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ABSTRACT

METAMAGNETISM IN LOW DIMENSIONS

By

Paul R. Newman

Magnetic systems in real crystals exhibit low
dimensional behavior over a limited temperature range. At
sufficiently low temperatures a weaker interaction causes
the system to order in three dimensions. The low dimen-
sional character often manifests itself in the nature of a
field induced magnetic phase transition.

Magnetic phase transitions in applied field are
analyzed by treating specific orientations of sublattices
as linear combinations of classical spin polarization vec-
tors. The stationary energy configurations are found by
differentiating the energy of a zero temperature Hamilto-
nian. The behavior of these stationary states in applied
field, as shown in "Polarization Energy Diagrams', deter-
mines the nature of the magnetic phase transition. A
special class of transitions is defined as '"'metamagnetic."
The conditions which produce a metamagnetic transition are

discussed. Anisotropy is shown to play a crucial role in

such transitions.
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Two experimental investigations of low dimen-
sional systems are presented. In the first instance
measurements of: crystal lattice parameters, the space
group, the susceptibility as a function of applied field,
the bulk magnetization in applied field as a function of
temperature, NMR, and ESR are reported for manganese bro-
mide trimethyl amine dihydrate. Although the unit cell is
monoclinic with the space group P21/m, the exact crystal
structure is at present unknown. A partial crystal struc-
ture for manganese bromide trimethyl amine dihydrate is
derived from the experimental evidence and shown to be re-
lated to a similar compound: cobalt chloride trimethyl
amine. The magnetically ordered state (TN=1.58K) is char-
acterized as a four sublattice canted antiferromagnet with
the magnetic space group stzl/m. A magnetic phase tran-
sition which is observed below TN with the external field
along the b axis is asserted to be metamagnetic.

The second experimental investigation was con-
cerned with the copper complex of the amino acid
L-Isoleucine. Magnetic susceptibility in zero and applied
field as well as ESR are reported. The orientation of the
principal axes of the derived g-tensors are discussed in

terms of the 4mm symmetry of the five fold local coordina-

tion of the 3d9 copper ion. The magnetic susceptibility
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indicates a transition to a three dimensionally ordered
state at 0.117K. In the temperature region from 4.2K to
0.5K the magnetic behavior is best described as due to a
two dimensional Heisenberg ferromagnetic interaction with

JF/k=0.12K.
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INTRODUCTION

Magnetism which results from exchange or super-
exchange is in general a very complex three-dimensional
many-body problem. However, in some magnetic insulators,
the crystal contains low dimensional structures which may
be described as ''sheets'" or chains.'" These structures,
which arise from the physical arrangement of chemical
bonds between atoms, frequently result in electron inter-
actions which reflect the low dimensional nature of the
bonds.

Experimentally, one often finds that at suffi-
ciently low temperatures, the low dimensional magnetic
systems undergo a transition to a three dimensionally or-
dered state due to weak interactions between adjacent
"sheets" or ''chains." In the ordered state, the stronger
low dimensional character manifests itself in the nature
of magnetic-field-induced phase transitions. In this work
we use a '"'spin polarization model'" to describe the beha-
vior of a magnetic system which undergoes a phase transi-
tion in applied field, and specify one particular class

of such transitions as '"'metamagnetic."






The three dimensionally ordered magnetic state
frequently reflects the symmetry of the crystal lattice.
The concept of the magnetic space group and symmetry ope-
rations which pertain to axial vectors in a lattice are
discussed. These theoretical concepts are then applied to
two experimental investigations.

The first system, the copper (II) complex of the
amino acid, L-Isoleucine, was interesting for several rea-
sons. The crystal structure of this system is character-
ized by chemical bonds which extend only in one plane. In
addition, the local coordination of the copper ion is five-
fold square pyramidal. Low temperature and ultralow tem-
perature measurements of the magnetic susceptibility in
zero and applied fields are reported and discussed in terms
of a model Hamiltonian. The magnetism of the 3d9 copper in
the square pyramidal crystal field is investigated using
electron spin resonance and discussed using the Van Vleck
point charge model for crystal field interactions.

The second system, manganese bromide trimethyl
amine dihydrate, has the disadvantage that the exact crys-
tal structure is at present unknown. X-ray diffractometry
and optical goniometryare‘used to derive the crystallogra-
phic point and space groups. Nuclear magnetic resonance
measurements in the three dimensionally ordered state are

combined with other magnetic studies to suggest a crystal



structure and a magnetic space group. Finally a transi-
tion which is observed in applied field is discussed and

asserted to be metamagnetic.






CHAPTER 1
THEORY

I. Low Dimensions: An Historic Overview

The existence of long range order as a result of
superexchange, depends not only on the nature of the ex-
change but on the dimensionality of the interaction as well.
Long range order is defined as the existence of a nonzero

value for the magnitude of the spin-spin correlation function:

W = <§i -3 > (1)

1+A
in the 1limit "A", the separation between spins goes to in-
finity. While no rigorous proof exists, it is generally
accepted that this implies:

Lim|< §i
A>oo

- 2
. §i+A>|-|<Si>| (2)
(The brackets denote the thermal average.)
A nonzero value for the spin-spin correlation implies a

2 and therefore for <§i>. Since the

nonzero value for <§i>
magnetic moment is proportional to <§i>, a system possessing
a nonzero spin-spin correlation will also possess a sponta-
neous sublattice magnetization. Exchange arising from the
overlap of electronic wave functions in low dimensions may

result in a magnetic spin system which is characterized by

the absence of long range order at any finite temperature.

4






For example, a magnetic spin system which inter-

acts through an Ising exchange:

H=-%-Z J.. S. S. (3)

in one dimension has been‘shown1 not to exhibit long range
order at any temperature above absolute zero. The two di-
mensional Ising model was first shown to possess a sponta-
neous magnetization by Onsager who presented his solution
as a remark during the discussion following the presenta-
tion of a paper by Tisza2 in 1942. Several years later,
Onsager presented his formula for the spontaneous magneti-
zation of the two dimensional Ising model. Onsager pub-
lished only the results of his calculations, leaving the
derivation to remain a mystery. Four years later, in 1952,
C. N. Yang4 finally deciphered the puzzle and presented
his rather long and complex derivation of Onsager's results.

The three dimensional Ising model was investiga-
ted by R. B. Griffiths in 19675. His solution established
the existence of long range order for this model.

In 1966, Mermin and Wagner proved6 that a system
which interacts through a one or two dimensional Heisenberg

exchange:

H = -!‘_.z. J.. g. . §. (4)

cannot possess a spontaneous magnetization at a finite






temperature. Stanley and Kaplan showed7 that the absence

of spontaneous magnetization as in the two dimensional

Heisenberg model does not preclude existence of a magnetic
phase transition characterized by a singularity in the
susceptibility. Mermin and Wagner8 also showed that the

x-y model:

J.. (S._ S._+ S

T .. S.) (5)
ifj 13 TTix Tjx iy “jy

in one or two dimensions does not produce long range order.

II. Low Dimension and Metamagnetism

In real crystals, the effects of low dimensional
correlations are usually seen in a limited temperature
range. As the temperature is decreased, the thermal fluc-
tuations become small enough so that some weaker interaction
produces three dimensional ordering. The low dimensional
character can still manifest itself in the behavior of the
magnetically ordered spin system in applied field. For
example a system which has a strong two dimensional
Heisenberg ferromagnetic exchange may be considered as con-
sisting of layers of ferromagnetic spins. If in addition,
a three dimensional ordered state is produced by an anti-
ferromagnetic coupling between the layers, a magnetic
field applied in the appropriate direction may produce a

magnetic phase transition which consists of reversing






alternate sheets to produce a ferromagnet. Such a tran-
sition is said to be "metamagnetic.'" We shall take as our
definition of metamagnetism the following: In the pre-
sence of an applied field, a ferrimagnetic or antiferromag-
netic system may undergo a phase transition characterized
by an abrupt increase in magnetization. If the spin sys-
tem consists of M sublattices and the transition involves

a reorientation of N (N < M) of them, the transition is

metamagnetic. The requirement that the magnetic spin sys-

tem possess more than one sublattice precludes the exis-
tence of a metamagnetic transition in a ferromagnet. In
the next section we consider the detailed conditions which

result in metamagnetism.

III. Spin Polarization Energy

A rather elegant pedagogical technique for exam-
ining the behavior of a spin system has been communicated
to me by Prof. R. D. Spence.9 At zero temperature, a spin
sublattice may be decomposed into basis states which re-
present the components of sublattices as polarization
"states." For example a two sublattice system will have

the spin polarization basis states:






| 2
1152 | 125 ey 1321V 140 —)

In these diagrams, each arrow or '"spin" actually repre-
sents an entire sublattice. By using linear combinations
of these basis states, we can form the sublattice

configurations:

& = = gl+bi®

2

I 2
@2:\/: cl2y + diz>



l




The coefficients depend on the details of the interac-
tions (exchange, anisotropy, etc.) and are subject to the

normalization:
a” + b" =1 (7)

The behavior of the magnetic system can be found
by calculating the relative energy of each polarization.
As this 1s a zero temperature model,the ground state
completely characterizes the magnetic behavior. Let us
consider, as an example, a simple two sublattice spin sys-
tem in the presence of an isotropic antiferromagnetic

exchange:

H=-J8 -8, (8)

where the S's represent sublattices and J represents the
antiferromagnetic exchange between these sublattices.
Then referring to the definitions of the polarization
states (Fig. 1) we find the energies for the various

states are:
°=_J E,°=-J (9)

where El° denotes the energy of the spin polarization
state |1> in the absence of an applied magnetic field.
The resulting '"polarization energy diagram" or PED is

shown:
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The presence of a field applied along the Zz axis

of the state |1> will produce a state of mixed polarization:

6, = a()|2> + b [3> = V (10)

where, as we have indicated, the coefficients are functions
of the applied field. Because of the applied field, the

sublattice Hamiltonian now has an additional term:

>
H=-J8 -8, -d-H
where r = NguB
N = number of spins in sublattice

spectroscopic splitting factor

5]
1]

Mp = Bohr magneton
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The energy of the mixed state ¢1 in the presence of a
field applied along the Z axis is given by:
a2

2 o

E =a“J,° + b J3° + ab(J23°+J32° ) - 2THb (12)

2

where J2° is the exchange energy between sublattice 1 and
2 when both sublattices are in the state |2>. J,5° is the
exchange calculated with sublattice 1 polarized as in the
state |2> and sublattice 2 polarized as in the state |3>.
Since the polarization states |2> and |3> are orthogonal,

J23° and J32° are both zero. Substituting from the normal-

ization equation we find:

E(H) = (1-b%) J,° + b%y,° - 2rHB (13)
The local minimum for this state is given by:

-2bJ

n
o
]

o o _
2 * ZbJ3 2TH (14)

(on
LI}
3
]
)
]
—
]
/—~\
-3
)
N————
[\
—
~
[\

The energy in a field applied along z is:

\2 2
E¢ (H) = 1_ I'H J2° + FH - JSO _ZI-\H PH
o_ -

PP [(I4°-0,°) - 2(35°-3,°)]

[o]
)

2
o_T ©
(J2°-3,°)
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FIGURE 1. PED for a two sublattice uniaxial

Heisenberg antiferromagnet (J<0).
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2,2
E¢ (H) = J2° _ 2T7H” (15)
2 JSO_JZO

The state |1> does not mix with |3> with H applied
along the z axis. If we require that each of the sublat-

tices in the mixed state:

-

¢, = cl1> + d|3> (16)

be normalized to unity:

4 = ct + dM = ¢c+2d =1 (17a)
vy =c¢ct + 0 = C =1 (17b)
c=1->d=0 (18)

where 4(¥) represents a sublattice parallel (antiparallel)
to the z axis. The PED for the two sublattice system in
a field applied along z is shown in FIGURE 1 fqr J<0.

The smallest finite field splits the states [1> and 91
The sublattices '"flop" to a configuration which is perpen-
dicular to the field. As the field increases, the sub-
lattices rotate smoothly toward the field. At H = H

sat’

the magnetization is saturated:

H= O HZO H=HSAT

‘_J_ L
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No sharp phase transition is produced. Next, consider an

additional anisotropic interaction of the form

- 2 2
H = -k(S1Z +Szz ) (19)

where k is a sublattice anisotropy constant. (The ori-
gins of interactions of this type are discussed in the
next section.) The total Hamiltonian with a field applied

A
along z 1is now:

2 2

-> >
H= -JS, « S
2z

1 2 - k(S1Z +S

) - TH(Sy,*S (20)

Zz)

This additional term splits the states [1> and |2> in zero
field. The energy of each polarization state in zero

field is:

o__ _ o o _ o o_ _ o o__ o
Bl =-2k J1 E2 +J2 E; Zk+J3 E4 2k+J3 (21)

The energy of the mixed state ¢, in an applied field is:

2.2
By (H) = -2k-J,° + 2T H (22)
2

2 o o
-2k+J3 -J,

The PED for a field applied along z with aniso-
tropy is shown in FIGURE 2 for J<0, k>0 and [J|>2]k].

In this case, for 0<H<HSF, the .sublattices
are along the field. Since, as has been shown, this
state does not couple to the polarization along the

field, no moment appears and the system has no
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FIGURE 2.

