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ABSTRACT

SURFACE ELEMENT METHOD IN TRANSIENT

HEAT CONDUCTION PROBLEMS

By

Bahman Litkouhi

The heat transfer between two (or more) bodies with perfect or

imperfect contact at the interface is of fundamental importance in

heat transfer studies and it has accordingly received considerable

attention over the last two or three decades. It is important in

the problems involving electric contact, electronic cooling, welding,

fins, contact conductance and many other applications for which two

(or more) similar or dissimilar bodies are attached one to the other

over a small part of their surface boundaries. In general, it is dif-

ficult to obtain analytical solutions to such problems.

The transient surface element method (SEM) is a new numerical

method for solution of linear transient two- and three-dimensional heat

transfer problems. The method is well-suited for the above mentioned

problems compared with the other numerical procedures such as finite

difference (FD), finite element (FE) or boundary integral equation

(BIE) methods. In the SEM only the interface between the two geometries

requires discretization as Opposed to discretization of the whole do-

main needed in the FD and FE or discretization of the whole boundary in

the BIE method. This in turns reduces the size of numerical calculation

and computer time.



Bahman Litkouhi

In this dissertation a multinode transient surface element method

for two-dimensional heat conduction problems with linear boundary condi-

tions has been deveTOped and formulated. The method uses Duhamel's in-

tegral and involves the inversion of a set of Volterra integral equations,

one for each surface element. Computer programs were written and the

following three different problems were solved: i) two semi-infinite

bodies initially at two different temperatures suddenly brought together

over a small circular area and insulated elsewhere, ii) the intrinsic

thermocouple problem, and iii) a semi-infinite body with mixed boundary

condition if a step change of the surface temperature over an infinite

strip.

For each of these problems the multinode SEM perfomed well. The

results showed excellent agreement with those obtained by other investi-

gators. It was found that very high accuracy is attainable with a re-

latively small number of surface elements. This feature makes the method

superior to the alternative numerical procedures such as FD, FE, or BIE

methods for the type of problems considered.
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CHAPTER 1

INTRODUCTION AND DEVELOPMENT OF INTEGRAL EQUATIONS

1.1 Introduction
 

The transient surface element method (SEM) is a new numerical

method for solution of linear transient two- and three-dimensional heat

transfer problems. Its development originated with the need of solving

certain transient composite body problems. There are numerous cases

for which similar or dissimilar bodies are attached one to the other

over a part of their surface boundaries. Some examples in conduction

are problems associated with the intrinsic thermocouple, contact con-

ductance and fins when the transient temperature distribution of the

fin including the base is of interest. Other related problems are

those with mixed boundary conditions. See Figures 1.1-1.3. In general

it is difficult to obtain analytical solutions for such problems.

The SEM described and developed in this dissertation is particularly

suited for such problems compared with other numerical procedures.

The most widely used numerical method in heat transfer is the

finite difference method (FDM) [1,2]. It involves approximating the

partial differential equations by simpler, localized algebraic ones

valid at a series of nodes within the region. The method is extremely

valuable for problems involving composite bodies, nonhomogeneous boun-

dary conditions, and nonlinearity in the differential equations or

boundary conditions.

The finite element method (FEM) is similar to the FDM. The main

difference between the FEM and the FDM is in the way of constructing

the algebraic equations. The FDM involves approximating derivatives

in differential equations, while in the FEM the approximating equations
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are cast in an integral form [3]. This approximation results from a

minimization process based upon the theories of variational calculus.

In general, the FEM is best designed to handle complex boundaries, while

the FDM is superior for complex equations.

For the problems mentioned above, the use of the FDM or the FEM is

not entirely satisfactory. This is partly due to the necessity of setting

up extremely fine grids near the interface, and many large grids further

from the interface. Further, both methods involve whole-body discreti-

zation schemes which require, finally, the solution of very large system

of algebraic equations, especially for two- and three-dimensional

problems. These methods unavoidably generate the solution at all

internal nodes, whether or not this information is needed. This causes

significant economic disadvantages for many applications where only

interface results are of interest.

Closely related to the SEM is the boundary integral equation

method (BIEM), also referred as boundary element method (BEM) which.has

become very popular in recent years. It has been used in a variety of

engineering problems such as solid mechanics, fluid flow, seepage, soil

mechanics, water waves, heat conduction, electrical problems and a

broad range of other applications [4-8]. The method utilizes Green's

theorem to formulate the problem described by a partial differential

equation in a given region with some specific boundary conditions as

an integral equation which applies only to the boundary of the region.

Basic building blocks used in the BIEM are source solutions (Green's

functions) for infinite homogeneous bodies. The main advantage of the

method over alternative numerical methods such as the FDM or FEM is

the reduction by one of the dimensionality of the problem under con-

sideration, i.e. two-dimensional problems are reduced to one-dimensional



problems and similarly three-dimensional to two-dimensional ones. This

results in considerable savings in the input data and the computer time

required to run the problem. A disadvantage of the BIEM is the presence

of singularities at the boundaries.

The BIEM is well-suited for solving steady state problems with

infinite domain and irregular shaped boundaries. A number of papers

have been written for steady state heat conduction problems [9-12].

Schneider [9] examined the constriction resistance problem using the

BIEM for isothermal rectangular, hollow rectangular, and circular-

annular contacts located on a semi-infinite body. He further (in a

joint paper with LeDain [10]), introduced the method to solution of

steady state heat conduction problems with special attention given to

the corner problem+. Khader [11] and Khader and Hanna [12] employed

BIEM in conjunction with Kirchhoff's transformation to solve nonlinear

steady state heat condution problems.

Application of the BIEM to transient problems have received less

attention compared to the steady state problems. This is due to

the complexity resulted by having the independent variable of time.

There are two basic ways of handling the effects of time. One is to

temporarily eliminate time as an independent variable by utilizing the

Laplace transform and then solving the problem in the transform space

by using BIEM. The time solution is then obtained by numerical trans-

form inversion. This was the approach taken by Rizzo and Shippy [13]

to solve the problem of heat conduction in an infinite cylinder of

 

I This situation arises in the problems with mixed boundary conditions

and at geometric corners [10].



an isotropic medium. The other approach (similar to the one used in

this dissertation) is to treat the time directly in the same manner as

the spatial coordinates are treated, integrating numerically over the

time as well as over the boundary of the body [14-16]. Shaw [14] uti-

lized the direct approach to investigate the heat conduction in a cir-

cular sector of an isotropic medium. A similar approach was taken by

Chang, et a1. [15] to treat anisotropic heat conduction in the transient

case with heat generation. As a test they applied their method of solu—

tion to three specific problems of i) a long square prism, ii) a long

circular cylinder, and iii) a hollow eccentric cylinder. Recently,

Nrobel and Brebbia [16] employed BIEM to solve three-dimensional axisym-

metric transient heat conduction problems of i) a solid circular cylin-

der with convection, ii) a prolate spheroidal solid with zero initial

temperature subjected to a unit surface temperature at time zero, and

iii) a solid sphere with time dependent boundary conditions. The time

integrations were performed directly by dividing the entire time domain

into small intervals. Temperature and heat flux were assumed to be

constant over each interval. This assumption made possible the analy-

tical evaluations of the time integrals by using series expansions.

For the problems shown in Figures 1.1 through 1.3 (bodies connected

over relatively small area) the SEM is superior to the FDM, FEM or BIEM.

In the SEM only the interface between the two geometries required dis-

cretization as opposed to the discretization of the whole domain

required in the FDM and FEM or discretization of the whole boundary in

the BIEM. This in turn reduces the size of numerical calculations and

computer time. Further, the SEM does not require any modifications

or special handling of points near the domain boundaries unlike the

above mentioned alternative methods.



The SEM uses Duhamel's integral and involves the inversion of a

set of Volterra integral equations, one for each surface element.

Though the method is limited to linear regionsit can be used for

nonlinear boundary conditions. _

Two types of kernels (building blocks or fundamental solutions)

can be employed in the SEM; temperature-based and heat flux-based.

The SEM requires that these "building blocks" or kernels be known for

the basic geometries under consideration. For example, for the con-

tact conductance problem (see Fig. 1.1a) solved in Chapter 3,

solution for a constant heat flux over a disk-shaped area on a semi-

infinite body is needed. For many geometries the kernels are known

or can be obtained Simply by analytical or numerical procedures.

Yovanovich [17] suggested the name "surface element" and did

early work on a steady state form of SEM. Keltner and Beck [18] and

later Beck and Keltner [19], were the first to employ the SEM for

transient problems. They have considered only one element along the

interface and utilized the Laplace transform technique to obtain

"early" and “late" time analytical solutions for certain cases [18,19].

Both types of kernels have been used in their solutions.

In this dissertation a multinode transient surface element method

for two-dimensional heat conduction problems with linear boundary con-

ditions is developed and formulated. Only heat flux-based kernels are

considered. three different problems are solved and the results are

compared with those obtained by the other investigators.

In Chapter 1 mathematical descriptions for two-dimensional

heat conduction problems with various types of boundary conditions

are presented first. Next, the Duhamel's theorem is introduced



and its application to arbitrary time and space variable heat flux

boundary conditions in a two-dimensional region is developed. Finally,

integral equations with temperature-based kernel and heat flux-based

kernel are discussed.

In Chapter 2, the multinode surface element method formulations

for two arbitrary geometries in perfect (or imperfect) contact over

part of their boundaries are developed and described. In Chapters 3

and 4, the SEM presented in Chapter 2, is employed to solve the problem

of two semi-infinite bodies initially at two different temperatures

suddenly brought together over a small Circular region and insulated

elsewhere (contact conductance problem), and the intrinsic thermo-

couple problem, respectively.

In Chapter 5, the SEM is further utilized to solve the problem of

a semi-infinite body with mixed boundary condition of a step change

of the surface temperature over an infinite strip and insulated

elsewhere. The kernels required in this chapter are obtained from the

exact solution for the problem of a semi-infinite body heated by a con-

stant heat flux over half the surface which is presented in Chapter 6.

Finally, the closure and conclusions are given in Chapter 7.

1.2 Mathematical Description
 

In this section the equation and the different types of boundary

conditions associated with the boundary value problems of heat con-

duction for two-dimensional bodies are stated and briefly discussed.

Consider the boundary value problem of heat conduction for a two

dimensional region R, with the boundary S as shown in Fig. 1.4. The

body is assumed to have temperature-independent thermal properties

and to be homogeneous and isotropic with no heat generation. The



 

Figure 1.4 Geometry Showing a two-dimensional heat conduction problem.
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differential equation is,

2 = l_3T x, ,t)
V T(x,y.t) a at (1.2.1)

with the initial condition of

T(x,y.t) + Ti(x..v)
(1.2.2)

as t + 0

where T is the temperature, x and y are the space variables, t is the

time, and a is the thermal diffusivity.

Type of Boundary Conditions

In this thesis the primary concern is with linear boundary condi-

tions. Linear boundary conditions, in general, can be separated into

four different types.

I. Prescribed Surface Temperature (First Kind)

The surface temperature of the boundaries can be specified to be

a constant, a function of time or position, or a function of both

position and time,

T = Ts(s,t) on S (1.2.3a)

where 5 denotes location along the surface boundary S. See Fig. 1.5a.

If the temperature at the boundary surface vanishes, the homogeneous

boundary condition of the first kind is obtained,

T = O on S (1.2.3b)

II. Prescribed Heat Flux Across the Surface (Second Kind)

In the second type of boundary conditions the normal derivative

of temperature is Specified to be a constant, or function of time t,
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or position 5, or both 5 and t at the boundary,

3T S’t = k-1q(S,t) on S (1.2.4a)

ans

where §%-denotes differentiation with respect to outward pointing nor-

5

mal to the surface boundary S. See Fig. 1.5b. This boundary condition

is equivalent to prescribing the magnitude of the heat flux along the

boundary. If the normal derivative of the temperature at the boundary

surface vanishes, the homogeneous boundary condition of the second

kind is obtained (insulation),

33-3—5151: 0 on S (1.2.4b)
305

III. Heat Transfer to the Ambient by Convection (Third Kind)

If the flux across the surface boundary is proportional to the

temperature difference between the surface boundary and the ambient,

the boundary condition is,

-k filgfi—tl = hS[TS(s,t) - Too(s,t)] (1.2.5a)
S

where T00 is the ambient temperature and hs’ the proportionality con-

stant, is the heat transfer coefficient. See Fig. 1.5c. This equation

can also be written as,

3T(S,t)

k an + hsTS(s,t)

(1.2.5b)

= hSTm(s,t) s f(s,t) on S

As hS + 0 this case tends to the boundary condition of case 11, and as
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hS + w it tends to the boundary condition of case I. If the ambient

temperature is zero, the homogeneous boundary condition of the third

kind is obtained,

k 11%;), hsTs(s,t) = 0 on S (1.2.5c)

5

IV. Mixed Boundary Condition

In this case all or some of the previous types of boundary condi-

tions may be specified over different portions of the boundary S.

T = Ts(x,t) on S],

k 2%IELEI = q(s,t) on S ,
IIS 2

1.2.6)
aT(s,t) = (

k ans + hSTS(S,t) hSTm(S,t) on 83,

T = O on $4,

and so on. See Fig. 1.5d.

The boundary conditions described above cover most cases of physi-

cal problems. There are also the radiative boundary conditions with

heat flux obeying the fourth-power temperature law, the natural convec—

tion boundary condition, and the interface conditions associated with

phase change. Such boundary conditions are nonlinear and are not

considered. However, it Should be noted that the surface element

method is capable of treating nonlinearities at the boundaries and

approximately inside domains for certain cases.
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1.3 Duhamel's Theorem
 

Duhamel's theorem provides a means for solving boundary value

problems of heat conduction with time dependent boundary conditions.

It utilizes the solution to a corresponding fundamental problem with

time-independent boundary conditions. This method is a useful tool

for obtaining the solution of problems with transient boundary condi-

tions whenever the solution to the corresponding fundamental problem

is available.

Duhamel's theorem has been expressed in different forms. Briefly

it states that if w(F,t) is the solution to a linear system initially

at zero temperature, due to a unit stepwise input, then the solution

to the same system initially, at zero temperature due to a time-

varying input F(t) (instead of a unit step) is,

t

Of F(x)ip(F,t-X)dx (1.3.1)
— -a_

T(r’t) — at

where F’is the position vector, t is the time, and X is a dummy variable.

The input function, F(t), can be any type of time-dependent boundary

condition (for instance, prescribed surface temperature, ambient tempera-

ture or heat flux), or heat generation. Using Leibnitz's rule for dif-

ferentiation of an integral, an alternative form of (1.3.1) can be obtained,

1: _

T(T~',i) = of m) Mfg—{fill d). - (1.3.2)

It also has been conventional to treat problems with arbitrary

space-variable conditions by using Duhamel's method with integrating

over space [20]. In the following section it is shown that Duhamel's

method can be extended to simultaneous variation of both time and space
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conditions.

1.4 Derivation of Duhamel's Integral Equation for Arbitrary Time

and Space Variable Heat Flux Boundary Conditions in a Two-

Dimensional Region
 

Consider the two-dimensional heat conduction problem given in

Section 1.2 with the heat flux boundary conditions given by equation

(1.2.4a) for an arbitrary geometry as shown in Fig. 1.5b. This inves-

tigation is restricted to systems initially at zero temperatures

(Ti = 0), because most practical problems can be reduced to this case.

For simplicity it is assumed that q(s,t) is non-zero only over the

portion of the boundary S from s = O to s = L, and the other portion of

the boundary is insulated (q(s,t)=0, for s > L). See Fig. 1.6. The

objective is to find the expression for the solution of the above

problem using Duhamel's integral method.

In the first step the solution to the fundamental problem is found.

The fundamental problem is identical to the above problem with the excep-

tion that the variable flux boundary condition q(s,t) is replaced by a

special unit step function. It is described by the following equations:

av

2 =_1._El
V Wq a at (1.4.1)

wq(x.y.0) = 0 (1.4.2)

3P

__fl.=
k ans 0 for t < O or s < n (1.4.3)

= 1 for t > O and n < s < L

where n is a point along S between s = O to s = L, and wq(x,y,n,t)

is the temperature rise at position (x,y) and time t caused by a unit
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step change of heat flux at time t = 0, from n to L (n < s < L),

which is called the Flux Based Fundamental Solution (FBFS). It is

indicated in Fig. 1.6 by the cross-hatched portion. Notice that,

for fixed (x,y) and t, wq(x,y,n,t) decreases as n increases,

WQIXSYSUIt) > wq(xay,n+dnat) (1-4°4)

Temporarily let, n be fixed and consider the variation of the heat flux

with time only, From the fundamental solution the temperature rise at

position (x,y) and time t due to a unit step change of heat flux at

time X is,

vq(x.y.n.t-x) (1.4.5)

where (t-X) is the time that has elapsed since the step at X. Also the

temperature rise at time t due to a unit step change of heat flux at

time X+dX is,

wq[x.y.n.t-(A+dl)] ’ (1.4.6)

Then from (1.4.5) and (1.4.6), the temperature rise at position (x,y)

and time t due only to a unit step change in q for X < t < X+dX is

'dxw (XSYSUSt'A)=wq(XSYSnat'A)'wq[X,y,n,t-(A+dA)] (104-7)

9

where dX is a differentiation operator for X. Notice that wq(x,y,n,t-X)

is greater than uq[x,y,n,t-(X+dX)]. Using (1.4.7), the temperature rise

at position (x,y) and time t due to the value q(n,t) for A < t < X+dX

and n being fixed is given by

3¢q(Xsyin.t-1)

TQ(n9A)dqu(XSYSnat-A)='q(naA) 3A dA (1.4.8)
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for small dX. Since the problem is linear, superposition can be em-

ployed and the total effect of all step changes of heat flux over small

dX's from time zero to time t is Simply found by integrating (1.4.8)

from O to t. Hence one can write,

 

 

 

  

t 3Wg(X.Y9n,t-X)

wg(x,y.n.t) = - i q(n.X) 31 d1 (1.4.9a)

0

Since,

3Wq(X,y,nst-A) 3W

31 ‘ ' a t-X

and

a a at-awq(x y n A) = 84g

at aTt-x)

it is evident that,

3¢q(fsysnst-41 = - 8wq(xay:nat'x)

8X 8t

Therefore (1.4.9a) may be written as,

t 3¢q(X:y,n,t-A)

w'(X.y.n.t) = I q(n.A) at dX (1.4.9b)

q o

 

where Ta is the temperature rise for the case that q is zero for s < n,

and is uniformly distributed over space for n < s < L.

