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ABSTRACT

sour: APPLICATIONS or THE IAGRANGE MULTIPLIER TEST 1N ECONOME'IRICS

By

Tsai-Fen Lin

There are three kinds of tests for model specification - the Wald test. the

likelihood ratio test and the Lagrange multiplier test. They have the same

asymptotic power. Therefore. the choice among them depends on computational

convenience. Since the Lagrange multiplier test is based on the restricted esti-

mates. we choose the Lagrange multiplier test when estimation is easier in the

restricted model than in the unrestricted model.

Since the Lagrange multiplier test is not well known. and the derivation for

the test statistic is complicated. in this thesis. I develop the Lagrange multiplier

test statistic for some commonly used econometric models so that they can be

used readily by applied economists. These models include distributed lag

models. qualitative and limited dependent variable models. and stochastic pro-

duction and cost frontiers. In the distributed lag models. the Lagrange multi-

plier test statistic is shown to be asymptotically equivalent to the 1“ statistic in

testing the coeflicients of the lagged explanatory variables when they are added

to the restricted model. In Heckman’s sample selection bias model. the

Lagrange multiplier test statistic is asymptotically equal to the. square of the t

test statistic in testing the coeflicient of the correction term for the sample

selection bias when this correction term is added to the’restricted model. In

Poirier's partial observability model. the Lagrange multiplier test statistic is

equivalent to the explained sum of squares in a regression of residuals on a set

of regressors. In the stochastic production and cost frontiers models. the
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Lagrange multiplier test fails in some cases. and alternative tests are suggested.

In summary. the Lagrange multiplier test. except in a few cases. can be

used to test the adequency of the simple models. Since the simple model usually

involves a simple estimation method or less computational cost than the more

complicated alternative. the Lagrange multiplier test can be useful.
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CHAPTER I

INTRODUCTION

1. 1 Introduction

In statistics and econometrics. there are three basic principles for the con-

struction of test statistics for model specification. They are the Wald test

(Wald(1943)). the likelihood ratio (LR) test and the Lagrange Multiplier (LM) test.

Suppose there are two possible model specifications. one of which is a special

case of the other one under some restrictions. Let's call the special case the

restricted model. and the generalized case the unrestricted model. The Wald

test is based on the estimates from the unrestricted model. while the LM test is

based on the estimates from the restricted model. and the LR test is based on

both sets of estimates. These three principles yield tests which are equivalent in

large samples when the restrictions are true (see Silvey(1959)). Their small sam-

ple properties are unknown. except in special cases. Therefore the choice among

them will often be based on computational convenience. The LM test is very use-

ful in cases in which the restricted model is easier to estimate than the unres-

tricted model. This will often be the case when one is testing the adequacy of a

particular model. Then the null hypothesis is that a relatively simple model is

adequate. while the alternative is that a more complicated model is necessary.

The LM test permits a test of this hypothesis without having to estimate the

more complicated model.

Although the LM test was suggested by Aitchison and Silvey in 1958. it did

not receive much attention from econometricians until recent years. Therefore.

not many economists are aware of the LM test and its computational advantages
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in many cases. It is the responsibility of the econometricians to introduce the

LM test to applied economists by developing LM test statistics for common

models in econometrics. The LM test has been applied successfully in testing for

a liquidity trap. autocorrelation. the error components model. seemingly unre-

lated equation systems and various non-nested hypotheses. (See Breusch and

Pagan(1980) for a survey and references.) In this thesis. I report the successful

application of the LM test to distributed lag models in chapter 2. to some quali-

tative and limited dependent variable models in chapter 3. and to stochastic

production/cost frontiers in chapter 4.



1.2 The L]! Test

Let 19 = (13,. ' ' - .d,)' be a set of parameters. L03) be the log-likelihood fuc-

tion. h(1$) = [111(6), - - - .h,(13)]' = 0 be a set of r restrictions. A = [A1. - - - .N]' be

a set of Lagrange Multipliers. 1(13) be the information matrix and n be sample

size. Define the Lagrangian function for the maximization of the likelihood sub-

ject to the restrictions as

L30“) = Lw) + Nh(1$)

A constrained maximum of L03) is obtained at a stationary point of LR (13). By

difierentiating LR(13.>\) with respect to u and A . we have the first order condi-

tions:

D03) + H; A = 0

h(13) = o (1.1)

’ 6h 13

where 0(1)) is the sxl vector. {65:1 . and H1, is the er matrix . [ 6’1: ) . By

. . . i ' i

solving eq.(1.1). we obtain the restricted MLE 3' and 7". When the restrictions are

in fact true (h (13) = 0). the restricted estimates 1? will tend to be near the unres-

tricted estimates. and 0(5) and X will tend to be near zero. It seems reasonable

to decide that h('6) = O is true if 3: is in some sense near enough zero. Aitchison

and Silvey (1958) proved that under the null hypothesis that h(13) = O . V723: is

asymptotically distributed as normal with mean zero and covariance matrix

~ --1 ~ ~

[h'g'n[1(13)]‘1 H3] where H; and [(13) are H, and I(13) evaluated at 1? respec-

tively. They suggested a test statistic which is based on the estimated Lagrange

Multipliers (All) and called this the Lagrange Multiplier test statistic:

LM test statistic = X'H;'[I(5)]-1H3X (1.2)

This statistic asymptotically follows a chi-square distribution with r degrees of

freedom when Ms) = 0 is true. The region of acceptance of the null hypothesis
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h.(13) = O is X'H3'[I(5)]“H3Xs K. where K is determined by

Prob ( x3 5 K) = 1- significance level. .

Note that from eq.(1.1). 1135: = — 0(5). so eq.(1.2) can be rewritten as

LM test statistic = [0(5)]'[1(5)]-1[D(5)] (1.3)

The right hand side of eq.(1.3) is just Rao's score statistic (Rao(1947)). Hence

the LM test statistic is the same as Rao's score statistic. Since eq.( 1.3) is easier

to use. in the following chapters eq.(1.3) instead of eq.(1.2) will be used.

When 13 is partitioned into 2 subsets. 131 and 192. and the restriction under

test is that one of the subsets of parameters equals particular values. i.e.

Hon). = 73m- then we can establish a simpler form of the LM test statistic. From

eq.(1.1). 0(3) = —H3’X’. therefore.

   

 

[61. 912522., . . “11") W
6.61 - 6'61 6131 ,

6L T - 6111(13) dh.,.('0) ‘

6192 l at"; ‘ ' ' as”; ”A,

7' 6h 13 ~

2 61.1; )l‘j

= _ {=1 1 (1 4)o a

6h 13 6h ~

where 61’ and —%—)—ar and —-L(—)- evaluated at 13 respectively.

GT; 5761; 61!;

BL

T: 0 because hj (13) is not a function of 132. Partitioning 1 (1’5) conformably.

z

eq.(1.3) becomes

6L ' -1! 6L

LM test statistic: [631211 I121 [501

21 22

u ' ~ ~ ~ - ~ -1 a
= [6 1 {[11 “112122 1121] [a—é‘] (1-5)

If I ('5) is block diagonal. the LM test statistic can be further simplified as

. . 6L _. M
= .6LM test statistic [6131In [6191 (1 )
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When I (13) is difiicult to calculate. we can use the negative of the Hessian (

matrix of second derivatives ) or its limiting form to construct the LM statistic

6% is 621.

6666' acac'

 

~ I 2

because in many cases. plim {[I(19)]“l— 4115—1 -.- [3, where

was .

W 

evaluated at 5'. Also note that whenever the usual regularity conditions hold.

[(19) can be obtained from the first partial derivatives of the log-likelihood func-

6'

I 2 l f H 1'

tion. ‘That is, [(19) = Ell- Eta-9%“ = E{{%€'-}l§-Lll‘ Besides these. there is an

1

indirect approach using the scoring algorithm ( Newton-Raphson algorithm ) to

compute the LM statistic indirectly (Breusch and Pagan (1980)).

If I (13’) is not of full rank. say. rank [[6313] = s - t < s. then [(3) is singular

and is therefore not invertible. Silvey (1959) assumes there exists a sxt subma-

trix H1 of H, such that 3:4(5) + H1H 1' is positive definite. Then. he proposed a

modified LM test statistic

LM' - 1 'D(§)l'[l-I(5) + H H 'l-‘ID {i ] i (1 7)- m n 1 1 l ( ) -

which asymptotically follows a chi-square distribution with (s - t) degrees of free-

dom. This case arises in one of our analyses of chapter II.
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CHAPTER II

DISTRIBUTED LAG MODEIS

2.1 Introduction

A distributed lag model describes how the lagged independent variable

aflects the dependent variable over time. The length of the lag may sometimes

be known a priori. but usually it is unknown and in many cases it is assumed to

be infinite. Thus we consider a distributed lag model of the general form

y; = 23051th + 8:

where y, is the dependent variable. 2,4 is the lagged independent variable. .6. is

the distributed lag weight. a; is a disturbance term. Infinite lag distributions

involve an infinite number of unknown parameters. and thus it is impossible to

estimate all these parameters. To make estimation possible. it is necessary to

make some reasonable assumption about the pattern of the distributed lag

weights. The earliest distributed lag model is the geometric lag model proposed

by Koyck (1954). He assumes that the lag weights decline geometrically. i.e.

a. = W. for i = 0.1.2....

where O s A < 1. Since the lag weights of the geometric lag model decline mono-

tonically. and this may not always be reasonable. various alternative models

have been proposed. For example. the Pascal lag model proposed by Solow

(1960) permits a hump in the lag weight distribution curve. In 1966. Jorgenson

proposed a more general rational lag model

_ .4ng

y; - 30:) 3: +114
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where A(L) and B (L) are polynomials in the lag operator of order p and V.

respectively. He also proved that any arbitary lag model can be approximated

to any desired degree of accuracy by a rational lag model with sufficiently high

values of p and v. If we take A(L) = 6(1 — A) and B(L) = 1 - M. the rational lag

model is Koyck’s geometric lag model. If we take A(L) = 6(1 — A)’ and

B(L) = (1 - M)’. the result is the Pascal lag model.

In this chapter. two distributed lag models are discussed. The geometric

lag model is discussed in section 2.2. and rational lag model is discussed in sec-

tion 2.3.



2.2 The Geometric Lag Model

Following Klein (1958). the geometric lag model can be expressed as

3!: = B‘onlzt-i + 8:

= We +noA‘ + 81 . t = 1. ° - ~ .T. (2.2.1)

6-1 a

where 05>. < 1. w. = 21%.... no= 52162.... a. iid N ( 0. 0'2). 11x: 0. or 1:

i=0 i=0

we know the value of A. we could estimate eq.(2.2.1) by OLS. Usually.we don't

know the value of A and we use a search procedure to estimate eq.(2.2.1). Since

the search procedure is not simple. it may be useful to test whether A = 0 before

we start the search procedure. The restriction A = O is easy to impose and the

restricted model can be estimated by OLS of y, on 2:, only. Therefore. the LM

test is very suitable in this case.

It is well known that the parameter no can not be estimated consistently.

and that indeed the information matrix is singular asymptotically when no is

included in the list of parameters to be estimated. See Appendix A for details.

However. Schmidt and Guilkey (1976) showed that it makes no difference

asymptotically whether one drops or estimates the truncation remainder term

in the maximum likelihood estimation of distributed lag models. Maximum likeli-

hood estimation of eq.(2.2. 1) amounts to minimizing the sum of squares

i (y; " £11), "00”)2

£81

with respect to A. .3. and no. Since noA‘ disappers asymptotically. this is

' 1'

equivalent to minimizing 2 (y; - 6111‘)”; that is. to setting no = 0. and applying

t=i

OLS to the model



yt=fiwt+8¢ . t=l."'.T. (2.2.2)

2—1

where w, = 2A‘z,-i. Us A < 1. a; iid N (0. 02). Also. the estimated variances

i=0

of A and 5 resulting from estimation of eq.(2.2.2) are asymptotically the same as

ones from eq.(2.2.1). This is so because after deleting the row and column

corresponding to no. the resulting submatrix of the inverse of the information

matrix corresponding to eq.(2.2.1) is asymptotically the same as the inverse of

the information matrix corresponding to eq.(2.2.2). Therefore. we can construct

our LM test statistic based on eq.(2.2.2) instead of eq.(2.2.1).

The log-likelihood function for eq.(2.2.2) is

1'

L = constant - g-logo‘e — 31:5; (3;. - fiwdz

:1

The first partial derivatives are

61. _ 1 T - d1”: -“‘- 11—:
6A - 02 Effie; where R; - dA -‘§11A 2.4

OZ. "
—= — w a
66 2 {:1 t ‘

6L 1 T

The elements of the information-matrix are

(

62L 1

1M = — E fl. = fig (131%)2

 

. 881

_ 62L _ 1 T 2

I” ' 'Elaaz ' 35.2.3.”

 
_ lazL _

IP°"'E__—']a,saa2 -0

The restricted model is
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y¢=ztfi+8g I t=l."’,T.

"_t=l

Let '3': (75.6.1?) where A: 0. §= OLS estimate. E} = y, - 33:; and 02 T 

T ~ 1

5?: ‘2131-1 2 = ‘gg—Xt-let

~ "" 1' ~2

1AA = $213124 - ~2 Xt-ixc-i

1M - ~2
i=1

1;” = .}_27 3‘2 — 1_](")(‘

a2 .3, 52

where

Xt-l = (30-31- ' ' ' 31-1).

X: =(31- " ' 137').

8‘ = (31' ' ' ' 037').

Let 191 = A. 132 = (3.02). Then we can use eq.(1.5).