Hge Haay H

PED for a uniaxial antiferromagnet with

weak anisotropy (k<J).
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magnetic susceptibility. At H=HSF, a "spin flop" transi-
tion reorients both sublattices so that they are almost
perpendicular to the field with a small component (moment)
along the field as a result of the mixed nature of ¢2.

The moment continues to increase until H=Hsat:

H<Hge H=Hgp  Hgp<H<Hgar H=Hgar

2 Z,H ZH ZH

Now let us consider the case where k >> J. The

energies in zero field are as before:

E,° = -2k+J  E,° = +J E;° = -2k-J (23)

Because of the anisotropy, the state |2> is now
highest in energy. The PED for this large anisotropy case
is shown in FIGURE 3. In this situation, a direct transi-

J . .
tion occurs at H=H_ ;.= 7T from the pure antiferromagnetic
state |1> to the pure ferromagnetic state |3>. The sublat-

tice configurations for fields above and below HCrit are:
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HCRIT H

FIGURE 3. PED for a uniaxial antiferromagnet

with strong anisotropy (k>>J).
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H<Hcgit Heprr SHSH

RIT

L

SAT

Since this transition has an abrupt increase in magnetiza-
tion along the field and involves reversing only one of

the two sublattices, the transition is metamagnetic

We shall now turn to a more complicated example:
the two sublattice canted antiferromagnet. This sublattice
arrangement is such that the spins are no longer simply
antiparallel along a particular axis but now are tipped or

"canted" so they make some angle 6 with the z axis.

%
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This canted system has a net moment in the x direction
whose magnitude depends on 6, the canting angle. This
angle in turn, is a result of competition between the
various sublattice interactions. Spin interactions which
produce canted systems include competition between
(1) first and second neighbor exchanges, (2) symmetric
isotropic exchange and the antisymmetric Dzialoshinski -
Moriya exchange(-ﬁ-glxgz) and (3) anisotropic single ion
interactions and exchange.

Closed form calculations for the two sublattice
canted antiferromagnet are given in Appendix B for the

case where the competing interactions are the Dzialoshinski-

Moriya antisymmetric exchange and an isotropic antiferro-
magnetic exchange:

> >
H = -J§l-§2 -D - $1xS, (24)

In the presence of an applied field, closed form
calculations become exceedingly complex. The analysis is
often donel? by using numerical methods on a computer. We
will instead qualitatively discuss this example of the
canted antiferromagnet using the PED technique. In zero
field, the antisfmmetric Dzialoshinski-Moriya term and the

isotropic exchange term interact to produce states of mixed
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polarization. Recalling the definition of the two sublat-

tice basis states, we define two new mixed states:

8
b - X b, - X (25)

Assuming D = D?, the canting angle 6 is found by minimizing

the energy and is given by:
tan 20 = 2 (26)

where D is the Dzialoshinski-antisymmetric exchange con-
stant. In the absence of an applied field, these two
states are degenerate. A small field applied along the

z axis will split the states leaving bys which has the
largest moment parallel to the field, lowest. The PED for

the canted antiferromagnet is shown in FIGURE 4.
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j
HSAT H

FIGURE 4. PED for the two sublattice canted

antiferromagnet with no anisotropy.
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For H 20, the sublattices "flop" into the mixed
state ¢,. This state has a net moment which increases
with increasing field. At H=Hsat’ the spins are completely
polarized along the field. No sharp transition is ob-

served. This is consistent with the lack of anisotropy.

H=0 HRO H=Hgar

LA

Z,H

If we now apply an additional interaction of the

form:

2 2
H= -k($;,” +5,,9 27

we will remove the degeneracy between the mixed polariza-
tion states @1 and §Z' The canting angle in zero field
will now also depend on the magnitude of k. If we parame-
terize the sublattice orientation energy in terms of an

angle 6, we may calculate ¢ by minimizing the polarization
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energy with respect to 6. The Hamiltonian,

- > . > . 2 2 > > >
H ISy -+ S, - k(Sq,°+5,,%) - D-5x5, (28)
with ki35, 3000
: e+ 37 2. 2.2
gives E(6) = -S®J cos® - DS“ sin6 - kS“cos‘a (29)

= -5%J coso - ps?sing - kS2 sinzg

Minimizing E with respect to:

2
= el s y 2 _ kS ) ]
0 S$%J sin6 DS cos® === 2 siny cosy

o
|

J sin6 - D cos6 - ; sin@

tano = » 20 (30)

The mixed state 01 will now have the lower energy in zero
field. In an applied field, ¢2 will begin to descend in
energy due to the Zeeman energy of the large net moment
of this state. The resulting PED is shown in FIGURE 5.
The relative spin configurations in applied field are

shown below:
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Herir Hear H

FIGURE 5. PED for the two sublattice canted

antiferromagnet with anisotropy.
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H=0  O<H<H H=Hqr  H=Hsar

CRIT

y4 Z,H ZH Z,H

For H<H the system is mostly along the z

crit’
axis but rotates slightly toward the field resulting in a
nonzero susceptibility. This behavior manifests itself
in the curvature of the energy of ¢, in applied fields.

At H=H g an abrupt increase in magnetization occurs as

cri

the state ¢, crosses ¢ . This results in a large net
1
moment along the field. The moment continues to increase

until H=H Without performing detailed calculations,

sat’
we cannot say whether or not this transition is metamagnetic
If the transition reverses the sublattice which was approxi-
mately antiparallel to the field while leaving the other

sublattice unchanged, the transition is indeed metamagnetic.

Finally, if the field is applied along either of the other

two orthogonal directions, the spins smoothly
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rotate toward the field until satUration occurs. This
behavior is characterized by the absence of any sharp
transition.

We shall discusg more complicated four sublat-
tice canted systems in the context of experimental evi-
dence in real crystals in later sections of this work.

As we have seen from the previous discussion,
the role of anisotropy in magnetic transitions is crucial.
Let us consider briefly the description of anisotropic
interactions.

Anisotropic interactions produce the state of
lowest energy with the spin sublattices oriented along a
particular direction relative to a fixed set of coordi-
nates in the crystal lattice. They differ in this res-
pect from isotropic exchange interactions which depend
only on the orientation of the spins relative to one
another regardless of their orientation in the crystal.
Anisotropic interactions arise physically from several
different mechanisms.

We can divide anisotropic interactions into two
categories: (1) those interactions which depend on the
characteristics of the isolated ion in the lattice, and
(2) those which involve interactions between two Or more
ions. 1Interactions which involve the characteristics of the

isolated ion include interactions of the crystalline
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electric field with the electronic multipole moment, and
hyper-fine interactions between the electron and the ionic
nucleus.

Spin-spin interactions which are anisotropic in-
clude magnetic dipole-dipole and Ising and x-y exchange
interactions.

An excellent discussion of anisotropy is con-
tained in an article by Kanamorai in the Magnetism11
series edited by Rado and Suhl.

Having indicated some of the anisotropic inter-
actions and noted their importance for a phase transition,
we may further note that the exact nature of the transi-
tion depends on the relative strengths of the isotropic
interactions compared to anisotropic interactions. As we
have shown in the case of a uniaxial two sublattice anti-

ferromagnet the condition k>J produced a metamagnetic

transition while k<J gave a "spin flop" transition.

IV. Symmetry and the Magnetic Space Group

A principle attributed to Neumann states that
"no measurement on a crystal can exhibit a greater space-

£.012  That

time anisotropy than that of the crystal itsel
is to say, any physical measurement involving the arrange-
ment of atoms in a crystal, must reflect the symmetry ope-
rations contained in the crystallographic space group of

the crystal. Magnetic measurements such as nuclear magnetic
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resonance, which microscopically probe the symmetry of
the magnetic spin system, reflect the properties of the
operations contained not in the crystallographic space
group but rather in the ''magnetic space group." The mag-
netic space group consists of operations which affect
axial vectors such as spin angular momentum, while

the crystallographic space group contains operations per-
taining to polar vectors such as the coordinates of atoms
in a crystal. While there is no rigorous formal connec-
tion between the crystallographic space group and the mag-
netic space group, they often belong to the same family.
Space groups which are members of the same family are de-
rived from the same set of rotation operators called the
"point group.'" In addition to the various symmetry ope-
rations contained in the crystallographic group, the mag-
netic group may also contain "anti-elements." An anti-
element, which operates only on axial vectors, may be
formed from a polar vector symmetry operator by
"multiplying'" it by the operation anti-inversion. (Multi-
plication is taken here to mean multiplication of the
matrix representations of the two operations.) Anti-inver-
sion reverses the direction of an axial vector. As an
example, let us examine the operation '"mirroring.'" The

effect of a mirror plane on a polar vector is:
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FIGURE 6. The mirror operation for a polar vector.

In the case of an axial vector however, the effect is quite

different as shown:

=

S=AxB

(vs]])
>t

FIGURE 7. The mirror operation for an axial vector.
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Now let us consider the effect of multiplying
this operation by anti-inversion:
o
m' =mx 1 (31)
We first perform the mirroring operation on the axial
vector as shown in FIGURE 7. We then reverse the direc-

tion of the axial vector producing the configuration:

/
m

Several of the more common elements of the mag-
netic space group are shown in FIGURE 8.

We note that a nearest neighbor anti-translation
reverses the spins along a given direction. This then
doubles the separation between spins which are parallel.
If an anti-translation is present in the magnetic space
group it (1) produces antiferromagnetism and (2) doubles
the size of the magnetic unit cell relative to the crys-

tallographic cell.
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FIGURE 8. Symmetry operations for axial vectors.

The effects of point group operations which con-
sist of rotations,reflections and inversions, shown in
FIGURE 8 apply to spins which occupy general positions in
the magnetic unit cell. If a spin occupies a special po-
sition such as on a two-fold rotation axis, in a mirror
plane or on an inversion point, the operations produce
stringent restrictions on the orientations of the spin.
For example, if a spin is located on a two-fold axis, for
every component of the spin which is perpendicular to the
axis, the two-fold operation produces an equal but oppo-
sitely directed component which will cancel it. The com-
ponent of the spin parallel to the two-fold axis will be

unaffected by the rotation. Therefore, a spin which is
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located on a two-fold axis can only have a nonzero moment

parallel to the axis. A summary of the requirements of

special positions for other operations is given in TABLE I.
Detailed discussions of the spin configurations
produced by specific groups will be left until considera-

tion of experimental results in later sections.
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TABLE 1

Restrictions of special spin positions

Spin In or On Position Of

Spin Orientation Requirements

n fold rotation axis

n fold screw axis

mirror plane

anti two-fold axis

anti n (n>2)-fold axis

n-fold anti screw axis

anti mirror plane

inversion point

anti inversion point

spin must be parallel to
n-fold axis

no requirement

spin must be perpendicular to
the mirror plane

spin must be perpendicular to
the two-fold axis

forbidden! spin may not occupy
an anti n-fold axis.

no requirement

spin must be parallel to the
anti mirror plane

no requirement

forbidden! spin cannot occupy
an anti inversion point
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V. Chemical Bonding

We shall be discussing the following kinds of
chemical bonds in the context of transition metal ions in
organic complexes: (1) ionic bonding and (2) covalent
bonding which bond the transition metal to its local ato-
mic neighbors and (3) "weak ionic" bonding and
(4) hydrogen bonds which bond large molecular subunits
together to form a crystal.

We shall begin oﬁr discussion with ionic bonding.
Ionic bonding is the result of electrostatic Coulomb inter-
actions which causes a positively charged cation to be
attracted to a negatively charged anion. The interaction
may result between two ionized atoms such as sodium and
chlorine in NaCl, or between a polarized system like HZO
and an ion such as a transition metal. In this last case,
the polar water molecule orients‘itself so that the oxygen
which is slightly negatively charged is pointing towards
the positively charged transition metal ion.

Covalent bonding is said to occur when there is
significant overlap of atomic wavefunctions so as to allow
an electron to be tfansferred from a central ion to
the overlap region. In:the case of transition metal

ions, the orbitals that overlap are not simply the occupied

3d orbitals but usually are "hybridized" orbitals. These
orbitals consist of linear combinations of the 3d, 4s, and

4p orbitals. Linus Pauling has indicatedl3 that the correct
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combination of orbitals for covalent bonding is the one
which is most directed toward the ligands.

Having established two methods for '"gluing" ions
together, let us examine ways of taking these molecular
subunits and "sticking" them together to make a crystal.
One of the simplest ways is simply the extension of ionic
bonding to the larger subunits. As we have seen, ionic
bonding holds the sodium to the chlorine in NaCl. This
bonding of Na® to Cl~ extends throughout the crystal form-
ing the lattice. This concept may be extended to larger
subunits than two interacting ions. For example, a tran-
sition metal ion can coordinate with several negatively
charged ligands as to yield a molecular subunit which has
a slightly negative charge. An ionic interaction of a
somewhat weaker nature may take place between this slightly
negative subunit and a correspondingly positively charged
subunit consisting of organic molecules such as methyl-
anime groups. Since the charge is not localized the in-
teraction which is frequently called '"weak ionic"
bonding,is usually weaker than ionic bonding between atoms.

