
GRAMMATICAL INFERENCE BY CONSTRUCTIVE METHOD

Dissertation for the Degree of Ph. D.

MICHIGAN STATE UNIVERSITY

JIUNN-I LIOU

1977

LIBRARY

NHL- _ 5 tats

University

This is to certify that the

thesis entitled

GRAMMATICAL INFERENCE BY

CONSTRUCTIVE METHOD

presented by

JIUNN-I LI 0U

has been accepted towards fulfillment

of the requirements for

Ph-D- degree inCompuiep—Science

Major professor

Date 1; 21+; 1977

0-7639

@9504 056

ABSTRACT

GRAMMATICAL INFERENCE BY CONSTRUCTIVE METHOD

By Jiunn-I Liou

In this dissertation a grammatical inference problem

i is investigated in which constructive methods for inferring

finite-state and Chomsky normal form p—grammars from a p-sample

are developed. An heuristic approach to grammatical inference

is taken. Complexity measures and acceptance criterion are

used in selecting a grammar. The solution p-grammar for a

p-sample is defined as the p-grammar which has the least

complexity and generates an acceptable language.

In the first part of the thesis, a procedure for

analyzing sample structure is proposed. Five dissimilarity

measures based on the minimal cost of a sequence of edit

operations (insertion, deletion, change) are defined and dis-

cussed. The type of sequence, determined by the position and

the depth of an edit operation in a digraphic representation

of paths is used in the assignment of cost. It is shown that

these measures vary in the ability to discriminate among

strings. A clustering algorithm.based on a labelled MST and

seven interpretations of inconsistent edges are proposed to

break a large inference problem into several small ones.

The algorithm uses the notions of "common substrings" and

Jiunn-I Liou

"length" and results in an inference tree. It is argued

that the inference tree will provide sufficient information

for finding recursive and other string structures, as well

as promoting the efficiency of construction.

Techniques used as tools for the development of

constructive methods are presented in the second part of the

thesis. A size complexity measure is suggested to evaluate

the performance of the five dissimilarity measures. A com-

plexity measure and several difference measures based on

information theory are defined and used to optimize the con-

struction of p-grammars. The difference measures are shown

to be bounded and more realistic than others in the literature.

The Kolmogrov-Smirnov tests are suggested to measure the

difference between language and sample and are compared with

the chi-square goodness of fit test.

Finally, all the above techniques are integrated into

constructive methods for the inference of finite-state and

Chomsky normal form p-grammars. The method consists of two

parts: Construct an initial p-grammar for the p-sample

according to the inference tree, then merge productions to

generate candidate p-grammars. A set of rules based on six

different situations are defined for merging pair-related

productions. This constructive method has several advantages

over other methods. First, it uses a very general, unique

and computationally efficient method for analyzing sample

structure. Second, it provides a more realistic difference

Jiunan Liou

measure for p-languages than those suggested in the literature.

Third, it is reasonable and can be used in very general cases.

The method is different from others in the way it analyzes

sample structure, creates candidate p-grammars and in its

heuristic strategies.

GRAMMATICAL INFERENCE BY CONSTRUCTIVE METHOD

BY

Jiunn-I Liou

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

January, 1977

ACKNOWLEDGEMENTS

I want to thank each of the members of my doctoral

committee for his unique contribution. Thanks go to Dr. Mort

A. Rahimi for serving as my academic advisor in the early

stage of my program and for continually encouraging me during

the course of this research. Thanks go to Dr. Anil K. Jain,

Dr. John J. Forsyth, Dr. Lewis Greenberg and Dr. Dennis D.

Gilliland for serving on my guidance committee and their

critical review of this thesis. My special thanks go to

Dr. Herry Hedges, Dr. Carl V. Page and the Division of Engineer—

ing Research for providing me with financial assistance during

my thesis writing.

Of course the committee member and faculty member I am

most indebted to is my thesis advisor, Dr. Richard C. Dubes.

Mbst of my research abilities were developed by him. ‘Without

his encouragement, patience and guidance I would never had the

chance to complete my degree.

I am also indebted to my wife, Alice Shih-Sing, for

her love, patience and understanding throughout my years of

study.

ii

CHAPTER

II.

III.

TABLE OF CONTENTS

INTRODUCTION .

1.1. Basic Notations

1.2. General Discussion of. Grammatical

Inference Problem . .

1.3. Statement of the Problem and

Assumptions .

1.4. Organization of this Thesis

1.5. Contributions of this Thesis

LITERATURE REVIEW

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

Introduction . . .

Theoretical Models .

Probability Concepts .

2.3.1. Maximum.Likelihood Estimation

Techniques . .

2.3.2. Acceptance Testing of Candi-

date Grammars . . .

2.3.3. Difference Measure for

Languages

Grammatical Complexity Measures

2.4.1. Complexity Measure Based on

Size . .

2.4.2. Complexity Measure Based on.

Information Theory .

Constructive Methods for Grammatical

Inference . . .

Summary .

ANALYSIS OF SAMPLE STRINGS .

3.1.

3.2.

3.3.

Introduction

Syntactical Structure of Sample

Strings

Dissimilarity Measure

iii

e
n
d

r
o
c
>
u
>

\
o

\
J
o
u
m

u
:

r
4

I
d

’
1
!

m (
'
D

F
‘

i
d

P
‘

i
4

a
:

o
x

L
n

.
p

18

19

21

24

26

26

28

30

TABLE OF CONTENTS (Continued . . .)

CHAPTER

IV.

3.4.

3.5.

3.3.1. Weighted Levenshtein Dis-

tance and Uniform Edge

Weighting . .

3.3.2. Modification I - Path Weight

Adjustment . .

3.3.3. Modification II - Normal Edge

Weighting . . .

3.3.4. Modification III - Binormal

Edge Weighting .

3.3.5. Modification IV - Depth Edge

Weighting

Cluster Analysis

3.4.2 Clustering Method . .

3.4.3 Clustering Method for Gram-

matical Inference . . .

Summary .

GRAMMATICAL COMPLEXITY AND ACCEPTANCE CRI-

TERION OF LANGUAGES . . .

4.1.

4.2.

4.3.

4.4.

4.5.

Introduction

Solution Grammar.

4.2.1. Halting Problem

4.2.2. Relationship Between Sample

Strings and Grammars . .

4.2.3. The Definition of Solution

Grammar

Complexity of Grammars

4.3.1. Size Complexity Measure .

4.3.2. General Complexity Measure

Based on Size Measure .

4.3.3. Complexity Measure for

Evaluation .

4.3.4. Complexity Measure for

Selecting the Best Grammar

Difference Measures of Languages

4.4.1. General Discussion .

4.4.2. Definitions and Properties

Statistical Acceptance Criterion of

Languages .

iv

3.4.1. Labelled Minimal Spanning Tree.

. 31

. 37

. 42

. 44

. 47

. 51

53

. 55

. 58

. 63

. 65

. 65

. 66

. 67

. 69

. 7O

. 7O

. 71

. 72

. 74

. 75

. 79

. 80

83

. 88

TABLE OF CONTENTS (Continued . . .)

CHAPTER

VI.

4.5.1. Appropriateness of a Langu-

age for a Sample .

4.5.2. Acceptance Criteria Based on .

Statistical Tests

4.5.2.1. Chi-Square Goodness

of Fit Test .

4.5.2.2. The Kolmogrov-

Smirnov Tests

4.6. Summary .

INFERENCE OF PROBABILISTIC GRAMMARS .

5.1. Introduction . . .

5.2. Assigning Production Probabilities .

5.3.1. Constructing Initial Finite-

State P-Grammar . .

5.3.2. Constructing the Candidate

FSPG

5.3.2.1. Rules for Merging

Productions and

Consolidation

5.3.2.2. Search Strategy

5.4. Inference of Context-Free P-Grammars

5.4.1. Constructing the Initial

Chomsky Normal Form.P-Grammar.

5.4.2. Constructing the Candidate

CNFPG

5.4.2.1. Rules for Merging

Productions and

Consolidation

5.4.2.2. Search Strategy.

5.5 Comparison

5.6 Computational Considerations

5.7 Summary .

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH .

6.1. Summary and Conclusions

I 101

5.3. Inference of Finite- State p--Grammars .

89

91

91

93

97

99

99

103

104

. 106

. 107

. 108

. 111

111

. 114

. 114

. 118

. 119

. 123

. 125

. 127

. 127

TABLE OF CONTENTS (Continued .

CHAPTER

6.2. Future Research .

APPENDICES

BIBLIOGRAPHY.

vi

FIGURE

m
N
O
U
'
I
D
L
D
N

LIST OF FIGURES

AB Digraph .

Uniform Edge Weighting .

AB Digraph Under Uniform Edge Weighting

AB Digraph Under Normal Edge Weighting .

AB Digraph Under Binormal Edge Weighting .

AB Digraph Under Depth Edge Weighting

A Labelled MST .

(a) A Labelled MST for S .

(b) An Inference Tree for S

vii

CHAPTER I

INTRODUCTION

The problem of learning a grammar based on a set of

sample strings is called the grammatical inference problem.

A survey of literature /27/,/28/ shows that the problem of

grammatical inference has recently received a great deal of

attention. The importance of studying grammatical inference

has been pointed out in several papers /25/,/27/,/28/,/30/,

/61/. Based on this substantial information, this thesis

will study a grammatical inference problem“

In this chapter, we will introduce some basic nota-

tions for grammatical inference, state the grammatical

inference problem studied in this thesis, describe the ideas

presented, lay out the organization of this thesis and claim

its major contributions.

1.1. BASIC NOTATIONS

A number of notations are needed for understanding

grammatical inference. These notations are described below.

A phrase structure grammar G, as defined in /32/, is

a 4-tuple, G = (Vn’ V R, A), where Vn is a finite set of
t)

nonterminal symbols; Vt is a finite set of terminal symbols;

2

A is the start symbol, A.é:Vn; R is a finite set of produc-

tion rules of the form;

—,'> evuv* v*
B C’B (n t) - t,

The language defined by the grammar G is denoted L(G),

7':

C é-(Vn U Vt)

* *

L(G) = {x Iert , A==?x}

*

A===+ux means x is derived from A by successive

applications of productions in R.

A phrase structure grammar G is context-free if every

production B~*? C in R satisfies £(B)=1, where £(B) is the

length of the string B.

It is known that /34/ any context-free language can be

generated by a grammar in which all productions are of the

form:

B-—?CD, or B—aa, where B, C, D e Vn’ a e- Vt“

Grammars of this type are called Chomsky normal form

grammars.

A phrase structure grammar G is regular or finite

stag; if every production in R is of the form

BaaC or B-——7a, B, CéVn, ath.

A sample of a language L is any subset S of L. The

variations "sample S" and "positive sample 8+" will be used

synonymously. The sample S is complete if S = L.

A denumerable class of grammars C is said to be

admissible if for any x.e v: it is decidable whether or not

x<:L(G), for any G e C. A grammar G is compatible with a

sample S if S Q L(G). Tree representation is an effective

3

way to represent a class of admissible grammars C, and is

defined as: /48/

(1) Each node in the tree corresponds to a grammar G in C.

(2) A node Gt is a descendant of a node Gt-l if and only if

Gt can be obtained from Gt-l under some conditions, such

as adding or merging productions.

A probabilistic grammar /27/ (p-grammar) Gp = (G,PG)

is a grammar with production probabilities PC.

A probabilisticjpositive)sample SP 8 (S, P8) of a

language L is a sample S with string probabilities PS.

1.2. GENERAL DISCUSSION OF GRAMMATICAL INFERENCE PROBLEM

The primary problem of grammatical inference can be

formulated as follows: Given a sample S infer a grammar G to

describe the given sample S and other strings which, in some

sense, are of the same nature as S. Precisely the same

problem arises in trying to choose a model (theory, function)

to explain a collection of sample data.

The problem of inferring finite-state grammars can be

approached analytically /3/,/27/,/50/. Since many properties

are undecidable about context-free grammars /34/, most

studies in inferring context-free grammars are limited to

specific types of context-free grammars and often rely on

heuristic methods /l4/-/16/; /22/,/59/. Two methods, the

enumerative method and the constructive method, have been

studied in grammatical inference. Enumerative methods simply

4

map the set of positive integers to a class of grammars.

Constructive methods are based on the syntactical structure

of sample strings. In inferring or guessing a grammar based

on a sequence of strings, Gold /30/ has shown that no guess-

ing rules are uniformly better than enumeration. Enumerative

methods have been discussed, developed and investigated in

the literature /35/./36/./46/./50/./67/.

To enumerate all possible grammars in a tree, a tree

representation for a class of grammars can be defined before

enumeration, or an algorithm can be defined which visits all

nodes in some order and defines the structure of the grammar

found at each node. Enumerative methods admit several vari-

ations, such as the formalism of the state-space approach to

problemesolving /48/, which involves problem definition,

searching strategy and heuristic function. Several enumera-

tive methods have been developed and discussed to infer,

finite-state and context-free grammars, /50/,/67/, but

enumerative methods for p-grammars have not been investigated.

In inferring a grammar from a sample, Fu /27/ has

stated that no methods will be more efficient than construc-

tive methods in the sense of constructing an approximate

grammar in a reasonable time. Constructive methods have been

developed, discussed and investigated in the literature /11/,

/16/. The common features of constructive methods are:

(1) Analyze the syntactical structure of the sample strings.

(2) Construct a grammar for the sample to reflect the

syntactical structure.

(3) Merge or add production to get a more acceptable grammar.

In inferring a p-grammar for a p-sample, probability

measurements can be used to evaluate the appropriateness of

an inferred grammar. Constructive methods also admit

several variations, such as methods for analyzing the syn-

tactical structure of sample strings, methods for construct-

ing candidate grammars and methods for testing constructed

grammars. Several constructive methods for the inference of

finite-state grammars have been proposed /3/,/20/. The

inference of context-free grammars by constructive methods

for subsets of context-free languages has also been investi-

gated. /l4/-/l6/, /24/,/6l/,/62/. The inference of finite-

state /52/ and context-free /11/ p-grammars has been

suggested. However, there is no general procedure for

analyzing the syntactical structure of sample strings, and no

inherent limitations on developing methods for generating

candidate grammars. In addition, only a few statistical pro-

cedures have been applied to grammatical inference for

decision making. Based on these facts, there is a big

challenge in developing general proceduresfor analyzing

sample strings, generating candidate grammars, and testing the

acceptance of an inferred grammar. This thesis responds to

this challenge.

6

lgg. STATEMENT OF THE PROBLEM AND ASSUMPTIONS

The grammatical inference problem for this thesis is

formulated as follows: Given a probabilistic positive sample

Sp, construct an acceptable probabilistic grammar Gp to des-

cribe Sp' For convenience, we call SP a probabilistic sample

(p-sample).

The basic assumptions for this study are:

(1) The probabilistic sample is finite;

(2) The probabilistic sample is randomly drawn from the source

language;

(3) The size of the probabilistic sample is large enough to

represent the source language;

(4) The types of grammar being inferred are finite-state and

Chomsky normal form p-grammars.

1.4. ORGANIZATION OF THIS THESIS

This thesis includes six chapters. The first chapter

introduces the concept of grammatical inference, defines the

grammatical inference problem for this thesis and claims the

major contributions of the thesis. The second chapter reviews

appropriate literature and discusses the most important

methods and techniques related to this thesis. The third

chapter defines and discusses methods for analyzing the syn-

tactical structure of sample strings. The fourth chapter

defines grammatical complexity measures and acceptance criteria

for grammatical inference. The fifth chapter discusses the

problem of generating candidate grammars and presents the

7

procedure for constructing candidate finite-state and Chomsky

normal form p-grammars. Comparisons are then made between

this procedure and other methods. The sixth chapter draws

conclusions and suggests further research.

lié- CONTRIBUTIONS OF THIS THESIS

The main contributions of this thesis are listed as

below.

(1) The models, methods and literature of grammatical infer-

ence are thoroughly reviewed and discussed.

(2) A new, general and reasonable method is proposed for

analyzing the syntactical structure of sample strings.

(3) The concept of dissimilarity measure is applied to

grammatical inference, so that sample strings can be

analyzed in a new dimension.

(4) Five different dissimilarity measures for discriminating

between strings are developed, so that strings with

similar syntax can be identified.

(5) For the first time, the concept of clustering is applied

to grammatical inference, based on a labelled minimum

spanning tree (MST). The resultant inference tree pro-

vides the framework necessary for’computationally efficient

grammatical inference.

(6) The role of grammatical complexity in constructive methods

for grammatical inference is thoroughly discussed and

analyzed.

(7)

(8)

(9)

8

Several difference measures between p-languages are de-

fined and discussed. Modifications are suggested to

make differences between p-languages more realistic.

The application of non-parametric statistics to gram-

matical inference is expanded, and the Kolmogrov-Smirnov

maximum deviation test is introduced and compared to the

chi-square test.

A general and practical constructive method, guided by

an inference tree, is developed for inferring finite-

state and Chomsky normal form p-grammars.

CHAPTER II

LITERATURE REVIEW

2.1. INTRODUCTION

Our purpose in this chapter is to outline the grams

matical inference methods already developed by representing

their central concepts, results and techniques. We do not

attempt to present each method in its entirety, nor to pre-

sent them in historical order. Rather we concentrate on

exhibiting those concepts and techniques which are important

to this thesis, and on presenting them froman unified point

of view.

The most significant application of grammatical in-

ference methods has been to syntactical pattern recognition

/25/. Other application areas include information retrieval

/62/, programming language design [16], translating and com-

piling /22/, graphic languages /39/, man-machine communication

/54/, and artificial intelligence /23/.

Three comprehensive surveys of grammatical inference

/27/,/28/,/2/, have laid out the most important work in this

area. In this chapter, we will be presenting grammatical

inference models, probabilistic concepts, measurement concepts

and inference methods for both non-probabilistic and probabil-

istic grammars, concentrating on those ideas related to the

work in this thesis.

10

2.2. THEORETICAL MODELS

In this section, we will formulate the basic theo-

retical framework for solving the problem of grammatical

inference as it exists in the literature.

The first model of language identification was intro-

duced by Solomonoff /61/, called inductive inference. The

model consists of a teacher, a set of sample strings and an

inductive procedure. This model only discovers certain

recursive productions for a context-free grammar.

The concept of language learnability was first formu-

lated by Gold /30/. He introduced exact language identification

which infers an exact, non-probabilistic grammar for an un-

known language. The model consists of three components; a

definition of learnability, a method of information presenta-

tion, and a naming relation which assigns names to languages.

A language L is said to be identified in the limit, if a

grammatical inference machine, M, exists which guesses a name

for L each time it receives a unit of information and for

‘which the guesses are all the same and are a name of L after

a finite time.

Gold also defined two other learnabilities: finite

identification and fixed time identification. Two basic

methods of presenting information are proposed: text presenta-

tion and informant presentation.

Gold's main results concern the conditions for in-

formation presentation under which a language can be identified

11

in the limit by enumeration. The results show a great

difference in the classes of languages that can be identified

in the limit by effectively enumerating a class of admissible

grammars from two different methods of presenting information.

The exact language identification has several dis-

advantages such as only being valid through an informant

presentation. In addition, inference procedures based on

this model are limited to enumeration.

Feldman /21/ introduced a weaker notion of learnability

called lapguage approachability, which extends the class of

languages learnable from a positive information sequence

(text), reduces the information needed to identify a language,

and enlarges the domain of language identification. This

model requires a complexity measure on a class of grammars,

so that the class of grammars can be effectively enumerated

in the order of their complexities. The concept of inferring

the best grammar for a language with regard to grammatical

complexity is practicable because of the time and information

needed to identify a language. Feldman's main results show

that for any class C of grammars ordered by complexities,

there is a machine which can infer the best grammar for any

finite positive sample.

Wharton /68/ presented the theory of approximate

lapguage identification which is analogous to the existing

theory of exact language identification. Approximate language

identification is an extension of language approachability.

12

Defining different metrics on languages, makes the difference

between languages measurable, and indicates the degree of

approximation between two languages. The difference between

languages can be used as an acceptance criterion for an in-

ferred grammar. With the help of grammatical complexity and

language difference, grammatical inference problems can be

solved by either an enumerative method or a constructive

method. Approximate language identification is more practical

than other models, not only because various kinds of procedures

are applicable, but also because it only requires that the

solution grammar generates a language which approximates the

unidentified language. In most cases, the best grammar for

a language can be found in a reasonable time.

In this research, we use the concept of approximate

language identification to construct the best grammar for a

set of sample strings, with respect to grammatical complexity

and difference between languages. Therefore, the approximate

language identification model will be the most significant

model in this research.

2.3. PROBABILITY CONCEPTS

Statistical information is as important as structural

information, when inferring a probabilistic grammar based on

a finite sample. For the past few years, probabilistic

grammars and probabilistic automata have received increasing

attention /9 /,/26/,/64/,/65/. The mathematical formulations

of probabilistic grammars and probabilistic automata have

13

been studied in several papers /l9/,/57/,/58/,/63/. The

relations between probabilistic automata and probabilistic

language have been described /29/. The generative capacity

of grammars can be measured by Shannon's entropy /59/. The

information-theoretic concept of entropy of a context free

language and its relation to the structure generating func-

tion have been investigated /43/. The information-theoretic

concept of entropy has been related to probabilistic grammars

/63/. Soule /63/ has calculated the entropies of a deriva-

tion of a sentence and the average terminal symbol and has

proposed methods to maximize the information rate.

