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ABSTRACT

CHIRAL DYNAMICS CALCULATIONS
OF SINGLE PION PRODUCTION
IN PION-NUCLEON INELASTIC SCATTERING

By

William Frederick Long

The current algebra program initiated by Murray
Gell-Mann has been incorporated by dynamical models
by several people. Weinberg and Schwinger, among others,
have constructed so-called "chiral dynamics" Lagrangians
which describe the interaction between nucleons and
"soft" pions. A common difficulty of these formulations
is an ambiguity in the pi-pi interaction. The most
straightforward way of eliminating this ambiguity would
be measurement of pi-pi scattering lengths, but that
is a very difficult experiment. Olsson and Turner have
attempted to resolve the difficulty by calculating the
threshold cross section for the process 71~ P n+*+mn-n
in which process the disputed pi-pi interaction strongly
contributes. But near threshold the breaking of isospin
symmetry is reflected in large differences in phase
space volumes, depending on which mass of the supposedly
degenerate isomultiplets is used. For this reason, it
is desirable to extend the cross section calculation off

threshold to where the isospin symmetry incorporated in



William Frederick Long
the model is a more realistic approximation and conclusions
about the validity of different models can be based on
a larger set of experimental data. Furthermore, such
a calculation would give some idea of the maximum
energies for which the model, derived for soft pions,
could be applied. |

The calculation was done for five different charge
channels retaining all Feynman diagrams and computing
the integrals necessary to obtain total and differential
cross sections by means of a Monte Carlo method to
within four (4) per cent. The results indicate that tne
best fit to low energy total cross sections was given
by a model in which chiral symmetry was lLroken by a
term which transforms as a rank two chiral tensor.

For incident pion energies much greater than 300 MeV
none of the chiral dynamics models employed fit the total
cross sections well. Comparatively little relevant

data exists for differential cross sections, but what
there is indicates poor agreement between experiment

and chiral dynamics predictions.
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NOTATION

Conventions for metric and gamma matrices, as well
as most of the other notation’, has been taken from

Relativistic Quantum Fields by James Bjorken and Sidney

Drell. (See especially appendix A, p. 377.) Some

specifics of notation are given below.

Metric and Four-Vectors

A covariant notation is used with metric matrix

70{(3 defined by

i?oo = |

Fur T Faz = Y33 =~ |

gya = O ; o+ Q@3
The summation convention is used, repeated Latin letters
indicating a sum over three indices, repeated Greek
letters indicating a sum over four indices. Vectors
are denoted by a symbol with an arrow, e.g. :;? , and
four vectors are defined by

~AT=(n°, &),

A= gae A= (%o, -R)

Products of two four-vectors are of the form

/70’7'-‘ Mqﬂ?f": ~oyo -f?'t}:
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We define

v = 2 7= 2

= )
O™ D Aoy

Integrals

We use the notation
joa:’m:fdz,x, P

f = =j Aox, Lxa LAy Lo

Operators
Operators are denoted by capital letters. Some

operators frequently encountered are:

<
N
X

general operator

isospin operator

generator of axial vector current

Currents
Currents are denoted by script letters. Some
currents often used are:

(=)

oy
(‘*) = hadron vector current

general current

95 A ) = hadron axial current
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Particle Field Operators

Particle field operators are denoted by Greek

letters, except for photon fields. Field operators

used are:
()
()
D (ex)

Y (), F( )

Blan)

general field

general particle field

general boson field

general fermion field and its adjoint

pion field

T(M),LI}(M) = nucleon field and its adjoint

A(A) = photon field

Constants

Constants are written in various ways, as the

examples below show.

© 032} X3

‘f;A“/i}v
Qoks
€ ube =

general boson mass
general fermion mass
pion mass

nucleon mass

weak coupling constant

strong coupling constant, taken such that
2 =
i}/éiff” 14.6

ratio of axial current coupling constant
to vector current coupling constant

Kronecker delta

antisymmetric tensor

Functional dependence and subscripts are frequently

suppressed to simplify notation.

ix



SECTION I

INTRODUCTION

Recent interest in the application of the algebra
of currents to particle physics gfew out of studies
of the weak interaction. It was found that the effective
Lagrangian density for the weak interaction, ‘IL w
could be written as a weak current, 9w<m), coupled

to itself, i.e.

]\w(m)=% gw,,(,,()f(a,:,(m)

where CS' is a coupling constant which is the same

(1.1)

for all weak interactions. The weak current may be written
as the sum of a leptonic part, ).‘(nc) , and a hadronic
part, S);,(ﬂ&). Each of these may be broken up into the
difference between a vector current invariant under

spatial inversion, and an axial vector current which

changes sign under spatial inversion. For the leptons,
)l(m)= J.(”‘) - }5(m)

and for the hadrons,

Gnlon) = Yl) = Qs ().



In the case of beta decay, for example,
NnN—> p+ e" + v, (1.2)

the lepton currents take the form

)q(”‘) = %Lﬂ()%{ \’/y (I‘K) )

—_ (1.3)
}5.,(“) =Ye(a) Yo Vs T, ().

Assuming small momentum transfer, the hadron currents

take the form

(}.cm)w??cm)v,, Y. (=)

(1.4)

Yswr(4) = ga Yola) Vo Yz ¥ i)
9v

The quantity ?A /qv is the ratio of the axial
vector coupling constant to the vector coupling constant.
It is measured experimentally to be 1.18 + 0.02. If we
use the currents given by (1.3) and (1.4) with the
Lagrangian (l1.1) we get a four fermion interaction which
is not renormalizable, but which gives satisfactory
agreement with experiment if used naively in perturbation
theory to lowest order in C} .

Two aspects of the interaction (1.1) and the structure
of the weak currents are particularly interesting. First
of all, the coupling constant C}' is the same whether
the interaction is leptonic, semi-leptonic, or non-
leptonic. Second, the hadronic and leptonic weak currents

are constructed from their respective vector and axial



3
vector currents in a remarkably similar fashion. 1In the
leptonic case, the weak current assumes a symmetric
"vector current - axial vector current" form, and in
the hadronic case the weak current deviates from this
form only because of the factor 2A /7\, in the axial
vector current, and gA /9v is tantalizingly close to
unity. Taken together, these.two observations mean that
leptonic and hadronic vector currents couple in the same
way in the weak interaction, and leptonic and hadronic
axial vector currents couple in nearly the same way.
Let's consider first the implications of this for the
vector current.

