
 

 

 

 

 

 

 

 

MEASURING THE UTILITY OF COLOR RAMPS 

IN EARTH SYSTEM SCIENCE DISCIPLINES: 

A STUDY OF CONTINUOUS DATA SYMBOLOGY 
 

By 

Christy L. Steffke  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A THESIS 

 

Submitted to 

Michigan State University  

in partial fulfillment of the requirements  

for the degree of 

 

Geological Sciences – Master of Science 

 

2015 



 

ABSTRACT 

MEASURING THE UTILITY OF COLOR RAMPS IN EARTH SYSTEM SCIENCE 

DISCIPLINES: A STUDY OF CONTINUOUS DATA SYMBOLOGY 

 

By 
 

Christy L. Steffke  

 

This thesis seeks to determine the efficacy of communicating information in continuous 

value maps using Earth system science visualizations in the digital environment. The research 

approach consisted of two parts. First, we investigated commonly-used color ramps employed 

across many disciplines and devised a method to test color ramp efficacy at conveying 

information from continuous data maps. A Continuous Data Model (CDM) was developed for 

use in both studies by manipulating a digital elevation model (DEM), a common geology data 

construct used in a variety of visualizations and data models for analyzing and displaying 

topographic data. The resulting CDM was symbolized using four pervasive color ramps and used 

to derive 16 images from which participants estimated data values. Participants ultimately 

estimated values at four known map locations on four renditions of the same map. The only 

variable between participant estimations was the color scheme by which the maps were 

symbolized. Significant differences in color ramp performance were assessed using participant 

absolute data estimation differences from known map values as a function of the color ramp used 

for symbolization. Two methods for data collection were employed to provide information not 

only on how map readers estimate map values but also how they interact with continuous data 

maps. The participant-map interaction study included interaction variables that were collected 

using eye tracking technology and summarized using GIS. Our findings suggest that color ramps 

commonly used to depict ESS phenomena are not equally effective at communicating continuous 

map data. 
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INTRODUCTION 

Visualizations are ubiquitous and extensively used to communicate information related to 

Earth system science (ESS) phenomena. Characteristics of visualizations that allow the 

communication of a wide variety of information are founded on the perceptual properties of 

visual variables which, in varying combinations, result in different visualization outcomes. 

Color, or hue difference, for example, is considered a perceptual variable which allows for the 

distinction between varying map features but can also be combined with lightness and saturation 

to imply order or quantity in maps. Combinations of color, saturation, and lightness, often in the 

form of color ramps, have been widely evaluated for efficacy in symbolizing thematic, or 

classed, maps. The efficacy of continuous data symbology, however, still lacks empirical 

evidence (Brewer 1999). Recent developments in mapping software have permitted the 

customization of color ramps, yet default color schemes are often chosen to symbolize 

continuous data maps without attention to communication efficacy (Moorland 2009).  

The most recent revolution in cartography has promoted the transition from print to 

online maps, and has resulted in the mass production and dissemination of maps and map data 

products (Buckley & Frye 2011, McMaster and Thrower 1991, Robinson 1991). This widespread 

use of readily available spatial data by map makers of varying skill level creates the 

circumstance in which best practices of data visualization can fall through the cracks. Although 

guidelines for use of color in data representation exist (Brewer 1999), map makers are known to 

use color ramps that are ineffective and that misalign with these guidelines (Moreland 2009). In 

fact, cartographic design processes are known to be based in common conventions that are not 

aligned with empirical data (Edney 2005). Map readers are thus left to understand map data 

symbolized through color ramps that may hinder rather than promote communication. The 
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implications of easy access digital cartography and the consequence of pervasive color ramp-use 

have not yet been fully realized (Fu and Sun 2010) and warrants further investigation.  

Visualizations function as mechanisms for communicating information both within and 

beyond the scientific community. In disciplines that seek detailed understanding of dynamic 

processes, visualizations play a valuable role in scientific understanding across a broad range of 

audiences (Fouh et al 2012). Different types of visualizations serve unique functions relative to 

the type of data displayed within them (Shneiderman 1996, Behrens 2008, Heer et al 2010, Lima 

2011). In Earth system science (ESS) disciplines, spatial data visualizations, or maps, play a 

leading role in the understanding of dynamic Earth processes. Terrain or elevation maps, for 

example, are commonly used to identify regions where natural hazards create dangerous 

circumstances where human health may be compromised (OAS 1991). Similarly, climate 

projections may take the form of temperature change maps that are disseminated through both 

academic and non-academic settings and in a variety of forms (US GCRP 2009). Visualizations 

are a valuable scientific tool  

A fundamental feature of scientific visualizations is the use of color to represent 

continuous data (Moreland 2009). Salient symbologies in cartography (e.g. color, line thickness, 

highlighting, shading, ruling, geometric pattern, animation) function to enhance a map reader’s 

interaction with visual media (Wright 1942, Tversky 2010). Color, however, is used extensively 

to convey data because color is aesthetically pleasing and is easy to decipher through visual 

inspection alone (Brewer 1999; Moreland 2009). At the same time, color can have significant 

impacts on map reader understanding (Rogowitz and Treinish 1996, 1998).   

Color choice in cartography has moved beyond simple aesthetic considerations to include 

considerations of visual variables that impact understanding, such as hue, saturation and 
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lightness (Harrower and Brewer 2003). Studies have focused on the least effective color ramps, 

with ample evidence suggesting that some ubiquitous ramps, such as the rainbow color ramp, are 

ineffective in many settings (Borland and Taylor 2007, Light and Bartlein 2004, Rogowitz 

andTreinish1996, Rogowitz and Treinish 1998, Ware 1988, Ware 2004, Tufte 1997, Pizer and 

Zimmerman1983, Rheingans 1992, Healey 1996, Brewer 1999). Despite these studies, color 

ramp choice is grounded in historical norms and ineffective color ramp use is still quite common 

(Edney 2005). 

The persistent use of common, but potentially ineffective, color ramps has long raised 

questions about processes used to create specialty and thematic maps (Robinson 1952). Map 

makers may use ad hoc (Wang and Shen 2011), theoretical (van Wijk 2005), or empirical 

(Brewer 1999) approaches to generate maps. Ad hoc approaches rely on easy access to map 

making programs and disciplinary conventions to generate map color schemes (Wang and Shen 

2011, Edney 2005, Moreland 2009). Theoretical approaches have utilized, for example, 

economic models to identify color ramps that are efficient in terms of time required to generate 

and use them (van Wijk 2005). Other theoretical approaches use perceptually ordered color 

systems to assign color to data, as used in the Munsell or CIELAB color classifications (Brewer 

1999). Finally, empirical approaches match the perceptual dimensions of color (hue, lightness, 

and saturation) with the organization of data being represented (Brewer 1999) or focus on 

measuring visual data within an image and optimizing a map-reader’s understanding (Chen 

2010). The empirical approach to assigning map data is arguably the most advanced because it 

merges information theory with empirical user data (Brewer 1999, Chen 2008, Chen 2010).  

Poor map color choice is concerning because visualization techniques stand as the lenses 

through which map readers interpret map data. Information lost through inaccurate interpretation 
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of map color is recognized in the data visualization pipeline that forms the basis of the 

information theory concept of message transmission (Wang and Shen 2011, Purchase et al 2008). 

Message transmission consists of multiple stages beginning with the transmission of an encoded 

message (e.g. temperature data) that passes through a noisy communication channel (e.g. a 

colored map). The noisy communication channel ultimately influences the decoded message 

received by the visualization user (e.g., the map reader; Chen and Janicke 2010). Thus, color 

choice specifically in map symbology can be especially expensive in terms of the accuracy and 

efficiency by which map readers understand information in maps.  

The visualization pipeline is recognized as an important construct for map design (Card 

et al 1999, Chi 2000, dos Santos and Brodlie 2004, Haber and McNabb 1990, Tominski 2006). 

The ability of the map-maker to encode visual data and the ability for users to decode map data 

are dependent upon the transparency of the visual communication channel. In the case of 

displaying continuous map data, the color ramp used to symbolize information in maps functions 

as the visual communication channel (Bamford 2003). Thus, choice of color ramp symbology for 

a map dataset strongly influences map reader understanding.    

