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ABSTRACT

VIBRATIONAL PROPERTIES OF IMPURE

QUANTUM CRYSTALS

BY

Richard D. Nelson

Quantum crystals lack well localized atomic motion

making classical treatment (Born-von Karman) inapplicable.

Beginning with an equation of motion for the double-time

thermal Green's function for atomic displacements, we derive

a Dyson equation for the imperfect quantum crystal. The

self-consistent force constants are found to be determined

by both the bare two particle interactions and the particle

dynamics. An isotopic substitutional defect will have

vibrational properties which differ from those of the host

atoms and will therefore induce force constant changes.

Quantum crystals are the only systems where a mass defect

induces a force constant defect. The equation of motion

was solved in several approximations for the induced force

constant changes. The results are applied to a calculation

of defect induced spin-lattice relaxation time, displace-

ment correlation functions, specific heat, and thermal

conductivity.



Richard D. Nelson

To complete this work theorems concerning phonon

lifetimes and static distortion fields are derived in the

Appendices. In calculating phonon lifetimes using displace-

ment propagators (descriptor of lattice displacement waves)

it is necessary to ascertain the relationship between the

phonon prOpagator and the displacement propagator. This

relationship is found as well as the relationship between

the associated T—matrices, which are a simple way of

expressing phonon lifetimes. Several derivations of phonon

lifetimes are given. Lattice distortion near a defect has

an important effect on the phonon scattering rate and a

simple general method for calculating it is found.
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CHAPTER I

INTRODUCTION

Historical Review
 

Quantum crystal theory is a transfiguration of

classical lattice dynamics in an attempt to overcome the

failures of the quasi-harmonic expansion of interparticle

interactions and account for the quantum mechanical behav-

ior of the atomic motion in some crystals. For historical

perspective we begin with a cursory review of the infancy

of lattice dynamics followed by a proleptic discussion of

more recent developments.

In Principia (c. 1686) Newton began the study of
 

lattices by using a one dimensional lattice of harmonic

springs to calculate the velocity of sound in air. He

considered only one dimension because the three dimensional

problem was insoluble; partial differential equation methods

had not yet been discovered. In 1753, John and Daniel

Bernoulli1 created the idea of proper vibrations. Lagrange2

(1759) supplied mathematical connection between the con-

tinuous and the discrete vibration problems. These last

two developments were both heavily criticized at the time



because the principle of superposition was disputed until

Fourier's proof in 1807. That the velocity of sound

depended on wavelength was discovered by Baden-Powell3

(1841) and Cauchy (1830). They both understood that the

velocity at long wavelengths was a constant but their

velocities at short wavelengths did not agree with experi-

ment. The concept of group velocity was yet to be discov-

ered. Lord Kelvin4’5 understood the significance of phase

velocity and a maximum lattice frequency in 1881.

The first mechanical and electrical filters were

conceived as a result of response properties of discrete

lattices. The first mechanical filter was built by Vincent6

in 1898 to test the ideas of Lord Kelvin. The first elec—

trical filter was built in 1906 by Campbell.7 Born (1912)

derived the existence of several branches of the sound

dispersion curve due to several masses in a solid, and with

von Karman8 related the microscopic and macroscopic proper-

ties of a solid. The shortcomings of the Einstein9 theory

of specific heat were partially rectified by Debyelo when

he related the spectrum of allowed frequencies to elastic

properties. Of importance to the study of defects in solids

are two theorems of Lord Rayleigh.ll These are applicable

to the case of a single defect which differs from the host

atoms in mass and/or harmonic interactions.



1. Except for frequencies at a band edge the frequency

of no mode is shifted by more than the distance to

the next unperturbed frequency.

2. Modes at band edges may split off and enter the

interband forbidden gap.

Lord Rayleigh's12 discovery in 1885 of elastic

surface waves explained at that time the violent surface

waves which follow the volume waves of earthquakes and has

recently had a very important practical manifestation

(acoustic surface wave devices) in microelectronics.13

Classical lattice dynamics as formulated by Born and

von Karman considers a Hamiltonian with a kinetic energy and

a pairwise potential which is expanded in a Taylor series in

powers of atomic displacements. The symbol R will denote

unit cell positions and u will denote atomic displacements

from mean atomic positions.

P: 1
H=2——°‘-+—XV(R..+u..) (1)

g 2m 2 ij 1 13

P2 3V(R--) 2

= 2: Ji+ %_- >;,(V(Ri.)+ ——1—J—u + 2111133};I m u 8

2 2ma 13 3 auja 3“ a i. 38 3



Latin indices label unit cells in the lattice and

Greek indices refer to cartesian components and different

atoms in the unit cell. Double subscripts on a Latin

variable denote a vector between two unit cells. As is

usual in small oscillation theory only the third term in

the potential is kept. The first term in the potential is

an arbitrary constant, the second term is zero for a lattice

in equilibrium and the third term represents the lowest

order term of importance. The coupling second rank tensor

between the displacements in the term quadratic in displace-

ments is known as a force constant (¢). With the Hamiltonian

the equations of motion for the atomic displacements can be

found from Newton's second law.

 

1a 1

H = 2 + — 2 u. ¢.. u. (3)

£a2ma 2 ij 1a 1% 38

a8 a

mula = — a? ¢££'u2'8 (4)

8
08

Equation 4 is a set of coupled linear differential equations.

The order of this set is the same as the number of unit

cells in the crystal to be considered. The solution to the

above equations is made possible by the translational sym-

metry of the lattice which implies that the equations of

motion can be diagonalized by running waves.



i(k-Rx-wt) (5)

Insertion of the above into the equations of motion,

Fourier transforming the time variable, and summing on unit

cells leaves a simple equation with dimensions equal to

three times the number of atoms in the unit cell.

2 _ .

mam ua(k) — 2.9a8(§) ”8(5) (6)

_ -ik-(£-£')
Da8(k) — Z¢££,e ~ ~ ~ (7)

1 dB

D is known as the dynamical matrix. The sum in

equation 7 is independent of 2 prime because of translational

symmetry. Equation 6 is solved by equating the determinant of

coefficients to zero. The dynamical matrix has eigenvectors

c which obey orthonomality and closure relations.

_ 2 —lDaB (5) mm 6a8| — o . (8)

j _ 2 3
EDGE (§)Ua (k) — mwjk 0a (E) (9)

o ‘ j -

2033(1‘) COL (.15) _ 6jj' (10a)

*3 j _
I 0a (5)08 (k) — Gas (10b)

3



In order to effect a transformation of the

Hamiltonian to quantum mechanical form, a set of normal

coordinates will be found and conjugate variables will be

found using Lagrange's equations.

Although the kinetic and potential energy in the

harmonic Hamiltonian do not commute it is still possible to

find a transformation which simultaneously diagonalizes both

provided the kinetic energy is a positive definite form and

the potential energy is an arbitrary quadratic form in the

same number of variables.16 Moreover if both terms are in

addition symmetric the eigenvalues of

|¢ - mwzl = o (11)

are all positive.17

The principle axis transformation is given by

expanding the displacements in terms of plane waves

1 ° .

Ra r—NMa 15] )5] 01

Wave vectors are labeled by k and branch indices by j.

If it were not for the mass term in the expansion

the principle axis transformation would be unitary. In

terms of the normal coordinates ij the Hamiltonian becomes

- i .*' O 2 *

H - 2 Z ‘ng 91;: + “’12: °1sj 012:"

_ l t 2 t

- 2 2 (Plij PEj + ij Q]:j QEj) (13)



using Lagrange's equation to find the conjugate momentum

to the normal mode coordinate Q.

The Hamiltonian is now quantized by requiring the

conjugate P and Q to satisfy commutation relations.

[ijI Pkljl] = i“ 6"I6k’kl+G (14)

G is an arbitrary reciprocal lattice vector.

In order to obtain the second quantized form the

coordinates Q are expanded directly in annihilation and

. 18

creation operators.

= +
ij Fakj + a—kj] (15)
~ 3k

Mm .

= _' _;£l _ +ij 1 2 [akj a_§j] (16)

The results of using the annihilation and creation

Operators are listed below. Details may be found in quantum

mechanics books such as the texts by Dirac or Messiah.

l l

H = Z w . I. + — - Z w . N . + — 17

[a af ] = 6 6 (l8)
kj' kj jj' k, k'+G



 

[(a1)nl (a§)n2,--- (ag)9& ...]

[/Ql‘ /£2! AQET— ...1
~

Inln2n3...nk...> I0 0.. 0.. >

 

(19)

The ket on the LHS of the last equation above represents a

many phonon state with occupation numbers n1, n etc.
2' “k'

and the ket on the RHS represents the many particle~vacuum

State.

While Lord Rayleighll considered the problem of a

single defect differing from the host particle in mass

and/or harmonic interactions (point defect) the beginnings

of the current analytic structure of the defect problem were

contributed by Lifshitz19 in Russia and slightly later in

time by Montrollzo’21 at the University of Maryland. The

method in the papers of Montroll and Lifshitz was a Green's

function method for the classical equation of motion

(equation 4).

2 (mm2 5 5 + ¢£2.) G . u = a a (20)
82' av 28'

This Green's function is labeled G and the same symbol will

be used throughout this thesis. If the atomic displacements

are expanded in terms of normal mode coordinates as in

equation 13, then an equation for the normal mode coordi-

nates of the defect lattice can be found. The normal mode



coordinates of the defect lattice can be used to determine

the eigenfrequencies and the mean squared atomic displace-

ments of the defect lattice. In the following set of

equations chi represents the eigenvectors of the force

constant matrix. Perfect crystal normal mode coordinates

are labeled (k,j) and defect crystal normal modes by (f).

ufia = :j ijxza(53) perfect crystal (21)

X£a(§j) = fi%— 0; (k) elE°R£

a

ufia = E Qf X£a(f) defect crystal (22)

2’!le

BY a8 BY

_ _ 2

C££. — AMa(£) w 5a85££' + A¢££, (24)

a8 a8

det Il-GCI = o (25)

Equation 23 is the general result for the eigen-

vector of a differential or matrix operator having Green's

function G and possessed by a perturbation C. Equation 25

follows directly from equation 23 and determines the new

eigenvectors and eigenvalues.
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As representative of the type of calculations

performed with this classical (Newtonian equations)

Green's function method we reference the work of Dawber

and Elliott22'23 where the vibrational and optical prop-

erties of an impure crystal are studied. The difficulties

with the classical Green's functions were threefold. The

equations lacked a quantum mechanical foundation. The

calculation of the eigenvectors was a serious numerical

difficulty. And finally, there was lacking a physical

interpretation of the Green's function. The first and

second difficulties were resolved in the case of a harmonic

Hamiltonian by Elliott and Taylor24 in 1963. They use a

retarded Green's function of the type described by Zubarev.25

_ _ 2ni _
G12). (1:) — T 0(t)< [u218(t) Iu£|8(0)]> "'

a8

2n
__ << u£a(t)l u£.B(0)>> (26)

M

<Q> = tr(e'BHQ)/(tr e'BH) . B = M/kT (27)

Beta is the inverse temperature. Taking two time deriva-

tives, equation 20 is rederived. The quantum mechanical

foundation is buttressed by taking the time derivatives

using Heisenberg's equation of motion. Needing the defect

lattice eigenvectors (see equation 23) is circumvented by



ll

calculating the defect crystal Green's function by a Dyson

equation

G = G0 + GOCG (28)

where matrix multiplication is implied. The calculation of

mean squared displacements is simplified by a general rela-

tion between a retarded Green's function and its related

 

correlation functions:25

G(t-t') = -i0(t-t')‘é[A(t),B(t')]> (29)

<A(t) B(t')> = 1: J(w) e+8we-iw(t-t')dw (30a)

<B(t') A(t)> = i: J(w) e‘i“(t’t')dw (30b)

J(w) = limit _ 1 G(w+i§L-G(w-ie) (31)

6+0 e 11

The minus sign is for bosons; plus is for fermions.

Since we are concerned with phonons the minus sign will

always be used.

The contribution of this thesis to the general

framework of lattice dynamics is to derive a Green's func-

tion equation of motion for a lattice having general two

body potential interactions (no harmonic approximation), to

derive a set of useful formulas for lattice properties, and

finally to probe the physical interpretation of the Green's

function.
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Quantum Crystals
 

Compared to the history of lattice dynamics, the

active history of quantum crystals is still in its youth.

The subject has been actively pursued now for about six

years. In 1965 deWette and Nijboer26 calculated the eigen-

frequencies of solid helium and found them to be pure

imaginary throughout the first Brillouin zone. Previous

to this explosive catastrophe it had been known that certain

crystals could not be accurately described by classical

lattice dynamics but the deviations from classical behavior

were considered innocuous. Quantum crystals are crystals

where the zero point energy of the basis particles is com-

parable to the binding energy of the particle to a partic-

ular lattice site. This can be expressed using the

uncertainty principle.

