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ABSTRACT

SOME APPLICATIONS OF THE LAGRANGE MULTIPLIER TEST IN ECONOMETRICS
By
Tsai-Fen Lin

There are three kinds of tests for model specification - the Wald test, the
likelihood ratio test and the Lagrange multiplier test. They have the same
asymptotic power. Therefore, the choice among them depends on computational
convenience. Since the Lagrange multiplier test is based on the restricted esti-
mates, we choose the Lagrange multiplier test when estimation is easier in the

restricted model than in the unrestricted model.

Since the Lagrange multiplier test is not v}eu known, and the derivation for
the test statistic is complicated, in this thesis, I develop the Lagrange multiplier
test statistic for some commonly used econometric models so that they can be
used readily by applied economists. These models include distributed lag
models, qualitative and limited dependent variable models, and stochastic pro-
duction and cost frontiers. In the distributed lag models, the Lagrange multi-
plier test statistic is shown to be asymptoticglly equivalent to the F statistic in
testing the coeflicients of the lagged explanatory variables when they are added
to the restricted model. In Heckman's sample selection bias model, the
Lagrange multiplier test statistic is asymptotically equal to the square of the t
test statistic in testing the coeflicient of the correction term for the sample
selection bias when this correction term is added to the restricted model. In
Poirier's partial observability model, the Lagrange multiplier test statistic is
equivalent to the explained sum of squares in a regression of residuals on a set

of regressors. In the stochastic production and cost frontiers models, the
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Lagrange multiplier test fails in some cases, and alternative tests are suggested.

In summary, the Lagrange multiplier test, except in a few cases, can be
used to test the adequency of the simple models. Since the simple model usually
involves a simple estimation method or less computational cost than the more

complicated alternative, the Lagrange multiplier test can be useful.
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CHAPTER1
INTRODUCTION

1.1 Introduction

In statistics and econometrics, there are three basic principles for the con-
struction of test statistics for model specification. They are the Wald test
(Wald(1943)), the likelihood ratio (LR) test and the Lagrange Multiplier (LM) test.
Suppose there are two possible model specifications, one of which is a special
case of the other one under some restrictions. Let's call the special case the
restricted model, and the generalized case the unrestricted model. The Wald
test is based on the estimates from the unrestricted model, while the LM test is
based on the estimates from the restricted model, and the LR test is based on
both sets of estimates. These three principles yield tests which are equivalent in
large samples when the restrictions are true (see Silvey(1959)). Their small sam-
ple properties are unknown, except in special cases. Therefore the choice among
them will often be based on computational convenience. The LM test is very use-
ful in cases in which the restricted model is easier to estimate than the unres-
tricted model. This will often be the case when one is testing the adequacy of a
particular model. Then the null hypothesis is that a relatively simple model is
adequate, while the alternative is that a more complicated model is necessary.

The LM test permits a test of this hypothesis without having to estimate the

more complicated model.

Although the LM test was suggested by Aitchison and Silvey in 1958, it did
not receive much attention from econometricians until recent years. Therefore,

not many economists are aware of the LM test and its computational advantages
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in many cases. It is the responsibility of the econometricians to introduce the
LM test to applied economists by developing LM test statistics for common
models in econometrics. The LM test has been applied successfully in testing for
a liquidity trap, autocorrelation, the error components model, seemingly unre-
lated equation systems and various non-nested hypotheses. (See Breusch and
Pagan(1980) for a survey and references.) In this thesis, I report the successful
application of the LM test to distributed lag models in chapter 2, to some quali-
tative and limited dependent variable models in chapter 3, and to stochastic

production/cost frontiers in chapter 4.



1.2 The LM Test

Let ¥ = (¥9,, - - - ¥ ) be a set of parameters, L(¥) be the log-likelihood fuc-
tion, A (¥) = [~,(8), : - - ,h(¥)] = 0 be a set of r restrictions, A = [A;, - - \A.] be
a set of Lagrange Multipliers, /() be the information matrix and n be sample
size. Define the Lagrangian function for the maximization of the likelihood sub-
ject to the restrictions as

Lp(8.A) = L(8) + N h(¥8)
A constrained maximum of L(3) is obtained at a stationary point of Lg(8). By

differentiating Lg(8,\) with respect to ¥ and A , we have the first order condi-

tions:
D(¥).+ Hga=0
h(8)=0 (1.1)

’ dhy (3 ]
where D(®) is the sx1 vector, {ag 1;’ . and Hy4 is the sxr matrix , [ a’; 1, By
| ’ :

solving eq.(1.1), we obtain the restricted MLE ¥ and X. When the restrictions are
in fact true (h(¥) = 0), the restricted estimates 3 will tend to be near the unres-
tricted estimates, and D(&') and X will tend to be near zero. It seems reasonable
to decide that h(¥) = 0 is true if X is in some sense near enough zero. Aitchison
and Silvey (1958) proved that under the null hypothesis that h(¥) =0, Vn X is

asymptotically distributed as normal with mean zero and covariance matrix
~ -1 ~ ~

[H:;'n[l (9)]? H;;] where Hz and /(9¥) are H4 and /(¥) evaluated at ¥ respec-

tively. They suggested a test statistic which is based on the estimated Lagrange

Multipliers (A)-:) and called this the Lagrange Multiplier test statistic:

LM test statistic = N'Hz' [I(8)]"'H3\ (1.2)
This statistic asymptotically follows a chi-square distribution with r degrees of

freedom when A (8) = 0 is true. The region of acceptance of the null hypothesis
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h(8)=0 s X'H;'[I({;)]“H;;Xs K, where K is determined by
Prob( x2 < K) = 1- significance level..

Note that from eq.(1.1), H3\ = — D(3), so eq.(1.2) can be rewritten as

LM test statistic = [D(8)]'[I($)][D ()] (1.3)
The right hand side of eq.(1.3) is just Rao’'s score statistic (Rao(1947)). Hence
the LM test statistic is the same as Rao’s score statistic. Since eq.(1.3) is easier

to use, in the following chapters eq.(1.3) instead of eq.(1.2) will be used.

When ¥ is partitioned into 2 subsets, ¥; and ¥, and the restriction under
test is that one of the subsets of parameters equals particular values, i.e.

Hg:8; = 8,0, then we can establish a simpler form of the LM test statistic. From

eq.(1.1), D(B) = —H3\, therefore,

oL ] 8h(8) 'Y
6131 - a‘l’l '
8L | = T |oh,(¥) '
9%, 09, Ar
r 9h;(8) ~
2 755,
= p= 1.4
= % (1.9)
aL Ohy (8) oL dhy(¥) ~ :
where 25, and 25, are 3. 5, and 29, evaluated at ¥ respectively.

a%;[:'—= 0 because h;(¥) is not a function of ¥;. Partitioning / (5) conformably,
2

eq.(1.3) becomes

aL 1 lar
LM test statistic = {ag‘ lj Im] l 1
[ V ~ ~ o~ ~ 171
= %’l— r{n - fxzfzz"fzzl [aaé (1.5)

1tr (5) is block diagonal, the LM test statistic can be further simplified as

. _leLY~_[oL
LM test statistic = [Wj 111 {Wj (1-6)



-5-

When /(%) is difficult to calculate, we can use the negative of the Hessian (

matrix of second derivatives ) or its limiting form to construct the LM statistic

_ 8L . 8L
=1y, Where o518 Ssew

[ 2y }
: . -1 o)
because in many cases, plim {[I (13)] \— 3595

————

evaluated at ¥. Also note that whenever the usual regularity conditions hold,

I(®8) can be obtained from the first partial derivatives of the log-likelihood func-

g

r 2; 1 Iz Maz)
tion. That is, I(¥) = Ell_ O—?STL'\F} = E{l%{ié—l}- Besides these, there is an

)
indirect approach using the scoring algorithm ( Newton-Raphson algorithm ) to
compute the LM statistic indirectly (Breusch and Pagan (1980)).