Further, one can Show that the temperature rise for the case that

the heat flux, q, is zero for s < n+dn and is uniformly distributed

for n+dn < S < L, is,
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t 3Wq(xay,n+dnat'x)

w;(x.y.n+dn.t) = of Q(n.X) at dX (1.4.10)
 

Using (1.4.9b) and (1.4.10), the temperature rise due to a uniform heat

flux q, between s = n and S = n+dn and for t > O is,

'dan(XSYanat) = wq(X.y,n,t) ' wq(x,yan+dnat)

(1.4.11)

_ awé(xay’nat)

- 3n dn

where dn is a differentiation operator for n. (Notice that wé(x,y,n,t)

is greater than wé(x,y,n+dn,t).) Introducing (1.4.9b) and (1.4.10) into

(1.4.11), one can Show,

t 32Wq(XSYSnat'A)

-dan(X.y,n.t) = -0f H(n.l) atan dldn (1.4.12)
 

Again superposition can be employed and the total effect of the varia-

tion of heat flux from S = O to s = L can be found by integrating

(1.4.12) over space from S = O to s = L.

L t 32¢q(XSY.n,t-X)

T(x.y.t) = -0; OI q(n,A) Eta” dan (1.4.13) 

In this problem it was assumed that only a portion of the surface

boundary is exposed to heat flux with the remainder being insulated.

However, if none of the boundary S is insulated, the first integral

in (1.4.13) extends over entire boundary S. Furthermore, if the ini-

tial temperature of the system is Ti instead of being zero, the solu-

tion becomes
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t 32w (XSYSnat'A)

- = _ qT(x.y,t) Ti g of q(n.A) atan dan (1.4.14) 

In the above problem the input function is the heat flux along

the boundary which varies with both space and time, and the solution

is in terms of the FBFS, wq. If, however, the surface temperature were

known along the boundary as the input function, (instead of heat flux),

then in a similar manner to that described above, the solution in terms

of the Temperature Based Fundamental Solution (TBFS), OT, can be ob-

tained as,

t 132wT(x,y,n,t-A)

T(x.y.t)-Ti- - é of [Ts(n.x)-TiJ anat dan (1.4.15) 

Equations (1.4.14) and (1.4.15) are rather general expressions

for the case that the input function varies with both space and time in

a two-dimensional region. To the author's knowledge, they do not appear

anywhere in the open literature. Colladay [21] has shown the Duhamel's

integral equation with flux-based kernel for flow between heated paral-

lel plates. His equation, however, is different from what is given

here. In the next section the application of the above equations to

the solution of two-dimensional transient heat conduction problems is

discussed.

1.5 Integral Equation Formulation
 

The Duhamel's integral equations given in Section 1.4 are now

employed to obtain the solution to equation (1.2.1) subject to the

various types of boundary conditions discussed in Section 1.2. The

solution can be determined in two different ways, either a) using wT,
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the TBFS, or b) using wq’ the FBFS. To compare the two approaches and

discuss their utility for each particular type of boundary condition,

both form of solutions given by (1.4.14) and (1.4.15) are considered.

For the problems with the boundary conditions of the first type,

where the temperature is solely specified everywhere along the boundary,

(1.2.3a), the right hand side of (1.4.15) is known, and one can solve

for the temperature history of any interior point of R, by direct

integration. If, however, (1.4.14) is employed instead of (1.4.15),

the direct evaluation of T(x,y,t) is not possible, because of the un-

known heat flux, q, in the right hand side of this equation. In this

case an inverse problem must be first solved for the unknown surface

heat flux which is the required information needed by (1.4.14) to find

T(x,y,t) at any interior point. (The inverse problem is discussed

further in the solution of the mixed boundary-value problems.) There-

fore, in the problems with the first type of boundary condition,

(1.4.15), is more appropriate than (1.4.14).

On the other hand if the boundary condition is of the second type

where q is solely specified along the boundary S, (1.2.4a), then the

right hand side of (1.4.14) is known which leads to evaluation of a

direct integral. In this case (1.4.14) is more appropriate than (1.4.15).

For the boundary conditions of the third and fourth type where

neither surface temperature nor its normal derivative are completely

known over the entire boundary S, none of the above equations can be

used directly to obtain temperature history for any interior point. An

example is given to illustrate this case better.

Consider the homogeneous convective boundary condition given

by (1.2.5c) where the temperature and its normal derivative are related

through a linear expression along the boundary as,



20

k §I%%SEI.+ hSTS(s,t) = 0 on S (1.2.5c)

S

substituting for q in (1.4.14) from (1.2.5c) one can write,

t 32W (XSYSUSt'A)

T(x,y,t)-Ti: - f I h T (n,1) q dan (1.4.16)
5 0 S S

 

atan

Equation (1.4.16) cannot directly be integrated for T(x,y,t), Since

Ts(s,t) inside the integral is unknown. In other words the number of

unknown functions in (1.4.16) is more than one, Ts(s,t) and T(x,y,t).

However, for a point along the boundary S, (1.4.16) reduces to,

32W (nat'x )

T (s, t)- -j ofh STw(n, q dan (1.4.17)

S

 

s atan

which is a Volterra integral equation of the second kind with the only

unknown function, Ts(s,t), both inside and outside the integral. As

an inverse problem (1.4.17) can be solved numerically for Ts(s,t).

Once the surface temperature, TS(s,t), has been determined, the solu-

tion to the interior temperature history, T(x,y,t), can be obtained by

substituting Ts(s,t) into (1.4.16).

Hence, for the problems with mixed or convective boundary condi-

tions the temperature history at any interior point (x,y) can be

determined in two steps:

a) Find the boundary information by solving an inverse integral

equation, and

b) using the boundary data obtained in a), find the interior

temperature history by using a direct integration.

In this thesis the solution of two-dimensional heat conduction
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problems only based upon wq(FBFS) is considered. Equation (1.4.14) is

the basic starting point in the development of the SEM formula in the

following sections. Furthermore, the problems with the first and

second type of boundary conditions are not discussed herein, since

their solutions can be found explicitly by direct integration.



CHAPTER 2

SURFACE ELEMENT METHOD FOR TWO BODIES IN CONTACT

2.1 Introductory Remarks
 

The heat transfer between two bodies with perfect or imperfect

contact at the interface is of fundamental importance and it has accord-

ingly received considerable attention over the last two or three

decades. It is important in the problems involving electric contact,

electronic cooling, welding, fins, contact conductance, and many other

applications for which two similar to dissimilar bodies are attached

one to the other over small parts of their surface boundaries. Some

examples are given in Chapter 1. In general it is difficult to ob-

tain analytical solutions to such problems.

In this Chapter a transient multinode surface element method for

two arbitrary geometries contacting over part of their surface boun-

daries is. developed and formulated. Both cases of perfect contact

and imperfect contact are considered. The method starts with the

Duhamel's integral equation given by (1.4.14) which is then approximated

numerically in a piecewise manner over time, and the boundaries and the

interfaces of interest.

The method is superior to the other numerical procedures such as

FDM, FEM, or BIEM, for the particular problems mentioned above. In

this method only certain parts of boundaries (interface) need to be

discretized as opposed to the whole body discretization required in

the FDM and the FEM or discretization of the whole boundaries needed

in the BIEM.
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2.2 Problems to be Considered
 

To illustrate the capability and limitations of the method, the

three different geometries given below are investigated.

The first geometry involves two semi-infinite bodies initially at

two different temperatures suddenly brought together over a small

circular region and insulated elsewhere (contact conductance

problem). See Fig. 1.1a.

The second geometry has a semi-infinite insulated cylinder attached

to a semi-infinite body (the intrinsic thermocouple problem). See

Fig. 1.2a.

The third geometry is a semi-infinite body with the mixed

boundary condition of a step Change of the surface temperature

over an infinite strip and insulated elsewhere. See Fig. 1.3a.

In each case the solution to the interfacial heat flux is empha-

sized. For the third geometry, however, the solution to the interior

temperature history is also formulated.

2.3 Discretization over Space
 

In order to solve numerically the integral equation given by

(1.4.14), the surface boundary is divided into N finite surface elements

Asj, as shown in Fig. 2.1. (Notice that only the parts of the boundary

with non-zero values of heat flux need to be discretized). Equation

(1.4.14) can be written as,

t N 3 W (XSYSnst‘A)

T(x,y,t)-T =- I [.2 I q(n.x) q~ at,“ danx (2.3.1) 
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Figure 2.1 Geometry showing discretization over the heated portion of

the surface boundary.
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Figure 2.2 Uniform heat flux assumption over each element.
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In the simplest form of approximation, the heat flux is assumed uniform

over each element (but different, in general, at each element. See

Fig. 2.2), so that,

t N a Si

T(x,y,t)-T1.=- f { 2“. qJ-(I) gi- [wq(x.y.n.t-A) I 11d)
0 i=1 5.

3-1

(2.3.2)

It N ()3 ( )=- { Z q. A -—— [Aw x,y,t-X ]}dX

0 jzl J at qj

where

Avqj (x.y.t) = wq(x.y.sj,t)-wq(X.y.sj_1,t) (2.3 3)

Further, if the temperature rise at position (x,y) due to a unit step

increase in heat flux q at the element j is denoted ¢j(x,y,t), it can

be shown that

-Av (x,y,t) = ¢-(X.y.t) (2.3.4)
Qj J

(See Sec. 1.4). Using (2.3.4) in (2.3.2) results in

t 3¢'(Xay’t'k)

I qj(A) J at dX (2.3.5) 

I
I
M
Z

T(x,y,t)-Ti=

j 1 O

which gives the temperature rise at location (x,y) and time t due to

the effect of N heat flux histories q1(t), q2(t), ..., qN(t). The func-

tion 4j(x,y,t) is the basic building block solution needed in the above

expression and is termed an influence function.
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2.4 Surface Element Formulation for Two-Bodies in Contact

In this section the surface element method formulations for two

arbitrary geometries in contact over part of their boundaries are de-

veloped and described.

a) Perfect Contact
 

Two different geometries of a semi-infinite body and a semi-

infinite slab initially at uniform but different temperatures are

brought together into perfect contact over the interface of width w.

One side of the slab, x = 0, is held at zero temperature and the other

parts of the boundaries are assumed to be insulated. See Fig. 2.3.

The bodies may have different thermal conductivities, k, and density-

specific heats, pc The upper body is referred to aS region 1(y>0)p'

and the other body as region 2(y<O). The initial temperatures are de-

noted by T1.1 and Ti2 for regions 1 and 2, respectively. In the rest

of the analysis the subscripts 1 and 2 are used in references to the

properties of the corresponding regions. The describing differential

equations are,

E—é—l-+.a__;l=_1_.a.:l

ax 3y 0‘1 a

(2.4.1)

2 2

3x 8y 0‘2 a

subject to,

T1=Ti1 for t=O, |x|zp, yzp

(2.4.2)

for t=O, nggw, y§0
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and

T1=Ti1 for t>O, as [x|+ w (2.4.3a)

T2=O for t>0, x=o, y<0

8T2 , (2.4.3b)

T: o for t>O, x=w, y<0

T1=T2

3T1 8T2

k1 5y—-- k2 3y for t>0, nggw, y=O (2.4.4a)

8T1

F: 0 for t>0, x<0 and x>w, y=0

T1=Ti1 for t>0, as y+ w

(2.4.4b)

T2=T12 for t>O, as y+~m

where T1 and T2 denote the temperature distibutions, k1 and k2 repre-

sent the thermal conductivities, a1 and 02 refer to the thermal diffu-

sivities, x and y are the Space coordinates, and t is the time.

Analysis

First, the interface is divided into N finite surface

elements (each being an infinite strip), ij, as shown in Fig. 2.4.

(If the system is symmetric only half of the interface needs to be dis-

cretized.) It is assumed that there is no spatial variation of tempera-

ture or heat flux over each element (uniform approximation). The heat

fluxes q1(t), q2(t), ..., qN(t) are arbitrary functions to be found.

The heat flux qj(t) which leaves body 2 in Fig. 2.4 is the same heat

flux that enters body one over the region x=xj_1 to x=xj, that is,
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Figure 2.3 Geometry of semi-infinite slab attached to a semi-infinite

body.
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Figure 2.4 Possible distribution of surface elements for connected

semi-infinite body and slab.



-k ———-- -k ———-= q (t) for t>O, xj_1§x5xj, y=O (2.4.5)

Using (2.3.5), the temperature at element k in body one and at time t

can be given by,

Tk1(t)=Til+jgl oftqj(t) 33113;;l32,dx (2.4.6a)

where

Tkl E T(xL,O,t) . x) = xk-Axk/Z (2.4.6b)

and

4);)(t-1) E ¢§1)(x;,0,t-X)
(2.4.6c)

is the temperature rise at element k and time t due to a unit step heat

flux at element j of surface 1. ¢£;)(t) is the basic building block

needed for body 1. It Can be found from the known solution given in

Chapter 6, for a constant heat flux over an infinite strip of a semi-

infinite body. See Fig. 2.5a.

Similar to (2.4.6a), an integral equation can be given for the kth

surface element of body 2,

(2)
N t 36k. (t-X)

Tk2(t)=T12-_§ f qj(X) -——l—5$—-—-dx (2.4.7a)

3-1 0

where

Tk2 E T2(x&,0,t) (2.4.7b)
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and

¢£§)(t—X) E ¢§2)(x£,0, t-X) (2.4.7c)

is the temperature rise at element k and time t due to a unit step heat

flux at element j of surface 2. The minus sign before the summation in

(2.4.7a) is used because the heat flux is pointing outward from body 2.

The basic building block for body 2, 6:?)(t), can be found from the

solution of a semi-infinite slab heated over an infinite strip with

zero temperature on one side and insulated on the other side. See Fig.

2.5b. This solution can be obtained from the known solution for a con-

stant heat flux over an infinite strip of a semi-infinite body by using

the method of images (see Chapter 6, and [22].)

For the case where the bodies are in perfect contact, one can

write,

Tk1(t) = Tk2(t) for k=1. 2, ..., N (2.4.8)

By introducing (2.4.6a) and (2.4.7a) into (2.4.8), a set of integral

equations for k=1, 2, ..., N can be found,

N

-T. = 2 oftq. (t))-——l—————-dx (2.4.9)

where

= (1) (2 )
iijt) ikj (t)+ ¢k (t ) (2.4.10)

Equation (2.4.9) represents a set of Volterra equations of the first

kind which can be solved simultaneously for N unknown heat flux his-

tories q1(t), q2(t), ..., qN(t).
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(a) (b)

Figure 2.5 Basic building blocks for the geometries of semi-infinite

body and semi-infinite slab.
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Figure 2.6 Geometry illustrating uniform heat flux assumption over

each time interval.
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b) Imperfect Contact

Even though the perfect contact is a common interface assumption,

it will only be valid for very intimate contact, such as a soldered

joint. For imperfect contact (2.4.8) is replaced by

qk(t)=hk(t)[Tk2(t)-Tk1(t)] for k=1, 2, .... N (2.4.11)

where hk(t) is the time-variable contact conductance for surface ele-

ment k. The above relation tends to the case of perfect contact

(given by (2.4.8)), as hk+ m. It also includes the cases of convection,

prescribed heat flux and prescribed temperature. By introducing (2.4.6a)

and (2.4.7a) into (2.4.11), a set of integral equations for heat fluxes

qk(t), k=1, 2, ..., N, can be obtained,

qk(t) N t 36 .(t-X)
- = .__EL_____T1.2 T1.1 EETETA-jil of qj(t) 3t dX (2.4.12)

for k=1, 2, ..., N

Equation (2.4.12) represents a set of Volterra equations of the second

kind with the unknown heat fluxes, qk(t)'s, appearing both inside and

outside the integrals. These integral equations can be solved simul-

taneously in an inverse fashion for the unknown heat fluxes. The

method of the solution is described for the case of imperfect contact

which includes the other cases as well.

2.5 Solution of the Simultaneous Integral Equations
 

The Volterra equation (2.4.12) can be approximated by a system of

linear algebraic equations by replacing the integrals with suitable

quadrature formulas. As the first step, the time region 0 to t is
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divided into M equal small time intervals, At, so that tM represents

the value of t at the end point of the Mth interval,

d 1
H

tM = MAt (2.5.1)

Equation (2.4.12) can be written as

 

qk(tM) N M ti 36k.(tM-x)

T. -T. = -+ z 2 f q.()) .J dX
12 11 hkitM) j=1 t=1 ti-l J at

(2.5.2a)

for k=1, 2, ..., N

where

t0 5 O (2.5.2b)

In the simplest form of approximation the heat flux histories qj(t) are

assumed to have constant values in each time interval (see Fig. 2.6) so

that

qu N M

Ti==fiRMA-jil iEI qji A¢kj,M-i for k=1, 2, ..., N (2.5.3a)

where

Ti = TiZ-Ti1 (2.5.3b)

qji E qj[(l-1/2)At] (2.5.3c)

A¢kj,M-i = ¢kj,M+1-i ' ¢kj,M-i (2-5°3d)

In the form given by (2.5.3a), the heat fluxes qu's (for j=1, 2,

.., N) can be determined at different time intervals one after another,
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by marching forward in time for,

M = 1, 2, 3, ...

While calculating each new time component, the fluxes at previous times,

qjl’ qj2’ qj3’ qj,M-2’ qj,M-1

are known for j=1, 2, ..., N. Thus for each time step, equation (2.5.3a)

represents a system of N equations with N unknowns qlM’ q2M’ q3M, ...,

qNM' The objective is to solve this system for the unknowns qu, for

j=1, 2, ..., N. For convenience define,

¢kji E ¢j (xxk,0,t ) (2.5.4)

Introducing this definition into (2.5.3a) and noting that, ¢kj0=0’ gives

M+gq.¢.=1.+gM21q¢hKM j=1 3M k31 l j_1 1__1qji kj M- 1

N M-l

- jzl 1:1qj1¢kj M+1'_1 for k=1, 2, ..,, N (2.5.5)

Equation (2.5.5) is written in standard form with unknowns on the left

and knowns on the right.