(A)2_ 3‘

—.§)fi—‘§%”Eb (32)

The square root of D is a measure of the localiza-

tion of the particle.

— 8 . .

/D = 10 cm. atomic solids

= 10-13cm. nuclear solids

As a consequence of large zero point energy the particles

are not well spatially localized.
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One of the few evidences of a nucleon solid is the

star quakes of neutron stars. These quakes or sudden

changes in rotational velocity have been interpreted as

the cracking of a rigid surface of the star.

The degree of nonclassical behavior of the atomic

motion in a solid has been historically labelled by a

parameter lambda. Lambda had its genesis in attempts to

write reduced equations of state for solids which would

allow all solids to be described by a single universal

function.27 In terms of the Schroedinger equation for a

solid written in reduced variables, lambda is the coeffi-

cient of the atomic kinetic energy.28 Because lambda is

usually small the atomic kinetic energy is neglectable.

Lambda is defined in terms of the atomic mass and inter-

action parameters.

A = —1"—— V(r) = e f(r/o) (33)
/fiE—o

Epsilon is the interaction strength (well depth) and sigma

is the value of the interatomic distance for which the two

particle potential is zero. For the rare gas solids a

Leonard-Jones potential is often used.

12
_ c 5 c

VLJ - '4€[(;) —(E) ]

Note that lambda can be approximately interpreted as the

ratio of de Broglie wavelength to diameter of a basis atom.
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A measure of localization is implied. Some values of lambda

are displayed in Table 1. For values of lambda less than

one-half, classical dynamics has proved applicable with good

results. In the case of neon quantum corrections amount to

several percent.29 Neon is then a quantum crystal or at

least quasi-quantum. The value for a neutron solid was

calculated by averaging the Hamada-Johnson singlet and

triplet s=0 central potential for two nucleons. The

values for the rare gas solids were taken from Cook.30

To have an idea of what the potential seen by a

helium atom is in the proximity of its lattice site, we have

calculated this potential due to two shells of nearest neigh-

bors interacting via a Leonard-Jones potential. The result

is in Figure 2. The abscissa is the displacement from the

lattice site in the (100) direction of a BCC lattice. The

curvature at the origin indicates the cause of the imaginary

eigenfrequencies of de Wette and Nijboer. Clearly the clas-

sical quasiharmonic expansion makes no sense here. The use

of the harmonic expansion should also be questioned for

several additional reasons.

1. The root mean square displacement of the atoms can

be as much as one-third of the interparticle dis-

tance. The harmonic expansion is essentially a

power series in u/R. In quantum crystals this is

not a small expansion parameter.

2. A Taylor series for an inverse power series con-

verges slowly.
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TABLE 1

POTENTIAL PARAMETERS FOR SOLIDS

 

 

 

Solid E/kB(K) 0(8) A*

Xe 221 4.10 .063

Kr 171 3.60 .102

02 118 3.58 .198

A 120 3.41 .186

N2 95 3.70 .230

Ne 35.5 2.75 .593

H2 37.0 2.93 1.73

“He 10.2 2.56 2.68

3He 10.2 2.56 3.08

NUCLEON 750 MeV .5 .950

 



V
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16

-.82 - V = I VLJ(ROj+uO)

J

-.83 - 0 5 0 ’2
VLJ(r) = -4€[(;') - (?) l

-.84 P

8 = 14.11 ergs

—.8 I- 0

5 O = 2.56 A

 
 I I J l l I 1

-.95 ' . ‘ 1

0 .l .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1

O

u0 = Displacement in [100] Direction from Lattice Site (A)

FIGURE 2. HELIUM LATTICE POTENTIAL (BCC PHASE)
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_ 0 m _ w u n

V(R+u) - (R15) - :0 Vn(o)

vn+1 _ _ m+n (g)

V n+1 R

n

lim Vn+l = - g

V R

n

Both of these difficulties are overcome by not

making the Taylor expansion at all but by averaging the

potential over the two particle distribution function.

The average of the Taylor expansion keeping all even order

derivatives will be shown to be equivalent to using a

gaussian distribution function.

Nosanow31 has done a variational treatment of solid

helium. He finds values of the solid energy which are too

large (in fact greater than zero). However, his values of

pressure and compressibility agree with experiment to within

ten percent. More will be said about Nosanow's procedures

when we calculate force constants.

There are now a number of reasons motivating the

study of isotopic defects in solid helium.

Experimental motivation:

1. There is a large enhancement of the longitudinal

spin-lattice relaxation time in 3He provided by only

a small addition of “He defects. The experiments of

32
Gifford and Hatton find at T==.425 K and specific
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volume = 20 cc/mole 1-1: .004 + 103x = .004

(1-+ 2.5 X 105x) sec-1. Tau is the relaxation

time constant and x the defect concentration.

Thermal conductivity remains unexplained by a mass

defect theory. This topic is further complicated by

lack of agreement between different experimentalists.

A chart of experimental results is included in the

discussion of thermal conductivity.

Mixtures of helium isotopes undergo phase separation

below a critical temperature. Phase separation has

been studied experimentally by Edwards, McWilliams,

33"34 and theoretically by Mullins.35and Daunt

Phase separation in solid helium mixtures may be of

further interest because it is perhaps the only

solid to undergo phase separation in laboratory

times.

Theoretical motivation:

Phonons exist. The elementary excitations of a

harmonic crystal with translational invariance are

phonons. Solid helium lacks both of these criteria

because of isotOpic disorder and anharmonicity.

However, phonons are still observed experimentally.

Harmonicity is salvaged by use of an effective two

particle interaction in the solid which is related

to the free two particle potential. This was first

demonstrated by Nosanow.31 In the case of defects



2.
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the phonon lifetime can be related to the imaginary

part of the phonon self energy.

A quantum crystal is the only system where an

isotOpic defect induces a force constant defect.

The interparticle interactions will be determined

by the particle dynamics. Changing the dynamics

with a mass defect will change the interparticle

interactions, to wit, the interparticle force

constants.

In a classical crystal a mass defect changes the

density of vibrational states and consequently the

vibrational specific heat. In a quantum crystal the

aforementioned force constant change will compensate

for the mass change. The degree of this compensa-

tion is discussed later.



CHAPTER II

THEORETICAL DEVELOPMENT

Derivation of Equation of Motion
 

This thesis is an attempt to deduce the collective

behavior of quantum crystals by a Green's function tech-

nique. As is well known,36 the poles of the Green's func-

tion yield the excitation spectrum (viz. phonons) and the

Green's function itself is a linear response function. It

will be later shown that the density of states is prOpor-

tional to the trace of the product of a mass matrix and the

Green's function and also that the defect crystal Green's

function contains the phonon scattering rates. From the

density of states all of the thermodynamic properties may

be readily calculated. The displacement double-time Green's

function is defined as:

Zni
_

G££.(t) = --H_ 0(t)<[u£a(t),u2,
8(0)]>:

08

<<u£a(t)lu (0)>> (34)
2'8

20
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_ 1 t>0
0(t) — {0

t<0

[A,B] = AB-BA

<Q> = tr (e-BHQ)/(tr e-BH) (35)

B = M/kT

Beta is the inverse temperature. The retarded

Green's function has the previously mentioned prOperties

(equation 29) which allows the calculation of displacement

auto and cross correlations. We now specialize to the case

of one particle per unit cell. The Hamiltonian to be used

assumes pair-wise interactions and we shall remove into an

Operator form the particle dynamics by using Taylor's

expansion.

H = z :23 + l 2 V(R +u ) (36)

_ PEG 1 11' '.V0 0

The gradient operator is defined to operate on

lattice coordinates only. Using Heisenberg's equation of

motion we take two time derivatives of the Green's function.

G22. = %fi'<<[u£a(t)' H] u£,8(0)>> (38)

08

P (t)
20 I

<< m ul'B(0)>> (39)
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m G 291

122' "' M (0)]>+
5(t) <[P£a(t) I 11218

Ilfi<< [P201(t) . H] u£.8(0)>>

P — 1 iv [P egijwij] V(R )
26 ‘ 17 2 ij m' ij

l
-
‘

 

II I

t
h

~
M

A

0
9

2
°

[
—
1
.

I

0
9

m£G££,(t) = -2fl0(t) GRE'GGB -

08

u .(t)°V

ZI<< e~13
lj a

j Iu£,8(0)>>V£jV(R£j)

(40)

j)

(41)

(42)

The RHS of the Last equation contains a higher order

Green's function. Shortly this will be reduced to a new

quasi-harmonic series, but first some preliminary theorems

are needed.
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Commutator Theorems
 

The proofs can be found in Appendix A. A, B, and x

will be general operators (which are distributive, associa—

tive, but not commutative) and we define:

 

 

 

A = A0; A1: (X.A]; A2= [x, [x,A]]; An+1 = [X,An]

(n) 2 n!,

k ' k! (n-k)!

Theorem 1

n

An = z (2) (-1)k xn‘k A xk

k=0

Theorem 2

n

A xn = 2 (i) (-'l)k xn-k Ak

k=0

Theorem 3

m _ P

[ex,A] = -ex 2 ( }) A

p=1 P- P

Theorem 4 If [H,A] = 0, H(t) = eIXt He.lXt then

m - P

[H(t),A] = —4H(t) 2 (It) A
P=1 P! 2p
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Theorem 5 If ex ey = e2 then

2 = x + y + f a y I (y )

p=l P P p,q=l Pq P q

33° a ((y)) +...,

where ap and aij ... are defined in Appendix A.

Theorem 6

If we define a symmetry ordering Operator 8 such that

n n

S(yx ) = Z x yx

then

n n- n

+ xS x = S xypx (yp ) ( yp)

Theorem 7

The difference in the ordering of the product of two

Operators is given by the symmetry ordering operator.

y x - xny = - S(y xn-l)

p 9 9+1
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Theorem 8

where

The higher order Green's function in equation 42

can now be written as a series of lower order functions

using Theorem 3.

u .(t)-V . u .(t)°V - m _ P

[e~23 2’] I u n] = _e~£j £3 2 L—{i—— (ug') (43)

2. P=1 p9 “' P

(E£')l = [Efij.v' 132"] (92')n = [B j.v' (92,.)1’1-1]

The term p=l corresponds to the original Green's function.

The average of the above commutators is now done using a

cumulant expansion37’38 which is defined by

<eXt>x = exp {2 fig Kn}

Kl = <x>

K2 = <x2>-<x>2

K3 = <x3>-3<x><x2> + 2<x>3
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For simplicity we redefine variables in equation 43.

u .-V

-<[e”£J , 92']> E + <exy>

 

3 j l j ~j
= (e >|

57' 1:0

Z w _ p

= <e > I? 4 + Z ( I.) a (ugl) + (45)

p=2 p- p=1 p q ~ 9 q

q=0

The coefficients a are defined in theorem 8

(Appendix A). Note because of the evaluation at 1:0 only

terms linear in y survive. Zn contains the terms of the

th
n—— cumulant function which are linear in y.

The equation of motion becomes:

 

u u .-V

_. _ _ I “'R'J 0°
m£G££,(t) - Zn 0(t) 621'6a8 I <e >{ E' <<Z >> +

08 p—2

2 (‘1)p a <<(u ) >>}v v (46)
p=l p! 2' qp+q 8 ji

q=0

<<Z >> = -iO(t)<z>

n n

The term p+q=2 represents cubic anharmonicity. The term

p+q=n-l represents nEE order anharmonicity.
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We now keep only the term p=1, q=0, the first two cumulants

of the exponential average, and Fourier transform the

result.

A .-v+0 .ovv

- 2 (w) _ _ _ . 23 (3' a Y

m m£G££' ‘ 511'568 $0 9 szvxj an sz'

08 3 Y8

n J a Y
+ g2 e ngvzjvzj Gfll'

yB

(47)

Besides being an exact approach the calculational

methods derived here have the advantage that they are good

for finite temperatures and also include long-range order.

Nosanow's variational theory suffers in all these respects.

-> +

Azj - <u£j> (48)

a u£B>-+<uja ujB>'-<u£a ujB>m<uja u28> (49)

-<u£a><u£B>-<uja><ujB>-+<uja><u£B>-+<ula><uj8>}

The vector A represents the mean displacement of an atom

from its lattice site. In the pure crystal this should be

zero. If not it can be made zero, because of translation

symmetry, by a translation or uniform dilation of the

lattice coordinates. A strain field corresponding to non-

zero A can accompany a substitutional defect. This is

considered in more detail in Appendix B.
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The bilinear terms in D are determined from the

Green's function.

— . . u m l—
. _ _ .