Booth and Thompson /9/, presented two methods for

assigning probabilities to words in a language, developed

several properties of probabilistic languages, and investi-

gated the conditions under which a p-grammar is consistent.

Horning /36/ and Patel /52/ presented maximum.likelihood esti-

mation techniques to determine production probabilities from

an experimental set. The concept of strong-approximation of

a probabilistic language was introduced by Booth /7/. Other

type of approximations based on some type of distance measure

were developed by Maryanski /46/. Horning /36/, has des-

cribed an acceptance technique based on the concept of hypo-

thesis testing. In his method, a finite set of candidate

probabilistic grammars is given and one must be selected

from the set of grammars which best describes the experimental

set.

14

In this section, we will relate these works to this

thesis.

2.3.1. MAXIMUM LIKELIHOOD ESTIMATION TECHNIQUES

In inferring a p-grammar from a p-sample, it is neces-

sary to minimize the difference between the resultant p-

language and the p-sample. The p-language should match the

p—sample, both in probability and structure. Minimizing this

difference is the same as estimating the production probabil-

ities for a grammar from the p-sample. Maximum likelihood

estimates of the production probabilities for a p-grammar G

maximize the probability of a string being generated by G.

This method is a reasonable method for estimating the produc-

tion probabilities of unambiguous grammars. This is not true

for ambiguous grammars, since there exists more than one

leftmost derivation for some strings in the language. This

simple method can be described as follows:

Let G = (Vn’ V R, P, A) be an unambiguous p-grammar,
t,

and E = { (x1,Cl), ,(xn,Cn) } be the sample information

where xié.S and C1 is an associated estimated or a-priori

probability of xi. Let Vn = { A,A1,...,Ar } be the finite set

of nonterminals, and Pi be the probability of the production

1
+

Under single class estimation,

be the estimated pro-

duction probability for Pij’

the maximum likelihood estimate for Pij is

Pij = nij/I nij’ where nij = Zc-S CkNij(xk)

J th.

15

and Nij(xk) is the number of times that the production

Ai—a'Bj is used in generating xk.

For multiclass estimation, the procedure is similar

and will not be presented here.

2.3.2. ACCEPTANCE TESTING OF CANDIDATE GRAMMARS

The purpose of statistical tests in grammatical in-

ference is to choose a p-grammar that can adequately describe

the given p-sample. The only two statistical tests that have

been used in grammatical inference are Bayesian acceptance

[51/ and the chi-square test /12/. There is a functional

difference between these two tests. The chi-square test is

used to judge the degree of closeness between a p-language and

a p-sample, while the Bayes test is used to select the best.

grammar from a class of grammar for the sample. The Bayes'

test requires a prior probability distribution over a class

of grammars which is not compatible with the procedure pre-

sented for this thesis. The chi-square test is used to test

the difference between the theoretical and observed distribu-

tions of a sample /46/ and is described below.

Let ei be the expected number of times that xi e S

appears in the sample S, and let n be the size of S, and let

k be the number of distinct categories. Thus ei = nPr(xi).

The d2 statistic measures the difference between the expected

frequency (ei) and the observed frequency (Ci) and is defined

as:

2
d a 2 (Ci - ei) /ei

16

Under general conditions, the distribution of d2 can be

closely approximated by a chi-square distribution with k-l

degrees of freedom (df) /12/.

An hypothesis testing problem can be stated as:

H = C1 for all i, ififk
0‘ ei

H1: ei f ci for some i, lfisk

Let h2 be the acceptance criterion for a.chi-square

test. Then the decision rule under a 0-1 loss function is:

2 2 2 2
Accept HO if d <h , or Reject HO if d 2h

A meaningful application of the chi-square test

requires that the frequency of every string in S should be

no less than 5 or 10. In inferring a p-grammar for a p-sample,

it is possible that some words may occur with low frequencies.

In such a case, the chi-square test may not find an appropriate

grammar for the sample. The temptation may arise to make

the sample size extraordinary large. However, the chi-square

test becomes very sensitive to small differences as the

sample size becomes very large. The properties of the chi-

square test and the disadvantages when used in grammatical

inference will be discussed in Sec. 4.5.2.

2.3.3. DIFFERENCE MEASURE FOR LANGUAGES

The difference between languages is used to evaluate

the appropriateness of an inferred grammar for a set of

sample strings. There are at least three different approaches

tc> the notion of difference measure of languages.

17

The first approach to measuring differences between

languages is given by Cook /11/ and is called the discrepancy

measure. It is an information theoretic measure and based on

the probability distributions of the sample and the language

(Cf. Sec. 4.4.1.). A second type of difference measure was

proposed by Wharton /68/, who defined metrics on the class

of all languages U = { LILCI-Vt+ } over a finite terminal

vocabulary Vt' He considered two types of metrics, the

discrete metric and the weight metric. The weight metric is

intuitively reasonable in grammatical inference by construc-

tive methods, since the grammar inferred is an approximation

to an exact grammar for the sample. Assigning weights to

strings in a language is difficult if the language is probab-

ilistic.

The third type of difference measure is based on the

string probability /46/. This difference measure only con-

siders the difference of string probabilities over all

strings in one language which will reduce the accuracy of the

difference.

Each of the three different types of difference

measures has some disadvantages. Other difference measures

are possible, but it is difficult to establish another dimen-

sion that can be used to measure the difference between

LLanguages. The difference measure between p-languages based

cum information theory will be most significant to this thesis,

since it involves both syntactical and probability differences.

18

2.4. GRAMMATICAL COMPLEXITY MEASURE

The idea of grammatical complexity can be used to

select a good grammar to represent a sample /21/,/67/.

Grammatical complexity measures have received increasing

attention over the past few years /5/,/6/,/13/,/32/,/56/.

Two different categories of grammatical complexity measures

are those based on the size of grammars, and those based on

information theory. In this section, we will present the

concepts underlying this idea.

2.4.1. COMPLEXITY MEASURE BASED ON SIZE

The size measure of machines is based on the number

of states in the machine /5/. The relative size of two

machines is independent of the particular measure used /6/.

The measure of complexity is the number of steps taken by

machines to compute a function.

Wharton [67/ uses the concept of size measure in

approximation language identification (Cf. Sec. 4.3.1.). He

introduces the maximum length of the right hand sides of

productions as a parameter in the complexity measure. Thus

the class of context-free grammars may be distinguished by

their special normal form of productions. Feldman /21/ de-

fined a general grammatical complexity measure (Cf. Sec.

4.3.2.). Based on this measure, there are many ways to define

grammatical complexity measures, but there is no optimal

grammatical complexity measure among all complexity measures.

l9

Feldman's and Wharton's complexity measures are for the pur-

pose of effectively enumerating a class of grammars. They

may also be used for other purposes such as evaluation.

Salomma /56/ defines the index of a grammar and the index of

a language which is similar to size measure. Gruska [32/

presented several classifications of context-free languages

which are analogous to the size measure.

2gflpg. COMPLEXITY MEASURES BASED ON INFORMATION THEORY

The information conveyed by an event is the decrease

in uncertainty that comes about when one of the events does

occur. The average information conveyed by a complete set of

events is the entropy. Shannon /59/ notes several properties

required of a measure of the information conveyed by a

complete set of events. Cook /11/ defined information-

theoretical complexity and discrepancy measures for grammatical

inference.(Cf. Sec. 4.3.4.) Cook's complexity measure assumes

that the complexity of a context-free p-grammar is the sum.of

production complexities. Since context-free grammars have a

single nonterminal on the left hand side of each production,

the production complexity is determined by the right hand

side. This assumption is reasonable only if productions in

context-free grammars are statistical independent. The com—

plexity measure only considers the complexities contributed

by two sources: the production probability and the right

hand side of each production. That is not enough, since there

exists some degree of similarity among productions of any

20

context-free grammar. Two context-free grammars can have

productions very similar to each other in length and symbol

distribution. However, all productions in one might be of

the same type, as in a pivot grammar, while those in the

other can be heterogeneous. Certainly, this fact should in-

fluence complexity.

Horning /36/ suggested that if complexity is defined

as a monotonic function of the negative logarithm of the

conditional probability Pr(Gi|S,C), where Gié: C, and C is a

class of p—grammars which generate the sample S, then the

intrinsic complexity of the grammar and the relative complex-

ity of the sample given the grammar are defined as:

- log Pr(Gi) and - [log Pr(S|Gi) - log Pr(S)]

This is analogous to Cook's complexity measure, since it con-

siders both the information needed to select the grammar Gi

from C, and the information needed to generate the sample S.

This complexity measure is different from Cook's complexity

measure. The complexity of a grammar Gieé C depends on Pr(Gi)

and Pr(S|Gi), while Cook's complexity measure considers produc-

tions of a p-grammar.

Feldman, et a1. /24/ define a derivational complexity

of a set of strings relative to a grammar. A real valued

function similar to a probability function is defined over

the productions of a grammar. The derivational complexity of

a grammar is based on the values assigned by the function to

productions. This complexity measure is similar to Horning's

21

complexity measure, since they all depend on the probability

generated by a p-grammar.

Three different complexity measures based on informa-

tion theory can be thus used to measure the complexity of a

p-grammar. Horning's complexity measure requires the prior

probability Pr(Gi) and the conditional probability distribu-

tion Pr(S|Gi). Feldman's complexity measure only concerns

the derivational complexity of a sample relative to a grammar.

Cook's complexity measure ignores the similarity among pro-

ductions in a grammar. Therefore a complexity measure should

be defined which is similar to Cook's complexity measure but

will consider the difference among productions. Also, other

complexity measures based on information theory can be defined

that will possess desirable properties.

An information measure is completely different from

a size measure. Different complexity measures can be defined

for different purposes and interests. For measuring the com-

plexity of a p-grammar, an information measure is better than

a size measure since it considers the production probabilities

as well as the productions themselves.

2.5. CONSTRUCTIVE METHODS FOR GRAMMATICAL INFERENCE

The various grammatical inference methods developed

in the literatures can be classified into two categories:

enumerative methods and constructive methods. Since this

thesis studies constructive'mEthOdS.enumerative method /33/

22

/35/,/36/,/46/,/48/,/67/, will not be discussed. Constructive

methods are based on the structural and statistical properties

of the strings in the sample. In this section, we will dis-

cuss some of the most important work in this area.

A constructive method for inferring a recursive,

unambiguous finite-state grammar from a sample S has been

presented /20/. The procedure first constructs a grammar

that generates exactly S, then produces a simpler, recursive

grammar, that adds more strings to the generated language.

Two constructive methods based on a sample S has been des-

cribed for finite state grammars /3/. The algorithms will

infer a grammar which generates S and strings similar to S.

The first algorithm /3/ creates and compares sublanguages

Sw = {xiwx €.S }. All strings in S are grouped together when

they have the same initial substring, w. Let Sw be the one

sublanguage, say the ith. A production Ai---->'aAj is created,

if Swa is the other sublanguage, say the jth , and Ai—s-a is

created if we e-s. The second algorithm /3/ is called a

linear grammatical inference program, and operates analogously

to the finite-state program.

A constructive method for the inference of finite-

state p-grammar has been presented [52/ which starts with a

small subset H of the positive sample S and generates the

set of all possible deterministic derived grammars that could

describe this subset. Then it uses the maximum-likelihood

method to assign production probabilities. The search is

23

terminated if one of the grammars is accepted according to

a chi-square test. Otherwise, the size of H is enlarged.

The search continues until either an acceptable grammar is

found or the subset H is equal to S.

A method for discovering the nesting or recursive

structure in a context-free grammar has been described /6l/,

/62/. The procedure cannot find the recursive property of a

context-free grammar with self-embedding, e.g. A-—a>aAb,acVE,

bté Vt’ A E: Vn' A constructive method for inferring a

pivot grammar has been described /24/. The strategy is to

find self-embedding in the positive sample. The inference of

9perator_precedence grammars from a structural information

sequence of a language has also been presented /l4/-/l6/.

One of the most important constructive methods for

the inference of context-free p-grammars is the hill -climbing

method /ll/. In this procedure, a cost function is defined

that measures the complexity of a grammar and the discrepancy

between languages. The procedure starts with the grammar in

which the initial symbol goes to each string in the sample

with the given string probability. It then examines possible

simplifications of the grammar interatively. The inference

procedure makes the simplification that yields the grammar of

the lowest complexity, provided that it lowers the cost. The

process continues until no simplifications that lead to

lower-cost grammars are possible.

Another semi-heuristic constructive method for the

inference of context-free p—grammars has been developed /46/

24

in which candidate grammars are generated by searching for

various structural features of the sample, such as the "uvwxy"

property /34/ of context-free grammars, and constructing

corresponding grammars. This procedure is satisfactory for

simple grammars. If the original grammar which generates

the sample is ambiguous, the language generated by the in-

ferred grammars are statistically close to the sample, but

in some cases their productions are quite different.

The problem of grammatical inference by constructive

methods is still open for the following reasons:

(1) Other heuristic strategies exist for constructing grammars.

(2) No best evaluation procedure for improving the selection

of grammars exists.

(3) No best difference measure between languages for deciding

the appropriateness of a language exists.

g;6. SUMMARY

In this chapter, we have summarized the most important

work in the area of grammatical inference. The concepts of

exact language identification and approximate language

identification have been described. Two major approaches to

grammatical inference have been presented and recent work on

the inference of probabilistic and non-probabilistic grammars

have been summarized.

Grammatical inference is still in its infancy. Much

theoretical and experimental research needs to be done before

we can establish the principles underlying grammatical

25

inference. Many problems are still open especially in the

inference of probabilistic and high dimensional grammars.

A big challenge exists in grammatical inference by construc-

tive methods, and the inference of context-free grammars.

CHAPTER III

ANALYSIS OF SAMPLE STRINGS

§;l. INTRODUCTION

The purpose of this chapter is to present efficient

and general procedures for analyzing the syntactical structure

of a given set of sample strings, called the sample structure.

The results obtained from these procedures will provide a

framework for constructing a grammar whose language is simi-

lar to the given set of sample strings. (Cf. Chap. V)

In the literature, a grammar for a set of sample

strings is inferred in two steps. First, construct a grammar

for each individual string. Then, merge all grammars into a

single grammar. The number of grammars and productions con-

structed during the first step increases linearly with the

size of the sample. Feldman /2/ proposed four steps for in-

ferring grammars for a set of sample strings. His first

step is to analyze the syntactical structure of the given

set of sample strings. This can be accomplished in many ways

and will be discussed in Sec. 3.2.

In this chapter, we will propose a cluster analysis

method which partitions the set of sample strings according

to their similarities and creates an inference tree. Then we

26

27

will construct a grammar for each cluster. This procedure

substantially reduces the number of grammars and produc-

tions constructed in the first step. Also, the cluster

analysis will suggest recursive structures for strings which

will indicate recursive productions for the inferred grammar.

The cluster analysis is based on a measure of prox-

imity between strings. A dissimilarity (distance) measure

for strings of different lengths will be prOposed in Sec. 3.3.

The dissimilarity measure is defined as the minimum.cost

sequence of ”edit operations" needed to change one string to

another /49/,/66/. The inadequacy of assigning uniform cost

for edit operations regardless of the position of the opera-

tion in the operation sequence will be discussed. Alternative

ways to assign cost for edit Operations will be presented,

and their properties will be studied. For the purpose of

detecting certain syntactical relations between strings, the

dissimilarity measure will be modified by letting the weights

for edit operations depend on their positions in the Operation

sequence.

A cluster analysis method based on the minimal spanning

tree is a powerful and general tool for detecting and des-

cribing the structure of point clusters /69/. In Sec. 3.4.

we will describe this clustering procedure and discuss the

significance of cutting inconsistent edges in the minimal

spanning tree so that a number of meaningful clusters may be

formed.

28

3.2. SYNTACTICAL STRUCTURE OF SAMPLE STRINGS

The syntactical structure of a finite-state language

is different from that of a context-free language. In this

section, we will review the methods which have already been

developed to analyze the syntactical structure of a set of

sample strings for inferring both finite-state and context-

free grammars.

The analysis of the syntactical structure of a finite-

state language is based on the particular form of productions

for finite-state grammars (see Sec. 1.1.). Two methods have

been proposed to analyze the syntactical structure of a

finite-state language. One uses the idea of formal derivative

/10/. The other uses the idea of K-tails of a derivative /27/.

These methods are described as follows:

The formal derivative of a set of strings S with res-

pect to the symbol a e Vt is defined as:

DaS = { xlaxé:S }.

As an example, let S = { 01, 100, 111, 0100 }. Then

D S = { 1,100 }, D S = { 00,11 }.
O 1

Based on the formal derivative, a canonical derivative

finite-state grammar can be defined for a sample S /52/. The

canonical derivative grammar can be used to define a class C

of derived grammars /52/. In many situations, the set C

will not contain the grammar that generated the sample S /27/.

e

Let u = alaz...anéVt, and let S 6 L(G). The k-

tails of S with respect to u is defined as:

29

g(u,S,k) = { xlxmé'DuS, lefk }.

For example let S = { 01, 100, 111, 0100 }. Then

g(O,S,2) =”{1}, g(0,s,3) = { 1,100}, and

g(l,S,2) = { 00,11 }.

The k-tails method can be used to define equivalence

classes on the states of the canonical derivative finite-

state grammar generated by a complete sample 8 /27/. This

method can only obtain rough solution grammars for the

sample S.

The k-tails of a finite-state language is based on

the formal derivative. These two methods are similar and

lead to similar results. These methods can be easily pro-

grammed and used to analyze a set of sample strings from a

finite-state language. But they are limited to sequentially

scanning characters in strings from a sample. An adequate

syntactic structure for the sample cannot be discovered by

these methods. In addition, grammatical inference methods

based on these methods are constricted in their procedures

for merging productions. We want to develop a general tech-

nique for analyzing syntactic relations among strings so

that a more reasonable sample structure can be found and

mergers of productions are clear, flexible and permit heuris-

tic strategies.

The syntactical structure of a context-free language

is very complicated. To date, only limited research has been

done in investigating subsets of a context-free language,

30

such as Operator precedence grammars and pivot grammars.

For inferring Operator precedence grammars, each string in

the sample is evaluated to establish a set Of precedence

relationships that exist on the elements Of the strings /l4/-

/l6/. For inferring pivot grammars, the main strategy is to

find self-embedding in the sample strings by using substring

relationships /24/. There is no general method for analyzing

the syntax of a context-free language. Existing techniques

for the analysis Of syntactical structure of context-free

languages are applicable only to small subsets of the

language. Thus we are motivated to develop a general method

for analyzing the syntactical structure Of context-free

languages.

3.3. DISSIMILARITY MEASURE

Using cluster analysis methods to analyze the syntacti-

cal structure of a set of sample strings requires a proximity

‘measure which determines the syntactical difference between

pairs of strings. Recent research /49/,/66/ leads to a

reasonable concept Of dissimilarity between strings. The

dissimilarity between two strings is defined as the minimum

cost sequence of "edit operations" needed to change one string

to the other. Under this measure, three edit Operations are

considered: (1) change one character to another, (2) delete

a character from a string, (3) insert a character into a

string. A cost is assigned to each edit operation.

31

In this section we will adopt the dissimilarity

measure proposed by Okuda et al. /49/ called "Weighted

Levenshtein Distance” (WLD) which defines a distance between

words of different length. The WLD between strings is ex-

plained in terms Of a digraph in Sec. 3.3.1. Wagner /66/

proposed an edit distance between strings which has the same

configuration as the WLD, but Wagner used a trace idea to

interpret the edit distance. Since the edit distance and the

WLD are computed with the same algorithm, we will use the

notation of Okuda et a1.

3.3.1. WEIGHTED LEVENSHTEIN DISTANCE AND UNIFORM EDGE WEIGHTING

Before defining the dissimilarity measure, we need

the following preliminary definitions:

Definition: An edit operation is a pair (a,b) # (A,A)

of strings of length less than or equal to

l and is usually written a-—?'b.

Let A, B be strings. A =?:B means that an edit Opera-

tion is applied to string A to produce string B. In general,

if A : = oar, B : = ObT for some strings O and r, then A =? B

if a —9 b.

Definition: An edit Operation a ~9‘b is

(l) a change Operation if a f A, b ¢ A;

(2) a delete operation if a $ A, b = A;

(3) an insert operation if a = A, h f A.

32

The three operations are interpreted consistently as

follows:

(1) An insertion Operation inserts a character into the right

end of a string.

(2) A deletion Operation deletes a character from the left

end Of a string.

(3) A change Operation changes the character on the left end

of a string and moves the changed character to the right

end Of the string.

Definition: Let h be an arbitrary cost function which

assigns to each edit Operation a-«seb a non-

negative real number h(a,b). When h has the

properties shown below, it is called the

uniform cost function.

Let h(a,b) = p, h(a,A) = r, h(A,b) = q, a # A, b # A.

The basic dissimilarity measure is defined as follows:

Definition: Let A, B be strings. Then the dissimilarity

between A and B is defined as:

D(A,B) = min (pki + qmi + rni)

where k1, mi’ ni are the numbers of changes,

insertions and deletions respectively, needed

to transfer the string A to the string B in

th
the 1 sequence Of edit operations.

As a reasonable cost assignment, we will assume, un-

less otherwise noted, that q = r, p = q+r, and the cost Of

changing a character to itself is zero.