The identical coupling of leptonic and hadronic
vector currents comes as a surprise because we would
expect a current of the strongly interacting particles
to be modified by the pion clouds which surround such
particles. In terms of Feynman diagrams, this means
that as far as the vector current is concerned, the
interaction of Figure 1 consists entirely of the diagrams
of Figure 2 with no contribution by diagrams like

Figure 3.

Figure 1. Diagram of beta decay process (1.2).



Figure 2.

Figure 3. Diagram of beta decay with renormalized vertex.

In other words, the vector current is unrenormalized
by the strong interaction.

A very similar situation exists in the case of the
electromagnetic interaction. The interaction Lagrangian

density for the electromagnetic interaction may be written

LemCals £ jom(a) A ()

(1.5)

where Aq’(rt) is the photon field operator and J-'G"\ ()
is the four-vector electromagnetic current of either a
hadron or a lepton. Here again we have a current partic-
ipating in a direct way in an interaction, and here again
we have a coupling constant, this time the fundamental
unit of charge, XK , which is the same if the current in
the interaction is associated with leptons or with
strongly interacting particles. The fact that electric
charge is unrenormalized by the strong interaction
indicates that the strong interaction Hamiltonian commutes

with the charge operator Q which generates the
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electromagnetic current, and therefore the electro-
magnetic current is conserved.* This is expressed by
the equation
E; d:::" C(ﬂ‘) - C),
Q ~

Returning to the discussion of the vector current

part of the weak current, we see that application of
arguments similar to those employed for the electromagnetic
current imply that S)Crﬂ ) is generated by some operator

which commutes with the strong interaction Hamiltonian,
or
IQix) - O.
\ -
aﬂ'\ :

We'd like to be able to identify the operator generating

and

(1.6)

the vector current. A clue comes from rewriting the
hadronic vector current for beta decay in the following

way:

Yu = YoV Yoz PY (T, v )

(1.7)

where \*, is the eight component spinor

and the rtf ’ s are the Pauli matrices. Now the 1isospin

current for nucleons may be written

E;;:r(rn)’= %i:QP(rn)'\fq';E?.\ilc nn) .

(1.8)

*The formalism relating gauge transformation and currents
is reviewed in section II.
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Comparing (1.7) and (1.8), we see that the hadronic vector
current for beta decay equals the "plus" component of the
isospin current. Since, moreover, the isospin operator
—

'1- commutes with the strong interaction Hamiltonian

and the isospin current satisfies the conservation law
dd
of
Q A

we postulate the identity of the vector current and

—
isospin current, and identify 1- as the generator
of both. The identification of the vector current as a
component of the isospin current together with equation
(1.6) is called the "conserved vector current hypothesis",
which alphabetizes to CVC. A consequence of the conserved
vector current hypothesis is thnat form factors of the
nucleon weak current and the nucleon isospin current
are, because of the Wigner-Eckart theorem, proportional
to one another, the proportionality constant being just
a Clebsch-Gordon coefficient. This has been verified
experimentally in analyses of the beta spectra of decays

of BlZ 12 12. 1

and N into C
The case of the axial vector current of strongly
interacting particles is somewhat more complicated. The
success of CVC makes it tempting to postulate that the
axial current is also conserved, but two facts militate
against this hypothesis. First, the axial current con-

tribution to the hadronic weak current enters not with a

factor of unity but a factor I /av = 1.18 + 0.02.
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This is close enough to one to suggest that the renormal-
ization of the axial current is slight, but far enough

from one to indicate that the renormalization may be not

ignored. Second, a conserved axial vector hypothesis

3__9_5__(m) = © (1.9)

D X~

would forbid the process
m > o + V. (1.10)

This decay is governed by the matrix element

< %;(m)I’ITCC})7 (1.11)

where | > is the vacuum state and | TP (g ) > is a
state with one pion of four-momentum q} . If (1.9) holds,

then

<19« 9;(“” T(317 = --..de 9;(m]ln‘(c‘.) > (1.12)
= O

so that the matrix element (l1.11) vanishes and the decay
amplitude is zero. Since the pion decay process (1.10)
does take place, equation (1.9) cannot hold. However,
(1.12) contains an important clue to the resolution of
the dilemma. If the pion is at rest when it decays,

(1.11) becomes
<l Qs(adln =0

where /LA. is pion mass. We see that if /6& = 0,
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(1.9) could hold without forbidding pion decay by the
process (1.10). Therefore we say that the axial symmetry
of the strong interaction is broken by the pion nass.
The simplest way of accounting for the symmetry
breaking is to write the divergence of the axial current

as follows:

(-4
é)qS)S‘ = constant x //C& X some pseudoscalar operator

This has the correct parity and reduces to (l1.9) in the
limit as /A —» 0. The simplest pseudoscalar operator
we could choose would simply be the pion field operator,
ol el
& . The operator é is an isotriplet, so we

incorporate the axial vector current in an isotriplet

and write

—

or
a..gs (=) = constant X AL X Q). (1.13)

It was shown by Gell-Mann and Levy2 that the constants
in (1.13) must be chosen such that

—— —
* Dur 9;(m)= _’;_ %f:_,/u," S m) (1.14)
and that it is possible to use this formula to derive
by a field theoretic approach a relation between the
axial vector form factors and the pion decay rate which
was originally derived from dispersion theory by

*
Goldberger and Treiman. 3 Here, i} is the strong

*The Goldberger-Treiman relation is discussed in more
detail in Appendix A.
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coupling constant and f’\ is the nucleon mass.
Equation (1.14) forms the "partially conserved axial
vector current hypothesis", which alphabetizes to PCAC.
However, PCAC by itself gives no clue about the nature
of the operator generating the axial vector current.

In an early attempt to discover the group properties
of the generator of the axial vector current, Gell-Mann
and Levy proposed three Lagrangian models incorporating
PCAC and CVC;4 a gradient coupling model, the sigma
model, and a variant of tne sigma model called the
non-linear model. All these models were unsatisfactory
by the criteria applied, the first and third models being
unrenormalizable and the second requiring the existence
of the never-to-be-discovered sigma meson. Despite the
drawbacks of these models, there were some useful results
of this line of inquiry. The most important result was
the Lie algebra of the generators of the vector current
and the axial vector current for the sigma model and the
non-linear model. If we let T;T be the operator which

generates the axial vector current, these two models

yield the commutators

[TQ)TG)-. Cem-‘;
[T-q ,xs] 26 ke Nc (1.15)

[ ‘yka ) >(6 ] = (e odbre 'T:

If we define two new triplets of operators by
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—R‘= (1?4-3(‘)/2

C=(T-X)/2

routine algebra reduces (1.15) to the symmetric forms
[ F‘a N F(b‘]’= ¢ E ale Fic
[ La,Led T (aase Lo
[L_a,Rs]=o. .

