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ABSTRACT

CHIRAL DYNAMICS CALCULATIONS

OF SINGLE PION PRODUCTION

IN PION-NUCLEON INELASTIC SCATTERING

BY

William Frederick Long

The current algebra program initiated by Murray

Cell-Mann has been incorporated by dynamical models

by several people. Weinberg and Schwinger, among others,

have constructed so-called "chiral dynamics" Lagrangians

which describe the interaction between nucleons and

"soft" pions. A common difficulty of these formulations

is an ambiguity in the pi-pi interaction. The most

straightforward way of eliminating this ambiguity would

be measurement of pi-pi scattering lengths, but that

is a very difficult experiment. Olsson and Turner have

attempted to resolve the difficulty by calculating the

threshold cross section for the process T!" P—i TI " ‘1‘ n

in which process the disputed pi-pi interaction strongly

contributes. But near threshold the breaking of isospin

symmetry is reflected in large differences in phase

space volumes, depending on which mass of the supposedly

degenerate isomultiplets is used. For this reason, it

is desirable to extend the cross section calculation off

threshold to where the isospin symmetry incorporated in
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the model is a more realistic approximation and conclusions

about the validity of different models can be based on

a larger set of experimental data. Furthermore, such

a calculation would give some idea of the maximum

energies for which the model, derived for soft pions,

could be applied. I

The calculation was done for five different charge

channels retaining all Feynman diagrams and computing

the integrals necessary to obtain total and differential

cross sections by means of a Monte Carlo method to

within four (4) per cent. The results indicate that the

best fit to low energy total cross sections was given

by a model in which chiral symmetry was broken by a

term which transforms as a rank two chiral tensor.

For incident pion energies much greater than 300 Mev

none of the chiral dynamics models employed fit the total

cross sections well. Comparatively little relevant

data exists for differential cross sections, but what

there is indicates poor agreement between experiment

and chiral dynamics predictions.
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NOTAT ION

Conventions for metric and gamma matrices, as well

as most of the other notation) has been taken from

Relativistic Quantum Fields by James Bjorken and Sidney

Drell. (See especially appendix A, p. 377.) Some

specifics of notation are given below.

Metric and Four—Vectors

A covariant notation is used with metric matrix

?q(3 defined by

file": 1: l

a... ‘= 9.22: 9331‘l

C}q43 1: C) 5 ar=# G!

The summation convention is used, repeated Latin letters

indicating a sum over three indices, repeated Greek

letters indicating a sum over four indices. Vectors

are denoted by a symbol with an arrow, e.g. 7;? , and

four vectors are defined by

rK‘r‘: Cm°, 5?),

“K.‘== Cytrfi!afifics==i:rx<a,"azj)

Products of two four-vectors are of the form

,qtkj':: (Viq’fir.(‘= 1°(afljyat'r ;;r‘ 1;:

vii



We define

a 5 .3—« 99's Q...

'r 306* ) 30"?

Integrals

We use the notation

foa3m rfoqm, c£IX1 09/713

form ‘7] cent, (9»... cameo/...

Operators

Operators are denoted by capital letters. Some

operators frequently encountered are:

Q
~‘I

X

general operator

 isospin operator

generator of axial vector current

Currents

Currents are denoted by script letters. Some

currents often used are:

A i ll general current

q

(MK) := hadron vector current

hadron axial current

Q
C
)

a
s
3
V II
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Particle Field Operators

Particle field operators are denoted by Greek

letters, except for photon fields. Field operators

used are:

‘9 (m)

TCM)

¢(rx)

WAR...)

3(a)

general field

general particle field

general boson field

general fermion field and its adjoint

pion field

TCM),T(#\) = nucleon field and its adjoint

Aqtfh) = photon field

Constants

Constants are written in various ways, as the

examples below show.

¢
O
3
}
§
§

02A #1.,

8.1:

em =

general boson mass

general fermion mass

pion mass

nucleon mass

weak coupling constant

strong coupling constant, taken such that

2 _

ratio of axial current COUpling constant

to vector current COUpling constant

Kronecker delta

antisymmetric tensor

Functional dependence and subscripts are frequently

suppressed to Simplify notation.

ix



SECTION I

INTRODUCTION

Recent interest in the application of the algebra

of currents to particle physics grew out of studies

of the weak interaction. It was found that the effective

Lagrangian density for the weak interaction, JL.V¢» ,

could be written as a weak current, 9x408), coupled

to itself, i.e.

lw(m)="%_: gwcr<fldrgz C M)

where (3' is a coupling constant which is the same

(1.1)

for all weak interactions. The weak current may be written

as the sum of a leptonic part, ‘5‘ C at) , and a hadronic

part, 950*). Each of these may be broken up into the

difference between a vector current invariant under

spatial inversion, and an axial vector current which

changes sign under spatial inversion. For the leptons,

)1Cm)=&.(m)'—}5(m)

and for the hadrons,

99.0%) ’- 9(M) ‘95 (M).



