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ABSTRACT 

MEASURING THE EQUITY OF RECREATION OPPORTUNITY:  

A SPATIAL STATISTICAL APPROACH 

 

By 

Jin Won Kim 

 Parks, playgrounds, trails, lakes and other public green and blue spaces are locally 

desirable land uses that provide recreation and open space opportunities in addition to various 

other environmental, social, health, and economic benefits. Access to recreation opportunities 

has been shown to have a substantial impact on individual and community health and well-being, 

especially in urban areas. Disparities in levels of access to recreation opportunities, whether in 

terms of age, race/ethnicity, income or other demographic or socioeconomic factors, represent an 

environmental justice concern. Level of access to recreation opportunities is based partially on 

the distribution of recreation opportunities. Assessing the level of environmental justice inherent 

in the distribution of recreation opportunities is, therefore, a valuable prerequisite for effective 

recreation planning and management. Assessment of results provides information for public 

leisure agencies that can help them allocate limited resources more equitably.  

 Such assessments have, in the past, focused on measuring the degree of equity 

associated with the distribution of access to recreation opportunities. Multivariate linear 

regression analyses using the ordinary least squares (OLS) method typically have employed; 

however, these approaches fail to explore important local variations in the relationships among 

variables caused by spatial effects such as spatial dependence (spatial autocorrelation) and spatial 

heterogeneity (spatial non-stationarity) that can lead to biased estimation results. Thus, the equity 

of recreation opportunities ideally should be examined using specialized research methods that 

incorporate spatial data.  



The purpose of this study was to demonstrate the utility of spatial statistical techniques 

for assessing the distribution of recreation opportunities within the framework of environmental 

justice. To achieve this, the level of access to and the degree of equity inherent in the distribution 

of public beaches in the Detroit Metropolitan Area (DMA) were assessed. Results indicated that 

spatial statistical techniques have the potential to serve as a useful tool not only to assess the 

distribution of recreation opportunities, but also to deal with spatial effects when measuring the 

degree of equity inherent in the distribution of access to public beaches in the DMA. Specifically, 

results indicated substantial regional disparities in access to public beaches resulting from spatial 

clustering of public beaches in the DMA. Furthermore, the two local regression models based on 

a geographically weighted regression (GWR) approach explored spatially varying relationships 

between variables, with great improvements in model performance (as measured by R
2
, AICc, 

and Moran‘s I statistics of standardized residuals) over their corresponding global regression 

models based on the OLS approach. In addition to development of an improved approach to the 

measurement of equity, the findings of this study can help parks and recreation agencies better 

understand local patterns of equity by identifying the areas with inequitable access to public 

beaches, which corresponds with their residents‘ racial/ethnic and socioeconomic statuses and, 

thus, facilitate the formulation of appropriate policy solutions as and where needed.  
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CHAPTER 1 

INTRODUCTION 

 

Background 

―Everyone has the right to equal access to public service in his country”  

   (United Nations General Assembly, 1948, p. 4).  

 Access to recreation opportunities has been shown to have a substantial impact on 

individual and community health and well-being, especially in urban areas (Byrne, Wolch, & 

Zhang, 2009; Lee & Maheswaran, 2011; Sallis & Saelens, 2000). As Pred (1977) explained, 

overall quality of life within a city depends on access to multiple service types, including 

recreational open space opportunities. Providing and improving access to recreation 

opportunities has, therefore, been recognized as an essential responsibility of public leisure 

agencies in their quest to improve their residents‘ quality of life (Aukerman, 2011; Gilliland, 

Holmes, Irwin, & Tucker, 2006; Lofti & Koohsari, 2009; Sister, Wolch, & Wilson, 2010).  

 Parks, playgrounds, trails, lakes and other public green and blue spaces are locally 

desirable land uses (LDLUs) that provide recreation and open space opportunities in addition to 

various other environmental, social, health, and economic benefits (Porter, 2001; Taylor, Floyd, 

Whitt-Glover, & Brooks, 2007; Wendel, 2011). However, not all people have adequate access to 

LDLUs (Byrne et al., 2009). There has been growing concern that populations with low 

socioeconomic status as well as racial and ethnic minorities tend to be disproportionately denied 

the multiple benefits of access to LDLUs (Deng, Walker, & Strager, 2008). Disparities in levels 

of access to LDLUs, whether in terms of age, race/ethnicity, income or other socioeconomic or 

demographic factors, represent an environmental justice concern (Floyd & Johnson, 2002; Porter 
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& Tarrant, 2001; Tarrant & Cordell, 1999; Taylor et al., 2007). Assessing the level of 

environmental justice inherent in the distribution of LDLUs is, thus, a valuable prerequisite for 

effective recreation planning and management. Assessment of results provides information for 

public leisure agencies that can help them allocate limited resources more equitably (Byrne et al., 

2009; Floyd & Johnson, 2002; Porter & Tarrant, 2001; Tarrant & Cordell, 1999). 

To assess levels of environmental justice of LDLUs, previous studies have measured the 

degree of equity associated with the distribution of access to them. A fundamental question 

related to the equity of LDLUs is whether the distribution of access to them is indeed shared 

equitably among different demographic and socioeconomic groups (Nicholls, 2001). Numerous 

studies of the equity of LDLUs have attempted to determine whether disparities in level of 

access occur with regard to parks (Abercrombie, Sallis, Conway, Frank, Saelens, & Chapman, 

2008; Boone, Buckley, Grove, & Sister, 2009; Byrne et al., 2009; Maroko, Maantay, Sohler, 

Grady, & Arno, 2009; Moore, Diez Roux, Evenson, McGinn, & Brines, 2008; Nicholls, 2001; 

Nicholls & Shafer, 2001; Omer, 2006; Sister et al., 2010; Talen, 1997, 1998; Wolch, Wilson, & 

Fehrenbach, 2005), urban trails (Estabrooks, Lee, & Gyurcsik, 2003; Lindsey, Maraj, & Kuan, 

2001), playgrounds (Smoyer-Tomic, Hewko, & Hodgson, 2004; Talen & Anselin, 1998), golf 

courses (Deng et al., 2008), recreational forests (Tarrant & Cordell, 1999), and campsites (Porter 

& Tarrant, 2001).  

Problem Statement 

To measure the degree of equity inherent in the distribution of LDLUs, multivariate 

linear regression using the ordinary least squares (OLS) method typically has been employed 

(Deng et al., 2008; Porter & Tarrant, 2001; Tarrant & Cordell, 1999). OLS regression uses a 

global predictive model to capture the strength and significance of the statistical relationship 
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between dependent and independent variables over an entire study area (Gilbert & Chakaraborty, 

2011). However, spatial data such as the geographic locations of LDLUs, geographic proximity 

to LDLUs (e.g., distance or travel time between origin and destination), and spatially referenced 

census data may exhibit spatial effects, such as spatial dependence (spatial autocorrelation) and 

spatial heterogeneity (spatial non-stationarity) that can lead to biased estimation results using 

traditional multivariate techniques (Bailey & Gatrell, 1995; Brunsdon, Fotheringham, & 

Charlton, 1996; Fotheringham, Brunsdon, & Charlton, 2002; O‘Sullivan & Unwin, 2003). 

Traditional OLS approaches also fail to explore important local variations in the relationships 

among variables caused by spatial dependence (Mennis & Jordan, 2005). Spatial dependence and 

spatial heterogeneity are unique characteristics whose consideration differentiates spatial data 

from non-spatial data, the latter of which are assumed to be stationary over space (Anselin & 

Getis, 1992). Thus, the equity of LDLUs, as represented by the relationship between the level of 

access to LDLUs and spatially referenced census data, ideally should be examined using 

specialized research methods that incorporate spatial data. To date, however, this typically has 

not been the case. 

Purpose of the Study 

 The purpose of this study was to demonstrate the utility of spatial statistical techniques 

for assessing the distribution of recreation opportunities within the framework of environmental 

justice. Specifically, the level of access to and the degree of equity inherent in the distribution of 

public beaches in the Detroit Metropolitan Area (DMA) were assessed. Two measures of access 

to public beaches served as the dependent variables (allowing for comparison of the results of 

each); a series of fifteen demographic, socioeconomic and other characteristics were considered 

for use as independent variables. The unit of analysis was the census tract. 
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Objectives and Research Questions 

 Using a set of spatial statistical techniques such as point pattern analysis (PPA), 

exploratory spatial data analysis (ESDA), and geographically weighted regression (GWR) in a 

geographic information systems (GIS) environment, the following research objectives and 

questions were addressed. The first objective (O1) was to (1) assess the spatial distribution of 

public beaches and (2) determine levels of access to public beaches in the DMA. Spatial 

characteristics of public beach distribution (e.g., central tendency, dispersion, and spatial pattern) 

were calculated and used to describe the beaches‘ spatial distribution. Two different measures 

were used to determine levels of beach access; these then were used as the dependent variables in 

the measurement of the degree of equity inherent in the distribution. The research questions (R) 

can be stated as follows: O1R1: ―What is the central tendency of the public beach distribution in 

the DMA?,‖ O1R2: ―How and to what extent are the public beaches dispersed?,‖ O1R3: ―Are the 

public beaches in the DMA spatially clustered?,‖ and O1R4: ―How is access to public beaches 

distributed across the DMA?‖ 

 The second objective (O2) was to explore the spatial patterns of access to public beaches 

relative to residents‘ demographic and socioeconomic status. The following questions were 

considered: O2R1: ―Is there spatial autocorrelation associated with the distribution of access to 

public beaches and residents‘ demographic and socioeconomic status across the study area?,‖ 

and O2R2: ―If there is evidence of spatial autocorrelation, what is its nature and where is it 

evident?‖ 

 The third objective (O3) was to demonstrate the feasibility and utility of GWR when 

measuring the equity of access to public beaches and compare the results of this approach with 

those of traditional multivariate regression (OLS) techniques. A special focus of this objective 
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was to assess whether the GWR model significantly improved on the traditional OLS regression 

model and whether it effectively dealt with spatial dependence and spatial heterogeneity in the 

data. The research questions can be stated as follows: O3R1: ―What is the relationship between 

level of access to public beaches in the DMA and residents‘ demographic and socioeconomic 

status using OLS?,‖ O3R2: ―What is the relationship between level of access to public beaches in 

the DMA and residents‘ demographic and socioeconomic status using GWR?,‖ O3R3: ―How 

does the spatial relationship between level of access to public beaches and residents‘ 

demographic and socioeconomic status vary across the study area (using GWR) ?,‖ and O3R4: 

―How well does the GWR approach perform in terms of model diagnostics compared to the 

traditional OLS approach?‖  

Assumptions of This Study 

 This study is based on several assumptions that might affect the results. The assumptions 

of this study are: (1) the distance threshold that residents are willing to travel for beach-based 

recreation activities in their local environment is 20 miles, based on the findings reported by 

Haas (2009); (2) populations are evenly distributed throughout census tracts and all areas in each 

census tract have the same demographic and socioeconomic characteristics; (3) the centroid of 

each census tract is used when identifying a 20-mile service area as well as calculating the 

distance to the nearest public beach for each census tract in the DMA; (4) residents can reach all 

public beaches within 20 miles of each census tract centroid; and (5) the level of attraction of all 

public beaches is the same and destination choice is determined by geographic distance. 

However, this study did not test any of these assumptions.   
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Delimitations 

 This study was delimited to identification of the degree of equity associated with the 

distribution of public beaches in the DMA, Michigan. The demographic and socioeconomic 

variables of the residential population were collected at the level of the census tract.  

Significance of the Study 

 This study adds to the recreation, parks, and tourism literature via a number of 

methodological and practical contributions. It is one of relatively few efforts to respond to Floyd 

and Johnson‘s (2002) call for increased attention to environmental justice in the recreation, park, 

and tourism realm. Despite the importance of assessing the equity of recreation opportunity, 

assessments which can ultimately enhance the quality of life for local communities by informing 

decisions regarding the use and allocation of LDLUs (Tarrant & Cordell, 1999; Taylor et al., 

2007), consideration of environmental justice issues remains relatively scarce in the recreation, 

park, and tourism literature. It is hoped that this study will stimulate recreation and tourism 

scholars into paying more attention to environmental justice, thereby extending the scope of the 

recreation, park, and tourism literature.   

 Methodologically, this study applied rigorous spatial statistical techniques (PPA, ESDA 

and GWR), to date rarely adopted in the recreation, park, and tourism literature. Since recreation 

and tourism are spatial phenomena (Hall & Page, 1999), the importance of spatial analysis to 

recreation and tourism has long been emphasized by recreation and tourism geographers (Barbier, 

1984; Cooper, 1981; Hall & Page, 1999; Jensen-Verbeke, 1987; Kim & Fesenmaier, 1990; 

Mitchell & Murphy, 1991; Pearce, 1979; 1987; Raymond & Brown, 2007; Williams, 1998). 

Authors such as Hall (2012) have argued that future research in the realm of recreation and 

tourism geographies should employ a comprehensive spatial analysis approach. This study 
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responded to this suggestion by applying a GIS-based spatial statistical approach to the analysis 

of equity. Further, the application of these techniques not only enabled more accurate 

measurement of the degree of equity inherent in the provision of recreation opportunities, it also 

allowed the scope of the research question to be broadened. Traditionally, the fundamental goal 

of equity-related research in the urban service delivery literature has been limited to identifying 

―who gets what‖ in the context of environmental or territorial justice (Talen, 1998, p. 22). This 

study, however, widened the focus from ―who gets what‖ to ―who gets what, where, and to what 

extent/how significantly.‖ In addition to development of an improved approach to the 

measurement of equity, this study can also help parks and recreation agencies better understand 

local patterns of accessibility and equity and, thus, facilitate the formulation of locally 

appropriate policy solutions as and where needed.  

 The results of this study also offer practical insights and have implications for helping 

public leisure agencies provide and improve equitable access to public beaches. This study 

demonstrates spatial variations in map-based and statistical outcomes depending on the access 

and equity measures. Such findings may be used by public leisure agencies to allocate limited 

budgets more equitably by identifying vulnerable (low access) areas and populations. Moreover, 

the results of this study may facilitate a more informed decision making process because active 

stakeholder involvement, an essential part of the participatory approach, can be influenced 

positively by increased access to information (Trey & Clark, 2004; Yang, Madden, Kim, & 

Jordan, 2012). Information regarding spatial patterns of access to public beaches, residents‘ 

demographic and socioeconomic characteristics, and knowledge of the local variations in 

relationships among these variables could contribute to a spatial decision support system through 

the integration of Web-based GIS for more efficient community-based leisure planning.   
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Definitions of Terms 

 Several terms are defined to clarify their use in this dissertation: 

 Accessibility: The ease with which a product, service, device, or environment can be 

reached or obtained (Lofti & Koohsari, 2009). As noted by Nicholls (2001), ―it can thus be 

said to measure the relative opportunity for interaction or contact with a given phenomenon 

such as park‖ (p. 202).  

 Aggregation error: ―The error associated with representing an areal unit, which in turn 

represents spatially distributed individuals, by a single point‖ (Hewko, 2001, p. 23).  

 Akaike information criterion (AIC): A measure of the relative quality of a statistical model, 

for a given set of data (Bozdogan, 1987). According to Fotheringham et al. (2002), models 

with smaller values of the AIC are preferable to models with higher values. However, if the 

difference in the AIC between two models is less than three, they are held to be equivalent 

in their explanatory power. 

 Beach: A beach is a geographic landform along the coast of an ocean, sea, lake, or river 

(Orams, 1999) 

 Community: A community is a social unit of any size that shares common values. A 

community-based approach is also referred to as a bottom-up or participatory approach that 

enables sharing of decision-making power, responsibility and risk between government and 

stakeholders (Fletcher, 2007).  

 Ecological fallacy: A situation that can occur when a researcher or analyst makes an 

inference about an individual based on aggregate data for a group (Longley, Goodchild, 

Maguire, & Rhind, 2005, p. 98) 
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 Edge effect: The problem that ―sites in the center of the study area can have nearby 

observations in all directions, whereas sites at the edges of the study area only have 

neighbors toward the center of the study area‖ (O‘Sullivan & Unwin, 2003, p. 34). 

 Environmental justice: ―The fair and equitable distribution of both the environmental ‗bads,‘ 

such as hazardous waste sites, and the environmental ‗goods,‘ such as parks, open spaces, 

and recreation opportunities‖ (Maroko et al., 2009, p. 2). It is a broad conceptual 

construction or interpretive framework (Di Chiro, 1998). 

 Equity: ―The fairness or justice of a situation or distribution‖ (Nicholls, 2001, p. 202). An 

important concept within environmental justice (Lee, 2005). Inequities in the distribution of 

locally desirable land uses (LDLUs) have been recognized as an environmental injustice 

(Byrne et al., 2009; Sister et al., 2010).  

 Geographic information systems (GIS): A computer-based system designed to capture, 

store, manipulate, analyze, manage, and present all types of geographical data (Longley et 

al., 2005) 

 Kernel: ―A circle of influence or a circular area with a given radius around one particular 

regression point, and the given radius is called the bandwidth‖ (Yoo, 2012, p. 27). 

 Locally desirable land use (LDLU): A land use that is desirable to society and to local 

communities/neighbors. Public golf courses, urban parks, playgrounds, and recreational 

trails are examples of LDLUs (Tarrant & Cordell, 1999). 

 Locally unwanted land use (LULU): A land use that is useful to society, but objectionable 

to its neighbors. Incinerators, waste facilities, toxic release inventories, and landfills are 

examples of LULUs (Porter, 2001).  
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 Public beach: The landform along the shoreline of an ocean, sea, lake, or river, which is 

declared to be a public space by responsible authorities (Department of Environmental 

Quality [DEQ], 2013). 

 Recreation opportunity: ―An opportunity to engage in a preferred activity in a preferred 

setting to realize desired experience and benefit‖ (Driver, Brown, Stankey, & Gregoire, 

1987, p. 204) 

 Modifiable areal unit problem (MAUP): A statistical bias that can radically affect the 

results of statistical tests by the choice of district boundaries (O'Sullivan & Unwin, 2003). 

 Spatial dependence (spatial autocorrelation): The extent to which the value of an attribute 

in one location is more likely to be similar to the value of an attribute in a nearby location 

than the value of an attribute in a distant location (O'Sullivan & Unwin, 2003). It is based 

on Tobler‘s (1970) First Law of Geography, which states that ―everything is related to 

everything else, but near things are more related than distant things‖ (p. 236). 

 Spatial heterogeneity (spatial non-stationarity): ―A condition in which a simple global 

model cannot explain the relationship between some set of variables. The nature of the 

model must alter over space to reflect the structure within the data‖ (Brunsdon et al., 1996, 

p. 281). Refers to spatially varying relationships between variables based on ―the tendency 

of geographic places and regions to be different from each other‖ (Longley et al., 2005, p. 

98).  

Organization of the Dissertation 

 The organization of this dissertation is as follows. Chapter 1 provides the general 

background of and justification for the study. In Chapter 2, a comprehensive literature review is 

presented. The literature review is divided into four parts. The first part discusses the framework 
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of environmental justice and how it has been employed in the outdoor recreation and parks 

context. It includes a review of theoretical and empirical issues related to the traditional 

environmental justice framework as well as the role of recreation opportunities, in particular, 

public access to beaches, as LDLUs. The second part discusses accessibility and equity in the 

context of environmental justice, including their definition and measurement. The third part 

explains spatial effects such as spatial dependence and spatial heterogeneity and describes spatial 

statistical analysis as a tool for exploring spatial effects. Theoretical and empirical discussions of 

ESDA and GWR are summarized in an equity context. The final part of the literature review 

relates to GIS. Definitions and major functions of GIS are explained, and previous equity studies 

of LDLUs that have utilized GIS are reviewed. In Chapter 3, the study area and methodological 

issues related to data acquisition, preparation, and analysis are discussed. Chapter 4 describes the 

findings of the study. Chapter 5 includes a summary of the findings of the study, discusses their 

implications, and makes recommendations for practice. Study limitations are highlighted, and 

suggestions for future research proposed.       
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CHAPTER 2 

LITERATURE REVIEW 

 The literature review is divided into four parts. The first part describes the framework of 

environmental justice, in general and in the context of outdoor recreation and parks. Part two 

explains the concepts of equity and accessibility in the context of environmental justice. The 

difference between environmental justice and equity is highlighted, and definition and 

measurement of these two concepts with respect to LDLUs is discussed. Part three discusses 

spatial effects and introduces spatial statistical analysis as a tool for exploring these effects, 

including techniques such as ESDA and GWR. Part four defines GIS and reviews previous 

applications of GIS techniques in park and recreation-related equity studies.  

A Framework of Environmental Justice in Outdoor Recreation and Parks 

Environmental Justice and Traditional Environmental Justice Research 

 Since the early 1980s, great attention has been paid to the notion of ―environmental 

justice‖ in the United States (Floyd & Johnson, 2002). Environmental justice is a broad 

conceptual framework concerned with the inextricable link between social, political, economic, 

and environmental issues (Albrecht, 1995; Barakham, 1995). Bass (1998) defined the notion of 

environmental justice as ―the fair treatment and meaningful involvement of all people regardless 

of race, color, sex, national origin, or income with respect to the development, implementation 

and enforcement of environmental laws, regulations, and policies‖ (p. 84). This definition views 

the environment as the places in which we live, work, and play (Di Chiro, 1998). ―Fair treatment‖ 

implies that no group, due to political or economic disempowerment, is forced to bear 

disproportionate environmental burdens or costs of water or air pollution or of other 

environmental consequences resulting from regulatory operations or the execution of 
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environmental policies and regulations (Taylor et al., 2007). The idea of environmental justice 

was originally based on the US Civil Rights Act of 1964, enacted to prohibit discrimination 

against racial, ethnic, national, and religious minorities and women (Porter, 2001; US Senate 

Committee on the Judiciary, 2013). Environmental justice traditionally referred to the equal 

enforcement of rules, regulations, decisions, and frameworks in the distribution of LULUs, such 

as incinerators, waste facilities, toxic release inventories, and landfills. Empirical studies of 

environmental justice, in terms of investigating the relationship between residents‘ demographic 

and socioeconomic variables and the location of LULUs, can be divided into three approaches.  

 The first approach has been to regard race as the dominant variable contributing to the 

siting of LULUs (Bullard, 1983; 1990; Mohai & Bryant, 1992; US Commission for Racial 

Justice and United Church of Christ, 1987; US General Accounting Office, 1983). For example, 

Bullard (1983) highlighted the location of six of eight incinerators and fifteen of seventeen 

landfills in predominantly African American communities in Houston, Texas. The US 

Commission for Racial Justice and United Church of Christ (1987) showed that zip code areas 

with more than one hazardous waste facility had an average of 38% nonwhite population 

compared to the national average of 16%.  

 The second approach, rather than focusing on the effect of race on the siting of LULUs, 

suggests another variable, income, as the essential factor contributing to their siting. Kriesel, 

Centner, and Keeler (1996) concluded that lower-income residents were more likely to be 

exposed to toxic releases in Georgia and Ohio. Similarly, Hamilton (1995) found that income 

was a more significant factor in explaining the capacity expansion of hazardous waste facilities 

than race.  
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 The third approach has been to treat both race and income as significant and intertwined 

factors in the siting of LULUs (Costner & Thornton, 1990; Foreman, 1996; Glickman, 1994; 

Lavelle & Coyle, 1992; US Environmental Protection Agency, 1992). Lavelle and Coyle (1992) 

found clean-up of waste sites in poor and nonwhite communities took longer than in affluent 

neighborhoods. Costner and Thornton (1990) indicated that nonwhite and low-income 

populations have higher environmental risks or burdens resulting from exposure to air pollutants 

and hazardous waste facilities than other populations. 

Locally Desirable Land Uses (LDLUs) and Environmental Justice 

 The original notion of environmental justice had the goal of protecting all communities 

from environmental costs or burdens arising from LULUs regardless of racial and economic 

composition (Tarrant & Cordell, 1999; Taylor et al., 2007). Following President Clinton‘s 1994 

Executive Order 12898, titled ―Federal Actions to Address Environmental Justice in Minority 

Populations and Low-Income Populations,‖ all federal land management agencies were directed 

to assess any environmental impacts of their policies and practices in the context of 

environmental justice (Deng et al., 2008; Porter, 2001; Tarrant & Cordell, 1999). As Tarrant and 

Cordell (1999) noted, these environmental impacts can be classified into two types: 

environmental benefits and environmental costs. Examples of environmental benefits include the 

provision of open spaces for outdoor recreation and the provision of cleaner environments 

(Porter, 2001); environmental costs include noise, environmental pollution, crowding, and 

congestion associated with infrastructure and tourism development (Lundberg, Krishnamoorthy, 

& Stavenga, 1995).  

 As a result, the framework of environmental justice was expanded to encompass a more 

comprehensive definition that includes disparities not only in exposure to environmental costs 
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from LULUs but also in access to environmental benefits from LDLUs. As Taylor et al. (2007) 

explained, access to LDLUs such as urban parks provides numerous environmental benefits, with 

psychological (e.g., stress reduction), social (e.g., open spaces for community interaction), and 

health (e.g., benefits of exercise) dimensions. Some authors such as Boone et al. (2009), Porter 

(2001), Tarrant and Cordell (1999) and Taylor et al. (2007) have suggested that environmental 

injustice can occur when certain groups or individuals receive an unfair amount of access to 

LDLUs. As Salazar (1998) noted, ―a comprehensive concept of environmental justice must take 

account of environmental goods as well as bad‖ (p. 52). Accordingly, this more comprehensive 

framework of environmental justice has been used to explore disparities in levels of access to 

LDLUs with regard to parks (Abercrombie et al., 2008; Boone et al., 2009; Byrne et al., 2009; 

Maroko et al., 2009; Moore et al., 2008; Nicholls, 2001; Nicholls & Shafer, 2001; Omer, 2006; 

Sister et al., 2010; Talen, 1997, 1998; Wolch et al., 2005), urban trails (Estabrooks et al., 2003; 

Lindsey et al., 2001), playgrounds (Smoyer-Tomic et al., 2004; Talen & Anselin, 1998), golf 

courses (Deng et al., 2008), recreational forests (Tarrant & Cordell, 1999), and campsites (Porter 

& Tarrant, 2001).  

Locally Desirable Land Uses (LDLUs) and Recreation Opportunity 

 Participants in outdoor recreation not only seek to participate in preferred activities, but 

also seek specific settings in order to enjoy special experiences and subsequent benefits 

(Aukerman, 2011; Aukerman, Haas, Lovejoy, & Welch, 2004; Clark & Stankey, 1979; Driver & 

Brown, 1978; Driver et al., 1987; Manning, 1985; Petengill & Manning, 2011; Stankey & Wood, 

1982). As outlined by Driver et al. (1987), these four components (activities, settings, 

experiences, and benefits) constitute a recreation opportunity. A recreation opportunity can thus 

be defined as an opportunity to engage in a preferred activity in a preferred setting in order to 
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Recreation Activity +   Setting  =      Experience             Benefits 
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realize desired experiences and achieve certain benefits (Manning, 1985). Pred (1977) 

specifically related the quality of life within a city to the accessibility of its residents to 

recreational open space opportunities. Driver et al. (1987) argued that the concept of recreation 

opportunity is based on Vroom‘s (1964) expectancy theory, which proposed that behavior is 

determined by the desirability of the expected outcome. Figure 1 depicts the key components of a 

recreation opportunity and the linkage between these four components. A number of types of 

LDLUs, such as parks, playgrounds, trails, golf courses, lakes and other public green and blue 

spaces, offer settings for recreation activities. 

 

 

 

 

 

 

Figure 1. The components of a recreation opportunity (Aukerman et al., 2004, p. 4)  

 As suggested in figure 1, the role of public leisure agencies is to provide both recreation 

activities and settings that can contribute to the realization of particular types of experiences and 

subsequent benefits (Aukerman et al., 2004). As noted by Petengill and Manning (2011), 

―experiences are derived from recreation activities and [that] these activities are linked to the 
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settings in which they occur‖ (p. 4). Providing access to recreation settings is an essential 

responsibility of public leisure agencies in their quest to improve their residents‘ quality of life.  

Recreation Opportunity and Environmental Justice 

 Authors such as Byrne et al. (2009) and Sallis and Saelens (2000) have argued that 

access to recreation opportunities is associated with the individual and community health and 

wellbeing of urban populations. If disparities in levels of access to recreation opportunities based 

on residents‘ demographic and socioeconomic status arise, they can be discussed in the context 

of environmental justice (Deng et al., 2008; Floyd & Johnson, 2002; Porter & Tarrant, 2001; 

Sister et al., 2010; Tarrant & Cordell, 1999; Taylor et al., 2007). When assessing the 

environmental justice aspects of recreation opportunities, determination of whether certain types 

of recreation settings, such as parks, trails, and wilderness areas, constitute LDLUs is first 

necessary (Taylor et al., 2007). For some communities, costs such as increased traffic, air and 

noise pollution, and crime have been caused by certain outdoor recreation activities at certain 

sites (Fridgen, 1984; McIntosh & Goeldner, 1990; Seaton, 1994). As Tarrant and Cordell (1999) 

explained, undesirable effects such as crowding also can be produced by excess numbers of 

visitors at campgrounds, trails, and other popular recreation destinations.   

 Despite some negative environmental costs being imposed by certain types of recreation 

settings, there is much evidence to suggest that recreation settings generally may be considered 

LDLUs because outdoor recreation sites such as parks are public goods that are provided as a 

matter of public policy (Taylor et al., 2007). As noted by Floyd and Johnson (2002), diverse 

types of outdoor recreation sites are provided by all levels of government, including municipal, 

county, state, and federal agencies. Moreover, a number of leisure and outdoor recreation studies 

have shown that the use of parks and outdoor recreation sites significantly improves the health 
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and wellbeing of urban populations (Godbey, Caldwell, Floyd, & Payne, 2005; Lindsey et al., 

2001; Wendell, 2011).   

Public Beaches as Locally Desirable Land Uses (LDLUs) 

 Public beaches offer a variety of environmental, social, psychological, economic, and 

recreational benefits to local communities. Public beaches provide wildlife habitat as well as 

attractive landscapes that differ from terrestrial environments (Goodhead & Johnson, 1996; 

Jennings, 2007); they also can offer educational opportunities for local citizens. Public beaches 

may be used as places for residents to interact (Edgerton, 1979); as noted by Adolphs (1999), 

―humans are exceedingly social animals‖ (p. 469). Public beaches enable a variety of water- and 

land-based activities and offer natural settings in which to relax and reduce stress levels (Beatley, 

Brower, & Schwab, 2002; Jennings, 2007; Orams, 1999). Visitors to public beaches may be 

attracted by the promise of emotional well-being and physical fitness, which can contribute to 

reduced health care costs and lower levels of crime (Godbey, 1993; Meyer & Brightbill, 1964). 

Well designed and managed public beaches can bring economic benefits to local communities. 

The income generated through tourism, such as the payment of user fees and spending at 

concessions, can contribute to regional economic activity (Dixon, Oh, & Draper, 2012; Oh, 

Dixon, Mjelde, & Draper, 2008; Yang et al., 2012).  

 Since the 1960s, the increasing diversity of participants‘ preferences for outdoor 

recreation has been discussed by numerous leisure and recreation scholars (Aukerman, 2011; 

Aukerman et al., 2004; King, 1966; Manning, 1985; Shafer, 1969). According to Aukerman 

(2011), such diversity occurs not only between the participants in different recreation activities, 

but also among the participants within each activity itself. Providing a diversity of recreation 

opportunities to fulfill diverse participants‘ demands is therefore an essential responsibility of 
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public leisure agencies (Aukerman, 2011; Aukerman et al., 2004). A diverse range of people visit 

beach areas with different motivations and expectations (Orams, 1999); the variety of water- and 

land-based recreational opportunities offered at public beaches can meet visitors‘ diverse and 

complex needs (Aukerman, 2011).  

Public Access to Beaches and Environmental Justice 

 Beaches are an important type of LDLU due to their provision of ideal open spaces for 

diverse water- and land-based recreation opportunities (Brown, 1999; Elliott, 1976; Orams, 

1999). The importance of public access to beaches has received much attention in various 

disciplines, including coastal management (Blizzard & Mangum, 2008; Fischer, 1988; Kline & 

Swallow, 1998; Oh et al., 2008; Oh, Draper, & Dixon, 2009; Pogue & Lee, 1999), law (Davison, 

2006; Elliott, 1976; Kehoe, 1994; Negris, 1986; Pirkle, 1994; Poirier, 1996; Summerline, 1996), 

tourism (Dixon et al., 2012; Yang et al., 2012), environmental planning (Oehme, 1987), and 

resource economics (Whitehead, Dumas, Herstine, Hill, & Buerger, 2008). The issue of public 

access to beaches lends itself to examination within the framework of environmental justice for 

several reasons.    

 First, public access to beaches is a civil right that is based on the essence of the public 

trust doctrine, assuming that ―the gifts of nature‘s bounty‖ should be preserved for the benefit of 

the whole population (Negris, 1986, p. 438). The source of the doctrine is an ancient principle of 

Roman law holding that ―by the law of nature the air, running water, the sea, and consequently 

the shores of the sea were common to mankind‖ (Negris, 1986, p.438). Thus, a number of beach 

access movements have campaigned to protect the public‘s right to access beaches based on this 

doctrine (Davison, 2006; Negris, 1986; Oehme, 1987; Pirkle, 1994; Poirier, 1995; Summerlin, 

1995).  
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Second, providing and improving public access to beaches for recreational purposes have 

been recognized as essential responsibilities of public leisure agencies in their response to the 

Coastal Zone Management Act (CZMA) of 1972 (Dixon et al., 2012; Pogue & Lee, 1999), which 

focuses on providing and improving public access to beaches for recreation purposes (National 

Oceanic and Atmospheric Administration [NOAA], 2013). For these reasons, emerging efforts to 

improve public access to beaches have precipitated a number of policies at the national (Kodama, 

1996; Pogue & Lee, 1999), state (Delogu, 1993; Goodwin, 2000), regional (Sohngen, 1999), and 

local (Gardner, 1999; Marine Coastal Program, 2003; North Carolina Department of 

Environmental and Natural Resources, 2003; Scott, 1990; Spaeth, 1994) levels.   