Equation (1.17) shows that the operators ?$ and L

(1.16)

(1.17)

generate two independent SU(2) groups, and together they

generate the symmetry group SU(2)g (X) SU(2)_ with

subscripts referring to the operator generating each

SU(2) algebra. This group is called chiral SU(Z)C:)SU(Z)

because of the similarity of the forms in (l.1lo) to the

right and left hand chirality operators of field theory.
It turned out that (1.15) was correct as far as

it went, but it remained to be explained how to incorporate

strange particles into the theory. Clues to the solution

of the problem were furnished by the success of SU(3) as

a symmetry group of the strong interaction and by the

Cabbibo theory of the weak interaction5 which placed the

weak currents in SU(3) multiplets. These discoveries

set the stage for Gell-Mann's current algebra hypothesis.
Gell-Mann's hypothesis made the logical extension

of chiral SU(2) @ SU(2) to chiral SU(3) ® su(3).

This may be done by changing the €age ’s of equation

(1.17) to the structure constants of SU(3), conventionally

denoted /Mt , and allowing <X , & , and € to run
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over the eight indices labeling SU(3) operators. Equation
(1.17) becomes
[ Faqx F?b'] T ¢ f‘aﬁt Fic
[ ‘_.a )L_b;l A ;'alt <
[ La, Rb] = 0O _ (1.18)

<

The operators are related to the eight generators of

vector currents, fi; , and the eight generators of axial

vector currents, Fg‘a : by

Ra = C Fa + F:;=\) //:L

(1.19)
L__O-= (F.a ‘qu)/z.
And finally, (1.15) becomes
[F""F‘")-‘f”&"ﬁ (1.20)

(FO.)FSb] o j,‘*/"- F-Se.
[ Fiian)f:SQI] 2 ; %.ajh; F;

Gell-Mann went one step further than this, however. If

we denote vector and axial vector currents by EE (fx) and

a—s(m)respectively, Gell-Mann postulates the following

equal time commutation relations for the octet charge

densities:

L), F ()] e o= C87(R-F) e F k)

[F2 () \Fso (g )aes o = < 83(F -GV ke Fsz ()

[gsi(m\)a;soz,(g})]m%» 23 (A-3) pate F )
? 27F « N

(1.21)
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Since Fa‘-‘gdaf?( g’:(m) , and
F-S'aungs”‘ 3-5: (m) » (1.21) integrates to (1.20)
and is a stronger hypothesis than (1.20). Equation
(1.21) is referred to as the current algebra hypothesis
and it forms the foundation of most recent work in current
algebra, along with PCAC and some version of PCAC for
strange particles.

One interesting aspect of the current algebra
hypothesis is that it is free of specific assumptions
about the dynamics of the strong interaction, and
therefore freed of the limitations inherent in the
perturbation expansions of quantum field theory. Yet,
the hypothesis is not sterile and permits calculation of
many interesting physical quantities through manipulations
of matrix elements of the currents. One particularly
interesting class of calculations is that of so-called
"soft pion processes". These calculations express the
matrix element for a process in which one or more pions
of small four-momentum are emitted or absorbed in terms
of certain equal time commutators of currents and the
matrix element of the same process without soft pions.
Soft éion calculations have been applied to k:gq

7,8

decay,6 multiple pion production, pi-pi and pion-

nucleon scattering lengths,9 pion photoproduction,lo
pion production in pion-nucleon interaction near

threshold,1l and many other problems.
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But the model independence of the current algebra
Vhypothesis was eventually compromised by the introduction
of specific Lagrangian densities which were vastly easier
to work with, if somewhat less elegant. The first of
these "chiral dynamics" Lagrangians was introduced by
Weinberg.12 His model was developed by transforming the
sigma model in such a way thét it would reproduce the
results of current algebra if used to lowest order in
the coupling constant, 3 . The problem of renormal-
izing higher order contributions of perturbation theory
was overcome by fiat: one just ignored terms leading
to divergences. Weinberg's model included only pions and
nucleons. Soon Schwinger13 introduced a Lagrangian
model for pions and nucleons which also satisfied the
restrictions imposed by the current algebra hypothesis,
but which differed from Weinberg's model. Since then the
chiral dynamics approach has enjoyed increasing popularity.
Several different papers have been published on different
methods of constructing pion-nucleon Lagrangians,14 and
many authors have published applications involving
extensions to other particle fields.15

As useful as chiral dynamics Lagrangians have been
found to be, they still cannot be considered a true field
theory for the strong interaction in the sense that (1.5)
forms the basis of quantum electrodynamics. The reason for
this has alreaay been alluded to, namely, we avoid using

these Lagrangians to more than lowest order in the coupling
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constants, though higher order terms are manifestly
divergent and therefore non-negligible. The algorithm
for using chiral dynamics Lagrangians reduces to this:
- Use the Lagrangian with the ordinary Feynman-Dyson rules
to lowest order in i? , but include only contributions
from tree diagrams. Tree diagrams are diagrams which
contain no loops and no internal momenta to be integrated
over.

Two main points of view are held about chiral dynamics
theories. They are exemplified by the attitudes of
Schwinger and Weinberg, two of the first to participate
in the Lagrangian revival. Schwinger feels that
Lagrangians represent a suitable way to investigate
strong interaction phenomenology and to remove the weak
interaction orientation of current algebra. His rebuttal
to anyone who objects to the chiral dynamics algorithm
explained above is,

It is not meaningful to question the use

of coupling terms 'in lowest order'. That is

the nature of a numerical effective Lagrange

function, which gives a direct description of

the phenomena.

Weinberg, on the other hand, is less sanguine about such
procedures, and clings to the primacy of current algebra.
He says,
Opinions differ as to whether any fun-
damental significance resides in the

Lagrangians which have been used... [I]

myself remain uneasy at using a symmetry on

the phenomenological level, when it is not

clear how any fundamental Lagrangian could
give rise to the supposed symmetry of
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phenomena. From this point of view, chirality

is in good shape because we_have current

algebra to underwrite it...17

But no matter what philosophy is adopted, the
utility of chiral dynamics in practical calculations
cannot be denied. Besides, strong precedent exists for
the use of a Lagrangian with shaky underpinnings in the
case of the weak interaction ﬁagrangian (1.1). Had
investigators had too many scruples about employing such

an unrenormalizable Lagrangian, current algebra might

never have been discovered.



