
 

 

 

MOVING ON A PATH VERSUS COLLECTING OBJECTS: 
NEW PERSPECTIVES TO ANALYZE STUDENT LEARNING WITH INTEGER 

MODELS 
 

By 

Julie Nurnberger-Haag 

 

 

 

 

 

 

A DISSERTATION 
 

Submitted to  
Michigan State University 

in partial fulfillment of the requirements  
for the degree of  

 
Educational Psychology and Educational Technology—Doctor of Philosophy 

 
2015 

 



ABSTRACT 
 

MOVING ON A PATH VERSUS COLLECTING OBJECTS: 
NEW PERSPECTIVES TO ANALYZE STUDENT LEARNING WITH INTEGER 

MODELS 
 

By 
 

Julie Nurnberger-Haag 
 

Most mathematics beyond middle school requires that students operate with all real 

numbers, both positive and negative quantities. Later mathematics (e.g., linear and quadratic 

equations, coordinate graphing, absolute value equations, transformations, and matrices) and 

science topics (e.g., vectors, sound waves, and charged particles) all require use of negative 

numbers. Yet, some of the identified difficulties students have with more advanced studies, such 

as algebra, are due to difficulties with negative number arithmetic and notation (Vlassis, 2008). 

With the intent to help students overcome these difficulties, multiple instructional models 

are promoted in school textbooks and teacher resources. Multiple models are used although little 

is known about what students learn with these models. Different integer instructional models 

have different implications for learning mathematics, because they draw on different conceptual 

metaphors and students physically move their bodies in different ways to enact these models. In 

light of conceptual metaphor theory, the difficulties students have had with negative numbers 

and even those of mathematicians in history (Hefendehl-Hebeker, 1991), reveal that the 

collecting objects metaphor may be a cognitive obstacle to those first learning negative number 

arithmetic. Moreover, consistency of humans’ physical motions with targeted ideas is a factor of 

cognition, so the influence of students’ physical movements on their learning may be a critical, 

yet underexplored factor. 



In order to compare how these model differences influence learning, this study randomly 

assigned eight classes of initial learners to a specific collecting-objects (chip model) or moving-

on-a-path metaphor-based model (number line model) to learn integer arithmetic with the four 

primary operations (addition, subtraction, multiplication, and division). This dissertation presents 

the main results of this pre-post-delayed posttest study to answer the questions: (a) With respect 

to ordering numbers and integer arithmetic, what do students demonstrate learning by enacting 

each model and what, if any differences in learning are found between models? (b) What 

meanings do students express for “-” symbols (negative signs, subtraction signs, or opposite 

signs) and how does the integer model used influence these meanings? Findings indicated that 

either instructional model did support significant learning gains for integer arithmetic and 

qualitative expression of basic “-” symbol meanings. These findings, moreover, did support 

theory that a motion-aligned model using a moving-on-a-path metaphor (walk-it-off number line 

model) was a better first model, because it supported initial integer learning better than a 

collecting objects metaphor based model both for integer arithmetic learning and opposite 

meanings of “-.”
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Overview and Introduction to Dissertation 

Humans are always moving, and the ways we move influence how and what we think 

(Antle, 2011; Barsalou, 2008; Lakoff & Nunez, 2000). Students’ physical motions in learning 

environments deserve greater recognition as an ever-present and potentially critical factor of 

learning. Many of these motions that likely influence individual’s thinking in any given moment 

are idiosyncratic to a person in a particular situation. Such idiosyncratic motions might warrant 

research. With the intent for greatest impact on mathematics learning and teaching, however, I 

choose to focus on those physical movements that affect thousands of students at a time due to 

instructional practices. Model-movements in particular deserve attention because they are sets of 

motions that regardless of whether educators and researchers attend to these movements, the 

instructional approaches used encourage certain patterns of students’ physical motions.  

My research draws attention to model-movements used in mathematics instruction as one 

way to assess the educational impact of students’ physical motions during classroom instruction 

and contribute to the design of better instructional models. Models are not simply manipulatives. 

I use the term 'models' to mean not only tools or manipulatives, but also the physical and verbal 

processes used, afforded, constrained, and chosen with those tools. For example, Dienes’ blocks, 

Digi-blocks, and number lines are tools that can be used in varied pedagogical models. Many 

different models based on these manipulatives are used to teach students number concepts and 

skills with inconsistent and contradictory results (e.g., Fuson 1990; Kamii, Lewis, & Kirkland, 

2001; Star & Nurnberger-Haag 2011). Insights from cognitive science research show that 

physical movements that are aligned with concepts support general cognition and learning, 

whereas misaligned movements interfere with cognition (Day & Goldstone, 2011; Glenberg & 

Kaschak, 2002; Goldin-Meadow, Cook, & Mitchell, 2009). Instructional approaches with certain 
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ways of using tools encourage these patterns of movement to become a model. Thus, model-

movements, the term I use to describe specific physical motions that each pedagogical model 

affords, constrains, or encouraged by choice may be a critical and previously overlooked factor 

of student learning of mathematical ideas.  

 My research is grounded in my experience as a practitioner. I was troubled by the 

inconsistencies I noted between the model-movements with manipulatives and the disciplinary 

conceptions I sought for students to develop about number (whole number multi-digit calculation 

as well as negative number arithmetic). Early in my career, I observed students’ difficulties in 

making sense of operations with negative number, which led me to design other ways of teaching 

and researching how best to help initial learners with negative number arithmetic. This 

dissertation considered these model-movement issues to seek empirically-validated solutions to 

student learning of negative number arithmetic, because it is an enduring challenge of 

mathematics learning and teaching that has long-term impact on students’ later mathematics 

performance. To do so I experimentally compared how two integer models impact student 

learning if these were the first integer models students experience: a typical chip model (a 

manipulative model), and a particular number line model in which students move their bodies 

along a number line on the floor (Nurnberger-Haag, 2007). 

Dissertation Format 

The traditional dissertation format, a book with chapters, has been used in the United 

States since the 1800s (Berelson, 1960, p.173 cited in Duke & Beck, 1999). This book format, 

even just decades ago, may have been a useful dissertation format when it was common for new 

scholars to publish books about research. In this century, however, multiple peer-reviewed 

articles are required to advance in the tenure process and such publications are likely to impact 



 3 

the field of research more readily than a book. Consequently, this dissertation uses a two-article 

format in order to better reflect the publication work that contemporary educational researchers 

in academia do (Duke & Beck, 1999). The corpus of this dissertation centers on the main results 

of this mixed methods experimental study.  

Focus of Each Article 

The first article sheds light on what students learned with a particular integer model and 

relative learning effects for different aspects of integer knowledge based on both short-term 

assessments and delayed posttests. In order to compare benefits and challenges of particular 

models, an experiment was needed. The analysis of the experiment in this manuscript is QUANT 

+ qual (Creswell, 2008), meaning that quantitative analysis is emphasized but qualitative aspects 

of student reasoning were incorporated into understanding individual student’s knowledge before 

statistically comparing the average learning of students who learned with each model. Both 

overall performance and performance on subconstructs were analyzed. In order to provide a 

comprehensive analysis of the written assessments across all aspects of integer knowledge tested, 

a more detailed analysis of each construct will be left for future analysis to be reported in other 

manuscripts (e.g., a focus on multiplication and division operations). 

Whereas the first article provides comprehensive results from the written assessments, the 

second article uses a qualitative approach to extend prior work on negativity (Gallardo & Rojano, 

1994; Sfard, 2000; Vlassis, 2002, 2004, 2008) to investigate students’ meanings of negative and 

subtraction signs expressed in interviews after particular instructional approaches. Prior research 

contributed information about how algebra students, who had in prior years learned about 

negative number arithmetic, think about these signs. These students were also in Mexico, Israel, 

and Belgium. So this dissertation study specifically contributes information from a new 
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population of fifth and sixth grade students in the United States. Moreover, this study contributes 

information about students’ meanings of these symbols immediately after initial integer 

arithmetic instruction and if there are qualitative differences due to the model used, given that 

instruction in the United States often uses many models. 

Structure of Dissertation 

In the sections that follow, each article appears in succession with tables and figures 

appearing in Appendix A numbered consecutively from Article One to Article Two as 

dissertation formatting required. As is typical of a dissertation, appendices B and C include 

information my committee requested.  
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ARTICLE ONE: TO WALK THE PATH OR COLLECT THE CHIPS: THE IMPACT OF 

METAPHORS AND MOTIONS ON LEARNING INTEGER ARITHMETIC 

 

Abstract 

Different integer instructional models have different implications for learning 

mathematics, because they draw on different conceptual metaphors and students physically move 

their bodies in different ways to enact these models. In order to compare how these model 

differences influence learning, this study randomly assigned eight classes of initial learners to a 

specific collecting-objects (chip model) or moving-on-a-path metaphor-based model (number 

line model) to learn integer arithmetic with the four primary operations (addition, subtraction, 

multiplication, and division). This pre-post-delayed posttest study addressed the question: What 

do students demonstrate learning with each model and what, if any differences in learning are 

found between models? Written test results that showed that both models supported student 

learning, but the number line model fostered greater learning gains of each aspect of integer 

knowledge assessed. These findings support the claim that a motion-aligned model drawing on a 

moving-on-a-path metaphor supported initial integer learning better than a collecting objects 

metaphor-based model. 
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To Walk The Path Or Collect The Chips: The Impact Of Metaphors And Motions On 

Learning Integer Arithmetic 

Most mathematics beyond middle school requires that students operate with all real 

numbers, both positive and negative quantities. Later mathematics (e.g., linear and quadratic 

equations, coordinate graphing, absolute value equations, transformations, and matrices) and 

science topics (e.g., vectors, sound waves, and charged particles) all require use of negative 

numbers. Yet, some of the identified difficulties students have with more advanced studies, such 

as algebra, are due to difficulties with negative number arithmetic and notation (Vlassis, 2008). 

In order to prepare students for these later demands, students in upper elementary and middle 

school need to find answers to problems involving negative quantities as well as understand 

negative quantities as valid numbers (Ball, 1993; Vlassis, 2008). Students around the world, 

however, find this knowledge difficult to develop (Altiparmak & Ozdogan, 2010; Gallardo, 

2002; Kilhamn, 2011; Perisamy & Zaman, 2011; Pierson Bishop, et al., 2014; Ryan & Williams, 

2007; Vlassis, 2008; Warfield & Meier, 2007). 

To address these difficulties, I designed and implemented an experimental comparison of 

two integer models to investigate if either might be more cognitively ergonomic to support 

learning (for a related discussion of cognitively ergonomic see Artigue 2002 & Abrahamson 

2009). Just as we should assess how people use physical tools for how physically ergonomic 

these processes are with the human body, to improve mathematics instruction we need to assess 

how cognitively ergonomic models are for learning specific topics. This study contributes to 

resolving two enduring challenges in mathematics education: one practical and one theoretical. 

The first concerns improving the way that classroom-based research can inform teachers’ 

practical decisions about using models to teach integer arithmetic. The second offers new 
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insights into the theoretical and practical debate about whether and how physical experience 

supports cognitively ergonomic mathematics learning.  

Research on Integer Understanding and Model-Based Instruction 

 To situate the issues specific to improving integer arithmetic instruction, I first 

summarize integer knowledge that students need and then instructional approaches used to 

address these needs, focusing on models used. Finally, I discuss the theoretical perspectives with 

which I frame student learning with the common integer model types (chip and number line 

models) in terms of general cognitive processes they likely involve: conceptual metaphors and 

consistency of physical movements. 

Integer Understanding 

 Some of the ways in which mathematically competent people need to think about negative 

and positive quantities are in terms of points on a number line, opposite numbers are points on 

opposite sides of zero on a number line, opposite values sum to zero, ordering signed numbers, 

and how to perform all four primary operations (Bofferding, 2014; Chiu, 2001; Lakoff & Nunez, 

2000; National Governors Association Center for Best Practices, Council of Chief State School 

Officers, 2010; Thompson & Dreyfus, 1988). In the United States, the Common Core State 

Standards for Mathematics (CCSS-M) includes the above goals and specifies that instruction 

about negative numbers occur in sixth grade with operations on all rational numbers in seventh 

grade (National Governors Association Center for Best Practices, Council of Chief State School 

Officers, 2010). A thorough understanding of arithmetic and algebra with negative numbers 

requires understanding three meanings of the written symbol “-“ as (a) part of a number, (b) a 

subtraction operation, and (c) an opposite operation (Vlassis, 2004). The meaning of “-“ as part 

of a number or a structure means people need to recognize, for example “-4” itself as a valid 
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number or structure by itself as opposed to needing to think of it as a result of operations such as 

6- 10 (Gallardo, 2002; Sfard, 2000). This structural-numeric understanding of the symbol’s 

meaning is, however, not sufficient. The other two meanings of the “-“ symbol are operations: 

subtract and opposite (Vlassis, 2004, 2008). Mathematically competent students need to 

understand the binary operation of subtraction of negative numbers including all of its meanings: 

take-away, difference, and motion on a number line (Lakoff & Nunez, 2000; National Governors 

Association Center for Best Practices, Council of Chief State School Officers, 2010; Sfard, 2000, 

p. 49; Thompson & Dreyfus, 1988). In addition, the unary operational meaning “opposite of” is 

crucial to student understanding and use in algebra (Nurnberger-Haag, 2007, Vlassis, 2008). For 

example, in situations such as –(-4), –X, or (-a) + a = 0 neither the subtraction meaning nor 

negative as a number makes disciplinary sense. Yet, students believe any number with a “-“ sign 

denotes a negative number, so they often incorrectly conclude that –(-4) can only be negative 

four (Vlassis, 2008). This operational conception to take the opposite is necessary to understand 

not only when a<0 that –a is actually positive number but also the opposite of algebraic 

expressions, and recognize when the “-“ symbol could have more than one meaning (Thompson 

& Dreyfus, 1988; Vlassis, 2008).  

Some modern students think of zero as an absolute quantity and have difficulty 

conceiving of negatives as valid numbers similar to brilliant mathematicians in history 

(Fischbein, 1987; Hefendehl-Hebeker, 1991). For example, when students do multi-digit whole 

number subtraction and the subtrahend digit is larger than the minuend digit, a common error is 

to write 0, because they think they cannot take away more things than they have (Brown & 

Burton, 1978). Consequently, integer operations are difficult. On a standardized test for example, 

only one-third of fourteen year-old students could answer -6 -3 and less than half could divide -
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24 by 6 (Ryan & Williams, 2007, p. 218). Students usually think subtraction makes a number 

smaller and multiplication larger because of their extensive experience operating on whole 

numbers (Ryan & Williams, 2007). These generalizations, however, are not valid for all real 

numbers. A released eighth grade item from the Trends in International Mathematics and 

Science Study (TIMSS) assessed this operation and generalization knowledge: “If n is a negative 

number, which of these is greatest? (Answer options 3 + n, 3 × n, 3-n, 3 ÷ n)” (International 

Association for the Evaluation of Educational Achievement, 2005).). Item accuracy rates 

substantiate that students across the world (40%) found this difficult as well as students in the 

United States (48%). 

Integer Instruction 

 Integer arithmetic with negative numbers is counterintuitive, yet essential to most 

mathematics beyond middle school. Negative numbers, notation, and addition and subtraction 

operations have been extensively studied (Ball, 2003; Gallardo, 2002; Küchemann, 1981; 

Liebeck, 1990; Linchevski & Williams, 1999; Saxe et al., 2013; Thompson & Dreyfus, 1988; 

Vlassis, 2008), yet recommendations are contradictory about how to help students adapt their 

arithmetic concepts to embrace negative numbers (Star & Nurnberger-Haag, 2011). Küchemann 

(1981) categorized three types of integer instructional methods as (a) cancellation models in 

which two opposites cancel, (b) number line models, or (c) abstract methods. Although integer 

thinking and learning has been extensively studied, investigations of integer learning with 

particular models, particularly those most accessible in classrooms, have yet to be conducted. 

Despite the absence of research support (e.g. Star & Nurnberger-Haag, 2011; Freudenthal, 1973; 

Vig, Murray, & Star, 2014), multiple integer models are promoted in methods textbooks for 

prospective teachers as well as school textbooks, particularly cancellation and certain number 
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line models. These multiple integer models are promoted to use with the same students with an 

assumption that more models are better, in spite of a dearth of empirical evidence about each 

individual model or how particular models could work together to support student learning. I 

focus here on the first two approaches to investigate how student’s physical enactments of a 

single integer arithmetic model influences learning. 

Cancellation models. Küchemann (1981) classified cancellation models as “those in 

which the integers are regarded as discrete entities or objects, constructed in such a way that the 

positive integers cancel out the negative integers” (p. get page 62-67). Examples include happy 

and sad faces, hot and cold cubes, charged particles, or different colored objects such as chips or 

playing cards (Cotter, 1969; Goldin & Shteingold, 2001; Jencks & Peck, 1977; Liebeck, 1990; 

Ponce, 2007). Instruction with materials that cancel may include context such as scoring games 

(Liebeck, 1990; Linchevski & Williams, 1999). Some argue cancellation models support student 

learning of negative number arithmetic, because such models help students’ use prior knowledge 

of positive numbers as objects (French, 2001; Küchemann, 1981; Liebeck, 1990). For example, 

students can think of subtraction of negative numbers as taking away objects just as students did 

when they first learned subtraction of whole numbers (French, 2001; Liebeck, 1990). Advocates 

of these models also claim that they allow students to use the idea of inverse operations and 

additive inverses by recognizing that one could either take away positives or add in negatives to 

achieve the same result (Linchevski & Williams, 1999; Semadeni, 1984).  

Typical cancellation models, called chip models, use chips of different colors to represent 

opposite numbers, (e.g., Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006; van de Walle, Karp, & 

Bay-Williams, 2010). Chips are an instructional representation, whereas a number line is a 

disciplinary representation. Consequently, some have viewed chips or other cancellation 
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approaches as instructional gimmicks used in school mathematics, but not real mathematics 

(Roussat, 2010; Umland, 2011). Some have also critiqued cancellation models, because the 

models require rules that are not rules of the mathematics (e.g., Rousset, 2010; Star & 

Nurnberger-Haag, 2011; Vig, Murray, & Star, 2014). Recent theoretical analyses of addition and 

subtraction have critiqued model rules that are not mathematical rules as being points where the 

models “break” (Star & Nurnberger-Haag, 2011; Vig, Murray, & Star, 2014). For example, some 

subtraction problem structures violate mathematical rules by requiring students to add additional 

chips in order to have enough to subtract (Vig, Murray, & Star, 2014). Although Liebeck (1990) 

concluded from her empirical analysis that the chip model was better than a number line model, 

she stated that students reported that these problems that required adding extra chips in order to 

subtract were more difficult. Detailed analysis of these issues with chip models in terms of 

model-movements will be discussed in the Theoretical Framework section.  

Number line models. A particular set of number line procedures frequently appear in on-

line resources and textbooks (e.g., University of Chicago School Mathematics Project, 2007; 

Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006; Math is Fun, 2013), which I call a typical 

number line model. These resources usually show diagrams of students walking or draw arrows 

to indicate movements on the number line. In order to distinguish when the sign “-” means the 

operation subtract as opposed to a negative number, these number line models use different 

movements on the number line. Specifically, these models typically teach students to think of the 

signs of the numbers as indicating to face forward (positive) or backward (negative), whereas 

subtraction signs mean move left on an horizontal number line. Typical number line models for 

multiplication and division use repeated addition and subtraction using the same forward or 

backward movement. Student learning of integer addition and subtraction with number line 



 12 

models have been studied in the contexts of turtles who follow rules to move along a number line 

(Thompson & Dreyfus, 1988), temperatures on a thermometer (Sfard, 2007), elevators going up 

and down floors (Ball, 1993; Hill, 1968), and representations of world elevation (Sfard, 2007).  

Advocates of these models have argued that they avoid the obstacle encountered with 

cancellation models that treat numbers as actual objects (Freudenthal, 1973). Number line 

models are also beneficial because they are disciplinary representations used throughout later 

mathematics (Freudenthal, 1973). Some claim that using number lines is intuitive for addition 

and subtraction (Freudenthal), whereas others argue that this is true only for addition 

(Küchemann, 1981). Although Freudenthal advocated inductive-extrapolatory approaches, he 

claimed if one were to choose a representation to complement student understanding, a number 

line is the best representation.  

Researchers have studied the difficulties and benefits students have when adding and 

subtracting on a number line (e.g., Bofferding, 2014; Bruno & Martinon, 1999; Ernest, 1985; 

Thompson & Dreyfus, 1988). Such research involving individual instruction with students from 

first to sixth grade has reported that students can make progress on such conceptions, but as 

Thompson & Dreyfus (1988) found, even after 11 individualized lessons on addition and 

subtraction with a computer turtle moving on a number line, students have difficulty with 

problems structures that do not have a net effect that uses the sum of the magnitudes. Some have 

critiqued typical number line models for the rules required to add and subtract within a specific 

number line representation or the meanings these number line movements attribute to “-” 

(Bofferding, 2014; Nurnberger-Haag, 2007; Star & Nurnberger-Haag, 2011). Although Hill 

(1968) used an elevator model using movement between floors as positions on a number line for 
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multiplication of integers, number lines have been infrequently used for multiplication and 

division.  

Limitations  

In order to recommend effective instructional practices for this difficult aspect of 

mathematics, several gaps in the literature need to be addressed. These include lack of research 

on multiplication and division as an integral aspect of integer arithmetic knowledge, short-term 

view of instructional impacts, and investigations of a particular model rather than comparison of 

different model affordances and constraints. 

Limited scope of integer knowledge. Research that investigates either addition and 

subtraction or multiplication and division in isolation may miss critical aspects of student 

learning and knowledge. Prior integer research, although important, has primarily focused on 

negative numbers and/or operations of addition and subtraction (Bofferding, 2014; Liebeck, 

1990; Linchevski & Williams, 1999; Pierson Bishop, et al., 2014; Saxe et al, 2013; Stephan & 

Aykuz, 2011; Thompson & Dreyfus, 1988; Vig, Murray, & Star, 2014). Investigations of student 

learning of multiplication and division are warranted, because recent research on these 

operations focused on instructional materials (Seidel, 2012) and existent research on student 

thinking occurred more than 30 years ago (Küchemann, 1981). Moreover, it is crucial to assess 

student learning of all primary operations in relation to each other to understand how students’ 

might use this knowledge in the future. For once students learn the rule of signs to multiply and 

divide negative numbers, many students inaccurately use the rule to add and subtract (e.g., two 

negatives make a plus such as -4 + -5 = 9; French, 2001; Nurnberger-Haag, 2007).  

Short-term view. Students need to understand negative number arithmetic to build on 

and use in complex ways in formal algebra (Vlassis, 2008), so research that investigates longer-
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term implications of instructional experiences is critical. Yet, most integer research has assessed 

students’ learning during or immediately after instruction (Stephan & Aykuz, 2012; Thompson 

& Dreyfus, 1981). This short-term view limits the potential practical educational implications, 

because issues of retention or long-term changes are not addressed (Yelon, Ford, & Golden, 

2013). Moreover, recent research suggests that instead of losing knowledge over time as is 

common, students who learn mathematics or science with physical motions may actually show 

greater learning gains longer-term (Cook, Mitchel, & Goldin-Meadow, 2008; Hadzigeorgiou, 

Anastasiou, Konsolas, & Prevezanou, 2009). 

Single models investigated. In order for educators to make effective instructional 

decisions, it is important to compare methods (Nunez, 2012) and to understand how different 

methods might offer similar or different learning opportunities. Yet, rather than comparing 

different models to identify model affordances and constraints, most integer instruction research 

has focused on how students learn with one particular model (Linchevski & Williams, 1999; 

Stephan & Akyus, 2012), or experimentally compared one model to no model (that some call an 

“abstract approach”) (Moreno & Mayer, 1999). One study did compare a chip model using the 

context of “scores and forfeits” to an acontextual number line model (Liebeck, 1990). Although 

this commonly cited study found a chip model to be more beneficial, it did not include a pretest 

to adequately compare learning gains and the instruction and post-tests differed in many ways 

between the two groups of 10 students.  