The Earth system sciences appear to use an ad hoc approach to choose color ramps 

(Brewer 1999, Edney 2005, Moreland 2009, Wang and Shen 2011). This likely occurs because 

of a lack of empirical data supporting or refuting the communication usefulness of each color 

ramp (Brewer 1999) and the ease of access to specific color ramps in mapping software (Borland 

and Taylor 2007). For example, multi-hue color ramps are the default representation in 8 out of 

the 9 common visualization programs, and are used in many visualization papers (Borland and 

Taylor 2007). Very few empirical user studies exist that evaluate the usability of different color 

ramps, despite multiple calls (Brewer 1999) and a clear need to improve user access to 
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continuous data sets to enhance public understanding of science and decision making (OAS 

1991, Collins et al 2013). 

This study addresses the need to better understand how continuous map data symbology 

impacts estimation of map values by map users. In particular, this work measures general public 

and college student estimation accuracy and visual interaction with an elevation dataset 

symbolized using various color ramps, in order to understand how well common color ramps 

pervasive to ESS disciplines communicate information. Two user studies were conducted and are 

reported here. The first study utilizes Amazon Mechanical Turk to collect data on participant 

estimation of maps as a function of color ramp and the second study utilizes eye tracking 

technology and a common GIS platform to measure participant estimation and interaction with 

maps as a function of color ramp symbology. Results to these studies provide a gauge on the 

effectiveness of four commonly used color ramps used to symbolize continuous data within ESS 

visualizations.  

 

Amazon Mechanical Turk  

Amazon Mechanical Turk (MTurk) is an internet crowdsourcing platform that allows 

researchers to quickly sample a large and diverse workforce (Pontin 2007, Buhrmester et al 

2011) for almost unlimited research endeavors. MTurk, as an online labor market, allows 

researchers or requesters, to develop and launch Human Intelligence Tasks (HITs) designed to 

survey MTurk workers. Pre-screening MTurk Workers to meet pre-defined qualifications for 

research subject pre-screening (Paolacci et al 2010) is an added benefit that can quickly and 

inexpensively satisfy a search for a particular participant pool. Evidence supports that the MTurk 

population is at least as representative of the US population as traditional subject pools in terms 



6 

of race, gender, age, and education (Paolacci et al 2010) and is significantly more representative 

of the US population than college undergraduate samples (Buhrmester et al 2011).  

MTurk is a recognized resource for visualization studies in which visualization viewers’ 

ability to interpret graphics have been successfully measured and validated (Heer and Bostock 

2010). Early on, MTurk was used to study user interaction with advertisements, websites, and 

game design (Mason and Suri 2010). Researchers have used MTurk to identify best practices in 

symbol positioning (Heer and Bostock 2010), visual cuing (Crump et al 2013), image tagging 

(Hwang and Grauman 2010), and human perception in social media (Biel et al 2011). MTurk 

studies specifically related to color also exist, such as research into color and emotion (Volkova 

et al 2012), color recognition (Branson et al 2010), color choice (Schloss and Palmer 2014), and 

color impairments (Lin et al 2013). MTurk is a cost effective way to collect a quality dataset on 

human perception of visual media. 

 

Eye Tracking 

Eye tracking (ET) is a method of data collection aimed at deciphering and recording 

where visual attention is focused. Historically, eye tracking was a crude process in which eye 

movements were recorded using invasive physical contact with the eye and recording media 

(Jacob and Karn 2003). Corneal light reflections were then used to measure eye position relative 

to photographic plates in 1901 (Dodge and Cline), and yet now even more advanced eye tracking 

techniques are employed that allow for non-stationary participants (Bulling and Gellersen 2013) 

and no sharp visible lights (Zhu and Ji 2005) or direct physical contact with the eye (Haro et al 

2000). Early on, eye tracking was primarily used to gain an understanding of eye movements but 

is now growing as a method for collecting data on how people interact with visual media 
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(Schiessl et al 2003). Web page usability is a popular domain in which eye movement and 

performance data is used to enhance website interfaces based on human perception (Cowen et al 

2002). The recording and analysis of eye movement data has facilitated the better understanding 

of viewer perception with visual media.  

In early visual media studies using eye tracking, eye movement data was paired with 

participant performance data, but lacked the inclusion of a dynamic time element. Eye tracking 

data, including a temporal component, lends itself well to improving dynamic visual interfaces 

by providing more specific information on participants’ interaction with visual media (Bucher 

and Schumacher 2006). Visual attention patterns have been assessed using eye movement data, 

participant preference data, and temporal information from eye tracking experiments to better 

understand media viewer attention patterns (Bucher and Schumacher 2006). These three types of 

participant data derived from eye tracking provide a dynamic look at participant interaction with 

visual media.  

As a participant’s visual attention is diverted across a sample of visual media, an eye 

tracker records time and position information related to each eye’s movement. A number of 

metrics are used by eye tracking researchers in their analysis of salient element interactions that 

are first collected as large point datasets with time components and other information related to 

pupil dilation (Wang 2009) and latent eye movements (Andersson et al 2010). Each metric can 

be filtered and assessed separately depending on data validity (Tobii 2011). The raw eye tracking 

data for even a short session can generates thousands of eye movement recordings which when 

considered together, can be measured and assessed as a gaze plot through which visual attention 

cab be mapped (Huang and Pashler 2007). Eye track data can further be understood, 

manipulated, and measured using Geographic Information Science (GIS) technology (Opach and 
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Nossum 2011). The frequency at which individual eye trackers record eye movements 

determines the number of data points each gaze plot dataset will contain; the higher frequency 

the eye tracker, the better suited for analysis using GIS (Dykes et al 2007) that reaches far 

beyond typical visual analysis of eye tracking data (Raschke et al 2014).  

Specific to the current study are interpretations map readers make of the salient, or 

visually important, elements of visualizations. Specifically, continuous map data estimations are 

of primary interest in this article as such data provides information directly related to the content 

conveyed by the continuous data model (CDM) developed for this study and the effort that map 

readers must expend to extract that map content. Participant estimation accuracy derived from 

various interactions with the CDM symbolized using competing color schemes, can then be 

compared in order to provide evidence for map color scheme impact on the map reader’s ability 

to perceive and understand map data as a function of map color symbology. Both accuracy and 

reaction time are frequently used as measures of success in cognitive experiments (Lloyd and 

Bunch 2014). Interestingly, eye tracking metrics convey different interpretations depending upon 

other user data (Poole and Ball 2006). For example, long gaze paths may convey interest 

(Salvucci and Goldberg 2000), confusion (Poole and Ball 2006), or information pursuit (Iacono, 

W. and Lykken, D. 2007). As such, eye tracking is a valuable tool that allows for a deeper 

understand of participant interaction with visual media and facilitates an environment in which 

improvements can be made to visual media for comparative analyses (Raschke et al 2014).  

 

Research Questions 

In this study, the primary goal is to evaluate the performance of ubiquitous color ramps as 

conveyors of information in continuous value maps. Does the color ramp used to symbolize a 
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simple continuous dataset impact the accuracy of map value estimation? We hypothesize that 

estimations will differ. Based on prior studies, we predict that estimations will be most accurate 

for single-hue color ramps (Tufte 1997) and least accurate for the multi-hue color ramps 

(Borland and Taylor 2007, Light and Bartlein 2004, Rogowitz andTreinish1996, Rogowitz and 

Treinish 1998, Ware 1988, Tufte 1997, Pizer and Zimmerman1983, Ware 2004, Rheingans 1992, 

Healey 1996, Brewer 1999). Does color ramp impact participants’ visual interaction with maps 

during the estimation process? We hypothesize that participants will spend more effort engaging 

with maps symbolized using multi-hue color schemes as the cognitive effort required to 

understand such outweighs map interaction efficiency as found in research with categorical map 

data (Lee et al 2013). Taken together, this study seeks to determine whether map viewer effort 

interacting with continuous value maps align with differences in map value estimation as a 

function of color ramp used to symbolize continuous value map data. 

In Study 1, we launched an Amazon Mechanical Turk (MTurk) Human Intelligence Task 

(HIT) in which color estimation tasks, a demographics survey including a quality control 

question, and a color sensitivity test were presented to MTurk Workers across the United States. 