SECTION II

CURRENTS AND GAUGE TRANSFORMATIONS

If a system may be described by a Lagrangian
density L , which is a function of n fields ¥n(ax)
and their derivatives a., YA (m), the equations of
motion of the system are given by the usual Euler-

Lagrange equations

Q_L_ - 2 Q L =O;n.=l.---,m(z.1)
O Ca(m) QAT (D Clk)/DX™)

We are interested in the effect of a small change in

each field A () , of the form

Co(a) D Calx) - € AN €alx) (2.2)

where € is some small constant and )\M is a
constant matrix or, at most, a function of boson fieclus.
Equation (2.2) is called a gauge transformation. Using
the chain rule, along with (2.1) and (2.2), we find for
8 L , the change in the Lagrangian, after all the

have undergone gauge transformations,

S1l=L §€n + L. §(Iv Ca)
a?“ a(aer‘"er\)

=-('e,\MiQ_ 9 L ]~e°+[_§_£_-_ )a_f_’a}

AT D (D Cr) D e Cr)[ DT

16



17
Sl = € [-L'._a_é— A na fo(ﬂ(\](z,;;)
DX (e erl))

Let us now define the four vector current generaced
by the gauge transformation (2.2) as

S}q?(n)‘= - ¢ _32 Jﬁ' )\\nzx"f?o ((K))
(D @(m)V/Ddm”) (2.4)

and define its "charge" as

Q((t) = ( 43 %o(m).

all space

(2.5)
If ;l- is invariant under the transformation (2.2),
S L ¢ ]

= 0 and from (2.3) we see that ") satisfies
the conservation equation

-r
(2.6)

Furtnermore, for a conserved current, (:l is a constant
of motion since

2Q :‘(43”‘ -339-—(@): -[J?‘ﬂ\ _7. 7\}-‘(0\)
. “

ot Il space

-fs £3- Gx) = O

N}

—a
where we've used Gauss' Law and assumed that S) Cn) has
finite extent and therefore vanishes on a surface ES at
infinity.

In canonical field theory, we write that the operator

TTa () conjugate to the operator CAlm) is given by

TT,\(rx) = él;Z%- .
D ©@nle) (2.7)

Using (2.4), (2.5), and (2.7), we get for Q
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. L
Q= o= [-< 5T ] Ana
Q=‘('JJ3"K Tal(x) ANaa €a (). (2.8

We shall need to know thne commutator of the operator Q
with the field operator t%\ox). Assume first that

we want to know

[Q(f), ,@,.CFA‘,L‘)] (2.9)

where qbp Cm) is the pth boson field. The usual
quantization procedures require the following equal-

times commutators:
[ Qbr\((&)) QDQ<;%t)jL1°=~1,=
[ Talx), TTa i%)]d,* 4-7
[Trf\(ﬂ\)) ¢n<‘7)}m°=1,=“: SMSJ(;’(‘;)‘

U G

(2.10)

Applying (2.8) and (2.10) in the evaluation of (2.9Y),

we get

[Qe), pp&,0)]

[ S, Ta(F,5) A D4 (5, 6), Do it €]
S¢S LT3, ), B R, )] Ama Dl 0)
- ¢ fd’, U= Sap 33(R=3)3 Ny pal 500

L]

@O, @a 2,00 = A Dl R,0).
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Assume instead we wanted the commutator

[QUt), Yorvr (R D]

where YP)Y Cm) is the Y th component of the pth

(2.12)

fermion field. This time, quantization procedures yield

the anticommutators

SYC,‘\’CM) kr ,QC(? }m, 9s =0
i\t’ )-(Cﬂ\) “l’a,acv)}«, 4o =0

i*c.,«(nt) Y},G((?)gm. t.,,

(2.13)
The operator conjugate to "Ff\.,d is
f
2-—;- = (“ YI\ ) of )
’Dky“) of
so the charge operator becomes
t . .
Q((\=S<;03L} \Vn,«(o},ﬁ)/\m \ra,-r(.f;, t)
(2.14)

Evaluating (2.12) using (2.13) and (2.14), we find

Q)Y ,va,ﬁ)]
[Ioe 0},"“\.)‘1(9},-) \ na \Yq,-'(b) f) \'ﬁo,v (m,t)]

:f ‘?/\M[Y/\,d(‘?p.)i\ya —((ﬂ1,f)\}),fim )j
-2 ‘l’nrq(b, f)“"p,v(ﬂ\ ¢) Ya,q'( v}o»\\
"‘i \rr\)-(cﬂ)t) Yp,v (rx,f)} \Kx,'f\

=2 Ya,v (5, ¢) n,,.,Cn( &) Ya,q\.r?,t) ]
= go‘3u}, A\ na [' 8 (fx"L?)éq.p Y/A,Y'/C;):)J
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C Q(t) ) YP,Y((—;\."()]z '/\P‘YQ)Y' (a‘t ). (2.15)

Since (2.15) is in the same form as (2.11), we may write

for any field “€p(x) .

[Q(t)) ‘(’,, (;k'.t)] = - Npo¥a (ALt ). (2.16)

-~

Now let us define an operator Cf which generates
the gauge transformation (2.2). If we transform some

field @nlem)y G is defined by

2°SF e, (X2~ "%C 2 e (m)-C & Ao Calm)

But, since € is small,
z“G Cnl(x) 2-‘.66?_-,’(“-666‘)?’.(«)(l*'\'u‘fﬂ
s *?n.(rnj) + Q.G [(:}, !?n.QﬂK).]

and so
l C; ) € A (= ) ] = - )\ nAa Kf?ax(:fx )

By comparison with (2.16), we see that effectively I = Cl,
and hence the charge Cl is the generator of the gauge
transformation. It is important to realize that (2.2)
will give a different form of E} C = ) for every different
Lagrangian, but in every case the charge (:2 obtained
by integrating %}o(&n) will generate the gauge trans-
formation which we started with.