33

If the lengths of strings A and B are n and m, res-

pectively, then all possible ways that string A can be

transformed into string B can be represented on a digraph

with (n+1) x (m+l) nodes Si,j and 3mn+m+n edges, called the

AB digraph. The digraph can be understood as a rectangle of

n rows and m columns and n.m city blocks with a diagonal for

each block. In the digraph, (n+m92) nodes have in-degree one

and out-degree three, (n+m-2) nodes have in-degree one and

out-degree one, one node is a source, representing string A,

one node is a sink, representing string B, and the remaining

nodes have in-degree three and out—degree three (see Fig.1).

Sn+1, 1 , Sn+l ,m+1=B

1 ”

n+1 rows .

A j ’5

A - . rs

A = 811 ‘ I J 1,111+]-
qu.columns

FIG. 1. AB digraph

Each node Si,j in the digraph represents a string,

and each edge represents an edit Operation. As shown in Fig.1,

311 represents the string A, Sn+l,m+l represents the string B,

and si,j represents the string composed of the ith to the nth

characters of A concatenated with the lst to the (j-l)th

character Of B. To Obtain Si+l . from s. ., delete the left

.3 1.3

end character Of si j (which is the ith character of A); to

9

34

obtain 3. . from s , insert the jth character Of B at
1,j+l i, j

,j' i+l,j+l from Si,j’ move

the left end character of 31 j to the right end of 31 j if

the left end character Of si j (which is the ith character

of A) is identical to the jth character Of B; otherwise

the right end of S1 to obtain 3

change the left end character Of 31 j to the jth character of

B and moves it to the right end Of s.1 j' These operations

are pictured in Fig. 2.

The costs of edit operations are represented as edge

weights, as in Fig. 2. Under the uniform cost function h,

the edge weights are assigned as follows:

(1) Assign weight r to all edges (Si,j,si+l,j) for

lflfn, lfj5m+l, (deletion).

(2) Assign weight q to all edges (Si,j’si,j+l) for

lfisn+l, lsjsm, (insertion).

(3) For all edges (Si,j'si+l,j+l)’ lfisn, lfjfm,if the ith

character of A is equal to the jth character of B then

assign weight zero; otherwise assign weight p, (change).

S1+1, j s

i+l,j+l

delete 1: change

P

Sid e > 81:3”

insert

FIG. 2. Uniform Edge Weight

35

Example 1: Let A : = cb, B : = cab. Then the AB digraph,

under a uniform edge weight, is given in Fig.3.

For clarity, arrowheads are omitted.

(331)A n 9 n, (a) jg, cab=B (S34)

r r r r

b 44%;; c 2 bcaq bcab

r r r r

A=cb e; n q cbcab ($14)

‘1

cbc cbca

FIG.3. AB digraph under uniform edge weighting

A."path" will mean a directed path from source to

sink. The weight Of a path in the digraph is the sum of

the weights of its edges, and the WLD is the minimum path

‘weight from source to sink.

Example 2: The dissimilarity between A : = cb and B : = cab

is D(A,B) = min (pk. + qm. + rn.). Let q = r,
i 1 1 1

p = 2q. Then a minimum weight path is

811822823834‘With weight q. (See Fig. 3)

Let A,B and C be strings. Then, under uniform cost,

the dissimilarity measure has the following properties /51/:

(l) D(A,B) a 0 if and only if A a B,

(2) D(A,B) D(A.C) + D(C,B).

(3) if q = r, then D(A,B) = D(B,A).

I
A

The minimum.weight path in the digraph can be found

smith algorithms based on the following two theorems /51/.

36

Let A, B be strings with length n, m, respectively;

p, q, r are the cost of change, insertion and deletion,

respectively. Furthermore, let D.

1.3‘

Then D(A,B) = D

denote the minimum weight

from 511 to s and it can be com-
i,j' n+l,m+l

puted iteratively.

Theorem 1: Di 1 = (i-l)r, for lfifn+l

Dl j = (j-1)q, for lfj3m+l

Theorem 1 is for computing the weights of minimum

weight paths composed of only deletions or insertions.

Theorem 2: Diej = mln (Di'lej+r’ Di'lgj'lfipp’ Diyj'l-l-q)

for zfifn+l, 25j5m+1

The proofs Of these theorems are trivial and can be

found in Wagner's paper /66/ in different terminology. The

above theorems provide a recursive structure Of computation.

The uniform cost assignment uses the same weight for

each edit operation regardless of the position Of the edge in

the path. In some applications Of the WLD, the position of

an edge in a path is not important, while in applying the WLD

to grammatical inference the position of an edge in a path

should be considered. The following example will show the

difference between considering and not considering the position

of an edge in a path.

Example 3: Let A : = (a+b), B : = (a), C : = ((a)). Based on

the uniform cost assignment, we find that

D(A,B) = 2r,D(C,B) = Zr, and D(A,C) = 2q+2r.

37

When applied to Ex.3, the constructive procedure in

Chap. 5 constructs grammars G1, G2, G3 for strings A, B, C,

respectively. Then, according to the dissimilarities of

their languages, grammars are merged in a stepwise fashion.

Since D(A,B) = D(C,B) = 2r is the smallest dissimilarity, we

either merge G1 with G2, or merge G2 with G3. If we merge G2

with G3, we may Obtain a self-embedded production (Sec. 2.5.2.),

but if we merge G1 with G2, we will not Obtain a self-embedding

production since A and B do not possess the substring property.

TO force the merger of G2 with G3 first, D(C,B) should be less

than D(A,B). This can be accomplished if we consider the

position of an edge in a path as a factor in assigning weight

to the edge. If, in Ex. 3, we assume that any insertion or

deletion made at an end of the string has less effect on syn-

tactical structure than one made inside Of the string, then

D(C,B) can be made less than D(A,B).

In the rest of this section we will propose several

modifications Of the WLD. One of them.adjusts the weight of

the minimum.weight paths found under the uniform.weight

assignment, and is discussed in Sec. 3.3.2. Other modifica-

tions adjust the edge weights in the digraph according to

position and are presented in subsequent sections.

3.3.2. MODIFICATION I - PATH WEIGHT ADJUSTMENT

In this section, we propose a method that adjusts the

weight Of a minimum-weight path along with techniques for

storing and retrieving paths. The idea is to subtract a

38

certain amount of weight from the minimum weight measured

under the uniform weight assignment. The weight of a minimal

weight path is adjusted if the path does not contain non-zero

weight change operations, and if insertion and deletion

operations do not appear in the same path. The weights

assigned to the insertions and deletions depend on position

in the string. We assume that any edit Operation occurring

at the end of string has less effect than one occurring in

the middle. The principle is to reduce the weight for those

edit Operations that occur before the first or after the

last zero-weight change Operation, as compared to those that

occur at other positions.

Example 4: Let S = { ab, cb, acbc }, p = 2, q = r = 1.

Let D, I, C, C' denote deletion, insertion,

non-zero weight change and zero weight change

operations, respectively. Then the dissimilar-

ities and all minimal paths for each pair Of

strings are listed below.

a) D(ab,cb) = 2, P1 = 811821822833,

P2 = 311312522533: P3 = S11522333 With

corresponding operation sequences 01 = DIC',

02 = IDC', 03 = 00'. Since all minimal weight

paths include both deletions and insertions,

their weights are not candidates for adjustment.

b) D(ab,acbc) = 2, P1 = 311322523534335' with

operation sequence 01 = C'IC'I. The weight

of the right end insertion can be adjusted,

39

and D'(ab,acbc) = 2-e, where O<e<l, is the

unit of adjustment.

c) D(cb,acbc) = 2, P1 = 811812823834835, with

Operation sequence 01 = IC'C'I. The weights

of both insertion operations can be adjusted

and D'(cb,acbc) = 2-2e. After adjusting the

dissimilarities, we obtain

D'(cb,acbc)<D'(cb,acbc)<D'(ab,acbc)<D(ab,cb).

We now formalize the procedure for ordering dissimilar-

ities. Weights are assigned to the edges in a minimal weight

path P consisting of all insertions or of all deletions, and

zero-weights change operations only. The rules are as follows:

(1)

(2)

For every insertion operation occurring before the first

or after the last zero-weight change operation, assign

weight ql; for those occurring at other positions in P

assign weight qz, 0<ql<q2<q.

For every deletion operation occurring before the first or

after the last zero-weight change operation assign weight

r1, and for those occurring at other positions in P

assign weight r2, 0<r1<r2<r. The reason for reducing the

weights for insertions and deletions occurring inside of

a string is that we want to distinguish between mixed

Operations and pure Operation sequences. A mixed Operation

sequence consists of more than one kind of operation be-

sides the zero-weight change Operation.

40

Example 5: Let A : = cb, B : = cab (Fig. 3). Then after

adjusting the minimal path weight, D'(A,B) = ql<q.

A minimal weight path selected arbitrarily will not

necessarily remain minimum after adjustment. The following

example demonstrates the problem.

Example 6: The minimal weight paths from 'abb' to 'cab' are:

Pl ‘ 311812323334344:

P2 = 311812323833544' Their corresponding

operation sequences are 01 = IC'C'D, 02 = IC'DC'.

After adjusting, the weight of P1 will be q1+r1,

which is less than q1+r2, the weight of P2.

To assure that a minimal weight path will be the

minimal weight path after adjusting, we have to check all

minimal weight paths found in the digraph.

Let A and B be strings with length n and m, respect-

ively. Under the uniform weight assignment, all minimal

weight paths in the AB digraph can be stored in an (n+1) x

(n+1) matrix. This matrix is equivalent to the matrix repre-

senting the AB digraph. Each entry in the matrix corresponds

to a node in the AB digraph, and represents one or more of

the three operations. Recall that D. . is the minimal

1,3

weight fromsll to si,j in the AB digraph. The algorithm

based on Theorems 1 and 2 applies no more than three Opera-

tions to reach node si j from its nearest nodes. There can

9

41

be several minimal weight paths froms11 to The lastSi,j'

edit operation on any such path must be one of the three

possibilities. The set of all possible last operations on

minimal weight paths from 311 to SJ.- j will be stored in Li

.J'1

according to the following code:

code 1 2 3 4 5 6 7

operation I D C I&D I&C D&C I&D&C

Example 7: Let A : = ab, B : ac. Under the uniform

cost assignment p q+r, q = r, and the 3 x 3

matrix L is as follows:

1

2 2 7

L = 2 3 1 - (Li,j)

_0 1 1

The minimal weight paths can be found by tracing back

indices in the array. Since L33 is 7, a minimal weight path

exists having all three edit operations for reaching node 333.

Consider L32, L22, and L23. Node s32 is reached by deletion,

322 is reached by change, and $23 is reached by insertion.

Following the same rule, we continue tracing back to 811'

Thus we find the following minimal paths:

P1 = 311322332333: P2 = 911922823933: P3 = 311522333‘

This procedure is different from the procedures pro-

posed by Wagner and by Okuta et al. on two counts.

(1) The position of edges are considered in computing the

weight of path.

42

(2) The minimal weight path is not found iteratively. All

minimal weight paths are found under some cost assignment.

Then all paths are adjusted according to the positions of

edges in the path.

§;§;3. MODIFICATION II - NORMAL EDGE WEIGHTING

A second way of distinguishing between D(A,B) and

D(C,B) in Ex. 3 is to vary the edge weights in the digraph accord-

ing to the edge positions. Assign smaller weights for edges at

the ends and larger weights for edges in the middle of a path.

We propose a technique called normal edge weighting for this

purpose. Normal edge weighting assigns weights according to

the following rules. The idea is to follow a normal probability

density, centered in the middle of the digraph.

Let [N] denote the integer part of N.

Let lfifn, lfjfm.

(l) Assign weight (i+j-l)q to edges (Si,j’si,j+l)' and weight

(i+j-1)r to edges (Si,) for

(1+3): [cameo/2].

j’si+l,j

(2) Assign weight (m+n+2-i-j)q to edges (Si,j’si,j+l) and

.) for(m+n+2-i-j)r to edges (Si,j’si+l,j

(i+j)> [(m+n+3)/2] .

(3) Assign weight (w1 +w2 + W3 + W4)/2 to edges

(Si,j’si+l,j+l)’ where wl,w2,w3,w4 are weights for edges

(Si,j'si+1,j)' (Si,j'si,j+1)' (Si+1,j'si+1,j+1)' and

(Si,j+l’si+l,j+l) respectively. If the ith character of

43

A is equal to the jth character of B then assign weight

zero to edge (Si,j’si+l,j+l)'

The following example demonstrates normal edge weighting.

Example 8: Let A : = cb, B : = cab. Then the AB digraph

and its normal edge weights are indicated in

Fig. 4, and D(A,B) = 3q. All unnumbered edge

weights equal 5(q+r)/2.

'1- %q cab

“‘1

2r 3r 2r r

3s

r 2F 3r 2r

cb q— 2q~ 3e

FIG.4. AB digraph under normal edge weighting

Let n,'m be the lengths of strings A and B respectiv-

ely, and q - r = 1. Then the normal edge weighting of the AB

digraph has the following properties:

(1) The maximum weights for edges (Si,j’si+l,j) and

(3i,j’si,j+l) are the same and equal [(m+n+l)/2].

(2) The maximum weight of edge (Si,j’si+l,j+l) is (m-l-n).

(3) The maximum path weight is (m+n+l)2/4, if m+n is odd;

(m-l-n) (m+n+2)/4, if M is even.

Let e = [(m+n+3)/2] , and let k = min {e,n}, and

k'-min {e,m}. Under the normal edge weighting, Theorems 1 and

2 become the following. The proofs of these theorems are

analogous to the proofs of Theorems 1 and 2.

44

Theorem 3: Di 1 = i(i-l)r/2, for lfisk

D. = k(k-l)r/2 + (i-k)(2m+2n+3-i—k)r/2, for
1,1

k<isn+l

Dl j = j<j-1>q/2. for lfjfk'

Dl j = k'(k'-l)q/2 + (j-k') (2m+2n+3-j-k')q/2, for

k'<j5m+l

Theorem.4: Let wl, W2’ W3 be weights of edges

(Si-l,j-1'Si,j)' (Si-1,j’si,j)' and (Si,j-1’Si,j)’

respectively. Then

Di,j = Min (Di-1,j-l’+ wl, Di-1,j+’w2’ Di,j-l+ W3)

for zflfn+l, 15jS-m-l-l.

The difference between normal edge weighting and WLD

is that normal weighting assigns different weights to edges

according to their position in the digraph, while the WLD

assigns the same weight for all edges of the same type in the

digraph.

§;§;4, MODIFICATION III - BINORMAL EDGE WEIGHTING

A third way of distinguishing between D(A,B) and

D(C,B) in Ex.3 is to vary the edge weights in the digraph

according to the row and column positions of the edge in the

digraph and the type of operation. Assign smaller weights for

edges at the ends of column (vertical direction) and row

(horizontal direction) and larger weights for edges in the

rmiddle columns and rows. The idea is to distinguish between

the same operation occurring in different places. We call

this weighting binormal edge weighting since we assign normal

45

weights to deletion Operations and normal weights to insertion

Operations according to their positions.

Binormal edge weighting assigns weights to edges

according to the following rules: Consider all i, j

lfifn, 15firm,

(1) Assign weight (i)r to edge (Si,j’si+l) for

151s [(n+l)/2]; otherwise assign weight (n+l-i)r to edge

(51.j'Si-1.j)'

(2) Assign weight (j)q to edge (Si,j’si,j+l) for lijEm+l)/2];

otherwise assign weight (m+l-j)q to edge (3.

1.3’Si.J+1)°

(3) Let‘Wi,Wj be the weight of edges (Si,j’si+l,j) and

(Si+1,j’8i+l,j+l) respectively. If the ith character of

A is equal to the jth character of B then assign weight

wi+wj to the edge (Si,j’si+l,j+l)° The following example

demonstrates binormal edge weighting.

Example 9: Let A : = cb, B : = cab. Then the AB digraph and

its binormal edge weights are indicated in Fig. 5,

and D(A,B) a 2q.

gq, q cab

r r r r

r . r r r r

FIG.5. AB digraph under binormal edge weighting

Let n, m be the lengths of strings A and B respectiv-

ely, and q a r = 1. Then the binormal edge weighting has the

46

following properties:

(1) The maximum weight of edge (Si,j’ lsifn, lfj5m+l

is [(n+l)/2].

(2) The maximum weight of edge (si,.,s.’j+l), lflfn+l,
j 1

lfjfm is [(m+l)/2].

Si+l,j)’

(3) The maximum weight of edge (Si,j’si+l,j+l) is (m+n)/2,

if n,‘m are both even; otherwise [(m+n+2)/2].

(4) The maximum path weight is ((m+l)2 + (n+l)2-2yz if n, m

are both even; ((n+2)2 + (m+l)2)/4 if n, m are both odd;

((m+l)2 + (n+2)2-1)/4 if one is even and one is odd.

Let k - [(n+3)/2], and k' = [(m+3)/2]. Under the bi-

normal edge weighting, Theorems 1 and 2 become the following.

The proofs of these theorems are analogous to the proofs of

Theorems 1 and 2.

i(i-l)r/2, for lflfkTheorem 5: Di,l

Di,1 3 k(k-l)r/2 + (i-k)(2n+3-i-k)r/2, for

k<i5(n+l)

Di’j = j(j-l)q/2, for lfjfk'

D1,j = k'(k'-l)q/2 + (j-k')(2m+3-j-k')q/2, for

k'<j5(m+l)

Theorem 6: Let wl, WZ' W3 be the weights of edges

(Si-1.j-1'Si.j)' (Si-1.3'Si.j)' and (51.j-1'si.j"

respectively. Then

Di,j ‘ Min (Di-l,j-l+wl’Di-l,j+w2’Di,j-l+w3)

for 2515n+1, 253' Sn+1.

47

3;3;§. MODIFICATION IV — DEPTH EDGE WEIGHTING

A fourth way of distinguishing between D(A,B) and

D(C,B) in Ex.3 is to vary the edge weights in the digraph

according to the number of steps from the source node. Assign

smaller weights to low frequency edges and larger weights to

high frequency edges, where frequency is defined below. The

idea is to distinguish operations by their positions in the

digraph with a depth measure so this weighting is called

depth edge weighting.

Excluding the diagonal edges, the AB digraph has T =

(2mm+m+n) edges. Let h' be an integer function defined as

h'(i,j) - (i-l) + (j-l) for all i, j, lfifa+l, 15j5m+l.

h'(i,j) is the number of steps needed to reach 5.

1.3

not allowing diagonal steps. Furthermore, let fé denote the

from 311’

number of non-diagonal edges which terminate on nodes si jfor

which h'(i,j) a k. Then, depth edge weighting assigns

weights to edges according to the following rules:

(1) Assign weights fi/T to edges (Si,j’si+l,j)’ for lfifn,

15j5m+l, and to edges (Si,j’si,j+l)’ for 15i5n+1, lfjfm,

(2) Let wl'w2 be the weights of edges (Si,j’si+l,j) and

. . < < <.<

(si+1,j’si+l,j+l) for all 1, j l—i-n, l-jem. If the ith

character of A is not equal to the jth character of B,

then assign weight w1+w2 to the edge (Si,j’si+l,j+l)°

Otherwise assign weight zero to the edge.

Example 10: Let A : = cb, B : = cab be strings, n = 2, m = 3.

The number of non-diagonal edges in the AB

48

digraph is T = 17. The function value for h'

and fi are:

13'

w "'
.‘

l 2 3 4 k

3 " 2 3 4 5 “

h'(i.j>= 1 2
2 l 2 3 4 2 4

l 1 o l 2 3 .J ‘3 5

- 4 4

5 2

The edges terminating at nodes two steps from.All are:

(821'531)' (321:522>: (812:322): (512’313>

Thus fé = 4 and each edge weight is fé/T = 4/17.

The depth edge weights in Fig. 6 are the number shown

divided by 17, and D(A,B) = 5/l7.

5 4 2

N U
'
l

:
p

FIG.6. AB digraph under depth edge weighting.

Let k = min {n,m}. The depth edge weights of the AB

digraph have the following properties:

(1) The maximum.weights for edges (Si,j’si+l,j) and

(Si,j’si,j+l) are the same and equal (2k+l)/(2mn+m+n).

(2) The maximum weight of a diagonal edge is

(4k + 2)/(2mn+m+n), n+m is even; otherwise,

(4k+l)/(2mn+m+n).

(3) The maximum.weight of*a path is l.

49

Depth edge weighting depends heavily on the lengths

of strings. Actually, depth edge weighting classifies edges

into three categories. The weights of edges on both ends of

a path are varied gradually, while edges in the middle of a

path have the same weight.

Uhder depth edge weighting, Theorems 1 and 2 become

the following. The proofs of these theorems are analogous to

the proofs of Theorems 1 and 2.

Theorem 7: 1 = i(i-l)/T, for lflf(k+l)Di,

131,1 - (k(k+l) + (i-k-l)(2k+l)/T, for (k+l)<ifn+l

Di’j - j (j-l)/T, for 15j$(k+l)

D1.J’ - (k(k+1) + (j-k-l)(2k+l))/T,

for (1t+l)<j5m+l

Theorem 8: Let Wl’ WZ’ W3 be weights of edges

(81-1'j-1381,j)9 (Si,j"l’si,j), and (Si-1,j’si,j)'

respectively. Then

”1.3 ‘ Mi“ (Di-l,j-l+wl’Di,j-l+w2’ Di-l,j+w3)

for 2515m+l, 25j3m+l.