-1

1

  

1' f“: ' ~_ [~

. . ._ 6L) N _ 11p [”1 ~O [An 6L
LM test statistic — [57] In [0 ll 0 1:22,: I 0 6A

' -1

6L ~ ~ -~ _ ~ 6L

1.1111 1.1

= eixt -1(X¢'-1M1X¢ -1)‘1X¢'-1 e:

‘52

{(Xt.-1Ml){t-1)-1(Xt.-1Ml 1,012

32(X£-1M1X‘_1)-1
(Note 1) (2.2.4)

where M; =1 -X¢(X[X¢)‘1X¢' and Y: =[y1_ .yy-I. The last equality holds

because

Mi}? = Y: -%(X¢')Q)"X[Y: = Y: -X¢5 = e:-
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Note that this LM test statistic can be expressed as the square of the t

statistic'for the coeflicient of X,_1 in regression of Y; on (X,,X¢-1). This point can

be clarified from the following discussion. Consider the regression

 

11 = m +XHc + u, , u, m N (0.0”) (2.2.5)

A O O

OLS estimate for c is c = (X¢_1M1X¢-1)’1(X,-1M1Y,) and OLS estimate for 02 is

7' A

A $1112 A

02 = “IT where u; is the OLS residual. The OLS estimate for 05 is equal to

32(Xt'-1M,X;_1)‘1. The t test statistic for c = 0 is

I‘

_ c — O

t — .T—

a?

_ (Xt'-1M1X:-1)—1(Xt'-1M1 Yt)

[32(X:'-1M1X:—1)"]”

[(Xg-lMiXt-O-th—IMIYt)]2

E\’2(Xt'-11‘11Xt-i)nl

 

Therefore. t2 = which diflers from eq.(2.2.4) only in

one term. namely the estimate for 02. The test of c = O in eq.(2.2.5) is asymptoti-

cally equivalent to the test of A = 0 in eq.(2.2.2). since when c = 0 is true . 32 is

near 32.

This is an interesting result. We can test the existence of a lag (A = 0) in the

geometric lag model by testing the significance of the single lagged term. X¢-1.

in the OLS regression of y; on (X, .Xg-1). This provides an asymptotically optimal

test. despite the fact that the geometric lag is a lag of infinite order.
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2.3 The Rational Lag Model

The rational lag model is a rather general distributed lag model. It can be

expressed as follows:

HUI) (2.3.1)

where L is the lag operator defined as

y‘=fl£)_.zt+u‘. .t=1.....T.

£1th = 2‘4, , k = 0.1. ' ° ' . L0 = I . 13‘ = 2t

v o

and A(L) = f aiL‘.~B(L) = 2 (7,-1.1. b0 = 1.1.1. < v. The independent variable 2, is

i=0 j=0

assumed to be nonstochastic. or if stochastic. uncorrelated with the random

term at. We also assume u, is independently. identically distributed as N (0.02).

Dhrymes. Klein and Steiglitz (1970) suggested that this model can be estimated

by maximum likelihood methods through a search procedure ( search :1... given

b, ). or through an iterative procedure for all of the parameter estimates simul-

taneously. Then. using the estimates for ti. and bj. one can estimate 02 easily

from the first order conditions.

Since the estimation of a..- and b; is not easy. we have two alternative model

specifications which can be estimated by OLS. The test of B(L) = 1 is given in

section 2.3.1. and the test of A(L) = a0 and B(L) = 1 is given in section 2.3.2.

2.3.1 Test of B(L) = 1

The restriction B(L) = 1 can be written as

221:0 . j=1. .11. (2.3.2)
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Under the restrictions. eq.(2.3.1) becomes

31. = A(L)z: + u: = iniL‘z. + u. . t = 1. -~ .T. (2.3.3)

i=0

Despite the fact that there might exist high multicollinearity among x's. we still

can use the OLS method to estimate this restricted model. and indeed OLS pro-

 

vides MLE’S subject to the restriction. Let 131 = (b 1. - - ' .b..)'.

132 = (0.0.01. ' - ' .awaz)’ and 13’: (31. - - - .gv.;o.;1. - . - Epic-2y where

7' .2

211-22

b1: =b.,=o. a; = OLS estimates fora. .7: =0. -~ .u. and 3?: ”‘7,

where 17.} = y; - X(L)x. and Z(L) = f: ELL". We can use eq.(1.5) to construct the

i=0

LM test statistic.

The log-likelihood function is

L = - 330114210           -A(L)z,)2

The first partial derivative with respect to 132 evaluated at 1? is zero (see

eq.(1.4)). The first partial derivative with respect to 13, evaluated at 5' is

  

61.13;; , aL

l6b1'6b,

1” T.... '

= "— 217u, A(L)2¢-_1. .ZugA(L)z;_..

-02 =1 t=l

= .. .145

52

where
.

34(1031—1 - ' - A(L)31-v‘

X =

.A(L)zT-l ' - - A(L)zT-v.

and

U= [171. {Erl'
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The information matrix evaluated at 1; is

 

 

 

 

.. _ P131 52

[(19)- Vzi 122

r11.}. 12.. o

= [:5 f“ 0

'0 0 1°20;

where

1:101 Eloy]

1» =

[121»! ' ' ' Kuhn

[r .2 A. 7' ~ ~ l

2[A(L)x._11[A(L)z.-.] . . . g21[A(L)a.-...][A<L)z....]
{=1 3

= 72-

7' ~ . ~ . . . 7' ~ . ~

L2 [A(L)zt—v][A(L)zt—l] - - - 2[A(L)zt-v][A(L)zt-v]

=1 ‘31 i

1
= rXX

02

151“!) 2:10“

Ibo =

Elfin Kipp

1' ~ 7' ~ ‘

L2 [A(L)z:—1]x: - - - ‘21[A(L)zt—l]x¢-p
=1 =

_ .1.

7' ~ 7' ~

“21[A(L)2‘_v]2¢ ' - ' £2 [A(L)zt-v]zt-p

= :1 ‘

 

 

 

 

 



-15-

II I I
H

N 5

g
“
?

u

  

  

With

2121-1 - - - zl-n

  537' 27-1 - - - zT-pl

and

~ _ T

[gens-‘27?

From eq.(1-5).

. ~ 1 - 0 IV". ' - 6L ~ r a
lab 6L

Mt t tmn - - “‘
L es s a C [6191 Ibb [166 O 0 42,210] [6131
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l— 2i—i- 22i- i‘i-
~ -1 ~

UX M XU

= [X a: (2.3.4)

 

 

where M3 = I - X.(X.'X.)'1X.'. Note that in this case. the LM test is essentially

the F test of significance when X is added to the regression. i.e.

Y = Xoa + Xc + a (2.3.5)

where e is distributed as N (0.021). The OLS estimate for c is

A

8 = (XMsxrlXMaY. and 32 = a; where S is OLS residual. The F test statistic 

for the null hypothesis 0 = O is

_ 3.(X’M1X)8/ V

" ’é'é/[T - (p.+v+1)]

The restriction of B(L) = 1 in eq.(2.3.1) is equivalent to the restriction of c = 0

 (2.3.6)

in eq.(2.3.5). When the restriction is true. 32 should be close to 32. Therefore.

eq.(2.3.4) can be rewritten as

_ YM3X(X'M3X)“X'M3Y _
LM test statistic - ~2 because MSY = i7 

 

 

a

_ 3'(XM3X)3

_ 52

A. h
C(XM c

. LM/v
From eq.(2.3.6) and eq.(2.3.7). Fm In a large sample. 

T/ [T - (u+v+1)]'

T
T _ (I1+1,+ 1) 4 1 and the F test is asymptotically equivalent to the LM test.

This gives the justification of doing the F test in this case.

2.3.2 Test ofA(L) = a0 and B(L) = 1
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This section might seem to be a special case of last section. In fact. in this

case a singularity problem arises and needs special discussion.

The restrictions A(L) = a0 and B(L) = 1 can be expressed as

a1=a2=~~=a,.=b.=b2=-~=b.,=o (2.3.3)

Under the restrictions. eq.(2.3.1.) becomes

yt=aoxt+ut . t=1. .T. (2.3.9)

We can apply the OLS method to eq.(2.3.9) and obtain the restricted estimates

= [0-1. ' ' ' .a#,'gl. ' ' - '8'...~o.'5’2]'

where E.=~-=a',.=8'.=-~= ”=0 . EB=OLSestimateofam and

[
‘
4
3

{1‘2

1

T I
2 = with 17, = y; - 503,. The information matrix evaluated at 13 is singu-
 '5

lar because

[Coat [Cob [3'30

~ 1.1.» 1» Iago

I 13 := ‘7 ‘7 '*'

( ) [coco [baa [coco

[0 O 0 10303

c
C
D
O
C
)

  

  

 

  

where

[131:31 . - - 1016,,

~ _ __ 1

In“. - . . . . . - fiXoXo

{aflal - - - [afiap‘

[C101 ' [I‘DJ

~ . . . . . an ' . ‘

[0.5 = . . . . . = - 52 ‘XoXu

Haul?! Iafibu‘

~ ~ 1

~ _ _ 55 .

[ob - . . . . . - 1.32—‘XooXoo

{oval - - - fave.)  
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[“90

j" ' _ 1

a'co . - Egg—XOX

.I“#“°l

”51%

rv . a’o .

[”0 = "" g'é—XOOX

(1......

’V _ 1

where

I21

X: I

2'7 .

'1’1-1 zl-fifi

X0 =

27-1 . . . 27-“!

and

{21-1 . . . 21..“ . . . 21-9!

X0. =

FT—l - o o 27'.“ u s . 27-”.  
Note that . in [(5). the (p. + k)th column is just ( - 3’0) times kth column. where

Ic = 1. - - - 41.. Hence [(5) is singular with a rank equal to (11 +2). In order to util-

ize eq.(1.5). we have to find some good reason to reduce the size of {(13) so that

the resultant information matrix is of full rank. Since

6L 1 T 2
T: :— 2 . 1. = l. .
601 02 ‘gluf Id! ’1'

and

BL iTo 7'...

= - — u I = I I

6wa 32 .§. ‘2” J 1 V

we have
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2L: _ g 3.1:. - = 1

ab“. ° ac’i'j ' '7 ' ""

That is gill-:1 1’. = 1. y. do not contain any information not contained in 361%—

1

j = 1. ... .1). Thus we can drop 567L_ 1'. = 1. . H ..u. from the vector of the first

partials and drop the rows and columns corresponding to a... 1'. = 1. . ' - .p. in the

information matrix without sacrificing any information.

Define

[~] '61. oz. 61. 6LT
D130="°'—."'.~.~u~

l H (ab. 6b., Bag 602]

= L- g—E‘E,Xoo. 0 . 0

rflb KOO O

[(13)' = [ciao [coco 0

_ 0 0 10202]

The resulting LM statistic is

LM JD 5 "1 5 '1' ~o-l ( )ol()o lD(13)o

~ -1 ~

a "'3 ~ ~ ~_ ~ a0 , ~

:: [— #UXu]{Ibb - IDCOIOOLOIGOb} [- fa'z—XOOU]

Iv. ' -l .

UXOO [XOOM‘XOO] X003

= ”2 (2.3.10)

0'

where M. I -X(XX)“1X. By the same reasoning as in section 2.3.1. MI. is

asymptotically equivalent to the F statistic in testing the coefficients of the

lagged x’s in X. when they are added to eq.(2.3.9)

This way of dealing the singularity problem may seem too simple and

without theoretical support. But eq.(2.3.10) turns out to be exactly the same as

Silvey’s modified LM test statistic eq.( 1.7). To see this. note that in this case.

  

'1,.o

01..

H6=oo

(00
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II“

H1 = 8

0

Therefore

I!“ o o o

. _ 0 0 O O

HIHI " o o o o

l0 0 O 0

and

I1 ~ 1 v 1 ~ -1

fiam.+1p ‘YTJaJ Wang 0

1 ~ ~ ~

[1 ~ "1 find: ‘17?!» 'lf‘feao 0

fi(6)+H1Hi] = 1~ 1’7 1...

Flown ‘7710130 F1“o“o 0

1 ~

[ 0 0 0 70202

[A F K o

_ B G M O

' C J N ~0

0 O 0 Nazca“

where

1 ~ 1 ~ 1 ~ “1

.4 F K T ...,+1,. 2’” F’Mo
1 ’Y 1 ~ 1 ~

‘5 G M = #005 gr!» 7:!”0

C J N 1 ~ 1 ~ 1 ~

#0060 .1715”! '7'?!an

From eq.(1.7).

laL " am

660 60.0

251.4 F K 0 6L

LM.= L ab 3 G M 0 5?

T D C J N 0 0

- 0 - o o 0 TI ‘1 °



-21-

   
 

Jae-W    

 

212.[212
 

  

 

36m]

(2.3.11)

where

M. _a__L 6L 1 .~

68.: 677' '65,. =52X‘U

61. IM 6L 30 .~

61: =lab. 'Bbv ’ 52X”U

and A. B. F. G. can be found by some manipulations involving the inverse of a

partitioned matrix ( see Appendix B ) :

 

A=1,.

I,

5:7}7-l10“

a

F=ll1w01

Go

{.0

oo

  

}

i7“ [,r.Ax;-on..3x;—&”ox.rx.'.+?igx.. 026.] 3'

r34
fl 0 o o N I _l 0 0 ~

U o o-XoXo-XoXo‘I' T02Xu hacMgXu] Xu'I'XoXo] U

Ta‘

N , “'1

G = g—[Tazprumxn] +
co

Therefore eq.(2.3. 1 1) becomes

LM'= 

~ ’ -1 . ~

U'X» ..M.X..] x..U

which is exactly the same as eq.(2.3.10).