Since Q generates the transformation of all

operators, we may apply it to the Lagrangian density.
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Hence, under the transformation (2.2),
1——51’:._ o C€ER T ,-ceq
=~ 7 +celQ,Z]

The change in the Lagrangian induced by the gauge trans-
formation is ‘
y
§>.2: N l[ = _ZC T s [ Q ,«2: ]-
But from (2.3) ana (2.4),

SZ1= e D gwkm),

clQae), Z] =230,

Equation (2.17) is a convenient way of finding the

SO
(2.17)

divergence of a current without actually constructing
the current or the equations of motion of the system.
What we usually know from experiments is that some
quantum number C%. , such as charge, strangeness, or
baryon number is conserved, hence some charge operator
C:l commutes with the Hamiltonian. Next we try to

deduce the commutator

[Q(.f), €A (x)]

for whatever fields fa\(nx) are involved. Then we
construct the Lagrangian from the fields in such a way

that

[Qc), Z(e.in), 3 €]z O.
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If c:6_ is not conserved, but we know 3« 9 X), the
divergence of the current, it is trivial to use (2.17)
to generalize this procedure.

One common situation is when we have a Lagrangian
invariant under transformations generated by a set of
operators { Q a 3 which form a Lie algebra with

structure constants %.cu(rc ,‘
[ Ga, Q(r] = (7.0»6t.QC

Particle fields @Q(m) are composed of matri;:es
involving one or more fields 2N ( m) , boson fields
being composed of one field, fermion fields of a spinor
with four fields, etc. 1If then the particle field
operators are tensors of the n-dimensional representation

of the Lie group of the operators Qa , then

[Qa, DeCr)]=- (A P ()

(2.18)
where /\q is the & th matrix of the n x n repre-
sentation of the operator Qa . Equation (2.2)
generalizes to

CID (A) > P () - (€6 (Ab)axe e (x)
= Po(n) +Cee [ Qs , Do ()],
(2.19)

€4 being the 6‘ th member of a set of small numbers.
An illustration of the formalism discussed above is
the case of the isospin gauge transformation generated by
—

the operator T which satisfies the Lie algebra
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[T'a.,_l—(r] = Cate e

The nucleons form an isodoublet, and since the 2 x 2

representation of the isospin generator [a s

(ta)k = (Zé )61_ , (2.18) gives
[ 1-; ) \fjbjl S - (;ﬁz;;.)xc ffi;

2.

The pions form an isotriplet, and the 3 x 3 representation

of -T:; is

(Cadie = -~ ¢ 2asx

(2.20)

so (2.18) gives

[ jta ) 45&'] = L = ade <5g .

(2.21)
If in (2.19) we let €& ° 6(‘3)@ , where @®  is a
unit vector in isospin space, (2.19), (2.20), and (2.21)
give for the isotopic gauge transformations of nucleon
and pion fields

V)= T - e 4 T 8 YA

()= () -c ( Bm)x &) (2.22)
If we take for our Lagrangian density the free field
Lagrangian

—_— —_ — —_

Lieae= TCI-MT+4(5,8578- 8- 8)

the current generated is
Q) = 4 PG T T ) + B(n) x 2 000

Since Lfrea is an isotopic scalar, (2.17) shows
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- =>
that d 9:7(0{) = 0. If we went on to evaluate

a—r ——
T: SC93"K gc(m ) and used the second quanti-
zations (2.10) and (2.13) to evaluate L Va , 1&],

we would recover the Lie algebra [ T.a ) Tb‘] = (..t':a.bcT;

which we started with.



SECTION III

CONSTRUCTION OF CHIRAL DYNAMICS LAGRANGIANS

Since Weinberg's first paper on chiral dynamics,
several different methods have been put forward for
construction of chiral dynamics Lagrangians. The method
we shall use, that of covariant derivatives, was
developed in a somewhat later paper by Wc:inberg.18
The discussion here follows closely the discussion in
Weinberg's paper.

We shall restrict ourselves to Lagrangians con-
taining only pion and nucleon fields, hence the symmetry
group we'll be concerned with is chiral SU(2) GE) su(2).
The program will be to construct the gauge transformation
of chiral SU(2) @ SuU(2), then to construct a chiral
invariant Lagrangian, and finally to add to this chiral
invariant Lagrangian a symmetry breaking term which
reproduces PCAC.

As discussed in Section I, the generators of vector
P el
and axial vector currents, T and X respectively,

satisfy the Lie algebra

[ dr; ,-r;-] 2 ( €ake -T:
[ Ta, Xe] = ¢ ease %o
[ Xa Xe] = (ease Te - (3.1)

25
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We have already written dowin the commutator of | with
the nucleon field operator and the pion ficld operator
in equations (2.20) and (2.21), ancd used them to derive
the gauge transformation (2.22) which generates the vector
current. We could immediately write down the gauge
—
transformation generatea by X in the same way as we've
—

done for 1‘ , if we knew the commutators [ X ) %r(fﬂ) ]

d
and [ X ) Y (n() ]. However, attempts to make physical

s
fields tensors of tlie operator X have not been suc-
*

cessful, so we have to use otner means of evaluating
these commutators.

First, let's consider the transformation of the

pion field. We wish to evaluate the commutator

[XQ\ ¢5 ]. Define a function l{a.ab' ( @ ) by

- f%(a.):[xa, ée) (3.2)
Our problem now reduces to evaluating é-an'( ) . We
do this by deriving a pair of simultaneous differential
equations for /«#(6) .
We will need two identities to aerive these differen-

tial equations. One is the well-known Jacobi identity

LA,[B,c))=[B,[A,Cl11+([A,B],C]. .5

The other identity is

[QQ,A(‘erJF Qh [Q“) \e"] (3.4)
D en
where Qq is some operator and I‘I(‘e,-._)is some

*The sigma model was one such attempt.



27
general function of the set of n fields i.‘f?(;z .
To prove (3.4), expand h (@A) in a Taylor's series
around some set of constant fields g N very close

to ‘?l\ . Our commutator becomes

[Qa, h(ead)]

=[QQ)A(§A)+‘ a—‘_l;njf,\- '\(\ef\‘ gr\)+‘ ]
Because /'\< gr\) and Q_._. l are constants,
Cn Il €A== §A

this becomes
[Qa, h(ea)] = 24 [Q., en].
D Ca Y?n=|§n
But g/\ = . , so we arrive at (3.4).
Apply the Jacobi identity (3.3) in the following

form:

[Ta, [ X6,8.1)=0%Xs,[ Ta, 81110 Ta, X 1, &.).