Expressing (2.5.5) in matrix form gives,

M-1_ _ M-l =

=T'i + Z 3 q-(11+M 2 (2.5.6)

i=1 ‘ i=1
M=1)EM

with



‘
6
'
"

I
”

P¢111

¢211

c¢N1i 

  -qNU

¢121

¢22i

¢N2i

_ . 1
HM : diag [fi——-

1M

.
4
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¢ini

¢2Ni

 

 

(2.5.7a)

(2.5.7b)

(2.5.7c,d)

  

where 31 and fiM are called the influence matrix and the conductance

matrix, respectively.

matrices,

where

o
n

I
I

C
” u

"
N

*
N

Then (2.5.6)

I
I
I

-
fl

M-1

i=1

M '
9
'
"

M-1 -

i=1

2

M-i

If further E, and 5 are defined to be the

n
u

°w14

5
”

g
n
u
-
‘
0

q.1

can be written as,

(2.5.8a)

(2.5.8b)

(2.5.8c)

(2.5.8d)
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E =‘fi (2.5.9)

The solution of (2.5.9) is

-1

qM

fi
l
l

fi- ' (2.5.10)

The E matrix, multiplier of EM, has to be calculated at each time

step if the diagonal matrix fiM’ is a function of time. However, for the

case that the contact conductances do not change with time, the E matrix

needs to be calculated only once during the entire solution and an al-

ternative form of solution can be given as, (see Appendix A)

-1._

Q1 = E T, (2.5.11)

_ _ = M'l _ =-1_

QM = Mq1 + B [ z qi] - c F for M=2, 3, ... (2.5.11b)

i=1

where

fi- fi-1 =- cpl (2.5.12)

(Since i is not a function of time in (2.5.12), the subscript M is

dropped.) For the case of perfect contact where hkMV w, the diagonal

conductance matrix, HM, becomes zero which implies that,

E = 5 (2.5.13)
1

Introducing (2.5.8a,c,d) and (2.5.13) into (2.5.10), results in a

simpler form of solution as,

q1= C T'i (2.5.143)
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qM = M6, - E‘l'F for M=2, 3, ... (2.5.145)

The elements of the [NxN] influence matrix 51 are:

1 2 '

¢kji = ¢£j2 T ¢kjg (2°5'15)

If the two bodies in contact have the same geometry and thermal pro-

perties then,

z 2(13(1) = 2¢(2) (2.5.16)
¢kji kJi kJi

It is helpful to display the expression for GM more explicitly. To il-

lustrate, the case of perfect contact at the interface with only two

elements is considered (N=2). In other words there are two heat flux

histories, q1(t), q2(t) to be determined. For simplicity only three

time steps are considered (M=3). At the first time step, (2.5.14a)

becomes:

c c '1 T
q11 11 12 i

= (2.5.17)

q21 C21 C22 Ti

where

= = (1) (2)

ij ¢kj1 - ¢kj1 T ¢kj1 (2°5°18)

Solving the above system for q11 and q21 yields

T.(C -C )

- ‘ 22 12 (2.5.19a) 

q11 ’ A
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= Ti(C11'C21)

q21 A

where

A = C11C22‘C12C21

For the second time step, M=2, (2.5.14b) becomes:

"' r- ” ”1" '1

q121 qlll C11 C121 F1

        1922- (Q21- -C21 C22- th.

Solving (2.5.2 ) for q12 and q22 yields

 

 

 

 

z (2Ti-F1)C22-(2Ti-F2)C12

q12 A

z 2 _ F1C22’F2C12

q11 A

= (2Ti-F2)C11-(2Ti-F1)C21

q22 A

_ F2C11'F1C21

' 2q21 ' A

where

1 = $111q11 + ¢121q21

2 ‘ 2211q11 + ¢221q21

(2.5.19b)

(2.5.19c)

(2.5.20)

(2.5.21a)

(2.5.21b)

(2.5.22a)

(2.5.22b)

In a similar manner, for the third time step, M=3, one can write



39

 

 

F c -F.C
- _ 1 22 2 12

q13 ‘ 3q11 A

F c -F c
- 2 11 1 21

q23 ‘ 3q21 ‘ A

where

2

F1 = ,El[¢1l’3-i qli+¢12.3—i q21']

2

F2 = iEIE¢21.3-i q11+¢22,3-1 Q21]

(2.5.23a)

(2.5.23b)

(2.5.24a)

(2.5.24b)

Notice that F1 and F2 are the only terms that should be evaluated at

each time step.

Because of convolution behavior of the summations given in (2.5.8c)

and (2.5.8d), the influence matrices, Ei's, need to be calculated at

each time step. Consequently, most of the computation effort is in the

evaluation of column matrix 5, particularly as the value of M becomes

larger.



CHAPTER 3

TWO SEMI-INFINITE BODIES IN CONTACT OVER A CIRCULAR AREA

3.1 Introduction
 

In this chapter the transient thermal response of two semi-

infinite bodies, brought suddenly into the perfect thermal contact

over a small circular area is considered. The rest of the areas of

the contacting planes are insulated. See Fig. 1.2a. The temperatures

of the bodies are initially at uniform but different values. The SEM

is employed to obtain the transient solutions for the interface heat

fluxes and temperatures, and the thermal constriction resistance of

the contact area. The solutions cover the entire range of dimension-

less times. The results are compared with those obtained by other

investigators. Two different cases are investigated; a) identical

materials on both sides of the contact plane, b) different materials

on the two sides of the contact plane. The former case is similar to

the problem of a uniform step temperature change over a disk on the

surface of a semi-infinite body and insulated elsewhere (see Fig. 3.1).

Previous Work
 

The steady-state problem for this geometry has been previously

examined and is well known [22,23]. The transient problem for Case

a has been analyzed by several authors by considering a single semi-

infinite body with isothermal disk on its surface [24-29]. Normington

and Blackwell [24] and later Blackwell [25] were the first to seek the

solutions in oblate spheroidal coordinates, in order to eliminate the

mixed boundary conditions which occur on the surface if the problem is

set up in cylindrical coordinates. They developed an approximate

40
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solution by using Laplace and Legendre transform techniques. However,

the solutions were valid only for long times (t+>4) in the first paper

and for short times (t+<.1) in the second one. Keltner [26] used the

same coordinates to obtain a one-dimensional approximate solution using

the heat balance integral method. He has also examined a finite dif-

ference solution in cylindrical coordinates for a one-dimensional

averaged model [27]. His solutions are more appropriate for early to

middle times. Schneider, et al [28] have developed finite difference

solutions in oblate spheroidal coordinates for the two-dimensional

axisymmetric case. In a recent paper [29], Marder and Keltner examined

the problem by using the method of separation of variables.

The composite Case b, where the materials on each side of the

contact area are not identical. was first studied by Heasley [30]

in an approximate manner. He replaced the region of contact by a per-

fectly conducting sphere and solved a one-dimensional problem in spher-

ical coordinates. His solution is approximately valid for long times.

Other work has been done by Schneider, Strong and Yovanovich [3]],

Sadhal [32], and Beck and Keltner [l9]. Schneider et al [3T], have

employed finite difference techniques posed in oblate spheroidal coor-

dinates to obtain the numerical solutions for the two-dimensional axi-

symmetric case. They have used about 200 nodes within each of the

bodies. Their results as reported by Beck and Keltner [19], are too high

at the early times. Sadhal [32] has solved the problem analytically

by using Laplace and Legendre transform techniques. His solution is

valid for large values of dimensionless time (t+>10). Beck and Keltner

[l9], were the first to employ the surface element method to solve the

problem. They have considered only one element across the interface and
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Figure 3.1 Geometry of a semi-infinite body with a step change of the

surface temperature over a circular area.
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Figure 3.2 Distribution of surface elements for two semi-infinite

bodies in contact over a circular area.
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solved the problem analytically by utilizing Laplace transform techniques.

Two expressions have been recommended. One is based on a heat flux form

of Duhamel's integral (equation (22) of [19]), which is for early times

and the other is based on a temperature-kernel form of the Duhamel's in-

tegral which is for late times (equation (56) of [19]).

Most of the above-mentioned solutions are restricted to either the

time or the spatial validity [24727,30,32,19]. The finite difference

approaches by Schneider et. al. [28,3l] also have some difficulties such

as: the effort in setting up large grids, and the restricted dimen-

sionless time step that can be used. 'They require a large number of

nodes and consequently required considerable computer time if the accurate

results are desired at early times and large times.

3.2 Statement of the Problem
 

Two semi—infinite bodies initially at uniform but different tempera-

tures are brought together into perfect contact over a Circular region

of radius a. The rest of the surfaces of the contacting planes are assumed

to be insulated. See Fig. 1.2a. The bodies can have different thermal

conductivities k, and density-specific heats, pcp. The upper body is

referred to as region 1 (z>0) and the other body as region 2 (z<0). The

initial temperatures are denoted by T1.1 and Ti2 for region 1 and 2, res-

pectively. The bodies are assumed to have temperature~independent thermal

properties. The describing differential equations are

  

  

2 2

a T1 +.l 8T1 + 3 T1 = l..3:l.

3r2 r 3r 322 a1 a

(3.2.1)

321 3T 321 BT
2+1 2+ 2=L—.2_

2 r 3r 2 a 3
ar 32 .2
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subject to,

T1 = T1.1 for t=O, r39, zip (3.2.2a)

T2 = T1.2 for t=0, r39, 259 (3.2.2b)

and

T1 - T1.1 for t>0, as r+w and z+w (3.2.3a)

T2 = T].2 for t>0, as r+w and 2+-00 (3.2.3b)

8T1 3T2

T = 5'".— = 0 at r=0 f0)" t>0 (3.2.4)

T1 = T2

for t>0, Ogrga, z=0 (3.2.5)

3T1 3T2

k -—-= k

1 32 2232

8T1

37 = 0
(3.2.63)

for t>0, r>a, z=0

.52. _ 0 (3.2.6b)

where T1 and T2 denote the temperature distributions, k1 and k2 represent

the thermal conductivities, a1 and a2 refer to the thermal diffusivities,

r and z are the space coordinates, and t is the time.

3.3 Surface Element Solution
 

The surface element method which is presented in Chapter 2 is now

employed to obtain the solution to the above problem.
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3.3.1 Discretization of the Contact Area

Due to the axisymmetry nature of the problem, the contact area can

be divided into N annular surface elements (not necessarily equal) with

each of these elements having inner and outer radii denoted by aJ._1 and

aj, respectively (j=1,N and a0=0). See Fig. 3.2. In general the heat flux

and the temperature vary across the interface (as well as with time),

but they are approximated to be constant over each surface element (and

time interval) and are specified at the points;

r1 = 0

(3.3.1)

a.-a._1

rJ = J__§J___; J = 2, N

Since the two bodies are in perfect contact (hrw), the simplified form

of solution given by (2.5.14) can be used. Using (2.5.8d) and (2.5.13)

in (2.5.14) yields:

T. (3.3.26)

l
l

'
6
'
"

H
l

cl1

__ __ =_ M-l

qM Mq1 - o1 '[iEI ¢ M+1-i qi] for M=2,3,... (3.3.2b)

where g and T, are the influence matrix and the initial temperature vec-

tor defined by (2.5.7a) and (2.5.7d), respectively. At each time step

the system (3.3.2) can be solved for unknowns qlM’ qZM’ ..., qNM provided

the influence functions, ¢kji's’ and'Ta are known. The ¢kji functions

are given by;

2 m

¢ .. = z ¢ .. (3.3.3)
k31 m=1 kJT
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wherecpEji is the temperature rise at element k due to a unit step heat

flux at element j of surface m, at time ti = i-At. It is the building

block solution and can be evaluated from the solution for the problem

of a semi-infinite body heated with a constant_heat flux over an annular

area (see Fig. 3.3). The latter solution can be found from the known

available solution for the case of semi-infinite body heated by a constant

disk heat source [33]. See Fig. 3.4.

3.3.2 Evaluation of the Influence Functioncbrji
 

Consider the geometry of body m shown in Fig. 3.5. Let the tempera-

ture rise at element-k(r=rk) due to unit heat flux at the disk with radius

a. and at time ti be denoted by;

J

m z m (3.3.4)
ekji _ 6 (rk, aj, ti)

By applying simple superposition one can show that:

¢E1i = 9:1, (3.3.5a)

' k=1,2,...N

m _ m m .=
¢kji - ekji - ek,j-1,i J 2,3,...N (3.3.5b)

which can be conveniently calculated utilizing,

j-l j=1,2,...N
m m m

6 .. = B .. - ¢ . (3.3.6)

"31 "3‘ n=0 km k=1,2,...N

3.4' Temperatures at the Surface of‘a Semi-Infinite Body with 3 Disk
 

Heat Source
 

In reference [33] a solution for the local surface temperature his-

tory for a semi-infinite body exposed to a circular heat source is provided
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uniform heat

qo    

 

Figure 3.3 Semi-infinite body heated over an annular-shaped region

aj_]<r<aj and z=0.

uniform heat

flux q0
 

2..)

1

Figure 3.4 Semi-infinite body heated over a circular area 0<r<a

and z=0.

 

Z
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Figure 3.5 Geometry describing the influence functions for a semi-

infinite body.
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Figure 3.6 Geometry of semi-infinite insulated cylinder with constant

disk heat source.
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(see Fig. 3.4). This solution (termed "series solution") is given in

dimensionless form and contains an infinite series that is valid for

all radii and converges for all times except the earliest. The solution

is,

+2

T+(r+,0,t+)=T+(r+,0,oo)- —-—-i—— {1- 31-2—2—

2(“ml/2 241;

___1___ +2 +4 1
+ (1+6r +3r )-—-——— (3.4.1)

480t+2 10752:;+3

(1+12rW2+18r+4r+6 )+..

where

r
+

+

TW( ,0, t ) = 11!.0.t ) r+= g- t+= aqoa/k , , 'a_2 (3.4.26,b,C)

are the dimensionless surface temperature, radius, and the time, respec-

tively. The steady state part, T+(r+,0,m), is given by,

T+(r+,0,oo) = :2; E(r+) for 0<r+<1 (3.4.3a)

+ -2 -1

= g:_ [E(r+)-(1-r+ )K(r+ )] for r+>1 (3-4-3b)

= ;,2- for r+=1 (3.4.3c)

The functions K(-) and E(-) are the complete elliptic integrals of the

first and second kinds,

E.

K(n) = [2 [I-n2sin2y]1Nady (3.4.4a)

o
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1T

2'

E(n) = I [1-n2s1n2y11/2dy (3.4.4b)

0

These functions are tabulated in [34] (where the definition is slightly

different) and are available in computer libraries.

Equation (3.4.1) provides a very accurate solution for large dimen-

sionless times depending on the radial locations. It can extend down

to dimensionless time t+:.04 for small r+'s, less than unity.

At the early times the problem of semi-infinite body heated over

a disk area can be approximated by the case of a semi-infinite cylinder

insulated on the sides and heated over a disk area centered at the end.

See Fig. 3.6. In reference [35], the temperature solution for the sur-

face of the semi-infinite insulated cylinder exposed to a circular heat

source is provided in dimensionless form which is valid for all radii

and times. The solution is,

 

 

+ + + 2 t+ 1/2 ”

T (r ,0,t ) = -——-(——) -2 2

b+2 " ‘1=1
(3.4.5a)

erfc(th+1/2/b+)a (A]r+/b+)J (AT/6+)
1 0 1 1 1 + +

4. + 2 + 1(1" 9b )

[1,4009]

where

+ + + + +
co J (A.r /b )J (x./b )

I(r+,b+)52 2 0 l 1 ‘ (3.4.5b)

i=1 [1130(11112

b = b/a (3.4.5C)
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. . . +

and the d1men51onless e1genvalues Xi are found from;

31(1:)=o (3.4.6)

The functions erfc(o), J0(-), and J1(-) are the complementary error func-

tion, and the Bessel functions of zero and first orders, respectively

[34].

Except for extremely small dimensionless times (t+<.01) or large

b+(b+>10) the evaluation of (3.4.5a) does not involve a large number

of terms in the summation unless one tries to evaluate the steady state

part, I(r+,b+), directly. Some simplified indirect procedures of evaluat-

ing I(r+,b+) are provided in [35]. A new direct method is also developed

by the author which evaluates this part more effectively. In this

method the tail of the summation is replaced by an integral in an approxi-

mate manner. This integral can simply be integrated over the correspond-

ing limits. (See Appendix B). The evaluation of the explicit summation

(3.4.5a) requires only less than 12 terms for t+/b+2 being greater than

.33 and about 121 terms for extremely small values of t+/b+2(t+/b+22.0001).

This is because erfc (n) decreases very rapidly with n and also because

A: monotonically increases with i. The solutions given by (3.4.1) and

(3.4.5a) can be used to evaluate etji (defined by (3.3.4)) for large

and small dimensionless times, respectively. Then (3.3.6) and (3.3.3)

can be employed to determine the influence functions, okji's. Once the

influence functions and consequently the influence matrices, 31's, have

been determined, the solutions to the heat fluxes qlM’ q2M’ ... qNM’

can be obtained by substituting the results into (3.3.2a) and (3.3.2b)

for M=1 and M>1, respectively.
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3.5 Thermal Constriction Resistance of the Two Solids

In reference [9 ] the transient thermal constriction resistance

is defined as "the difference between the average temperature of the

contact area and the temperature far from the contact area divided

by the total instantaneous heat flow through the contact area." Based

on the above definition one can write

TC(t)'T11 712']E(t)
RC1(t)= w, Rc2(t)=W (3.5.1a,b)

where TE(t) is the average temperature of the contact area, Qc(t) is

the total heat flow through the contact area, and Rc1(t) and Rc2(t)

are the thermal constriction resistances for body 1 and body 2, respec-

tively. The total thermal constriction resistance for the two semi-

infinite bodies can be determined by

T. -T.

Rc(t) = Rc1(t) + RC2(t) = {i163— V (3.5.2)

The average contact area temperature, Tg, can be obtained by summing

the products of the elemental temperature and the fraction of the

total contact area occupied by the element.