Students’ physical motions impact learning. Humans’ physical movements influence 

cognition (Antle, 2011; Barsalou, 2008; Glenberg & Kaschak, 2007; Kontra, Fischer, Lyons, & 

Beilock, 2015). The primary integer instructional models encourage students to physically move 

objects (chip models) or implicitly move on a number line (even if students are not afforded the 
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opportunity to physically walk along number lines during instruction typical number line models 

enacted in classrooms at least implicitly suggest physical motions on a number line). Thus, 

students’ model-movements during effortful learning of integer arithmetic likely impact their 

cognition. Yet, research has not attended to the ways students’ physical model-movements 

alignment with integer arithmetic might influence mathematical achievement. 

Theoretical Perspectives  

Whereas most references in research refer to “the” number line or chip model as if the 

tool or representation constitutes a single model (e.g., Liebeck, 1990; Vig, Murray, & Star, 

2014), I refer to “a” model. I argue that number lines and chips are representational tools that can 

be used in multiple ways. Each of the multiple ways that groups of students and teachers use a 

particular tool (i.e., with some regularity or patterns of processes), constitutes a different model. 

By the term model, I mean not only the tools, but also the physical and verbal processes used 

(due to affordances, constraints, and instructional choices) with those tools (Nurnberger-Haag, 

2014). The theoretical perspectives I use to analyze learning with integer models will help to 

illuminate this stance. I frame student learning with the common integer model types (chip and 

number line models) in terms of general cognitive processes they likely involve: conceptual 

metaphors and consistency of physical movements. First I discuss how the classes of integer 

models relate to human cognition in relation to Conceptual Metaphor Theory (CMT). Then 

within each class of models, based on recent development about the influence of physical body 

motions on cognition, I discuss how students’ physical model-movements are consistent or 

inconsistent with the mathematics and may or may not be cognitively ergonomic for integer 

arithmetic. 
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Conceptual Metaphor Theory 

Humans are always moving and, albeit subconsciously, our physical body motions are 

one way that we develop conceptual metaphors to conceive of abstract ideas, including 

mathematics (Johnson, 1987; Gentner & Bowdle, 2008). Numbers can be thought of in many 

ways including metaphorically as quantities of objects, lengths, locations on a path—in cognitive 

science such metaphorical projections of real-life experiences to understand abstract ideas are 

called conceptual metaphors (Lakoff & Nunez, 2000). CMT assists with explaining and unifying 

mathematical thinking to show that and in what ways mathematical thinking is a part of the 

varied abstract thinking humans do (Lakoff & Nunez, 2000). 

Integer understanding in terms of CMT. The conceptual metaphors humans used to 

develop and continue to use to conceive of integer arithmetic include object collection, motion 

along a path, and measuring stick metaphors (Lakoff & Nunez, 2000). Our first experiences with 

the ideas of number are based on collecting and counting real objects, which forms an object 

collection metaphor meaning of number. For centuries, however, the consequence of using this 

metaphor for number was that Western mathematicians did not believe negative numbers were 

valid, because having less than no objects was impossible; zero meant nothing or no thing, an 

absolute quantity (Berlinghoff & Gouvêa, 2002; Hefendehl-Hebeker, 1991; Rotman, 1993). 

Pascal for example remarked, “I know people who cannot understand that when you subtract 

four from zero what is left is zero” (as cited in Hefendehl-Hebeker, 1991, p.26 from source in 

German). Relying on an object collection metaphor in this way interfered with using negative 

numbers until people began thinking of numbers in ways that developed into number line 

representations: lengths in different directions using a measuring stick metaphor and 

subsequently numbers as locations, motion-along-a-path metaphor (Chiu, 2001; Freudenthal, 
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1973; Lakoff & Nunez, 2000; Kilhamn, 2011). An object collection metaphor treats numbers as 

objects with positive or negative numbers being attributes or kinds of numbers that can be 

grouped into countable quantities. A measuring stick metaphor refers to thinking of numbers as 

the end of a positive static length in a particular direction, not as positions on a real or imagined 

path (Lakoff & Nunez, 2000). With a moving-along-a-path metaphor numbers are thought of as 

points or positions along a path and also as distances to travel on that path (Lakoff & Nunez, 

2000). Facility with more than one metaphor may be necessary for expert understanding of 

negative numbers (Chiu, 2001; Gentner & Bowdle, 2008). Different conceptual metaphors are 

not simply different approaches, but lead to different consequences for current and later 

mathematics topics (Gentner & Bowdle, 2008; Nunez, Edwards, & Matos, 1999). 

CMT and integer models. Research of integer arithmetic via conceptual metaphors is in 

its infancy and has focused on what students and adults who had already learned integer 

arithmetic expressed about these ideas and processes (Nurnberger-Haag, 2013; Chiu, 2001; 

Kilhamn, 2011), rather than how instructional models that involve metaphor-based physical 

motions impact what students learn. CMT offers educational researchers valuable insights to 

identify the ways that different instructional models might afford and constrain students’ 

conceptions of numbers and arithmetic. This theoretical lens differentiates between the 

mathematical representations and the ways people think with these representations. 

Küchemann’s (1981) definition of Cancellation models treat numbers as though they are real 

objects. By definition then, cancellation models map entirely consistently with an object 

collection metaphor, in which mathematical operations are thought of as moving or collecting 

quantities of objects (Kilhamn, 2011). Number line representations, in contrast, could be thought 

of in ways consistent with either a measuring stick or motion-along-a-path metaphor. A 
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measuring stick metaphor refers to thinking of numbers as the end of a positive length in a 

particular direction (Lakoff & Nunez, 2000). Number line models can also be thought of with a 

motion-along-a-path metaphor where numbers are treated as locations or points on the path and 

also directed movements (Kilhamn, 2011; Lakoff & Nunez, 2000; Nurnberger-Haag, 2007), or as 

a combination of both of these metaphors to be discussed in later studies. Number line models 

frequently found on-line and in schools do not commonly use the measuring metaphor, so the 

remaining discussion and study design focus on object collection and motion-along-a-path 

metaphors. Table 1 describes the mathematical meanings in terms of the conceptual metaphor 

and physical model-movements for each integer model. In particular it maps each of meanings 

for numbers, signs of numbers, and operations. 

CMT and Model-Movement Relationship with Integers 

How people physically move influences how they think and involves metaphorically 

projecting interactions in the real world to conceive of abstract ideas (Barsalou, 2008; Gentner & 

Bowdle, 2008). Thus, in order to understand how students think and provide learning 

experiences that “complement the ways their conceptual systems naturally work” (Nunez, 

Edwards, & Matos, 1999, p. 62), educational research should explore how conceptual metaphors 

and students’ physical movements encouraged during mathematics instruction are consistent 

with the content and influence student learning. Conceptual metaphor has been treated as way of 

thinking or an object of thought that results from physical experiences, which grounds how 

humans think about abstract ideas (Lakoff & Nunez, 2000). Whereas other research has referred 

to conceptual metaphors of integer arithmetic similarly using nouns as though these are reified 

ideas after physical movement (Chiu, 2001; Kilhamn, 2011) or critiqued CMT for this reason (de 

Freitas & Sinclair, 2014), I use the verb forms (collecting objects and moving-on-a-path). I use 
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verbs to emphasize that I consider conceptual metaphors to be a label that categorizes particular 

grounded patterns of interacting with the world as part of an on-going dynamic system 

(Nurnberger-Haag, 2014). For the individual (re)enacting such patterns physically or only 

neurologically, this is usually subconscious (Hurtienne, et al., 2010). Table 2 provides detailed 

examples of how students could operate with negative numbers using each model. Due to space 

and student difficulties noted in prior research, the table illustrates how students subtract, 

multiply and take the opposite of numbers. Each of these will be discussed in more detail. 

Humans’ physical movements that align with ideas support general cognition and 

learning, whereas inconsistent movements interfere with cognition (Day & Goldstone, 2011; 

Glenberg & Kaschak, 2002; Goldin-Meadow, Cook, & Mitchell, 2009; Kontra, Lyons, Fischer, 

& Beilock, 2015). For instance, a set of psychology experiments found that when people moved 

actual objects away or toward themselves it evoked the ideas “away” or “toward” that benefitted 

performance on subsequent abstract tasks consistent with participants’ prior movements, but 

interfered when inconsistent (Glenberg & Kaschak, 2002). Goldin-Meadow, Mitchell and Cook 

(2009) found when individual elementary students were taught to gesture in particular ways to 

written numerals in non-traditional equality problems that “the more correct their gestures during 

the lesson, the better children performed on the posttest (2009, p.3). Researchers tested effects of 

a partially correct gesture by teaching students to use the same physical gesture as the correct 

gesture condition, but on the wrong numbers, making this physical motion inconsistent with the 

mathematics. This group whose gestures were inconsistent with the mathematics did worse than 

the correct gesture group; however, they still did better than the students who were not taught to 

gesture.  
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Collecting object model-movements. Using the way I define model to not only mean the 

tools, but also the physical model-movements and language about the tool use, different 

approaches constitute particular models. Just as there are multiple number line models, there are 

multiple models that use colored chips. I first discuss how different model-movements with chips 

constitute different models. Then detail how chip model-movements are consistent or 

inconsistent with the mathematics. 

Different chip model-movements constitute different models. At least two different chip 

models use sets of colored chips (e.g., black representing positives and red representing 

negatives; van de Walle, Karp, & Bay-Williams, 2010; Lappan, Fey, Fitzgerald, Friel, & 

Phillips, 2006), in which students put in chips to represent addition and take out to represent 

subtraction. As they move chips to represent numbers in this way, the two models use the same 

language to represent their movements, “put in” or “add” and so forth. To calculate integer 

multiplication and division with a chip model, students use a repeated groupings meaning of 

multiplication, which is the way students generally first transitioned from whole number addition 

to whole number multiplication. Accompanying language might sound like “put in three groups 

of two negatives.” Although using colored chips to represent negative numbers is consistent with 

a collecting objects metaphor and these objects afford and constrain certain model-movements, 

instruction encourages students to move in different ways to represent operational processes that 

constitute different models. With one particular chip model, students always begin a problem by 

putting in multiple chips to represent a value of zero (e.g., multiple black chips and the same 

number of red chips). To enact the more common chip model used in U.S. schools, students only 

add this extraneous zero representation when a problem requires it. For example, using a typical 

chip model for -3 - -2=-1 described in Table 2 does not require this extraneous addition, but  -3 – 
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2=-5 does (see Table 2).  

Chip model-movement inconsistencies with integer operations. Using the theoretical 

and empirical perspectives from cognitive science about physical motions influence on cognition 

and CMT, I draw attention to what students’ physical model-movements actually model about 

the mathematical ideas. Thinking about whether model rules are rules of the mathematics (Vig, 

Murray, & Star, 2014) offers a dichotomous perspective that could map to my approach of 

considering whether model-movements are consistent or inconsistent with the mathematics. 

Human activity, however, is continuous. Accordingly, using perspectives about how closely 

model-movements represent the mathematics, I point out that different problem structures of 

each primary operation, afford different degrees of consistency between the chip model-

movements and the mathematics. The chip model requires students to move this way, because 

the chips are actual objects.  

Addition and subtraction. Addition operations are the most consistent with respect to 

model-movements, so students may find addition to be the most cognitively ergonomic operation 

with chips. Model-movement consistency with subtraction, however, varies depending on the 

problem structure. Some subtraction problems require inconsistent model-movements from the 

beginning of a problem, others in-process, and other problems involve only consistent model-

movements. The subtraction problems discussed in Table 2, for example, represent consistent 

model-movement (-3 - -2) and inconsistent from the beginning problem structures (-3 – 2). To do 

7-10 with chips, however, students can begin the process with seven positives (black chips) and 

only encounter a model-movement inconsistency during the process, once they have removed 

seven chips.  
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Multiplication and division. Students can move in ways consistent with mathematics to 

multiply one positive and one negative number, because students can use repeated addition of 

chips where the positive number represents the number of groups of negatives as the example -3 

× -2 in Table 1 demonstrates. Student may not find the product of two negatives cognitively 

ergonomic with this model, however, because students must begin each problem with 

inconsistent model-movements. A student first has to add in extraneous chips to have enough 

chips to remove, and then treat negative numbers as taking out that many groups of negatives 

(see Table 2). Division problems are more nuanced than multiplication with regard to model-

movement consistency, because quotients of two negatives can afford more consistent model-

movements than problems that involve one positive and one negative. The problem -12 ÷ -3, for 

example, can be modeled by splitting 12 negatives into groups of three negatives to obtain the 

answer of 4 groups. Yet, to begin to model 12 ÷ -3, students need to represent zero with multiple 

chips in order to take away sets of three negatives until the remaining value of the chips is 12. 

Chip models also are not able to represent the algebraic operation “opposite of.” 

Although some have emphasized the theoretical affordances of chips models that 

encourage students to interpret subtraction with negative numbers as a “take-away” operation, 

chip models are infrequently used for multiplication and division. In spite of the infrequent use 

of chip models for these operations and the theoretical prediction that the inconsistent model-

movements of chips might pose difficulties for student learning, the chip model does offer 

potential affordances related to meanings of multiplication that the walk-it-off model does not. A 

chip model reinforces and extends repeated addition meanings of multiplication with whole 

numbers to negative numbers, unlike the walk-it-off model, which asks students to determine 

distances to travel by using memorized whole number products or quotients. 
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Moving on a path model-movements. The typical number line model promoted in 

curricular resources directs students to move backwards or forwards depending on the sign of a 

number and to move in a particular direction depending on the operation (i.e., left, right, up, 

down, positive direction, negative direction). In other words, as Tables 1 and 2 details, these 

models inform students which direction to move. For multiplication and division, these model-

movements also run into difficulties due to using repeated addition meanings of multiplication.  

The walk-it-off model, in contrast, employs model-movements consistent with integer 

arithmetic operations taught in school. The written symbols in the walk-it-off model “–“ signal 

whether to change direction by turning the opposite direction or in the case of addition or 

positive values, to maintain direction (See Table 1). Note in the table that the walk-it-off model 

uses a stable meaning of “-“ signs: “move the opposite direction,” which work for all primary 

operation problem structures (see Table 2). The model-movements vary only due the signs of the 

numbers and operations, not based on problem structures. Addition and subtraction with the 

walk-it-off model treat the first number of a problem as a starting point or location, then the 

addition or subtraction sign signals whether to turn the opposite direction and a second number is 

a directed magnitude, so this indicates whether to turn the opposite direction and how far to 

move (See Tables 1 and 2). Multiplication and division with the walk-it-off model, as with chip 

models, begin with zero. Unlike chip or other number line models the walk-it-off model avoids 

using repeated addition meanings of multiplication and division. Students who are advanced 

enough to learn multiplication and division with negative numbers should be able to find 

products and quotients of whole numbers (i.e., the absolute values of the numbers in 

multiplication or division problems) as detailed about the walk-it-off model in Table 2. This 

model was also designed to address the opposite operator meaning of the negative sign shown in 
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the last row of Table 2, necessary for algebra, but not afforded by other models (Nurnberger-

Haag, 2007; Thompson & Dreyfus, 1988).  

As with a chip model, instruction with the walk-it-off model does not need to begin by 

using explicit instruction. Students can begin exploring addition and subtraction tasks by moving 

on number lines in ways that make sense to them based on their whole number arithmetic 

knowledge. Instruction can then help students formalize how they moved and talked about those 

movements in terms of the meanings used in the walk-it-off model. From these experiences 

students can then formalize rules or algorithms for integer arithmetic rather than being explicitly 

told such rules (e.g., multiplying or dividing two negatives results in a positive number, 

subtracting a number is the same as adding the opposite of the number). Even though such 

approaches begin with student thinking, some educators who promote using a context with a 

number line for extended periods of time might still critique such acontextual uses of number 

lines for requiring students to use arbitrary rules or algorithms (Stephan & Akyuz, 2012). 

Research that compares such uses of number lines has not yet provided insights about how 

student learning might differ between acontextual and contextual uses of a number line.  

For acontextual (“bare numbers”) arithmetic problems typically studied in middle school, 

the walk-it-off model does not seem to have limitations in terms of model-movement 

consistency. If, however, students need to solve context-based problems that draw on different 

metaphors such as measuring length or collecting objects, students who learn with the walk-it-off 

model might have difficulty thinking about integer arithmetic in these different ways. This study 

was not designed to investigate such limitations. Measuring Lengths and Collecting Object 

metaphors are also ways mathematically knowledgeable people can think about integer 

arithmetic (Chiu, 2001). Although the walk-it-off model uses a number line representation, it 
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uses a moving-on-a-path metaphor, rather than a measuring metaphor. This may mean that even 

though some students may be able to apply this model to problems involving temperature 

measured on a thermometer, others may have difficulty since it might not make sense to apply a 

moving-on-a-path metaphor to comparing static lengths. As in whole number arithmetic when 

students are able to act out problems that match the problem structures, students found these 

problems easier (Fennema, Franke, Carpenter, & Carey, 1993). Even if the walk-it-off model 

were to assist students with using number lines in other contexts in which an actor does not 

move, ideas of things cancelling that are needed for school and disciplinary science knowledge 

such as cancellation of electrical charges may be better supported if students learn with a 

collecting objects metaphor that the chip model could foster.  

Focus of Study 

A limitation of both chip and walk-it-off models may be that they might make it difficult 

for students in the future to think of mathematics in disciplinary ways consistent with pure 

mathematics. For example, integer exponents use a different meaning than either model, pure 

mathematicians think of the plane moving not the objects on it and conceive of arithmetic with 

only two operations (addition and multiplication). Such potential limitations relate to claims that 

integer arithmetic should only be taught in ways that some call abstract methods (e.g., algebraic 

proofs, arithmetic rules, or noticing patterns of written problems and solutions; Heefer, 2011). 

Yet, school mathematics at this point does teach students in ways that treat the plane as static and 

four, rather than two arithmetic operations, thus this study focuses on comparing models and 

leaves investigation of these longitudinal issues for future research.  

A single model may be insufficient to the develop range and depth of integer arithmetic 

knowledge students need, because each model affords different ways of engaging with 
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mathematically-relevant objects and actions. To effectively use multiple models, however, 

researchers and teachers need more information about benefits and challenges of each model in 

isolation and how combinations of models impact student learning. Thus, in order to contribute 

to the long-term goal of informing how to help students develop a strong sense of negative 

numbers, related arithmetic, and subsequent algebraic use, this study used an experiment to focus 

attention on benefits and affordances of a single model with students who had not been 

influenced by other instructional models  

The purpose of this study was to determine which models for integer learning are more 

beneficial as the first integer model students encounter, for what aspects of integer knowledge, 

and why, in order to contribute to improved teaching of integer arithmetic. Specifically, the study 

was designed to contribute to resolving contradictory claims in the field that cancellation and 

number line models are more intuitive than the other for introducing integer arithmetic. With a 

goal of practical impact, to test these assertions this study used the theoretical perspectives 

described to experimentally compare particular cancellation and number line models that could 

be or are easily implemented in schools and that use model-movements I thought would be the 

best case of each conceptual metaphor. Potential outcomes could be that the empirical results 

demonstrate that different models simply promote different ways of thinking about integer 

arithmetic, but result in similar student performance. Alternatively, the study might provide 

empirical evidence that using the walk-it-off number line model as the first model (used the first 

time that students encounter the topic) leads to better student learning for at least some aspects of 

integer knowledge, because it may be more cognitively ergonomic (i.e., better affords conceptual 

metaphors and movements consistent with integer arithmetic) than a chip model. In order to 

capture the complexity of students’ initial learning of integer arithmetic with just one model in 
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ways that addressed limitations noted in prior research, this pre-post-delayed posttest study used 

multiple methods to address the broad questions: After using either a chip model or a number 

line model that emphasizes opposites and magnitude as a first integer model, what do students 

demonstrate knowing about integers and what, if any, differences in learning are found between 

students who used each model? This article reports the main analyses related to the following 

specific questions: 

1. Prior to instruction, which, if any, conceptual metaphors did students express for integer 

arithmetic? 

2. Which model as a first model better supports overall achievement in the short-term or in the 

longer-term? 

3. Which model as a first model better supports different aspects of integer knowledge 

(ordering numbers, primary arithmetic operations, generalizing about operations, opposite 

sums, opposite operations)? 

4. Is there evidence that the consistency of model-movements with mathematics influences 

learning? 

Method 

I randomly assigned the eight classes of fifth and sixth grade students within two school 

sites to a chip model or number line model. I did consider including a control group who would 

only take the assessments to control for repeated testing effects and maturation. This approach 

was rejected for ethical reasons, such as how this might inequitably prepare control students for 

next year’s instruction.  
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Settings and People 

Research personnel and positionality. Although I position myself as a teacher first and 

researcher second in terms of wanting students I instruct to learn as much as possible, my role in 

these districts was as a guest researcher who taught intact classes. Thus, I refer to my role in 

these classrooms as Researcher-Teacher to foreground the researcher role. As the researcher-

teacher, with approximately 20 years experience teaching mathematics (including having taught 

integer arithmetic to K-16+ students), I conducted all instruction and administered all tests to all 

students in the targeted grade. The classroom teacher remained in the classroom to ensure safety 

of students, but not to teach during the study instruction. The study instruction was the only 

mathematics lessons students at both sites experienced each day. During the five weeks between 

the post and delayed posttests at both sites the classroom mathematics instruction focused on 

geometry. During school instruction between these test administrations, students did not use 

negative numbers, nor were they notified ahead of time that they would be retested, so students 

did not review integers prior to the delayed posttests.  

I have worked for more than two decades as a teacher and researcher using and 

considering how students use the models compared in this study. I used a chip model when I first 

taught Grade 8 students integer arithmetic working with a master veteran teacher affiliated with a 

university in an urban context. The students I taught early in both urban and private school 

contexts helped me begin to see specific challenges of learning with both typical chip and 

number line models. In response to challenges of the typical number line model, I develop the 

walk-it-off model (Nurnberger-Haag, 2007). Although the chip model was the first model I used 

to teach students integer arithmetic, at the time of this study, I had more experience teaching 

students using the walk-it-off model.  
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As I conducted this study, I designed each model to be a “good” representative of the 

larger class of models of which they were examples (chips models and number line models). A 

chip model is a commonly used instructional model; many teachers believe in its value. Had I 

believed the chip model to have little value for student learning, I would not have used it. In any 

research study, I believe my first ethical duty is to do the best I can for any students with whom I 

work. I conducted this study in the hope of contributing to knowledge about student learning for 

all students, but first and foremost my intent is to if at all possible, benefit the students with 

whom I worked and the teachers who might benefit from observing a guest teacher in their 

classrooms.  

Given the theoretically predicted difficulties with the chip model and the fact that I had 

more experience teaching with the walk-it-off model, I made additional efforts to ensure that the 

chip model instruction was as effective as possible (e.g. attended a CMP workshop about 

effective chip model instruction and sought advice from teacher-leaders who strongly advocate 

the chip model). 

Sample size, settings, and participants. In spite of these commitments, in order to 

experimentally control for potential perceived or unintentional researcher bias, the study design 

originally included a second researcher-teacher who was blind to the study theories to teach half 

of each integer model classes. A power analysis, however, indicated the necessary sample size 

would be logistically prohibitive to conduct the study as planned. A power analysis for 80% 

power suggested that if a single researcher-teacher implemented the study instruction, a sample 

size of 50 in each of two conditions should make it possible to detect between group differences 

using Cohen’s d 0.25 level (Cohen, 1988).  

Two public rural districts in one Midwest state participated after recruiting districts that 
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met the criteria within about a one-hour travel radius of three universities in two Midwest states. 

To investigate how each model might impact learning if used as the first model students 

encounter, the study instruction occurred in the grade prior to when integer arithmetic was 

typically taught in each district (District A first semester sixth grade, District B second semester 

fifth grade). All district students in this grade attended the same school with the same 

mathematics teacher in classes that were not ability grouped. The five classes in District A used 

Connected Mathematics Project 2 (CMP) textbook (Lappan, Fey, Fitzgerald, Friel, & Phillips, 

2006) and the three classes in District B used enVision Math Grade 5 (Scott-Foresman, Addison-

Wesley, 2011). According to the state website, 45% of the students I instructed had free or 

reduced lunch and were primarily European American. The teachers determined how students’ 

effort during study instruction counted toward students’ daily participation grades, but individual 

test scores did not count toward students’ grades as it would with typical classroom instruction. 

