viscosities are practically the
same.
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®, = k.,a,-k'y. (38)

1 282

Similarly, for the interface BD

. = O -k (—= -1y = O, -Xk'y. (39)

17y, 2

Also, normal components of the velocities along the
interface are the same on both sides and therefore

29¢1 ) 0@
PR on

N

(40)

N

since positive ny and n, are chosen outward from the
respective regions and are therefore in opposite
directions on the interface. We introduce the stream

function ]P defined by

u=—2—% v=—aw (41)

2Y’ 2 X
which with ® satisfies the Cauchy=Riemann equations
2% 2 20 20 (42)
oY ox’ EIES 2Y °

Differentiating Equation (39) with respect to s, the

distance along the interface, yields

2% _ 2% _ oy

> = s EXC (43)

where s is defined positive from D toward B. In terms of

yﬂ, Equation (43) becomes

_2¥a _ 2y - x'2X (44)
9“2 205 2

S

where we have used Equation (42) with local x and y axes
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in the s and n, directions. Since 2W = - EA, this
2 PR 20
becomes
20 2N 2 S

Also, Equation (40) becomes

o¥1 91/’2
2Y1 - 222, (46)

2 S

In summary, the problem, in terms of HP, is to

solve the governing equation V’zyV = 0 with the boundary

conditions shown in Figure 10. Subscripts x and n denote

F Y =a

Region 1

Figure 10.--Boundary Conditions in Terms of

partial derivatives. The boundary conditions on I//along

EF and AC are obtained from those on ® shown in Figure 9,

by using Equations (42). These equations also imply that
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QP is constant along the top and bottom. If we arbitrarily
set 4’= 0 along the bottom, then along the top 1# is
equal to the total discharge Q, since along EF {%%L is
equal to u. The interface condition along DB was derived
above as Equation (45). To simplify the problem one step
further, a function @ is introduced, defined by ) =
W-% . Then vz? =V 21[ and the problem is to find a
function }P which satisfies Laplace's equation in region 1
and in region 2 with the boundary conditions shown in

Figure 11.

F Y=0 A

Region 1

Region 2

Figure 1l.--Boundary Conditions in Terms of IP

B. Solution Procedure with Green's Function

Since a discontinuity exists along the interfaces
DB and BA, the governing differential equation does not
apply across them. The interface, with normal velocity

discontinuity as shown in Figure 11, can be considered as
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G=0

Figure 12,--Boundary Conditions for G

a distribution of sources with sources intensity fN j, 7)
per unit length, equal to the discontinuity in 4%%gu Here
f (s) and 77(5) are the rectangular co-ordinates of the
source point specified by the arc-length parameter s. The
details of solution for 'd)are presented in Appendix V.
The results are quoted below in Equations (47) to (49).
The solution for EP(x,y) in either region is given in

terms of a Green's function G(x,y; §,7) as*

B
1})(x,y) = -J(D G(x,ys ¥ ,7) /9( ¢, 7)ds +
(47)

A
fBG%?Lde

where G is, for each value of ‘f and 37, a solution of

Laplace's equation

*See, for example, L. V. Kantorovich and v. I.
Krylov, "Approximate Methods of Higher Analysis,"
pp. 71-72, and pp. 496-97 for Equations (47) and (48).
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2% .\ 2%

=0
2 x2 Dy?

in the whole rectangle, satisfying the boundary conditions
shown in Figure 12.
The required function G is given by the double

trigonometric series of Equation (48)

+ T ¢
G(X,Y; ’ ) = = 0< °
£.7 n°bd m=1 n=p D1
¥ (48)
nmnx miy nmn m1 7
cos < sin - cos 5 sin 3
n® ., m
b2 a2
where
A = 1/2, ifn =0 R e
or
A n = 1, if n # 0 6n0 = Kronecker delta.

When we introduce the source strength f= k'—g—%

on DB and /0= -X on BA, Equation (47) takes the form

Y (x,y)

B
- [D Glx,y; $(s), 7(s)] k’—;lsi ds -

A
k'fB G(x,y: b, 7 )d”?

A
-k/jn G[x,y;f(’(),’]]d’] (49)
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since on DB Y(s) = % (s). Substituting Equation (48) into
(49) then yields

[>¢]
P oo - -2 T
m=

4 (50)
o Cos nr 1() ) sinm—ndid7.

If (50) is made dimensionless, we have

nmnx m’E!

\{/'= Y/ i _:’:? "Z"p( cos == sin =3 .

1n=0 " n2 + m2(§)2

(51)

1l
[O cos ﬂbi- sin % d(—%).

4

The function g7lin Equation (51) is computed
numerically, and the movement of the interface is derived
from it. A detailed account of the numerical solution is
explained below. The Control Data 3600 Computer of the
Michigan State University Computer Center was used for all
the numerical computation. The computing procedures are
as follows:

1) Assume an initial interface position DB,

2) The interface position is expressed in the form
of a group of discrete points (xi, yi). The
intermediate points among these discrete points

are computed by interpolation using Newton's



3)

4)

5)

6)

7)

44
divided difference formula. This formula is
listed in Appendix II. These values are stored
in the memory of the computer for later use.
The integral in Equation (51) is evaluated along
the interface using Simpson's rule with intervals
of égL = 0,001. The results of part (2) are
utilized in obtaining the values of-i%.
¥)'in Equation (51) is then computed along the
interface at the intervals of é% = 0,1 except
the points near the end B where intervals of‘é%
= 0.01 are used,
The numerical data giving }P,at points on the
interface is then differentiated with respect to
dimensionless arc-length'g to obtain the normal

velocity of particles on the interface.,

The results of (5) are then multiplied by the

’

dimensionless time increment to obtain the

t

d
dimensionless displacement é% of the interface
in the normal direction. The horizontal and
vertical components of this displacement are
obtained by multiplying-é% by the direction
cosines of the normal.
The new position of the interface is then obtained
by adding these horizontal and vertical components
of the normal displacement to the corresponding

initial co-ordinates of the interface. (Note that

these x and y components are not actual x and y
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components of the displacement of material

particles, since particles would also have some

velocity components tangential to the interface,
computed from the normal derivative of E/ and
therefore discontinuous at the interface.)

8) These co-ordinates are then substituted again in
Newton's divided difference interpolation formula
to obtain the intermediate points.

9) Parts (2) through (8) are then repeated to obtain
the subsequent positions of the interface.,

In Appendix III, the entire computational schemes
are presented in the form of Flow Diagrams so that the
computer instructions can be easily programmed from them.
Two sample FORTRAN Programs are presented in Appendix IV

for reference.