1t 1(:5) is not of full rank, say, rank [/(d)] =s — ¢ < s, then 1(5) is singular

and is therefore not invertible. Silvey (1959) assumes there exists a s x¢ subma-
trix H, of Hy such that %—1 (5) + H,H,' is positive definite. Then, he proposed a

modified LM test statistic
L =L ’p(%)]'[l—z(?i) + H\H 'l-l'u(%f’)] | (1.7)
“nl n | :

which asymptotically follows a chi-square distribution with (s - t) degrees of free-

dom. This case arises in one of our analyses of chapter II.
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CHAPTER II
DISTRIBUTED LAG MODELS

2.1 Introduction

A distributed lag model describes how the lagged independent variable
affects the dependent variable over time. The length of the lag may sometimes
be known a priori, but usually it is unknown and in many cases it is assumed to

be infinite. Thus we consider a distributed lag model of the general form

Ye = iZ:Ioﬂsz + &
where y; is the dependent variable, z;_; is the lagged independent variable, g; is
the distributed lag weight, £; is a disturbance term. Infinite lag distributions
involve an infinite number of unknown parameters, and thus it is impossible to
estimate all these parameters. To make estimation possible, it is necessary to
make some reasonable assumption about the pattern of the distributed lag
weights. The earliest distributed lag model is the geometric lag model proposed
by Koyck (1954). He assumes that the lag weights decliﬁe geometrically, i.e.

Bi =B\, for i=0,1,2,...
where 0 < A < 1. Since the lag weights of the geometric lag model decline mono-
tonically, and this may not always be reasonable, various alternative models
have been proposed. For example, the Pascal lag model proposed by Solow
(1960) permits a hump in the lag weight distribution curve. In 1966, Jorgenson

proposed a more general rational lag model

- A(L)
Y B(L) Zy +u
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where A(L) and B(L) are polynomials in the lag operator of order wx and v,
respectively. He also proved that any arbitary lag model can be approximated
to any desired degree of accuracy by a rational lag model with sufficiently high
values of 1 and v. If we take A(L) = (1 — A) and B(L) = 1 — AL, the rational lag
model is Koyck's geometric lag model. If we take A(L) =8(1L —A)" and
B(L) = (1 — AL)", the result is the Pascal lag model.

In this chapter, two distributed lag models are discussed. The geometric

lag model is discussed in section 2.2, and rational lag model is discussed in sec-

tion 2.3.



2.2 The Geometric Lag Model

Following Klein (1958), the geometric lag model can be expressed as

Ye = 520’\‘*"":-( + &
=pfwy +MN* +g , t=1,--,T, (2.2.1)
t-1 -
where 0< A<, w = Y Nz, o= BYL Nz, & iid N(0,0®). fA=0, orif
i=0 1=0

we know the value of A, we could estimate eq.(2.2.1) by OLS. Usually,we don't
know the value of A and we use a search procedﬁre to estimate eq.(2.2.1). Since
the search procedure is not simple, it may be useful to test whether A = 0 before
we start the search procedure. The restriction A = 0 is easy to impose and the
restricted model can be estimated by OLS of y,; on z; only. Therefore, the LM

test is very suitable in this case.

It is well known that the parameter 1y can not be estimated consistently,
and that indeed the information matrix is singular asymptotically when 7q is
included in the list of parameters to be estimated. See Appendix A for details.
However, Schmidt and Guilkey (1978) showed that it makes no difference
asymptotically whether one drops or estimates the truncation remainder term
in the maximum likelihood estimation of distributed lag models. Maximum likeli-
hood estimation of eq.(2.2.1) amounts to minimizing the sum of squares

ﬁ (ye — Bwe —MoA*)?

t=1
with respect to A, 8, and 7 Since MoA! disappers asymptotically, this is

: T
equivalent to minimizing 2 (¥ — Pw¢)? that is, to setting no = 0, and applying
t=1

OLS to the model



Yye=Pw +e , t=1,--- T, (2.2.2)

t-1
where wy = Y Alzy_(, 0= A <1, & iid N (0, 0%). Also, the estimated variances
i=0

of A and g resulting from estimation of eq.(2.2.2) are asymptotically the same as
ones from eq.(2.2.1). This is so because after deleting the row and column
corresponding to 7o, the resulting submatrix of the inverse of the information
matrix corresponding to eq.(2.2.1) is asymptotically the same as the inverse of
the information matrix corresponding to eq.(2.2.2). Therefore, we can construct

our LM test statistic based on eq.(2.2.2) instead of eq.(2.2.1).

The log-likelihood function for eq.(2.2.2) is

L = constant - —g—loga2 - 2 (ye — By )?
0? {3h

The first partial derivatives are

aL _ 1 & dw, 2} .
I Tgﬂﬁ;t; where Ry = —=-= ‘glmt iz,
8L _ -

Bﬂ é We &g

oL _ T T

07 257 :2-:18‘

The elements of the information matrix are

In=- E[?} 1 ‘él(ﬁﬁt)z
I =5[] = S Fwt

= gL \_
Ll 6(62)2 204

2
[8)\_;;3] i éﬁﬁtwt

8L | _
E[EEF]-O

8L | _
E[apaaz"o

The restricted model is
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Yye=xzf+e , t=1,-- T (2.2.3)
_ 52
Let ¥ = (X,8,0?) where X =0, § = OLS estimate, & = y; — fz; and o® = ‘—'lT—

Thererfore, gf\' Iy Ixg, Igg evaluated at 9 are

T- %ng 18 = -E—X‘-,e,

t=1

where
Xi-1 = (0.1, ZT-1)
X = (z,, - .37')
€ = (E'l- 087')

Let ¥, = A, ¥ = (8.0%). Then we can use eq.(1.5),

¢ \
e _ |BL | /8 0 fxﬁ
LM test statistic %] Ia - [] ] 0 I 0” a)\ )

4 \' -1
oL| )]s It aL

_ e Xy (X1 M1 X)X s
= =2
G

eI

_ {()(t‘—lM 1WXeo1) N X ML Y, )]2

F(Xs M1 K1) ! (Note 1) (2.2.4)

where M, =1 - X;(XX;)"'X; and Y; = [y, - - .yr]. The last equality holds

because

MY = % - X(XX) XY =Y —XB=e.
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Note that this LM test statistic can be expressed as the square of the t
statistic for the coefficient of X;_, in regression of ¥; on (X;,X;_,). This point can
be clarified from the following discussion. Consider the regression

Y, =X B+ Xi_,c +vu, , u id N (0,0%) (2.2.5)
A . ’
OLS estimate for c is ¢ = (X;_;M,X;,)"}(X;-,M,Y;) and OLS estimate for o2 is

S
1

A = A
g% = ‘-T where u; is the OLS residual. The OLS estimate for ¢# is equal to

0%(X; .M X,_,)~". The t test statistic for ¢ = O is

N
¢ = E= 0
= —_—
of
- (Xt -\ M1 Xe ) Y (X1 ML Y2
[0%( X, -1 M 1 X, -y) 7 %
(X1 M1 Xe—1) (X1 ML )P
0%(Xe 1 My X 1) !

Therefore, t? = which differs from eq.(2.2.4) only in

one term, namely the estimate for o2. The test of ¢ = 0 in eq.(2.2.5) is asymptoti-
cally equivalent to the test of A = 0 in eq.(2.2.2), since when ¢ = 0 is true, 0% is
near o%.

This is an interesting result. We can test the existence of a lag (A = 0) in the
geometric lag model by testing the significance of the single lagged term, X;_,,
in the OLS regression of y; on (X;,X;-;). This provides an asymptotically optimal

test, despite the fact that the geometric lag is a lag of infinite order.
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2.3 The Rational Lag Model

The rational lag model is a rather general distributed lag model. It can be

expressed as follows:

= AlL) =1 ...
y‘ B(L) z‘.+utl [ t 1. .T.

where L is the lag operator defined as

(2.3.1)

Lbz‘ T k = 0.1. ot . Lo =7 ’ Iz‘ =2

v
and A(L) = i a;L*,"B(L) = ) bsL7, bg = 1, u < v. The independent variable z; is
i=o

1=0

assumed to be nonstochastic, or if stochastic, uncorrelated with the random
term u;. We also assume u; is independently, identically distributed as N (0,0%).
Dhrymes, Klein and Steiglitz (1970) suggested that this model can be estimated
by maximum likelihood methods through a search procedure ( search a;, given
b; ), or through an iterative procedure for all of the parameter estimates simul-
taneously. Then, using the estimates for a; and b;, one can estimate o? easily

from the first order conditions.