N

T (tM) = Z T (Aj/Ac) (3.5.3)

i=1 3”

where TM is the temperature at the center of element j at time

t = M-At and
M

A = n32, A. = n(a. - aj_1) (3.5.4a,b)



53

The total heat flow through the contact area, Qc’ can be determined by

summing up the heat flows over all elements,

N

QC(tM) = .21 quAj , (3.5.5)
J:

Utilizing (3.5.3-3.5.5) into (3.5.1a,b) and (3.5.2) yields,

 

 

1 N

AE'jEI TjMAj'Til

RC1(tM) = N (3.5.6a)

1:1 “111%

1 N

T. - ——- T. .

12 Ac jfl JMAJ

RC2(tM) = N (3.5.6b)

3'51 quj

T. -T.

RC(tM) = %——‘-1— ‘ (3.5.6c)

jfl quA1

3.6 Results and Discussions

The two cases a and b mentioned earlier in subsection 3.1 have

been solved. In each case the contact area has been divided into ten

variable-spaced elements with smaller elements being closer to the

edge of the contact area. The exact solutions given by (3.4.5a) and

(3.4.1) were used to calculate the influence functions at "early" and

"late" times, respectively. The values of the influence functions for

dimensionless times .001, .1, and 1000 are listed in Tables 3.1 through

3.3 These Tables also represent the influence matrices. Notice that
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TABLE 3.1

Values of the influence function, ¢k' , for semi-infinite body at

. . . + 3”

d1mens1onless t1me tM = .001.

k/j 1 2 3 4 5 6 7 8 9 10

1 .0357 .0 .0

2 .001 .0356 .0001 .0

3 .0 .0012 .0332 .0014 .0

4 .0 .0012 .0332 .0013 .0

5 .0 .0012 .0332 .0013 .0

6 .0 .0012 .0332 .0013 .0001

7 .0 .0045 .0265 .0044 .0003

8 .0003 .0042 .0265 .0044 .0003

9 .0003 .0042 .0265 .0044

10 .0003 .0042 .0265

TABLE 3.2

Values of the influence function, ¢k3M’ for semi--infinite body at

dimensionless time tM=

k/j 1 2 3 4 5 6 7 8 9 10

1 .1887 .1665 .0750 .0697 20656 .0596 .0280 .0268 .0257 .0245

2 .0600 .2312 .0909 .0791 .0710 .0643 .0299 .0285 .0272 .0259

3 .0346 .1254 .1433 .1009 .0823 .0717 .0328 .0310 .0294 .0279

4 .0260 .0880 .0830 .1447 .1003 .0809 .0361 .0338 .0318 .0299

5 .0203 .0663 .0572 .0853 .1453 .0995 .0415 .0380 .0352 .0329

6 .0162 .0519 .0431 .0595 .0866 .1454 .0530 .0456 .0408 .0373

7 .0138 .0439 .0359 .0483 .0658 .0988 .0837 .0591 .0484 .0426

8 .0124 .0394 .0320 .0426 .0567 .0789 .0558 .0836 .0589 .0482

9 .0112 .0355 .0287 .0379 .0500 .0666 .0432 .0558 .0835 .0589

10 .0102 .0321 .0258 .0339 .0439 .0576 .0360 .0433 .0558 .0834
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TABLE 3.3

Values of the influence function, oij, for semi-infinite body at

+

‘ldimensionless time tr = 1000.

 

 

x

L
;

H o
u
o
o
o
u
o
w
m
-
b
w
m
i
—
n .1996

.0708

.0453

.0366

.0308

.0266

.0241

.0227

.0214

.0203

2

.1989

.2635

.1584

.1197

.0977

.0830

.0746

.0699

.0658

.0622

3.

.0992

.1148

.1671

.1066

.0805

.0662

.0588

.0547

.0512

.0482

4

.0990

.1082

.1297

.1733

.1136

.0875

.0760

.0701

.0652

.0610

5

.0988

.1050

.1160

.1338

.1785

.1194

.0983

.0890

.0817

.0758

6

.0987

.1031

.1102

.1191

.1374

.1828

.1359

.1158

.1032

.0940

7

.0493

.0511

.0538

.0569

.0621

.0735

.1039

.0759

.0632

.0559

8

.0492

.0508

.0531

.0557

.0597

.0671

.0804

.1048

.0767

.0642

9

.0492

.0506

.0526

.0548

.0580

.0634

.0709

.0812

.1057

.0778

10

.0491

.0504

.0522

.0540

.0567

.0609

.0660

.0715

.0819

.1064
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the diagonal terms of these matrices are greater than the off diagonal

terms. The influence matrices were used in (3.3.2a,b) to find the un-

known elemental heat fluxes. Equations (3.3.2a,b) were evaluated with

three computer programs developed in the course of the project, RAN3,

RAN2, and BBY9. Each used two routines called LINIV_and VQNLL_from

the ISML Computer Library to perform the inversion and multiplication

of the influence matrices. The results obtained from the surface ele-

ment solution in this chapter, were compared to those given by the

other investigators [24,26,29,3l,32,19] on the bases of thermal con-

striction resistance and heat flux across the contact area.

9.2.1.

The first problem examined is that of an isothermal disk on the

surface of a semi-infinite body. With values of k=1, a=1, a=1, and

Ti=2’ the problem was solved for elemental heat fluxes for various

values of dimensionless time, from t+=.001 to t+=104. These results

are tabulated in Table 3.4a, and 3.4b. Table 3.5 provides the

normalized spatial variation of the surface heat flux at different

times. Normalization obtained by dividing elemental values by the

value of the centerline element which covers the area 0 5_r+ 5_.2. It

can be seen that all the elemental heat fluxes approach the steady

state condition and after dimensionless time about 20, the normalized

heat flux distribution remains constant. This indicates that for

t+>__20, the heat flux across the disk can be approximated by a pro-

duct of a function of t+ and a function of r+. From the late time

asymptotic solution given by Normington and Blackwell [24], it can be

shown that the heat flux across the disk has a steady state distribu-

+2)-1/2.
tion of (1-r This implies that heat flux goes to infinity as



TABLE 3.46

Results for elemental heat flux, qj, for an isothermal disk region

 

 

 

 

 

on the surface of a semi-infinite body (t+ = at/az).

+

r = 0 .3 .45 .55 .65

t+ El. #1 4

.001 18.30 8.30 8.30 8.30 8.30

.005 8.184 8.184 8.184 8.185 8.185

.01 5.787 5.788 5.789 5.789 5.791

.05 2.588 2.596 2.613 2.645 2.718

.1 1.846 1.871 1.914 1.970 2.072

.5 1.031 1.075 1.141 1.210 1.320

1. .8979 .9395 1.003 1.067 1.170

10. .7184 .7534 .8062 .8598 .9459

100. .6669 .6995 .7486 .7986 .8787

1000. .6510 .6823 .7308 .7796 .8578

10000. .6460 .6776 .7252 .7736 .8513

TABLE 3.4b

Results for elemental heat flux, qj, for an isothermal disk region

on the surface of a semi-infinite body (t+ = at/az).

 

 

 

r+ = .75 .824 .875 .925 .975

t+ El. #6 7 8 9 10

.001 18 32 18.32 18.32 18.33 25.75

.005 8.195 8.237 8.424 8.851 16.19

.01 5.830 5.966 6.270 6.864 13.51

.05 2.903 3.198 3.570 4.204 9.164

.1 2.284 2.586 2.939 3.526 7.875

.5 1.519 1.781 2.067 2.532 5.824

1. 1.354 1.595 1.856 2.281 5.269

10. 1.098 1.297 1.513 1.864 4.318

100. 1.021 1.206 1.407 1.733 4.015

1000. .9963 1.177 1.373 1.692 3.920

10000. .9886 1.168 . 363 1.679 3.890
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TABLE 3.5

Normalized spatial variation of the surface heat flux at different times

for the geometry of Case a, see Fig. 3.1. (q+ = q/chvs r+ = r/al-

 

 

 

 

 

 

+

r

t+ 0 .3 .45 .55 .65 .75 .825 .875 .925 .975

.001 1. 1. 1. 1 1. 1. 1. 1. 1. 1.41

.01 1. 1. 1. 1. 1. 1.01 1.03 1.08 1.19 2.33

.1 1. 1.01 1.04 1.07 1.12 1.24 1.40 1.59 1.41 4.22

1. 1. 1.05 1.12 1.19 1.30 1.51 1.78 2.07 2.54 5.87

10. 1. 1.05 1.12 1.20 1.32 1.53 1.81 2.11 2.60 6.01

20. 1. 1.05 1.12 1.20 1.32 1.53 1.81 2.11 2.60 6.02

w 1. 1.05 1 12 1.20 1.32 1.53 1 81 2.11 2 60 6.02

Averaged steady state values from 1/J1-r+2 based on the elemental area

m 1.05 1.12 1.20 1.32 1.52 1.77 2.08 2.67 6.35

TABLE 3.6

Normalized area averaged interface heat flux for the geometry of Case a,

see Fig. 3.1. 'q'+= E/ 300.

 

 

Beck & Keltner [19] Marder & Keltner [29]
  

t TSEM Eq. (56) Eq. (22) s = 2 s = 5

.001 15.057 12.357 14.522 13.088 8.646

.002 10.872 9.030 10.434 10.408 7.950

.005 7.169 6.079 6.792 7.063 6.485

.01 5.310 4.591 4.969 5.238 5.145

.02 3.998 3.539 3.688 3.948 3.943

.05 2.843 2.606 2.573 2.813 2.813

.1 2.268 2.136 2.038 2.248 2.248

.2 1.871 1.803 1.702 1.858 1.858

.5 1.533 1.508 1.530 1.515 1.526

1. 1.371 1.359 1.667 1.297 1.366

2. 1.259 1.254 2.334 1.104 1.257

5. 1.163 1.161 1.005 1.155

10. 1.114 1.113 1. 1.082

20. 1.080 1.080 1. 1.023

100. 1.036 1.036 1.

1000. 1.011 1.011

10000. 1.004 1.004

m 1.0 1.
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r+ goes to 1. The steady state values of the elemental heat flux

given in Table 3.5 are compared with the corresponding values obtained

from the asymptotic solution, (1-r+2)’1/2 , based on the elemental

area. There is good agreement between the two solutions for all ele-

ments but the outermost element, which indicates an error of 6%. Fig.

3.7 shows the normalized flux distribution across the disk at several

times. It can be seen that the region of uniform heat flux shrinks

as t+ goes to infinity, which implies that the assumption of uniform

heat flux across the disk (made by Beck and Keltner [19] in their q-

based solution) is only good at early times.

Fig. 3.8 and 3.9 illustrate comparisons of area averaged inter-
 

face heat flux]r calculations performed using SEM with the results ob-

tained from the two solutions given by Equations (22) and (56) in

reference [19] and the two other solutions given in reference [29] for

values of s=2 and s=5. In Fig. 3.8 normalized values of averaged heat

flux (6(t)/6(m)) is plotted versus dimensionless time t+. While Fig.

3.9 shows the percent of deviation in the values of the heat flux

obtained by the above-mentioned alternative solution from that found

by SEM solution. Values of fiTt)/fi(m) as a function of time are also

tabulated in Table 3.6 for the same five solutions.

The Eq. (22) solution [19] is based on a heat flux form of Duhamel's

integral. This solution uses approximate expressions for influence

functions at early dimensionless times. It closely matches the SEM

solution up to time t+ =.005 (less than 5% deviation, see Fig. 3.9).

 

+ The area averaged interface heat flux, ETt), was obtained by summing

the products of the elemental heat flux and the fraction oftfiwztotal

interface area occupied by the element.
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Figure 3.7 Normalized heat flux distribution across the interface at

various times for the geometry of Case a, see Fig. 3.1.
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SEM _

. . Eq.(22),[l9]

---Eq.(56),[19]

O O ch,[29]'

° ° s=5,[29]

 

    
Figure 3.8 Normalized area averaged interface heat flux versus dimension-

less time for the geometry of Case a, see Fig. 3.l.
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Figure 3.9 Percent of relative error in the area averaged interface heat

flux with respect to SEM solution as a function of time for

Case a, see Fig. 3.l.
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Between t+ = .005 to t+ = .5 the deviation increases up to 10%, and for

t+ > .5 the solution ceases being useful. This solution is only appro-

priate for the small dimensionless times.

The Eq. (56) solution is in good agreement with SEM solution for

mid-to-late times (t+ > .1). It matches exactly the SEM solution for

times greater than 20 (see Fig. 3.8). The percent of deviation in

the surface heat flux starts with the maximum value of 17.9 at t+ = .001

and decreases as t+ becomes larger, it reaches a value of 5.8 at t+ = .1

and approaches to zero at t+ z 20. See Fig. 3.9.

The validity of the s = 2 solution is in question for very short

times t+ :_.001 (13% deviation for t+ z .001 shown in Fig. 3.9). However,

it is in good agreement with the SEM solution for short and intermediate

times between t+ 2 .002 to t+ z 1. The s = 5 solution remains good

until about t+ 2 10. Even though reference [29] states that the s = 5

solution is very good down to nearly t+ = .001, the results from Fig.

3.8, 3.9 and Table 3.6 show that it is in poor agreement with SEM

solution for t+ < .01 (Table 3.6 indicates a difference of 42.6% at

t+ = .001). Because of the effect of the finite artificial boundary

location assumed in [29] (the assumption made in order to use the sepa-

ration of variables technique [29]) the s = 2 and s = 5 solutions both

reach the steady state value too early; at t+ 2 10 and at t+ 2 100,

respectively.

9355.9

The composite Case b is considered with the glass being the material

of one body and copper of the other. The glass-copper combination has

also been investigated in references [31,32,19]. The thermal conducti-

vities, k's, are 1.03 and 381 W/m-k and the thermal diffusivities,
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0'5 are .06 x 10'5 mZ/s and 13.2 x 10'5 mz/s for glass and copper,

respectively. The initial temperature of glass is T1.1 = 0, and that of

copper is T1.2 = 2 K. With value of a = 1 m, the problem was solved for

the elemental surface heat fluxes and temperatures. Results for the sur-

face heat fluxes are displayed in Table 3.7. Column one in this table

contains dimensionless times, t+, based on the lower thermal diffu-

sivity, 01 < 02, ranging between .001 and 10000.

The results for spatial variation of the surface heat flux, given

in Table 3.5, for Case a, is almost the same for Case b. That means

after dimensionless time about 20 the normalized heat flux distribu-

tion across the interface remains constant. In Fig. 3.10, the normalized

interface temperature distribution is plotted versus dimensionless

radius, r+, at several times. Normalization is obtained with respect

to the initial temperature of body 2 (copper). It can be seen for t+ =

.1 that the interface temperature distribution is almost uniform. This

supports the validity of the T-based solution given by Beck and Keltner

for the late times. Notice that the region of uniform temperature

shrinks at t+ goes to zero which implies that the T-based solution is

not appropriate for short times.

Figures 3.11 and 3.12 compare the results obtained for Case b with

those found from the T-based and the q-based solutions of reference

[19], based on the area averaged interface heat flux and the area

.1.

 

averaged interface temperature , respectively. Again it can be seen
 

that the q-based solution given in [19] is in good agreement at early

 

T The area averaged interface temperature, T(t), is obtained by summing

the products of the elemental temperature and the fraction of the

total interface area occupied by the element.



TABLE 3.7a

Results for elemental heat flux, qj, for a disk-shaped interface of two

semi-infinite bodies, one of copper and the other of glass (t+=alt/a2)+.

 

 

10.

100.

1000.

.45

 

r = 0 .3 .55 .65

El. #1 2 3 4 5

36.66 36.71 36.78 36.83 36.89

11.84 11.85 11.85 11.85 11.85

3.791 3.842 3.931 4.044 4.254

1.844 1.929 2.059 2.191 2.403

1.475 1.547 1.656 1.766 1.943

1.370 1.437 1g538 1.641 1.805

1.337 1.403 1.501 1.602 1.762

 

 

.1.

TABLE 3.7b

01 = Thermal diffusivity of glass (body one).

Results for elemental heat flux, qj, for a disk-shaped interface of two

semi-infinite bodies, one of copper and the other of glass (t+=alt/a2)+.

 

 

10.

100.

1000.

 

r+=.75 .825 .876 .925 .975

El. #6 7 8 9 10

36.98 37.05 37.07 36.49 52.16

11.93 12.21 12.83 14.03 27.58

4.687 5.307 6.030 7.231 16.15

2.780 3.274 3.811 4.684 10.82

2.256 2.665 3.108 3.829 8.870

2.096 2.477. 2.889 3.560 8.248

2.047 2.418 2.821 3.475 8.053
 

 

.1.

01 = Thermal diffusivity of glass (body one).
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Figure 3.l0 Normalized interface temperature distribution for the

geometry of Case b, see Fig. l.2a.(Normalized with

respect to initial temperature of body 2, copper)
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Figure 3.11 Dimensionless area averaged interface heat flux versus dimen-

sionless time for the geometry of Case b, see Fig. l.Za,

(Normalized with respect to the steady state value of q)
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Figure 3.l2 Dimensionless area averaged interface temperature versus

dimensionless time for the geometry of Case b, see Fig. 1.2a.

(Normalized with respect to the steady state value of T3
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times while the T-based solution is suitable for mid-to-late times,

t+ > .1.

Comparison Based on Thermal Constriction Resistance

The SEM solution is also compared with the other available solu-

tions on the bases of the dimensionless thermal constriction resis-

tance across the contact area for both Cases a and b. Tables 3.8 and

3.9 provide these results. Table 3.8 is for Case a, two identical

semi-infinite bodies, and Table 3.9 is for Case b, with copper being

the material of one body and glass that of the other. The first column

in each table is the dimensionless time, t+, which extends over many

decades. The results from the finite difference solution of Schneider

et al [31] are provided in the second columns which are least accurate

at the early times and most accurate at the late times. The third

columns come from the exact solution given by Sadhal [32] which is

claimed to be very accurate at late times, t+ > 10. The fourth columns

are for the T-based solution given by Beck and Keltner[19], which is

most appropriate for large times but is remarkably accurate down to

t+ 2 .1. Column 5 in each table is for the q-based solution [19] and

is accurate at early times. The results obtained by the SEM solution

are displayed in the 6th columns. The last (7th) column of Table 3.9

(for case a) was calculated from the one-dimensional approximate solu-

tion given by Keltner [26]. which closely matches SEM solution at the

short times and retains good accuracy for the mid-to-late times.