MTurk Workers estimated map values at four control points within images that presented the 

same data but varied in terms of the color ramp used to symbolize the images. Average error in 

MTurk Worker estimations were calculated for each color ramp [participant estimated-true map 

value] and the significant differences between color ramp performances were assessed using the 

Wilcoxon Signed-Rank Test.  

Finally, in Study 2, an eye tracking study was performed in order to collect data on 

participant interaction with continuous data maps while they performed the task of estimating 

values from the same set of images used in Study 1. In addition to participant estimation data, the 
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eye tracking study resulted in gaze measurements related to participant visualization of the 

estimation tasks: Total Gaze Plot Length (TGPL), Filtered Gaze Plot Length (FGPL), and Time 

to Estimate Map Values (TtEMV) which all serve as metrics for participant effort in engaging 

with and estimating data values from each map. These variables were also compared between 

color ramps to identify differences in participant interaction with continuous data maps and 

alignment with map estimation accuracy as a function of color ramp. 
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MATERIALS AND METHODS 

Study 1, a crowdsourcing study, was designed to survey a large number of participants on 

their ability to estimate values from continuous data maps symbolized by four pervasive color 

ramps. Differences in performance across color ramps were quantified based on participant 

ability to estimate values within each map as related to the known map value at each control 

point. Amazon Mechanical Turk (MTurk) was used as the crowdsourcing platform in study 1 to 

collect data from a large number of participants. Study 2, an eye tracking study, aimed to 

determine whether or not participants interacted differently with maps while estimating data 

values again as a function of color ramp. An eye tracking system was used in Study 2 to record 

information about participant interaction with map data while they estimated map values. 

Resulting eye tracking data was compared across color ramps and served to determine the 

participant effort required to estimate values in each image. Both studies required development 

of a Continuous Data Model (CDM) from which, known data values and locations were 

presented to users in estimation tasks. This allowed for the calculation of the difference between 

participant estimations and known map values as a measure of participant estimation accuracy.  

 

Stimuli 

A continuous data set that represents a non-visually complex data range across an area was 

developed for use as the continuous data model (CDM) for this study. This dataset was derived 

from a high resolution topographic base map that was downloaded at no cost from the National 

Map Viewer and Download Platform managed by the U.S. Geological Survey National 

Geospatial Program (Figure 1a). A region containing a simple range of elevation values was 

downloaded as a Digital Elevation Model (DEM). This DEM was converted into an ESRI Grid 
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using ArcGIS for Desktop version 10.2 in order to re-scale the output raster such that the grid 

cell geometry was square. The resulting grid was cropped again in ArcGIS down to a simple and 

non-visually complex sub dataset (Figure 1b). The real range of data values for the CDM (130-

195 meters) was scaled between 0 and 500 and units were removed in order to minimize the 

cognitive load for participants completing the value estimation tasks. This base image depicting a 

unitless and simple continuous data set with scaled data values between 0 and 500 served as the 

CDM for this study from which all image variations were derived. The CDM was then 

symbolized using four pervasive color ramps based on the known range of data values within the 

image. 

Four color ramps were chosen to symbolize the CDM for user estimation comparisons in 

this study. Despite the importance of map color and the large variety of information symbolized 

in ESS visualizations, a relatively small number of color ramps persist (Romanach et al 2014). 

Four color ramps are particularly pervasive and will serve as the foci for this article. Each color 

ramp selected was chosen based on its ubiquitous presence in ESS visualizations. ElevCR is 

commonly used to symbolize elevation data such as in shaded relief maps published by the 

United States Geological Survey (USGS 2002). This color ramp is characterized by the highest 

data values being symbolized using white “for snow-capped peaks, the next brown for treeless 

areas above the tree line, then light green for sparse vegetation on the upper slopes and a darker 

green for the verdant valleys” (Buckley 2008). This many hue color ramp can be classified as a 

rainbow color ramp or a diverging multi-hue color scheme (Brewer 1999). A simpler color ramp, 

WindCR, is similar to the color ramp used by the National Weather Service (NWS) of the 

National Oceanic Atmospheric Administration (NOAA) for wind speed and wind direction maps 

(NOAA 2014a). For example, the National Weather Service (NWS) uses this color ramp to 
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convey wind speed and wind direction (NOAA 2014a). WindCR is characterized by a single hue 

which varies in lightness across the data range and can be described as a single hue sequential 

color scheme (Brewer 1999). A moderately complex color ramp, PrecipCR, is similar to color 

ramps used to illustrate precipitation amount by the NWS and other meteorological data sources 

(NOAA 2014b). This two hue color ramp is often used to illustrate precipitation, as used by 

NWS and other meteorological services (NOAA 2014b). Finally, TempCR, another moderately 

complex color ramp, is often used to symbolize temperature distribution maps including those 

published by the Intergovernmental Panel on Climate Change (Collins et al 2013). This three hue 

color ramp is very familiar as a temperature conveyer, such as those published by the 

Intergovernmental Panel on Climate Change (Collins et al 2013).  

Each color ramp was used to symbolize the CDM to create four variations of the 

continuous dataset. The resulting set of four base images were fundamental to gauging 

participant understanding of and interaction with data symbolized using the four pervasive color 

ramps. The Minimum-Maximum standard histogram stretch in ArcGIS was applied to the 

datasets in order to normalize any color ramp value groupings. This contrast-stretching 

enhancement was applied to the rendered screen displays of each image to ensure color ramp 

symbology comparability across images. Four control points (Cps) of known value were chosen 

based on their position within the scaled range of the symbolized CDM legend. Control point A 

(CpA) had a known value of 4 while CpD had a known value of 113, CpC of 317, and CpB of 

483. Each color ramp was represented four times in the survey, each containing one of the Cps of 

known value. To prevent the participants from recognizing that each color ramp variation 

represented the same dataset, so as to prevent participant ability to game the value estimation 

tasks, a rotational transformation of 0, 90, 180, or 270 degrees was performed on each image 
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dataset. A total of 16 ramp-control point combinations were displayed in random order to 

participants in the studies discussed in this article (Figure 2).  

 

Study Design 

Study 1: Amazon Mechanical Turk 

In this study, a Human Intelligence Task (HIT) was created which included the 16 color 

ramp estimation questions, a demographics survey with an included discrete quality control 

question, and a color sensitivity test consisting of eight Ishihara Color Plates (Ishihara 1954, 

1958). The Title of the HIT which was visible to MTurk Workers and described the task to the 

participants, “Estimate Values in Colorful Images!”, was designed to be enticing and as specific 

as possible so as to attract MTurk Workers. Further, the purpose of the HIT Description, “View 

16 color maps displaying numerical data and estimate the value in a single location in each 

map”, was to give participants more information on the HIT tasks before they decide to view and 

pursue the HIT. The following keywords were provided to help Mechanical Turk Workers search 

for our HIT: estimate, values, image, data, color ramp, raster. 

To ensure that data reflected a general audience that could produce reliable responses, we 

solicited only MTurk Workers who met at least the following qualification requirements: 1) 

participant HIT Approval Rate for all Requesters’ HITs had to be greater than or equal to 95%, 

2) each participant had to have had at least 1000 HITs approved in the past, and 3) participant 

locations had to be within the United States. MTurk Workers were paid between $0.40 and $0.50 

to complete each HIT. 

Four criteria were used to remove data from the study sample. First, participants were 

asked to answer a quality control question that identified participants who were responding 



15 

without reading the questions. Six participants who failed to answer this quality control question 

correctly were omitted from this study. Second, estimations that fell outside of the 0-500 range 

were considered to reflect inattention to the task and were removed (n=13 participants). Third, 30 

participants submitted duplicate surveys; all duplicates except for the first submission were 

removed. Finally, because this study relied heavily on participants’ perception of color, a color 

sensitivity test was presented at the end of each HIT. Participants were prompted to type the 

number seen in the pattern of dots on each of eight Ishihara Color Plates. Participants (n=8) who 

answered more than one color plate question incorrectly were omitted. 284 responses were 

retained in the study.  