The dissimilarity measures presented in this section will

be used in the cluster analysis of the syntactical structure of

sample strings, and will be evaluated by the complexity of the

resultant grammar (see Chap.IV). Example 11 demonstrates the

differences among the dissimilarity measures proposed in this

section.

Example 11: Let A : = (a+b), B : = (a), C : = ((a)). Then

50

(1) Under uniform edge weight, Ex. 3, (UW)

D(A,B) = D(C,B) = 2r, D(A,B)/D(C,B) = l

(2) Under adjusted path weight, (Aw)

D(A,B)/D(C,B) = rz/rl

(3) Under normal edge weight, (NW)

D(A,B) = 7r, D(C,B) = 2r;

D(A,B)/D(C,B) = 7/2

(4) Under binormal edge weight, (BW)

D(A,B) = 5r, D(C,B) = 2r,

D(A,B)/D(C,B) = 5/2

(5) Under depth edge weight, (Dw)

D(A,B) = 13/38, D(C,B) = 4/38,

D(A,B)/D(C,B) = 13/4

Assume l<r2/r1<%. Then the ratios are ordered as:

Uw<Aw<Bw<Dw<Nw

Example 11 demonstrates that normal edge weighting best

differentiates self-embedding from inner substring relations.

Example 12 indicates that uniform edge weighting and adjusted

path weighting do not differentiate self-embedding from left

or right substring relations, while normal, binormal and

depth edge weightings are equivalent in this task.

Example 12: Let A : = abab, B : = ab, C : = azb2

2r,

(1) Under Uw’ D(A,B) = D(C,B)

D(A,B)/D(C,B) a 1

51

(2) Under Aw, D(A,B) = D(C,B) = 2r1,

D(A,B)/D(C,B) = 1

(3) Under NW, D(A,B) = 3r, D(C,B) = 2r

D(A,B)/D(C,B) = 3/2

(4) Under Bw’ D(A,B) = 3r, D(C,B) = 2r

D(A,B)/D(C,B) = 3/2

(5) Under Dw’ D(A,B) = 6/22, D(C,B) = 4/22

D(A,B)/D(C,B) = 3/2

The ratios are ordered as:

3.4. CLUSTER ANALYSIS

The syntactic relations among strings of a given

sample are analyzed to provide information for constructing an

efficient grammar for that sample. In this section, cluster-

ing methods are used to impose an hierarchical structure on

the sample.

The problem of sorting similar things into categories

is known as the category sorting problem. Clustering algorithms

and their use in pattern recognition have been surveyed /39/,

and discussions of several techniques and listings of computer

programs for implementing them have been provided /1/,/l7/.

Cluster analysis is the key step in the category

sorting problem, In cluster analysis, little or nothing is

52

known about the data structure. The essence of cluster

analysis is to assign appropriate meaning to the terms

"natural groups" and "natural association". The results of

a cluster analysis can contribute directly to development

of classification schemes, and can be used to develop induc-

tive generalizations. A general discussion of cluster analy-

sis can be found in Anderberg /l/.

Johnson /38/ argues that good clustering algorithms

should satisfy the following three properties:

(1) Input data should consist solely of a point set or a

matrix of similarities.

(2) The method should be such that a clear, explicit and in-

tuitive description of what the clustering accomplishes

is possible.

(3) The method should be invariant under monotone transform-

ations on the similarity measure.

Clustering methods based on the minimal spanning tree

(MST) /69/ satisfy most of these principles. A set of sample

strings can be treated as a set of points in an abstract

space and dissimilarities can be measured adequately as dis-

cussed in Sec. 3.3. For these reasons, the MST will be the

first tool for analyzing a set Of sample strings. In this

section, we will review a clustering method based on the MST

and discuss the problem of forming clusters from the labelled

MST.

53

ggflpl. LABELLED MINIMAL SPANNING TREE

In this section, we will define the labelled MST for

a complete graph whose edge weights are given in a dissimilar-

ity matrix. Each node in the graph represents a sample

string.

A lexicographic order of strings is defined as

follows:

Definition: Let S be a set of sample strings with Vt the

terminal alphabet. If Vt is given an arbitrary

fixed order, then a unique lexicographic order

for S can be defined by the following rules:

(1) For x, y é:S, if £(x) < £(y), then x pre-

cedes y in S, where i(x) is the length of x.

(2) For any strings x = a1...an and y = b1"'bn

for which £(x) = £(y) = n and ai = bi for

<.< < <

l-1-k and ak+l # bk+l’ O-k-n-l, then x pre-

cedes y in S if ak+1 precedes bk+l in Vt‘

Example 12: Let Vt = (a,b,c), be the set of ordered terminals.

Then set S is in lexicographic order;

L8 = (cb, bbb, cab, baab, bbab, bbaab, caaab).

An undirected graph is complete if there is an edge

connecting each pair of nodes directly. An n by n dissimilar-

ity matrix defines the edge weights for a complete graph

with n nodes and n(n-l)/2 edges. The (i,j) entry in the

matrix is the weight of the edge connecting the nodes

54

corresponding to strings i and j. A spanning tree is any

set of n-l edges which provides one and only one path be-

tween any pair of nodes. The weight of a spanning tree is

the sum Of the weights for edges in the tree. A minimal

spanning tree is a spanning tree having ‘minimum.weight

among all spanning trees.

A labelled MST for a set of sample strings is a MST

on which a Gorn tree structure /41/ defined below has been

imposed. The root corresponds to the first string in the

lexicographic order; The immediate successors to the root

are those nodes in the MST adjacent to the root. These nodes

are at level 1 and are arranged in the lexicographic order

of the corresponding strings. Similarly, let N be a node

at level i. All nodes in the MST adjacent to N not already

in the tree structure are placed at level i+l and are written

in the lexicographic order of the corresponding strings.

Example 14: Let S a {a,ab,abc,(a),(b) }. Under uniform

edge weighting the dissimilarity matrix is

shown below and a labelled MST is given in

Fig. 7.

ab abc (a) (b) a

a l 2 2 4 1///

ab 1 3 3 ab 2

abc 4 4 y//

(a) 2 abc (a)

dissimilarity matrix ja/////’

FIG. 7. Labelled MST

55

There are many powerful algorithms for finding a

MST /42/,/45/,/53/. One of the most popular algorithms was

given by Prim /53/. Clustering algorithms based on the MST

have been develOped /18/,/31/,/55/,/60/.

égégg. CLUSTERING METHOD

In this section we will review an hierarchical

clustering method suggested by Zahn /69/. The clustering

at level di can be obtained from the MST by deleting all edges

of length greater than di' Each connected subgraph represents

a cluster. The single link dendrogram can also be derived

from the MST /37/,/38/. Clustering methods based on the MST

delete edges, called inconsistent edges, from the MST so that

the resulting connected subtrees correspond to meaningful

clusters. This problem is similar to cutting a dendrogram

to form clusters.

An edge XY in a MST whose weight W(XY) is significantly

larger than the average of nearby edge weights on both sides

of edge XY can be called an inconsistent edge /69/. There

are two natural ways to measure inconsistency. The first

type Of inconsistency uses edge weight standard deviations.

An edge XY is inconsistent if W(XY) differs by a few standard

deviations from the average edge weight. Inconsistency of

this kind is dependent on the following factors:

(1) The size of the neighborhood explored for each end Of the

edge XY;

(2) The number of standard deviations and the factor considered

as significant;

56

(3) Whether or not inconsistency is required at both ends

of the edge XY.

If the distribution of edge weights in the MST is

normal, then an edge weight exceeding the mean by three or

four standard deviations would occur less than one percent

of time and hence may be regarded as significant.

A second type of inconsistency uses the factor or

ratio between W(XY) and the average of neighboring edge

weights. A factor of 2 or more, usually means the separation

is quite apparent. The edge inconsistency defined by factor

also depends on (1) and (3) above.

The type of edge inconsistency based on standard

deviation has statistical distributional significance while

inconsistency based on factor or ratio has intuitive signifi-

cance. These are only two possibilities. From a practical

point of view, edge inconsistency should depend on the source

of the data, the dissimilarity measurement and the specific

purpose of the cluster analysis. In grammatical inference,

neither type of inconsistency described previously may be

able to provide a complete satisfactory result for two reasons.

(1) The dissimilarity measure on strings does not take all

structural relations between strings into account.

(2) The assumptions made on the given set of sample strings

are not sufficient to decide which edge inconsistency

definition is appropriate.

For these reasons, structural relations other than

those reflected in the dissimilarity matrix may be needed for

57

inferring a grammar. The following example will show one

such structural relation.

Example 15: Let S = {abab, aba, ab, a, ac, acc, accc }.

Let p = 2, q = r = l. The dissimilarity

matrix under uniform edge weighting is given

below. A MST links the strings with edges of

length one in the order: abab, aba, ab, a, ac,

acc, accc.

ab ac aba acc abab accc

a 1 l 2 2 3 3

ab 2 l 3 2 4

so 3 l 4 2

aba 4 l 5

acc 5 l

abab 6

Only one cluster is formed from S in Ex.15 under

single-link clustering. Intuitively, there are two different

sequences Of strings in S. Adapting different dissimilarity

measures will not change the number Of clusters in Ex.15. If

S can be split into two groups {abab, aba, ab} and {a, ac, acc,

accc}, then two small grammars can be constructed. This pro-

cedure would be simpler than constructing one grammar for S,

since 8 does not show a clear picture of sample structure.

How can S be split into two groups based on the MST? The

problem is to define an inconsistent edge in the MST. We need

58

to know what kind of clusters we are expecting, and the

characteristic of the inconsistent edge. Intuitively, the

length of a string can be considered as a factor. When the

edges in a MST have uniform length, the edges adjacent to

the node or nodes representing the shortest string or strings

will be considered as inconsistent edges. In Ex.15 the

edges (ab,a) and (a,ac) are inconsistent edges. At the

first step of cluster analysis, we can delete either of

them. If we delete the edge (ab,a) then we obtain two

clusters {abab, aba, ab}, and {a, ac, acc, accc}. In the

next section, we will discuss the problem.more carefully.

Other definitions of edge inconsistency will also be given.

ggfigg. CLUSTERING METHOD FOR GRAMMATICAL INFERENCE

One major objective of this thesis is to find recur-

sive rules for a language based on a finite set of sample

strings. Since a finite set of sample strings contains only

limited information, recursive structures may not be inherent

in the sample strings. One tactic is to search for all

potential recursive structures in the MST. A potential re-

cursive structure can be found from a sequence of strings

whose lengths gradually increase. Actually, two factors

should be considered: "length" and "common symbols". If a

sequence of strings has all the following properties, then

there is a potential recursive structure.

Let {xi} be a sequence of strings. Then

59

(l) for all i, i(xi) + k = £(xi+l), where k is a positive

integer;

(2) for all 1, x1 is a substring of xi+13

(3) the character concatenation difference between xi and

xi+1 is constant for all 1.

These properties are compatible with all dissimilar-

ity measures defined in Chap. III. When a sequence of

strings satisfies these properties, the dissimilarity be-

tween successive pair Of strings is constant.

In grammatical inference by constructive methods, we

intend to infer a grammar with a small number of productions

and an adequate grammatical framework at the beginning of

construction. Also, we want to discover all proper recur-

sive structures for the sample. Thus, the clustering method

for grammatical inference will be different from conventional

clustering methods. These goals can be achieved by generat-

ing an inference tree defined below.

An inference tree is a labelled tree defined on a

labelled MST by a partition function. The inference tree is

most significant for the constructive methods for generating

grammars given in Chap. V. Let T - {T1, T2, ..., Tn} be a

partition of a labelled MST. EachTi é_T represents a

labelled subtree. The index i Of each subtree Ti é T is

assigned by an index function associated with the partition

function. Then the inference tree over T is defined as:

(l) The root corresponds to the subtree T1 of index 1.

60

(2) The immediate successors to the root correspond to those

subtrees in T whose roots are adjacent to T1 in the

labelled MST. These nodes are at level 1 and are

arranged in the descending order of the corresponding

subtree indexes.

(3) Similarly, let N be a node at level i. The immediate

successors to the node N correspond to those subtrees in

T whose roots are adjacent to the subtree associated

with node N. These nodes are placed at level 1+1 and

written in descending order of the corresponding subtree

indexes.

The clustering algorithm proposed, based on a

labelled MST for obtaining an inference tree is described

below; The actual procedures are given in the Appendix. The

clustering algorithm starts at the root of the labelled MST,

follows breadth first search to examine the relationship be-

tween the string corresponding to the root and the strings

corresponding to its immediate successors. Two kinds of

relationships, one based on "length" and the other based on

"common substring", are expressed as seven conditions. These

conditions are listed below and applied in sequence to delete

edges connecting the root, or the node in question and its

immediate successors. After a complete application of the

conditions to all edges between the node and its immediate

successors, at most one edge will remain. Also, whenever an

edge between a node N and an immediate successor M of N is

61

disconnected, M becomes a new root. Let all new roots be

numbered in the order of becoming new roots.

The search starts at the initial root of the labelled

MST. The algorithm repeats the same process to classify sub-

trees, according to the descending order of the number

associated with the root of subtrees. The algorithm ends

when no more subtrees can be formedn See Appendix.

Let k be the maximal length of common strings, u be

the minimal number of distinct symbols, and d be the minimal

dissimilarity between the string corresponding to a node N

and all strings corresponding to its undisconnected immediate

successors. The seven conditions for inconsistency edges,

in the order of application, are listed below. Let edge

(N,M) be the edge under investigated, and let N' be the

immediate predecessor of N.

(l) N and M have the same length;

(2) The lengths of N' and M are both greater than or less

than the length of N;

(3) The length of maximal common substring to N and M is

zero;

(4) The length of maximal common substring to N and M is less

than k;

(5) The number of distinct symbols not being used in both N

and M is greater than u;

(6) The edge weight of the edge (N,M) is greater than d;

(7) There exists an undisconnected immediate successor Of N

preceding M in lexicographic order.

Example 16:

Let Vt = {a,b,+,(,)} be an ordered terminal

set, and let S = {a, b, a+a, b+b, (a), (b),

a+b+b, a+(a), (a+a), ((a)), ((b))} be a set

of sample strings. Under a uniform edge

weighting, a labelled MST for S and the

labelled tree resulting from the clustering

algorithm in the Appendix are shown in Fig.8.

All edges in the labelled MST have length 2.

b a+a b+b (a) (b) a+b+b a+(a) (a+a) ((a))

a 2 2 4 2 4 4 4 4 4

b 4 2 4 2 4 6 6 6

a+a 4 4 6 4 2 2 6

b+b 6 4 2 6 6 8

(a) 2 6 6 2 2

(b) 6 4 4 4

a+b+b 6 6 8

a+(a) 2 4

(a+a)
2

((a))

a

b/I \(a)
///’\\ a+a

b+b (b) ((a))

/
a+b+b

FIG.

62

, a+(a) (a+a)

((b))

(a) A labelled MST for S

Labelled MST and inference tree for Ex.16.

((b))

6

m
m
o
x
o
o
N
b
o
x
o
o
P

63

FIG. 8. (Continued . . .)

Subtrees

{l} {l} {2} {3} {4} {5}

{4} {3} {2} T I? (a) a+(a) (b)

l

{5} a+a b+b ((a)) ((b))

(a+a) a b+b

(b) An inference tree for Ex.16

3L5. SUMMARY

This chapter concentrates on the analysis of the syn-

tactical structure of a set of sample strings. Methods for

analyzing sample structure are reviewed, and ways Of using

cluster analysis to suggest sample structure are proposed.

Dissimilarity measures between strings based on the

sequence of edit operations are presented, and the problem

of assigning weights to edges of the AB digraph are discussed.

Four alternative assignments of edge weights are proposed

and their properties are studied. Algorithms for computing

dissimilarity matrix and procedures for adjusting edge

weights are proposed.

The MST concept and clustering methods based on the

MST are reviewed. The disadvantages of using conventional

clustering methods to classify a set of sample strings for

the purpose of grammatical inference are discussed. A

labelled MST for a set of sample strings is defined, and an

64

hierarchical clustering algorithm based on the labelled MST

is proposed. The resulting clusters related by an inference

tree should provide insight, perhaps sufficient information

for constructing a grammar.

The clustering method is different from the conven—

tional clustering method in three aspects.

(1) The clustering method uses information which is not

given by the dissimilarity matrix, such as "length" and

"common symbols".

(2) The clustering method is based on a labelled MST and

uses breadth first search to delete inconsistent edges.

(3) The clusters obtained by this method are labelled sub-

trees, which are related by an inference tree.

CHAPTER IV

GRAMMATICAL COMPLEXITY AND ACCEPTANCE

CRITERIA

4.1. INTRODUCTION

If a problem is to have meaning, it is necessary to

define what is meant by a "solution to the problem". For

instance, the solution to an algebraic problem is usually

definite and unique, while the solution of a grammatical

inference problem is not. In fact Optimality cannot be

practically determined.

In inferring a grammar for a set of sample strings,

it is very important to specify the type of solution grammar

desired. Without specifying the characteristics of the

solution, the inference procedure will never know when to

stop. The type of solution grammar chosen indirectly defines

the inference procedure and implies a stopping rule.

What are the necessary characteristics of the solu-

tion grammar? This question can be answered in a number of

ways. The solution grammar can be selected with the particu-

lar inference procedure adopted in mind. Several disparities

exist in the solution grammars that can be obtained with

enumerative and constructive methods. Even among enumerative

methods, the assumption concerning information presentation

65

66

and the assumption about the teacher in the learning pro-

cess will generate different solution grammars. In in-

ferring grammars by constructive methods, the solution

grammar is often defined as the best grammar among a class

of candidate grammars. This is the approach taken in this

thesis. The "best" grammar is that which satisfies certain

conditions. Frequently, the best grammar is defined in

terms of grammatical complexity and language discrepancy

lll/,/46/. The former refers to the complexity of the in—

ferred grammar, the later refers to the discrepancy between

the language generated by the inferred grammar and the given

set of sample strings. The grammar which has the least com-

plexity and/or smallest discrepancy among all candidate

grammars is called the best grammar.

In Sec. 4.2., we will define solution grammars for

the grammatical inference problem. A measure of grammatical

complexity will be defined in Sec. 4.3. A difference

measure between languages will be given in Sec. 4.4. A

statistical method and an acceptance criterion for testing

an inferred grammar will be proposed in Sec. 4.5.

ggg. SOLUTION GRAMMAR

In inferring grammars by constructive methods from a

set of sample strings, the class of solution grammars is

specified by grammatical properties, such as the type, the

language generating capacity, and the complexity. Grammatical

67

types are the well-known finite-state, context-free, con-

text-sensitive, and universal types. Only finite—state and

subclasses of context-free grammars have been studied in

the field of grammatical inference. Language generating

capacity refers to the quality of languages generated by

the grammar. The difference between the language generated

and the given set of sample strings may be measured and

tested statistically as explained in Sec. 4.5. The results

Obtained from statistical tests will reflect the quality of

the language. The complexity of a grammar involves both in-

trinsic complexity and derivational complexity (Cf. Sec. 4.3)

/21/. In some research, only one of them is considered /59/.

The complexity of a grammar can also be employed as a factor

in evaluating the quality of an inferred grammar.

In this section, we will discuss the definition of

solution grammar, and establish a new type of solution

grammar.

4.2.1. HALTING PROBLEM

The halting problem arises when using enumerative

methods in grammatical inference. Gold /11/ studied the re-

lationship between the enumerative method and the type of

information representation, and found that the time needed

for an enumerative procedure to find the correct grammar

depends on the manner of presenting information. Feldman /21/

and Wharton /59/ also studied the enumerative method based on

68

grammatical complexity. and found that there exists an

effective procedure to enumerate a class of grammars accord-

ing to the descending order of their complexities, as long

as there is a finite number of grammars for any given com-

plexity.

The halting problem also arises in using constructive

method to infer grammars. Here, the halting time depends

on the constructive procedure and the solution grammar. With

a constructive method, the solution grammar is Often defined

as the best grammar that can be obtained by the procedure.

In other cases, the solution grammar is chosen to meet cer-

tain a-priori qualifications. A constructive method will

stop when it obtains the solution grammar, or when it finds

that Obtaining the solution grammar is impossible.

How is the effectiveness of a constructive procedure

measured? In order to answer this question, we have to

examine the properties of the solution grammar which in-

directly affect the construction process. Since the type of

grammar to be inferred is determined by the source of sample

strings, and the language generating capacity is used to

test whether the inferred grammar is acceptable or not, the

halting time of a constructive procedure will depend on

grammatical complexity and will halt in a finite time if

only a finite number of grammars can be constructed for any

complexity. Therefore, the key problem is to define a measure

of grammatical complexity that assigns the same complexity

69

to only a finite number of grammars. We will discuss this

problem later in this chapter.

ggggg. RELATIONSHIP BETWEEN SAMPLE STRINGS AND GRAMMARS

There is no one-to-one relationship between a langu-

age and a grammar. Many grammars can generate a given

language. Although a language may be identified with a

grammar characterized by type and complexity, there are

still many candidate grammars for a language. Identifying a

grammar for a set of sample strings with a grammar is even

more difficult, since there is an enormous number of finite

and infinite languages containing that sample.