Using (2.21), (3.1), and (3.2), this becomes

[Tar fe OB Cenar e (B iaatn f e (B)
)

(3.5
Using (2.21) and (3.4), (3.5) reduces to

/e () 8, = 3 (8) cot.
S%— € acla l;w( )euau-roeg ()3.;1&

i
This is our first differential equation for fcmc é)

Now apply the Jacobi identity in the form
[ Xa,[Xe, 811-1Xe,[Xa, 8.17=[[Xa,X51, &].

Using (3.1) and (3.2) with this identity, we obtain
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[ Xa, fel 8- [Xe, focCEN = lcasa € e S5

(3.7)
The tensor identity

Cabel €dca = Sac Doc - daa 9 e
(3.8)
simplifies the right hand side of (3.7), and using (3.2)
and (3.4) to simplify the left hand side, we get
Qfe(® Q(@)fug(ﬁ) aégscé’)faca)-su 34-Swd..

D 8. (3.9)
This is our second differential equation for ”-6:( 3‘)

We must now solve equation (3.6) and (3.9) for r&:(a‘) .
We note that (3.5) indicates /—6:(3.) is an isotopic
tensor. Since both Y and § have odd parity,
[ Xa, 66- ] must have even parity, and (3.2) indicates
f(,‘c 3) must also have even parity. Thus we take as
a solution for é-(m

J-b:(a.)’ s&fcz*‘) + 84 8¢ 9,< g™)

2 22
where f-( 3 ) and ?C 6 )are functions to be determined.

(3.10)

If we substitute (3.10) into (3.6) we get no restrictions
on /- and ? . This is not the case if we substitute

(3.10) into (3.9). From the chain rule, for a general

el
q
function /\( 6 ), we get

Qh - 284 A’
D84 (3.11)

P —

where a prime denotes differentiation with respect to @

Using the form (3.10) and the identity (3.11),
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Qfpte [acl= Sat & [ + Sac 84
XY +1sh§ac%'+3f}')
+ :Z.‘aca ¢56~ é‘c ¢ i}n'i- ziyi}' ).

From this,
9 be Mg,a H:( —2 1'231 I(é@c@r’é dq
o 1= Szt 22 B o s

Substituting this in our second differential equation

(3.9) gives

Cfa-2f4"-28 9f NSac 8¢~ 54 82)= 3ac 84 - 56c B
which is satisfied if é- and i} are related by

’
i}': l'+ 2 .
X, )
f'l K‘ (3.12)
Equation (3.12) gives the only relationship between

-l-‘ g
[f( 3 ) and ‘?,( ﬂ 2). This means the commutator

[ Xa, &4l

3 . 3 dl
1s not unique, since f-( 6 ) may be chosen to be any

(3.13)

isoscalar function of the pion field, and each different
&) (&)
choice of /_( gives a different function ﬁ_o-»(r\ ‘5
which is proportional to the commutator (3.13). What we
v ) . .
do when we choose f( é is to choose what isovector
. , . . . /r E;‘-)

quantity we'll call the pion field. Changing f \

is equivalent_}o redefining the pion field by

é > X = 6@(6 )where CPC 6 ) is some isoscalar

r 32

function determined by the new choice of l; ~ 6 )

Once we have settled on a definition, we can calculate
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(3.13) and determine the axial gauge transformation for
the pion field as we've defined it.
- 13 / dl
We shall restrict ourselves to the form of f C ‘8 )

19

used by Weinberg and Schwinger,20 namely

/(3)“_1_(!-)\@ )
2 (3.14)
where )\ is a constant which we'll determine later.
. . . ¢ 3%) y
Using (3.12) we find the function 3\ C corresponding

-t

to our choice (3.14) for )(C 62 ) to be simply
-2
?’(6 ): AR (3.15)
Our result for the commutator (3.13) is then
—
[Xa, @&]’_é_i%:(l-): §1)5w+ N 8. 663.
2\ (3.16)
We now turn our attention to the nucleon field
and the commutator [ Xa ,‘Pb- ] which determines its
axial gauge transformation. Define a function(fab( 6 )by
[.><")ﬁf: ] ='(;;J;('€;) \ ?;li)ccﬂ Kf:ﬂ.
2 (3.17)
Our problem is now reduced to evaluation of Uat ( E; \
and again we solve it by employing the Jacobi identity
twice in oréfr to obtain a pair of differcntial equations
for Uak ( 8 ).
The first form of the Jacobi identity we use is
[Ta, DX, T = 0Xe, [ Ta P+ LU T 600, R
(3.18)

Using (2.20), (3.1), (3.4), and (3.17), equation (3.18)
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yields our first differential equation

QUbe Eacle B2 = Ubel Cacd + Vde €akd.
D 3 (3.19)

The second Jacobi identity we use is

[ Xa, [l X4, F1]-0I X6, IXa, P12 [0 Xa, %6 T, T2

(3.20)
Using (3.4) and (3.17), the left hand side of (3.20)

becomes (suppressing matrix indices on ¥ ana )

[x“)[xb,f]]‘[XG,[ XQ,Y]]
:[Xq, (f/;-c] ;gz ?‘[xé-,U'ouz]gz\P

T [ ?%3 ) 'E;;ﬂ ] U bl Toc ‘{).

From (2.20) and (3.1), the right hand side of (3.20) becomes
[ [ )(cn) ><<}-])\T'] ARy [ -r; ,\1)] "‘Ckialm‘?:;kf{
2

Equating right and left hand sides, we obtain

[xa, U'(r(]f%._"l —[XG')JQQ]’L

2
+ Ul UM[”C'J , ’t’<] 2 - Gake T (3.21)
2z = =
Using (3.2), (3.4), and the commutation rule

[Z:,-‘_‘! ) %]= € Lea f_g___g

equation (3.21) becomes

Q U ge a&-a(fgﬁ bl = — Uac Ul € e + < wbe |
D By D d (3.22)

This is our second differential equation for Uat( 3 ).
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We see that (3.19), our first differential equation
for Vat( ér) , has the same form as equation (3.6)
—l
for /-a.lr( @ ) . Since (3.6) just arose because J.e-."‘( @‘)

il

is an isotopic tensor, Uak @ ) must also be an
—
isotopic tensor. Since )( has oda parity, (3.17)
shows that Uak must have odd parity, so we take as
our solution the form
&)= )
Jok € = €ake B, U (
(3.23)
2 . .
where kf'( ér ) is a scalar to be determined. Substitution
of (3.23) into (3.19) gives no more information about
2

L}'( Ef ) , but substitution into (3.22) does.