Since the estimation of a; and b; is not easy, we have two alternative model
specifications which can be estimated by OLS. The test of B(L) = 1 is given in

section 2.3.1, and the test of A(L) = ag and B(L) = 1 is given in section 2.3.2.

2.3.1 Testof F(L)=1

The restriction B(L) = 1 can be written as

by=0 , j=1, - W (2.3.2)
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Under the restrictions, eq.(2.3.1) becomes
Y = A(L)zy + 4 = faiL‘z, +u , t=1, - T (2.3.3)
i=0

Despite the fact that there might exist high multicollinearity among x’'s, we still

can use the OLS method to estimate this restricted model, and indeed OLS pro-

vides MLE'S subject to the restriction. Let 9;=(b,, - - .b,),

¥z = (2g.@y, ' -+ .2,0°) and 8=, - b,dgdy - .3,.0%)  where
T ~
2 uf

b,=--- =b,=0, i = OLS estimates fora; ,i =0, -+ 4, and 0% = ElT—

where u; = Y — X(L)zg and Z(L) = f: a;L'. We can use eq.(1.5) to construct the
i=0
LM test statistic.

The log-likelihood function is
__T T 1 &
L == o-in(2m) = >-lno® - ytg(yg - A(L)z)?

The first partial derivative with respect to 1, evaluated at § is zero (see

eq.(1.4)). The first partial derivative with respect to 9, evaluated at S is

oL _lar . L]
a¥, lab’ﬂ' 'ab,

[

T _ T _ '
= - ?1? VU A(L)zeoy, - U A(L)Z -y
=1 t=1
- 1 T
== XU
where .
[A(L)zy-y . . . A(L)Z)o
X =
(L)zr-y . . . A(L)z7-y
and
Us=[u, - dr]
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The information matrix evaluated at ‘3 is

~ {31 I:ia
I(s) = /21 I22
fos foa O
= fab I:a 0
0 0 Flap
where
N oo |
fogoy - - - Top,
Iy, =
ISR Y
T ~ ~ T . ~ 1
‘2 [A(L)z - J[A(L)ze—y] . . . ‘21[A(L)z¢-1][A(L)z,_,]
=1 =
=1
)
. - L. ~ . 3
E[A(L)zt-v][A(L)zt-l] e é[A(L)zt-v][A(L)zt-v]
=1 t=1
1
==X
a2 X
]blCO L T.b'lcp
Iy =
one L T,
‘EI[A(L)?-':-:]I: B ‘ZI[A(L)%-J::-»
R

é[z (L)2-,)z

o B,




1
|
"

>

y

~
8
n

with
[zl Ty~ - . . Ty
‘ Xo =

T Ir-1 - . . TT-y
and

~ T
I s ==
o2o® oGt
From eq.(1.5),

LH test statistic = |2& ]:b
8%,

-15-

e of

~s

-1 ~
0 I l 0

-1

|

aL
99,



- e
_ [7X['”iaX]-1X5

where M3 =7 — X.(X.X.)"'X.. Note that in this case, the LM test is essentially

(2.3.4)

the F test of significance when X is added to the regression, i.e.

Y=Xea +Xc +¢ (2.3.5)
where & is distributed as N (0,0%/). The OLS estimate for c is

EE
T

™

c = (XM3X) ' X MzY, and 02 = where £ is OLS residual. The F test statistic

for the null hypothesis ¢ = 0 is

(XM, X)C /v
~% (2.3.8)
ee/[T = (u+v+1)]
The restriction of B(L) = 1 in eq.(2.3.1) is equivalent to the restriction of ¢ = 0

F =

in eq.(2.3.5). When the restriction is true, 32 should be close to 0. Therefore,

eq.(2.3.4) can be rewritten as

_ YHsX(XMsX)' X HsY

LM test statistic because M3Y = U.

2
_ C(XHsX)E
- Cad
A ~
XM
" ﬂﬁgﬂc_ (2.3.7)
From eq.(2.3.6) and eq.(2.3.7), F =~ LM/ v - In a large sample,
T/[T — (u+tv+1)]
T . . .
T = (aivel) - 1 and the F test is asymptotically equivalent to the LM test.

This gives the justification of doing the F test in this case.

2.3.2 TestofA(L) =apand B(L)=1
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This section might seem to be a special case of last section. In fact, in this
case a singularity problem arises and needs special discussion.

The restrictions A(L) = agand B(L) = 1 can be expressed as

@,=ap= " =a,=b,=by= -+ =b,=0 (2.3.8)

Under the restrictions, eq.(2.3.1.) becomes

Y =apzy +u, , t=1, --- T (2.8.9)
We can apply the OLS method to eq.(2.3.9) and obtain the restricted estimates

8= [a.l ,~“.?;1 .gv,~0:6’2]
where a'l=~--=3',,=5'1=-'-= v=0 , 5'0=0LSestimateofa°. and
Y ud

with #; = y; — a¢z;. The information matrix evaluated at 4 is singu-

[ ~ ~o A~

IC-C. 10.0 Iﬂvco 0
s Iv lay, O
I(8) =17 ~ d
( ) Ia.an ]bco Iaoao 0
0 0 0 e
where
La, -+ - faya,
~ o _ 1
Ia.a. had - ,52 X.XO
I:“Bt IB“B”
I‘x"l a0,
~J * ' * * ° ao . .
IG.b = . o e . . =- 'é?"x.xt‘
Hapb, . Ic“b,
1°1°1 bb,
~ . o e e e EE '
Ibb = . coe . = —E,-Z-X”X”
levbl Ibvbv
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Ia“ﬂo
[1"1“0 o
~ . ao .
[bao— . - - '6’2 XnX
fo,a,
1
fagay = 52 Xx
where
x=].
T
Z 1-1 ZTi-u
Xo =
LT-1 - - - TT-p
and
le_l P zl_“ e o0 Ty
Xoo =
LT-1 -« - TT—p « - . TPy

Note that , in /(%), the (u + k)th column is just ( — ;) times kth column, where
k=1 --- ,u. Hence I('E) is singular with a rank equal to (v +2). In order to util-
ize eq.(1.5), we have to find some good reason to reduce the size of /(%) so that

the resultant information matrix is of full rank. Since

dL 1 &~

A R
and

oL G0 &~

Egj—=—§-§l‘l&g2¢.’ v J =1, W

we have
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oL ~ 0L

05, = %omg  ITh e
That is aﬁé- 1 =1,..., u do not contain any information not contained in 5%{‘—
b
j=1, -+ ,v. Thus we can drop -;%L.‘— t=1, ++ ,ufrom the vector of the first
partials and drop the rows and columns corresponding toa;, 2 =1, : -+ ,uin the
information matrix without sacrificing any information.
Define
[D(;,)]. _lar . L oL aL]
[a’b"l ' '9b, " 9do " 0% |
[ & ~ '
=|- =2 U'Xe, 0,0
G
[ib'b I'ZGQ O
I(8)e = Ib',,o i, O
0 0 I
The resulting LM statistic is
Ll @y
LM. -lD(ﬂ) .11(13). lD(?S) .
~ ..1 ~
Qg ~, ~ ~ o~~~ ao . ~
= [— :E%UX"]{IOO - Ibcolcoléolaob} [- ?X‘OU]
~, . -1 R
U Xoo [oul Xeo) " XD
= =2 (2.3.10)

where My, =7 — X(XX)™'X. By the same reasoning as in section 2.3.1, LM. is
asymptotically equivalent to the F statistic in testing the coeflicients of the

lagged x’'s in X. when they are added to eq.(2.3.9)

This way of dealing the singularity problem may seem too simple and
without theoretical support. But eq.(2.3.10) turns out to be exactly the same as