Values of R: as a function of time are also plotted in Fig. 3.13 for

the same solutions of Case b.

Fig. 3.14 shows the percent of error between the above-mentioned
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TABLE 3.8

Results for dimensionless constriction resistance, for an isothermal

disk region on the surface of a semi-infinite body. R: = Rc-a-k.

 

 

 

SSY Sadhal Beck & Keltner [19] Keltner

t+ [31] [32] Eq. (56) Eq. (22) SEM [26]

.001 .0386 .0202 .0172 .0166 .0162

.002 .0409 .0277 .0240 .0230 .0223

.005 .0463 .0411 .0368 .0349 .0340

.01 .0532 .0544 .0503 .0471 .0473

.02 .0637 .0706 .0678 .0625 .0641

.05 .0851 4.8988 .0959 .0972 .0879 .0914

.1 .1074 .2029 .1171 .1226 .1102 .1142

.2 .1336 .1685 .1386 .1468 .1336 .1382

.5 .1695 .1752 .1658 .1634 .1631 .1685

1. .1933 .1879 .1839 .1500 .1824 .1895

2. .2120 .2010 .1994 .1071 .1984 .2074

10. .2368 .2247 .2245 .2242 .2347

100. .2475 .2413 .2413 .2414 .2477

1000. .2495 .2472 .2472 .2472

10000. .2499 .2491 .2491 .2491

w .2500 .2500 .2500 .2500

 

 



74

TABLE 3.9

Results for dimensionless constriction resistance for a disk-shaped

interface of two semi-infinite bodies, one of copper and the other of

+

glass. Rc - RC/Rc(w).

 

 

 

SSY Sadhal Beck & Keltner [19]

t+ [31] [32] Eq. (56) Eq. (56) SEM

.001 .1549 .0820 .0701 .0676

.002 .1645 .1118 .0968 .0932

.005 .1870 .1655 .1462 .1404

.01 .2158 .2187 .1961 .1890

.02 .2595 .2833 .2570 .2507

.05 .3474 .3844 .3480 .3523

.1 .4382 .4688 .4101 .4413

.2 .5442 .5552 .4418 .5349

.5 .6869 .6637 .3857 .6610

1. .7805 .7564 .7362 .2539 .7300

10. .9495 .8992 .8982 .8973

100. .9903 .9654 .9654 .9654

1000. .9982 .9888 .9888 .9889

10000. .9997 .9964 .9964 .9964
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Figure 3.l3 Normalized thermal constriction resistance across the inter-

face versus time for the geometry of Case b.
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solutions [26,29,3l,32,l9] and the present solution for Case a. It can

be seen that the solution given by Keltner [26] is in the best agree-

ment, for the total time within approximately 5%. The two approximate

solutions given by Beck and Keltner are the next closest. They provide

remarkably accurate results for entire region except between t+ = .01

to t+ = .1 where the error is slightly high (6 to 10%). In particular

the T-based solution is very accurate at the late times. It closely

matches the present solution and the exact solution given by Sadhal

[32] for times t+ > 2 (less than .5% error). The F0 solution given

by Schneider et al [3T], is good for mid-to-late times but is in poor

agreement at early times, less than .01. It shows 13% error at t+ = .01

which increases to 132.5% at t+ = .001.

A study of the above results indicates that the multinode surface

element solution presented here is the most accurate over the entire

time region.



CHAPTER 4

INTRINSIC THERMOCOUPLE PROBLEM

4.1 Introduction
 

Intrinsic thermocouples are widely used for measuring rapid tran-

sient surface temperatures of conducting solids. Such measurements

are important in studies of nuclear reactors, laser heating, re-entry

vehicle heating, and other applications where the response of the sur-

face temperature is of interest. An intrinsic thermocouple as defined

in [27] is "one in which the material whose temperature is to be measured

(called substrate) forms part of the thermocouple circuit." The most

common geometry for the intrinsic thermocouple problem is a semi-infinite

cylinder (called wire) attached perpendicularly to a semi-infinite solid

(substrate) as shown in Fig. 1.1a.

Heat is conducted along the thermocouple wire away from the junc-

tion if the substrate's temperature increases. This heat transfer

between the substrate and the wire can introduce a significant error

in measurement of the interface temperature. For single step change

at t = 0, the error is maximum at the initial moment and decreases with

time.

In this chapter the transient thermal behavior of the interface

between the thermocouple wire and the substrate due to a step change

in the substrate temperature is analyzed. The surface element method

is employed to obtain the transient solution for the interface heat

fluxes and temperatures. The results are compared with those obtained

by other investigators for the same problem. The wire and the sub-

strate are considered to be in perfect contact.

75
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Previous Work
 

Intrinsic thermocouple problem was first studied by Burnett [36]

in 1961. He developed an approximate analytical solution for a single

wire attached normally to the rear (insulated) surface of a thin slab

which was exposed to a constant heat flux on its front face. The wire

was infinitely long and insulated on the sides. See Fig. 4.1. The

effect of the wire was simulated by a uniform disk-shaped sink. The

sink strength was assumed to be equal to the flux into a semi-infinite

solid which had a surface temperature equal to that of the insulated

face of the slab in absence of the wire. However, this temperature

was higher than that at the actual slab-wire junction and consequently,

the solution provided a conservative estimate for the error in the tem-

perature measurements. Larson [37], and Larson and Nelson [38] im-

proved Burnett's solution by applying a correction factor which pro-

vides a more accurate value for the strength of the sink. Their solu—

tion, like the Burnett solution, is only valid for the dimensionless

times (with respect to the substrate) greater than one.

In 1967, Henning and Parker [39] studied the transient thermal

response of an intrinsic thermocouple due to a step change in the sub-

strate temperature. They modeled the system as a semi-infinite cylin-

der attached normal to the surface of a semi-infinite body (called the

idealized model). See Fig. 4.2. Perfect thermal contact was assumed

between the wire and the substrate and all thermal properties were

considered temperature independent and constant (linear). Also it

was assumed that the heat loss from the wire to the surrounding was

negligible. To simplify the analysis, they introduced a hemispherical

region shown in Fig. 4.2, between r = R and x = 0, with infinity thermal
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Figure 4.l The geometry for Burnett's problem.
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Figure 4.2 Henning and Parker's idealized geometry for an intrinsic

thermocouple problem.
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¢:onductivity and no heat capacity. This assumption resulted in the

temperature distributions in both the wire and the substrate being

functions of only one space dimension (axial in the wire and radial

in the substrate) and time. Utilizing the above assumptions they

derived analytical solutions for transient temperature distributions

in the semi-infinite substrate and the semi-infinite wire by using the

method of separation of variables.

To investigate the validity of the analysis, they further per-

formed a series of experiments by means of the capacitor pulse-heating

method [39,40]. The experimental data were compared with the analy-

tical results based on the response-time+ of the thermocouples. In

order to improve agreement between analytical and experimental results,

Henning and Parker introduced an empirical correction factor, "G",

which is related to the shape of the isotherms in the substrate. This

modification improved the analytical solution for the late times. How-

ever, (as stated by other authors too [27,4l]) errors up to 20% were

still observed for early-to—mid times (t+ < 4). Giedt and Nunn [42],

further improved Henning and Parker's solution by applying a modifica-

tion which provided a more accurate value for the early time response

of a thermocouple. They stated that the early time solution of an in-

trinsic thermocouple can be approximated by using the solution for two

semi-infinite bodies (initially at different temperatures) that are

suddenly brought together.

 

The response-time of an intrinsic thermocouple is the time that the

junction temperature reaches 95% of the initial step change in the

substrate temperature [27,39].
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In 1971, Bickle [43] and Bickle and Keltner [44] examined the

problem by using a combined experimental-numerical method. They em-

ployed the "deconvolution" technique developed in [43,44] to predict

the thermocouple response due to an arbitrary substrate temperature

variation. 1

In 1973, Keltner [27] studied the response of a single wire in-

trinsic thermocouple for the case where the substrate undergoes a step

temperature change utilizing finite difference and quasi-coupling

methods. He was first to employ the finite-difference procedure to

solve the problem for both one-dimensional and two-dimensional models.

He examined four finite difference models. In his first model (Two-D),

Keltner used spherical coordinates in the substrate and cylindrical

coordinates in the wire. Because of an unexpected inflection point

which occurred in the interface temperature and heat flux distributions,

he dropped this model in favor of the next two models which used

cylindrical coordinates in both the wire and the substrate [29]. Models

11 and III were both axisymmetric and two-dimensional as shown in Fig-

ures 4.3 and 4.4. Model III is essentially the same as model II ex-

cept in the node size and the total number of nodes. Because of the

finer node structure, model III provided better results than model 11,

specially for the region near the outer radius of the interface between

the substrate and the wire. However, it was found that the model III

finite difference grid is still not fine enough to precisely model the

+corner region near r+ = 1 [27]. The fourth FD model was one dimensional

in oblate spheroidal coordinates for the substrate and in cartesian

(:oordinates for the wire.

Because of the deficiencies involved in the finite difference

SSolution such as; the effort in setting up large grids, large computer
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expense and restricted dimensionless time that could be covered, Keltner

developed an alternative method that he called "quasi-coupling". In

this procedure-he assumed one-dimensional temperature distributions in

both the substrate and the wire. To provide a uniform heat flux into

the end of the cylinder (wire), a disk-shaped infinitesimally thin region

having zero heat capacity and infinite thermal conductivity was inserted

between the substrate and the wire. (In other words, the interface

temperatures were assumed to be only a function of time; the interface

temperature could be considered to be the average across the interface.)

Utilizing this method Keltner obtained remarkably good agreement with

his finite difference solutions. The quasi-coupled solutions unlike

his finite difference solutions were simple and inexpensive to obtain.

In 1976, Shewen [41] examined the problem by utilizing a two-

dimensional finite difference model in oblate spheroidal coordi-

nates for the substrate and in cylindrical coordinates for the wire.

The two dimensionality of his solution allowed a more detailed study

of the temperature variations along the interface, and, consequently.

provided more accurate results particularly at the early times. Keltner

and Beck [18] were the first to employ the surface element method to

solve the problem. They have considered only one element across the

interface and solved the problem analytically by utilizing Laplace

transform techniques. Some approximate solutions based on the heat flux

and temperature kernel forms of Duhamel's integral were presented for

early and late times.

All of the above-mentioned solution methods (except the two-

dimensional finite difference solutions given by Keltner and Shewen)

ignored the two-dimensionality of the problem which is especially im-

portant at early times. Even though the two-dimensional finite
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difference solutions of Keltner and Shewen provided more accurate re-

sults, they are not entirely satisfactory. They have some difficulties

due to the necessity of setting up extremely fine grids near the inter—

face and many large grids further from the interface. This in turn

increases the number of numerical calculations and computer time.

4.2 Statement of the Problem
 

The idealized geometry for the intrinsic thermocouple problem is

shown in Fig. 1.1a. The semi-infinite cylinder referred to as region 1

and the semi-infinite substrate as region 2. At zero time the entire

substrate undergoes a step change of temperature to T1.2 while the wire

is at its initial temperature of T11. The describing differential

equations, initial and boundary conditions are the same as those for

two semi-infinite bodies attached over a circular area given in Section

3.2 of Chapter 3, except for the initial and some boundary conditions

of region 1, given by (3.2.2a), and (3.2.3a) and (3.2.6a), respectively.

These conditions for the wire (insulated cylinder) are changed to,

T1 = T1.1 for t = 0, Ogrga, 230 (4.2.1)

and

T1 = T1.1 for t > 0, Ogrga as 2 + 2 (4.2.2)

3T1

‘T‘ = ° [0" t > 0+ r = a, 2:0 (4.2.3)

4.3 Solution

The solution to the intrinsic thermocouple problem can be found

using the surface element method in the same manner as presented in
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Chapter 3. The contact area between the wire and the substrate is

divided into ten annular variable-spaced elements with smaller elements

being closer to the corner region. See Fig. 4.5. The temperature and

the heat flux are assumed uniform over each element. Equations

given in Sections 3.3 and 3.4 are valid and can be used for the intrin-

sic thermocouple problem. The only exception is that in Chapter 3 both

bodies were semi-infinite and thus the required influence functions were

both evaluated from the solution of a semi-infinite geometry heated by

a constant heat flux over an annular region on its surface. In the

intrinsic thermocouple problem only one of the bodies has semi-infinite

geometry (substrate); the other one is a semi-infinite cylinder (wire),

1 2

(bkjl ‘7‘ ¢ij (4-3-1)

To evaluate the influence function for the wire the exact solution for

the case of a semi-infinite insulated cylinder heated by a constant

heat flux over a disk area centered at the end, given by (3.4.5a),

can be utilized in conjunction with (3.3.5).

The problem is analyzed for a chromel substrate and an alumel wire.

The chromel and alumel combination has also been investigated in

references [18,27,4l]. The thermal conductivities, k's, are 19.21 and

29.76 w/m-K, and the thermal diffusivities, a'S, are .492 x 10'5 and

5
.663 x 10' mZ/s for chromel and alumel, respectively. The initial

temperature between the substrate and the wire is, Ti2 - T 1K.
i1 =

The problem is solved for the elemental surface temperatures and heat

fluxes for various values of dimensionless time, ranging between

+ 4
t = .001 to t+ = 10 . The dimensionless time is based on the thermal

diffusivity of the substrate (body 2),
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Figure 4.5 Discretization of the interface between the semi-infinite

thermocouple wire and the semi-infinite substrate.
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t = ;:_ (4.3.2)

The results are compared with those obtained from the Henning and

Parker's solution [39], Keltner's model 111 finite difference solution

[27], Shewen's finite difference solution [41], and Keltner and Beck's

single node surface element solution [l8] on the bases of the area

averaged interface temperature.

4.4 Results and Discussion

The results of the surface element solution are presented in terms

of the temperature and heat flux distributions across the interface,

and the area averaged interface temperature and heat flux as functions

of time. Fig. 4.6 shows the normalized spatial variation of the inter-

face temperature at different dimensionless times. These results are

also provided in Table 4.1. Normalization is obtained by subtracting

11’

It can be seen from Fig. 4.6 that the temperature gradient in the region

T1.1 from elemental values, Tj’ and dividing the results by T1.2 - T

near the corner of the interface is very large at early time and ap-

proaches to zero as t+ goes to infinity. This justifies the two dimen-

sionality of the problem and also indicates that more accurate studies

are required in this region, especially at the early times.

Keltner in his model III finite difference solution used more than

400 nodes in the semi-infinite body to represent the corner region

effectively. He found that even his fine grid structure introduces

some errors. Employing oblate spheroidal coordinates Shewen [4l] ob-

tained approximately the same results with a smaller number of nodes

(120) and consequently less computational effort than that used by
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Keltner. Their results are also shown in Fig. 4.6 for time t+ = .1.

It can be seen that the agreement between the above finite difference

solutions and the present surface element solution is very good. Notice

that the number of nodes used in the SEM solution is only ten, 12 times

less than that used by Shewen, and about 40 times less than that used

by Keltner.

When the substrate initially undergoes a step change of tempera-

ture, there is an instantaneous change to a common interface tempera-

ture which depends upon the thermal properties of the substrate and

.1..

the wire . The normalized value of this initial interface temperature++

is given by [18],

T. -T.

+ 1c 11 -1

T. =-——17——-= (1+3) (4.4.1)

'C T12 T11

where

B = [kIDICI/k202C2]1/2 ‘ (4.4.2)

For a chromel substrate and an alumel wire the value of TTc is equal

to .4285. After the initial moment the effect of the edge starts to

penetrate toward the center of the contact area. This is evident from

the results given in Table 4.1. It can be seen that at t+ = .001, the

interface temperature is almost at its initial value (.4285) for

 

+ Notice that at the initial moment there is no spatial variation in

the interface temperature.

++ This temperature corresponds to the surface temperature of two semi-

infinite bodies initially at different temperatures suddenly brought

into the perfect contact.
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r+ < .825. The only part of the contact area which is disturbed by

the edge effect is between r+ - .825 and r+ = 1. The edge effect pene-

trates further toward the center as t+ becomes larger, reaching r+ = .45

at t+ = .01 and covering the entire area for t+ > .02. The difference

between the centerline and the outermost element temperatures is about

10.7% at time t+ = .001 and decreases as t+ becomes larger. For t+ > 20

the interface temperature distribution becomes almost uniform which

indicates that the one-dimensional approximate solution given by Henning

and Parker and the T-based solution of Keltner and Beck [18] are appro-

priate for the late times.

Fig. 4.7 shows the normalized flux distribution across the inter-

face, q+(t), at several times. It can be seen that the region of uni-

form heat flux shrinks as t+ increases. After dimensionless time about

20 the q+ distribution remains constant and a universal curve is

obtained.

Fig. 4.8 shows the normalized area averaged interface temperature

versus the dimensionless time. Results for the model 111 finite dif-

ference solution of reference [27], and the finite difference solution

of reference [41] as well as the SEM solution are presented. Table 4.2

provides the results of the above-mentioned three solutions along with

the results from the approximate analytical solution of reference [39],

and the T—based and the q-based solutions of [TB]. The first column

in this table is the dimensionless time which extends from t+ = .001

to t+ = 500. The results of the finite difference solutions of ref-

erences [27] and [41] are given in the second and the third columns,

respectively. The fourth column is evaluated from equation (22) given

by Henning and Parker, which is only good for the late time, t+ > 20.

The early and the late times results of the T-based solution and the
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q-based solution of Keltner and Beck, are displayed in the next four

columns. The last column represents the present SEM solution. As can

be seen from Fig. 4.8 and Table 4.2, there is very good agreement be-

tween the finite difference solutions and the present solution for the

time range covered. For a given time between t+ = .01 and 10, the SEM

values are between the two finite difference solutions. The F0 solu-

tion of reference [41] is more accurate at early times than that of

reference [27]. This is because of that the oblate spheroidal coordi-

nates used in the former model describes the geometry more closely than

the cylindrical coordinates used in the latter model. As mentioned

earlier, however, both solutions have difficulties regarding the com-

putational effort and cost, particularly for the early times, t+ < .01.