‘Finally, there is a localized electrostatic
interaction called "hydrogen bonding" which is frequently

responsible for coordinating large molecular subunits in

crystals. Hydrogen bonding is thought to occur when an
electron rich atom such as an oxygen in one molecule

approaches a slightly acidic (electron depleted) hydrogen
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atom14. The hydrogen atom may be bonded to nitrogen

for example, and carries a partial positive charge. A

localized electrostatic interaction,as shown takes place:

2.2

1.95 N

1.99

Cu
Cu

FIGURE 9. The hydrogen bond

The actual length of this bond is approximately
ZR which is thought to be too long to allow much covalent
overlap. Typical energies for this interaction are 6 kcal
which is between the covalent bonding (10-25 kcal) and
the Van Der Waal's (1-5 kcal ) bonding. The distance
separating the atoms and the lack of real electronic wave

function overlap tend to imply that a hydrogen bond is
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an extremely poor path for superexchange.

VI. Crystal Field Theory

The five d electronic orbitals of an isolated
transition metal ion are degenerate. In a crystal, these
orbital energiés are split by an electrostatic interac-
tion which occurs between the d electrons of the ion and
the electrons on the surrounding atoms or '"ligands.'" In
general, exact calculations of the electrostatic '"crystal
field" energy are a difficult and complex undertaking.
The difficulty comes about because in a crystal, neither
the transition metal electrons nor the ligand electrons
are completely localized. Due to the rather complex types
of bonding which can occur in a crystal, the electronic
wavefunctions are no longer adequately described by wave

functions of the isolated atom. More complex "hybridized"

orbitals which consist of linear combinations of atomic
wavefunctions are employed to describe the electrons.
However, under certain conditions, the bonding
of the transition metal ion to its ligands is mostly ionic.
The covalent nature of the bonding is not necessarily non-
existent but it is small enough so that to a very good
approximation, the electrons are localized on the transi-

tion metal ion and can be adequately described by the d
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atomic orbitals. In this situation, we may use the so-
called "crystal field theory." The first investigation
of the interactions of the ionic electrons and the crys-
talline electric field was by Becquerel15 in 1929. At
the same time Bethe16 used group theory in conjunction
with the relative strengths of the interactions to show
‘how the energies of the atomic orbitals are modified by
the ligands. 1In 1932, Van Vleck17 succeeded, on the
basis of a '"point charge' approximation, in explaining the
"quenching'" of the orbital angular momentum and the re-
sulting spin-only magnetic moment of paramagnetic transi-
tion metal ions. Van Vleck later went on to show18 that
Bethe's original crystal electric field ideas could be
generalized and included in a more modern molecular orbi-
tal approach. 1In 1952, however, Kleinerlg pointed out
that if the classic electrostatic model is used to calcu-
late the splitting of the orbital energies the sign of the
splitting is actually reversed if an extended electron
cloud model is used in place of the point charge model.

A more recent quantum mechanical approach by Tanabe and
Sugano20 showed that even in certain "ionic'" crystals such

2
as KNiFz 1 the itinerant or nonlocalized behavior of

b
the transition metal electrons makes the dominant contri-
bution to the crystal field splitting. This strongly

suggests that although the‘point charge model of Van Vleck

qualitatively, and often quantitatively yields the correct
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result, more of the details of the nonlocalized quantum
mechanical interactions are needed for a comprehensive
theory.

Having outlined some of the deficiencies of the
point charge model, we will use it to qualitatively dis-
cuss the effects of the crystal field on the orbital and
spin states of transition metal ions. In this theory, we
replace the atoms which surround the transition metal ion
with point charges. An electrostatic repulsion will occur
between the electrons in the d orbitals and these point
charges. This interaction will be strongest for those or-
bitals which have the greatest spatial extent or "point"
towards the ligand point charges. The energy of these
orbitals will then be split from orbitals which do not
extend toward the ligands. For example, let us consider

an octahedral ligand coordination as shown in FIGURE 10a.

The spatial extent of the d orbitals is shown in FIGURE 10b.

By examining the relative orientations of the d orbitals

and the six ligands, we see that the d., , and d_, orbi-
xé-y z

tals point directly towards the ligands, while the dxy,

dxz and dyz orbitals all extend between the ligands. Cal-

22

culations show the "eg" orbitals (d d'z) are degen-
X z

)

2_y2’

. ’ . . 1 " .
erate and split from the remaining 'tzg (dxy dxz dyz

orbitals as shown in FIGURE 11.




FIGURE 10a.

FIGURE 10b.
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Octahedral coordination of ligands.

Spatial extent of the d orbitals.
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XY dyZ X2z

f2g

FIGURE 11. Splitting of the d orbitals in an

octahedral environment.

Let us examine the effect of this
bital and spin angular momenta in
trons (Sds). When we examine the

occupying these orbitals, we must

interaction on the or-
the case of five elec-
energies produced by

consider the relative

strengths of two competing interactions. The first inter-

action, the energy which results from occupying the higher

eg orbitals can in theory be minimized by occupying only

the tZg orbitals. However, there

is an electron-electron
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repulsion interaction which occurs strongly between elec-
trons in the same orbital. It is instructive to consider
the two limiting cases.

In the first, the so-called "weak ligand field"
case, the splitting A between the tzg's and the eg's is
small compared to the electron-electron repulsion energy.

In this case the orbitals‘will be singly occupied. Hund's
rule for coupling spin indicates the five electrons should
all be "spin up" to give the maximum total spin of S=5/2.
However, the Pauli exclusion principle states that no elec-
trons can have the same quantum numbers. Since all five
spins have the same spin projection, they must each have a
different 22 quantum number. One can see that the sum of
all five projections (2, 1, 0, -1, -2) is zero. The result
is that the total orbital angular momentum is L=0 (S-state).

The other limiting case, the '"strong ligand
field" occurs when A is large compared to the electron-
electron repulsion. In this case the minimum energy occurs
with all five electrons occupying the tzg orbitals. The
Pauli exclusion principle forces the electrons in doubly
occupied orbitals to have their spins ''paired" antiparallel.
The four '"paired" spins have zero net spin angular momentum.
The only contribution to the spin comes from the single

unpaired spin. This results in an S=1/2 spin state for

the atom.
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|
The strong ligand field results in low spin sys- |
B l

tems, while the weak ligand field results in high spin.

VII. The Internal Field in a Magnetic Sample

The magnetization for a paramagnet in an external

field is given by:23

M(H,T) = NgugSB_(x) " (32)

where Bs(x) is the Brillouin function

Bs(x) = 2551 cotn 837X L coth % (33)
UpHS
with X = §E%—
and N = Avogadro's number

g = spectroscopic splitting factor

UB = Bohr magneton

S = spin quantum

k = Boltzmann's constant

H = internal magnetic field
T = absolute temperature

As we shall see,the field inside a magnetic crystal is
generally not equal to the applied field. The Brillouin

function is plotted as a function of the argument "X

8u BH'S
(—xT
magnetization for small values of X(high temperature

) in FIGURE 12. Let us examine the behavior of the

and/or low field).



FIGURE 12,

44

The Brillouin function.
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For y<<1l: coth y = % + % + ... (34)
NgugS [ 2541 28 (2S+1) x
X<<L:M(H,T)= — 23 Z5iDx * 37
1 25, «x _ NgugS [ 2541 2
Z x * 323 KT 75 3
1 2x| _ NewpS y [ 45%445+1-1
25 3 kT 3 4S
Ngug Sx
= —gr— 6+
N zu 2 \
M(H,T) = -— B S(S*L)H (35)
KT \
_ CH
= = (36)
where C, the "Curie" constant is
NgZug%s(s+1)
C = (37)
3KT

The magnetic susceptibility for this system in this limit

can be calculated as:

_d
X = R

(38)

=IO

which in this @se is identically equal to %.

In actual experimental situations, the magnetization of
the sample is measured as a function of the external

applied field. The value of the magnetic field inside the
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sample is modified by the magnetic moment M of the sample.
Uncompensated magnetic ''poles'" or magnetic ''charges' are
induced on the surface of the sample by the external field.
These '"poles'" in turn, induce a field inside the sample
whose magnitude and direction depend on the shape of the
sample and its net magnetization. For ellipsoidal samples

the '"demagnetizing'" field is usually written2

3
i = -D*M

Demag - (39)

P
M.W.
>

where D is the shape dependent 'demagnetizing" tensor and

ﬁ is the magnetization of the sample in magnetic moment/mole,
pis the sample density and M.W. is the molecular weight.

In addition to the surface demagnetizing effects,
the magnetic material inside the bulk of the sample also
modifies the internal fields. The effects of the bulk of
the sample excluding the demagnetizing fields are, in
general, difficult to calculate exactly. A unique method
for approximating the magnetic field at a point "P" inside
the sample has been developed by Lorentz. In this analysis,
we shall divide the sample into two regions by surrounding
the point P with a sphere of radius R. R is assumed to be
microscopically large so that the sphere can be considered
uniformly magnetized material and macroscopically small
so that the magnetic inhomogeneities of the sample

may be neglected. We then "remove'" the magnetic material

inside the sphere and calculate the "Lorentz field" in the
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resulting spherical cavity. The Lorentz field is given

byZS:

> _4,"_

> P
H oorentz = 3 M M.W. (40)

We may calculate the field at P due to the mag-
netic material contained inside the sphere by numerically
summing the field at point P due to each dipole.

—.+. +3A.c+. A.
> Hy *3(nyeiydny

HDIP = ? (41)

T.
J

where Kj is the dipole located a distance T from the
point P. n is a unit vector which points from the dipole

to P. The total internal field due to all these effects

is:
H. . =H £ ¢ ¢ 2
Hint = Happ * HLor ~ Hpem * Hpip (42)
>
a3 (IS I
Hint = Happ v (3 D) J 3 (43)
j

The magnitude of the dipole field is usually small compared
to the Lorentz and demagnetizing fields. For this reason
it will be neglected in the discussion which follows.

We have shown that for small fields or high

temperature:

> -

M
x = H

(emu/cc) (44)

int
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where x° is the magnetic susceptibility that would be
observed in the absence of demagnetizing and Lorent:z

fields. Then:

M
X® = am Mp
Happ + (3= - D) g~
M
_ Happ
4 M p
1+ (3= -D) Happ M.W
Now if we define:
= _M
Xmeas ~ Happ
we can write
o _ Xmeas
- 4 (45)
1+ (3£ D) Xpeas —2—

M.W.

Knowing the physical dimensions of a magnetic sample, its
density and its molecular weight, we can correct the expe-
rimentally measured susceptibility as long as the measure-
ment is made at small applied fields or high temperatures
so that the magnetization is a linear function of the

field.




CHAPTER 2
EXPERIMENTAL APPARATUS: MAGNETOMETER

I. Introduction

In order to measure the bulk magnetization of
magnetic insulators, we have constructed a magnetometer
capable of measuring magnetization at liquid He4 tempera-
ture in applied fields up to 16 kOe. The design was sug-

26 and is based on the

gested by an article by Mcquire
original design of an induction magnetometer by Cioffi7,
The magnetization of the sample is detected by measuring
the EMF induced in a pickup coil when the sample is moved
through the coil. The EMF is then electronically integra-
ted to give the net change in flux caused by the moving

sample. This change in flux is related to the bulk mag-

netization of the sample.

II. Theory

The magnetic fields of a uniformly magnetized

sphere are givenz8 by:

3
8“ M R A - A
> hy 0 s1inf
= = 0 0 4
Bout = Houg = —— 3~ (cosfr + == ) (46a)
Z _8TM z (46b)
in = 3 ©°
g = 4T m3 (46¢)
in 30
50
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where ﬁin and ﬁin are the magnetic fields inside the

sphere and

Mo = magnetization in emu/unit volume
R = radius of sphere
r = distance from center of the sphere

and ; and 8 are defined:

We note that the fields outside the sphere are those of

'ﬂ'3 ~
a magnetic dipole of moment ﬁ = 135— M.z

"2
Let us consider the flux through a loop of radius
a with the sphere located a distance z away from the plane

of the loop along the axis of the loop as shown in Fig. 27.

The flux through the loop is given by:

©
]

[ B ypy X @ X do (47)

/ B dR =
S

a
wao B orm X4X
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H a I
& —0
Z 16
a 2
= 2mu f 3 cos™6-1 xdx
o T
3 2’x
a Z, 2 d
=21Tuf X Z - X X
0 | (x24+72)3/2 (x2+72)3/2
= 2Ty fa 5 2%x - x  jdx
0 | (x2s72)5/2 (x2+72)3/2
3
® (Z>R) = ffggfg -z 2 - 1 (48)
(a2+22)3/2 (ZZ+ZZ)1/2

If the sphere intersects the plane of the coil, we must

modify the calculation due to the altered geometry:



We may derive p from the equation of the circle
which results from the intersection of the plane of the

loop and the sphere:

o? = x* + y? (49)
The equation for the sphere is:

R =y 2 4 y2 4 52 | (50)
Substituting from this last equation we find:

2 ,2,1/2

p = (R (51)

The flux through the loop from the fields outside the

sphere is given by:

a
®out = 2TH fp (BoutInorm X9X
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2.3
87°R MO _Zz 1 i -1_3_
= 3
(aZe72y3/2 R
+ 1 -1 (52)
(alszy1/2 R
_ p
®in = Znufo (Bin) norm xdx
2
8T°M
- ° (rR? - 2% (53)
3
) 82 R3M, ;2
®(Z°R) = <I)out * ¢in B 3 3/2
(a +2 )
+ ______l_____ (54)
(a2+72)1/2

Thus the flux through the loop has the same functional

dependence for all values of z.