Study 2: Eye Tracking 

Participants in Study 2 completed an eye tracking task similar to Study 1. Participants in 

this study all successfully completed an eight plate Ishihara color sensitivity test. These 

participants were instructed to spend as much time needed in estimating the values in the images 

and to speak aloud their estimation for recording by a researcher. After each estimation, the 

researcher would then click a key on their keyboard to proceed to the next image. No participant 

was allowed to return to previous images. Participants also participated in a retrospective 

interview to provide additional information about their interaction with the task. The sixteen 

images were presented in the same shuffled sequence as in Study 1. Following the instructions to 

estimate values within the subsequent images was a Demographics Survey. Thirty two 

undergraduate students from a large Midwestern university completed the eye tracking study as 

part of an hour-long session of other eye tracking studies for which, each participant was 

compensated $25. Participant eye tracking data that had <50% samples percent as a rough 

measure of eye tracking recording data quality were removed (n=8 removed). 24 responses were 
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retained in this study. Participant eye movements were monitored during the estimation tasks 

with a table-mounted eye tracking system, Tobii T60, at a sample rate of 60 Hz. A PC running 

Tobii Studio 3.0 was used for data acquisition. 

 

Study Populations 

Study 1: Amazon Mechanical Turk 

Amazon Mechanical Turk (n=284) were 146 men and 137 women. Nineteen percent of 

participants were non-white and sixty-one percent had a college degree. Forty-nine percent of 

participants were Very Confident in their ability to read and understand maps, while forty 

percent of participants were Somewhat Confident. The remaining eleven percent of participants 

was either A Little Confident or Not Confident in their ability to read and understand maps. The 

age of participants ranged from eighteen to sixty- nine years (M = 34.1, m = 31.0, SD = 11.7). 

Age was non-normally distributed, with skewness of 0.944 (SE = 0.143) and kurtosis of 0.019 

(SE = 0.284). 

Study 2: Eye Tracking 

Eye tracking study participants (n=24) were thirteen men and eleven women. Forty-two 

percent of participants were non-white and 58 percent had a college degree. Twenty-nine percent 

of participants were Very Confident in their ability to read and understand maps, while forty-two 

percent of participants were Somewhat Confident. The remaining thirteen percent of participants 

were either A Little Confident or Not Confident in their ability to read and understand maps. The 

age of participants ranged from eighteen to sixty- one years (M = 24.3, m = 20.0, SD =  9.9). 

Age was non-normally distributed, with skewness of 2.559 (SE = 0.481) and kurtosis of 7.297 

(SE = 0.935).   
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DATA ANALYSIS 

In both studies, color ramps that had the lowest average errors estimated by participants 

in each study were deemed the most effective color ramp at communicating continuous data map 

information. Those color ramps that resulted in participant estimations of greatest significant 

difference from control point values were deemed the least effective at communication 

information in continuous data maps. Finally, color ramp performance was compared to the 

participant interaction variables generated in the eye tracking study, in order to determine the 

color ramp that resulted in the fastest, least effortful, and accurate estimations. In both studies, 

Wilcoxon Signed-Rank Tests were conducted to evaluate whether median participant estimations 

varied significantly as a function of color ramp.  

The Wilcoxon Signed-Rank Test is the non-parametric alternative to the dependent 

samples t-test which compares means of two related groups to determine whether or not 

significant differences exist between group means. Variations of this statistic can be used for 

repeated measures studies in which more than one dataset is analyzed for the same participants, 

such as what we have in this study with participant estimations across the same continuous value 

map symbolized using four pervasive color ramps. A simple evaluation of the average participant 

estimation datasets in each study indicates average differences across all four color ramps 

evaluated in this study. The Wilcoxon Signed-Rank Test was used to evaluate the significance of 

these differences between color ramp efficacies in conveying continuous value map data. The 

Wilcoxon Signed-Rank statistic was also employed to determine significant differences in 

participant-color ramp interaction variables resulting from the Study 2. Kendall’s W or Kendall's 

coefficient of concordance for ranks (W) is a variation of the Friedman statistic and is used to 

test for significant differences between k-related samples which cannot be assumed to fit a 
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normal distribution. This statistic was used to verify the significant differences between average 

participant estimations as a function of color ramp.  

 

Additional Consideration in Study 2: Map Interaction Variables 

The resulting spatial data was time stamped and served as the basis for determining 

participant-color ramp interaction variables: Total Gaze Plot Length (TGPL), Filtered Gaze Plot 

Length (FGPL), and Time to Estimate Map Values (TtEMV). Raw or unfiltered eye tracking 

data was imported into ArcGIS in order to be filtered and clustered using custom Python scripts 

that employ Olsson’s interpolation method (2007) and Salvucci and Goldberg’s filter 

recommendations (2000). An unfiltered eye tracking dataset for an individual represents that 

individual’s Total Gaze Plot Length (Figure 3A) which is markedly longer in measurement than 

the corresponding Filtered Gaze Plot (Figure 3B). Each raw eye tracking dataset contains both 

invalid data and sporadic gaze measurements called saccades, which demonstrate the sporadic 

sampling method of the human eye. Excessive saccadic activity may indicate confusion during 

task-based assignments but is ultimately washed out during the clustering of eye tracking data. 

Raw eye tracking data must first be filtered to remove data defined by one or more poor validity 

measurements recorded during instances of blinking or other times when the eye tracker could 

not properly constrain the eye position. Olsson’s (2007) interpolation method was used to 

interpolate participant gaze where invalid data was removed. The filtered gaze data was then 

grouped into fixations, or clusters, to eliminate data points that represented instances when the 

participants were not focusing their gaze. Salvucci and Goldberg’s (2000) data filter was used to 

process the data and is based on spatial dispersion of the eye tracking data. Using this method, a 

cluster or fixation is defined as being a set of eye tracking points that are in close proximity in 
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both space and time. The distance threshold of 35 pixels was used for clustering as per default 

recommendations in common eye tracking software (Tobii 2010). The minimum fixation 

duration is generally accepted by visual scientists to be 80ms, so with our eye tracking data 

collected every 1/60th of a second, is 5 sequential points or ~83.33ms. The resulting clustered or 

Filtered Gaze Plot marks the path which the participant viewed while progressing through the 

task of estimating map data values. Because eye tracking data is time-stamped, Time to Estimate 

Map Values (TtEMV) was also recorded and used to indicate participant effort during task-

oriented data estimation instances. 
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RESULTS 

Study 1: Participant Estimations 

In this study, 341 participants estimated continuous data values as part of a Human 

Intelligence Task (HIT) developed using the Amazon Mechanical Turk (MTurk) crowdsourcing 

tool.  MTurk Workers who failed to pass the Ishihara Color Sensitivity Test subset were removed 

from the dataset (n=8 removed) as were those who failed to answer the quality control question 

properly (n=6 removed). Another method of quality control was to remove MTurk Worker data 

estimations that fell outside of the 0-500 range. Such inappropriate answers suggested inattention 

to the task and were removed (n=13 removed). When given the chance to provide comments 

about the estimation tasks, no participants indicated that they recognized the images as 

containing the exact same dataset. Because there was no simple way to avoid the same MTurk 

Worker repeating a posted HIT more than once, we used brute force methods to identify and 

remove duplicate responses. We found that 12 MTurk Workers took the survey twice, 3 MTurk 

Workers took it three times, and 1 MTurk Worker took it four times. MTurk Worker submission 

timestamp information was used to identify subsequent submissions by the same user. Duplicate 

submissions were isolated and removed. Only the first response from each MTurk Worker was 

retained in the dataset (n=30 removed). The remaining data (n=284) were used in analysis.  

The distributions of participant estimation data in Studies 1 and 2, and participant 

interaction data in Study 2 were non-normal (Table 1) thus the median was chosen to report 

results and non-parametric statistics were chosen to analyze the matched map data. Median 

participant estimation deviation (+/- SD) for each color ramp in Study 1 is displayed in Table 2. 

Negative data labels represent participant underestimations of map values while positive data 

labels represent overestimations. A Wilcoxon Signed-Rank Test was applied to the median 
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participant estimation datasets for each color ramp  in Study 1 to evaluate whether or not 

participant ability to estimate map data values varied significantly as a function of color ramp. 