Only those students who themselves assented and whose guardians consented participated in the 

research by giving their written work and assessments to the researcher-teacher for an incentive 

the equivalent of a university folder and pencil. After removing students due to absences, 164 

students remained in the analysis (83 in chip condition and 81 in walk-it-off condition). All 

possible data were used for each analysis, so the sample size of each analysis varies depending 

on which students missed particular tests. 

Instruction 

I planned and implemented a unit with eight lessons of approximately 50-minutes within 

their normal classroom contexts. I taught students in the ways I would teach if I were their 

classroom teacher with the following exceptions to avoid cross-contamination between models: I 

did not assign homework and asked students not to talk about negative number arithmetic outside 
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of the classroom. The first four columns of Table 3 describe the lesson sequence common to both 

integer models. Each class experienced parallel instruction with the same tasks and activities, 

differing only by the integer model used (the physical representations, the language about how to 

use those representations and corresponding model-movements). Subsequent sections detail unit 

differences due to the integer model, whereas the last column of Table 3 describes only those 

additional model differences specific to the particular tasks and activities.  

Lesson sequence and tasks. I implemented eight days of lessons at Site A, which used 

55-minute periods. When I added Site B where class length varied from 30 to 45 minutes 

depending on the day, I implemented the eight lessons to parallel total time at Site A. The 

instructional units addressed negative numbers, ordering numbers, and operations with negative 

integers (addition, subtraction, multiplication, and division) including sums of additive inverses. 

The unit began by establishing class norms (e.g., what it means to help another student during 

group work), introducing the integer model representations, and ideas of numbers that were 

opposite of whole numbers (e.g., opposite color chips with the same cardinality or points on the 

opposite side of zero with the same distance from zero). Although students discussed and 

modeled what the opposite of a number meant in words and numerals, they were not introduced 

to opposite as an operation nor the mathematical notation -(-5) for example, so that these tasks 

could serve as transfer tasks on the written and interview measures to assess how students would 

make sense of such notation after using each model. Subsequent lessons involved each pair of 

inverse operations together, first addition and subtraction then multiplication and division. At the 

end of each lesson I asked students to complete an exit ticket, but I will not analyze the contents 

of that data here.  
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Groupings and approaches. At both sites when seated, students sat at assigned tables. 

Students were already familiar with working in assigned groups to learn mathematics. During 

each lesson students worked on tasks and played games in assigned groups and had the 

opportunity to participate in whole-class discussions. I used students’ pretest profiles to assign 

heterogeneous trios or pairs, yet without large achievement disparities. For most of the unit, the 

only individual work-time consisted of completing the end of class exit ticket. During the last 

few lessons, instruction began with independent work and then group discussion until consensus 

reached or the group agreed they needed to ask for teacher assistance.  

I assigned group roles that students rotated after each task to ensure each student 

repeatedly had the chance to enact the mathematics through oral words, physical movements, 

and written notation (Nurnberger-Haag, 2007). The group roles were Director (verbally 

suggested how to use the chips or walk to solve the problem), Chip Handler or Walker (the only 

person during that task who was supposed to touch the chips or walk the number line to ensure 

each person had the opportunity to do so and to encourage the need for students to communicate 

about how to think about and experience the model-movements), and if in a trio, a Verifier 

(confirmed Director’s directions and chip handler/walker’s movements). Each student was 

responsible for writing solutions as complete equations using formal mathematical notation. Near 

the beginning of instruction students in both conditions were expected to use the tools of their 

integer models. Later, to help students transition to thinking about the problems in ways that they 

would be asked to on the tests as well as in future mathematics, I encouraged students not to use 

the tools and imagine or draw them, if needed.  

Chip model lessons. Students used chips on the space in front of them on their desks. 

With a chip model, numbers are represented by the color and quantity of chips and students can 
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model addition operation as putting in chips and subtraction operation as taking away chips (See 

column 1 Table 1 meanings). Although I was careful to state that this taking away meaning is 

just one way of thinking about subtraction (e.g., a difference meaning is also valid), the typical 

chip model uses this take away meaning of subtraction and is the reason chip models are 

advocated. Multiplication and division with a chip model uses the idea of repeated groupings in 

which a number represents the scalar or the number of groups added or removed and the other 

number represents the quantity in each of those groups.  

In a chip model, the only feature of the chips that differentiate different qualities is the 

color. In order to begin with student thinking using colors, black chips were used to represent the 

counting numbers with which students were familiar and students explained that white was the 

opposite of black. Thus, instruction began with white chips representing numbers that were the 

opposite of numbers most students referred to as “regular numbers.” On day three, I offered 

students the choice to continue using white or begin using red chips to represent negative 

numbers, because in business contexts red signifies negative quantities. 

Walk-it-off model lessons. Just as black and red colors were used in the chips condition, 

during initial walk-it-off model instruction students recorded positive numbers using a black 

marker, negative numbers in red, and 0 in some other color. Each group used wet-erase markers 

to write on a ten-foot long open number line (line permanently drawn on white plastic tablecloth 

strips). The students in the chip condition were able to begin addition and subtraction earlier in 

the unit, because they more easily associated the sets of opposite color chips with opposite 

numbers than the students who had to learn how to and spend time to construct number lines. To 

ensure similar experiences between classes and groups, all students placed the number lines on 

the floor and I asked them to walk next to the number line.  
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Different ways students moved on the number line to represent the expressions were 

discussed as a class. Addition and subtraction problems in which the first number is a starting 

point or location just as it is in whole number arithmetic. Just as with a chip model particular 

meanings of operations are used such as take-away or add in, the walk-it-off model works for all 

operations because it uses an opposite direction meaning of the “-“ symbol, so when students 

moved in the opposite direction on initial problems, but referred to it as going backwards or to 

the negatives etc. I encouraged students to think about the meaning of “-“ on a number line as 

meaning turn the opposite direction.  

Data Sources 

The primary data sources to answer the research questions were collected via two written 

open-response measures a skill-based Integer Arithmetic Test (IAT) and Explain & Draw Test 

(EDT). Students took these tests three times on parallel forms as pretests, posttests, and delayed-

posttests. Primary measures were repeated at each testing phase, whereas covariate measures 

(Timed Fact Test and Spatial Test) were given at pretest to control for abilities other than 

negative number arithmetic prior to instruction. Written pretests were administered several days 

to a week before the integer lessons began. Posttests were given the day after instruction. Absent 

students were given the tests as soon as possible thereafter. Approximately five weeks after 

instruction ended, I administered the delayed-posttests at each site with no make-up tests given.  

All students took the IAT before the EDT at each test administration in order to ask the 

skill-based questions prior to the items that asked students to explain, because the act of 

explaining could change performance on the skill test. To limit the likelihood of student 

difficulties with reading impacting their performance on these tests, before students began the 

IAT I read each set of directions to the class pointing to the text on a document camera. After 
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most students were ready to begin the EDT, I read each problem and encouraged anyone wishing 

to have a problem reread to them to ask me to do so. Details about each test follow in subsequent 

sections. 

Integer Arithmetic Test (IAT). The Integers Arithmetic Test assesses integer 

understanding (e.g., order of integers) and calculation skills (addition, subtraction, multiplication, 

and division) as is typical of standardized and classroom assessments (e.g., TIMSS) and some 

prior research (e.g., Liebeck, 1990; Periasamy & Zaman, 2009). The exact problems used during 

instruction were not replicated on any test in order to ensure that students did not simply 

remember how to solve a particular task (with the exception of the open-ended task in which 

students added and subtracted to make 0). Although more complex problems were considered 

during the test development, all operations consisted of only binary operations. This was done in 

order to create a set of tests that could fit within the practical time constraints of a class period 

yet include a full range of binary problem structures, so additional types of problems were left 

for future research. The IAT consisted of five ordering number items, 10 each of addition and 

subtraction calculation (and two addition of the form _ + _ = 0, Generate Opposite Sums items), 

eight multiplication and seven division (because one item was removed due to not working 

properly), five opposite operation problems (three opposite of a negative number and two 

opposite of an expression).  

The written measures assessed the constructs taught during instruction as well as opposite 

operators (transfer problems) that were not taught during the lessons (e.g., -(-4) and – (6-8)). The 

data reported here are from a 46-item open response skill-based test Integer Arithmetic Test 

(IAT) and a seven-item Explain and Draw Test (EDT), three items of which are included in this 

analysis. These measures were developed through several phases of piloting and analysis 
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including factor analysis to remove items that did not perform as expected. Due to the three test 

administrations, I developed three equivalent forms, which an ANOVA confirmed were not 

significantly different. Although no significant differences were found between forms, to 

experimentally counteract potential order effects of the three administrations, the students were 

randomly assigned to one of six possible pre-post-delayed posttest form orders prior to the 

pretest. Cronbach’s alpha is an appropriate measure for internal consistency for unidimensional 

items (Tavakol & Dennick, 2011). For each unidimensional subconstruct, Cronbach’s alpha was 

greater than .7 (.74 to .98), with the exception of two subconstructs. One subconstruct consisting 

of four items composed of two subtraction structures empirically loaded onto one factor and fit 

theory based on the problem structure but this loading was small and loaded onto two additional 

factors as well (4 items, α=.59) The other subconstruct only consisted of two items, which were 

the two most difficult transfer opposite operation tasks (.42). Pencils were the only tools allowed 

during the written assessments. I decided not to provide chips or number lines, so that the tests 

were able to measure students’ use of formal mathematical notation and reasoning as will be 

tested with most classroom and standardized assessments.  

 Explain & Draw Test (EDT). The seven-item Explain & Draw test (EDT) was designed 

to obtain insights about students’ reasoning, including their use of metaphor and movement in 

their conceptions of integer arithmetic. Although this type of measure may not be as effective as 

an interview for this purpose, the format of a written test allowed for larger sample sizes in order 

to assess what might be typical of students in each model condition. The EDT asked students to 

explain in words and by drawing how they make sense of the ideas in each question so that 

another student their age would understand. See Table 4 for a summary of the purpose of each 

question with examples. The items were designed to investigate if students would offer accurate 
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generalizations about integer arithmetic. The Operation Generalization Item, which was revised 

from the 2003 eighth-grade TIMSS released item discussed in the review of literature to be more 

appropriate for fifth to seventh grade students, assessed whether students continued to generalize 

based on whole number arithmetic such as subtraction always makes numbers smaller. 

 Covariate measures. To control for calculation speed and obtain a proxy for mathematics 

achievement prior to instruction without accessing students’ personal records, students took a 

Fact test. I constructed this 1-minute whole-number fact test of the four primary operations using 

digits from the items on the three forms of the IAT. Students also took two spatial tests 

(Ekstrom, French, Harman, & Dermen, 1976); however, these tests are not analyzed here and 

future research could consider whether spatial ability was a mediator of learning for each model.  

Pilot test results revealed an additional covariate would be needed when assessing 

multiplication and division. If students consistently answered all multiplication and division 

pretest items with negative or with positive solutions, this falsely inflated their pretest score such 

that real learning gains at posttest and delayed posttest could be underestimated. Consequently, a 

categorical covariate variable of MD Preconceptions was added, using 1 for presence and 0 for 

absence of these particular preconceptions. I documented presence of MD Preconceptions if 

students answered at least 14 of the 15 multiplication and division items either consistently 

positive or consistently negative. The significance of the MD Preconceptions in the current study 

analyses confirmed the need to control for this factor in the analyses.  

Data Analysis 

Statistical controls were built in to the study design and analysis (e.g., Hill & Shih, 2009), 

including a pretest—the best covariate in educational research (Shadish, 2012), fact test, gender, 

district, and preconceptions of negative number multiplication and division. Although district 
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and class were both originally included as statistical controls, the statistical models would run 

with only one of these and either covariate resulted in the statistical model accounting for the 

same amount of variance. Student grade level also differed between districts so differences due 

to grade cannot be separated from district differences. Multivariate analyses of variance on the 

two dependent pretest measures of Pretest IAT and Fact Test found statistically significant 

differences between districts (p= .010), but no significant differences were detected between the 

eight classes or between assignment of integer models prior to instruction. Thus, I included 

district in each analysis that used covariates. The analyses were robust to violations of 

assumptions, because the integer model group sizes were similar. Unless otherwise explained in 

the results, data for which ANCOVA, MANCOVA, ordinal or logistic regressions were used 

satisfied the assumptions of the stated test. Non-parametric tests were used when assumptions 

were violated (ordering numbers analysis). Interrater agreement for each qualitative analysis was 

greater than 90%.  

Total IAT and primary operations analysis. The IAT total test score was calculated 

using 0 for incorrect items and 1 for correct then scaled to a 100-point test to weight the relative 

importance using the subtotals of the following constructs: ordering numbers (20%), addition 

and subtraction (35%), multiplication and division (35%), and opposite operations (10%). Integer 

model group performance on posttests and then delayed posttests were separately compared 

using an analysis of covariance, controlling for the factors described in the overview.  

Raw scores of the primary operations were then compared to test for posttest differences 

between consistent and inconsistent model-movement problems due to integer model using a 

MANCOVA, controlling for these scores at pretest, fact test, gender, district, and MD 

preconceptions. Delayed posttest consistent and inconsistent model-movement raw scores were 
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then similarly analyzed. Degree of model-movement consistency was also assessed using 

categories of model-movements found with the models: Inconsistent Beginning Model-

Movements, Inconsistent In-Process Model-Movements, and Consistent Model-Movements. 

Each of these categories had different total possible scores (10, 4, and 22 respectively). Given 

these unequal scales, I standardized the values in order to be able to compare parameter estimates 

to test if the greater the degree of consistency the greater the accuracy. Then a MANCOVA was 

conducted on the standardized posttest scores controlling for these scores at pretest, fact test, 

gender, district, and MD preconceptions. Standardized delayed posttest scores were then 

similarly analyzed. 

Opposite sums knowledge. Multiple methods were used to determine each student’s 

level of opposite sums knowledge at pre, post, and delayed posttest using three types of tasks: 

IAT calculation item accuracy (e.g., single digit -7 + 7= and double digit -19 + 19=), IAT 

generative item accuracy (___ + ___ = 0), as well as accuracy and reasoning on the EDT 

Opposite Sums Item. I coded student explanations of the EDT Opposite Sums item with a 

qualitative coding scheme developed from the pilot data using a constant comparative approach 

(Glaser, 1965). The codes used in the analysis of the full study data reported here documented 

whether students’ explanations provided evidence that they had generalized that the sums of any 

opposite numbers was zero, whether they calculated to explain their answer, stated that the 

quantities could not be equal because different numbers always create different solutions, no 

reasoning, and other less frequent codes. A second trained coder assessed 20% of the randomly 

selected codes with 92.7% agreement. These codes were developed through at least three phases. 

First, I developed an initial coding scheme based on test-only pilot data from seventh grade 

students who had studied negative number arithmetic in full-length units with their own teachers 
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using both chip models and number line models. Second, I tested and revised the coding scheme 

using the pre-post pilot study I conducted with fifth grade students. Final revisions occurred with 

the full study data.  

Each student’s EDT Opposite Sum reasoning code was then combined with the accuracy 

score into an EDT Opposite Sum item level (0-3). Two types of IAT questions (two Calculate 

Opposite Sums items such as -19 + 19 and two Generate Opposite Sums items ___ + ____ = 0), 

were each separately subtotaled for accuracy 0 to 2. I used a K-cluster analysis procedure using 

these three ways of demonstrating opposite sum knowledge (calculation subscale 0-2, generative 

problems subscale 0-2, and EDT Opposite Sums Item Level 0-3) to inform selection of Leveled 

Opposite Sums knowledge profiles (no/low, moderate, or strong). Figure 1 illustrates the 

sequence of steps to mix these data sets for statistical analysis. The post levels were then 

analyzed using ordinal regression to compare integer model differences and a separate analysis 

conducted for delay post levels controlling for Opposite Sum Knowledge Level at pretest and the 

other controls included in the total test analyses. 

Ordering numbers. The accuracy of the five IAT items that involved ordering integers 

were combined to create an Ordering Numbers score. These items consisted of three types: 

Circle the largest number, circle the smallest number, and give two numbers that are smaller than 

N. In part, due to ceiling and floor effects creating bimodal distributions, the distributions did not 

meet assumptions to conduct a MANCOVA to compare the integer models. Transformations did 

not correct these violations. Consequently, non-parametric tests (Mann Whitney) were conducted 

separately on posttest and delayed-post ordering scores to compare integer models. 

EDT generalizing operations item. Accuracy on the posttest and then the delayed 

posttest EDT Generalizing Operations item were analyzed using logistic regression. The student 
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explanations on this item were coded with a qualitative coding scheme developed from the pilot 

data using a constant comparative approach (Glaser, 1965) in light of theories of symbol use 

(Vlassis, 2008) and generalizing of operations. Related codes were combined to yield three 

primary categories of reasoning: (a) Accurate Generalized rules or meanings, (b) Calculated, or 

(c) Overgeneralized from whole number operations. A Chi-Square Test of Independence for 

integer model was then conducted for type of reasoning. 

Opposite operations. The three types of tasks from the IAT and EDT that assessed 

meanings of “-“ as opposite operations were used to determine each student’s pre, post, and 

delayed post Opposite Operation Knowledge Level. The accuracy on the two types of tasks on 

the IAT (Opposite-Single Digit and Opposite Expression) that asked students to calculate with 

specific numbers were leveled as low (0) or high (1) performance. Student reasoning on the EDT 

Opposite Operation Item that asked students to generalize about the opposite of a negative 

number was qualitatively coded to reveal types of reasoning. These types of reasoning were then 

grouped and assigned a level 0 to 3. Rather than deciding apriori how students’ should be 

discriminated by performance across these three task types Opposite-Single Digit, Opposite 

Expression, and EDT Opposite Operation Item, I used a K-Cluster Analysis procedure on 

posttest scores to inform levels of opposite operation knowledge and identify profiles of student 

knowledge within each level. I intended to analyze these levels with ordinal regression, 

controlling for several factors; however, the sample size was not sufficient for enough for 

students to fall within all the multiple classifications determined by the factors to perform a 

reliable analysis.  

Conceptual Metaphor Analysis 

Conceptual metaphor analyses were used to determine which, if any, conceptual 
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metaphor students expressed prior to integer arithmetic instruction. Thus, a coder blind to the 

study hypotheses analyzed EDT pretests, and I report these descriptive statistics. Intervals of the 

randomly assigned student identification numbers were selected for this detailed analysis. Since 

the descriptive results of this subset of students were consistent with analyses using this coding 

scheme on EDT tests with another sample (Nurnberger-Haag, 2013), this subset of 38% of 

student tests was sufficient. I report descriptives of the three items on which students most often 

expressed a conceptual metaphor (Ordering Numbers item and single digit subtraction and 

multiplication operation). The coding scheme analyzed written language and drawings of the 

EDT, which was developed prior to and refined on the test-only pilot data with seventh grade 

students (Nurnberger-Haag, 2013). Appendix B summarizes these coding definitions for the 

following behaviors: Collecting Objects-Things (if referred to things, objects, or groups), Moving 

on a Path-Points (if referred to numbers as points or locations on a path) or Moving on a Path-

Path (including distances moved on a path), measuring if students referred to static distances as 

intervals. Coders documented 1 or 0 whether each test item provided evidence of each behavior. 

I interpreted that a student expressed a particular metaphor if the coder noted a related behavior 

in words or drawings on any item. I coded 20% of the pretests blind to student condition due to 

random assignment of the identification numbers with greater than 90% agreement. 

Results and Analysis  

 Changes in test outcomes from pre to posttest and pre to delayed posttest form the bases 

of these analyses. First I report the IAT test total score using quantitative analysis, from the 

open-answer skill-based questions of all constructs. Next each construct was analyzed using 

multiple methods to explore student expression of construct knowledge based on accuracy of 

each type of construct question on the IAT as well as accuracy and reasoning on the related item 
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of the EDT. These constructs include overall primary operations (addition, subtraction, 

multiplication, and division), sums of additive inverses (a particular case of addition), ordering 

numbers, and opposite operations. 

 Lastly, to investigate whether evidence supports prior claims that a chip model would be 

more likely to draw on students’ intuitive prior knowledge of whole numbers in beneficial ways, 

additional analysis of EDT responses prior to instruction were analyzed for evidence that 

students would naturally express ideas of negative numbers as collecting objects as resources for 

thinking about negative number arithmetic. 

IAT Total Score Analysis 

Changes in performance within model. Figure 2 displays the pre, post, and delayed 

posttest unadjusted means with error bars that show the 95% confidence intervals. Note that the 

unadjusted pretest means of each integer model were similar (chip M=39.0, SD=13.3 and walk-

it-off M=41.2 SD=16.5). The unadjusted means for average achievement of students in both the 

walk-it-off model (post M=67%, SD=19%; delayed post M= 64%, SD=23%) and the chip model 

(post M=53%, SD=20%; delayed M=49%, SD=20), as well as Figure 2, show that on average 

students who used both model improved. These improvements were statistically significant 

(p<.001), indicating that after eight lessons both models contributed to student learning. These 

scores include 10% weighting of a transfer construct on which most students were not successful 

and would not normally be factored into a classroom grade, which skewed the test scores down 

compared to classroom assessments that typically test only instructed material. Thus, a 90% on 

this assessment might be considered a perfect score on instructed material.  

Between integer model differences. Analyses of covariance (ANCOVA) were 

conducted on the IAT post and also on delayed posttest total scores to compare students’ overall 
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learning with the walk-it-off model to learning with a chip model controlling for pretest IAT, 

whole number fact test, gender, district, and preconceptions of integer multiplication and 

division. Table 5 displays the model statistics and Table 6 provides the parameter estimates of 

this overall analysis. As shown in Table 5, the statistical models of each ANCOVA including all 

significant (Integer Model, Pretest IAT, Gender, District, MD Preconceptions) and a non-

significant predictor (Fact Test) accounted for approximately 46% of the variance (Adj. R2=.458) 

F(6, 152)=23.24, p<.001 on the posttest and 47% (Adj. R2=.468) F(6, 149)=19.847, p <.001 on 

delayed posttests. The next greatest predictor after the pretest was the independent variable under 

investigation, the Integer Model. Statistically significant differences on posttests were found 

between students who used the walk-it-off compared to chip model: F(1, 152)=17.110, p<.001, 

ηρ2=.10) and also on the delayed posttests F(1, 149)=18.8, p <.001, ηρ2=.11.  

As the parameter estimates indicate in Table 6, on average on this 100-point test students 

who learned with the walk-it-off integer model scored 10 points higher than students who had 

learned with chips on the posttest and 12 points higher in the longer-term on the delayed posttest. 

Just as in classrooms some types of problems are deemed worth more points than others, the IAT 

test constructs were weighted as described in Methods. Consequently, although these results 

cannot be directly interpreted as number of questions correct (and consequently, students with 

the same score could have different numbers correct), these scores in Table 6 could be 

interpreted in terms of achievement as percent grades.  

Integer Operations 

In this section, I first report the accuracy and reasoning results of the Generalization Item 

of the EDT, a multiple choice item that also asked students to explain and draw their reasoning. 

It required students to consider how all four basic operations work (revisit Table 3). Next the 
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basic operation calculation items of the IAT were further analyzed. I first use the theoretical 

perspective of model-movement consistency to group these operation items. I then discuss 

performance on the individual operations (addition, subtraction, multiplication, and division) in 

relation to this analysis. 

Generalizing about operations. 

Generalization item accuracy. Five-weeks after instruction, 32.1% of 81 students who 

learned with the walk-it-off model compared to 10.0% of 80 students who learned with the chip 

model correctly answered the EDT Generalization Item. I conducted logistic regression on the 

accuracy of the Generalization EDT Item to test for integer model differences controlling for the 

Pretest Generalization Item Accuracy, gender, district, and fact test. When controlling for these 

predictors, using the walk-it-off model significantly increased the odds of accurately answering 

this generalization question by a factor of 6 (Exp(B)=5.98, p<0.001). No significant differences 

on generalization accuracy were found, however, for integer model at posttest (30.5% walk, 

22.6% chip).  