(ulauj8> - lgmgt 2fl_£ e8w-lu[G£j(u)-i~10) G£j(w 16)] dw

08 dB

= limit 35 Im I” coth (EB) G .(w+i6) dw (50)
Zn -m 2 2)

0+0 08

In matrix notation the equation of motion becomes

+msz = 1+¢G (51)

G = (m2 1 - <1)"1 (52)

Force Constants

The Green's function matrix G, unit matrix 1, and

force constant matrix phi have dimensions 3N, where N is the

number of lattice sites. If the exponential Operator in the

force constant expression (equation 47) is neglected the

Classical harmonic force constant remains. The present

result is more clearly understood by Fourier transforming

to an integral operator.
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B

 

 

 

 

o + :

¢£2' = e5 Y 2 YY gay V(R2£,) (53)

08

co iq'R , 00 -iqu -q.g.q -A '-q

= 3 f daq e ~ ~££ fwea ~ d3R e ~ ~e ~2£ ~VGVBV(R)

(2n) -w - ~ ~ ~

m m -q.(R -R-A) -q.g 0q

= 1 3 f d3R VaVBV(R)fm daq e ~ ~"' ~ 7 e ~ '1' 7

(28) -w ~ ~ ~

522' " 135‘}

1 m —(u-A)-2;% ~(u—A)/4 a B

= 1 1m d3u e ~ ” ' ” ” V££,V££,V(R££,+u) (54)

AWL-T .. 1 ~ ~

The new force constants are just a spatial average

of the Old ones. If the mean square displacements of the

particles go to zero, D goes to zero and the exponential

becomes a delta function. In this limit of stationary

particles the classical result is again Obtained. The

introduction of a force constant change by a mass defect

Can now be understood as a change in gaussian width D.



3O

 

 

69(R££,) = 0-00 = vvv - e vvv

= (ev'éD 'V -1)eV°D°V vvv

= (eV°6D -V -1) ¢ (R )

o ~££'

/ —1 I

1 w “'5D22"u/4
= { __ [m d3u e” ~ 90(RM.+u)}-<I>O(Ru.) (55)

/(2n)‘|0DT “ ~ ~

u' = u-0A

If the change in width 6D tends to zero, the

gaussian becomes a delta function and the change in force

constant disappears.

While the spatial density function for a harmonic

oscillator is a gaussian (see Appendix C) the two particle

density function for quantum crystals cannot be quite gaus-

sian because of short-range correlations which might arise

as a result of a hard core interaction or of fermi statis-

tics. For solid helium the hard-core interaction is respon—

sible for short-range correlations (SRC). For the short-

range correlation function we may either develOp the above

formalism further (SRC should exist in the neglected terms

of the equation of motion) or assume a phenomenological form

used by Nosanow. Our objective is to study defect properties;

we have therefore done the latter. Nosanow's idea is to use

two particle wavefunctions of the form
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*
6

'
J
U

:
1 IIij ¢i (Ri+ui ) 0.J(Rj+1~1j ) fi j(Bij+Eij) (56)

fij = e-KV<Bij+91j>

where ¢ is a single particle wavefunction and fij is the

short-range correlation. The product of the single particle

gaussians is a result similar to ours (equation 54) except

our gaussian width contains long-range correlation effects

in addition to single particle effects. Nosanow determined

parameter K and the gaussian width by minimizing the total

crystal energy. He found K to be the same for many molar

volumes and for both isotopes. We therefore accept K as a

constant and determine the gaussian width (DOB) by self-

consistency in equations. Jackson and Feenberg39 have shown

how to absorb the SRC effects into an effective potential so

that the many-body wavefunction can be approximated by a

product of single particle gaussians. This product of

gaussians then reduces to our earlier result for the two

particle density function in equation 54. The effective

interatomic potential becomes31

2 2

V(r) = f2(r) [v (r) - 2215 7 ln f(r)] (57)

The second term is a correlation to the kinetic energy.

From equation 52 it is evident that diagonalizing the

Green's function is equivalent to diagonalizing the force
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constant matrix because a unitary transformation which

diagonalizes a matrix also diagonalizes its inverse. In

the perfect crystal case where translation symmetry exists

the force constant matrix can be inverted by the plane wave

transformation

1

s = (Nm) 2 0;(q) e1? 5

where sigma is an eigenvector of the dynamical matrix.

Different branches of the phonon spectrum are distinguished

by index j.

2 l iq'(£-£') (58)

268(3) ' fifi' 2. ¢22' e ~ ~ ~
22
~~ OB

=5: 2 (pm. 9.19%? ’ (59)

2-2'
~ ~ 08

j = 2 3'
22018“? 08 (g) wig 001(9) (60)

la 1'8 2
Z S . 0 S , , - 5 , 0..,w

22' 53 22' 5 3 55 33 5

dB 08

Applying the transformation S to the pure crystal Green's

function we find
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1..

_ 2a 0 1'8

655' ‘ gi. 555 sz'sk'j'

jj' qp GB

The equation Of motion can be comp

case of mass and force constant de

Epsilon will denote the negative O

change.

[m+(m'-m)] 020 1+(0+60)G

(m-m')/m

(mw2-¢)G l + [00+ mew2]G

l + CG

The matrix C contains all defect i

on the left by the perfect crystal

a Dyson form and a T-matrix form 0

G + G CG
0 O

TG + G TG
o o o

If the above can be solved all of

= Ojj' (Skkl

~~

(61)
2

(L) —(l)2

kj

leted by considering the

fects in the lattice.

f the fractional mass

(62)

nformation. Multiplying

Green's function gives

f the above equation

(63)

l

C(1-GOC) (64)

the phonon properties of

the imperfect crystal will be known within our self-

consistent approximation.



CHAPTER III

APPLICATIONS

Pure Crystal Properties
 

Before beginning the calculation of defect

properties our formalism should be tested by a calculation

of perfect crystal properties. We calculate some Debye

temperatures and later some phonon dispersion curves.

The Debye temperatures are determined by equating

the mean square lattice frequency calculated in a force

constant model with the same quantity in the Debye model.

A calculation of Debye temperature has also been done by

40 Their calculation usedde Wette, Nosanow, and Werthamer.

Nosanow's variational parameters which were found by mini-

mizing the ground state energy. Our self-consistent calcu-

lation is compared for reasonableness with experiment and

Nosanow's results in Table 2.

2__l_
<‘*’>‘3N

(
W
M

=)% w Debye model

34
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$0
2

cu

m

2 (l-elg % force constant model2 )

850'

_1_
3N

We use the following definitions:

1. N(1) is the number of lattice sites in shell 1.

2. The volume per mole of a crystal is V.

_ _ 2 1/3
3. Xl-qmale— (6n /V) RA

4. The nEE spherical Bessel function is jn'

5. The average of the force constants linking the

AER shell of atoms to the origin is 0aa(1).

_ 5 1 31(5))
0) — 3T“- XX ¢aa(>‘)N()\) (3' " T) (65)

a l

 

On the following pages are some phonon dispersion

curves calculated using equation 60. The upper curves are

longitudinal modes and the lower curves (often degenerate

in these symmetry directions) are the two transverse modes

for B.C.C. helium three. The purpose of their presentation

is to show that the self-consistent harmonic approximation

produces normal innocuous phonons, in contrast to the

unstable modes with imaginary energies found by Nijboer

and de Wette. Figure 5 shows the real and imaginary parts

of the perfect crystal displacement Green's function.
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.l .2 .3 .4 .5 .6 .7 .8 .9 1.0

111 Direction

(k/k zone boundary)
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Defect Calculation

The second derivative of the potential can be

conveniently written in terms of derivatives with respect

to the interparticle distance. For completeness higher

derivatives are also listed.

   

VO‘V(r) = 3:01 v”)

r r (1) (l)

vavsvu): “8(v‘2’-V )+6 V
r r r2 r GB r

r r8

= 0‘ (R-T) + (S r
r 08

VO‘VBVAWr) = rarer)‘ [v(3) --3- v”) +-3-2 v(3)]
r3 r r

_1:_ E. .1“. (2) __1_ (1)
+ (608r2-558Xr2-560Xr2) (V r V )

VGVBVAVBVM) = ——r0‘r8r"r3 [v(4)— 9 v(3) +-1—5 v‘z) -£5— v”']
r“ r r2 r3

+(rar85A3+rBrA53a+rarK688+rar35Bx+r8raéak+rkr3608)X

l (3)._§_ (2) ;i_ (l)
[Jr—3 v r v +r2 v 1+(568518+5815aa+561588)x

l (2) _ l (l)
?- (V r V )

The superscript indicates the order of the deriva-

tive which is evaluated at the interparticle distance. The

ratio of the first derivative to the interparticle spacing
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is the tangential (T) force constant. The second derivative

with respect to interparticle distance is known as the

radial force constant (R). The radial force constant as

a function of gaussian width is shown in Figure 6, which has

several physically interesting interpretations. The ordi-

nate intercept is the bare force constant, that is the

second derivative of the interatomic potential appropriate

for two free atoms with no spatial averaging. Note that the

bare force constant is negative implying lattice instability.

The maximum divides the curve into two parts. To the left

Of the maximum short range correlations are not very impor-

tant; increasing the gaussian width allows a particle to

sample more of the region of positive curvature of the bare

interatomic potential yielding a larger force constant. To

the right of the maximum however the short range correlation

function prevents the gaussian from any further sampling of

the positive curvature portion of the bare potential. In

fact since the wavefunction is spatially expanding with

increasing width more of the negative portion is now sampled

and the force constant decreases. The decreasing portion is

roughly linear, a fact which is exploitable for numerical

calculations. The effect of a mass defect on the force

constant depends upon which portion of figure represents the

lattice involved. The helium solids all lie to the right of

the maximum. A helium four substitutional defect in a

helium three lattice will decrease the amplitude of atomic

vibration and cause a force constant increase.
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The calculation of the defect lattice Green's

function involves the inversion of some large matrices.

We divide the crystal into a defect subspace and a comple-

mentary subspace. The defect subspace is modified due to

a crystal defect. The dimension of the matrix requiring

inversion is three times the number of atoms in the defect

subspace. This can be demonstrated by writing the equation

.Of motion in T-matix form.

G = G0 + G0 TGO

O O O O O O

G = G11 G12 _+ G11 G12 I'11 T12 G11 G12 (66)

- O O O O O O

521 G22 G21 G22 T21 T22 G21 G22

Elements ll refer to the defect subspace, 22 identifies the

complementary region of the lattice, 12 and 21 denote the

coupling between the defect subspace and its complement.

T = C(1-GOC)‘l

O O o -l

(1_GOC)-l = l Gllcll G21C11 = (l-Gllcll) 0

o o -l

0 l “G21C11(1'G11C11' 1

O -l

C (l-G C ) 0 T 0
T = 11 11 11 = 11 (67)

0 0 o 0

The T—matrix has elements in the defect subspace

only and the matrix to be inverted involves only elements

in the defect subspace. One should not construe this to
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mean the remainder of the lattice is unaffected. Equation 66

shows that the perturbation introduced by the defect is cou-

pled to the whole crystal. Note that the perturbation of

each element of the matrix G is quadratic in G.

Because the off-diagonal elements (Gi£.) of the

perfect crystal Green's function fall Off as I I for 

rll'

large the perturbations of the diagonal elements ofEM.)

the Green's function far from the defect subspace fall off

as«JL and the off—diagonal perturbations as i.

r2 r

O O O O

O GllTllGll G11T11612

g = Q + o o o o (68)

G21T11G11 G21T11G12

The necessary matrix inversions have been done by

three methods all of which give qualitatively similar

results for the perturbed force constant. First we used an

Einstein approximation for the Green's function. This

reduces the behemoth to a 3X3 matrix. The second method

used an approximation to the off-diagonal elements which

allowed the inversion to be done by hand, and the third

method used a computer to do an exact inversion. Since the

matrix must be inverted many times in seeking a self-

consistent result the third method is computationally too

expensive to be practical, especially when many shells of

neighbors are considered.
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As a simple example of the effects resulting from

an isotopic defect we consider an Einstein oscillator

approximation to the equation of motion where the particles

are taken to be independent oscillators. Independent oscil-

lators imply that the Green's function is diagonal on site

indices. The change in two particle force constant will be

written in two parts, the first resulting from the vibra-

tional properties of the new mass and the second from static

relaxation of the cage of neighbors around the defect. It

was noted earlier that the interatomic force constants were

roughly linear in the gaussian width (D). This will be

exploited by using the change in D as an expansion parameter.

In this Einstein model all perturbed quantities will be

expanded to first order in the change in the width parameter

and the resulting equations solved for the perturbed gaus-

sian widths.