In inferring probabilistic grammars for a probablis-

tic sample, the chi-square goodness of fit test has been

employed to test the difference between the frequency dis-

tributions of the sample and the language generated by an

inferred grammar. The Bayesian decision rule has also been

used to infer a probabilistic grammar. A number of measure-

ments based on string probability (Sec.2.3.) have been proposed

which measure the probabilistic difference between a set of

sample strings and a language.

No statistical techniques have been proposed for

inferring non-probabilistic grammars, since no appropriate

characteristics of non-probabilistic languages can be quant-

ized. However, the possibility of using statistical tech-

niques for decision making exists. Measurements other than

string probability might also be developed.

70

ggggg. THE DEFINITION OF SOLUTION GRAMMAR

In this thesis, the solution grammar will either be

a finite—state grammar or a context-free grammar in Chomsky

normal form which satisfies the following conditions:

(1) The grammar has the capacity to generate the set of

sample strings;

(2) The language generated by the grammar is statistically

close to the set of sample strings;

(3) The grammar is the simplest and least complex among

candidate grammars.

The solution grammar for a set of sample strings

should be the "best" grammar which the inference procedure

can produce. Statistical tests and complexity measures

characterize the solution grammar.

4.3. COMPLEXITY OF GRAMMARS

Grammatical complexity has been the basis of gram-

matical inference /ll/,/24/,/36/,/67/ and may also be employed

to define an inference procedure /24/,/67/. The function of

grammatical complexity has been presented in Sec. 4.2. The

general concept of grammatical complexity measures has been

presented in Sec. 2.4. In this section, grammatical complex-

ity measures and their applications to grammatical inference

will be discussed. Size measure of grammar will be discussed

in Sec. 4.3.1.-4.3.3. and used to evaluate the performance of

different dissimilarity measures presented in Chapter III.

71

A complexity measure based on information theory will be

defined in Sec. 4.3.4. for selecting the best grammar for

the sample strings.

4.3.1. SIZE COMPLEXITY MEASURE

There are at least four different approaches to the

notion of size measure for grammars (Cf. Sec. 2.4.1.). We

will describe them briefly in this section.

Gruska /32/ classifies grammars in a class C by

mappings from C into nonnegative integers. The classifica-

tions of languages correspond to those grammars. The intrin-

sic structure of a grammar G is characterized by the number

and the depth of the grammatical levels. The grammatical

level Go of G is a maximal set of productions Of G, the left-

side symbols of which are mutually dependent in that the

productions are chained together. This complexity measure

is too broad since it does not discriminate among all in-

tuitively desirable measures of complexity.

Blum /5/ defines the size measure of grammars in

terms of the "bigness" of a grammar, referring to the number

of nonterminals, terminals and productions. Preliminary

notations are needed for understanding his measure.

Two grammars G1 and G2 are completely equivalent if

one may be transformed into the other by one-to-one, onto

mapping of their nonterminal vocabularies. For any grammar

G = (Vn’ V R, A) in a class of grammar C, the complete
t,

equivalence class of G is the set of grammars in C completely

equivalent to G.

72

A complexity measure on a class C of grammars is a

mapping from G into the nonnegative integers for which:

(1) There exists at most a finite number of complete equiva-

lence classes of grammars of any complexity;

(2) There exists an effective procedure for determining which

grammars are of complexity c for any c.

Under Blum's definition, a complexity measure which

is valid for one class of grammars may not be valid for a

larger class of grammars.

Wharton /32/ modifies the size measure by considering

the maximum length of the right-hand side of a production.

Let m(G) be the maximum length of the strings on the right-

hand side of the productions of a grammar G, and n be the

counting function. He adds the following two axioms to the

above complexity measure.

(3) All grammars in C with the same value of m(G) and n(R)

have the same complexity.

(4) Increasing either m(G) or n(R) without changing the other

increases complexity.

4.3.2. GENERAL COMPLEXITY MEASURE BASED ON SIZE MEASURE

Feldman /21/ defined a general grammatical complexity

measure. A sequence <y1,y2,...> is said to be approximately

ordered by a function f(y) if and only if there is a function

hf(i) such that for each i>l,t>hf(i) implies f(ytx>f(yi).

If hf(i) is effectively computable, then <y1,y2,...> is said

to be effectively approximately ordered (EAO) by f,

73

and f is said to be EAO by < y1,Y2.--->-

Let 8 be the set of all finite sets S contained in

Vt, and C be the class of grammars that generate Z. Then a

general complexity measure is a mapping f from Z x C into

the set of nonnegative rational members, satisfying the

following conditions.

(C1) The function f is expressible in terms of the intrin-

sic complexity c(G,C) and the derivational complexity

d(S,G) and is a computable unbounded increasing func-

tion of its two arguments.

(C2) The intrinsic complexity c(G,C) is a positive comput-

able unbounded function EAO by the length of grammar.

(C3) The derivational complexity d(S,G) is a positive

function and defined if and only if SéEL(G).

(C4) There exists a computable function D(S,G,m) which is

equal to zero if and only if d(S,G)Sm, and 1 otherwise.

Feldman's intrinsic grammatical complexity is similar

to Blumfs size measure /5/,/6/. Instead of CZ, Blum's com-

plexity measure requires that an algorithm exists for com-

puting the finite number of grammars with any fixed complex-

ity. Wharton /67/ defines a complexity measure based on

Blum's measure and requires a condition similar to C2.

Feldman's complexity measure is more restrictive than

Blum's and Wharton's complexity measures, but it is still a

general complexity measure. Many intuitive complexity measures

will meet these requirements.

74

Solomma /56/ defined an index of a context-free

grammar which is analogous to the derivational complexity.

Since the relationship between the number of productions

and the index of grammar is undecidable, the index of a

context-free grammar will not meet the requirements for

evaluating grammars.

4.3.3. COMPLEXITY MEASURE FOR EVALUATION

A simple complexity measure of grammars is needed to

compare the sizes of grammars constructed from a cluster

analysis on a set of sample strings. The general complexity

measure given by Blum and modified by Wharton, meets most

requirements. The axioms given by Blum.for his complexity

measure effectively enumerate a class of grammars, which is

not necessary for evaluating a set of grammars. We now

modify and restate the size measure of grammars as follows:

Let C be a set of grammars G = (Vn’vt’R'A)° Then a

general complexity measure on C is a mapping f from C into

nonnegative real numbers, which satisfies the following

axioms, where n(-), m(-) are defined as before.

(1) f is a positive unbounded function of n(Vn), n(Vt),

n(R) and m(G).

(2) the effect of m(G) on the function value is expontential.

(3) increasing any arguments increases complexity.

Example 1: Let C be a set of context-free grammars. Then

m(G)
f(G) = n(Vn) + n(Vt) + n(R) + e is a complex-

ity measure on C.

75

Example 2: Let C be a set of Chomsky normal form grammars.

Then f(G) = n(Vn) + n(Vt) + n(R) is a complex-

ity measure on C.

The number of productions which can be constructed

with the right hand side of each production having length

less than or equal to m(G) increases exponentially with the

number of nonterminals. Therefore it is reasonable to

assume that the contribution of m(G) is expontential.

‘ggggfi. COMPLEXITY MEASURE FOR SELECTING THE BEST GRAMMAR

We will adopt complexity measures based on informa-

tion theory to select the best grammar for a set of sample

strings. There are at least three different approaches to

such complexity measures (Cf. Sec. 2.4.2.). Since the in-

ference procedure prOposed for this research is similar to

Cook's hill-climbing method, we will adopt the complexity

measure given by Cook in the sequel /ll/.

The complexity of a grammar can be measured by the

information required to specify that grammar. The informa-

tion required to specify a grammar can be determined in

three different situations. If a probability distribution

over a class of grammars C is given, then the information

conveyed by the selection of any particular grammar G is

-log Pr(G|C). In the second situation, we need a preliminary

definition of a grammar-grammar, which is a grammar for

generating grammars.

76

Definition: A grammar-grammar G = (Vfi, Vt’ R, A) on the

terminal alphabet Vt is defined to be a context-

free grammar such that

a>mnW=e

(2) VtCWUVt U {—>}U{ ,}

where, A'is the starting symbol;

W is the universe of nonterminal symbols;

{,} is used to separate the rules of R.

If a grammar-grammar G is given, the information required to

select G depends on the probability of generating G by C.

The third situation is to define a standard stochastic

grammar-grammar G, that generates grammars on the vocabulary

of the given G, and to determine the probability of generat-

ing G using this particular G.

Let G be the context-free grammar whose productions are

Ala—l) x1, A2.» XZ, Ar w} Xr

. . +

where x1, x2...., x are strings 1n Vt’ and Al"°"Ar are
r

elements of Vn' The complexity of G is the sum of the com-

plexities of its productions. Since G is context-free, the

complexity of a production is determined by the complexity of

r

its right hand side. Thus C(G) = Z C(xi)

i=1

We now formulate the computation of C(y), y e Vt.

Suppose that y has length K and involves the symbols y1,...,ys,

9

say kl""’ks times, respectively, so that Z k. = K. Let

i=1

"#" be a special "stop symbol". The string y# can be generated

by the stochastic grammar G which has the single alternative

set

77

A 4>y1Ai....|ySAI# (kl/K+l,...,kS/K+l,l/K+l)

The probability of generating y#, i.e., of generating y then

stopping, is

S k
(l/K+1) n (ki/(K+l)) i

1 l

The complexity of y can be measured by the negative logarithm

of this probability.

C(y) = log(K+l) + E ki log ((K+l)/ki)

i=1

3

= (K+l) log (K+1) - Z k. log k.

i=1 1 1

The complexity measure C(y) does not consider the

order in which the symbols yi occur in y. A more complex

measure would involve the conditional probabilities of the

symbols, derived from their relative conditional frequencies

in the order in which they appear in y.

If G is a stochastic context-free grammar and has

the productions

Al -e»xl:llxl,2-°-lxl,ml (Pl,l,Pl,2’°°"Pl,ml)

Ar ‘7> xr,llxr,2”'lxr,mr (Pr,l’Pr,2""’Pr,mr)

where Ai - Aj for i = j, and 2 Pi j = 1, lfisr, then the come

plexity of G is the sum of complexities of these alternative

SEES,

r

C(G) giil C(Ai"“7'xi,ll...[x)
i,mi

The information conveyed by choosing one of the al-

ternatives, say xi is -log Pi" Thus

j’ J

78

r m

C(G) = Z 2 (-log Pi + C(x. .))

i=1 j=l 1j .3

where the first term represents the information inherent in

the jth choice, and the second term represents the complex-

ity of the chosen right hand side, as derived above.

Cook showed that if the length of y (right hand side

of a production) increases, while the relative frequencies

of the symbols remain the same, then C(y) increases. In

addition, if the length of y remains constant, while the

number of symbols (other than #) that occur in y increases,

then C(y) increases. Finally, Cook showed that for a given

length of y and a given number of symbols, C(y) is greatest

when all the symbols (except for #) have equal frequencies.

These properties of C(y) are useful when trying to

find grammars that are simpler than a given one. These

properties will not be of much use for finite-state grammars,

since the right hand sides of productions have lengths less

than three, and all symbols occurring on the right hand sides

of productions are different. However, the complexity

measure is not dependent on the right hand sides of produc-

tions and their probabilities. The complexity measure is

still valid for measuring the complexity of a finite-state

grammar. The context-free grammar in Chomsky normal form

has the same drawback. However, the second property is use-

ful in searching for a less complex Chomsky normal form

grammar.

Several remarks need to be made in connection with

this complexity measure. These remarks will be the basis

79

for the heuristic merging procedures in Chap. V.

(1) If a new production shortens and decreases the number of

symbols in the original production, than that production

decreases the complexity.

(2) Decreasing the length of the right hand side of a pro-

duction while increasing the number of different symbols

increases complexity.

(3) The complexity of a production of the form X ~§> an can-

not be reduced by breaking it down into shorter produc-

tions.

(4) If a substring longer than two symbols occurs repeatedly

on the right hand side of a production, a decrease in

complexity is possible by substituting a symbol for the

entire substring.

(5) If the given grammar's productions contain many disjuncts,

a reduction in complexity may be achieved by adding a

disjunctive production.

Egg. DIFFERENCE MEASURES BETWEEN LANGUAGES

In approximate language identification, the differ-

ence between the sample strings and a language can be used to

decide the degree of appropriateness of the language in des-

cribing the sample. In grammatical inference by the con-

structive method, it is very important to determine whether

the language generated by an inferred grammar can sufficiently

represent the sample strings or not. This question will be

studied for finite-state grammars and context-free grammars.

80

4.4.1. GENERAL DISCUSSION

Three different approaches to the notion Of difference

measure between languages have been introduced in Sec. 2.3.3.

we will briefly describe these measures before we define an-

other difference measure. Cook /11/ defined a discrepancy

measure for measuring the difference between a probabilistic

sample S and a p-language L(G) based on the probability distri-

bution of a language and a set of sample strings, which is

formulated as:

D(L(G).S) = iv+ IP(X)('10g p(X)+C(x))-q(x)(-log q(X)+C(x))l
X

t
s

C(x)= (K+l)log(K+l) + Z k. log k.

j=1 J J

where p(x) and q(x) are the probabilities of x in S and

L(G), respectively;

K is the length of x;

s is the number of different symbols in x;

kj is the number of times the jth symbol occurs in x.

The discrepancy between S and L(G) depends on the

lengths, numbers of different symbols, and probabilities of

the strings in S and L(G). For infinite languages, there is

no guarantee that the discrepancy will converge. The value of

the discrepancy ranges from zero to infinity. This discrep-

ancy measure might not show the actual relationship between

S and L(G). For instance, if L(G) and 8 have a complement

relationship, the discrepancy can be any value from

81

zero to infinity. Also, S and L(G) are probabilistic

languages, but the sum taken over all x in v: is not con-

sistent with a probabilistic word function. The differ-

ence measure of languages will be defined to overcome these

disadvantages.

Wharton /67/ defines metrics on the class of

languages 2 over a finite terminal vocabulary Vt which

measure the difference between two strings. Two kinds of

metrics are defined: the discrete metric and the weight

metric. The discrete metric is used in exact language identi-

fication and is not discussed here. The weight metric is

based on the sequence of weights which are assigned to words

in v: according to their lexicographic order, and norm. The

sum of the weights in a sequence of weights is required to

be bounded, and individual weights Wi must be positive. If

the sum of weights is equal one then the sequence of weights

is normalized. In this case, v: is a probabilistic language.

This difference measure cannot reflect the difference between

two probabilistic languages, since the weights do not depend

on the original probabilities. Although the weight metric

has a several interesting properties, it is not appropriate

for this research, because we infer p-grammars.

Maryanski /46/ defined several distance measures for

p-languages, based on differences in word probabilities.

Some distance measures have bounded values but some do not.

The most useful distance measures are the absolute and square

difference measures, defined as follows.

82

Let pi(x) be the probability of x in the ith langu-

age. Then the absolute and square differences for approx-

imating p-language Ll by L2 are:

Da(L1.L2> = x:Lllploc) - p2<x>l

DS<L1.L2> = z (p1<x> - p2<x>>2
xeLl

The distance measures between two p-languages do not

involve in the subset L of the p-language L2 whose strings

are not in the p-language L1. Therefore the distance measures

actually do not measure absolute difference between two p-

languages; that is Da(Ll’L2) # Da(L2,Ll), making these dis-

tance measures inadequate to some extent. If L1 is finite

and the size Of L2 increases monotonically, then the distance

between L1 and L2 will increase monotonically. This property

is not desirable when trying to select the best language to

represent L1.

The difference between two languages L1 and L2 can

be divided into three parts which are related to three sub—

sets; Ll-LZ, Lz-Ll, and Ll/XLZ. The subset Ll-L2 contains

strings in L1 but not in L2, L2-Ll is interpreted analogously;

L1’\L2 contains strings in both L1 and L2. The difference

contained in Llfle is the word probability difference. How-

ever, the difference provided by those strings in Ll-L2 or

LZ-L1 consists of both the word probability difference and

string syntactical difference. If L1 and L2 contain the same

83

strings then either Cook's discrepancy measure or Maryanski's

distance measures may indicate the difference between L1

and L2 properly. If there are some strings in L1 and not in

L2, or vise versa, these two difference measures may not

indicate the difference properly.

Among all difference measures for languages, the

discrepancy measure based on information theory best meets

our intuitive requirements for difference measure. This

measure considers both the word probability difference and

the string difference.

4.4.2. DEFINITIONS AND PROPERTIES

Several difference measures between two p-languages

will be defined in this section, based on Cook's discrepancy

measure D(L(G),S) given in Sec. 4.4.1. As mentioned pre-

viously, there is no guarantee of convergence for an infinite

language. The value of discrepancy ranges from.zero to in-

finity. Since S has a finite cardinality, we could sum only

over those x in S, so that the discrepancy would be bounded

from above. However, the loss of information would be sig-

nificant, and the value of discrepancy would not reflect the

actual difference between S and L(G). In order to find a

measure which will minimize the information loss, and will

converge, we will limit the number of strings counted in

measuring the discrepancy, as explained below.

For a finite terminal vocabulary Vt, and a positive

integer m<m, there are at most a finite number of strings

84

whose lengths are less than m. This suggests a way to limit

the number of strings involved in the calculation. Later

in this section, we will use this idea to define a difference

measure for languages and discuss its properties.

Another way to limit the number of strings involved

in the calculation is to use the probability. Since L(G) is

a p-language, the sum of all string probabilities in L(G)

equals one. This property can be used in limiting the number

of strings in L(G) which should be involved in the calcula-

tion of the distance between S and L(G). Suppose we want

ninety-five percent of strings in L(G) to be involved in

calculating the distance. We simply select strings from L(G)

in some prescribed order until the sum of the string probab-

ilities equals 0.95. In calculating the distance between S

and L(G) we require that the strings occurring in both S and

L(G) should be considered first. Therefore we have to

divide L(G) into two subsets L1 and L2; L1 has the same

strings as S, L2 has strings which are in L(G) but not in S.

The selection procedure is described as follows:

(1) Set the proportion of strings in L(G) to be involved in

the computation, say, q.

(2) Sum.the string probabilities in L1. Suppose the sum is

q!

(3) If qfq' then all strings in L1 are to be used in the

computation.

(4) If q>q' then a string in L2 is selected according to its

lexicographic order, and its probability is added to q'.

85

(5) Continue step (4) until q'zq. Then the computation involves

all strings in L1 plus those strings selected from L2.

In computing the distance between S and L(G), we have

proposed two different ways to limit the number of strings

which should be in the computation. NOW’We formulate these

ideas and define a new distance measure.

In using the length of a string to restrict the number

of strings in the computation, let m = max {i(x)}, and let

L' = {xlxeL(G), l(x)é m}. Xés

In using the string probability to restrict the number

of strings in the computation. Let the proportion of L(G) which

will be in the computation be q, 05q<l,

let lex(x) denote the lexicographic order of a string x

in L(G), and let card(L) denote the cardinal number of a

language L. Furthermore, let L2 = L(G)—Ll, where L1=S, and

let 2 p(x) = q'. Let L'=LfUL3, where L3cL2 and satisfies:

XéLl

(1) For all xfeL3, and all xjéiLz-LB, lex(xi)<lex(xj).

(2) Card(L) = Min {card(V)|V.CL , and 2 p(x) Zq-q'}.
3 i i 1 2

er.

1

<3) 2 p(x) 2q-q'
xeL3

Several distance measures between a p-sample S and a

p-language L(G) can now be defined. Let

B<X> = p(x)(-log p(x)+C(x)) - q(X)(-1og q(x)+C(x>)

where p(x), q(x), C(x) are defined as before.

Definition: The absolute distance between S and L(G) is:

Lemma 1 :

Proof:

86

Da<S.L(G)) = 2|B<x>l
xéL'

The absolute distance between S and L(G) is bounded

above.

Let m = max{£(x)}, and let L' = {xlxeL(G),£(x)5m},

xeS

G has terminate set Vt' Since Vt has a finite

cardinality, L' has a finite cardinality. We only

need to prove that the distance for individual

strings is bounded above.

Assume L' has the cardinality n. The absolute dis-

tance between S and L(G) is:

Da(S.L(G)) = Z PCX)(-1082 P(X) + C(x)) -

XéL'

q(X)(-log2 q(X) + C(x))

Sn.maxf|p(x)-q(x)C(x)-p(x)log2 p(x) +

Q(X)logz q(X)l}

5n.max{Ip(X)-q(x)C(X)|+IP(X)1082 P(x)l+

|q(x) logz q(x)|} S

lp<x>-q<x>c<x)l5c<x> = <K+l>1og2<x+l) + z k.1 k

i=1 3 ogz j

<(m+l)log2(m+l) + m-(mlog2 m)<w

Let f(x) = xlog2 x, then f(1) = f(0) = 0.

f'(x) - l + log2 x when x = 1/2, f'(l/2) = 0

f"(x) = l/x, f"(l/2) = 2

Therefore f(x) has a minimum at x = 1/2.

Thus [p(x)1og2 p(x)|51/2, lipiio

Iq<x>1og2 q<x>lfl/2, liqiio

2
Da(S,L(G)) <n((m+l)log2(m+l) +m log2m+l) <0°

87

Let n((m+l)log2(m+l) + mzlog2 m + l) = N.