 



2.4
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2.4 Conclusion

The LM test statistic for the geometric lag model (eq.(2.2.3)) and for the

rational lag model (eq.(2.3.4) and eq.(2.3.10)) are similar because the geometric

lag model is a special case of the rational lag model. In both models. the LM

statistic can be constructed by adding some lagged values of the explanatory

variable to the restricted model. and testing their significance using the usual F

test (Note 2). This is a favorable result. since in practice many researchers may

prefer to estimate under the restrictions (using the OLS method). and to con-

sider more complicated estimation methods only if the LM test provides

significant evidence of the existence of a more complicated lag pattern.

Although we have considered a model with only a single explanatory vari-

able. the results do not depend on this assumption (Note 1). They would still hold

if there were additional regressors (not subject to the distributed lag).



3.]
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CHAPTERIII

QUALITATIVE AND LIMITED DEPENDENTVARIABLE MODEIS

3. 1 Introduction

In many cases. economic studies have to deal with situations in which the

dependent variable is dichotomous ; that is. it is observed by its sign only. The

usual least squares method will cause many problems (see Judge. Grifliths. Hill

and Lee (1980) p.586). The most serious problem is that the predicted value of

the dependent variable will not be in the unit interval. One of the solutions to

this problem is the "probit model" (see Finney (1971)) which uses the cumula-

tive normal distribution function to transform the dependent variable into a pro-

bability. This model takes the form

y.'=z..3 + e.. a. ma. N(O. a2).

and

1 if 21;) O

y‘ = 0 flyis 0

Then

P705- (y¢=1) = Prob. (W30) = PW"- (ztfi + 8: > 0) = Prob. (8: < 2:5) = 4:5

where (PM is cumulative distribution function of N (0.1). Therefore.

a:

prob.(y. =0) = 1 -proe.(y. = 1) = 1 -<i>[ f.

The probit estimate for gcan be obtained by maximizing the following likeli-

hood function:

xtfl I 53:31

L = y1._=I1¢[7_Lg-oll - (I>[ a .

 

H

 



16.631
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1101
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Since we cannot identify [3. a separately. we choose the normalization 0:1 to

identify 6. The classical example of the probit analysis in economics is the study

of the consumer’s decision of buying a durable good.

In this chapter. we consider three models which are extensions of the probit

model. Section 3.2 considers the Tobit model. and Cragg's extension of it. in

which the dependent variable is observable in a limited range. Section 3.3 con-

siders Heckman's sample selection bias model which consists of two equations.

one of which is a probit equation representing the rule for sample selection. Sec-

tion 3.4 considers Poirier‘s partial observability probit model. which consists of

two probit equations with a condition of partial observability.
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3.2 Test of the Tobit Specification against Cragg’s Extension of the Tobit Model

3.2.1 The Tobit Model and Cragg’s Extension

Tobin(1958) considered a case in which the dependent variable is observ-

able in a limited range and the analyst is not only interested in the probability of

limit and non-limit responses. but also in the value of non-limit responses. Probit

analysis is not suitable for this purpose. He proposed the following model. called

the Tobit model:

yg.= $35 + 8; . 8; 12d N (0. 02) .

g. If y‘.> 0

t _= 1.....T

where y,’ is unobservable and y; is observable. y. has a lower limit which is zero.

That is. there is an event which at each observation may or may not occur. If it

does occur. associated with it will be a continuous positive random variable. If it

does not occur. this variable has a zero value. An example is an individual’s deci-

sion whether or not to buy a new car. and the amount he spends if he does buy

one.

According to eq.(3.2.1). for y, > D. the probability density function (p.d.f.)

for y; is

f (21.) = 72%?pr — $21!. —z.a)2} (3.2.2)

and for y; = 0. the probability of observing y, = O is

Prob. (y; = 0) = Prob. (yfs O)

= Prob. (3.3 + a; s O)

= Prob. (a, s -z;fi)

-z‘p

= f —1——exp - -1-—52 ds

V2770 2a2
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- a (3.2.3)

 

where <I>(-) is the c.d.f. of the standard normal distribution. The probability of

observing y, = 0 is represented by the shaded area in Fig.3.2.1.

122*)

  
 5/:

 

Fig.3.2. 1

Note that there is one and only one 6 to determine both the probability of

y; = 0 and the shape of the probability distribution for y; > 0. That is. in the

example of purchases of a durable good. the decisions on whether to acquire and

on how much to spend if acquisition occurs are basically the same in this model.

in the sense that the same variables and parameters occur in eq.(3.2.2) and

eq.(3.2.3). Cragg(1971) argues that "In some situations the decison to acquire

and the amount of the acquisition may not be so intimately related. In particu-

lar. even when the probability of a non-zero value is less than one half. one might

not feel that values close to zero are more probable than ones near some larger

value. given that a positive value will occur." In the case of buying a new car. this

argument is certainly true. The probability of buying a new car for an individual

in a particular year is probably less than one half. From Fig.3.2.1. the Tobit

model implies that. if a new car is purchased. smaller expenditures(e.g. 5 dol-

lars) are more likely than larger expenditures(e.g. 5000 dollars). This foolish
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implication is due to the fact that there is only one set of parameters to deter-

mine the probability of y, = 0 and the shape of the probability distribution for

y¢>0.

Cragg(1971) proposed a more general model which uses two sets of parame-

ters. One set determines the probability of y, = 0. and the other set determines

the shape of the probability distribution for y, > 0. Cragg’s extension of the

Tobit model can be written as a two-stage decision process.

First-stage -- decision on whether to acquire

The probability of not buying a durable good is

Prob. (y¢=0) = Prob. (x,fil+u1<0) = <I>(-x,fil) (3.2.4)

and the probability of buying a durable good is

Prob. (y¢>0) = 1 - Prob. (yt=0) = 1 - <I>(-z“81) = @(z‘fil) (3.2.5)

where a, is normalized as 1 because we can not identify 61 and 01

separately in a probit model.

Second-stage -- decision on how much to acquire if acquisition occurs

The probability density function for y,. given acquisition occurs. is

f (y; I y; > 0) = N (2; fig. 0%) truncated at zero

1 [_ (y; '1': 592i
 

 
 

 

 

 

 

 
 

 

   

 

_ Mag , 203

J- 1 x _(yt-2882)2‘d -

0 flag p 20% y;

1 L (ye-31132)“

_ mag“? 20.2 1 (326)

— q, 3:52I ' .

L 02 1

since

(2111-232232)] __ 3:52

IMO—i?xPl 1113;. -Q[ 02

The unrestricted estimates for 51. 62 and 02 can be obtained by maximizing
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the following likelihood function:

1.12.6222) = H {Prob (y.=0)] H [Prob (yt>0)'f (y: I yam]
y‘=0 yt>0

T 1' t t

= E{Hob.(y.=0)] ‘ [Prob.(y.>0)-f(y. Iy.>0)]‘

 

l- 2: I _ ‘9

:fi{¢('x‘fil)]
d‘ 43(151)

1 eXpl— (y: 1132?]
(3.2.7)

¢[2‘ 62 mag 2022 J

02

where d,=1 if yg>0. d¢=0 if y¢=0. Equivalently. one can maximize the log-

likelihood function

[4131.52.09 =1I1L.(51.I32.0'2)

 

=‘)_51{<1-d.)1n[¢<-z.2>1 (32-8)

+ d. {1n<1>(z.5.)—1n<1>[—%z‘82 —ln(\/2'1?a'2)- (.y‘ ”‘252021
02 202 I

3.2.2 The LM Test

In order to derive the LM test statistic. it is convenient to reparametize in a

way similar to that suggested by Olsen(1978). That is. letting

- 5;_ 02

6= 51 - 5 (3.2.9)

h. = -1—

02

eq.(3.2.8) becomes

“64”!) = §{(1’dt)lnq’[-zt(£+fl)] (3-2-10)
8:1

I

+ d. 11:122. (£+B)]-1n<1>(2=¢ B)-;—ln(21r)+1nh -;}.—<hy. 2.221}

Note that when £=0. eq.(3.2.10) reduces to

r I

L. =‘21{<1-d.)1n2<—x.m+d. -;—1n<21r)+1nh—-;—<hy.—z.a)2

 

] (3.2.11)
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which is the log-likelihood function for the Tobit model. The restricted MLE is

5: (5.6.h) where E: 0 and E. 72. are obtained by maximizing eq.(3.2.11). i.e. F

and I: satisfy the following first order condition:

6L]. T N o N ~ 0

3736—: ‘gl-(l‘dt)'m(-ztfi)z¢+dt(hyt ”215)”: = 0 (3'2'12)

where m(-) = {3% with rp(-) being the p.d.f. of N(0.1).

From eq.(3.2.10). the first partial derivatives of the unrestricted likelihood

are

'21:: 21-122...1-2.2.2.”.222212}

%é—= ,é1{—(1-dt)’m [‘zt (54-3)]‘239'4’4 {m [3! (f+fi)]—m [z‘fi]+hyt 41251271.}

and the second partial derivatives are

62—L- i '2' <t+a)-m[-z (6+6)]-m2I-x (221]3555. - t if": t ‘
{=1

+dt{’zt(£+fi)'m[’zt(£+fi)]+m2[-31(6+fi)]"zt(€+fi)'m[xt(£+fi)]

 

 

 

- 77121222211}

6:261); = $111.31 {WEI-2: (f‘tfifl'zt (5H3) —m2[—z‘ ($473”)

"1: {m [‘53: (5+5)]'3t (5+5)'m2["zt (“fin-"l [3: (5+5Hzt (5+5)

-m2[=¢(£+fi)]}}

__ 62L

’ age;

62L _

agah " 0

62L _ 62L
 

T

6666' " atat' —.2212“[’ztfl'm(2:6)-m2(x¢fi)+1]
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62_._L__ 7'

aTah=81dtztyt

2

'g—“hLz '-' “X:dt(h—2-+ 11:2)

The elements of the information matrix (see Appendix C) are

I 62L
[it = ”Eljggl

= 222.m [-2.122]mixtiwn

= fee

I... = —E[%—]= o

= 42:22:: 212. (6+fill'I-ztfi'm (sum-mam 2+1]

-_- _‘21ztél:2‘ (€+fl)] —'[Z¢ B+m (ztfi)]

62L

M=’flifi

= 252122212222";(2.21212 (25)]

 

If we let 131:6. 132=(fi.h). then

2%: g—g’eevaluated at 13

1

=H-ZZI[-(1-d:)m I-ztfi)2£+dtm(2¢§)zt'] (3.2.13)

=jgld,[(hy,-z,fi)-m(z,§)]z¢' by eq.(3.2.11).

Also

Ifli

a—aé—= 2‘: evaluated at 5

2 _.

6h. 
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r
=13

 

by eq. (1.4)

The information matrix evaluated at 1; is

[~ ~

Ice {55 {5h

“13) = In: {53 Ian

{as [up [an

'XAX XAX o

= {our X'(A+B)X (620'

o 

 

   

 

CX D

where

'311 - - - 311:] F311

X :: :-

.zn - . - 372‘ 531‘

’a, o o o'

0 02 t) . . 0

0 0 as . . 0 ~ ~

A = where a, = m(-z¢fl)-m(zgfi). t=1....T.

IO (3 O . . QT;

r1:, 0 o o'

0 b2 0 . . O

0 O 63 . . 0 ' ~ ~ ~ ~

3 = . , . . . . where 5: '-' ‘I’(Ztl3)[1"z¢fi'm(3:5)‘m2(3¢5)]

[0 0 O . . bTJ  
c = -';-§—{¢<21§)[z1§+m<z1&)1. . . . -‘P(ZT§)[ZT§+m(-rrm]]

n = )5 file-{mmfirmfi-m(am-m3)
2:1

Let the inverse of [(13) be

. ,2; Ra Ra

[mm-1*= 136 g" If"
[hs [hp Ihh

Then. from eq.(1.3) and eq.(3.2.14). (Note 3)



-32-

6LT ,_, ~ 'aLl

To! [es [en fin T5131

LM statistic
fit if: [an

fie FM 1» l    
O O

0 0
L

M '76 61.
[6‘57]! [WI] (3.2.15)

We now look for an explicit formula for I“. Let us rewrite I (13) as

 

 

.. [P 1?

103): IR" Q

where

_ 'XAX XAX

P ' WAX X(A+B)

l 0 l

R = .

L(CX)

Q = 0

Therefore.

[Fe 133 .

[five 1735 = U” ~RQ“R>"

_ M N"

- N' S

where

M = N = X'AX

S = X[(A+B)-CD"C]X

Note that M’IN = 1. Thus.

~

I“ = M"1-l-M"1N(.51-N'1ll"1N)"1N'1ll'1

-1

= (X'AX)‘1+{X[(A+B)-C'D"CPI-XXX}

, -l

= (XAX)‘1+{XBX @0300} (3.2.16)

Substituting eq.(3.2.13) and eq.(3.2.16) back into eq.(3.2.15). we have the LM test

 

statistic.
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Although I“ has no obvious interpretation. it is easily calculated from the

Tobit estimates. On the other hand. aLEI—is both easily calculated and also easiy

l

interpreted as a vector of cross products between the explanatory variables and

the Tobit "residuals" for the non-limit observations. That is so in the sense that

E[(hye-z:§) I 1100] = 771.0513) by 99-(C'1)

and thus the term in brackets in eq.(3.2.13) can be regarded as the Tobit "resi-

dual."
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3.3 Test of Sample Selection Bias

3.3.1 Heckman's Sample Selection Bias Model and His A Test

In some cases. the dependent variable is unobservable while the

corresponding independent variables are still available. That is. we have an

incomple sample(or censored sample). Heckman(1976.1979) proposed a two-

equation model to deal with this situation:

ya = 311131 + “11 (3-3-1)

3121 = 32152 + “21' (3-3-2)

with

[an
I“ iid N(O. 2). i=1....,n.