The following symbols are used:

8 ll unperturbed mass

m = unperturbed Einstein frequency

52 = (ml'mi)/m2

¢£2 = force constant for site 2

¢££, = interatomic force constant

n = static relaxation of nearest neighbors of defect

atom

9 = radial force constant, second derivative of

intersite potential
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T = tangential force constant, first derivative

intersite potential divided by the intersite

distance

D = width of two particle gaussian

D0 = width in unperturbed crystal

V(n) = n211 derivative of intersite potential

In general we have that

  

 

 

— 2 :_—_

(1 e£)mw Ggg, 0££,+-§ (¢££;+0¢££,)G2£,

But in the Einstein model,

_ 2 =
(l e£)mw G£2 l + (¢£2+(S<I>££)Gu

or

1 l l

G = _ ( +' _ ) (69)
22 2m(l €£)w w+w£ w mi

where

w =/¢22+5¢22 = / (Du (l-l- MM)

2 m(l-e£) m(l-e£) 2 Tfig

The last expression is the Einstein frequency for site 2.

The expansion makes less than one-half Of one percent error

in frequency if %? is less than twenty percent.
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_ - Z w . -iwt
<u£a(t)u£a(0)> —-§:§ fl £m[n(w)+l] Im G2£(w+10) e dw

ad

_ . Z -iwt fig .1 l 1

——%33 n Im [we COth(22)2m(l-e£)w (w-w£+i0-+w+w£+16)dw

M cos(wt) sz
= n COth (T) (70)

m(l-e£)w£

We can consider the change in force constants due to

relaxation. We do a cubic average of force constants.

= = EX. _

‘1’) NTTA 2:1 (1’02 (r2>(51 T1) + 5x1!

For the first shell of a BCC lattice the force constant

becomes

41 = (31+2Tl)/3 (71)

(3)4_2

r

(R—T)1/3 (72)

Eta is the relaxation of the nearest neighbors of the defect.

This effect is considered in detail in Appendix B and can be

written here as

1 1 3 3
v( )-vc() )+2(Dovc(, )-DV( ))

 

 

R+Ro

(l) (3)
3V (3) av

30 + 2{“79 '15— D9]
= 0D

2?
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6¢relax E 06D

The effect of the change in mass on the intersite potential

is taken as the slope of the effective interatomic potential

versus D.

  

69 = 00D

mass

09 = (p+a)6DEEAOD (73)

D=£(<uu>+<uu>)=D+0D

2 O o l l o

D +0D = l M coth (Bwo/Z) + M coth<8w1/2)

o 2 2m(l-e)wb 2mml

 

 

 

 

  

_ 0-(6 _ _ l 5

“'1 ' TE ‘ “E ‘1 T671?)

1 0

D +5D _ M coth (BwEZZ) (1“? 7?)

4me /'1-_e—

. 1 -15 - /_T- l5

x 1-8wE‘arz‘1’2‘g' ( l-e 1) 2 ‘4"
8w BM

—".3. ' h (J)L cosh ( 2 ) Sln 2 J

+ (1__£§_?;) l+§mE (5(1) / cosh(B—u3) Sinh(-B':”£)
16 q; “in" 2 2
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Using 0¢==AOD the above can be solved for 0D

 

 

 

l
(1‘. BwE[l" If? ] )_ 1

SD = 22')( I:E posh (BwE/Z) Sinh (BwE/z)

2
l 2 l

1+ADo 1 + 1+ Bu’E ['8"_1-e:+ _l-€

45 1-6 8
cosh (BwE/Z) sinh (BwE/Z

In the low temperature limit (BwE>>l) the temper-

ature dependence is exponentially small. Taking the zero

temperature limit

 

D T—1 -1

(SD = —9- A65 (74)

2 l+__o _]_'_ + l

400 l-e 8

 

The numerator is the result for a mass defect theory

and the denominator is the self—consistent renormalization

due to quantum mechanical effects (change in shape of the

two particle wavefunction). Evaluating the derivatives in

equation 73 for a 3He host lattice with molar volume 24.6

cm3 we find a large self-consistency effect. The denomi-

nator of equation 74 gives a self-consistent enhancement

of sixty-seven percent.
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ADO _ r _

-——'- .406 E— — -l.9%

4¢O 0

molar volume = 24.45 (cm)3/mole

5D
—— = -ll.2%

Do

6O AOD

-—-= ———-= 18.1%

¢0 90

A = p + 0

Approximate Inversion Scheme

If we consider a model where only force constants

which connect an atom to the defect are perturbed and the

force constants connecting neighbors of the defect among

themselves are unperturbed, GOC can be written as

o _ O _ o o _ o _ _

O

(iGikaONjO (75)

_ o _ o O _ O _ O

O O O O 0

Cl: 0

i 10
O O O 0

(G01 G00)Cl (G02 G00'C2 ""   
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where the defect has been placed at the origin and Ci is an

abbreviation for Ci For a cubic crystal Gii is diagonal0.

on cartesian coordinates. Taking all matrices to be diag-

onal on cartesian coordinates the model in equation 80

becomes three one-dimensional models. Now Gij depends only

on Ii-jl and within any shell of neighbors about the defect,

diagonal elements in GOC are equal. To complete the approx-

imation note that the off diagonal elements (Gij-GIO)Cj are

the same except for Gij which is a function connecting dif-

ferent sites within a shell of atoms surrounding the defect.

We replace this Gij by

—3 1

GA '7'

O O 0

G02(3 03+G04'

__ l O
— NA 2‘ Gij -—> +3G (81)

3 (Mai)

for the first shell of a BCC lattice.

Using one shell of neighbors a force constant

 

defect (C), and a mass defect mewz, (1-680C-m€w2G80)

becomes.

(l-A) -a -O -a .... A

-0. (l-A) -0. ‘0. o o o o A

-a -a (l-A) -a .... A

1-G°C = -a -a -a (1-1) . . . . A

A A A A .... A
O 
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For a BCC lattice and one shell:

0 O

5 = (Goo'Glo)C

_ _b_ 0
a — (G GlO)C

Y = A-+7a-m€w2 G0
01

YO 1 8A G00(m€w)

...v

(1-GOC)‘l = 5%? B Det = Det(l-GOC)

Det(l-GOC) = (l-A+a)7(l-A-7a)yo-8(l-A+a)7yA

B11 = (l-A+a)6[(l-A-6d)YO-7yA] = Bii (i#0)

B12 = (l-A+a)6(0YO+Ay) = Bij (i#j, i#0, j#0)

B01 = -A(l-A+a)7 = Boi (i#0)

B10 = -y(1-1+o)7 = Bio (i#0)

B00 + (l-A+a)7(1-A-7 )

The final defect calculation performed was one using a

computer to do the necessary matrix inversions. The defect

equation of motion was first rewritten as two equivalent

equations because the mass defect equation can be solved

exactly and easily. A force constant defect equation of

motion was then solved self-consistently using the mass

defect Green's functions and equations 84 and 85.
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G = G0 + GO(6¢+m€w2)G (83)

_ 0 0 2
Gm — G + G mew Gm (84)

G = G + G 00G (85)

m m

The results of this model are listed below.

N33225:: 5% HS) {137% (SB) 1%;- (5%) Coordinate

1 -9.1 14.0 -1.2 § (111) 8 sites

2 -7.5 3.1 -0.5 (200) 6 sites

3 -6.95 -l.4 -0.2 (220)12 sites

Thermal Conductivity

A number of calculations and experiments on solid

helium have been reported. Aside from questions of quantum

crystals, solid helium has the historical significance of

having been the first solid to exhibit phonon umklapp

scattering in 1951, twenty-two years after Peierls' pre-

diction in 1929.41 A summary of published results of

analyzing conductivity experiments is given in Table 3

(in references 42-47 and 52-54). Several difficulties

beset the interpretation of experimental results:

1. All calculations assume an elastically isotropic

and dispersionless solid.

2. The necessity for inclusion of three-phonon

42,54
processes seems understood, however, the

various authors differ on the amplitude and
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. 50
frequency dependence of these processes. Herring

has shown that the three phonon scattering rate

for long wavelengths is given by

T-l(k) = ks T5_s

where s is usually taken as 2, the value character-

istic of longitudinal modes in cubic crystals.

3. The experiments are done principally by two groups.

Berman at Oxford University does experiments at

constant pressure, while Bertman at Duke University

does experiments at constant volume. These differ-

ent techniques seem to yield different results for

the defect scattering rate as shown in Table 3.

Rather than to do the full calculation for the

thermal conductivity we shall calculate a scattering ampli-

tude from the scattering T-matrix in Appendix E which can

then be compared to experimental values.

The mass defect scattering can be done exactly in

the low concentration limit where now noninteracting defects

are imagined to exist, while the force constant defect case

is a little more complicated. The model used is one where

the change in potential between any atom and the defect is

proportional to the unperturbed potential.

0 _ O

'18 ‘ ®id - 3 Y1 ¢id (86)

08 08 0 up 08
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If Aa8(£) represents the change in force constants between

site 1 and the defect

A22' {-ng AdB(£)'-6£'d AaB(£')-+62£,Aa8(£)}{1-6£d6£,d}

OB

+zidAaB(£)) éfldél'd , (87)

= lq°l J -lq"i *3'
A99. 15' e ~ ~0a(q) A££.e ~ ~0B (g)

33' 08 GB

_ ’ . i(q-q')°d
— A... +A... - -A... - ~ ~ ~ 88[ J] (g) j] ( g) j] (g g )] e ( )

= iq (2-2') *3'

A33'(§) _ Ri'e ~ ~ A££.0 (q) 08 (3)

dB us

These equations are perfectly general in the case of no

perturbation of force constants among the defect neighbors.

We now take Y to be a constant independent of site coordi-

nates. This model has been previously considered by Elliott

and Taylor.51 In this scaled force constant model

_ 2

3 33'

Using a multiband Debye model and the total perturbation C,

the scattering T-matrix can be evaluated.



_ 2 i(q-q')-d
A _ 6 o o 2 V I . ' e ~ N “I 90qq. J]. Y 3 g ( )

Vj = velocity of sound for branch j

 

 

... 2

C11' ‘ A22"'m€w 620520508 (91)

GB 08

O —1

T = C(l-G C) (92)

em? 2yV? q°q

qu' = 3 o + 2 32; ~2 o (93)

33' l'mew G00 (1+37)‘3 m” G00

08 GB

The T-matrix can be written as a sum Of partial waves pro-

vided we take Go(k) to have an isotrOpic dependence on wave

vector.

It is shown by several methods in Appendix E that

the lifetime of a phonon with wavevector k is given by

equation 94. Va is the atomic volume. x is the concen-

tration Of defects.

 

  

F1— : __X_la_. IdaK- ITKK'l2 6013-0012) (94)

K (21024002
K

= 93; 2 Va ITKK, |2 (95)

' 4 V ..

3 n J 33'

2 u 472w“
. e w .__3__ ...

=mVa (—2§ —1§— KO 24" 20 2 0‘2 (96)

V V l-mesz l l+———-m6w2G
t 2 00 .3 3 00 
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Equation 95 was obtained by considering spherical bands and

averaging over these bands.

In thermal conductivity one is really interested in

the rate of loss of forward momentum rather than the total

rate of momentum loss. This shortcoming is rectified by the

insertion of a l-cos(®) factor which occurs naturally if one

begins with a Boltzmann equation for thermal conductivity.55

x Va
 EL: x dk' (l-cosO) IT [25(w-wk) (97)I

K (21f)2 4w; KK

This angular factor couples 3 and p partial waves and adds

to equation 96 a term

-2 w.
Va 3 Y

2n

X 39+};
3.

Vt Vi

 

 

*+ C.C. (98)

H

 

(l-msszgo)(l+%g—%myw2680)

The denominators of the scattering rate expressions

were checked for possible scattering resonances (vanishing

of the real part of the denominator). The resonance con-

dition for the mass defect is shown in Figure 5. A reso-

nance occurs if the curve labeled l/(ewz) crosses the real

part of the Green's function. The resonance curve for the

force constant denominators lie in the upper right some

distance off of the graph in Figure 5. The failure of a

resonance to occur eliminates these resonances as a possible

source of enhanced scattering rate.
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The total relaxation rate appropriate for thermal

conductivity to order m“ is then

 

  

1 X Vaw" 2 1 2 4y2 46y
= —— — + —5- 5+ + (99)

TZwS lZn Vt Vfi 3(1+%})2 3+2Y

In our calculation of a 1'He defect in a 3He host we found a

value of y which was approximately minus one-half epsilon.

The above equation then implies the scattering rate should

be twice the mass defect scattering rate. This result

agrees more closely with the experimental analyses of

Callaway and Berman than the analysis of Bertman (see

Table 3). There are still several scattering mechanisms

which we might consider. The helium atoms are only very

loosely bound to their lattice sites in the ground state.

It may be that higher excited states are not bound and the

helium atoms actually become nomadic, allowing inelastic as

well as elastic phonon scattering. If the helium four

impurity changes the local exchange frequency a change in

scattering rate might result.