The statistic indicated a significant difference in median participant estimations made using 

ElevCR (median underestimation of 1.0, SD +/-83.0), and WindCR (median underestimation of 

17.5, SD +/-89.1), z = -9.234, p < 0.001. There was no significant difference between ElevCR 

and PrecipCR (median underestimation of 3.0, SD +/-58.7) performance. There is a significant 

difference in performance of ElevCR and TempCR (median overestimation of 5.0, SD +/-30.4), 

z = -6.483, p < 0.001. There also existed a significant difference in PrecipCR and WindCR, z = -

8.787, p < 0.001.  There existed a significant difference in TempCR and WindCR, z = -10.084, p 

< 0.001. Finally, a significant difference existed between TempCR and PrecipCR, z = -5.729, p < 

0.001 (Table 3). To further validate the differences in color ramp performance, Kendall’s 

coefficient of concordance (W) was calculated to determine the general disagreement among 

color ramp performances. In Study 1, the coefficient of 0.220 (p < 0.001) indicates a low degree 

of agreement between color ramp estimation deviation averages (Table 4).  

 

Study 2: Participant Estimations 

In this study, thirty-two undergraduate students from a large Midwestern university 

estimated map values in the same images from Study 1, as part of an hour-long combined eye 

tracking session. Due to the nature of the researcher-participant interaction during an eye 

tracking study, no participant datasets needed to be removed due to compromised quality. 

However, participant eye tracking data that reported <50% samples percent, a rough measure of 

eye tracking recording data quality, were removed (n=8 removed). 24 responses were retained in 

this study. Participants were given a color sensitivity test prior to beginning the experiment. No 
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participants in this portion of the study had color vision impairments and were thus able to 

complete the estimation tasks. Before beginning each experiment, the eye tracking system was 

calibrated based on the participant’s individual gaze characteristics. The researcher instructed 

each participant to speak aloud their estimation after viewing each image long enough to 

determine the value within the image control point. The participant speaking aloud their 

estimation for each image indicated to the researcher that the participant was ready to move to 

the next image to begin the subsequent estimation task. Upon hearing this signal, the researcher 

would then click a key on their keyboard to proceed to the next image which would indicate to 

the participant that a new estimation task has begun. No participant was allowed to return to 

previous images. Upon conducting a post-study interview, no participants indicated that they 

recognized the images as containing the exact same dataset. Participant estimation data (n=24) 

was tabulated by the researcher and summarized. Median participant estimation deviation data 

for Study 2 is displayed in Table 2.  

A Wilcoxon Signed-Rank Test was applied to the median participant estimation datasets 

for each color ramp in Study 2 to evaluate whether median participant estimations varied 

significantly as a function of color ramp (Table 3). The statistic indicated a significant difference 

in median participant estimations made using ElevCR (median overestimation of 1.5, SD +/- 

149.4) and WindCR (median underestimation of 25.0, SD +/- 88.3), z = -4.029, p < 0.001. There 

was no significant difference in performance between ElevCR and PrecipCR (median 

underestimation of 4.0, SD +/- 38.5) or with ElevCR and TempCR, TempCR (median 

overestimation of 2.0, SD +/- 24.5). There existed a significant difference in PrecipCR and 

WindCR, z = -3.272, p < 0.01. There was also a significant difference performance of TempCR 

and WindCR, z = -3.972, p < 0.001. Finally, no significant difference existed between TempCR 
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and PrecipCR (Table 3). For Study 2, Kendall’s coefficient of 0.441 (p < 0.001) indicates a fair 

degree of agreement between median estimation datasets collected as a function of color ramp. 

However, the sample size (n=24) is too small to demonstrate significant agreement between 

average participant estimations as a function of color ramp (Table 4). 

 

Study 2 Participant-Color Ramp Interaction Variables 

Total Gaze Plot Length 

The Total Gaze Plot Length (TGPL) is derived from unfiltered eye track measurements 

which are recorded at a sampling rate of sixty per second. Unfiltered eye tracking data includes 

information on participant overt visual attention but also maintains saccadic eye movement 

information that could inform other research in visual science. Unfiltered eye tracking data was 

exported from Tobii Studio 3.0 and imported into ArcGIS for Desktop version 10.0 using custom 

Python scripts. Once imported, the TGPL was able to be visualized and measured for each 

participant using the calculate geometry tool of the gaze path lines created to symbolize 

progression from one gaze measurement to the next (Figure 3A). Each participant estimated 

values in 16 images derived from the CDM. Sixteen TGPL datasets for each participant were 

tabulated and summarized using GIS. Participant TGPL distribution data is depicted in Table 5 

and median participant TGPL in pixels is displayed in Table 6.  

A Wilcoxon Signed-Rank Test was applied to the median TGPL datasets for each color 

ramp in Study 2 to evaluate whether median TGPL, in pixels, varied significantly as a function 

of color ramp (Table 7). The statistic indicated a significant difference in median TGPL for 

ElevCR (median TGPL of 13729.43 pixels, SD +/- 8602.52) and WindCR (median TGPL of 

17184.52 pixels, SD +/- 9672.45), z = -3.314, p < 0.01. There was no significant difference in 
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performance between ElevCR and PrecipCR (median TGPL of 14725.15 pixels, SD _/- 7934.74) 

or with ElevCR and TempCR (median TGPL of 15508.88 pixels, SD +/- 10481.28). There 

existed a significant difference in PrecipCR and WindCR, z = -2.829, p < 0.01 and also between 

TempCR and WindCR, z = -2.457, p < 0.05. Finally, no significant difference existed between 

TempCR and PrecipCR (Table 7). For the TGPL dataset in Study 2, Kendall’s coefficient of 

0.238 (p < 0.001) indicates a low degree of agreement between median TGPL datasets collected 

as a function of color ramp (Table 8).  

Filtered Gaze Plot Length 

Filtered Gaze Plot Length (FGPL) is derived from the Total Gaze Plot Length dataset. 

Unfiltered eye track measurements are clustered based on adjacency in time and space (Salvucci 

and Goldberg 2000) and invalid eye tracking data was removed as defined using the data 

acquisition software’s definition of validity. The resulting eye tracking data points that were 

clustered in both space and time were determined to comprise a single fixation. Each fixation 

was represented by a single point which had the spatial measurement of the average x,y location 

of each data point comprising the fixation (Figure 3B) ArcGIS for Desktop version 10.0 was 

used again to measure the distances between each point using the calculate geometry tool for the 

connecting gaze path lines. Filtered GPL measurements for each participant were tabulated and 

summarized using GIS. Participant FGPL distribution data is displayed in Table 9 while median 

FGPL is displayed in Table 10. Significant differences in participant interactions with continuous 

dataset as a function of color ramp were determined using Wilcoxon Signed-Rank Tests.  

A Wilcoxon Signed-Rank Test was applied to the median FGPL datasets for each color 

ramp in Study 2 to evaluate whether median FGPL varied significantly as a function of color 

ramp (Table 11). The statistic indicated a significant difference in median FGPL for ElevCR 
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(median GPL of 3566.5 pixels, SD +/- 2733.92) and WindCR (median FGPL of 5242.38 pixels, 

SD +/- 3228.8), z = -3.943, p < 0.001. There was no significant difference in performance 

between ElevCR and PrecipCR (median FGPL of 3990.78 pixels, SD +/-  2631.69) or with 

ElevCR and TempCR (median FGPL of 3886.74 pixels, SD +/- 3877.59). There existed a 

significant difference in PrecipCR and WindCR, z = -3.743, p < 0.001 and in TempCR and 

WindCR, z = -3.343, p < 0.01. Finally, no significant difference existed between TempCR and 

PrecipCR (Table 11). For the FGPL dataset in Study 2, Kendall’s coefficient of 0.275 (p < 

0.001) indicates a low degree of agreement between median TGPL datasets collected as a 

function of color ramp (Table 12).  

Time to Estimate Map Values 

Time to Estimate Map Values (TtEMV) in milliseconds (ms) can indicate the effort a 

participant expended completing the estimation task. Using a Tobii T60 eye tracking system, 

data was recorded at a sampling rate of 60 measurements per second. This information was time-

stamped and was used in ArcGIS for Desktop version 10.0 to quantify the time each participant 

spent estimating each value in each image. The participant median TtEMV distribution data for 

Study 2 can be found in Table 13. TtEMV median data in seconds for each participant are 

tabulated and summarized in Table 14. Significant differences in participant TtEMV in 

continuous datasets as a function of color ramp were determined using Wilcoxon Signed-Rank 

Tests.  