Equity and Accessibility in the Context of Environmental Justice 

Environmental Justice and Equity 

 Equity is an important concept within the framework of environmental justice (Di Chiro, 

1998). Because inequities in the distribution of LDLUs have been recognized as an 

environmental injustice (Bryne et al., 2009; Sister et al., 2010), environmental equity has been 

the most commonly used concept for assessing whether or not environmental (in)justice has 

occurred (Lee, 2005). Although much of the literature tends to use the term environmental equity 

interchangeably with environmental justice (Floyd & Johnson, 2002; Lee, 2005), some studies 

have distinguished the two (Liu, 2001; Zimmerman, 1994), as this one also will. Figure 2 shows 

the relationship between environmental justice and environmental equity.     

 According to Zimmerman (1994), environmental justice refers to the procedure or 

process used to ensure fair distribution while environmental equity refers to the outcome, the 

distribution of advantages and disadvantages across individuals and groups. Similarly, Liu (2001) 

noted that environmental equity emphasizes impacts on social groups while environmental 



  21  

justice focuses more on goals, policies, and regulations to ensure fair distribution of 

environmental burdens across those groups. Therefore, environmental justice focuses more on 

regulatory and policy-related issues while equity focuses on their outcomes for specific groups. 

The framework of environmental justice can therefore be employed as a theoretical background 

to understand (in)equities in the context of recreation and tourism (Camargo, Lane, & Jamal, 

2007; Floyd & Johnson, 2002; Jamal & Camargo, 2014; Lee, 2005; Taylor et al., 2007).  

Figure 2. Environmental justice and environmental equity (Lee, 2005, p. 56)  

 The term ‗equity‘ has been used as a prevailing concept in urban service delivery 

literature that asks questions such as ―who benefits and why?‖ (Talen, 1997, p. 521) or ―who gets 

what?‖ (Laswell, 1958, as cited in Crompton & Wicks, 1988, p. 288) in numerous contexts 

(Davies, 1968; Hay, 1995; Kinman, 1999; Nicholls, 2001; Nicholls & Shafer, 2001; Ogryczak, 

2000; Smith, 1994; Talen & Anselin, 1998; Tsou, Hung, & Chang, 2005; Wicks & Crompton, 

1986). Nicholls (2001) defined equity as ―the fairness or justice of a situation or distribution‖ (p. 

202). Wicks and Crompton (1986) described equity as ―the perceived fairness of resource 

allocation patterns‖ (p. 342). However, equity is still an ambiguous concept due to the 
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difficulties of establishing what is ―just‖ or ―fair‖ (Nicholls, 2001). Harvey (1988) explained this 

issue as ―an ethical problem which cannot be resolved without making important moral decisions‖ 

(p. 99). 

 

Figure 3. Types of equity (Nicholls, 2001, p. 203)  

 Although a single definition of equity has not yet been established and multiple, 

sometimes competing, interpretations abound, adoption of a definition of equity is a prerequisite 

to analysis of it (Nicholls, 2001). Typologies of equity such as those suggested by Lucy (1981) 

and Crompton and Wicks (1988) outlined four equity models that may be used with regard to the 

allocation of public services. These four models of equity are: (1) equality; (2) compensatory 

(Crompton & Wicks, 1988) or need (Lucy, 1981); (3) demand (including Lucy‘s category 
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―preferences‖); and (4) market (including Lucy‘s category ―willingness to pay‖). Figure 3 

illustrates the four models of equity that have been commonly employed in the parks and 

recreation literature. 

 First, equity can be defined according to two types of equality: input equality and output 

equality (Nicholls, 2001). Input equality refers to equal provision of public services, regardless 

of geographic area or the socioeconomic characteristics of residents (Wick & Crompton, 1986) 

while output equality is concerned with ensuring that the benefits received by residents as a 

result of public service provision are equal (Deng et al., 2008). Second, compensatory or need-

based equity involves providing a given service to those who are deemed to need it the most 

(Davies, 1968; Lucy, 1981; Wicks & Crompton, 1986). Based on this premise, disadvantaged 

residents or the most needy groups or areas are awarded (compensated with) extra services 

(Deng et al., 2008). Third, demand-based equity involves providing resources to those who 

demonstrate an active interest in a service or facility (Nicholls, 2001). Demand can be 

demonstrated by use, as measured by the rate of participation, or via vociferous advocacy. 

Finally, market-based equity considers the potential influence of market forces on the 

distribution of services and resources. Wicks and Crompton (1986) argued that ―a consumer has 

the necessary desire and resources to acquire a service at market price‖ (p. 346). Service 

distribution can thus be determined by the market, which can produce distributional inequity in 

service distribution if economically disadvantaged groups are less able to pay the necessary price 

(Deng et al., 2008) 

Research Approach to the Equity of Recreation Opportunity 

 Among these four equity models, the compensatory or need-based model has most 

commonly been employed to measure the equity of LDLUs (Abercrombie et al., 2008; Boone et 
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al., 2009; Byrne et al., 2009; Omer, 2006; Sister et al., 2010) because redistributing resources in 

a compensatory manner is the role of the public sector (Nicholls, 2001; Wicks & Crompton, 

1986). Despite some debate regarding identification of who the most disadvantaged or needy 

groups are when employing the compensatory or need-based equity model, they have typically 

been defined according to demographic and socioeconomic characteristics such as race/ethnicity 

and income (Wicks & Crompton, 1986). Use of demographic and socioeconomic criteria is 

justified under the assumption of the ―underclass hypothesis,‖ that ―systematic and deliberate 

discrimination exists against certain socio-economically disadvantaged groups and areas in the 

distribution of goods and services, resulting in their receiving fewer and/or poorer quality 

resources relative to more advantaged citizens‖ (Nicholls, 2001, p. 207). Recent empirical 

studies of LDLUs also have used other variables such as educational attainment (Deng et al., 

2008; Estabrooks et al., 2003; Lindsey et al., 2001; Porter & Tarrant, 2001; Tarrant & Cordell, 

1999), age (Abercrombie et al., 2008; Nicholls, 2001; Nicholls & Shafer, 2001; Smoyer-Tomic 

et al., 2004; Talen, 1997; Talen & Anselin, 1998), population density (Lindsey et al., 2001; 

Nicholls, 2001; Nicholls & Shafer, 2001; Maroko et al., 2009), vehicle ownership (Lindsey et al., 

2001), language (Maroko et al., 2009), economic status (Estabrooks et al., 2003), and housing 

occupancy/value (Nicholls, 2001; Nicholls & Shafer, 2001) as proxies for or in addition to 

race/ethnicity and income.  

 With respect to outdoor recreation and parks, adopting such a compensatory or need-

based equity model corresponds with the premise of social equity, one of the National Recreation 

and Park Association (NRPA)‘s three core pillars (conservation, health & wellness, and social 

equity). According to Barbara Tulipane, NRPA‘s President and CEO (NRPA, 2014), universal 

access to public parks and recreation is not just a privilege but a right.  
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Accessibility and Its Relation to Equity 

 Although accessibility is a term commonly used in daily conversation, there is no 

universal agreement about its definition (Lotfi & Koohsari, 2009). Accessibility generally is 

referred to as the ease with which activities or services can be reached or obtained (Johnson, 

Gregory, Pratt, & Watts, 2000; Morris, Dumbie, & Wigan, 1979; Nicholls, 2001). Accessibility 

to goods and services is an important component of an urban system and a contributor to quality 

of life (Pacione, 1989; Pred, 1977; Nicholls, 2001). According to Pacione (1989), having close 

geographical accessibility to public services can contribute to personal welfare. Pred (1977) also 

emphasized the importance of accessibility with regard to public services, including extensive 

recreational open space opportunities for improving urban residents‘ quality of life. Accurately 

measuring levels of access to public services and facilities is, therefore, a prerequisite to effective 

urban planning and management.  

 It is imperative to clarify the distinction between accessibility, as defined by geographic 

relationships between locations, and equity, as explained by fair opportunity in service allocation 

and distribution (Cho, 2003). Specifically, accessibility is concerned more with efficiency (to 

maximize the efficiency of public service distribution while minimizing costs) while equity is 

more concerned with the impact of public service distribution on people who may use them 

(Nicholls, 2001). Many studies have explored issues related to accessibility and equity in the 

urban parks and recreation service literature (Deng et al., 2008; Estabrooks et al., 2003; Lindsey 

et al., 2001; Moore et al., 2008; Nicholls, 2001; Nicholls & Shafer, 2001; Omer, 2006; Porter & 

Tarrant, 2001; Sister et al., 2010; Smoyer-Tomic et al., 2004; Talen, 1997, 1998; Talen & 

Anselin, 1998; Tarrant & Cordell, 1999; Tsou et al., 2005). In those studies, the measurement of 

accessibility has served as a precursor to the measurement of the degree of equity inherent in the 
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distribution of public services. As Talen and Anselin (1998) noted, ―accessibility is a tool used to 

discover whether or not equity has been achieved, and the two concepts of accessibility and 

equity are the primary building blocks used to assess the spatial distribution or spatial pattern of 

public services‖ (p. 596).  

Measuring the Accessibility of Recreation Opportunity 

 Accessibility can be measured subjectively and objectively (Tilt, Unfred, & Roca, 2007). 

Objective measures relate to characteristics of the physical environment while subjective 

measures depend upon the perceptions of citizens/users (Lotfi & Koohsari, 2009). In this study, 

accessibility was measured in an objective manner. Methods for measuring objective 

accessibility can be categorized into five different approaches: (1) the container approach; (2) the 

minimum distance approach; (3) the travel cost approach; (4) the spatial interaction model 

approach; and (5) the covering approach (Cho, 2003).  

The container approach. The container approach is a common approach that defines 

accessibility according to the presence of LDLUs within a geographic unit, such as a census tract, 

zip code, or local neighborhood unit (e.g., the number of LDLUs or the total area of LDLUs 

within the geographic unit) (Lindsey et al., 2001; Zhang, Lu, & Holt, 2011). Formally, a 

container index Zi
C
 is calculated as follows: 

Zi
C 

=  Sjj , ∀j∈ I, 

where Zi
C
 is a container index for residential neighborhood i (in this case, a census tract), and the 

number or aggregate size, SJ, is summed for those LDLUs located within the boundaries I of i. 

This approach is based on the fundamental assumption that the benefits of LDLUs are allocated 

only to the constituents of the corresponding areal unit (Cho, 2003), and restricts accessibility to 

include only the number or area of LDLUs within that unit. The higher the number or the total 



  27  

area of LDLUs within each unit of analysis, the higher the level of accessibility to LDLUs 

enjoyed by residents of that unit. The container approach has been employed extensively in 

political science and urban planning due to its simplicity (Talen & Anselin, 1998; Lindsey et al., 

2001). However, container-based measures have been criticized as unrealistic measures of 

accessibility because spatial externalities of surrounding units of analysis are excluded from 

consideration (Cho, 2003; Nicholls, 2001). The modifiable areal unit problem (MAUP), 

ecological fallacy, and edge effects are other methodological issues associated with the use of the 

container approach (Zhang et al., 2011).  

 The minimum distance approach. The minimum distance approach defines 

accessibility as the distance that neighborhood residents must travel to reach the nearest LDLU 

(Smoyer-Tomic et al., 2004). This distance is inversely related to accessibility. The minimum 

distance index Zi
M

 is estimated as follows: 

Zi
M

 = min│dij │, 

where Zi
M

 is the index for minimum distance from residential neighborhood i to the nearest 

LDLU j. This approach assumes that residents always use the nearest LDLU with the least travel 

cost, as measured by distance or time (Talen & Anselin, 1998). However, in reality, residents do 

not always visit the nearest LDLU (Cho, 2003); the choice of LDLUs can be influenced by other 

factors, such as perceived or actual level of safety, environmental quality, size, quantity and 

quality of amenities, and general attractiveness (Zhang et al., 2011). 

 The travel cost approach. The travel cost approach is adapted from locational 

optimization models (Talen & Anselin, 1998) and defines accessibility according to the average 

or total distance between each residential neighborhood and all distributed LDLUs (Cho, 2003). 

The travel cost index Zi
T
 is expressed as follows: 
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Zi
T
 =  [j dij / N], 

where dij is the distance between a residential neighborhood i and LDLU location j, and N is the 

total number of LDLUs. The ease of interpreting the resulting value, expressed in a simple 

distance unit, is one of the advantages of using this approach (Talen & Anselin, 1998). The lower 

the total or average distance, the higher the level of the accessibility to LDLUs an area and its 

residents has. However, in reality, most residents do not interact with all LDLUs within a defined 

spatial area (Zhang et al., 2011). 

 The spatial interaction model approach. The spatial interaction model approach 

identifies levels of human interaction between origins (residential neighborhoods) and 

destinations (LDLUs). According to Zhang et al. (2011), gravity models have been employed 

extensively with the following assumptions: (1) ―spatial interaction declines with a larger spatial 

separation (travel distance or time) between origins and destinations‖; and (2) ―spatial interaction 

increases with a greater demand at origins or with higher supply capacity and/or attractiveness at 

destinations‖ (p. 3). Thus, LDLUs are weighted by their size (or attractiveness) and ―friction of 

distance‖ (Cho, 2003; Talen & Anselin, 1998). The gravity model index Zi
G
 is measured as 

follows: 

Zi
G
 =  [Sj / dij

a
], 

where Sj reflects the number or size of LDLUs, and for each LDLU location j, dij
a
 is a distance 

decay factor, with distance dij between residential neighborhood i and LDLU j, and friction 

parameter a. However, the choice of the magnitude of the friction parameter a and the issue of 

self-potential when dij = 0 are two methodological problems to be considered when using the 

gravity model (Talen & Anselin, 1998). 
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 The covering approach. The last approach is the covering approach, which defines 

accessibility within a certain service boundary measured not from residential neighborhoods to 

LDLUs but from LDLUs to residential neighborhoods (Cho, 2003). The basic assumption of this 

approach is that residents are said to be accessible to LDLUs if they are located within their 

service area, but they are deemed to have no access if they are not (Nicholls, 2001). Because a 

service boundary is defined by a critical radius or network distance, identification of the radius or 

distance is critical when delineating the service area of the LDLU (Omer, 2006). A number of 

LDLUs, including parks, are associated with recommended location criteria that include the 

definition of preferred service areas (Nicholls, 2001). 

 Because study results can be affected significantly by the type of accessibility measure 

selected (Talen & Anselin, 1998; Smoyer-Tomic et al., 2004), this choice is a substantial 

methodological issue when measuring the level of accessibility to LDLUs. Furthermore, the 

choice between Euclidean (straight-line) and network distance measures as well as aggregation 

error are other methodological issues (Lotfi & Koohsari, 2009; Nicholls, 2001; Smoyer-Tomic et 

al., 2004). Aggregation error refers to ―the error associated with representing an areal unit, which 

in turn represents spatially distributed individuals, by a single point‖ (Hewko, 2001, p. 23). The 

degree of aggregation error depends upon the size of the spatial unit (Hewko, Smoyer-Tomic, & 

Hodgson, 2002); the larger the areal unit, the larger the aggregation error. In general, the 

centroids of spatial units, such as census blocks, census tracts, or ZIP codes, have been used as 

the origin of a residential neighborhood when calculating the distance from a residential 

neighborhood to an LDLU (Smoyer-Tomic et al., 2004). As a result, the centroid approach could 

produce considerable aggregation error in distance measures and, thus, interpretation of results 

(Hodgson, Shmulevitz, & Korkel, 1997). Hodgson et al. (1997) insisted that aggregation error 
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can be reduced by minimally aggregating spatial units. However, the choice of spatial unit 

should be considered in combination with the acquisition of demographic and socioeconomic 

data, which may not be available at less aggregated levels (Hewko, 2001). In this study, census 

tracts are used as the unit of analysis and distance is measured along the actual street network.  

Measuring the Equity of Recreation Opportunity 

The purpose of equity analysis is to investigate the existence and extent of relationships 

between levels of access to LDLUs and neighborhoods‘ demographic and socioeconomic status. 

A variety of different methods such as linear correlation (Gilliland et al., 2006; Omer, 2006; 

Sister et al., 2010; Smoyer-Tomic et al., 2004), equity mapping (Talen, 1997; 1998; Talen & 

Anselin, 1998; Tsou et al., 2005), and multivariate linear regression (Deng et al., 2008; Porter & 

Tarrant, 2001; Tarrant & Cordell, 1999) have been utilized for measuring the equity of recreation 

opportunities. Among these research methods, multivariate linear regression has been recognized 

as the most appropriate because linear correlation cannot be used to analyze the relationships 

between several variables simultaneously (Porter & Tarrant, 2001). Equity mapping is a useful 

visualization tool, but it cannot establish the sociopolitical processes that determine who benefits 

from and who pays for public resources (Talen, 1998). Multivariate linear regression, however, 

overcomes some of the limitations of linear correlation and equity mapping. Accordingly, the 

level of access to recreation opportunities has been used as the dependent variable in relation to 

spatially referenced demographic and socioeconomic census data, the independent variables 

(Talen & Anselin, 1998).  

 Deng et al. (2008) used logistic regression analysis to examine the distributional equity 

of public and private golf courses relative to Chinese residents and other disadvantaged groups in 

Calgary, Canada over a 10-year time span (1991-2001). Results indicated that Chinese residents 
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were concentrated in several parts of Calgary over this period of time, and that they were more 

likely than Anglo-Canadians to reside in census tracts that did not contain, or were not near to, 

golf courses. However, the distributional inequity decreased during the study period, primarily 

due to the construction of new golf courses. Porter and Tarrant (2001) employed logistic 

regression analysis to determine whether inequities exist for certain socioeconomic and racial 

groups with respect to the distribution of federal tourism sites and campsites in Southern 

Appalachia. Results showed that the distribution of these federal tourism sites and campsites was 

advantageous to white populations and disadvantageous to minority populations. Tarrant and 

Cordell (1999) also used logistic regression analysis to determine the spatial relationships 

between outdoor recreation sites and census block group variables in northern Georgia. Results 

of their study suggested that there was a possible inequity with regard to household income, but 

not necessarily race, occupation, and/or ethnic heritage. 

Spatial Effects and Spatial Statistical Analyses 

Methodological Issues in Traditional Equity Research: Spatial Dependence and Spatial 

Heterogeneity 

 Ordinary least squares (OLS) is the most widely known and used regression method to 

model a dependent variable‘s association with a set of independent variables (Cui, 2010). To 

measure the degree of equity associated with a set of LULUs or LDLUs, multivariate linear 

regression analyses using the OLS method typically have been employed. This method is based 

on two critical assumptions: (1) the observations are independent of one another (Brunsdon et al., 

1996); and (2) there is a stationary relationship among variables (Gilbert & Chakraborty, 2011). 

A stationary relationship refers to a spatially constant relationship between dependent and 

independent variables that is interpreted by average (global) parameter estimates across an entire 



  32  

study area. However, as Longley et al. (2005) stated, ―spatial is special‖ (p. 5). The use of spatial 

data in a linear model leads to the potential for biased estimation results, due to the spatial 

dependence (spatial autocorrelation) and spatial heterogeneity (spatial non-stationarity) that 

make it difficult to meet the assumptions and requirements of traditional OLS regression 

(Brunsdon et al., 1996; Fotheringham et al., 2002).  

 Spatial dependence is the extent to which the value of an attribute in one location is 

more likely to be similar to the value of the attribute in a nearby location than the value of the 

attribute in a distant location (Fotheringham et al., 2002; O'Sullivan & Unwin, 2003). It is based 

on Tobler‘s First Law of Geography, which states that ―everything is related to everything else, 

but near things are more related than distant things‖ (Tobler, 1970, p. 236). Spatial dependence, 

often referred to as spatial autocorrelation, ―is determined both by similarities in position, and by 

similarities in attributes‖ (Longley et al., 2005, p. 517). According to Anselin (1988), large 

residuals are likely to occur if geographic features are spatially autocorrelated when using non-

spatial statistical methods such as OLS regression.  

 Spatial heterogeneity is referred to as spatial non-stationarity because ―the relationships 

among the independent and dependent variables vary over space‖ (Mennis & Jordan, 2005, p. 

249). In other words, every location has an intrinsic level of uniqueness with regard to the causal 

relationship between variables that may not be described by constant global parameter estimates. 

(Gilbert & Chakraborty, 2011; Fotheringham et al., 2002). When a lack of spatial uniformity or 

homogeneity is caused by the effects of spatial dependence and/or the relationships between the 

variables, spatial heterogeneity is likely to occur (Anselin & Getis, 1992). Spatial heterogeneity 

can thus be regarded as a special case of spatial dependence, and spatial dependence and 

heterogeneity often occur jointly (Anselin & Getis, 1992; Schooley, 2006). As noted by 
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Fotheringham et al. (2002), the coefficients of the model are related to spatial non-stationarity. 

Thus, when applied to a regression model, ignoring spatial heterogeneity gives rise to inaccurate 

results, such as biased parameter estimates and misleading significance tests (Anselin, 1988; Yoo, 

2012; Zhang, Ma, & Guo, 2009). Traditionally, equity research based on linear statistical 

analyses has failed to account for these spatial effects. According to Cui (2010), researchers 

sometimes have violated the basic assumptions of OLS, including linearity, homoscedasticity, 

independence of residuals, and normality of residuals. Nevertheless, new research methods that 

address these spatial effects have remained underexploited by recreation and tourism researchers 

and practitioners in previous equity studies of LDLUs. The development and demonstration of 

improved research methods for measuring the equity of LDLUs is a substantial contribution of 

this study.  

Spatial Statistical Analysis: A Tool for Exploring Spatial Effects 

 In recent years, great attention has been paid to the fact that the analysis of spatial data 

ideally should be conducted using specialized research methods that must be differentiated from 

those used to analyze non-spatial data (Getis, 2007; Gilbert & Charkraborty, 2011). Spatial 

statistical analysis has long been recognized as an effective research method to explore spatial 

effects such as spatial dependence and spatial heterogeneity (Anselin & Getis, 1992; Bailey & 

Gatrell, 1995; Cliff & Ord, 1973; Cressie, 1993; Diggle, 1983; Fortin, James, Mackenzie, 

Mellers, & Rayfield, 2012; Griffith, 1988; 2012; Ord & Getis, 1995; O‘Sullivan & Unwin, 2003; 

Ripley, 1981; 1998; Rogerson, 2001). According to Bailey and Gatrell (1995), the purpose of 

spatial statistical analysis is to describe data, assess the degree of spatial dependence in data, and 

examine relationships among variables.  
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  Although a number of spatial statistical techniques are based on the typical statistical 

analysis of non-spatial data, the most significant difference that distinguishes spatial statistical 

analyses from non-spatial statistics is the underlying assumption of spatial dependency among 

spatial data (Anselin & Getis, 1992). Thus, spatial statistics, and spatial statistical analysis, can 

provide both theoretical knowledge and analytical methods to account for effects such as spatial 

dependence and spatial heterogeneity, issues that have been regarded as serious methodological 

problems to be overcome in traditional environmental justice research (Gilbert & Chakraborty, 

2011; Mennis & Jordan, 2005). 

 Spatial statistical techniques can be sub-divided into two types: descriptive and 

inferential (Rogerson, 2001). Descriptive spatial statistical methods are based on an exploratory 

approach designed in particular for large datasets and to suggest new hypotheses. Measuring and 

visualizing characteristics of spatial distributions (e.g., central tendency [mean center and median 

center], and dispersion [standard distance and standard deviational ellipse]) are major functions 

of descriptive spatial statistical methods.  

 Mean center is the most commonly used measure of central tendency for spatial data 

(Rogerson, 2001). It can be conceptualized as the center of gravity of a point pattern or spatial 

distribution that represents a point location consisting of the average x- and y-coordinates of all 

the features in the study area (Mitchell, 2005). The mean center (Xm , Ym) is measured as follows: 

Xm = 
 x i

n
i=1

n
, Ym= 

 y i
n
i=1

n
, 

where xi and yi are the coordinates for features i, and n is equal to the total number of features.  

 Median center is another spatial measure of central tendency. It is the location that 

minimizes Euclidean distance from it to all other features in the dataset (Rogerson, 2001). At 

each step (t) in the mathematical algorithm, a candidate median center (Xt,, Yt) is found and then 
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refined until it represents the location that minimizes the Euclidean distance, d, to all features in 

the dataset:  

di
t  =  (xi −  xt)2 + (yi −  yt)2 

The median center is a measure of central tendency that is robust to spatial outliers (Burt & 

Barber, 1996). According to Kuhn and Kuenne (1962), the median center is a more practical and 

representative measure of central tendency than the mean center.  

 Standard distance can be conceptualized as the spatial equivalent of standard deviation 

(Mitchell, 2005). According to Rogerson (2001), it is the square root of the average squared 

distance of points to the mean center. The standard distance (Sd) is measured as follows:  

Sd =  
 (xi−xm )2+  (y i−xm )2  n

i=1  n
i=1

n
  

where xi and yi are the coordinates for features i, {xm, ym} represents the mean center for the 

features, and n is equal to the total number of features. As the two-dimensional equivalent of 

standard deviation, the standard distance measures the degree of absolute dispersion in point 

pattern data. It represents the standard deviation of the distance of each point from the mean 

center. As standard deviation, the standard distance is also sensitive to extreme or peripheral 

locations (Mitchell, 2005).  

 Standard deviational ellipse indicates the orientation and direction of distribution of a set 

of data in two dimensions. The standard deviational ellipse measures the degree of dispersion for 

a set of points or areas by calculating the standard distance separately in the x and y directions 

(Mitchell, 2005). It is estimated as follows:    

SDEx = 
 (xi−xm )2n

i=1

n
, SDEy = 

 (y i−ym )2n
i=1

n
, 
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where xi and yi are the coordinates for features i, {xm, ym} represents the mean center for the 

features, and n is equal to the total number of features. Table 1 compares some basic nonspatial 

and spatial descriptive statistics.  

Table 1. 

Nonspatial and spatial descriptive statistics (Sahoo, n.d.) 

Statistic Central tendency Absolute dispersion Relative dispersion 

Nonspatial 
Mean 

Median 
Standard deviation Coefficient of variation 

Spatial 
Mean center 

Median center 
Standard distance 

Standard deviational ellipse 

(directional trend) 

 

 Exploratory spatial data analysis (ESDA) commonly has been used to visualize these 

descriptive statistical functions. In particular, ESDA can enhance the quality of the equity 

mapping approach by providing clues to possible causal relationships, by indicating the existence 

of spatial effects, and by mapping the locations of spatial clusters such as hot spots, cold spots, 

and spatial effects (Talen, 1998).  

 Inferential spatial statistical methods are based on a confirmatory approach designed to 

test hypotheses (Rogerson, 2001), including investigations of spatial relationships between 

features and the identification of spatial clusters of features or phenomena (Anselin, 1988; 

Anselin & Getis, 1992; Gatrell, Bailey, Diggle, & Rowlingson, 1996; Rogerson, 2001). Several 

methods of point pattern analysis (PPA) (e.g., nearest neighbor analysis [NNA] and Ripley‘s K-

function analysis), ESDA (e.g., spatial autocorrelation analysis), and spatial econometric models 

(e.g., spatial error model, spatial lag model, spatial expansion model, spatial adaptive filtering, 

multilevel model, simultaneous autoregressive model, and geographically weighted regression 

[GWR]) have been recognized as confirmatory or inferential spatial statistical techniques.  
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 PPA is a class of techniques that can be used to identify the pattern of a set of points in 

space (Bailey & Gatrell, 1995). PPA is used to determine whether the locations of these points, 

or events, are clustered randomly or regularly distributed (Bivand, 1998). As an inferential 

spatial statistical method, PPA is based on the hypothesis of complete spatial randomness (CSR), 

in which events are distributed independently according to a uniform probability distribution 

over the study area (Getis, 1999). The type of point pattern is judged by comparing the observed 

point pattern to the theoretical model of CSR (Wall, Dudycha, & Hutchinson, 1985). NNA and 

Ripley‘s K-function are the most commonly employed types of PPA. NNA examines the 

distances between each point and the closest point to it, and then compares these to expected 

values for a random sample of points. NNA calculates a nearest neighbor ratio (R) that is 

expressed as the ratio of the observed mean distance to the expected mean distance between the 

events. The R is given as follows:  

R = 
Do

De
,  

where Do is the observed mean distance between each event and its nearest neighbor and De is 

the expected mean distance between the events given the random pattern. Do and De are 

calculated as follows: 

Do = 
 𝑑𝑖

𝑛
𝑖=1

𝑛
, De = 

0.5

 
𝑛

𝐴

 

where di equals the distance between event i and its nearest neighbor, N corresponds to the total 

number of events, and A is the area of a minimum enclosing rectangle around all events or a 

user-specified area. If the value of R is less than 1, the point pattern exhibits clustering. If the 

value of R is greater than 1, the point pattern exhibits a regular distribution, and if the value of R 

is 1, the point pattern exhibits CSR.  



  38  

 Ripley‘s K-function is another way to identify the spatial pattern of point data (Ripley, 

1981). A distinguishing feature of this method from NNA is that it characterizes the patterns 

across multiple spatial scales. Ripley‘s K-function computes the expected value of the K(d) 

under CSR. The expected value of K(d) is as follow: 

E[K(d)] = 
Iπd2

I
 = πd2 (if a point pattern is CSR), I = N/A 

where K(d) is the average number of events inside a circle of radius d centered on an event, I is 

the mean density of events per unit area, N is the total number of events, and A is the study area. 

If the observed K(d) for a particular radius (d) is greater than the expected K(d) through the 

study area, the distribution is considered clustered at that radius, and if the observed K(d) for a 

particular radius (d) is smaller than the expected K(d), the distribution is considered dispersed at 

that radius. Among a number of variations of Ripley‘s K-function, a common transformation of 

the K-function, often referred to as L(d), is implemented as follows:   

L(d) =  
A   K i ,j

n
j=1,j≠i

n
i=1

πn(n−1)
 

where d is the distance, n is equal to the total number of events, A represents the study area and 

Ki,j is a weight. If there is no edge correction, then the weight will be equal to one when the 

distance between I and j is less than d, and will equate to zero otherwise. Using a given edge 

correction method will modify Ki,j slightly.   

 GWR is a local regression model that has become popular as a means of exploring 

spatial heterogeneity in the relationships among variables by fitting a regression equation to 

every feature in the dataset (Cahill & Mulligan, 2007; Patridge, Rickman, Ali, & Olfert, 2008; 

Waller, Zhu, Gotway, Gorman, & Gruenewald, 2007; Zhao & Park, 2004). GWR is discussed in 

more detail below.   
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These descriptive and inferential spatial statistical techniques also can be classified by 

the type of spatial data and by the purpose of spatial analysis. Bailey and Gatrell (1995) divided 

spatial statistical techniques into four categories depending upon the type of data, representing 

techniques for: (1) point pattern data; (2) spatially continuous data; (3) areal data; and (4) 

interaction data, while Scott and Janikas (2010) classified spatial statistical techniques into four 

categories by the purpose of spatial analysis, for (1) measuring geographic distributions; (2) 

analyzing patterns; (3) mapping clusters; and (4) modeling spatial relationships. Samples of 

relevant spatial statistical techniques sorted by spatial data type and by the purpose of spatial 

analysis are presented in Tables 2 and 3.  

Table 2. 

Classification of spatial statistical techniques (Adapted from Bailey & Gatrell, 1995) 

Type of Spatial Data Example of Spatial Statistical Technique 

Point pattern data 

Quadrat analysis 

Kernel estimation 

Nearest neighbor analysis 

K-function analysis 

Geostatistical data 

(spatially continuous data) 

Spatial moving averages 

Trend surface analysis 

Delauney triangulation  

Thiesen polygons  

Triangulated irregular network (TIN) 

Kernel estimation (for the values at sample point) 

Variograms  

Covariograms / kriging 

Principal components analysis / factor analysis 

Procrustes analysis 

Cluster analysis 

Canonical correlation 

Area data 

(lattice data) 

Spatial moving averages 

Kernel estimation 

Spatial autocorrelation (Moran‘s I and Geary‘s C) 

Spatial correlation and regression 

Interaction data 
Spatial interaction methods 

Augmented spatial interaction models 
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Table 3.  

Classification of spatial statistical method by the purpose of spatial analysis 

Purpose Example of spatial statistical method 

Measuring geographic  

distributions 

Centrographic technique  

(standard deviational ellipse analysis) 

Analyzing patterns 
PPA (nearest neighbor analysis, Ripley‘s K-function) 

ESDA (using global Moran‘s I and Getis-Ord general G) 

Mapping clusters ESDA (using Anselin‘s local Moran‘s I and hot spot analysis) 

Modeling spatial relationships Spatial regression (econometric) models 

Note: PPA (point pattern analysis), ESDA (exploratory spatial data analysis) 

Exploratory Spatial Data Analysis (ESDA) 

 ESDA provides a set of specialized techniques that is useful in describing and 

visualizing spatial distributions, identifying atypical locations or spatial outliers, discovering 

patterns of spatial associations or clusters (e.g., hot spots and cold spots), and suggesting spatial 

regimes or other forms of spatial heterogeneity (Anselin, 1988). ESDA was extended from 

exploratory data analysis (EDA) (Turkey, 1977). The distinguishing characteristic of ESDA is its 

ability to reflect the spatial dependence of geographic data (Syabri, 2006) because, as previously 

described, the prevalence of spatial dependence may invalidate ―the interpretation of methods 

based on an assumption of independence, which is the rule in mainstream EDA‖ (Anselin, 1999, 

p. 254). 