Defect Specific Heat
 

A heavy mass defect will increase the density of

states at low frequencies and will therefore give an

enhanced lattice specific heat at low temperatures. In

quantum crystals a mass defect is accompanied by an induced

force constant change and we would like to assess the impact

of this force constant change on the specific heat. If



61

there is an increase in force constants for an isotopic

defect as in helium there will be a diminution of low

temperature specific heat. The force constant change will

mask the effect of the mass defect. If a decrease in force

constants accompanies a heavy mass defect the opposite

effect would be expected. The phonon specific heat is the

derivative of the total vibrational energy will respect to

temperature. The change in specific heat per mole is then56

3N kBBZ w

AC(T) =-——z———-fm w2A(w) csch2(Bw/2) do (100)

B = M/kT

The change in specific heat is expressed in terms of the

phonon phase shift (see equation 147) as

Ag(w) = §.i% (101)

where x is the concentration of defects. The phonon phase

shift for a mass defect and for the scaled force constant

model (defined in section on thermal conductivity) is

 
 

_ 2 0 .2 2 O
mew Im G££ 3 mew Im ng \

e = tan"1 2 a: + 3tan'l 11 a“ (102)

1'm5“ Re 699 l+%¥-%§-mw2Re Gig,

C10

0(0).

This expression was evaluated for €==-l/3 and y==.15. The

result is displayed in Figure 8. In the very low frequency

limit where the density of states is quadratic in frequency
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the change in density of states can be found from equation

101 and there is then a simple form for the corresponding

very low temperature specific heat.

Ag((0) = §3£3 (103)

1 J u’1)
3

0cm = -x(-3-§E + -in—) C(T) 03- << 1 (105)

1+—3Y- D

Substitution of the phonon phase shift into equation

100 and an integration by parts gives

3kaN

 21cm = - [:0 (100(0) @22 csch2(Bw/2){1—§§-coth%‘3} (106)

This expression was evaluated using the phase shift

of Figure 8 and at .2 K eighty-one percent of the enhance-

ment due to the mass defect was cancelled. At 1 K seventy-

five percent cancellation was found.

The change in the ground state energy was also

evaluated and ninety percent of the diminution caused by

the mass defect was restored by the induced force constant

change.

 1 .1.
2

AE<T> = I” 019(0) dw ( +

O eBw—l

) (107)
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integration by parts,

x <9 Bw Bw/Z
3? a) 0(w) [cothjf-+ -f-§EJ dw

Slnhjr

AE(T) =

AE(T=0) = -— fo°° 0(0)) d0)

(108)

(109)



CHAPTER IV

CONCLUSIONS

In the preceding develOpments we have derived a

general equation of motion for lattice vibrations which is

applicable to all crystals and temperatures but is espe-

cially useful in the case of quantum crystals where clas-

sical methods fail. The formalism developed is exact and

has several advantages over the existing variational theory.

The variational theory minimizes the ground state energy and

is therefore good at zero temperature and only as good as

the trial wavefunctions. This formalism should also be use-

ful in cases where classical calculations are extended by

perturbation theory to include anharmonicity. This possi-

bility has recently been prOposed by Gillis and Koehler57

as a method of treating paraelectric crystals. Spatially

averaging the interatomic potential would reduce anharmo-

nicity and provide an alternative to summing many orders of

phonon interactions. It has been shown how a force constant

change is induced by an isotOpic defect and quantitative

results were obtained by these methods.

The three methods of calculation consisted of an

Einstein model for a solid, an approximate matrix inversion

65



66

scheme for calculating the defect crystal Green's function,

and an exact computer inversion of the necessary matrices.

Although the calculations differed in sophistication the

quantitative results were very similar. This can be under-

stood because the results depended on integrals of the

phonon spectrum and not on a detailed description of the

spectrum.

We can now comment on the experimental effects noted

earlier. It was the original expectation that the enhanced

spin-lattice relaxation rate which occurs in 3He with only

a small addition of isotopic defects could be accounted for

by a resonance in the density of states due to a heavy mass

defect. While the defect is heavier than the host atoms the

fractional mass change is insufficient to cause a resonance;

furthermore, the increase which does occur in the density of

states is cancelled by the induced force constant change.

The effects cancel because an increase in mass enhances the

amplitude of low frequency vibrations while diminishing the

weight of high frequencies. A force constant increase has

an opposite effect. The conclusion is that phonons are

unable to explain the spin-lattice relaxation experiments.

Other inelastic processes which might account for the exper-

imental spin-lattice relaxation results are enhanced vacancy

diffusion and nomadic particles.

The anomaly in thermal conductivity experiments is

a phonon scattering rate which exceeds the value given by

mass defect theories. By considering the scattering due to
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the induced force constant changes, we find a scattering

rate which is twice the mass defect prediction. This

result is roughly in agreement with most experiments while

considerably smaller than the experimental predictions of

the Duke University group.

An enhancement of the phonon specific heat of

helium because of a heavy mass defect has not been reported.

Experiments measuring specific heat have been done in

temperature ranges (above isotopic phase separation tem-

peratures but below vacancy generation temperatures) where

this effect should be observable. The absence of this

observation is explained by the masking of the mass defect

by the induced force constant changes.

To complete this work we derive theorems concerning

phonon lifetimes and static distortion fields in the appen—

dices. In calculating phonon lifetimes using displacement

prOpagators (descriptor of lattice displacement waves) it is

necessary to ascertain the relationship between the phonon

prOpagator and the displacement prOpagator. This relation-

ship is found as well as the relationship between the asso-

ciated T—matrices, which are a simple way of expressing

phonon lifetimes. Several derivations of phonon lifetimes

are given. Lattice distortion near a defect has an impor-

tant effect on the phonon scattering rates and a simple

general method for calculating it is found.
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APPENDIX A

COMMUTATOR THEOREMS

Presented here are some theorems used in the

derivation of the equation of motion for the displacement

Green's function. For two arbitrary operators x and A

(which are associative, distributive, but not commutative),

'we define

A0 = A A1 = [x,A] A2 = [x, All An = [x, An-l]

(n) __ n!

k '- (n-k)! k!

 

Theorem 1

(EH-l)k xn-kA xk

0

An =

k "
M
D

The proof is by induction. For n = l the relation is true.

For n = 2, 3, and n + 1:

A2 = [x,[x,A]] = sz -2xAx +Ax2

A3 = [x,Az] = x3A - 3x2Ax + 3xAx2 - Ax3

n n k n-k k]
An+1 = [x, An] = Z (k)(-l) [x, X Ax

k=0

n+1

n n k n-k+lek + Z xn-k+lek( n )(-1)k
= Z (k)(-1) x k-l k-l

k=0 -

68
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n
= 2 {[(E) + (kfl)] (—l)k xn k+lA xk} +(_1)n+len+l +

k=l

xn+1A

n+1
= Z (n;1)(_l)k xn kAxk

k=0

Theorem 2

(fin-1)k xn‘kA
0

Axn =

k "
0
1
5

k

The proof proceeds again by induction.

AX = xA-Al

sz = sz - 2xA + A
1 2

n+1 n n k n-k
Ax = 2 ( )(-1) x A x

k k

k=0

n n+1 k

= 2 (:)(-l)k xn+1-kAk +. Z (knl) xn+1 k Ak(—l)

k=0 k=l

n

= 2 {(n) + ( n )}(-l)k xn+1—kA +xn+1A +_(_l)n+l An+l

k k-l k

k=l

n+1

= Z (n;1)(_l)k xn+1-kAk

k=0

Q.E.D.
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Theorem 3

A A_ _ (-1)p
[e ,B] - ep —p—l-—Bp

"
M
S

1

This relation is derived by expanding the commutators,

using theorem 2, and explicit resummation.

 

[eA,B] = 2 l (AnB -BAn)
n!

n=0

°° n

= - >3 Ill! 2 (fi) («1)k An‘kBk

n=0 k=l

w n k

A (-l) n-k
[e B] = - Z 2 _ A B

' n=l k=1 (n k)! k! k

A _ (-1) o

'[e '31 " 01—171) El

(-1)1 (-1)2 o
+1—!—1-!——A1113 +0121AB2 

(-l)1(-1)2 (-1)3

+2T1T'A31 +1T2T—A32”0T§T—A°B3

('1)1 ('1)2 2 (-l)3

+3TIT"A Bl +2121 A 32 +IT'iT"A B3 +
 

(-l)“A"Df—_A

-L—%L:.A1B4+éT%%:-AOB5
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_ (-1) A

sum of column 1 — _ITI e Bl

_ (-1)2 A
sum of column 2 — -§T——-e B2

_ 3

sum of column 3 = (3}) eAB3

“ _ P

[eA,B] = -eA 2 ( }) B

p=1 P- P

QOEOD.

Theorem 4

If [A,B] = O and A(t)=elHtAe-lHt then

[A(t),B]=-4A(t)p£1%%2§rsz where Bl=[H,B] BN=[H,BN_1]

The proof uses several applications of theorem 3.

  

 

 

. _. w . p _ w _.
[eifltAe 1Ht,B] = _A(t) 2 (1t) B _e th z (-411:)p Ae 1Ht

p=l P P p=1 P BP

” ' P _ P m - P _°

= A(t) 2 (if) B -A(t) z ( 1?) lHtA 2 (if) {B ,e lHt}
P=1 P P=1 P P=1 P P

_ “ (it)2p th _ -th ” (1t)pit)q

= 2(t) PE__1B—§-P_f—— + e A( e )pil qu qu! Bp+q

- - P+q _
Coefficients of t Bp+q for p+q—N

Ngl (-1)P = Ngl (-1)p = 1, g (_1)p N1 + _1_,_(-1)N
p+q=§ plqlg p=l pl(N-p)l N p=0 p!(N-p)! N N!

p:q=

N 2

0 + l-éIl) N' N even

0 N odd
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[A(t) :B] = '4A(t) Z W B

z
If e ey = e and y1 = [x,y] y [x,yn_l] thenn—

00 00 CD

z=x+y+ 2 a y +

 

p=1P P pq_1an P g pqr-l qu P g

=x++2a +Za()+ (15*-
y p=1 pyp q=1 pq yq p pqr_1apqr (yp ) q)

This is demonstrated by writing

etxety=ez 2= 2 z tp

p=1 p m
zptp n

(2 )
m n m+n

2 x t = 2 p=1

mn m n! n=0 n!

Equating powers of t the above form is found. The

[y .y 1 + Z a [y [y yr] + -

coefficients a.. . . . are sums of the coefficients ak.

13

Q.E.D.

Theorem 6

If we define a symmetry ordering operator S such

that

n

S(yxn) z 2 XY Y xn"Y

Then

Y xn + XS(Y xn‘1
_ n

P P )—S(XYp).



Y xn + XS(YP xn'l

n

P ) = Y xn + z xn'Y Y xY

n‘Y Y _
X YP X YP XII

|
-
<

X +

"
P
1
5

n

S (X YP).

Q.E.D.

Corollary

n n—l _ n
x YP + S(YP x ) x — S(X YP)

Theorem 7

The difference in ordering of the product of two

operators is given by the symmetry ordering operator.

Y - S(Y n’1)
P P XP+l

The proof is an induction proof.

n=l YPX = XYP + (YPX - XYP)

= XYP - YP+l

n-2 Y x2 - XY x‘ Y x
-42— P ‘ P P+1

= sz + x(Y x - XY ) ’Y x
P P P P+l

= x2Y — (XY + Y X)
P P+l P+1

2
X Y - S(XY

P 9+1)
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Show-n+1

Y xn = xn Y - S(Y xn'l)
P P P+l

n+1 _ n _ n-l
YP X — X YP S(YP+l X ) X

_ n+1 n _ _ n
_ x YP + x (YPX XYP) S(X YP+1) +

n

X YP+1

_ n+1 _ n _ n n

" X YP X YP+1 S(X YP+1) + x YP+1

_ n+1 _ n
— X YP S(X YP+1)

Q.E.D.

Theorem 8

%I ex eAYI 5 ex Y _‘%_ eX+AZ l

A=0 A=0

where Z = Y+

j=0 3 3

We prove this by expanding the exponential (ex) and

using the symmetry ordering operator before resumming.

First we need the following Lemma.

  

Lemma 1

XnY n n-1 n-2

—r-1T=S(Yx.) +aIS(Y1x )+a28(Y2x )+ anYn

(n+1)! n1 (n-l)!

n .

= 2 a. S(Y. Xn-J)

j=0 J l
 

(n+1-j)!
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The proof is by induction.