Silvey's modified LM test statistic eq.(1.7). To see this, note that in this case,

lr, o

&

]
ooot
oo &
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f]“
H1 = 8
0
é
Therefore
7,000
, 0 00O
H\Hy =19 g0 0
0000
and
?{av&h"’jp Ffa.b
1 1~
[ ~ -1 ?Ic.b ‘T"fbo
?fc.ao 'Ffbao
{ 0] 0
[AFK o0
|BGcu o
“ICJ N ~0
0 0 0 T/,
where
1~ 1~ 1~ |71
46.8""]“ Ha'b —I‘.co
T T T
AFK L~ f~ 1w~
G M= < O
T T T "%
CJN L~ L -
7-'10.4:0 '771630 T‘{ﬂo"o
From eq.(1.7),
[oL [ 3z
Bfi. aﬂ.o
oL arx o %
L = 1135 ||B G M 0 FI 8
“rl o CJ N 0 0
O Jlo 0 0 TF. .|l ©

-1
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ar ) {ar) (ar) lar) (ar) [a1) [az
[a&. \A[aa”. H%'] B[as. Haa". ’F[ab ¥
- T

(2.3.11)
where
8L _[aL L] _ 1 ..~
d9a.  |oa, ‘oa, | =R
aL _laL oLl _ 8o, ~
b lab, '9b, | ~ a'zx”U

and A, B, F, G, can be found by some manipulations involving the inverse of a

partitioned matrix ( see Appendix B ) :

A=1,
[
-1 {u
B-——a. [0
F=2={ 0]
ao

|

U [x.Ax;-&'ox..Bx:-a‘ 0XoFX oot @EX 0o GX.'.] U
To*
U % . O—X.XO-X.XO+ TO'2X” LY..M‘Xn] X00+XOXo] U
Ta*

G= E—lg—{T;zP(J.M“X..]_I ¥

Therefore eq.(2.3.11) becomes

LM'=

fo.. ..M,)(..] XU
'&'2

which is exactly the same as eq.(2.3.10).
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2.4 Conclusion

The LM test statistic for the geometric lag model (eq.(2.2.3)) and for the
rational lag model (eq.(2.3.4) and eq.(2.3.10)) are similar because the geometric
lag model is a special case of the rational lag model. In both models, the LM
statistic can be constructed by adding some lagged values of the explanatory
variable to the restricted model, and testing their significance using the usual F
test (Note 2). This is a favorable result, since in practice many researchers may
prefer to estimate under the restrictions (using the OLS method), and to con-
sider more complicated estimation methods only if the LM test provides

significant evidence of the existence of a more complicated lag pattern.

Although we have considered a model with only a single explanatory vari-
able, the results do not depend on this assumption (Note 1). They would still hold

if there were additional regressors (not subject to the distributed lag).
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CHAPTER III

QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS

3.1 Int.réduct.ion

In many cases, economic studies have to deal with situations in which the
dependent variable is dichotomous ; that is, it is observed by its sign only. The
usual least squares method will cause many problems (see Judge, Grifliths, Hill
and Lee (1980) p.586). The most serious problem is that the predicted value of
the dependent variable will not be in the unit interval. One of the solutions to
this problem is the "probit model” (see Finney (1971)) which uses the cumula-

tive normal distribution function to transform the dependent variable into a pro-

bability. This model takes the form

yg.= B+ &, g i.i.d N(D. 0'2).
and

1 ifyg’>0
Y¢=lo iry'<0
Then

Prob. (yg=1) = Prob. (y/>0) = Prob. (z;8 + &; > 0) = Prob. (g, < z:8) = @[z;ﬁ

where ®(-) is cumulative distribution function of N (0,1). Therefore,

z
Prob.(y, =0)=1—=Prob.(y, =1)=1 —(1:[ ;ﬁ .
The probit estimate for ;Lcan be obtained by maximizing the following likeli-

hood function:

o= - o
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Since we cannot identify B, o separately, we choose the normalization =1 to
identify B. The classical example of the probit analysis in economics is the study

of the consumer’s decision of buying a durable good.

In this chapter, we consider three models which are extensions of the probit
model. Section 3.2 considers the Tobit model, and Cragg's extension of it, in
which the dependent variable is observable in a limited range. Section 3.3 con-
siders Heckman's sample selection bias model which consists of two equations,
one of which is a probit equation representing the rule for sample selection. Sec-
tion 3.4 considers Poirier's partial observability probit model, which consists of

two probit equations with a condition of partial observability.
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3.2 Test of the Tobit Specification against Cragg’'s Extension of the Tobit Model

3.2.1 The Tobit Model and Cragg’s Extension

Tobin(1958) considered a case in which the dependent variable is observ-
able in a limited range and the analyst is not only interested in the probability of
limit and non-limit responses, but also in the value of non-limit responses. Probit

analysis is not suitable for this purpose. He proposed the following model, called

the Tobit model:

y;= z;ﬂ+€g , & id N (0. 02).
g‘ if yg. >0

Ye = 0 if y“s 0 (321)

t=1..T
where y;” is unobservable and y; is observable. y; has a lower limit which is zero.
That is, there is an event which at each observation may or may not occur. If it
does occur, associated with it will be a continuous positive random variable. If it
does not occur, this variable has a zero value. An example is an individual's deci-

sion whether or not to buy a new car, and the amount he spends if he does buy

one.

According to eq.(3.2.1), for y; > 0, the probability density function (p.d.f.)

for y; is

= 1 -1 - 2
I (ye) = WXP{ pyeat” -'l-':ﬁ)} (3.2.2)
and for y; = 0, the probability of observing y, = 0 is
Prob. (y; = 0) = Prob. (y < 0)

= Prob. (z,8 + & < 0)
= Prob. (Sg S - Zgﬂ)
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_ zf
= q:[ - (3.2.3)
where &(‘) is the c.d.f. of the standard normal distribution. The probability of

observing y; = 0 is represented by the shaded area in Fig.3.2.1.

FH)

%\\ "

Xl 5 e

Fig.3.2.1

Note that there is one and only one 8 to determine both the probability of
Yy = 0 and the shape of the probability distribution for y; > 0. That is, in the
example of purchases of a durable good, the decisions on whether to acquire and
on how much to spend if acquisition occurs are basically the same in this model,
in the se;zse that the same variables and parameters occur in eq.(3.2.2) and
eq.(3.2.3). Cragg(1971) argues that "In some situations the decison to acquire
and the amount of the acquisition may not be so intimately related. In particu-
lar, even when the probability of a non-zero value is less than one half, one might
not feel that values close to zero are more probable than ones near some larger
value, given that a positive value will occur.” In the case of buying a new car, this
argument is certainly true. The probability of buying a new car for an individual
in a particular year is probably less than one half. From Fig.3.2.1, the Tobit
model implies that, if a new car is purchased, smaller expenditures(e.g. 5 dol-

lars) are more likely than larger expenditures(e.g. 5000 dollars). This foolish
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implication is due to the fact that there is only one set of parameters to deter-

mine the probability of y; = 0 and the shape of the probability distribution for
Y > 0.

Cragg(1971) proposed a more general model which uses two sets of parame-
ters. One set determines the probability of ¥, = 0, and the other set determines
the shape of the probability distribution for y; > 0. Cragg's extension of the
Tobit model can be written as a two-stage decision process.

First-stage —- decision on whether to acquire
The probability of not buying a durable good is

Prob. (y;=0) = Prob. (z;8,+u,<0) = &(~z,8,) (3.2.4)
and the probability of buying a durable good is

Prob. (y;>0) = 1 = Prob. (y;=0) = 1 - &(—z,8,) = 9(z,8,) (3.2.5)
where o, is normalized as 1 because we can not identify 8, and o,
separately in a probit model.

