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ABSTRACT

LINEAR AND NONLINEAR DISCRETE FILTERING FOR CONTINUOUS SYSTEMS

by

Marvin A. Needler

The subject of this thesis is the synthesis of discrete-time filters

for real-time estimation of the state of continuous-time dynamic systems.

The dynamic system is modeled by a set of stochastic differential

equations and the stochastic disturbance is modeled as a Brownian motion

process. The filtering process is assumed to utilize en-line digital

computation and thus a discrete-time recursiVe filter is developed to

estimate the state of the system based on sampled-data measurements.

Starting with the equations for propagation of the probability den-

sity function of the state conditioned on previous measurements, the ’

filtering equations are developed both for linear and nonlinear filtering.

In the linear filtering case, two new methods are suggested for

reducing computation and increasing accuracy. These methods are illus—

trated in the digital simulation of state estimation of a steam turbo-

generator system. In addition, the methods of divergence compensation

are reviewed.

In the nonlinear filtering case, a second—order filter is suggested,

and it is used to estimate the state of a reentry body. An original



Marvin A. Needler

adaptive filter is mechanized to reduce filter error and is shown to

improve the estimation accuracy of the linear and nonlinear filter in

reentry estimation. The adaptive filter adapts the filter gain to the

statistics of the measurement estimation errors without requiring

significant computation and.without altering the state covariance com-

putation. Based on the reentry estimation problem, the adaptive filter

produces an improved state estimate that approaches the optimum estimate

for the given filtering problem.
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I IAHRODUCTION

The subject of this thesis is the synthesis of discrete-time

filters for real-time estimation of the state of continuous-time

dynamic systems.

Historically, the theory of estimation dates back to the least-

squares orbit estimation of Gauss [GAUl] in 1809. More recently,

Wiener [WIEl] and Kblmogorov [KDLl] derived solutions for linear least-

squares estimation. 'Wiener studied continuous-time systems using

spectral methods to obtain minimum-variance unbiased estimates of the

scalar state by observing a signal where both the state and the obser-

vation are jointly wide-sense stationary and ergodic processes.

Kblmogorov used a recursive orthonormalization.procedure to solve the

analogous discrete-time problem.

In 1960, Kalman [KALI] published a recursive solution for the

minimum-variance unbiased estimate of the state of the Markov vector

process of a discrete-time system where the system is disturbed by a

random vector and the state is observed through a non-invertible trans-

formation. Kalman and Bucy [KAL2, KALS, BUCI] and Stratonovich [S'I'Rl]

extended this work to the continuous-time filter and incorporated the

problem of observations contaminated with additive random noise. In

addition to the filtering problem (estimating concurrently in time to

the observations), solutions were developed for the prediction problem



(estimating into the future) and the smoothing problem (estimating

after the time of the observations).

During the decade following the derivation of the Kalman-Bucy

filter, much effort was involved in further refinement and develOpment

of filtering theory. MDch of the motivation comes from optimal con-

trol theory where it was feund that a simple deterministic model would

no longer suffice for a realistic model of a system that is contami-

nated by noise and whose state can not be directly observed IBELI,

SARI]. The Kalman-Bucy filter was modified to serve in aero-space

applications for guidance, navigation, and orbit and reentry estimation

[SMIl, PURl]. In addition, applications in industrial process control,

electric power systems and system identification have been developed

[SAR1, CHAl]. More recently, applications in urban and freeway traffic

flow have received attention.

In a large class of optimal control problems, namely, for linear

systems with quadratic performance index and with Gaussian noise, the

optimal control law is a feedback law, which is a computed gain times

the state [BRY1, LEEl]. In this case, it can be shown that the com-

bined optimal estimation and control scheme is the optimal estimator

and the optimal controller found independently--this principle is known

as the separation principle [JOSl, POTl, WONl]. In the nonlinear case

and/or the non-quadratic performance index case, there is no known

separation theorem; nonetheless, the separation principle provides a

reasonable, approximate design approach.

Other approaches to the optimal control problem with inaccessible

states have been developed. In particular, the methods proposed by



Pearson [PEAl] and Ferguson [FERl] obviate the need for a filter. How-

ever, it should be noted that these particular methods are restricted

to optimal linear regulators and do not consider the case of noisy

measurements or system disturbances.

Linear filtering has been rather completely exploited. Since the

appearance of Kalman's original paper using the orthogonal properties

of random vectors to minimize the error criterion, other methods such

as least squares, maximum likelihood, minimum variance, calculus of

variations, and the maximum principle [BRY1, ATHl, H01] have been used

to prove the form of the optimal filter. Other problems such as non-

zero mean, cross-correlated, and auto-correlated system and measurement

noise have been considered [BRYZ]. Filter stability and convergence

have also been given considerable attention. In addition, the Kalman-

Bucy filter has been extended to the case of nonlinear systems, called

the extended Kalman filter, first-order filter, or the quasilinear

filter [FRIl, MOWl, SCHZ, H02].

The problems remaining in linear filtering are those that involve

mechanizing a filter that uses a suitable model, i.e., does not have

detrimental modeling errors, and that is feasible in terms of computa-

tional requirements.

Nonlinear filtering theory is not as completely developed as linear

filtering theory due to the inherently more complicated structure of

nonlinear systems where superposition does not hold. By using a

probabilistic approach, it is possible to derive the equations governing

the evolution of the conditional probability density function of the

state conditioned on the sequence of observations. It has been shown

that, in general, the optimal nonlinear filter requires an infinite



number of moments to realize the conditional probability density func-

tion [KUSl, KUSZ]. However, a finite approximation can be made that

may be satisfactory [KUSS, BUCZ].

~Another problem in nonlinear filtering is finding a global filter-

ing theory that will assure filter convergence. No general convergence

theory has been found that is equivalent to that in linear filtering

theory. Indeed, the problem is so difficult that proofs of filter

convergence are restricted to the scalar case without system distur-

bances [BIRl] . A

An approach is suggested in this thesis that improves the con-

vergence properties of both the linear and nonlinear filter whenever

modeling errors are prevalent. Previous work [DEN1, PINl, SMIl] has

been concerned with the problem of filter divergence. The idea of

adaptive filtering has been suggested by Jazwinski and Dennis [JAZZ,

DENZ], whereby an artificial system disturbance is constructed to

prevent filter divergence. In this thesis a new approach is suggested

to adapt the estimates to the measured statistics of the filtering

problem; namely, the filter gain matrix is corrected to provide con-

sistent filter statistics and measurement statistics.

In many problems, it is necessary to estimate the state of a

vector-valued continuous-time system. Often, it is not possible to

measure continuously, and even if continuous-time measurements are

available, only sampled data can be used to allow for the computation

time that is necessary even in high-speed digital computers. Thus, the

structure that emerges is a discrete-time filter for the continuous-

time system. This structure has some of the aspects of both continuous



problems and discrete problems.’ For the most part, the discrete-filter

problem is a sub-problem.of the discrete-filter continuous-system prob-

lem, whereas the continuous filter problem must account for the continu-

ous observation process.

One important problem involved in a continuous-time system is that

of modeling the random.processes. .Assuming the process to be continuous-

valued and composed of stationary independent increments leads naturally

to the Brownian motion process. It shall be assumed that this process

has a Gaussian distribution function with zero mean. In order to solve.

differential equations involving the Brownian motion process, the Ito

stochastic integral is employed.

To summarize the previous discussion, the purpose of this thesis

is to study the synthesis of filters. The discrete-time filter,

continuous-time dynamic system is emphasized. In Chapter 1, the general

filtering equations are developed, and some results are derived for simu-

lation of the stochastic processes. In Chapter 2, the linear filter

equations are given, some new computational methods are presented for

reducing computation'and increasing accuracy, these methods are applied

to a simulation example and finally, the problem of modeling errors is

discussed. In Chapter 4, a nonlinear filter is derived and used in a

simulation example. Finally, a new statistical method is developed that

adapts the nonlinear filter to modeling errors to provide consistent

elements for the nonlinear filter.



II. Analysis and Development of Filtering Theory

underlying the Subject of filtering theory is the theory of

probability, random variables, and stochastic processes. The central

principles of stochastic processes that are needed here are reviewed

in.Appendix.A. (See [FEL1, RAPl, D001], for example.) In this chapter,

the equations of filtering theory are developed for discrete-time

filtering of continuous-time, discrete-parameter, dynamic systems.

2-1. The System Model
 

A large class of dynamic systems can be modeled by the vector-

valued stochastic differential equation,

dx = f(x,t)dt + G(x,t)dB (2-1-1)

or its formal white-noise equivalent,

i = f(x,t) + G(x,t)W’ (2-1-2)

where x is an arrandom vector, 8 is an m-vector Brownian motion process,

f is a vector function, and G is a.matrix funCtion. The prOperties of

the Brownian motion process, its relation to the white-noise process

w(t), and its physical significance are given in [D001].

The existence and.uniqueness of the solution to (2-1-1) over an

interval T, namely,

x sz f(x,t)dt + fr G(x,t)dB (2-1-3)



(where p the integrals are interpreted in Appendix A) can be proven under

thelconditions that f and G are Lipschitz in x. (See [1101 or D001] .)