2i

where

_ '01" pm

2 ' a, 1

since eq.(3.3.2) is a probit equation. We observe the sign of ya and we observe

yu it and only if ya > 0. That is. ya > O is the sample selection rule and we have

a nonrandomly selected sample.

This model can be estimated by the maximum likelihood method. But if we

use least squares for eq.(3.3.1) and probit analysis for eq.(3.3.2) instead . the

resulting estimates of 61 will be biased. This is so because

E(y“ l swsample selection rule) E(yu | :3“. ya > O)

31151 + 30111 I 3121 > 0)

. ' = 31151 + P01)”:

(See Johnson and Kotz (1970).p.81). where the inverse of the Mill’s ratio is

_ ¢(‘32~;§)

M - 14130-22132)

with ¢(') and <I>(-) being the p.d.f. and c.d.f. of a standard normal distribution
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respectively.

Thus. the expectation of y“ for the nonrandom sample is not equal to the

expectation of yu- for the complete (random) sample unless Emu | ya.- > 0)

equals zero; that is. unless p=0. Therefore. by using eq.(3.3.1).we have the

equivalent of an omitted variable problem which will result in a bias in the esti-

mate. This bias is called "sample selection bias." This bias will be eliminated if

the conditional mean of u“ is included as a regressor. However. since 62 is a

parameter to be estimated. the M’s are unknown. Heckman proposed a simple

two-stage estimation procedure to estimate the parameters.

Step 1 -- Probit Analysis

Let

1ify2i>0

di: 0 lfyZiSO

n

2de=ni

1

Gt = P705- (yeis 0 I 1'21) = ‘I’("32i52)

The probit estimate 52 is obtained by maximizing the following likelihood func-

1.

tion:

it _

L. = II(1-G.-)““G.-‘ “
1:1

Step 2 -- Least Squares

Let

a" = 54-22131!)

1414-32132)

then apply OLS method to the following equation

1;“ = mum + Xe +verro'r. i=.....n (3.3.3)

where c = pol. The OLS estimates are

>

51 = (XiX1)“Xi Y1 " (XiXxl'lXiXd'Mlifti'MzY1

8 = (1..“ 1X)-1XOM1Y1



-35-

where X1 is a nlxlc matrix which consists of mu. Y1 is a nlxl vector which con-

sists of y“. A is a nlxl vector which consists of A; corresponding to observed

y“. M1 = I - X1(X'1X1)"Xi. Note that g, is a consistent estimate of 51.

If p=0. E(yu I 2:“. ya > 0) = 211,31. Then. there is no sample selection bias

even if we apply OLS to eq.(3.3.1). Therefore. the test of sample selection bias is

equivalent to the test of p = 0. Since c =p01 in eq.(3.3.3). the test of p = O is

equivalent to the test of c = O. Heckman uses the standard t test to test the

hypothesis c = 0.(We will refer to it as the "A test") The t statistic is

. ~ _1~.

= W)... $511111 (3'34)
where 3,2 is the usual variance estimate (SSE divided by 11.1. or degrees of free-

 

dom) from OLS to eq.(3.3.3). This model and the A test have been widely used.

especially in labor economics. Many applications have reported an insignificant

value for A test statistic. One possible conjecture is that the A test is not a very

powerful test of sample selection bias. However. this turns out to be a false con-

jecture. The A test is asymptotically equivalent to the LM test. as is shown in the

next section. and thus has good asymptotic power properties.

3.3.2 The LM Test of Sample Selection Bias

Let

Ft = Prob. (3111- “.921 > 0 l zit: 221')

f Mam-2.1191. “21)‘11‘21 (53-3-5)

“3213:

where h(-.') is the p.d.f. of N(O. E ). Then the log-likelihood function for eq.(3.3.1)

and eq.(3.3.2) is

L = iid-an. + (1-d.)1nc.] (3.3.6)

i=1
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The restricted model is the one in which p = 0 is imposed. When p = 0. eq.(3.3.5)

becomes

Ft = f hi(yii-2iifii)'¢(u21)du21

”up:

= hi(yii‘xiifii)'[1 ’ ‘I’('22152)] (33.7)

where MO is p.d.f. of N(O. 0?). Hence. whenp = O. eq.(3.3.6) becomes

L. = i:[d-ilnh-K‘tl11"“: 11131) + diln[1—Gi] 4' (l-di)1nGi (3-3-3)

The restricted MLE 5 = (551.523,) is obtained by maximizing L' w.r.t. £1. .32 and

0,; i.e.. S: O. 51 = OLS estimate from eq.(3.3.1). 52 = probit MLE of eq.(3.3.2).

i": -—eiel where 21 = Y1 -X1§1. That is. when p = 0. we can estimate 51. of
~ 1
a

in.l

from eq.(3.3.1) by OLS and estimate {32 from eq.(3.3.2) by probit analysis.

Letting 131, = p. 192 = (61.32.01). we can use eq.(1.5) to construct the LM statis-

tic. From eq.(3.3.6). the first partial derivatives evaluated at 13‘ are (see Appendix

D)

.25

6fl

an

55;-

E.

552

BL

.W

Note thatA is a nlxl vector. not a nxl vector. The information matrix evaluated

>
4
3

t
o

3
2

by eq. (1.4) (3.3.9)

m
o
: L
N

  C
O
D

'
7

  

at :5 (see Appendix D) is

,N ~ ~

[pp [p31 195; [9011

[5151 [5152 [5101

[3252 152‘:

[‘10:]  
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F

 

 

n M.»

n ~~ 2(1-GilAizu

§_‘,(1--c;.)>..a "1 ... o 0

=1 01

n ~ '

;(1-Gi)zlizli

=1
. .... 0 0

a?
= n ' MN (3.3.10)

‘ZzaZZiAim-i 0

=1

A

H

l

.
5
3
V

   
where

51 = @('221'.§2)

~ = ¢(-32i§2)

m... ¢(”32i52).

N 1:

Since pl'im(1 - G.) = 1 - Gi. E(d,;) = 1 - Gi.and palm-1172 [(1. - (l-G¢)]-H.- = 0

i=1 -

with H.- being a nonstochastic variable. we can replace (1-5.) by d. in [(13)

without affecting plimi—fla). Thus. eq.(3.3.10) becomes

 

 

  

'~.~ AX 1
AA 1—1- 0 o

01

xx x'x
.3 3.21 o 0

[was .. . ..- (3.3.11)

0 0 Pagixakm.‘ 0

=1

2n

0 o o ~2‘

l “I
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From eq.(3.3.9). eq.(3.3.11) and eq.(1.5). we have

F

 
 

   

( . -1

X X .e
[ $21 0 0 lXiAl

1 All

LM statistic N[ .51 (AA-1&- 0 Cl 0 [ixz'izzix‘imi] 0 0

01 01 i=1 l 0

0 0 512

' ate:

51

_ Xe! . ~. ~ ’1 X 1

- [‘5‘] [W] [..

= [(A'figil'1A'e 112 (3 3 12)
 

3f(A'M1A)“

where

M1 = 1" X1(XlX1)-1Xl-

Comparing eq.(3.3.12) and eq.(3.3.4). we see that the LM test statistic is

almost the square of the t test statistic used to test the coefficient of {when it

is added to eq.(3.3.1). The only difl'erence is the diflerence between 312 and 512.

which is asymptotically negligible when p = 0. In other words. Heckman’s A test
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is almost the LM test; the simple A test therefore has desirable large sample

properties (Note 4).
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3.4 Test of Independence in Poirier’s Partial Observability Probit Model

3.4.1 Poirier's Partial Observability Probit Model

In a recent paper Poirier(1980) has proposed the partial observability pro-

bit model:

yfi = 3151 4’ ‘Uii

3152 = $1132 + ”1:2

1 if yfl > O

y“ = {o iiyg. s o

{1 ifyi'e > 0

3112 =

21 = yilyiz

1'. = 1....n.

‘ 1

[:11] 1111:! N (0.2) where 2 = [a q]

12

Here yfi. yi'g. y“ and 31.2 are unobservable. We observe only 2‘ and 21. We

observe z. = 1 if and only if y“ = yiz = 1. and z. = 0 if y“ = 0 or 31.2 = 0 or both.

Some examples of this model are

1) Retention of trainees (see Gunderson (1974))

2) Two-member committee voting anonymously under a unanimity rule (see

Poirier (1980)).

3) Colletive bargaining between cities and municipal employees' unions in Michi-

gan; binding arbitration is imposed if either side asks for it (see Connally

(1982)).

If y“ and gig were individually observed. we would simply have a system of

two probit equations. Instead we observe only the product of y“ and yig. and

estimation is correspondingly more diflicult. If we define

p¢=Prob. (21: 1):}3’05- (911:1 and yi2=1)=F(zifli-3152§P) (3-4'2)
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1-p.=Prob. (z.=0)=Prob. (y..=o or y.z=0)=1-F(z.p..z.-az:p) (3.4.3)

where F is the bivariate standard normal cumulative distribution function. then.

the log-likelihood function for this model is

L(P.51.52) = gem .+ (lvziflnflvpi) (3.4.4)

It can be maximized numerically with respect to the parameters p. 31. fig. The

main numerical difficulty involved is the accurate evaluation of the bivariate

normal c.d.f. for arbitary p. Furthermore. there is some (limited) experience

with the model which indicates that p is rather hard to estimate. These prob-

lems would be avoided if the restriction p = 0 were imposed. Then the bivariate

standard normal c.d.f. factors into the product of two univariate standard nor-

mal c.d.f.'s:

F(zi51-315230) = ‘I’Wtfiifi’uififl (3-4-5)

Since univariate normal c.d.f.’s are fairly easy to evaluate. and since the param-

eter p need no longer be estimated. the cost savings from the restriction p = 0

can be substantial. Given that p = 0 is a potentially valuable restriction. and the

estimation in the restricted model is easier. the LM test can be used to test the

hypothesis p = 0.

3.4.2 The LM Test

In order to construct the LM test statistic. we need the first partial deriva-

tives and the information matrix. both evaluated at the restricted MLE.

1; = (15.51.32) where 5': 0. El and 32 are obtained by maximizing eq.(3.4.4) with

p = 0 being imposed. From eq.(3.4.4). the first partial derivatives of the unres-

tricted likelihood are

_6_L__§’j zi-Pi apt

6p .«-.pi(1-P.-)6p
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an_ 3 21-101 61m

671 {=1pi(1-Pi) 551

6_L_ _ " zi_Pi aPi

a—_52 i=1P1'(1-Pi) 552'

The information matrix is

1(3) = c’c

where C is the nx(2k + 1) matrix with with row equalling

-l-

at = [Jodi-12.)] 2[f(at-bi3p)'¢(a-i)@(Ai)zin¢<bi)¢(Bi)zi]

with ¢(-) and f (-.';-) being the univariate and bivariate standard normal densi-

ties respectively. and where

-L

at = zifii . A1 = (1"P2) 2011-901)

-l.

bi. = zifiz . 31' = (1‘P2) Hat-phi)

The first partial derivatives evaluated at 1; are:

5.- : @(zifi)'¢(z¢§2) by eq. (3.4.2) and eq. (3.4.5)

= ¢(a’i)'@(bi) With a; = 3151 - 8; = 3:52.

a

d1 = fvil'¢(vii)dvil

= NEAEWH I ”1'1 < 3:)

@(fi)i—:E2; (see Johnson and Kotz (1970).p.83)

= - N52)

37

d2 = f‘Uiz'M‘UieMUie

= — ¢(b¢) by the same reasoning.

fl 2 —p:

%—='2 ‘ "———v<a’.)Wax. -- o by eq (14)
11Pi(1'P~i)
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6L_n zi-Pi ,.~...:53?’ ‘§1W<e)e<e)e 0 by eq.(1-4)

In matrix form.

‘2 zm—Mwa'i) 1
{=1Pi(1"Pi)

6L- " 333 1. ~..
6—3-- JEWWW x.

n 2t"Pt

.¥.T——¢.<1-p)(mains.-
  J

Elfip—lwawfl

0 (3.4.6)

o  

The information matrix evaluated at 15’ is

1(5) = 65’ (3.4.7)

'eta’.)¢<8‘.) ¢(ai)¢(b.) ¢<€.>e(8’.)zl

Vplil-Plj V$1(1_p15‘31 VP1(1-Pl)

 

c = . Z . (3.4.3)

mm.) menial)“ twat);

flesh-pal Vpnll-Pnl Vfinll-p'nl‘"

From eq.(3.4.6) - eq.(3.4.8) and eq.(1.3). we have

6L2~~
LM statistic = [5:7] (C'C)fi‘

2

=LZ———v"P‘——-yvmeta?) (55).?

 

  

=1pi(1-pi

where (5'5) {'1‘ is the upper left corner element of (275)“.

This expression can be further simplified as following :

Let
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ae'Zrfiz... sea 1

[VINO-’1’!) VPnzl—Pnjj

then

§~zg-P‘-—--¢(<i.)90(5)W
1': 1Pi(1-Pi) i

E": i ‘1'"- . at ..Q Eli-fl(1.?)‘——-v(<31)<1>( or: (349)

21'__-___¢Pi

b iEiglpiu—P11) (a'i)¢( fit): I

- 22.
63 by eq.(3.4.6)

Therefore.

LM statistic = [-—]).{1f:)]-:[:L_]

— ) by eq...(347)andeq.(3..49)

._. 55°5- (3.4.10)

where B is the OLS estimate for the coefficient of E in the following regression:

= 53 + 8

Define

2:62

e=2-2

Eq.(3.4.10) becomes

LM statistic = ('Q' + e')Z‘k§

= 053 by e'E = O

= é'é

which equals explained sum of squares in a regression of 6 on E.
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Note that Q can be interpreted as a vector of standardized residuals from

the restricted model. This is so since

E<Z¢) = 1PTOb. (2":1) = Pi

and

f 2

Var; (2‘) = E12,; -E(z..)]