As the sphere is moved along the z axis the
flux through the loop will change thereby inducing an EMF

in the coil:

_ .20
E = -3¢ (55)
Integrating this EMF as a function of time:
a9 _ _ '
[ Edt = - jgf dt = -A® = &(z') - ¢(z) (56)

Since the ¢ involves the magnetization of the sample, we
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can measure the magnetization by integrating the EMF induced
in the coil. We note that this result is independent of the
path of the sample, but involves only the flux indicated at

the two end points.
In a practical experiment, the sensitivity and

noise rejection of the apparatus can be improved by using
an astatic pair of pickup coils. The experimental sample
coils, shown in FIGURE 13, consist of two coaxial solenoids
of N turns counterwound on the same cylindrical form.
‘There are two advantages to such a system. The first is
that any fluctuations in applied magnetic field will affect
both coils equally. Since the coils are wound in opposite
directions the EMFs induced by the fluctuating fields will
have the opposite sign and canéel. The second advantage

is that in addition to increasing the sensitivity by a
factor of N over that of the single loop, the EMF's

induced in the two coils by the moving sample will have

the same sign and therefore will add. To calculate this,
we must evaluate the flux through both coils as we move

the sample from the center of one coil to the center of

the other. However, by symmetry, the flux at the two end
points should be the same. Therefore, it will suffice to
evaluate the total flux with the sample in the center of
one coil and then double the result. The detailed cal-

culation involves summing the flux through each of the N
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FIGURE 13. The magnetization apparatus.
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loops of the two coils:
2N
% = .2 Qi(zi)
i=1
2.3 2
(SR, M m 1 (57)
3 i=1 (aZ+ziZ)3/2 (az+ziz)1/2

A computer calculation for the sample coils in our appa-
ratus was carried out. The total flux change in moving
the sample from dne coil to another is:

8RN

= = () 3 |
AQtot = 2@0 ———;——— (2.62 x 107) (58)

III. The Cryostat

The cryostat is shown in FIGURE 13. The sample
holder is supported by a piece of 1/4" thin wall cupro-
nickel tubing. This tubing is fed through an 0-ring
"Veeco" vacuum seal in the 1id. The 0-ring makes a sliding
contact with the tubing and allows movement of the sample
without significantly affecting the vacuum over the helium
bath. The static applied field is produced by a super-
conducting solenoid consisting of 14,712 turns of 0.0178 cm
diameter copper jacketed Niobrum Zirconium wire wound on a
form of "Synthane" type G-11 fiberglass epoxy.zg The sole-
noid produces a field of 1680 oersteds per ampere. The

maximum current at 1.1k is approximately 12 amperes which
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gives a maximum field of 20 kilo-oersteds. The current is
determined using a digital voltmeter to measure the voltage
across a resistor connected in series with the solenoid.
The value of the resistor is 1.31 * .05 milliohms. The
field in the solenoid as a function of the voltage across

the series resistor is:

H(oersteds) = 1282 x Vre (millivolts) (59)

S

The sample holder is machined from epoxied linen. The

two pickup coils are wound astatically on a synthane type
G-11 epoxy form. Each coil consists of approximately

2500 turns of number 36 enameled copper wire. The output
of the pickup coils is connected to a differential ampli-
fier and then to an integrator. Both the amplifier and
the integrator utilize an Analog Devices Corporation model
233k chopper stabilized operational amplifier powered by
an Analog Devices model 904 dual 15 volt power supply.

The circuit is shown in FIGURE 14, and the schematic is
shown in FIGURE 15. The gain may be switched from 1000 to
10,000 and the integration time constant can be set to
either one or five seconds. The voltage output of the
integrator is measured using a digital voltmeter. Typi-
cal integrated output voltages ranged from 15 millivolts
to 9.5 volts with a signal to noise ratio of one at the

lowest voltages. The zero offset of the operational
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amplifiers must be periodically readjusted since the offset
voltage will appear as an. integrated signal. Typical

drift rates are: 1 millivolt/second with a gain of 10,000
and a time constant of 5 seconds; 0.5 millovolts/sec with

a gain of 10,000and a time constant of 1 second; and 5
microvolts/second with a gain of 1000 and a 5 second time

constant.

IV. Calibration

The overall calibration of the system was per-
formed using a sample of ferric ammonium sulfate,
Fe2(804)3 (NH4)2 (804)-24H20. This material is an S=5/2
paramagnet at liquid He4 temperatures. The magnetization
is given by:

H

gHy

~_° 60
kT) (60)

M(H,T) = (Ngup 3)Bg,, (

The experimental data is shown in FIGURE 16. The solid

line is a fit to the expression:

M_I-RVL- M(volts) = x K (—®4__ ) M(H,T) (61)
volt-mole
where M = is the integrated EMF in volts
M.W. = the molecular weight

m = the sample mass
K = the system calibration constant

7 = the integrator time constant




FIGURE 16.
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Magnetization of ferric ammonium

sulfate.

Solid curve is the theory.
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A = the amplifier gain

The derived calibration constant is:

K = (2.93 + .05) x 107> —__emu__ (62)
mole-volt

We have previously derived (eq. 58) a theoretical expres-

sion for the EMF for our coils:

3 81r2R3Mo
EMF = (2.62 x 107)

3
with MO in emu/cc. To compare this expression with our

experimental value, we must convert it to the same units:

3

4wR"M

= magnetic moment in emu
3

To express this in emu/mole, we multiply by m/M.W.:

3

4TR"M
0 = magnetization (%%%E)
3 M.W.
3.
(2.62x107)2 M.W.
1 -5 emu

K = = 6.07x10 - (63)
theor (2.62x103)2 mole-volts

Thus the constant derived from a theoretical expression
differs fromthe experimental number by only a factor of

two.



CHAPTER 3

MANGANESE BROMIDE TRIMETHYL AMINE

I. Introduction

Manganese bromide trimethyl amine dihydrate
(MBTMA) , MnBr3[(CH3)3NH]-2HZO is a member of the general
class of metallo-halide organic compounds:
MXS[(CH3)3NH]-2H20 (where M = Co, Cu, Ni, Mn and
X = Cl1, Br), which have been the subject of extensive
structural and magnetic measurements.:”o-33 In these com-
pounds, the metal ion is generally octahedrally coordinated
by two waters and four halides. The octahedra are edge
shared along the halides so that the metal ion-1ligand
structure takes the form of chains or sheets giving rise to
experimentally observed low dimensional magnetic behavior.

Although the crystal structure of MBTMA has not
been determined, measurements of the magnetic specific

35

heat:,’4 and zero field susceptibility have demonstrated

low dimensional behavior and a transition to a three dimen-
sionally ordered state at 1.56K.36
NMR, magnetization and susceptibility (in applied

field) experiments have led to a zero temperature model for

the spin system and a tentative crystal structure which is

65
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consistent with the space group derived from x ray analysis
and is similar to the crystal structures for other members

of this group of compounds.

II. Experimental

Large single crystals of MnBrs[(CHs)sNH]~ZH20
were prepared by reacting a 25% aqueous solution of (CHS)SNH
with MnBrz'4H20. A solution of 48% hydrobromic acid, HBr, :
was then slowly added to the mixture. The resulting pinkish- ;
orange solution was then filtered and slowly evaporated near |
room temperature. Within several days, well formed (FIG., 17)
orange-pink crystals appeared. The solution was filtered
and several small "seeds'" were suspended on threads in the
solution and allowed to continue growing. Upon reaching
a mass of several hundred milligrams, the crystals were
removed from the solution and used in the following experi-
ments.

A. Crystallography The density of the crystal
was determined by weighing the crystal in air and in metha-
nol. The lattice dimensions and crystallographic space group
were determined by x ray diffractometry of aligned single
crystals using MoKa radiation. The lattice of MBTMA has
dimensions: a = 8.451.02R b = 7.65¢.UZR and
c = 8.45:023 and is monoclinic with an angle of
g = 91°56' + 4'. The derived cell volume used in conjunc-

tion with the experimentally determined density indicates



FIGURE 17.
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The morphology of manganese bromide

trimethyl amine dihydrate.
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there are two molecular units in the crystallographic unit
cell. The extinctions of every other reflection along the
crystallographic b axis as well as the presence of the
monoclinic angle imply the crystallographic space group
PZl/m. The point group 2/m was confirmed as was the mono-
clinic angle by measuring the crystal face normals using

an optical goniometer.

B. Electron Spin Resonance Electron spin reso-

nance was performed on an aligned single crystal at 9.2 GHz
(x-Band) in applied fields up to 20 kilo-oersteds. The mi-
crowave cavity was immersed in liquid He4 and measurements
were made from 4.2 to 1.1K. Only one broad resonance
(z2k0e. wide) was observed. Within experimental uncertainty
the g-value and the line width are isotropic. The persis-
tence of the single line through the Neel temperature
(1.56K) with only a slight decrease in line width is thought
to be due to regions of paramagnetic material. The crystal
is very hydroscopic and some of the surface material may
have been dissolved. This dissolved material would then
behave as a paramagnetic glass at low temperatures.

No evidence of a E=0 spin wave resonance was ob-

served at the lowest experimental temperature of 1.1K.
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C. Nuclear Magnetic Resonance Nuclear magnetic

resonance experiments were performed on aligned single
crystals immersed in liquid He4 using a marginal oscillator.
The spectrum in zero applied field was recorded at T=1.1k
and is shown in TABLE II. The line which occurred at

18.74 MHz (at 1.1K) was recorded as a function of tempera-
ture and is shown in FIGURE 18.

Deuterated crystals of MBTMA were prepared by
first heating MnBr2-4H20 to drive off the waters of hydra-
tion. The resulting powder was then reacted with (CHS)SNH
in DZO in the presence of hydrobromic acid HBr. Crystals
were again produced by slow evaporation. This time, how-
ever, the evaporation took place in a desiccator and great
care was taken to prevent HZO from contaminating the crys-
tals. The spectrum for the resulting deuterated crystals
was recorded in zero applied field below TN. The lines at
18.17 and 18.74 MHz decreased by almost two orders of mag-
nitude. Since it is expected that there is no significant
exchange of hydrogen atoms for deuterons in the methyl or
amine groups, it is probable that only the waters of hydra-
tion were replaced by DZO' We infer that the two NMR lines
which decreased in magnitude in the deuterated crystal are
due to the protons in the residual waters of hydration.

No other lines were affected by the deuteration.
An applied field of 300 oersteds was used to

probe the rotational symmetry of the magnetically ordered
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TABLE II

Zero field NMR frequencies and

line widths in MBTMA (T=1.1K)

Av (KHz) v (MHz)

v (MHz) Av (KHz) v (MHz) Av (KHz)
1.53 250 8.15 250 26.91 125
1.86 200 9.76 200 28.56 125
1.94 250 18.17 250
3.195 250 18.74 250
7.68 250 23.50 125
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FIGURE 18. Temperature dependence of a proton nuclear

magnetic resonance frequency in MBTMA.
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FIGURE 19.
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Rotation diagram for proton nuclear magnetic
resonance in MBTMA with an applied field of

300 Oe. (T=1.1K).
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state. Rotations were made about each of the three crystal-
lographic axes. A typical rotation diagram is shown in
FIGURE 19, Although the frequencies are different for the
other lines, the rotational behavior for all lines in
applied field is identical. A detailed examination of
these rotation diagrams shows that for each local field

magnitude, there are four distinct local field directions.

D. Magnetic Susceptibility The near zero field

susceptibility for MBTMA has been measured by the group
at the University of Illinois at Chicago Circle.37 The
susceptibility and magnetic specific heat data are shown
in FIGURES 20 and 21, The data indicate a Ty=1.56K.

The ac susceptibility in applied fields up to
16 kilo-oersted has been measured at liquid He4 temperatures
using standard mutual inductance coils inside a supercon-
ducting solenoid.

The data with the external field applied along
the crystallographic b axis is shown in FIGURE 22 for sev-
eral different temperatures. At temperatures below TN’ an
anomalous peak at H x 1200 oersteds 1is observed. No
such anomaly is observed with the field applied along the
other two axes. The values of the critical field and the
temperature at the peak in susceptibility are shown in

FIGURE 23. This diagram indicates the presence of at

least three distinct magnetic phases. Saturation of the
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FIGURE 20. Zero field magnetic susceptibility of
MBTMA (after J. N. McElearney et al.).
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FIGURE 21. Magnetic specific heat of MBTMA

(after J. N. McElearney et al.).




80

N ©
o d=
-9|ow/|pY) o

N
02
(Mo

O
v

8t



FIGURE

22.

81

The magnetic susceptibility of MBTMA
with the external magnetic field

parallel to the b axis.




X (arbitrary units)

I

82

ﬁ ,,-T=|.IOK

T=1.35K”

_—O0—
s

: \
,%0-1o | ;&8:—0[

500

750

1000 1250 1500

HOersted)

2000



83

FIGURE 23. Magnetic phase diagram for MBTMA.
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spin system was not observed at the highest experimental
field. It is possible that another magnetic phase may

exist at fields above 16 kope.