Generalization item reasoning. The reasoning students offered differed significantly on 

both post and delayed tests. Considering only the reasoning, students who learned with chips (a) 

used a Calculation Strategy (irrespective of accuracy) 2.5 times more often than students who 

learned with the walk-it-off model, meaning students substituted a negative number into each of 

the four expressions to calculate answers to determine an answer choice and (b) 1.6 times more 

often used an Overgeneralization Strategy from whole number operations. In contrast 9 times 

more frequently students who learned with the walk-it-off model offered an accurate generalized 

explanation tied to the meaning of operations with negative numbers or a rule students had 

generated (not explicitly taught during instruction).  
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As described in methods, students primarily reasoned about the generalizing operations 

item in the following ways: Calculated Expressions (regardless of accuracy, entered a single 

number into each answer option and calculated to determine the greatest number), 

Overgeneralized from whole number operations (e.g. “because multipling makes the number 

bigger” student 3092, spelling as student did), or provided Accurate Generalized Rules or 

Meanings. Some accurate generalized rules or meaning examples include: “In negative #s you 

subtract the more you have” ID 3170. “Subtracting would give you a larger number because you 

take away the negative number and get closer to zero or a positive number” ID 3164 “For 

subtraction you have to turn the opposite direction twice if you have a negative number so that 

means you’re walking the positive direction.” ID 3130).  

A Chi-square test of independence compared the qualitative reasoning of the 74 students 

who offered codable reasoning on the posttest by integer model. Fisher’s Exact Test (used due to 

one cell being less than 5) found a significant interaction of reasoning and integer model on the 

posttest p<0.001. In contrast to the posttest, on the delayed posttest, students who learned with 

either integer model were equally likely to use the Calculate Expressions Strategy described 

above (chips 19/38; walk 20/41). Students assigned to walk-it-off, however, still used accurate 

generalized reasoning (9/41) 9 times more frequently than students assigned to chips (1/38) and 

were less likely to over generalize from whole number operations with statements like 

“multiplication always gives the biggest answer” (chips 18/38, walk 12/41 27%). A significant 

interaction of reasoning and integer model were found with a Chi-Square Test of Independence 

on the delayed posttest (p=.021, using Fischer’s Exact Test due to one cell being smaller than 

five). 
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Consistency of model-movements with integer operations. Although analyzing test 

items grouped by operation is a common educational approach, I grouped problems by the 

physical model-movements to offer new insights for analyzing model-efficacy. As discussed in 

the theoretical framework and methods, some IAT problems require students to move chips in 

ways that are inconsistent with the targeted integer operations.  

Consistent vs. inconsistent model-movements. Multivariate analysis of covariance 

(MANCOVA) was conducted on the IAT operation posttest Consistent Model-Movement 

Problems and Inconsistent Model-Movement Problems controlling for these scores at pretest as 

well as the other controls used in the total IAT score analysis. The corrected statistical models 

for the consistent item posttest scores were significant F(7, 152)= 9.169, p<.001, Adj. R2=.265 

and inconsistent F(7, 152)=17.303, p<.001 indicating this set of factors explained variations in 

student scores. Multivariate tests found integer model as well as all covariates except district 

were statistically significant at p<.05. Table 7 reports the multivariate values. Statistically 

significant differences approaching a large effect size (Cohen, 1988; Tabachnick & Fidell, 2013, 

p.87) were found on those posttest problems for which I argue that the chip model required 

inconsistent movements—F(1, 152)=42.861, p<0.001, (ηρ2= .220). Multivariate analysis of 

covariance (MANCOVA) on delayed posttests using the same covariates were also statistically 

significant approaching a large effect size: F(1, 148)=46.496, p<0.001, (ηρ2= .239).  

Table 8 provides the parameter estimates of this analysis. Each point represents one 

problem, so the parameter estimates (see β and 95% CI in Table 8) indicate that compared to 

students who used the walk-it-off model, out of 14 problems students using the chip model 

accurately answered about 2 to 5 fewer problems (posttest β=-3.24; delayed posttest -3.54). 

When the chip model-movements were consistent with the mathematics of integer arithmetic 
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operations, however, no significant differences were found between the integer model groups’ 

test performances. Note integer model groups differed by less than one out of 22 Consistent 

model-movement problems (posttest: β=.-.843, delayed posttest (β=-.897).  

Degree of model-movement consistency. Multivariate analysis of covariance 

(MANCOVA) on standardized scores of posttest IAT operation Inconsistent Beginning Model-

Movement problems, Inconsistent In-Process Model-Movement Problems, and Consistent 

Model-Movement Problems was conducted to test if the degree of model-movement consistency 

mattered controlling for these scores at pretest as well as the other controls used in the total IAT 

score analysis. See Table 9 for the multivariate test values and Tables 10 and 11, respectively for 

parameter estimates of posttest and delayed posttest degree of model-movement consistency. The 

posttest differences were statistically significant with a large effect size of integer model (chips 

n= 82, walk = 77, see Table 9). Between subject effects were significant for Inconsistent 

Beginning F(1, 150)=45.92, p<0.001 (ηρ2= .23) and Inconsistent In-Process problems F(1, 

150)=7.519, p<0.007 (ηρ2= .05), and not significant for Consistent problems. MANCOVA on 

standardized delayed posttest scores of the same problems were also statistically significant with 

a large effect size of integer model (chips n= 78, walk = 77 (see Table 9). Between subject 

effects were significant for Inconsistent Beginning F(1, 146 )=51.139, p<0.001 (ηρ2= .27) and 

Inconsistent In-Process problems F(1, 146 )=7.118, p<0.008 (ηρ2= .05), and not significant for 

Consistent problems. These results may reflect a large effect size for Inconsistent Beginning and 

small effect size for Inconsistent In-Process. The more closely the chip model-movements 

aligned with the mathematics, the more likely students who used chips were to be successful on 

those problems types, leading to less significant differences when compared with similar peers 

who used the walk-it-off model. Standardized scores were used to create outcome variables with 
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the same scales in order to compare parameter estimates for effect of consistency. Note in Tables 

10 and 11 that both for posttests and delayed posttests the parameter estimate disparities for 

integer model performance were greater the more inconsistent chip model-movements were with 

mathematics. 

Sums of Additive Inverses (Opposite Sum) Knowledge 

Evidence of students’ opposite sums knowledge expressed on the EDT Opposite Sum 

item, two IAT Calculate Opposite Sums items and two IAT Generate Opposite Sums items were 

combined as described in the Methods section to classify each student’s level of opposite sums 

knowledge (1, 2, or 3). Ordinal regression analysis on the 160 students’ levels of knowledge for 

whom a level could be determined (i.e., data was not missing), showed that using chips did 

significantly increase the chances of demonstrating greater opposite sums knowledge at posttest 

than the walk-it-off model (p=0.001, pretest opposite sum knowledge p<.001, fact test p=.002, 

district n.s. and gender n.s.), but this difference was not maintained five weeks later. There were 

no significant differences between students who learned with the chip model or walk-it-off 

model on the delayed posttest (n=156, p=0.096).  

Ordering Integers 

 An analysis of pre to post and pre to delayed post changes in Ordering Integers subscores 

revealed that twice as many students who learned with chips regressed compared to students who 

learned to walk-it-off on both the posttest and delayed posttest. Table 12 presents descriptive 

statistics on the frequency with which students improved, maintained, or regressed on the five 

ordering items from pre to post and pre to delayed posttest. As described in methods, the post 

and delayed posttest scores were not normally distributed, so Figure 3 displays box plots of the 

pre, post, and delayed posttest ordering numbers totals (0 to 5 possible), which provide a more 
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appropriate representation than means and standard deviations. Figure 3 shows that a majority of 

students from both models were at or near ceiling at pretest. As the median of the box plot 

indicates, at posttest and delayed posttest at least 50% of students in both integer model 

conditions answered all five ordering problems accurately. Note that the box plots also reveal 

that the lowest quartile of students who learned with chips correctly answered 0 to 3 problems at 

post and delayed, whereas students who learned with the walk-it-off model that had these low 

scores were outliers. A Mann Whitney Test found these differences between integer models on 

the total posttest ordering scores not significant, but students who learned with the walk-it-off 

model did significantly better than those who learned with chips on the delayed posttest 

(p=.018).  

Opposite Operation 

 Ordinal regression analysis was not reliable on the transfer construct level of Opposite 

Operation knowledge, because only 12 out of 162 students were successful on these items. Thus, 

as described in the Methods section, statistical analyses for the opposite operation construct are 

not reported.  

Students’ Initial Metaphors 

 All results thus far have been post and delayed post achievement controlling for pretest 

scores and other variables. In this section, I first use results only from the pretests of the EDT to 

provide evidence of students’ reasoning prior to instruction. Because the EDT test items did not 

prompt students to use a conceptual metaphor, there was no reason for students to express ideas 

consistent with a particular conceptual metaphor unless this was their current way of thinking. 

To find empirical evidence that students find thinking of numbers as objects (Küchemann, 1981; 

Liebeck, 1990) or as moving on a number line more intuitive (Freudenthal, 1973), I analyzed a 
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subset of the pretest EDT data (as described in Methods). Consequently, this analysis does not 

compare students by condition, but investigated what 63 (38%) students thought prior to 

instruction. As Table 13 shows for each type of assessed problem, students most frequently used 

the moving-on-a-path metaphor. Moreover, a majority of the students who expressed any 

metaphor used the moving-on-a-path metaphor. The collecting objects metaphor was next most 

popular and measuring metaphor least popular.  

Do Students Need Integer Knowledge to Benefit from Chip Model? 

Particularly if prior to instruction students do not typically begin thinking about negative 

numbers as collecting objects, and because the chip model requires students to accept and use the 

idea that positive and negative objects cancel for most problems, I predicted that some level of 

opposite sum knowledge might be necessary prior to instruction in order to learn with a chip 

model. To test if those students who prior to instruction did not have strong sums of additive 

inverses knowledge had more difficulty learning with this chip model than the walk-it-off model, 

an analysis of covariance (ANCOVA) was conducted on the posttests of participants (n = 122, 

chips 65, walk 57) whose opposite sums knowledge was not strong at pretest (level 1 or 2). The 

overall model was statistically significant F(6, 115)= 13.452, p<.001 and accounted for about 

38% of the variance (Adj. R2=.382). Such students assigned to the chip model did significantly 

worse overall on the IAT than students assigned to the walk-it-off model: F(1, 115)=17.984, 

p<0.001; ηρ2=.135. Similarly, on the delayed posttests (n=120, chips 62, walk 58) the statistical 

model was significant F(6, 113)=14.243 p<.001and accounted for 40% of the variance (Adj. 

R2=.382). Students who used chips did worse overall than those who used the walk-it-off model 

F(1, 113)=23.976, p<0.001; ηρ2=.175. These students with lower opposite sum knowledge who 

used chips scored lower on the 100 point posttest -12.5, 95% CI [-18.3, -6.6] and delayed 
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posttest -15.4, 95% CI [ -21.7, -9.2].  

Discussion 

Both models supported statistically significant student integer learning from pre to post 

and pre to delayed posttest, indicating that both models are reasonable instructional models to 

use for integer instruction. As the first model students encounter, however, the walk-it-off model 

helped students outperform students who used the chip model on short-term as well as longer-

term skill tests that assessed instructed aspects of integer knowledge (ordering numbers, all four 

primary operations, and sums of additive inverses,) and transfer knowledge (opposite 

operations). These statistically and practically significant results indicate that relative to this chip 

model, the walk-it-off model was a more effective initial model to support students’ first-time 

integer arithmetic instruction. The delayed post-test results were especially noteworthy given that 

the classroom teachers’ subsequent lessons did not use negative numbers, and students did not 

review integers prior to the delayed posttest. Analyses of each aspect of integer knowledge that 

mixed qualitative assessment of student reasoning with skill-based performance provided 

additional evidence for these conclusions and a more nuanced understanding of what each 

integer model might better support. Table 14 summarizes which, if either, integer model was 

more advantageous for each aspect of integer knowledge at each time point.  

Overall the walk-it-off model was at least as good, if not a better first instructional model 

for each aspect of integer knowledge investigated (see Table 14). For example, although in the 

short term students working with the chip model did outperform their peers who learned with the 

walk-it-off model with regard to sums of additive inverses knowledge, the walk-it-off model was 

equally effective in the longer-term. With regard to ordering numbers, because a number line 

model orders numbers, we might expect that students who used walk-it-off would have 



 53 

outperformed students who learned with chips. Walk-it-off was more advantageous, but only in 

the longer term. This difference widened because twice as many students who learned with chips 

than the number line regressed on ordering knowledge from pretest to delayed posttest. 

The generalizing operations results demonstrate potentially even more powerful walk-it-

off model impact on student performance than for primary operations. On the generalization item 

revised from the TIMMS assessment with an international average of 40%, delayed posttest 

accuracy of these younger students (fifth and sixth grade) who used the walk-it-off model (32%) 

were closer to the eighth grade international average than students who used chips (10%). In 

other words, the walk-it-off model not only facilitated better procedural accuracy to first learn 

primary operations but also led students to more accurately generalize about operations than 

those students who first learned with chips. If one takes the perspective of algebra as generalized 

arithmetic (Usiskin, 1988), a purpose of experience with negative number and rational number 

arithmetic is to help students accurately generalize how operations interact with all real numbers. 

When these targeted generalizations contradict their experiences with whole number operations, 

students have difficulty accommodating to fit the ways that negative number and rational number 

arithmetic works (Ryan & Williams, 2007). As Table 14 summarized, in the longer-term the 

walk-it-off model better supported ideas of generalization both in terms of accuracy and 

reasoning. This longer-term assessment is more reflective of how students’ integer arithmetic 

understanding might come to bear when studying formal algebra during the next few years. For 

example, students who learned with the walk-it-off model were less likely than students who 

used chips to still say that multiplication will always make a number larger or subtraction always 

smaller.  

Some reasons that opposite operation knowledge could not be analyzed may be because 
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few students from either model accurately answered these unfamiliar tasks. This aspect of 

knowledge warrants additional research with qualitative methods (see Article Two). It also 

warrants future studies that include this aspect of knowledge in the instructional unit for several 

reasons. First, grounding an opposite operation for the written symbol “-“ by moving the 

opposite direction is the experiential basis for learning integer arithmetic with the walk-it-off 

model. Since walk-it-off model did advantage students on arithmetic, and translation of spatial 

understanding to writing or oral language-based symbols usually follows later, even the delayed 

test of 5 weeks may have not been sufficient time for students’ spatial understanding to translate 

into language. Second, the trend that five weeks later other short-term non-significant results 

changed to a walk model advantage. Third, uncovering true impacts requires investigation even 

years later (Yelon, Ford, & Golden, 2013). Finally, but perhaps most importantly, other research 

signaled potential delayed benefits of whole-body learning (Hadzigeorgiou, Anastasiou, 

Konsolas, Prevezanou, 2009).  

Understanding the Performance Difference 

The findings that the walk-it-off model better supported initial student learning align with 

reasons drawn from cognitive science, analyses of mathematics, and practical classroom 

experience. Specifically, the following reasons that students may have found the walk-it-off 

model a more cognitively ergonomic first integer model will be discussed in more detail: (a) 

integer model-movement consistency with mathematics matters for learning, (b) model 

consistency with the conceptual metaphor it promotes, and (c) students find moving-on-a-path a 

more intuitive conceptual metaphor for negative numbers.  

Consistency of model-movements with integer operations matters. Some theoretical 

work referred to the mathematical alignment of integer models as breaking or requiring model-
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rules that differ from the mathematics (Star & Nurnberger-Haag, 2011; Vig, Murray, & Star, 

2014). This study offers empirical evidence supporting these theoretical arguments that 

incongruent mathematical alignment does impact students' learning outcomes during initial 

learning. Moreover, this study offers reasons related to human cognition of mathematics that 

these breaks are likely problematic. Students moved differently in order to interact with 

representations to enact these models. If these differences and the ways model-movements 

represent mathematics were not relevant for first-time student learning, then there should be not 

have been significant differences in performance when problems were grouped by model-

movement consistency with integer operations. The analysis of student performance on the 

primary operations, however, did show that when the chip model required model-movements 

that contradicted or were extraneous to the integer arithmetic processes and ideas (e.g., adding in 

chips to subtract) this interfered with learning. In contrast, when a student could engage in 

integer arithmetic problems using model-movements consistent with the mathematics, either 

model was equally effective in supporting student outcomes. This lack of significant differences 

when both models encouraged student movements consistent with the mathematics supports the 

claim that the model-movement alignment with mathematics is a likely factor of student learning 

with models.  

Perhaps more important for theory and for practical instructional decisions, beyond this 

dichotomous issue of consistent versus inconsistent model-movements, the findings 

demonstrated that the greater the degree of model-movement’s inconsistency with primary 

integer operations, the greater the differences found between integer model performance. This 

finding about integer arithmetic complements other findings about consistency of students’ 

gestures with mathematical symbols (Goldin-Meadow, Cook, Mitchell, 2009). In other words, 
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students found greater model-movement consistency more cognitively ergonomic from a 

performance standpoint. Future research could ethnographically investigate students’ perceptions 

of these integer models for how cognitively ergonomic they felt. 

This issue of model-movement inconsistency in the chip model could be an additional 

reason that students who learned with chips more frequently regressed on ordering knowledge, 

beyond the fact that a collecting objects metaphor emphasizes cardinality rather than ordering 

numbers. When students have to add in chips to perform non-addition operations, their chip 

model-movements as well as the resulting visual images, change perceptions of the cardinality of 

the physical objects in ways that would muddle the relative ordering of number values.  

Consistency of models with conceptual metaphors matter. Yet, another potential 

reason that more students assigned to use chips as the first integer model did worse on ordering 

problems and overall performance on the delayed test could be related to the inconsistency of the 

mathematics with the conceptual metaphor. Students who used chips and who did not already 

have strong sums of additive inverses knowledge at pretest scored about 1.5 letter grades lower 

on the delayed posttest than students who used the walk-it-off model. This may be due to the 

way in which chip models violate the collecting objects metaphor. 

Chip models violate zero-as-nothing. As Rotman (1993) explained, when thinking of 

numbers using an object collection metaphor, zero should be visually represented as nothing or 

“no thing.” The chip model violates this meaning by requiring multiple things to be “no thing.” 

This zero-as-nothing violation, it should be emphasized, is not limited to the situations in which 

a mathematical problem uses the number zero. Almost every number that instructional practices 

ask students to represent with a chip model violates the meaning of that quantity in the collecting 

objects metaphor. Indeed students need to overcome this zero-as-nothing violation when 
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calculating most problems with chips. For example, to begin the problem -7 – 5 students have to 

use at least 17 total objects to represent the value -7 (i.e., seven negatives as well as five 

additional negatives and five positives). It was clear in the pilot study that such zero-as-nothing 

violations did not feel cognitively ergonomic. For example, one student explained why using -7 

and 7 was “kind of zero,” but not really: “Right now, there’s 14 physical chips, and your brain 

wants to say they’re still there.” In contrast, the walk-it-off model does not violate the meaning 

of numbers represented with the moving-on-a-path metaphor. The findings of this study suggest 

that because this model requires students to overcome the zero-as-nothing violation to calculate 

almost every integer problem, opposite sums knowledge may actually be required in order to 

learn integer arithmetic with the chip model. Thus a chip model should not be the first model that 

students encounter.  

Moving on a path: More intuitive for negative numbers. Research suggests instruction 

should begin from student thinking (Freudenthal, 1973; Carpenter, et al., 1998). Freudenthal 

(1973) although advocating more inductive reasoning approaches for integer arithmetic also 

noted that if a representation were used, a number line would likely be best for students. Yet, 

some have claimed that a chip model should be a more intuitive way to build on student thinking, 

because it encourages students to recapitulate the same approach through which they first began 

to develop whole number understanding (Küchemann, 1981; Liebeck, 1990). With regard to 

conceptual metaphor theory, this means advocating a collecting objects metaphor. Yet, the pre-

post and pre-delayed post as well as prior to instruction results contradict such claims. The fact 

that most students who expressed some conceptual metaphor at pretest used a moving-on-a-path 

metaphor suggests it is the moving-on-a-path metaphor that is likely the metaphor students 

would find more intuitive to begin their work with integer arithmetic. One might argue that the 
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pre-instruction conceptual metaphor results indicate these particular students might be unique 

and were already using a moving-on-a-path metaphor, such that the students in this sample found 

the study instruction more intuitive. Future research is needed to confirm that other or most 

students also find the moving-on-a-path metaphor more intuitive than a collecting objects 

metaphor for integer arithmetic. Such a theory does seem plausible in light of prior research on 

student performance after students learned integer arithmetic with their regular classroom teacher 

using both chip and number line models with CMP in which a chip model was emphasized first 

(Nurnberger-Haag, 2013). Even when the chip model was emphasized during multi-model 

instruction, analysis of student performance on the same test items used in this study found more 

students expressed the moving-on-a-path metaphor than collecting objects post-instruction 

(Nurnberger-Haag, 2013). 

Conclusions 

This study suggests that when integer arithmetic with negative numbers is first 

introduced, the walk-it-off model is preferable to this chip model. As discussed in the theoretical 

framework, an important feature that distinguishes the walk-it-off model used in this study from 

other number line models that also draw on a moving-on-a-path metaphor is students learn that 

instead of signaling a particular direction in space, “-“ or “+” signs signal whether to move in the 

opposite direction relative to one’s current direction. Although different chips models are also 

possible, this study demonstrated stronger performance with walk-it-off than with a common 

chip model. This evidence contradicts claims that using a common chip model or encouraging 

students to think about negative numbers as objects makes initial learning of integer arithmetic 

easier (Küchemann, 1981; Liebeck, 1990). Those who advocate for the benefits of a chip model 

in order to replicate students’ development of whole number ideas, in effect, ask students to 
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hurdle the very conceptual obstacle found in the historical development of negative number 

arithmetic. This study offers evidence to suggest that such sequencing should avoid replicating 

the Western historical development of negative number arithmetic by introducing integer 

arithmetic to students with a collecting objects meaning only after students develop integer 

arithmetic understanding with a moving-on-a-path metaphor. Research is needed to investigate 

sequencing and connecting models that draw on different conceptual metaphors or language-

based instructional practices that evoke conceptual metaphors (e.g., stories). 

More broadly, this study offered insights toward resolving questions of how different 

integer models could help or hinder learning by comparing individual models and investigating 

more aspects of integer learning than prior studies, including all four primary operations. These 

findings might also better translate to predicting research results at scale, because it involved the 

full range of student achievement found in classrooms and used experimental methods to 

investigate individual student’s thinking and learning after instruction. 

Limitations and Future Research 

Some of the study design decisions created limitations that leave open questions for 

future research. These include the length of the instructional unit, researcher-teacher instruction, 

disentangling impacts of metaphor from model-movements, exclusive focus on two particular 

models with acontextual instruction, and the particular population studied.  

 Due to site-based constraints, the unit was limited to eight lessons, about which a student 

who learned with chips said, “That wasn’t enough [time]” when she turned in her tests. When I 

asked her during an interview how much more time she would recommend, she said one more 

week, because their units usually took at least three weeks. Even this recommendation, however, 

is much shorter than the five-week long unit Stephan and Akyuz (2012) reported that they 
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instructed students on only addition and subtraction operations. As did Stephan and Akyuz 

(2012) and Liebeck (1990), I served dual roles as both researcher and a teacher implementing 

study instruction. Like these prior studies, the researcher-teachers had extensive teaching 

experience. Unlike these prior studies, I randomly assigned classes to instruction and used a 

sample size eight times that of these prior studies. Nevertheless, all such studies that employ a 

researcher-teacher design could have unintentional bias for which, due to logistical constraints 

described in methods, the study design did not account. Thus, future replications at scale to 

understand what students learn in a typical length unit with teachers teaching their own students 

are necessary and will require a much larger sample size and hierarchical linear modeling to 

account for different teachers and districts.  

The study reported here used a number line model designed to encourage students to 

move in ways that represent opposite operators. These model-movements differ from other 

approaches to using a number line, so the findings of this study should not be generalized to 

other number line models or chip models that use different model-movements. In order to 

compare models that do evoke different conceptual metaphors, this study did not attempt to 

separate learning effects due to students’ model-movements from effects due to evoking a 

conceptual metaphor. Future research could address this limitation by assessing impact on 

learning due to consistency of model-movements for models based on the same metaphor, such 

as comparing a typical number line model to the walk-it-off model. 