 Because the concept of spatial dependence is assessed generally both globally and 

locally (Anselin, 1995), ESDA also can be implemented to measure the degree of spatial 

dependence at two levels—the global and the local. Global Moran‘s I statistic (Moran, 1950) is 

the most commonly employed measure of spatial dependence, also known as spatial 

autocorrelation or spatial clustering at the global level. The global Moran‘s I is measured as 

follows:  
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I = 
N

S0
  

w ij  xi−μ  x j−μ 

 (xi−μ)2
i

ji , S0 =   wijji , 

where wij is the matrix of weights such that, in some cases (wij = 1 if area i and area j are adjacent; 

otherwise, wij = 0), xi is the attribute value of a specific variable at areal unit i (in this case, a 

census tract), xj is the attribute value of a specific variable at areal unit j (in this case, a census 

tract), μ is the average attribute value of a specific variable, and N is the total number of areal 

units. Moran‘s I statistic ranges between -1 and 1. A value of 1 indicates a perfect positive 

autocorrelation that refers to patterns in which similar values tend to occupy adjacent locations. 

For example, high values tend to occur adjacent to high values and low values adjacent to low 

values. A value of 0 indicates no spatial autocorrelation (a random spatial pattern). A value of -1 

indicates a perfect negative autocorrelation that refers to a pattern in which high values tend to be 

consistently located next to low values. 

 The global Moran‘s I statistic is a global measure of spatial autocorrelation that can 

indicate the existence of spatial autocorrelation but cannot identify the location and type of 

spatial clusters (Anselin, 1995). Thus, the local indicator of spatial autocorrelation (LISA) has 

been applied to identify the location and type of spatial clusters. LISA is calculated as follows: 

Ii  = 
 xi–μ   

m2
  wij (xj −i 𝜇), m2 =  (xi i – μ)

2 
/ N, 

The results of LISA analysis can be presented in the forms of a Moran scatterplot and a Moran 

significance map with information incorporated about the significance of the local spatial 

autocorrelation or clusters. Generally, the results from both the scatterplot and the significance 

map are classified into five categories: high-high (HH); high-low (HL); low-high (LH); low-low 

(LL); and, not statistically significant. The five categories can be described as follows: (1) HH: 

clusters of locations with high values, indicating positive spatial autocorrelation, also called hot 

spots; (2) HL: clusters of locations with high values adjacent to locations with low values, 
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indicating negative spatial autocorrelation, also called spatial outliers; (3) LH: clusters of 

locations with low values adjacent to locations with high values, indicating negative spatial 

autocorrelation, also called spatial outliers; (4) LL: clusters of locations with low values, 

indicating positive spatial autocorrelation, also called cold spots; and (5) not statistically 

significant: no clusters or spatial autocorrelation between locations.  

Exploratory Spatial Data Analysis (ESDA) in the Context of Equity 

The use of maps can play a pivotal role in elucidating variations in equity (Talen, 1998). 

Specifically, mapping the distribution of an accessibility measure to LDLUs and relevant 

socioeconomic characteristics represents an ―equity mapping approach.‖ Equity mapping has 

allowed exploratory analysis of variables to discover any spatial mismatch between residents‘ 

needs and public service provision by mapping the distribution of accessibility measures of 

LDLUs relative to the distribution of residents‘ demographic and socioeconomic characteristics 

(Deng et al., 2008; Porter & Tarrant, 2001; Talen & Anselin, 1998; Talen, 1998; Tarrant & 

Cordell, 1999; Tsou et al., 2005; Wolch, Wilson, & Fehrenbach, 2005). As explained by Talen 

(1998), exploring the spatial patterns of variable distributions is an essential procedure in the 

equity mapping approach. ESDA can enhance the equity mapping approach by indicating the 

existence of spatial association (autocorrelation) as well as mapping the locations of spatial 

clusters such as hot spots, cold spots, and spatial outliers.  

 The ESDA-based equity mapping approach has been employed in several analyses of 

recreation-related LDLUs. Talen (1997, 1998) produced ―equity maps‖ to assess the social 

equity of park access in Pueblo, Colorado and Macon, Georgia. She used LISA to compare the 

spatial clustering of park access scores with the spatial clustering of selected socioeconomic 

variable distributions. Smoyer-Tomic et al. (2004) produced LISA significance maps to assess 
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whether there is an association between neighborhood need and playground accessibility in 

Edmonton, Canada. Deng et al. (2008) used LISA to visualize the distribution of access to golf 

courses in Calgary, Canada.  

 As outlined by Anselin (1995), the degree of spatial dependence can be assessed at the 

global and local levels. The corresponding values contribute to the overall identification of 

spatial patterns of variable distribution in a complementary manner (Kang, Kim, & Nicholls, 

2014; Yang & Wong, 2013; Zhang et al., 2011). Few empirical studies of LDLUs have explored 

the overall spatial patterns of variable distributions at the global and local levels simultaneously. 

Talen and Anselin (1998) used both global Moran‘s I and LISA to assess the sensitivity of spatial 

patterns of equity to different types of accessibility measure. Tsou et al. (2005) also used both 

global Moran‘s I and LISA to assess the spatial equity of urban facilities in Ren-de, Taiwan.  

 Effective equity mapping also should assess and visualize the spatial characteristics of 

LDLU distribution (e.g., central tendency, directional trend, absolute dispersion, and location 

pattern). Equity mapping studies to date have explored only spatial patterns of variable 

distributions in a visual manner without any full assessment of spatial characteristics of LDLUs. 

Geographically Weighted Regression (GWR) 

 Among many statistical regression techniques, GWR recently has become popular for 

modeling spatial heterogeneous processes between variables (Charlton, Fotheringham, & 

Brunsdon, 2009). GWR is a local spatial statistical technique designed for exploring spatial 

heterogeneity, also known as spatial non-stationarity, in spatial data (Brunsdon et al., 1996; 

Fotheringham et al., 2002). GWR assumes that relationships between variables may differ from 

location to location. In other words, GWR generates a set of local regression coefficients for 

each observation point in the study area.  



  44  

The traditional multiple linear regression model can be expressed as follows: 

yi  = a0 +  akxik
k
j=1  + ei, k = 1, ……, k, 

where yi is the vector of the estimated parameter for observation i, a0 is the intercept parameter, 

ak is the regression coefficient for the kth independent variable, xik is the value of the kth 

independent variable for observation i, and ei is a random error term for observation i. The 

traditional multiple linear regression model is based on assumptions of independence and 

homogeneity such that the residuals should be both independent and drawn identically from a 

normal distribution with a mean of zero (Charlton et al., 2009). GWR extends the traditional 

multiple linear regression framework by allowing local parameters to be estimated as follows:    

 yi  =  aio (ui, vi) +  aik
k
j=1 (ui, vi)xik + ei, k = 1, …., k,    

where (ui, vi) is the coordinate of the ith point in the study area, aio(ui, vi) is the intercept 

parameter at point i, aik(ui, vi) is the local regression coefficient for the kth independent variable 

at point i, and aik is the value of the kth independent variable at point i. Thus, unlike linear 

multiple regression models, GWR can consider important local variations in relationships.   

 Based on Tobler‘s (1970) First Law of Geography, all observed data points in GWR are 

weighted by their spatial proximity from the regression point. In other words, observed data 

points closer to the regression point are weighted more heavily than observed data points located 

farther away (Fotheringham et al., 2002). The weight of an observed data point is thus at a 

maximum when an observed data point shares the same location as the regression point, and 

decreases as the distance between the two points increases.  

 In GWR, the weights of observed data points depend on the kernel chosen and the 

bandwidth for that kernel (Fotheringham et al., 2002). As explained by Yoo (2012), a kernel can 

be defined as a circle of influence or a circular area with a given radius around one particular 
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regression point, and the given radius is called the bandwidth. The Gaussian kernel function and 

the bi-square kernel function are two types of kernel functions that are commonly used in GWR 

(Fotheringham et al., 2002; Charlton et al., 2009; Zhang & Shi, 2004).  

 The Gaussian kernel function also is referred to as a kernel with a fixed bandwidth 

because it is based on the assumption that the bandwidth at each regression point is constant 

across the study area (Fotheringham et al., 2002). The Gaussian kernel function is applied when 

the observed data points are reasonably regularly spaced in the study area. The weight for the 

Gaussian kernel function is estimated as follows: 

wij  = exp[-(dij  / b)2
], 

where dij is the Euclidean distance between the regression point i and the data point j, and b is the 

bandwidth. At the regression point, the weight of a data point is unity and the weights decrease 

as the distance from the regression point increases. However, the weights of all the data points 

are non-zero, no matter how far they are from the regression point.  

 The bi-square kernel function is called a kernel with adaptive bandwidth because it 

permits use of variable bandwidth (Fotheringham et al., 2002). The bi-square kernel function is 

used when the observed data points are not regularly spaced but clustered in the study area. For 

example, the size of the bandwidth increases when the observed data points are widely spaced 

and decreases when the observed data points are clustered. The weight for the bi-square kernel 

function is estimated as follows: 

  wij  = [1 - (dij  / b)2
]   when dij ≤ b 

                         wij  = 0             when dij > b 

At the regression point i, the weight of the data point is unity and falls to zero when the distance 

between i and j equals the bandwidth. When the distance is greater than the bandwidth, the 
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weight of the data point is zero. The bandwidth is selected so that there is the same number of 

data points with non-zero weights at each regression point.  

 Choosing the bandwidth is very important because the results obtained from GWR 

largely depend upon that choice (Charlton et al., 2009; Fotheringham et al., 2002; Gilbert & 

Chakraborty, 2011). Bandwidth can be thought of as a smoothing parameter. A larger bandwidth 

can cause greater smoothing (Yoo, 2012). If the estimated parameters are similar in value across 

the study area, an over-smoothed model is applied, and if the estimated parameters include much 

local variation, an under-smoothed model is adopted. Somewhere between these two extremes is 

thus regarded as the best bandwidth (Fotheringham et al., 2002).  

 As explained by Fotheringham et al. (2002), three methods commonly have been used to 

determine the best bandwidth: (1) providing a user-supplied bandwidth; (2) selecting bandwidth 

that minimizes a cross-validation (CV) function, and (3) selecting bandwidth that minimizes the 

Akaike Information Criterion (AIC). Among these bandwidth selections, selecting a bandwidth 

that minimizes the AIC has most commonly been employed to determine the best bandwidth as 

well as to measure model performance (Fotheringham et al., 2002; Yoo, 2012). The AIC is a 

measure of relative model performance and is helpful for comparing different regression models 

(Bozdogan, 1987; Yamaoka, Nakagawa, & Uno, 1978). AIC deals with the trade-off between the 

goodness of fit of the model and the complexity of the model (Fotheringham et al., 2002). AICc 

is AIC with a correction for finite sample sizes (Bozdogan, 1987). This takes the following form: 

AICc = 2nloge (σˆ) + nloge(2π) + n[(n + tr(S)/(n—2 - tr(S)] 

where n is the number of observations in the dataset, σˆ is the estimate of the standard deviation 

of the residuals, and tr(S) is the trace of the hat matrix. The AICc values can be used not only to 

compare models with different independent variables but also to compare the global model with 
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a local GWR model (Charlton et al. 2009). If the difference between the two AICc values is 

more than three, the model with the lower AICc is considered better (Fotheringham et al., 2002).  

 In calibrating a GWR model, it is important to test whether the GWR offers an 

improvement over the global model with statistical significance. A Monte Carlo significance test 

has been widely employed to determine spatial non-stationarity against the null hypothesis that 

the parameter estimates are constant for all locations in the study area (Yoo, 2012).  

 Compared to the conventional and global regression model, there are two significant 

characteristics of GWR. The first is that it yields error terms (residuals) that are considerably 

smaller and less spatially dependent than residuals from a corresponding global regression model 

(Tu & Xia, 2008). The second significance of GWR is its ability to visualize spatial variations in 

regression diagnostics and model parameters within a study area (Gilbert & Chakraborty, 2011). 

Mapping regression diagnostics such as standardized residuals, the local r-square, parameter 

estimates, and t-statistic can play an important role in exploring how statistical relationships and 

their significance between the level of access to LDLUs and the demographic and socioeconomic 

characteristics of a residential population vary over space.  

Geographically Weighted Regression (GWR) in the Context of Equity 

 The assumption of spatial stationary in multivariate linear regression using the OLS 

method has been strongly questioned and OLS regression models have not been able to capture 

important local variations in the relationships among variables. Although the analytical utility of 

GWR has been applied to analyze environmental inequities in the distribution of LULUs such as 

toxic air releases, air pollution, and coronary heart disease mortality, to date, only one study has 

used GWR to explore inequities in the distribution of LDLUs such as urban parks. In these 

studies, the statistical diagnostics of both GWR and OLS models were compared to assess 
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whether or not the GWR model improved on the OLS model and effectively dealt with spatial 

effects such as spatial dependence and spatial heterogeneity in the data.  

 Mennis and Jordan (2005) applied GWR, in combination with conventional univariate 

and multivariate statistics, to model the density of toxic air releases in New Jersey. Results 

highlighted the effectiveness of the GWR model with higher R
2
 and lower AIC. Gilbert and 

Chakraborty (2011) compared traditional global OLS and GWR, and found that GWR was the 

more appropriate approach to explore spatial variability in statistical relationships relevant to 

environmental justice analysis with respect to cumulative cancer risks from air toxics in Florida. 

Jephcote and Chen (2012) employed both GWR and OLS to investigate the environmental 

injustices of children‘s exposure to air pollution from road-transport in Leicester, UK. The 

findings showed significant statistical relationships between children‘s hospitalization rates and 

social-economic status, ethnic minorities, and road-transport emissions, suggesting GWR was 

more robust than the global OLS model. Gebreab and Diez Roux (2012) also compared GWR 

with OLS to explore racial disparities in coronary heart disease mortality between blacks and 

whites across the US. The authors concluded GWR was the most appropriate model to examine 

spatial heterogeneity with more desirable statistical results, including higher R
2
, lower 

standardized residual, and lower AIC. Maroko et al. (2009) used both OLS and GWR to examine 

the statistical relationship between level of access to parks and residents‘ racial and ethnic status 

in New York City, US. The results indicated that the OLS model found a weak relationship with 

lower R
2
 and higher AIC, while GWR suggested spatial non-stationarity, indicating disparities in 

accessibility that vary over space with higher R
2
 and lower AIC.  
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Geographic Information Systems (GIS) 

Definitions of GIS 

 Since 1963, when Roger Tomlinson first coined the term GIS (Dye & Shaw, 2007), GIS 

have become a technology with great potential to aid work in a variety of fields, including 

business marketing (Boyles, 2002; Grimshaw, 2000; Longley & Clarke, 1995; Mittal, Kamakura, 

& Govind, 2004), land use planning (Berke, Godschalk, Kaiser, & Rodriguez, 2006; Bocco, 

Mendoza, & Velazquez, 2001; Dai, Lee, & Zhang, 2001), environmental management (Aspinall 

& Pearson, 2000; Baker, Wiley, Seelbach, & Carlson, 2003; Talen & Anselin, 1998), park and 

recreation planning (Nicholls, 2001; Tarrant & Cordell, 1999), and tourism development and 

planning (Bahaire & Elliott-White, 1999; Brown & Weber, 2013; Hasse & Milne, 2005; 

McAdam, 1999), among others. A GIS is generally referred to as a computer-based system 

designed to capture, store, manipulate, analyze, and display spatially referenced and associated 

data and used to support spatial decision making (Longley et al., 2005). Lee (2001) described 

GIS as one of the most widely used decision aids to solve complex spatial planning and 

management problems.  

 Definitions of GIS have been determined by the meaning of the S in GIS. There have 

been three approaches. The first approach has been to define GIS as a GISystem [e.g., an 

information system] (Aronoff, 1989; Ducker, 1979; Smith, Menon, Starr, & Estes, 1987; Star & 

Estes, 1990). The system involves both hardware and software to solve specific spatial problems. 

The second approach has been to define GIS as GIScience, an area of information science 

(Goodchild, 1992). As explained by Longley et al. (2005), information science is defined as a 

discipline focusing on creation, collection, analysis, manipulation, storage, and classification of 

information, while GIS is the area concerned with the creation, collection, analysis, manipulation, 
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storage, and classification of geographic information. The third approach has been to define GIS 

as GIStudies that focuses on the applications of spatial information and its impacts on our lives 

(Cowen, 1988; Pickles, 1995). This approach points out that most GIS definitions have ignored 

how GIS can change our lives as well as affect our society. From this perspective, the social 

context of geographic information has been discussed, including legal issues, privacy and 

confidentiality, and the economics of geographic information. In this study, GIS was defined as a 

GISystem that may be viewed as a sub-system of an information system.  

Major Functions of GIS  

The functions of GIS are four-fold: data input, data storage/management, data 

manipulation/analysis, and data output (Malczewski, 1999). Figure 4 illustrates the structure of a 

GIS.  

 

 

 

 

 

 

 

 

Figure 4. Structure of a GIS (Malczewski, 1999, p. 17)  

 Data input typically is referred to as ―the process of identifying and gathering the data 

required for a specific application‖ (Malczewski, 1999, p. 17). In general, data input involves 

converting data from their raw or existing form into one that can be used by a GIS, which offers 
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the efficiency of integrating a wide range of data and information sources into a format 

compatible with other devices, including digitizing, scanning, remote sensing (RS), and global 

positioning systems (GPS) (Longley et al., 2005). Vector and raster are two formats of data 

model representing geographic data in GIS environments (Malczewski, 1999). Data in vector 

models are entities represented by a point, line, or polygon (area) with specific coordinates, 

while data in raster models are stored in a two-dimensional matrix of uniform grid cells (pixels).  

 Data storage/management involves storing and retrieving data from the database and 

affects how efficiently the system performs operations with the data (Antennucci, Brown, 

Croswell, Kevany, & Archer, 1991; Aronoff, 1989). Most GIS systems are based on a database. 

Typically, the database is defined as ―a collection of non-redundant data in a computer organized 

so that it can be expanded, updated, retrieved, and shared by various uses‖ (Malczewski, 1999, p. 

25), while a GIS database can be thought of as a representation or model of real-world 

geographical systems with geographical entities and objects (Aronoff, 1989).  

 The distinguishing feature of GIS is its ability to perform an integrated analysis of 

spatial and attribute (non-spatial) data. Data manipulation and analysis are core functions of this 

process used to obtain useful information for specific applications. Overlay, neighborhood, and 

connectivity are three major types of analysis in GIS (Nicholls, 2002). These fundamental GIS 

operations can generate data for input into spatial decision analysis that can be a catalyst for 

decision making. Based on these basic functions, advanced functions, such as spatial statistical 

analysis, geo-simulation, spatial modeling, and web-based participatory GIS, are new 

methodological approaches used to interpret complex spatial problems. One of the outstanding 

features of GIS-based spatial analysis is its geographic intelligence or topology (Levine & 

Landis, 1989). As noted by Longley et al. (2005), ―topology is the science and mathematics of 
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relationships used to validate the geometry of vector entities, and for operations such as network 

tracing and tests of polygon adjacency‖ (p. 190). This geographical intelligence can distinguish 

GIS from other mapping systems such as computer-aided design (Aronoff, 1989).  

 Data output provides a way to see data or information. According to Martin (1991), 

―display‖ and ―transfer‖ are two forms of data output from GIS. ―Display‖ presents information 

to users in some form such as a map or table, while ―transfer‖ transmits the information into 

another computer-based system for further processing and analysis (Malczewski, 1999). Output 

functions can be determined by users‘ needs and purposes. GIS can support data output with 

advanced visualization techniques, including three-dimensional (3D) display. This makes GIS 

more attractive than other information systems by providing advanced visualized information 

that can allow decision makers to examine quickly large amounts of data during decision making 

processes (Pundt & Brinkkotte-Runde, 2000).  

GIS and Society 

 Such functions of GIS have successfully met many societal needs. GIS has contributed 

to the operation and management of utilities, transportation networks, cadastral infrastructure, 

and natural resources (Goodchild, 1992). In addition, a number of applications of GIS have 

expanded from government to the private sector, community groups, and individuals (Star & 

Estes, 1990; Martin, 1991). As explained by Craig, Harris, and Weiner (2002), these applications 

of GIS in our society bring significant benefits that can be measured in terms of efficiency (doing 

things more quickly and with less effort), effectiveness (doing things better), and equity (sharing 

benefits more widely and equally). 

 Although these benefits come with costs (technology development, data construction 

and staff training) (Craig et al., 2002), the future of GIS remains promising. The hardware, 
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software, and data for GIS are becoming more available, more usable, and less expensive (Talen, 

2000). As a result, society is able to share more geographic information that is essential for better 

decision making. Furthermore, GIS successfully has been incorporated into the Internet. Web-

based GIS has led to active public participation that is the basis of a community-based approach 

to diverse social problems (Kingston, Carver, Evans, & Turton, 2000; Sieber, 2006).  

GIS and Decision Making Processes 

The ultimate aim of GIS is to support spatial decision making. GIS capabilities for 

supporting spatial decisions can be analyzed in the context of the decision-making process. 

Among a number of frameworks for analysis of the decision process, Simon‘s (1960) is the most 

widely used. This process can be divided into three major phases: intelligence, design, and 

choice. Figure 4 represents these three phases.  

Figure 5. Three-phase decision-making process (Malczewski, 1999, p. 75)  

Each stage of the decision-making process has a different purpose and requires different 

types of information. The intelligence phase defines the need for decision making or problem 

solving. The design phase prepares alternative courses of action. The choice phase involves 

evaluation of alternatives and selection of the most appropriate strategy. As a tool, GIS has 
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played a pivotal role in supporting decision-making processes that include the intelligence, 

design, and choice phases.  

Although GIS can provide important capabilities for manipulating and displaying spatial 

data, a number of GIS functions still lack the capabilities required to assist multiple decision 

makers come to consensual decisions. Feick and Hall (2002) insisted that ―the capacity of 

commercial GIS to facilitate debate and achieve some measure of balance among different 

viewpoints has been identified as a major weakness‖ (p. 391). In particular, an intrinsic single-

user perspective in commercial GIS software has disregarded the multi-interest character of the 

decision-making process and the socially constructed nature of data and analytical methods 

(Feick & Hall, 2002; Lee, 2001).  

Malczewski (1999) stated that most GIS techniques tend to focus on supporting the first 

phase intelligence of the decision making-process with advanced spatial analysis and 

visualization. Meanwhile GIS has limitations in its ability to support the design and choice 

phases that require consideration of diverse viewpoints from different stakeholders. As noted by 

Densham (1991), ―when different people are faced with the same spatial decision problem, they 

are likely to place different values on variables and relationships and select and use information 

in different ways‖ (p. 404). However, it is difficult to handle these situations using standard 

single user-based GIS. Hence, efforts to extend and integrate GIS technology with multiple 

criteria analysis are essential (Lee, 2001). Great attention has been given to GIS-based spatial 

decision support systems to overcome these weaknesses. In particular, multi-criteria decision 

analysis (MCDA) can be employed to reflect diverse decision makers‘ preferences. The 

methodological integration of GIS and MCDA into multi-spatial decision support systems offers 

the potential to consider diverse decision makers‘ preferences in order to solve complex spatial 
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problems.  

Spatial Analysis in GIS 

 The distinguishing characteristic of GIS that differentiates them from other information 

systems is their spatial analysis capabilities (Goodchild, 1987; Unwin, 1996). As Goodchild 

(1987, as cited in Lee, 2001, p. 16) stated, ―the ability of a Geographic Information System to 

analyze spatial data is frequently seen as a key element in its definition, and has often been used 

as a characteristic which distinguishes the GIS from systems whose primary objective is map 

production.‖ Spatial analysis generally is referred to as spatial data manipulation, an ability to 

manipulate spatial data using a set of deterministic functions for extracting valuable meaning 

(Bailey, 1994; O‘Sullivan & Unwin, 2003). Spatial queries, buffering, overlay, and the 

calculation of derivates on surfaces such as slope and aspect, are examples of deterministic 

functions (Unwin, 1996).  

 Because a GIS is a specialized tool for spatial analysis, definitions of spatial analysis 

should be discussed in the context of the analysis functions of GIS. Following the four functions 

of GIS as a GISystem (e.g., input, storage, analysis, and output) (Anselin & Getis, 1992), 

Anselin (1999) subdivided the analysis function of GIS into selection, manipulation, exploratory 

spatial data analysis (ESDA), and confirmatory spatial data analysis (CSDA). Figure 6 illustrates 

Anselin‘s (1999) schematic overview of the interaction between different analytical functions of 

a GIS. 
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Figure 6. Spatial analysis in GIS (Anselin, 1999, p. 263) 
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Anselin‘s (1999) framework involves a sequence of activities that starts with selection 

and ends with CSDA. Spatial sampling of observational units from the database and the choice 

of the proper scale of analysis are two essential activities in the selection phase. The next phase 

is manipulation, the purpose of which is to convert the selected information into meaningful 

maps and surfaces; partitioning, aggregation, overlay, and interpolation procedures are major 

activities in the manipulation phase (Anselin & Getis, 1992). ESDA is an inductive approach that 

is based on ―data-driven analysis‖ (Anselin, 1990) to let the data speak for themselves (Gould, 

1981). In the ESDA phase, spatial distribution and spatial association should be assessed and 

explored at global and local levels in an exploratory manner. The final phase is CSDA based on 

―model-driven analysis‖ (Anselin, 1990), in which spatial regression models and spatial 

predictions can be implemented based on theoretical notions in a confirmatory manner.  

Use of GIS Techniques in Equity Analyses of LDLUs 

 A number of GIS techniques have been employed in LDLU equity analyses of LDLUs. 

They can be grouped into two main types: (1) visualization, and (2) improvement of variable 

measurement. 

 Visualization. GIS allows the mapping of LDLUs, road and trail networks, and census 

data, thereby facilitating the visualization of the spatial relationships between LDLUs and 

potential users. Multiple researchers have used GIS to map levels of access to LDLUs (Boone et 

al., 2009; Gilliland et al., 2006; Lindsey et al., 2001; Marako et al., 2009; Nicholls, 2001; 

Nicholls & Shafer, 2001; Omer, 2006; Porter & Tarrant, 2001; Smoyer-Tomic et al., 2004; Talen, 

1998; Talen & Anselin, 1998; Tarrant & Cordell, 1999; Tsou et al., 2005; Wolch et al., 2005). 

 Improvement of variable measurement. GIS-based spatial analyses such as network 

analysis and kernel density estimation (KDE) have been used to increase the accuracy of variable 
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measurement. Network analysis allows the modeling of the actual travel distance between 

origins and destinations based on the locations of public rights of way and points of entry/egress; 

the measurement of levels of access is therefore improved in comparison to the traditional ―as-

the-crow flies‖ method to identify the total area of urban parks within a one-mile service area of 

the census blocks in her study area. Nicholls (2001) adopted GIS-based technology to evaluate 

accessibility and equity in a local park system; she specifically compared the simple radii 

buffering method (using straight line distance) with network analysis, and indicated that network 

analysis provided more realistic representations of service areas.  

 When measuring the degree of equity of LDLUs, factors such as the number of LDLUs 

(Abercrombie et al., 2008; Gilliland et al., 2006; Omer, 2006; Talen & Anselin, 1998) have been 

used as dependent variables to represent level of access. These traditional container-based 

measures cannot consider spatial externalities of other units of analysis or edge effects (Cho, 

2003; Nicholls, 2001; Zhang et al., 2011). These limitations can be addressed using GIS-based 

KDE. KDE is a non-parametric way to estimate the probability density function of a random 

variable (O‘Sullivan & Unwin, 2003). As a modified container method, KDE can overcome the 

methodological issues of traditional container-based measures; more recently, Maroko et al. 

(2009) and Moore et al. (2008) have employed KDE to calculate the density of urban parks. 

GIS and Spatial Statistics: Essential Partners for Dealing with Spatial Effects 

 Spatial effects in spatial data analysis have been recognized as serious methodological 

issues when employing traditional statistical methods. As noted by Griffith and Layne (1999), 

―any spatial pattern embedded in data causes a number of measurement problems that affect the 

validity and robustness of traditional statistical description and inference methods when applied 

to this category of data‖ (vii). Brunsdon et al. (1996) further stated that classical statistics have 
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failed to capture the locational information in its analysis of relationships between variables. 

Mennis and Jordan (2005) described the biased estimation results associated with employment of 

traditional multivariate techniques in previous environmental justice research.  

 Many scholars have focused on the importance of spatial statistical techniques as 

specialized techniques that can deal with spatial effects when analyzing spatial data. Getis (2007) 

stated that spatial data analysis requires specialized techniques that are differentiated from 

traditional statistical techniques. Brunsdon et al. (1996) described the misunderstanding or 

overgeneralizations about linkages among variables caused by employing traditional statistical 

techniques and suggested GWR as an exploratory tool for describing and mapping important 

local variations in the analysis of spatial data. Gilbert and Charkraborty (2011) criticized the lack 

of consideration of local statistical methods in environmental justice research and suggested local 

statistical techniques that are different from those used to analyze non-spatial data.  

 Because GIS functions can allow spatial statistical techniques to be complemented with 

innovative visualization, the integration of spatial statistical techniques within a GIS 

environment has been emphasized by geographers. Anselin and Getis (1992) reviewed a series of 

questions that need to be confronted in the analysis of spatial data, and the extent to which a GIS 

can facilitate their resolution in exploratory and confirmatory manners. Getis (1999) focused on 

the need of spatial statistical modules for a GIS to implement a number of exploratory and 

confirmatory spatial data analyses. Although several equity studies of LDLUs have employed 

GIS-based spatial statistical techniques such as ESDA (Deng et al., 2008; Smoyer-Tomic et al., 

2004; Talen, 1997; 1998) and GWR (Maroko et al., 2009) to explore spatial effects such as 

spatial dependence and spatial heterogeneity, no studies have explored empirically these spatial 

effects simultaneously in exploratory and confirmatory manners. This study is the first study in 
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the outdoor recreation to assess the distribution of LDLUs as well as to deal with these spatial 

effects together by employing a variety of spatial statistical techniques such as PPA, ESDA, and 

GWR, thereby making methodological contributions to the outdoor recreation, park, and tourism 

literature.    
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CHAPTER 3 

METHODS 

 This chapter provides a description of the study area and of the research methods applied, 

including variable selection, data acquisition and preparation, data processing, and data analysis.  

Study Area: Detroit Metropolitan Area (DMA), Michigan 

 According to the U.S. Bureau of the Census (2010), southeast Michigan‘s DMA (also 

referred to as metro Detroit), is the 12
th

 largest metropolitan area in the US. The DMA includes 

three counties (Oakland, Wayne, and Macomb) and had a population of 3,863,924 and an area of 

1,958.96 square miles (3,463.2 km
2
) in 2010. Table 4 describes the characteristics of each county 

in the DMA.  

Table 4.  

Characteristics of each county in the DMA (US Bureau of the Census, 2010) 

 Oakland County Wayne County Macomb County 

Population 1,202,362 1,820,584 840,978 

Population under age 18 (%) 25.8% 28.4% 25.5% 

Population over age 64 (%) 13.2% 12.6% 14.2% 

Population density ( /sq mi) 1,325/sq mi 2,706/sq mi 1,473/sq mi 

Water area (%) 
39.63 sq mi  

(4.6%) 

60.60 sq mi 

(9.9%) 

91.63 sq mi 

(19.1%) 

Number of public beaches 169 5 4 

Occupied housing units (%) 91.7% 85.5% 93.0% 

Median household income ($)  $65,636 $41,504 $53,628 

Median household value ($)  $177,600 $97,100 $134,700 

White population (%) 77.2% 52.2% 85.3% 

Black population (%) 13.6% 40.5% 8.6% 

Asian population (%) 5.6% 2.5% 2.9% 

Hispanic population (%) 3.4% 5.2% 2.2% 

Population over 25 with  

university degree or higher (%) 
42.7% 20.8% 22.1% 

Population below the poverty line (%) 9.9% 23.7% 11.8% 

Population with non- 

english spoken at home (%) 
15.2% 20.3% 10.0% 

Households without a vehicle (%) 5.4% 13.5% 6.4% 
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 Because the results of spatial data analysis are sensitive to the nature of the areal unit 

employed (due to, e.g., the modifiable areal unit problem [MAUP], ecological fallacy, and 

aggregation error) (Hewko et al., 2002; O‘Sullivan & Unwin, 2003; Smoyer-Tomic et al., 2004), 

the choice of areal unit is a substantial issue when applied to spatial statistical analysis. MAUP is 

a statistical bias that can radically affect the results of statistical tests due to the choice of district 

boundaries (O‘Sullivan & Unwin, 2003); MAUP refers to the tendency of results to vary when 

the areal unit of analysis is changed (Porter, 2001). As noted by Longley et al. (2005), the notion 

of ecological fallacy references ―a situation that can occur when a researcher or analyst makes an 

inference about an individual based on aggregate data for a group‖ (p. 98); the use of census data 

therefore tends to lend itself to this problem. Aggregation error refers to ―the error associated 

with representing an areal unit, which in turn represents spatially distributed individuals, by a 

single point‖ (Hewko, 2001, p. 23). This study used the census tract as its unit of analysis 

because the census tract represents a good approximation of a neighborhood environment, with 

reliable social and economic data available from the U.S. Census Bureau (Estabrooks et al., 

2003). A census tract is defined as a subdivision of a county with ―a mean population of 

approximately 4,000 people that are relatively homogeneous in socioeconomic characteristics‖ 

(Moore et al., 2008, p. 17). Moreover, previous equity studies associated with the distribution of 

access to LDLUs have employed census tracts as their unit of analysis (Deng et al., 2008; 

Estabrooks et al., 2003; Lindsey et al., 2001; Moore et al., 2008; Talen & Anselin, 1998). There 

are 1,164 census tracts in the DMA. Figure 7 shows the locations of the 178 public beaches and 

the census tract boundaries within the DMA. All public beaches are owned and managed by the 

state of Michigan.  
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 Recognizing the potential influence of the edge effect, public beaches outside of the 

DMA but within 20 miles of the centroid of a census tract within the DMA were also considered 

in a separate suite of analyses (n=59), based on the findings reported by Haas (2009). These 

additional beaches are shown in Figure 8. 