A Wilcoxon Signed-Rank Test was applied to the median TtEMV datasets for each color 

ramp in Study 2 to evaluate whether median TtEMV varied significantly as a function of color 

ramp. The statistic indicated a significant difference in median TtEMV for ElevCR (median 

TtEMV of 6595.0 ms, SD +/- 3983.83) and WindCR (median TtEMV of 7,064.0 ms, SD +/- 
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3936.6), z = -2.629, p < 0.1, for ElevCR and PrecipCR (median TtEMV of 5422.0 ms, SD +/- 

3065.98), z = -2.314, p < 0.5, and for ElevCR and TempCR (median TtEMV of 6037.5 ms), z = -

2.629, p < 0.1. There existed a significant difference in PrecipCR and WindCR, z = -4.229, p < 

0.001 and in TempCR and WindCR, z = -3.457, p < 0. 01. Finally, no significant difference 

existed between TempCR and PrecipCR (Table 15). For the TtEMV dataset in Study 2, 

Kendall’s coefficient of 0.398 (p < 0.001) indicates a fair degree of agreement between median 

TGPL datasets collected as a function of color ramp (Table 16). However, the sample size 

(n=24) is too small to demonstrate significant agreement between average participant TtEMV as 

a function of color ramp (Table 16). 
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DISCUSSION AND CONCLUSION 

In this study, we investigated the efficacy of four pervasive color ramps used commonly 

in Earth System Science visualizations to symbolize continuous value data in maps. Participant 

interaction with and ability to estimate data values from continuous value maps was found to 

vary as a function of the color ramp used to symbolize map data. ElevCR, which is often 

charismatically used to symbolize elevation and terrain datasets in Earth system science 

disciplines, surprisingly tended to induce an approximately accurate estimation of map values, 

despite the multi-hue nature of its color scheme. ElevCR did not perform statistically differently 

in Study 1 or Study 2 than PrecipCR, another multi-hue color ramp. Further, participants 

estimating values in ElevCR tended to expend less effort as measured by Total Gaze Path Length 

and Filtered Gaze Plot Length while estimating than in any other colored map estimation 

activity. Finally, on average, it took a significantly longer time for participants to estimate map 

data values using ElevCR over PrecipCR and TempCR, yet WindCR, the simplest single-hue 

color ramp, took the most time.  

Characteristics of ElevCR that could have played a role in influencing participant 

estimation and interaction with the data include ElevCR’s unique combination of characteristics 

related to the perceptual dimensions of color (hue, lightness, and saturation). ElevCR shares 

qualities with that of the infamous rainbow color ramp yet did not induced the expected failed 

and deviant estimations by the participants included in this paired study. Both participant 

estimations of map values and interactions with the continuous value maps varied in part due to 

the unique composition of ElevCR but likely for a variety of reasons not evaluated in this study. 

This study aimed to evaluate the efficacy of common color ramps for symbolizing continuous 
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value map data. Further studies will be needed to delve deeper into map performance due to 

specific color ramp characteristics. 

A confounding characteristic of ElevCR that could have influenced participant estimation 

and interaction with maps in this study is that at either end of the ElevCR scale bar, there exist 

like-hues which vary similarly in lightness. This characteristic of the ElevCR color scheme of 

having two light hues at either end of the scale is unique among the color ramps evaluated in this 

study. PrecipCR and TempCR both tend to have smoother transitions between hues and do not 

have the unusual lightness variation on either end of the scale bar as does ElevCR. Due to this 

enigmatic lightness variation (Buckley 2008) on either end of ElevCR, map reader attention may 

have been diverted with inaccurate estimations induced. In effect, this attention diversion would 

require more effort expenditure by the map reader to understand the map data and thus possibly 

inducing a longer time for map value estimation. One could speculate whether or not the two 

like-hues at either end of ElevCR induced map reader error in both high and low end of the scale 

by looking at the data from this study. 

Figure 4 depicts median participant estimation deviation from known control point values 

in Study 1, the large Mechanical Turk study in this article. Interestingly, map readers tended to 

over-estimate while estimating map values on the low end of the scale bar and also tended to 

under-estimate map values on the scale bar’s high end. It is logical that map readers would 

estimate not beyond the 0-500 range of map data as they were instructed. Over-estimations at the 

low end of the scale bar would be thus due to the underestimation limit established by the lower 

range of the study data. Similarly, participants could not possibly overestimate beyond the upper 

end of the study’s map data range which would thus result in a median underestimation of map 

values at the high end of the scale. A pattern in map reader estimation deviation at the low end of 
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the scale bar and the high end of the scale can be evaluated further in future research. Further, 

Figure 4 depicts a possible pattern in median participant estimations using ElevCR that differs 

somewhat from the other three color ramps addressed in this study. It is not surprising that 

variations in hue and lightness at either end of the ElevCR scale bar induced a somewhat 

bimodal distribution of participant estimations with overestimating being prevalent on the low 

ends of the scale bars while underestimating was prevalent on the high ends. 

Humans are most visually sensitive to changes in lightness (Brewer 1992, Slocum et al 

2009, Meirelles 2013), so by including such like-colors on either end of the scale bar of ElevCR, 

confusion could be induced by the map reader. This did not however seem to be the case in the 

results from this study. Figures 3A and 3B illustrate the overt visual confusion by one participant 

in Study 2. The repeated attention paid to both the high and low end of the scale bar in ElevCR 

indicates the presence of confusion by the map viewer. The saccadic activity indicated by an 

extensive Total Gaze Plot Length in Figure 3A persisted beyond the filtering and clustering stage 

of the eye tracking data analysis. This resulted in a fixation or cluster on the low end of the scale 

bar in Figure 3B, showing a significant amount of viewing time by the map reader on the 

opposite end of the scale bar from where the actual data value could be estimated. Such unique 

notions made discoverable by eye tracking data are worth further pursuing as such results could 

help guide more effective color combinations for symbolizing continuous value map data.        

WindCR, which is often used in wind speed and wind direction maps, was expected in 

this study to perform the best at communicating continuous value map data because it was 

single-hued and varied only in lightness. Maps symbolized using WindCR tended to induce 

significant underestimations of true map values by participants across both studies. In fact, 

WindCR performance, as measured by participant ability to estimate map values represented by 
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this color scheme, was significantly worse from every other color ramp assessed in this study. 

Further, participants estimating values in WindCR tended to expend significantly more effort in 

estimating map values as measured by Total Gaze Plot Length and Filtered Gaze Plot Length. 

Finally, WindCR induced significantly longer Times to Estimate Map Data values than did other 

color ramps. A color ramp characterized by a single hue and dramatic lightness variation is not 

the best for representing continuous value map data.  

It must be considered that each of the four pervasive color ramps assessed in this study 

varied greatly in terms of the visual variables that help to define them (Bertin 2010). Both 

ElevCR and WindCR represent two extremes in terms of commonly-used color ramps and the 

perceptual dimensions of color. PrecipCR and TempCR, however, both share similarities in their 

composition of hue, lightness, and saturation. PrecipCR and TempCR performed similarly in that 

participant estimations varied yet were approximately accurate, while participant-color map 

interaction variables also did not vary as wildly as those of WindCR. PrecipCR and TempCR 

required the least time for participants to most accurately estimate data values. These results 

suggest that color ramps similar in perceptual dimensions of color composition to PrecipCR and 

TempCR are better for symbolizing continuous value maps than color ramps characterized 

similarly to ElevCR or WindCR.   

Furthermore, another notable characteristic of all the multi-hue color ramps used in this 

study is the lightness variation within each hue. Each color ramp can be assessed for the hue 

changes in their legends. Lightness transitions differently through and between hues in the four 

color ramps assessed in this study. Perhaps the relatively narrower range of data values 

constrained by each hue of the ElevCR legend aided participants in their estimation tasks. It 

would be logical then that the color ramps characterized by less hues in their data range would 
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provide map readers with a less confined data range from which map values could be estimation. 