The decision to avoid real-life contexts limits the scope of the study implications for 

integer knowledge development. Future directions for this research that address this limitation 

include investigating how context interacts with these types of models. Future studies may find 

that a chip model is beneficial when applied to contexts that draw on a collecting objects 
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metaphor, because these real-life contexts actually promote model-movements consistent with 

the world (e.g., the ways electrons and protons interact). Beyond performance with context 

problems, with regard to the process of learning with number lines, a potential limitation of the 

walk-it-off model should be investigated. As previously noted, some argue that movements in 

number line models, for example, are arbitrary conventions (Heefer, 2011; Stephan & Akyuz, 

2012). To empirically consider such potential limitations qualitative research that investigates 

whether students themselves view the symbol meanings promoted in the walk-it-off model as 

arbitrary or in what ways they make sense would be needed. In addition, studies that compare 

affordances and constraints of a chip and/or walk-it-off model with algebraic approaches are 

needed to empirically resolve competing claims that models or algebraic approaches are most 

useful (Heefer, 2011; Vig, Murray, & Star, 2014; Vlassis, 2008). Such research may be 

particularly important since both models may interfere with disciplinary expectations if students 

pursue advanced mathematics where people conceive of mathematical objects differently than in 

school mathematics, such as the plane moving instead of students or chips. Since this aspect of 

advanced mathematics contradicts human experience in which humans and objects appear to 

move in the real world, investigations of models that fit such a mathematical conception would 

require virtual tools. 

Practical Implications and Limitations 

As discussed in the review of literature, little is known about individual integer models. 

Thus, this studied focused on comparing student learning with a single integer model in order to 

better isolate potential model differences as a research design decision. I do not claim that a 

single model will support students in developing the rich conceptions we desire. This was an 

additional reason that I conducted this study the year prior to each district’s scheduled integer 
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arithmetic instruction, so that this study would avoid limiting participants’ experience. There are 

several collecting objects, measuring, and moving-along-a-path metaphor-based models that 

could be experimentally compared to further consider how learning with each model affords and 

constrains integer learning. Research is also needed to investigate effective sequencing and 

connecting multiple instructional models. Yet, teachers require the best recommendations to 

inform how they teach their current students. By the time additional data about integer models is 

amassed, current middle grade students could be graduating from high school or even college. As 

a first instructional model, the walk-it-off model was more effective overall for an economically 

diverse sample (45% free and reduced lunch), improved learning more for those who have less 

integer knowledge prior to instruction, and draws on the metaphor students most likely already 

use for negative numbers. While additional research emerges that advances or contradicts the 

findings reported here, when teachers first introduce integer arithmetic, the motion-aligned walk-

it-off number line model should be the most productive model to meet the diverse range of 

learning needs in real classrooms. Yet, these students were primarily European American fifth- 

and sixth-grade students in rural districts, so the study should be replicated with other 

populations to ensure that these results appropriately inform instruction for all students. 

Anecdotal evidence suggests the walk-it-off model, which a teacher developed and has shared 

with hundreds of other teachers, is a feasible and low-cost model for teachers to implement 

(Nurnberger-Haag, 2007). Nevertheless, future investigations should confirm that students in a 

variety of contexts using these models with typical classroom teachers experience similar results. 

Methodological Implications  

The delayed posttest results reflect longer-term learning, which although rare in 

educational experiments, is crucial to make claims about educational impact that matters in 
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students’ lives. Relying on immediate testing as most educational studies do could lead to 

inaccurate conclusions and may be one of the reasons scaling up research has been difficult. 

Teachers and researchers who study student thinking during instruction or immediately after 

instruction might for example, have concluded that a chip model was more beneficial for some 

aspect of integer knowledge, yet the longer-term analysis did not support this. Moreover, 

consistent with Yelon, Ford, and Golden’s (2013) assertions, this study demonstrated that in the 

short term what seemed to be similarities did actually have different longer-term impacts.  

Theoretical Implications 

Humans are always moving. Research in cognitive science shows that these movements 

influence what and how we think (Antle, 2013; Glenberg & Kaschak, 2002). Important work 

about moving to learn mathematics has begun (e.g., Abrahamson & Trninic, 2015; Gerofsky, 

2012; Roth & Thom, 2009). Yet, more is needed, and it is crucial that mathematics education 

research attend to the ways that students move due to instructional models, instead of whether 

they move during instruction. This study contributed to this theoretical goal specific to integer 

arithmetic and demonstrated that it would be important to investigate if motion-aligned models 

are more productive instructional models for other mathematics topics. 
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ARTICLE TWO: HOW STUDENTS’ INTEGER MODEL-MOVEMENTS GROUND THE 
MULTIPLE, DIFFICULT MEANINGS OF “-” 

Abstract 

Students find negative number arithmetic difficult, but the notation poses additional 

difficulties. Not only does the same visual symbol “-” have different meanings when positioned 

differently in relation to other symbols (subtraction operation, negative sign, or opposite 

operation), but students need to understand multiple meanings of “-” in the same position. This 

study extends prior research about this notation in terms of population studied, method 

(experimental), and use of conceptual metaphor theory to interpret the notational meanings that 

students expressed after instruction with one of two integer models —a chip model or a number 

line model. Regardless of model, students appropriately distinguished instances where “-” 

indicated a negative sign versus a subtraction operation. This finding suggests that if students 

have access to these integer models to ground these basic meanings of “-,” they may find it easier 

to learn this notation earlier than previously reported with more abstract methods. Moreover, 

with regard to the algebraic meaning of “-” as an opposite operation, interviewed students who 

used a conceptual metaphor to successfully consider this unfamiliar notation used a motion-on-a-

path metaphor by turning the opposite direction on a number line for each “-“ symbol (i.e., used 

the walk-it-off model). 
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How Students’ Integer Model-Movements Ground The Multiple, Difficult Meanings Of “-”  

Most mathematics beyond middle school requires proficiency with and understanding 

about all real numbers, including signed numbers. In addition to proficiently calculating all four 

operations with signed numbers, mathematically competent people need to be able to order these 

numbers, use number lines, and use the “-” symbol differently based on the context in which it is 

positioned (Bofferding, 2014; Chiu, 2001; Lakoff & Nunez, 2000; National Governors 

Association Center for Best Practices, Council of Chief State School Officers, 2010; Sfard, 2000; 

Thompson & Dreyfus, 1988). Students around the world, however, find this knowledge difficult 

to develop (Altiparmak & Ozdogan, 2010; Gallardo, 2002; Pierson Bishop et al., 2014; Ryan & 

Williams, 2007; Vlassis, 2008; Warfield & Meier, 2007). Some documented difficulties include 

accepting that numbers below zero are valid, placing negative numbers on a thermometer or 

number line, ordering signed numbers, as well as proficiency with subtraction, multiplication and 

division (Pierson Bishop et al., 2014; Ryan & Williams, 2007; Warfield & Meier, 2007).  

 Although the ideas of negative numbers and their operations are difficult, the notation 

creates additional difficulties for students (Vlassis, 2004). These difficulties with negative 

number notation impact students’ algebraic work beyond the grade levels in which students 

learned integer arithmetic (Vlassis, 2004, 2008). Most negative arithmetic instruction research 

and practice has only implicitly addressed these negative and positive sign meanings, but 

students may need explicit attention to these meanings (Bofferding, 2014 & Stephan & Aykuz, 

2012). As Sfard (2007) noted with her aptly named title “when the rules of discourse change, but 

nobody tells you.” Students should have the opportunity to explore and make sense of the 

underlying mathematical ideas these inscriptions record but notational meanings should be 

communicated. The written notation or significations of negative number meanings are cultural 
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inscriptions, so I argue, like Bofferding (2014) that it is only fair to offer students the shared 

meanings of these inscriptions. This transparent approach about negative number symbolism 

would be analogous to teaching whole number symbolism for quantities. For example, children 

explore how whole number quantities interact, but are explicitly taught to name the oral and 

written terms for those quantities in the particular culture in which they live (e.g., “five” using 

English, but “pyat” in Russian). The study instruction I report here explicitly addressed the 

meanings of the signs relevant within each model enactment as I compared student learning with 

a chip model to a number line model. The theoretical framework and methods section regarding 

lessons explains this focus on grounding the symbol meanings with integer models in greater 

detail. 

Difficulties with Negative Notation  

 Some difficulties related to what Vlassis (2008) called “negativity,” especially when first 

working with negative numbers are that students may not accept them as valid numbers with 

which to operate, but only as results to a subtraction problem (Gallardo, 2002). Students have 

mistaken negative signs for subtraction operations, particularly in multiplication problems (Ryan 

& Williams, 2007; Vlassis, 2008). In addition, the unary operational meaning “opposite of” is 

crucial to student understanding and use in algebra (Nurnberger-Haag, 2007, Vlassis, 2008). For 

example, in situations such as –(-4), –X, or (-a) + a = 0 neither the subtraction meaning nor 

negative as a number makes disciplinary sense. Yet, students believe any number with a “-“ sign 

denotes a negative number, so they often incorrectly conclude that –(-4) can only be negative 

four (Vlassis, 2008). This operational conception to take the opposite is necessary to understand 

not only when a<0 that –a is actually positive number but also the opposite of algebraic 

expressions, and recognize when the “-“ symbol could have more than one meaning (Vlassis, 



 67 

2008). Believing that the “-“ sign can have just one single meaning is an obstacle noted with 

eight grade algebra students (Vlassis, 2008). 

 Numeral notation and other mathematical symbols such as ÷ are also culturally accepted 

conventions, but many of these symbols students encounter early in school mathematics denote a 

single mathematical meaning. The discipline of mathematics, however, has many such symbols 

that require multiple meanings (Sfard, 2000). The symbols used to indicate signed numbers pose 

challenges for at least two reasons. First, the same symbol “-“ or “+” means different things 

when positioned differently in expressions (e.g., 4 - 5 means subtract, but “-” in -4 + 5 means 

“negative”) (Sfard, 2000; Vlassis, 2004). Second, even the same “-” sign in an expression can 

require multiple meanings if the context in which it is situated changes as it does when 

manipulating algebraic equations (e.g., the “-“ in 4 – X =8 means subtract, but after subtracting 4 

from both sides of the equation, the “-” needs to mean the opposite of X; Vlassis, 2004). In other 

words, a subtraction operation becomes an opposite operation in these contexts and requires 

flexibility to think of the signs in such changeable ways (Vlassis, 2004). 

Theoretical Framework 

Prior Analyses of “-” Notation 

A common framework with which to view these symbols categorizes meanings by how 

many numbers interact with the “-” symbol. The term unary refers to a negative number itself 

(e.g., -5), binary to refers to subtraction that needs two numbers (e.g., -5 - 6) (Gallardo & 

Rojano, 1994). Gallardo and Rojano (1994) identified the symmetric meaning separately without 

reference to the number of numbers, but which I see as another unary meaning, in which a 

negative symbol acts on a negative symbol or negative number (e.g., -(-5)). Sfard (2000) used 

semiotics to classify particular uses of these symbol meanings as structural or operational 
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signifiers. Negative signs are structural signifiers, because the “-” is part of the structure or way 

to write the numeral of a negative number, which is a mathematical object. The operational 

signifiers indicate signals to operate or do something such as subtract two numbers or take the 

opposite of a number or expression. 

 The first use of the “-” symbol students encounter is the binary operational signifier when 

young children learn to read or write subtraction equations. Students then at various ages 

depending on out of school or in school experiences, encounter negative numbers or the unary 

structural signifier. The discipline of mathematics often uses parentheses as grouping symbols to 

separate an operational “-” from a unary “-” that indicates a negative number. For example –(-4) 

or X – (-4). Instead of parentheses, particularly in curricular resources, another way of 

distinguishing the subtraction operations from negative signs is to superscript the unary “-” signs 

(e.g., X - -4; Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006; van De Walle, Karp, & Bay-

Williams, 2010). The final meaning of “-,” which Vlassis (2008) called the algebraic meaning, a 

unary operational signifier that means “take the opposite” is often included in middle grades 

instruction of integer arithmetic. 

 In the rest of this article I will refer to these three meanings of the “-” sign using terms 

that as a prior teacher and current teacher educator I believe could communicate with practicing 

educators with less translation from research than the terms used in prior frameworks, but with 

the intent that the ideas of these frameworks described above carry on with these terms. I refer to 

the negative signs and numbers of which negative signs are a part as a Number Structure 

meaning. The two operational signifiers I will refer to as Subtraction Operation and Opposite 

Operation meanings. 
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Embodied Cognition 

Many have noted issues of symbolism in mathematics, because mathematical ideas do 

not have a specific referent in the world, the way arbitrary symbols like the word “apple” can 

refer to a physical object (Sfard, 2000). In psychological terms the circularity of symbols 

referring to other symbols without a referent, such as trying to speak in an unknown language by 

reading definitions for unknown words in the same unknown language, has been called the 

symbol grounding problem (Harnad, 1990). To investigate if enacting integer models supports 

students to ground the multiple and difficult meanings of “-” notation requires using these prior 

frameworks to notice if students express these meanings in formal mathematical language. Other 

ways of knowing, however, might be missed if relying on these frameworks alone. Integer 

instructional models encourage students to physically move in ways that treat arithmetic of 

numbers as though they exist in the world or are grounded. Thus, I draw on two categories of 

work in embodied cognition, physical movements and conceptual metaphor theory (CMT) 

(Glenberg, 2010). Research in cognitive science has demonstrated the impact humans’ physical 

body movements have on cognition (Antle, 2011; Barsalou, 2008; Glenberg & Kaschak, 2002; 

Day & Goldstone, 2011) and more recently for student learning in science or mathematics 

(Kontra, et al., 2015; Abrahamson & Trninic, 2015). Thus, how students physically move when 

enacting integer models warrants attention as a factor of learning. By the term model, I mean not 

only the tools, but also the physical and verbal processes used (due to affordances, constraints, 

and instructional choices) with those tools (Nurnberger-Haag, 2014).  

Integer model arithmetic in terms of embodied cognition. Two common instructional 

tools for integers use either chips (in which one color represents the quality of a positive quantity 

and a different color represents the quality of a negative quantity) or a number line (a line on 
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which tick marks indicate number locations) (van De Walle, Karp, & Bay-Williams, 2010). 

These tools are not actually numbers, so using such tools treats numbers in metaphorical ways 

that go beyond language (Kilhamn, 2011). Indeed, Lakoff and Nunez (2000) argued that the 

discipline of mathematics developed and treats arithmetic in metaphorical ways. In terms of 

CMT, arithmetic can be thought of using grounding metaphors: object collection metaphor (i.e., 

thinking of numbers as quantities of things that can be manipulated), measuring stick metaphor 

(i.e., lengths measured so numbers are though of as ends of lengths, not points), an object 

construction metaphor (in which numbers are thought of “as wholes made of up parts”), or a 

motion-along-a-path metaphor (in which numbers are points along a path or distances one 

moves along a path; Lakoff & Nunez, 2000, p. 60-65). I along with others (Kilhamn, 2011) use 

CMT to categorize the ways integer models encourage students to think about integer arithmetic. 

I use these ideas, however, as a macro-level way to categorize the patterns of potential ways 

students can move to enact these models and then specify differences between certain models 

that draw on the same conceptual metaphor. For example, a typical number line model 

encourages students to use a motion-along-a-path metaphor to ground meanings of negative or 

positive numbers or subtraction signs by facing a particular direction (backward or forward) and 

move in particular directions (right/left, up/down, or positive/negative direction) relative to a 

number line. In contrast, the walk-it-off number line model (Nurnberger-Haag, 2007), although it 

also uses a motion-along-a-path metaphor and treats numbers as locations the same as a typical 

number line model, it specifies students move differently. Students enact a walk-it-off model by 

determining whether to maintain direction (for positive numbers or addition signs) or move the 

opposite direction (for negative signs or subtraction signs). A chip model grounds meanings of 
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negative or positive numbers in terms of the quality or color of the chips as described earlier and 

grounds mathematical operations as physical movements of putting in or taking out these chips.  

Prior work in CMT has referred to grounding metaphors using nouns as though they 

come into existence (Chiu, 2001; Kilhamn, 2011; Lakoff & Nunez, 2000). Due to combining 

theoretical perspectives of conceptual metaphors with the idea that students are physically 

enacting these metaphors, I use the verb forms of the conceptual metaphors (Nurnberger-Haag, 

2014): collecting objects, moving on a path, measuring, and constructing objects. With a focus 

on either chip or number line models I will continue to focus on the two relevant metaphors of 

collecting objects and moving on a path. 

 Model meanings of opposite in terms of embodied cognition. Number line models and 

chip models may ground a Number Structure meaning for opposite numbers. With a chip model, 

students represent opposite numbers with the same quantity of opposite color chips. With the 

walk-it-off model, opposite numbers are points that are the same distance from zero on a number 

line, but on opposite sides of zero. In this sense, both models treat opposite numbers as things or 

structures, although they use different metaphors to describe and use those things. 

 The chip model, however, does not ground the sign “-” as an opposite operation. Neither 

does a traditional number line model in which students and in Thompson & Dreyfus (1988) walk 

backwards for negative numbers and left for subtraction. In contrast, the walk-it-off model 

(Nurnberger-Haag, 2007) was specifically designed to foster arithmetic meanings of “-“ as well 

as foster algebraic meanings that would be consistent with -X. A teacher designed this model 

with the intent to help students ground the meaning of “-“ as an opposite operation by turning the 

opposite direction. 
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Focus of Study 

 Prior research on “-“ symbol meanings has offered insights about meanings students can 

develop much younger than typical instruction (e.g., Bofferding, 2014; Gallardo & Romero, 

1999; Goldin & Shteingold, 2001) or long after integer arithmetic instruction in algebra courses 

(e.g., Vlassis, 2004, 2008). This study offers insights about students’ notational thinking 

immediately after integer arithmetic instruction at a slightly younger age (fifth and sixth grade) 

than typical instruction but before instructing students about the most difficult, algebraic 

opposite operation meaning of “-.” Moreover, the study experimentally investigated whether 

working with such notation in terms of the metaphors and motions related to a particular chip or 

number line model helped students ground the three meanings of “-.” The larger study is 

described in more detail in methods. The analysis reported here focused on what meanings of “-“ 

signs students expressed and if these meanings differed by integer model used during instruction. 

With a goal to uncover how to help all students better learn this difficult notation, the 

operationalized research questions follow:  

RQ1 What meanings of “-“ signs did low, medium, or high performing students express? 

Which of these meanings were productive in the situation? In what, if any ways, 

did these expressions differ by integer model experienced during instruction?  

RQ2 What solutions and reasoning did students convey when they were asked about the 

meaning of –(–numeral), notation they had not experienced during instruction? 

RQ3 Of interviewed students who offered a positive number as a possible answer to the 

task in RQ2, what reasoning did they express in making sense of this expression? 
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Method 

Overview of Larger Data Set, Lessons, and Measures 

The study was a pre-post-delayed post experimental design that compared student 

learning with either a particular chip model or a particular number line model (walk-it-off). I 

randomly assigned the eight classes of students in two rural school districts for whom the 

administrator and current teacher indicated they had not yet experienced integer arithmetic 

instruction (initial learners) were randomly assigned to learn with one model. Students at Site A 

were first semester sixth grade students and students at Site B were second semester fifth grade 

students. This article reports analysis of the post Symbol Interviews implemented to assess the 

meanings students expressed for the symbol “-.” In the larger study from which this data was 

analyzed, participating students also took two written tests before instruction (pretest), the day 

after instruction (posttest), and five weeks after instruction (delayed posttest). These tests 

consisted of a 46-item skill-based Integer Arithmetic Test (IAT) and a seven-item test that asked 

students to explain and draw the meaning of problems Explain & Draw Test (EDT). Students 

also took a one-minute timed fact test to serve as a proxy for prior operational achievement with 

whole numbers. Twelve of these students also participated in extended task-based interviews 

about integer arithmetic, to be reported elsewhere. 

Specifics About Lessons Related to the Symbol Meanings 

As the researcher-teacher I instructed all the lessons for each model to ensure parallel 

instruction and the teacher remained in the classroom for student safety. During each lesson 

students worked on tasks and played games in assigned groups and had the opportunity to 

participate in whole-class discussions. Each class experienced parallel instruction with the same 

tasks and activities, differing only by the integer model used (the physical representations, the 
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language about how to use those representations and corresponding model-movements). The 

study instruction consisted of eight lessons of about fifty-minutes focused on ordering numbers, 

opposite numbers, and integer arithmetic with all four primary operations (addition, subtraction, 

multiplication, and division). Table 15 provides examples of the instructed operations of 

subtraction and multiplication with each model. Although students did not explore tasks of 

opposite operations during the lessons, processes students could use with each integer model to 

use “-“ as an opposite operation are also described in Table 15 since such tasks were posed to 

students in the interviews. During each lesson I helped students explicitly attend to the meanings 

of “-“ and “+” symbols based in the conceptual metaphor of each model, which are described in 

Table 16 and discussed in more detail in the subsequent sections. 

 “-“ symbol meanings. Instructional approaches focused on grounding the meaning of 

the “-“ symbols in ways that fit the conceptual metaphors enacted with the models. Students 

explored ideas of opposite numbers during the first and second lessons using chips or number 

lines and words (i.e. “-4 is the opposite of 4” and “8 is the opposite of -8”), but opposite operator 

notation was not taught. I chose not to teach this notation in order to avoid what “a template-

driven use” in which students could memorize a limited application of the notation without 

having a reason for the meanings (Sfard, 2000; Vlassis, 2004, p.482). 

Chip model meanings. With the chip model, the “-” when positioned as a negative sign 

signaled what kind of number positive or negative, which in terms of the model means what kind 

of chip to use for addition and subtraction. The “-“ as a subtraction operation signified to take 

away or take out and “+” to put in. With multiplication and division operations, the students 

began with a value of zero, which is also the mathematical starting point for whole number 

products and quotients with objects although students might not have been aware. One of the “-“ 



 75 

symbols signified the same meaning as for addition and subtraction, that is- what kind of and 

how many chip and the other “-” symbol signified to take out “-“ or put in “+.”  

Walk-it-off model meanings. The Walk-it-off model for addition and subtraction “-“ or 

“+” signs of the first number meant which number or which point on a number line to begin 

calculations. The same signs as part of the second numeral signified whether to turn the opposite 

direction “-“ or remain facing the same direction “+” as did the operation of subtraction “-“ or 

addition “+.” For multiplication and division, just as the chip model begins with a zero value, so 

did the walk-it-off model. The walk-it-off model, however, represents zero as a position or point 

on the number line. Then each “-“ signified to turn the opposite direction, whereas a “+” sign 

signified to stay facing the same direction, which was consistent with the meanings used for 

addition and subtraction. 

Data Sources & Analysis of This Report 

 Interview purpose, procedures, and tasks. Three to five-minute post Symbol 

Interviews were conducted one or more days after students took the written assessments. The 

Symbol Interview was designed to provide opportunities to elicit multiple meanings a student 

might attribute to the “-“ symbols and negative numbers when viewed as part of arithmetic tasks. 

The purpose was to uncover which of the three meanings of “-“ from the literature students used 

and if they offered different meanings for the same symbol. With the exception of the transfer 

task -(-56), students were not asked to solve the operation task shown, because written tests and 

the full interview protocol analyzed elsewhere assessed this operational understanding.  

To elicit students’ meanings for “-,” I adapted a whole number place value task used to 

elicit students’ meanings for written digits in particular positions of a numeral (Kamii & Joseph, 

1989). The Symbol Interview consisted of the broad categories of tasks: Orally reading the 
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mathematical expression, explaining the meaning of numerals or “-“ signs the interviewer circled 

in front of the student, and calculating the transfer task of -(-56). The primary questions asked 

were: What does this that I circled mean? And after the student responded, the interviewer asked 

“Is there anything else that it could mean?” until the student indicated all his or her ideas had 

been shared. See Appendix C for the interview protocol. To avoid constraining students’ 

movements, both the interviewer and the student stood during the interview as is typical of 

gesture-based research (Gerofsky, 2010). With this intention for students to be free to move or 

gesture, the interviewer held cards that s/he showed students, but students did not hold anything 

or write. 