The Linear System Dynamic Model
 

In the case that f and G are not state dependent, the system model

is linear,

dx = A(t)x dt + B(t)dB, (2-1-4)

or

x = A(t)x + B(t)w (2-1-5)

where A is an n X n matrix, B is an n x m matrix, and B is a Brownian

motion process. The linear model is of great importance for several

reasons, one of which is that the solution can be written uniquely as

t

x(t) = acntpxcto) +ft accomodem (2-1-6)
0

where 6(t,to) is the transition matrix transforming the unforced

response over the interval [to,t] and the forced response is a stochas-

tic vector integral. If x(to) is taken as a Gaussian vector indepen-

dent of B, then x(t) is a Gaussian vector, and the covariance matrix

of the state P(t,s) can be written as

P(t,s) = E {x(t)x'(s)} (2-1-7)

= 6(t,to)P(to)d'(s,to) +

min(t,s) .

ft Manama-03' (or (mm-r

o

where min(t,s)

EiKS)B'(t)} =ft Q(r)dr . (2-1-8)

0



The Observation Model
 

The general form of the continuous observation model is the

stochastic differential equation

dy = h(x,t)dt + dv (2-1-9)

where y is an IL-dimensional observed quantity, h is a vector function

and v is a Brownian motion vector:

min(t,s)

E {v(t)v'(s)} = ft R('r)dt.

O

In the case of discrete-time measurements, the analogous model

of (2-1-9) is

y(th) = h(x(th), th) + v(th). ‘ (2-1-10)

The additive noise v is a white-noise sequence with covariance

B{v(th)v'(t£)} = R(th) 6 kt (2-1-11)

where 5M is the Kronecker delta function: 5a: l for ~12 = fl and

6M. = 0 for I2 f L In the case that h is not state dependent, (2-1-10)

may be written-as

y(th) = M(th)x(tk) + v(th) (2-1-12)

where “M is an IL x n matrix.

For the linear observation model and system model, a necessary

condition for estimating the state of the system is that the system

be observable [KALZ]. No equivalent theory exists for the general

nonlinear problem .

2-2. Extrapolation of the Conditional Density Function and Its Moments
 

The Markov, Brownian motion process x(t) satisfying the Ito

stochastic differential equation (2-1-1) has a probability density



function p(x,t) that is conditioned on the previous observations,

‘Y(tk) =‘{y(t1), ..., y(tk)}. Between measurements this conditional

probability density function, called the transitional probability

density function, p(x,t|Y(th)), is given by the Kolmogorov forward

 

 

equation,

, n n
épéiiil.= - g alp(x.t)fi]. §.z z azlpcx.t)[GQG']ij] 2-2-

t i=1 TXi i=1 i=1 ( 1)
BXiBXj

where fi is the ith_component of f and [GQG]ij is the ijth_element of

GQG'.. For a derivation and discussion of this expression and diffusion

processes in general, see [FELL 1101, DYNl, 1102, M310]. The initial

condition for (2-2-1) is the value at the prior measurement,

P(X:thl YCthD-

By the use of Ito‘s Theorem.A-3, the exact equations for the

extrapolation of the moments of p(x,t) between.measurements can be

determined. First, define the expected value of o in (A-ll) as

$CXCt)lth)) = E {¢(X)| Y(th)}=;(t(X) plx.t lY(tk)] dx (2-2-2)

Then the probability density, p(x,t|Y(th)) satisfies (2-2-1), and the

extrapolation of ¢ is

d$(x(t)lth) = wai-fmthn + §tr E {GQG'¢HIY(th)}dt,

th5t<th+1 (2-2-3)

from (A-ll) where each subscript denotes the partial derivative with

respect to x. The conditional moments are determined as follows:

for ¢(x) = x in (2-2-3), the conditional mean x(tlth), defined as

E{x(t)|th} is found from the solution of the differential equation,
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d;(tlth)
A

__..__.__. = E{f(X,t)lY(th)} = f(tlth):

dt

thf t < th+l' (2'2'4)

For ¢(x) = x x', the covariance matrix P(t|th), defined as

PCtlth) = E{[x - § (tlth)][x - Q (tlth)]'} (2-2-5)

is found from the solution of the matrix differential equation,

dP(tIth)

dt = E{Xf' ‘ X (tlth)f (tlth)}

+ E{fx' - f (tlth)x '(tlth)}

+ E{GQG'}, ths t <th+l (2-2-6)

Higher-order moments could be developed but will not be derived

here. The solution of (2-2-4) and (2-2-6) can only be approximated

for the general nonlinear estimation problem since an infinite number

of moments are needed to solve for p(x,t) [KUSl, KUSZ].

2-3. Update of the Conditional DensityFunction and Its Mbments

In the discrete-time filter, the other part of the filtering

problem is to compute the change in the conditional probability

density function.when additional information is available in the

form of a new measurement. This aspect of the problem is discussed

in various reports, [COXl, JAZl].

By the use of Bayes' rule, the probability density function

immediately after the measurement can be written as

p[x(th) Imp] = p[y(t,Q |x(t,,)1p[x(t,,) mtmn

pTY(tkllY(th_1)]

(2-3-1)
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where

p[Y(th)|Y(th_1)] =](p[y(th)lx(th)1plxcthiIY(t,_1)1dx(th) (2-3-2)

and

P[Y(tk)lx(th)] P[Y(th) ’ h(x(th), th)]

= p[v(th)] (2-3~3)

which is a Gaussian distribution of zero mean and covariance given

by (2-1-11).

The expected value, x(tklthl is the conditional mean of the proba-

bility density of (2-3-1). MUltiplying by x and integrating over x

yields

;(tklth) = Eixct,)pty(t,)lxctk)1Itg} (2—3—4)

E{p[Y(tk)IX(tk)]|té}

 

where the superscript minus indicates a value just prior to the

measurement. The conditional covariance matrix P(th|th) is obtained

from the second moment of (2-3-1) and by expanding (2-2-5),

E{x(th)x'(th)p[y(tk)|x(th)]lté}

E{p[Y(tk3IX(th)]lté}

Pulzltlz) = (2-3-5)
 

The higher-order moments are not needed for this work and are

thus omitted. As was the case for the conditional moment extrapola-

tions, the updated moments depend on an approximation to solve for the

general first and second moments (2-3-4) and (2-3-5) since these

require the solution of the conditional probability density. The

approximate solutions are given in Section 4-1.

2-4. The System Disturbance Medel
 

In the case that the state model is of the form (2-1-5), then

the state covariance matrix can be written as
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P(t) = 6(t,to)P(to)G'(t,to) +th’6(t,t)B(T)Q(t)B'(r)d'(t,r)dt

t

0

(2-4-1)

In this case, a discrete-time equation.may be used to model (2-1-5):

x(th+1) = d(tk+1,tk)x(th) + u(tk) (2-4-2)

This discrete representation can be justified by defining u(th) as a

white noise sequence with covariance matrix,

E{u(th) u'(tj)} =‘V(tk) 6h! (2-4-3)

where

tIt+1
V(th) = f C(th+1,T)B(T)Q(T)B' my (th+1,'r)d‘r (2-4-4)

t

h

A.numerical method of solving (2-4-4) is given in Section 3-2. For

purposes of digital computation, the simulation of (2-4-4) requires

a multivariate Gaussian distribution generator. The equations for

generating this distribution are given in.Appendix B.

.Although the above approach is straightforward, it avoids the

difficult paradoxes encountered by Bryson.and Ho [BRYl] and Bierman

[BIEl] in transforming from the continuous-time to the discrete-time

model.

Another method of approximating (2-1-5) is to write the

discrete-time equivalent as

x(t + At) & (I + A(t)At)x(t) +\/Zt B(t)u(th) (2-4-5)

where At is small and u(th) is a white-noise sequence with covariance

matrix Q(th), the same as the cov {w(t)}. The contribution of the

disturbance in (2-4-4) is
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t + ‘

V(t ) =Ith 15(tk+1,T)B(T)Q(T)B'(1)5'(th+1,T)dT

h

i B(th)Q(tk)B'(th) At (2-4-6)

for tk+l - th+flt > 0.

The contribution of the disturbance in (2-4-5) is

V(th) = mm B(t)u(tk)u'(th)B'(t)\/At}

a B(tk)Q(tk)B'(th) At (2-4-7)

and therefore, for small enough value of At, (2-4-5) is equivalent at

each At interval to its continuous-time counterpart (2-1-5). This

approach may be considered where a sample function is desired with a

larger number of samples than in (2-4-2) and where the computation of

(2-4-4) is not necessary.

For a more general utilization of the property of discrete-time

modeling of continuous-time processes, consider (Z-l-l),

dx = f(x,t)dt + G(x,t)dB.

The discrete-time model is written as

x(t + At) = x(t) + f(x(t),t)At +\/A—t G(t)u(th) (2-4-8)

where u(th) is a white-noise sequence with covariance matrix Q(th)°

The contribution of the disturbance in (2-4-8) is the same as in

(2-4-7).