The T-based and the q-based single node surface element solutions

given by Keltner and Beck [18] are convenient in that the mathematics

is not difficult and the expressions are simple to evaluate. Each

solution provides two expressions; one for early times and the other

for late times. The Q-based solution is more appropriate for the

early times. It approaches the exact solution (.4285) as t+ + 0, and

closely matches the SEM solution up to dimensionless time t+ = .1. It

also provides relatively good results for the late times t+ > 10. The

T-based solution does not approach the exact solution as t+ + 0, and

consequently it is less accurate than the q-based solution for the

early times. Because of the constant interface temperature assumption,

however, it yields very good results for the late times of t+ > .1.

It should be noted that neither the T-based solution nor the q-based

solution is solely suitable for the complete time domain. However, a

combination of the early-time q-based solution (equation (41a) of [18])

and the late-time T-based solution (equation (33a) of [18]) provides



TABLE 4.2
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Normalized area averaged interface temperature histories for chromel

substrate and alumel wire.

 

 

+

.001

.002

.005

.01

.05

10.

50.

100.

200.

500.

 

T-based

Solution [18] Solution

q-based

 

FD Solutions Henning and early late early late

[27] [41] Parker [39] time time time time SEM

.6084 .4489 .4342 .4335

.4421 .6118 .4500 .4366 .4364

.4480 .6185 .4521 .4413 .4422

.4402 .4510 .6257 .4545 .4467 .4488

.4505 .4599 .6356 .4546 .4581

.4700 .4782 .6540 .4709 .4765

.4916 .4991 .6731 .4907 .4904 .4973

.5215 .5283 .6972 .5280 .5263

.5770 .5826 .7373 .5910 .5805

.6302 .6338 .7729 .6452 .6328

.6896 .6921 .8109 .7042 .6915

.7688 .7714 .8602 .7810 .7700

.8202 .8246 .8933 .8327 .8091 .8236

.8694 .9207 .8757 .8614 .8687

.9139 .9482 .9186 .9108 .9137

.9382 .9629 .9417 .9365 .9381

.9735 .9585 .9550 .9559

.9832 .9737 .9715 .9719
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very good results over the entire time range. These two solutions

match very closely at dimensionless time t+ = .1. Fig. 4.9 shows the

percent of error between the above-mentioned solutions [27,41,39,18],

and the present solution. It can be seen that the finite difference

solution given by Shewen [41] is in the best agreement for t+ > .002

within approximately 1%. The model III finite differerence solution

of Keltner has a deviation about 2% at t+ - .01 which decreases to less

than 1% at late times. The solution given by Henning and Parker is

good for late times but is in poor agreement for early-to-mid times

less than 20. It shows 6% error at t+ = 20 which increases to 40.3% at

t+ = .001. All approximate solutions presented by Keltner and Beck lie

within 2% of the present solution over their range of validity except

the early-time T-based solution which shows an error of about 4.2% at

time zero. This solution can be modified by letting the factor of

1.90484 (given in equation (34) of [18]) be replaced by nl/Z. The modi-

fied solution provides better results for the early times (t+ < .005)

and approaches the exact solution as t+ + 0. See Fig. 4.9. In Fig.

4.10 normalized values of averaged interface heat flux, 6:, is plotted

versus dimensionless time. Normalization is obtained by dividing the

heat flux values by k2°a'(Ti2'Ti1)'

A study of the above results shows that the multinode surface

element solution provides an accurate representation of the idealized

intrinsic thermocouple. It is superior to other availble solutions in

terms of accuracy and ability to treat the complete time domain. The

method is most suitable for calculating the interface temperature and

heat flux, particularly at early times when the two—dimensionality of

the problem is significant.
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CHAPTER 5

SEMI-INFINITE BODY WITH MIXED BOUNDARY CONDITIONS

5.1 Introduction

In this chapter the transient thermal response of a semi-infinite

body with the mixed boundary conditions of a step change of

the surface temperature over an infinite strip and insulated elsewhere

is considered. See Fig. 1.3a. This problem is similar to the problem

of two semi-infinite bodies with identical pr0perties having different

initial temperatures brought suddenly into the perfect thermal contact

over an infinite strip and insulated over the rest of the contacting

planes. The surface element method is employed to obtain the transient

sollrtions for the interface heat fluxes and the thermal constriction

resistance of the contact area.

The solution has applications in the problems involving electronic

cxxfling, strip welding, fins, and thermal contact conductance. To the

autfiuar's knowledge there is no solution available for the above problem

in the open literatures. Sadhal [45] has examined the related problem

of two semi-infinite bodies having perfect contact over a series of

equally-spaced infinite strips. The regions between these strips were

insulated. By considering the planes of symmetry between the strips

(see F“ig. 5.1) he solved the problem for large times by utilizing the

Laplace: tranform technique. However, his solution is not valid for

the sithations in which there is a small fraction of the interface in

contact: (C 5 2), and consequently cannot be applied to the problem of

two senri-infinite bodies with a single strip contact.
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5.2 Statement of the Problem
 

The geometry being considered is shown in Fig. 1.38. A semi-infinite

body is subjected to a uniform step temperature change, Tc’ over an in-

finite strip with width 2a, on its surface. _The rest of the surface

is insulated. The body is initially at the uniform temperature of T0,

and the thermal properties are assumed to be independent of temperature.

The describing equations are:

T Tg;3,+ géi,. %,%%. (5.2.1)

T = T0 for t = 0; |x| 3_0; Z 3_0 (5'2°2)

T = TC for t > 0; -a §_x 5_a; Z = 0 (5-2-33)

%;-= 0 for t > 0; [X] > a; Z = 0 (5°2°3°)

T = To for t > 0 as x +1:2 and z + 2 (5-2-4)

inhere 'T denotes the temperature distribution, 0 represents the thermal

diffusivity, x and z are space coordinates, and t is time.

5.3 Solution

3)! considering the problem symmetry about the x axis, the solu-

tion is; required only for the region x 3_0, and consequently only half

0f the (:ontact area need to be discretized. To apply the surface ele-

ment method, the surface region between x = 0 to x = a is divided into

ten eleunents (each being an infinite strip) over each of which the heat

flux iss uniform and at the center of which the prescribed temperature

15 TC. See Fig. 5.2. Equations (3.3.2a) and (3.3.2b) given in Chapter
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3 can be used to determine the elemental heat fluxes at various values

of time. It should be noted that for this case where only a single

body exists, the elements of the initial temperature vector, T}, are

the same and equal to TC - To.

The influence functions for the geometry shown in Fig. 5.2 can be

evaluated from the exact solution for the problem of a semi-infinite

body heated with a constant heat flux over an infinite strip by apply-

ing simple superposition. The procedure is the same as that presented

in Section 3.3.2. It should be noted, however, that for the geometry

of Fig. 5.2, the function ekji represents the temperature rise at

element k due to a unit heat flux over the elements 1 through j (x =

0 tt) x = aj) at time ti’ while the influence function °kji denotes the

temperature rise at element k due to a unit heat flux at only element

j at the same time.

The solutions for the local and the spatial average surface tem-

perathre histories for a semi-infinite body exposed to‘a constant heat

flux (aver an infinite strip are provided in Chapter 6. The solutions

are griven by (6.4.3) and (6.4.4a), respectively. In the SEM solution

Preserrted here, both local and average values of the influence function

are used and the results are compared.

A‘Leraged Interface Heat Flux

'Thea spatial average of the interface heat flux can be obtained by

5”"“109 the products of the elemental heat flux and the fraction of the

total ccnqtact area occupied by the element.

N

E (tM) = 32-2-1 qu (Aj/AC) (5.3.1)
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where qu is the heat flux at element j at time tM = M-At, Aj is the

area of element j, Ac is the total contact area, and N is the number

of elements. For the case where all elements are semi-infinite strips,

(5.3.1) can be written as

__ N

q (tM) ‘ jgl qu ' [(aj ' aj-1)/a] (503-2)

where aj, aj_1, and a are shown in Fig. 5.2. If further the elements

are equally-spaced, the average heat flux can be given by,

_ 1 N

q (tM) = N321 qu (5.3.3)

Thermal Constriction Resistance

Based on the definition given in Section 3.5, the thermal constric-

ticn1 resistance (per unit length of the strip) for the above problem

can be written as,

 

T - T

RC (tM) = -9—:—°— (5.3.4)

2a q (tM)

which 'is related to dimensionless heat flux by,

_ 1
R (t ) - (5.3.5)

C M 'f:

2k q (tM)

where

'7: _ . a

q ’ k(%€:fi67
(5.3.6)
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Equation (5.3.5) can be written in dimensionless form as,

= __________ R 5 R .k (5.3.7a,b)

Analytical Solution for the Average Interface Heat Flux

By considering only one element along the interface an approxi-

mate analytical solution for the average interface heat flux can be

obtained by utilizing the Laplace transform technique. This method

was first used by Keltner and Beck [l8] for the intrinsic thermocouple

problem. Their solution was discussed in Chapter 4. Starting with

Duhamel's integral for the average interface temperature one can

write,

T- =03?? ft" (0, t- x) d). (5.3.8)

0

where the influence function $(O,t) is the spatial average temperature

rise over the element (z=0) for a unit heat flux. Taking the Laplace

transform of (5.3.8) gives

[T-T0] = $061M (o,tx) ax] (5.3.9)

or

[T -To] = 5 3(5) .2315) . (5.3.10)

where the functions 3(5) and $(s) are the transforms of q(t) and $(t)

respectively. Solving for'3(s) provides
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31s) = ___£;::___ (5.3.11)

52 °'$(S)

This equation can be written in dimensionless form as

 

 

...: = 1
+ 2 ...

(5.3.12)

q (5) (5+)‘ - ¢+(s+)

where

+=0tt 7.51; ”1.25:
t 51-, o a , s a (5.3.13a,b,c)

and q+ is given by (5.3.6).

Early Time Solution

For small dimensionless times, the average influence function ¢+

is given by (6.4.4c) as

+ '1/t+ 1

¢+|= 2 (t+/n)1/2 _ %__+ %—(t+)3e
(1-§-t+) (5.3.14)

For an error less than .033% the exponential term can be dropped for

t+ < .3, and thus

+

<1" 2 2 (t‘L/w)“2 - ,E— (5.3.15)

Taking the Laplace transform of (5.3.15) yields

 

-:: + -3/2 1
= (S ) _ (5.3.16)

substituting (5.3.16) into (5.3.12) and taking the inverse transform
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gives

-- t /TT2 1/2

q (1*) = (n 1+)‘1/2 + %-e erfc (-t+ /n) (5.3.17)

This equation can be further simplified to

q (t+) = (5 t+)'1/2 + 1- (5.3.18)
11

which provides less than 3% error for 1* < .01.

Late Time Solution
 

For late dimensionless times, the function ¢+ is given by (6.4.4b).

For an error less .2% the second term on the right hand side of this

expression ( ) can be dropped for t+ > 100, and one can write
 

+

3nt

5+ [1n 1* + 3 - y], (y = 5772...) (5.3.19)

=
l
|
o
—
'

Taking the Laplace transform of (5.3.18) gives

¢+ = _l:.(3 - 2y - in 5*) (5.3.20)

115

substituting (5.3.19) into (5.3.12) and taking the inverse transform

by utilizing the approximate method (which is accurate for f(s) func-

tions that vary slowly with in 5) given in [46] yields

'77 +

q (t ) = n(£n 2t+ + 3 - 2))”1 (5.3.21)

which shows that the average surface heat flux increases as the inverse

of the logarithm of time for large times.
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5.4 Solution to the Interior Region

Once the elemental heat flux histories have been determined, the

solution to the interior temperature history, T(x,z,t), can be obtained

by superimposing the total effect of all these heat fluxes. That is

N M (x,z)

T(x,z,tM) = TO + .2 .2 q.. A ¢j,M-i (5.4.1)

where

(x,z) (x,z) (x.Z)

A ¢J.M-i = ¢j,M+1-i ' ¢j,M-i
(5.4.2)

(X.Z)

and the influence function, ¢jM , is the temperature rise at point

(x,z) due to a unit heat flux at element j at time tM = M-At. Equation

(5.4.2) can be written in a more convenient form as,

M-l

TM(x,z) = M T0 - kgl Tk(x,z)

(5.4.3)

N M (x,z)

+ Z Z qji ¢j,M+1-i
i=1 i=1

(X.2)

The solution for the influence function, ¢jM , can be obtained from

(6.3.18) given in Chapter 6.

5.5 Results and Discussion
 

Two cases of equally-spaced elements and variable-spaced

elements are examined. The first case is utilized to learn how the

accuracy varies with the size of element, while the second case is used

to obtain accurate results in the corner region near x = 1a. For both

cases, elemental surface heat fluxes are determined for various values
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of dimensionless time, ranging between t+ = .01 to 1000. At each time,

the elemental heat fluxes are evaluated in twenty time steps. This

means that for larger times, larger time steps are considered. For

instance, to determine, qj(t+)'s, at dimensionless times of t+ = .01,

1, and 1000, the time steps of At+ = .0005, .05, and so are used,

respectively.

No. of Time Steps (NTS) = ——4——-= ———-= -——- = 20 (5.5.1)

This substantially reduces the computational effort and provides more

uniform accuracies for results (with respect to NTS) than the case

where a small constant time step is used for the entire time range.

To show how accuracies of results change with NTS, the case of

equally-spaced elements is also examined with values of NTS being equal

to 10, 5, and 2. In Fig. 5.3, the normalized area averaged interface

heat flux is plotted versus 1/NTS, for different values of dimension-

less times. Study of this figure leads to the following observations:

1. The accuracy of the heat flux histories vary linearly with fi%§3

and become more accurate as NTS increases. (The most accurate values

can be obtained at fi%§-= 0 by employing linear interpolation). For

NTS = 2, however, slight deviation (from a straight line) can be seen

at early times, t+ < .1. The deviation is less than 2% at t+ = .01,

and approaches zero as t+ becomes larger.

2. The slope of the straight lines shown in the figure are large at

early times and become smaller for late times. This implies that, in

order to have good accuracy at early times, NTS should be large, while

the same accuracy can be obtained with smaller values of NTS, at later

times. For instance, the required NTS for less than 3% errors in heat
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flux histories are; 20, 10, and 5 for dimensionless times of t+ = .01,

1, and 10, respectively.

To show how accuracy changes with the size of elements, the case

of equally-spaced elements is considered with different number of ele-

ments along the interface (N = 1, 2, 5, 10). The number of time steps

(NTS) used was fixed and equal to 20. The results are shown in Figures

5.4 and 5.5. Fig. 5.4 shows the normalized interface heat flux, q+,

versus Ax+ = Ax/a for various values of t+, while in Fig. 5.5, q: is

plotted versus t+ for different cases of N = 1, 2, 5 and 10. A similar

behavior to that of Fig. 5.3 is observed in Fig. 5.4. It can be seen

that q: varies linearly with Ax+, and becomes more accurate as Ax+

approaches zero, especially for early times. The slopes of the lines

decrease as t+ goes to infinity. This indicates that even few elements

along the interface can produce good accuracy for large times. (This

can also be observed in Fig. 5.5.)

In order to show precisely the heat flux distribution across the

strip, especially in the corner region near x = ta, ten variable-spaced

elements were used with NTS = 20. The elements near the corner were

smaller (about 1/4) than those close to the center line. Fig. 5.6

shows the normalized spatial variation of the heat flux across the strip

at several times. Normalization is obtained by dividing elemental

values by the value of the center line element which covers the region

0 5_x+ 5_.2. It can be seen that the region of uniform heat flux

shrinks as t+ increases. At a dimensionless time about 30, the norma-

lized heat flux distribution remains constant, which indicates for large

times that the heat flux across the strip can be approximated by a

product of a function of t+ and a function of x+. This behavior was
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also observed in the problems considered in Chapters 3 and 4.

As mentioned earlier,both local and average values of the influence

functions are examined in this problem. Table 5.1 shows the results

obtained from the local-¢ solution and those found from the average-o

solution. Both solutions use ten equally-spaced element with NTS = 20.

The first column is the dimensionless time ranging between .01 to 100.

The next two columns show the normalized values of the area averaged

interface heat flux resulting from the local-¢ and the average-¢ solu-

tions, respectively. The last column provides the corrected values of

the average heat flux for the case where N+w (corresponding to the values

of q: at Ax+ = 0, in Fig. 5.4). Comparison of the results from the

second and third columns with the corrected values in the last column

indicates that the average-¢ solution gives more accurate results than

the local-o solution. The errors associated with the average-o solution

are about 2/3 of those related to the local-o solution, which implies

that the former solution is more appropriate than the latter one, par-

ticularly when the number of elements is small.

In Fig. 5.7 the results obtained from the multinode surface element

solution (with 10 equally-spaced elements and NTS = 20) are compared

with those evaluated from the early time analytical solution and the

late time analytical solution given by (5.3.17) and (5.3.21), respec-

tively. As it can be seen the multinode SEM solution is in very good

agreement with the early time solution up to dimensionless time about

1., and matches closely the late time solution for times greater than

5. Notice that the early and late times analytical solutions match sur-

prisingly well near a dimensionless time of 1.



115

TABLE 5.1

Comparison between the results obtained from the local-¢ solution and

the average-o solution.

q+ = ETijiigT

 

 

Corrected Solution

 

+ local-¢ solution Av.-¢ solution .N = (w)

t

.01 6.1886 6.2228 6.2710

.05 3.0424 3.0578 3.0856

.1 2.2750 2.2858 2.3058

.5 1.3028 1.3076 1.3172

1. 1.0582 1.0616 1.0684

10 .6340 .6354 .6380

100: .4415 .4428 .4436
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CHAPTER 6

TEMPERATURES IN SEMI-INFINITE BODY HEATED BY

CONSTANT HEAT FLUX qO OVER HALF SURFACE

6.1 Introduction
 

This chapter presents the analytical solution for the transient

temperature distribution in a semi-infinite body that is heated by a

constant flux over half the surface and is insulated over the other

half. The solution is a basic one in heat conduction and has a number

of direct applications. It is important for the problems involving

electronic cooling, contact conductance, fins and oil and gas wells.