Interviewers. The author (a female with about twenty years mathematics teaching 

experience who taught all of the study lessons), a male graduate student, and a female 

prospective teacher conducted the interviews. All interviewers were the same race as most of the 

study population. 

Interview participants. According to the state website, 45% of the students I instructed 

had free or reduced lunch and were primarily European American. This analysis answers 

questions related to student’s current thinking post-instruction rather than changes in thinking, so 

here I report the post interview results. Post symbol interview videos were available to analyze 

for 91 students. Interviews were analyzed using three approaches for each of the research 

questions. For the first analysis addressing RQ1, I selected 12 students as matched pairs between 

conditions. RQ2 analyzed all 91 available post symbol interview videos. RQ3 focused on the 

subset of post symbol interviews in which 20 students offered positive solutions to the –(-56) 

calculation task. 
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RQ1 matched pairs. Twelve post instruction student interviews were selected by posttest 

IAT low, medium, high with the additional consideration due to the experimental study design 

that between each integer model condition matched pairs were selected to ensure fair 

comparisons. Like Vlassis’ study (2008) and Chiu (2001), a total of 12 students (6 students from 

each condition) were selected for symbol meaning analysis using stratified matched pair 

sampling in order to provide fair comparisons and ensure inclusion of students who began as 

close to the same beginning characteristics as measured by two pre-IAT and fact test and ended 

with similar integer arithmetic achievement. I was informed by Vlassis’ (2008) stratified 

selection process of low, medium, and high categories. Based on students’ posttest IAT scores, I 

used criteria of low (below 60%), medium (60% to 80%), and high achieving (80% or above). 

Two pairs of students from each strata, one who learned with chips and one learned with the 

walk-it-off method, were selected as matched profiles of students. I looked for students with 

identical pretest IAT scores one in each condition and then identical (or as close as possible) 

Timed Fact Test scores. Table 17 reports the scores of the matched pair students. Each matched 

pair had either identical preIAT scores or differed by 1 point. Note that the four selected pairs in 

the high and low strata differed on the Timed fact test scores by 0 to 2 points. The moderate 

strata pairs differed by 4 points and 6 respectively with the student who was assigned to the chip 

model in both cases having the higher Timed Fact Test score. 

 Symbol interview videos. Answers offered from the 91 symbol interview videos were 

analyzed to answer the questions specific to calculating a problem that uses opposite operation 

notation -(-56). The students who included a positive answer as a possible way to interpret -(-56) 

were selected for qualitative analysis of their responses including the physical motions and oral 

language used to express their thoughts to determine what reasoning they used to make sense of 
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this unfamiliar notation.  

Analysis  

 The analysis consisted of identifying students’ specific language or physical motion 

behaviors that indicated symbol meanings. Analysis of students’ physical motions can reveal 

spatial understanding not expressed in words (Church & Goldin-Meadow, 1986; Roth, 2001). 

These were interpreted in terms of the two frameworks: formal language and conceptual 

metaphor. The formal language coding focused on ways Vlassis (2008) framework interpreted 

sign meanings and the conceptual metaphor coding I developed in light of conceptual metaphor 

theory (Lakoff & Nunez, 2000). 

Formal language coding. Two of the interviewers, a rater who coded the opposite 

signifier EDT item and I, created a list of potential things students say when referring to these 

types of signs and numbers based on having conducted the interviews. These anticipated codes 

were used to more efficiently recognize and record typical student responses, but any response 

students offered were recorded. Some of the typical responses included all combinations of 

synonyms used for numerals, negative signs, subtraction signs, opposite operation signs (e.g., 

“negative two take away negative four” “negative two minus negative four” etc). I coded all 12 

of the videos with partial blindness to the assigned condition given that the instruction occurred 

one year prior to coding, but with some possibility of remembering who learned in what way. In 

order to prevent potential interviewer bias of knowing the strata, scores, or integer model of 

these matched pair students, videos were sequenced for coding using a random number 

generator. The other interviewer, who was blind to students’ integer model and study hypotheses, 

coded 15% of the 12 videos for reliability, using a random generation tool to select one student 

from each condition. 
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Conceptual metaphor coding. The conceptual metaphor coding scheme was developed 

first by anticipating potential gestures, drawings, and language that might reveal each metaphor. 

This coding scheme was then tested and further expanded by interviewing mathematics 

education graduate students to confirm these anticipated codes and uncover additional behaviors 

integer arithmetic experts might use. The coding scheme was further revised and clarified on 

written EDT test items to be reported elsewhere. A prospective teacher and the author developed 

interrater agreement on pilot data of the written tests before coding full interviews with interrater 

agreement above 90% (to be reported in future articles). This prospective teacher rater who was 

blind to student condition as well as the study hypotheses then analyzed the Matched Pair 

Symbol Interview students reported here and the author coded for interrater agreement, also 

above 90%.  

From the documented behaviors relevant to this analysis I interpreted whether students 

expressed a particular conceptual metaphor: Collecting Objects things (if referred to things, 

objects, or groups), Moving on a Path Points (if referred to numbers as points or locations on a 

path) or Path (moving on a path including distances moved), measuring if students referred to 

static distances as intervals (which none of the matched pair students did, so this will not be 

discussed further here). The rater noted presences (1) or absence (0) of each behavior for each 

interview task. In order to capture language and physical movement relationships between 

students’ expressions of metaphors, language behaviors and physical motions/gestures were 

separately coded (see Appendix B). Language is inherently sequential, so if multiple metaphors 

were expressed in language, each of these were noted separately. This was also the case if 

students’ different physical motions communicated different conceptual metaphors in sequence 

(e.g., first a holding gesture immediately followed by pointing to show movement on a path). If, 
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however, students moved in ways that both held objects and moved those objects along a path, 

for example, this was deemed an Integrated Gesture in which language and physical motions of 

any metaphor noticed were coded and described as integrated. 

Results 

 I first discuss the meanings of “-” the 12 matched pair students expressed. The chip 

model and the walk-it-off model both supported students of all achievement strata to develop 

similar formal mathematical language meanings of “-.” The only differences found between 

integer models or achievement strata related to whether and how students expressed conceptual 

metaphor-based meanings of “-.” I then report if and how 91 students treated –(N) as an operable 

expression, where N was a negative number, even though this was new notation that students had 

not experienced during the unit. Again, the primary differences noticed between students who 

calculated a positive solution to this expression were due to conceptual metaphors expressed. 

Specifically, students used the operational aspect of the moving-on-a-path metaphor consistent 

with the walk-it-off model to reason that the task had a positive solution. 

RQ1 Meanings Expressed for “-”  

 This section describes the 12 matched pair students’ symbol interview task responses 

about negative numerals and “-” symbols in subtraction, multiplication, and in unary opposite 

operation expressions [i.e., -(-56)]. Student responses to “What does this that I circled mean?” 

when interviewers circled numerals, negative signs, or subtraction signs are discussed together, 

because these tasks were designed to elicit meanings for the two basic symbol meanings students 

experienced during instruction: Number Structure and Subtraction Operation. Then student 

responses about Opposite Operation meanings are discussed. These meaning categories are 

displayed in the order in which students from elementary school to algebra develop them in the 
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first column of Table 18. Going down the first column, the first meaning students encounter in 

school for “-“ is a subtraction operation with whole numbers, then negative signs indicating 

negative numbers, and then opposite meanings. The table displays the number of students who 

offered each of these meaning for circled symbols organized by their IAT Posttest level (high, 

moderate, or low) and integer model used during instruction (chip or walk-it-off). For example, 

when the interviewer circled the subtraction sign in the task  -2 - -4, the first data row shows that 

two students with high posttest performance who learned with chips and one who learned with 

the walk-it-off model stated the meaning of “-” was “subtract” or “take away.” Shaded cells 

indicate a meaning is invalid in a particular context (i.e., not a desirable response). Zero to two 

students could populate each cell, because as described in methods, I selected two students from 

each condition at each achievement strata for this analysis. Zero students in an unshaded cell 

indicates no students offered that valid potential meaning. If no students provided an invalid 

meaning for the context, the cell is shaded, but zeros were omitted for easier reading of the table. 

For example, the subtraction meaning cells are grayed in the columns for which negative signs 

were circled because we do not want students to confuse a negative sign in this context with a 

subtraction sign and no students did, so these are blank. In contrast, it would be valid when a 

negative sign is circled for a student to indicate the number was the opposite of a positive 

number, so these cells are not shaded and populated with 0, except the 1 because only one high-

level performance student who learned with chips referred to each negative number as the 

opposite of its positive (e.g., -4 is the opposite of 4).  

 Within these targeted meanings, students’ formal language responses attended to in prior 

research are discussed first and then I describe student expressions of conceptual metaphors 

(through physical movements and language). Even if students learned with chips during study 
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instruction, most of the matched pair students who expressed a conceptual metaphor expressed a 

moving-on-a-path metaphor. 

 Basic “-” meanings: Number structure and subtraction operation. Each of the 12 

matched pair students successfully distinguished “-“ signs as part of the Number Structure from a 

Subtraction Operation where appropriate based on the position within subtraction or 

multiplication expressions and the inner “-“ sign of the –(-56) task. By comparing the rows of 

student strata within each task column in Table 18, note the similarity of students’ formal 

language responses regardless of whether their total IAT achievement status was low, moderate, 

or high. Looking down the rows of the table to compare Chip and walk columns of each task 

type reveal little student difference related to integer model experienced during instruction. Some 

differences for conceptual metaphor expression are noticeable in the table, but the following 

qualitative explanations offer greater insights. 

Formal language. Not only did all the students distinguish negative numerals from 

subtraction signs referring to them as “negative numbers” or by name “negative two”, but they 

also expressed understanding that the “-” sign was part of negative numerals and not a numeral 

itself. This was the case when asked about negative numeral notation or negative signs on all the 

subtraction and also multiplication operation tasks (see Numeral and Negative Sign columns in 

Table 18). Note in the table only one person referred to a negative number as the opposite of a 

particular number. She referred to these as numbers, however, not in terms of an operation with 

numbers. For example, although –4 can be described with the word “opposite” as the “opposite 

of four,” because the student referred to this as a formal number or a location on a number line, 

this revealed a Number Structure meaning rather than something to do, or an operational 

meaning.  
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Conceptual metaphor based communication. As discussed in the methods, all students 

experienced integer models that promoted ways of thinking about negative number arithmetic 

using a conceptual metaphor. During the symbol interviews when asked to read mathematical 

expressions out loud and explain the meaning of circled numerals and “-“ signs, none of the low 

performing students expressed a conceptual metaphor. Half of the 12 matched pair students 

expressed at least one of the coded conceptual metaphors (collecting objects, moving on a path, 

and measuring) and half of the students expressed none of these.  

Some students who learned with chips did express a moving-on-a-path metaphor, but 

none of the students who learned with the walk-it-off model expressed a collecting objects 

metaphor. One chip-assigned and three walk-it-off-assigned students exclusively expressed a 

moving-on-a-path metaphor and only two chip-assigned students exclusively expressed 

collecting objects. One student who learned with chips expressed both a collecting objects and 

moving-on-a-path metaphor separately depending on the contexts and also as an integrated 

conception (moving objects down a path).  

Collecting objects. Students’ verbal explanations and physical motions on these tasks 

rarely communicated meanings of numerals that indicated conceptions of negative numbers as 

objects or things. One student who learned with chips, Christie was the only student to explain 

the subtraction sign as taking away things, which she did both in words and with her gestures. 

“[Right hand holding gesture] To subtract, which means you would take away [while speaking 

right held gesture moves away from her body] from it.” When asked for another meaning she 

gestured more strongly and explicitly with both hands to show the boundaries of a quantity as 

she said “take like what you have from that number and then like [left hand drops and right hand 

pushes the objects forward away from her body as she says] put aside sometimes” 
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Moving on a path. Students expressed moving-on-a-path metaphor based meanings to 

distinguish between a “-” symbol that is just a part of a negative numeral and a negative number. 

For example, two students who learned with chips and one student who learned with the walk-it-

off model referred to the circled negative numerals as points a particular distance below zero 

(i.e., when -2 was circled, they said “two below zero”). These three students understood that the 

sign indicated a general location of some point or number on a number line, but in order to know 

the exact location, one needed the other part of the number as well. When the interviewer circled 

only the “-” symbol of -5, for example, the students only said that the symbol meant “below 

zero.” They consistently expressed this “number as location” aspect of a moving-on-a-path 

metaphor for all “-” signs that were part of the Number Structure including -56 in the expression 

–(-56).  

In contrast, Wallace understood that the first number in a subtraction expression was a 

point on a number line, and accurately referred to the second number after the subtraction sign as 

an operation or something to do: “that’s how far you walk…you turn back around because of the 

negative sign and then you walk four.” He did not, however, offer a moving-on-a-path meaning 

for the numbers in multiplication expressions. For the subtraction sign he did express a moving-

on-a-path operational meaning that “you turn ‘cause of the subtraction sign.” Another student, 

Will consistently expressed an operational meaning of “-” both when this symbol was part of a 

numeral and when positioned as a subtraction sign: “turn the opposite direction.” 

 Integrated conceptions. None of the students who learned with the walk-it-off model 

integrated a collecting objects metaphor with the moving-on-a-path metaphor meanings 

promoted during instruction. Just one of the students who learned with chips integrated a 

collecting objects metaphor into her conceptions of negative numbers due to instruction with 
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chips. Christie used gestures but not language that indicated a conception that the “-“ sign of 

negative numbers indicated things as she cupped her hand in open ways to hold these things. 

Each time she did this, however, her gestures integrated holding with moving along a path or 

turning this held quantity upside down to go “below zero” as she described in language.  

 Algebraic “-” meaning: Opposite operation. As described in the methods, the –(-56) 

prompts were used to probe students’ ability to interpret meaning of “-” as an operation other 

than subtraction when it was positioned next to a negative number. Regardless of integer model 

used during instruction, students used formal language in similar ways to read the expression out 

loud and describe the outer “-” sign as negative or part of the Number Structure. Using a lens of 

conceptual metaphor theory revealed some differences due to integer model when students 

communicated the meaning of the outer “-”, but not when students simply read the expressions 

out loud. 

Formal language. When asked to read aloud the expression –(-56), most students said: 

“negative, negative fifty-six.” None of the students on this transfer task used the phrase “opposite 

of.” This reading of the expression was consistent with the meaning they offered when the 

interviewer circled the outer “-” and asked “What does this that I circled mean?” Although all 

students hesitated, sensing that the outer “-“ should be different from the inner “-“ when 

encouraged to offer some meaning, the only meaning they could attribute was the same meaning 

as the inner “-.” As shown in Table 18, 11 of the 12 students said the outer “-“ was a “negative” 

implicitly meaning a negative sign or explicitly stating “negative sign.” Only one student talked 

about “-” as a negative number not a sign. Thus, 11 of 12 students distinguished the “-” sign 

from a negative numeral even on this transfer task. Although one student Caleb did refer to the 

outer “-“ as subtraction, the first meaning he expressed was a negative sign. This student, 
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however, was the only student to provide inaccurate additional ways to read mathematical 

expressions (e.g., claiming that -2 - -4 could also be read as “two minus four”).  

Conceptual metaphor based communication.  

Collecting objects. As previously described, when asked about the meaning of the inner 

“-” sign student Christie expressed an integrated gesture; however, for the outer sign she still 

gestured as if holding the quantity -56, but did not move it along a number line. Her gesture and 

her language indicated she did not know what to do with the quantity, because as she said, [that 

outer sign] “it’s the symbol for a negative number and it’s by itself right now.” 

Moving on a path. When asked about the outer sign “-” students Chloe and Warren said it 

meant “below zero.” Notice below zero represents a position, which is a Number Structure 

meaning, not an operation needed for this outer “-“ symbol. Will, however, offered the same 

additional operational meaning he did for all “-“ symbols in subtraction, multiplication, and –(-

56) tasks: “It means turn the opposite direction.” 

RQ2: Do Students Treat –(N) as An Operable Expression, Where N Is a Negative Number?  

To address the second research question about how students interpret a notational 

situation of –(N), where N is a negative number, first I report all student solutions for the –(-56) 

calculation interview task, “If you had to calculate an answer to this problem, what do you think 

the answer might be?” (n=91). I then address the third research question by analyzing in more 

detail all the students who offered reasoning to support a positive solution on this task (n=20). 

This unary calculation task was unfamiliar to students, because except the case when students 

did subtraction problems (i.e., binary operations), the unit did not provide experience with the 

notation of two “-“ signs next to each other. Thus, most students initially responded to the 

interview prompt with uncertainty or “I don’t know.” When the interviewer encouraged students, 
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however, with a prompt such as “It’s okay if you don’t know, but what do you think it might 

be?” 82 students provided at least one potential answer or reasoning (even if they did not 

explicitly state a numerical solution). The solutions these students offered included negative 

solutions (-157, -112, -59, -56, -54), zero, and positive solutions (1, 23, 56, 58, 112, 250, and 

whatever 56 × 56 or -56 × -56 would be) as well as statements such as “greater than -56,” it 

would be “negative” or “positive.” In order of frequency, the four most common solutions 

offered were “negative fifty-six” (n=36), “fifty-six” (n=20), “zero” (n= 13-14) and “negative one 

hundred twelve” (n= 6). 

Students answered -56 most often, because the students thought any “-” that was not an 

operation of subtraction indicated a negative number. Students explained that there was no 

operation to perform, so what was written there was negative fifty-six, so in their minds it had to 

remain negative fifty-six. Although they said words like “stay negative fifty-six [emphasis 

added],” as though the numeral would not be changed, when asked “Would it be written the 

same as it is now?” students said they would rewrite the solution without the additional negative 

sign. Students determined zero to be a solution in various ways that usually involved treating the 

outer “-“ sign as subtraction by imagining a number that was not written on the task card, such as 

56 or 0 (i.e., 56 – (-56). Students commonly provided four of these answers, because they 

interpreted the two negative signs to signify to do something two times. The most common of 

these were to multiply by the number 2 or to multiply either 56 or -56 twice (i.e., 56 × 56, -56 × -

56, -112 or 112). The solutions such as negative fifty-nine or negative fifty-four seemed to have 

simply been misstatements when orally reading negative fifty-six. Some students provided 

solutions such as “fifty-six” but the reasoning was not explicit whether they knew the solution 

was positive. If students used multiplicative reasoning to explain such ideas, I used their written 
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test solutions described in detail in other manuscripts (see Article One; specifically, their written 

skill-based negative number multiplication and division scores on the IAT and an EDT item that 

asked them to explain the solution to the product of two negative numbers) to interpret if 

students likely intended their solution to be positive. These students were included in the next 

analysis of positive solutions. The students for whom I could not confirm that they intended a 

positive solution were excluded (4 students who learned with chips and 4 who learned with the 

walk-it-off model). 

RQ3 Symbol Interview Students Who Posited Positive Solutions  

 I share the explanations that supported the accurate solution of 56 or other positive 

answers, because even if inaccurate, this indicates a crucial conceptual shift. That is, students 

were able to overcome the idea that when no binary operations are present, a “-” can only 

indicate a negative number (Number Structure). Table 19 displays the number of students who 

learned with each integer model who used each type of reasoning. As the totals show, twice as 

many students who learned with the walk-it-off than chip model determined a positive solution. 

Students from both conditions used generalized rules or ideas of turning the opposite direction on 

a number line to make sense of the -(-56) as equal to 56 or some other positive number. 

Regardless of whether students grounded the meaning in a moving on a path metaphor or used a 

rule, most of these students used multiplication to make sense of –(-56) as an operable 

expression with a positive solution. It seemed to be students’ experiences with parenthetical 

notation as one way to write multiplication in prior mathematical experiences and during the 

study instruction that inspired them to read this notation using multiplication. Notice in the table 

that both chips and walk students used generalized rules and none of the students from either 

integer model used a collecting objects metaphor. Moreover, only students who learned with the 



 89 

walk-it-off model used the operational aspect of the moving-on-a-path metaphor in ways that led 

to a positive solution. More students who answered 56 used the meaning of “-” as something to 

do, specifically to turn the opposite direction on a number line, than a generalized rule (see Table 

19). 

 “-” Can only have meaning in relation to another. Ten students offered explanations to 

justify that -(-56) would be positive by using knowledge about the product of two negative 

numbers or stated rules about notational symbols interacting (i.e., relationship of two negative 

signs situated next to each other). Table 19 provides examples of these reasoning categories of 

Generalized Solutions, Generalized Notation, and Notational Mnemonic. Note that students who 

learned with either model expressed Generalized Solutions, which students extrapolated from 

having calculated and participated in generalizing activities about multiplication problems during 

instruction. Evidence suggested that the one student who used a trick for remembering that two 

sequential negative signs should become positive (notational mnemonic), had been taught this 

prior to the study instruction.  

Only one of these ten students who used generalized language to reason about positive 

solutions communicated conceptual metaphors about these ideas in words or physical 

movements. This student had learned with chips, but her gestures conveyed a meaning of the 

opposites as locations on a number line (Number Structure). Most students kept their hands in a 

resting position during the entire task and a few students pointed to signs on the task card, but 

did not communicate spatial meanings with their gestures. In spite of having learned to multiply 

integers with one of two conceptual metaphor-based models, even those students who calculated 

the answer of –(-56) as a multiplication problem of two negative numbers (Generalized Solutions 

reasoning) did not express conceptual metaphors in words or through movement. 
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 “-” Has its own meaning moving on a path: Turning the opposite direction. As Table 

19 indicated, 10 students used a meaning of the “-“ sign grounded on a number line as “turning” 

or “opposite” to determine a positive solution, seven of whom determined the correct answer 56. 

Eight of these students who learned with the walk-it-off model used turning the opposite 

direction to multiply numbers in three different ways: turning to multiply, turning to multiply -1 

× -56, and turning to multiply by two or twice. Examples of each reasoning type are shared next.  

Turning to multiply to get to 56. Table 20 and 21 display two students’ responses who 

treated –(-56) as the multiplication of two numbers by turning the opposite direction for each “-.” 

Table 20 shows Frank who while determining the solution did not express a conceptual 

metaphor, but then while explaining how he reasoned, gestured in ways consistent with a 

moving-on-a-path metaphor. Although all of the students’ language-based responses in Table 20 

and 21 used the term “opposite direction” emphasized during instruction in order to label the 

movements with the canonical terms to support development of taking an opposite, two other 

students simply said “turn around.” Will first figured out the solution by physically turning his 

whole body and talking under his breath, before offering the formal response in Table 21 in 

which he again moved his entire body. Note that all of the students who used these reasoning 

approaches were able to refer to some numbers as points on a number line (Number Structure 

understanding), yet also treat “-“ notation as an operation (Opposite Operation). 

Turning to multiply -1 × -56. In several of the cases just described, students viewed the 

parentheses as a multiplication operation to which they could then apply their knowledge of “-” 

meanings for multiplication operations. Winnie extended this idea to the lack of a numeral before 

the parentheses but a “-“ symbol as potentially being an omission of the number -1. Table 22 

displays an example of this student who determined -1 × -56 would be positive (affect and 
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posture were not noteworthy to include in the table). Winnie thought of this approach to imagine 

a negative one in front of a mathematical expression on her own. This approach is a common 

instructional strategy algebra teachers use to help students and a valuable mathematical idea in 

order for -1 to be a number that distributes across an expression.  

Turning to operate twice. Three students made sense of the two negative signs as 

indicating both to turn the opposite direction and to perform some other operation twice, either 

multiplying twice or adding twice (multiply by 2). The conversation between the interviewer and 

Wayne illustrates why students might consider the notation to indicate negative fifty-six times 

negative fifty-six. This student only moved his hands from a position resting on his hip or collar 

at one point and maintained similar affect throughout the task. 

Wayne: Uhmm, probably the answer for negative fifty-six times negative fifty-six.  
 
I/A: “Ok and why did you think that it would possibly be negative fifty-six times negat 
(student starts to respond)” 
 
Wayne: - cause in times parentheses [Index finger moves in a way that seems to write 
parentheses in the air] might mean times [pause] in math  
 
I/A: “But why, I only see one negative fifty-six there so why did you think that it might 
be negative fifty-six times negative fifty-six?” 
 
Wayne: might be a shorter way to just do that if you write just one 
 
I/A: “Ok, so you're thinking that this extra symbol here might just be a short-cut for 
saying do it times itself but don't write it all out?” 
 