 

Figure 7. Study area: DMA (For interpretation of the references to color in this and all other 

   figures, the reader is referred to the electronic version of this dissertation)   
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Figure 8. Study area, including public beaches outside of the DMA, but within 20 miles of the 

DMA 
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Variable Selection 

 In this section, selection of the dependent and independent variables is described.  

The Dependent Variable 

 The dependent variable selected in this study was the level of access to public beaches. 

Access was measured in two manners: (1) the shortest road network distance from the residential 

centroid (in this case, census tract centroid) to the nearest public beach for each census tract in 

the DMA, and (2) the number of public beaches within 20 miles of each tract centroid.  

 These two dependent variables reflect two approaches to the measurement of access, (1) 

minimum distance, and (2) container. Use of the minimum distance approach recognizes that, 

although a neighborhood could interact with all the LDLUs in its local environment, most 

LDLUs such as parks are, in reality, mainly used by nearby residents (Zhang et al., 2011). 

Several previous equity studies associated with the distribution of LDLUs have employed the 

minimum distance approach to measure access to LDLUs (Byrne et al., 2009; Lotfi & Koohsari, 

2009; Smoyer-Tomic et al., 2004; Talen, 1998; Talen & Anselin, 1998). Use of the container 

approach is justified because it is simple and efficient (Cho, 2003; Talen & Anselin, 1998). Other 

equity studies have employed the container approach to study the distribution of playgrounds 

(Talen & Anselin, 1998), urban parks (Abercrombie et al., 2008; Maroko et al., 2009; Omer, 

2006; Talen, 1997; Wolch et al., 2005), swimming pools (Gilliland et al., 2006), fitness centers 

(Estabrooks et al., 2003), and tennis courts (Moore et al., 2003). The container approach 

sometimes has been criticized, however, due to an unrealistic assumption that all neighborhood 

residents use only LDLUs contained within a governmentally-defined areal unit such as a census 

tract (Lindsey et al., 2001). To overcome this limitation, one solution is to consider only LDLUs 

within a certain service area rather than within a government-defined unit (Talen, 1997). Based 



  66  

on a survey conducted by the Strategy Institute on behalf of the East Bay Regional Park District 

in October 2006 (Haas, 2009), it was estimated that 20 miles was the distance residents were 

willing to travel for beach-based recreation activities such as boating, fishing, and swimming. 

The number of public beaches within 20 network-distance miles of each census tract centroid 

was therefore utilized as the container measure. Use of two approaches, to date considered by 

only one other set of researchers (Nicholls, 2001; Nicholls & Shafer, 2001), enabled both the 

accessibility and equity findings to be compared and contrasted at each step of subsequent 

analysis. Due to its far superior representation of the actual landscape, only network distance was 

employed.  

The Independent Variable 

 Selection of independent variables was based upon review of variables considered 

relevant in previous LDLU equity studies and limited to those available for census tracts. Table 5 

lists the frequency of use of various possible independent variables in 22 previous park-related 

LDLU equity analyses.  

Table 5.  

Independent variables utilized in previous LDLU equity analyses  

Variable Description of variables 
Times and % of  

times used (n=22) 

Race/ethnicity 

  White 

  Black 

  Asian 

  Hispanic 

 

Proportion (%) of White population 

Proportion (%) of Black population 

Proportion (%) of Asian population 

Proportion (%) of Hispanic population 

 

2 (9%) 

7 (31.8%) 

1 (4.5%) 

7 (31.8%) 

Age 

  Children 

  Youth 

  Older 

 

Proportion (%) of population under age 14 

Proportion (%) of population under age 18 

Proportion (%) of population over age 64 

 

1 (4.5%) 

5 (22.7%) 

2 (9.0%) 
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Table 5. (cont’d)  

Variable Description of variables 
Times and % of  

times used (n=22) 

Population density Population per square mile 5 (22.7%) 

Education 

  University 

  High school 

 

Proportion (%) with a four-year univesity degree or higher 

Proportion (%) within a high school diploma or higher 

 

 4 (18.1%) 

 3 (13.6%) 

Income Median household income ($) 7 (31.8%) 

Housing value Median house price ($) 4 (18.1%) 

Economic status Proportion (%) of population below the poverty line 4 (18.1%) 

Housing occupancy 

Owner  

Renter 

 

Proportion (%) of owner occupied housing units  

Proportion (%) of renter occupied housing units 

 

2 (9.0%) 

2 (9.0%) 

Vehicle ownership   Proportion (%) of households without a vehicle 2 (9.0%) 

Others 

Median contract rent ($); residents who have 

lived less than 5 years at current address (%); land 

area; proportion (%) of blue collar; proportion (%)  

of white collar; proportion (%) of vacant housing 

units; proportion (%) of population with non- 

English spoken at home; proportion (%) of the 

civilian unemployed; and average family size  

1 (4.5%) 

 

In this study, 14 demographic and socioeconomic variables were considered as potential 

independent variables to represent residents‘ needs with regard to access to public beaches. 

These independent variables relate to: (1) population density; (2) age (young and older); (3) 

race/ethnicity (four racial/ethnic groups); (4) housing value; (5) income; (6) educational 

attainment; (7) language; (8) vehicle ownership; (9) housing occupancy; and (10) economic 

status. Groups considered most likely to be in ―need‖ of better than average access to public 

beaches were non-White (e.g., Black, Asian, and Hispanic groups) (Deng et al., 2008; Gilbert & 

Chakraborty, 2011; Nicholls, 2001; Wicks & Crompton, 1986), those earning low incomes 

(Estabrooks et al., 2003; Gilliland, Holmes, Irwin, & Tucker, 2006; Lindsey et al., 2001; 

Smoyer-Tomic et al., 2004), the young and the elderly (Nicholls, 2001; Nicholls & Shafer, 2001; 

Smoyer-Tomic et al., 2004; Talen, 1997; Talen & Anselin, 1998), those residing in more densely 
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populated areas (Lindsey et al., 2001; Nicholls, 2001; Nicholls & Shafer, 2001; Maroko et al., 

2009), those living in lower housing value (Lindsey et al., 2001; Talen, 1997; 1998), those 

having low educational attainment (Deng et al., 2008; Estabrooks et al., 2003; Lindsey et al., 

2001; Porter & Tarrant, 2001; Tarrant & Cordell, 1999), those with non-English spoken at home 

(Maroko et al., 2009), those residing in lower proportion of housing occupied area (Nicholls, 

2001; Talen, 1998), those residing in higher poverty rate area (Lindsey et al., 2001; Maroko et al., 

2009), and those without a vehicle (Lindsey et al., 2001).  

The choice of independent variables was based on data availability and prevalence of 

use in previous equity studies. In addition, water area (as a proportion of total area) was utilized 

as an additional independent variable in an effort to account for variations in the prevalence of 

lakes, and thus of water-based recreation opportunities, in each tract. Table 6 summarizes the 

dependent and independent variables and their operational definitions. 

Data Acquisition 

 A variety of geographic and census data was required. All items listed in Table 6 were 

acquired from the U.S. Census Bureau (2010) at the level of the census tract. Table 7 

summarizes the geographic data employed.  

Table 6.  

Dependent and independent variables   

Variable Operational definition Abbreviation 

Level of access to 

public beaches (DV) 

(1) Shortest road network distance from tract centroid 

   to the nearest public beach (in miles) 

(2) Number of public beaches within 20 miles of tract 

   centroid 

(1) DISTPB 

 

(2) NOPB 

 

Population density (IV) Population per square mile POPD 

Note: DV (dependent variable), IV (independent variable) 
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Table 6. (cont’d) 

Variable Operational definition Abbreviation 

Age (IV) 
(1) Proportion (%) of population under age 18 

(2) Proportion (%) of population over age 64  

(1) AGE18 

(2) AGE64 

Race/ethnicity (IV) 

(1) Proportion (%) of White population 

(2) Proportion (%) of Black population 

(3) Proportion (%) of Asian population 

(4) Proportion (%) of Hispanic population 

(1) WHITE 

(2) BLACK 

(3) ASIAN 

(4) HISPAN 

Housing value (IV) Median housing value ($) MHV 

Income (IV) Median household income ($) MHI 

Education (IV) 
Proportion (%) of population with a four-year 

university degree or higher 
EDU 

Language (IV) 
Proportion (%) of population with non-English 

spoken at home 
LAN 

Vehicle ownership (IV) Proportion (%) of households without a vehicle VEHIC 

Housing occupancy 

(IV) 
Proportion (%) of occupied housing units HO 

Economic status (IV) Proportion (%) of population below the poverty line ECON 

Water area (IV) Proportion (%) of water area  WATER 

Note: IV (independent variable) 

Table 7.  

Dataset for analysis 

Item Type of data Source Date 

Geographic data 

  Public beach locations 

  Michigan tract boundaries 

  Michigan street network 

 

Latitude and longitude 

Polygon 

Line 

 

DEQ 

MGDL 

MGDL 

 

2010 

2010 

2010 

Note: DEQ: Department of Environmental Quality; MGDL: Michigan GIS Data Library 

Data Processing and Analysis Tools 

 Various software programs were employed to organize data, build models, and visualize 

results. Non-spatial statistical analyses (e.g., frequencies, correlations and OLS regression) were 

performed using SPSS software (version 20.0) for Windows. ArcGIS (version 10.0) was used to 

display the study area and data spatially, and to calculate the dependent variables. Spatial 
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statistical analyses, such as PPA, ESDA and GWR, were performed using ArcGIS (version 10.0), 

R, and GWR (version 4.0). 

Data Preparation 

 After all the relevant geographic and census data had been collected, they were entered 

and integrated into the GIS environment in GIS shape file (.shp) form. As noted by Nicholls 

(2001), a shape file is a digital vector storage format for ―the geographical representation of a 

theme or layer of spatial information‖ (p. 210). Shape files can describe a variety of geographic 

entities as points, lines, or polygons (Dong, 2008). In this study, shape files represent census 

tracts (as polygons), public beach locations (as points), and the street network (as lines). All 

shape files were projected and displayed in NAD 1983 Hotine Oblique Mercator.  

Census Tract Boundaries and Data 

 To select only DMA boundaries, the shape file for all Michigan tract boundaries was 

clipped based on the DMA boundary polygon shape file using the geo-processing tool ―Clip‖ in 

ArcGIS. The resulting shape file contained only the census tracts (n=1,164) located in the DMA. 

Census tract data (socioeconomic and demographic variables, and water area) were joined with 

corresponding census tract polygons using the geo-processing tool ―Spatial Join‖ in ArcGIS.  

Public Beach Locations 

 To represent access points to public beaches, information on the latitude and longitude 

of public beaches was acquired from the Department of Environmental Quality website 

(http://www.deq.state.mi.us/beach/) and converted into a point shape file using the geo-coding 

tool ―Add XY data‖ in ArcGIS. The converted points then were relocated to the centroid of the 

parking lot for each public beach using the ―Editing‖ tool in ArcGIS. If multiple parking lots 

http://www.deq.state.mi.us/beach/
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existed at a single beach (as was the case for 19 [10.6%] of the beaches), the nearest parking lot 

to the beach was used. Google Earth was used to verify these locations.  

Street Network Dataset 

 Building a network dataset is a prerequisite for performing network analysis using 

ArcGIS. The shape file for all streets within the DMA boundary and in adjacent counties to the 

DMA (St. Clair, Lapeer, Genesee, Livingston, Washtenaw, and Monroe Counties) was clipped 

using the geo-processing tool ―Clip‖ in ArcGIS. Then, using the geo-processing tool ―Network 

Dataset‖ in ArcCatalog, the clipped street line shape files were converted to a network dataset 

with junctions and edges. The resulting network dataset contained 220,525 junctions and 

296,078 edges.   

Data Analysis Procedures  

 Measuring the equity of access to public beaches in the DMA is a complex process that 

involves a sequence of activities. Figure 9 presents a methodological flowchart for data analyses. 

In addition, the more specific research questions and relevant research techniques, outcomes, and 

diagnostics that guide each step are outlined in Table 8. 

Step 1: Conducting Descriptive Statistical Analysis for All Independent Variables 

 To check for missing or erroneously entered values, descriptive analysis of all 

independent variables was conducted. Tables of all independent variables‘ means, minimums, 

maximums, and standard deviations were created. Spurious entries and substantial outliers were 

corrected or removed. Lastly, choropleth maps that display the distribution of variables using 

different shades of color were created.  
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Figure 9. Methodological flowchart for data analyses 

 

 

 

 

 
Step 1: Conducting descriptive statistical analysis for all independent variables 

Step 2: Testing correlation among independent variables 

Step 3: Assessing the spatial distribution of public beaches and measuring the level of  

      access to public beaches by census tract 

Step 4: Exploring the spatial patterns of access to public beaches relative to residents‘ 

      demographic and socioeconomic status 

Step 5: Developing and testing OLS model to measure the equity of access to public 

      beaches 

Step 6: Developing and testing GWR model to measure the equity of access to public 

      beaches  

Step 7: Visualizing the outputs from GWR 

Step 8: Comparing statistical diagnostics from OLS and GWR 
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Table 8.  

Objectives and relevant research questions 

Objective/research 

 question number 

Step  

Number 
Technique/outcome/diagnostic 

O1R1 Step 3 
Centrographic analyses for measuring the mean center and the 

median center/a map /no diagnostic 

O1R2 Step 3 
Centrographic analysis (standard deviational ellipse analysis for 

measuring the standard distance and the standard 

deviational ellipse)/a map/no diagnostic 

O1R3 Step 3 

PPA (nearest neighbor analysis [NNA] and Ripley‘s K- 

function analysis)/a graph and a table/NNA (nearest-neghbor 

ratio, z-score, and p-value) and Ripley‘s K-function analysis 

(K-value: L(d)) 

O1R4 Step 3 GIS-based network analysis/a map and a table/no diagnostic 

O2R1 Step 4 
ESDA (spatial autocorrelation analysis)/a table/global Moran‘s 

I statistic, z-score, and p-value 

O2R2 Step 4 
ESDA (LISA) /a map/local Moran‘s I statistic, z-score, and  

p-value 

O3R1 Step 5 
OLS regression/a table/coefficient estimates, t-values, VIFs, R2, 

adjusted R2, AICc, F-statistic, Joint Wald statistic, and Koenker 

(BP) statistic (Koenker‘s studentized Bruesch-Pagan statistic) 

O3R2 Step 6 
GWR /a table/ local coefficient estimates, local condition index,  

local R2, and AICc 

O3R3 

Step 6  

& 

Step 7 

Monte carlo signifcance test and GIS-based mapping/a map/  

local coefficient estimates and local R2 

O3R4 Step 8 

ANOVA F-test, GIS-based ESDA (spatial autocorrelation 

analysis)/a table /R2 and AICc (model performance), 

global Moran‘s I of regression residuals (model 

heteroskedasticity), and F-statistic 

Note: O1R1: ―What is the central tendency of the public beach distribution in the DMA?,‖ O1R2: 

―How and to what extent are the public beaches dispersed?,‖ O1R3: ―Are the public 

beaches in the DMA spatially clustered?,‖ O1R4: ―How is access to public beaches 

distributed across the DMA?,‖ O2R1: ―Is there spatial autocorrelation associated with the 

distribution of access to public beaches and residents‘ demographic and socioeconomic 

status across the study area?,‖ O2R2: ―If there is evidence of spatial autocorrelation, what 

is its nature and where is it evident?,‖ O3R1: ―What is the relationship between level of 

access to public beaches in the DMA and residents‘ demographic and socioeconomic 

status using OLS?,‖ O3R2: ―What is the relationship between level of access to public 

beaches in the DMA and residents‘ demographic and socioeconomic status using GWR?,‖ 

O3R3: ―How does the spatial relationship between the level of access to public beaches 

and residents‘ demographic and socioeconomic status vary across the study area (using 

GWR)?,‖ and O3R4: ―How well does the GWR approach perform in terms of model 

diagnostics compared to the traditional OLS approach?‖  
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Step 2: Testing Correlation among Independent Variables 

 Because all potential independent variables were continuous in nature, a correlation 

matrix was produced using Pearson‘s correlation coefficient. In cases in which the correlation 

exceeded 0.90, certain variables were deleted to avoid problems of multicollinearity. Variance 

inflation factors (VIFs) also were inspected. 

Step 3: Assessing the Spatial Distribution of Public Beaches and Measuring the Level of  

Access to Them 

 Level of access to LDLUs is based on the distribution of LDLUs as well as on the 

population and the street network surrounding them (Talen, 1997). A two-step approach using 

spatial statistical techniques was applied to assess the spatial distribution of public beaches. First, 

centrographic analysis in combination with standard deviational ellipse analysis were used to 

describe their spatial characteristics (e.g., central tendency [e.g., mean and median center], 

dispersion [e.g., standard distance], and directional trend [e.g., standard deviational ellipse]). 

Second, PPA using nearest neighbor analysis and Ripley‘s K-function analysis were employed to 

explore the spatial patterns of public beaches. Network analysis was employed to calculate the 

shortest road network distance from each tract centroid to the nearest public beach and the 

number of public beaches within 20 miles of each tract centroid. The access measures were 

exported as a database file (.dbf) for the subsequent spatial autocorrelation tests and regression 

analyses.     

Step 4: Exploring the Spatial Patterns of Access to Public Beaches relative to Residents’ 

Demographic and Socioeconomic Status 

 Exploring the spatial patterns of variables is an essential procedure in the equity 

mapping approach. Spatial autocorrelation analyses using global Moran‘s I statistics and LISA 
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using local Moran‘s I statistics were employed to reveal the spatial patterns of access to public 

beaches relative to residents‘ demographic and socioeconomic status.  

Step 5: Developing and Testing OLS Model to Measure the Equity of Access to Public 

Beaches 

 Because an automated procedure (e.g., backwards, forwards, stepwise) may have 

immediately excluded some important variables (Burns & Burns, 2008), a conventional OLS 

regression model was built in a systematic manner. Coefficient estimates, t-values, and VIFs 

value were reported. The values of R
2
, adjusted R

2
, and AICc were used to assess model 

performance. Model significance was assessed using the Joint F and Joint Wald statistics. The 

value of the Koenker (BP) statistic also was employed to assess model stationarity.  

Step 6: Developing and Testing GWR Model to Measure the Equity of Access to Public 

Beaches  

 The same dependent variable and set of independent variables from the global OLS 

model were utilized using GWR to explore spatial variations between dependent and 

independent variables. Because of the varying size and shape of census tracts as well as varying 

density of public beaches in the DMA, a bi-square kernel function (a kernel with adaptive 

bandwidth), which identifies a certain number of neighbors that maximizes model fit, was used. 

The optimal kernel size for this study was determined through an iterative statistical optimization 

process to minimize the AICc. Local coefficient estimates, local R
2
, and local condition numbers 

were reported. Model performance was assessed using R
2
 and AICc. The significance of the 

spatial variability in the local coefficient estimates was tested by conducting a Monte Carlo 

significance test (Fotheringham et al., 2002). 
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Step 7: Visualizing the Outputs from GWR 

 Statistical diagnostics (e.g., local coefficient estimates, and local R
2
) from GWR were 

mapped using ArcGIS 10.0 to explore spatial heterogeneity. 

Step 8: Comparing Statistical Diagnostics from OLS and GWR 

 To evaluate the relative effectiveness of GWR, statistical diagnostics (R
2
, AICc, and 

Moran‘s I of regression residuals) from OLS and GWR were compared to assess whether the 

GWR model substantially improved the traditional OLS regression model as well as effectively 

dealt with spatial effects in the data. Lastly, analysis of variance (ANOVA) testing was 

performed to verify improvement in model fit of GWR over OLS regression.  

 Steps 4-8 were repeated using each of the two measures of access highlighted in Step 3. 
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CHAPTER 4 

RESULTS 

 The purpose of this study was to demonstrate the utility of spatial statistical techniques 

for assessing the distribution of recreation opportunities within the framework of environmental 

justice via a case study of public beach access in the DMA. To achieve this purpose, three 

objectives and 10 more specific research questions were developed. In this section, descriptive 

statistics and correlation results for the independent variables are reported and each objective and 

related research questions are addressed.  

Descriptive Statistics  

  Descriptive statistics for the independent variables are presented in Table 9; the 

sometimes substantial variability in the values of the independent variables across the census 

tracts in the DMA also is displayed in Figures 10 through 24. Maps were created using different 

natural break points in the data due to different range of each independent variable. 

Table 9.  

Descriptive statistics for each independent variable (n = 1,164) 

Variable (unit) 

 

 

 

 

Mean SD Minimum Maximum 

WHITE (%) 61.0 36.1 0.3 98.0 
BLACK (%) 31.7 37.4 0.0 98.1 

ASIAN (%)
 

2.8 4.7 0.0 53.3 

HISPAN (%) 4.0 8.8 0.1 76.8 

POPD (/sq mi) 4,200.9 2,521.8 90.9  18,404.6  

MHI ($) 52,832 27,305 9,923 160,431 

MHV ($) 128,322 83,322 13,400 674,900 

AGE18 (%) 26.7 5.5 5.8 48.6  

AGE64 (%) 13.4 5.1 1.0 42.7 

EDU (%) 25.4 18.5  0.0 80.9 

LAN (%) 12.9 12.0 0.0 86.4  

ECON (%) 19.2 16.2 0.3 78.9  

HO (%) 88.2 8.6 50.3 99.8 
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Table 9. (cont’d) 

Variable (unit) 

 

 

 

 

Mean SD Minimum Maximum 

VEHIC (%) 11.0 11.4 0.0 66.6 
WATER (%) 2.5 8.4 0.0 62.8 

 

 In terms of race, the predominant racial groups in the DMA were white (mean: 61.0%) 

and black (mean: 31.7%). Figure 10 (p. 82) reveals the proportion (%) of White population by 

census tract. White population ranged from 0.3% to 98.0%. The majority of census tracts with 

the highest proportions of White population (i.e., greater than one standard deviation above the 

mean [97.1%]) were located in Oakland County, in the townships of Addison, Brandon, Lyon, 

and Rose, and in Macomb County, in the townships of Armada, Bruce, Lenox, and Ray.    

 The proportion of Black population by census tract is displayed in Figure 11 (p. 83). 

Black population ranged from 0.0% to 98.1%. The majority of census tracts with the highest 

proportions of Black population (i.e., greater than one standard deviation above the mean 

[69.1%]) were concentrated in Wayne County, in the cities of Detroit, Lincoln Park, and 

Southfield.   

 Figure 12 (p. 84) displays the proportion of Asian population by census tract. Asian 

population ranged from 0.0% to 53.3% with a mean of 2.8%. As displayed in Figure 12, the 

majority of census tracts with the highest proportions of Asian population (i.e., greater than one 

standard deviation above the mean [7.5%]) were located in Wayne County, in the cities of Allen 

Park, Dearborn, Detroit, Lincoln Park, and Romulus, and in Oakland County, in the cities of 

Pontiac and Troy.  

 The proportion of Hispanic population by census tract is displayed in Figure 13 (p. 85). 

Hispanic population (mean: 4.0%) ranged from 0.1% to 76.8%. The census tracts with the 

highest proportions of Hispanic population (i.e., greater than one standard deviation above the 
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mean [12.8%]) were located in Wayne County, in the cities of Dearborn, Detroit, and Lincoln 

Park, and in Oakland County, in the cities of Auburn Hills and Pontiac. 

 Figure 14 (p. 86) displays population per square mile by census tract. Population density 

ranged from 90.9/sq mi to 18,404.6/sq mi, with a mean of 4,200.9/sq mi. The majority of 

exceptionally crowded census tracts (i.e., greater than one standard deviation above the mean 

[6,722.7/sq mi.]) were located in Wayne County, in the cities of Dearborn, Detroit, Lincoln Park, 

and Romulus.  

 Figures 15 (p. 87) and 16 (p. 88) display median household income and median housing 

value by census tract. Median household income ranged from $9,923 to $160,431 (mean: 

$52,832), while median housing value ranged from $13,400 to $674,900 (mean: $128,322). The 

majority of census tracts with the highest median household incomes (i.e., greater than one 

standard deviation above the mean [$80,137]) and with higher median housing value (i.e., 

greater than one standard deviation above the mean [$211,644]) were located in Oakland County, 

in the cities of Bloomfield Hills, Novi, and Troy and in the townships of Addison, Bloomfield, 

Independence, Lyon, Oakland, and West Bloomfield, and in Macomb County, in the townships 

of Chesterfield and Macomb. The census tracts with the lowest median household incomes (i.e., 

less than $25,188) and median housing values (e.g., less than $70,000) were concentrated in the 

city of Detroit, Wayne County.  

 The proportions of population under age 18 and over age 64 by census tract are 

displayed in Figures 17 (p. 89) and 18 (p. 90). The youth population varied from 5.8% to 48.6% 

(mean: 26.7 %) while over-64s accounted for between 1.0% and 42.7% of the population of each 

tract (mean: 13.4%). The majority of census tracts with the highest proportion of populations 

under age 18 (i.e., greater than one standard deviation above the mean [32.2%]) were located in 
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Wayne County, in the cities of Dearborn, Detroit, Ecorse, and Romulus, and in Oakland County, 

in the cities of Pontiac and Novi, while the majority of census tracts with the highest proportions 

of population over age 64 (i.e., greater than one standard deviation above the mean [18.5%]) 

were located in Oakland County, in the townships of Bloomfield, Southfield, and West 

Bloomfield; in Macomb County, in the cities of St. Clair Shores, Sterling Heights, and Warren; 

and, in Wayne County, in the cities of Livonia and Riverview.     

 Figure 19 (p. 91) displays the proportion of population with a 4-year university degree or 

higher by census tract. An average of about one quarter of residents (25.4%) held a 4-year 

university degree or higher, with a range from 0.0% to 80.9%. The majority of census tracts with 

the highest proportions of population with a university degree or higher (i.e., greater than one 

standard deviation above the mean [43.9%]) were located in Oakland County, in the cities of 

Farmington Hills, Royal Oak, Novi, and Troy and in the townships of Bloomfield, Independence, 

and West Bloomfield.  

 The proportion of population with non-English spoken at home by census tract is 

displayed in Figure 20 (p. 92). The proportion ranged from 0.0% to 86.4% (mean: 12.9%). The 

majority of census tracts with the highest proportions of population with non-English spoken at 

home (i.e., greater than one standard deviation above the mean [24.9%]) were located in Oakland 

County, in the cities of Novi and Troy, and in Wayne County, in the cities of Dearborn and 

Detroit.   

 Figure 21 (p. 93) displays the proportion of population below the poverty line by census 

tract. The population below the poverty line ranged from 0.3% to 78.9% (mean: 19.2%). The 

majority of census tracts with the highest proportions of population below the poverty line (i.e., 
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greater than one standard deviation above the mean [35.4%]) were located in the city of Detroit, 

Wayne County.  

 The proportion of occupied housing units by census tract is displayed in Figure 22 (p. 

94). The proportion of owner-occupied housing units ranged from 50.3% to 98.8% (mean: 

88.2%). The majority of census tracts with the highest proportions of owner-occupied housing 

units (i.e., greater than one standard deviation above the mean [96.8%]) were located in Wayne 

County, in the cities of Detroit and Livonia; in Oakland County, in the cities of Novi, Rochester 

Hills, and Troy; and, in Macomb County, in the townships of Macomb and Shelby.   

 Figure 23 (p. 95) displays the proportion of households without a vehicle by census tract. 

The proportion of households without a vehicle ranged from 0.0% to 66.6%, with a mean of 

11.0%. The majority of census tracts with the highest proportions of households without a 

vehicle (i.e., greater than one standard deviation above the mean [22.4%]) were located in the 

city of Detroit, Wayne County. These wide ranges in demographic and socioeconomic status 

across census tracts indicate potentially diverse levels of need for access to public beaches in the 

DMA.  

 Lastly, the proportion of water area by census tract is displayed in Figure 24 (p. 96). The 

proportion of water area varied from 0.0% to 62.8%, with a mean of 2.5%, suggesting potentially 

wide variations in level of access to water-based recreation opportunities. The majority of census 

tracts with the highest proportion of water area (i.e., greater than one standard deviation above 

the mean [10.9%]) were located in Oakland County, in the townships of Commerce, West 

Bloomfield, and White Lake. It should be noted that this proportion includes both public and 

private areas of water.   
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Figure 10. Proportion (%) of White population by census tract, DMA (2010) 
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Figure 11. Proportion (%) of Black population by census tract, DMA (2010) 
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Figure 12. Proportion (%) of Asian population by census tract, DMA (2010) 
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Figure 13. Proportion (%) of Hispanic population by census tract, DMA (2010) 
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Figure 14. Population per square mile by census tract, DMA (2010) 
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Figure 15. Median household income ($) by census tract, DMA (2010) 
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Figure 16. Median housing value ($) by census tract, DMA (2010) 
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Figure 17. Proportion (%) of population under age 18 by census tract, DMA (2010) 
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Figure 18. Proportion (%) of population over age 64 by census tract, DMA (2010) 



  91  

 

Figure 19. Proportion (%) of population with a four-year university degree or higher by census 

tract, DMA (2010) 
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Figure 20. Proportion (%) of population with non-English spoken at home by census tract, DMA 

(2010) 
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Figure 21. Proportion (%) of population below the poverty line by census tract, DMA (2010) 
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Figure 22. Proportion (%) of occupied housing units by census tract, DMA (2010) 
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Figure 23. Proportion (%) of households without a vehicle by census tract, DMA (2010) 
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Figure 24. Proportion (%) of water area by census tract, DMA (2010) 
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Description of Correlation Matrix  

 Table 10 presents correlation results for the independent variables. Significant 

correlations (over 0.50) are summarized in Table 11. In this study, the WHITE (proportion of 

White population by census tract) variable was excluded for two reasons. First, the strongest 

correlation was between the proportions of WHITE and BLACK (proportion of Black population 

by census tract) in each census tract (-0.983, p < 0.01). The WHITE variable also showed high 

levels of correlation with five other economic variables (e.g., MHI: median household income by 

census tract [0.602, p < 0.01], MHV: median housing value by census tract [0.516, p < 0.01], 

ECON: proportion of population below the poverty line by census tract [-0.743, p < 0.01], HO: 

proportion of occupied housing units by census tract [0.762, p < 0.01], and VEHIC: proportion 

of households without a vehicle by census tract [-0.700, p < 0.01]). Second, the White population 

has not been recognized as a minority group in previous environmental justice studies. Therefore, 

the variable WHITE was excluded from further analysis.
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Table 10.  

Correlation matrix for independent variables 

Variable WHITE BLACK AISAN HISPAN POPD MHI MHV AGE18 AGE64 EDU LAN ECON HO VEHIC WATER 

WHITE 1.00 -0.983** -0.020** 0.034** -0.417** 0.602** 0.516** -0.332** 0.183** 0.435** 0.255** -0.743** 0.762** -0.700** 0.159** 

BLACK -0.983** 1.00 -0.098** -0.149** 0.391** -0.592** -0.513** 0.290** -0.141** -0.442** -0.376** 0.711** -0.742** 0.682** -0.141** 

ASIAN -0.020** -0.098** 1.00 0.776** 0.391** -0.592** -0.513** 0.320** -0.318** -0.299** 0.471** 0.308** -0.196** 0.131** -0.057** 

HISPAN 0.034** -0.149** 0.776** 1.00 0.164** -0.304** -0.294** 0.259** -0.224** -0.199** 0.471** 0.177** -0.137** 0.081** -0.031 

POPD -0.417** 0.391** 0.164** 0.153** 1.00 -0.448** -0.438** 0.246** -0.154** -0.333** 0.096** 0.423** -0.333** 0.357** -0.278** 

MHI 0.602** -0.592** -0.304** -0.164** -0.448** 1.00 0.877** -0.171** 0.180** 0.831** 0.153** -0.764** 0.644** -0.679** 0.157** 

MHV 0.516** -0.513** 0.294** -0.168** -0.438** 0.877** 1.00 -0.222** 0.233** 0.833** 0.192** -0.611** 0.527** -0.493** 0.202** 

AGE18 0.159** 0.290** 0.320** 0.259** -0.278** 0.157** 0.202** 1.00 -0.638** -0.313** 0.203** 0.449** -0.347** 0.166** -0.171** 

AGE64 -0.332** -0.141** -0.318** -0.224** 0.246** -0.171** -0.222** -0.638** 1.00 0.243** -0.093** -0.294** 0.266** -0.060** 0.095** 

EDU 0.183** -0.442** -0.299** 0.477** -0.154** 0.160** 0.232** 0.203** 0.243** 1.00 0.198** -0.626** 0.510** -0.491** -0.491** 

LAN 0.435** -0.376** 0.471** -0.299** -0.333** 0.831** 0.833** 0.133** -0.093** 0.198** 1.00 -0.027** 0.168** -0.149** -0.045** 

ECON 0.255** 0.711** 0.308** 0.177** 0.096** 0.153** 0.192** 0.449** -0.294** -0.626** -0.027 1.00 -0.787** 0.790** -0.146** 

HO -0.743** -0.742** -0.196** -0.137** 0.423** -0.764** -0.611** -0.347** 0.266** 0.510** 0.168** -0.787** 1.00 -0.720** 0.075* 

VEHIC 0.762** 0.682** 0.131** -0.196** -0.333** 0.644** 0.527** 0.075* -0.060** -0.491** -0.149** 0.790** -0.720** 1.00 -0.122** 

WATER -0.700** -0.141** -0.057** -0.031** 0.357** -0.679** -0.493** -0.171** 0.095** 0.133** -0.045 -0.146** 0.075* -0.122** 1.00 

Note: **: correlation is significant at the 0.01 level (2-tailed); * correlation is significant at the 0.05 level (2-tailed) 
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Table 11.  