Then Da(S,L(G))<N<0° is bounded above.

Let q be the portion of L(G), 05q<l,and let

L' = LlUL3, where L1 = S, and L3 is defined as be-

fore. Since S is a finite set, Ll has a finite

cardinarity. We want to prove that L3 has a finite

cardinality.

Let xEL' p(x) = ql. If qlzq, then L3 = 0. so L3

has zero cardinality.

If q1<q, then a string in L2 will be selected accord-

ing to its lexicographic order, and its probability

will be added to ql. If an infinite number of

strings is selected from.L2, then all strings in L2

will be selected because of the lexicographic order.

Thus q1 = q = l which violates our assumptions -

Q’E’D°

Definition : The square difference between S and L(G) is:

Ds<s.L<G>) = z (B(x>>2
xeL'

Lemma 2: The square distance is bounded above.

Proof: Analogous to the proof of Lemma 1.

DS(S,L(G)) 5 n-N2<co

Definition : The mean absolute difference between S and

L(G) is:

Dma(S,L(G)) = Z ' |B(x)lqi

xeL

Lemma 3: The mean absolute distance is bounded above.

88

Proof: Analogous to the proof of Lemma 1.

Since 05q(x)51, therefore Dma(S,L(G))<n-N<0°

Definition : The mean square distance between S and L(G)

is:

_ 2

Dms<s.L<G>> - xiL' <B<x>> qi

Lemma 4: The mean square distance is bounded above.

Proof: Analogous to the proof of Lemma 1.

Since 05q(x)sl, therefore DmS(S,L(G))5n:N2<m

We are only interested in distance measures having

an upper bound so that we will not discuss the relative dis-

tance between two p-languages. These distance measures be-

tween S and L(G) have the symmetric and the transitive

properties. The distance measures can be used as an accept-

ance criteria for inferred grammars.

Egg. STATISTICAL ACCEPTANCE CRITERION OF LANGUAGES

In approximate language identification, a grammar is

selected whose language strongly approximates the sample

/67/. In grammatical inference by constructive methods, the

acceptability of a grammar is based on the difference between

its language and the sample. A discrepancy measure based on

information theory measuring the difference between a p-

language and a p-sample and a number of distance measures

between p-languages has been developed in Sec. 4.4. However,

the actual threshold value of a difference measure for an

acceptance decision must depend on subjective ideas and

89

inference procedures. The Bayes' decision rule and the chi-

square test for distribution difference have been adopted

/35/,/46/ for this purpose.

The difference measures between languages defined in

Sec. 4.4. are applied to grammatical inference in this sec-

tion. The Bayes' decision rule will not be discussed here

because the conditions for applying this method are not com-

patible with the problem under study. The chi-square test

for distributional difference and probability independence

will be the most important tests in this thesis.

In this section, we will discuss statistical tests

and acceptance criteria based on a language and a sample.

Some distribution-free statistical tests will be presented

and a comparison will be made between them and the chi-square

test. The testing hypothesis and the characteristics of

tests will also be discussed.

figggl. APPROPRIATENESS OF A LANGUAGE FOR A SAMPLE

In using statistical procedures and tests to decide

whether a sample can be appropriately represented by a langu-

age, the parameters used in the statistics must be carefully

considered. Deciding what should be measured to demonstrate

the significance of a language in representing a sample is

very difficult. In this section, we will discuss the prob-

lem of selecting parameters for statistical procedures.

The finite sample S may be characterized by the

following features:

90

(l) The set of different symbols in S;

(2) The maximum lengths of strings in S;

(3) The length distribution of strings in S;

(4) The symbol distribution for strings of different lengths;

(5) The frequency distribution of strings in S;

(6) The dissimilarity matrix of strings in S.

The appropriateness of a language for representing a

sample might be decided by these features. If the frequency

distribution of strings is not uniform, then the sample is a

p-sample and will be discussed later in this section. The

dissimilarity matrix for a set of strings does not depend on

the language to which the strings belong. Therefore, it can-

not be used in comparisons. If the maximum lengths of

strings allowed are specified, the language has to be a

finite language. The length distribution and symbol distri-

bution of lengths may be used in deciding the apprOpriate-

ness of a language for a sample. One must also consider

whether an infinite language can reflect the degree of in-

finiteness inherent in the sample. There is no general way

to measure the degree of infiniteness.

The fact that no obvious techniques exist for measur-

ing the appropriateness of a language for a sample does not

mean that such a measure is not necessary. Rather, it

implies that finding an appropriate parameter for comparison

is very difficult.

Most studies concentrate on the appropriateness of a

p-language for a p-sample since the probability distribution

91

of strings can be used in statistical measures. The prob-

ability of strings in the sample can be estimated from the

string frequency distribution. In this thesis, a p-grammar

is inferred for a p-sample. The techniques based on the

probability measure will be most useful in deciding the

degree of appropriateness of a p-language for a p-sample.

ggggg. ACCEPTANCE CRITERION BASED ON STATISTICAL TESTS

In grammatical inference, the chi-square goodness of

fit test has been used to test the difference in string fre-

quencies between a p-sample and a p-language (Cf. Sec. 2.3.2.).

In this section, the chi-square test will be investigated as

a statistical acceptance criterion. The distribution-free

Kolmogrov-Smirnov maximum.deviation test will be presented

and compared to the chi-square test.

4.5.2.1. CHI-SQUARE GOODNESS-OF-FIT TEST

In this section, a brief description of the chi-square

test mentioned in Sec. 2.3.2. will be given and used to measure

the difference between observed and expected frequency dis-

tribution. The use of the chi—square test in grammatical

inference will also be investigated.

Let F(-) be some completely specified, hypothesized

distribution function, and let pi be the probability of a

k

random Observation being in category 1, i=l,...,k, Z pi=l.

i=1

If a random sample of size n is taken, with O. being the
1

k

number of observations in category 1, 2 0i = n, then the

1 l

92

expected number of observations in category 1 is ei = npi.

The joint distribution of O , o ...o is multinomial.
l 2 k 0 o o

Pr(o O o) = (n'/o 'O ' o ') l 2... k1, 2,000 k 0 1. 2... k. pl p2 pk

By Stirling's approximation,

n

2Pr(ol,02,...ok) = C exp (-l/2((oi-npi)2/npi))

i=1

where C is a constant for given values of n, k and the

various pi. If n m, then the following statistic has an

approximate chi-square distribution with (k-l) degree of

freedom.

k
2 2

X = 2 (o. — np.) /np.

k-l i=1 1 1 1

The testing hypothesis and acceptance criterion had been

stated in Sec. 2.3.2. The table for xz- test can be found in

Lindgren /44/.

Let E = {(xl,cl)...,(xk,ck)} be an experimental set,

where xi is a string and c1 is the corresponding frequency.

Each xi can be treated as a category. Thus E has k categories.

Let E ci=mt Then the empirical probability of an observa-

tioniIAtring) being in the category i is pi = ci/m. Let L

be a p-language and for each xieL, i=l,2,...k, p'(xi)=pi is

the corresponding probability of xi in L. In applying the

chi-square statistic to grammatical inference, the difference

between the expected frequency fi and the observed frequency

mp; is examined. The chi-square statistic becomes:

2 k k
2 2

= Z (o.-e.) /e.= 2 (mp' - c.) /c.

Xk-l i=1 1 l 1 l=l 1 1 1

93

= I (m ' - m)z/m = I m(' -)2/
i=1 Pi P1 P1 i=1 Pi Pi Pi

Chi-square tests are inexact unless the assumption

of infinite observed frequency in each category and the

minimum expected frequency in each category are met. The

following hazards are associated with chi-square tests.

(1) If some of the expected frequencies are small, the asympt-

otic chi-square distribution may not be appropriate.

(2) The sample size must be large.

(3) The prohibition against small expected frequencies has

led to the widely accepted practice of pooling categories

in order to bring the expected frequencies for the com-

bined categories up to the required size. Such pooling,

however, involves an arbitrary decision which changes

the character of the test (i.e., of the test hypothesis).

Also it violates the assumption of random sampling.

The above discussion shows that the chi-square test

is not entirely suited to grammatical inference. The Observed

sample is not randomly drawn from a p-language, and the

sample size cannot be infinite. Also the string probability

is estimated from the experimental set which may not reflect

the exact string probability, since an experimental set con-

tains fewer categories than a language.

4.5.2.2. THE KOLMOGROV-SMIRNOV MAXIMUM DEVIATION TESTS OF

AN_HYPOTHESIZED_POPULATION_DISTRIBUTION____—-——-

The Kolmogrov-Smirnov (K-S) tests are appropriate for

testing the hypothesis that two samples are from the same

94

distribution and are the best known of many "maximum deviation"

tests. In this section, we will discuss the K-S tests and

their use in grammatical inference.

The assumptions of the test are:

(1) Sampling is random, and there are no tied observations.

(2) The sample distribution is continuously distributed.

(3) The hypothesized distribution must be specified completely,

without regard to any information contained in the sample.

For finite sample size, the test is biased /47/. The

test, however, can be applied to discrete populations /40/.

The K—S tests used in testing the difference between a p-

language and a p-sample is described below.

Let E, xi, ci, be defined as before, and let Fn(-) be

the cumulative probability distribution of x, a random variable,

which has k values x].,...xk.‘n Then

Fn(x) = F(x5xn) = .: p(xi).

1 1

Let L be a p-language, and for each x e L, let p'(xi) be the
i

corresponding probability. Let Sn(-) be the empirical cumula-

tive probability distribution of the n obtained observations

n x x x . p x . .

Then the K-S maximum deviation statistics are defined

as:

K -- mix [sum - rum]

K+= max lSn(x) - Fn(x)‘

x

95

K"= min lSn(X) ' Fn(x)l

x

Let F0 be the true cumulative distribution function

of the sampled variate. Then the testing hypotheses are:

HO : Fn(x) = F0(x) for all x

H1 : Fn(x) = F0(x) for some x; use K statistic

Hl : Fn(x) > F0(x) for some x; use K+ statistic

1 : Fn(x) < F0(x) for some x; use K' statistic

Birnbaum./4/ has provided tables to five decimal

places. Accept H0 at significance levels a, if K is less

than K' in the table for the given n and a.

For the one-sided test K+, accept H0 at significance

level a, if K+ is less than K' found in the table for the

given n and a. For K- statistic, accept H0 at significance

level a, if K- is greater than K' found in the table for the

given n and a.

Since the sensitivity of K is not concentrated upon

a particular type or class of alternatives, it is, in effect,

a test of goodness of fit. The most appropriate classical

test against which to compare it is the chi-square test. The

K-S test is superior to chi-square tests in the following

ways.

(1) The K-S test requires only the relative modest assump-

tions that sampling is random and the sample population

is continuous, whereas the chi-square test assumes that

the sample size is infinite.

96 .

(2) The exact distribution of K is known and tabled for

small sample size, whereas the exact distribution of

the chi-square test is known and tabled only for in-

finite sample size.

(3) The chi-square test is only an approximate test, at all

sample sizes, and the degree of approximation is diffi-

cult to assess, whereas the K-S test is exact at small

sample sizes and its degree of approximation at large

sample sizes is more readily assessable.

(4) The K+ and K- test statistics were designed to test for

deviations in a given direction, and do so easily,

whereas the chi-square test must be specially modified

and conducted in unconventional fashion in order to do so.

(5) The K-S test uses ungrouped data, whereas the chi-square

test uses grouped data.

The chi-square test on the other hand, is superior

to the K-8 test in the following ways:

(1) The chi-square test does not require that the hypothesized

population be completely specified in advance Of sampling.

(2) The chi-square test can be applied to discrete popula-

tions, but not the K-S test. When the assumption of con-

tinuity is not met, the K-S test is conservative.

(3) The chi-square values can be meaningfully added by

making the appropriate reduction in degree of freedom.

Since all the assumptions for using K-S test are not

usually met in grammatical inference, the K-S test, just

like the chi-square test, is not an Optimum test for grammatical

97

inference. The major difficult lies in the random experi-

ment. In general, we assume that the experiment set is a

random sample. But since an infinite language contains an

infinite number of strings and the actual string distribu-

tion is unknown, it is technically impossible to decide the

sample size for obtaining an unbiased estimate of string

probability.

Although both chi-square and K-S tests have many

disadvantages in grammatical inference, they still are valu-

able tests for deciding which language is most appropriate

for a sample. Presumably, the inaccuracy caused by unsatis-

fied conditions on the test is the same from language to

language. Since the conditions under which the test is

applied are the same for all candidate languages of a sample,

a constant error is expected in the tests.

4gp. SUMMARY

This chapter concentrates on the definitions of solu-

tion grammar, complexity measures and statistical acceptance

criteria for grammatical inference. The problem.of defining

solution grammars for grammatical inference by constructive

methods has been discussed. The solution grammar for this

thesis is defined and characterized by grammatical complexity

and acceptance criteria.

The concept of grammatical complexity measures is

reviewed and discussed. A size measure of grammars is defined

for evaluating the performance of dissimilarity measures.

98

A complexity measure based on information theory is defined

which will be used to optimize the selection of grammars.

Difference measures between p-languages have been

reviewed and discussed. Several difference measures based on

information theory are defined and their properties are in-

vestigated. The proposed difference measures are shown to be

more realistic than those in the literature.

The use of the chi-square gOodness of fit test and its

application to grammatical inference have been discussed. The

Kolmogrov-Smirnov maximum deviation test is proposed and come

pared to the chi-square test, its application to grammatical

inference is discussed.

Techniques presented in this chapter will be used to

develop constructive methods in Chap. V.

CHAPTER V

INFERENCE OF PROBABILISTIC GRAMMARS

‘igl. INTRODUCTION

In the previous chapters a number of constructive

methods for grammatical inference have been discussed. In

this chapter, we will integrate these ideas into a new tech-

nique for grammatical inference with finite-state and Chomsky

normal form p-grammars.

The essential features of any constructive method are:

(l) Grammars are constructed based on a sample of strings and

heuristic procedures;

(2) Each constructed grammar is examined and a relatively

better grammar is selected;

(3) The language generated by each constructed grammar is

compared with the sample, and an acceptance criterion

for the constructed grammar is evaluated, based on the

difference between the language and the sample.

The problem studied in this chapter is to infer a p-

grammar for a p-sample by a constructive method. The p-

sample is assumed randomly drawn from a p-language. The

type of grammar being constructed is the same as the type of

p-language assumed for the p-sample. The constructive pro-

cedure for this problem.oonsists of the following components:

99

100

(1) Analyzing the syntactical structure of the sample.

(2) Constructing the initial grammar from the sample strings.

(3) Generating candidate grammars from the initial grammars.

(4) Evaluating an acceptance criterion.

Methods for analyzing the syntactical structure of sample

strings were presented in Chap. III. Techniques for generat-

ing candidate grammars were discussed in Chap. II and IV.

Methods for acceptance testing of inferred grammars were

described in Chap. IV.

The overall picture of the constructive method pro-

posed in this thesis is described below.

(1) Cluster the sample strings to establish their syntactic

structure in an inference tree.

(2) Construct an initial grammar for each cluster by merging

the partial grammar for each string, according to the

subtree defining the cluster. Then generate candidate

grammars for the clusters.'

(3) Merge the candidate grammars for the clusters according

to the inference tree to produce a candidate grammar for

the sample.

(4) Compare the language generated by the candidate grammar

and the p-sample. If the language is not acceptable,

alter either the syntactic description of structure or

merging rules and repeat.

The problem of assigning production probabilities

when inferring a p-grammar for a p-sample will be discussed

in Sec. 5.2. The procedure for generating candidate

101

p-grammars is divided into two problems. The first problem

is to generate an initial p-grammar from the p-sample, based

on the inference tree (Step (2)). The second problem is to

apply heuristic strategies to merge productions in the

initial grammar and construct new p-grammars called candidate

p-grammars for the p-sample (Step (3)). These two problems

will be discussed in Sec. 5.3. and 5.4. for finite-state and

context free grammars.

5.2. ASSIGNING PRODUCTION PROBABILITIES

In this section, we discuss the procedure of assign-

ing production probabilities. The techniques will be used in

Sec. 5.3. and 5.4. There is no theoretically-based technique

for assigning probabilities to the productions of an

ambiguous grammar. Since the problem of assigning production

probabilities is secondary in this thesis, the production

probabilities will be assigned in a simple way and differently

for different situations.

In assigning production probabilities, only the

following four situations will be considered. These condi-

tions will apply later to both initial and candidate p-

grammars. A is the initial symbol.

(1) Let "ab" be a string with probability P, and let a grammar

generating the string contain the productions:

A —%?aB, B-—9 b

where A, B are nonterminals and a, b are terminals.

(2)

(3)

(4)

102

The first production in the derivation sequence of

the string is assigned the string probability. In

this case the production A -4'aB will have probability

P and B -9 b, probability one.

Let A 49 a3, A-—9 aC be two productions with probabil-

ities P1 and P2 respectively. Let these two produc-

tions be replaced by the productions A —9 aD, D-—9 BIC.

Then Pr(A ——7> aD) = P1 + P2

Since Aa—a a3 is replaced by A -e9aD and D —a~B.

Similarly,

Pr(At—a aD) Pr(D —9 B) = P1

Pr(A ——9aD) Pr(D -—-> C) = P2

Thus,

Pr(D —9 B) = P1/ (P1 + P2)

Pr(D ——-,>C) =- P2/(P1 + P2)

Let two productions and their probabilities be

A"; B3131'32‘32 (P11:P12): C "’BsBl'Bsz (Pu-1’22)

If A and C are replaced by a new nonterminal U, then the

probability of the new production is assigned as the

average of the old production probabilities

mm a» BBBIIBZBZ) - ((1)11 + Pzp/z, (P12 + P22)/2)

Let a subset of the productions for a grammar and their

probabilities be

e) Dl-<>aD2, f) D2":a e

103

If B1 and 32 are replaced by a new nonterminal B, then

the productions a) and b) are merged into

A -—9icB|dD1|dD2 (P11 + P21, P12, P22).

Since the productions c) and d) are related to a) and b),

a new production

B —e>b|c|aB|a is created. The production probabilities

are assigned as follows:

Pr(B-»e»b) - P11 x P31/(P11 + P21)

Pr(B~—e c) 8 P11 x P32/(P11 + P21)

Pr(B~—é»aB) = P2l x P41/(P11 + P21)

Pr<3“‘* a) ‘ P21 1 P42/(1’11 + P21)

These four conditions include all cases occurring in

the inference procedure in subsequent sections.

gygg INFERENCE OF FINITE-STATE P-GRAMMARS

According to Sec. 5.1. any constructive procedure

usually consists of three subproblems: analyzing the syn-

tactical structure Of a p-sample, constructing candidate p-

grammars and acceptance testing of inferred p-grammars. The

first and the third subproblems have been carefully discussed

in Chap. III and IV. The subproblem of constructing candidate

finite-state p-grammars (FSPG) will be discussed in this

section. This subproblem is divided into two steps:

(1) constructing initial finite-state p-grammar, and (2)

heuristically merging productions to produce candidate p-

grammars. These two steps will be described separately. The

procedures described below are particularly effective with

104

the inference tree produced in Sec. 3.4.

5.3.1. CONSTRUCTING INITIAL FINITE-STATE P-GRAMMAR

The initial finite-state p-grammar exactly generates

the p-sample and is constructed based on the results of the

cluster analysis of sample strings. The following pre-

liminary definitions are needed:

Definition: A canonical finite-state p-grammar (CFSPG)

G = (Vn, Vc R, P, A) for a string x = a1...an
t)

with probability p is defined below.

Vn = (A, A A _1 }is a set of nonterminals;1,000, n

Vt = {a1, a2, ,an} is a set of terminals;

A is the start symbol;

R is the set of productions, defined recursively

as

. <.<
A —a>alAl, Ai-l"” aiAi for 2-1-n-l, An-lfififi'an

P is the set of production probabilities. All

productions have probability one except for the

production A-—9 alAl’ which has probability p.

Definition: Two productions are eqpivalent if and only if

they have the same probabilities and identical

right hand sides.

The procedure for constructing the initial finite-

state p-grammar from a p-sample consists of two steps.

First, construct a CFSPG for each cluster or subtree of the

labelled MST (Sec. 3.5.). Then combine all CFSPG and make

105

necessary consolidations. For each cluster, the construc-

tion starts at the shortest string in the cluster, then

follows the depth first order in the labelled MST which con-

siders top to down first, left to right second, to construct

a CFSPG for each string in the tree. After all strings in

a cluster are visited, productions are grouped together to

form an initial p-grammar for the cluster.

Since the initial finite-state p-grammar has to

generate the sample strings, the consolidation procedure is

limited to replacing equivalent productions without creating

recursive productions. When two productions are equivalent,

one of them is eliminated, and the occurrences of the left

hand symbol of the eliminated production are replaced by

the left hand symbol of the other production.

The following example demonstrates the procedure of

constructing the initial finite-state p-grammar.

Example 1: Let S1 = {cb, cab, caab, caaab } be a set of

strings with corresponding probabilities {1/4,

1/8, 1/16, 1/16}. The labelled MST connects the

strings in the sequence shown with root cb,

string cab at depth 1, string caab at depth 2 and

string caaab» at depth 3.

The stepwise construction is as follows; where

capital letters are nonterminals, unless otherwise

stated, all productions have probability one.