C. Numerical Example

For the purpose of illustration, a numerical

example, with the following data is presented:

’

b k d
-a» = 20, T = 30o

The initial interface position was obtained from
the equilibrium position calculated by Henry (1959) for
a discharge rate represented by Eég = 40,025, Co=-ordinates
of eleven points along the initial interface are shown in
Table 5. Additional points on the interface were obtained
by interpolation as described in step (2) of the procedure

given in the preceding section., At time t = 0 it is
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assumed that the discharge rate is suddenly increased

and maintained during the transient motion cf the inter-

’

face at a rate represented by Eag = 30,

D, Results and Discussion

Table 4 shows the valﬁes of Q/ (labeled PSI)
between~§ = 0.1 and % = 0.8 along the initial interface,
the results of step (4) of the first computation cycle,
The number k in the table indicates the number of terms
in the double series of Equation (51); thus k = 60 means
a partial sum with m going from 1 to 60 while n goes from
zero to 60, a total of 3,660 terms in the double sum.
Since the results for k = 50 agree with those for k = 60
to approximately four significant figures, it is hoped
that sufficient convergence was obtained to give results
accurate to approximately four significant figures. This
result is plotted in Figure 13, showing that the relation
between lP'and'é is linear except at the points beyond
% = 0,80, which are computed separately and given in
Table 6.

Two cycles of the calculation outlined in part B
were performed to obtain the interface positions at times
corresponding to E%L equal to ten and twenty. The
resulting interface positions are plotted along with the
initial interface position in Figure 14, based on Table 5,
which gives the position co-ordinates of eleven points on

the interface after the motion. It appears from Figure 14

that the motion during the second time increment was
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considerably smaller than during the first. This plot
shows a more reasonable motion of the interface than was
obtained by the one-dimensional analysis. However, a
closer examination of the region near the right-hand end
of the flow field shows still some discrepancy.

In the region between.% = 0,8 and % = 1, the
computations were performed at intervals éﬁ = 0,01, The
results for yp’are given in Table 6 with the series
carried out to k = 110 in order to get sufficient
convergence. The results are also plotted in Figure 15,

and it is seen that the linear plot of Figure 13 extends

to about £ = 0,89. Beyond this point the results become

d
erratic and unreasonable. The position of the part of
the interface between'ﬁ = 0.8 and'ﬁ = 1 after Eg— = 10

is shown in Figure 16, based on Table 7. Near the right-
hand end the large displacement shown is in the region
where the solution is erratic. Perhaps a better result
could be obtained by taking a smaller interval in the
interpolation formula and the numerical integration.
Except for this erratic behavior very near the
end, the'two-dimensional analysis predictions seem
reasonable, and the unreasonable behavior occurs in a
much smaller part of the field than was the case with the

one-dimensional analysis.,
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TABLE 4

K=10

K=20

VALUES OF PSI ALONG INITIAL INTERFACE FOR Y/D=0Qel TO Q8

Y/D

0e10
0.20
030
040
0650
060
070
0680

0.10
0e¢20
030
0¢40
050
060
0¢70
080

0+10
020
030
0e40
050
060
0e¢70
080

O.10
0«20
0.30
0e¢40
0450
0660
070
0.80

0.10
020
030
040
050
0660
070
080

52

{TABURATION FOR FIGURE 13)

PSI

~¢553055545737E-02
«~e115720761094E-01
~e176355510117E-01
-e236459464657E~-01
-0295596062300E-01
-e¢351179062585E~01
~¢398317114792E~01
~e448916755369E~01

-e¢582795472379E~02
~e119473692097E-01
~e180447219584E-01
~e241584277297E-01
~¢301895540055E-01
~-e360999112490E-01
~e414043748577E-01
~e453687964662E-01

~¢594017702912E-02
-e120689791407E~01
-¢181970215872E-01
—e24317306821SE~01
~0303962968195E-01
—¢363412571118E~-01
—e419695166318E-01
~e471293439819E-01

-e599469170993E-02
~e121334040316E-01
-e182704867486E-01
~e244030406335E-01
~-¢305048160917E-01
~-¢365143438139E-01
—e422962561803E-01
-e474693501048E-01

-e602848758412E-02
-e¢121729893888E-01
-e¢183163778540E-01
—e244519188225E-01
~¢305669839261E-01
~¢366090105235E-01
~e424703593511E~01
~e477747216275E-01

DIFFERENCE

- ¢553055545737E~-02
~e115720761094E~01
—-¢176355510117E-01
—-e236459464657E~01
- e295596062300E~01
-e¢351179062585E~01
-e¢398317114792E-01
~e448916755369E~-01

- ¢297369296528E-03
-¢375293100216E-03
-e409170946587E-03
~e512481264217E-03
-e629947775480E~03
- 98200499091 8E~03
-+157266337832E-02
-e477120928750E-03

-e112222305352E-03
-~¢121609931060E~03
-4 152299629015E~-03
-¢158879091494E~03
-e206742814506E-03
~-e241345862385E-03
-e565141774161E~-03
- 176054751595E-02

~e545146807563E-04
- e644248907542E-04
-e734651612234E-04
~e857338122863E~-04
~¢108519272093E-03
-e173086702496E~03
~¢326739548669E-03
—-¢340006123239E-03

~-e¢337958741744E-04
—¢395853574002E~-04
~¢458911054018E-04
—+488781888642E-04
—~e621678341326E-04
~e946667096301E~-04
~¢1741031710S5E~-03
-¢305371522714E-03



Y/D

K=60 010
020
030
0«40
050
060
0«70
0«80

NOTE K INDICATES THE NUMBER OF TERMS IN EQUATION (51)e FOR EXAMPLE,
K=60 MEANS THAT 60X60=3600 TERMS ARE CARRIED OUT IN THE SUMMAT I(

53

TABLE 4~-CONTINUED

PSI

~e605041735282E~02
~e¢121992332453E-01
~¢183459515629E-01
~¢244866174082E~01
~-¢306114952320E-01
~e366647209405E-01
-e425997797727E~01
~e481022714914E-01

D IFFERENCE

~e219297686504E-04
—¢262438561556E~-04
~¢295737086170E-04
-¢3463985852964E-04
—-¢44511305532BE~-04
-e557104167470E-04
—e129420421224E-03
- e327549862974E-03



AT T=0

AFTER T=10

NOTE

TABLE 5 MOVEMENT OF

54

INTERFACE POSITION--CASE 4

(TABULATION FOR FIGURE 14)

Y/D

0000
00100
00,200
0300
0400
00500
0600
0700
0800
0900
0,982

=022710731E-02
e97638290E-01
019738456E 00
«2970C272E 00
039645103E 00
049560301E 00
259399079E 00
«70233221E 00
081574804E 00

X/D

0.000
«380237352438E+01
e 720449719549E+01
«102063710230E+02
«128079950071E+02
«150093691478E+02
«168104934459E+02
«182113678999E+02
0192119925101E+02
0198123672759E+02
«200C0000000C0OE+02