Second-stage -— decision on how much to acquire if acquisition occurs

The probability density function for y,, given acquisition occurs, is

f(ye | y¢ > 0) = N(z;B2, 0%) truncated at zero
1 '_ (Ve =, B2)? |

\/Toz Xp[ 203
(yt -z, 82)° A -
20% ‘ Yt

fF—e

[ - 2]
1 (ye —z¢ B2)
_ VZro, XPI 202

= (3.2.8)
|

z Bz |
O2 )

since

[ (y,-z.82)° _ | ZeB2
f\/Q—crg xPl- Ro? e _Q[ﬂ,

The unrestricted estimates for #8;, 82 and 0, can be obtained by maximizing



the {
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the following likelihood function:

L*(61.82.02) = T] [Prob. (:=0)| IT [Prob. (w>0)f (us | w>0)]
Ug- Y >0

Hlp""b yg"O)] lP"Ob (y:>0) f (v ‘yz>0)]

t=1

| 1-4 | ¥(ze81) 1 (ye =z B2)
- I;I _ztﬁl)] [z:ﬂ; \/Toz pl _A-J (32 7)

where d;=1 if y;>0, d;,=0 if y;=0. Equivalently, one can maximize the log-

likelihood function

L(p1.B2,02) = InL"(B,,62,02)
T
= 2 [(1-a)nle(-zp)] (32.6)

) - 2
+d:{lné(zgm)-m@[@—mw’zﬁaz)———}‘.y‘ 21 fa) ]
02 202

3.2.2 The LM Test

In order to derive the LM test statistic, it is convenient to reparametize in a

way similar to that suggested by Olsen(1978). That is, letting

-
ol
£E=p6-8 (3.2.9)
h = L
g2

eq.(3.2.8) becomes

L(¢8h) = 32:1{(1-‘1‘ Jnd[ -z (¢+6)] (3:2.10)
s
* d |8z, (¢ +6)]~1n®(z. ) - Fin(zn) +Lnh - vy - mz”

Note that when ¢=0, eq.(3.2.10) reduces to

[
L=y [(1—d¢)ln¢(—z,ﬁ)+d, —;—1n(21r)+h1h-—é-(hyg -z 5)2]] (3.2.11)

t=1
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which is the log-likelihood function for the Tobit model. The restricted MLE is

8 = (£.8.h) where £=0 and § . & are obtained by maximizing eq.(3.2.11), i.e. §

and h satisfy the following first order condition:

oL ~ ~ .
Fé-= il‘(l-dt)'m(‘xtﬂ)xt"'dt(h'yt -z,f)z; = 0 (3.2.12)

where m (') = %%—)L with ¢(-) being the p.d.f. of N(0,1).

From eq.(3.2.10), the first partial derivatives of the unrestricted likelihood

are

~

1[-( 1=de) m [~z (£+8)] z¢ +dp - m [z, ($+§)]'z{]

t=1

é {—(1—d‘)-m [—z:(¢+8)] z +d; {m [z (£+8)]—-m [z, B]+hy; —=¢ ﬁ]xt‘}

(o) QI (<3 o)
2 2l 2

aT= té d‘{)ll—— (hy, —z; ﬁ)yt} |

=1
and the second partial derivatives are

PL = ¥ iz 6+ ) m [~z (¢+0)]-m 2~z (£+8)]]
3EaE t tFt t t

t=1

+d; {—z, (¢+B) m [ =z (¢+B)]+m?[—z, (£+B)] -z (¢+8) m [z, (€+8)]

- m?(z, (e+ﬁ)]]]
= Lisin (-5 (4B 2 (64 ) -m [~z (+0)]
~d, [m [~z (¢ +8)] 2. (6 +6) ~m [ ~z, (¢+8)]-m [z, (£+6) 124 (¢+6)
-mz[z,(ew)]]}
_ 9%
~ agaf
3L
0¢oh 0

2 2
a?salle - aasaLe - Yaizds[ -z m (2, 6)-m*z,f) +1]
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2 T
aaﬁaLh 2 dtzlyt
2
ghLz = -Zdt(—+ yé)

The elements of the information matrix (see Appendix C) are

[ 52 l
1“ = -El afa[;.
= Ezm m[—z,(£+6)] m [z, (¢+8)]
T ez ‘
) El o¢0p
=Ty
[ aZL
- el ] =
_ e
-El——]aﬂ L
= [£€+§zt'zt'@[zt (€+8)] [—z¢f-m (z¢8)—m3(z; f) +1]
9%L
i ‘EIW]
=-23't zt(f'*‘ﬁ)]—{ztﬂ"‘m(ztﬁ)]

‘2 S {2+(208)+ 2 8- (2, 6)]- B[z (6+5)]

If we let ¥,=¢, 9;=(8,h), then

-%-;—: gf evaluated at 13
1
= ‘éll'(l'dt)'m(‘xt g)z,'+d‘-m(z,§)z,' (3.2.13)
T ~ ~ -~ 0
=—‘Z_Ild:[(hyg-zm)-M(zgﬁ)]zg by eq.(3.2.11).
Also
[oL]
a—aé'r= gi evaluated at ¥
* |on]
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= [0 by eq.(1.4)

The information matrix evaluated at '3 is

N A

I(8) = {Ige Igg Ipn
Ineg Ing Inn

XAX XAX 0
= f(AX X (A+B)X (CX)
0

e Ies Ten

(. ¢ D
where
Ty - . -"-'xkl er
X= =
Ly - - - T Zp
a2, 0 O 0
0 Qg 0 .. 0
0 O !13 . 0 ~ -
A=| . | whereaq = m(-z,8)m(z:8). t=1...T.
.0 0 0o .. ar
b, 0 0 0
0 b 0 .. O
0 0 bg. 0 : - N . .
B=| | where by = 8(z:B)[1-z:8 m(z:8)-m*z:B)]
LO 0 0 .. by

¢ = ZHo@ Bz Frm@ B, . .. 8@ zrFrm (zrB)]
D= zr: #{2"’(3’:5)2*‘2:5'"‘(2: )1 8(zB)

t=1
Let the inverse of / (13) be

fE¢ It én
[7(3)] = [1#¢ o8 In
Th¢ TR [RA

Then, from eq.(1.3) and eq.(3.2.14), (Note 3)
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far | . [las

83, [1?6 I [ |89,
0

Fe B8 qenf| o
0

/e fhe ] o
oL | %[ 8L
[55,1-] I“[a’;;-] (3.2.15)

We now look for an explicit formula for /€. Let us rewrite /() as

LM statistic

~ PR
1(8) = IR' Q]
where
Irax  xax
P=lyax X(A+B)
[0
R = I(CX)
Q=D
Therefore,
{]jf I.fpl = (P — RQ—IR')—I
JBE BB
_|u N7
“IN' S
where
M =N=XAX

S = X[(4+B)-CD-'C]X
Note that M~!N = I. Thus,

I = U1 MIN(S-N'MIN)IN'H?
-1
= (XAX)"+[)([(A+B)-—C'D“C]X—X’Ax}

. -1
= (XAX)-1+F(BXJ-QQ5‘QL] (3.2.16)

Substituting eq.(3.2.13) and eq.(3.2.16) back into eq.(3.2.15), we have the LM test

statistic.
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Although 7€ has no obvious interpretation, it is easily calculated from the

Tobit estimates. On the other hand, a%.—is both easily calculated and also easiy
1

interpreted as a vector of cross products between the explanatory variables and
the Tobit "residuals” for the non-limit observations. That is so in the sense that

E[(hye—zB) | y1>0] = m(z,8) by eq.(C-1)
and thus the term in brackets in eq.(3.2.13) can be regarded as the Tobit "resi-

dual.”
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3.3 Test of Sample Selection Bias

3.3.1 Heckman's Sample Selection Bias Model and His A Test

In some cases, the dependent variable is unobservable while the
corresponding independent variables are still available. That is, we have an
incomple sample(or censored sample). Heckman(1976,1979) proposed a two-

equation model to deal with this situation:

Yiu 2By + Uy (3.3.1)
Yai = Taifz + Uy (3.3.2)
with
fu 1 .
L‘ #id N(0, %), i=1...n,
2
where
_[of o
L= g 1

since eq.(3.3.2) is a probit equation. We observe the sign of yz; and we observe

Y, if and only if y5; > 0. That is, yz; > 0 is the sample selection rule and we have

a nonrandomly selected sample.