= (l-p¢)2'Prob. (21:1) 4» (0-p¢)2-Prob. (2‘ =0)

= (l-Pi)2'Pi + P12'(1-Pi)

= Pi(l-Pi)-
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3.5 Conclusions

In section 3.2 and section 3.4-. the LM test statistics are not very simple.

However. they are performed from the results of estimating the simpler. res-

tricted models. and they have the reasonable property that they are based on

the "residuals” from the estimated restricted model. This avoids estimation of

the more complicated alternative models. at least in cases in which the res-

tricted models are not rejected.

In section 3.3. the LM test statistic is almost equal to the square of the t

statistic for the "A test". Therefore. we can use the Heckman’s two-stage pro-

cedure to construct the LM statistic without estimating the whole system jointly.
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CHAPTERIV

SI'OCHAS’I'IC PRODUCTION!COST FRONTIERS

4. 1 Introduction

The theoretical definition of a production function expresses the maximum

amount of output obtainable from given input bundles with fixed technology. On

the other hand. the traditional econometric methods (least squares of one kind

or another) for estimating a production function allow points above the fitted

line. Therefore. the resulting fitted function just represents the "average" rela-

tionship between inputs and output. and does not necessarily reflect the ”fron-

tier" relationship (the production function).

In 1957. Farrell first explored the possibility of estimating the frontier pro-

duction function in order to bridge the gap between theory and empirical work.

Later. other work was done by the use of mathematical programming techniques

under. a deterministic frontier assumption (see Forsund. Lovell and Schmidt

(1980) for references). However. mathematical programming techniques do not

lead to estimates with known statistical properties. since no statistical assump-

tions are made in those models. Schmidt (1976) explicitly added a one-sided

disturbance to the traditional production function. which yields the model

y: =f(zt:p)+8h t = 1.~--.T.

where y, is the observed output. f (21:53) is the maximum output obtainable from

inputs 2;. p is an unknown parameter vector to be estimated. and the distur-

bance term a; is non-positive. Although. given a distribution assumption for the

disturbance term. the model can be‘estimated by maximum-likelihood tech-

niques. the asymptotic distribution of the parameter estimates is not known
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since the usual "regularity conditions" for the application of maximum likeli-

hood are violated (since y‘sf (2:56). the range of y depends on the parameters

to be estimated). In order to avoid this difficulty. Aigner. Lovell and Schmidt

(ALS)(1977) proposed a stochastic production frontier. f(z,:fi) + 11‘. with 11,

being a symmetric random disturbance -- v, is assumed to be 1°..i.d as N(0. 03).

Thus. the frontier itself can vary randomly across firms. or over time for the

same firm due to favorable or unfavorable external events which are beyond the

control of the firm. Errors of observation and measurement on output consti-

tute another source of variation in the frontier. Also. the ALS model allows the

firms to be technically inefficient relative to their own frontier rather than to

some sample norm. In summary. the ALS model is as follows (eq.(4.1.1) to

eq.(4.1.4))

yt=f(zt:fi)+‘vt ”uh t=1."'.T (4.1.1)

where u: is a non-negative disturbance term representing the deviation from the

stochastic frontier as a result of technical inefficiency. The following assump-

tions are made:

11., 1'3 1°..72.d. as N(0.a'5) truncated at zero. (4.1.2)

11., and v, are independent. (4.1.3)

it. is i.i.a. as N(0. 0'3). ‘ (4.1.4)

In 1980. Stevenson extended the ALS model by allowing a nonzero mode for

technical inefficiency. A test of zero mode is considered in Section 4.2. Besides

this. Schmidt andLovell (1979. 1980) extended the ALS model in another direc-

tion. That is. in SL models. not only technical inefficiency but also allocative

inefficiency are considered. The simplest SL model (515 I) which allows techni-

cal and allocative inefiiciency is in Section 4.3. A more general model (SL 11)

which generalizes SL I model to allow systematic allocative inefiiciency is in Sec-

tion 4.4. Lastly. a model (SL III) which generalizes SL 11 model and allows
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correlation between these two inefficiencies is considered in Section 4.5.
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4.2 Test of Zero Mode for the Technical Inefliciency in Stevenson's Extension

of the AIS Model

4.2.1 Stevenson's Extension of the ALS Model

Stevenson (1980) pointed out that the ALS specification about the level of

inefliciency (eq.(4.1.2)) implies that the likelihood of inefficient behavior mono-

tonically decreases for increasing levels of inefficiency. This point can be seen

clearly in Fig.4.2.1:

/C(u£)

 
 

o ”t

Fig. 4.2.1

where u; is the level of inefiiciency and k (114) is the (half-normal) density func-

tion of m. According to eq.(4.1.2). the mode is at zero. and the normal distribu-

tion is truncated at 0. therefore. lc (at) is a monotonically decreasing function of

u... Stevenson argues that some characteristics are not likely distributed with

such a monotonically declining density function over the population. The possi-

bility of a non-zero mode for the density function of u; would seem a more rea-

sonable assumption. He. thus. generalizes the ALS model by permitting a non-

zero mode for the density function of u,:

11.; ~ N(p. 05) truncated at zero.

Note that ALS model is a special case of a zero mode (p. = 0) in Stevenson's

model. Since the restriction of ,u. = 0 can be easily imposed in Stevenson's
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model and estimation for the ALS model is easier. the LM test is a suitable one.

4.2.2 The LM Test

Before we derive the LM test statistic. we have to derive the likelihood func-

tion for Stevenson’s model. With a linear model. (e.g. Cobb-Douglas) . eq.(4.1.1)

becomes

y; = 2:5 + U; -1“, t=1. 4' ' ' .T.

where v; is i.i.d. as N (0.05). or explicitly

()- 1 I ”‘2 f ug1); -—Wexpl 203 ora “U:

and u; is i.i.d. as N (p. 03) truncated at zero. or explicitly.

r

1 , 2pr (U: -u)2

r [‘ ‘——‘]2

Uu for 11.: >0

l0
otherwise

with <I>(-) being the c.d.f. of N(0.1). Therefore. the joint density function for

 

 

 k(u:)=

w, = v, —ut is

_" 1 , _1 us-ulz “31+“! 2
Mm.) ‘fl exp 2 a + a an. (4.2.1)

o li-‘I>[- ‘E—HZTWuO'u u ‘ "

au

1 104-1» I 1 I ’1
= 3440—] 1-4[;{-£§-+ w.x]].l1-2[-§:—H

where a = (a: + 03)”. A = 53-. (at) = standard normal p.d.f. Eq.(4.2.1) util-

v

  

 

 

izes the following formula for integration:

- _ 2 = 1_ .1? b2-4ac . b
{eXp[ (au +bu+c)]du 2 erplL—E—Ll erfc[zTE-]

where erfc (p) = é—fexm-uzmu

p
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The log-likelihood function for Stevenson's model is

‘ 7'

Mama) 1311mm.)

7'

= —211n(2n) - {we - #13114. «2.2mm

+t§lln[1-¢(a,)]- Tln[1-<I>(b)]

l

where at = fi-lf-i- (y,-x,fi)A]

b = —%—(A‘2+1)*

The first partial derivatives of the likelihood function are

4% 317‘:[(yt-ztfi)+#] + figmm.) — gramme)

6L __,1__"[ _ - >\_" . '
'7- agtll}; (y, 3tfi)+fl]zt 4' a‘§‘m(¢¢)3t

r

%£-= -%—§lfi%'+ (yt-ztfi)l'm(at)} + 7%{A‘24-1Y’9'm9)

36;Ié-=- 2—1524'2—2:3[(y: "M5)"’#]2+i251:m(at)- -9Mb)

where m(-) = Z:-

1-‘1’(')

The second partial derivatives are

3%”2++02A222<4)-—-<x2+1)z<b)

where z(s)-- s-m.(s) -mz(s)

 

62L thll+2(a:)]

aflafi =012t=-1
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62L ____12 _ _ .
apex Poet-177L010 :2?“ill:-2+(yt 11542010

+ -—-(A'2+1)‘*m(b) + —-9‘3—z(b)

 

   

2 7' 7'

6 L2 = fi-‘EKM’Ztm +-,u.] 2):,2 §1m(at)+ 2:03 2101'”

+—a-?(A-'2+1)%-m(b) - -—()\’2+1)”bz(b)

= 3- Is'ztl-sz'zmtfl
 

0
)

“
l
b

0
.
)

"‘
70
.

Q

M

I
I
p

—_861:8L)\'= Ely—‘21t{m(0t) " 3%“? (yg-2¢B))\]‘2(Gt)}

6“ = - -1— [(y -2 B)+ulz —§z'0(a)
65602 a . ‘ ‘ ‘ 2083:1‘ ‘

where Q(s)-=-sz(s)-m(s)

 

62L
2

55:-0144-32....)‘3 (at)‘1-{£‘+(yt'ztl3)l 'z(‘1¢)}

at=l

+ #A‘%1)'”{[-3+A'2(A‘2+ 1)"]'m (5 Fit-{(444- 1)'*z (b )}

52L _ 1 _ 1 7' [E— - .

axaaz - 2031:1176+ (y: thfi)lm(at) afi—Zgia‘lhz + (y; Zgfl)] z(a.¢)

+ z—gidA-h 1)-%- 0(a)

821. = T

802 20‘

+ —T;-b -m(b)'[3—b2+b m(b)]

4a

' fiEKye-zimwle + ital-Barmmdwtzzmd]
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Since it is not possible to calculate analytically E[z(a,)], E[ag-z(a,)].

E[a,2-z(a,)]. E[Q(a‘)]..... we can use the negative of the Hessian instead of the

informaion matrix to construct the LM statistic. Let 3 = (EEK?) where

1:: 0. E X. 32 are the MLE estimates from ALS model. The first partial deriva-

tives evaluated at 5 are

3!

.6_L_— __1_T ._ ~ _1_. ~ _. T «1'2 ,5. 2

6/7 ‘ 52t§1(y‘ 1&5) + EX‘ém (at) 3'0 +1) [a (4-2-2)

where a.’ = i—(y2-z.§)A

—--=0 by eq.(1.4)

The elements of negative Hessian evaluated at i; can be used as substitutes for

the elements of I (:3). They are :

 

~ T 1 7.. 2T~-
H =:—-~~ 2- ~ had-1

2 .2 2.2.2.: ——<..2 >

when Et = armfi't) - 7112(3)

H --—1-r 1 "
p.3- 52‘§121(+zt)

H 2.2 Lima). _1._§:<y -. a); - 242-..... 2 x
A 012331 ‘ 32A,.“ ‘ t t 3K3 77

~ 7' ~ 1' ~ ~ 5!

H z = "LE (y. '115) " 337‘ng - —Z-(A'2+l)”[1—2r-]

M 34:31 208

where 52 = 322'. -m(&)

’V 1 T . ~2~

H35 = 3'2—‘22‘Z‘(1-A 2‘)

=1
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r'v 1 T , ~

Hm = 323212: Qt

I? 1 {x E) ' X f: '5
#02 04:81 ‘ ‘ t 203‘“ 3 ‘

N 1 T «.2...

H». = “272 (tilt-33:5) 2:

0' t=1

~
1 T A. ~

Hm? = —2~a2 (yt‘ztfi)Qt
a t=1

 

 

  

  

 

 

N T 1 T "" 2 l T ~ ~ ~2 2...
H =-~+.—- -x -.. —3-m + -202,2 204 0'3 £21051: :5) 404;:1': at (at) at t]

The negative of Hessian evaluated at 5 is

2» He: ”in 133.2

19(13)— H,“ H”.

H0302.

Let the inverse of H (1;) be

line ,3... HM see?

.. g... 222 2222
[H(13)]_1 = ~M “A02

H H

l . . . £33202

then.

lar."... ~ ~ .. aflai'l
afi Hm HM HM Hut: 5;:-

o . if” 2?” A7502 0

_ 0 ' . . . $1,222 .0 ‘     
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M N”, u

[ail H 6;:

 

where %is given in eq.(4.2.2) and H“ is the left corner of the inverse of H(5).
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4.3 Test of Allocative Inefficiency in SL I Model

4.3.1 SL I Model

Although the ALS model and Stevenson's extension can deal with technical

inefiiciency. there is another kind of inefiiciency which is not considered in the

above models. A production process can be ineflicient in two ways:

1) Technical inefiiciency

It fails to produce maximum output from a given input bundle. This

results in an equiproportionate overutilization of all inputs.

2) Allocative inefiiciency

The marginal revenue product of an input is not equal to the marginal cost

of that input. This results in utilization of inputs in the wrong proportions.

given‘input prices.

Since ALS model and Stevenson’s extension do not relate to input prices. they

cannot detect allocative inefliciency.

Schmidt and Lovell (SL)(1979) extend the ALS model to permit allocative

inefliciency. They assume that the firm seeks to minimize the cost of producing

its desired rate of output. subject to a stochastic production frontier constraint.