This wider range of data not confined by relative map colors in the legend could thus result in 

lower map estimation accuracy measurements and more confusion by map readers, as measured 

by map reader time to estimate and gaze path during the estimation task. Thus, the combined 

effect of visual variable complexity within continuous value maps is what defines the map 

readers experience and ability to estimate map values. This study aimed to evaluate common 

color ramps used in Earth system science disciplines. Further research would be required to 

further evaluate each visual variable’s impact on map reader accuracy and interaction with 

continuous value maps. Taken together, the complexity of each color ramp varied greatly and 

likely influenced participant estimation and interaction with the continuous value maps during 

the data estimation tasks. 

Figure 5 depicts a subset of participant eye tracking data to illustrate an example of 

typical map reader interaction variations between color ramps. This participant’s Total Gaze Plot 

Lengths while estimating at Control Point A (known value = 4) during the map estimation task is 

plotted with the lines depicting participant eye movements during the estimation tasks. Note the 

gaze pattern variations across each different color ramp. Disregarding the map rotation to 

disguise the same Control Point being assessed in these four maps, notice the tendency for the 

gaze of the map reader to return to the legend throughout the estimation tasks. More visits by the 

map reader’s eyes to the legend could suggest confusion or map reader uncertainty during the 

task. Again, color ramp characteristics would influence participant interactions with and thus 

estimation of map values during estimation tasks, were captured using eye tracking. The 

differences in participant Time to Estimate Map Values and the estimation accuracy differences 

may be explained by color ramp complexity influencing participant interactions and estimations. 
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This warrants further investigation of color ramps in terms of their composition of hue-lightness 

combinations and placement along legends in continuous value map visualizations. 

Color ramps were chosen for this study based on their ubiquity in scientific visualizations 

and not for their comparability in terms of their perceptual dimensions of color. Further user 

studies should evaluate the role that each perceptual dimension plays in participant estimation of 

continuous value map data. An ideal combination of hues, lightness, and saturation variation 

could be developed and result in an optimized color ramp for displaying continuous value data so 

often displayed in scientific visualizations (i.e. elevation, precipitation, wind speed, and 

temperature). Our data suggests that the color ramp used to symbolize continuous data maps 

influences not only the way in which people understand map data in a quantifiable manner, but 

also their understanding of map data as measured by their estimation accuracy.  

Our prediction that color ramp would influence participant estimation of continuous map 

data was supported with our results. However, our hypothesis that maps symbolized using 

single-hue color ramps would perform better than multi-hue color ramps was refuted, which is in 

disagreement with the most recent relevant literature (Tufte 1997, Borland and Taylor 2007, 

Light and Bartlein 2004, Rogowitz and Treinish1996, Rogowitz and Treinish 1998, Ware 1988, 

Ware 2004, Tufte 1997, Pizer and Zimmerman1983, Rheingans 1992, Healey 1996, Brewer 

1999). Assumptions that single-hue color ramps are most effective at communication 

information need to be revised and supported using empirical evidence. Further, the atrocity of 

the multi-hue, spectral, or “rainbow” color ramp needs to be revisited as the best performing 

color ramps assessed in this study were multi-hue and outshined single-hue color ramps in terms 

of efficacy and ease at conveying information. 
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Participant visual interaction also proved to be an exciting variable to evaluate as our 

hypothesis that more effort, measured by time, would be required for map readers to understand 

multi-hue maps than single-hue maps due to the complexity of the color ramp. We hypothesized 

that the number of hues and variations in lightness, or our version of color ramp complexity, 

would require higher levels of cognition by the map reader for understanding and thus accurate 

estimations (Lee et al 2013). It turned out that map readers exerted more effort in trying to 

decipher continuous value map data symbolized using the single-hue color ramp than those 

symbolized using any of the multi-hue color ramps. Again, this is in disagreement with the 

literature as our study supported the opposite: that map readers had an easier time estimating 

accurately using multi-hue symbology rather than single-hue.  

Taken together, both parts of this study provided evidence supporting that map viewer 

effort aligns with differences in map value estimation as a function of color ramp used to 

symbolize continuous map data. Color ramp complexity, can be defined using any combination 

of visual variables to describe a color scheme. Since the focus of this study aimed to evaluate the 

performance of commonly used color ramps within Earth system science visualizations, a large 

number of color ramps were not evaluated. Future studies should include a survey or 

classification in terms of visual variables that evaluates color schemes based on efficacy and ease 

at communicating information in continuous value maps rather than discipline convention.  

Future studies also should evaluate the role of each visual variable in the function of a 

color ramp in terms of its efficacy at communicating continuous value data and the effort map 

readers must expend during estimation tasks. Each color ramp used in this study was 

characterized in terms of visual variables that make each color ramp unique. If an array of color 

ramp characteristics is evaluated for accuracy and ease of use, then an ideal color scheme or set 
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of color schemes could be developed for symbolizing continuous data most effectively with least 

effort.  

The Continuous Data Model (CDM) used in this study was developed by manipulating a 

digital elevation model (DEM) into a single dataset. This base dataset was manipulated or rotated 

to disguise the fact that it was the same dataset and symbolized using four pervasive color ramps, 

resulting in 16 images from which participants estimated map values. Participants ultimately 

estimated values at four known map locations on four renditions of the same map. No participant 

commented in either part of this study that they recognized the dataset in each image as being the 

same and it was evident from the data that map readers were not recording the same map values 

for the same control points on different maps. It was a concern that participants could possibly 

have recognized the datasets as being rotated and re-symbolized copies, yet no learning effect 

was evident. In order to wash out the possible influence of participants gaming the estimation 

tasks, the order of the images presented to the participants was shuffled (Figure 2) and resulting 

participant estimations were averaged across each image and for each color ramp. A model raster 

or surface dataset could be generated and used for future studies as then the contrast and 

variations within the data range could better be controlled. Future studies should more rigorously 

evaluate a large sample of participant estimations and interactions with a multitude of positions 

across a similar high contrast CDM. Additionally, a larger eye tracking sample size could 

provide results for a more generalizable statement on how participants interact with maps as a 

function of visual variable complexity within each color ramp. 

In general, Earth system science discipline visualizations are consumed by different 

audiences for a great variety of reasons. Continuous value maps may be used to communicate 

hard data about climatic variations, from which a map reading audience could be expected to 
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apply past knowledge and make decisions regarding the fate of the planet. On the contrary, 

continuous value data color may simply be used to enhance the esthetics of a map intended for 

the enjoyment of a lay audience. Map communication has a wide range of functions across a 

large map readership. It is increasingly important that maps communicate effectively and in a 

timely manner.  

Based on the results from this study, we strongly recommend abandoning discipline 

convention (Edney 2005) in symbolizing continuous value map data. We recommend the 

adherence to data representation guidelines that have been founded on empirical evidence, such 

as Brewer (1999), in order to more effectively convey continuous value map data. Moreover, 

continuous value map design instruction should be rigorously aligned with these guidelines to 

foster the development of map makers who can accurately portray continuous value data for a 

variety of audiences (US GCRP 2009, OAS 1991, Collins et al 2013).  

Maps and other visualizations play a leading role in the understanding of dynamic Earth 

processes within and beyond the Earth system sciences. The color scheme we use to display such 

often intricate information has a significant impact on map reader understanding of continuous 

value data. The implications of the more serious consideration for continuous map color 

symbology would result in map readers interacting with map symbology designed to promote 

understanding, which would result in more informative continuous value maps from which a 

more informed community capable of discerning information would be derived. Educators, 

decision-makers, policy-makers, citizens, scientists, and most anyone else who engages with 

visual media would benefit from defined effective color schemes used to portray continuous 

value data.  
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Appendix 1: Tables 

 

 

 
 

Table 1. Participant estimation distribution data for Study 1 (Amazon Mechanical Turk, MT) and 

2 (Eye Tracking, ET).  

 

 

 
 

Table 2. Median participant estimation deviation from known map values in Study 1 and Study 

2. Negative data point labels represent extreme underestimations of map values while positive 

data point labels represent extreme overestimations. 

 

 

 
 

Table 3. Wilcoxon Signed-Rank Test results for median participant estimation deviation data for 

Study 1 and Study 2.  