«61477886E-04
«36941965E 01
«71083374E 01
210122245E 02
«12735916E 02
«14949369E 02
«16762655E 02
«18174974E 02
«19186239E 02

le THE DATA FOR SECOND SET OF VALUES (AFTER T=

CORRESPOND TO THE

FIRST SET (AT T =
2. CONTROL DATA 3600

FIRST 9 VALUES IN THE
0)
WAS USED FOR T = 0 AND

IBM 1625 WAS USED FOR T = 10

10)



TABLE 6 VALUES OF PSI FOR INITIAL INTERFACE POSITION Y=0e810 TO 0e982

K= 10

K= 20

Y/D

810
«820
«830
«840
«850
«860
«870
«880
«890
«900
«910
920
930
940
+ 950
960
«970
«980
982

«810
«820
«830
«840
«850
«860
«870
«880
«890
«900
«910
920
«930
940
«950
«960
e970
980
982

55

(TABULATION OF FIGURE 1%5)

PS1

~e452184037582E-01
«e453708840054E~01
~-e453144403000E-01
-e450179562191E-01
-e444540875447E~01
~e¢435993889711E~01
~e424344879320E~01
~e409443807417E~01
~¢391188634036E-01
- 369530592252E~01

~¢344483332432E~01 .

~e¢316116333968E-01
-¢284569470103E~-01
~e250050968927E~01
~e212836335268E~01
-e173264630052E~-01
-e131732188562E-01
-+ 886840445251E~02
~e799351987516E~-02

~e457766126623E-01
~¢463284042831E~01
~¢469820578153E-01
~e476526464969E-01
~e¢482256676085E-01
- e485752950466E~01
~-e485827919299E~01
~¢481503599367E~01
~e872074536941E-01
-e457093757883E-01
~-e436321422130E~01
~e¢409600791230E~01
-¢376849203712E~01
-¢338044417331E~01
-e293274613025E«01
~e242819787385E~-01
-¢187233390643E-01
-e127392746388E~01
-¢115018000693E-01

DIFFERENCE

-e452184037582E-01
—e453708840054E-01
-¢453144403000E-01
-e450179562191E-01
—e444540875447E-01
—-e435993889711E-01
-e424344879320E~01
-¢409443807417E-01
—¢391188634036E~01
-¢369530592252E-01
—e344483332432E-01
-e¢316116333968E-01
-¢284569470103E~-01
-e250050968927E-01
-¢212836335268E-~01
—e173264630052E-01
-¢131732188562E~-01
-+886840445251E-02
-¢799351987516E~-02

~¢558208904302E-03
~-e957520277560E-03
-e166761751556E-02
-¢263469027785E-02
-e377158006362E~02
-e497590607585E-02
-¢614830399820E-02
-e720597919470E-02
-¢808859029086E~-02
-e875631656367E~-02
—¢918380896939E~-02
-e934844572679E-02
~e922797336098E-02
—-e879934483979E~-02
-¢804382777569E-02
-e695551573343E~-02
-¢555012020792E~02
-¢387087018644E-02
-¢350828019422E-02



K= 30

K= 40

Y/D

«810
«820
«830
«840
«850
«860
«870
«880
«890
«900
«910
«920
930
940
950
e960
e 970
«980
«982

«810
820
«830
«840
«850
«860
«870
«880
«890
«900
«910
«920
«930
940
¢950
e960
e970
«980
«982

56

TABLE 6~~CONTINVED

PSI

-e472920946682E-01
-e473523386812E-01
-9874514539543E-01
-e477125641155E-01
-¢481861443230E-01
-¢488250453061E-01
-¢494889206624E-01
~e499733504439E~-01
-¢500545813906E-01
~e495342207585E~01
-0482702450587E~01
~e461712520708E-01
~e¢431911012289E~01

«¢393110517856E~-01

~e345345048154E-01
~¢288942944855E~01
~e¢224660673521E-01
~-e153785767827E-01
-¢138980940221E~01

-¢480871367705E~01
~e485735333459E~01
~¢488033338195€~-01
-e488194414735E~01
~-e488097096510E-01
-e489774046000E-01
~e494171075858E~-01
~e¢500631167379E~-01
~e506948285052E~01
~e509814612364E~01
- e 505792526834E~01
~e492239518324E~01
~e467835343385E~01
~-e432035788072E~01
~e384418794943E~-01
-e324799319184E~01
~e253981002330E~01
~e174167838861E-01
~e157412018762E-01

DIFFERENGE

-¢151548200578E-02
-¢102393439831E-02
—e469396139124E-03
-¢599176182746E-04

¢ 395232855233E-04
- 02497502591 76E~-03
-e906128732822E-03
-e182299050724E~02
-e284712769651E~-02
-¢382484497008E-02
—¢463810284607E-02
-e521117294746E~-02
-¢550618085806E-02
~¢550661005327E-02
—-e¢520704351235E~-02
~e461231574678E~-02
—e374272828783E-02
-¢263930214380E-02
-e239629395270E-02

- e795042102254E~03

. —e122119466416E~02

-¢13518798651 1E~-02
-¢110687735834E~02
-¢623565328176E~-03
-¢152359293683E-03

¢718130768306E-04
—e897662939693E~-04
~-e640247114468E~-03
-e¢144724047826E~-02
-e230900762475E-02
-¢305269976168E~-02
-¢359243310966E~02
-¢389252702102E~02
- e390737467940E~-02
-¢358563743255E-02
-¢293203288136E-02
—e203820710343E~-02
-e¢184310785382E~-02



K= S0

K= 60

Y/D

«810
«820
«830
e840
«850
«860
870
«880
«890
«900
«910
«920
«930
940
«950
+960
¢970
«980
982

«810
«820
«830
«840
«850
«B860
«870
«880
«890
«900
«910
920
¢930
¢940
0950
960
970
¢980
982

57

TABLE 6-—-CONTINVED

PS1

~e481634665775E-01
~e487147646396E-01
—-e493299794303E-01
~-e497661655689E~01
~-e498873843368E~-01
~e497962164540E-01
~e¢497808570639E~01
-e500798562876E~01
-e506720480247E-01
-e512978024577E~01
~e515718601426E-01
-e510197363445E-01
-e492309120069E~01
-e460339127058E~-01
~e414321020340E~-01
-¢353883813827E-01
~e278702420605E~01
«~2191220144316E-01
-e172729686939E~-01

~e485827322533E-01
~e489249962920E~01
-+493560598668E-01
~e499627180303E~-01
-e505022735364E-01
-¢506885582625E-01
~-¢505629894935E-01
-e504551362523E-01
-e506928273040E~-01
-¢512968505820E-01
~e518915871333E-01
-e519284426817E-01
~e508612640420E-01
~¢482110196281E-01
~e438177780175E-01
~e377589277676E~01
- e 299859439787E-01
-e¢206186886688E~01
~¢186147186814E-01

DIFFERENCE

 =e763298066900E~-04

-e141231294041E-03
—¢526645610997E~03
—e946724095236E-03
-e107767468582E-02
—-¢818811854522E-03
-¢363749478318E-03
-e¢167395501197E-04