Summary of correlations (over 0.50) for independent variables 

Variable WHITE BLACK ASIAN HISPAN MHI MHV AGE18 AGE64 EDU ECON HO VEHIC WATER 

WHITE 1.0 --   + +    - ++ -  

BLACK -- 1.0   - -    + - +  

ASIAN   1.0 ++  -        

HISPAN   ++ 1.0          

MHI + -   1.0 ++   ++ -- + -  

MHV + -   ++ 1.0   ++ - +   

AGE18       1.0 -      

AGE64       - 1.0      

EDU         1.0 - +   

ECON  +       - 1.0 -- ++  

HO - -   - -   + -- 1.0 -  

VEHIC ++ +   + +    ++ - 1.0  

WATER -    -        1.0 

Note: + indicates positive correlation > 0.50 and < 0.75; ++ indicates positive correlation > 0.75; - indicates negative correlation > 

0.50 and < 0.75; -- indicates negative correlation > 0.75
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Addressing the Objectives and Research Questions 

Objective One (O1): Assessing the Spatial Distribution of Public Beaches and Determining 

Levels of Access to Public Beaches in the DMA 

 The first objective of the study was to (1) assess the spatial distribution of public 

beaches and (2) determine levels of access to public beaches in the DMA. This objective 

included four research questions; findings related to these are discussed below. 

 O1R1: “What is the central tendency of the public beach distribution in the DMA?” 

The mean and median centers of the distribution of public beaches are shown in Figure 25. Both 

the mean and the median center are located in Waterford township, Oakland County, though the 

mean center is located approximately 0.5 miles north of the median center.  

 As also seen in Figure 25, the mean and median centers of the study area are located in 

the cities of Oak Park, Oakland County (mean center) and Detroit, Wayne County (median 

center), while the mean and median centers of the distribution of public beaches are located 

about 17.1 miles northwest of these points. These findings confirm the visual suggestion that 

public beaches in the DMA are concentrated in the northwest of the study area.  

 O1R2: “How and to what extent are the public beaches dispersed?” The standard 

distance and the standard deviational ellipse were identified to measure the degree of beach 

dispersion; these also are shown in Figure 25. The majority of the public beaches in the DMA 

(n=168, 94.3%) are concentrated in Oakland County. More than one third of the census tracts in 

Oakland County are located within the standard distance (n=145, 38.9%) and the standard 

deviational ellipse (n=138, 37.0%) of the 178 public beaches, while none of either Macomb or 

Wayne Counties falls within these areas. The standard deviational ellipse indicated a 
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northeastward shift in the distribution‘s mean center and standard distance. These findings again 

imply that public beaches in the DMA are spatially concentrated in Oakland County.   

 

Figure 25. Spatial characteristics of public beach distribution (central tendency and dispersion) 
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 O1R3: “Are the public beaches in the DMA spatially clustered?” The nearest 

neighbor ratio (NNR) and K-value [L(d)] were calculated to identify the extent of spatial 

clustering of public beaches. NNR results showed that the spatial distribution of public beaches 

is significantly clustered (NNR: 0.52; z-score: -12.12; p < 0.01) (Table 12).   

Table 12.  

Summary of nearest neighbor analysis 

Observed mean distance Expected mean distance NNR z-score p-value 

0.01 0.03 0.52 -12.12 < 0.01 

 

 

Figure 26. The value of L(d) over a range of distances  
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Table 13. 

The value of L(d) over a range of distances 

Distance 

(mile) 

Observed 

   L(d) 

Difference (L[d]) 

(observed – expected) 

Minimum L(d) 

(lower confidence 

 level) 

Maximum L(d) 

(upper confidence 

 level) 

0.01 0.04 0.03 0.01 0.02 

0.10 0.21 0.11 0.10 0.11 

0.13 0.25 0.12 0.13 0.14 

0.14 0.27 0.13 0.13 0.15 

0.22 0.35 0.13 0.20 0.22 

0.23 0.35 0.12 0.21 0.23 

0.26 0.38 0.12 0.23 0.25 

0.27 0.38 0.11 0.23 0.26 

0.30 0.40 0.10 0.25 0.28 

0.35 0.41 0.07 0.29 0.32 

0.40 0.42 0.03 0.32 0.35 

0.42 0.43 0.01 0.33 0.36 

0.43 0.44 0.00 0.33 0.37 

0.44 0.44 0.00 0.34 0.37 

0.45 0.44 -0.01 0.34 0.38 

0.50 0.44 -0.06 0.37 0.40 

0.60 0.45 -0.15 0.40 0.43 

0.70 0.45 -0.25 0.43 0.45 

0.80 0.45 -0.34 0.45 0.45 

1.00 0.46 -0.54 0.46 0.46 

Note: K-function was calculated by 999 Monte Carlo permutation with statistical significance at 

the level of .05.   

 

 Figure 26 and Table 13 show the value of L(d) over a range of distances. All observed 

L(d) values were greater than the expected L(d) values and than the upper confidence bands 

between 0.0 and 0.42 miles (radius distance) of the circles centered on each public beach, while 

all observed L(d) values were less than the expected L(d) values but greater than the upper 

confidence bands between 0.45 and 0.60 miles of the circles centered on each public beach. 

These findings indicate evidence of significant clustering between 0.0 and 0.42 miles and 

significant dispersion between 0.45 and 0.60 miles. The highest degree of clustering appears at 



 104  

the range of distance between 0.14 and 0.22 miles while the highest degree of dispersion appears 

at a distance of 0.60 miles. These findings indicate that public beaches in the DMA exhibit 

statistically significant clustering and dispersion at different distances.  

O1R4: “How is access to public beaches distributed across the DMA?” This section 

is divided into two parts. First, the influence of the edge effect was assessed. Second, the two 

access measures were computed and compared.  

The influence of the edge effect. Table 14 shows the results of the two measures of 

access to public beaches, with and without the additional 59 public beaches outside of the DMA. 

For the container approach, the number of beaches within 20 miles of each tract centroid is 

illustrated in increments of 10 beaches. For the minimum distance approach, distance to the 

nearest public beach is illustrated in increments of one mile. The correlations between the level 

of access to public beaches with and without the additional 59 public beaches for each of the 

access measures were both 0.998 (p-value <0.01). These findings indicate that no edge effect 

exists and the additional 59 public beaches were, therefore, excluded from further analysis.  

Level of access to public beaches. The two sets of access results for public beaches in the 

DMA are displayed in Figure 27 (the container approach) and 28 (the minimum distance 

approach). According to the container approach, the number of public beaches accessible within 

a 20-mile journey from each tract centroid ranged from 0 (Grosse Ile township, Wayne County) 

to 161 (Waterford township, Oakland County), with a mean of 45.1 beaches per census tract. The 

residents of just over half of the census tracts (n=611, 52.4%) can reach up to 20 beaches within 

20 miles (49.6% of the DMA’s population); the residents of the other half of the census tracts 

(n=553, 47.6%) can access more than 20 beaches within 20 miles (50.4% of the DMA’s 

population).  
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Table 14.  

Results of network analysis   

The container approach The minimum distance approach 

Number 

of public 

beaches 

Without additional 59 

public beaches outside 

of the DMA (N=178)  

With additional 59 

public beaches outside of 

the DMA (N= 237) 

Minimum 

distance (D) to 

the nearest public 

beach (mile) 

Without additional 59 

public beaches outside 

of the DMA (N= 178) 

With additional 59 

public beaches outside of 

the DMA (N= 237) 

Number of CT 

(n=1,164) 
% 

Number of CT 

(n=1,164) 
% 

Number of CT 

(n=1,164) 
% 

Number of CT 

(n=1,164) 
% 

0-10 447 38.4 447 38.4 0.0 ≤ D < 1.0 51 4.3 51 4.3 

11-20 164 14.0 163 14.0 1.0 ≤ D < 2.0 60 5.1 60 5.1 

21-30 66 5.6 67 5.7 2.0 ≤ D < 3.0 101 8.6 101 8.6 

31-40 54 4.6 54 4.6 3.0 ≤ D < 4.0 93 7.9 93 7.9 

41-50 35 3.0 34 2.9 4.0 ≤ D < 5.0 118 10.1 118 10.1 

51-60 37 3.1 35 3.0 5.0 ≤ D < 6.0 106 9.1 106 9.1 

61-70 30 2.5 31 2.6 6.0 ≤ D < 7.0 95 8.1 95 8.1 

71-80 37 3.1 36 3.0 7.0 ≤ D < 8.0 92 7.9 92 7.9 

81-90 32 2.7 29 2.4 8.0 ≤ D < 9.0 94 8.0 94 8.0 

91-100 32 2.7 34 2.9 9.0 ≤ D < 10.0 92 7.9 92 7.9 

101-110 33 2.8 28 2.4 10.0 ≤ D < 11.0 66 5.6 66 5.6 

111-120 40 3.4 43 3.6 11.0 ≤ D < 12.0 69 5.9 69 5.9 

121-130 52 4.4 46 3.9 12.0 ≤ D < 13.0 51 4.3 52 4.4 

131-140 34 2.9 35 3.0 13.0 ≤ D < 14.0 20 1.7 22 1.8 

141-150 31 2.6 29 2.4 14.0 ≤ D < 15.0 13 1.1 14 1.2 

151-160 39 3.3 40 3.4 15.0 ≤ D < 16.0 16 1.3 15 1.2 

> 160 1 0.0 13 1.1 16.0 ≤ D < 17.0 10 0.8 10 0.8 

Note. N: total number; CT: census tract 

17.0 ≤ D < 18.0 6 0.5 5 0.4 

18.0 ≤ D < 19.0 6 0.5 5 0.4 

19.0 ≤ D < 20.0 2 0.1 1 0.0 

D ≥ 20 3 0.2 3 0.2 
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Figure 27. Level of access to public beaches according to the container approach  
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Figure 28. Level of access to public beaches according to the minimum distance approach  



 108  

 According to the minimum distance approach, the minimum distance to the nearest 

public beach from tract centroids varied from 0.009 miles (Waterford township, Oakland County) 

to 21.2 miles (Grosse Ile township, Wayne County) (mean: 6.9 miles); 4.3% of the population 

within all census tracts of the DMA reside within one mile of a public beach, 36.0% within five 

miles, 77.0% within 10 miles and 99.8% within 20 miles. As shown in Figures 27 and 28, access 

to public beaches is less prevalent in both Macomb and Wayne counties. In contrast, residents of 

Oakland County appear to have extremely good access to public beaches.  

Objective Two (O2): Exploring the Spatial Patterns of Access to Public Beaches Relative to 

Residents’ Demographic and Socioeconomic Status  

 The second objective of the study was to explore the spatial patterns of access to public 

beaches relative to residents‘ demographic and socioeconomic status. This objective included 

two research questions; these are discussed below.  

O2R1: “Is there spatial autocorrelation associated with the distribution of access to 

public beaches and residents’ demographic and socioeconomic status across the study 

area?” The spatial patterns of the demographic and socioeconomic variables initially were 

assessed by testing for spatial autocorrelation using global Moran‘s I. Table 15 shows the value 

of global Moran‘s I for all variables across the 1,164 census tracts in the DMA. All variables 

exhibited statistically significant and positive global Moran‘s I statistics. The positive values of 

the global Moran‘s I statistic for all variables indicate positive autocorrelation, that is, a tendency 

toward the spatial clustering of the attribute for each variable in which census tracts exhibiting 

high (or low) levels of that variable are more likely to be situated next to census tracts with 

similarly high (or low) levels.    

 



 109  

Table 15.  

Global Moran’s I statistic for spatial autocorrelation of (in)dependent variables 

Variable Moran‘s I z-score p-value 

NOPB 0.96 118.1 < 0.01 

MINDIST 0.88 107.7 < 0.01 

BLACK 0.66 81.9 < 0.01 

ASIAN 0.33 41.5 < 0.01 

HISPAN 0.36 46.3 < 0.01 

POPD 0.41 51.0 < 0.01 

MHI 0.53 60.4 < 0.01 

MHV 0.54 61.2 < 0.01 

AGE18 0.30 37.4 < 0.01 

AGE64 0.23 28.9 < 0.01 

EDU 0.59 67.3 < 0.01 

LAN 0.31 39.3 < 0.01 

ECON 0.53 65.8 < 0.01 

HO 0.55 67.7 < 0.01 

VEHIC 0.48 59.1 < 0.01 

WATER 0.20 25.5 < 0.01 

Note: NOPB: number of public beaches within 20 miles of tract centroid; MINDIST: minimum 

distance to the nearest public beach from tract centroid  

 

 O2R2: “If there is evidence of spatial autocorrelation, what is its nature and where 

is it evident?” Although the global Moran‘s I statistic indicates the existence of spatial 

autocorrelation, it cannot provide any characterization of the exact nature or distribution of 

spatial clusters. Therefore, LISA was used to identify the location and significance of spatial 

clusters in the data set. Figures 29-44 (p. 125-140) illustrate the location and type of spatial 

clusters for the independent and dependent variables throughout the DMA. Results of the LISA 

analysis are presented in tabular form in Table 16, indicating the number of census tracts 

exhibiting each of the five outcomes of LISA analysis (HH, HL, LH, LL, and not statistically 

significant).  
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Table 16.  

Significant LISA at 5 percent pseudo-significance for (In)dependent variables 

Variable 

Spatial typology 

HL (%) 

LH (%) 

LL (%) 

Not significant (%) 

Total 
HH (%) HL (%) LH (%) LL (%) 

Not statistically 

significant (%) 

NOPB 315 (27.0) 0 (0.0) 0 (0.0) 578 (49.6) 271 (23.2) 1,164 
MINDIST 345 (29.6) 0 (0.0) 0 (0.0) 371 (31.8) 448 (38.4) 1,164 

BLACK 308 (26.4) 8 (0.6) 40 (3.4) 365 (31.3) 443 (38.0) 

 

 

1,164 
ASIAN 105 (9.0) 9 (0.7) 19 (1.6) 21 (1.8) 1,010 (86.7) 1,164 

HISPAN 61 (5.0) 0 (0.0) 10 (0.8) 0 (0.0) 1,093 (93.9) 1,164 

POPD 288 (24.7) 6 (0.5) 77 (6.6) 233 (20.0) 560 (48.1) 1,164 

MHI 188 (16.1) 21 (1.8) 11 (0.9) 342 (29.3) 602 (51.7) 1,164 

MHV 179 (15.3) 21 (1.8) 11 (0.9) 375 (32.2) 578 (49.6) 1,164 

AGE18 212 (18.2) 14 (1.2) 21 (1.8) 194 (16.6) 723 (62.1) 1,164 

AGE64 154 (13.2) 16 (1.3) 17 (1.4) 166 (14.2) 811 (69.6) 1,164 

EDU 222 (19.0) 27 (2.3) 7 (0.6) 384 (32.9) 524 (45.0) 1,164 

LAN 130 (11.1) 6 (0.5) 12 (1.0) 168 (14.4) 848 (72.8) 1,164 

ECON 259 (22.2) 11 (0.9) 32 (2.7) 282 (24.2) 544 (46.7) 1,164 

HO 280 (24.0) 32 (2.7) 7 (0.6) 276 (23.7) 569 (48.8) 1,164 

VEHIC 241 (20.7) 12 (1.0) 31 (2.6) 168 (14.4) 712 (61.1) 1,164 

WATER 81 (6.9) 2 (0.1) 2 (0.1) 0 (0.0) 1,079 (92.6) 1,164 

Note: NOPB: number of public beaches within 20 miles of tract centroid; MINDIST: minimum 

distance to the nearest public beach from tract centroid; HH: clusters of locations with high 

values, indicating positive spatial autocorrelation (hot spots); HL: clusters of locations 

with high values adjacent to locations with low values, indiating negative spaital 

autocorrelation (spatial outlier); LH: clusters of locations with low values adjacent to 

locations with high values, indicating negative spatial autocorrelation (spatial outlier); LL: 

clusters of locations with low values, indicating positive spatial autocorrelation (cold spots)  

 

Number of public beaches (NOPB). Eight hundred ninety-three (76.7%) of the 1,164 

census tracts exhibited significant spatial clusters in the LISA analysis. Three hundred fifteen hot 

spots (labeled HH) were identified. The majority of the hot spots (n=283) are concentrated in 

Oakland County, in the cities of Auburn Hills, Birmingham, Farmington Hills, Novi, Orchard 

Lake, Pontiac, Rochester, Southfield, and Wixom and in the townships of Highland, 

Independence, Lyon, Milford Orion, Waterford, and White Lake. Five hundred seventy-eight 
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cold spots (labeled LL) were identified: in Wayne County (n=446), in the cities of Allen Park, 

Dearborn, Detroit, Ecorse, Lincoln Park, River Rouge, Riverview, Romulus, Taylor, and Trenton, 

and in the townships of Grosse Ile, Huron, Sumpter, Van Buren, and Woodhaven; in Macomb 

County (n=132), in the cities of Fraser, Mt. Clemens, Roseville, and St. Clair Shores and in the 

townships of Clinton and Harrison. No HL or LH areas were identified. These findings indicate 

that census tracts exhibit positive spatial association in terms of number of public beaches within 

20 miles of each tract centroid, revealing a clustering of census tracts with access to similar 

numbers of public beaches (Figure 29, p. 125). In other words, census tracts with HH and LL are 

surrounded by census tracts with similar numbers of public beaches.  

 Minimum distance to the nearest public beach (MINDIST). Seven hundred twenty-one 

(61.5%) of the 1,164 census tracts exhibited significant spatial clusters in the LISA analysis. 

Three hundred forty-five hot spots (HH) were identified. The majority of the hot spots (n=290, 

84.0%) are concentrated in Wayne County, in the cities of Dearborn, Detroit, Flat Rock, Lincoln 

Park, Riverview, Taylor, Trenton, Woodhaven, and Wyandotte and in the townships of 

Brownstown and Grosse Ile. Three hundred seventy-one cold spots (labeled LL) were identified: 

in Oakland County (n=194), in the cities of Auburn Hills, Birmingham, Farmington Hills, 

Ferndale, Hazel Park, Huntington Woods, Novi, Orchard Lake, Pontiac, Rochester Hills, Royal 

Oak, Southfield, and Wixom, and in the townships of Bloomfield, Brandon, Commerce, 

Groveland, Highland, Independence, Lyon, Milford, Orion, Oxford, Waterford, West Bloomfield, 

and White Lake; in Macomb County (n=56), in the cities of Roseville and St. Clair Shores; and, 

in Wayne County (n=121), in the cities of Grosse Pointe Woods, Livonia, and Westland, and 

Van Buren Township. No HL or LH areas were identified. These findings indicate that census 

tracts exhibit positive spatial association in terms of the minimum distance from each tract 
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centroid to the nearest public beach, revealing a clustering of census tracts with similar distances 

to the nearest public beach (Figure 30, p. 126). In other words, census tracts with HH and LL are 

surrounded by census tracts with similar distances to the nearest public beach. 

 Comparing the local patterns of NOPB and MINDIST, the majority of the positive local 

clusters with regard to NOPB are identified in Oakland County (HH) and Wayne County (LL) 

while the majority of the positive local clusters with regard to MINDIST are identified in Wayne 

County (HH) and Oakland County (LL). MINDIST is inversely related to level of access to 

public beaches. Although hot spots (HH) of NOPB in Oakland County do not completely overlap 

with cold spots (LL) of MINDIST in Wayne County, local clusters of census tracts in Oakland 

County represent higher levels of access to public beaches while those in Wayne County 

represent lower levels of access to public beaches.  

 Proportion of Black population (BLACK). Seven hundred twenty-one (61.9%) of the 

1,164 census tracts exhibited significant spatial clusters in the LISA analysis. Three hundred 

eight hot spots (HH) were identified. The majority of the hot spots (n=283, 91.8%) are 

concentrated in the city of Detroit, Wayne County. Three hundred sixty-five cold spots (labeled 

LL) were identified: in Oakland County (n=131), in the cities of Novi, Rochester Hills, Royal 

Oak, and Troy and in the townships of Commerce, Independence, and White Lake); in Macomb 

County (n=121), in the cities of St. Clair Shores, Sterling Heights, and Warren and in the 

townships of Macomb and Shelby; and, in Wayne County (n=109), in the cities of Livonia, 

Southgate, Wyandotte, Lincoln Park, Trenton, and Riverview). These census tracts are 

surrounded by census tracts with a similar proportion of Black population. Although positive 

spatial autocorrelation is typical between census tracts, census tracts with HL (n=8) and LH 

clusters (n=40) emerged around Detroit. Census tracts with HL were identified in the cities of 



 113  

Detroit and Westland and in the townships of Canton and Northville, Wayne County, whereas 

census tracts with LH were observed in the cities of Detroit in Wayne County, and Hazel Park in 

Oakland County. These census tracts exhibit negative spatial autocorrelation, thus showing 

significant spatial heterogeneity. Specifically, census tracts within HL are those with a high 

proportion of Black population, but are adjacent to census tracts with a low proportion of Black 

population. The situation appears to be the opposite for census tracts with LH. These findings 

indicate that census tracts exhibit positive spatial association in terms of proportion of Black 

population, revealing a clustering of census tracts with similar proportions of Black population. 

The 48 (4.3%) spatial outliers (HL and LH) do, however, suggest that the ethnic diversity 

between census tracts is spatially heterogeneous (Figure 31, p. 127).   

 Proportion of Asian population (ASIAN). One hundred fifty-four (13.2%) of the 1,164 

census tracts exhibited significant spatial clusters in the LISA analysis. One hundred five hot 

spots (HH) were identified. The majority of the hot spots (n=83, 79.0%) are concentrated in 

Wayne County, in the cities of Dearborn, Melvindale, and Romulus. Twenty-two hot spots also 

emerged in the city of Pontiac, Oakland County. Twenty-one cold spots (LL) were observed in 

the city of Detroit, Wayne County. These census tracts are surrounded by census tracts with a 

similar proportion of Black population. Nine HL areas were observed in Wayne County, in the 

cities of Ecorse and Detroit and in the townships of Brownstown and Grosse Ile, in Oakland 

County, in the cities of Madison Heights, Rochester Hills, Oak Park, and Southfield and in 

Macomb County, in the township of Clinton. Nineteen LH areas were observed in the city of 

Detroit in Wayne County. These census tracts exhibit negative spatial autocorrelation, thus 

showing significant spatial heterogeneity. Specifically, census tracts within HL clusters are those 

with a high proportion of Asian population, but are adjacent to census tracts with a low 
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proportion of Asian population. The situation appears to be the opposite for census tracts with 

LH. These findings indicate that census tracts exhibit positive spatial association in terms of 

proportion of Asian population, revealing a clustering of census tracts with similar proportions of 

Asian population. In addition, there are 28 (2.3%) spatial outliers (HL and LH) that are regarded 

as negatively associated, thus showing some spatial heterogeneity (Figure 32, p. 128).   

 Proportion of Hispanic population (HISPAN). Only 71 (6.0%) of the 1,164 census 

tracts exhibited significant spatial clusters in the LISA analysis. Sixty-one hot spots (HH) were 

identified in Wayne County (n=49), in the cities of Allen Park, Detroit, Ecorse, and Lincoln Park, 

and in Oakland County (n=12), in the city of Pontiac. These census tracts are surrounded by 

census tracts with similar proportions of Hispanic population. Ten LH areas emerged in the city 

of Detroit, Wayne County. These census tracts exhibit negative spatial autocorrelation, thus 

showing significant spatial heterogeneity. Specifically, census tracts within LH clusters are those 

with low proportions of Hispanic population, but are adjacent to census tracts with high 

proportions of Hispanic population. No LL and HL areas were identified. These findings indicate 

that census tracts exhibit positive spatial association in terms of proportion of Hispanic 

population, revealing a clustering of census tracts with similar proportions of Hispanic 

population. In addition, there are 10 (0.8%) spatial outliers (LH) that are regarded as negatively 

associated, thus showing some spatial heterogeneity (Figure 33, p. 129).  

 Population density (POPD). Six hundred four (51.8%) of the 1,164 census tracts 

exhibited significant spatial clusters in the LISA analysis. Two hundred eighty-eight hot spots 

(HH) were identified. The majority of the hot spots (n=244, 84.7%) are concentrated in Wayne 

County, in the cities of Dearborn, Dearborn Heights, Detroit, Lincoln Park, and River Rouge. 

HH areas also emerged in Macomb County (n=26), in the cities of Eastpointe, Roseville, and 
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Warren, and in Oakland County (n=18), in the cities of Berkley, Ferndale, Hazel Park, and 

Huntington Woods. Two hundred thirty-three cold spots (LL) were identified. The majority of 

the cold spots (n=169, 72.5%) are concentrated in Oakland County, in the cities of Auburn Hills, 

Farmington Hills, Novi, Pontiac, Rochester Hills, and Troy and in the townships of Addison, 

Bloomfield, Brandon, Commerce, Groveland, Highland, Independence, Lyon, Milford, Oakland, 

Orion, Oxford, Rose, Springfield, Waterford, West Bloomfield, and White Lake. LL areas also 

were observed in Wayne County (n=34), in the cities of Flat Rock, Livonia, Rockwood, Trenton, 

and Woodhaven and in the townships of Brownfield, Grosse Ile, Huron, Sumpter, and Van Buren, 

and in Macomb County (n=30), in the townships of Armada, Bruce, Chesterfield, Harrison, 

Lenox, Macomb, Ray, Richmond, Shelby, and Washington. These census tracts are surrounded 

by census tracts with similar population densities. Six HL areas emerged in Wayne County, in 

the cities of Northville and Romulus and in the township of Canton. LH areas were identified in 

Wayne County (n=69), in the cities of Dearborn, Detroit, Ecorse, and Wyandotte; in Oakland 

County (n=6), in the cities of Ferndale, Oak Park, and Southfield; and, in Macomb County (n=2), 

in the cities of St. Clair Shores and Warren. These census tracts exhibit negative spatial 

autocorrelation, thus showing significant spatial heterogeneity. Specifically, census tracts within 

HL clusters are those with high population densities, but are adjacent to census tracts with low 

population densities. The situation appears to be the opposite for census tracts with LH. These 

findings indicate that census tracts exhibit positive spatial association in terms of population 

density, revealing a clustering of census tracts with similar population densities. In addition, 

there are 83 (7.1%) spatial outliers (HL and LH), thus showing substantial spatial heterogeneity 

(Figure 34, p. 130).   
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 Median household income (MHI). Five hundred sixty-two (48.2%) of the 1,164 census 

tracts exhibited significant spatial clusters in the LISA analysis. One hundred eighty-eight hot 

spots (HH) were identified. The majority of the hot spots (n=142, 75.5%) are concentrated in 

Oakland County, in the cities of Farmington Hills, Novi, and Troy and in the townships of 

Bloomfield, Commerce, Oakland, and West Bloomfield. HH areas also emerged in Macomb 

County (n=16), in the townships of Chesterfield and Macomb, and in Wayne County (n=30), in 

the cities of Canton and Livonia. Three hundred forty-two cold spots (LL) were identified. The 

majority of the cold spots (n=271, 79.2%) are concentrated in the city of Detroit, Wayne County. 

These census tracts are surrounded by census tracts with residents having similar median 

household incomes. Twenty-one HL areas also were observed in the city of Detroit. Eleven LH 

areas emerged in Oakland County (n=7), in the cities of Southfield, Sylvan Lake, and Wixom; in 

Macomb County (n=1), in the city of Sterling Heights; and, in Wayne County (n=3) in the 

townships of Canton and Northville. These census tracts exhibit negative spatial autocorrelation, 

thus showing significant spatial heterogeneity. Specifically, census tracts within HL clusters are 

those with residents having high median household incomes, but are adjacent to census tracts 

with residents having low median household incomes. The situation appears to be the opposite 

for census tracts with LH. These findings indicate that census tracts exhibit positive spatial 

association in terms of median household income, revealing a clustering of census tracts with 

similar median household income. In addition, there are 32 (2.7%) spatial outliers, thus showing 

some spatial heterogeneity (Figure 35, p. 131).   

 Median housing value (MHV). Five hundred sixty-two (48.2%) of the 1,164 census 

tracts exhibited significant spatial clusters in the LISA analysis. One hundred eighty-eight hot 

spots (HH) were identified. The majority of the hot spots (n=142, 75.5%) are concentrated in 
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Oakland County, in the cities of Farmington Hills, Novi, and Troy and in the townships of 

Bloomfield, Commerce, Oakland, and West Bloomfield. HH areas also emerged in Macomb 

County (n=16), in the townships of Chesterfield and Macomb, and, in Wayne County (n=30), in 

the cities of Canton and Livonia and in the township of Plymouth. Three hundred forty-two cold 

spots (LL) were identified. The majority of the cold spots (n=271, 79.2%) are concentrated in the 

city of Detroit, Wayne County. These census tracts are surrounded by census tracts with similar 

median housing values. Twenty-one HL areas were observed in the city of Detroit. Eleven LH 

areas emerged in Oakland County (n=7), in the cities of Southfield, Sylvan Lake, and Wixom; in 

Macomb County (n=1), in the city of Sterling Heights; and, in Wayne County (n=3), in the 

townships of Canton and Northville. These census tracts exhibit negative spatial autocorrelation, 

thus showing significant spatial heterogeneity. Specifically, census tracts within HL clusters are 

those with high median housing values, but are adjacent to census tracts with low median 

housing values. The situation appears to be the opposite for census tracts with LH. These 

findings indicate that census tracts exhibit positive spatial association in terms of median housing 

value, revealing a clustering of census tracts with similar median housing values. In addition, 

there are 32 (2.7%) spatial outliers (HL and LH), thus showing some spatial heterogeneity 

(Figure 36, p.132).   

 Proportion of population under age 18 (AGE18). Four hundred forty-one (37.8%) of 

the 1,164 census tracts exhibited significant spatial clusters in the LISA analysis. Two hundred 

twelve hot spots (HH) were identified. The majority of the hot spots (n=156, 73.5%) are 

concentrated in the city of Detroit, Wayne County. One hundred ninety-four cold spots (LL) 

were identified in Oakland County (n=69), in the cities of Madison Heights, Royal Oak, and 

Southfield; in Macomb County (n=69), in the cities of Clinton township, Mt. Clemens, and St. 
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Clair Shores; and, in Wayne County (n=44), in the cities of Livonia and Southgate. These census 

tracts are surrounded by census tracts with similar proportions of population under age 18. Only 

14 HL areas were observed in Wayne County (n=5), in the township of Grosse Ile, in Oakland 

County (n=5), in the city of Huntington Woods, and, in Macomb County (n=4), in the township 

of Clinton. Twenty-one LH areas were identified. The majority of the LH areas (n=19, 90.4%) 

were concentrated in Wayne County, in the cities of Dearborn, Detroit, and Grosse Pointe 

Woods. These census tracts exhibit negative spatial autocorrelation, thus showing significant 

spatial heterogeneity. Specifically, census tracts within HL clusters are those with high 

proportions of population under age 18, but are adjacent to census tracts with low proportions of 

population under age 18. The situation appears to be the opposite for census tracts with LH. 

These findings indicate that census tracts exhibit positive spatial association in terms of 

proportion of population under age 18, revealing a clustering of census tracts with similar 

proportions of population under age 18. In addition, there are 35 (3.0%) spatial outliers (HL and 

LH), thus showing some spatial heterogeneity (Figure 37, p. 133).   

 Proportion of population over age 64 (AGE64). Three hundred fifty-three (30.3%) of 

the 1,164 census tracts exhibited significant spatial clusters in the LISA analysis. One hundred 

fifty-four hot spots (HH) were identified: in Macomb County (n=58), in the cities of St. Clair 

Shores, Sterling Heights, and Warren and in the township of Clinton; in Oakland County (n=49), 

in the townships of Bloomfield, Southfield, and West Bloomfield and in the cities of Farmington 

Hills and Southfield; and, in Wayne County (n=47), in the cities of Livonia and Riverview, and 

in the township of Grosse Ile. One hundred sixty-six cold spots (LL) were identified. These 

census tracts are surrounded by census tracts with similar proportions of population over age 64. 