If the covariance matrix of the 8 process is given by (2-1-8),

then by Theorem.A-2,

E{ G(x,t)d3}= 0 (2-4-9)

At
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and

E{j;tG(x,t)dB[ fAtG(x,t)dB]' =

I G(t,x)Q(t)G' (t,x)dt (2-4-10)

At

C(t.X)Q(t)G' (tut) At

for small At (i.e., the interval At must be small with respect to the

time rate of change of G and Q). Once again, the simulation generator

of this Gaussian multivariable disturbance is given in Appendix B.



III. Discrete Filtering of a Linear Continuous System
 

Since the conception of linear filtering theory in 1960, a great

amount of effort has been put forth, both in setting the theory straight

and in applying the theory to practice. 'Within a relatively short

period the theory was applied in space guidance and navigation programs

such as Ranger, Mariner, and Apollo. In addition, applications have

'been made of linear filtering theory to aircraft guidance, industrial

process cohtrol, and other detection problems. In most cases, it is

necessary to linearize the system differential equations about the

nominal state in order to apply a linear filter.

The explicit problems of deriving the optimal linear filter,

showing its stability, and proving asymptotic convergence are solved

[KAL1, KALZ, KALS, BUCl]. The problems remaining in linear filtering

theory are related to process modeling and filter mechanization.

The first part of this chapter is concerned.with developing the

equations for discrete-time filtering of the continuous-time system.

Next, some methods that have not appeared in the literature are

presented for mechanizing the linear filter. Then an example of an

application of linear filtering theory to a steam-turbine generator is

presented. Finally, a method for compensation for modeling errors is

presented.

15
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3-1. Linear Filtering_
 

The linear set of differential equations that describe the linear

or linearized system may be written as

x = A(t)x + B(t)w I (3-1-1)

where A(t),is an integrable n x n matrix, B(t) is an integrable n X m

matrix and w is an m-vector white noise process with covariance

Q(t)6(t-r). .Although the white noise process is only a formal repre-

sentation of (2-1-4), its use is justified since in the solution of

(3-1-1), w(t)appears in the integral only and its integral, the

Brownian.motion process, is a well-defined function. The linear

?

observation process consists of sampled data of the form

V(tk) = MCtthCth) + V(tfz) . (3-1-2)

wherelM(th) is an.t X n linear non-invertifile transformation and v(th)

is an t-vector of a Gaussian white noise sequence with covariance

R(th). It is assumed that the system is observable.

The linear filtering problem is this: given initial estimates of

the state x(to) with Gaussian distribution and of P(to), the covariance

matrix, determine the mdnimum-variance recursive estimate of the system,

(3-1-1) and (3-1-2). Slightly different premises are assumed for the

discussion in Section 3-4.

With the modifications given in Section 2-4, the linear discrete-

time filter for the linear continuous-time system fits the framework

as derived by Kalman [KALl]. For the linear problem, the process x is

Gaussian and only the first and second moments of (2-2-1) and (2-3-1)

are needed, namely, the linear version of (2-2-4) and (2-2-6) for

estimation extrapolation and (2-3-4) and (2 3-5) for estimation update.
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The linear filtering equations are given here without proof since

the derivation is commonly found in the literature and only a few steps

are required to reduce the above equations. Between measurements, the

state estimate and covariance matrix are

x(tkltk_1) a 0(th,th,1)x(th_1]th_1) (3-1-3)

P(tk|th_1) = 0(th,th_1)P(th_1Itk_1)¢'(tk,th_1)

+- fth w(th,t)'B(t)Q(t)B' (tw (thaw (3-1-4)

th_1

where o is the system transition.matrix. At the time of the measure-

ment, the state estimate and covariance matrix are

sent.) = ictklth_1) + Gummy.) - Mctkfiohltmn (3—1-5)

P(thlth) = P(th|tk-1) - G(th)M(th)P(thlth_1) (3-1-6)

where the filter gain is

ccth) = P(t,,lth_1)M'(tk)[M(tk)P(tk|th-1)M'(th) + Rctpl’l.

(3-1-7)

These five equations are the optimal linear filtering equations.

These equations are closely related to the maximum likelihood estimate

and the stochastic approximation method as shown by Ho [m1] .

When the system parameters are known exactly the solution of the

linear filtering equations is straightforward. However, the real-time

computer requirements may be exorbitant and unfeasible. The methods

discussed in the next section due to Frame and Needler [FRAZ] are

useful in decreasing computational time and increasing accuracy. In

the case that the system parameters are not known, the methods dis-

cussed in Section 3-4 can be used to correct for modeling errors.
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3-2. State and Covariance Extrapolation
 

Minimizing computational time and maximizing computational

accuracy are crucial problems in.mechanizing an on-line filter for

filtering a complex process since these two criteria constrain

the filter capability in terms of (1) setting a lower limit on

sampling rate, (2) allowing local iterationsifor linearization of the

extended linear filter, and (3) allowing the system model to be suf-

ficiently complex to adequately model the physical system.

Two important aspects in both real-time system estimation and

control and in digital simulation of the same are extrapolation of the

state of the system.and extrapolation of the covariance matrix of the

system. In the case that the system may be described by (3-1-1) where

A and B are either time invariant or can be approximated as time

invariant over the time period of interest, then the computational

methods described in the sequel are useful in state and covariance

extrapolation between measurements.

The solution of (3-1-1) can be written as

t

x(t) = @(t-to)xo + Jr ¢(t-t)Bu(t)dr (3-2-1)

0

where the transition matrix ¢ is

<i>(t) = e“ = [235 Ahth/Iz! (3-2-2)

and to is taken to be zero.

Using the transition matrix to evaluate the transient response of

a linear time-invariant unforced system was described by Liou [L101]

and others [BRA1, MMSI]. Ganapathy and Rao [GAN1]* pointed out that

*For corrections to [GANl], see [RAOl].
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the A.matrix has to be raised to successively higher powers to allow t

to be taken over a sufficiently large interval. They in turn show that

eAt can be expanded in an infinite series of scalars instead of matrices

and that.An'1_is the largest power of.A.that is required.

An alternative method requires slightly less computation and is

possibly more straightforward than [GANl]. This new method utilizes

the conjoint algorithm to compute the coefficients d1,...,dn of the

characteristic polynomial of A,

n-l +n

A + dll . + d A + dn = 0 (3-2-3)

n-1

and the constant coefficient matrices, B0,...,Bn of the conjoint

matrix, defined by

n-1 n-2

B(A) = adjoint (A1 -.A) = B A + B A + ... B A+-B

° 1 n-2 n-1

(3-2-4)

where Bb = I and Bn = B_1 = 0. The conjoint algorithm described by

Frame [FRAl] yields the relationships,

Bk = AB}?1 + th (3-2-5)

db = -(1/h)tr.A Bh-l (3-2-6,

Define the transition matrix as

n-l

d>(t) = z B,z,(t) (3-2-7)

j=0 J J

where

0° j+h

z. t = z c 3-2-81( ) h ( )

 

12-0 (14-12)!



20

and the ck are determined so that

m

2: dc .=0form>0;c =d =1. (3-2-9

i=0 jM'j O O
)

Then s1nce Bn=B_1=0, and zj==zj._1 forj>0wehave

, n

¢(t) - 2 B z (t) (3-2-10)

' i=0 1 1

n

= 2 AB z(t)+ )3 doIzj(t)

j=1 j-lj i=0 j

n d n 00 m

=AZB. z. t+I-—2 Zd-c .t/m! 3-2-11

ill 1"]. 1."‘1( ) dt jao im=j J m'J ( )

or

5(t) =.A ¢(t) + I - o =.A ¢(t).l (3-2-12)

Also it should be noted that

n-l

<I>(0) = 2 BJ-jz (0) = BO20(0) = BGee; I (3-2-13)

j=0

Hence, we have the desired result:

¢(t) = eAt (3-2-14)

From equation (3-2-9) we solve for each Cl: using at most n multiplica-

tions:

m .

cm 121 djcm_,-j’ ms n

(3—2-15)

n

cm = - Z d c , m 2 n

j=1 Jm'J

By substituting these values of c into (3-2-8) and then solving

(2

(3-2-7), 9 (t) can be determined easily
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The computational savings are considerable when compared with

using (3-2-2) truncated at some value b = N for N large compared to n.

On the other hand, when compared to the method utilizing the Hamilton-

Cayley theory [GANl], the savings in computation are less. In par-

ticular, the exponential series requires (N-l) n3 + N multiplications,

the Hamilton-Cayley method requires n4 - n3 - %n2 + %n + ZnN + N

multiplications, and the above method requires n4 - n3 - an + n

+ ZnN + N multiplications. The number of divisions is negligible and

additions are proportional to multiplications. Computer results con-

firmed the method and the previously mentioned computational savings;

for the example discussed later in this chapter, the computation was

about 30% as great as the computation of (3-2—2).