In the case of beta decay, for example,

n-—)P+e‘+'{3, (1.2)

the lepton currents take the form

#qCM) = Yak“) W? 1"; ((7‘) )

._ (1.3)

isqérx) =\K:(m) Yqu 71AM).

Assuming small momentum transfer, the hadron currents

take the form

gxmhicqu to.) ,

(1.4)

95.,(rx) = 2—3- Yp(m)\(9' Y5 Yr, 1M)

9v

The quantity 3A /9V is the ratio of the axial

vector coupling constant to the vector coupling constant.

It is measured experimentally to be 1.18 i 0.02. If we

use the currents given by (1.3) and (1.4) with the

Lagrangian (1.1) we get a four fermion interaction which

is not renormalizable, but which gives satisfactory

agreement with experiment if used naively in perturbation

theory to lowest order in (3’ .

Two aspects of the interaction (1.1) and the structure

of the weak currents are particularly interesting. First

of all, the coupling constant (3‘ is the same whether

the interaction is leptonic, semi-leptonic, or non-

leptonic. Second, the hadronic and leptonic weak currents

are constructed from their respective vector and axial
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vector currents in a remarkably similar fashion. In the

leptonic case, the weak current assumes a symmetric

"vector current — axial vector current" form, and in

the hadronic case the weak current deviates from this

form only because of the factor aA/av in the axial

vector current, and fim/QV is tantalizingly close to

unity. Taken together, these two observations mean that

leptonic and hadronic vector currents couple in the same

way in the weak interaction, and leptonic and hadronic

axial vector currents couple in nearly the same way.

Let's consider first the implications of this for the

vector current.

The identical coupling of leptonic and hadronic

vector currents comes as a surprise because we would

expect a current of the strongly interacting particles

to be modified by the pion clouds which surround such

particles. In terms of Feynman diagrams, this means

that as far as the vector current is concerned, the

interaction of Figure 1 consists entirely of the diagrams

of Figure 2 with no contribution by diagrams like

Figure 3.

 

 

Figure 1. Diagram of beta decay process (1.2).



 

Figure’2.

  
Figure 3. Diagram of beta decay with renormalized vertex.

In other words, the vector current is unrenormalized

by the strong interaction.

A very similar situation exists in the case of the

electromagnetic interaction. The interaction Lagrangian

density for the electromagnetic interaction may be written

ole-10»): X EQ:CM)A¢V Cm)

(1.5)

where A-(CM) is the photon field operator and 3:3" ("4)

is the four-vector electromagnetic current of either a

hadron or a lepton. Here again we have a current partic-

ipating in a direct way in an interaction, and here again

we have a coupling constant, this time the fundamental

unit of charge, 2 , which is the same if the current in

the interaction is associated with leptons or with

strongly interacting particles. The fact that electric

charge is unrenormalized by the strong interaction

indicates that the strong interaction Hamiltonian commutes

with the charge operator' CD which generates the
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electromagnetic current, and therefore the electro—

magnetic current is conserved.* This is eXpressed by

the equation

EQd:::n<:OK) =_ (:>.

Eng"

Returning to the discussion of the vector current

 

part of the weak current, we see that application of

arguments similar to those employed for the electromagnetic

current imply that 9(a) is generated by some Operator

which commutes with the strong interaction Hamiltonian,

and

qucm12 O.
. ' (1.6

3m” - )

We'd like to be able to identify the operator generating

 

the vector current. A clue comes from rewriting the

hadronic vector current for beta decay in the following

way:

9.: 4?qu “V..==§?Y«(’C’.+a’ta)i’
(1.7)

where \I’ is the eight component spinor

) . . . . .

and the (I: s. are the Pauli matrices. Now the isospin

current for nucleons may be written

E§3:;(:nk)‘= fi_:;;(n\)‘VCq';E
? €1’<,0() .

(1.8)

 

*The formalism relating gauge transformation and currents

is reviewed in section II.
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Comparing (1.7) and (1.8), we see that the hadronic vector

current for beta decay equals the "plus" component of the

iSOSpin current. Since, moreover, the isospin operator

a

'1‘ commutes with the strong interaction Hamiltonian

and the isospin current satisfies the conservation law

g“

a!