E. Bulk Magnetization The bulk magnetization

has been measured as a function of applied field at liquid
He4 temperatures in a '"snatch coil" magnetometer (see expe-
rimental apparatus: Magnetometer). The magnetization with
the field applied along the crystallographic b axis is shown
for various temperatures in FIGURE 24. As the temperature
is lowered from 4.2k to TN one observes a linear increase
in magnetization for small increasing applied fields. The
slope dM/dH is consistent with the measured susceptibility.
At temperatures close to TN’ however, an abrupt change in
the slope occurs at a field of several hundred oersteds.
If one extrapolates»the high field portion of the magneti-
zation curve back to zero applied field, one finds a nonzero
magnetization whose magnitude increases as temperature is
lowered toward TN' There is no discontinuity in magnetiza-
tion in the other directions,

At temperatures below TN, the magnetization in
the b-direction shows (FIGURE 25) a sudden increase which
occurs at H = 1200 Oe. At higher applied external fields
the magnetization continues to rise smoothly, although not
linearly with increasing applied field. Saturation of the

magnetization was not observed for fields up to 16 kOe.
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FIGURE 24. Magnetization of MBTMA with the external

magnetic field parallel to the b axis.
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FIGURE 25. Magnetization of MBTMA below Ty (T=1.1K)
with the external field along the crystal-

lographic axes.
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III. Discussion

A. Evidence for a Proposed Crystal Structure

The exact crystal structure for MBTMA is at present unknown.
It appears likely, however, that the structure is closely
related to that of C0C13[(CH3)3NH]-2H20 (CCTMA). The struc-
ture of the cobalt complex,38 shown in FIGURE 26 is charac-
terized by chains of edge sharing octahedra which extend
parallel to the b axis. The local coordination of the me-
tal ion is octahedral consisting of four chlorines and two
water molecules. The water molecules lie mostly above and
below the cobalts inthe c direction. The unit cell of CCTMA
is orthorhombic with four molecular units in the crystal-
lographic cell.

We assume that in MBTMA, the atomic configuration
of the CoClg and.(CHs)sNH+ molecular subunits are still
preserved, but that a structural modification occurs which
affects only the molecular packing of these units. The pro-
posed unit cell modification is exhibited in FIGURE 27.

This change moves the chain running through the
center of the CCTMA unit cell down until it coincides with
the chains in the ab plane. The cell becomes slightly dis-
torted and descends in symmetry from orthorhombic in CCTMA
to monoclinic in MBTMA. The local coordination of the man-

ganese ion is presumed to be octahedral with four bromines

and two waters of hydration. The edge sharing character of
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FIGURE 26. The crystal structure of cobalt chloride
trimethyl amine dihydrate (after D. B.

Lossee et al.).
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FIGURE 27.

93

Comparison of the proposed unit cell of
MBTMA (lower) with the unit cell of
cobalt chloride trimethyl amine dihydrate
(upper) .
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the octahedra in CCTMA which results in a chain of metallo
halide bridges is also thought to be present in MBTMA.
With the proposed modification of the relative arrangement
of these ''chains,'" the length of the a axis in MBTMA should
be half that of CCTMA and there will be only two molecular
units inthe cell. TABLE III is a summary of the crystallo-
graphic parameters of both systems. The chemical unit
MnBrs[(CHS)SNH]~2H20 contains fourteen protons. As there
are two molecules in the chemical unit cell, the cell con-
tains a total of 28 protons. Atoms may be located at
""general'" symmetry positions in the unit cell as follows:
place the first atom in the unit cell at some position
(X,Y,Z) which is not on a rotation axis, in a mirror plane
or at an inversion point. We then perform each of the
symmetry operations in the group and generate the remaining
general positions. The group P21/m has four symmetry ope-
rations:"2" ,mirror, inversion and identity in its point
group 2/m. Thus there are four general positions in the
crystallographic unit cell which are related by symmetry
operations. We could place all twenty eight protons in
the MBTMA unit cell in seven groups of four general posi-
tions. The four protons in each group are said to be
"equivalent." Physically this means that aside from rela-
tive differences in orientations produced by the symmetry
operations, the local atomic surroundings of each proton

would be the same. This last statement implies that
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TABLE III

Comparison of unit cell parameters
of MBTMA and CCTMA

MnBr 5 [ (CHy) sNH] « 2H,0 CoC1 4 [ (CHy) sNH] - 2H,0

Number of molecules

in cell 2 4
Lattice dimensions
a 8.45 + .02 A 16.671 A
b 7.65 + .02 A 7.273 A
c 8.54 .02 A 8.113 A

B= 91°56'
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physical properties such as the magnitudes of the local
magnetic fields of all four protons in this symmetry rela-
ted group, would be identical. The fields, of course,
will, in general, have four different directions. A dif-
ferent group of four protons which were generated from
another '"general' starting position (X', Y', Z') need not
have the same atomic surroundings or physical properties.
Thus, for the seven groups of four protons we would expect
seven distinct local field magnitudes. However, the spa-
tial locations of the protons are not all independent.

One of the protons, for example, belongs to the amine (NH)
unit. Since there are only two such units in the cell, we
cannot place these protons (and nitrogens) in general posi-
tions which would result in there being four of them in

the unit cell. We must then, place them in 'special' posi-
tions. A special position is a particular location in the
unit cell, such as in a mirror plane or at an inversion

point. An atom which is placed at one of these positions

is unaffected by one or more of the symmetry operations.

For example, an atom located in a mirror plane is unaffected
by the mirroring operation. There are a total of eighteen
methyl (CHS) protons. Since eighteen is not a multiple of
four, a least two and perhaps more of these protons are in
special positions. The deuteration experiment shows that
there are two distinct local field magnitudes for the water

protons. Since there are eight HZO protons we may place
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all of them in general positions producing the requisite
two groups of four. TABLE IV shows a possible assignment
of special and general positions and the resulting number
of local field magnitudes. This assignment produces nine
local field magnitudes which is consistent with the number
of zero field proton resonances. Finally, because the cell
only contains two manganese ions, these also must be in
special positions.

Let us elaborate on the reasoning for the asser-
tion that the local coordination of the metal ion is simi-
lar in both MBTMA and CCTMA. The broad peak in the magne-
tic specific heat data above TN for both systems indicates
low dimensional magnetic behavior. This behavior, which
is thought to be due to short range correlations, is also
evident in the nonzero (extrapolated) moment observed in
the bulk magnetization measurements above Ty- This sup-
ports the assertion that chains of metal halide bridges
are present in both MBTMA and CCTMA. The water molecule
which completes the octahedral local coordination of the
metal ion in the cobalt salt appears to have the same
location in MBTMA. Evidence for the location of the waters
of hydrétion is provided by the zero field susceptibility
and NMR below TN' The zero field susceptibility data
along the c axis has the smallest value at the lowest ex-

perimental temperature. We infer this axis behaves much



99

TABLE IV

Assignment of proton special positions in MBTMA

Chemical Number in Gen- Number in Spe- Number of
unit eral positions cial Positions Distinct
(4 operations) (2 operations) Proton

Local Field
Magnitudes

CH, 12 6 3+3 = 6

NH 0 2 0+1 = 1

H,0 8 0 2+1 = 2
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like the parallel axis in a uniaxial antiferromagnet. The
spins in MBTMA then are mostly along the c axis. If we
assume the waters of hydration which complete the octahe-
dra are located above and below the manganese ion along
the ¢ direction, we can calculate the local field at the
protons due to the manganese moment. A typical configura-

tion for a water molecule bonded to a manganese ion is

shown in FIGURE 28.
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FIGURE 28. Bonding of a water molecule to a

manganese ion.
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The magnetic dipole field at a distance "r'" from

the manganese is given by:

g = Sn(u-wsu (64)

~ ->
where n is a unit vector which points along r and u is the

manganese magnetic moment:

W= g 2.3 (65)

If we assume the magnanese moment points along the line
joining the manganese and the oxygen, we calculate that

the magnetic field at the water proton is 4425 oersteds.

The nuclear magnetic resonance frequency for a proton in

a field of this magnitude is 18.84 MHz. The apparent exéel-
lent agreement of the calculated frequency with our experi-
mental values of 18.17 and 18.74 MHz is somewhat fortuitous
since this calculation used only one manganese ion, while
the real field is due to all spins in the lattice. A dipole
sum was carried out using our proposed crystallographic
lattice with the spins coordinated antiferromagnetically
along the chains with the moments in the + and - c¢ direc-
tions as shown in FIGURE 29. The sums were calculated by
computer over the volume of a sphere which contained 6800
manganese spins. The result gave a field of 4354 oersteds
or a nuclear magnetic resonance frequency of 18.54 MHz.

The magnetic moment used in this calculation is based on a
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FIGURE 29. Magnetic dipole arrangement used in

computer calculation.

spin of S=5/2 and the g-value of 2.12 which was derived
from the ESR data. Let us next consider, at least quali-

tatively, the details of the interactions which determine

the spin state of Mn*" in MBTMA.







—'#— — T T

103

B. Magnetism of 3d5 S=5/2

Doubly ionized manganese is a transition metal
ion with a 3dS orbital configuration. As previously indi-
cated it is likely that the local coordination in MBTMA
is octahedral. In octahedral symmetry the five d orbitals
are split by the crystalline electric field interactions
as shown in FIGURE 12. If the energy separation "A" be-
tween the tzg and eg states is not large (the "weak ligand
field' 1imit), the minimum energy configuration is achieved
by singly occupying each orbital. Each of the five
d electrons are coupled "spin up" resulting in the maximum
spin angular momentum, S=5/2. The fact that all the spins
are parallel requires that the orbital angular momentum
be f=0; an '"S'"-state configuration. This zero net angular
momentum will cause all matrix elements involving E (in
particular f-7 and E-§) to vanish in first order. Since
as we have shown earlier these matrix elements are respon-
sible for the deviation of the g-value from 2, manganese
with S=5/2 should have a g equal to 2. In addition, one
would not expect any crystalline electric field splitting
of the *5/2, *3/2 and *1/2 Kramer's doublets. There are
however, excited configurations of the d orbitals which
are produced by doubly occupying one of the orbitals. The
resulting S=3/2 system will have a nonzero orbital angular

momentum. However, because of the resulting large
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electron-electron repulsion produced by the double occu-
pancy of one of the orbitals, matrix elements calculated
in second order between the ground (E=O) state and this
excited state are reduced by the large energy difference
which appears in the denominator. Experimentally, one
normally finds the g value very nearly 2 for S=5/2 manga-
nese in octahedral coordination.

MBTMA, for example, has a g value of 2.12%+.02
which is isotropic within experimental (E.S.R.) resolution.
Only one resonance line with a width of approximately
2 kilo-oersteds was observed. This width is quite usual for
manganese which in addition to having an electron spin of
S=5/2, has a nuclear spin of I=5/2. Each of the six (2S+1)
spin states is split by the hyperfine interaction into six
(2I+1) components giving a total of 36 levels! In a con-
centrated magnetic system such as MBTMA, spin-spin inter-
actions broaden the individual levels so that the resonance
line would appear as one broad signal. The fact that only
one such broad resonance is observed, indicates the three
Kramer's doublets (S= 5/2, *+3/2, *#1/2) are only slightly
split by the crystal field. This again is consistent with

>
a small spin orbit coupling due to the L=0 (S-state) orbi-

tal ground state.
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C. The Ordered State: Metamagnetism

As previously discussed, the zero field suscep-
tibility data indicates the sublattice magnetization in
MBTMA is mostly along the c axis. The large peak in the b
axis susceptibility data and the nonzero extrapolated moment
above Ty, are both consistent with the formation of a net
moment produced by canting the spins. The magnetic phase
transition which is observed below Ty occurs with H applied
along the b axis. This implies the transition which is
observed is not a spin flop, which occurs with H parallel
to the sublattice magnetization but is more likely a meta-
magnetic transition. If the ordered state consisted of a
uniaxial antiferromagnetic system, one would observe a spin
flop only with the field applied along the direction of
sublattice magnetization. If the sublattices are canted,
the zero field susceptibility data along each of the three
axes behaves differently whereas a uniaxial system would be
characterized by a parallel and a perpendicular suscepti-
bility. The facts that the magnetization in small applied
fields vanishes smoothly for decreasing fields and that
there were no discontinuities in the NMR rotation patterns
in applied field imply that the total spin configuration
in the ordered state has no net moment.

The observations that MBTMA: (1) has a magnetic
transition in applied field which appears to be metamag-

netic; (2) exhibits four distinct local field directions
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for all proton lines; (3) has an antiferromagnetic unit
cell, suggest the following model. We postulate that the
system behaves as a four sublattice canted antiferromagnet,

with the following zero temperature sublattice Hamiltonian:

> > 2 ° > > >
H = -TH.zS. - " - . .
TH ESl kES1Ei JAF(S1 S4 + S2 SS)

& All:(§1 85+ 8, ) (66)

v

: e 1 2 1 5
with k |JAF[>|JAF| and Jyp, Jyp both negative and

where gi represents an anisotropy axis whose direction is
different for each sublattice but are related by symmetry.
Here again, the S's represent sublattices. The model is
shown with the interactions indicated in FIGURE 30a. The
sublattices are mostly along the + and - c directions and
are canted in the + and - b directions. The magnetic tran-
sition is presumed to be metamagnetic and results in the
spin configuration shown in FIGURE 30b. The canting angle
6 may be calculated from

AM = Ng ug S sine (67)

where AM is the field induced change in magnetization at
the phase transition. Using the observed value of

1.91 x 103 emu/mole we deduce a canting angle of approxi-
mately 4°. We shall qualitatively discuss the behavior
of the system in an applied field by using the previously

derived sublattice polarization energy diagrams (PED).
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FIGURE 30a. Zero temperature sublattice model for

MBTMA with H=0.
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We shall take as our polarization basis states

the following:

112 | 2 4
| 1>= “ | 2= -—.4' "_"3 |3>=
| 3
| 5 1234
14 >= : |5>--—'rl2 | 6)>= ""
3 - 4 — §4

In zero applied field, these polarization states are
mixed by the competition between the anisotropy and the

antiferromagnetic exchange, to form the following states:

1 a|1>+bl2>=>< (68a)
4 3

24

c|3> + d|4> << (68b)

31

©
]

2

The polarization state ¢2 is higher in energy in zero
field because of the exchange energy JA%. Let us consider

first the behavior of this system with a field applied

along the x(b) axis.
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FIGURE 31.
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PED for manganese MBTMA with H along

the b axis.
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The applied field couples some of the state |4>
into $q - This produces a net moment so that the energy of
the state decreases because of the Zeeman interaction.