 

 

  

 

_ _ XY + Yx + XY - Yx = S(XY) 1
n-l XY — 2 -—§——-+ 2 Y1

2

_ x Y _ x S(XY) 1
n—2 -—2- — —T—— + Z- XYl

2 2

_ s(x Y) _ Y x 1 _
— '—I_—_ ‘I‘“’+ I’ XYl + le + XYl le

(Using Theorem 6)

S(X2Y X2Y S(Y X) 1 1
= - + l + _ S(XYl) + Y2

4 Z Z 8 8

3 2 S(XZY) 3 1
I X Y + S(XYl) §|+ §' Y2

X2Y S(XZY) s(le)

T=T+a1 "—‘2'1"+ aZYl

.. 1 _ 1 z
where a1 - 3 a2 — I2 ao _ l

n+1

n n n-1 n-2

X Y S(X Y) S(X Y1) S(X Y2)

‘HT" TH:ITT’+ a1 n! + a2 (n-l)! "‘ anYn

Xn+lY XS(XnY) XS(xn'lY1)

n! = (n+1)! + a1 n! + "‘ an x Yn

now use theorem 6

Xn+lY S(Xn+lY) S(anl) S(xn'le)

 

“ET"= “TH¥IYT’+ a1 “‘ET‘" + a2 (n-l)! + "'

1 ln+ n n-
Y X al Y1 X a Y X

2

’W'T' Z‘TrFTST’“'
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now use theorem 7

 

 

 

 

 

 

1 1 S(Xn+lY) S(an )

XnH'Y [— + ] + a ———l— +
n! (n+1)! (n+1)! l n!

n-l

a2 S(X Y2) + ...

(n—1)Tv

n n n-l
+ s(Yl x ) alYl x _ a Y2 x ____

(n+1)! n! 2 n- 1

+1 a 1

n+1 n+2 S(Xn Y) n 1

x Y (n+1)! (n+1)! + S (x Y1) [ET + (n+I) I] +

a 1

n-l 2

S(X Y2) [THZITT + HT ] + ...

alan1 xn'le xn’zY3

’ n! a2 TH=ITT ‘ a3 n-2 1 ' °

= S(Xn+lY) + S(an ) [ a1 + 1 _ a1 ]

(n+1) 1 1 FY (n+1) 1 (n+1) I

a a a 2 a;
n-l 2 l l 2

+ S(X Y2) [ n- 1 +‘HT" ‘3? ""T 1

a a a a a
n-2 3 . l 2 3

+ S (X Y3) [(n-Z)! + n- 1 - (n—I)! - n-

+ O O O

S(Xn+1Y) n-l EK S(an’K'1 YK)

= ‘THIIYT + K31 (fi+2-K)l

E1-= (n+1) + a0 - a1

— 2 —

E2 + n a2 + a1 a1 a2

E3 = (n-l) a3 + a2 - ala2 - aza1 - a3
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K-l

EK = (n-K+l) aK + aK-l - .E a. AK—j

j—l

= (n+2) aK - (K+l) aK + aK_1 - g ajAK-j

= (n+2) aK

where the recursion relation for the coefficient aK is

K-l

(K+l) aK = aK-l - Z_ ajaK_3

j—l

_ _ l l _ _ l _

ao ‘ l'a1 ‘ i'az + I2'a3 ‘ °'a4 ‘ 720" a2n+1 ’ °

(ns‘O)

Xn+1Y S(Xn+lY S(xn-K-l YK)

(n+1)! = n+2 1 + Z aK (n+2-K)!

Q.E.D.

The theorem now follows easily. We rewrite the expansion

of-exY in symmetrized form.

Y = Y

3 (XY)

21 Y
+a 

1 l

2
X Y S(X Y) alS(XY) a

T=T+T+ 2Y2

x3Y s<x3Y) S(XZY) S(XY)

“T =““IT‘ + a1 ‘—‘§T"+ a2 “27"+ a3Y3

In resumming, the RHS is summed by diagonals and we use the

definition
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ex Y _ Z + S(ZX) + s(zxz) + s(zx3) +

- ‘71— ‘7‘." T

ex(l+Y) - 1 + (x+z) + £31§l§§1 + x3 + S(ZSZ’ +
‘ 2: ‘1‘:—

eX Y _ 8 ex (IL-FAY) l = L ex XYI

’ 01 A=O a e A=0

a (x+12) (X+AZ)2 (x+12)3

=Wll+T+T+T+”'J lx==o

_ a x+Az

Q.E.D.
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APPENDIX B

STATIC DISPLACEMENTS

Static displacements of atoms from the perfect ‘1

crystal lattice sites resulting from a substitutional

impurity are calculated here by minimizing the total Gibbs ;‘

 
Free Energy with respect to the atomic positions. Other 5’

methods of calculating static displacements will be

critized at the end of this appendix. We divide the

Gibbs Free Energy into a phonon energy, phonon entropy,

configurational entropy and an applied pressure term.

G=V +U -TS -TS +PV (110)

s p p c

=V +F+PV—TS

s c

where

VS = static lattice energy

F = Helmholtz Free Energy of phonons

Sc = configurational entropy

If the substitutional defect is not allowed any

mobility the configurational entropy may be neglected.

Static displacement vectors will be denoted by eta.

79
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G=VS+F+PV

3? = §fi_‘+ 80 (F—FO) (defect lattice) (111)

We consider first the potential term and later the free

energy.

If only the potential term is considered for the

present and every atom is required to be in equilibrium we

may expand the potential about the perfect crystal lattice

sites and determine the static displacement vectors.

3V(ri.)

Z—E—J— =0 for all i

j ij

0 2 o

0:23V(r1 ) _ 2(3V(r1 ) + g v(rij) .n )Ez{v' +¢13'”13}

J r13 rij 3r?. 13 3

A-P-n (112)II

-
M <

I

M '
9
'

J

m

Eta may now be found by inverting the force constant

matrix (9). This is difficult.since P has dimensions

3N X 3N where N is the number of atoms with which any one

atom interacts. Assuming the defect is not displaced and

does not interact with other defects, it is a center of

inversion symmetry and only a spherical distortion
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is expected. In this case the number of coordinates

involved in the relaxation is just the number of shells of

atoms considered. If a vector of direction cosines for

atom j of shell A is defined by I; we find a

 

Amax X xmax matrix equation.

“ijnf 1 l“
J

m 'm m

z r¥-¢§§f§ ri-nk — z M-AA ,2

kijA' l 13 3 i 1 L}

I I

z 0*“ fix = AA (113)
AI

Many shells of atoms are included here because it if often

not possible to consider the relaxation of the nearest

neighbors of a defect decoupled from the remainder of the

lattice. As a trivial example we consider the case of a

single defect in a one—dimensional lattice with nearest

neighbor interactions where the first derivative of the

potential connecting the defect to its nearest neighbor is

changed and no force constants are changed. The effect on

an infinite chain is easily visualized to be the displace-

ment of every particle by an amount n1 towards the defect.

For a 2N+l member chain the equation becomes
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1 ~ 1

_ _ I

-¢ 29 -¢ ... 0 n 0

-¢ 2Q -¢ .00 0 o 0

0 -¢ 29 ... 0 . = . (114)

O O O O O 0 .-¢ 0 O

1 0 O 0 0 .- 2¢J nN~ . 0 1

which is easily inverted to give

5v' ‘

_ _ .m_+1;rr1>. 10
nm “ N+1 0 (m > O) (115)

which goes to the correct result in the limit N-—*w. The

result of keeping only nearest neighbors is in error by a

factor of 2.

Rather than putting all atoms in a shell in equi-

librium as in equation 113 it is easier (and equivalent) to

put one atom in each shell in equilibrium. The direction

cosines for this chosen atom then can be expanded in terms

of eta for purposes of iterating equation 112.

In the following Vij denotes V(Rij) where Rij is the

vector between sites i and j in the unperturbed lattice and

cos(A,B) is the cosine of the angle between vectors A and B.

+

o = 2 6r V(R..+n..) = Yr {v.; + 3r v..-n..
j -ij 13 13 ij 13 ij 13 13

+ avi.

= Z Vrojv..+-Vr.. Se—l {cos(ij,i)n.-cos(ij,j)n.} (116)

j ij 13 ij rij . l J
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If the defect is a center of inversion symmetry the

sum on j is a radial vector in the direction of site 1. We

therefore take the projection of each term along the radial

vector and leave vector signs implicit.

 

 

A -+ .. = 0
213”]

avi.

A. = 2 ———l cos(ij,Oi) (117)
i . 3r..

3 13

l

V 2v..

§——i1-cos(ij,01) cos(ij,0j) i¢j (118a)

8r?.

13

-z §——il cosz(ij,0i) i=j (118b)

L 3r?.

11

We again have a A X A system of equations. One can
max max

include effects of displacements from shells beyond the Amax

without changing the order of equation by using the elastic

limit for these displacements

(n 1 dimension

nk(k>Am ) = i nz fi; 2 dimenSions 5L<Amax (119)

 R2
an (——)2 3 dimension
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Phonon Free Energy

If the normal modes of the defect lattice are

harmonic phonons the change in the free energy can be

written in terms of a density of states g(w) or the phonon

phase shift 0(w).

6F = kT 4: 5g(w) 1n[2sinh(%§)] dw (120)

It will be shown in equation 147 that

6g(w) = - % 5% 1n Il-GQI (121)

where 0 is the phonon phase shift, G the defect lattice with

no static relaxation, and Q is the change in force constants

due to the static relaxations.

 

 

_ 2 _ 2
Qij — VXyVij(R+n) nyvij(R)

xy '

(2)_ A (3) (2)_ A

=51 {(v‘3’ -‘-’——-—T-)(r-n)+(v‘4’-V +Y—'-—-T-)(r°n)2}
r2 r ~ r r2 ~

(2) A (3). (2)_ A

+ 5x {V ‘T r-n+ (V V T)(r-nm
Y I' ~ r ~

5 0(1) f-g +‘% 0(2) (f°g)2 (122)

V(n) is the nEh derivative of V. Differentiating and

performing the integrals the free energy contribution to

equation can be found.
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__ (1) .. .0 _ -219ffifijéF — ZEQij Djicos(ij,01)ri+2{ ZDiiji 1TfOIm(GiiGjj

3 3 as Ba 3 08 Ba 08 ya

(1) (l) ‘83 2 .. .
+GijGij)QBY Qda coth (:2) dw} (cos (ij,Oi)ni

d8 yé

-cos(ij,0i)cos(ij,0j)nj) ri (123) IL!

There exist other methods for calculating static é

relaxations. The method of lattice statics by Hardy58 Lg

yields displacements in the elastic limit which in general 3

will not be applicable near the defect. The method of

lattice statics uses the first two derivatives of the poten-

tial and is not easily iterated. Two previous calculations

applied to isotOpically impure helium used a continuum model.

Maradudin and Klemens59 neglected the potential energy con-

tribution to the free energy, while Klemens et al.52

neglected the possibility of an isotopically dependent

potential. Other calculations consider only the potential

60,61
part of the free energy.



APPENDIX C

HARMONIC OSCILLATORS AND STATISTICS

 

.
4
n
f
r
n
n
v

I
I
fi
r

.

 



APPENDIX C

HARMONIC OSCILLATORS AND STATISTICS

The purpose of this section is to further examine

the relation of gaussians and harmonic oscillators and then

for completeness to gather some statistical relations. The

ensemble average of an operator A is given by

 

 

<A> = trpA=-:- tr(e-BHA) (124)

a e-Bw(n+122) -a2§—2— ..aZZ‘:

= —Z n (H (ax)e 2,A(x)H e 2)

Zr) 2 nl/F_ n n

a ’Bw(n+%) _ 2 2

=f{;2:e H2(ax)e a x } A(x) dx (125)

n 2nn1/1r—- n

E f p(x)A(x)dx (126)

provided the Hamiltonian is harmonic. Hn are Hermite poly-

nomials. p(x) is an average of field Operators

4: +
0(X) = <‘P (x,t ) ‘1’(X,t)> (127)

The braced quantity can be evaluated using62

H (X)H (Y) _ 2 2

z n n“ tn = (1-t;2)'1/2exp{zxyt (x +1 ”2} (128)

=0 2 n! 1-t2

 

n
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32 ‘ 2 "Bw 2
p(x) = 77 tanh(Bw/2) eXp(—a tanh IT'X ) (129)

l 2 2
= /— exp(-x /2<x >)

20<x2>

<x2> = f p(x) xzdx = coth(Bw/2)
 

2a2 I

The density function is a gaussian. Note it is also (

the square of the ground state wavefunction with a tempera-

 
ture dependent width. The density function (or number L]

operator) is the diagonal term of the field theoretic

Green's function

G = <W+(x,t)W(x',t')>0(t-t') (130)

Using equation 129 we can evaluate G.