«227804812315E-04
-e316341221158€E-03
-¢992607459018E-03
-e179578451211E-02
-e244737766847E-02
-¢283033389867E~02
-e299022253974E-02
—-e290844946452E-02
—-e247214182724E~02
—e170523054523E~02
-¢153176681808E-02

-e419265676101E~-03
~e210231652090E-03
~-e260804363286E-04
-0 196552461603E~03
-¢614889199831E-03
-+¢892341808139E-03
-¢782132428867E~03
- e375279964835E~03
-e207792791120E-04

«951875335901E~06
-e319726990718E~-03
—e908706337214E~-03
- 16303520351 7E~-02
—-e217710692235E-02
- e238567598357€-02
—e237054638459E~-02
-e211570191826E-02
-¢149667423742E-02
-e134174998722E-02



K= 70

K= 80

Y70

810
«820
«830
«840
«850
«860
«870
«880
«890
«900
«910
920
0930
¢940
¢950
960
e970
«980
982

+810
+ 820
«830
e840
«850
«860
870
«880
«890
«900
«910
920
«930
¢940
¢950
«960
«970
«980
982

58

TABLE 6--CONTINVED

PS1

~e487233091830E-01
~e492770942314E-01
~e496358667209E-01
~e¢500081645529E-01
~-¢505883439895E-01
~¢511448045057E-01
-e513168679303E~01
~e511243153218E-01
~¢509902017104E~-01
=~e512766537460E~01
~e519274954102E-01
~¢523762289595E~01
~e518802227132E-01
~e498314128214E~-01
«e¢458036090546E~01
~¢397633889501E~01
=¢317970749391E-01
~+219485890513E-01
~¢198128739656E«01

=+488057376664E~01
=¢493395512865E~01
“e499160038438E~01
~e502793829161E«01
~e¢506330617296E-01
~e512172595030E~01
-e51738352788B4E~01
~e517916155295E-01
~¢515100689212E-01
~¢514382958980E~-01
~e518859315431E-01
-e525279511159E~01
~¢525285820899E-01
-e510266760015E-01
—~e474280648501E-01
-e415139840159E-01
~¢333831410448E-01
~¢231252241239E-01
~e208794458089E-01

DIFFERENGE

-¢140576929884E~03
-¢352097939875SE-03
—e279806854458E-03
-~ 045446522563 7E-04
-¢860704521998E~-04
-e456246243630E-03
—-e753878436633E-03
- e669179069533E~03
—e297374407644E-03

«2019683688B60E-04
-¢359082769144E~-04
—e447786277618E-03
-e101895867103E-02
~e¢162039319370E~-02
-« 198583103705E~02
~-¢200446118291E~02
~¢181113096009E-02
~e132990038266E~02
~-e¢119815528435E=-02

~¢824284834394E~04
-¢624570548112E~04
~e280137122907E~03
~e271218363203E~03
—e447177408212E~04
—e724549963721E~04
-e421484858634E-03
~¢667300207177E-03
—¢519867210649E-03
-e161642152310E-03

¢415638678540E-04
-e151722156264E-03
~-¢648359377024E-03
-0119526317942E-02
-+ 162445579557E~02
-¢175059506550E~02
-+ 158606610607E~-02
-e117663507264E-02
-e106657184326E~02



K= 90

K=100

Y70

810
«820
«830
«8490
«850
«860
«870
«880
«890
«900
«910
«920
«930
940
«950
¢ 960
«970
«980
982

«810
¢820
«830
«840
«850
«860
«870
«880
«890
¢900
910
920
«930
«940
«950
e 960
970
980
«982

59

TABLE 6~--CONTINUVED

PS1

-e490242524080E-01
«9494326401109E-01
~0499569622698E-01
-e505279814039E-01
~¢508639785854E~01
=e512372014171E-01
~e518449229319E-01
~e522450445671E-01
~e520947900208E-01
~eS177587527S8E~-01
-¢519113687056E-01
-¢525386022244E~01
-e528972172862E-01
~-e519190544233E~01
~e8487641899512E-01
~+¢430385188425E~-01
~¢348078925490E~01
~e241740687696E~01
~e218306809391E-01

~e490703423842E-01
~e496302525367E~01
=e500297199484E~-01
~¢505769080846E~01
-9511102328077€E-01
~e514012544823E-01

~e518433598423E-01

~e524399327172E-01
-e525873816587E~-01
~¢522253125819E-01
- ¢520503985230E~01
-e525071716605E-01
-~¢530854861470E-01
-e525663235152E~01
=e8498755067463E~01
~e843733745582E~01
- ¢ 36095585904 7E-01
~e251251792681E~01
- ¢ 226889534304E-01

DIFFERENCE

—e218514741391E~03
-¢93088824543SE-04
-e409584254165E-04
-e248598487819E~-03
-¢230916855799E~-03
~e199419146160E-04
—¢106570143544E~-03
~e453429037407E-03
~¢584721099600E-03
—e337579377636E-03
~e254371625495E-04
-¢106511088235E~-04
-¢368635195635E~03
~-¢892378422577E-03
-¢133612510130E~02
~¢152453482682E~02
-¢142475150373E~02
-¢104884464556E-02
—-e951235130298E~-03

~e460899764228E~04
-e197612425836E~03
-~e727576789373E~04
-e489266803932E-04
-e246254222478E-03
-¢164053064513E~-03

¢ 156308942678E~05
-e¢194888150872E-03
-0492591637347E~03
~¢449437306088E~-03
-¢139029818460E~-03

«314305634682E~-04
-+188268861169E-03
—e647269092049E~-03
-¢111131679480E-02
~-¢133485571590E-02
-e128769335610E-02
—¢951110498601E-03
-e858272491314E-03



K=110

Y/D

810
«820
«830
«8490
«850
«860
«870
«880
890
¢900
«910
¢920
«930
940
¢ 950
960
¢970
¢ 980
«982

60

TABLE 6--CONTINUED

PS1

-e491299317750E~01
~¢496833540572E-01
~¢502089331203E-01
~¢506107013513E~01
~e511997619338BE~-01
«e516395901053E-01
-¢519187912083E~-01
~e524676420639E-01
-¢529053012535E~01
~-e526936291033E-01
~¢522959259382E~01
~e525058360916E-01
~¢531482673861E~01
=¢530391057327E~-01
~e507855853444E-01
~e455636362247E-01
-¢372563408215E-01
-e¢260020843823E~-01
—~e234770094637E-01

D1IFFERENCE

-¢595893907317E-04
~¢53101520281 1E~04
~e179213171581E-03
- ¢33793266994 3E-04
- e895291259454E-04
~¢238335624090E-03
~¢754313659869E~-04
- e277093458870E-04
—¢317919594643E-03
-e468316521619E-03
-e245527414339E-03