The majority of the cold spots (n=139, 83.7%) were concentrated in the city of Detroit, Wayne 
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County. Only 17 LL areas emerged in Oakland County, in the city of Pontiac and in the township 

of Orion. These census tracts exhibit negative spatial autocorrelation, thus showing significant 

spatial heterogeneity. Specifically, census tracts within HL clusters are those with high 

proportions of population over age 64, but are adjacent to census tracts with low proportions of 

population over age 64. The situation appears to be the opposite for census tracts with LH. These 

findings indicate that census tracts exhibit positive spatial association in terms of proportion of 

population over age 64, revealing a clustering of census tracts with similar proportions of 

population over age 64. In addition, there are 33 (2.7%) spatial outliers (HL and LH), thus 

showing some spatial heterogeneity (Figure 38, p. 134).   

 Proportion of population with a four-year university degree or higher (EDU). Six 

hundred forty (54.9%) of the 1,164 census tracts exhibited significant spatial clusters in the LISA 

analysis. Two hundred twenty-two hot spots (HH) were identified. The majority of the hot spots 

(n=182, 81.9%) are concentrated in Oakland County, in the cities of Farmington Hills, Rochester 

Hills, Royal Oak, Troy, and Novi and in the townships of Bloomfield, Independence, Oakland, 

Orion, and West Bloomfield. Thirty-nine HH areas were observed in Wayne County, in the cities 

of Livonia and Plymouth and in the townships of Northville and Plymouth. Three hundred 

eighty-four cold spots (LL) were identified. The majority of the cold spots (n=322, 83.8%) are 

concentrated in Wayne County, in the cities of Detroit, Romulus, Taylor, and Westland. Sixty 

LL areas were observed in Macomb County, in the cities of St. Clair Shores and Warren. These 

census tracts are surrounded by census tracts with similar proportions of population having a 

four-year university degree or higher. Twenty-seven HL areas were observed in Wayne County, 

in the cities of Dearborn and Detroit, and, in Oakland County, in the city of Pontiac. Only 7 LH 

areas emerged, in Oakland County, in the cities of Farmington Hills and Pontiac, and, in 
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Macomb County, in the city of Sterling Heights. These census tracts exhibit negative spatial 

autocorrelation, thus showing significant spatial heterogeneity. Specifically, census tracts within 

HL clusters are those with high proportions of populations having a four-year university degree 

or higher, but are adjacent to census tracts with low proportions of population having a four-year 

university degree or higher. The situation appears to be the opposite for census tracts with LH. 

These findings indicate that census tracts exhibit positive spatial association in terms of 

proportion of population having a university degree or higher, revealing a clustering of census 

tracts with populations having similar educational attainment. In addition, there are 34 (2.9%) 

spatial outliers (HL and LH), thus showing some spatial heterogeneity (Figure 39, p. 135).   

 Proportion of population with non-English spoken at home (LAN). Three hundred 

sixteen (27.1%) of the 1,164 census tracts exhibited significant spatial clusters in the LISA 

analysis. One hundred thirty hot spots (HH) were identified. The majority of the hot spots are 

concentrated in Oakland County (n=60), in the cities of Farmington Hills, Rochester Hills, Troy, 

and West Bloomfield, and in Wayne County (n=51), in the cities of Dearborn and Detroit. One 

hundred sixty-eight cold spots (LL) were identified. The majority of the cold spots (n=155, 

92.2%) are concentrated in the city of Detroit, Oakland County. These census tracts are 

surrounded by census tracts with similar proportions of population having languages other than 

English spoken at home. Six HL areas emerged in the city of Detroit, Wayne County. Ten LH 

areas were observed in Wayne County, in the cities of Dearborn and Detroit. Two LH areas were 

observed in Oakland County, in the cities of Farmington Hills and Rochester Hills. These census 

tracts exhibit negative spatial autocorrelation, thus showing significant spatial heterogeneity. 

Specifically, census tracts within HL clusters are those with high proportions of population 

having languages other than English spoken at home, but are adjacent to census tracts with low 
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proportions of population having languages other than English spoken at home. The situation 

appears to be the opposite for census tracts with LH. These findings indicate that census tracts 

exhibit positive spatial association in terms of proportion of population having languages other 

than English spoken at home, revealing a clustering of census tracts with similar proportions of 

population having languages other than English spoken at home. In addition, there are 18 (1.5%) 

spatial outliers (HL and LH), thus showing some spatial heterogeneity (Figure 40, p. 136).   

 Proportion of population below the poverty line (ECON). Six hundred twenty (53.2%) 

of the 1,164 census tracts exhibited significant spatial clusters in the LISA analysis. Two 

hundred ninety-five hot spots (HH) were identified. The majority of the hot spots (n=285, 96.6%) 

are concentrated in Wayne County, in the city of Detroit. Two hundred eighty-two cold spots 

(LL) were identified in Oakland County (n=153), in the cities of Farmington Hills, Novi, 

Rochester Hills, Royal Oak, and Troy and in the townships of Bloomfield, Commerce, 

Independence, Oakland, Orion, West Bloomfield, and White Lake; in Macomb County (n=65), 

in the cities of St. Clair Shores, Sterling Heights, and Warren and in the townships of 

Chesterfield, Clinton, Shelby, and Macomb; and, in Wayne County (n=64), in the cities of 

Livonia and Westland and in the townships of Northville and Plymouth. These census tracts are 

surrounded by census tracts with a similar proportion of population below the poverty line. Only 

11 HL areas were observed in Wayne County (n=8), in the townships of Canton, Grosse Ile, and 

Northville; in Oakland County (n=2), in the city of Madison Heights; and, in Macomb County 

(n=1), in the township of Harrison. Thirty-two LH areas emerged in the city of Dearborn (n=1) 

and Detroit (n=31), Wayne County. These census tracts exhibit negative spatial autocorrelation, 

thus showing significant spatial heterogeneity. Specifically, census tracts within HL clusters are 

those with high proportions of population below the poverty line, but are adjacent to census 
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tracts with low proportions of population below the poverty line. The situation appears to be the 

opposite for census tracts with LH. These findings indicate that census tracts exhibit positive 

spatial association in terms of proportion of population below the poverty line, revealing a 

clustering of census tracts with similar proportions of population below the poverty line. In 

addition, there are 43 (3.6%) spatial outliers (HL and LH), thus showing some spatial 

heterogeneity (Figure 41, p. 137).   

 Housing occupancy (HO). Five hundred ninety-five (51.1%) of the 1,164 census tracts 

exhibited statistical significance in the LISA analysis. Two hundred eighty hot spots (HH) were 

identified in Macomb County (n=105), in the cities of Fraser, St. Clair Shores, Sterling Heights, 

and Warren and in the townships of Clinton, Shelby, and Macomb; in Oakland County (n=96), in 

the cities of Farmington Hills, Madison Heights, Rochester Hills, Royal Oak, and Troy and in the 

townships of Oakland, Orion, and West Bloomfield; and, in Wayne County (n=79), in the cities 

of Dearborn Heights, Livonia, and Southgate and in the townships of Brownstown, Canton, and 

Plymouth. Two hundred seventy-six cold spots (LL) were identified. The majority of the cold 

spots (n=267, 96.7%) are concentrated in the city of Detroit, Wayne County. Only nine LL areas 

were observed, all in the city of Pontiac, Oakland County, and 32 HL areas emerged in the city 

of Detroit, Wayne County. These census tracts are surrounded by census tracts with a similar 

proportion of occupied housing units. Only seven LH areas were observed, in Oakland County 

(n=3), in the cities of Southfield, Troy, and Wixom; in Macomb County (n=1), in the township 

of Harrison; and, in Wayne County (n=3), in the township of Northville and in the city of 

Westland. These census tracts exhibit negative spatial autocorrelation, thus showing significant 

spatial heterogeneity. Specifically, census tracts within HL clusters are those with high 

proportions of occupied housing units, but are adjacent to census tracts with low proportions of 
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occupied housing units. The situation appears to be the opposite for census tracts with LH. These 

findings indicate that census tracts exhibit positive spatial association in terms of proportion of 

occupied housing units, revealing a clustering of census tracts with similar proportions of 

occupied housing units. In addition, there are 39 (3.3%) spatial outliers (HL and LH), thus 

showing some spatial heterogeneity (Figure 42, p. 138).   

 Proportion of households without a vehicle (VEHIC). Four hundred fifty-two (38.8%) 

of the 1,164 census tracts exhibited significant spatial clusters in the LISA analysis. Two 

hundred forty-one hot spots (HH) were identified. The majority of the hot spots (n=238, 98.7%) 

are concentrated in the city of Detroit, Wayne County. One hundred sixty-eight cold spots (LL) 

were identified. The majority of the cold spots (n=117, 69.6%) are concentrated in Oakland 

County, in the cities of Farmington Hills, Rochester Hills, Royal Oak, and Troy and in the 

townships of Bloomfield, Independence, Oakland, Orion, and West Bloomfield. LL areas 

emerged in Macomb County (n=28), in the cities of St. Clair Shores and Sterling Heights and in 

the township of Shelby; and in Wayne County (n=23), in the city of Livonia and in the township 

of Grosse Ile. These census tracts are surrounded by census tracts with similar proportions of 

households without a vehicle. Only 12 HL areas were identified, in Oakland County (n=6), in the 

cities of Farmington Hills, Southfield, Troy, and Wixom; in Macomb County (n=2), in the cities 

of Roseville and Sterling Heights; and, in Wayne County (n=4), in the cities of Taylor and 

Westland and in the township of Canton. Only 31 LH areas were observed, all in the city of 

Detroit, Wayne County. These census tracts are regarded as negative spatial autocorrelation, thus 

showing significant spatial heterogeneity. Specifically, census tracts within HL clusters are those 

with high proportions of households without a vehicle, but are adjacent to census tracts with low 

proportions of households without a vehicle. The situation appears to be the opposite for census 
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tracts with LH. These findings indicate that census tracts exhibit positive spatial association in 

terms of proportion of non-vehicle ownership, revealing a clustering of census tracts with similar 

proportions of non-vehicle ownership. In addition, there are 43 (3.6%) spatial outliers (HL and 

LH), thus showing some spatial heterogeneity (Figure 43, p. 139).   

 Proportion of water area (WATER). Only 86 (7.3%) of the 1,164 census tracts 

exhibited statistical significance in the LISA analysis. Eighty-one hot spots (HH) were identified 

in Oakland County (n=41), in the townships of Commerce, Orion, Waterford, West Bloomfield, 

and White Lake; in Wayne County (n=23), in the cities of Detroit, Gibraltar, Grosse Pointe, 

Trenton, and Wyandotte and in the township of Van Buren; and, in Macomb County (n=17), in 

the city of St. Clair Shores and in the townships of Chesterfield and Harrison. These census tracts 

are surrounded by census tracts with a similar proportion of water area. Only two HL areas were 

observed in the city of Detroit (n=2), Wayne County. Only two LH areas emerged, both in 

Wayne County, in the townships of Brownstown and Grosse Ile. These census tracts exhibit 

negative spatial autocorrelation, thus showing significant spatial heterogeneity. Specifically, 

census tracts within HL clusters are those with high proportions of water area, but are adjacent to 

census tracts with low proportions of water area. The situation appears to be the opposite for 

census tracts with LH. No LL areas were identified. These findings indicate that census tracts 

exhibit positive spatial association in terms of proportion of water area, revealing a clustering of 

census tracts with similar proportions of water area. There are four (0.2%) spatial outliers (HL 

and LH), thus showing some spatial heterogeneity (Figure 44, p. 140). 
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Figure 29. Moran significance map for number of public beaches within 20 miles of tract 

centroid (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 30. Moran significance map for minimum distance to the nearest public beach from tract 

centroid (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 31. Moran significance map for proportion (%) of population Black by census tract, 

DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 

 



 128  

 

Figure 32. Moran significance map for proportion (%) of population Asian by census tract, 

DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 33. Moran significance map for proportion (%) of population Hispanic by census tract, 

DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 

 



 130  

 

Figure 34. Moran significance map for population per square mile by census tract, DMA (2010) 

(HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 35. Moran significance map for median household income ($) by census tract, DMA 

(2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 36. Moran significance map for median housing value ($) by census tract, DMA (2010) 

(HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 37. Moran significance map for proportion (%) of population under age 18 by census 

tract, DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 38. Moran significance map for proportion (%) of population over age 64 by census tract, 

DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 39. Moran significance map for proportion (%) of population with a four-year university 

degree or higher by census tract, DMA (2010) (HH: high-high; HL: high-low; LH: 

low-high; LL: low-low) 
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Figure 40. Moran significance map for proportion (%) of population with non-English spoken at 

home by census tract, DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: 

low-low) 
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Figure 41. Moran significance map for proportion (%) of population below the poverty line by 

census tract, DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 42. Moran significance map for proportion (%) of occupied housing units by census tract, 

DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 43. Moran significance map for proportion (%) of households without a vehicle by census 

tract, DMA (2010) (HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Figure 44. Moran significance map for proportion (%) of water area by census tract, DMA (2010) 

(HH: high-high; HL: high-low; LH: low-high; LL: low-low) 
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Objective Three (O3): Demonstrating the Feasibility and Utility of GWR when Measuring 

the Equity of Access to Public Beaches and Comparing the Results of this Approach with 

Those of Traditional Multivariate Regression (OLS) Techniques  

 The third objective of the study was to demonstrate the feasibility and utility of GWR 

when measuring the equity of access to public beaches and comparing the results of this 

approach with those of traditional multivariate regression (OLS) techniques. This objective 

included four research questions; results are discussed below.  

 O3R1: “What is the relationship between level of access to public beaches in the 

DMA and residents’ demographic and socioeconomic status using OLS?” Two separate 

OLS regression analyses were performed to examine the effects of residents‘ demographic and 

socioeconomic status on the number of public beaches accessible within a 20-mile journey of 

each tract centroid (Model 1), and the minimum distance to the nearest public beach from each 

tract centroid (Model 2). As noted by Meleg, Naparus, Fiers, Meleg, Vlaicu, and Moldovan 

(2014), a VIF value greater than 7.5 suggests redundancy among variables. Because the VIF 

values associated with MHI were greater than 7.5 (Model 1: 10.25; Model 2: 10.22), MHI was 

removed from the pool of independent variables. The VIF values for all other variables were 

smaller than 7.5, indicating the absence of collinearity among the independent variables. As 

previously noted, WHITE also was excluded due to its extreme negative correlation with 

BLACK (-0.983, p < 0.01). Results of the two regression models are presented in Table 17. 
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Table 17.  

Analysis results of two OLS regression models 

Variable 

Model 1 (container) Model 2 (minimum distance) 

Unstandardized  

Coefficient 

Standardized 

Coefficent t p VIF 

Unstandardized  

Coefficent 

Standardized 

Coefficient t p VIF 

B SE Beta B SE Beta 

Intercept 45.683 25.692  1.77 0.07  3.792 2.39  1.59 0.11  

BLACK 0.190 0.062 0.145 3.06 < 0.01 4.16 0.011 0.006 0.099 1.83 0.06 4.16 

ASIAN 0.951 0.435 0.092 2.18 0.02 3.33 0.054 0.041 0.064 1.32 0.18 3.33 

HISPAN 0.087 0.213 0.016 0.41 0.68 2.75 0.01 0.020 0.003 0.07 0.94 2.75 

POPD -0.005 0.000 -0.270 -9.54 < 0.01 1.50 0.0002 0.000 0.180 5.55 < 0.01 1.50 

MHV 
0.0000

54 
0.000 0.091 1.89 0.06 4.28 -0.000005 0.000 -0.098 -1.79 0.07 4.28 

AGE18 -0.258 0.320 -0.029 -0.80 0.42 2.40 -0.002 0.030 -0.003 -0.07 0.93 2.40 

AGE64 -0.544 0.299 -0.057 -1.81 0.06 1.85 0.065 0.028 0.084 2.32 0.02 1.85 

EDU 1.247 0.124 0.471 10.08 < 0.01 4.07 -0.054 0.012 -0.251 -4.70 < 0.01 4.07 

LAN 0.038 0.135 0.009 0.28 0.77 2.04 -0.003 0.013 -0.010 -0.27 0.78 2.04 

ECON 0.055 0.170 0.018 0.32 0.74 5.92 -0.008 0.016 -0.033 -0.51 0.60 5.92 

HO -0.085 0.248 -0.015 -0.34 0.72 3.57 0.036 0.023 0.079 1.57 0.11 3.57 

VEHIC -0.435 0.186 -0.101 -2.33 0.01 3.50 -0.023 0.017 -0.066 -1.32 0.18 3.50 

WATER -0.364 0.143 -0.063 -2.55 0.01 1.13 -0.046 0.013 -0.097 -3.45 < 0.01 1.13 

N = 1,164 

R
2
 = 0.386, Adjusted R

2
 = 0.379  

AICc = 11,839.75 

Joint F-statistic = 55.59 (p-value < 0.01) 

Joint Wald statistic = 1,008.19 (p-value < 0.01) 

Koenker (BP) statistic = 163.46 (p-value < 0.01) 

N = 1,164 

R
2
 = 0.194, Adjusted R

2
 = 0.185  

AICc = 6,300.11 

Joint F-statistic = 45.17 (p-value < 0.01) 

Joint Wald Statistic = 365.42 (p-value < 0.01) 

Koenker (BP) statistic = 97.63 (p-value < 0.01) 

Note: SE: standard error; t: t-value; p: p-value; VIF: variance inflation factor; AICc: corrected Akaike‘s information criterion
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 According to the results of Model 1 (for the container approach), both the Joint F-

statistic and Joint Wald statistic indicated statistical significance for the overall model (Joint F-

statistic: 55.59, p < 0.01; Joint Wald statistic: 1,008.19, p < 0.01). The value of the adjusted R
2
 

(0.379) showed that the model explains 38% of the variation in the dependent variable, 

indicating a moderate goodness-of-fit. Six of 13 independent variables (BLACK, ASIAN, POPD, 

EDU, VEHIC, and WATER) were statistically significant at the 0.05 level. Parameter estimates 

indicated that BLACK (0.145), ASIAN (0.092), and EDU (0.471) are significantly and positively 

associated with the number of public beaches accessible within a 20-mile journey of each tract 

centroid, while POPD (-0.270), VEHIC (-0.101), and WATER (-0.063) are significantly and 

negatively related to the number of public beaches accessible within a 20-mile journey of each 

tract centroid. In other words, census tracts with high proportions of Black and Asian populations 

exhibited significantly higher levels of access to public beaches, while census tracts with high 

population densities, low levels of educational attainment, and high levels of non-vehicle 

ownership exhibited significantly lower levels of access to public beaches than for other levels of 

each characteristic. In addition, census tracts having high proportions of water area also 

exhibited lower levels of access to public beaches, indicating that water resources are not 

efficiently distributed or accessible due to lack of public recreational settings such as public 

beaches. Specifically, the variable BLACK was highly significant (t = 3.06, p-value < 0.01), with 

results indicating a 0.190 increase in number of accessible public beaches when the proportion of 

Black population increases by 1 percent. The variable ASIAN was highly significant (t = 2.18, p-

value < 0.05), with results indicating a 0.951 increase in number of accessible public beaches 

when the proportion of Asian population increases by 1 percent. The variable EDU was highly 

significant (t = 10.08, p-value < 0.01), with results indicating a 1.247 increase in number of 
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accessible public beaches when the proportion of population with a university degree or higher 

increases by 1 percent. On the other hand, the variable POPD was highly significant (t = -9.54, p-

value < 0.01), with results indicating a 0.005 decrease in number of accessible public beaches 

when the population density increases by 1 person per square mile. The variable VEHIC was 

highly significant (t = -2.33, p-value < 0.01), with results indicating a 0.435 decrease in number 

of accessible public beaches when the proportion of households without a vehicle increases by 1 

percent. The variable WATER was highly significant (t = -2.55, p-value < 0.01), with results 

indicating a 0.364 decrease in number of accessible public beaches when the proportion of water 

area per census tract increases by 1 percent. Educational attainment (EDU) was the most 

dominant variable. These results suggest that equitable access to public beaches in the DMA 

exists with respect to proportions of Black and Asian population, but inequitable access to public 

beaches exists with respect to population density, educational attainment, and vehicle ownership. 

As seen in Table 17, however, the Koenker (BP) statistic (163.46, p < 0.01) indicates statistically 

significant heteroscedasticity and/or non-stationarity, which refers to spatially varying 

relationships between variables. Regression models with statistically significant non-stationarity 

are good candidates for GWR analyses (Fotherinham et al., 2002). 

 According to the results of Model 2 (for the minimum distance approach), both the Joint 

F-statistic and Joint Wald statistic indicated statistical significance for the overall model (Joint F-

statistic: 45.17, p < 0.01; Joint Wald statistic: 365.42, p < 0.01). The value of the adjusted R
2
 

(0.185) suggested a lower level of model performance than that of Model 1. Four of 13 

independent variables (POPD, AGE64, EDU, and WATER) were statistically significant at the 

0.05 level. Parameter estimates indicated that POPD (0.180) and AGE64 (0.084) were 

significantly and positively associated with the minimum distance to the nearest public beach, 



 145  

while EDU (-0.257) and WATER (-0.097) are significantly and negatively related to the 

minimum distance to the nearest public beach. As low distance values correspond to high 

accessibility, census tracts having high proportions of water areas exhibited significantly higher 

levels of access to public beaches than for other levels of each characteristic while census tracts 

having high population densities, more elderly populations, and lower levels of educational 

attainment area exhibited significantly lower levels of access to public beaches than for other 

levels of each characteristic. Specifically, the variable POPD was highly significant (t = 5.55, p-

value < 0.01), with results indicating a 0.0002 miles increase in minimum distance to the nearest 

public beach when the population density increases by 1 person per square mile. The variable 

AGE64 was highly significant (t = 2.32, p-value < 0.05), with results indicating a 0.065 miles 

increase in minimum distance to the nearest public beach when the proportion of elderly 

population increases by 1 percent. The variable EDU was highly significant (t = -4.70, p-value < 

0.01), with results indicating a 0.054 miles decrease in minimum distance to the nearest public 

beach when the proportion of population with a 4-year university degree or higher increases by 1 

percent. The variable WATER was highly significant (t = -3.45, p-value < 0.01), with results 

indicating a 0.046 miles decrease in minimum distance to the nearest public beach when the 

proportion of water area per census tract increases by 1 percent. Educational attainment was 

again the most dominant variable. These results suggest that inequitable access to public beaches 

in the DMA exists with respect to population density, proportion of elderly population, and 

educational attainment. As seen in Table 17, the Koenker (BP) statistic (97.63, p < 0.01) also 

indicates that Model 2 exhibits spatial non-stationarity, which refers to spatially varying 

relationships between variables.  
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 O3R2: “What is the relationship between level of access to public beaches in the 

DMA and residents’ demographic and socioeconomic status using GWR?” 

 Although the two OLS regression analyses examined the global effects of residents‘ 

demographic and socioeconomic statuses on public beach access, they cannot explore spatial 

variations in the regression coefficients and goodness-of-fit within the study area. Two GWR 

models, therefore, were developed to identify local variations using the same dependent and 

independent variables as employed in the global OLS models. A local condition index of 30 was 

used as a threshold value to detect the existence of local collinearity (Wheeler, 2007). Results of 

the two GWR models are presented in Table 18.  

 According to the results of GWR Model 1 (for the container approach), while the global 

value of adjusted R-square was 0.379, the local adjusted R
2
 varied over the study area from a 

minimum of 0.02 to a maximum of 0.92 (mean: 0.69) for the local Model 1. The local condition 

index is between 9.7 (minimum) and 24.8 (maximum), indicating the absence of local 

collinearity among the independent variables. Compared to the OLS coefficients for BLACK 

(0.145), ASIAN (0.092), POPD (-0.270), EDU (0.471), VEHIC (-0.101), and WATER (-0.063) 

variables, the ranges of the local coefficients for these variables were -126.40 to 67.72 with a 

mean of -1.98 (BLACK), -21.79 to 27.46 with a mean of -1.39 (ASIAN), -18.55 to 26.81 with a 

mean of -1.36 (POPD), -8.09 to 58.92 with a mean of 4.87 (EDU), -25.34 to 19.55 with a mean 

of -1.12 (VEHIC), and -372.85 to 156.97 with a mean of -3.76 (WATER). This variability in the 

local coefficients suggests that the relationships between the number of public beaches accessible 

within a 20-mile journey from each tract centroid and residents‘ demographic and socioeconomic 

statuses are not stationary. In other words, the relationships among variables vary over space.  
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According to the results of GWR Model 2 (for the minimum distance approach), while 

the global value of R
2
 was 0.185, there were large variations in the performance of the model 

across the study area, ranging from a minimum of 0.27 to a maximum of 0.92 (mean: 0.70). The 

local condition index ranges from a minimum of 8.6 to a maximum of 24.4, indicating the 

absence of local collinearity among the independent variables. Compared to the OLS coefficients 

for POPD (0.180), AGE64 (0.084), EDU (-0.257), and WATER (-0.097) variables, the ranges of 

the local coefficients for these variables were -1.29 to 1.40 with a mean of 0.14 (POPD), -1.01 to 

2.85 with a mean of 0.12 (AGE64), -3.25 to 2.73 with a mean of -0.02 (EDU), and -19.06 to 

19.69 with a mean of -1.09 (WATER). This variability in the local coefficients suggests that the 

relationships between the minimum distance to the nearest public beach and residents‘ 

demographic and socioeconomic statuses are not stationary. In other words, the relationships 

among variables vary over space. 
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Table 18.  

Analysis results of two GWR models 

Variable 

Model 1 (container) Model 2 (minimum distance) 

OLS 

Coefficient   
GWR Coefficients 

Range 

OLS 

Coefficient 
GWR Coefficients 

Range 

Beta Minimum Mean Maximum Beta Minimum Mean Maximum 

Intercept  -36.64 41.68 151.21 187.85  1.29 6.90 16.13 14.84 

BLACK 0.145 -126.40 -1.98 67.72 194.12 0.099 -5.55 0.31 7.77 13.32 

ASIAN 0.092 -21.79 -1.39 27.46 49.25 0.064 -2.81 0.09 4.71 7.52 

HISPAN 0.016 -104.82 -2.30 205.51 310.33 0.003 -7.54 0.17 8.64 16.18 

POPD -0.270 -18.55 -1.36 26.81 63.91 0.180 -1.29 0.14 1.40 2.69 

MHV 0.091 -21.24 0.90 29.69 50.93 -0.098 -4.10 -0.17 2.84 6.94 

AGE18 -0.029 -15.71 -1.33 8.53 24.24 -0.003 -1.57 0.04 4.58 6.15 

AGE64 -0.057 -11.18 0.07 12.14 23.32 0.084 -1.01 0.12 2.85 3.86 

EDU 0.471 -8.09 4.87 58.92 67.01 -0.251 -3.25 -0.02 2.73 5.98 

LAN 0.009 -21.43 0.93 19.28 40.71 -0.010 -1.66 -0.09 4.30 5.96 

ECON 0.018 -20.37 1.07 47.97 68.34 -0.033 -2.51 0.02 4.15 6.66 

HO -0.015 -29.58 -0.57 13.80 43.38 0.079 -1.61 0.21 4.89 6.50 

VEHIC -0.101 -25.34 -1.12 19.55 44.89 -0.066 -1.85 0.05 2.20 4.05 

WATER -0.063 -372.85 -3.76 156.97 529.82 -0.097 -19.06 -1.09 19.69 38.75 

Adjusted R
2
 0.379 0.02 0.69 0.92 0.90 0.185 0.27 0.70 0.92 0.65 

Condition 

Index 
 9.7 14.6 24.8 15.1  8.6 16.3 24.4 15.8 

N = 1,164 

AICc (OLS) = 11,839.75 

AICc (GWR) = 8679.89 

Neighbors = 147 

N = 1,164 

AICc (OLS) = 6,300.11 

AICc (GWR) = 4,085.73 

Neighbors = 147 

Note: Beta: standardized OLS coefficient; AICc: corrected Akaike‘s information criterion
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 O3R3: “How does the spatial relationship between level of access to public beaches 

and residents’ demographic and socioeconomic status vary across the study area (using 

GWR)?”  

 Although Table 18 suggests the existence of spatial variations in the local coefficients 

and goodness-of-fit of the GWR models, it does not show how the relationships between level of 

access to public beaches and residents‘ demographic and socioeconomic status vary across the 

study area. The local coefficients and local R
2
 for the two GWR models, therefore, were mapped. 

Figures 45-54 (p. 156-169) illustrate the spatial distributions of local coefficients and local R
2
 for 

those independent variables that were statistically significant variables in the OLS models. For 

all local coefficient maps (Model 1: BLACK, ASIAN, POPD, EDU, VEHIC, and WATER; 

Model 2: POPD, AGE64, EDU, and WATER), lighter colors indicate negative values whereas 

darker colors indicate positive values. These maps also are summarized in Table 19, indicating 

the number of census tracts exhibiting each of the four classes by the value of local coefficient 

(LC > 0 [census tract in which the value of the local coefficient is greater than 0], LC < 0 [census 

tract in which the value of the local coefficient is less than 0], LC > GC [census tract in which 

the value of the local coefficient is greater than the value of the global coefficient], and LC < GC 

[census tract in which the value of the local coefficient is less than the value of the global 

coefficient]), and the value of local R
2
 (0.00-0.25 [census tract in which the value of local R

2
 is 

between 0.00 and 0.25], 0.26-0.50, 0.51-0.75, and 0.76-1.00.  
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Table 19.  

Classification of census tracts by values of local coefficient and local R
2 

Model 1 

Variable Number of census tracts (N = 1,164) 

 LC > 0 (%) LC < 0 (%) LC > GC (%) LC < GC (%) 

BLACK 523 (44.9%) 641(55.0%) 492 (42.2%) 672 (57.7%) 

ASIAN 678 (58.2%) 486 (41.7%) 411 (35.3%) 488 (41.9%) 

POPD 446 (38.3%) 718 (61.6%) 447 (38.4%) 717 (61.5%) 

EDU 749 (64.3%) 415 (35.6%) 598 (51.3%) 566 (46.6%) 

VEHIC 480 (41.2%) 684 (58.7%) 630 (54.1%) 534 (45.8%) 

WATER 544 (46.7%) 620 (53.2%) 455 (39.0%) 455 (39.0%) 

R
2
 

Adjusted R
2 

(OLS): 0.379 

Adjusted R
2
 (GWR): 0.690 

GWR > OLS (%) GWR < OLS (%) 

1,120 (96.2) 44 (3.7) 

Model 2 

POPD 771 (66.2%) 393 (33.7%) 770 (66.1%) 394 (33.8%) 

AGE64 628 (53.9%) 536 (46.0%) 550 (47.2%) 614 (52.7%) 

EDU 536 (46.0%) 628 (53.9%) 566 (48.6%) 598 (51.3%) 

WATER 283 (24.2%) 881 (75.6%) 303 (26.3%) 861(73.9%) 

R
2 Adjusted R

2
 (OLS): 0.185 

Adjusted R
2
 (GWR): 0.700 

GWR > OLS (%) GWR < OLS (%) 

1,164 (100) 0 (0.0) 

Note: LC: local coefficient by GWR; GC: global coefficient by OLS; LC > GC: census tract in 

which the value of the local coefficient is greather than the value of the global coefficient; 

LC < GC: census tract in which the value of the local coefficient is less than the value of 

the global coefficient; 0.00-0.25: census tract in which the value of local R
2
 is between 

0.00 and 0.25; 0.26-0.50: census tract in which the value of local R
2
 is between 0.26 and 

0.50; 0.51-0.75: census tract in which the value of local R
2
 is between 0.51 and 0.75; 0.76-

1.00: census tract in which the value of local R
2
 is between 0.76 and 1.00     

 

 BLACK (Model 1). The map of local coefficients for GWR Model 1 for BLACK is 

shown in Figure 45. According to Table 18, the OLS coefficient for BLACK is 0.145 (p < 0.05), 

indicating equitable access to public beaches with regard to Black population across the study 

area. However, Figure 45 (p. 156) and Table 19 show that both positive (n=523, 44.9%) and 

negative (n=641, 55.0%) correlations are spatially distributed in the study area. The local 

coefficients for BLACK ranged from -126.39 (city of Sterling Heights, Macomb County) to 

67.72 (Bruce Township, Macomb County), with a mean of -1.98. Strong positive correlations 

(local coefficient > 31.7 [2 standard deviations above the mean]), indicating equitable access to 
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public beaches with respect to Black population, were observed in the cities of Troy and 

Rochester Hills and in the townships of Addision and Oakland, Oakland County, and in the 

townships of Bruce and Washington, Macomb County. Strong negative correlations (local 

coefficient < -35.66 [2 standard deviations below the mean]), indicating inequitable access to 

public beaches with respect to Black population, were identified in the city of Sterling Heights 

and in the townships of Shelby and Washington, Macomb County. Four hundred ninety-two 

(42.2%) of the 1,164 census tracts had local coefficients greater than the OLS coefficient, while 

672 (57.7%) of the 1,164 census tracts had local coefficients lower than the OLS coefficient. 

This variability in the model parameters suggests that the relationship between number of public 

beaches accessible within a 20-mile journey and proportion (%) of Black population is not 

stationary within the study area at the census tract level.    