G = writ; z e[-B+i.(t-t')] [n+%10

Z n

2 2 2 .2

Hn(ax)Hn(ax')e-T
ax e-Tax

 

X

2n n! /0
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. . __ _2_a_ sinh(Bw/2)

G(Xt'x t ’ ‘(3 / 1r Sinh(Bw-i(t-t‘)w)

- 2

2 I

exp _%_'(x2+x'2)COth[Bw-i(t-t')w]+sinh[B:-Iw7t-t')]

33 sinh(800/2) 0(t-t')

G(Xt'x't') n sinh(sw-1Ct-t')6)
 

exp -a2x2 tanh[Q—2w- - EFL] (131)

 

Useful statistical functions are the characteristic

(x), moment generating (M), and cumulant functions (K).

Because the density function is a gaussian these properties

are easy to calculate and are listed below.

. , _ 2

x(b) = (elbx> = f elbxp(x)dx = e b /4a (132)

_ 2

M(b) = <e bx> _ b /4a
(133)

-_ -iKr — log M(S)IS 0 2a 5r'2 (134)

For completeness we include the classical analogs of

the above. For an oscillator with fixed energy and ampli-

tude A:

Pc(x) = — —— (135)
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n n n—l !!

nll n,even

. n

x(q) = 2 ii%%- <xn> = JO(Aq)

_ . -r’ 3r _ _A2 _27A“

Kr - (1) 3;;'109X(q)|q=0 Kodd_0 KZ-jr' K4-_7r—

The quantum and classical statistics are inosculated

by considering the classical ensemble average.

/5' e-b2x2/2 (136)_ 2 2
e mm Bx /2 fl

 

 

_ msz
PC(X) - n

This is similar to the quantum result; the difference is in

the inverse width of the distributions.

2

 

‘ mm .
b — JCP claSSical (137a)

a = / —§2'(tanhg%%)+l/2 quantum (137b)

. . m0)2
llm1t a = W (138)

kT>zhm

Equation 138 is a demonstration of the correspondence

principle.
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APPENDIX D

DENSITY OF STATES

We derive here some formulas for the density of

phonon states. Q will be a unitary transformation which

diagonalizes the product of the diagonal mass matrix and

the displacement Green's functions. The eigenstates of the

defect crystal will be labeled 5.

2

mew Ggg. = 6&8612' +- Z ¢££2G£2£,

08 Y 2 my Y B

@222

2d 2 - ax T2 y 2 Y fl'fi _

2 Q5 (62260Yw m ) Q5 2 Q53 m2 G2 2' s' - éss'
£2223 i 2 l 1 3 3B

aB'y Y

81

id id _

2 Q Q n - O

Rd S 5 55'

2a 2'8 _

: Q3 Q5 ‘ 611.608

q’u'

la 08 Ii 8 — 22 _____ _

22' 3 m2 Qs' - wséss'

GB

90

(139)

(140)

(141a)

(l4lb)

(l4lc)
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Using equations 141 in equation 140 we find

1 + l l

Efitx[QWQ ]=‘§§Z'jr_:

Stu-w
5

lim Im 3le tr[QmG(UH~i5)Q] = - 3% 2 Sufi-(D? = -1Tg(w2) (142)

6+0 5

2 ___ _£_ . +
g(w ) - WBN 5; mRGQ£(w+iO ) (143)

ad

The last step follows by invariance of the trace to repre-

sentation.

If we consider a mass defect

2 ____i_ ’ _ 0

A9“) ’ ’ N3N f {szst TM}
a aa aa

-.._l_ _ 0 _ o o

‘ mu 5 { miezsummu 82’ “3 TG ’22}
a ad dd

This result is cumbersome. A more eloquent general result

can be found in terms of the phonon phase shift.

 

 

 

g(w?) = -3L Im tr 1 w =w+io+ (144)

NN mg _¢ +

1 2
= -F§ Im tr 8 2 ln(w+-¢)

w

- 1 3 2
- -Ffi Im awz ln Det(w+-®)

where we have used a relation true for a nonsingular A.

tr In A = 1n Det A
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Then since

2 _ 2_ _ 2_ -1
w+ - Q - (w+ @gfll (w $0) C},

2 _ _ .1. .11. 2- _ 0 2
g(w ) — “N Im sz ln Det {(w+ ¢O)(1 G (w+)C)}

The determinant of the product of two square

matrices is the product of the determinants.

Ag(w2) = - i Im __8__ 1n Det {l-G°(w2)c}
TTN 3032 +

2 _ _ 3;.Ji_ 2 2 z _ 0 2
Ag(w ) — “N 3w2 O(w+) O(w+)_ Im 1n Det l1 G (w+)C|

 

(145)

L1

(146) 1. .
ii

(147)

This can be rewritten in a form which is sometimes

more useful by expanding the determinant and expressing the

force constant perturbation in an orthogonal basis.

 

 

Ag(w2) = Im -—2—-ln Il-GOCI

am?

0 11

Ag(w2) = - %—3 2 tr (G C)

awzrl n

using, 1n Det A = Z 1n A. A.(eigenvalues)E l-x.
1 1 1 1

co (xl)n

= Z ln(l-x.) = - Z X

i 1 1 n=1 n

n

= -tr 2 E—-

n n

After differentiation equation 149 can be resummed as a

geometric series.

(148)

(149)

(150)
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-Im %- tr 020 (GOC) ' (GOC)n (151)

n=0

Ag(w2)

1

-Im %-tr (GOC)'(l-GOC)- (152)

In equation 151 the derivative could be commuted to

the left in each term because of the trace operation. The

prime denotes differentiation with respect to wz. We now

expand the perturbation in an orthogonal basis. Band

indices will be labeled j and V is a folded matrix.

* I

qu, — .2 Vik ‘l’i(q)‘l’k(q) (153)

... 1k ...

33 33

g(w2) = -Im-];tr{(GoC)' +(G°C)' (3°. c +...}

" 93 331 q131 31?
33 331 313

l 0 U

— -Im E tr{(Akivik) +(Akivim ) Amn vnk + ...}

jj ii ii 131 j1j2 jzj

1 -1

= -Im E-tr{(AV)'(l-AV) } (154)

: O *
Aik _ ij, Z_Wi(q)qu Wk(q) (155)

3'3" 3

Mass Defect Example

» _ 2
egg, _ mew 628 52'8 Gas (156)

as
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iQ'2 -iq"2 j *j'
C _ ~ ~ ~ ~

Qq' 5:. e e 00(g) 08 (g) C21.
jj' a8

d8

= mewz 6--I

33

o

A ‘ ajj, G21
jj

2 O I

[mew G22]

_ - 221 (AV)'1 - _ £9.
jj139(2)) ' Im 17 2. (l-AV)j - 77 Im 2' 1-mt:szo

]
3

22

ii

2 O I
[mew G22]

= - 3ng 1m 2
2a:

a 1-mew G££

(1a

(157)

The following is a p wave example for a partial wave expan-

sion of the perturbation.

C .= V”. "
qq 13 93

13'

= 'v 31y ()Y*(')+Y ()Y*(')+Y ()Y
qq jj' 3 11 3 11 3 10 3 1o 3 1-1 3

j z * o
A-lO - Z q Yl_l(g) Ylo(g) qu

3 ~

3 = 2 *

A1—1 2 g Yl-1(g) Yll<g) qu

(158)

(qW
~

and V are now 9 X 9 matrices. By imbedding the band indices

j into azimuthal matrix elements, we find the following form.
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”'- __1

A11 v11 A1-1V11 A10 v11

= *

AV A1-1V11 41-1V11 A-10V11

1* v A*

  L- 10 11 -1-1V11 A-10V11

In order to find a simple result we consider the case of

spherical bands.

j- 20_ _20

Agm — 6£m : q qu — 6£m(l mw GOO) (159)

Ill

GOD is the diagonal element of the real space perfect

33 crystal Green's function.

  

1 o 0

AV = o 1 o (l-meGO )V..,
00 j]

o o 1 33

- _ 22 _ 2 0 . _i_ _ 2 '1
A g(w) - Im 1T ;g'[(1 mm Goo)vjj'] [ ‘3(1 mw GOO)V]jlj (160)

ii

If the perturbation does not couple bands and is the same

for all bands,

v... = 6..,v
31 JJ

[(l-meGgO)V]'

 Ag(u)) = um???- 22 1 33 o (161)

j 1—§(1-mw2c; )v
00

13'
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APPENDIX E

SCATTERING

In transport problems the phonon lifetime is

required. It will be shown that the phonon lifetime can

be calculated from the T-matrix for the displacement Green's

function. For structureless scattering centers the lifetime

is found to be temperature independent. This appendix

begins with the calculation of the phonon Green's functions

by several methods, comparison of the various T-matrices,

lifetime calculation and finally the connection with phase

shifts is given.

Retarded Green's Functions

The displacement Green's function (G) is a linear

combination of a phonon Green's function (g_) and a "hole"

Green's function (g+), the propagation of the state with

one phonon removed.

__ l
 

l l
—— +
(0+0) (1)—(L)

1

)

k

In deriving equations for these Green's functions several

definitions are necessary:

96
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g = -2fl<<a+(t)a (0)>> E (-2n)[-i@(t)<[a+(t) a (O)]>] (163a)

+kk' k k' k ' k'

g = 2n<<a (t) a+ (0)>> (1631»

-kk' k k'

_ + +
fkk' — zn<<ak(t) ak,(0)>> C163c)

hkk' = -2n<<ak(t)ak,(0)>> C163d)

The name of the phonon Green's function is justified

by the interpretation of the related correlation function

I . 1 0° -iwt
< > -— __
a] (t) a ' (O) - 11m 2 f e

6+0

g_kk,(w+i(3) [n(w)+l] dw (164)

as the probability amplitude for creating a phonon of wave-

vector k' at time zero and destroying a phonon of wavevector

k at time t. In this sense then g_ allows one to follow the

evolution of the n+1 phonon state.

The Hamiltonian in momentum states

_ + 1 1 + +
H - X €k(akak+-§) + -2- Z ka, (ak+ak) (ak,+ak,) (165)

k kk'

is found by transforming the real space Hamiltonian

PE. 1 l

H = m + E- Z'¢££,umu£,8 + 3 2' C22,. uzau£,8 (166)

22 22

a8 08
a8
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where

/I . 'mwkM j + ik°2
P20. = fi 2 1 0a (k) (ak-ak) e ~ ~ (167a)

kj /2 - -

/T f M + ik°2 j
U20. — SN 2. 2mm (ak+ak) e ~ ~Ua(§) (1671))

Isa k

We identify ka,=Ckk, -———E———- . For a mass defect ka, =

4m/w w .
k k

-M€/wkwk,

4N

The equation of motion for g_ is found by taking the

time derivative using Heisenberg's equation of motion:

f ).in g-kk' = 6(t)6kk, (Znh) + e + E Vki (g-ik'+ ik'

kg—kk'

1“ fik' = —€ifik' ' Vik(fkk'+g-kk')°

W
M

Fourier transforming and solving for g_

l —l 0

90V} 9g- = {(1-ng) + ng(1+goV)- + _

Superscript zeros denote unperturbed functions.

9+ is found similarly:

ng+kj = 2"”6(t)ij'ekg+kj-vk2(g+2j+h2j'

1Mh2j = €2h2j+v2k(g+kj+hkj)

  



99

Fourier transforming and solving for g+

_ o o _ o -l o -l o
g+ — [(l+g+V) + g+V(l g_V) g_V] g+

Having derived the Green's functions we display the results

in closed, Dyson, and T—matrix form.

_ o o _ o -1 o -l 0
9+ — [(l+g+V) + g+V(l g_V) g_V] g+

g_ = [(l-gEV) + gSV<1+gEV>'1 givf1 9°

G = (1-GOC)'1GO

9+ = g: + 9:3V(1+[l-<JC_DV]-l 93V) 9+

9_ = g? + gEV(1-[1+g$VJ'l gEV) g_

G = G0 + GOCG

O O O

9+ = g+ + g+t+g+

O O O

9. = g- + g_t-g_

G = G0 + GOTGO

T-matrices

t+ = -V(1-[1-gfv1'1gSV) {1+g$V(1-[1—g‘_’v1'1g‘_’V)}‘l

_ o -l o o o -1 o -l
t_ - -V(1-[l-g+V] g+V) {l+g_V(l-[1-g+V] g+V)}

T = C(1-GOC)'l
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C is the force constant perturbation

Note that g+(w) = -g_(—w)

t+(w) -t_(-w)

A relation between t_ and T can be found by equating two

T—matrix forms for G.

o c) o l l o c) o C) o o

G — G +G TG — 2(1) (g++g_) —§E(g++g+t+g++g_+g_t_g_)

o o ]. o o o o

G TG - 35-(g+t+g++g_t_g_)

  

  

T = ‘w‘wk't+kk"w"w'wfi’ + (m+wk)t_kk.(w) (w+w£) (168)

kk' 2m 2w

= _ (w—wk)t_kk,(-w)(w-wg) + (w+wk)t_kk,(w) (w+wk.)