¢ 133556932273€-05
-+627812387407E-04
~e472782217003E-03
-+910078598288E-03
-e119026166614E-02
~¢116075491680E-02
-e876905114186E-03
-+788056033343E-03
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61
TABLE 7 MOVEMEMT OF INTERFACE POSITION=-=CASE 5

(TABULATION FOR FIGURE 16)

Y/D X/D
AT T=0C 0.800 «19211993E+02
0.810 «19290055E+02
00820 e19364119E+02
0.830 ¢19434183E+02
00840 «19500247E+02
0.850 «19562308E+02
0,860 «19620362E+02
0.870 «19674405E+02
0.880 «19724427E+02
0,890 «19770419E+02
0.900 «19812367E+02
0910 «19850391E+02
0920 «19884412E+02
00930 «19914431E+02
00940 «19940447E+02
00950 «19962461E+02
00960 «19980472E+02
0,970 ¢19994481E+02
0.980 «20004487E+02
0.982 «20000000E+02
AFTER T=10 «79570146E 00 «19212544E 02
080075022E 00 «19291271E 02
«80438676E 0O 0«19366286E 02
«80908718E 00 «19437256E 02
«81980150E 00 «19503400E 02
«82977453E 00 «19565676E 02
«82755685E 00 «19626150E 02
«83931947E 00 «19680301E 02
«85336304E 00 «19729976E 02
082782176E 00 «19784560E 02
0 79248004E 00 «19839256E 02
«81427781E 00 019876964E 02
o 87429744E 00 «19898685E 02
«85868187E 00 «19939886E 02
«65180278E 00 «20060454E 02
«21100515E 00 «20331728E 02
-e42161320E 00 «20843441E 02
-011432038E 01 «21754384E 02
=091320570E 00 «24120897E 02
«30086771E 01 «20903355E 02

NOTE eeo IBV¥ 1620 WAS USED FOR THE COMPUTATION.
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CHAPTER IV
CONCLUSTION

This thesis has presented an analytical method by
which the movement of the interface for transient two-
phase flow in a porous medium can be predicted. Darcy's
law 1s a well-established fundamental principle based
upon which all problems concerning the flow through porous
media are formulated. The use of Darcy's law in this con-
tinuity equation then yields Laplace's equation, and the
resulting boundary value problem is solved.

Two approaches are used in solving the problem,
The first of these is tc consider the flow as one-
dimensional while the other is to consider the flow as
two-dimensional.

The results of the one-~dimensional analysis are
represented by Figures 5 through 8, These results indi-
cate that the velocity near the outflow seepage face
cannot be approximated by the one-dimensional assumption,
and the need for two-dimensional analysis is necessary.

In the beginning of this investigation, the
relaxation method was tried in solving the two-dimensional
problem, However, it was found that this method would be
unsuitable, if not impossible, for use with digital
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computer, because the relaxation patterns in the vicinity
of the interface change with the movement of the interface.
This has led to the adoption of the present method. The
results, as are represented by Figures 13 through 16, make
available an analytical method which can be compared with
field measurements and model tests. Although two dif-
ferent sets of data are used in the two approaches, the
results are qualitatively the same except near the out-
flow seepage face, Comparison of Figures 8 and 16 reveals
that while in the one-dimensional analysis reasonable
results are obtained up to about‘% = 2 from the end, a
reasonable result is obtained up to about‘% = 0.1 in the
two-dimensional analysis.

The digital computer is utilized only for the
two-dimensional analysis. The computation time for
obtaining the results shown in Table 4 was about 60
minutes, while for Table 6 it was 160 minutes. For
Tables 5 and 7, the time was just a fraction of a minute.
It appears, therefore, that a computer which equals or
excels Control Data 3600 in processing speed should be
used,

The method presented here can be applied to the
problem with an initial interface of arbitrary shape. It
can also be applied, with some modification, to the
problem with different geometry. The problem in which
the compressibility of flulds is taken into account and
the effect of miscibility on the flow field present other

possibilities for future study.
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APPENDIX I

LIST OF SYMBOLS

The following symbols are used throughout this

thesis:
Symbol Definition Dimension
a;»a, surface levels of liquid reservoir L
b length of porous medium L
d depth of porous medium L
f(t) some function of time
g acceleration due to gravity L/T2
h,hl,h2 plezometric head L
3 unit vector in the vertical direction
K permeability of porous medium L2
k,kl,k2 hydraulic conductivity L/T
x’ product of hydraulic conductivity and
buoyancy L/T
m,n integers
n,,n, normals to a surface
P pressure in fluid F/L2
Q discharge per unit width in porous 5
medium L°/T
7; local velocity vector L/T
s distance along the interface L
t time T
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Symbol Definition Dimension
u,u, ,u, x components of I L/T
VvV, Yy components of'a L/T
x horizontal co-ordinate L
Y vertical co-ordinate of interface L
Y vertical co-ordinate L
7 Yi, 72 specific weights of fluids F/L3
T _ Y27

Y
/9 density of fluid M/L3
p( £,7) intensity of source
f horizontal co-ordinate along interface L
7 vertical co-ordinate along interface L
IP modified stream function L2/T
QV stream function L2/T
¢,¢1,¢2 velocity potentiais L2/T
6 porosity of porous medium
A viscosity of fluid M/LT
G( ) Green's function
( )  etc. partial derivatives of a function ( )

with respect to x, etc.

Laplacian operator



APPENDIX II

FORMULAS USED IN NUMERICAL APPROXIMATION

A. Newton's Divided-difference Interpolation Formula

b
[

f(y) = f(yo) + (y - yo)f(yo,yl) + (y - yo)(y - yl)
£(Ygs¥1sY,) + (y = yo)(y = y)(y = ¥y,)£(yq,¥ 5¥55Y3) +
e o o + (y - yo)(y - yl) o o o (y - yn—l)f(YO’yl’

[ ) o o yn)

where f(yo,yl), f(yo,yl,yz) . o o etc, are the divided

differences of f(y) defined as

f(yo) - f(yl)

fly,oyq) = —
0’41 Yo Y,
e ) £(ygsyq) = £lyq,y,)
Yo1YyrYs) = . -
Yo = ¥
f(yO ,yl’y2’ o o o Yn) =

f(YO’YI9Y2’ o o o ynwl) - f(y19y2, o o o yn)
Yo = ¥Yp
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B, Simpson's One-third Rule for Numerical Integration

b
h
4[; £(x)ds = F(£, + 4f) + 26, + 4f5 + 2f, + o . .

4fN_1 + fN)
b

- a
N .

where h =

C. Numerical Differentiation Formulas

4dy; ~ Insl T Yna 18 x £ %) X £ 2y
dx X=X X0+l ~ *n-1 where N is the end point,
n=0andn =N,
g # Y1z Yo
dx X=Xq X, = Xg
%x] ~ I T YNy .
XTX=Xy Xy T~ *N-1



APPENDIX III

FLOW CHART FOR COMPUTATION

(

Input data on
interface positi

on)

3
Interpolation

Sto

3

'

Enter

of the interface

a point

A

Clear a
space

storage
for SUM

1

3

Compute
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a term

me

re in
mory

call

seriesi«

Add the
to

Y
result
SUM

Does
<SUM have the desired
accuracy?