 ASIAN (Model 1). The map of local coefficients for the GWR Model 1 for ASIAN is 

shown in Figure 46. According to Table 18, the OLS coefficient for ASIAN is 0.092 (p < 0.05),  

indicating equitable access to public beaches with regard to Asian population across the study 

area. However, Figure 46 (p. 157) and Table 19 show that both positive (n=678, 58.2%) and 

negative (n=486, 41.7%) correlations occur across the study area. The local coefficients for 

ASIAN ranged from -21.79 (Plymouth Township, Wayne County) to 27.46 (city of Farmington 

Hills, Oakland County), with a mean of -1.39. Strong positive correlations (local coefficient > 

10.55), indicating equitable access to public beaches with respect to Asian population, were 

observed in the cities of Farmington Hills and Novi and in the townships of Lyon and Milford, 

Oakland County, and in the city of Sterling Heights, Macomb County. Strong negative 

correlations (local coefficient < -13.33), indicating inequitable access to public beaches with 

respect to Asian population, emerged in the city of Troy, Oakland County, and in the townships 
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of Canton and Plymouth, Wayne County. Four hundred eleven (35.3%) of the 1,164 census tracts 

had local coefficients greater than the OLS coefficient while 488 (41.9%) of the 1,164 census 

tracts had local coefficients lower than the OLS coefficient. This variability in the model 

parameters suggests that the relationship between number of public beaches accessible within a 

20-mile journey and proportion (%) of Asian population is not stationary within the study area at 

the census tract level. 

 POPD (Model 1). The map of local coefficients for the GWR Model 1 for POPD is 

shown in Figure 47. According to Table 18, the OLS coefficient for POPD is -0.270 (p < 0.05), 

indicating inequitable access to public beaches with regard to population density across the study 

area. However, Figure 47 (p. 158) and Table 19 show that both positive (n=446, 38.3%) and 

negative (n=718, 61.6%) correlations occur across the study area. The local coefficients for 

POPD ranged from -18.55 (Shelby Township, Macomb County) to 26.81 (Groveland Township, 

Oakland County), with a mean of -1.36. Strong positive correlations (local coefficient > 9.12), 

indicating equitable access to public beaches with respect to population density, were observed 

in the townships of Brandon, Groveland, Holly, Independence, Oxford, Rose, and Springfield, 

Oakland County. Strong negative correlations (local coefficient < -11.84), indicating inequitable 

access to public beaches with respect to population density, emerged in the city of Troy, 

Rochester, and South Lyon, Oakland County; in the city of Livonia, Wayne County; and in the 

townships of Macomb, Ray, Shelby, and Washington, Macomb County. Four hundred forty-

seven (38.4%) of the 1,164 census tracts had local coefficients greater than the OLS coefficient 

while 717 (61.5%) of the 1,164 census tracts had local coefficients lower than the OLS 

coefficient. This variability in the model parameters suggests that the relationship between 
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number of public beaches accessible within a 20-mile journey and population per square mile is 

not stationary within the study area at the census tract level. 

 EDU (Model 1). The map of local coefficients for the GWR Model 1 for EDU is shown 

in Figure 48. According to Table 18, the OLS coefficient for EDU is 1.247 (p < 0.01), indicating 

inequitable access to public beaches with regard to education attainment across the study area. 

However, Figure 48 (p. 159) and Table 19 show that both positive (n=749, 64.3%) and negative 

(n=415, 35.6%) correlations occur across the study area. The local coefficients for EDU ranged 

from -8.09 (city of Pontiac, Oakland County) to 58.92 (Washington Township, Macomb County), 

with a mean of 4.87. Strong positive correlations (local coefficient > 15.95), indicating 

inequitable access to public beaches with respect to educational attainment, were observed in the 

cities of Rochester and Rochester Hills and in the townships of Addision and Oakland, Oakland 

County, and in the townships of Armada, Bruce, Richmond, Shelby, and Washington, Macomb 

County. Strong negative correlations (local coefficient < -6.21), indicating equitable access to 

public beaches with respect to educational attainment, emerged in the cities of Auburn Hills and 

Southfield and in the townships of Bloomfield, Commerce, Highland, Milford, Waterford, White 

Lake, and West Bloomfield, Oakland County; in the cities of Roseville and Warren, Macomb 

County; and in the cities of Detroit and Dearborn Heights, Wayne County. Five hundred ninety-

eight (51.3%) of the 1,164 census tracts had local coefficients greater than the OLS coefficient 

while 566 (46.6%) of the 1,164 census tracts had local coefficients lower than the OLS 

coefficient. This variability in the model parameters suggests that the relationship between 

number of public beaches accessible within a 20-mile journey and proportion (%) of population 

having a four-year university degree or higher is not stationary within the study area at the 

census tract level. 
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 VEHIC (Model 1). The map of local coefficients for the GWR Model 1 for VEHIC is 

shown in Figure 49 (p. 160). According to Table 18, the OLS coefficient for VEHIC is -0.101 (p 

< 0.05), indicating inequitable access to public beaches with regard to vehicle ownership across 

the study area. However, Figure 49 and Table 19 show that both positive (n=480, 41.2%) and 

negative (n=684, 58.7%) correlations occur across the study area. The local coefficients for 

VEHIC ranged from -29.34 (Brandon Township, Oakland County) to 19.55 (city of Rochester, 

Oakland County), with a mean of 1.12. Strong positive correlations (local coefficient > 8.86), 

indicating equitable access to public beaches with regard to vehicle ownership, were observed in 

the city of Rochester Hill and in the township of Oakland, Oakland County, and in the townships 

of Armada, Lenox, Macomb, Ray, and Richmond, Macomb County. Strong negative correlations 

(local coefficient < -11.1), indicating inequitable access to public beaches with regard to vehicle 

ownership, emerged in the cities of Novi and Troy and in the townships of Brandon, Groveland, 

Independence, Oxford, Oakland County; in the townships of Northville and Plymouth, Wayne 

County; and in the city of Sterling Heights, Macomb County. Six hundred thirty (54.1%) of the 

1,164 census tracts had local coefficients greater than the OLS coefficient while 534 (45.8%) of 

the 1,164 census tracts had local coefficients lower than the OLS coefficient. This variability in 

the model parameters suggests that the relationship between number of public beaches accessible 

within a 20-mile journey and proportion (%) of households without a vehicle is not stationary 

within the study area at the census tract level. 

 R
2
 (Model 1). Figure 50 (p. 161) shows the spatial distribution of local R

2
 by census 

tract. The global value of R
2
 was 0.379, but the local value of R

2
 varied over the study area from 

0.02 (Harrison township, Macomb County) to 0.92 (city of Sterling Heights, Macomb County), 

with a mean of 0.690. As seen in Table 19, the majority of the census tracts (n=1,120, 96.2%) 
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had local R
2
 values greater than the global value of R

2
 while only 44 (3.7%) of the 1,164 census 

tracts had local R
2
 values lower than the global value of R

2
. The local model had the best 

explanatory power in the cities of Madison Heights, Rochester Hills, Royal Oak, and Troy and in 

the townships of Addison, Lyon, Milford, Oakland, Orion, and Oxford, Oakland County; in the 

cities of Sterling Heights and Warren and in the townships of Armanda, Bruce, Macomb, Ray, 

Richmond, Shelby, and Washington, Macomb County; and in the cities of Dearborn, Detroit, 

Livonia, and Westland and in the townships of Redford and Northville, Wayne County (in excess 

of 80%). However, the local model had very low explanatory power in the township of Harrison, 

Macomb County, and in the city of Romulus and in the townships of Huron and Sumpter, Wayne 

County (as low as 20%), indicating that level of access to public beaches in these areas is not 

explained adequately by the set of explanatory variables with the local R
2
 falling below the 

global value of 0.379 (OLS Model 1) and the local mean value of 0.690 (GWR Model 1). These 

findings indicate that the explanatory power of the local model is not stationary, indicating that 

the degree of model performance is spatially heterogeneous across the study area.  
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Figure 45. Spatial distribution of local parameter estimates for proportion (%) of Black 

population by census tract, DMA (Model 1)  
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Figure 46. Spatial distribution of local parameter estimates for proportion (%) of Asian 

population by census tract, DMA (Model 1)  
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Figure 47. Spatial distribution of local parameter estimates for population per square mile by 

census tract, DMA (Model 1)  
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Figure 48. Spatial distribution of local parameter estimates for population with a four-year 

university degree or higher by census tract, DMA (Model 1)  
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Figure 49. Spatial distribution of local parameter estimates for proportion (%) of households 

without a vehicle by census tract, DMA (Model 1) 
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Figure 50. Spatial distribution of local R
2
s

 
by census tract, DMA (Model 1) 
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 POPD (Model 2). The map of local coefficients for the GWR Model 2 for POPD is 

shown in Figure 51 (p. 166). According to Table 18, the OLS coefficient for POPD is 0.180 (p < 

0.05), indicating inequitable access to public beaches with regard to population density across 

the study area. However, Figure 51 and Table 19 show that both positive (n=771, 66.2%) and 

negative (n=393, 33.7%) correlations occur across the study area. The local coefficients for 

POPD ranged from -1.29 (city of Warren, Macomb County) to 1.40 (Shelby Township, Oakland 

County), with a mean of 0.14. Strong positive correlations (local coefficient > 1.04), indicating 

inequitable access to public beaches with respect to population density, were observed in the 

cities of Rochester Hills and Troy and in the townships of Bloomfield and Oakland, Oakland 

County, and in the townships of Shelby and Washington, Macomb County. Strong negative 

correlations (local coefficient < -0.76), indicating equitable access to public beaches with respect 

to population density, emerged in the townships of Groveland, Holly, Independence, Rose, 

Springfield, and Waterford, Oakland County; in the cities of Roseville and Warren, Macomb 

County; and in the city of Livonia and in the township of Northville, Wayne County. Seven 

hundred seventy (66.1%) of the 1,164 census tracts had local coefficients greater than the OLS 

coefficient while 394 (33.8%) of the 1,164 census tracts had local coefficients lower than the 

OLS coefficient. This variability in the model parameters suggests that the relationship between 

the minimum distance to the nearest public beach and population density is not stationary within 

the study area at the census tract level. 

 AGE64 (Model 2). The map of local coefficients for the GWR Model 2 for AGE64 is 

shown in Figure 52 (p. 167). According to Table 18, the OLS coefficient for AGE64 is 0.084 (p 

< 0.05), indicating inequitable access to public beaches with respect to elderly population across 

the study area. However, Figure 52 and Table 19 show that both positive (n=628, 53.9%) and 
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negative (n=536, 46.0%) correlations occur across the study area. The local coefficients for 

AGE64 ranged from -1.01 (city of Detroit, Wayne County) to 2.85 (Canton Township, Wayne 

County), with a mean of 0.12. Strong positive correlations (local coefficient > 1.06), indicating 

equitable access to public beaches with regard to elderly populations, were observed in the cities 

of Royal Oak and Troy and in the townships of Brandon and Independence, Oakland County. 

Strong negative correlations (local coefficient < -0.82), indicating inequitable access to public 

beaches with regard to elderly populations, emerged in the townships of Armada, Bruce, Ray, 

and Washington and in the city of Warren, Macomb County; in the cities of Ferndale and 

Rochester Hills and in the townships of Addision and Oakland, Oakland County; and in the cities 

of Detroit and Livonia, Wayne County. Five hundred fifty (67.5%) of the 1,164 census tracts had 

local coefficients greater than the OLS coefficient while 614 (52.7%) of the 1,164 census tracts 

had local coefficients lower than the OLS coefficient. This variability in the model parameters 

suggests that the relationship between the minimum distance to the nearest public beach and 

proportion (%) of population over age 64 is not stationary within the study area at the census 

tract level. 

 EDU (Model 2). The map of local coefficients from the GWR Model 2 for EDU is 

shown in Figure 53 (p. 168). According to Table 18, the OLS coefficient for EDU is -0.257 (p < 

0.05), indicating inequitable access to public beaches with regard to education attainment across 

the study area. However, Figure 53 and Table 19 show that both positive (n=536, 46.0%) and 

negative (n=628, 53.9%) correlations occur across the study area. The local coefficients for EDU 

ranged from -3.25 (city of Detroit, Wayne County) to 2.73 (Clinton Township, Macomb County), 

with a mean of -0.02. Strong positive correlations (local coefficient > 1.82), indicating equitable 

access to public beaches with respect to education attainment, were observed in the cities of 
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Fraser, Sterling Heights, and Warren and in the townships of Chesterfield, Clinton, Harrison, and 

Macomb, Macomb County; and in the cities of Dearborn Heights, Detroit, Flat Rock, Garden 

City, Riverview, Trenton, Westland, and Woodhaven and in the townships of Brownstown, 

Grosse Ile, and Huron, Wayne County. Strong negative correlations (local coefficient < -1.86), 

indicating inequitable access to public beaches with respect to educational attainment, emerged 

in the cities of Detroit and Romulus and in the townships of Sumpter and VanBuren, Wayne 

County, in the cities of Eastpointe, Sterling Heights, and Warren and in the townships of Armada, 

Bruce, Ray, Richmond, Shelby, and Washington, Macomb County. Five hundred sixty-six 

(48.6%) of the 1,164 census tracts had local coefficients greater than the OLS coefficient while 

598 (51.3%) of the 1,164 census tracts had local coefficients lower than the OLS coefficient.  

This variability in the model parameters suggests that the relationship between the minimum 

distance to the nearest public beach and proportion (%) of population having a four-year 

university degree or higher is not stationary within the study area at the census tract level. 

 R
2
 (Model 2). Figure 54 (p. 169) shows the spatial distribution of local R

2
 by census 

tract. The global value of R
2
 was 0.185, but the local value of R

2
 varied over the study area from 

0.27 (city of Rochester Hills, Oakland County) to 0.92 (city of River Rouge, Wayne County), 

with a mean of 0.70. As seen in Table 19, all census tracts (n=1,164, 100.0%) had local R
2
 values 

greater than the global value of R
2
. The local model had the best explanatory power in the cities 

of Dearborn, Dearborn Heights, Detroit, Lincoln Park, Romulus, and Westland and in the 

townships of Brownstown, Huron, and Sumpter, Wayne County; in the cities of Royal Oak, 

Southfield, and Troy, Oakland County; and in the cities of Sterling Heights and Warren, 

Macomb County (in excess of 80%). However, the local model had very low explanatory power 

in the city of Rochester Hills and in the townships of Groveland, Highland, Holly, Rose, 
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Springfield, and White Lake, Oakland County (as low as 40%), indicating that level of access to 

public beaches in these areas is not explained adequately by set of explanatory variables, with the 

local R
2
 falling below the local mean value of 0.70 (GWR Model 2). These findings indicate that 

the explanatory power of the local model is not stationary, indicating that the degree of model 

performance is spatially heterogeneous across the study area.  
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Figure 51. Spatial distribution of local parameter estimates for population per square mile by 

census tract, DMA (Model 2) 
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Figure 52. Spatial distribution of local parameter estimates for proportion (%) of population over 

age 64 by census tract, DMA (Model 2)  
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Figure 53. Spatial distribution of local parameter estimates for population with a four-year 

university degree or higher by census tract, DMA (Model 2)  
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Figure 54. Spatial distribution of local R
2
s

 
by census tract, DMA (Model 2) 
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 O3R4: “How well does the GWR approach perform in terms of model diagnostics 

compared to the traditional OLS approach?” This section is divided into three parts: (1) 

comparison of spatial autocorrelation of residuals between OLS and GWR; (2) comparison of 

model performance between OLS and GWR; and (3) verification of improvement in model fit of 

GWR over OLS. 

 Comparison of spatial autocorrelations of residuals between OLS and GWR. Because 

statistically significant spatial clustering of high and/or low residuals indicates an absence of key 

explanatory variables, which effectively could capture the inherent spatial structure in the 

dependent variable (Gao & Li, 2011), global Moran‘s I of residuals from each of the OLS and 

GWR models were computed to compare the degree of spatial autocorrelation between them 

(Table 20).   

Table 20.  

Comparison of spatial autocorrelations of residuals between OLS and GWR 

 
Model 1 Model 2 

OLS GWR OLS GWR 

Moran‘s I 

(residual) 
0.36 0.10 0.61 0.15 

z-score 63.87 18.5 105.83 26.34 

p-value < 0.01 < 0.01  < 0.01 < 0.01 

 

 As seen in Table 20, although significant positive spatial autocorrelation is found for 

both OLS models, as characterized by Moran‘s I statistic (Model 1: 0.36; Model 2: 0.61) and p-

value (Model 1: p < 0.05; Model 2: p < 0.05), and both GWR models, as characterized by 

Moran‘s I statistic (Model 1: 0.10; Model 2: 0.15) and p-value (Model 1: p < 0.05; Model 2: p < 

0.05), the global Moran‘s I statistics of residuals from the GWR models are much lower than 



 171  

those for the OLS models. These findings show that GWR models can improve model fit by 

reducing the spatial autocorrelation in the residuals.  

 Comparison of model performance between OLS and GWR. The purpose of comparing 

the GWR and OLS models was to identify whether GWR models exhibit better model 

performance than the corresponding OLS models. The comparison was performed by comparing 

the R
2
 and the AICc values for both GWR and OLS models. According to Gilbert and 

Chakraborty (2011), a model with a lower AICc and higher R
2
 value is preferable to a model 

with a higher AICc and lower R
2
 value. In other words, if the adjusted R

2
 value of the GWR is 

higher and the AICc value of the GWR is at least three points lower than those of the OLS, the 

GWR model is considered to improve singificantly upon its corresponding OLS model. The 

values of adjusted R
2
 and AICc from both OLS and GWR models are shown in Table 21.  

Table 21.  

Comparison of model performance between OLS and GWR models 

Model  OLS/GWR Adjusted R
2 

AICc 

Model 1 
OLS 0.379 11,839.75 

GWR 0.693 8,679.89 

Model 2 
OLS 0.185 6,300.11 

GWR 0.702 4,085.73 

 

 For Model 1, the adjusted R
2
 dramatically increased from 0.379 for the global OLS 

model to 0.693 for the local GWR model. AICc considerably decreased from 11,839.75 for the 

global regression model to 8,679.89 for the local GWR model. For Model 2, the adjusted R
2
 

value dramatically increased from 0.185 for the global OLS model to 0.702 for the local GWR 

model. AICc considerably decreased from 6,300.11 for the global regression model to 4,085.73 

for the local GWR model. These findings indicate that GWR models provide better goodness-of-
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fit than OLS models when assessing the spatial distribution of access to public beaches in the 

DMA.   

 Verification of improvement in model fit of GWR over OLS. To verify the 

improvement in model fit of GWR over OLS, the null hypothesis that the GWR model represents 

no improvement over a global model was tested by conducting analysis of variance (ANOVA) 

(Table 22). According to Model 1, the sum of squares (SS) value for residuals dramatically 

decreased from 1,736,219.80 for the OLS model to 71,325.18 for the GWR model. In terms of 

Model 2, the SS value for residuals also decreased, from 15,016.30 in the OLS model to 1,377.64 

in the GWR model. All F-statistics (model 1: 69.77; model 2: 29.59) were statistically significant 

at the 0.05 level. Therefore, the null hypothesis can be rejected based upon the ANOVA results, 

indicating that the GWR technique offers significant improvement over the OLS model.  

Table 22.  

ANOVA test for improvement in model fit of GWR over OLS 

Model Source SS DF MS F p-value 

Model 1 

Global residuals 1,736,219.80 1,150.00    

GWR improvement 1,664,894.61 288.270 5,775.46   

GWR residuals 71,325.18 861.73 82.77 69.77 < 0.01 

Model 2 

Global residuals 15,016.30 1,150.00    

GWR improvement 13,638.66 288.27 47.31   

GWR residuals 1,377.64 861.73 1.59 29.59 < 0.01 

Note: SS: sum of squares; DF: degrees of freedom; MS: residual mean square; F: F-statistic 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

 This chapter is divided into three parts: (1) a summary of the study and discussion of key 

findings; (2) implications for and contributions to practice and methods; and (3) limitations and 

recommendations for future research.  

Summary of the Study and Discussion of Key Findings 

 The purpose of this study was to demonstrate the utility of spatial statistical techniques 

for assessing the degree of equity inherent in the distribution of access to beach-based recreation 

opportunities within the framework of environmental justice. In this section, the results of this 

location-specific study are summarized and key findings with reference to the three research 

objectives discussed.  

Objective One: Assessing the Spatial Distribution of Public Beaches and Determining 

Levels of Access to Public Beaches in the DMA 

 The first objective of the study was to (1) assess the spatial distribution of public 

beaches and (2) determine levels of access to public beaches in the DMA. GIS-based spatial 

centrographic analyses, in combination with point pattern analyses and network analysis, were 

used to assess the spatial distribution of public beaches and to measure levels of access to them. 

The results indicated substantial regional disparities in access to public beaches resulting from 

spatial clustering of public beaches in the DMA. Specifically, Oakland County has much better 

access than Wayne and Macomb Counties.  

 Public beaches in the DMA were geographically concentrated in Oakland County 

(Figure 25, p. 101). This finding may be explained partially by the physical geography of the 

study area (i.e., the existence of lakes and rivers); 3,342 (74.1%) of the 4,507 lakes and 168 
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(94.3%) of the 178 public beaches in the DMA are concentrated in Oakland County. However, 

the physical geography of the study area does not explain why relatively few public beaches are 

located alongside the river in Wayne County. This may be related to the different types of land 

use alongside the Detroit River, one of the busiest waterways in the world and an important 

transportation route connecting Lakes Michigan, Huron, and Superior to the St. Lawrence 

Seaway and Erie Canal (Hartig, Zarull, Ciborowski, Gannon, Wilke, Norwood, & Vincent, 2009). 

The Detroit River became notoriously polluted and toxic due to rapid industrialization at the turn 

of the 20
th

 century and the construction of industrial-related land uses such as factories, 

piers/docks, commercial buildings, and warehouses located adjacent to the river. According to 

Smoyer-Tomic et al. (2004), the quality of LDLUs is a major factor that attracts visitors. Despite 

vast restoration efforts such as the Detroit River Remedial Action Plan in recent years, negative 

perceptions of the water quality of the Detroit River might be related to the lack of public 

beaches. This study highlights the need to consider the quality of LDLUs when measuring the 

level of access to them. Physical characteristics of the shoreline of the Detroit River may also be 

related to the lack of public beaches. Generally, beach development is based on the physical 

characteristics of the shoreline such as gentle gradient, clean water, and shallow water level. 

However, the physical characteristics of the shoreline of the Detroit River are not amenable due 

to its depth and steep gradient. In addition, privatization of waterfront areas may be another more 

fundamental reason for lack of public beaches.  

 Another key finding of this study is the regional disparity in access to public beaches. 

Specifically, residents in Oakland County have much better access than residents in Wayne and 

Macomb Counties (Figures 27 and 28, p. 106-107). This finding may also be explained by the 



 175  

nature of the study area, as discussed above, thereby supporting Talen‘s (1997) argument that 

level of access to LDLUs is associated with their distribution.  

Based on the network analyses conducted, different accessibility measures indicate 

different spatial patterns of accessibility (Figures 27-30, p. 106-107 and 125-126). There is 

substantial regional differential between levels of access according to the minimum distance and 

container approaches. Such different spatial patterns of accessibility may be due to the different 

definitions of accessibility employed by these two approaches. Specifically, the minimum 

distance approach defines the level of access to public beaches as the network distance from the 

tract centroid to the nearest public beach, whereas the container approach defines the level of 

access to public beaches as the number of public beaches within 20 miles of the tract centroid. 

The container approach map (Figure 27, p. 106) shows that census tracts with the highest levels 

of access to public beaches are observed in Oakland County while the minimum distance 

approach map (Figure 28, p. 107) shows that census tracts with the highest levels of access to 

public beaches are located throughout the study area. This finding is consistent with those 

reported by previous studies (Smoyer-Tomic et al., 2004; Talen & Anselin, 1998; Zhang et al., 

2011), and suggests that utilizing two or more access measures can provide a better sense of the 

range of actual levels of access and is therefore preferable to employing any one approach. 

Further, employing more than one access approach recognizes the potential for variations in 

residents' perceptions about beach accessibility.   

As shown in Figure 27 (p. 106), access in this study appears to be based heavily on 

availability, which is one of the geographic dimensions of access (Penchansky & Thomas, 1981). 

Although the availability of LDLUs commonly has been measured as the number of LDLUs or 

the total area of LDLUs within a geographic unit, such as a census tract, zip code, or local 
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neighborhood unit, such traditional container-based measures cannot consider spatial 

externalities and edge effects, which have been recognized as methodological issues that can lead 

to create biased access outcomes. This study included a more accurate access measure by dealing 

with spatial externalities and edge effects using GIS-based network analysis.  

Objective Two: Exploring the Spatial Patterns of Access to Public Beaches Relative to 

Residents’ Demographic and Socioeconomic Status 

 The second objective of the study was to explore the spatial patterns of access to public 

beaches relative to residents‘ demographic and socioeconomic statuses using spatial 

autocorrelation analyses. The results indicated that the distributions of access to public beaches 

and residents‘ racial/ethnic and socioeconomic variables were spatially autocorrelated at the 

global and local levels. In particular, the majority of the hot spots for level of access to public 

beaches (number of public beaches within 20 miles of the tract centroid), housing value, income, 

age (proportion of population over age 64), educational attainment, housing occupancy, and 

water area were identified in Oakland County, whereas the hot spots for level of access to public 

beaches (shortest road network distance from tract centroid to the nearest public beach), 

race/ethnicity (proportions of Black, Asian, and Hispanic populations), population density, age 

(proportion of population under age 18), economic status, language spoken at home, and non-

vehicle ownership were concentrated in Wayne County. From an equity perspective, these 

findings indicate racial segregation and a spatial mismatch between level of access to public 

beaches and residents‘ socioeconomic statuses across the study area.   

 As shown in Table 15 (p. 109), one key finding was the existence of positive spatial 

autocorrelation for all variables (including levels of access to public beaches and residents‘ 

racial/ethnic and socioeconomic statuses), indicating a tendency toward the spatial clustering of 
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the attribute for each variable in which census tracts exhibiting high (or low) levels of that 

variable were more likely to be situated next to census tracts with similarly high (or low) levels. 

This finding supports previous equity studies of LDLUs that show that the spatial clustering of 

people exhibiting similar demographic and socioeconomic variables is almost inevitable for two 

reasons. First, human populations generally live in spatial clusters rather than according to 

random distributions (Deng et al., 2008; Smoyer-Tomic et al., 2004; Talen & Anselin, 1998). 

Second, many people prefer to live with others similar to themselves (Kalmijn, 1998).   

Anselin (1988) stated that an occurrence of spatial autocorrelation may be explained by 

several reasons. The first cause of spatial autocorrelation may be measurement errors when data 

are collected at aggregated levels. As noted by Anselin (1988), ―if there is a disjunction between 

the underlying process of the data collected and areal unit used, this may cause the observed 

characteristics to spill over across different areal units, possibly causing spatial dependence and 

spatial autocorrelation‖ (p. 64). The second cause of spatial autocorrelation is related to the way 

phenomena are geographically organized. As noted by Anselin (1988, p. 64), 

spatial dependence is related to human behavior and human geography. The locations 

and distances are important factors influencing spatial interaction, and they may lead to 

interdependencies of human behavior in space. For this reason, an observation of any 

given space is influenced by what happens in other places. This will likely cause some 

levels of spatial dependence. 

The existence of spatial autocorrelation in this study is more appropriately explained by the first 

reason because, as stated in Chapter 3, the aggregation error produced by employing the census 

tract as the unit of analysis may cause spatial dependence and spatial autocorrelation. As noted 

by Smoyer-Tomic et al. (2004), ―aggregation error can be reduced by integrating finer resolution 
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data that better indicate the spatial distribution of individuals living within highly aggregated 

units‖ (p. 289).  

Although census tracts represent the smallest territorial unit for which population data 

are available in many counties in the US (Estabrooks et al., 2003), census tracts are subdivided 

into block groups and blocks. The findings of this study suggest that the choice of a finer areal 

unit might have altered results due to the MAUP. Several authors, such as Cressie (1993) and 

Griffith and Layne (1999), indicated that measuring the degree of spatial autocorrelation tends to 

increase the percentage of variance explained for the dependent variable in the predictive model 

by compensating for unknown variables missing from a model.  

 Another finding of this study is that substantial racial segregation between Blacks and 

non-Blacks exists across the DMA. According to Card and Rothstein (2007), racial segregation 

is defined as the separation of humans into racial groups in daily life. In other words, it is the 

spatial separation of activities such as eating in restaurants, drinking from a water fountain, using 

urban parks, attending school, and others. As shown in Figure 31 (p. 127), hot spots of Black 

population are concentrated within the city of Detroit, whereas cold spots exist in the Detroit 

suburbs. Detroit‘s history is characterized by racial conflict, represented by racial riots in 1943 

and 1967 (Fine, 1989). In addition, hot spots of Asian population are concentrated in Wayne 

County, in the cities of Dearborn, Melvindale, and Romulus, and, in Oakland County, in the city 

of Pontiac, whereas hot spots of Hispanic population are concentrated in Wayne County, in the 

cities of Allen Park, Detroit, Ecorse, and Lincoln Park, and, in Oakland County, in the city of 

Pontiac. Previous studies have regarded Black, Asian, and Hispanic populations as minority 

groups in urban areas (Lindsey et al., 2001; Maroko et al., 2009). The findings of this study, at 

least in terms of the Black, Asian, and Hispanic populations in the DMA, support Deng‘s (2008) 
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statement that ―minority groups often live in concentrated communities‖ (p. 222). According to 

Nathan (1987), the numbers, proportions, and concentrations of the urban poor increased as the 

population of central cities declined between 1970 and 1980. In that period, the population of 

Detroit fell by 20%, but the Black population increased from 43.6% to over 60% of the total 

population (Wilson, 1992). The concentration of the Black population in the city of Detroit could 

be due to industrial decline, uneven development, and racial discrimination. As noted by Wilson 

(1992, p. 203),  

massive losses of industrial jobs impacted most heavily on blacks in Detroit. Residential 

segregation trapped blacks, particularly low-income blacks, within the central city. 

Economic growth in the peripheral suburban areas, continual decline in the central city, 

and the concentration of blacks in the central city, left blacks spatially separated from 

areas of job growth. Direct and institutional discrimination further reduced job 

opportunities for blacks. 

As Gilbert and Charkraborty (2011) explained, neighborhoods with minority groups often exhibit 

lower household incomes, lower housing values, higher population density, lower levels of 

educational attainment, and lower vehicle ownership. The LISA maps of population density 

(Figure 34, p. 130), household income (Figure 35, p. 131), housing values (Figure 36, p. 132), 

educational attainment (Figure 39, p. 135), population below the poverty line (Figure 41, p. 137), 

and vehicle ownership (Figure 43, p. 139) provide empirical evidence to confirm Gilbert and 

Charkrabory‘s (2011) statement.  

 Another finding of this study is the spatial mismatch between level of access to public 

beaches and residents‘ socioeconomic status. This finding is consistent with the results of 

previous studies that populations with low-socioeconomic-status minorities tend to be 
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disproportionately denied the multiple benefits of access to LDLUs. According to Wicks and 

Crompton (1986), levels of access to LDLUs should be superior for groups with high-social 

needs (e.g., non-White, those earning low incomes, youth and the elderly, those residing in more 

densely populated areas, those having low educational attainment, those with non-English 

spoken at home, and those without a vehicle) because groups having low social need (e.g., White, 

those earning high incomes, those residing in less densely populated areas, those having high 

educational attainment, and those with a vehicle) have more options available to them for 

accessing alternative recreational opportunities that, for example, require car travel or 

registration fees. However, this study shows that neighborhoods with high social needs (except 

Black population) had limited access to public beaches while neighborhoods with low social 

needs had much higher levels of access to public beaches.  

The spatial mismatch between level of access to public beaches and residents‘ 

socioeconomic status may be explained by several theoretical models: market-based equity 

(Lucy, 1981; Crompton & Wicks, 1988), deprivation amplification (MacIntyre, 2000), and 

marginality (Park, 1928). First, as discussed in Chapter 2, the model of market-based equity 

assumes that an inequity in goods and services distribution occurs if minority groups cannot pay 

the necessary market price (Deng et al., 2008). As shown in Table 4 (p. 61), the median housing 

value (MHV) of Oakland County ($177,600) is greater than the MHVs of Wayne County 

($97,100) and Macomb County ($134,700). Not only do the residents of Oakland County exhibit 

higher levels of purchasing power (e.g., higher incomes and housing values), but they are able to 

use that purchasing power to acquire properties in more attractive areas close to desirable 

amenities. Authors such as Nicholls and Crompton (2005a, 2005b, 2005c, 2007) have 

demonstrated the premiums associated with properties adjacent to or nearby a variety of land- 
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and water-based recreation opportunities. Second, the spatial mismatch between level of access 

to public beaches and residents‘ socioeconomic status in the DMA also may be discussed in 

relation to MacIntyre‘s (2000) model of ―deprivation amplification,‖ which refers to a pattern of 

diminished opportunities related to the features of the local environment. As noted by Taylor et 

al. (2007, p. 55),  

deprivation amplification indicates that in places where people have limited resources 

(e.g., money, private transportation), there are fewer safe, open green spaces where 

people can walk, jog, or take their children to play; children‘s playgrounds are less 

attractive; and there are more perceived threats (e.g., litter, graffiti, youth gangs, assaults) 

in these environments.  

The median household income (MHI) of Oakland County ($65,636) is substantially greater than 

the MHIs of Wayne County ($41,504) and Macomb County ($53,628) (Table 4, p. 61). 