However, the prime motivating force behind the development of this

solution is its application as a basic kernel for the surface element

technique.

The solution for the surface temperature is given in Carslaw and

Jaeger [22]. See also [47]. Grimado, [48], considered the temperature

distribution in a composite semi-infinite body subject to constant

heat fluxes at the surface. His solution is expressed in terms of

integrals of the form given by (6.3.11) which were solved numerically.

Interior temperatures are more difficult to obtain than for the sur-

face and are not given in a convenient closed form in the literature.

The general solution presented here is valid for all times and

any location in the entire region. It is given in terms of an integral

which is shown to be conveniently and efficiently evaluated by two

series expressions.
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6.2 Mathematical Description

The describing differential equation, initial and boundary condi-

tions for an isotropic, homogeneous, semi-infinite body that is heated

by a constant heat flux over half its surface are (see Fig. 6.1)

2 2
8 T a T laT
___+_—= ——

(6.2.1)

8x2 822 a at

T(x,z,O) = Ti (6.2.2)

T
-k g—Z-l z-o = q0 x < 0 (52311)

= o x > o (6.2.3b)

T(x,z,t) = T. t > 0 (6.2.4)
1

as 2 and x + m

There is no heat generation inside the body and the thermal properties

are independent of temperature.

6.3 Derivation of the Solution
 

The exact transient temperature solution for the problem described

by equations (6.2.1) through (6.2.4), can be obtained starting with

the equation (1) given on page 258 of Carslaw and Jaeger [22], which

gives the temperature rise for an instantaneous line source parallel to

the y axis and passing through the point (x', z') for an infinite region.

By considering the semi-infinite geometry of (z > 0) and integrating the

effect of line sources at z=2' for the range of negative x (-00 < x < 0),

the solution for the above problem is
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uniform heat flux qo

over l/2 space, x<0
 

         v v
 

U1VTWVIV AMAUDQAMAU/ 2=x

 

 
Figure 6.l Geometry of a semi-infinite region heated by a uniform

heat flux, qo, over half space m < x < O and z=0.



120

i: _9_ :0 e-U<x-x'>2 + (MW/480.13.! (5.3.1)
2nkt -w

Equation (6.3.1) gives the temperature rise for an instantaneous plane

source of strength 0 (J/mz) at time t=0; the source is parallel to

the plane z=0, passes through the point z' and is over negative x's,

that is, -w < x < 0. (The Caret on T denotes the instantaneous pulse

case). Integrating (6.3.1) yields

_ Q, -(z-z')2/4at f x ) 6.3.2

2pcp(01t)1/2 8 er C(2(at)1; ( )

—
I

>

I

 

If the source is at the plane 2' = 0, then (6.3.2) reduces to

 

(6.3.3)

Continuous heat flux
 

For a time variable heat flux q(t) at the surface, the temperature

at any time t can be obtained using Duhamel's integral,

t

T(x,z,t)-Ti = 5 q(1)$ (x,z,t-1) 81 (5.3.4)

where 8 is T for a unit 0 at the surface. Then from (5.3.4) for the

constant heat flux, qo, over the negative x surface, the solution for

the temperature rise is
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40(a/r)1/2 t
 

_ dA
T(X,Z,t)"Ti - 2k 6 W

(6.3.5)

X )dx

2[a(t—A)]1/2

 

2

e.Z /4a(t-A)erfc(

This expression is valid for all x values less than, equal to, and

greater than zero, and all 2 values equal to and greater than zero.

Special cases

a) For the special case of z=0, the solution is

q 1/2

T(X,0,‘12)--T.i = T? (91%) [afflm

2 (6.3.6)

- ———17—2—" E (l—H

which is also given for zero initial temperature in Carslaw and Jaeger

[22], equation (1), page 246.

b) For the special case of x=0, temperature at the center line,

the solution from (6.3.5) is

”2 ierfc (L) (6.3.7)

Zvat

i

which is exactly one half of the solution for the body heated over

the entire z=0 surface.

General case

The general case of z > 0 is not available in the literature.

Introducing u as
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zu =
(6.3.8)

2[e(t-1)]1/2

into (6.3.5), the general solution becomes

q0z w du -u2 xu
T(x,z,t)-T. = f -—— e erfc (——) (6.3.9)

‘ 2kn112 z/2(6t)1/2 u2 2

To better describe the results, define the dimensionless groups as

follows

 

x = x , z = -—Ze———- (6.3.10a,b)

2(et)172 2(61)“2

T-T.
2 Z 1

p = — = "' a T = (6.3.10C,d)

x X (co/0mm)”2

Notice that p is independent of time. Using these definitions (6.3.9)

can be written in dimensionless form as

2
-u

T(p.Z) = z fm-ly e erfc (g) du (6.3.11)

2 u

The number of independent variables in (6.3.9) has been reduced from

three, (x,z,t), to two dimensionless variables, (Z,p), in (6.3.11). It

can be shown that the integration of (6.3.11) by parts yields

2

erf(X)

2 2

+2pZ [me-p y erf(y)dy

X

T(X,Z) = (11)“2 ieric(Z)-e'Z

(6.3.12)

x

"““T72’ 21
(N)

E1(X2+Z

(For details see Appendix C.)
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The functions erf('), erfc(-), ierfc(°), and E1(-) which appear in the

equations (6.3.2) through (6.3.12) are the error function, the comple-

mentary error function, the integrated error function, and the exponen-

tial function, respectively defined by,

 

 

f( ) 2 In _y2 d (6 3 13)er = e y . .

Til/2 0

2 w - 2
erfc(n) = 1- erf(n) = f e y dy (6.3.14)

1/2

TT 11

. 2 ”
Terfc(n) = f erfc(Y) dy (6.3.15)

517?.n

-yd

”I-- (6.3.16)
n y

These functions are tabulated in [34], and are also available in com-

puter libraries.

The integral in the last term in (6.3.12) can be represented by

a function H defined as

H(X,p) = 1—1175- {” e"p y erf(y) dy = H(X,Z/X) (6.3.17)

11

(See [49] for related integrals). Then the general temperature solu—

tion for a constant heat flux and 230 can be written as

2

T(X,Z) = (5)”2 ierie(z)-e‘Z erf(X) -

(6.3.18)

X 2 2 1/2

E (X +2 )+ (n ) ZH(X,Z/X)

(10m 1
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This expression is skew-symmetric with respect to x-axis and it can be

shown that,

TL(X,Z) = 2 n1/2 ierfc(Z) - 1+(x,2) (6.3.19)

where the plus and minus subscripts indicate that the solution is for

positive and negative values of X, respectively. The first term on

the right hand side of (6.3.19) is the solution to the same problem

if the entire surface was heated by a constant heat flux.

The function, H(X,p), can be represented in series form for the

three different regions indicated in Fig. 6.2.

a) For the Region]p[_> 1

 

 

_2 .. (-1)"en(pzx2)

_. ’)

n-O an+1(2n+1)ep X

or

m n 2 2

= %. (5:)1r(n+1.p X ) (6.3.20b)

n=0 p (2n+1) n

where the functions en(~) and f(n,-) are the truncated exponential

function and the incomplete gamma function, respectively, and are de-

fined in [34] by

0 m' = n! e (6.3.21)

(6.3.22)
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Fig. 6.2 Geometry showing various regions of |p|<l, |p|<=1. and |Pl>l.
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b) For the Region [pl < 1

Equation (6.3.20a) cannot be used for the case for which |p| < 1

since p appearing in the denominator of (6.3.20a) causes the summation

to diverge. For this case of |p| < 1 the following expression is

 

 

 

provided,

n 2n+1 2

_ 2 °° ('1) p en(X)

H(X,p)-1-erf(X)erf(pX)- 5' Z 2 (6.3.23a)

"‘0 (2n+1) ex

or

w 2n+1 2

= - _ Z. ('1)':p F(n+lsx )
H(X,p) 1 erf(X)erf(pX) fl n20 (2n+1)n! (6.3.23b)

c) For the lines [pl = 1

It can be shown for p=1 that H(X,p) is given by

H(X,1) = -H(X,-1) = 1/2[1-erf2(X)] . (6.3.24a)

which results in

erfc z -22 1/2
1+(x=z,2) = [e +5 ierfc(Z)]

Z 2
- ;T72'E1(ZZ ) (6.3.24b)

The general solution given by equation (6.3.18), is valid for all

times and any location in the entire region. Even though this expres-

sion is valid for both positive and negative values of X, it is

recommended only for X>0. For X<0 the complementary expression given

by (6.3.19) can be employed. In the next section the behavior and
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evaluation of the function H(X,p), is discussed.

6.3.1 Evaluation of the Function H(X,p)

The evaluation of the function H(X,p) can be accomplished using

(6.3.20a) and (6.3.23a) for the regions |p| >11 and |p| < 1, respectively.

Efficient subroutines can be provided by utilizing several recur-

sive relations. The summations in these equations are well-behaved

for all values of X and p (within the appropriate p range). Table 6.1

provides values for H(X,p) for various X and p values. In Fig. 6.3,

the function H(X,p) is plotted versus X for various values of p. There

are several interesting points regarding the behavior of H(X,p) which

can be seen from (6.3.17), Table 6.1 and Fig. 6.3; some of these are:

a) Regardless of values of p, H(X,p) + 0 as X +.m.

b) For large values of p compared to unity, H(X,p) goes to zero

even for small values of X.

c) For finite X, H(X,p) + 1, as p + 0.

d) From (6.3.17) one can write,

1) H(X.-p) -H(X.p) (6.3.25a)

2) H(-X,p) H(X,p) (6.3.25b)

e) The series expressions given by (6.3.20), and (6.3.23) for

H(X,p) are valid only for positive values of p(X>0). For negative

values of p(X<0), (6.3.25a) can be used.

f) For X equal to zero, one can show that
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TABLE 6.1

Values of function H(X,p)

X p=0.l p=0.4 p=0.8 p=1 p=l.5 p=2 p=4

.00l .936549 .757762 .570446 .499999 .374333 .295l66 .155956

.0l0 .936543 .757737 .570396 .499936 .374239 .295040 .l55704

.050 .936390 .757l26 .569l75 .4984ll .37l954 .292001 .l49720

.100 .9359l3 .755222 .565378 .493676 .364907 .282707 .l32464

.200 .934020 .747676 .550466 .475202 .338043 .248406 .08ll70

.400 .926634 .7l857l .494960 .408240 .249144 .l48l82 .0ll453

.600 .9l495l .6736l6 .4l55l0 .3l7679 .l50202 .062803 .000439

.000 .88l962 .554237 .241324 .l44928 .030329 .004109 .000000

.200 .862366 .488908 .l682l8 .085664 .0l025l .000640 .000000

.400 .84l662 .424669 .lll029 .046577 .002883 .000072 .000000

.600 .820358 .363883 .069597 .023372 .000677 .000006 .000000

.000 .777l92 .257694 .023607 .004667 .000022 .000000 .000000

.200 .755665 .2l3246 .0l2800 .00l86l .000003 .000000 .000000

.400 .734287 .l74557 .006620 .000688 .000000 .000000 .000000

.600 .7l3096 .l4l345 .003265 .000236 .000000 .000000 .000000

.000 .67l373 .089686 .000689 .000022 .000000 .000000 .000000

TABLE 6.2

Values of the functions H(X,p) and ERFC(pX) for

various X values

p=0.l p=0.4 p= .8

X H(X,p) ERFC(pX) H(X,p) ERFC(pX) H(X,p) ERFC(pX)

.00 .88l962 .887537 .554237 .57l608 .24l324 .257899

.20 .862366 .865242 .488908 .497250 .l682l8 .174576

.40 .84l662 .843053 .424669 .428384 .lll029 .ll32l2

.60 .820358 .820988 .363883 .3654l4 .069597 .070266

.00 .777l92 .777297 .257694 .257899 .023607 .023652

.60 .7l3096 .7l3l00 .l4l345 .l4l350 .003265 .003266

.00 .67l373 .67l373 .089686 .089686 .000689 .000689

TABLE 6.3

Number of terms in series of function H(X,p) given by equations

(6.3.20a) and (6.3.23a) to obtain 8 decimal places accuracy

(
U
N
-
”
C
O

>
<

.
O

O

p=0.6 p=0.8 p=0.98 p=l.02 p=l.2 p=l.5

.01 l l l l l l

.l 2 3 3 3 3 3

7 8 10 10 l0 9

10 l4 l8 l8 l7 l5

13 20 27 28 25 l9
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Figure 6.3 Function H(X,p) versus X for different values of p.
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g-arctan (l) for |p| > 1 (6.3.26a)

H(0.p) =

1 - g-arctan (p) for |p| < 1 (6.3.26b)

9) For large values of X, say X > 3, function H(X,p) can be

approximated by the complementary error function of pX,

2 2

H(X,p) 2 1—1172 I: e"p y dy = erfc (pX) (6.3.27)

71

In the next section this result is utilized to obtain a simplified ex—

pression for the solution of T(X,Z). In Table 6.2, the values of H(X,p)

and erfc(pX) (with 6 significant digit accuracy) are compared for var-

ious X and p values.

The number of terms required to obtain 8 decimal places accuracy,

in the series expression for H(X,p) is shown in Table 6.3. It can be

seen that the number of terms increases as X increases, and also as

lp-ll decreases (p close to one). The number of the terms increases

rapidly as X becomes greater than 10. But fortunately, the evaluation

of the series is needed only for X < 3. (For values of X greater than

3, the H function can be approximated by (6.3.27)). Hence, no more

than 30 terms are required to obtain 8 decimal places accuracy for

evaluation of the series in the H function for the large range of any

X and Ip-ll > .02.

h) For small values of pzxz, H can be approximated by

H(X,p) = g-[arctan(%) - sz] for p > 1 (6.3.28a)
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and

H(X,p) 2 1-erf(pX)erf(X)

(6.3.28b)

- g-[arctan(p)-pX2] for p < 1

6.3.2 Simplified Relations for |X[> 3
 

For |X| > 3, the general solution for the dimensionless tempera-

ture given by (6.3.18) can be reduced to a simpler form. By introduc-

ing (6.3.27) into (6.3.18) and noticing that pX = 2 one can write

22 x
T+(X,Z) = e' erfc(X)-E;;T7§ E 1(x2+22) for x > 3 (6.3.29a)

Equation (6.3.29a) is very accurate (to 6 decimal places), for X > 3.

It also gives good accuracy down to X > 2 (to 3 decimal places). This

accuracy (for 2 < X < 3) can be further improved to 5 decimal places,

by subtracting an additional term, E-E1(X2+Z2), from the right hand

side of the (6.3.27), which results in (6.3.29a) becoming:

2

2)
erfc(X) -

Z X 1+ 2 2

(TI)1 )

1+(x,2) = e' E x +z (6.3.29b)1(

Furthermore, due to the nature of the terms exp(-Z2) erfc(X) and

X(fl)-1/2 E1(X2+22) in equation (6.3.29a), there are negligible contri-

butions of these terms for X > 4. It can be shown that for X > 4 the

8 and the second term is less thanfirst term is less than 1.6 x 10'

1.5 x 10-8. Hence, for say 8 decimal places accuracy, these terms can

be dropped and the equation becomes independent of X. Then one can

write



132

T+(X,Z) 0.0 for X > 4 (6.3.30a)

T_(X,Z) 2ierfc(Z) for X < -4 (6.3.30b)

These equations also give excellent accuracy down to |X| > 3.

6.3.3 Evaluation of T(X,Z)and Discussion of the Results

The evaluation of T(X,Z) given by equation (6.3.18) is not diff-

cult if a computer is employed. The first three terms in the equation

can be directly calculated using a computer library for the error and

the exponential functions. The evaluation of the last term (H(X,p))

also can be easily obtained as discussed in the previous section. For

the special cases of Z=0, X=0, p=1, X > 3, and |X| > 4 the simplified

equations (6.3.6), (6.3.7), (6.3.24b), (6.3.29a), and (6.3.30) are

provided, respectively. Table 6.4 provides values of the dimensionless

temperature T(X,Z), for various values of the dimensionless X and Z.

In Fig. 6.4, T(X,Z) is plotted versus X for various Z values. It can

be seen that the solution is skew-symmetric with respect to X-axis.

The solution is well-behaved for all times and any location over the

entire region. Fig. 6.5 shows the lines of the dimensionless isotherms

in the X and Z coordinates. It can be seen that for |X| > 1.5 the solu-

tion is almost independent of X.

6.4 Other Cases of Boundary Conditions
 

The exact solution given herein is important because it is a basic

geometry in heat conduction. There are many other possible cases that

can be obtained using this solution. It can be utilized as a building

block for a number of other boundary conditions for both semi-finite
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TABLE 6.4

Values of dimensionless temperature for solution given by equation

(6.3.l8), for different values of X and Z

4.000

3.000

2.000

1.000

-.600

-.200

.100

.050

.010

.000

.010

.050

.100

.200

.600

.000

.000

.000

.000

O
l
l
l

D
O
O
M
-
H

d
d
d
d
d
d
d
d
d
m

Z=0.0

.000000

.999999

.999587

.966475

.866022

.525251

.340279

.209176

.059991

.000000

.940009

.790824

.659721

.474749

.133978

.033525

.000413

.000001

.000000

d
d
d
d
d

Z=0.2

.370489

.370488

.370095

.338908

.246380

.959476

.832317

.760328

.700368

.685245

.670122

.610162

.538172

.411013

.124109

.031582

.000394

.000001

.000000

Z=0.6

.552776

.552776

.552506

.532887

.481679

.360987

.319722

.298190

.280757

.276388

.272019

.254587

.233054

.191790

.071098

.019889

.000270

.000001

.000000

TABLE 6. 5

Z=1.0_

.178148

.178147

.178019

.169798

.151056

.113288

.101382

.095254

.090312

.089074

.087836

.082894

.076765

.064860

.027092

.008350

.000129

.000000

.000000

Z=1.2

.092341

.092341

.092264

.087610 .