This model can be estimated by the maximum likelihood method. But if we
use least squares for eq.(3.3.1) and probit analysis for eq.(3.3.2) instead , the

resulting estimates of 8; will be biased. This is so because

E(yy | z1.sample selection rule) = E(yy | Zi. Yz > 0)
=zyfy + E(uy | yz > 0)

. =z +Pp0INM
(See Johnson and Kotz (1970),p.81), where the inverse of the Mill’s ratio is

- _o(-zuf)
M= 1-®(—z2:82)

with ¢(') and ®(') being the p.d.f. and c.d.f. of a standard normal distribution
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respectively.

Thus, the expectation of y,; for the nonrandom sample is not equal to the
expectation of y,; for the complete (random) samiple unless E(uy | ¥z > 0)
equals zero; that is, unless p=0. Therefore, by using eq.(3.3.1),we have the
equivalent of an omitted variable problem which will result in a bias in the esti-
mate. This bias is called "sample selection bias.” This bias will be eliminated if
the conditional mean of u,; is included as a regressor. However, since f#; is a
parameter to be estimated, the A;'s are unknown. Heckman proposed a simple
two-stage estimation procedure to estimate the parameters.

Step 1 -— Probit Analysis

Let
1 if‘yzi>0
di: 0 lf‘yz._SO
n
Ydi =n,
i=1

G = Prob. (y2< 0 | z5) = ®(-z2f2)
The probit estimate B, is obtained by maximizing the following likelihood func-

tion:

n -
Li=T](1-G)*G ™
i=1
Step 2 -— Least Squares

Let

;4 - o(—z2:Bz)
1-8(-zfFz)

then apply OLS method to the following equation

Y = T1f1 + MC +error, i=..n (3.3.3)
where ¢ = po,. The OLS estimates are

A ~ e,
B1 = (X1 X)X Y, = (X1 X)) WX NN M) TINHL Y
/C\ = (X'M I‘X)-IX'M 1Y1
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where X, is a nyxXk matrix which consists of z,¢, Y, is a n ;X1 vector which con-
sists of ¥,;, A is a n X1 vector which consists of i} corresponding to observed

Y, My =T = X,(X1X,)7'X;. Note that ﬁl is a consistent estimate of 8,.

If p=0, E(y,i | Z14. Y20 > 0) = z4B,. Then, there is no sample selection bias
even if we apply OLS to eq.(3.3.1). Therefore, the test of sample selection bias is
equivalent to the test of p = 0. Since ¢ = po, in €q.(3.3.3), the test of p =0 is
equivalent to the test of ¢ = 0. Heckman uses the standard t test to test the
hypothesis ¢ = 0.(We will refer to it as the "A test.”) The t statistic is

T
- CRTT @29

where 3,2 is the usual variance estimate (SSE divided by n,, or degrees of free-

dom) from OLS to eq.(3.3.3). This model and the A test have been widely used,
especially in labor economics. Many applications have reported an insignificant
value for A test statistic. One possible conjecture is that the A test is not a very
powerful test of sample selection bias. However, this turns out to be a false con-
jecture. The A test is asymptotically equivalent to the LM test, as is shown in the

next section, and thus has good asymptotic power properties.

3.3.2 The LM Test of Sample Selection Bias

Let
Fy = Prob. (Y1, Y21 > 0 | Zy4, Z2i)
= [ h(yu—zuby uz)duy (3.3.5)
~ZptPe

where h(:,') is the p.d.f. of N(0, £ ). Then the log-likelihood function for eq.(3.3.1)
and eq.(3.3.2) is

L = 3 [&InF; + (1-d,)InG;] (3.3.6)
i=1
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The restricted model is the one in which p = 0 is imposed. When p = 0, eq.(3.3.5)
becomes

S hi(yu—zB1) plug)dug

—=z¢Pe
= h (Y1 —Z1:81) [1 — (=22 B2)] (3.3.7)

where h,(*) is p.d.f. of N(0, 0%). Hence, when p = 0, eq.(3.3.8) becomes

n
z_:{d,lnh (¥1i=Z1iB,) + 4In[1-G] + (1 d‘)lnG] (3.3.8)
The restricted MLE 3 = (5.8,.82.0,) is obtained by maximizing L* w.r.t. 8, f; and
0y i.e., p=0, 51 = OLS estimate from eq.(3.3.1), B2 = probit MLE of eq.(3.3.2),

o 121 where e, = ¥, — X,8,. That is, when p = 0, we can estimate 8,, of

2|

from eq.(3.3.1) by OLS and estimate B from eq.(3.3.2) by probit analysis.

Letting ¥, = p, ¥2 = (8,.82.0,), we can use eq.(1.5) to construct the LM statis-

tic. From eq.(3.3.8), the first partial derivatives evaluated at S are (see Appendix

D)
oL ]
P >\31
oL 01
33
oL 1
= .3.9
35 O by eq.(1.4) (3.3.9)
352 0
oL
a0,

Note that.x is a n X1 vector, not a nx1 vector. The information matrix evaluated

at d (see Appendix D) is

~

”PP IPM IPﬁg IP°1
Iy, ’mz fnm
Ipg, {gzvx

I’:"x

I(3) =
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( n ~ o~
N =GNz
V(-GN T 0 0
=1 ol
f o
;(1-&)2“:1"
=1
= 0 0
of
= A e (3.3.10)
iz_llzazakim-; 0
n ~
2Y (1-G)
(=1
o

where

51 = ‘1’('321'522
~ ¢(—Z2:B2)
T Szl

Since plim(1 = G)=1-G, E(d)=1- G,.and plimi—i [d - (1-G)]-H =0
i=1 .
with H; being a nonstochastic variable, we can replace (1-—&;) by d; in I(;S)

without affecting plimi—!(s). Thus, eq.(3.3.10) becomes

P 1
o AX 0 0
o1
XA X
oA Nk 0 0
I(B)~ n o (3.3.11)
0 0 Yzuzazmy O
i=
2
o o 0 il
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From eq.(3.3.9), eq.(3.3.11) and eq.(1.5), we have

.

e -1
X1 X, Vo~
&3 ; ° |2
Ye. Ve~ IX ~ ~ ) %
LM statistic N [if—‘] X)\-l)\..i 0 o] 0 ‘f,z'azzm"k 0 0
01 o, i=1 0
2n,
l |
. Ne,
0,
_ ;\'e,'~, ~-1X 1
-[—gl—] K3 [~l
= [(XMIX)-IX'QI]Z (3.3.12)

TENHM,X)?

where

My =T — X, (X, X,)7 X,

Comparing €q.(3.3.12) and eq.(3.3.4), we see that the LM test statistic is
almost the square of the t test statistic used to test the coeflficient of A when it
is added to eq.(3.3.1). The only difference is the difference between 312 and 0%,

which is asymptotically negligible when p = 0. In other words, Heckman's A test
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is almost the LM test; the simple A test therefore has desirable large sample

properties (Note 4).
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3.4 Test of Independence in Poirier’'s Partial Observability Probit Model

3.4.1 Poirier’s Partial Observability Probit Model

In a recent paper Poirier(1980) has proposed the partial observability pro-
bit model:

Y = b + vy
Yiz = %Pz + viz
1 ify, >0
Y = {o ifyh <0
{1 ifyz >0
Yiz =

2{ = YiurYia
i=1,..n.

[::;] td N(0.D) where g=[‘17 q]

Here v, ¥iz. ¥i1 and y;2 are unobservable. We observe only z; and z;. We

observe z; = 1 if and only if y;; = ¥2 = 1, and 2; = 0 if y;; = 0 or y;2 = 0 or both.
Some examples of this model are

1) Retention of trainees (see Gunderson (1974))

2) Two-member committee voting anonymously under a unanimity rule (see

Poirier (1980)).

3) Colletive bargaining between cities and municipal employees’ unions in Michi-

gan; binding arbitration is imposed if either side asks for it (see Connally

(1982)).