30$

we postulate the identity of the vector current and

...

isospin current, and identify .1. as the generator

of both. The identification of the vector current as a

component of the isospin current together with equation

(1.6) is called the "conserved vector current hypothesis",

which alphabetizes to CVC. A consequence of the conserved

vector current hypothesis is that form factors of the

nucleon weak current and the nucleon isospin current

are, because of the Wigner-Eckart theorem, proportional

to one another, the proportionality constant being just

a Clebsch-Gordon coefficient. This has been verified

experimentally in analyses of the beta spectra of decays

of B12 and N12 into C12. 1

The case of the axial vector current of strongly

interacting particles is somewhat more complicated. The

success of CVC makes it tempting to postulate that the

axial current is also conserved, but two facts militate

against this hypothesis. First, the axial current con-

tribution to the hadronic weak current enters not with a

factor of unity but a factor an/av = 1.18 i 0.02.
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This is close enough to one to suggest that the renormal—

ization of the axial current is slight, but far enough

from one to indicate that the renormalization may be not

ignored. Second, a conserved axial vector hypothesis

.1

3.3.5.921): O (19)

3M"

would forbid the process

1'? 6/14, + v. (1.10)

This decay is governed by the matrix element

<1 9;(m)ITTCCf)7 (1.11)

where l :> is the vacuum state and Irrcrar) :7 is a

state with one pion of four—momentum (i' . If (1.9) holds,

then

<la" 9;:(0‘H 77(117 =‘S.31<19;(M)IWCC‘.)) (1.12)

= 0

so that the matrix element (1.11) vanishes and the decay

amplitude is zero. Since the pion decay process (1.10)

does take place, equation (1.9) cannot hold. However,

(1.12) contains an important clue to the resolution of

the dilemma. If the pion is at rest when it decays,

(1.11) becomes

fl<l§§<mHfl7=O

where l/QL is pion mass. We see that if /6& = 0,
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(1.9) could hold without forbidding pion decay by the

process (1.10). Therefore we say that the axial symmetry

of the strong interaction is broken by the pion mass.

The simplest way of accounting for the symmetry

breaking is to write the divergence of the axial current

as follows:

go

3.95 = constant x fl x some pseudoscalar Operator

This has the correct parity and reduces to (1.9) in the

limit as‘/°& "fi> 0. The simplest pseudoscalar operator

we could choose would simply be the pion field Operator,

d d

a . The Operator @ is an isotriplet, so we

incorporate the axial vector current in an isotriplet

and write

...—3
d

aqgs km) =constant x/(A. x @Lm) (1.13)

It was shown by Gell-Mann and Levy2 that the constants

in (1.13) must be chosen such that

d

’301 95C“): ...-[:1

‘2 av

and that it is possible to use this formula to derive

1....)

M @V’“), (1.14)1f

by a field theoretic approach a relation between the

axial vector form factors and the pion decay rate which

was originally derived from dispersion theory by

*

Goldberger and Treiman. ’3 Here, (a, is the strong

 

*The Goldberger—Treiman relation is discussed in more

detail in Appendix A.
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coupling constant and P" is the nucleon mass.

Equation (1.14) forms the "partially conserved axial

vector current hypothesis", which alphabetizes to PCAC.

However, PCAC by itself gives no clue about the nature

of the operator generating the axial vector current.

In an early attempt to discover the group properties

of the generator of the axial vector current, Sell—Mann

and Levy proposed three Lagrangian models incorporating

PCAC and CVC;4 a gradient coupling model, the sigma

model, and a variant of the sigma model called the

non-linear model. All these models were unsatisfactory

by the criteria applied, the first and third models being

unrenormalizable and the second requiring the existence

of the never-to-be-discovered sigma meson. Despite the

drawbacks of these models, there were some useful results

of this line of inquiry. The most important result was

the Lie algebra of the generators of the vector current

and the axial vector current for the sigma model and the

non-linear model. If we let .35. be the Operator which

generates the axial vector current, these two models

yield the commutators

‘[ .T:a , -T:& J (:(S adhz‘wfie

[Ta )Xb] = Ce wk. A; (1.15)

[Xe-)Xb] 3 C64.“ T;

If we define two new triplets of Operators by
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F6.“ (1‘:+—>'<.)/2

_a .a _, (1.16)

L.=CT-x)/?_

routine algebra reduces (1.15) to the symmetric forms

[R«,Rb)= (:5;ch

(1.17)

1: L-Gt) 1.6r] :: C Euxbn. L.¢

[ l_.a ) FIsd] = (3, .

Equation (1.17) shows that the Operators F?. and .E:

generate two independent SU(2) groups, and together they

generate the symmetry group SU(2)R ® SU(2)‘_ with

subscripts referring to the operator generating each

SU(2) algebra. This group is called chiral SU(2)(::)SU(2)

because of the similarity of the forms in (1.16) to the

right and left hand chirality operators of field theory.

It turned out that (1.15) was correct as far as

it went, but it remained to be explained how to incorporate

strange particles into the theory. Clues to the solution

of the problem were furnished by the success of SU(3) as

a symmetry group of the strong interaction and by the

Cabbibo theory of the weak interactions which placed the

weak currents in SU(3) multiplets. These discoveries

set the stage for Gell-Mann's current algebra hypothesis.

Gell-Mann's hypothesis made the logical extension

of chiral SU(2) ® SU(2) to chiral SU(3) ® SU(3).