If the firm is technically inefficient. it operates beneath its stochastic produc-

tion frontier..and if thefirm is allocatively ineflicient it operates 03 its least cost

expansion path. The least cost expansion path can be derived as follows:

Let 2‘. i=1. - - - .n be the n inputs. pi. i=1.- - - .n be the prices of the inputs. y;

be the flrm's output. We assume the firm's production technology is character-

ized by a Cobb-Douglas production function of the form:

n

y, = e‘ Hzia‘ew‘ (4.3.1)

i=1



-59-

where w, = v, — u, is a random disturbance. v, is a random disturbance due to

external shocks. u, is a random disturbance due to technical inefficiency. A is a

constant term. The minimum cost input combination can be obtained by minim-

izing the cost function

13

Ct = Spa-Tu

i=1

subject to eq.(4.3.1). From the first order condition. we have

.zL: gag-L. : . '1],
(4.3.2)

it: pitai

This can be rewritten as

11'1th " 1112“ = Bu. i=2. ' ' ' .71. (4.33)

a

where 8.; = 1n p“ 1

pitai

Eq.(4.3.3) represents the least cost expansion path The deviation from the

least cost expansion path can be expressed as a disturbance term. 81. added to

the right hand side of eq.(4.3.3). That is. 8“ measures the percent by which the

21‘ O O I I I O .

chosen —2ratio dev1ates from its cost minimizmg value.

a

In summary. the SL 1 model

it

lnyg = A 4' 2mm“ 4" wt. t=1. ' ' ' .T (Note 5) (4.3.4)

i=1

where w, = “u. -'u.,. v, is i.i.d. as N(O. 03). u. is i.i.d. as N(O. 05) truncated at

zero and

1M“ —1n2a = Ba + Ca. i=2. ' ‘ ' .17. (4.2.35)

where

a

Pitai

8: = (82:.' ' ' -5nt). 73-71(1- N(0. Zea):

r022 ' ' UZn‘

2.. = . . . . .

F132 ° ' 01ml  
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a, is independent of v; and 71¢.

Note that. when 2“ = 0. this SL I model reduces to the ALS model in which

there is no allocative inefficiency. That is. we can test the null hypothesis of

exact cost minimization by testing whether 2“ equals 0. However. the LM test

fails as shown in Section 4.3.2. A simple test is suggested in Section 4.3.3.

4.3.2 The LM Test

From eq. (4.3.4). the p.d.f. for w, is

 

hm.) = 341% {1-<I:(a.)] (4.3.6)

where

10M

:1, = a

a = (05 + 03)”

an

A = '—

all

From eq.(4.3.5). the p.d.f. for a; is

n-l
- l

ME.) = (an) 2 IE..I'*eXPl-%e£2&‘etl (4.3.7)

Since a, is independent of w; . the joint density function is

f (wt-5:) = h(wt)"'l’(€:) (4-3-3)

2 I 2
"" 1 - 1 - - w

= 2(2") n'a-lzecl ”[1-‘p(at)]exPl'z‘{3t2ulet+31%“

The Jacobian of the transformation. from (w,,s£)' to [1722“. - - ulnzmI is

n

r = 2a... Therefore. eq.(4.3.‘7) becomes

i=1

_.n_ I 2

901121;. ' ' ' .lnxn:) = 2(2") 2 Z—IE...|‘%[1-<Ia(a.)]expl-%-[s£2!&‘s:+302-“
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where

n

wt = lny, "A :2qu

=1

8t=(8231"'-8M)'

8a =1nzlg -mig ’33

B“ = 1n[Pit “1

pitai I

Hence the log-likelihood function for SL I model (eq.(4.3.4) and (43.5)) is

L(1$)= tiling (lnzu. - - - .lnzm) (4.3.9)

7'

= Tln2 -24112:“)+ Tlnr — Tlna - gum“) + 21n[1-<P(a.¢)]

t=1

where 13 = (A:.:.2,,.a1. - ' - .an).

In order to construct the LM test. we need the first partial derivatives with

respect to elements of 2“. evaluated at the restricted MLE

5: (Z.X.;.0.El. - - - .3“). where 23.5.31. - - - .31; are the MLEs subject to the

restriction. The first partial derivative with respect to 2“ is

02-1

alnL T -1 _ _;_ 6836;: 8: (4.3.10)

t=l

The first term in the right hand side of eq. (4.3.10) does not exist when %—?L1is

(:6

evaluated at 5 since 2;.) does not exist when 2“ = 0. Therefore. the LM test can

not be used in this model to test Ho: 2:, = 0.
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4.3.3 AnAlternative Test

Since the LM test fails in SL Imodel. an alternative test is suggested in this

section. Recall that exact cost minimization is attained when eq.(4.3.2) holds.

i.e.. when the following equation holds:

Pa 21;: _ ai

Pltzlt a1

 

a:

A simple test of exact costminimization is to see if If)“ 2“ are the same for all

1: 1:

on

observations: they should be exactly equal to i—for each observation. There-

1

fore this test has a power which is equal to 1 (Le. under Ho. Prob.( type I error )

= 0. under HA. Prob.( type 11 error ) = 0 ). Since

   

Pizza

Pizza = C: = Lactor share for input i for observation t

pus“ purl, factor share for input 1 for observation t

C:

= ratio of factor shares for observation t

this test is based on the ratios of factor shares.
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4.4 Test of Systematic Allocative Inefl’iciency in SI. 11 Model

4.4.1 SL 11 Model

The SL H model is composed of eq.(4.3.4) and

1X12" -1Ma = Bu ‘1" 8“. i=2. ' ' ‘ .71. (4.4.1)

where

Bit = 114%.}

Pitch;

'022 (TenW

8; = (82:. ’ ' ' .8“). i.i.d. N(£.Ecc). With 2“ =

(01:2 ' anal  
a; is independent of v; andug.

Note that E(e,) = 5. If E = 0. this reduces to SL I model and implies that

there is no systematic tendency to over- or under-utilize any input relative to

any other input. There is a well-known argument (the Averch-Johnson

hypothesis) that. suggests that firms which are subject to rate of return regula-

tion will tend to use higher ratios of capital to other inputs than cost minimiza-

tion would dictate. Schmidt and Lovell (1979) supported this hypothesis by

using data on steam-electric generating plants. In their paper. they used the

likelihood ratio test for the null hypothesis Ho: 5 = 0. Since the SL 11 model is

easier to estimate when 5 = O is imposed. we can use the LM test to test this null

hypothesis.

4.4.2 The LM Test

From eq. (4.4.1). the p.d.f. for 8; is
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n-l 1
-— —— I

V48!) = (277) 2 lzccl .zexP -%(81—€)'2Ec‘(8¢-€)] (4-4'2)

Since a; is independent of w, from eq.(4.3.6) and eq.(4.4.2), the joint density

 

function is

f(‘wt.8¢) = h(w:)‘19(8c) (4-4-3)

‘2' 1 1 . 1 we 2

= 2(21r) 2';- lzul'”°[1-‘P(a:)]exp[- 2—(81-5) 2.1‘(e¢-£)-2‘[T]

The Jacobian of the transformation from (w..s.)‘ to [lnxu.--°.lnzng]' is

B

r = 2 a... Therefore eq.(4.4.3) becomes

i=1

-1.

2

g<1nz...~-.1nz...>=<2n> -§-Iz..I—*-2[1-¢<a.)1

2

n

11);: lnyg “A -{2ailnzu.

=1

where

8: = (82:. ' ' ' £110.:

Ea =1nzu -1111“ "Bu.

Ba = [Pam .

pitai]

Hence the log-likelihood function for SL 11 model (eq. (4.3.4) and eq.(4.4.1)) is

L(19)= ‘Erllng (1m... - - - inc...) (4.4.4)

7'

= --T—;'-ln21r + Tlnr — Tlna - glnlzul + Elfin-Mad]

881

12

T1112 2g“: 92““: 6) 2m 0

where 19 = (£.A.A.a.2wa1. ' ' - .an).

 