.077569

.058273

.052313

.049253

.046788

.046171

.045553

.043088

.040029

.034068

.014773

.004731

.000078

.000000

.000000

Z=2.0

.003467

.003467

.003463

.003249

.002849

.002153

.001946

.001840

.001755

.001734

.001712

.001627

.001521

.001314

.000618

.000218

.000004

.000000

.000000

Values of dimensionless temperature, T(x ,q+ ,t+ ), forvarious values

.000

.010

.100

.200

.600

.800

.000

.200

.600

.000

.000

.000

of x+ and 2 due to a strip source, at time t

d
d
d
d
d
—
J

z+=0.0

.932950

.932908

.928771

.915898

.743545

.524128

.999587

.474607

.133964

.033524

.000413

.000001

z+=0.2

1.307326

1.307287

1.303467

1.291610

1.137423

.958406

.684851

.410877

.124096

.031581

.000394

.000001

z+=0.6

.512998

.512977

.510862

.504375

.429491

.360259

.276118

.191696

.071088

.019888

.000270

.000001

z+=l.0

.161448

.161440

.160683

.158384

.133704

.112948

.088945

.064814

.027087

.008350

.000129

.000000

.25

z+=l.2

.082878

.082874

.082475

.081265

.068534

.058070

.046093

.034040

.014770

.004731

.000078

.000000

z+=2.0

.003031

.003031

.003016

.002970

.002508

.002142

.001729

.001312

.000617

.000218

.000004

.000000
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Fig. 6.4 Dimensionless temperature T(X,Z) versus X for different values of

Z in semi-infinite body heated by a uniform heat flux over half

space X<0, Z=0.
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and finite geometries. Fig. 6.6 is given to illustrate some of these,

for both semi-infinite and finite geometries. For most semi-infinite

cases the solution can be obtained by simple superposition. For

example, the solution for Fig. 6.6b, is the solution for a semi-

infinite body that is uniformly heated minus the solution for the semi-

infinite body heated across an infinite strip with the same heat flux.

For the finite cases the solutions can be found by using the method of

images. In this method, a number of sources and sinks are distributed

inside the body such that the corresponding boundary conditions are

satisfied (see [22] and [50] for more details).

6.4.1 Application to Strip Heat Source

As suggested by the foregoing there are other boundary conditions

that can be obtained using the above results. One case of particular

interest is for the semi-infinite geometry heated by a constant heat

flux over an infinite strip with the width 2a and insulated elsewhere.

See Fig. 6.7. The solution to this case is needed in Chapter 5 in

order to find the required influence functions. This solution can be

found from the solution given by equation (6.3.18) by applying simple

superposition to get:

  

- 1 41+ +-1 1 1
T(X+,Z+, t+)=e Z / [-erf (21:111721 + erf (2(t11T721]

+ +

x-1 (x+-1)2+ + x+1 E (x+1)atz

2(nt)1/2 E1[ 41+22] 2(flt)1/2 1 41+ 2]

1T21/2+

+ ( p)- H( "+1111 (6.4.1)

2(1)11H77[ 2(1”)171’pz1’(*)171
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Figure 6.6 Various possible cases that can be treated using the

solution givenfor figure 6.1 as a building block.
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Figure 6.7 Geometry of a semi infinite body heated by a uniform heat

flux, qo, over an infinite strip with width 2a.
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where

- x/a, z+ E z/a, (6.4.2a,b)X |
I

‘ at/az, p E z/xC
”

I
I z+/x+ (6.4.2c,d)

and T is defined by equation (6.3.10d).

For the special case of 2+ = 0, the solution becomes:

+ +

+ + x +1 x -1
T(x ,0,t ) = erf - erf

2(1")172 2(1:“)172

(6.4.3)
+ x++1 E [(x++1)2]_ x+-1 E [{x+-l)2]

1 42(111”)1/2 41 2011+)”2 1 1

which is also given in [22], equation (3), page 264.

Equation (6.4.1) is valid for all times and any location in the

entire region. Table 6.5 provides values of the dimensionless tempera-

ture T(x+,z+,t+), for various values of x+ and 2+ at time t+ = .25.

Results are also shown in Fig. 6.8. It can be seen that for large

values of 2+ (deep in the body), the temperature distributions be-

come flatter as expected. In Fig. 6.9, some values of dimensionless

surface temperature T(x+,0,t+) are plotted versus x+ for various values

of t+. Another way of illustrating the results is provided in Fig.

6.10, which shows the isotherms in the x+ and 2+ coordinates for time

t = 1.

In the application of the surface element method the solution for

the spatial average temperature over the heated region is sometimes

utilized. At the heated surface this average temperature is
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El0,t+) = 2+(t+)1/2{21erfc(t+)'1/2

-fi'1/2[1+EZ(1/1+)]} (6.4.4a)

For large times the average temperature is found from (6.4.4a) to be

4 1

, n1 - —+3-v],
qu/k TI“ 3.1:"-

 

Tlo,t+)-Ti 1 [1 +

(6.4.4b)

(y=.5772...)

which shows that the temperatures near the heated surface increases as

the logarithm of time for large times. For an error less than .2%

the second term in (6.4.4b) can be dropped for t+ > 100. For small

times (6.4.4a) can be approximated by

TLO,t+)-T1

qoa/k

+ +

= 2(t+/n)1/2-%—+%(t+)3 e"1/t (1%?) (6.4.4c) 

For an error less than .033%, the exponential term can be dropped for

1* < 0.3.



CHAPTER 7

SUMMARY AND CONCLUSIONS

A transient multinode surface element method for solution of two

and three dimensional heat conduction problems with linear boundary

conditions has been presented. The method uses Duhamel's integral and

involves the inversion of a set of Volterra integral equations, one

for each surface element. The use of Duhamel's integral requires that

the describing differential equations be linear.

In Chapter 1, Duhamel's theorem was introduced and integral equa-

tions with temperature-based kernel and heat flux-based kernel were

presented and discussed. Though both types of kernels can be employed

in the SEM, only heat flux-based kernels were used in the examples given

in this dissertation.

The method is applicable to homogeneous and composite geometries

with perfect or imperfect contact. In Chapter 2, the multinode sur-

face element method formulations for two arbitrary geometries in per-

fect (or imperfect) contact over part of their boundaries were developed

and discussed. Through the use of piecewise uniform approximations of

time and space variables, it was demonstrated how the integral equations

presented in Chapter 1 can be transformed to a set of algebraic equations.

To show the flexibility and applicability of the method to two-

dimensional homogeneous and composite bodies, the multinode surface

element formulations developed in Chapter 2, were applied to three dif-

ferent problems given in Chapters 3, 4 and 5.

In Chapter 3, the SEM was employed to solve the problem of two

semi-infinite bodies (initially at two different temperatures) that are

suddenly brought together over a small circular region and insulated

144
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elsewhere. The intrinsic thermocouple problem was investigated in

Chapter 4. Values for the thermal constriction resistance of the con-

tact area (in Chapter 3), and the interface heat fluxes and tempera-

tures (in Chapters 3 and 4) were presented for complete range of dimen-

sionless time. The results obtained from the SEM solutions had excellent

agreement with existing analytical and numerical solutions. In Chapter

5, the method was further applied to the problem of a semi-infinite body

with mixed boundary conditions of a step change of surface temperature

over an infinite strip and insulated elsewhere, for which analytical

solutions do not currently exist. It was found that the accuracy of

results varies linearly with the size of element and the size of the

time step used in the numerical computations.

For each of these problems the multinode surface element method

performed very well. It was found that the heat flux and temperature

at any point along the interface can be readily obtained utilizing this

method. The method is most suitable for calculating interface tempera-

tures and heat fluxes for the geometries connected over relatively

small portion of their surface boundaries. The results obtained in

Chapters 3, 4 and 5 showed that very high accuracy is attainable with

a relatively small number of surface elements. This feature makes the

surface element method superior to the alternative numerical methods

such as FDM, FEM, or BIEM for the type of problems considered. In the

SEM only the interface between the two geometries requires discretiza-

tion as opposed to the discretization of the whole domain needed in the

finite difference and finite element methods or discretization of the

whole boundaries in the BIEM. This in turn reduces the size of the

numerical calculations and computer time.

The advantage of considering only interface nodes requires,
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however, that the "building blocks" (or kernels, or the "influence

functions"), ¢'s be known for the geometries under consideration. For

many geometries the kernels are known or can be obtained by well-known

analytical or numerical procedures.

The influence functions required for the geometries of Chapters 3

and 4 were obtained from the known solutions given in [33,35], while

those needed in Chapter 5 were found from the exact solution for the

problem of a semi-infinite body heated by a constant heat flux over

half the surface which was presented in Chapter 6.

Three computer programs were written in the course of this research,

RAN3, RAN4, and BBY9. (Documentation is available from the author.)

Both uniform and nonuniform nodes can be employed in the programs. The

programs have the capability of treating up to twenty interface nodes

and can be applied to both symmetrical and nonsymmetrical geometries.

They also can be adapted to be used for a number of different cases with

different geometries, providing the proper influence functions, ¢'s,

are used. Because of the convolution behavior of the integral equa-

tions, the influence functions need to be calculated at each time step

and stored for later use. This can result in a large computational

effort, particularly if the number of the time steps (NTS) is large.

However, it was found that (see Chapter 5) in most cases (except for

very early times, t+ < .001) a value of NTS between twenty to forty

can produce very accurate results. It was further shown that for large

times (t+ > 10), even a few time steps (2 5) can provide good accuracy.

Further improvement in terms of capability, accuracy and computer

time is needed in the multinode surface element method. The following

recommendations are given for future work:

1. Though the method has been applied to the problems with linear
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boundary conditions it can be used for nonlinear boundary

conditions. In particular, the radiative boundary condition

can be investigated.

The assumption of constant temperature and heat flux over each

element and time interval as was done in this dissertation is

not necessary and higher order interpolation functions (linear,

quadratic, etc.) can be introduced to improve the accuracy.

Work is needed to explore new methods for reducing the computer

time. One possibility is to use the Laplace transform techni—

que to avoid the convolution behavior of the numerical compu-

tations.

New influence functions for more basic geometries (such as

semi-infinite body heated by a constant heat flux over a

rectangular area or infinite cylinder heated over a portion

of its circumferential area) need to be derived.

The basic theory that is given in this dissertation is also

applicable to three-dimensional problems and the problems

with multiple interfaces. Some of these cases should be

investigated.

Finally, the method can be extended to include some specific

problems of convection heat transfer and fluid flow problems.

This in turn will make the method more competitive with already

existing numerical procedures.
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APPENDIX A

DERIVATION OF EQUATIONS (2.5.113) AND (2.5.11b)

Equation (2.5.11a) can readily be obtained by considering fbr

the first time step (M = 1), the vectors E and F (given by (2.5.8c)

and (2.5.8d), respectively) are zero.

E ='E = O for M = 1 (A1)

Substituting (A1) into (2.5.8b) and then its result in (2.5.10) yields

q1 = C T. (A2)

which is the same as (2.5.11a).

To show how (2.5.11b) is derived, equation (2.5.9) is expanded for

different values of M. By introducing (2.5.8b,c,d) into (2.5.9), for

M = 1,2,3,..., one can write

atM= 1, Eq1=Ti (A31)

atM=2, EEZ=T1+E|atM=2-F|atM=2 (A32)

atM=3, EE3-Ti+-E—latM=3'FlatM=3 (A33)

atM -1, '54}pr +E| at '44-?) at 11-1 (A3,M-1)

atM , EEM=T1+E|atM-f|atM (A3M)

By adding all these equations together, (A31) through (A3M), and notic-

ing that
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E I at M = F I at M-l + QI qM-I (A4)

it can be shown that

= M _ _ : M’l _ _

C [.E “1] ' MTi + 11 .5 Q1 F l'at M (A5)
1-1 1-1

or

_ M'1_ ='1_ :‘1 : M-1_ =‘1 __

qM + .2 qi = M C Ti + C 61 Z q1 - C F I at M (A6)

1:1
1:1

-1

substituting for E,‘F, and E T} from (2.5.8a), (2.5.8d), and (A2),

respectively yields

_ _ = M-l =-1_

qM=Mql+B[.Zlq,l-c F (A7)
'I:

Where the matrix B is defined as

= :‘1 =

B = H 4 (A8)

Equation (A7) is the same as (2.5.1b) and is valid for M.: 2. Notice

that the vector E'is a function of time and should be calculated at

each time step.



APPENDIX B

EVALUATION OF I(r+,b+) GIVEN BY (3.4.5b)

A new method is developed to evaluate the values of I(r+,b+) given

+ + +

JO(AIr /b ) J1 (AI/b )

NV 3b ) = 1 [A1- Jo (A312 (Bl)
.i

 

+ + m

E

To evaluate this term effectively the summation is divided into two

different parts:

 

 

I(r+,b+) = I1(r+,b+) + 12(r+,b+) (82a)

where

I -1 + + +

1111+1b+1 ‘ mix J°(AI: /: )(:1)§:1/b ) (BZb)
i=1 i o i

and

m J (A.r+/b+) J (A./b+)

I(r+,b+) = 0 1 1 1 (82¢)

2 iglmax 111 Jo (11732

The first term in (82a), 11, is evaluated by direct series expan-

sion. The second term (the correction term or the tail of the summa-

tion), 12, can be simplified in the following manner.

For large values of A, one can write [34]
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2 1/2 n 2 1/2 1

J0(Ai) 2 (EA?) cos (Ki - a) - (EX?) ('1) (34)

+ 1/2
+ + .3 2b + + 1

JO(Air /b ) — (NA r+) cos (Air /b - 4) (BS)

1

and

+ 1/2

+ ~ .22. +-_3_11
J1(Ai/b ) ~ (“Ai) cos (xi/b 4 )

(36)

+ 1/2

_ Z_b__ 1_ (“Ai) Sln (Xi/b - 4)

Substituting (B3) through (B6) into (BZc) yields

00 +

+ + ~ b

12(1” ,b ) "' 2121 (Y‘+)1/2

max

+ + n . + n

cos (Air /b - a) Sln (Xi/b - 1)

A12

or +

. l-r
+ m 51" ( + Ai)

I (Y'+ b'I') : J— 2 b

2 1 (r+)1/2 1:1 112

max

(37)

1+r+
cos ( b+ 1i)

A12

From the composite midpoint rule in numerical analysis one can show that

of 1(1):.117) mm +_rflix_ (BB)
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Introducing (B8) into (B7) yields

 

 

 

+ + b sin AA

12(r ’b ) - “(r+)1 [IA )2 d A

max (89)

+ + +

_fm cos BA dx] + J0(Amaxr lb ) J1 ()‘max/b )

Amax A2 [Amax JoUmaxH2

where

+ +

A = 1': , B = 131;— (BlO,a,b)

b b

The integrals on the right hand side of (B9) can be evaluated as

 

 

w . sin (AA )

1 £2754 dA = 1 "1‘1" - A Ci (Axmax) (Blla)

Amax max

w cos (BA )
cos BA _ max . Bn

I> T d) - (max +8 51 (meax) - -2-— (3111))

max

where Si(-) and Ci(-) are the sine and cosine integrals given by equa-

tions (5.2.8) and (5.2.9) of [34], respectively. Finally, substituting

(Blla) and (Bllb) into (89) gives,

r+’b+) 1+r+ + b 51” (AAmax

2“(31/2 “(r+)1/2 [ x

I ) - cos (BAmax):I

l
2

(

2 max

;Z;;%T7§-[(1-r+)Ci(AAmax)-1(1+r) 51 (meax)]

+ + +

Jo(xmaxr /b ) J1 ()‘max/b )

[Amax Jo (Amax)]2 (812)

+ 
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As it can be seen from (812), the correction term, 12, can readily

be evaluated providing Amax’ r+, and b+ are known. To compare the

new method presented here with the direct series expansion method,

I(r+,b+) was evaluated for values of r+ = .1 and b+ = 10 with four deci-

mal places accuracy. It was found that the number of terms needed in

the direct series expansion approach is about 6-7 times larger than

those used in the new alternative method. This in turn reduces the

size of the numerical calculations and computer time.



APPENDIX C

EVALUATION OF THE INTEGRAL IN EQUATION (6.3.11)

The integral in equation (6.3.11) can be written as

I :12 UE-e' erfc (g) du * (c1)

Integrating equation (C1) by parts, by letting

dw = é3-du (C2a)

-U2

v = e erfc (—)
(CZb)

yields

I =-—-e ”2 erfc (—) (m — 2 fm.l.e‘U2(1 + %39du

z P(n)1;z z ”

w 2 u _ 1 -Z2
- 2 f e erfc (-) du — 7—e erfc (X) (C3)

Z -

- ———-Z—7—-J'm1—1--e'u2(1 + 530 du - 2 [m e"u erfc (E) du

90111 2 Z Z p

where (6.3.10c) was used (p = Z/X).

1
By using the substitution of u2(1 + 63) = y and interchanging the

order of integration, the first integral in (C3) can be wirtten as

2(1 + -—) = l—fm .EEX d = 1 E (X2+Zz) (C4)
2 y 2' 1II = [Z e'u p2 22+x2 y

It now remains to find an expression for the second integral on the
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right hand side of (C3). By using the relation erfc(o) = 1 - erfc(-),

the integral can be written as

(D co

_ 2 _ 2

f e u du - f e U erfc (%

Z .

III ) du

(1:5)

(111/2
‘77-

m -u2 u
erfc(Z) - f e erf (E) du

Z

By using the substitution of %-= y and interchanging the order of inte-

gration of the integral on the right hand side of (C5) one can write

on1/2

III = 1%1- erfc(Z) - p IX e_p2y2 erf(y) dy (C6)

substitute (C5) and (C4) into (C3) yields

)1/2 -Z2

 

I = £%—- ierfc(Z) - %- erf(X) --;Z%;T77 E1 (X2+72)

” 2 2 (C7)

+ 2p f e-p y erf(y) dy

X

Finally, using (C7) into (6.3.11) yields

_ 2

T(X,Z) = (411/2 ierfc(Z) - e Z erf(X)

m (C8)

_ :X 2 2 'szz
E (X +Z ) + 2pZ f e erf(y) dy

(“)1/2 1 X

which is the same as equation (6.3.12).
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