This may be done by changing the 6:01,, )5 of equation

(1.17) to the structure constants of SU(3), conventionally

denoted lab: I and allowing Q , 6' , and C. to run
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over the eight indices labeling SU(3) Operators. Equation

(1.17) becomes

E FQG) f?br] : <: fLaMH: F1g

E ‘_.a )1_6r] : C: fiat! L—c.

[ La” R6] 3 O _ (1.18)

(

The operators are related to the eight generators of

vector currents, fi; , and the eight generators of axial

vector currents, F5“- , by

f?£L :' C Fae i- Fisa1)I/:l-

L_.o.‘= ( Fig ‘ fié<l) //:L .

(1.19)

And finally, (1.15) becomes

.[FQ’FL)=‘.I"6‘E (1.20)

[ Era.) FESb]

[ F2§a1)F135:]

H

5. f'klhk Elie

£1.11". F;N

Gell—Mann went one step further than this, however. If

r—-

we denote vector and axial vector currents by d) (m) and

¢_.

dfi5(}‘)respectively, Cell-Mann postulates the following

equal time commutation relations for the octet charge

densities:

O

(§:(m),’a~1°(7)]mo.,a= rake-3),... E m)

fa: (...) ,a5,(.,)1,... ,«- = 4 2.36.2 4),... 5;: (m)

[Escafisicpnaf = ..3 (aghm aim).
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Since Fa=§o€3m 3":(m) ,and

Fsagfd3m 3:5: (M) , (1.21) integrates to (1.20)

and is a stronger hypothesis than (1.20). Equation

(1.21) is referred to as the current algebra hypothesis

and it forms the foundation of most recent work in current

algebra, along with PCAC and some version of PCAC for

strange particles.

One interesting aspect of the current algebra

hypothesis is that it is free of specific assumptions

about the dynamics of the strong interaction, and

therefore freed of the limitations inherent in the

perturbation eXpansions of quantum field theory. Yet,

the hypothesis is not sterile and permits calculation of

many interesting physical quantities through manipulations

of matrix elements of the currents. One particularly

interesting class of calculations is that of so-called

"soft pion processes". These calculations express the

matrix element for a process in which one or more pions

of small four-momentum are emitted or absorbed in terms

of certain equal time commutators of currents and the

matrix element of the same process without soft pions.

Soft pion calculations have been applied to ”<13

7’8 pi-pi and pion—

10

decay,6 multiple pion production,

nucleon scattering lengths,9 pion photoproduction,

pion production in pion-nucleon interaction near

threshold,11 and many other problems.
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But the model independence of the current algebra

.hypothesis was eventually compromised by the introduction

Of specific Lagrangian densities which were vastly easier

to work with, if somewhat less elegant. The first of

these "chiral dynamics" Lagrangians was introduced by

Weinberg.12 His model was developed by transforming the

sigma model in such a way that it would reproduce the

results of current algebra if used to lowest order in

the coupling constant, <3 . The problem of renormal-

izing higher order contributions of perturbation theory

was overcome by fiat: one just ignored terms leading

to divergences. Weinberg's model included only pions and

nucleons. Soon Schwingerl3 introduced a Lagrangian

model for pions and nucleons which also satisfied the

restrictions imposed by the current algebra hypothesis,

but which differed from Weinberg's model. Since then the

chiral dynamics approach has enjoyed increasing popularity.

Several different papers have been published on different

methods of constructing pion-nucleon Lagrangians,l4 and

many authors have published applications involving

extensions to other particle fields.15

As useful as chiral dynamics Lagrangians have been

found to be, they still cannot be considered a true field

theory for the strong interaction in the sense that (1.5)

forms the basis of quantum electrodynamics. The reason for

this has already been alluded to, namely, we avoid using

these Lagrangians to more than lowest order in the coupling
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constants, though higher order terms are manifestly

divergent and therefore non-negligible. The algorithm

for using chiral dynamics Lagrangians reduces to this:

Use the Lagrangian with the ordinary Feynman—Dyson rules

to lowest order in (Q. , but include only contributions

from tree diagrams. Tree diagrams are diagrams which

contain no loops and no internal momenta to be integrated

over.

Two main points of View are held about chiral dynamics

theories. They are exemplified by the attitudes of

Schwinger and Weinberg, two of the first to participate

in the Lagrangian revival. Schwinger feels that

Lagrangians represent a suitable way to investigate

strong interaction phenomenology and to remove the weak

(interaction orientation of current algebra. His rebuttal

to anyone who objects to the chiral dynamics algorithm

explained above is,

It is not meaningful to question the use

of coupling terms 'in lowest order'. That is

the nature of a numerical effective Lagrange

function, which gives a direct description of

the phenomena.1 .

Weinberg, on the other hand, is less sanguine about such

procedures, and clings to the primacy of current algebra.