Covariance Extrapolation
 

In the case that u in (3-2-1) is a vector-valued, zero-mean,

white-noise process, then to determine the covariance matrix of the

error in x(t), it is necessary to evaluate*

t

V(t) =I ¢(t-t)Q<I>'(t-t)dr (3-2-16)

0

where

Q = E{B u(t)u' (t)B'}.

*This same quadratic form also appears in optimal control problems

with a quadratic performance index over a finite time interval. See

[1.1351] and [LEVI].
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As pointed out by Levis [LEVI], errors are present from two sources:

truncation of the series expansion of ¢(t) in (3-2-2) and approximate

numerical integration.methods. In the following, the integral is

solved exactly and then a recursive relationship is derived to solve

for V'to the desired accuracy.

Theorem The solution of (3-2-16) where Q is a symmetric matrix is

 

given by

w t[2+1

V(t) = 2 G}, (3-2-17)

k=0 (h+l)!

where

Gh+1 = AG!2 + Gh'.A' (3-2-18)

and the value of Go is

G =Q. (3-2-19)

Proof: By substitution of variable, (3-2-16) can be rewritten as

V(t) = th @(t)Q¢'(r)dr (3-2-20)

0

After substituting (3-2-2) into (3-2-20) and integrating, the integral

 

becomes

m m . j+k+1

V(t) = )3 z AjQA'h t (3-2-21)

j=0 h=0 j!h!(j+h+l)

on k - _' [2+1

= z Z (kgAJQA',2 j t (3-2—22)

h=o i=0 1 (124-1)!
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If G!2 is defined as

h .

(3,2 = z (k)AjQA'M (3-2-23)

j=0

then

h1_.

GkA' = z (j)AjQA'M ,(3-2-24)

i=0

Replacing j by j-l in (3-2-23) it follows that

k+1h

Gk = 2 (j -1)A11QA'

j=l

k+1’1 (3-2-25)

and multiplying by.A gives

h+1 j h+1-j .

AG = 2 ('2 )A QA' (3-2-26)

k j=—l J1

Thus, the sum of (3-2-24) and (3-2-26) is

Iz+l

G = (
h+1 j_0

h+1)AjQA'M1'1 (3-2-27)

and by the symmetry property of Gk?

Gh+1 = AG,2 + (AGh)'. (3-2-28)

Thus, V(t) can be given exactly by

'0. tl2+1 -

V(t) = Z Gk

h=0 (h+1)!

 (3-2-29)

where Gk is given by (3-2-25) and G0 = Q.

Although the benefits from utilizing this method cannot be evaluated

analytically, the increase in accuracy and the savings in computation as

compared to numerical integration are considerable in the case of large
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t where it is necessary to have a large number of terms in the expansion,

as was realized in the following problemu *

3-3. An Example of State Estimation of a Steam Turbo-Generator System
 

A steam turbo-generator system is composed of a control system, a

steam boiler plant, and a turbo-generator. Disturbances occur to the

system in terms of a changing load caused by both changing consumer

power demands and changing power supplied by alternate sources. A

model can be constructed of the steam turbo-generator system by as-

suming that the coupling to other sources is relatively loose. See for

example, Kirchmayer [KIRl], Park [PAR1, PARZ], and Stanton [STAl]. Then

the system can be linearized around its operating point to obtain a

simulation model. The problem at hand is to estimate the state of the

system using this model. The model can be written in the form of

(3-1-1) and (3-1-2):

x = Ax + Bu

y = Mx + v

where in (3-1-1)

  

-1/T1 o o o Kl/Tl

1/T3 -1/T3 o o o

A = o /T3 -1/T o o ,

o KZ/i‘4 (1-eel/$14 -l/T4 o

L o -D/M l/M

0 ‘1

o

B = o ,

o

L 1 .1  

*In the following example, less exact numerical integration required

approximately twice as much computation time as the above method.
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and u is a random disturbance. The reference input is neglected for

purposes of this study. An explanation of the physical constants

appearing in the A matrix and M matrix as well as their numerical

values are given in Appendix C.

From a study of the random disturbances caused by changing loads,

it was determined that a random-walk.process would be an acceptable

model of this phenomenon. Since it can be shown [PAPI] that the

random-walk process is a limiting form of the Brownian motion process,

the Brownian motion process observed at discrete-time intervals will

exhibit the stochastic characteristics of the random-walk process.

Thus, in turn, the noise source can be pre-whitened by integrating a

white noise source to yield the Brownian motion process. The addition

of one state variable is necessary to account for the disturbance. The

state can be augmented with the differential equation,

16 =‘w

where W'is a white noise source. The augmented A matrix and B matrix

now become

”-1/T1 o o o icl/Tl T
1/T3 -l/T3 o o o

A = o l/T5 -l/T5 o o ,

o

o

o

K/T (1-K2)/T -l/T o o

2o 4 o4 -D/M4 l/M l/M

o o o o o   J

H
O
O
O
O
O

O
C
O
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In Fig. 3-1, a block diagram.is shown of the overall system where each

component is represented by its Laplace Transform system function.

An acceptable model of the observation process depends on the

assumptions concerning the measurement devices. One choice is to

observe frequency deviation, x5, and frequency rate deviation, x5.

Thus, the observation matrix is

M=[0 o o l/M D/M 1m]

0 0 0 0 l 0

The noise source V(tk) can be modeled as a two-vector white-noise

sequence since the measurements are refined to the point that bias and

other gross errors are eliminated. A

The digital simulation'was performed using parameter data from

[PARl]. In addition, representative values were taken for the measure-

ment noise and system disturbance statistics. These values are given

in Appendix C.

The digital simulation of the steam generating plant including

the random effects, and the discrete-time filter demonstrated the

effectiveness of filter applications in problems of this type. By

using the filter as mechanized in Sections (3-1) and (3-2) it was pos-

sible to observe the estimation error time-history for various noise

sample functions. An improvement on simulating sample runs is to

study the estimation error dispersion by using the filter covariance

matrix of estimation error, starting with a large initial variance.

In this way, the need for performing Mente Carlo studies is obviated.
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The tradeoff between improved filter performance and the following

factors can be evaluated: . I

l.~ The required sampling frequency which limits modeling complexity,

determines the maximum.computer cycle time, and determines measure-

ment transducer required sampling rates.

2. The quality and quantity of measurements that are required.

3. The effect of system disturbances.

Many simulation runs were performed while varying model parameters,

Such as sampling rate, the measurement accuracy and the magnitude of

the disturbance variance. A representative error-study time-history is

shown in Fig. 3-2.

In summary, the application of a Kalman filter to a steam-turbo

generator plant was simulated and the results were judged to be suc-

cessful. The methods proposed in Section (3-2) were used. The study

should be extended by evaluating the effect of (l) more refined model

development, (2) more exact noise and disturbance statistics, and

(3) application of a closed-loop optimal controller for minimizing

output frequency error. An alternative approach to improved process

modeling is presented in the next section.

3-4. The Problem of Filter Divergence
 

Early in the study of filtering applications, it was found that

although in theory the filter estimates converged asymptotically to the

state variables, in practice the filter estimates would diverge from

the state variables, especially where modeling errors were large relative
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to system disturbance statistics. This outcome may be a consequence of

modeling error in any of the parameter values or covariance specifica-

tions [SCHl]. Since the filter has no measure of the consistency of

the estimation error covariance and the actual estimation error, it 15

possible for the covariance matrix to indicate a much more accurate

estimate than is actually being performed. The filter divergence is a

result of later observations being very lightly weighted since the

covariance matrix of the estimation error has converged to a smaller

quantity than warranted. .

Several approaches have been tried on the problem of filter

divergence. One approach is to augment the state vector with the model

parameters that are only approximately known [SMIl]. By estimating

these uncertain.parameters, this cause Of filter divergence is reduced.

The accompanying disadvantage is that a larger state vector leads to

greater computational requirements and_the possibility of establishing

an unobservable system. Another approach is to artificially include

a sufficiently large system disturbance covariance such that the filter

will not converge improperly [FITl]. Naturally, a good deal of modeling

and simulation needs to be performed to insert proper disturbance

statistics. One more approach suggested in [BERl] is to prevent the

determinant of the covariance matrix from decreasing below a given

reference value. A.parameter is chosen such that after the determinant

has converged for this length of time, the covariance is scaled so

that the determinant remains constant and the covariance matrix does

not go to zero.

With these methods, adjustments must be made strictly on the basis

ofTa-priori_knowledge obtained from measurements and simulation studies.
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For this reason, methods are desired that are adaptive to the actual

estimation environment during the filtering process. 1

».As pointed out in [JAZZ], the filter divergence problem can be

judged by comparing the statistics of the actual measurement errors

with the covariance matrix of measurement errors. The only measure

of divergence available in the filtering problem is to compare the

actual measurement, y(th),'with the measurement estimate y(th) based

on the previous state estimate; namely, the measurement estimate

error e(tk) is A

B(th) = V(th) ‘ E{Y(th)|Y(th_1)} (3-4-1)

or 1

903k) = V(th) ' M'(tk)x(thlth-l)' ’ (3'4‘2)

The measurement estimate error covariance matrix 2(th'th-1) is defined

as

Z(th]th_l) = E{e(th)e'(th)} (3-4-3)

M(th)P(thIth_1)M'(th) + R(th) (3-4-4)

Since the mean measurement error estimate E{e(th)} is zero, it is pos-

sible to judge the consistency of the filter covariance with the actual

errors in the measurement estimate by comparing (3-4-4) with the statis-

tics of e(th)e'(th).