Specify th
parameter

m and n

Numerical
integration

=

Are all
<the points on interface>
computed?
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0,

Print the
value of SUM

4 S
Differentiate the value
SUM along interface

Compute the new
interface position

y

Print the
interface position

STOP

Repeat the process as desired



APPENDIX IV
SAMPLE FORTRAN PROGRAMS

Two sample FORTRAN programs, without input data,
are presented here. Comment statements are inserted
wherever necessary to interprete the sequences of FORTRAN
statements.

PROGRAM PSI executes the computation of Equation
(51) and the steps (1) through (4) as is indicated in
Chapter III.

PROGRAM NEW POSN carries out the computation of a
new interface position as is indicated by steps (5)
through (7) in Chapter III.

Although these FORTRAN programs are written
exclusively for execution by a Control Data 3600
computer, they can also be used for any other computer

adopting the standard FORTRAN language.
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PROGRAM PSI

C COMPUTATION OF PS1I ALONG THE INTERFACE

101
102
103
110
123
125

FORMAT(SXe1HY 915X e3HPS] +17X0e 10HDIFFERENCE/)
FORMAT(1HO+EBe2+5X+E18412+SX+E18,012)

FORMAT (/1HO2HK=414/)

FORMAT(4(E18¢12+1X))
FORMAT(2X+E18412+2X+E18012)

FORMAT(///777)
DIMENSION Y(21)¢X(2]1)ePS1(21)+XPRIME(21)+YPRIME(21) +XBAR(1000)
DIMENS ION DIV1(11)+DIV2(10)sDIV3(9)DIVA(8)+DIVS(7)+D1

1V6(6)+DIVT7(S)+DIVB8(4)DIVO(3)+DIVLIO(2)

DIMENSION SUM1 (20) +SUM2(20) «DIFFC(20) SIGMA(61461)

C INPUT OF THE INTERFACE DATA

C THE

150

151

152

1S3

1S4

1SS

156

157

158

159

165

21

31

READ 123+(Y(1)eX([)eI=1:8)
FOLLOWING STATEMENT STARTS THE EXECUTION OF INTERPOLATION PROCESS
DO 1S5S0 I1=1,11
DIV1(I1)=0.0

DO 1S1 12=1.10
D1IV2(12)=0.0

DO 152 13=1,9
DIV3(13)=0.0

DO 153 14=1,8
DIVA(14)=0.0

DO 154 15=1.7
DIVS5(15)=0e0

DO 155 16=1.6
DIV6(16)=0.0

DO 1S6 17=1.5
DIV7(17)=0.0

DO 157 18=1.,4
D1VB(18)=0.0

DO 1S58 19=1.,3
D1IV9(19)=0.0

DO 1S9 110=1+2
D1IV1Ot(I10)=0¢0

DO 165 JBAR=1,1000
XBAR(JBAR)=0.0

I=]

I1=1
DIVI(I1)=(X(I+1)=X(I1))/7(Y(I+1)=Y(1))
I=l+1

Il=]1+41
IF(I-10)1+1421

I=1

Il1=]1

I12=1
DIV2(12)=(DIVI(1141)-DIV1(I1))/7C(Y(I+2)=-Y (1))
I=i+1

Il=l1+}

I12=12+1

IF(I- 9)2.2,31

I=]

12=}

13=1



41

51

61

71

81

91

1001
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DIV3(13)=(DIV2(12+1)=DIV2(12))/7¢(Y(I+3)=Y(1))
I=l+1

12=12+1
13=13+1

IF(I- 8)3+3441
I=1

13=1

l4=1

DIV4A(14)=(DIV3(I3+1)=DIV3(I3))/tY(I+4)=Y (1))
Insl+1

13=]13+1
lIa=]14+1

IF(I—= 7)4:4,51
I=1

I4=]

15=1

DIVS(IS)=(DIVA(I4+1)~DIVA(I4))/(Y(I+5)=-Y (1))
I=1+1

14=]4+1
15=]15+1

IF(I—- 6)5¢5461
I=1

1S=1

16=1

DIV6(16)=a(DIVS(IS+1)=DIVS(1IS))I/(YLI+6)=Y(1))
I=1+1

IS=15+1

16=16+1

IF(I-5)6¢6,71

I=]

16=1

17=1
DIV7(1I7)=(DIVE(16+1)=-DIVE(IB))Y/(Y(I+T)=Y(]))
I=l+1

16=16+1

17=17+1

IF(I-4)7+7+81

I=1

17=1

18=1
DIVB(I8B8)=(DIVT7(IT7+1)~DIV7(IT7))/(Y(1I+8)~Y (1))
Ial+1

17=1T7+1

18=18+1

IF(1-3)8:8491

I=]

18=1

19=1
DIVO(19)=(DIVB8(I8+1)-DIVB(IB)II/LY(I+9)-Y(]))
I=1l+1

18=18+1

I19=19+1

IF(1-2)9+941001

I=]
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I19=1
110=1
10 DIV10(I110)=(DIVO(I9+1)=DIVI(19))/7(Y(I+10)=Y(]))
Isl+1
19=19+1
110=110+1
IF(I-1)10+10+16
16 YBAR=0,001
JBAR=1
17 XBAR (JBAR)=X(1)
PROD= (YBAR-Y (1))
XBAR (UBAR)=XBAR (JUBAR)+PROD*DIV1(1)
PROD=PROD#*#(YBAR~-Y(2))
XBAR (JBAR ) =XBAR (UBAR)+PROD*DIV2(1)
PROD=PROD#* (YBAR-Y(3))
XBAR (JBAR) =XBAR (UBAR) +PROD¥*DIV3(1)
PROD=PROD* (YBAR~-Y(4))
XBAR (JBAR) =XBAR (JBAR) +PROD¥D1IV4 (1)
PROD=PROD¥*(YBAR-Y(5))
XBAR(JBAR)=XBAR (JBAR)+PROD*DIVS(1)
PROD=PROD* ( YBAR-Y(6))
XBAR (JBAR)=XBAR (JBAR) +PROD*DIV6E(1)
PROD=PROD#* (YBAR-Y (7))
XBAR (JBAR) =XBAR ( JBAR) +PROD*DIV7(1)
PROD=PROD* (YBAR-Y(8))
XBAR (JBAR ) =XBAR (JBAR) +PROD*DIVS8(1)
PROD=PROD* ( YBAR-Y(9))
XBAR(JBAR)=XBAR(JBAR)+PROD*DIVO(1)
PROD=PROD#* (YBAR-Y(10))
XBAR (JBAR) =2XBAR (UBAR) +PROD*DIV10(1)
YBAR=YBAR+0.001
JBAR=JBAR+1
IF(JBAR—-1000)17+17+¢1698
1698 PRINT 110+ (XBAR(JBAR) + JBAR=1 +1000)
PUNCH 110+(XBAR(JBAR) +JBAR=1 +1000)
- WITH THE ABOVE STATEMENT,THE INTERPOLATION PROCESS IS COMPLETED AND THE VALUE
OF XBAR( ) ARE STORED