Wayne: mmhhmm [meaning yes] 

Although Wayne did not explicitly state the solution to -56 × -56 would be positive, I interpreted 

it as a positive solution, based on evidence from his written IAT and EDT tests, which also 

reveals that his conception of integer arithmetic used an operational meaning for “-“: (a) he 
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accurately answered all multiplication and division skill problems (b) he explained why the 

product of two negatives is positive because each “-“ means to turn the opposite direction (c) and 

he accurately explained that –(negative number) would be a positive number because you would 

turn the opposite direction twice. 

Although in the oral interview Wayne only implied that a “-“ means turn the opposite 

direction, another student, Rick explicitly stated that the negative signs have an operational 

meaning on their own: “the negatives mean they tell you to turn around…the other way 

[emphasis added].” Table 23 shows why Rick thought the solution could be 112 as an example 

of multiplying by two as well as turning the opposite direction twice to obtain a positive solution. 

The student’s choice of the phrase “either way” to describe how one should move on a number 

line to represent “-” illustrates a crucial difference in the way the walk-it-off model promotes 

moving on a number line compared to other number line models that could be used. Rick was 

aware that “-” does not tell you whether to move in a particular direction on the number line, but 

whether to move in the opposite direction from which he is facing, so that same sign could tell 

him to go in “either” direction depending on the context. Thus, this provides evidence that after 

using the walk-it-off model to develop a meaning for “-“ his conception of operations with 

integers was not restricted to thinking of positive numbers moving in a positive direction or 

negative numbers moving in a negative direction. 

Collecting objects. Just as a student who used the walk-it-off model conceived of –(-56) 

as -1 × -56, a student using chips or any other cancellation model could have thought of this 

expression this way. To model this process a student would begin with zero and then take out 

one group of 56 negatives. This process is the same as conceiving of “-“ as 0-(-56), which could 

also yield an accurate solution. Although –(-56) could be conceived of in these ways, none of the 
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interviewed students used these collecting objects based ideas to determine a positive solution.  

Discussion: Physical Movements Ground Notational Meanings  

For students with low, moderate, and high overall integer arithmetic achievement, this 

study provided evidence that using physical experiences to ground meanings of “-” while 

learning integer arithmetic with either instructional model supported students’ symbol sense with 

regard to the basic meanings of “-.” This lends support to Vlassis’ (2008) claim that students 

need a “concrete meaning” for this notation and potential solutions with regard to how ground 

the symbols (Harnad, 1990) with respect to integer notation. She argued that algebra students had 

difficulty with the meaning of “-,” because they learned about negative numbers on a number 

line, but learned integer arithmetic with an abstract rule-based approach. With respect to the most 

difficult meaning of “-,” the algebraic opposite operation, however, one model did provide better 

support. In unfamiliar notational contexts, more students used the conceptual metaphor and 

physical motions consistent with the walk-it-off model to treat “-“ as an operation other than 

subtraction. 

Number Structure: Negative Numbers are Valid 

It was noteworthy that each of the conceptual metaphor based models used in this study 

supported students’ acceptance of negative numbers as valid numbers. Moreover, this was the 

case for students of all achievement strata. This contrasts with reports of students who often did 

not accept negative numbers as valid numbers without being the result of a subtraction operation, 

even though these prior reports were the same age and slightly older than the students in the 

study reported here (Gallardo, 2002).  
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Number Structure and Subtraction Operation Meanings of “-” 

Compared to prior research with even older students (Gallardo, 2002, Vlassis, 2008), 

students in the current study expressed better understanding for the basic meanings of the sign “-

” (Subtraction Operation and Number Structure). Whereas prior research found students 

confused negative signs for subtraction signs, particularly within multiplication contexts (Ryan 

& Williams, 2007; Vlassis, 2008), this study provided evidence that grounding “-” for the 

primary operations with an appropriate model supported students in avoiding these errors. Both 

the chip model used in this study and the walk-it-off model helped students infer a subtraction 

operation meaning for “-” only in its proper location in an expression. This was the case even 

though the study unit duration was short and regardless of whether students used a model that 

drew on a collecting objects or moving on a path metaphor. Thus, it seems grounding the 

meanings of the notation in some appropriate conceptual metaphor supported student 

development of Number Structure and Subtraction Operation meanings for “-“. 

Opposite Operation Meanings 

Although the different integer models students used in this study did not result in 

differential student understanding for the basic meanings of “-,” the walk-it-off model did better 

support more students to conceive of “-“ as an operation other than subtraction. Algebra students 

have been critiqued for not conceiving of the “-” as an opposite operation when that meaning is 

needed (Vlassis, 2008). Yet, the results of this study demonstrated that two aspects of knowledge 

could support initial learners to successfully expand their understanding of “-” from Number 

Structure meaning toward an opposite operation meaning: thinking about integer multiplication 

and a physical grounding of the meaning of “-” as turning the opposite direction on a number 

line. The students in the current study, however, were younger and had not been taught this 



 95 

notational meaning. In spite of these demographic differences that might predict students in this 

study would have even more difficulty, 20 students (about one-fifth of the interviewed students) 

made sense of this unfamiliar notation. Almost three-quarters of these students learned with the 

walk-it-off model. Moreover, it was the walk-it-off model that offered productive ways for ten 

students to ground “-” as meaning to do something, or operate, specifically to turn the opposite 

direction on a number line to represent an Opposite Operation, rather than a Number Structure. It 

was this operational aspect of the moving-on-a-path metaphor unique to the walk-it-off model 

that supported student reasoning. Again, this approach to moving on a number line differs from 

the typical number line models used, but I leave additional discussion for future research that 

compares typical number line models with a walk-it-off model. 

When students from either the chip or walk-it-off model thought of “-” as a point or 

location on a number line, this structural meaning of number seemed to inhibit their ability to 

conceive of the outer “-” as an operation to calculate –(-56). This informs us of two implications. 

First students in upper elementary or middle school may already bring to their explorations of 

negative numbers a grounded structural conception of numbers as locations on a number line 

(moving on a path metaphor) that they will likely continue to use even if they learn with chips. 

Second, whether this meaning is one of the meanings ignored with a chip model or reinforced 

with a number line model (and thus a potential limitation of a number line model), students may 

use this negative numbers as points below zero meaning of “-” to their tasks in ways that 

reinforce a Structure of a Number meaning in an inhibitive way.  

  “Opposite of” notation was intentionally left as transfer assessment tasks to 

investigate if one model would better help students infer an operational meaning for the notation 

without explicit instruction. Through the data I came to recognize that the instructional focus on 
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opposites as numbers in both models (as points in the walk-it-off model and as opposite color 

chips in the chip model) may have reinforced some students’ rigid adherence to a Number 

Structure meaning that may have inhibited thinking about “-” as an operation. The sequence and 

standard as written in the Common Core Standards for Mathematics (National Governors 

Association Center for Best Practices, Council of Chief State School Officers, 2010) might serve 

this same inhibitory conception, because this document recommends instruction of –(-x) notation 

as part of a focus on the Number Structures in sixth grade, a year before students operate on 

negative numbers. In spite of the potential issue I identified with the study instruction, the 

experiences students had with the walk-it-off model supported more students in conceiving of 

the “-” as something to do, which is the basis of an operation. Future research could investigate 

the effect of using these models during lesson activities in which students compare both 

meanings of the signs—opposite number (Number Structure meaning) and also “-” as something 

to do (Opposite Operation). 

Symbol Sense 

The findings that students could offer multiple meanings for a “-“ sign and the 

interpretations of possible meanings for –(-56) notation also demonstrated positive findings 

about some students’ broader understanding of mathematical symbolization. As Vlassis (2008) 

found, some students believed a “-” sign in a particular context could only have one meaning. 

Yet, contrary to Vlassis (2008), many matched pair students offered multiple meanings for a “-” 

sign. This included multiple meanings for the exact same symbol in an expression (e.g., “-” 

meaning a negative sign indicating a negative number and to turn the opposite direction). 

The students who interpreted the expression –(-56) as -56 × 2, -56 × -56, or -1 × -56 also 

revealed their broader sense of how the discipline uses notation to efficiently communicate 
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mathematical ideas. Although the meanings of -56 × 2, -56 × -56 students offered were not the 

canonical ways people invented to notate multiplying by two or exponentiation, these students’ 

ideas that a second “-“ meant to multiply -56 by itself or add it a second time are reasonable 

conventions, which the people who developed this notation could have chosen. The historical 

mathematicians who developed the arbitrary notation that current people accept, could have 

chosen the same notation these fifth and sixth grade students reasonably interpreted. For 

example, although the canonical disciplinary notation for -56 × -56 is (-56)2, the fifth grade 

student 3000 had not yet learned about exponential notation, but like mathematicians in history 

offered that “it might just be faster to write it [-56] once.” Some students’ ideas that two signs 

means operate two times are actually insightful. The canonical mathematical interpretation could 

mean do the same operation twice. Although the expression could be interpreted in the most 

common way as a single operation to take the opposite of the structural signifier -56, it can also 

be thought of as two opposite operations (take the opposite of 56 and then take the opposite 

again).  

Limitations and Future Research 

 In Article One that included delayed post written tests, I argued for the need for longer-

term studies. Thus, I must acknowledge that, in spite of logistical constraints, a lack of delayed 

interviews is a limitation of the study reported here. Future research would benefit from 

incorporating follow-up interviews. If interview results follow similar patterns as the written test 

results in Article One, then even the lack of differences at post-interview such as on formal 

language meanings expressed for “-” could actually become different weeks later.  

Withholding instructional experience with opposite operation notation in order to treat 

these as transfer tasks created a limitation that did not offer low performing students sufficient 
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opportunity to make sense of this notation. Given the findings here and that the walk-it-off model 

was originally designed to assist algebra students who struggled with mathematics or language in 

general (Nurnberger-Haag, 2007), research that includes this notation in instructional activities 

may find it better supports students who might typically struggle more with mathematics to 

develop the algebraically productive conceptions of “-” as an Opposite Operation.  

Influencing Curricular Placement and Implications for Algebra 

 In order for students to successfully conceive of “-” as an operation, we should ensure 

that instruction supports both Number Structure and Opposite Operation meanings. Two 

suggestions for curricular sequencing of negative number arithmetic arise from this study. First, 

teaching negative number arithmetic with related notation by fifth or sixth grade is feasible. 

Second, opposite operation notation should be taught after students learn integer operations. The 

fact that at least some moderate and higher achievement students in fifth and sixth grade were 

individually able to overcome thinking of “-” as strictly part of a number to successfully interpret 

the –(-56) transfer offers additional evidence that cooperative group instruction with negative 

number arithmetic need not wait until later middle school. Such evidence contradicts curricular 

placement as in Belgium where teachers are not allowed to instruct students on negative number 

arithmetic before age 12 (Heefer, 2011). In terms of curricular documents in the United States, 

these pieces of evidence indicate that future research should investigate moving integer 

arithmetic instruction from seventh grade to at least as early as sixth grade, if not earlier.  

Second, -(n) where n is a negative number, notation should be taught after students learn 

all four primary operations. Several pieces of evidence and theory support this assertion. Given 

the field advocates building on student thinking and the results suggested that multiplication was 

a resource for students’ understanding “-” as an opposite operation, multiplication should be 
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taught before opposite operation notation. Moreover, this curricular recommendation is 

consistent with theoretical recommendations that understanding numbers can only be understood 

through operating on them, so instructing students on the number structure meaning of opposites 

separate from the operational meaning by a year or more could cause unneccesary obstacles for 

students by separating the ability for students to work with mathematical processes and objects 

together (Sfard, 1991). Students likely need opportunities to compare Number Structure and 

Opposite Operation meanings of an opposite value at the time they are introduced. 

Vlassis noted that in addition to notational difficulties, the difficulty two eighth grade 

students had solving an equation involving a product was partly due to “the impossibility of 

giving a concrete meaning to the product of” negative numbers (2008, p. 566). The findings of 

this study and (Nurnberger-Haag, Article One) that grounding meanings for integer 

multiplication and division by turning the opposite direction on a number line not only supported 

understanding integer products but could lead to understanding “-” as an opposite operation. 

Future research is needed to assess the algebraic implications after students’ use the walk-it-off 

model for initial integer learning. 

Theoretical and Methodological Implications 

 Prior research regarding negative number arithmetic including that which attended to 

conceptual metaphors privileged language based communication of “-” notation and negative 

number arithmetic (e.g., Chiu, 2001; Vlassis, 2004, 2008). Yet, this study demonstrated, as 

others have that spatial understanding is a valid way of understanding and is not always 

translated into language (Alibali, Evans, Hostetter, Ryan, & Mainela-Arnold, 2009). In fact, 

those who express spatial understanding are often the higher performing (Gerofsky, 2010; 

Sassenberg & Van der Meer, 2010). Moreover, this study like (Church & Goldin-Meadow, 1986) 
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suggested that knowledge as it is developing is even more likely to be expressed spatially than 

verbally. Thus, if we truly want to assess student conceptions and not just what students can 

express in words, our research methodology must include ways of accessing spatial 

understanding as this study contributed. 



 101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
 

 



 102 

APPENDIX A: Tables and Figures 

 

Table 1 
Mapping integer models in terms of related theoretical perspectives of conceptual metaphors 

  Cancellation  Number Line 
  Chip Model1  Typical Number Line  Walk-it-off model 

Mathematical 
Object or Process 

Meanings 

 

Collecting Objects 

 

Moving on a Path 

 

Moving on a Path 
Numbers  Quantities of objects  • Points or positions on a 

number line 
• Distance to move & which 

direction to face 

 • Points or positions on a 
number line 

• Distance to move 

Negative or positive 
signs 

 Kind or quality of 
object (negatives or 
reds; positives or 
blacks)  

 • Part of a number that 
signals the point is below 
or left of zero 

• Face left or negative (face 
right or positive) 

 • Part of a number that signals 
the point or position is below 
or left of zero 

• Move or turn the opposite 
direction on a number line 

Operations       
Addition  Put in objects  Move right or up (positive 

direction) 
 Move in same direction 

Subtraction  Take out objects  Move left or down (negative 
direction) 

 Move in opposite direction 

Multiplication  Group objects  Repeated distances facing 
forward or backward 

 Turn/maintain direction then 
move product of absolute values 

Division  Group objects  Repeated distances facing 
forward or backward 

 Turn/maintain direction then 
move quotient of absolute values 

Opposite Of  NA  NA  Turn the opposite direction 
 
 



 103 

Table 2 
Examples of Integer Model-Movement for three types of operations 

  Cancellation  Number Line 
Operation  Chip Model1  Typical Number Line  Walk-it-off model 

Subtraction 
-3 - -2=-1 

  
• Put in 3 negatives (reds) 
• Take out 2 negatives (reds) 
• 1 negative remains 

 • (-3) Stand on the point 
• (-2) Face negative 
• (Subtract) Move 

backwards 

 

 • (-3) Stand on the point facing 
positive direction 

• (Subtract) Turn the opposite 
direction 

• (- of -2) Turn the opposite 
direction again 

• Move 2 in the direction facing 

-3 – 2=-5  • Put in 3 negatives (red) 
• Put in at least 2 negatives (red) 

and 2 positives (black) 
• Remove 2 positives (black) 

 • (-3) Stand on the point 
• (2) Face positive 
• (Subtract) Move 

backwards 

 

 • (-3) Stand on the point facing 
positive direction 

• (Subtract) Turn the opposite 
direction 

• (+ of 2) Maintain direction 
• Move 2 in the direction facing 

Multiplication 
-2 * 3=-6 

 • Start with 0 as nothing 
• Put in 3 groups of 2 negatives 

(reds) 
• 6 negatives (red) 

 • Start at the point 0 
• (3) Face positives 
• (-2) Move backward two 

sets of three spaces 

 

 • Start at the point 0 
• (- of -2) Turn the opposite 

direction 
• (+ of 3) Maintain direction 
• Move 6 (product of 2 * 3) 

-2 * -3=6  • Start with 0 as nothing 
• Use multiple chips to represent 

0: Put in at least 3 groups of 2 
negatives (reds); Put in the same 
number of positives (blacks) 

• (-3) Take out 3 groups of 2 
negatives (reds) 

• 6 positives (blacks) remain 

 • Start at the point 0 
• (-3) Face negatives 
• (-2) Move backward two 

sets of three spaces 
 

 • Start at the point 0 
• (- of -2) Turn the opposite 

direction 
• (- of 3) Turn the opposite 

direction 
• Move 6 (product of 2 * 3) 
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Table  2 (Cont’d) 
Opposite 

Of 
 NA  NA  -(-7) 

• Start at the point 0 
• Outer “-“ Turn the opposite 

direction 
• Inner “-“ of -7 Turn the 

opposite direction 
• Move 7 

 
1 This chip model is the common chip model that uses separate chips of two different colors (e.g., black and white chips) and 
encourages students to put in extra chips with a value of zero only when needed. 
2 Another typical number line model has students start at 0 on the number line then move to the first number of the problem, just as 
some chip models have students start every problem by representing zero with chips. 
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Table 3 
Lesson sequence with variations due to model of task wording or activities 
Lesson Topic Purpose Main Lesson Activities  

and Tasks 
Chip Variations Walk-it-off 

Variations 
1 Introduction  

 
Opposite Numbers 
 
Extending Numbers 
to negative 
numbers by 
subtracting and 
adding 

• Introduction, 
establishing 
norms, assigned 
trios/pairs 

 

• Exploring opposites  
• Use addition and 

subtraction problems to 
motivate a need for 
negative numbers. 

 Walk-it-off 
model students 
also learned to 
construct number 
lines 

2 Addition & 
Subtraction 

• Explore addition 
and subtracting 
with negative 
numbers. 

• In trios/pairs, calculate 
given problems 

• 1Represent -4 (In 
trios/pairs write 3 
equations) 

Write…for the 
value -4. 

• Constructed 
number lines  

• Write… to 
arrive at the 
number -4 on 
a number 
line. 
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Table 3 (Cont’d)  
3 Addition & 

Subtraction 
 
Ordering Numbers 
 
Generalizing about 
Real Numbers 

• Become 
proficient with 
adding and 
subtracting 
negative numbers 

• Understand when 
a negative 
number is less 
than or least, 
greater than or 
greatest 

• Realize that 
subtracting a 
number does not 
always make a 
smaller value 

• Represent 0 (In trios/pairs 
write 3 equations) 

• Greatest & Least number 
game (Decide whether to 
add or subtract rolled 
numbers.) 

• Represent 
“value of 0” 

• Constructed 
number lines  

• Represent 
“how to 
arrive at the 
number 0” 
 

4 Multiplication & 
Division 

• Encourage 
students to attend 
to “-“ signs  

• Compare 
processes for 
addition and 
subtraction 
versus 
multiplication 
and division 

• Use model to multiply 
and divide whole numbers 
then extend the model to 
negative numbers 
 

NAV NAV 

5 Multiplication & 
Division 

Explore 
multiplication & 
division with 
negative numbers 

• Multiplication and 
division problems in trios 
and pairs 

 

NAV NAV 
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Table 3 (Cont’d)  
6 Multiplication & 

Division 
Become proficient 
with multiplication 
and division 

• Multiplication and 
division problems in trios 
and pairs 

• 2Individual students make 
conjectures on exit tickets 
in response to 

NAV NAV 

7 All primary 
operations 

 • 2Trios/pairs determine if 
conjectures always 
sometimes or never true 

• Individual mixed review 
then discuss with trio/pair 

NAV NAV 

8 All primary 
operations 

• Review how to 
calculate with all 
primary 
operations 

• To generalize 
about operations 

• 2Finish conjecture 
discussions 

• Individual mixed review 
then discuss with trio/pair 

NAV NAV 

 
Note. NAV=No additional variations in planned tasks beyond differences in how students represent ideas with each model as 
described in Table 2. 
1 Modified from CMP in which students use chips to create the value -2 (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006). 
2 Modified from Heck & DeFord (2012) 
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Table 4 
EDT Generalization Item Purpose and Examples 

Item 

Purpose: 
Understanding 

Assessed Examples 
Opposite 
Sums 

Generalization 
that sums of 
opposites equal 
zero 

Trina and Jaleesa are students in your grade at another school.  

Trina said that -8 + (-7 + 7)  does not give the same answer as   -8 + (-5 + 5).  

Jaleesa said they will. Circle who is right: Trina or Jaleesa.  

Draw and write an explanation in words to convince a friend that this student is right. 

Generalizing 
Operations 

Generalizations 
of the four 
primary 
operations 

Look at each of the four choices a, b, c, and d.  

Each rectangle hides the same negative integer.  

Which answer choice makes the greatest number? (Write the letter here). ____ 

Use words and drawings to convince the students that you are right. 

 
a) 4 + ! 
b) 4 × !   
c) 4 − !   
d) 4 ÷ ! 