It is further shown in [JAZZ] that in the case of no system

disturbances and scalar measurements, a disturbance covariance can be

artificially created to adapt the identical noise inputs to the

statistics of the error in the measurement estimate. By maximizing

the probability density function p[e(th)] with respect to a scalar q
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where qI represents the system disturbance, the most probable dis-

turbance is determined at each estimate. '

Another approach suggested by Andersen, et a1.,,[AND2] is to

obtain estimates of the state x, the transition matrix o, the input

covarianCe matrix V, and the noise covariance matrix R. The assumptions

are that the system is discrete, the parameters ¢, V, and R are constant,

the random sources are zero-mean, independent, and identically distri-

buted, but probably most importantly, the obéervation matrix M is‘

invertible, that is, each state variable is directly observable through

noise. .Although this latter restriction may be severe in many cases,

it should be noted that in a class of system applications this technique

may be valuable in taking adequate experimental measurements to ascer-

tain the true values of 0, V, and R and then using these values for

real-time estimation problems--assuming the other requirements are

satisfied.

A different approach is used in this thesis to handle the problem

of adapting the estimation procedure to the measurement data. This

proposed approach has applications in filtering linear systems with

parameter uncertainties; however, it has been used more extensively in

the non-linear filtering problem. Thus, the discussion of non-linear

adaptive filtering is deferred until the next chapter.



IV. Approximate Filtering of NOnlinear Systems
 

The subject of this chapter is discrete-time filtering of non—

linear continuous-time systems. The case’of system disturbances and

noisy measurements is covered. A second-order nonlinear filter is

developed, that is similar to the one suggested by Athans, et al.,

[ATHZ] but is extended to the case of system disturbances. Then a new

technique is developed by the author to adapt the filter to the measure-

ment statistics such that those statistics and the filter covariance

estimates are consistent.

4-1. Nonlinear Filtering_
 

The original linear filtering theory was adapted to nonlinear

systems by linearizing the system about the nominal value and using the

"first-order" or "quasilinear filter” as suggested in [FRIl, MOWI, SCHl]

during the early 60's.

By the middle 60's, the problem of nonlinear filtering was being

formulated [KUSl, KUSZ, BUCZ]. The exact equations for the propagation

of the state conditional probability density function conditioned on the

observation sequence are given by (2-2-1) and (2-3-1). However, an

infinite number of moments is required to realize the exact solution of

these equations. Thus, considerable effort has been extended to obtain

an approximate filtering solution to (2-2-1) and (2-3-1). These efforts

33
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include [KUS3, SORl,.ATH2, JAZl].

In this chapter, the state model is assumed to be of the form,

1 = f(x,t) + G(x,t)w (4-1-1)

where the system dynamics function f is an n-vector which is twice-

differentiable with respect to x and once differentiable with respect

to t, the input matrix G(x,t) is a continuous matrix function of x,t

and as before, w is the zero-mean'white-noise disturbance with covari-

ance Q(t)6(t-T). The observation equation is of the discrete form,

V(th) = h(X(th)) + V(th) (4-1-2)

where the r vector h is also twice differentiable with respect to x

and once differentiable with respect to t, and as before, V(tk) is a

white-noise sequence with covariance R(th)5hg° And, finally, x(to) is

assumed to be a random vector with known Gaussian distribution.

Some definitions are needed to further expound the nonlinear filter.

The Jacobian matrix of f(x) is defined as A(x) where the ijth_entry of

A is

3f.

Ali-j. =3—Xj‘ ’ 4-3.1 = 19'.'°9n‘ (4-1-3)

Define the second partials of f as the Hessian matrix, F£(x) for

Z = l,...,n, where the ijth_entry of F3 is

32f

F£(x).. - —__£;_. 2,1 = 1,...,n. (4-1-4)
L1 - axiaxj

For the output function h(x,t), define the output Jacobian matrix

as M(x) where the ijth_entry is

af- .
o. = A ' = 000 = .00 4- -5

ML] 8x, 4' 1’ 3m, .1 1’ 9n ( 1 )

J
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Define the second partials of h as the Hessian matrix, H£(x) for

2 = l,...,m, where the thh_entry of H1 is

32hz

H£(x),, = (4‘1‘6)

Lj Axiaxj

 

The function f may now be expanded in a Taylor series about the condi-

tional mean R,

f(x) é f(;) + A(x)(x-;) + %.';1¢i(x-x)'Fi(x-;) ' (4-1-7)

&=

where ¢i is the basis vector, ¢t = [0...1...0]' with the one in the

ith_row. Likewise, the function h may be expanded to give

h(x) é h(i) + M(SE)(x-§) +%_— .314)i(x-x)'Hi(x-§). (47-1-8)

g:

Similarly, G(x,t)Q(t)G'(x,t) can be expanded about i to give an approxi-

mation for the term E{GQG'}.

Terms that are higher than second order are neglected in these

expansions, although they could be included, at least in theory. In

practice, the error distributions are assumed to be Gaussian with zero

mean; thus all odd-numbered moments vanish [WOZl], and the fourth-order

moments may be decomposed into second-order moments [ANDl]. However, it

should be noted that the addition of higher-order terms does not greatly

affect the filtering equations for small estimation errors since they

converge to zero faster than the lower-order terms as the state estimate

converges to the state [SORl]. For larger errors, another approach

is suggested in Section 4-3.
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For the nonlinear filter, the continuous-time dynamic system can

not be transformed to an equivalent discrete-time model as was the case

for the linear system by using (2-4-2) through (2-4-4). The differen-

tial equations for the extrapolation of the system state estimate must

be solved numerically.

The extrapolation equations are found by using the expansions for

f in (4-17) and for E{GQG'} in the moment equations (2-2-4) and (2-2-6):

1:: A In A
(--

x f(x,t) + §T§1¢L tr[FL(x)P(t]tk_1], tk-ls t< t,2 4 l 9)

P(t|th_1) = A(§)P(t|th_1) + P(tlth_1)A'(§)

+ E{G(§)Q(t)c'(§)}, tk_1< t < th (4-1-10)

The updated equations for the nonlinear filter are found by using

the expansion for h in (4-1-8) in the moment equations (2-3-4) and

(2-3-5):

S‘ceklth) = icthltm) + G(tptyep - hole,» -

m A

'2’Lil‘bitrmfixfiknfltkIth)]]
(4-1-11)

P(th|tk) = P(th|th_1) - G(th)M(;(th))P(th|th_1) (4-1-12)

where

ccth) = Pcthltmmv(ing)[Macthnpcthltflm'(Slap) I

+ R(tk) + 0(tk)]'1 (4-1-13)
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The term 0(th) can be approximated as

_. 1 '" : ,
0(tk) - -4 221% tr[H£(x(th))P(tkItk_l)]

m ..

£51453 tr[H,-(X(th)‘)P(thlth_ID] (4-1-14)

when only first- and second-order terms are considered, or it may be

approximated as

Oij(th)_= %-tr [Hi(;(th))P(thlth_1)Hj(;(th))P(thlth_1)I (4’1‘15)

(0 is the £jth_entry of 0) when the fourth-order central moments are

41'

considered. These updated equations are derived in [ATH2, SORl, and

JAZl], only in slightly different form. The relative performance of

linear and nonlinear filters can only be judged by experimental results.

In the following section, an estimation problem is chosen that has

nonlinearities that are widely varied by making changes in parameter.

values. In this way, the value of the nonlinear filtering equations

are tested.

4-2. An Example of a anlinear Filtering Problem
 

In [WAGl, GRUl, BERl, WISl, ATHZ], the problem of reentry trajectory

estimation is discussed. Typically, both the reentry system dynamics

and the observation function are severely nonlinear and accurate esti-

mates are difficult to achieve. In this section this problem is dis-

cussed and the results are given for a particular example using first-

order and second-order filtering.
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The Reentry Prdblem
 

It is assumed that the force of gravity is negligible when compared

to the aerodynamic effects. Thus, the system dynamics for vertical

motion of the reentry body can be written as [ALL1, ATHZ]

 

Sc =-x .

1 2 (4-2-1)

- _ CDAo 2

x2- 2m X2

where x1 is altitude, x2 is velocity, CD is the drag coefficient, A is

forward area, p is atmospheric density, and m is mass. The_atmospheric

density is assumed to be an exponential function of altitude,

o = po '2'“1 (4-2-2)

_ -1 .

where y = 5 x 10 5 ft . Since the ballistic parameter CD Ap/Zm 15 not

known it can be estimated by setting

X3 = C1) ADO/2m

and augmenting the state equations such that

X1 = 'XZ

x = -x2 x e’YXl (4-2-4)
2 3

x3 = 0.

It should be noted that no system disturbances are present in this

formulation.