If y;; and y;2 were individually observed, we would simply have a system of
two probit equations. Instead we observe only the product of y;; and ¥y, and

estimation is correspondingly more difficult. If we define

Py=Prob. (2¢=1)=Prob. (y;,=1 and y;32=1)=F (2.2 82:p) (3.4.2)
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1—p;=Prob. (z;=0)=Prob. (y;;=0 or y;2=0)=1-F(zf1.Z:f2:p) (3.4.3)
where F is the bivariate standard normal cumulative distribution function, then,

the log-likelihood function for this model is

L(p.B1.B2) = g:lzilnpt + (1-2¢)In(1-p;) (3.4.4)
It can be maximized numerically with respect to the parameters p, 8;, 2. The
main numerical difficulty involved is the accurate evaluation of the bivariate
normal c.d.f. for arbitary p. Furthermore, there is some (limited) experience
with the model which indicates that p is rather hard to estimate. These prob-
lems would be avoided if the restriction p = 0 were imposed. Then the bivariate

standard normal c.d.f. factors into the product of two univariate standard nor-

mal c.d.f.’s:

F(z81.2:$2:0) = ¥(z(8,)¥(z:L2) (3.4.5)
Since univariate normal c.d.f.’s are fairly easy to evaluate, and since the param-
eter p need no longer be estimated, the cost savings from the restriction p =0
can be substantial. Given that p = 0 is a potentially valuable restriction, and the
estimation in the restricted model is easier, the LM test can be used to test the

hypothesis p = 0.

3.4.2 The LM Test

In order to construct the LM test statistic, we need the first partial deriva-
tives and the information matrix, both evaluated at the restricted MLE,
3 = (5,81.8.) where 5 =0, §, and f are obtained by maximizing eq.(3.4.4) with
p = 0 being imposed. From eq.(3.4.4), the first partial derivatives of the unres-
tricted likelihood are

3L _ & _2Zi~Pi Ops
op Sipill-pi) Op
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AL _ & _z~P 0ps
88, & pi(l-pi) 0B,
OL _ W _ETDh dp;
82  &.pi(1-p:) 0Bz

The information matrix is

I(¥)=CC
where C is the nx(2k +1) matrix with ith row equalling

-L
cy = [Pi(1-p:)] 2[f (@i.byip) (@) 8(4;) 2.0 (by )8( By ) Zi]
with ¢(:) and f(-,';') being the univariate and bivariate standard normal densi-

ties respectively, and where

i
o = zfy . A= (1-p%) 2(bi—pa;)

.
by =zifz . B = (1-p%) 2%(a;-pb;)

The first partial derivatives evaluated at S are:

where

P = 8(z,B,) $(z:82) by eq.(3.4.2) and eq.(3.4.5)
= &(ay) 8(b;) with &; = 2,6, b =z,
q
dy = fuye(vy)dyg

= &(a;) E(vqy | viy < &)

@(ﬁ)-i—;ég; (see Johnson and Kotz (1970),p.83)

- o)

b
= [vie p(vie)duse

R
©
|

= - gp(g,,) by the same reasoning.

0L nooZ=P; .~ ~
= ~ ~ '@ b p A =0 b eq. 1:4
8~ BB 7R Gm =0 by ea (1)



-44 -

oL N ~ g
g = —_—d () o(b;)z; =0 by eq.(1.4
55, ‘;pi(l_p‘) (2:) (b)) z; y eq.(1.4)

In matrix form,

L 2Py ~ ~
~ ~ : b
& i(l_pi) ¢(a1'.) ¢( 'l)

Pyl i %(Eﬁ)'q’(gi)'zi
[iZ P (1-Py)

ol
ot~

g ;——@f{f_’%‘}) (&) (6)) 24

L

P BRI

- Rrp el
0 (3.4.6)
0

The information matrix evaluated at *1 is

1(8) = CC (3.4.7)
where

¢(al)¢(81) ¢(al)q’(gl) z ‘1’(8’1)90(8’1) -
VE(1-7,) VBB | VBi(1-py) |

Cc= . . . (3.4.8)

0Gn)o(B)  p(E)eEn)  $G)eEn)
LVPn(l—an Vpnh-'Pn) Vpn(l—PnS‘m

From eq.(3.4.8) - eq.(3.4.8) and eq.(1.3), we have

2
LM statistic = [%ﬂ (O
2

N RPN LU
= LEIIW(%)NM) (COy

where (C'C)1}! is the upper left corner element of (¢ )L

This expression can be further simplified as following :

Let
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~

zl—}?l L. zn_ﬁn ]
VP:U—PJ Vﬁnzl—pn)J

——

then

~ w
i:lﬁi(l-ﬁ'i) ¢(a'l.)¢( i)

noozZ-p; ~ =~
glw(%)@(bi)zt (3.4.9)

o
QD
]

f’il e anJCALICALY

_ oL
=35 by eq.(3.4.8)

Therefore,

o [aL]T, ] [aL
LM statistic = [53] lI (1?)] ‘[%-]

= (CRY(CT)™W(C'Q) by eq.(3.4.7) and eq. (3.4.9)

= QCB (3.4.10)

where ﬁ is the OLS estimate for the coefficient of C in the following regression:

5= Eﬁ + &
Define

Q=C§8

e=0-4

Eq.(3.4.10) becomes

LM statistic = (§ + e)CB
= §CE by eC =0
- 4

which equals explained sum of squares in a regression of 6 on C.
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Note that @ can be interpreted as a vector of standardized residuals from

the restricted model. This is so since

E(Z() = 1'Prob. (2i=1) =Dy
and
Var. (zi) = E{Zi —E(Zi)]z .
= (1-py)% Prob. (z,=1) + (0-p,)? Prob. (2;=0)
= (1—P¢)?'pi +pd (1-p;)

= p(1-ps).
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3.5 Conclusions

In section 3.2 and section 3.4, the LM test statistics are not very simple.
However, they are performed from the results of estimating the simpler, res-
tricted models, and they have the reasonable property that they are based on
the "residuals” from the estimated restricted model. This avoids estimation of
the more complicated alternative mode~1s. at least in cases in which the res-

tricted models are not rejected.

In section 3.3, the LM test statistic is almost equal to the square of the t
statistic for the "A test”. Therefore, we can use the Heckman's two-stage pro-

cedure to construct the LM statistic without estimating the whole system jointly.
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CHAPTER IV
STOCHASTIC PRODUCTION/COST FRONTIERS

4.1 Introduction

The theoretical definition of a production function expresses the maximum
amount of output obtainable from given input bundles with fixed technology. On
the other hand, the traditional econometric methods (least squares of one kind
or another) for estimating a production function allow points above the fitted
line. Therefore, the resulting fitted function just represents the "average" rela-
tionship between inputs and output, and does not necessarily reflect the "fron-

tier” relationship (the production function).

In 1957, Farrell first explored the possibility of estimating the frontier pro-
duction function in order to bridge the gap between theory and empirical work.
Later, other work was done by the use of mathematical programming techniques
under a deterministic frontier assumption (see Forsund, Lovell and Schmidt
(1980) for references). However, mathematical programming techniques do not
lead to estimates with known statistical properties, since no statistical assump-
tions are made in those models. Schmidt (1978) explicitly added a one-sided
disturbance to the traditional production function, which yields the model

Ye =f (i) + &, t=1,---.T
where y; is the observed output, f (z;:8) is the maximum output obtainable from
inputs z;, B is an unknown parameter vector to be estimated, and the distur-
bance term &; is non-positive. Although, given a distribution assumption for the
disturbance term, the model can be-estimated by maximum-likelihood tech-

niques, the asymptotic distribution of the parameter estimates is not known
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since the usual "regularity conditions” for the application of maximum likeli-
hood are violated (since y,<f (z;:8), the range of y depends on the parameters
to be estimated). In order to avoid this difficulty, Aigner, Lovell and Schmidt
(ALS)(1977) proposed a stochastic production frontier, f(z::8) + v¢, with v
being a symmetric random disturbance -- v, is assumed to be i.i.d as N(0, o?).
Thus, the frontier itself can vary randomly across firms, or over time for the
same firm due to favorable or unfavorable external events which are beyond the
control of the firm. Errors of observation and measurement on output consti-
tut;e another source of variation in the frontier. Also, the ALS model allows the
firms to be technically inefficient relative to their own frontier rather than te
some sample norm. In summary, the ALS model is as follows (eq.(4.1.1) to
eq.(4.1.4))