He says,

Opinions differ as to whether any fun-

damental significance resides in the

Lagrangians which have been used... [I]

myself remain uneasy at using a symmetry on

the phenomenological level, when it is not

clear how any fundamental Lagrangian could

give rise to the supposed symmetry of
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phenomena. From this point of View, chirality

is in good shape because we have current

algebra to underwrite it...17

But no matter what philOSOphy is adOpted, the

utility of chiral dynamics in practical calculations

cannot be denied. Besides, strong precedent exists for

the use Of a Lagrangian with shaky underpinnings in the

case of the weak interaction Lagrangian (1.1). Had

investigators had too many scruples about employing such

an unrenormalizable Lagrangian, current algebra might

never have been discovered.



SECTION II

CURRENTS AND GAUGE TRANSFORMATIONS

If a system may be described by a Lagrangian

density L , which is a function of n fields ?m(m)

and their derivatives 3., ‘9“(m), the equations of

motion of the system are given by the usual Euler—

Lagrange equations

9.5. .. i 9 L =O;n.=l.~-,m(2.1)

38.0») an." acaexcmxad“)

We are interested in the effect of a small change in

each field ?m(m) , of the form

3.021)") f..(«) - c'e AM VAC/x) (2.2)

where 6 is some small constant and )\na is a

constant matrix or, at most, a function of boson fields.

Equation (2.2) is called a gauge transformation. Using

the chain rule, along with (2.1) and (2.2), we find for

8 L , the change in the Lagrangian, after all the

have undergone gauge transformations,

8 11H‘1<3);l.18 ‘3n. 4- 69111. (S (éDq'th.)

Eb'ffix 39(fgarafn)

a-c'eAMiLL 3_______L ]‘€a+[ #3 9.31

fid"€>(€hr‘al) 2§Li§q”fh) EDaC'

16

3
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$1 =.- E. l Fifi—4.... /\M YoCm)](2.3)

3m“ acaq mm» ‘
Let us now define the four vector current generated

by the gauge transformation (2.2) as

" . L .

9(M)':“ ..‘2 l Am‘ea((1\))

3(3 (mm/am") (2.4)

and define its "charge" as

QC()= d3“ 9.0(m).

an space (2.5)

If <1: is invariant under the transformation (2.2),

3 1 = 0 and from (2.3) we see that go‘C“) satisfies

the conservation equation

a... 9%...) = O.
(2.6)

Furthermore, for a conserved current, C2. is a constant

of motion since

dd

9g =fJ3m ESQ—(0‘): -foersm V \ (m)

. t
a t H space

~f$ .135 ”C3700 = ou

.1

where we've used Gauss' Law and assumed that S)<:fl\) has

finite extent and therefore vanishes on a surface ii at

infinity.

In canonical field theory, we write that the operator

TTACM) conjugate to the Operator ‘en < M) iS given bY

fin (at) = <9 L .

a ‘9nCd) (2.7)

Using (2.4), (2.5), and (2.7), we get for C2
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~31

O=M$~<l~< 3;.) A... )6.

Q = "(In-13¢ ’ITme) /\m ”(a Cm). (2.8)

We shall need to know the commutator of the operator C:

with the field Operator faméx). Assume first that

we want to know

[0(fi), @PCR‘fi‘U (2.9)

where ¢P Cd) is the pth boson field. The usual

quantization procedures require the following equal-

times commutators:

[$aém), e.c1,)]..-,.=

E 17.9.), n. (17))...» ,.=

( 1mm), ¢.(.,)],.,.,,,= -.' s... a

0
0

1 U

C fi?-—"'). (2.10)

Applying (2.8) and (2.10) in the evaluation of (2.9),

we get

tom, ¢P<z,:)]

=[-(MilanesAMexgx),23,451.12)?

. -.‘ [.437 [ 17.41330, (3913,01 ./\M‘,Dz‘.<;,t)

= - a fat-K, 2-; gms3ca-s;)3.\wn.(;,z)

. [Q<t),¢p(fi€,f)] = --/\‘M 0Q(R,t. (2.11)



l9

Assume instead we wanted the commutator

(Oct). r...<s:.t)l

where K()pnr Cm) is the V th component of the pth

(2.12)

fermion field. This time, quantization procedures yield

the anticommutators

S ‘rz.M,-VC5K) sf»? )CSC%)}U«.=17o

iY;rm +:1-3,(3C:)3«o 4..

i 1:,chrx),‘13:,?¢3Cc7f)3r~.
-c1.

H O

OH

 

(2.13)

The operator conjugate to WA)” is

f

a I. 2 (a. Y“ ) 0’ )

’9 Y“) of

so the charge operator becomes

+ ...-I .

Q(t\:S.C03‘?Yfl)’VCC;)t)/\M *a,«(.c7,t ).