The observation equation consists of a scalar radar range measure-

ment taken from an altitude H and a lateral displacement M. The discrete

measurements are contaminated with additive white noise so that the

expression for the observations is
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.— 2 2 1/2 _

V(tk) " [M + (x1(t’2) ' H) ] + V(th) (4'2‘5)

where V(th) is assumed to be zero mean with covariance

' E{V(th)V(t£)} = ROM.

For simulation purposes, numerical values were given to the system

parameters. Although a great number of cases were tried, a typical

case with rather severe nonlinear effects was to offset the radar such

that the lateral range isiM = 100,000 feet and the radar altitude is

H - 100,000 feet. This evaluation produces the maximum measurement

nonlinearity simultaneously to the maximum deceleration nonlinearity.

The measurement uncertainty was chosen as R = 10,000 feetz. Measure-

ments were assumed to be taken at the rate of one per second.

The initial state vector was chosen as

x1(0) = 300,000 feet

x2(0) = 20,000 feet/second (4-2-6)

x3 (0) = 10'3 feet.1

Initial values for the state estimates were

§1(0) = 300,000 feet

A

x2(0) 20,000 feet/second (4-2-7)

5 1
3 x 10' feet-523(0)

In addition, the initial estimates were assumed to be uncorrelated;

thus the initial state covariance matrix is diagonal with elements

p11(0) = 106 feet2

P22(0) = 4 x 106 feetz/second2 (4—2-8)

= 10‘4 feet'2p33(0)
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These particular values are identical to those used by Athans et a1.

[ATHZ] and.make a rather close comparison possible for computer simula-

tion studies. In addition, by varying the values of H and M as well as

the above initial values, a wide range of nonlinearities is effected.

Reentry Simulation Results
 

As stated in [ATHZ], "The validity and relative advantages and

disadvantages of --- (ad hoc assumptions for nonlinear filtering) ---

can only be evaluated and analyzed based on the evidence of real or

simulation results for particular systems." 'With this viewpoint, a

large number of simlations were performed for the nonlinear problem of

reentry estimation.

Since the estimation error depends on the particular random noise

sample function, it was necessary to perform a Mente Carlo study. As

opposed to the linear filtering case, the RMS error can not be assumed

to be identical to the square root of the appropriate covariance matrix

variance term since the nonlinear filter produces only approximate
 

minimum-variance estimates and covariance estimates. For this reason

several different statistics were found from the Monte Carlo study,

including the average of the estimation error, the average of the

absolute value of the estimation error, and the RMS estimation error,

defined as

N A

map = [11V ,zlcxcth) - x(tpfif” (4-2-9)
L:

where RMS(tk) is a vector. The value of N, the number of trials, was

chosen to be twenty.
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The results of the Monte Carlo study using the previously given

initial conditions are depicted for the linear filter in Fig..4-l and

for the second-order filter in Fig. 4-2. For this particular simula-

tion, the absdlute value of the average error and the RMS error can be

Compared to results obtained by.Athans et al. [ATHZ].' Overall the I

results are similar, but it is interesting to note that whereas both

the average and.RMS final values of errors are within 10% of the

respective values obtained in [ATHZ] the average values have a much

smoother shape, indicating that more cancellation is taking place in

the averaging process than in [ATHB].

Several aspects of the Mente Carlo study of the linear and non-

linear filtering problem should be noted.

1. The second-order filter was more accurate than the first-order

filter, which tended to diverge as shown in the RMS curve of Fig.

4-1.

2. The effect of the second-order terms in the state estimate update

equation (4-l-ll) and the covariance update equation (4-1-12) were

nearly negligible whereas the state estimate extrapolation non-

linear terms (4-1-9) produced a significant improvement in the

estimation accuracy.

3. Both the linear and nonlinear filter accuracy appeared to be

virtually independent of the difference between computing with

regular or extended precision.

4. Although results are not shown for velocity x2, and ballistic para-

meter X3, the contrast between linear and nonlinear filtering

parallels that for altitude in that the second-order filter shows a

marked improvement in estimation accuracy.
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5. Neither filter exhibited an RMS error that converged as rapidly as

the corresponding square root of the diagonal term of the covariance

matrix, although the nonlinear filter reduced the discrepancy as

compared to the linear filter.

Other comparisons may be made but they are reserved until the next

sections where other factors of filtering theory and filter divergence

are discussed.

4-3. Adaptive Filtering for NOnlinear Systems
 

In the customary development of linear and nonlinear filtering, it

is assumed that the system parameters--state coefficients, initial state

estimation covariance, measurement coefficients, system disturbance

covariance, and measurement noise covariance--are known precisely for

the entire filtering time interval. In addition, it is assumed that

computation routines are exact, and finally, in the case of nonlinear

filtering, that the approximate filtering equations are accurate enough

that the Gaussian assumption for the estimation error distribution is

satisfactory.

In a large class of filtering applications these assumptions are

not warranted. The initial conditions may not be available or the

measurement noise and system disturbance covariances may change unex-

pectedly. And of course, the inaccuracies of numerical solutions and

using only approximate filtering must be considered.

It was shown in Section 3-4 that most approaches to the problem of

filter divergence are not on-line solutions--they depend on prior

information to the filtering process. Although the method suggested by
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Jazwinski [JAZZ] is on-line, it applies to linear systems with scalar

measurements and without system disturbances. In addition, all of these

filter modifications have the effect of reducing the rate of convergence

since the state covariance matrix is a priori prevented from converging.

As reported in Denham and Pines [DENl] and Wishner [WISl], another

- approach to filtering a nonlinear system is to use the first-order

filter and perform iterations at the point of measurement, called the

iterated extended Kalman filter. Simulation results [WISl] have shown

that iterations are as effective as second-order filtering in reducing

divergence. Hewever, it should be pointed out that iterations increase

the computational load and limit the measurement sampling rate. For

this reason, in many systems, the better solution is to use the non-

iterative first- or second-order filter and to use a faster measurement

sampling rate. Thus, a requirement that is placed on divergence

correction techniques is that the computation load must not be signifi-

cantly increased.

As is the case in the linear filtering problem, Section 3-4, the

only measure of filter convergence performance is to compare the

statistics of the extrapolated measurement estimation error with the

covariance of the measurement estimation error. In the nonlinear case,

an approximation must be used to obtain the extrapolated measurement

estimation error,

ecth) yep - ictk)

ecth) -- yep - II(§(t,,))§<(t,It,,_1). (4—3-1)
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The measurement eStimate error covariance matrix 2(thltk'1) is defined

as

zcthlt ) -E{e(tk)e' (th ‘ ‘ (4-3-2)
k-l

= M(§(tk)P(thlthf1)M'(§(tk)) + R(th)

The statistics to be used for the extrapolated measurement estimation

error are defined to be of the form

N

8(th) = .20 aie(th-L)e'(th ) (4-3-3)

"4,

where N is a constant and “L is a weighting sequence on the outer

product of the past extrapolated measurement estimation errors such that

N

2 o- = 1.

i=0 i

In the case of ideal filtering, tr 5(th) should be comparable to

tr 2(tklth-l)’ that is, for Gaussian distribution of 5(th)’ tr 8(th)

should be less than tr 2(thltk-l) on an average of 68.2% of the

measurements since the diagonal elements of Z are variances. In the

case of filter divergence, 8(th) will be on the average large compared

to Z(th|tk_1) and the above will not hold.

New that this manifestation of filter divergence is realized, it

must be decided how this quantity is to be utilized to adapt the filter

to the real-time measurements.

The author's approach is to observe that the divergence of the

filter represents the fact that 2(thlth-l) has converged to a smaller

value than warranted by actual data, and this in turn means that the
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state covariancelmatrix P(th|th_1) has converged to a smaller value than

warranted, which has the effect of diminishing the filter gain matrix

G(th). The discrepancy in the diverging filter can thus be alleviated

by using a gain correction.matrix Gc(tk) to compute the adaptive filter

gain Gash).

Ga(th) = Gc(th)G(tk) (4-3-4)

Then the updated adaptive state estimate is

xc(thlth) = x(thltk-l) + Ga(th)e(th) (4-3-5)

The gain correction matrix is selected such that the corrected

error

ec(th) = y(tk) - M xc(tk]th) (4-3-6)

is driven toward zero.

Consider the case of a scalar system. If the state variance has

converged incorrectly to a value P(th)/C(tk) where C(th) is the diver-

gence factor, then the gain G(th) is

act-,2) = PctpM/(MZP0:,,) + cctpRcthn (4-3-7)

and the gain correction should be

M2P(th) + C(th)R(th)
 Gc(tI2) = 2 (4-3-8)

M p t + R t( I2) ( k)

A good measure of the divergence C is

S t

C(tlz) = ( (2) (4-3-9)
 

z t( hltk'l)
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:Thus, for the scalar system, the gain correction can be computed exactly

based on the measurement error statistic S(tk). However, it should be

'observed that the value of S(th) is dependent upon the measurement noise

sample function and that it is only an approximation to the true measure-

ment eétimation error variance. Therefore, a reasonable approximation

to (4-3-8) is

8(th)

N
|
I
—
I

(4-3-10)
 

Gc(th) =

2(thlt

h-l)

The general vector filtering problem.may be handled identically to

the above except the case of multivariable measurements requires sOme

modification. One modification is to reduce the measurements to scalar

measurements processed sequentially in time. Another approach that may

be considered is to use cross-correlation to identify those components

of the state vector that are correlated with the diverging measurements

estimates and apply the gain correction in accordance with the strength

of the cross-correlation.