 l

~~~

The restricted MLE is 3=(5.A.A.E.E...E..---.'&’,.) where 2:0 and

331.3%”.31. - - . .211. are the MLE's from SL 1 model when £= 0 is imposed.
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Then. from eq.(E-l) in Appendix E. and eq.(1.4). the first partial derivatives

evaluated at 5 are

. [N

[6L 25:1[27' gt]

66 _ ¢=l

0 - 0 (4.4.5)

where Egg. 2'. are 25:1. 1:; evaluated at 5 respectively. Also. from Appendix E. the

0(5) =

information matrix evaluated at 19 is

Tee 2 0 1:;

~ _ 0 122 ~ 0 [24

[(13) — 0 0 18.33.. 0 (4.4.6)

.1éa I24 0 Ian.  

  

  

where

'1'” - - 7 l
5252 teen

[55 = . . . . = TEc-cl

{i.e.. ' ' 14.5..

F” ~ ‘

1‘2“: ' ' 1‘2“»

[Ga =

L‘fla1 ' ° 1‘75““

With

A; “-1 n ~u

1‘1“! = Tal ‘gza l l = 21 . ' ' .71..

7....“ = -T&,:IE'“. 1.. h = e. - ~ . .n.

~ '1... {._4. .9.

122 = ' In {15a

[00

(see eq.(E-2)‘ to (13-9)”)

1491. "1Aa,.

124: [M1' "11.11,.

  
1;“: . . . I...

b
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(see eq.(E-6)’. (E-lO)’. (E-IB)’. and (E-15)')

1w. - - - 14.4.1

22:23:

1a
M028 ' ' ' [Winona

(see eq.(E-l 1)’ to (E-13)')

  

~

halal ' ' ° 1‘11“”. 1

  {anal ° ° - land.

(see eq.(E-14)’)

From eqs.(4.4.5). (4.4.6). and (1.5).

r W-l

. if” 0 j;

LMstatistic - 6L .7 -[o o F] o .r~ 4 0 5L
- a; “ ' ' 6a ~ tutu ~ ’

3 . as

1;. o I... 16¢

1 .

' -1
6L ~ ~ ~ I". - ~ - at.

= {3?}{1ee " I£a[Ican-12+,221!24] 115a} [3?

  

Note that the average of the a. .‘E. is distributed as normal with mean 6 and

varianve-covariance matrix -;.-En. Therefore. T5251: follows a x2 distribution

with n-l degrees of freedom. Since E is near 0 if E(a)=£=0. then we could

accept Ho: E(s)=£=0 if T525125 is near zero. However. we do not observe E and

)3“. We could try to use their estimated values. say 3 and in. to construct the

'

6’

test statistic Tg'fgs. However. this does not work: this test statistic does not

have the same asymptotic distribution (XE-1) as the test based on 1‘5 and 2". The
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reason is that the difierence between E and '5 does not go to zero any faster than

if does. Explicitly.

g; = '5; + (1116‘ " Ina.) "' (1111;; -' lnal)

so that plim VT ('5 - E)¢0. A test can be based on the value of '3. and indeed it is

clear from (4.4.5) that the LM test itself is based on E’. but the correct covari-

ance matrix is more complicated than just 2;}.
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4.5 Test of Independence between Technical Inefliciency and Allocative

Inefliciency in SL III Model

4.5.1 SL 111 Model

The Si. III model allows correlation between technical inefficiency and allo-

cative inefficiency. i.e. correlation between 11.. and the absolute value of 8,. This

can be formulated as follows:

n

my; = A + Bailnxu + 1.0,. t=1. ' ' ' .T. (Note 5)

i=1

1M1; -1nza = Bu + Ea, i=2. ‘ ‘ ' .n

WNW} 2]8: f '

where

wig”! ‘1‘:

B“ ___ in Paul

Pita:

8: =(82:.' "£710.

£= (£2. ' ' ' .tnl

11-: = lufl

[03 211:]

2 " >3... 2..

Eu: = (0142- ' ' ' noun)

F022 . . . 0’23.

' 286 =

Lang 0 . 0 am‘  
v; is independent of v." and 8;.

v; i.id. N(O. 03)

Note that cov (u, .83) = 0 but that
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0°”(uts lea l) = (ZUuVO‘u/"MV 1-pf+p.arcsin(pi)-1]

> o. 11p.- .. o

where p. is the correlation of u; and a... -1<p.-,<1. (See Schmidt and Lovell

(1980) p.87.) That is. u, is positively correlated with [NI as long as p. 7! O. or

equivalently. as long as a... .4 0. Thus. the SL 111 model allows a non-zero correla-

tion between technical and allocative inefficiency. When 23..., = 0. the SL 111

model reduces to the SL 11 model.

Since the SI. II model is easier to estimate than the Sf. 11] model. it seems

that we might use the LM test to test the null hypothesis Ho: 2.“ = 0. But as we

will see in Section 4.5.2. the LM test fails again. An alternative test is suggested

in section 4.5.3.

4.5.2 The LM Test

The log-likelihood function for SL 111 model is

L = TIDT + ilD‘f 1‘ + fag) (4.51)

t=1

where

7' = n a.

i=1

fjt = [1“I’(Cj¢)l(277)-§-l G1 |‘”exp(D;.)

_ w.+(-1)’“052“‘(s.-£) jg]:

C}; - av \/ lGIl

 

1 . -1 wt
Djt = "'z‘l‘wt- (Et‘€)lGj “.1

I 05"“? (-l)j+12uc

G} = l(-1)j+lziu 2::

GN' (_1)j+lGNE'

0:" = (_1)5+1Gsv 653

3' =1.2

  



- 7o -

and

2‘“ = -' '—1_zu:2:-cl

1?}:

RE = 05 " Baez‘s-£121.":

N! ___ .1_.G Ra

05"“ = 2.7.1 + 2.:‘Ei.fi—E...E:.‘
0

RC = (05+03) "' Banzai-12in:

n

lzl = aglzul + Bani cofa0t07(aui)

i=2

1%

lGll = (05+05N23cl + 2201“ conCt°r(aui)

%3

Since the null hypothesis is 2..., = 0. we need the first partial derivative of the

log-likelihood function with respect to )3.“ evaluated at the restricted MLE

3 = (i....Z.E..33.3’3.§...E). where if.“ = D. and KENSEEEECUE are the MLS‘s from

the SL 11 model. From eq.(4.5.1).

 

 

 

  

 

l 61. '

ang

at. =

62.“;

5L

(dam.

where

.64.: f __1__{af .. . ”ed (4.5.2)
30:41 g=1f1:+f2¢ 60:“ 50ml

B—I’L’l- (c )ac. (2 )Jé'lo I'*e (n) (453)
Baud-llai‘aaui 7’ 1 XP.;:

..

n[ 3

"' 1 "'5lGil 6D;

+[1-‘P(°j:)](2fl') zl-E'IGII 2 60...- eXP(Djt)+fj¢5';::'z
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6c- u:

_L‘_= _ 1+1__.(62 _ "El:
601“ ( 1) 60‘“ 8‘ £)\/ IG

BIZ] aIGII

160 -m-—
u'l.

  

 

 

 

+ .....(-1):+21..3News) \/TGT. “’3 ac...

lzl lGlla

501': _ 1 althN'wz+(-1)j+1(8¢’$)'Gsvw2+(‘1)j+lw¢GNE(3¢"€)]

60m - —2
6015‘

_ 1 6[(s.-£)'GSE(8.-€)]

2 60"“

66:21 = 6615;" = cofactar(a.d)

ui wt

60”, = 1 6(2uc2c-elzve)

601;; RE 60'“;

a[2l:-€12‘;5 6214:2811]

6053 _ 60...

60m - R02

- - 35’s

- Ecclzuczuczul 50m

 

G

~ 6 GI

Note that if Eu; = 0 then Cu = 02‘. Du = Dag. f“ = f2; and —‘L—‘l—= I ll—= 0

since cofactor (a...) has 2.“ as its first column. Thus. when in = 0. from

eq.(4.5.2).

afu . afzt I501: 6‘32:

60... T 50.“ = ‘¢(°1:)(21r)2IGII'xeXMDiUW do... {“30 (4.5.4)

[an an
It | 2:

+ fit'
60.“ 60...- swan

= 0,

since

I501: 1 502: I

an... ' ac... I3...”

 

_ 62'“ _ -
‘I‘1+l)'_(aa... 2. 9V?-
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and

[60,. . 602.] _ I_6[w.GN'w.+(8:-£)'GSE(8:-£)]I __ o

bamfi do... Jinan I 60'.“ Ifwao " .

N! 53

(because 6G .. = 60 ... = 0)
60m; 2m=° 60.4 xut=o

  

Substituting eq.(4.5.4) into eq.(4.5.2). we have

.61. i T 1 (61.. are.)

" = I ~ = 0 4.5.5
[aaui zu¢=o ‘gl 2! It [Bout aaui Jzuc=°

( )

Eq.(4.5.5) holds not just at the restricted MLE 13. but everywhere when

 

E.“ = 0 is imposed. Therefore. the LM test fails in this case.

4.5.3 Alternative Tests

Since v, is independent of ca anduf. we can test the correlation between 11.,

and Is, I by seeing whether w.(av, an.) correlates with I81: I. If we observed w,

and 8‘, we could calculate the correlation of w, with Ital . i=2. - - ' . n and do

(n-1) univariate t tests. or regress w, on a constant term plus leg, I. - - - . Is,“ I

and do an F test. Since w. and Isa I are non-normal. these tests would hold only

asymptotically.

Because 11:, and I a“ I are not observed. they are replaced by the estimates

1'13, and I?“ |. The above tests still hold asymptotically since the estimation

error part of 17). and 311: goes to zero as T-m while the w, and a“ part does not.
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4.6 Conclusions

There are several extensions of the basic ALS model. Stevenson's non-zero

mode for technical inefiiciency is discussed in Section 4.2. The SL I model

which allows allocative inefficiency in addition to technical inefficiency is dis-

cussed in Section 4.3. The 31. 11 model which allows systematic allocative

inefliciency is discussed in Section 4.4. The SL 111 model which allows correla-

tion between technical and allocative inefficiency is discussed in Section 4.5.

The SL 111 model reduces to the SL 11 model when 2... = 0; the SL 11 model

reduces to the $1. I model when S = O; and the SL I model reduces to the ALS

model when 2,; = 0. Also. Stevenson’s model reduces to the ALS model when

,4. = 0. Since the estimation for the more general models is more complicated. it

is reasonable to test the simpler models based on the estimates which impose

these restrictions. However. the LM test fails in testing 2“ in Section 4.3. A

simple test based on the ratio of factor shares is suggested. The LM test fails

again in testing 2.“ = 0 in Section 4.5. Tests based on the correlation between

w, and ls. l are suggested.
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CHAPTERV

SUMMARY AND CONCLUSIONS

There are three kinds of tests for model specification -- the Wald test. the

likelihood ratio test and the Lagrange multiplier test. They have the same

asymptotic power. Therefore. the choice among them depends on computa-

tional convenience. Since the LM test is based on the restricted estimates. we

choose the LM test when estimation is easier in the restricted model than in the

unrestricted model.

In Chapter 2. the LM test is applied to distributed lag models to test

different alternative specifications. The test of the geometric lag specification

against the alternative of no lag is discussed in Section 2.2. The corresponding

LM test statistic is equivalent to the square of the t statistic for the coefiicient

of the lagged independent variable when it is added to the restricted model. In

Section 2.3. the rational lag specification is tested against [two simpler alterna-

tive specifications. The results are similar - the LM test is essentially the F test

of significance when lagged independent variables are added to the restricted

model. For example. comparing eq.(2.2.4) and eq.(2.3.10). the LM statistics are

similar (note that M, in eq.(2.2.4) is the same as M; in eq.(2.3.10)) because the

geometric lag model is a special case of the rational lag model and both models

have the same alternative specification (no lag). Note that the LM test statistics

' in Chapter 2 can be constructed from OLS residuals without running an MLE

procedure. since the estimation of the restricted model requires only OLS.

In Chapter 3. the LM test is applied to qualitative and limited dependent

variable models. Since the estimation of the restricted models can not utilize

the OLS method. the LM statistic can not be expected to be constructed from
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OLS results. The simplest example is in testing for sample selection bias in

Heckman's sample selection bias model (Section 3.3). The restricted model can

be. estimated first by probit analysis. and then by OLS. Therefore. the

corresponding LM test statistic can be constructed from the result of this two

stage estimation procedure. Actually. this LM test statistic is equivalent to the

square of the t statistic for the coefiicient of the probit estimate for the inverse

of the Mill’s ratio when it is added to the regression. This means the simple "A

test" proposed by Heckman is asymptotically the same as the LM test. There-

fore. the LM test gives the justification for using the A test in large samples. The

LM tests in the other two examples (Section 3.2 and Section 3.4) do not have

such clear interpretations. In the test of the Tobit specification against Cragg's

generalization of the Tobit model (Section 3.2). the LM statistic itself is not very

complicated. but not much can be said about it except that it is indeed based on

the Tobit residuals. In the test of independence in Poirier’s partial observability

model (Section 3.4). the LM statistic is equivalent to the explained sum of

squares in a regression of residuals on a set of regressors. The regressors are

related to the terms in the information matrix. but otherwise have no clear

interpretation.

In Chapter 4. the LM test is applied to stochastic production and cost fron-

tiers. A basic model proposed by Aigner. Lovell and Schmidt (ALS model) is

presented in Section 4.1. There are several extensions of the ALS model in the

literature. Stevenson considers a non-zero mode of technical inefficiency. while

Schmidt and Lovell consider the possibility of allocative inefiiciency (SL I

model). of systematic allocative inefiiciency (SL 11 model). and of correlation

between technical and allocative inefiiciency (SL III model). Stevenson’s model

reduces to the ALS model when the mode of technical inefficiency is zero. and
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the LM test of zero mode is presented in Section 4.2. The 51. I model reduces to

the ALS model when the variance-covariance matrix of the allocative

inefficiency errors is zero. In Section 4.3. the SL 1 model is presented and the

LM test is shown to fail in testing the zero variance-covariance matrix of the