106

(1) Construct the CFSPG for the string ”cb"

A -—7>cB1 (1/4), 31—9 b.

(2) Construct the CFSPG for the second string "cab"

A —9’cB2 (1/8), 32"; a33, B3~—> b

(3) The productions Bl‘T’ b and B3.as b are

equivalent. Delete B3.e9 b and change all

occurrences of B3 to B1. Thus, we obtain:

Ai—-;~>cBl (1/4), 31.,9 b,A _a.cB2 (1/8),

BZ-ea aBl.

Repeating this procedure, we obtain the initial

finite-state p-grammar Gl for 31’ which has the

following set of productions.

A.__,.>c.B1 (1/4), Bl-ae'b, A-—e ch (1/8),

324—9 aBl, A —5;cB3 (1/16), B3-—9 aBZ,

A acB‘, (1/16), B4 ——)aB3.

5.3.2. CONSTRUCTING THE CANDIDATE FSPG

In this section, we propose a procedure for construct-

ing candidate finite-state p-grammars from an initial finite-

state p-grammar. Candidate finite-state p-grammars are con-

structed to reduce the complexity of the initial finite-state

p-grammar. According to the grammatical complexity measure

defined in Sec. 4.4., the complexity of a grammar can be

reduced by introducing recursive and disjunctive productions.

A recursive production is a production which has the same symr

bol occurring on both sides of the production. A disjunctive

production is one with more than one branch on the right hand

107

side of the production. The heuristic constructive procedure

consists of the following steps and is discussed in this

section.

(a) Creating recursive and disjunctive productions by merging

related productions;

(b) Consolidating the new grammar and removing undesirable

productions which contribute unnecessary complexity.

5.3.2.1. RULES FOR MERGING PRODUCTIONS AND CONSOLIDATION

In this section, we discuss the merger of productions

to form recursive or/and disjunctive productions. In

setting up merger rules, we will consider the relationships

among symbols occurring in different productions. Since the

length of the right hand side of each production in any

finite-state grammar cannot exceed two, the symbol relation-

ships between two productions are limited. All possible

situations and corresponding consolidations are listed below.

When two productions are to be merged, the rules are applied

in the order shown (see Appendix B).

(1) Eliminating one of the productions.

When two productions are equivalent, for example

A -—>aB and C —9 aB, one of them is eliminated and the

occurrences of the left hand symbol of the eliminated

production are replaced by the left hand symbol of the

other production.

(2) Introducing a recursive production.

When the terminals and nonterminals are related as

in A -—> aB, B —;> aA, a recursive production A->aA is created.

(3)

(4)

(5)

(6)

108

Introducing a recursive and disjunctive production.

The situation is similar to (2), as in A -€>aB,

B e9*aC. The production A-a>aA|aC is created.

Introducing a disjunctive production.

When two productions have identical left hand symbols,

for example, A-—9>aB, A——9~bB they are merged into

A —e’aB|bB.

Introducing a new nonterminal.

When two productions only differ in the right hand

nonterminal, for example A.—=>aB, A—ea aX, a new non-

terminal is introduced to replace all occurrences of B

and X.

Creating recursive productions.

When the situation A-—€>aB, B-e»bC arises, productions

with C as the left hand symbol or A as the right hand

symbol are considered. If applying the sequence of pro-

ductions shows that the terminal symbols occur repeatedly

with the same pattern, recursive productions may be

created to replace the set of productions.

5.3.2.2. SEARCH STRATEGY

The rules in Sec. 5.3.2.1. ShOW'hOW pair of produc-

tions are merged. In this subsection, strategies for select-

ing pairs of productions for merging from those in the initial

finite state p-grammar are proposed.

The search strategy uses the labelled MST to investi-

gate the possibility of merging productions. The search

109

process will use a depth first search to discover recursive

productions as well as disjunctive productions. The con-

structive procedure first tries to merge productions within

a cluster or subtree. According to the depth first order,

the productions generating a string are examined along with

those productions generating its predecessors for merging

productions. Productions from all clusters are then examined

according to the inference tree for further consolidation.

The procedures for merging productions from different

clusters are similar to those for merging productions in a

cluster.

Several important heuristic tactics are considered.

(1) Productions with the initial symbol at the left hand are

not allowed to merge with other productions except the

productions having the same left hand symbol, or when

the merging process is at the final stage.

(2) If the set of strings generated by a set of productions

is contained in the set of strings generated by another

set of productions, then the first set of productions can

be eliminated. This should be done whenever a merging is

achieved.

(3) When a new nonterminal is introduced to replace a pair of

symbols, the appropriateness of replacing each occurrence

should be tested (Sec. 4.5.).

Example 2: Let sample S1 and initial finite-state p-grammar

Gl be defined as in Ex. 1. The merging process

starts with the productions that generate the

Resale—3.5

llO

root and its immediate descendant, A —=>cB1 and

A~<9'cB2. According to Rule 5 in Sec. 5.3.2.1.,

B1 is replaced byBZ. Thus, we have A.----‘>cB2

(3/8), and by Rule 4, BZ—€> bIaB2 (2/3,1/3) is

created. Similarly, merging A«——>cB3 with

A ——>cB2, we have A ~9OB3 (7/16), B3 -—> bIaB3

(4/7, 3/7). Finally, A-<> cB4 and A-—? CB3 are

treated the same way, and the final set of pro-

ductions is:

A.—7\cB4 (1/2), remembers4 (1/2, 1/2)

Let S {31,82} be a p-sample, where S1 is defined

as in Ex. 1, and 82 = {ab, abb, abbb, abbbb }

with associated probabilities {1/4, 1/8, 1/16,

1/16}. By a merging process similar to that in

Ex. 2, the final finite-state p-grammar for 82

has the productions:

A---;>aC4 (1/2), C‘+__9b|bC4 (1/2, 1/2).

NOW‘We merge productions from the two p-grammars

in an heuristic manner. By introducing a new

nonterminal B to replace B4 and C4, we obtain the

productions: A——) aBch (1/2, 1/2)

B-e9 blaBIbB (1/2, 1/4, 1/4).

If the language generated by this grammar is

acceptable, then it is the solution grammar.

Otherwise, different heuristics must be applied

or the syntactic structure must be evaluated.

111

5:4. INFERENCE OF CONTEXT-FREE P-GRAMMARS

Since every context-free language can be generated

by a Chomsky normal form grammar, in the inference of

context-free p-grammars, we propose a constructive method for

constructing Chomsky normal form p—grammars (CNFPG) for a

p—sample. The constructive procedure consists of two steps:

first, construct the initial CNFPG from the p-sample, then

merge productions to generate candidate p-grammars for the

p-sample. These steps will be discussed separately in this

section.

égfigl. CONSTRUCTING THE INITIAL CNFPG FROM A P-SAMPLE

The steps for constructing the initial CNFPG from a

set of sample strings are similar to those for constructing

the initial finite p-grammar. First, construct a determin-

istic CNFPG for each cluster by merging CNFPG's for the

strings in the cluster, then combine them and make necessary

consolidations.

The construction of a CNFPG for a string consists of

the five steps described below.

(1) Construct a complete binary tree (CBT) or partial complete

binary tree (PCBT) for each string in the cluster based

on the length of the string. Let n be the length of

the string x, and let k, m.be positive integers. Then

(la) If n - 2k, construct a CBT with k levels;

(lb) If n - 2k 1'1+ m, where 15m<2 construct a PCBT with

k+l levels in which the left most m nodes at the

112

kth level have two descendents.

(2) Assign a nonterminal symbol to each node in the tree.

(3) Add an edge to each terminal node and assign the symbols

in the given string to the added nodes on one-to-one

basis from left to right. If the symbol in the given

string is a nonterminal, do not add an edge but assign

the nonterminal directly to the node in the CBT (or PCBT).

(4) Formalize productions from the tree.

A node and its successors generate a production by using

the nonterminal corresponding to the node as the left

hand side and nonterminals or terminal corresponding to

its successors as the right hand side of the production.

(5) Replace equivalent productions.

In the construction of a CNFPG for a cluster of

strings, we exploit the self-embedding property of some context-

free languages. The common substring relation between

strings in the cluster is used in the construction. The con-

structive procedure for each cluster consists of the follow-

ing steps:

(1) Construct a CNFPG for the shortest string in the cluster.

(2) Perform a depth first search in the labelled MST for

successors. If no successor nodes exist then stop,

otherwise continue.

(3) Substitute substrings in the successor for the existing

nonterminals whose sentential forms are equal to the sub-

strings. The substitution takes the longest substring

first, and if there are several alternatives then the

113

left most substring has priority.

(4) Construct a CNFPG for the string in Step 3, and consoli-

date it with existing productions. Then go to Step 2.

The initial CNFPG for the p-sample is obtained by

combining all CNFPG's for clusters and making all necessary

final consolidations.

In order to avoid the confusion caused by the use of

the initial symbol in different places, we will use differ-

ent initial symbols for different strings in the cluster.

These differences will be eliminated during mergers.

Example 4:

Let S1 be defined as in Ex. 1.

The construction of the initial CNFPG from S1

is shown below.

(1) Construct a CNFPG for the shortest string 'cb'.

Alf—€>Ble(l/4), B144; c, BZ—ee b.

(2) The descendant of 'cb' is 'cab'. After

replacing all substrings in 'cab' by previously-

defined nonterminals,'cab' becomes 'BlaBz', with

probability (1).

(3) Construct a CNFPG for 'BlaBz'.

112—#733132 (1/8), 33 «913134. B4__>a.

(4) The descendant of 'cab' is 'caab'. After

substituting for all substrings as explained

above, 'caab' becomes B3B4B2 with probability

(1/16).

(5) Construct a CNFPG for 'BBB4B2"

114

A #93532 (1/16), B5—9B3B4.
3

Repeating the procedure for the remaining

strings and renaming nonterminals produces the

initial CNFPG, G1 containing the follow up

productions:

(1,8): 3393134, 34*?) a: A fiBSBZ (1/16):

BS-—€>B3BA, A ~79B6BZ (1/16), B6——9‘BSBA.

ggggg. CONSTRUCTING THE CANDIDATE CNFPG

In this section, we will present a procedure for con-

structing candidate CNFPG's from the initial CNFPG. The

strategy for constructing candidate CNFPG is the same as

that for candidate finite-state p-grammars described in

Sec. 5.3.2.

Optimizing the grammatical complexity measure defined

in Sec. 4.4. requires the constructive procedure to merge

related productions into disjunctive and/or recursive pro-

ductions. A procedure for removing undesirable productions

which introduce unnecessary complexity is also needed.

These two steps will be described in the next two sections.

5.4.2.1. RULES FOR MERGING PRODUCTIONS AND CONSOLIDATIONS

In this section, all possible situations in which two

productions from CNFPG's can be merged into disjunctive

and/or recursive productions will be discussed. The con—

solidation for each situation also Will be described. The

115

rules are analogous to those for finite-state grammars. The

strategy for using these rules is explained in Sec. 5.4.2.2.

A complete listing of all situations is given in Appendix B.

(l) Eliminating one of the productions.

When two productions are equivalent, one of them will be

eliminated. The necessary consolidation is to replace

all occurrences of the left hand nonterminal of the

eliminated production by the left hand nonterminal of

the remaining production.

(2) Introducing a recursive production.

Suppose two productions meet all the following conditions.

(2a) Both productions have three different symbols.

(2b) Both productions have an identical symbol at the

same right hand side position. .

(2c) The left hand symbol of a production equals the non-

identical right hand symbol of the other production,

and vice versa.

Then all occurrences of the left hand symbol of one pro-

duction are replaced by the left hand symbol of the other

production and the second production is eliminated. For

example, for A—> BC, C-—) BA, the production AA BA is

created.

(3) Introducing a recursive and a disjunction production.

Suppose two productions meet one of the following condi-

tions.

(3a) The conditions (2a) and (2b) plus the left hand symbol

of a production equals the non-identical right hand

(4)

(5)

116

symbol of the other production, or vice versa.

(3b) A production has all symbols different and the

other production has identical right hand symbols.

In addition the left hand symbol of a production

equals a right hand symbol of the other production,

or vice versa.

Then the consolidation is the same as the situation (2),

except no production is eliminated. For example, for

A.—e>BC, D-ae BA, the production A~—9IBC|BA is created.

Introducing a new nonterminal.

Suppose two productions meet all the following conditions.

(4a) The left hand symbols of both productions are

identical.

(4b) One of the right hand symbols of both productions

are identical at the same position.

(4c) Neither of the non-identical symbolson the right

hand sides is identical to the left hand symbol.

Then a new nonterminal is introduced to replace the pair

of distinct symbols. For example, for A-—s>BC, A-—> BD,

a new nonterminal E is introduced to replace all occur-

rences of C and D.

Introducing a disjunctive production.

Suppose two productions satisfy both the following condi-

tions.

(5a) The left hand symbols of both productions are

identical.

117

(5b) The condition of (4b) is not satisfied. Then a

disjunctive production is generated. For example,

for A ——9 BC, A ~e CD, a disjunctive production

A‘f? BCICD is generated.

(6) Creating recursive productions.

Suppose two productions satisfy both the following con-

ditions.

(6a) Both productions have three different nonterminals.

(6b) The left hand symbol of one product is identical to

one of the right hand symbols, say the first symbol,

of the other production. Then we try to consoli-

date a set of existing productions having all the

following properties into recursive productions.

(Q1) All symbols in the production are different.

(Q2) Either the left hand symbol of the production is

identical to the first right hand symbol of one pro-

duction, or the first right hand symbol of the pro-

duction is identical to the left hand symbol of the

other.

If a repeating pattern of nonterminals occurs when the

productions are applied, then introduce a recursive pro-

duction. Otherwise, continue looking for related pro-

ductions until all productions are examined. For example,

for A-e; BC, B-ee DE, we look for productions which

either have A as the first right hand symbol, or B as

the left hand symbol, and satisfy Q1.

118

In the inference process, these rules are applied in

the order they are listed. All relationships between two

productions are tabled in the Appendix according to these

situations.

5.4.2.2. SEARCH STRATEGY

Since strings having a close syntactical relationship

are grouped together, the merging process first examines

productions for the strings in the same cluster. Produc-

tions corresponding to a string are compared with those for

its successors in the labelled MST. Productions for differ-

ent clusters are then examined according to the inference

tree for further consolidation. The heuristic procedure for

merging productions from different cluster is similar to that

for merging productions in a cluster. Some of the heuristic

tactics applied in Sec. 5.3.2.2. can also be applied here.

Example 5: Let sample 81 and its initial CNFPG G1 be defined

as in Ex. 4. The merging process starts with

the productions that generate the root and its

immediate successors. According to Rule 5 in

Sec. 5.4.2.1., A-——>'B1B2 and A-e? B3B2 are

merged into A -? Ble (3/8), and Rule A'Bl‘TC clBlB4

(2/3, 1/3) is created. Similarly, B5, and then

B6 are replaced by 31' After all consolidations,

we obtain:

A —9ZBlB2 (1/2), Bl-—:;>c|BlB4 (1/2, 1/2), B2-—9 b,

B4—eal a.

119

Assuming this is the best set of productions

for 31’ then the merging process for the

cluster stops.

Example 6: Let S = {S1,Szl be a p-sample, S1 is defined as

in Ex. 5., and 82 = {bbb, bbab, bbaab, bbaaab}

with associated probabilities {1/4, 1/8, l/16,

1/16}. By constructing and merging processes

similar to that in Ex. 4 and Ex. 5, assuming the

final CNFPG for 82 has the productions:

A-—9'D1Dl (1/2), Dl---.>‘b|D1Dl|D1D2 (l/4,1/4,1/2),

D2-—9.a.

Now we merge productions from the two p-grammars

in an heuristic manner. According to Rule 1 in

Sec. 5.4.2.1, D2 is replaced by 34' and Rule 4,

A maeDlDllBle (1/2, 1/2) is created. Assuming

no more productions can be merged, then we Obtain

the solution grammar with the productions:

A449 BlelDlD2 (1/2, 1/2), Bl_—,~«c|B1B4 (1/2, l/2),

32—9 b, 134.9 a, 131"?" bIDlDllolB4 (1/4, 1/4,1/2).

5.5. COMPARISON

In the previous chapters, constructive methods had

been proposed for the inference of finite—state and Chomsky

normal form p-grammars from a p-sample. In this section, the

constructive methods are compared with other constructive

methods. Based on the common features Of constructive methods

120

described in Sec. 5.1., their generality, complexity,

limitations and completeness will be compared. The construc-

tive method proposed for the inference of finite-state

grammars is compared with the three most significant exist-

ing constructive methods for finite-state grammars /3/,/20/,

/52/.

In the analysis of sample structure, the proposed

method uses a cluster analysis technique based on a labelled

MST while the other three methods /3/, /13/, /52/ use formal

derivative and k-tails (Sec. 3.2.). The clustering method

uses dissimilarities as well as common substrings to analyze

sample structure, while the formal derivative and k-tails

methods only sequentially search for common characters of

sample strings to decide the informational relationship

among sample strings. The clustering method is more general

and less limited than the formal derivative. The clustering

method will produce a reasonable result for any set of

sample strings, while the formal derivative and k-tails

methods are inherently limited.

In the construction of finite-state grammars, the-

proposed method uses the inference tree as a guide while the

other three methods /3/, /13/, /52/ use an arbitrary subset

of sample strings, or every string in the sample, guided by

the results of formal derivative to construct grammars. The

former is more efficient than the later, since it uses organ-

ized subsets of sample strings and the inference tree to

construct grammars with less effort.

121

In merging productions, the proposed method uses the

relationship between two productions and the concept of

grammatical complexity to merge related productions and to

simplify the grammar, while the three methods /3/,/l3/,/52/

use a derived grammar or merge equivalent nonterminals to

produce grammars. .The former is more complex, complete and

general, but less limited than the later.

The proposed method searches for a solution grammar

which has least complexity and generates an acceptable langu-

age, while the three methods /3/,/l3/,/52/obtain a solution

grammar without the complexity criterion.

The constructive method proposed for the inference

of Chomsky normal form p-grammars is compared with the three

most significant constructive methods for the subsets of

context-free languages /l4/-/l6/,/24/,/61/,/62/, and the two

most significant constructive methods for context-free p-

languages /ll/,/46/. The results of the comparison are pre-

sented separately below.

Comparing the proposed method to the three construc-

tive methods for the subsets of context-free languages /l4/-

/l6/,/24/,/61/,/62/ produces three main conclusions.

In the analysis of sample structure, the cluster

analysis method uses dissimilarities as well as substring

relationships to classify sample strings, while the three

methods use substring and structural relationships to analyze

sample structure. The former is more general, complex and

122

complete, but less limited than the later, since the cluster-

ing method considers more factors than the three methods /3/,

/13/,/52/ in analyzing sample structure and the clustering

method is not limited to analyzing subsets of context-free

languages.

The proposed method is more general than the three

methods /3/,/13/,/52/, since it is not limited to the infer-

ence of subsets of context-free languages.

The results Of comparing the proposed method to the

two constructive methods for context-free p-languages /ll/,

/46/ are summarized below:

The clustering method considers various differences

between strings to classify the sample strings, while the two

methods only use a simple substring relationship to analyze

sample structure. In the construction of context-free p-

grammars, the proposed method uses the inference tree as a

guide to construct grammars and to merge productions, while

the two methods start with a simple grammar and use pattern

matching techniques or heuristic search of common substrings

to merge productions. The proposed method is more general,

complex, particular and complete than the two methods, since

it uses a well formed framework to construct grammars.

The prOposed method has a more reasonable difference

measure of p-languages than those two methods have (Cf. Sec.

4.4.).

123

546. COMPUTATIONAL CONSIDERATIONS

In this section, we discuss the computational diffi-

culties inherent in the application of the constructive method

developed in this chapter.

In the literature, all examples for demonstrating the

performance of constructive procedures either involve a small

number of sample strings or are designed for a very specific

type of grammar. Since the field of grammatical inference is

still in its infancy, few restrictions are placed on solution

grammars and no uniform standard of performance exists. Little

optimization is possible. In addition, existing constructive

methods cannot generate an adequate grammar even when the

sample contains a moderate number of strings, much less when

a few hundred strings are in the sample. There is no common

ground for comparing two different constructive methods. In

most cases, constructive methods are developed for some speci-

fic purposes and under different assumptions and restrictions.

A few examples are not enough to show one constructive proce-

dure is uniformly better than another constructive procedure.

As mentioned before, the constructive method developed

in this thesis consists of three main components: Analyzing

the syntactic structure of sample strings, constructing

candidate grammars and testing acceptance criteria. In analyz-

ing the syntactic structure of sample strings, the clustering

method in this thesis was developed particularly for handling

a general situation and a large number of sample strings.

124

There is a problem in obtaining a real and reasonably large

set of sample strings. In selecting a real sample, the

sample space is the power set of a terminal set, and strings

of small length are more likely to be selected than long

strings. Thus, the syntactic structure of a sample in prac-

tice is not obvious. On the other hand, the artificial

samples used to demonstrate constructive methods in the liter-

ature are usually taken from an hypothesized source language

whose syntactic structure is apparent.