An important property of the diverging filter is that the diver-

gence implies that the gain matrix is too small due to the unwarranted

convergence of the state matrix. Thus, by simply testing a criterion on

divergence and increasing the gain by an appropriate factor, such as

(4-3-10), the filter adapts to the measurement errors without the need

to increase the state covariance.

In order to assure filter stability, the gain correction is tested

to assure that oscillations do not occur. The test is performed by

examdning the corrected measurement estimation error,
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ec(th) = y(tk) -:ch(th). (4-3-11)

If this error is of the same sign as e(th), then the adaptive

estimate is unaltered. However, if the corrected error is of the

opposite sign as e(tk), then the adaptive estimate has possibly been

over-corrected and to assure the filter will be stable, the adaptive

gain is reduced such that ec(th) = 0. Therefore, the adaptive filter

gain is

03(th) = Gc(th)G(th), e(tk)ec(tk) 3 0

]e(t )l ’ (4-3-12)

Ga(th) = h . Gc(th)G(th), e(th)ec(th) < o

16(tt11 * lec(th)l

Using this method of adapting the filter to the measurement esti-

mation error has the advantages that (1) it is not necessary to increase

the state covariance, which reduces or obviates filter convergence,

(2) it can be used even in the case that system disturbances are present,

and (3) the increased computational load is negligible with respect to

the normal amount of filtering computation.

1-4. .A Discussion and an Example of Adaptive N0nlinear Filtering
 

.A criterion to establish the performance of a filter is to compare

the RMS error of the estimates obtained by a.Monte Carlo study with

the square root of the variance obtained from the filter state covari-

ance matrix. But first, it is necessary to establish the validity of

the approximate filter covariance terms.
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Although the accuracy of the covariance matrix cannot be explicitly

demonstrated, on the other hand it can be seen that the differential

equations governing its extrapolation are smoother than those of the

state estimate. This point has been supported by experimental evidence

in several ways. I

l. The covariance matrix does not vary significantly over the runs

used in the Mente Carlo study.

2. The covariance matrix does not vary regardless of whether the first-

or second-order filter is being used.

3. 'The covariance matrix is independent of the integration accuracy for

'widely varying integration intervals.

Any of these factors would greatly affect the state estimation error,

but the constancy of the covariance matrix supports the hypothesis that

the approximate filter covariance is nearly exact.

~ In the case of the second-order filter it can be seen from Figs.

4-1 and 4-2 for the reentry problem that the RMS error is much closer

to the covariance matrix values than is the case for the first-order

filter. NOnetheless the remaining discrepancy is still large, and the

purpose of using adaptive filtering in the reentry estimation problem

is to reduce this difference.

Fig. 4-3 shows the altitude estimation error for the reentry prob-

lem and is equivalent to Fig. 4-1 except the linear filter is replaced

by the linear adaptive filter. The results are significantly improved

over the linear filter; in fact, the RMS error is even less than the

RMS error for the second-order filter is shown in Fig. 4-2. Thus, in

this particular problem, the benefit of using this adaptive filter is
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greater than that of using a second-order filter. Finally, the second-

order adaptive filter was mechanized and the equivalent altitude

errors are shown in Fig. 4-4. .As can be seen from the time-history of

the error curves, the discrepancy between.RMS and covariance-originated

terms for the adaptive second-order filter is reduced by a factor of

four as compared to the second-order filter in the latter part of the

run.

The four cases are summarized in the curves shown in Fig. 4-5. The

RMS altitude estimation error is shown for the linear, nonlinear,

adaptive, and non-adaptive filters as obtained from the Monte Carlo

studies. .

Several points should be noted with regard to these simulation

results.

1. .Although only x1, the altitude estimation error, is shown in Figs.

4-1 through 4-5, similar results were found for x2, the velocity

estimation error, and x the ballistic parameter, with regard to3.

relative filter performance.

2. The value of S(th) for these particular results was based on a

1 single sample of measurement error (i.e., N = l in (4-3-3)),

although similar results have been obtained for other trials, such

as an exponential weighting function oi in (4-3-3). The difference

in results was slight.

3. The effect of using extended precision and of including a greater

number of runs in the Monte Carlo study was negligible.
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4. The simulation results did not depend on the noise generator or on

the word length; the results obtained on the Michigan State Univer-

sity IBM 1800 computer were substantiated with further runs on the

Purdue University CDC 6500 computer.

In the above study, it should be noted that the assumed values of

initial state and initial state variance were consistent; that is, the

initial estimate of each state component was within one standard

deviation of the true state, also, the sample noise function was con-

sistent with the assumed noise variance, and finally, the integration

routine was virtually exact. Thus the only source for causing diver-

gence was the approximate filtering equations since the only inexactly

known parameter x3 was included in the augmented state. The other

possible uses of adaptive filtering become apparent when other system

inconsistencies are considered. For example, it was found that a much

coarser value of the integration interval could be used for the

adaptive filter without eliciting the problem of divergence that was

evident even in the second-order non-adaptive filter. Another example

is that even for the second-order filter it was found that the initial

state error could only deviate as much as three standard deviations of

the initial dispersion estimate for convergence to be assured and this

was for a relatively small initial state covariance matrix (4-2-8)

whereas for the adaptive filter a large initial error and covariance

matrix could be assumed without filter divergence.

Several aspects of adaptive filtering are worthy of further

examination. Using the statistic S(th) (4-3-3) leads to a very diffi-

cult question about what is the optimum weighting sequence
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“2’ L = l,...,N and what is the optimum value of N. It appears that N

should be small compared to the number of measurements that are required

for the system to transcend a sizeable nonlinear range; in addition, for

heavily weighted past data, the effect of previous gain correction on

the state estimate should be considered. The proper function for the

adaptive filter gain (4-3-12) is not analytically determined and ap-

parently must be determined empirically.

In summary, the relative performance of the nonlinear filter and

the adaptive filter as they are developed in this chapter is shown in

Fig. 4-5 for state estimation of the atmospheric reentry problem and

the increase in accuracy for either filter is demonstrated while the

best performance is obtained by both nonlinear and adaptive filtering.



V. Conclusions.
 

The purpose of this thesis is the investigation of problems

involved in state estimation of a class of dynamic systems.

5-1. Thesis Review
 

The initial problems include determining a suitable mathematical

model for the system and stochastic model for the external disturbances.~

Due to the universality of the Brownian motion proces$ for modeling

real-world phenomena, as well as the availability of useful analytic

results, the stochastic disturbance model is assumed to be a Brownian

motion process (Appendix A and Section 2-1). Due to the large class of

dynamic systems that can be modeled by a set of ordinary differential

equations, the differential model (Z-l-l) is chosen for the dynamic

system model. The output of the system is assumed to be sampled

periodically as is the case in digital computer monitors and optimal

controllers; therefore, the discrete-time observation model (2-1-10)

is used. And finally, it is assumed that real-time estimates are

necessary as in the case of an on-line controller; thus the system

state estimator is assumed to be recursive. The results and conclu-

sions in this thesis are based on these assumptions.

Using the above assumptions, the filtering equations are develcped,

based on Kolmogorov's forward equation (2-2-1), Ito's Theorem A-3 aid

Bayes' rule (2-3-1). The worth of the filter mechanization is determined

57
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by digital computer simulation; for this reason, the discrete-time

modeling of continuous-time stochastic processes (Section 2-4) is

derived.

In the case of linear filtering problems, two methods are pro-

posed for reducing computation time and increasing accuracy. An

example of state estimation of a linearized model of a steam turbo-

generator is given. And finally, methods are discussed for handling

the problem of filter divergence due to inexactly known models.

In the case of nonlinear filtering, the nonlinear filter is

developed and used to estimate the state of a reentry body. The

adaptive filter is suggested as a method to reduce the error in the

state estimate.

5-2. Results and Conclusions

The major results and conclusions of this thesis are based on over

200 simulations of the steam turbo-generator and the reentry body as well

as the results that have been referred to in the literature.*

1. The computational methods proposed in Section 3-2 for state and

state covariance matrix extrapolation can significantly reduce

computation time and increase accuracy in real-time State estimation.

The actual improvement depends on the size of the state and is more

significant with a larger dimensional system with more than two or

three state variables.

*In addition, some preliminary results on adaptive filtering of the Van

der Pol oscillator show favorable convergence properties.
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The results of the digital computer simulation (Fig. 3-2) suggest

that real-time state estimation of a steam.turbo-generator is

feasible either for Optimal control of a single machine or for

area-wide control.

The second-order filter developed in Section 4-1 successfully

estimated the state of a reentry body as determined by the digital

computer simulation. In all cases where the nonlinearities are

significant, the second-order filter has significantly less error

than the first-order filter. Examples of this are shown in Figs.