(2.14)

Evaluating (2.12) using (2.13) and (2.14), we find

[QC() ‘1’ ,Y'Cm,t)]

‘[fo?3 4+“,4Cc4‘p) /\M YM—CC)‘.f) )Kflp,Y(f-;:,t)]

[<93 ‘1. /\T/+M[YA,e-e(ci,fi)i‘(’a, «(4,19, YF‘V«’93

‘2 Ya“4(6): f)‘i’ra ,Y‘CM,t)K+)a ,ad 4,1“)

+i T3,.Cg,t) fissure} 11.2; e)

"‘2 +p,~r C17),fi)\i’m.,(f§? 1‘.)Ya,er\.a‘,t) ]

‘3 g O‘3k? }\rua‘;‘ 8’3 (’1:“L7‘>§”V3:jlai\r;:63’:!]
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(OR) , ‘1’,..,Y(.7:,0]=-....,\rm~nm,(5.“t
). (2.15)

Since (2.15) is in the same form as (2.11), we may write

for any field VFW?!) '

[QCt)) cha.t)]=~/\
P¢raca‘}t).

(2.16)

~

Now let us define an Operator 6" which generates

the gauge transformation (2.2). If we transform some

field ~€n(m), G- is defined by

2““ \encm)a“‘G= face» “A... race)

But, since 5 is small,

2"“; Heat...) p.""‘°g(l+¢eG)ve..am)(Luge)

: ‘en-Cm) 4‘ (..Q [G, vnQM)]

and so

[G 3 “ad/«)1 “ "/\M “6007.)

By comparison with (2.16), we see that effectively <¢P = Cl,

and hence the charge (:1 is the generator of the gauge

transformation. It is important to realize that (2.2)

will give a different form of %K M) for every different

Lagrangian, but in every case the charge (:2 obtained

by integrating %o (M) will generate the gauge trans-

formation which we started with.

Since CQ generates the transformation of all

operators, we may apply it to the Lagrangian density.
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Hence, under the transformation (2.2),

:Z:.—a) Lz;"_. ‘2 ciicl‘JL'JZ-<.E.C|

§ 1+L€[Q, Z]

The change in the Lagrangian induced by the gauge trans-

formation is » ‘

.

E>.1: 2 .2: ".l: ‘ a £.l.<:), 4:.1.

But from (2.3) and (2.4),

‘§.2:1= 6i 29a! §9f*§.n‘) )

(I [Q(t)) 1):;«r)°r\m)o

Equation (2.17) is a convenient way of finding the

so

(2.17)

divergence of a current without actually constructing

the current or the equations of motion of the system.

What we usually know from experiments is that some

quantum number Cfi. , such as charge, strangeness, or

baryon number is conserved, hence some charge operator

(2! commutes with the Hamiltonian. Next we try to

deduce the commutator

(Git), {afradi

for whatever fields fB‘CFx) are involved. Then we

construct the Lagrangian from the fields in such a way

that

[Q(t),1(“en<m),3q Ken/...»? 0.
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Y )If Cu. is not conserved, but we know 3% 9 0‘ , the

divergence of the current, it is trivial to use (2.17)

to generalize this procedure.

One common situation is when we have a Lagrangian

invariant under transformations generated by a set of

operators i Q a 3 which form a Lie algebra with

structure constants Ci. aJJ-r. .'

I: (:lca, (3)6rl‘2 i fi}.a1h;<:)c .

Particle fields @QCm) are composed of matrices

involving one or more fields ‘QAC m) , boson fields

being composed of one field, fermion fields of a spinor

with four fields, etc. If then the particle field

operators are tensors of the n-dimensional representation

of the Lie group of the operators (SICK . then

[QM ®6Cm)]= - (Ana Chan)

(2.13)

where /\a is the at th matrix of the n x n repre-

sentation of the operator Qa . Equation (2.2)

generalizes to

¢a(m)-* (1340,0-( 6.6( Air)“ (P (m)

=CPaCrn) + (.6213- [Q5 (I)... (00]

(2.19)

65 being the 6‘ th member of a set of small numbers.

An illustration of the formalism discussed above is

the case of the isospin gauge transformation generated by

—-—§

the operator .1. which satisfies the Lie algebra
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[ _T;a ) -T‘b-:l ‘=. C ‘Scalhz _T:;

The nucleons form an isodoublet, and since the 2 x 2

representation of the isospin generator la. is

(ta)6t ‘ (1% )61. , (2.18) gives

[Ts ) K{Jo-2‘ : - £32.)”; Kl);

'2.

The pions form an isotriplet, and the 3 x 3 representation

of .T:a is

(:tha,)&gy“ " C fzcaxh:

(2.20)

so (2.18) gives

[TQ\@CI‘]=~:QW fig.

4 (2.21)

If in (2.19) we let 6(7' €§@)c , where é is a

unit vector in isospin space, (2.19), (2.20), and (2.21)

give for the isotopic gauge transformations of nucleon

and pion fields

i’<a>—+~1’(a)-—;aa ’8. (Si/(...)