allocative inefiiciency errors. A simple test based on the ratios of factor shares

is suggested in Section 4.3.3. The SL II model reduces to the SL I model when

the mean of allocative inefficiency is zero. The LM test of zero means is

presented in Section 4.4. The SL 111 model reduces to the SL II model when

technical and allocative inefficiency are independent. In Section 4.5. the LM

test is shown to fail in testing the independence of technical and allocative

inefficiency. Alternative tests based on the restricted estimates are suggested

in Section 4.5.3.

In summary. the LM test. except in a few cases. can be used to test the ade-

quency of the simple models which we discuss. Since the simpler model usually

involves a simpler estimation method or less computational cost than the more

complicated alternative. the LM test can be useful.
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Note 1:

If the geometric lag model is

{—1

y, = 61», +72, + 8;. where w, = Skirt-.. t=1. - ' ' .T

i=0

then the LM test statistic equals

. _ . 2

{04441240 ”(t-15127:]

32(Xt.-1M2Xt-l)

which is the square of the t statistic for the coefficient of X.-. in the regression

0f Y: 011 (X:- zt- Xt-1)- Here M2 = I " (Xt. ZJIUQ- ztllxtu 21)]-109: 21). and

7'

2'5?
¢=l

2 -.- T with 3, = y, -EX, -;z,. and a; are the OLS estimates.
 

0'

Note 2:

Godfrey (1978) applies the LM test on an autoregressive model (.41? model) and

has a similar result. After all. both the AR model and the rational lag model are

special cases of the ARMAX model (see Nicholls. Pagan. and Terrell (1975)).

Note 3:

We can use eq.(1.5) directly. but the resulting LM statistic looks messy.

Note 4:

The same conclusion had been derived independently by Angelo Melino of NBER.
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His paper will appear in Review of Economic Studies.

Note 5:

y; is exogenous. while za's are endogenous.



APPENDICES



-79-

APPENDIXA

INFORMATION MATRIX FOR THE GEOMETRIC MODEL

The log-likelihood function for the geometric lag model is

L = constant - g—logaz- —022(y - 5w, - no”)?

i=1

The first partial derivatives are

_O_L__ 1— {-1

6A - azgffim 4' “704 )8:

 

6L 1 T .
._ we

67' =a2.§. ‘

6L 1 T . 1
—= — A s

6770 02:?1 ‘

6L T 1 T 2
= ———+ s

602 202 204.31 ‘ 1

wt 0

where R, = TA=2iA“12,...

i=1

The second partial derivatives are

 

a_f_L 1 .
= — R + t M” 2 + a -som thin5T2 ~02§1{(fi t 770 ) c 9 9}

a__zL _ 1 7

6T2 — 02 MW

621. _ _1 T A2.

2 " 2

5’00 -0 1:1

 

1 T t-16A66 021:1[w‘wm 770A ) R, at}
 

 

62L 1 1--1 t t--1= -—
-t

 

= ‘— :(35’: + “704‘ ”8:
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The elements of information matrix are

 

52L 1 :-1 2
I = -E = — + tM [673'] ag‘éle: 7704 )

62L 1 T
I E _—25 [6132 02 ‘2‘”:

I ___ E'azL =__ 1 12‘

"0’70 (6770 021:1

, = _El 62L = -_L... .T.: .2;
0203 b6(a.2)2 2 0.4 204  

 

11mg -EI6>6\::O = 'JT‘ZQWRt 'I' ”ION-1)”

- 4.22:2 -

[W " ..E'angh '37:“:

1.3.2 " -EIa;:I;2 - 0 
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The information matrix is

1

U... I... 1....) o

In}. I” 15710 0

Incl Inofl loan.) 0

I O O 0 ”102,2‘

[(13) =

  
'Under reasonable assumptions about the explanatory variables. lyrfnm. 17,-!an

and IFIMO all converge in probability to zero. Thus the information matrix is

singular asymptotically. if ’00 is estimated as a parameter.
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APPENDIX B

INVERSE OF A PARTITIONED MATRIX:"OR 'I'HE RAT'ONAL LAG MODEL

 

  

 

  

 

  

C J N RI Q‘

where

[1 «I 1 ~ .1 1 1 Go I

P Tina”... 71.1.1. _ $32—$95” T~2X'X“

1 = 1 ’V 1 'V - 106'0 .150 .
._., fi ___ no; a 001 noToo. T» I T‘b’ZXY TEZXY‘

1 ~ 1 1 I

R _ FIMO _ TEZX'X

1- 1 ~ - _1 E730
7.71“," L-T,,—-—2-X00X

_ 1 v _ 1 1
Q1- -7w—Ill°a°- Ta___-XX

Step 2

IA F 1 _
B G-[Pl-R1Q1 R1]

II + 1 X'MJ 3° X'M4X -1_ # T~2 O O T62 O O.

- EJ¥.M;X'o 53 Y'Ah)?.T002 .0 T521 O. .04

[P2 R21"

" 32 02

Hence.

= (P2 " 32425135)“
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-1

_ 1 ' 1 ' ' t - ' t
_ I“, + WYOIJ4XO — .T—aTz—XoIJoXoo (XOOJ'J41Y00) Una-141$

:1“

Sinc e

X;M4Xo " X;IJ4X00(X;0!J4Xoo)—1X;01M4Xo= X;[I " .Xu(x;a.Xoo)_1Xu]Xo

= 0

where X. = [J4X.. X» = mx... The second equality holds because X. is contained

111x...

3: 'QEIRé(P2 - ReQz-lfiérl

= -Qz'"f?éA

= 8L(XL.M4X..)*1XL.M,X.
0

_ 1 [’1‘]

' 2710
F: ‘(Pz " RzQilRé)-132051

= “M2051

= é—[Iw 0]
‘10

G: (25‘ + 0511?;(1’2 — Rzai‘Ré)“RgQi’

52 , ‘1 . . . .
[#Xufl‘x”] + (3:5 "1(X..M4X..)“(Xufly‘fi)(X.f/I4X..)(Xufithrl

1 ~2 . -1 [’1‘
= 302 To (X00514Xoo) + [0

 

[Ip' 0]]
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APPENDIX C

SOME EXPECTATIONS FOR CRAGG'S EICI'EI‘ISION OF THE TOBI'I' HODEL

E(d,)= l-Prob(d‘=1)+ O-Prob(d, =0)

= Prob(y,>0)

= M21“ + 5)]

E(dgy,)= ECU: lyt>0)-Prob (yt>0)

 

= [37:52 + m

    

2;;5—2‘1'021'Wxtfii)

= 112113 + Mam-@1241 + 6)] by eq. (3.2.9)

Ed(12:31:) E(y;2|y¢>0)--Prob (yt>0)

= WWW: lyt>0) + [E(yt lyt>0)]2

= [1 — $77?- Eflm" 223:2 ‘72 +{\31162)2+2(3152)02'm[‘—}+U§m212%}

'-' 022 + (1': 592 + 02 ($132)"LI-£1

= EEU + (2:5)2 + ztfi-m(=:fi)]"1’[x:(£ + 5)] by eq. (3.2-9)

"' 3:132

02

|y>0

 

E(hy¢ ‘3tfilyt>0)= Er!

_ [3:32
—m ,

02

since

E(ytlyt>0) =3152+m a 02.

 

3:52 .

2
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APPENDIX D

INFORLIATION HA’I‘RIX FOR THE SAMPLE SELECTION BIAS MODEL

The log-likelihood function is

L =-id‘1nFi + (1 - 40an
i=1

The first partial derivatives are

11;: " I e _ p (My‘ZuHJZ + (la-pa) (3111“31151)A¢ _ _p Bi]

6p {.1 1-pz (1-p2)2 012 (1—p2)2 01 Ft (1-P2)2 Ft]

Egg-___ id-‘Hyu‘zufiflzit __ Jo 3'11 AL]

361 m «fa—p2) l-pz 0: A]

I’ o

21.- .. - m _ .. -
652 - ig‘ldiza F1 (1 dl)z2i7nl

 

  

 

6L = i“: . __1__+ (yu’ziifii)2 _ J (ya-31151) At]

501 m 0: (l-pzki‘ 1-92 612 Ft}

where

ht.= h(yu '31131. -22152).

A¢= f ua'hWit'zufliuuaddua:

“32152

Bi. f ugt'th-zufii- “21)‘11‘21:

43152

F1: f h(yu"$ufli-ua)duziu

"2132

= M'Zztflz)

m.‘ “"32152).

Whenp = O.
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f ua'¢(u2¢)duzi

 %:= «an: ' "-' 3(u21lu21>-321132) = M (D'l)

fa @(uztIdU-zi

“21 2

Hence the first partial derivatives evaluated at 13 are

~ ~

  

6L " 3111-31151 X91 ~ ¢(‘22i52)
—:..-= ‘ ... I‘ = —-— where . = ... ,

6p Ed‘ 01 w 01 AI 1-‘I’(-32u32)

6L_6L_BL
- =0 (29.1.47-51 35-; 601 y 9()

The second partial derivatives are

  

2 2

'3‘}: (11:p2)2_—L_;¥ldl {(112312);«Izzddyu-zl‘mf". 28(3;2[;:) a? ‘§1d1(yu-2u51)—

04-102)2 _ A12 _p_=__n [_B__¢:_ D:

+(1-p2)‘ a? 121“?!“ 31251;:[8'F-BF} T75]- (1_p2)4i21 F12 F1

-ML“ 31 _ 2pL1+pz) 1 _ _Buh]
(1-p2)3 “I F" (1_pg)‘ 0 Eddy“ 21151)[?F3; F22 1

 

 

  

I

2

2 P(1+p2) (ya-21150131 __A; H

fl: n szii(yli‘zlifi) _zl‘[(1+p)%-+ (1‘102) 01 [F1 F12 2

apafil i=1 (1-'/Jz)2012
(1-p2)201

 

  

. I p2 Pi- A‘BiI

zitl1_p2 LF‘ R2 4

(1'P2)201 I

  

 

2

h." A;

626+2'= ”((11:52?21 it@
321“! H. "'3 1‘51) —'[zz

ifiz+ 2.1:]

- —&—§ld1321(1_p2)2 F—:{(32152)2"%]
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62L 2p21
+ 1 n A:

apaal = (l-p a81‘2‘1‘(y“-z“fil)2- ((1 $32320“Edam-21:5
1)}:-

62L - n -21‘3“ f p2 zitzu Af-BiF‘j
 

amen; 1?, 0?(1-p2)_(1-p2)2 of F3 1

66165;. m 1-p a: I F‘ WM]

 

62L “Edi p 311221 [-22:52th _ A: ’11.]

 

62L = i {-2(yli-zlifil)zii + J 311 [141+ p (ya-21151) IB‘ _A‘ZI]

63160, {=1 (1-p2)a? 1—p2 of [Ft 1—p2 0; [Ft F? J

62L 2

0132862: l-pz an?“2‘ 2““

‘2dt32132t i;.2—+ 2(1'dn3322321(32ifiz)mt " 2(1‘dtk2t32tm12
(all i (81 {-1

                       

 

2 0

666261271 = T310210 24:321(y1t‘31¢51)%‘[12152 4' 2‘7}

  

62L
J2

6012 = Egldt- (1_:2)a4“fi12-'d‘(yli-zlifll) (l-pz)2 a4“1fi1d((y1“2u51)2 [-A-:-— %

Tag—E'ad‘ (91¢ '31¢51)2—

where

f ugt'thu'zufli- “21)‘11‘21

’32:”:

f ua-Myu-zuanumdua

'32":

Whenp = O.
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A.‘ _ _

F:- M . (D-l)

ht. __ ‘P('32¢52) _ _

n " 1 - u-zaaz) ‘ "‘ (D 2)

E f “221:9”(1‘20‘11‘2: -

F‘ = 42‘? = E(u§1lu2¢>‘zafiz) (D-B)
i

f ¢(u2i)du2¢

”at”:

‘3 [EWa lu2i>-32152)]2 + V°T(u2i |u2i>‘32-;52)

=M2+ (1 + ZiM “A3

= 1 + zix‘

where z‘ = 21:362.

The elements of the information matrix evaluated at '3‘are

a; = -E[g:lz‘ evaluated at 1’;

= -§<1-aa + :1?" sax-5;) - -..i,,-"'a?<1-6;>[<1+am-Xfl+ Sin-annex)
{=1 01 (:1 01 {=1 ‘81

= 1:51-53)th unth 2‘ -' “3213.2

since eq.(D-l). (D-3). and

E(d¢) = l'Prob(d.‘=1)+ O-Prob(d¢=0) = 1 - @(-zafiz) = 1 - Q (D-4)

and

Midas?» = imuamawmuma) 09-5)
{:1 i=1
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= 1:1(1+P221M)012(1'
Gi)-

1,51.—‘§1(1-a)—r“*‘ by eq.(D-1)andeq.(D-4).

~

IP52 = 0. since

E(d¢uu) = Emu ldt=1)'P"°b 011:1) (D-6)

= 012N‘P70b (di=1)

=POIN'Pr05 (di=1)

1m,1 = o by eq. (12-6).

 

i (1-§)ziizu
131,1 = 312 by eq. (D-4).

{81

[p152 = 0

1;"! = 0 by eq. (D -6)

gape:21¢(-32i52)321132t(32132) 4' f:%é‘za

[280(-21:52)]2
 

' leétzzi(zzifiz)¢(-22¢fiz) 4' g1 M42132) zaza

= ‘fil‘i‘mzé‘za, .by eq. (D-Z) and eq. (D-4)

54-32132)
where ~ = —=—

mi @(‘32150

1,3,1-0

A. n N

T1;- <1-e>+§—:af<1-§)
011:1 01

2 2 ~= .72.. (1— ) by eq. (12-4) and 99-(9‘5)
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APPENDDK E

INFDRMATION MATRIX FOR SL 11 MODEL

From eq.(4.4.4). the first partial derivatives are

5L Tn

_=22(8a_€i)0a.l=2.'n,n
=11 =2Q

)
@

a

 

32—- §5m(at)_ Trn(b)z>‘_2++1)%_2[g;_]

£81

:31 0

 

6L _ 1”

6A - a’Eganz(a¢)1D‘]

6L .. I. _1_’ _
Ba - a + azmwtxmmm 03:33;

6L ._ TBlnlEccl+ 1 n n
«U; j

60M: - 2 60M +=2‘7.13;;ng
(3X81! Efla a”

where

amlzccl __ 0M ifh=k

60M, - 20"" ifhatlc

h=2.-ooln'
k=2....n

6L T+

a1 1' 0““
Tlt=1j=2i=z

1 ‘7'

+ T wilful:

(E'l)
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BL T
A T 1 7' n , 1 7'—=—+— m 'lnx —— 2 --a"‘+— wlnx6a,, 7. “a (at) m “Mag; it £1.) 02‘; t n:

h = 2. n.

where a“ is the (i.l)th element 0:251. m(-) = l%'

The seCond partial derivatives are

62L

 

 

 

 

—=-To"“. l=2.~-.n, m=2.°--.n
aézaém

62L

= 0 I: 2.- .n

afial‘

62L - - . o .
6£¢6A-0' l-2. .n

621. _ _ ...
6&6A-0' l—2, .n

62L - - o I o

6&60’ -0. l-2. .n

_6_2L__= -ZT fi(ea-£i)a"‘a“. 1.11.]: = 2, - ~ - .71.
65:50».- t=u=2

62L T " a
= -— a . I: 2. .n

afiaai (Mtge

62L = T l: 2 . n



 

 

aAaa

62L

6/1601,-

62L

aAaoq

62L

axaa

621.

KT. 27

= 33?EJQUH)":;F23u“
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T A= 272{ (ch) - pvrzwa}
=1

t=l

==O

A2 7'
1

.

= Fawn,“ mm.3

=1

1 r

= -?Ew‘Q(a,)

‘81

6A6a.“

62L

mam

62L =

602

62L

6060”

_ 1 T A.. ——-2 {3'10¢Z(01)Inzfl - m(mflnza}
a,

T
7+ _2 (hi-701:) - 25?“) - 4 2w!02t=1

0'
0' i=1

0'

==0

(13'?)

(3'3)

(3'4)

(E'5)

(PS-6)

(E‘7)

(E-B)

(13-9)
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2

%=—2Aa(ag)1nzu02. - —22w:1nzu (B-w)
£81

62L 7' n n
_ 7"—.= 2 2 2 (cu —$i)(ej,-£j)a"‘a""a"j —- E-(dmfi’. h=2. - - ' .n (E-ll)aohhaahh (=1j:2i=2

2 T n n

__6L__= -£o’“a"”‘ + 1—2 2 E (ea-£¢)(s,-g-$j)(a“a”"‘a’"+afl'amam’) (E-12)
aamaalm 2 2t=lj=2i=2

h.l,m=2,-'-.n

62L 1 T n n

*= -Ta"‘o”"‘ + —2 2 2(Eu-6t)(813 -$j)(a“am"a"’+o auam’)

hath. h,lc.l.m=2. .n

12—: "LET: fitézkea ‘50 4' (ejg-£5)]a"‘o*j

 

 

Bauaal 20: “Fe

h. k = . .n

62L 1 1' " n

—-——=--— e-- omakj-i- e-- afl‘a”
601125“: 2a; t§1[j§2( 1‘ £1) E); g 6‘) ]

hi kcl = 2. ' ' ' .n

62 2 1 1'

Bali“; = 'Lz+ %§Z(W)’(‘mu)z’ 32-210mm? (El-13)

r

12 2 i:Z°g(2+5a+€jc‘€i‘€j)
—2a1 t: lj=2i=2

62L _ T X2 7' 1 -
_aalaah — r2 + 02‘=12(a:)(1nzu)(lnzm) a2,é(m“)(lm“) (E 14)

n

+ am' h = 2' . o . 'n

“1“); gauge

62L _= _L... firz( )(lnx )(lnx )_ Li (Zn: “In: ) (El-15)

anhaak 1'2 02::1 a: M ’“ (,2:=1 M kt

 



T
- ma”. h. k 2. '.n

where

2(8) = S'm(8) - m2(8)

0(8) = -m(S) + 82mm -S'm2(8)

P(s) = -2m(s) + szom(s) -s-m2(s)

The elements of the information matrix are

IGsz = To”

[6:4 = 0

[613:0

1“,: O

[Glut = _ 0'

T m

[61% = -

62

I,“ N— 6751A— see eq. (E -2) (3‘2?
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2

 

 

as... .-IAA BABA see eq. (E 3)

[4 R3- 62L see eq (E-4)
° aAaa '

1A,” — o

 

 

 

L
as— -[M GAGA see eq. (E 6)

[A - 62L see eq(E-7)
a 6A6

[A0331 = 0

[A N- 62L see eq. (E-B)
a‘ akaa;

1 RI- 621’ see 2:] (5—9)
W 6060 '

1,,“ = o

621.
a-

Ica‘ 60'6at

 see eq. (E-19)

: 2£(ahh)2
[UMUM

(E-3)'

(E'4)'

(E-5)'

(E'6Y

(E'7)'

(E'3)'

(E'9)'

(E-lO)’

(EH 1)’
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Iowm = E—a’i‘amh (E-12)’

[ahkatm - Toma” (E-13)’

I‘M“; = 0. l: 1. .n

[ahakz__§_2L__. h. Ic = 1. ' - ° .17.. see eq. (E-13) - (E-15) (E-l4)’

Bahaab

Some elements of the information matrix are difiicult to find and are approxi-

mated by the negative of the second partial derivatives since this will not aflect

the probability limit of the resulting "information matrix."
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