Therefore, the theory of deprivation amplification could help to explain the variations in levels of 

access to public beaches in the DMA. Third, the spatial mismatch between level of access to 

public beaches and residents‘ socioeconomic status in the DMA may also be explained by the 

theory of ―marginality,‖ which attempts to explain socio-cultural, political, and economic 

constraints, whereby disadvantaged groups have difficulties gaining access to resources (Park, 

1928). As noted by West (1989), ―because of lower incomes, minorities are seen as having 

constraints on their ability to afford the cost of participation, or of transportation to recreation 

sites‖ (p. 11). This study provides strong empirical evidence to support the theory of 

―marginality.‖   
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Objective Three: Demonstrating the Feasibility and Utility of GWR when Measuring the 

Equity of Access to Public Beaches and Comparing the Results of This Approach with 

Those of Traditional Multivariate Regression (OLS) Techniques 

 The third objective of the study was to (1) investigate the spatial relationships between 

levels of access to public beaches and residents‘ racial/ethnic and socioeconomic statuses using 

both OLS and GWR models and (2) compare the statistical diagnostics from the OLS and GWR 

models. Two separate OLS regression analyses were performed to examine the effects of 

residents‘ demographic and socioeconomic statuses on the number of public beaches accessible 

within a 20-mile journey of each tract centroid (Model 1) and the minimum distance to the 

nearest public beach from each tract centroid (Model 2). OLS Model 1 indicated that equitable 

access to public beaches in the DMA exists with respect to proportions of Black and Asian, but 

inequitable access to public beaches in the DMA exists with respect to population density, 

educational attainment, and vehicle ownership. OLS Model 2 showed that inequitable access to 

public beaches in the DMA exists with respect to population density, proportion of elderly 

population, and educational attainment.  

The same dependent and independent variables from the global OLS models also were 

entered into two GWR models to explore spatial variations between levels of access to public 

beaches and residents‘ racial/ethnic and socioeconomic statuses. The two GWR models explored 

spatially varying relationships between variables, with great improvements in model 

performance (as measured by R
2
, AICc, and Moran‘s I statistics of standardized residuals) over 

their corresponding OLS models. Table 17 (p. 142) indicates that the results of the OLS models 

explained only 37.9% (Model 1) and 18.5% (Model 2) of the variation in public beach access. 

These results are generally consistent with those of previous equity studies of LDLUs (Deng et 
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al., 2008 [R
2
: 0.28]; Maroko et al., 2009 [R

2
: 0.23]; Porter & Tarrant, 2001 [R

2
: 0.18]; Tarrant & 

Cordell, 1999 [R
2
: 0.27]). However, those relatively low levels of explanatory power imply that 

the OLS models may not be properly specified. This may be explained by two reasons. First, 

there may be some missing determinants of level of access to public beaches that could improve 

model performance, such as median contract rent, proportion of white collar workers, average 

family size, and proportion of unemployed. Second, local variations exist in the relationships 

between level of access to public beaches and residents‘ demographic and socioeconomic status 

that can reduce the explanatory power of the global model. Several authors such as Bailey and 

Gatrell (1995), Brunsdon et al. (1996), Fotheringham et al. (2002), and O‘Sullivan and Unwin 

(2003) indicated that local variations between variables can reduce the explanatory power of 

models when employing traditional multivariate techniques. Table 18 (p. 148) indicates that the 

GWR models provide more desirable statistical results, including higher R
2
, lower standardized 

residuals, and lower AICc than the global OLS models. Specifically, the adjusted R
2
 dramatically 

increased from 0.379 (Model 1) and 0.185 (Model 2) for the global OLS models to 0.693 (Model 

1) and 0.702 (Model 2) for the local GWR models, whereas the AICc considerably decreased 

from 11,839.75 (Model 1) and 6,300.11 (Model 2) for the global OLS models to 8,679.89 

(Model 1) and 4,085.73 (Model 2) for the local GWR models. These results are consistent with 

those of previous environmental equity studies of locally unwanted land uses (Gebreab & Diez 

Roux, 2012; Gilbert & Charkraborty, 2011; Mennis & Jordan, 2005) and LDLUs (Maroko et al., 

2009). Those findings not only indicate the need for researchers to realize the usefulness of 

GWR, but also suggest the need for additional data collection at the individual level, e.g., via a 

resident survey or qualitative methods, to identify missing explanatory variables that might 

improve model performance.  
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 Another finding of this study is that the GWR models identified spatially varying 

relationships between level of access to public beaches and residents‘ demographic and 

socioeconomic statuses at a local level (Figures 45-54, p. 156-169). While this study 

demonstrates the utility of GWR as an exploratory tool and illustrates how statistical 

relationships between level of access to public beaches and residents‘ demographic and 

socioeconomic statuses vary across the DMA, the findings represent a starting point for future 

quantitative or qualitative investigations into the various social, political, economic, and 

historical factors associated with the inequities of access to recreation opportunities observed in 

specific areas. The study suggests that a more detailed analysis of the interrelationships between 

residents‘ political attitudes, land use, industrial development, road networks, and the 

demographic and socioeconomic settlement patterns of each racial or ethnic group should be 

conducted to understand why the analytical results for each variable differ across the DMA.  

 Another finding of this study is that the GWR models provided more accurate parameter 

estimates than the OLS models by exploring important local variations between the variables. As 

shown in Table 17 (p. 142), OLS Model 1 indicated that equitable access to public beaches in the 

DMA exists with respect to proportions of Black and Asian populations. These findings, 

however, were unexpected and are inconsistent with those of previous studies (Abercrombie et 

al., 2008; Deng et al., 2008; Gilbert & Chakraborty, 2011; Moore et al., 2008; Talen, 1997), and 

may be due to local variations between the variables that are caused by spatial dependence and 

spatial heterogeneity. As shown in Figure 45 (p. 156), GWR Model 1 explored important local 

variations between the number of public beaches accessible within a 20-mile journey and the 

proportion (%) of Black population across the study area. Specifically, equitable access to public 

beaches with respect to Black population was observed in the cities of Troy and Rochester Hills, 



 185  

in the townships of Addison and Oakland in Oakland County, and in the townships of Bruce and 

Washington in Macomb County, whereas inequitable access to public beaches with respect to 

Black population was observed in the city of Sterling Heights and in the townships of Shelby and 

Washington, Macomb County. Figure 46 (p. 157) indicates that GWR Model 1 also explored 

important local variations between the number of public beaches accessible within a 20-mile 

journey and proportion (%) of Asian population across the study area. Specifically, equitable 

access to public beaches with respect to Asian population was observed in the cities of 

Farmington Hills and Novi, and in the townships of Lyon and Milford, in Oakland County, as 

well as in the city of Sterling Heights, Macomb County, whereas inequitable access to public 

beaches with respect to Asian population emerged in the townships of Canton and Plymouth, 

Wayne County. According to Fotheringham et al. (2002), ignoring local variations between 

variables gives rise to inaccurate results, such as biased parameter estimates and misleading 

significance tests. In this study, OLS Model 1 failed to explore important local variations 

between variables. As a result, the global coefficients of BLACK (0.190) and ASIAN (0.951) 

were obtained through a linear combination of the independent variables without any 

consideration of spatial effects. However, as shown in Table 18 (p. 148), the mean GWR 

coefficients of BLACK (-1.98) and ASIAN (-1.39) for NOPB (number of public beaches within 

20 miles of tract centroid) indicated inequitable access to public beaches by exploring local 

variations between the variables. These results are consistent with those of previous studies 

(Deng et al., 2008 [OLS]; Gilbert & Chakaraborty, 2011 [GWR]; Lindsey et al., 2001 [OLS]; 

Moore et al., 2008 [OLS]), and clearly demonstrate the utility and feasibility of GWR when 

measuring the degree of equity inherent in the distribution of access to public beaches.   
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 The two OLS models showed that inequitable access to public beaches in the DMA 

exists with respect to population density (Model 1 and Model 2), proportion of elderly 

population (Model 2), educational attainment (Model 1 and Model 2), and vehicle ownership 

(Model 2) (Table 17, p. 142). These findings are consistent with previous literature showing that 

inequitable access to LDLUs is associated with residents‘ educational attainment (Estabrooks et 

al., 2003; Porter & Tarrant, 2001) and vehicle ownership (Lindsey et al., 2001). Although the 

elderly population (Nicholls, 2001; Nicholls & Shafer, 2001) and groups residing in more 

densely populated areas (Lindsey et al., 2001; Maroko et al., 2009; Nicholls, 2001; Nicholls & 

Shafer, 2001) have been considered as ‗needy‘ groups who should be compensated with better 

access to LDLUs, there was no empirical evidence to support inequitable access to LDLUs 

associated with those variables in the DMA. Study areas are each unique and these variations in 

findings highlight these differences.   

Traditionally, race and ethnicity have been recognized as the dominant variables 

accounting for inequitable access to LDLUs (Abercrombie et al., 2008; Deng et al., 2008; Gilbert 

& Chakraborty, 2011; Moore et al., 2008; Talen, 1997). In this study, however, the most 

dominant variable related to inequitable access to public beaches was educational attainment. 

Several authors such as Gilliland et al. (2006), Maroko et al., (2009), and Smoyer-Tomic et al. 

(2004) excluded the effects of racial/ethnic variables but suggested the importance of other 

socioeconomic variables (e.g., educational attainment, age, vehicle ownership, population 

density, language, dwelling structure, family composition, and occupation) in accounting for 

inequitable access to LDLUs. This finding provides strong empirical evidence that regional 

disparities in level of access to LDLUs can be more influenced by residents‘ socioeconomic 

status than by their race and ethnicity. It is important to recognize the interrelationship between 
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variables when applying multiple exploratory variables due to multicollinearity, the statistical 

phenomenon in which two or more exploratory variables in a multiple regression model are 

highly correlated, meaning they reflect the same information and, hence, introduce redundancy  

(Wichers, 1975).  

Although previous equity studies have regarded those without a vehicle and those 

residing in more densely populated areas as needy groups (Lindsey et al., 2001; Nicholls, 2001; 

Nicholls & Shafer, 2001; Maroko et al., 2009), only few empirical studies have assessed the 

impacts of those variables inherent in the distributions of land-based recreational settings such as 

urban parks and trails. In this study, public beaches are inequitably distributed with regard to 

non-vehicle ownership and population density. The findings of this study also can provide strong 

empirical evidence that inequitable distributions of access to public beaches can be associated 

with non-vehicle ownership and population density across the study area.   

Implications 

Previous equity studies of LDLUs have focused on land-based LDLUs such as parks, 

urban trails, playgrounds, and golf courses. According to Hall and Harkonen (2006), water is an 

important element of outdoor recreation. As noted by Aukerman (2011), ―people show a strong 

urge for water-oriented recreation‖ (p. 2). A number of major recreational activities such as 

swimming, sailing, kayaking, canoeing, diving, and fishing take place at water bodies such as 

lakes, beaches, and rivers (Prideaux & Cooper, 2009). Public beaches are a unique type of LDLU 

that offer a variety of water- and land-based recreation opportunities that can meet residents‘ 

diverse and complex recreational demands (Aukerman et al., 2004; Orams, 1999). If disparities 

in levels of access to public beaches arise with respect to racial/ethnic or socioeconomic status, 

an inequity can be said to occur. Although there has been some discussion regarding the regional 
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disparities in levels of access to beaches (Dyer, 1972; Kohoe, 1995; Mongeau, 2001; Negris, 

1986; Poirier, 1996), these studies have focused on legal issues in the context of the public trust 

doctrine, and no empirical study has evaluated whether the level of access to public beaches is 

indeed equitable among different racial/ethnic or socioeconomic groups. This study therefore 

suggests several practical and methodological implications for community recreation planning 

and management. 

Practical Implications 

 The findings of this study have several practical implications for recreation policy and 

can be used to inform initiatives that improve the status of access to water and beach-based 

recreation resources in the DMA. 

Table 23.  

Neighborhoods with inequitable access to public beaches according to their residents’ 

racial/ethnic and socioeconomic statuses 

Model 1 

 

Variable 
Inequitable Neighborhood 

City (County) Township (County) 

BLACK Sterling Heights (M) Shelby (M), Washington  (M) 

ASIAN Troy (O) Canton (W), Plymouth (W) 

POPD 
Livonia (W), Rochester (O), 

South Lyon (O), Troy (O) 

Macomb (M), Ray (M),  

Shelby (M), Washington (M) 

EDU Rochester (O), Rochester Hills (O) 
Addison (O), Armada (M), 

Bruce (M), Oakland (O),  

VEHIC 
Novi (O), Sterling Heights (M),  

Troy (O)  

Brandon (O), Groveland (O), 

Independence (O), Plymouth (W), 

Model 2 

 

POPD Rochester Hills (O), Troy (O) 
Bloomfield (O), Shelby (M), 

Washington (M) 

AGE64 
Detroit (W), Ferndale (O),  

Livonia (W), Warren (M) 

Addison (O), Armada (M), 

Bruce (M), Oakland (O),  

EDU 

Detroit (W), Eastpointe (M),  

Romulus (W), Sterling Heights 

(M), Warren (M) 

Armada (M), Bruce (M),  

Ray (M), Richmond (M), 

Shelby (M), Wahsington (M) 

Note: O: Oakland County; M: Macomb County; W: Wayne County  
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  First, this study identified where inequitable access to public beaches exists with regard 

to specific demographic and socioeconomic variables. Table 23 summarizes the neighborhoods 

with inequitable access to public beaches and their residents‘ racial/ethnic and socioeconomic 

statuses. The results can guide state and local leisure agencies to support public service delivery 

through the allocation of resources in areas where racial/ethnic minorities currently are facing 

inequity issues. This information also can assist local advocacy groups, organizations, and 

minority populations in their attempts to provide or gain equitable access to recreation 

opportunities.  

Second, public leisure agencies and managers should attempt to ensure equitable 

allocation of public resources that does not unfairly benefit specific groups over other groups. 

When measuring the equity of public resources, identifying who is receiving the benefits (costs) 

of public resources is very important. As noted by Tarrant and Cordell (1999), ―when inequities 

do arise, either the cost of resource utilization should be borne proportionately by all those who 

benefit or individuals who bear the costs should be fairly compensated‖ (p. 32).  

Third, GWR can be particularly useful due to its capacity to provide information about 

regional differences in the relationships between level of access to public beaches and residents‘ 

racial/ethnic and socioeconomic statuses. This knowledge can assist policy formation by 

highlighting the unique issues faced by a city or region. Because land-use planning and zoning 

decisions that contribute to inequities typically are regulated at local levels of government 

(Gilbert & Chakraborty, 2011), local statistical methods such as GWR can be expected to 

provide valuable insights that facilitate the formulation of locally appropriate policy solutions.  

 Fourth, the mapping of spatial distributions of level of access to public beaches (Figures 

27-28, p. 106-107) could contribute to the development of a regional water and land recreation 
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opportunity spectrum (WALROS). WALROS is a zoning system or framework that identifies a 

spectrum of water- and land-based recreation opportunities on a continuum ranging from 

―primitive‖ to ―urban‖ (Aukerman, 2011). As a specialized recreation opportunity spectrum that 

is based on the concept of recreation opportunity, WALROS can provide planners and managers 

with a framework and procedures for making better decisions to conserve a spectrum of high-

quality and diverse water- and land-based recreation opportunities by incorporating a variety of 

physical, social, and managerial attributes (Aukerman, 2011). Access is a critical physical 

attribute in the context of WALROS planning. The spatial patterns of access to public beaches, 

as portrayed in this study, could be used as input into WALROS planning. 

Fifth, the visual maps created by GIS could be useful tools for improving users‘ 

perceptions of public authorities‘ accountability and openness. These maps can contribute to 

increased interaction and understanding between public leisure agencies and users that may be 

likely to decrease the perceptual gaps between them, thereby leading to more satisfied users.  

 Sixth, because disadvantaged groups need more options to be available to them for 

accessing alternative recreational opportunities (Wick & Crompton, 1986), locating new 

recreational facilities (community swimming pools or indoor water-parks) closer to them may be 

one of the solutions to meet residents‘ water-based recreational demands. To accomplish this, 

public leisure agencies and community organizations should build strategic public-private 

partnerships to locate community swimming pools or indoor water-parks in neighborhoods that 

suffer from poor accessibility to recreation opportunities in the DMA. According to Lee and Lim 

(2009), providing financial assistance to private developers, giving tax abatements, providing 

site-related assistance such as site location identification and clean-up, enhancing public 

security/community policing, and offering public infrastructure (e.g., parking spaces or transit 
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service) are examples of strategies used in developing promote public-private partnerships. 

These strategies potentially may improve spatial equity for water-based recreation opportunities 

in deprived neighborhoods. However, residents‘ attitudes about the construction of water-based 

recreational facilities might be different. Therefore, strategic public-private partnerships to locate 

water-based recreational facilities should be based on residents‘ attitudes about and demand for 

the construction of these facilities. 

 Seventh, perhaps more realistically than the recommendation above, public leisure 

agencies should provide public transportation services to enhance access to public beaches for 

minority populations in Wayne and Macomb Counties. This study measured level of access to 

public beaches assuming residents‘ reliable and affordable means of transportation when they 

visit public beaches. In reality, however, the proportion of households without a vehicle is high 

in Wayne County and access to public beaches is extremely low (Figure 23, p. 95). The spatial 

mismatch between access to public beaches and to private transportation could directly inform 

local community policy makers in developing innovative and effective public recreation 

planning strategies to improve beach access and use. While the acquisition of new beach access 

points is unlikely, because they are dependent not only on economic resources but on the 

physical geography of a place (i.e., the existence of public bodies of water and of vacant land 

adjacent to them from which to provide access), parks and recreation agencies could partner with 

local transportation authorities to provide free or low-cost passes to beach access sites. Thus, 

measuring levels of access to recreation opportunities is a useful precursor to community 

evaluation and planning interventions when considered in combination with access to other 

public and private resources.  
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 Eighth, public leisure agencies should understand the role of information in community 

recreation planning. As noted by Yang et al. (2012), ―access to information is a prerequisite in 

order to create positive attention and attitudes that directly trigger enhanced action‖ (p. 854). The 

findings of this study can provide essential information for promoting localized recreation policy 

and planning decisions, such as locating new urban parks or community swimming pools in 

neighborhoods with inequitable access to public beaches. Public leisure agencies not only have a 

responsibility to share their information, but also to negotiate between diverse stakeholders who 

have their own perspectives in the decision-making process. Accordingly, appropriate systems or 

tools should be developed for easy access to map displays and visualizations of local 

accessibility and equity patterns to promote participatory decision making. For example, specific 

information regarding beach accessibility may be displayed via web-based GIS. In particular, 

geospatial technologies via the Internet and mobile devices such as smart phones can contribute 

to a spatial decision supporting system (SDSS) for efficient community recreation planning and 

management. 

 Ninth, although beyond the scope of this study in terms of any detailed discussion, the 

methodological principles developed can be applied to a range of other urban services and 

facilities to which good access typically is considered desirable. These might include health 

clinics, libraries, supermarkets, and schools.  

Tenth, the findings of this study are of utility to public leisure agencies and managers as 

well as any other groups interested in broadening the spectrum of beach-based recreation 

opportunities available to local residents. The findings of this study also suggest segments of the 

areas and population that should be given higher priority in making future resource allocation 

decisions.  
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Eleventh, residents‘ physical activities require access to recreation opportunities. The 

findings of this study suggest that minorities and those having low socioeconomic status are 

especially likely not to engage in physical activities. So, investigating the relationship between 

level of access to public beaches and health would be an important avenue of future research.  

Lastly, maintaining the quality of public beaches is essential for enhancing public beach 

access. According to Smoyer-Tomic et al. (2004), the quality of LDLUs is a major factor in 

determining the degree of equity. Thus, it is recommended that beach managers initiate 

educational programs or campaigns to encourage residents to help maintain the quality of public 

beaches. These efforts could contribute to promoting active public involvement, an essential part 

of the participatory approach with regard to water-based recreation planning and management.  

Methodological Implications 

 To measure the degree of equity inherent in the distribution of access to public beaches, 

this study employed rigorous spatial analysis and statistical techniques that have rarely been 

discussed in the recreation, park, and tourism literature, thereby leading to several 

methodological implications and suggestions for future equity research in the outdoor recreation, 

park, and tourism area.  

 First, spatial statistical techniques in this study offer public leisure agencies 

opportunities to improve their methods of measuring the equity of LDLUs. The GWR approach 

described here constitutes an advance over the use of traditional OLS methods to measure the 

equity of LDLUs. Specifically, the GWR approach dealt with spatial effects, such as spatial 

dependence and spatial heterogeneity that can lead to biased estimation results, thereby 

providing more accurate estimation results with better model performance compared to the 

traditional OLS approach. Thus, the GWR approach can offer public leisure agencies a tool for 
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the more efficient and effective planning and management of recreation opportunities subject to 

successful implementation of what is a relatively complex method.   

Second, GWR also can be used as an exploratory tool to identify an appropriate spatial 

extent (size) of the study area. Identifying the spatial extent of a study area is important because 

it can be related to details of the information created by spatial data analysis. The findings of this 

study (Figures 53 and 54, p. 168-169) identify where the local equity model has higher 

exploratory power. Mapping the spatial distribution of the local R
2
 provided information to 

identify an appropriate spatial extent of the study area when measuring the equity of public 

beach-based recreation opportunity in the DMA.  

 Third, measuring the equity of any recreation opportunity is a complex task. It involves a 

sequence of activities that assess the spatial distribution of LDLUs and ends with investigating 

the spatial relationships among variables. Thus, all processes should be conducted in exploratory 

and confirmatory manners. However, previous studies have focused on investigating the spatial 

relationships among variables using only confirmatory research methods. To measure the equity 

of recreation opportunity, this study provides a comprehensive methodological framework by 

incorporating exploratory and confirmatory spatial statistical techniques. Such a framework can 

provide important methodological guidance for conducting equity research in parks and outdoor 

recreation.  

 Fourth, researchers should employ multiple access measures when measuring the equity 

of LDLUs to provide a better sense of the range of actual levels of access to LDLUs. The 

findings of this study showed that different accessibility measures (e.g., container approach and 

minimum distance approach) not only indicate different spatial patterns of accessibility, but also 
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lead to different equity outcomes. Thus, utilizing multiple access measures has important 

methodological implications for future equity research.  

 Fifth, although it was previously recommended to utilize multiple access measures, 

identifying the most appropriate access measure is another methodological issue. As seen in 

Figure 25 (p. 101), public beaches in the DMA were geographically concentrated in Oakland 

County, indicating that the container approach is more appropriate when measuring the level of 

access to public beaches in Oakland County. On the other hand, the minimum distance approach 

is more appropriate when measuring the level of access to public beaches in Macomb or Wayne 

County. However, it is difficult to answer which access measure is more appropriate because 

residents‘ perceived access might differ according to regional heterogeneity. Thus, identifying 

the most appropriate access measure should be based on residents‘ perceived access, which 

might be ascertained via resident surveys.   

Sixth, researchers should employ multiple distance indicators to provide portrayals of 

levels of access rather than any one distance indicator. Distance is a critical element when 

measuring level of access to LDLUs. Although walking-distance proximity to LDLUs can 

facilitate their use as well as elevate levels of participation in recreational activities, residents 

often travel beyond their local neighborhood to use certain types of LDLUs such as beaches 

(Haas, 2009; Houghton, 1988; McCormack, Giles-Corti, Bulsara, & Pikora, 2006). It is therefore 

recommended to employ a vehicle-based distance threshold when measuring the level of access 

to certain types of LDLUs. However, previous studies have measured access using only walking 

travel distance (typically less than 2 miles). As shown in Figure 27 (p. 106), this study 

considered residents‘ increased travel distance to access public beaches by employing a 20-mile 

distance threshold, which would help ascertain levels of vehicle-based mobility. However, each 
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community has its own regional characteristics (Hasse & Milne, 2005); thus, residents‘ travel 

distance for beach-based activities may differ due to the heterogeneous nature of local factors.   

Seventh, researchers should develop advanced research methods for allocating limited 

resources more efficiently and equitably. Capacitated models have been recognized as useful 

tools for allocating limited resources more efficiently in the location-allocation literature (Aikens, 

1985; Jacobsen, 1983; Murrary & Gerrard, 1997; Rahman & Smith, 2000; Zhou & Liu, 2003). 

However, identifying optimal locations for alternative recreational facilities such as community 

parks is a controversial local issue associated with diverse local stakeholders who have different 

perspectives. Therefore, such research is best implemented via a participatory approach that 

involves large numbers of stakeholders in the decision-making process to encourage the reaching 

of local consensus regarding community issues while minimizing conflicts between stakeholders 

(Feick & Hall, 2001). Spatial multi-criteria decision analysis (SMCDA) has been emphasized for 

implementing a participatory approach (Feick & Hall, 2001; Malczewski, 1999; Phua & Minowa, 

2005). SMCDA involves the methodological integration of GIS and multi-criteria decision 

analysis. As noted by Malczewski (1999), SMCDA is ―a process that combines and transforms 

geographical data (input) into a resultant decision (output)‖ (p. 90). Thus, it is recommended that 

future studies utilize SMCDA, in combination with location-allocation models, for allocating 

limited resources more efficiently and equitably by minimizing conflicts between stakeholders in 

water-based recreation planning.   

 Lastly, researchers should develop advanced research methods to promote the 

participatory decision-making approach for outdoor recreation, parks, and tourism. Although 

spatial statistical techniques provide insightful local information, they are useless if diverse 

stakeholders do not share the information. Traditionally, public meetings have been used as a 
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tool for sharing information in community-based resource planning and management processes 

(Hilderbrand, 1997). However, some difficulties (e.g., the geographic separation of participants, 

scheduling and financial constraints in attending meetings, and the limited duration of meetings) 

have negatively affected productive decision making that incorporates public participation 

(Barndt, 1998; Ball, 2002). Such limitations of public meetings offer opportunities to integrate 

participatory GIS (PGIS) via the web. As noted by Kingston, Carver, Evans, and Turton (2000), 

web-based PGIS can overcome ―at least two obstacles in the traditional public meeting or public 

hearing, such as the dominant vocal few and the inflexibility of meeting time‖ (p. 111). Web-

based PGIS also offers citizens and neighborhood organizations instant access to data and data-

processing tools anywhere at any time (Sieber, 2006). This creates more opportunities for more 

people to participate in the public debate regarding complex resource planning and management 

than the traditionally inflexible town-hall meeting schedule (Kingston et al., 2000; Talen, 2000). 

Furthermore, web-based PGIS offers interactivity between users during the decision making 

process. Users can efficiently retrieve and query complex information right on the web page 

(Luchette & Crawford, 2008). More importantly, users can conduct analyses and get instant 

results (Jankowski & Nyerges, 2001). However, decisions are made by people and not 

information or information systems like GIS. Despite some advantages of web-based PGIS in 

decision making processes, web-based PGIS lacks capabilities for incorporating the decision 

makers' preferences into the GIS-based decision making process (Simao, Densham, & Haklay, 

2009). In addition, there are other difficulties. First, GIS user interfaces are sometimes too 

complex for non-experts (Talen, 2000). Second, GIS functions and operations focus on 

quantitative methods whereas the integration, analysis, and representation of local knowledge 

often benefits from qualitative approaches (Ball, 2002). Third, GIS lacks the high level of 
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interactively required to efficiently support collaborative and participative processes (Jankowski 

& Nyerges, 2001). These weaknesses still make it difficult for web-based PGIS to be applied as a 

demographic or participatory decision making tool in our society.  

Limitations and Recommendations for Future Research  

 Despite promising implications for practice and methods, several limitations of this 

study should be acknowledged. First, while measuring the level of access to public beaches, this 

study ignores other objective and subjective factors, such as facility size, perceived or actual 

levels of safety, willingness or ability to walk or drive, environmental quality, perceived or 

actual levels of crowding, noise levels, and the presence of commercial development, all of 

which can influence residents‘ choice of recreational destination (Oh et al., 2009). Future studies 

should incorporate one or more of these variables into their analyses to provide more 

comprehensive assessments of overall accessibility.  

 Second, the results of this study are limited by geographic location and facility type of 

public beaches in the DMA. Thus, the results may not be generalizable because every area has its 

own unique population characteristics, recreation opportunities, street networks, and other 

elements of regional heterogeneity. Analyses of other geographic regions and types of 

recreational opportunities would shed additional light on the utility and applicability of the tested 

approach. In particular, consideration of substitutable opportunities would be useful, such as 

public swimming pools, in this case. Future studies should employ the same spatial statistical 

techniques to explore spatial effects when measuring the accessibility to and equity of other 

types of recreational facilities such as urban parks, golf courses, and playgrounds in different 

geographic settings.   
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 Third, this study does not consider the modifiable areal unit problem (MAUP). The 

choice of a different scale (census block or census block group) might have produced different 

results than those found at the scale of the census tract. Future studies should, therefore, employ 

different scales as well as compare different access measures and distances.  

 Fourth, this study does not consider regional disparities with regard to vehicle ownership; 

rather, it assumed that residents have access to a reliable and affordable means of transportation 

when measuring the level of access to public beaches. In reality, however, the proportions of 

households without a vehicle are spatially heterogeneous. Future studies should employ multiple 

travel distances and incorporate public transportation routes when measuring the level of access 

to public beaches.  

 Fifth, this study used 20 miles as the distance threshold that residents are willing to 

travel for beach-based recreation activities, as used in a case study of East Bay, California (Haas, 

2009). However, residents‘ perceived geographical access to public beaches might differ 

according to regional heterogeneity. Therefore, future studies should identify residents‘ 

perceived geographical access to public beaches by using a resident survey.  

 Sixth, this study assumed that populations are evenly distributed throughout census 

tracts and all areas in the census tract have the same demographic and socioeconomic 

characteristics. However, populations, in reality, live in spatial clusters. Therefore, future studies 

should consider regional heterogeneity with regard to the clustered pattern of population 

distribution and their different demographic and socioeconomic characteristics by measuring 

spatial autocorrelation of residents‘ demographic and socioeconomic statuses at global and local 

levels.  
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 Seventh, this study used the centroid of a census tract to measure the distances between 

residents and public beaches. However, the centroid approach can produce aggregation error that 

leads to biased measurement results (Smoyer-Tomic et al., 2004). Therefore, in future studies, 

aggregation error should be reduced by minimally aggregating spatial units.  

Eighth, the access measures in this study do not consider spatial cognition or spatial 

destination choice set issues, which have been recognized as serious methodological problems in 

prior access research. Although citizens could theoretically access all LDLUs in their local 

environment, destination choice with regard to LDLUs such as urban parks is, in reality, based 

on a more compact choice set due to individuals‘ limited spatial knowledge and information 

processing capacity (Fotheringham & Curtis, 1999; Zhang et al., 2011). A typical individual can 

make a maximum of seven pair-wise comparisons among all alternatives (Miller, 1956; Saaty & 

Ozdemir, 2003; Zhang et al., 2011). Hence, future studies should include a more realistic beach 

access measure by incorporating this psychological upper limit of individual information 

processing.  

 Ninth, the equity measures in this study do not consider procedural equity. Because 

environmental justice has been defined as the procedure or process used to ensure fair 

distribution (Zimmerman, 1999), process equity analysis could be critical for more 

comprehensive environmental justice research. Therefore, future research should incorporate 

historical analyses that examine the series of actions leading to an inequitable outcome. A 

process equity analysis would add depth to the current study‘s findings and would help to 

explain the origin of the significant disparities found in the DMA.   

 Tenth, although water area is utilized as an additional independent variable to account 

for variations in the prevalence of water bodies such as lakes and rivers, proportions of water 
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area for certain census tracts located alongside the Detroit River and Lake St. Clair are 

overestimated. Thus, future studies should estimate more accurate proportions of water areas for 

census tracts that are located nearby the Detroit River and Lake St. Clair by including only the 

water areas of the shorelines of the Detroit River and Lake St. Clair using a straightforward 

buffering technique. 

 Eleventh, this study does not consider the methodological issues of local 

multicollinearity and spatial autocorrelation among coefficients. According to Wheeler and 

Tiefelsdorf (2005), multicollinearity among local estimates in the model is one of the pitfalls of 

GWR. In addition, the GWR method tends to generate extreme local coefficients and may 

overstate spatial heterogeneity (Farber & Paez, 2007). Thus, future studies should propose 

diagnostic tools, or remedial or alternative methods, for addressing these methodological issues 

in GWR.  

 Twelfth, although the issues of multicollinearity have been criticized as the pitfalls of 

GWR, which can affect estimation results (Griffith, 2008; Wheeler & Tiefelsdorf, 2005), specific 

diagnostic tools and a remedial method for collinearity in GWR also have been proposed 

(Barcena, Menendez, Palacios, & Tusell, 2014; Paez, Farber, & Wheeler, 2011; Wheeler, 2007). 

Future GWR studies should integrate diagnostic tools and remedial methods to address this 

limitation.  

 Lastly, although the GWR models explored spatially varying relationships between 

levels of access to public beaches and residents‘ racial/ethnic and socioeconomic statuses, this 

study could not identify the optimal areas for allocating limited resources more equitably. Public 

leisure agencies need to identify optimal locations for alternative recreational facilities, such as 

community parks, for neighborhoods with inequitable access to public beaches, according to 
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residents‘ racial/ethnic and socioeconomic statuses. According to Yaffee (1994), multiple-use 

resources, including recreational facilities, are important elements of local communities. As 

noted by Tarrant and Cordell (1999), ―sustainability is concerned with the optimal allocation and 

use of natural resources to meet the long-term needs of an increasingly diverse public‖ (p. 31). 

Identifying the optimal locations for recreational facilities is a complex spatial multi-criteria 

decision problem that should take into consideration not only the geographical features of the 

resource attributes but also other criteria, as identified by diverse stakeholders. It also can 

become a controversial local issue with major impacts on the natural environment, land use and 

activity patterns, and the economy of the host community. Thus, it is recommended that future 

studies utilize location-allocation models, in combination with spatial multi-criteria decision 

analysis, as tools for identifying optimal locations for community parks or other recreational 

facilities. In addition, the results should be shared to encourage participatory decision-making 

through the methodological integration of web-based public participation GIS.  
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