Substituting (3.23) in (3.22) and simplifying the

results using (3.8) and (3.11l), we get
Bt [ €get 8o — €onut ¢6—]><iu7+2 u'[/+3:}]}

+2€ abe ¢= By B Choct U+ Cake.
(3.24)

Using the identity

-l

é;QEGb‘C =:€L1Ai éc g!ﬂ *'eibec<za.q!g *‘eiﬂﬂﬂ:‘gc <@dﬂ
(3.25)

2
to eliminate the term $Bof @Q & baf T from

(3.24), we thereby obtain
B9 cset 8.~ cou @&]Ki U'7,-r2u"[j‘.’ + a’:}]‘u‘:}
-&-é.cuu[’lu-f-\‘- é o - '] = 0.

(3.26)

To satisfy (3.26) we must have
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2

u-a,-f-lu-’(é-p 327_)_U- = 0 (3.27)
A2u1 + Ezu_,_ - | = Q. (3.28)

The latter equation has the solutions
-1
- q E §
U= #Vé+3 =C1;:h\/f"+3")_
k3

(3.29)

A long but straightforward calculation shows that

U = (i_ ;tVJ_"'*. @1 )_l is also a solution of (3.27).

Substituting (3.29) back into (3.23), we have

—a 2 ‘|
Catr (8)= €ate 8. [ [ (8 £ VBN + 2]
(3.30)
From this and (3.17) we see that once the pion field
22
is defined, i.e. i ( 45 ) is chosen, the nucleon trans-
formation is also determined.*

; 2
In particular, let's go back to the form of f( E )

we've chosen in (3.14). This gives for (J° the two

J(@.z):)‘\‘%z y =N

The first of these yields a non-linear gauge transfor-

solutions

mation with unpleasant properties near where Zr = 0,
so we take the second solution. With tnis solution our
commutator [ Xa ’ “I‘(,. ] becomes

[ Sa‘)\i’] s - %% (i;i=" 25 )‘if.

(3.31)

*It 1s 1lnteresting to note that tne above discussion may
be generalized from the nucleon field ‘¥ to a general
field @ by simply replucing ‘Ta/2 by the matrix
representation of appropriate to & .
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With the commutators (3.16) and (3.31), it is easy
to construct the axial gauge transformation using (2.19).
Taking €4 = € ( .a-)é- where I\A_ is a unit vector

in isospin space, the axial gauge transformation is
. ~—> A
Fla) > F(a) - e N _"t': [ () <. ] T(x)

A

acm)-s B(m) - §-_£\-__[|-)\ BCa) - B(n)]

"%[.ﬂ. @(m)] @(m) (3.32)

Now that we have the gauge transformations generating
vector and axial vector currents, we wish to construct
a Lagrangian invariant under these transformations, to
which we'll later add a symmetry breaking term. Because
the vector current is conserved, we know our Lagrangian
must be an isoscalar. But we must further limit our
Lagrangian to iéoscalars which are invariant under the
axial gauge transformation. From (3.17) and (2.20)
we can show that any isoscalar function of the nucleon
field 'i' must also be invariant under the axial gauge
transformation. To show this, consider come isoscalar
function of the nucleon field }1('11) . Because it
is an isoscalar o

LT, ACY)]=0.

But from (2.20) and (3.4)

[ Ta, ACP)] =~ (%)«g Ty 4

Sh A
(%) T

and so

O

1]

(3.33)



35
—
The commutator of /‘\( "l’) and the generator X is,

using (3.4) and (3.17),

[ Xe, ACE)] = U @Vt T4
2

But using (3.33), this just becomes

[ X, ACP)]=0,

so l'\(? ) is invariant under axial gauge transformations

U

n

as asserted.

The form of the commutator (3.2) makes it impossible
to go through a parallel argument for isoscalar functions
of the pion field. However, it is possitle to construct
a function proportional to the derivative of the pion
field, for which isoscalars are also chiral invariant,
just as was the case for 1J . Define this function to be

—
[)-( 4?a = Cﬂaj}( Q5 ) 2)« ébt&.
(3.34)
The quantity [)cr 4} is called a covariant derivative.
We assure that isoscalar functions of the covariant
derivative are chiral invariants by choosing KR ok~ such

)

that D-r @ transforms like Q‘P , i.e.

[ Xas D« 3.1 =-cuas(Eeid Dy 89 O3
LTa, D@1 ¢ o D, B2 (3.36)

where we've let (’b'b-)c.n —_— ~ ' ben

The first step in obtaining oqcu(;( 3 ) is to sub-

stitute (3.34) into (3.36). We shall need the identity
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C Qay o Calx)] =2 [ Qa, € (x)]. 3.37)

To derive this, use the usual laws governing commutators

to obtain

[ Qa) 94 Ca ()] = Da[Qa, €nc)] + [Qa, Dl

and note that [ Qa 3 Do | = 0 since Ra and Der
operate in different spaces.zyﬁsing (3.34), (3.36), and
(3.37), we obtain
f.—r;.,I:LT‘gL ]:= [‘1:|, cg<1} ébw'qg&‘]
At C€ated (o B+ T, et ] (D= 8s)
2 Cacd Lhe ( D B2). (3.38)

A little rearrangement of (3.38&) gives

[.TZ )CQ«;&jlz (:e.aJhﬂ cagga +'<: < accp'cpolb,

(3.39)
By this time we recognize that (3.39) inaicates Lt s

an isotopic tensor. This suggests tuat it may be expanded

like é’“’ , i.e.
Lt (8) =568+ 8. B, wr (@), (3.40)

where &C 3’) and (AJC 32) are scalar functions.

We determine CQ and «J~ much as we did f_ and C?_ ’

that is we form differential equations from (3.35) and
(3.36) and use them to deduce AC 31) and wor( ng) .