The state b, has a larger moment than $1, SO that it des-
cends in energy faster than ¢, as shown in FIGURE 31.

For H < HC the system is polarized mostly along + and -

rit’
z but is canted in the + and - x directions. As the field
is increased, the sublattices rotate towards the field.

At H =H sublattices 1 and 4 reverse their direction

crit
so that they coincide with 3 and 2 respectively. This re-
sults in an abrupt increase in the magnetic moment. The
moment then continues to increase until H = HSAT'

With the magnetic field applied along the z(c)

axis we must consider a new mixed polarization state.

65 = e|d4> + £|6> = A\V4 (69)

Again the state $1 is lowest in zero applied field. The
state ¢ is significantly higher in energy than ¢, because
of the assumption JA; > JA%. The applied field mixes some
of the ferromagnetic polarization |6> with 97 This causes
the energy of ¢ to decrease because of the Zeeman inter-
action. The state ¢z has a large moment and descends
rapidly in energy with increasing applied field. The PED

for this situation is shown in FIGURE 32.
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FIGURE 32. PED for MBTMA with H along the

c axis.
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For H < H the spins rotate toward the field. The cri-

crit’
tical field with Happ along the z axis is higher than

H along the x axis again because of the assumption

crit

o 1
AF ~ JAF -

with Happ along z(c), beyond the highest experimental field

J This presumably raises the critical field,

of 16 kOe. and therefore it was unobserved. At the criti-
cal field, sublattices 3 and 4 reverse and become colinear
with sublattices 1 and 2 respectively. This again results
in an abrupt increase in magnetization. The moment con-

tinues to grow until H = H Finally, a field applied

sat’

along y, rotates all spins toward the field until H = Hsat'
No sharp transition is observed.
Let us examine the implications of this model

for the magnetic space group.

D. The Ordered State: The Magnetic Space Group

X-ray studies and optical goniometry show the
chemical space group is P21/m with the two fold screw axis
parallel to the crystallographic b-axis. The magnetic
space group may be formed by taking some or all of the
elements of the crystallographic group and replacing these
elements with anti elements. All of the magnetic space
groups which result39 from P21/m are iisted in TABLE V.
Each of these groups is derived from the point group 2/m.

Each group contains four symmetry operations. EXcCept for
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TABLE V

Magnetic space groups resulting from P21/m

Group Ferromagnetic Antiinversion Antitranslation
P21/m Yes No No
PZi/m No Yes No
P21/m No Yes No
! ]
P21 /m Yes No No
P2C Zl/m' No Yes Yes
PZS Zl/m No No Yes
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the last two groups which contain eight. If we assume
the magnetic spins are confined to one plane and canted
along the two fold axis (the b-c plane in the crystal)

the number of distinct spin directions within the magnetic
unit cell produced by each point group is shown in FIGURE
33.

We recall there are only two manganese ions in
the chemical unit cell. Therefore, they must be located
in special positions. The special positions for the
crystallographic space group P21/m occur with the atom
located at inversion centers or on the mirror plane. In
Section IV of the theory, SYMMETRY AND THE MAGNETIC SPACE
GROUP, we tabulated the restrictions placed on the orien-
tation of a spin if it occupies a special position in the
magnetic unit cell. To reiterate: a magnetic ion cannot
be located on an antiinversion center and a spin which is
in a mirror plane must be perpendicular to the mirror
plane if it is real or must lie in the plane if it is an
anti mirror plane. The mirror planes in MBTMA are perpen-
dicular to the b (the two fold) axis. Our proposed model
for the spin arrangement has the spins along + and - ¢
and canted in the + and - b directions. This canting is
not allowed if the spins are located in either a mirror
plane or antimirror plane. Therefore, the spins must

occupy the only remaining special position, an inversion

center.
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FIGURE 33. The magnetic point groups formed

from 2/m.
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Our proposed spin model also requires a total
of four unique directions in the magnetic unit cell. The
point groups 2/m and Zl/ml, which both contain inversion
centers, result in only two distinct directions. As pre-
viously indicated, antitranslation will reverse the spin
orientations in alternate crystallographic unit cells.
Antitranslation will then produce a total of four unique
directions if added to the groups 2/m and Zl/m/ resulting
in the groups 2/m1/ and 27mﬁl. The groups Z/m/ and 2,/m
do not contain inversion centers and do result in four
unique directions in the unit cell. The requirement of
four unique spin orientations in the unit cell is met by
a group which contains both inversion and antitranslation
or neither operation.40 This requirement is satisfied

by the groups

em” 2'/m 2/wY and 2/ml’

The first three groups contain antiinversion
centers. If the manganese ion is located on an inversion
center in the crystallographic unit cell, the correspond-
ing magnetic unit cell must not contain antiinversion
centers. Therefore, if the manganese is on an inversion
center, the correct point group is Z/ml, which results in
the magnetic space group PZSzl/m. The subscript 2s indi-
cates the magnetic unit cell is doubled along some direc-

tion perpendicular to b, relative to the crystallographic
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unit cell. Determination of the direction in which the

unit cell doubles requires further experimental evidence.






CHAPTER 4
COPPER L-ISOLEUCINE MONOHYDRATE

I. Introduction

Bis L-Isoleucinato copper (11) monohydrate.
C12H24CuN204-H20, the copper (II) complex of the amino
acid L-Isoleucine, (hereafter referred to as copper
L-Isoleucine) is an example of a five-coordinated transi-
tion element ion in which the local coordination forms a
square pyramid. Although there have been extensive spec-
41-45

troscopic investigations of similar systems and some

magnetic measurements,46'47 there have been few reports of
the low temperature behavior of five-coordinated systems.48
We shall present and discuss the magnetic susceptibility
in near zero and applied fields and electron spin resonance
(ESR) spectra of powder and single crystal samples of
Cu2+ L-Isoleucine monohydrate.

The crystal structure is orthorhombic with four

chemical units in the crystallographic unit cell. The unit

o ] o
cell dimensions are a=9.451A b=21.67A <¢c=7.629A and the

49

reported space group is P212121. The copper atom lies

approximately in the center of the base of a square pyramid.

Two oxygens and two nitrogens form the base of the pyramid
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FIGURE 34.

The square pyramidal coordination of
copper L-Isoleucine showing the derived

principal axes of the g tensor.
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FIGURE 35.
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The crystal structure of copper

L-Isoleucine (after Weeks et 11.).
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and a water oxygen completes the top of the pyramid
(FIGURE 34). The symmetry of this configuration is
4mm(C4V).

The molecules are "hydrogen-bonded'" along the
a and c axes, but are well isolated in the b-direction.
(See FIGURE 35.) These structures will be referred to as
""'sheets'" in the ac plane but in fact the copper
L-Isoleucine molecules are indeed three dimensional; it is
only the bonding which is two-dimensional. This two-
dimensional character suggests the possibility of two-

dimensional magnetic behavior.

IT. Experimental

Copper L-Isoleucine monohydrate, C12H24CuN204-H20
was prepared by reacting basic copper carbonate (CuC0O
(CuCOs'Cu(OH)Z), with L-Isoleucine, (CHSCHZCH(CHSJCH(NHZJ
(OOH)),in water. The resulting dark blue solution was

filtered and slowly evaporated near room temperature. The

complex crystallized in thin deep blue diamond shaped
platelets (FIGURE 36). The largest single crystals had a
mass of 15 milligrams. The crystals were oriented for the
various single crystal experiments by using the external
morphology after comparing the morphology with the known
lattice parameters using X-ray diffractometry.

Since, as will be shown, the magnetic suscepti-

bility results indicate the possibility of nonstoichiometric
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FIGURE 36. The morphology of copper L-Isoleucine.
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copper, the copper content was determined by neutron acti-
vation analysis of a 35.6 milligram powder sample. The
sample was irradiated at the M.S.U. "TRIGA" nuclear reactor.
There are two naturally occurring isotopes of copper:

63
u

C (70%) and Cu65(30%). The analysis was performed on

the 1.348 MeV gamma ray of the Cu64 isotope which results
from neutron capture by Cu63. The half-life of Cu64 is
12.75 hours, which was sufficiently long to enable accurate
counting without a significant correction for half-1ife.

By comparing the activity of the sample of copper
L-Isoleucine with a standard containing a known amount of
copper, the content in the copper L-Isoleucine could be
established. The results indicated there were 6.8 mg of
copper in a 35.6 mg sample of copper L-Isoleucine, or a
mass concentration of 19+2%. The theoretical concentra-

tion of copper in the Isoleucine complex is 18.6%, so that

to within the accuracy of the analysis, there is no un-

combined copper.

A. Magnetic Susceptibility - Zero Field

The magnetic susceptibility of powder and aligned
single crystal samples was measured in a field of less than

S0e. from 0.01K to 4.2K. Temperatures from 4.2 to 1.1K

cryostatso. The ultra-
4

were achieved in a conventional He

. 3 . .
low temperatures were produced in a He”-He dilution
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51 .
Both conventional ac mutual inductance

refrigerator.
coils and a superconducting quantum interference device
(SQUID) magnetometer were used.52

The experimental susceptibilities are rather
large (X z 16 emu/mole) and significant corrections for the
Lorentz and demagnetizing fields were made. The expres-
sion for the corrected susceptibility in terms of the

measured susceptibility is derived in Chapter I (THE IN-

TERNAL FIELD IN A MAGNETIC SAMPLE) and is given here for

convenience.
Xm
X° = 4m Xm (70)
1+ (z= D) yH.

where as before: X is the susceptibility that would be
observed in the absence of any demagnetizing or Lorent:z
fields; X is the experimentally measured susceptibility;
D is the demagnetizing factor; p is the density and M.W.
is the molecular weight. Numerical values for the cor-
rections which were made to the susceptibilities of both
single crystal and powder samples are given in Table VI
along with figures indicating the sample shapes used in
the various experiments. The numbers were obtained by
assuming that the single crystals approximated oblate

spheroids of the appropriate axial ratios. The corrected

susceptibility data are shown in FIGURES 37 and 38. The

powder data and the single crystal data exhibit similar
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TABLE w1

Demagnetizing corrections for various samples
of copper L-Isoleucine

SAMPLE NO. 1 (SQUID)

| ,-0O9mm
I.Tmrn-ﬂ>/—
1.
.5mm
o Xm o Xg ) Xlg
X, = —2 _ Xy = ——— X, — @
& 1+0.016Y" b 1 0.032%" C  1+.016%
a b Cc
SAMPLE NO. 2 (COILS)
.2mm
—-J-6mm m= 0.015 gr
|
5mm
o
m
o Xa o Xb o e
_ =
Xa 1+.0165x2 b 1-.0477x§ € 1+.0164Y™
SAMPLE NO. 3 (POWDER)
5.75mm
—#:%3-—&Mnm
m= .139 gr







FIGURE 37.
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Zero field susceptibility of copper
L-Isoleucine. Curve "a'" is a Curie
Weiss law and curve '"b" is a high tem-
perature expansion for a two dimensional

ferromagnetic Heisenberg exchange.
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FIGURE 38. Inverse susceptibility of copper
L-Isoleucine. Solid line is a

Curie Weiss law.
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behavior over the entire experimental temperature range.
In all cases, the susceptibility is Curie-Weiss like from
4.2K down to 0.05K. The data then passes through a large
(X=16 emu/mole) well defined peak at TC = 0.117K. Below
this temperature the susceptibility falls, levels off, and

then begins to rise again near 0.03k.

B. Magnetic Susceptibility - Applied Field

The ac susceptibility was measured in applied
static fields up to 200 Oe. in the temperature range from
0.01 to 0.3K. The experiment was performed using conven-
tional mutual inductance coils inside a superconducting
solenoid.53 At low fields, the critical temperature is
depressed for all orientations of the magnetic field but
somewhat more with H applied parallel to a or c than with
H along the b axis. At low temperatures (below .1XK) a
peak (FIGURE 39) in the susceptibility is observed with H
parallel to the a and c axes at Hcrit ~ 140 Oe.

FIGURE 40 is a composite graph of the applied
field susceptibility data for all three axes. The diagram
reveals the presence of at least three distinct magnetic
phases with a triple point at Hpp = 150 Oe.and Tpp = 0.050K.