4-1 and 4-2 for Monte Carlo studies of reentry estimation.

The nonlinear filteris superior to the linear filter in the reentry

estimation simulation due to the second-order state estimate extra-

polation term; the second-order terms in-state update and‘covarianee

update have virtually no effect on filter performance.

The adaptive filter suggested in Section 4-3 successfully reduces

the estimation error significantly as compared to the second-order

filter for both linear and nonlinear adaptive filtering (Fig. 4-3

and 4-4). The fact that the adaptive second-order filter has an

RMS error that is comparable to the filter square-rooted variance

indicates that within the given structure, any further improvements

in filter accuracy will be slight. These results are summarized in

Fig. 4-5.

The adaptive filter as developed in this thesis is an adaptive gain

filter; i.e., only the filter gain is adapted to the divergence

which is manifested in the extrapolated measurement estimation
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error. Other methods of divergence compensation such as adaptive

noise covariance do not appear to be nearly as satisfactory as

adaptive gain filtering according to the simulation efforts of

this research effort.

5-3. Suggestions for Further Research
 

In the area of linear filtering, most of the research effort lies

in the area of applications and in filtering of inexactly'modeled

processes. Naturally, the problem of state estimation and concurrent

system identification are not resolved and require further definition.

(See Mbnahan.[MONl] for a thorough discussion of system identification.)

An example is the problem of estimation and identification.where the

observation transformation is singular and the system description is

only partially known.

In the applications area, more data are required for further

refinement of the steam.turbo-generator state estimator presented in

Section 3-3. An obvious extension is to simulate cascading an optimal

controller with the optimal filter and to test the resulting improve-

ment in the quadratic performance index as compared to presently used

feedback regulation. Furthermore, the methods of Foshe and Elgerd

[FOSl] for inter-area Optimal control could be mechanized by coupling

the optimal controller with the optimal filter.

The second-order filter has been reviewed and its value has been

reviewed and its value has been demonstrated in this thesis. A.natural

question arises as to the utility of mechanizing even higher-order
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filters. .Although this topic is certainly an area for future research,

the answer appears to be in the negative for several reasons. Higher-

order filtering requires higher—order derivatives, which in practice

may be difficult to compute either analytically or numerically. .Also,

higher-order filtering requires a great deal more computation (See

[SORl], for example), especially for a larger system. And finally,

higher-order terms appear to have a limited effect in filtering

convergence.

The use of adaptive filtering appears to be more promising for

improving filter performance of severely nonlinear systems, but this

conclusion should be tested over a wide range of examples and condi-

tions. In addition, the exact form of the optimal adaptive filter is

an open question and is the subject of further research.
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APPENDICES



APPENDIX A

Stochastic Processes and Filtering Theory
 

In random processes, a Guassian white noise process serves as a

model for purely random effects that appear to be pure noise with

mutually independent components. However, care must be taken since,

by definition of its correlation function, a white-noise process is

almost nowhere continuous, and thus, not Riemann integrable. For this

reason, some properties of the Ito stochastic integral are needed [1101].

Definition A-l. Let B(t,w) be a Brownian motion process defined on
 

the interval te[to,tN] and let f(t,w) be measureable with respect to

B(t), the smallest. 0 field induced by (t,m), te[to,tN]. Then the Ito

stochastic integral is defined as

f tN N-l

f(t,w)d8(t) = 1.i.m. Z f(t»,w)[8(t. ,w)-B(t.,w)] (A-l)

tO 1+ 0 i=0 L L+1 L

where

f(t,w) = f(ti,w), ti 3 t < ti+1’ t0 3 t < tN QA-Z)

and r = max {t4+1 - ti}.

The need for careful attention to solving stochastic integral and dif-

ferential equations is elaborated on in Appendix A of [BIRl]. See also

[KAIl].
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The following two important properties of the Ito stochastic inte-

gral shall be stated without proofs (see [ITOl] or [D001]).

Theorem A-2. Let the random vector f(t,w) satisfy the previous

definition, then

E{Jf f(t,w)dB(t)} = 0 ' (A-3)

T

and

I = . 1
E{ IT f(t,w)dB(t)[ fr f(t,w)d8(t)] PB f1 E{f(t,w) f (t,w)}dt

(A'4)

where P = cov{B(t,w)}.

B

These relations are needed to deal with stochastic differential

equati0ns of the form I

x = f(x,t) + G(x,t)é (A-S)

which.must be interpreted as a formal representation of the vector Ito

stochastic differential equation

dx = f(x,t)dt + G(x,t)dB (A-6)

The solution is of the form

x = IT f(x,t)dt + IT G(x,t)dB (N7)

where the first integral can be interpreted as an ordinary Riemann

integral but the second integral has meaning only if properly inter-

preted since B(t) is of unbounded variation.
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An alternative to the earlier defined Ito stochastic integral is

the Stratonovich integral [STRZ]:

N'l x(ti) + x(t )
G( ,t)dB=l. Z £+1 , _
f X “:13 4?]. G( 2 9 t4) [B(ti'tl) 80-1)]
 

08-3)

where 1.i.m. is the mean-square limit. It has been shown by W0ng and

Zakai [WONZ] that if (A-6) is defined in terms of the Stratonovich

integral, then to be interpreted in the sense of Ito, it will become

Gx ~ ’

= f(x,t)dt++: §-§;-El- G(x,t)dt + G(x,t)dB (A-9)

where

BG(x,____g_) n m 36. (x(t)
Gx,t 2 z [2 -1, , A-lO

ax.

J

and the components of dB are independent. The difference between (A-6)

and (A-9) shows that the interpretation of the stochastic integral of

the stochastic differential equation used to model the physical system

governs the solution properties. The Ito stochastic integral will be

used exclusively in this work since it is more general; however, by

using the results of W0ng and Zakai, transformation can be made from the

Ito to the Stratonovich differential equation.

The main result from Ito [ITOl] is the following theorem.

Theorem A-3. (Ito) Given LA-6), then for ¢(x,t) a scalar-valued

function of x and t,

d¢ = ¢dt + o; dx + i'tr GQG'exxdt (A-ll)

where the subscripts denote the partials, and the necessary partials do

exist.



APPENDIX B

The Mbltivariable Normal Distribution
 

If a Gaussian-distributed random vector x has expected value

:1 = E{x} (13-1)

and covariance

‘V = cov {x} = E{(x-i)(x-x)'} (B-Z)

then a simple method for generating random variates with the probability

density_function

= exp[-%(x-i)'V'1(x-i)1
 MK) 1 2 (B-S)

I21rVI /

is given in the sequel. (See also [NAYl] or [BARl].)

Using the transformation,

x = Tu + x
(3’4)

Where i is an n-vector given by (B-l), T is a lower trangular matrix,

and u is an n-vector with unit-variance, zero-mean, independent,

Gaussian-distributed random components, then the variance of x can be

expressed as

‘V = TT'. (B-S)

Due to the symmetric form of V and the fact that T is triangular, T

can be determined from.the relationships
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11 1'1 V11 ‘

'-1

t.. = v.. a Z t. t. t.. 1 < ' < L < n B—6

41 (41 [2.1 4'2 1h” 11 J ' ( )

L-l
2 1/ .

t = - .ii (vii k: tth) 1 < t < n

Thus, the generation of the multivariable random vector x with covari-

ance V requires the solution of (B-4) where T is determined in (B-6).

The components of u are generated independently by a Gaussian random

variate generator as in [COCl], for example. -



.APPENDIX C

Parameters of the Steam Turbo-Generator Filterinngroblem

The parameters of the steam plant model are listed below.

governor time constant

steam valve motor time constant

steam system time constant

reheat steam.system time constant

reciprocal of regulation coefficient

reheat coefficient

effective rotary inertia of machine

damping torque coefficient

valve control signal

valve position deviation

torque output deviation

frequency deviation

load deviation

The values of the above constants are chosen for a typical machine:

~
a

~
a

~
a

e
a

L
N

II
I!

II
II

94 25 K1 = 62.24

3-8 K2 = 0.324

113-1 M = 18,221.6

4524.0 D a 5.94
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All of these quantities are on a per unit basis and must be transformed

for real values. 2

In addition to the above parameters, values for the stochastic

model are chosen. The frequency and frequency rate measurement errors

are statistically independent with zero mean and variance

r11 = 0.0001

r22 = 0.0004

The system disturbance is a scalar with zero mean and variance

q = 0.0008

The initial value for the state covariance matrix is chosen to be very

large with uncorrelated components as follows:

p11(0) = 1.0

p22(0) = 1.0

p33(0) = 1.0

p44(0) = 1.0

p55(0) = 1.0

p66(0) = 1.0

The initial state estimate is chosen to be zero, x(0) = 0, whereas the

initial true state is given the value x(0) = 0.1; that is, each component

is set at 0.1. The sampling rate was varied widely in many different

simulation runs, but a value of 2 seconds was commonly used since this

value allows a reasonable computation interval and yet is not too large

with respect to the system dynamics.
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