- THE FOLLOWING STATEMENT STARTS THE SUMMATION OF SERIES
DO 164 1BAR=1,20
SUML ( IBAR)=0e0
SUM2(IBAR)=0+0

164 DIFFC(1IBAR)=Q.0
DO 166 M=]1,121
DO 166 NA=14121
166 SIGMA(MINA)=0.0
PRINT 125
PRINT 101
ASPECT=2040
SUM=Q.0
PSUM=0.0
ASUM=0,0
K=10
GOTO 1734



1699

1700

1701

1702
1703

C THE
1704

1710

1712
1714

1750

1751

1752

1753

1754
1755
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DO 1770 M=1,MS

DO 1760 NA=N4 NS

NaNA«1

IF(N)1701+4170141702

ALPHA=0.5

GOTO 1703

ALPHA=140

FM=M

FN=N
B=ALPHA#®#COSF(FN¥#3,1415927#XBAR(JBAR)/ASPECT)
DENO=FN# N+FMEFM#ASPECTRASPECT

B=B/DENO

IF(IBAR-1)1756+1704,1756

FOLLOWING STATEMENT STARTS THE NUMERICAL INTEGRATION
SIGMA(MNA)=0.0

C=4,0

JBAR1 =JBAR

DO 1714 L=1,982

JBAR=L

FL=L

YBAR1=FL/1000.

TERM 1 =CH#COSF (FN#3,1415927#XBAR(JBAR) /ASPECT)
TERM]I=TERMI®#SINF (FM#3,1415927#YBAR1 )
IF(C=4,0)1712+1710+1712

C=2.0

GOTO 1714

C=4,0

SIGMA(M:NA)=SIGMA(MNA)+TERM1

JBAR=JBAR1

M3=M/2

M2=M3I N2

IF(M2-M)1751+1750+1751

TERM2x1 ¢ 0-COSF (0« 982%FM#3,1415926536)
GOTO 1752
TERM23~1,0~COSF (0. 982#FM#3.1415926536)
N2=(N+1)/72

N3=sN2#2

IF(N3-N-1)1754+1753+1754
TERM2=TERM2/(FM%#3,1415926536)

GOTO 1755

TERM2= (~TERM2)/(FM%#3+1415926536)
SIGMA (MoNA)=SIGMA(MJNA)+TERM2

SIGMA (MsNA)=SIGMA(MsNA)*#0+001/3.0

C WITH THE ABOVE STATEMENT.THE NUMERICAL INTEGRATION IS COMPLETED

1756

1760
1716

1765
1770

TERM=B#*SIGMA(M,NA)
SUM=SUM+TERM

CONTINUE
A=SINF(FM¥#3,1415927#YBAR)
PSUM=A#SUM

ASUMz ASUM+PSUM

SUM=0.0
IF(M=K1)1770+176541765
N&a=1

CONT INUE
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1724 PSI=(—-1e¢0)*ASPECT#*ASUM
SUM] (IBAR)I=SUM] ( IBAR)+PS1
" WITH THE ABOVE STATEMENTJsTHE SUMMATION OF SERIES 1S COMPLETED AND VALUE OF P
COMPUTED
DIFFC(IBAR)=SUM] ( IBAR)-SUM2 ( IBAR)
SUM2 ( IBAR)=SUM] ( IBAR)
IF ( IBAR~ 1)1728+17264+1728
1726 PRINT 103+K
1728 PRINT 102+:YBAR«sSUM] (1BAR) +DIFFC(1BAR)
PUNCH 123+SUM1 (IBAR) +SUM2( IBAR)
YBAR=YBAR+0e !l
IBAR=IBAR+1
JBAR=JBAR+100
ASUM=0,.,0
SUM=0.0
IF(IBAR~- 8)1730¢1730¢1732
1780 YBAR=0.,982
I1BAR=19
JBAR=982
ASUM=0,0
SUM=0.0
GOTO 1730
1730 IF(K=-10)1699¢1699,1731
1731 Na=K1+2
GOTO 1699
1732 K=K+10
IF(K= 60)1734+,1734.1736
1734 YBAR=06,10
IBAR=]
JBAR=100
MS=K
NSzK+1
Kl1=K-~10
IF(K1)173741737+1735
1735 Na=K1+2
GOTO 1699
1737 NAa=1
1739 GOTO 1699
1736 STOP
END
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PROGRAM MNEWPOSN

110 FORMAT (4E164.8)

122 FORMAT(2XsE14.8)

123 FORMAT(2XsE140852X9E1408)

124 FORMAT (SX91HY 515X s 1HX/)

125 FORMAT(18XsE14085s9XsE1408)

126 FORMAT (1HX)
DIMENSION Y(21)sX(21)sPSI(21)sXPRIM (21),YPRIM (21)4sXBAR(100 )
DELS=No0
DO 99 JBAR=100,900,10C
DO 96 I=1,24

96 REAN 126

99 READ 110,XBAR(JBAR)
DO 98 IBAR=1,9

a8 READ 122.PSI(IBAR)
DO 6¢ I=1+8
JBAR=T%100

60 X(1+1)=XBAR(JBAR)
XA( 1) =N,0
Y(1)=O.o
DO 70 1=159

70 Y(I+1)=Y(1)+0.1
DELTT=10.0
DO 25 1=1,9
IF(I-1)27+26527

26 DELX=X(I+1)=X(1I)
DELY=Y(I+1)=Y(I)
DEPSI=PSI(I+1)-PSI(I)
GOTH 80

261 DY=NDELY/DELS
DX=NFLX/NELS
NPSI=NEPSI/DELS
GOTO 24

27 IF(I- 9)29,28,29

28 DELX=X(I)=-X(I-1)
DELY=Y(I)=Y(I-1)
DEPSI=PSI(I)=-PSI(I-1)
GOTO 80

29 DELX=X(I+1)=X(I-1)
DELY=Y(I+1)=Y(I-1)
DEPSI=PSI(I+1)-PSI(1-1)
GOTO 890

30 DELS=SQRTF(DELX*DFLX+DELY*DELY)
GOTO 261

24 FACTR=DY/3Go.
DPSI=DPSI*4.0/(3,1415926 %#3,1415926 )
DELTY=(DPSI+FACTR)*DX*#DELTT
DELTX=(DPSI+FACTR)*DY*DELTT

, YPRIM(I)=Y(I)=DFLTY

25 XPRIif(I)=X(I)+DELTX
DO 97 1I=1,9

97 PUNCH 125,YPRIM(I)sXPRIM(T)
END

NOTE oo 18 1620 WAS USED FOR THIS PROGRAY



APPENDIX V

GREEN'S FUNCTION FOR LAPLACE'S EQUATION

AND POISSON'S EQUATION

A, Definition®

In the mixed boundary-value problem, let the
boundary L of the region B be separated into two parts,

L, and L2, and let it be

1

L required to find in B a har-
monic function u satisfying
on the boundary L the

conditions:

u = fl(M) on L,,

= f2(M) on L2.

wlw
jo ] [+

The solution to this problem
can be reduced to finding
some singular particular
solution of the problem, which will be called Green's
function for the mixed problem in the region B with pole

at Mo(xo, yo) and denoted by Gg(x,y; xo,yo) = Gg(x,y).