The internal field with H along b is significantly

affected by the demagnetizing field. Our previous methods
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FIGURE 39. Magnetic susceptibility of copper

L-Isoleucine with H parallel to the

c axis.
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FIGURE 40. Composite H-T phase diagram for copper

L-Isoleucine.
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of correcting for the demagnetizing and Lorentz fields are
no longer applicable because of the large fields and ano-
malous behavior of the susceptibility along the a and c
axes, which indicates M is no longer a linear function of
H. However, we may crudely estimate the highest internal
field which would result from a 200 Oe.field along the b

axis. Let us assume that

M = xH (71D)

The internal field is given by:

4 _ o Y
Hint Happ * (37 - DXHyne wwo

H
H = app (72)

int am . P
1-(z= - DX ywe

Using the data in TABLE VI for sample number 2:

gmax_ 200 _ 113 ge.
int 1_(.0477)16

C. Electron Spin Resonance

Electron spin resonance experiments were per-
formed on aligned single crystals at temperatures near
1°k. The data was taken using a rectangular cavity immersed

in liquid He4 Rotation diagrams were obtained at x-band
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(9.2 GHz) about all thru crystallographic axes. In addi-
tion, the a axis data were taken at k-band ( 22 GHz) to
improve the resolution of the lines (FIGURE 41). Since
these experiments were performed in the paramagnetic state
at relatively low fields (the argument for the Brillouin
function is 0.2), we may use our previously derived expres-

sions to correct the internal field for demagnetizing

effects:
H = H + (il - D) X°H. ,ot—
int app 3 intM.W.
H
H. = __app
int 4 0
1-(z= - DXomw,
o hv _ hv 47 _ o]
g” = ——— = —~ (-3~ - DXewo
UpYint Upta
- _c4m o 3
= 8neas (1 (3 D)Xo M.W. (73)

Plank's constant

where h

microwave frequency

<
]

The corrected rotation diagrams are shown in
FIGURES 42- 44. Each diagram is symmetric about the crys-
tallographic axes. This is consistent with the point

group 222 (three orthogonal two-fold axes) which results

from the reported space group P212121.
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FIGURE 41. ESR signals with H in the bc plane of
copper L-Isoleucine. Curve a is for H

parallel to c. Curve b is with H 50°

from c.
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FIGURE 42. ESR rotation about the a axis in

copper L-Isoleucine
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FIGURE 43.
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ESR rotation about the b axis.
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FIGURE 44.
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ESR rotation about the c axis.
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The ESR signal for the b and c axis rotations
consists of a single line of essentially constant width
which exhibits only a slight g-factor anisotropy. The a
axis signal consists of two lines (FIGURE 41) with a
large g-factor anisotropy and an anisotropic line width.

The rotation data for each axis was analyzed54

using the expression

g2 = a + B cos 2¢ + y sin 2¢ (74)

which gives the g value at the relative rotation angle ¢.

The coefficients in this expression are given by:

2 2 2 2
gf+8% 8,-8._ 8+78_
a = B = cos 2¢+ Y = —— sin 2¢+ (75)
2 2

where the maximum and minimum-g values (g, and g_) occur
at the relative angles ¢ _ and ¢_ respectively. These para-

.3
meters are then used to determine a matrix W whose compo-

nents are given55 by:

Wll = o‘aﬂsa w22 = OLb+8n W33 = 0Lc+6c
Wyy = ay-B, Weg = op-By  Wpp = a8
Wi = Y, Woz = Y, Wiz = Ye
- =W
Wiz = Wy Wz = Ws, Wiz = Wqy
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where, for example, o is the parameter from the fit to
the a axis rotation data. The eigenvalues of this matrix
are the squares of the three principal g-values. The
eigenvectors indicate the orientatiofni of the principal
axes relative to a set of fixed axis, which in this case
are the crystallographic axes. Two rotationally inequiva-
lent g tensors have been derived from the b and c axis data
and each of the two rotation patterns of the a axis. The
principal g values and direction cosines for each of these
tensors are given in TABLE VII. The orientation of the
derived principal axes relative to the square pyramidal
local coordination of the copper atom is shown in FIGURE
60. The two g tensors have their maximum g values in the
direction of the "tip'" of the pyramid. The pyramids and
the g tensors are rotated *51° from the crystallographic
b axis in the ac plane.

The g values along the crystallographic axes are

derived from the principal axis g values and are given:
g, = 2.147:.005 g = 2.130¢.005 g_ = 2.130%.005

Finally, if one assumes the anisotropy in the
line width is unresolved hyperfine structure due to the
copper (I=3/2) nucleus, one can estimate a hyperfine inter-
action of approximately 0.02 cm.'l, which is quite reason-

able for copper.
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TABLE VII

Principal values and direction cosines of
the principal axes of the two g tensors

Site 1 Site 2
81 2.213 + 0.005 2.213 + 0.005
g, 2.042 + 0.005 2.042 * 0.005
g3 2.142 + 0.005 2.142 + 0.005
Xy (0.00, 0.78, -0.63) (0.00, 0.78, 0.63)
X, (0.00, 0.78, 0.63) (0.00, 0.78, -0.63)

(1.00, 0.00, 0.00)

(1.00, 0.00, 0.00)
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III. Discussion

A. Magnetism of 3d9 Electrons in a 4mm
Crystal Field

In copper L-Isoleucine, the Cu2+_ion has an elec-

tronic orbital configuration of 3d9

which 1s equivalent to
having a single vacancy or "hole" in one of the d orbitals.
This orbital configuration always results in an S=1/2

spin state. The spatial extent of each of the five d
orbitals is shown in FIGURE 8 in Chapter I, CRYSTAL

FIELD THEORY. In the isolated ion, the energies of these
orbitals are all degenerate. To see how the orbital dege-
neracieé are lifted in the crystalline electric field of
copper L-Isoleucine, we shall first examine the behavior

of the d orbitals in the symmetry of the local coordina-
tion of the ligands.

As previously indicated, the copper atom is coor-
dinated with five ligands. The spatial arrangement of the
two nitrogen and three oxygen ligands approximates a square
pyramid (see FIGURE 34). The point group symmetry of this
configuration is 4mm (C4V),which consists of a four fold
axis and four mirror planes. The sterographic projection
of the point group diagram as well as the spatial location
of these operations in the square pyramid are shown in
FIGURE 45. The symmetry of the irreducible representations56

in the point group 4mm are shown in TABLE VIIL,
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FIGURE 45. Stereographic projection of the point
group 4mm (upper) and the location of the
four mirror planes and the four-fold
rotation axis in the square pyramid

(lower).
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TABLE VIII

Irreducible representations of
the point group 4mm

4mm (C4V)
Ay z, X%+v2, 72
A, 1
B, x2-y?
B, XY
E X, Y, Xz, YZ, I_I

Xy

Under the symmetry of this group, dxz and dyz

both belong to the same irreducible representation and as
such, cannot have their degeneracy lifted by an interac-
tion having the symmetry of 4mm. However, the other three
orbitals d

2
xX=-y
action. To determine the nature of the splitting, we must

25 dzz and de may be split by such an inter-

consider the details of the interactions of the nine copper
electrons with the surrounding atoms in the copper

L-Isoleucine crystal.

We can simplify our analysis of the copper system
in the manifold of the nine d electronic wave functions by
first comparing the relative crystalline electric field
energies of each of the orbitals. The lowest energy con-

figuration occurs with the four lowest orbitals doubly
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occupied and a "hole" in the highest orbital. Instead of
performing the analysis based on the nine electrons, one
can invert the order of the energy levels of the orbitals
and carry out the analysis using a single positively charged
""hole'" in the ground state orbital. We shall therefore
begin by qualitatively determining the relative energies
of the five d-orbitals in the presence of the 4mm crystal-
line electric field of copper L-Isoleucine.

The ; axis is placed along the tip of the pyra-
mid and the x and ; axes pass through the corners of the

base of the pyramid:

4
‘ 2.48
1.99
X \
y

The separation of each ligand atom from the central copper
atom is also indicated. By examining FIGURE 8, which shows
the spatial orientation of the d-orbitals, we can see that
the dxz—yz orbital will point towards each of the four
ligands in the base of the pyramid. Taking the ligand
atoms as point charges this state should have the highest

energy due to the repulsion of the copper electrons by the
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electronic charge on the ligands. The next lowest energy
level is the dz2 orbital which points toward the one water
oxygen located at the tip of the pyramid. Next is pro-
bably dxy which is in the base of the pyramid between the
ligands. Finally, the dxz orbitals which fall between
ligands and extend above and below the base of the pyramid
are related by the four fold rotation axis which passes
through the tip and center of the base. These last two
levels are degenerate and probably lowest in energy. The
resulting energy level diagram and the inverted picture

used in the "hole'" analysis are:

[ F=N dxz"yz dyz
]V _—_—————— 1§
TEE due
41 dXY Xy
Iy d}_2

dxz e dy2y?
== ?

yz

Having deduced the relative position of the energy levels,
we may show how this affects the magnetic moment. In par-
" ticular, we shall show in which direction relative to the

square pyramidal coordination, the spectroscopic splitting

factor (g-factor) deviates most from 2.
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The Zeeman energy of the magnetic moment of an
electron including both the spin and orbital contributions

is given by
H=y-H = -uBﬁo'(f + 23) (76)

where Hp is the Bohr magneton and ﬁo is the applied field
One can measure the energy difference between levels with
an electron spin resonance experiment. One writes the

Hamiltonian using an effective '"g'" factor:

)
1}

-gupH-3 (77a)

-guBHoSZ e.g. (77b)
The energy difference between adjacent levels is:
AE = -guBHo(mi—mj) (78)

However, magnetic resonance experiments involve
magnetic dipole transitions which obey the selection rule

Am = %1
Setting the energy difference equal to the
energy of the photon:

hv = AE = gupH, (79)

This effective g factor differs from the

"Lande" g factor which is given by







= h
fLande * 2 U.

_uB<(f+2§) . (L+3)> h

J My
1 2 2 . .2
-uB<7<L + 337 + 8%
Hp
g = L (1) + 3 5Gen) ¢ Loseser 80
Lande 2 > 3(G+1) + > ) (80)

Comparing equations (12) and (13a), with equation (7) we
see that the "effective'" g factor as well as the Lande g-
factor will be different from 2 only when 1 is nonzero.
In the magnetic resonance experiment, this orbital effect
manifests itself as an additional contribution to the

Zeeman energy:
E = <di|-uBﬁ~Z|dj> (81)

The maximum deviation from g=2 will occur when this term

is largest. The d-orbitals can be written’’ as linear
combinations of the spherical harmonics Y?:
YO
- 1 2 '2 d 2 = 2
dxz_yz - _2— (Yz + YZ ) Z
1 2 -2
d = — (Y,-Y,7) -1 1,,-1
2772 d =— (Y +Y 7)
Yy vz Xz 5 g g
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The matrix elements of the components of the operator L

are given by:

!
=]
o

m n _
<Y2 lLZIY2> nm

m n 1 m n
<Y2|LXIY2> > <Y2|L+ + L_|Y2>

= % Y(2-n) (£+n+17‘6m

‘m,n+1
+ 1 vV(2+n) (£-n+1) ¢
2 m,n-1
) m n, _1 m _ n
YolL IYy> = g3< YpIL, - L_| Y)>

v(2-n) (£-n+1) 6m,n+1

)
|

1

1
- 5T v(2+n) (2-n+1) 6m,n-1
Returning to our analysis of 3d° copper with the single

"hole'" in the '"ground state" dxz 2 ye see the zero order

Y,
matrix element of ﬁ'f is:
BT -l v:%y%H.L x + HL y
<Y 2 2IH 'Dz 2> T ¢ P2 2V xx yy
X -y X
7 |ve+y 2s = (82)
+ HZLZ z ly2+Y2 > 0
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Indeed there are no nonzero diagonal elements for any of

the other d-orbitals. In second order, the energy is

given by:
2
|<d g2 |AeL]d,>]
50 - v XE;Y El: (83)
xz_yz k

The first excited orbital is d,;. However, matrix elements

of the Hamiltonian between dxz_yz and d_, are zero. There

is a matrix element of the z component of the Hamiltonian
between dxz-yz and the next highest orbital dxy’ which is

nonzero:

=
"

<dxz-yZIHszldxy>

1 v2 . o2 2 -
2 <Y2 * YZIHsz'YZ Y,

LN

ZHz

which gives a contribution to the energy:

2
2H
(%) - |24, | (84)
E° - E°
X2_y2 Xy

The matrix elements of the x and y components in the
Hamiltonian are zero between these states, therefore the

largest deviation from g=2 occurs with the external field

parallel to the z axis. There are matrix elements for the
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x and y components between other states, but those terms
involve higher energy states and therefore are reduced by
the larger energy denominator.

Experimentally, the largest g value (2.21) for
copper L-Isoleucine was indeed observed with the external

magnetic field along the z axis of the pyramid.

B. Magnetic Susceptibility |

The copper L-Isoleucine molecules are linked in
two dimensions by hydrogen bonds which extend in the a and
c directions (see FIGURE 35). The lack of much covalent
character of hydrogen bonds should produce only weak super
exchange between copper spins. Pauling has indicated®8
that in certain instances the hydrogen actually resonates
between equilibrium positions on the opposite ends of the
"bond." It may then provide the exchange mechanism for the
interactions between the copper spins.