Since the construction of candidate grammars is

guided by an inference tree, the number of grammars being

constructed equals the number of clusters formed for the

sample. For a large number of sample strings, a relatively

large number of clusters will be formed. The problem of

merging related productions to generate candidate grammars be-

comes more difficult when the number of initial grammars as

well as productions increase. The nature of the difficulty

lies in both the number of comparisons needed to find a merger,

and the number Of productions involved in the consolidation

after a merger is adopted. In addition, the problem of

assigning production probabilities becomes serious when the

consolidations following mergers involve many productions.

The acceptance criterion depends on the type of mergers

used and requires knowledge of the language generated by a

grammar. Finding the probabilistic language generated by an

inferred p-grammar requires a parser. A probabilistic

finite-state automaton is needed for parsing a finite-state

125

p-language, and a probabilistic push down automaton is needed

for parsing a context-free p-language. Constructing and up-

dating these parsers are complicated tasks. Besides, when

the resulting p-grammar is not acceptable, it is difficult to

decide what should be changed first, dissimilarity measure,

clustering techniques, or merging strategies. Defining

heuristic strategies to optimizing an acceptance criterion is

beyond the scope of this thesis.

The entire constructive method is not easy to program.

The main difficulties are in the selection of prOper data

structures for a p-grammar, in the construction of efficient

parsers for recognizing strings, and in the implementation of

heuristic strategies for optimizing an acceptance criterion.

gpl. SUMMARY

In this chapter we have discussed the problem of con-

structing p-grammars from a p-sample. A method of assigning

production probabilities is described. The procedures for in-

ferring finite-state and Chomsky normal form p-grammars from

a p-sample are presented, and compared with other constructive

methods in the same category. In general, the proposed

method is more efficient, complex, general and complete than

other existing constructive methods.

The constructive methods proposed are based on the

techniques discussed in the previous chapters. The method

consists of two steps and based on an inference tree, construct

an initial p-grammar exactly describing the sample strings,

126

then merge related productions to generate candidate p-

grammars. Situations in which two productions may be merged

together have been discussed, and the necessary consolida-

tions for each situation have been described. Two examples

have been presented to explain how the constructive methods

work for the inference of finite-state and Chomsky normal

form p-grammars. The computational difficulties for the

application of the constructive method have been discussed.

CHAPTER VI

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the main results of the

thesis and discusses possibilities for future research.

‘le. SUMMARY AND CONCLUSIONS

This thesis is concerned with studying constructive

procedures for inferring a simple and acceptable p-grammar

from a p-sample. A heuristic approach is taken to grammati-

cal inference. Clustering methods, grammatical complexity

measures, difference measures and statistical tests are used

as the tools for developing constructive methods for gram-

matical inference. The objective was to develop general and

efficient constructive methods for inferring finite-state and

Chomsky normal form p-grammars that generate not only the p-

sample but also a language that resembles the p-sample in

some sense.

The most significant models, concepts and techniques

available in the literature are reviewed and briefly dis-

cussed in Chapter II. Chapter III introduces a procedure

for analyzing sample structure. This procedure is one of

the major contributions of the thesis. Five measures of dis-

similarity between strings based on the minimal cost of a

sequence of edit operations are defined and compared and

127

128

their properties are investigated. Examples are also pre-

sented to show the effects of different dissimilarity

‘measures in discriminating among strings having different

inherent relationships. A labelled MST for a set of sample

strings which leads to an inference tree are the fundamental

notions used to establish structure. A clustering algorithm

based on the MST which uses the notions of "common substrings"

and "length" to define inconsistent edges is proposed.

Seven interpretations of inconsistent edges are defined.

The removal of inconsistent edges generates the inference

tree. The main contributions of Chapter III are the develop-

ments of dissimilarity measures and clustering algorithms

for analyzing sample structure, none of which have been pro-

posed in the literature. The resulting inference tree is

unique to this thesis and is one of the key factors used for

developing general and computationally efficient constructive

methods in Chapter V. The procedure is demonstrated to be

more general than methods for analyzing sample

structure in the literature.

Grammatical complexity measures and acceptance cri-

terion are investigated in Chapter IV. The problem of

defining solution grammars is carefully examined, and a

definition of solution grammar is adopted for this thesis.

A size measure is suggested for evaluating the performance of

dissimilarity measures. A complexity measure based on in-

formation theory is defined for Optimizing the selection of

a grammar. Several difference measures for languages are

129

defined and investigated, especially those based on informa-

tion theory. For the first time, the Kolmogrov-Smirnov

maximum deviation statistic is applied to test the appro-

priateness of a p-language for a p-sample, and compared

with the chi-square goodness of fit test. The main contri-

butions of Chapter IV are the develOpment of difference

measures for p-languages and the suggestions of statistical

tests and complexity measures for grammatical inference. The

difference measures prOposed are more realistic than those in

the literature. The development of constructive methods

depends heavily on the techniques in Chapter IV.

Procedures for actually constructing finite-state

and context-free p-grammars are proposed in Chapter V. The

constructive procedure for finite-state p-grammars is similar

to that for Chomsky normal form p-grammars, and consists of

two parts: construction of an initial p-grammar, and merging

related productions to generate candidate p-grammars. The

construction is guided by the inference tree of Chapter III

and the merging rules optimize the complexity measure of

Chapter IV. Rules for assigning production probabilities are

described, and the techniques presented in previous chapters

are integrated into constructive methods which are compared

with constructive methods in the literature. The main contri-

bution of Chapter V is the synthesis of the constructive

‘method itself. The merging rules are unique to this thesis.

Examples are presented to demonstrate the constructive process.

The constructive method proposed here is unique in the

130

procedure for analyzing sample structures, the use of

difference measures for p-languages, the type of statistic

acceptance test and the heuristic strategies for construct-

ing initial and candidate p-grammars. The proposed construc-

tive methods are more general, complex, complete

and less limited than other constructive methods.

The nature of this research precludes mathematical

proofs of several claims made in this thesis. Introducing

enough grammatical and mathematical structure to prove

theorems would have destroyed the very problem under investi-

gation. The true value of this thesis will only become

apparent when applied to a real data base. Unfortunately,

the generation of such a data base requires image processing

equipment not currently available at M.S.U.

6.2. FUTURE RESEARCH

The following topics are suggested for future research

in the area of grammatical inference.

(1) In measuring dissimilarity between strings, it is evi-

dent that the ability to discriminate among sample

strings varies considerably with the dissimilarity

measure chosen. The investigation of the effect of

different dissimilarity measures on discrimination, and

the optimization of dissimilarity measures are important

topics for future research.

(2) The nonoverlapping hierarchical clustering algorithm

developed in this thesis is based on a labelled MST.

131

The study of other clustering methods for analyzing

sample structure is needed. In particular, the

development of overlapping clustering methods for the

inference of ambiguous grammars and the effect of

different clustering methods in grammatical inference

are important topics.

(3) The chi-square goodness of fit and Kolmogrov-Smirnov

maximum deviation tests have some disadvantages in

grammatical inference. Other statistics need to be

investigated, particularly non-parametric statistics.

(4) In forming candidate p-grammars from initial p-grammars,

the effect of different heuristic strategies such as

the order of merging productions should be investigated.

The same can be said for merging grammars for different

clusters.

APPENDIX

132

APPENDIX A

CLUSTERING ALGORITHM

Given a subtree of the labelled MST consists of node

N with immediate successors N1,N2,...Nn, and immediate pre-

decessor N' of N. Let

x
. ll length of maximal substrings common to N and

x

Nx'

ux = Number of symbols not used in both N and Nx'

dx = Weight of edge (N,Nx).

2(N)= length of node N.

The procedures P1 and P2 for Obtaining an inference tree from

a labelled MST are given below;

Procedure Pl:

* Stack l : Labelled MST

* Stack 2 : Inference Tree

* Stack 3 : Roots Of subtrees not being classified

* Stack 4 : Immediate successors of N in lexicographic order

1. Get Root N from Stack l

2. Set N‘4—-0

3. Push N on Stack 2

4. Set j é——0

5. Get immediate successors N1,N2,...Nn of N from Stack l

133

134

Push N1,N2,..

Call P2(N,N',j)

.Nn on Stack 4

If j + 0, set N'é— N, N e— Nj, go to 3

\
O
C
D
N
O

If Stack 3 is empty, stop

10. Pop stack 3, get N, go to 2

Procedure P2 (N,N',j)

* Stack 3 : Roots of subtrees not being classified

* Stack 4 : Immediate successors of N in lexicographic order

1. If Stack 4 is empty, return, else pop Stack 4, get Nx

2. If £(N)=£(Nx), go to 10

3. If N'=O go to 5

4. If 2(N)>max(l(N§,r(Nx)) or 2(N)<min(2(N'),e(Nx)), go to 10

5. If j - 0 go to 12

6. If kx = 0 or k>kx, go to 10

7. If kx>k or u>ux, go to 11

8. If uxéu or dx>d, go to 10

9. If d>dx, go to 11

10. Push Nx on Stack 3, go to 1

11. Push Nj on Stack 3

12. Set ké—kx, ué—ux, d é—dx, jé— x, go to l

135

APPENDIX B

B1. RULES FOR MERGING FINITE-STATE PRODUCTIONS

Situation Pairs of Candidate Productions

(l) (A—éaB, C——>aB), (A —>aB, B—PaB),

(A-—) a, B———>a)

(2) (A —) aB, B -—-> aA)

~(3) (A_._>aB, B——,>aC), (As—eaB, B—aa)

(4) (A—SaB,A—->bC), (A ——9aB,A—->bB),

(A_.>aA, A._>bB), (A o—aaB, A——>b), (A —-—,>a, A—s b)

(5) (A -——>aB, A ...,» 3C), (.41., aA, A —eaC)

(5) (A ._;aB, B—->bC)

Situation Pairs of Candidate Productions

136

RULES FOR MERGING CHOMSKY NORMAL FORM PRODUCTIONS

(1)

(2)

(3)

(4)

(5)

(6)

(A —->30, D—9BC), (A -9BA,

(A__/~.a, B—a a), (B_,>AA, C

(A—) AA, B——) AA)

(A—eBC, C eBA), (A—a CB,

(D—aBA, A—93C), (D-e‘AB,

(A—eBC, D——>AA), (A -—9BC,

(A-aa, 8—9 AA)

(A 63C, A-—,~> BD), (A—aCB,

(A—aAB, A-Q AC), (A_.,>BA,

(A —7‘:BC, A-—-7‘: DE), (A e-9BC,

(A—-> BC, B—->CD), (A _,>BC,

D—QBA),

—.-)AA), (A-—9AB, B‘s" AB),

C—a AB)

A—9 CB),

B-a CC), (A -——> BC, C—> BB),

A—a DB),

A-a CA)

A-——>CB), ...etc.

C ——>DE), ...etc.

BIBLIOGRAPHY

137

BIBLIOGRAPHY

M.R. Anderberg, "Cluster Analysis for Applications,"

Academic Press, Inc., New York, 1973.

A.W. Biermann and J.A. Feldman, "A survey of results

in grammatical inference," in Frontiers of Pattern

Recognition, pp. 31-54, ed. by S. Watanaba Academic

Press, New York, 1972.

A.W. Biermann and J.A. Feldman, "On the synthesis of

finite-state machines from.samples of their be-

havior," IEEE Trans. Comput., vol. C-21, pp. 592-597,

June 1972.

Z.W. Birnbaum, "Numerical Tabulation of Distribution

of the Distribution of Kolmogrov's Statistic for

Finite Sample Size," Journal of the American

Statistical Association, 47, 425-441, 1952.

M. Blum, "0n the size measure," Inf. and Cont., vol. 11,

pp. 257-265, 1967.

M. Blum, "A Machine-Independent theory of the complex-

ity of recursive functions," J. ACM, vol. 14,

pp. 322-336, 1967.

T.L. Booth, "Probabilistic representation of formal

languages," in Proc. 10th IEEE Ann. Switching and

Automate Theory, 1969.

T.L. Booth and Y.T. Chien, Computing: Fundamentals and

Applications. Santa Barbara, Calif., Hamilton, 1974.

T.L. Booth and R.A. Thompson, "Applying probability

measures to abstract languages,‘ IEEE Trans. Comput.,

vol. C-22, pp. 442-450, May 1973.

. J.A. Brzozowski, "Derivatives of Regular Expressions,"

J.ACM, vol. 11, No. 4, pp. 481-494, Oct. 1964.

. C.M. Cook, "A Cost Function for Concept Formation,"

"Experiments in Grammatical Inference," "Grammatical

Inference by Heuristic Search", Comput. Sci. Center,

Univ. Maryland, College Park, Tech. Rep., TR-212,

1972, TR-257, 1973, TR-287, 1974.

138

12.

13.

14.

15.

16.

l7.

18.

19.

20.

21.

22.

23.

24.

139

. Cramer, Mathematical Models of Statistics. Princeton,

N.J.: Princeton Univ., 1946.

. Cremers and O. Mayer, "On matrix languages," Inf.

and Cont., vol. 23, pp. 86-96, 1973.

. Crespi-Reghizzi, "An Effective MOdel for Grammar

Inference," in Proc. IFIP Congr., 1971.

. Crespi-Reghizzi, "Reduction of Enumeration in Grammar

Acquisition," presented at the 2nd Int. Joint Conf.

grtificial Intelligence, London, England, Sept. 1-3,

971.

. Crespi-Reghizzi, M.A. Melkanoff, and L. Lichten,

"The use of Grammatical Inference for Designing

Programming Languages," Commun.ACM, vol. 16,

pp. 83-90, Feb. 1973.

. Dubes, "Information Compression, Structure Analysis

and Decision Making with a Correlation Matrix,"

AD 826811 Michigan State University, E.Lansing,

Michigan, 1970.

.F. Edwards and L.L. Cavalli-Sforza, "Reconstruction

of evolutionary trees," Phe. and Phy. Classifications,

pp. 67-76, 1964.

. Ellis, "Probabilistic languages and automata,"

Ph.D. dissertation, Univ. of Illinois, Urbana,

Illinois, 1969.

. Feldman, "First Thought on Grammatical Inference,"

Standford, Art. Int. Project Memo. NO. 55, Standford

University, Standford, California 1967.

. Feldman, "Some Decidability Results on Grammatical

Inference and Complexity," Inf. and Cont., vol. 20,

pp. 244-262, 1972.

. Feldman and D. Gries, "Translator writing systems,"

Comput. ACM, vol. 11, pp. 77-113, Feb. 1968.

. Feldman and P. Shields, "On Total Complexity and

the existence of best programs," Comput. Sci. Dep.,

Stanford Univ., Stanford, Calif., Tech. Rep. CS-255,

1972.

. Feldman, J. Gips, J.J. Horning and S. Reder,

"Grammatical Complexity and Inference," Comput. Sci.

Dep., Standford Univ., Standford, Calif., Tech. Rep.

CS-125, 1969.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

N.

140

.S. Fu, Syntactic Methods in Pattern Recognition, New

York Academic, 1974.

.S. Fu, "Stochastic automata, stochastic languages

and pattern recognition," J. Cybernetics, vol. 1,

no. 3, pp. 31-49, 1971.

.S. Fu and T.L. Booth, "Grammatical Inference: Intro-

duction and Survey - Part I," IEEE Trans. Syst.,

Man, Cybern., vol. SMC-S, pp. 95-111, Jan. 1975.

.S. Fu and T.L. Booth, "Grammatical Inference: Intro-

duction and Survey - Part II," IEEE Trans. Syst.,

Man, Cybern., vol. SMC-S, pp. 409-423, July 1975.

.S. Fu and T. Huang, "Stochastic grammars and languages,"

Int. J. Comput. Inform. Sci., vol. 1, no. 2,

pp. 135-170, 1972.

.M. Gold, "Language Identification in the Limit," Inf.

and Cont., vol. 10, pp. 447-474, 1967.

.C. Gower, "A comparison of some methods of cluster

analysis," Biometrics, vol. 23, pp. 623-637, 1967.

. Gruska, "Some classifications of context-free

languages," Inf. and Cont., vol. 14, pp. 152-179, 1969.

. Hartmanis and R.E. Stearns, Algebric Structure

Theory of Sequential Machines, Prentice-Hall, 1966.

.E. Hopcroft and J.D. Ullman, "Formal Languages and

Their Relation to Automate." Reading, Mass.,

Addison-Wesley, 1969.

.J. Horning, "A Procedure for Grammatical Inference,"

Proc. IFIP Congress 71, Ljubljana.

.J. Horning, "A Study of Grammatical Inference," Ph.D.

Thesis, Standford University, Standford, Calif.

Jardine and R. Sibson, "Mathematical Taxonomy,"

John Wiley, New York, 1970.

C. Johnson, "Hierarchical Clustering Schemes,"

Psychometrika, vol. 32, pp. 241- 54, 1967.

. Kanal, "Patterns in Pattern Recognition," IEEE Trans.

Inf. Theory, vol. IT-20, pp. 697-722, 1974.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

A.

R

W.

H.

T.

T

E.

A.

141

Kolmogrov, "Confidence Limits for an Unknown Dis-

tribution Function," Annals of Mathematical

Statistics, 12, 461-463, 1941.

.R. Korfhage, Discete Computational Structures, pp. 101-

129, Acad. Press, N.Y., 1974.

.B. Kruskal, "On the shortest spanning subtree of a

graph and a travelling salesman problem," Proc.

Amer. Math. Soc., 7, 48-50, 1956.

Kuich, "On the entropy of context-free languages,"

Inf. and Cont., vol. 16, pp. 173-200, 1970.

.W. Lindgren, Statistical Theory, Collier-Macmillan Ltd.,

London, 1968.

Loberman and A. Weinberger, "Formal procedures for

connecting terminals with a minimum total wire

length," J. ACM, vol. 4, pp. 428-237, 1957.

. Maryanski, "Inference Of Probabilistic Grammars,"

Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci.,

Univ. Conn., Storrs, July 1974.

. Massey, "A Note on the Power of a Non-Parametric

Test," Annals of Mathematical Statistics, 21, 440-

443, 1950 (See also 23 (1952), 637-638).

. Nillson, Problem-solving Methods in Artificial

Intelligence, McGraw-Hill Book Company, New York,

1971.

Okuda, E. Tanaka and T. Kasai, "A Method for the

Correction of Garbled Words Based on the Levenshtein

Metric," IEEE Trans. on Comput., vol. C-25, No. 2,

pp. 172-178, 1976.

.W. Pao, "A solution of the syntactical induction-

inference problem for a non-trivial subset of

context-free languages," Moore Sch. Elec. Eng.,

Uhiv. Pennsylvania, Philadelphia, Interim Tech. Rep.

69-19, 1969.

Parzen, MOdern Probability Theory and its Applications,

John Wiley, New York, 1960.

R. Patel, "Grammatical inference for probabilistic

finite-state languages," Ph.D. dissertation, Dept.

Elec. Eng. Comput. Sci., Univ. of Conn., Storrs, 1972.

.C. Prim, "Shortest Connection Networks and Some

Generalizations," Bell Systems Technical Journal,

Vol. 36, pp. 1389-1401, 1957.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

P.

G.

A.

.M. Wharton, ”Grammatical Inference and Approximation,‘

142

S. Rosenbaum, "A Grammar base question-answering

procedure," Comput. ACM, vol. 10, pp. 630-635, 1967.

J.S. Ross, "Single Linkage Cluster," Algorithms as

13-15, Applied Statistics, vol. 18, pp. 50-54, 1969.

Salomma, "On the index of a context-free grammar and

languages," Inf. and Cont., vol. 14, pp. 474-477,

1969.

. Salomma, "Probabilistic and weighted grammars,"

Inf. and Cont., vol. 15, pp. 529-544, 1969.

.S. Santos, "Probabilistic grammars and automata,"

Inf. and Cont., vol. 21, pp. 27-47, 1972.

.E. Shannon and W. Weaver, The Mathematical Theory of

Communication, The University of Illinois Press,

Urbana, 1963.

.J. Shepherd and A.J. Willmott, "Cluster Analysis on the

Atlas Computer," Comp. J., 11, pp. 57-62, 1968.

.J. Solomonoff, "A Formal Theory of Inductive Inference

- Part I, Part II," Inf. and Cont., vol. 7, pp. 1-22,

224-254, 1964.

.J. Solomonoff, "A New Method for Discovering the

Grammars of Phrase Structure Languages, in Informa-

tion Processing. New York: UNESCO, 1959.

. Soule, "Entropies of probabilistic grammars," Inf. and

Cont., vol. 25, pp. 57-74, 1974.

.A. Thompson, "Determination of probabilistic grammars

for functionally specified probability-measure

languages," IEEE Trans. Comput., vol. C-23, pp. 603-

614, June 1974.

.G. Thomason, "Stochastic syntax-directed translation

schemator for correction of errors in context-free

lan ages," IEEE Trans. Comput., vol. C-24, pp. 1211-

121 , Dec. 1975.

.A. Wagner and M.J. Fischer, "The String-to-String

Correction Problem," J. ACM, vol. 21, pp. 168-173,

1974.

Ph.D. Thesis, University of Toronto, Toronto,

Canada, 1973.

143

68. R.M. Wharton, "Approximate Language Identification,"

Inf. and Cont., vol. 2, pp. 236-255, 1974.

69. C.T. Zahn, "Graph-Theoretical Methods for Detecting

and Describing Gestalt Clusters," IEEE Trans. Comput., vol.

C-20, NO. 1, pp. 68-86, Jan. 1971.

"'illlllljuillljllfiilijifilllfllflilfillll“