Opposite 
Operator 

Generalization of 
opposite operator 
meaning for the 
symbol “-“ 

A classmate stood at the board and said, “I am thinking of a negative number. 
The classmate wrote on the board:    
My secret number is          (negative number) 
 
Then the classmate wrote: Now my secret number is    - -(negative number) 

 
Even though it is impossible to figure out the exact secret number, what CAN you tell the 
students at the other school about the green secret number your classmate is thinking of now? 
Explain how you know. 
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Figure 1. Mixed method analysis process for combining qualitative item reasoning with quantitative scores to determine evidence of 
an individual’s opposite sum knowledge before testing for between integer model differences. 
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Figure 2. Bar graphs of pretest posttest and delayed posttest total IAT unadjusted means by integer model condition. 
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Table 5 
Overall IAT Test ANCOVA Results 

 
 

 Posttesta     Delayed 
Posttestb 

 

  F p np2  F  P np2 
Integer Model       17.1 < .001*** .101  18.8  < .001*** .112 
Pretest IAT  53.3 < .001*** .260  43.1  < .001*** .225 
Fact Test       1.65 .201 .011  2.61  .108 .017 
Gender            7.61 .007** .048  5.01  .027* .033 
MD 
Preconceptions 

 12.1 .001** .073  5.09  .026* .033 

District  3.04 .083 .020  .351  .554 .002 
Note.  
Df for all post predictors (6, 152); delayed post (6, 149) 
* p< .05, ** p< .01  ***p <0.001 
 
 
 
Table 6 
Overall IAT Test ANCOVA Parameter Estimates 

  Posttest    Delayed Posttest  
 β 95% CI[  ,  ]  SE  β 95% CI SE 

Integer Model -10.4*** [-15.3, -5.41] 2.50  -12.3*** [-17.9, -6.71] 2.84 
Pretest IAT .713*** [.52, .91] .098  .711*** [.49, .93] .108 
Fact Test .257 [-.14, .65] .200  .369 [-.08, .82] .228 
Gender 6.79** [1.93, 11.7] 2.46  6.23* [.73, 11.7] 2.78 
MD Preconcept -9.20** [-14.4, -3.97] 2.65  -6.74* [-12.7, -.84] 2.99 
District 4.52 [-.60, 9.64] 2.59  1.74 [-4.06, 7.54] 1.74 
Note. Adj. R2 : a=. 458, b=.422 
* p< .05, ** p< .01  ***p <0.001 
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Table 7 
MANCOVA Multivariate Tests Inconsistent vs. Consistent Model-Movements 

 
 

Posttesta 
 

 
  Delayed 

Posttestb 
 

 
 

  F  p np2  F  P np2 
Integer Model       28.62  < .001*** .275  28.61  <.001*** .280 
Pre Consistent  9.73  < .001*** .114  13.49  < .001*** .155 
Pre Inconsistent  4.91  .009** .061  4.71  .010** .060 
Fact Test       3.07  .049* .039  5.02  .008** .064 
Gender            3.17  .045* .040  2.35  .099** .031 
MD 
Preconceptions 

 4.82  .009** .060  3.15  .046* .041 

District  1.11  .334 .014  .288  .750 .004 
Note. Df for all post predictors (2, 151); delayed post (2, 147) 
* alpha .05, ** alpha .01  ***alpha <0.001  
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Table 8 
MANCOVA Multivariate Tests Consistent v. Inconsistent Parameter Estimates Posttest and Delayed Posttest Raw Scores 
 Posttest Delayed Posttest 
 Inconsistenta Consistentb Inconsistentc Consistentd 
Variable β CI[  ,  ] SE β CI[  ,  ] SE β CI[  ,  ] SE β CI[  ,  ] SE 
Integer 
Model 

-3.24 
*** 

[-4.22, -2.26] .72 -.843 [-2.26, .57] -
6.6 

-3.54 
*** 

[-4.56, -2.51] .52 -.897 [-2.58, .61] .80 

Pre 
Consistent 

.222 
*** 

[.11, .33] .08 .314 
*** 

[.16, .47] 4.0 .251*
** 

[.14, .37] .06 .431
*** 

[.25, .61] .09 

Pre 
Inconsistent 

.389 
** 

[.14, .63] .18 .394 
* 

[.04, .75] 3.1 .398*
* 

[.14, .65] .13
0 

.370 [-.03, .77] .20 

Fact Test .083 
* 

[.01, .16] .06 .129 
* 

[.02, .24] 2.2 .121 [.04, .20] .04 .161
* 

[.04, .28] .06 

Gender 1.06 
* 

[.11, 2.02] .70 1.63 
* 

[.26, 3.01] 2.2 .578 [-.42, 1.58] .51 1.71
* 

[.15, 3.26] .79 

MD 
Preconcept 

1.46 
** 

[.41, 2.52] .77 2.22 
** 

[.70, 3.74] 2.7 1.26* [.15, 2.37] .56 1.96
* 

[.23, 3.68] .87 

District .290 [-.71, 1.29] .73 1.05 [-.40, 2.49] .57 -.029 [-1.08, 1.02] .53 .487 [-1.15, 2.12] .83 
Note. Adj. R2 a=.418 b=.265, c=.438, d = .4288 
* alpha .05, ** alpha .01  ***alpha <0.001  
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Table 9 
MANCOVAs Multivariate Tests Degree of Consistency Model-Movements Posttests and Delayed Posttests Standardized Scores 

 
 

Posttest 
 

 
  Delayed 

Posttest 
 

 
 

Variable  F  p np2  F  P np2 
Integer Model       20.6  < .001*** .295  20.6  < .001*** .301 
Pre Consistent  6.31  < .001*** .113  8.65  < .001*** .153 
Pre Inconsistent In 
Process 

 5.11  .002** .094  3.67  .014* .071 

Pre Inconsistent 
Beginning 

 .315  .814 .006  .384  .765 .008 

Fact Test       1.66  .179 .032  4.34  .006** .083 
Gender            1.71  .168 .033  1.78  .153 .036 
MD Preconceptions  2.02  .114 .039  1.65  .181 .033 
District  1.26  .289 .025  .398  .754 .008 
Note. Df for all post predictors (3, 148); delayed post (3, 144) 
* alpha <.05, ** alpha <.01  ***alpha <0.001 
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Table 10 
MANCOVA Degree of Model-Movement Consistency Parameter Estimates of Posttest Standardized Scores 
 Inconsistent Beginninga Inconsistent In-Processb Consistentc 
Variable β CI[  ,  ] SE β CI[  ,  ] SE β CI[  ,  ] SE 
Integer Model -.862*** -1.11, -.61 .127 -.414** -.71, -.12 .151 -.144 -.42, .14 .141 
Pre Consistent .263*** .13, .40 .067 .142 -.02, .30 .079 .283*** .14, .43 .074 
Pre Inconsistent  
In Process 

.203** .07, .33 .066 .223** .07, .38 .078 .238* .09, .38 .073 

Pre Inconsistent 
Beginning 

.049 -.09, .19 .069 -.002 -.16, .16 .082 -.011 -.16, .14 .077 

Fact Test .014 -.01, .03 .010 .021 -.002, .05 .012 .021* -.001, .04 .011 
Gender .249* .002, .50 .125 .026 -2.7, .32 .148 .262 -.01, .54 .139 
MD Preconceptions .268 -.01, .55 .141 .271 -.06, .60 .167 .346 .04, .66 .156 
District .107 -.15, .37 .132 .171 -.14, .48 .156 .273 -.02, .56 .273 
Note. Adj. R2 a=.426 b=.188, c=.290, * p <.05, **p <.01  ***p<0.001 
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Table 11 
MANCOVA Degree of Model-Movement Consistency Parameter Estimates of Delay Posttest Standardized Scores  
 Inconsistent Beginning Inconsistent In Process Consistent 
Variable β CI[  ,  ] SE β CI[  ,  ] SE β CI[  ,  ] SE 
Integer Model -.926*** -1.18, -

.68 
.127 -.386** -.67, -.10 .145 -.163 -.44, .11 .140 

Pre Consistent .257*** .13, .39 .066 .235** .08, .38 .076 .345 .20, .49 .073 
Pre Inconsistent  
In Process 

.202** .07, .33 .006 .150* .001, .30 .075 .187* .04, .33 .073 

Pre Inconsistent 
Beginning 

.061 -.07, .20 .069 .029 -.13, .19 .079 -.004 -.15, .15 .076 

Fact Test .017 -.003, .04 .010 .040 .02, .06 .011 .025* .003, .05 .011 
Gender .148 -.10, .40 .125 -.088 -.37, .20 .143 .238 -.03, .51 .138 
MD 
Preconceptions 

.282* .003, .56 .141 .097 -.22, .41 .161 .283 -.02, .59 .155 

District .062 -.20, .40 .132 .004 -.29, .30 .150 .148 -.14, .44 .145 
Note. Adj. R2 a=.443 b=.253, c=.308 
*p <.05, ** p<.01  ***p <0.001 
 
 
 
Table 12 
Performance for Ordering Integers Pre to Post and Pre to Delayed Changes  

 Pre-Post  Pre-Delayed 

Category 
Chips 
No. % 

 Walk 
No. % 

 Chips 
No. % 

 Walk 
No. % 

Improved 
 

30 (36.1)  31 (39.2)  28 (35.0)  28 (35.9) 

Maintained 
 

37 (44.6)  40 (50.6)  35 (43.8)  41 (52.6) 

Regressed 16 (19.3)  8 (10.1)  17 (21.3)  9 (11.5) 
Total 83  79  80  78 
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Figure 3. Box plots of pretest posttest and delayed posttest ordering number totals by integer model condition. 
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Table 13 
Conceptual metaphors expressed on EDT pretests for ordering item or single digit operation items 

 Collecting 
Objects Measuring Moving on a Path 

 
No. 

%  
 No. % No. 

%  
 

Ordering 
Numbers 

7 11.1 2 3.2 40 63.5 

Operations 9 14.3 0 0 13 20.6 

Note. Four intervals of randomly assigned student identification numbers selected for analysis (n= 63).  
 
 
 
Table 14 
Summary of integer model benefits by aspect of integer knowledge 

Aspect Posttest Delayed Posttest 
Ordering Numbers n.s. Walk* 
Operations   

Sums of Additive Inverses Chip** n.s. 
Generalizing Operations Accuracy n.s. Walk* 
Generalizing Operations Reasoning Walk*** Walk*** 
Primary Operations by degree of consistency 
of model-movements 

Walk*** Walk*** 

“-“ as meaning “opposite of” [Transfer] UA UA 

Note: *** p<.001, **p<.01, * p<.05,  n.s.=not statistically significant using α<.05; UA= unable to analyze 
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Table 15 
Examples of Integer Model-Movement for three types of operations 

  Cancellation  Number Line 
Operation  Chip Model1  Typical Number Line  Walk-it-off model 

Subtraction 
-3 - -2=-1 

  
• Put in 3 negatives (reds) 
• Take out 2 negatives (reds) 
• 1 negative remains 

 • (-3) Stand on the point 
• (-2) Face negative 
• (Subtract) Move 

backwards 

 

 • (-3) Stand on the point facing 
positive direction 

• (Subtract) Turn the opposite 
direction 

• (- of -2) Turn the opposite 
direction again 

• Move 2 in the direction facing 

-3 – 2=-5  • Put in 3 negatives (red) 
• Put in at least 2 negatives 

(red) and 2 positives (black) 
• Remove 2 positives (black) 

 • (-3) Stand on the point 
• (2) Face positive 
• (Subtract) Move 

backwards 

 

 • (-3) Stand on the point facing 
positive direction 

• (Subtract) Turn the opposite 
direction 

• (+ of 2) Maintain direction 
• Move 2 in the direction facing 

Multiplication 
-2 * 3=-6 

 • Start with 0 as nothing 
• Put in 3 groups of 2 

negatives (reds) 
• 6 negatives (red) 

 • Start at the point 0 
• (3) Face positives 
• (-2) Move backward two 

sets of three spaces 

 

 • Start at the point 0 
• (- of -2) Turn the opposite 

direction 
• (+ of 3) Maintain direction 
• Move 6 (product of 2 * 3) 
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Table 15 (Cont’d) 
-2 * -3=6  • Start with 0 as nothing 

• Use multiple chips to 
represent 0: Put in at least 3 
groups of 2 negatives (reds); 
Put in the same number of 
positives (blacks) 

• (-3) Take out 3 groups of 2 
negatives (reds) 

• 6 positives (blacks) remain 

 • Start at the point 0 
• (-3) Face negatives 
• (-2) Move backward two 

sets of three spaces 
 

 • Start at the point 0 
• (- of -2) Turn the opposite 

direction 
• (- of 3) Turn the opposite 

direction 
• Move 6 (product of 2 * 3) 

 

Opposite Of  NA  NA  -(-7) 
• Start at the point 0 
• Outer “-“ Turn the opposite 

direction 
• Inner “-“ of -7 Turn the 

opposite direction 
• Move 7 

 
1 This chip model is the common chip model that uses separate chips of two different colors (e.g., black and white chips) and 
encourages students to put in extra chips with a value of zero only when needed. 
2 Another typical number line model has students start at 0 on the number line then move to the first number of the problem, just as 
some chip models have students start every problem by representing zero with chips. 
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Table 16 
Mappings of models to “-“ meanings 
Meanings  Chip Model  Walk-it-off Model 
Number Structure  

Numbers 
  

Quantities of objects 
  

Points or positions on a number line 
     

“-“ (Negative 
Signs) 

 Kind or quality of object (negatives or color)   • Part of a number that signals the point or 
position is below zero or 

• Move or turn the opposite direction on a number 
line 

     
Subtraction 
Operation 

 Take away or remove objects  Move or turn the opposite direction on a number line 

     
Opposite 
Operation 

 NA  Move or turn the opposite direction on a number line 

 
 
Table 17 
Symbol Interview Matched Pair Scores 

   Chip  Walk 

Post IAT Strata Pair   Student 
Pre 
IAT Fact  Student 

Pre 
IAT Fact 

High 1  Chloe 52 25  Will 53 24 
 2   38 13  Warren 39 15 
          

Moderate 1  Caleb 38 25  Wallace 39 21 
 2  Christie 46 18   45 12 

          
Low 1   32 21   32 16 

 2   21 15   21 14 
Note. Pseudonyms are given for those students named in text for additional analysis.  
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Table 18 
Matched Pair Symbol Interview “-“ Meanings expressed when interviewer circled numerals, negative signs or opposite signs 

Meanings  Level Symbol Circled in Expression 

Category  
Specific 
Response  Examples  

IAT 
Level 

Subtract 
Sign  Numeral 

 Negative 
Sign 

 Inner “-“ 
-(-56)  

Outer “-“ 
– (-56) 

      C W  C W  C W  C W  C W 
Subtraction 
Operation 

  H 2 1             

   M 2 2  1           

  

Subtract  “Subtract” 
“Take away” 

 L 1 2           1  

                    
Number 
Structure 

  H    2 1         1 

   M    2 1  1        
  

Negative 
Number 

“It’s a negative 
number” 
“Negative two” 

 L    2 2          
                    

   H       2 2  2 2  2 1 
   M       2 2  2 2  2 2 
  

Negative 
Sign 

“Negative 
[sign]” 
“It’s [a sign that 
means] negative” 
“It means the 
number is 
negative”1 

 L       2 2  2 2  2 1 

                    
   H    1 0  1 0  1 0  1 0 
   M    0 0  0 0  0 0  0 0 
  

Opposite 
Number 

“The [number 
that is] opposite 
of four”  L    0 0  0 0  0 0  0 0 

                    
   H    1 1  1 1  1 1  1 1 
   M    1 0  1 0  1 0    
  

Number 
below 
zero 

Two below zero 
It’s below zero 

 L    0 0  0 0  0 0    
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Table 18 (Cont’d) 
 
Opposite 
Operation 

  H 0 1  0 0  0 0  0 1  0 1 

   M 0 1  0 0  0 1  0 0  0 0 
  

Move the 
opposite 
direction 

Turn the 
opposite 
direction 

 L 0 0  0 0  0 0  0 0  0 0 
Note. IAT Level= IAT posttest level high, moderate, or low performing; C=chip model student, W=Walk-it-off model student 
1 “minus” was coded for as a synonym of “negative” and also as a synonym for “subtract.” The student in this case used the synonym 
for negative. 
2 Student said negative number but other evidence…. 
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Table 19 
Symbol Interview Calculated –(-56) Confirmed Positive Solutions 

Reasoning Description and Examples Chip Walk 
Moving-on-a-path 
metaphor  

“-“ means turn the opposite direction on a number line 0 10 
 

Collecting Objects 
metaphor 

“-“ means take out 56 negatives or take out one group of 56 negatives 0 0 

Generalized Rule    
Generalized Solutions 

 
 

Products of two negative numbers have a positive solution 
Fifty-six, er negative fifty-six. [Interviewer/author “Which one?”]  well 
there's two negative signs so I would think a positive fifty-six. Um well with 
what we've learned we’ve learned that cause like the parentheses mean 
multiplication and then whenever you have two negative signs you get a 
positive answer so it would be positive fifty-six. 

 

1 2 

Generalized Notation Two “-“ signs interact to become positive 
Fifty-six. Because I see two negative signs and I’m thinking that they would 
cancel each other out, leaving the fifty-six.  
 

5  1 

Notational Mnemonic Memory trick about the form of the signs 
Fifty-six. ah because if you might ah, because if you take one of that and 
you take that and you turn it sideways it equals a positive sign. 

0 1  

 Total 6 14 
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Table 20 
Student (Frank) example of gesturing to communicate turning to multiply to get to 56  

Noteworthy affect or posture Physical motions Speech 
  Um 

 
[6 seconds thinking in a relaxed 
posture leaning against the wall 
with a furrowed brow] 
 

  

 bolts to standing  Oh!  
 

Firm voice Points for emphasis Fifty-six 
 

 Points to card Because there’s two multiplication  
 

Giggles  er not multiplication ah negative signs, and 
if there's one negative sign 
 

 Points left index finger down that means you start at negative 
 

 Turns left index finger to point up and if there's another one that means you 
go positive. You turn the opposite direction. 
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Table 21 
Student (Will) example of moving whole body to reason and also communicate turning to multiply to get to 56  

Noteworthy affect or posture Physical motions Speech 
 Turned entire body with elbows bent 

90 degrees at sides hands in blades 
pointing forward 
 

Regular fifty-six. Positive fifty-six. Because 
you face positive and you always start on 
zero if it’s times or division. 

 Keeping arms in the same positions, 
turned entire body the opposite 
direction  

Then the negative number means turn the 
opposite direction and you go up whatever 
it is” 
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Table 22 
Student (Winnie) example turning to multiply -1 × -56 

Physical motions Speech 
Points to signs on the card Negative fifty-six. Because I’m just thinking that 

there would be a one there or something. and 
imagine if there were parentheses right there and 
multiply one- negative one by negative fifty-six. 
 

Cracks fingers and stretches while I1 talks. 
Nods 

I1: “So negative one times negative fifty-six is 
fifty-six [pause]  

 or negative fifty-six?  
I1: I can’t remember what you said.”  
Fifty-six. 
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Table 23 
Student (Rick) example turning to multiply by 2 to obtain a positive solution 

Noteworthy affect or posture Physical motions Speech 
Both hands rest in sweatshirt 
pocket for the duration of the 
interview unless noted. 

 I’m not sure, um. About like one hundred twelve. 
Because fifty-six times two is somewhere around one 
hundred twelve. 

  [I1: “Why do you think its negative fifty-six times 
two?]  
cause it’s in parentheses 

   I think that the negatives mean —they tell you to turn 
around on the number line either way.  
I1: “you said one hundred twelve did you mean 
positive one hundred and twelve or did you mean 
positive or negative or?” 
umm looks like positive because if I think you can um 

Student emphasized intonation 
bolded 

points to card then hands go behind 
his back. 

That  
means to start on zero and face the negatives  

Student emphasized intonation 
bolded 

left index finger points right (the 
positive direction on a horizontal 
number line) 

and then you turn around again and you would face 
the positives.  
So positive one hundred twelve. 
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APPENDIX B: Conceptual Metaphor Coding Definitions 

 

Table 24 
Abbreviated Coding Definitions for Conceptual Metaphors 
Metaphor Behavior/Coding Definition 

 Words Gesture/Drawings 
PTS-W: Numbers as points or locations 
on a path (e.g., “This is my zero” or 
“Here is 3” “It” refers to positions or 
points on a path) 

PTS-DG: Pointing, flat hand, etc. that 
are deictic gestures or drawings to show 
numbers as positions. In a drawing more 
likely students draw a point, circle 
positions, draw arrow to it, etc. 

PATH-W: Speech that indicates use of a 
number line with motion (up, down, left, 
right, forward, backward, opposite, turn, 
toward, away from, etc.) 
 

PATH-DG: Gestures or drawings 
(arrows, loops/jumps, etc.) that indicate 
motion ideas on a number line  

TURN-W: If uses specific language of 
turn or opposite, then also code this 
code.  
 

TURN-DG: Turning head side to side, 
rotating or turning hand, indication of 
rotation or turning with a single finger, 
turning body core (engagement of 
spine), flipping, reflecting, etc. In a 
drawing representations of flipping, 
reflecting, or circling around. 
 

Moving 
on a Path 

DISTANCE-PATH-W: Language that 
refers to distance but using motion and 
underlying conception of numbers as 
positions not measuring stick 

DISTANCE-PATH-DG: Gesture or 
diagrams that show distance from body 
to another point, etc. indicating 
endpoints of a distance achieved by 
moving to compare based on 
accompanying speech, directional 
arrows on a drawing 
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Table 24 (Cont’d) 
THINGS-W: Reference to chips, things, 
or specific objects (e.g., candy, bags or 
groups implies things) in words. 
 

THINGS-DG: Drawings or gestures 
(acting out) of chips, things, or specific 
objects 

MANIP-W: Words that describe the 
ways object manipulatives were moved 
for integer operations during instruction 
(see training on how objects are 
manipulated in problems).  
 

MANIP-DG: Gestures or drawings that 
model the ways object manipulatives 
were moved for integer operations 
during instruction (see training on how 
objects are manipulated in problems).  
 

HOLD-W: Words that indicate holding, 
grasping, supporting (e.g., cupped hand, 
pinching fingers as though grasping, flat 
hand facing up as though supporting or 
holding something, things in a bowl, 
etc.) 

HOLD-DG: Gestures or drawings that 
indicate holding, grasping, supporting 
(e.g., cupped hand, pinching fingers as 
though grasping, flat hand facing up as 
though supporting or holding something, 
things in a bowl, etc.) 
 

TOUCH-W: Words that indicate 
touching separate things at once  
 

TOUCH-DG: Gestures that indicate 
touching separate things at once (three 
fingers as though the three fingers 
represent or are touching three different 
objects, etc.) 
 

Collecting 
Objects 

COUNT-W: Words that indicate 
counting discrete objects (If counting on 
number line, do not code here.) 

COUNT-DG: Gestures that indicate 
counting discrete objects (e.g., pointing 
in sequence that may or may not be lined 
up, may be accompanied by verbal 
explanations that indicate counting to 
distinguish from pointing in a way that 
indicates location along a path. If 
counting on number line code below not 
here.) 

STICK-W: Language that refers to 
distance as a static measurement 

DISTANCE-STICK-DG: Distance 
between two points indicated by an 
interval (e.g., interval C-gesture (see 
Williams, 2009) or two hands, fingers, 
bars on a line segment 
 

Measuring 
Stick 

COMPARE-W: Comparison of line 
segments or intervals to find the distance 
or lay on top of the other (so motion is 
due to comparing lengths, not to find a 
given length). 

COMPARE-DG: Comparison of line 
segments or intervals to find the distance 
or lay on top of the other (so motion is 
due to comparing lengths, not to find a 
given length). 
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APPENDIX C: Symbol Interview Protocol 

Set Up 

If it’s okay with you, I’d like us both to stand so that you feel free to move around or do whatever 

you think would help you communicate how you are thinking. Is that okay? 

Is it okay if I set up the video camera now, but I won’t start recording yet? [Make sure that the 

entire person’s body is visible in the view even if he/she takes a few steps either direction] 

Do you have any questions or comments? [Pause] 

Is it okay with you to do a sound check? You can just say testing 1 2 3. [pause for confirmation]. 

I’ll start the video now. [Start the video. Make sure that the entire person’s body is visible in the 

view even if he/she takes a few steps either direction] 

[Playback the video, if the student’s voice is clear, then say], ok. We have sound, so we’re all set. 
Is it okay if I start the video for real now? 
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Interview Begins 
[Be sure to have the back up audio recording] 
Every time I ask you a question, I’ll ask if there is another way until you tell me there isn’t 
another way or you can’t think of one, because I want to make sure you have a chance to say all 
of your ideas. Ok? 
So I’ll just keep asking you if there’s another way, until you tell me there isn’t or you can’t think 
of one. 
(Show the student the card) 
B) Ex:     - 2 - (-4)  

1) Would you please read out loud what is written on this card? 

2) Are there any other ways that you can say what is written on this card? 

3) Is there another way? 

 
(Circle -2 with a blue pen) 
What does this that I circled mean?  
(Point to the circle, not the -2) 
(Paraphrase what the student said, So it means….?  
Pause for student confirmation.  
Is there anything else it can mean)?  

 
 (Show student a new card with the same problem) 

This card says the same thing, but doesn’t have my pen marks on it. 
 (Circle −4)  
What does this that I circled mean?  
Paraphrase So it means….?  
Pause for student confirmation.  
Is there anything else it can mean?  

 
 
(Show student a new card with the same problem) 

This card says the same thing.  
(Circle subtraction sign)  
What does this that I circled mean? 
 

Thanks. Let’s look at a card with a different problem.  
[Show the student the card.] 
Ex:     - 3 - -5  
1) Would you please read this card out loud? 

2) Are there any other ways that you can say what is written on this card? 

3) Is there another way? 
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(Circle − sign of −5)  
What does this that I circled mean?  
Is there any thing else it can mean? 

 
This card says the same thing, but doesn’t have my pen marks on it. 
 (Circle − sign of −3)  
What does this that I circled mean?  
And is there anything else it can mean? 

 
 

C) -5 × -7 
1) Now would you please read this card out loud? 

2) Are there any other ways that you can say this? 

3) Is there another way? 

 
Thanks. What does this that I circled mean?  
(Circle −7) 
Is there anything else it means)?  

 
This card says the same thing, but doesn’t have my pen marks on it. 
 (Circle −5 )  
What does this that I circled mean?  
Is there anything else that it means? 
 

D) -4 × -8 
1) Would you please read this card out loud? 

2) Are there any other ways that you can say this? 

3) Is there another way? 

This card says the same thing, but doesn’t have my pen marks on it. 
 (Circle − sign of −4)  
What does this that I circled mean?  
Is there anything else that it means? 

 
This card says the same thing, but doesn’t have my pen marks on it. 

 (Circle − sign of −8)  
What does this that I circled mean?  
Is there anything else that it means? 
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E)    -(-56) 
1) Would you please read this card out loud? 

2) Are there any other ways that you can say this? 

3) Is there another way? 

 
This card says the same thing, but doesn’t have my pen marks on it. 
 (Circle − sign of −56)  
What does this that I circled mean?  
Is there anything else that it means? 
 
 

This card says the same thing, but doesn’t have my pen marks on it. 
 (Circle − sign outside of the parentheses)  
What does this that I circled mean?  
Is there anything else that it means? 
 
If you had to calculate an answer to this problem. What do you think the answer would be? 
Paraphrase, So it means…?  
Pause for confirmation. 
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