The experimental susceptibility well above the

critical temperature fits a Curie Weiss law:

T-6
with a positive (ferromagnetic) Weiss constant of

6, = 0.240k, and a Curie constant of C = 0.466. Below

approximately 1°K, the susceptibility deviates from

Curie-Weiss behavior. This is perhaps best shown by
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FIGURE 46 which is a plot of C/XT versus J/kT. 1In this
type of plot, a Curie Weiss law is a straight line which
intercepts the x axis at 6=T(curve a). Curve b is obtained
using the first 10 terms of a high temperature expansién
(see Appendix A, THE METHOD OF HIGH TEMPERATURE EXPANSION)
by Baker and Rushbrooke59 for a two dimensional square net
lattice of spins that interact fhrough an isotropic
Heisenberg exchange:

H=2Jz §i-§j

it]

where J is the exchange constant between a copper atom and
its four nearest neighbors on the same two dimensional
"sheet." The parameters which give the best fit to the
experimental data are g = 2.18 and J/k = +0.120K (ferro-
magnetic). This exchange compares favorably with the
Curie-Weiss constant which is 2J/k (.244K) for the same
number of nearest neighbors. The system is at best only
approximated by a square net. A two dimensional exchange
is however, consistent with the nature of the crystal
lattice. The experimental susceptibility data was also

compared with a two dimensional x-y mode1%0 and a two dimen-

sional Ising61 model. The agreement between the experi-

mental data and these last two theoretical models was not

as good as with the two dimensional Heisenberg model.




FIGURE 46.
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Reduced inverse susceptibility plotted as

a function of reduced inverse temperature.
Curve a is a Curie-Weiss law; curve b is a
high temperature expansion for a two-dimen-

sional ferromagnetic Heisenberg exchange.
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There are three aspects of the data near and be-
low the critical temperature which are interesting and
not entirely understood: (1)'the peak in the susceptibility
measured along all three axes; (2) the anisotropic beha-
vior in applied field below TC and finally, (3) the rising
susceptibility at the lowest experimental temperature.
The peak in the susceptibility at T=TC and the subsequent
decrease in susceptibility for slightly lower temperatures
is thought to indicate a transition to a three dimensionally
ordered antiferromagnetic state. This three dimensional
ordering is caused by an antiferromagnetic coupling between

sublattices on adjacent "sheets.'" This coupling may be

dipolar or a '"real" superexchange. Further evidence for
the existence of a three dimensionally ordered state below

T., is supplied by the susceptibility data in applied

C’
field. The anomalous peak in the susceptibility as a func-
tion of applied field indicates a discontinuous change in

magnetization. This implies the existence of a sublattice

magnetization with the associated long range ordering.

The exact nature of the ordered state and the

magnetic transition are not at present understood. The
fact that the zero field susceptibility is approximately
isotropic below the critical temperature contraindicates a
uniaxial antiferromagnet as does the observation of a mag-
netic phase transition with the applied field along two

different orthogonal axes. As we have shown in the previous
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theoretical discussion of the uniaxial antiferromagnet,

a sharp transition is observed only with the field applied
along the sublattice magnetization. The observed transi-
tions indicate then, that the system consists of more

than two sublattices. However, more experimental evidence
such as N.M.R. or neutron diffraction in the ordered state
is needed to illuminate the nature of the spin system in
the ordered state.

Finally, the third aspect of the magnetic beha-
vior, the rising susceptibility below 0.03K is still not
understood. This effect was at first thought to be due
to impurities or nonstoichiometric copper. A calculation
of the impurity concentration necessary to produce the
observed susceptibility can be made by assuming the rising
susceptibility is due to a paramagnetic impurity described
by:

_ C
X=7

The slope of the experimental values yields a Curie con-

stant C = 0.6. The theoretical expression for the Curie

constant is:

NgZy. 2
B S(S+1) (86)
3k

C =

where
N = Avpogadro's number

g = spectroscopic splitting factor
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Hg = Bohr magneton
k = Boltzmann's constant
S = spin quantum number

The theoretical Curie constant for copper (assuming
g=2.18) is 0.44. For an S=1 system such as nickel,

C =1.17 and for an S=5/2 system such as manganese,
C=5.13. Comparison of these calculated constants with the
experimental Curie constant derived fromthe ultralow tem-
perature data indicates the sample is composed of:

(1) 100% S=1/2 impurity; (2) 50% S=1 impurity or (3) 12%
S=5/2 impurity. Neutron activation analysis eliminates
the possibility of uncombined copper and the nominal
quality of the reagent grade materials rules out other
transition metal impurities in such high concentration.

The source of this behavior remains unclear and requires

further experimental investigation.




CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

The two antiferromagnetic insulators discussed
in this thesis have been shown to exhibit interesting mag-
netic behavior at low temperatures. The crystallographic
space group of MBTMA was determined using X-ray and opti-
cal goniometry to be P21/m. A plausible model for the
crystal structure has been derived from the space group
which is consistent with (1) the structure of an associated
compound CCTMA, (2) the number of molecules in the unit
cell (3) the lattice dimensions (4) the number of zero
field proton magnetic resonance line (5) the agreement

between the calculated and experimental values for the NMR

frequencies of the water proton and (6) the low dimensional
behavior above Ty- The local coordination of the manga-
nese (II) ion is apparently octahedral with four bromines
and two waters of hydration. Magnetization and nuclear
magnetic measurements made in the ordered stéte indicate
that the magnetic state is characterized by a four sublat-
tice canted antiferromagnet with a canting angle of approxi-
mately 4°. A field induced magnetic phase transition

is observed at HC = 1200 oersteds applied along the b
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axis. This transition is asserted to be metamagnetic
and results in a net moment.

The crystal structure of copper L-Isoleucine is
characterized by '"sheets'" of hydrogen bonded copper
L-Isoleucine molecules. The local coordination of the
copper ion is five-fold and approximately square pyramidal.
The two dimensional crystal structure is reflected in the
magnetic properties above Ty. The zero field susceptibi-
lity is isotropic and is described in the temperature range
from 4.2 to 0.5k as a two dimensional square net magnetic
lattice which interacts through a ferromagnetic Heisenberg
exchange. A transition to a three dimensional antiferro-
magnetic state occurs at T_ = 0.117K. A field induced mag-
netic phase transition is observed below Ty with the field

applied along the a and c axes. The susceptibility at

ultralow temperatures exhibits an anomalous increase with
decreasing temperature. The spin state of the 3d9 copper
ion in a crystal field of 4mm symmetry has been experi-
mentally investigated using ESR in the paramagnetic state.
The largest g value was found to occur with H applied along
the '"tip" of the square pyramidal local coordination. This
is consistent with a qualitative theoretical analysis based
onthe Van Vleck point-charge model for crystal field

interactions.
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Further work clearly includes determination of
‘the exact crystal structure of MBTMA. Once this is done
the spin arrangement can be determined by "orienting'" the
spins so that the calculated magnetic dipole fields at the
proton sites agree with the results of the zero field re-
sonance. The nature of the transition in applied field
may be further specified by observing the water proton
lines above the transition, and again "orienting" the spins
so as to produce calculated fields at the proton sites
which agree with the observed resonances. Neutron scat-
tering will probably not yield good results in this mate-
rial due to the inelastic scattering from the large number
of protons in the unit cell.

The specific heat of copper L-Isoleucine should

be measured at ultra low temperatures to determine how

much entropy is involved in the transition at 0.117K. If
the result differs substantially from the expected S=R¢n2,
further experiments should be done at ultralow temperatures.
The NMR at temperatures below T. can be used to derive the
orientation of the copper spins in the ordered state. At
still lower temperatures, the NMR may be able to indicate
whether the anomalous increase in susceptibility is due to

a rearrangement of the magnetic sublattices. If the nuclear

magnetic resonance of the water protons can be followed
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through the field induced transition, the nature of the
transition and the resulting spin configuration could be
determined.

Finally, if a high spin transition metal ion com-
plex of L-Isoleucine can be grown, the effect of the 4mm
crystal field symmetry on the exchange and the single ion

anisotropy may be investigated for different orbital

configurations.
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APPENDIX A
THE METHOD OF HIGH TEMPERATURE EXPANSION

The exact solutions of a Hamiltonian which des-
cribes the spin system in a real crystal is complicated by
the presence of 1023 interacting '"bodies." The quantum-
mechanical-thermal average involves evaluating the trace
of the Hamiltonian over all possible eigenstates of this

23 many-bodied system. At sufficiently high temperatures

10
such that kT is large compared to the interaction energies,
we may approximate a solution to the thermodynamic quanti-
ties associated with the Hamiltonian through the use of a

"high temperature expansion."

In this analysis, we expand the partition func-

tion "Z" as follows:

Z = tre_BH

tr(l - BH +

3
B 2 _ B 3
n, - gtrH + 5+ trH 3T trH™ + ...

where ng is the number of thermodynamically accessible

states. Let us examine this expansion for the Heisenberg

Hamiltonian:

> >
H= -2 J.. S.-S.;
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We shall restrict the exchange to nearest-neighbor

interactions.

H

> >
23z S, S,
ij J

Then the partition function becomes:

_ 2J 2J 41 > >
£Ens T PR Sy eSy tpp 7 tr(2 SiS5)
1) 1)
27 31 3
- — 31— tr(z § S ) +
KT : ij

In order to evaluate the sums inside the traces, we must
specify the arrangement of the spins. As an example, we
shall take a two dimensional square net lattice. Each
spin will have four nearest neighbors. The first sum:
L §i-§j

1)
is the sum of nearest neighbor pairs. Since there are N
spins in the crystal, each having four nearest neighbors,

there are 4N such terms. This means that the linear term

in the partition function is

> o>
- 2J (aNer(S.-S.)
kT 1)

The quadratic term in the partition function produces three

kinds of interactions:
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.. +‘+2
1) two ion interactions (Si'sj)
. > > > >
2) three ion interactions (S.-S.)(S.°*S,)
i) j "k
> > > >
3) four ion interactions (Si-Sj)(Sk-Sl)

We may examine these various cases through the use of inter-

action diagrams. In the first case we find:

o 0 o Q
.
g O 0 9 O 0 o0ll_0o 0 ©o ©
L
o o] o o

> >
2
Thus there are 4N terms of the form (Si'Sj) . In the

second case:

0 o) o
| )
‘ 4
o---6 ©0 0 ©0 O ©0---0---0
'
S X2 o x2

O x8
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o T S
we find 12N terms of the form (Si-Sj)(Sj-Sk). Since there
are 4N nearest neighbor pairs in the crystal, the quadratic
term in the expansion must contain (4N)2 or a total of 16N2

terms in the sum:

-> > 2
(£ S;-S.)
ij J

This means the four ion interactions must produce:

2

16N% - 4N - 12N
= 16N% - 16N
= 16N(N-1)

terms of the form:

+

> > >
(Si'sj)(sk'sl)
Thus the quadratic term in the expansion for the partition

function is:

2 > > > > > >
1 2J 2 ] .
>T (EEJ (4N £r(S;-55)° + 12N t1(S;-55)(S;+5))

+ (16N(N-1)) tr(Si-Sj)(Sk'SR))

We have, at least for these first few terms, reduced the
problem to evaluating the traces of pair interactions.

However, the counting problem and the associated interac-
tion diagrams become very complex for higher order terms.
The counting is usually done by simulating the lattice by

a mathematical algorithm on a computer.







APPENDIX B
THE TWO SUBLATTICE CANTED ANTIFERROMAGNET

We assume a Hamiltonian of the following forms:

> > > > > 2 2
H = —D-Sle2 -J SloS2 - k(SlZ+SZZ)
1 1
4 +1
6, = a|l> + b|4> =a, + D = <:
1 | »}2 >2 2
= 2,2 2
E¢ = -D(ab+ba) + J(a“-b”) -k(2a")
1

-2Dab + J(az-bz) - Zka2

recalling the normalization:

a2+b2 =1
E, = 2Db(1-b2)1/2 4+ J(1-2b23) - 2k(1-b%)
1
" /2 2.-1/2
1_4-. py1/2 | b)) " - - 4Jb+4kb
s5— = 0 = -2D(1-b%) pb(1-b2) "1/ 2(-2b)

220(1-b9) Y2 + 20b2(1-b%) /2 - b (I-K)

2pb2(1-b3)" 2 - (1-v5H) 1) 2b(3-K)

0 b2 - 1+b2
AL 7 -k

183






184

k-J _ _ (1-2b%)

2b(1-b2)1/2
2b(1-b2)1/2(5%i) = (1-2b2)

Square both sides:

2

w?a-v?) &) = 1-2p%?

4

2
40%0h gD = 1+ aptoap?

_3.2 22
¢o1e &N vt 1 &S mler o

let y = b2

2

2
P 1e D yr1=0

e

1+ &H2 0 wvarEDHH - arEDHH

b =zt Jy

Now in the 1limit D goes to zero, the system must reduce

to the uniaxial case which means b must be zero.

2im  k-J _
D-»0 D

k-J,2 k-J. 4 k-J.2
2im y = Gp) "+ /(5 - Gp)
>0 k-J, 2
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~
~

z 0

I+

1)

Therefore only the - root is correct! Then:

1+ (Eﬁi)z) -/ (1 + (Eﬁi)z)z - (1 + (Eﬁi)z) 1/2

21 + X503

a=(1- b2)1/2

The two roots for b correspond to canting along + or -X

directions.
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