*The discussion in part A is abridged from L. V,
Kantorovich and V. I. Krylov, Approximate Methods of
Higher Analysis, 1952.
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The Green's function is defined by the following
requirements:
l. For each fixed point Mo(xo,yo) in B, Gg(x,y) as
a function of x and y must be harmonic in B,
with the exception of the point MO.
2. In the neighborhood of the point M,, Gg(x,y)

must have the representation:

1 1
Gg(X,Y) = Tn, 1n ? + h(X,Y)a

where r = ’VQx - xo)2 + (y - y0)2lis the distance
between the variable point M and the pole MO’ and
h(x,y) is a function harmonic everywhere in B
including even the point Mg

3. On the contour L of region B, Gg(x,y) satisfies

the boundary conditions

Gg(x,y) = 0 on L,

and

2
>n Gg(x,y) = 0 on L2.

If the Green's formula* is applied, we have

oG u
J;(u —5—% - Gdigﬁ)ds + u(xo,yo) = 0,

From this, if we take into account the boundary

conditions to which we have subjected Gg(x,y), it will

*Ibid., Equation (1), p. 480.
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follow that

26G
= - Zg 2u
u(xo,yo) j;l u > ds + jéz Gg'gn ds,

and this last equation permits the computation of u at
any interior point MO of the region if the Green's
function Gg(x,y) is known everywhere in B, and the values
of u and é?% are known on L1 and L2, respectively.

For the problem with the rectangular region, we

find the solution of the Polisson equation
2
Vu = £f(x,y)
with the boundary conditions

u=0fory =0,y =4d

2u _ = =
5% 0 for x 0, x b.

Let us now seek by Fourier's method* the

fundamental function of the equation

v2u = )\ U,
Then we have

nmx mT
u n(x,y) = cos &% gin 20X
b

b d
and
2 2
A= -0 (s 4 By,
b d

'Ibido [ ppo 69-710
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The function f(x,y) can be expanded in a double

Fourier series,

Lo 00
f(x,y) = z Z (cos BIX gin MYy,

m=1 n=0 b d m,n
where
a . ° df(f )sinMcosﬂidfd’z
m,n bd 0 0 ’7 d b ¢
The solution u can then be stated* thus:
E: E: m,n mT nmx
u(x,y) = = 21 5 sin-—ax cos =%=.
m=1 n=0 _2 n m
T (—3 +~—§)
b d
On substituting in the above equation the
expression for a , We obtain
m,n
(o] oo
COS =—— sinEEX b d
m=0 n=0 m°bd &, n,
2 4
nn % mr 7
cos == sin — d}d’]
jb d MRS
- - ) )
0 0 n°bd m=0 n=0
cos ngx sinln—j-;xcosylbisinﬁdl
> 1£( ¥, 7)d¥ay.

If the function of four variables in the square bracket be

considered separately,

*Ibid., p. 69.



o0
G(x,y; §,7) = - 24 Z
m=

T
cos nrx sin oy cos -rﬂ— sin &

b d b
nt, n
b2 d2

by means of this function the solution of the problem can

be very simply expressed:

b d

The function G(x,y; § , /) is the Green's function for a

rectangle.*

B, Application to the Problem of Chapter III

In the problem of Chapter III, the boundary portion

L1 consists of the top and bottom of the rectangle of
Figure 11, and the equation is Laplace's equation instead
of Poisson's equation, so that the right-hand side f(x,y)
is zero everywhere except at points on the interface.

Since the interface is a line of sources, we have in

effect taken it as the limiting case of a narrow zone,

say of uniform width w on which £(§ ,7]) = M;'-u

where f% f,’?) is the source strength. Then the area

integral

*See pp. 384-86 in R. Courant and D. Hilbert,

Methods of Mathematical Physics, Vol. I, Interscience
PuBlIshers, New York, 1953,
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fxrea of G(x,y; ¥ SRR €, 7 )dA

- Zone

becomes the line integral

[G(x,y; ¥ ,7)~——L%flzl](wds)

j;nterface

which in the 1limit (as w approaches zero) reduces to the

line integral

G(x,y; F, ’Z) (0( ¥, 7)ds
to which must be added the integral along BA of Figure 11,
the portion of L2 where the normal derivative is pres-
cribed to be different from zero. The remaining part of
the integrals along L1 and L2 will be zero in this case
because of the boundary conditions on QP.

Another way of looking at the problem is to note
that each term of the series of Equation (50) satisfies
Laplace's equation. Hence the series should satisfy
Laplace's equation at interior points not on the inter-
face, if it converges sufficiently. Each term of the
series also satisfies the homogeneous boundary conditions.,
It remains only to show that the whole.series satisfies

the inhomogeneous boundary condition !Px = -k’ on BA and

the prescribed discontinuity condition on the interface.

Since the Green's function is the sum of 3% ln-%

and a function h(x,y) harmonic in the whole rectangle,
the required normal derivative discontinuity can only be
furnished by the logarithmic term. What we have to show

in order to justify Equation (47) is that
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B
f(x,y) = j02_11t1n% ,”(E,’Z)ds—k'f

has the prescribed normal derivative discontinuity, a jump

A
1 1
B (ﬁ 1n -f)dy

of (D(E »7) on DB and a jump of -k’ across BA.
This can be shown from the potential theory* which
states that the potential of a simple distribution on a

curve
1
f(x,y) = ]; ?’ln'; ds

if the curve has a continuously turning tangent and ¢

is bounded and integrable, is continuous for all finite
points of the plane including passage through C. If C
has continuous curvature and ¥ is continuous, then the
normal derivatives of f approach limits when P approaches
A on C from either the positive or negative side, which
satisfy the equations

125 3%
2 ;;nA PRIN

= =TC XA

where A is point on the curve C,

From this relation,

f f
9%2 _ 271 | _,n Xy . _y
PR o N 2

which is the required jump condition for f(x,y) along DB

or BA.

*Quoted from W. J. Sternberg and T. L. Smith,
The Theory of Potential and Spherical Harmonics,
University of Toronto Press, 1944,
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