If we do this we find, as we've come to expect, that (3.36)
gives no further information about JC 51 )and uu'( 51)
All restrictions on these functions are obtained by

substituting (3.34) into (3.35).
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Using (3.2), (3.34), (3.35), and (3.37), we get

Cxa,c?c_c.]a-f Be - A ou:«":).,ég
YTl Vg E et Ia Ay Ba

For this to be satisfied,
[.)<Q‘,CQ¢AJI= <:Cgcc0'g)gacﬂ = ¢ Uag € ocel L2 -
2D

Straightforward, but tedious, manipulations using (3.2),

(3.41)

(3.4), (3.11), and (3.40) give for the left hand side

of (3.41)
[ Xa, fee] - 180 BL(2 L'+ 2 Pt ]

+ Daxc é}& + Db éi
+@a @6- @f‘“;f’uf-{-? /AA/—Q?,/-)E

(3.42)
Equally straightforward, but even more tedious manipula-
tions using (3.10), (3.11), and (3.40) give for the

first term on the right of (3.41)

L Dfeat - { 0ar Be LAy 450t B (gl +B 50
+56 8, gl + 8 @6 B (280 +2uf " + 3+33§w).
Finally, use (3.8), (3.23), and (3.40) to obtain for
the final term on the right hand side of (3.41)
" Vaz € pct A6 =~ ] Sot Bt Luor
~Sac 36 (Lr + o) + Ba By B, b,
(3.44)
Substituting (3.42), (3.43), and (3.44) Lkack into (3.41)

and doing some rearranging we finally obtain
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8e Ba (2 [l +2 B acl’ + of)

+doc @6(“'{1‘&1- 2 a)’oéf 1-?;51&/1#)

+5u6 8. (for + 9 + Blour — L)

+ Ba @&QCCQ./AJ‘ +231W +3=7Mr+7.&c}
+’2w1_ ...’232@—”)

(3.45)
For (3.45) to hold, <J? and W must satisfy the four

coupled differential equations
2
2‘;4'4_25‘?4,*_‘74:0 (3.46)
2
W+2#’+d«r+3wr=0 (3-47)

fa..r c},of? +51<y.~r- Lr 2O (3.48)
2 glcyw- +'3\7*N.r+
i WQ%'+2§AI3~M~O (3.49)

Incredibly enough, a closed solution exists to this
intractable looking set of equations. But since we're

3’
only going to be interested in the form of f (

chosen in (3.14), we will only obtain the solution for

d( zi)and wrC g-‘)where

/—.:—(f“')\’)'@:)) 3:@:-—/\
2N\

Direct substitution of these forms in (3.48) shows that

(3.50)

=2
wr (B ) = Q. (3.51)
Substitution of (3.50) in (3.46) yields the differential

equation

(1 e N3G’ + 22L=0
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which has as its solution

&(51)‘7<l+/\1 ‘31)7\ (3.52)

Solutions (3.51) along with (3.50) satisfy our remaining
two equations, (3.47) and (3.49). For our covariant

derivative we have, using (3.34), (3.40), (3.51), and (3.52),

ry e ok B Nl =
For convenience we choose the proportionality constant

such that

D, &

T

a,,?é'+

SO
—

- 2 g2\ 3

Df@‘(l-i-)\@)r;q@_
(3.53)

Much the same procedure is necessary to construct

the covariant derivative of the nucleon field,[)q-\{)

It must satisfy the equations

ETQ) D-{?]"' = /%’50;?

(3.54)

-

['XQ.,Dq“IJ]= Uk '%’__o- D. T . (3.55)

For the form of [)v kf‘we take

Det=20,F + c M(B) (D43 T

——
where r1< ( d} ) is a 2 x 2 matrix function to be determined.

(3.56)

Substituting (3.56) in (3.55) and simplifying the result

using (3.2), (3.4), (3.17), and (3.37),
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Exa,DqT] DUt /Z:’c.-(a @c)kf-t-uazr’c” ka-ri))
O8. 2

+¢Me (D0 B) e %P+ M. D xca.x@ae)i’
Sr #&

f.acﬂ <:E)w Qé )\i) Sk ’tfh E)=f\i)

UE,,(,-’C’G-Q«“Y+;'U‘» ’%_M d-8_F
After some rearrangement this becomes

c'uq.(,[”%-,”c] gcgf’g' +r’loej_: a@qﬂ /.Me

Let us take as a form of the solution to (3.57)

Cé') ‘waa't’:l v ’}Cgl) (3.58)

where we must determine '}( 3 ) Using the forms

(3.8) and (3.58) along with the identities

€ ate éa@c':\’gxg)a=o,
[’g“ )’:ci.'@]zdsa.ég’g:

the left hand side of (3.57) becomes

. T -
C Ukt [ ff-J Fqc. T & abe Sﬁ@-'@;? ZZEX (/*3’ .
2
Use of straightforward differentiation and the chain rule

gives for the terms on the right hand side of (3.57)

QUakr T4 = = Sacd 2 U = L€ated B¢ B, Tt r
3. 2 2 P

)
= & T 63(53/'7‘_:!
ar‘lc'lme MJ_TJIZ/},'%QCAQ& 5 7Y

——————

XX

4

+2€ s Ba @&-'Z'J (ﬂ’+ 31}/})

Ma 3 ~~Q“a/m0<3(y<3 Ta L'
LN
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Using these last four equations in (3.57), after some

simplification we arrive at

= Cake 86 Bt Uy + Gk - )

+ € bed B, 6662%4-'2) +7‘5’>'7)
- 2c b B B <« f'3 = c>-

(3.59)
Cdmparison withh the identity (3.25) shows (3.59) is

satisfied only if

b-(zf:~u~)=-22%~’l'}f ’).@33 6;};

From the first part of (3.60),

NV < Va 55 ) (3.61)
U51ng;" (l"')\ 6 )/g)\ and U 3 *)\, (3.61)

gives

3= 20+ X @)

and tne nucleon covariant derivative becomes, using

(3.56) and (3.58),
[)q}i)::égqxf’f <f/>?(|-+}§la;1)-tfa-§§>‘élf ir.

We now have threcec covariant quantities from which

o,

we may construct our chiral symmetric Lagrangian, namely

D:ri:‘l> T e N 13‘)_‘_’?" I ¢
D2 (1 + g 3. B

(3.62)
Any isotopic scalar function of these quantities will

be a chiral invariant. But we are not free to choose just
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any isoscalar, because we want the Lagrangian to contain

the usual free field Lagrangian

Léraa=TF-MY+ 53,8 38
- /o\ @ gz (3.63)

so our Lagrangian will take the form

Z < Zewe s Lz

In addition, ;Z;'I should contain a term corresponding
to the usual ps(ps) or ps(pv) coupling.

We caﬂ arrive at a Lagrangian of form (3.64) by
writing (3.63) with the rollowing substitutions to make
it chiral invariant:

T - 71
¢ - D.T
—_
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