 

 

 
 

Table 4. Kendall’s Coefficient of Concordance (W) for median participant estimation deviation 

data for Study 1 and Study 2.  

Study 1 (MT) Study 2 (ET)

Avg Estimation Differences Skewness Kurtosis Skewness Kurtosis

ElevCR 3.17 16.896 -0.986 0.562

WindCR 0.988 2.024 -1.564 5.249

PrecipCR 0.743 3.659 -0.92 2.533

TempCR 1.025 3.167 0.15 -0.758

Avg Estimation Differences Study 1 (MT) SD Study 2 (ET) SD

ElevCR -1.0 83.0 1.5 149.4

WindCR -17.5 89.1 -25.0 88.3

PrecipCR -3.0 58.7 -4.0 38.5

TempCR 5.0 30.4 2.0 24.5

Avg Estimation Differences Study 1 (MT) p Study 2 (ET) p

ElevCR vs WindCR -9.234 < .001 -4.029 < .001

ElevCR vs PrecipCR -0.610 0.542 -0.292 0.770

ElevCR vs TempCR -6.483 < .001 -0.852 0.394

WindCR vs PrecipCR -8.787 < .001 -3.272 0.001

WindCR vs TempCR -10.084 < .001 -3.972 < .001

PrecipCR vs TempCR -5.729 < .001 -0.350 0.726

Kendall's W

Avg Estimation Differences Study 1 (MT) Chi-Sqaure p Study 2 (ET) Chi-Sqaure p

ElevCR, WindCR, PrecipCR, TempCR 0.220 187.799 < .001 0.441 31.731 < .001
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Table 5. Participant Total Gaze Path Length distribution data for Study 2.  

 

 

 
 

Table 6. Participant median Total Gaze Path Length for Study 2. 

 

 

 
 

Table 7. Wilcoxon Signed-Rank Test assessing Total Gaze Path Length mean rank differences 

across ElevCR, WindCR, PrecipCR, and TempCR during Study 2 (Eye Tracking Study). 

 

 

 
 

Table 8. Kendall’s coefficient of concordance (W) assessing Total Gaze Path Length mean rank 

differences across ElevCR, WindCR, PrecipCR, and TempCR during Study 2 (Eye Tracking 

Study). 

 

 

 

Study 2 (ET)

Avg TGPL Skewness Kurtosis

ElevCR 0.2 -1.097

WindCR 1.045 1.459

PrecipCR 0.039 -0.927

TempCR 0.487 0.033

Avg TGPL Study 2 (ET) SD

ElevCR 13729.43 8602.52

WindCR 17184.52 9672.45

PrecipCR 14725.15 7934.74

TempCR 15508.88 10481.28

Avg TGPL Study 2 (ET) p

ElevCR vs WindCR -3.314 < 0.01

ElevCR vs PrecipCR -1.314 0.189

ElevCR vs TempCR -1.000 0.317

WindCR vs PrecipCR -2.829 < 0.01

WindCR vs TempCR -2.457 < 0.05

PrecipCR vs TempCR -0.343 0.732

Kendall's W

Avg TGPL Study 2 (ET) Chi-Sqaure p

ElevCR, WindCR, PrecipCR, TempCR 0.238 17.15 < .001
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Table 9.  Participant median filtered Gaze Plot Length distribution data for Study 2.  

 

 

 
 

Table 10. Participant median filtered Gaze Plot Length for Study 2. 

 

 

 
 

Table 11. Wilcoxon Signed-Rank Tests assessing Filtered Gaze Plot Length mean rank 

differences across ElevCR, WindCR, PrecipCR, and TempCR during Study 2 (Eye Tracking 

Study). 

 

 

 
 

Table 12. Kendall’s coefficient of concordance (W) assessing Filtered Gaze Plot Length mean 

rank differences across ElevCR, WindCR, PrecipCR, and TempCR during Study 2 (Eye 

Tracking Study). 

 

 

Study 2 (ET)

Avg GPL Skewness Kurtosis

ElevCR 1.86 4.528

WindCR 1.089 0.844

PrecipCR 1.039 0.906

TempCR 2.408 6.273

Avg GPL Study 2 (ET) SD

ElevCR 3566.5 2733.92

WindCR 5242.38 3228.8

PrecipCR 3990.78 2631.69

TempCR 3886.74 3877.59

Avg GPL Study 2 (ET) p

ElevCR vs WindCR -3.943 < .001

ElevCR vs PrecipCR -1.314 0.189

ElevCR vs TempCR -1.114 0.265

WindCR vs PrecipCR -3.743 < .001

WindCR vs TempCR -3.343 < .01

PrecipCR vs TempCR -0.057 0.954

Kendall's W

Avg GPL Study 2 (ET) Chi-Sqaure p

ElevCR, WindCR, PrecipCR, TempCR 0.275 19.8 < .001
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Table 13. Participant median Time to Estimate Map Values distribution data for Study 2. 

 

 

 
 

Table 14. Participant median Time to Estimate Map Values for Study 2. 

 

 

 
 

Table 15. Wilcoxon Signed-Rank Test assessing median participant Time to Estimate Map 

Values mean rank differences across ElevCR, WindCR, PrecipCR, and TempCR during Study 2 

(Eye Tracking Study). 

 

 

 
 

Table 16. Kendall’s coefficient of concordance (W) assessing median participant Time to 

Estimate Map Values mean rank differences across ElevCR, WindCR, PrecipCR, and TempCR 

during Study 2 (Eye Tracking Study). 

 

 

 

 

Study 2 (ET)

Avg Time (ms) Skewness Kurtosis

ElevCR 0.756 0.464

WindCR 0.841 0.339

PrecipCR 0.822 0.385

TempCR 2.44 8.481

Avg Time (ms) Study 2 (ET) SD

ElevCR 6595 3983.83

WindCR 7064 3936.6

PrecipCR 5422 3065.98

TempCR 6037.5 5104.25

Avg Time (ms) Study 2 (ET) p

ElevCR vs WindCR -2.629 < .01

ElevCR vs PrecipCR -2.314 < .05

ElevCR vs TempCR -2.629 < .01

WindCR vs PrecipCR -4.229 < .001

WindCR vs TempCR -3.457 < .01

PrecipCR vs TempCR -1.029 0.304

Kendall's W

Avg Time (ms) Study 2 (ET) Chi-Sqaure p

ElevCR, WindCR, PrecipCR, TempCR 0.398 28.65 < .001
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Appendix 2: Figures 

 

 

 
 

Figure 1. The process of developing a continuous data model (CDM): (A) original high 

resolution digital elevation model of drumlin field in Upstate New York with hydrology and 

transportation layers for reference; (B) a simple and non-visually complex sub dataset to be used 

as basis for CDM; and (C) CDM: a unitless and simple continuous dataset with scaled data 

values between 0 and 500. Note the rotational transformation from original dataset. 
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Figure 2. Continuous Data Model (CDM) variations symbolized using four ubiquitous color 

ramps: TempCR, PrecipCR, ElevCR, and WindCR. Four control points of known value: A, B, C, 

and D, are represented once per color ramp variation. Rotational transformations (in degrees) 

applied to the CDM are indicated to the upper left of each variation. These sixteen color images 

were displayed sequentially and in random order to participants during the estimation task. 

Control point labels were not displayed to test participants but are displayed here for 

demonstration. 
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B A 

 

Figure 3. Example of participant-color ramp interaction variables: Total Gaze Plot (A) Length: 

26,362.9 pixels and Filtered Gaze Plot (B) Length: 8,855.5 pixels. 
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Figure 4. Median participant estimation deviation from known map values in Study 1. The zero 

point of each histogram is emphasized with vertical dashed lines. Known map values at which 

participants estimated map data is on y-axis. Negative data point labels represent extreme 

underestimations of map values while positive data point labels represent extreme 

overestimations.  
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Figure 5. A subset of participant Total Gaze Plot Lengths on ElevCR, WindCR, PrecipCR, and 

TempCR at Control Point A (known value = 4). Note the gaze pattern variations across each 

different color ramp. The differences in participant Time to Estimate Map Values and the 

accuracy differences may be explained by color ramp complexity influencing participant 

interactions and estimations.  
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