Ye = [(z:8) + vy — g, t=1,---,T (4.1.1)
where u,; is a non-negative disturbance term representing the deviation from the
stochastic frontier as a result of technical inefficiency. The following assump-

tions are made:

u, is i.i.d. as N(0,02) truncated at zero. (4.1.2)
u; and v; are independent. (4.1.3)
v, is i.d.d. as N(0, o2). ’ (4.1.4)

In 1980, Stevenson extended the ALS model by allowing a nonzero mode for
technical inefficiency. A test of zero mode is considered in Section 4.2. Besides
this, Schmidt and Lovell (1979, 1980) extended the ALS model in another direc-
tion. That is, in SL models, not only technical inefficiency but also allocative
inefliciency are considered. The simplest SL model (SE 1) which allows techni-
cal and allocative inefficiency is in Section 4.3. A more general model (SL II)
which generalizes SL 1 model to allow systematic allocative inefliciency is in Sec-

tion 4.4. Lastly. a model (SL IlII) which generalizes SL II model and allows
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correlation between these two inefficiencies is considered in Section 4.5.
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4.2 Test of Zero Mode for the Technical Inefficiency in Stevenson’'s Extension
of the ALS Model

42.1 Stevenson's Extension of the ALS Model

Stevenson (1980) pointed out that the ALS specification about the level of
inefliciency (eq.(4.1.2)) implies that the likelihood of inefficient behavior mono-
tonically decreases for increasing levels of inefficiency. This point can be seen

clearly in Fig.4.2.1:

k(ue)

) Uy
Fig. 4.2.1

where u; is the level of inefficiency and k(u;) is the (half-normal) density func-
tion of u;. According to eq.(4.1.2), the mode is at zero, and the normal distribu-
tion is truncated at 0, therefore, k(%) is a monotonically decreasing function of
u;. Stevenson argues that some characteristics are not likely distributed with
such a monotonically declining density function over the population. The possi-
bility of a non-zero mode for the density function of »; would seem a more rea-
sonable assumption. He, thus, generalizes the ALS model by permitting a non-
zero mode for the density function of u,:
uy ~ N(u, 02) truncated at zero.
Note that ALS model is a special case of a zero mode (u = 0) in Stevenson's

model. Since the restriction of 4 =0 can be easily imposed in Stevenson's
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model and estimation for the ALS model is easier, the LM test is a suitable one.

4.2.2 The LM Test

Before we derive the LM test statistic, we have to derive the likelihood func-

tion for Stevenson’'s model. With a linear model, (e.g. Cobb-Douglas) , eq.(4.1.1)

becomes

Ye =T f+v —uy, t=1, - T
where v; is i.i.d. as N(0,02), or explicitly

@) = —exp| - 2] torau
v = -
90) = Taroy =XP| "oz for ol

and u; is i.i.d. as N(u, 02) truncated at zero, or explicitly,

. [ (e —n)?
XPI 202

for u; >0
otherwise

with &(-) being the c.d.f. of N(0,1). Therefore, the joint density function for
wy =Y — Yy is

h(w f el w‘:u‘] -
(we) = [1@[ L]zn”,, {—{[ [ J} o
el

where o = (02 + 02)%, A= e —— ¢(") = standard normal p.d.f. Eq.(4.2.1) util-

v

ll -$|-

k(ue) = |q

-1
c

izes the following formula for integration:

r a2 _1_ /= b%-4ac) | b
{exp[ (au®+bdbu+c)]du = 5 \/:exp[g-—dm—)-] erj’c[zTu]

where erfc(p) = \/i_ﬁ—fexp(wz)du
P
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The log-likelihood function for Stevenson's model is
_ 2 ,
L(u.BA0%) = ‘Ellnh(w)
- T - T 2 _1_ L - 2
= i@ - i’ — =9 (Y -zif)+u)
T
+ Y In[1-&(a;)] — TIn[1-%(d)]
t=1
[
=1li_& -
where a; = ;-l ot (ye -z 5)7\]
b= -%(A-ZH)”
The first partial derivatives of the likelihood function are

g—,f'= "‘017‘ ((ye=z¢B)+u] + a—;zg:lm(a,) - —()\-24. 1)¢-m (b)

o= IS lw-m ) rule + 2 m(a) =

TNy ['[Aa + <yg-z¢s>l m(ao] + Tt ) Hm ()

et Tl ul + el me) - Dy ()
where m () = —?—(-L

1-¢()

The second partial derivatives are

Sl =T Arlr) - F20)

where z(s) = s'm(s) - m?s)

2
el DIEACLEICN)

t=1
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827, 1 T 1 T
" AT E e L A —Z:ﬁ)]-Z(at)

T _v-2.1\-% Tp
+ -O'_>\-s-(>\ +1) m(b) + O'EAS z(b)

(we-zf)+u] = G Lm(a) + zhsPas

1 T
) UT‘Z___:
T , _ T ,\-
+ g EmM (D) = (A1) 2(b)

%L _ 1 ¢
ogef o =

Tz [—1+A% 2 (a;)]

BB;BL)\ - _2”‘{’"'(“:) - —{%+ (ye —z,ﬁ)x]-z(a,)]

0¢=1

82L 1 & e A_sho
3600 -;—tg[(w—z,a)m]-z‘ + Eglz:Q(m)

where Q(s) =s-z(s) -m(s)

2
%;Lz—--i,:{ A3 (a¢)- "l +(yt-2gﬂ)l 'z(a,)}

+ IF’—()\'2+1)‘”[[—3+}\'2()\'2+1)“]'m(b)—-&%2—()\“2+1)‘*z(b)}

oAt

2 [ [
aiaﬁz = 2:,3 ‘él}%+ (vt —z‘tp)]-m(at) - ﬁ‘éa‘[fzﬁ' (ys—z:ﬁ)]-z(ag)

TU _(\-241)%
+ 265\ A*+1)7%Q(b)

B L Ll ul + 25 [-Sa m (e vofz(a)]

+ L b-m(b)[3-b2+b-m(b)]
40



-55-

Since it is not possible to calculate analytically E[z(a;)], E[as z(a:)].
Ela?2z(a;)]. E[Q(a;)]..... we can use the negative of the Hessian instead of the
informaion matrix to construct the LM statistic. Let 8 = (;I:E:X.EZ) where

;I =0, ﬁ X 2 are the MLE estimates from ALS model. The first partial deriva-

tives evaluated at 18 are

%
0L 3, Ad e T2
% = 3L uemf) + fm@ - T (Y (+2.2)
where & = Hy -z, H)X

oL _ 4
aF

—~= b (1.
Y 0 y eq.(1.4)

Q

The elements of negative Hessian evaluated at s can be used as substitutes for

the elements of I(3). They are :

T -
Hyp= =23z, (1+Z,)
aztsl

~ o~ T o~ 2 %
Hp = 0)\2 ém(at) + 2 (yg — z¢B)2¢ — ?x_a_(;\-z,‘_ 1)-2 g

t=1

%
- __1_ - r T ~'2 ” 2
H 2 ~,“l(y: zB) - 2}\ S5 ZQe Zes AT+ ["—]

T
where § = &z, - m(3)

~ 1 T Y ~_ o~
Hﬁﬂ = 32—‘2 Ty Xy ( 1—)@2,)
=1
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~ 1 T .~
Hgy = = ‘glzt @

~ 1 L N U A
Hga= =) (Y =z, 8)zy — —==-) 'z, Q
gz = =3 ‘gl ¢ EeF )T = 553 tgl t @t

~ 1 T
M= ~52 ‘Z: (v —z,ﬁ)zz,

o)

4

1 T
A2 = E_Z.: (Ye —z¢ ﬁ) Qz

H =S —-— + —_— - - — _3 ‘m(a,)+ 2
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