2m 2w

In the case of elastic scattering (wk=wk,), T and t_ are

simply related by a factor 2w.

Time Dependent Scattering
 

The phonon transition probability will be found to

be linear in time. The inverse lifetime is then given by

T 2

(ak'(t) ak(0)> (169)
 

 

i: 2 limit l
T t

k k' t+0   /(nk+l)(nk,+l)

The thermal factors in the denominator normalize the states

1.

ak, |o>, a:|0> .
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T i w -iwt
Akk' - <ak, (t) ak(0)> — 3; [co [l-n((1))] e g_k, ((1)) t-kk'g-km)

[H(w )+l]
t ((1) ) emj'wkt

6k -iw t -kk' k
= W— t_k,k(wk) e k +[n(wk)+l] w _w

k k' k' k

Once Ak'k is divided by the nomalizing thermal factors it

is independent of temperature. The poles of t have been

neglected since these give short transient effects except

in the case of a localized mode where its residue must also

be included. Performing the square and limiting operation:

 

l 2

—= 211 2 It ,(w) | (5(a) ~61.) (170)
'& Id -kk k }< k

2

T ,(w )

=2nz'kkkl (S(UJ-w) (171)

k' «02 1‘ k.

k

Where equation 168 has been used. If the T—matrix

depends on the final wavevector only via the final state

energy the delta function may be replaced by the density of

final states.

9(a)) 2

i=m " IT .(w)| (172)
T 2 kk k

k 2w

k

..211 G0 (T ( ,|2 (173)
’ wk m 22 k'k wk
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Perturbation Scattering Theory
 

Perturbation techniques make use of the time ordered

Green's function

15 (t) = <T a (t) a+(0)> (174)

k k k

which can be related to the advanced and retarded functions

 

 

via the spectral function.36

ng») = 7: g: mfg'f“: )in (175a)

gA(kw) = 7: 3“; “fix“: )in (17512))

E = [1+e-Bw]-l gR(k(1)) + [1+e8w]ul gA(kw) (175C)

For real frequencies these reduce to

R 1

Im 9 (km) = — 3mm) (176a)

A 1

1m 9 (km) = + 3906») (176b)

Im E = - -12- coth (Eglmmw) (176C)

Re 5 = Re gR = Re gA (176d)

These relations permit the calculation of the spectral func-

tion from either the time ordered or the retarded Green's

functions previously considered. Note that for zero

temperature the real and imaginary parts of the time ordered

and retarded functions are equal.
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The imperfect crystal propagator can be expanded in

the usual way.36

m ._ n

Ekk'(t) = -i Z l—l%—-IB..IB..dR..dT <TV(T1)...V(T )ak(t)a:,(0)> (177)

n=0 IL 0 O n n connected

I I

V - k2}; ka' (ak+ak) (ak'+ak,)

This potential allows only the following inter-

actions between two phonons (order of operation plotted

V715??? _____.1 1---- k1 .....1 '

k) k) k) 14'
Using Wick's expansion of the ordered product

-1

1k 1

= M +11: +11"; H T'- + .......

Dyson's equation can be employed to simplify the summation

by extracting the irreducible self-energy by grouping graphs.

6° = 60 GO 2 G’ = (1-602)"1 GO (178)+
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X = ka'+vkklg:>kl Vklk'+kangleklkzgok2Vk2k'+ (179'

= V(l-g:V)-l (180)

G’ = -i<T a (t) a+(0)> 5° = 9) (181)
k k 0

g<(kt) = iG(t)<a:(t) ak(0)> g:(kw)=-w+w:_i6 (182)

g>(kt) = iO(t)< ak(t) a:(0)> g:(kw)= w-;o+i6 (183)

5': G°+G°ZG = g>+ g>25

= (l-g>Z)g>

= {l-g:V(l-g:V)-1}-lg> (184)

Time Independent Scattering
 

Beginning an equation of motion for displacement

waves, we now derive the time independent scattering

equations

(mwz-Q) u> = O,¢=®O+c (185)

¢ are the atomic force constants. The above can be written

as a Lippmann-Schwinger equation by use of the displacement

Green's function.
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(mw2-€)I u> = c|u> (186)

|u>==lu >+G Clu = In >+G T u >
O O O O 0

where T=C(l-GO C)-l

. . . ik°r ' .
If we con51der an 1nc1dent wave <r|uo>=e ~ ~ 03(k) W1th

polarization 0, branch j and wave vector k, the scattering

equation in real space becomes

0

<r£a|u> — <r£aluO>-+ Z GQQ TR 2 <r£ Iuo> (187)

2122 881 B1 2 2

87 Y"

The scattered wave is

o ik'22 j

W(r£) B$2 G£21 Tklgz e 07(k) (188)

2 1 88 B Y

2

and can be written as a spherical wave by expanding the

Green's function for large distances from the scattering

center.

oxj (k) oj (k)
a .. 8 ~ 'k'R

  

Using a two band isotropic model the completeness condition

may be used to sum the eigenvectors.
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05 Ci otlot +0t20t2+0£0£
a B a B B a B 2 2 1 1

Z 2 2 = 2 + Ca 08 2 2 2
j w -wjk w -wtk w -w£k w -wtk

k k

= 608 + a B l _ 1- (190)

2_ 2 2 2_ 2 2_ 2
w wtk k w w2k w wtk

Equation 189 becomes

. 5 k k

G:B(R,w) = ——!——g f d3k e15 5 2882 -+ “28 (191)

m(2fl) w -wtk k

)< 1 _ 1

2_ 2 2_ 2
w w2k w wtk

In the above equations 2 labels the longitudinal branch and

t labels the degenerate transverse branches.

There are two types of integrals here:

 

 

3 ik°R q q iq'R

I=f-—-——dke “vase ~ d3q
wZ-vzkz qz wZ-vzqz

I = 4flf:k2dk SliRkR l

wz-vzk2

_ _. 2 m 4“ sin 3R 2

J — ( 1) VaVBfO 2 qR q dq
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. 5 2R R R R q

vaVB §$2§35-= —g§-cos qR - a 8 cos qR - a sin qR —

q R2 R“ R

sinR 3RR RR

-———Jl—-+ sin qR - cos qR

Raq qu Ru

RR 2.

= - a 8 q' Sln qR to order (é)

R2 qR ,
‘rr-

RR

J = a B I to order (i)

R2 R

Both integrals reduce to the same form for large R. i

o RxR V

G (Rw)={6 I+—X-(I-I)}———
d8 d8 t R2 2 t 6W2m

in terms of a function I which depends on the branch index

and which can be evaluated analytically in a Debye model.

 

H

H 6 qmax SlgRqR 2 12 q2 dq d9

w -vjq

3E-{[Cid(w+w3
a max

)-Cio¢(wj -w)] sin dw+[Si 01(6)j +w)

max max

+ 81 01(8)j -w)-n] cos am} (192)

max

Si and Ci are sine and cosine integral functions and a is

R/v.. In the large R limit or more exactly when £L(w3 iw)>>l

j Vj Inax

nv. .
I = _ J e1(R/vj)(1)

J 2Rv?

J  
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0 Va Sasei(R/Vt'w RXR' ei(R/vgyu ei(R/vtnu

G (6112) = - —— + y( ——-‘-———
GB 4 v2 R2 V2 v2

t 2 t

Using the equalities

. . “k...R A

1. lim el(R2-R2l)(Q/Vj) = elR(w/vj) e ~J ~£1 (k!=$1-2 )

R1 3 j

-——->>1

R2
1

_ j j
2. 6GB — 2 Ga 08

J

The scattered wave may be written in terms of a scattering

 

amplitude.

W (r,2) = 2 G OJ OJ T Oj(k) eik°£2

a J86 2 221 B 5 £122 Y
fiY1.dB 6 7

v oz: WJ
= ' 4 2,32- 'I.'k'k R (193)

3 J J 3

eikJR

= 2 fJ(k,k') R (194)

3

Where the scattering amplitude is

OJ

_ _ _L_0‘
fJ(®kk.) - 4 2 Tk'k (195)

V

J J j
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In finding the total cross section we neglect the

rapidly oscillating interference terms between different

  

 

 

 

bands.

do 2 2 2

61—9" |.z fial — Ifgl +2|ftl

38

a 2 2 Va 2 2

= 2( ) lTk,k | + ( ) |Tk, I (196)

4va2 4'1va2

t t j 2 2 j

As an example we may find the phonon lifetime in the case of I I

a mass defect where the T-matrix is easily calculable:

mew2 ij,

T = ———————- (197)

kk: _ 2 o
33 1 mew GOO

ad

V V

1 s s 2

Tu») " VQOT ‘ vq'fkk" d9

V 2 4

=4“: em 122.11) (198)

l-meszo v3 v3

00 t 2

ad

where an average over initial polarizations has been

performed,
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Phase Shifts

We write down the expression for phase shifts by

analogy with the relation between the T-matrix and phase

shifts for particles. So that we may have noninterfering

phase shifts, the T—matrix will be considered in an

irreducible representation labeled by y and degeneracy g.

10 .

_ e Sine .

T — “TE'G" or equivalently, (199)

0 = tan”1 (1E_£) (200)
Re T

The T-matrix was originally defined in equation 64. It can

be rewritten for one irreducible representation and the

total phase shift found by summing all representations.

 

T = C(l-GOC)_1

-1 -Im (GOC)

0 = tan ( 0 Y) (201)

Y l-Re(G C) Y

= Im Det Il-(GOC)YI (202)

0 = 2 g 0 = Im Det |1—G°c| (203)
Y Y Y

One way to find the T-matrix and phase shifts is to

decompose the perturbation on an orthogonal basis and use

folded matrices.
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qu, = Z c (1-GOC):I q, (204)

... q j .. .l..

J] l 111 111

_ jj' * .
qq'-.Z Vik Wiuv Wk(q ) (205)

... 1k ...

JJ 31

_ * . ‘jj '* 0 j j' * * .
qu, _ .2 vik Wi(q)wk(q ) + .2 Vikl'Pi(q)'i’k(q)Gq j v£11m W£(ql)'i’m(q) +.

... 1k ... 1k 1 l

31 13 lm

_ * , jjl jl jlj' * ,

" 12k Vik'pi(qwk(q ) + “Em Vik Ak2 V2m “11"!) Wm“; '

* I
+ .2 (VAVAV).1m Wi(q) ‘Pm(q)

1m

-1 * ,

‘=.Z {V(l-AV) }im, wi(q) wm(q ) (206)

1m 3]

where

jj' _ * o

Ak2 ‘ 6jj' z fk(q) qu f2(q' (207)

In a mass defect example the function indices i,m do not

occur 0

c , = mewz 6... = 6... v (208)

qq 33 33 0°

jj'

A = 2 G32) = G22 ‘(Real Space Green's function)

q H

33
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mew2 6. . ,

qu, = 33 o (209)
_ 2

jj' l mew X G211

11

mm2 6... o

, = 3 or 0 = arg (l-mewzcu’) (210)

qq , l-mriooszjz

J] «j 00

p wave example:

c E ”I - ' (211)

qq' V13 q q

jj'

--41 v ' {Y* ( ) Y ( ') + 2* ( )Y ( ') + 2* ( )Y ( ')}
" 3 jj'qq 1—1 q 1—1 q 11 q 11 q 10 q 10 q

4w

V10 _3— vjj'

j __ 2 *

A1-1 ' i q Y11'3' Y1-1'3) qu

A and V are now written in folded form; each matrix element

below represents a 3X3 matrix of band coordinates. The

indices below are azimuthal labels.

-

I) = j j j

A A11 A1-1 A10 1 0 0

j j j = gn' 0 1 0

A1-1 A-1-1 A-10 ij' 3 ij' o 0 1

j j 1

A10 A~10 A00  

F“

 

*
T
‘
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___ _1 1-

t j
q Yll (q) :10 0

4n
= y ——-v.. 0 1 0

T q 1-1 (q) 3 33 '

0 0 1
q Ylo (q) _ _j

(_ _

— -Ir )— fl

_ ' I

A11 V11 A1-1 V11 A10 v11- 1 q Y11 (q '

— ' I

)( l A1-1 V11 A-1—1 v11 A-10 V11 q Y1-1 (q '

' '

A10 v11 A~10 V11 A 00 V11) q Y10 (q '

_ _. J... ...)    

If we now consider spherical bands, A is diagonal on

azimuthal indices.

1

— 4_TT _ -1 I I * I
T , — 3 .2 v3.3. {1 Allvll}j j qq g-Z Yl£(q)Yl£(q )

jj, 31 1 1 —-1

..l '

T FZijfl-Allvll}jlj' q q

3'3“ 31

If the perturbation is diagonal on band indices

 

q'q' Vj'j
T ,= 6.” ‘4) v

33. 33 (1 11 11'
31

G = arg(1-vllvll) (212)
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