300—9 $(m)“€ C JUNK 3) , (2.22)

If we take for our Lagrangian density the free field

Lagrangian

.... ... _. _. ...

L....=T(a2~r1)i+a<a.da*2~ “((52-3)

the current generated is

531..) = a ?(a)v.,i¢i’cm) + 3(a) x3. (8(a).

Since lfv-ee is an isotOpic scalar, (2.17) shows
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d and

that a qum) = 0. If we went on to evaluate

d ——-h

T: 5,303,.“ 9°C“ ) and used the second quanti-

zations (2.10) and (2.13) to evaluate [Ta )Tlr] ,

we would recover the Lie algebra I. Ta ) Tb] : (Quake-r:

which we started with.



SECTION III

CONSTRUCTION OF CHIRAL DYNAMICS LAGRANGIANS

Since Weinberg's first paper on chiral dynamics,

several different methods have been put forward for

construction of chiral dynamics Lagrangians. The method

we shall use, that of covariant derivatives, was

developed in a somewhat later paper by Weinberg.18

The discussion here follows closely the discussion in

Weinberg's paper.

We shall restrict ourselves to Lagrangians con-

taining only pion and nucleon fields, hence the symmetry

group we'll be concerned with is chiral SU(2) CS) SU(2).

The program will be to construct the gauge transformation

of chiral SU(2) (:) SU(2), then to construct a chiral

invariant Lagrangian, and finally to add to this chiral

invariant Lagrangian a symmetry breaking term which

reproduces PCAC.

As discussed in Section I, the generators of vector

‘ A

and axial vector currents, 1. anui >< respectively,

satisfy the Lie algebra

[ ‘r;.,-T2»] :‘ a Etna: -TZ

I 1::, ><6r1 : ‘: Gena; 77“C

l: Xe )Xb] = (Gal: 1: ' (3.1)

25
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...—3

We have already written down the commutator of ‘T’ with

the nucleon field Operator and the pion field operator

in equations (2.20) and (2.21), and used them to derive

the gauge transformation (2.22) which generates the vector

current. We could immediately write down the gauge

_—3

transformation generated by )( in the same way as we've

done for :1: , if we knew the commutators [ )( ) ér(ra) ]

...-l .

and [ X , ‘i’ (m) ]. However, attempts to make physical

d

fields tensors of the operator )( have not been suc-

*

cessful, so we have to use other means of evaluating

these commutators.

First, let's consider the transformation of the

pion field. We wish to evaluate the commutator

[XQ‘ éé. ]. Define a function Kalb- ( Q ) by

"6 fqb(3)=[xa, Os]. (3.2)

Our problem now reduces to evaluating fiWC ) . We

do this by deriving a pair of simultaneous differential

equations for /°I46- ( a) .

We will need two identities to derive these differen~

tial equations. One is the well—known Jacobi identity

[A,[B,C)]’[B,[A,C]]+[[A)B],C].(3.3)

The other identity is

[QQ)/\(‘en)]: 95 [(1%) 38"] (3.4)

E§‘€V\

where Qq is some operator and I’M/Y“) is some

 

 

*The sigma model was one such attempt.
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general function of the set of n fields f {“3 .

To prove (3.4) , expand A (VA) in a Taylor's series

around some set of constant fields 5 A very close

to YD. . Our commutator becomes

[QM A<Ya>1

= [0a, ms). 3%....) (a- we].

Because A< gm) and 3 A I g are constants,

this becomes

 

[Qa,lr.(‘ea)]=_3__l [Games].

But g“ ’5’ Yr). , so we arrive at (3.4).

Apply the Jacobi identity (3.3) in the following

form:

(T..(x.,(a.))=[x.,( T..@.11+HT~><61»@«1-

Using (2.21), (3.1), and (3.2), this becomes

[Tan go‘( 3)]=cewwa3)+tem/c¢t(3)

( )3.5

Using (2.21) and (3.4), (3.5) reduces to

QéQECE) eases 9.3.an(3)6.¢4 + ’aeng)=a1&-

$64
I ‘

This is our first differential equation for fatC @ )

Now apply the Jacobi identity in the form

[ x.,[x(, (8‘11-(x.,[x., <3.]]=[[2<.,><.],(B.].

Using (3.1) and (3.2) with this identity, we obtain
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[Ka,;h(3)]‘[)(b,fu(¥)1= ‘Coélabd Golan 62-

(3.7)

The tensor identity

€¢aem= SaeSK~3wz 5cm

(3.8)

simplifies the right hand side of (3.7), and using (3.2)

and (3.4) to simplify the left hand side, we get

3§e(§)fw(§)_bégsC3)faC3)=3dr «Mart...

334 a <34 (3.9)

This is our second differential equation for d—kc 3.)

We must now solve equation (3.6) and (3.9) for rh(§1 .

We note that (3.5) indicates fécc 3‘) is an isotopic

—-h

tensor. Since both Y and g have odd parity,

[ Xq, @6' ] must have even parity, and (3.2) indicates

{RC 3) must also have even parity. Thus we take as

a solution for 5.6:

1.643% Sec/.C3111- @ér @c OJC an)

1 “‘2

where [-C a ) and 7‘ 6 )are functions to be determined.

(3.10)

If we substitute (3.10) into (3.6) we get no restrictions

‘on [- and C? . This is not the case if we substitute

(3.10) into (3.9). From the chain rule, for a general

A

1

function A( 3 ), we get

321; e. 2 <34 A'

95.9
(3.11)

a...

where a prime denotes differentiation with respect to ‘8

Using the form (3.10) and the identity (3.11),
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éliéés itamfl'=: ésalf 43‘,f‘?’ 't Skye <54},’

'SécQ +25h§a(%l+3lfif’)

+26e®eéccg1+ 2%,).

From this,

a 5‘ ad~3 H=( -2 5-231 ’(Saefiré (3..

52% fi‘ (7 H 3‘“ ’ H
Substituting this in our second differential equation

(3.9) gives

(54-20422 33406.... (Sealer a... 6. as... (a...

which is satisfied.if? 6- and i} are related by

I

$11: I +':2 .

1 I "§-2 & (3.12)

Equation (3.12) gives the only relationship between

A1 a

&( a ) and ?,< ‘3 I). This means the commutator

[2(a) ($61

——.

I

is not unique, since f( a ) may be chosen to be any

(3.13)

isoscalar function of the pion field, and each different

I. / A

choice of /.( a ) gives a different function b—alrx é)

which is proportional to the commutator (3.13). What we

‘1) . .

do when we choose {C <8 15 to choose what isovector

. , . . . . / / Ef‘-)
quantity we 11 call the pion field. Changing a, x.

is equivalent to redefining the pion field by

...—3 3‘
é AI

“‘1

9 . a 6@Cé )where @C 6 ) is some isoscalar

. . . . / .3“)
function determined by the new chOice of f \

Once we have settled on a definition, we can calculate
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(3.13) and determine the axial gauge transformation for

the pion field as we've defined it.

. . , -*1

We shall restrict ourselves to the form of f C 6 )

19
used by Weinberg and Schwinger,20 namely

{(3‘)=~_LCI~A° <3“)

‘2)\ (3.14)

where >\ is a constant which we'll determine later.

1

Using (3.12) we find the function ?( a ) corresponding

4

2

to our choice (3.14) for {C 6 > to be simply

..1

3&6 )~ __ /\‘ (3.15)

Our result for the commutator (3.13) is then

. 1A: 1

)\ (3.16)

We now turn our attention to the nucleon field

and the commutator [ .Xq ,‘I’b- ] which determines its

axial gauge transformation. Define a function U'a.‘< é ) by

—A

‘:;K“‘)ff;‘] : Lfiapr‘é')1.i;3?)ccfl KTZJ.

’1 (3.17)

Our problem is now reduced to evaluation of 0:146 C 6 3

and again we solve it by employing the Jacobi identity

twice in order to obtain a pair of differential equations

for U'ab(§‘),

The first form of the Jacobi identity we use is

[11,[xc,1’.]l=[X/.,[T.,T.)] dings]. it).
(3.18)

Using (2.20), (3.1), (3.4), and (3.17), equation (3.18)
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yields our first differential equation

ail. 6.1.9. <8, = £17,460”; + (roe... 60.13.30.

aQA’ (3.19)

The second Jacobi identity we use is

EXMLx.,i’.1]-[x.,lx.,i’.1]=[[><..><.1.it].
(3.20)

Using (3.4) and (3.17), the left hand side of (3.20)

becomes (suppressing matrix indices on ‘i2 and ’t3 )

fx.,[x3,‘1’]]~[><.,[ x..‘1’1]

-[Xq,U—a-c]32.:zfl‘[X6-,qulgz\f’

'r'[ 1;}; , ’E§;£.} (J‘émfl Lraq: ‘1’.

From (2.20) and (3.1), the right hand side of (3.20) becomes

[[XQ)X6']) ‘1’]: C&W[TC)T]:‘Q\Q1m:c-T

Equating right and left hand sides, we obtain

[x., we]?! -[x.,u..]
N

5-.“

2

+Jwva£[’t_¥,’§’_c]=~gew ”it" (3.21)

2

Using (3.2), (3.4), and the commutation rule

1,4 "5—‘6; 2’
[1”? 4.2.1.“.

equation (3.21) becomes

av“ ad- U38 6192 ‘qucvo-cQagdgi-QW

a $4 6) ¢QQ (3.22)

This is our second differential equation for U'oJrC <8 ) .
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We see that (3.19), our first differential equation

for URL-( 5) , has the same form as equation (3.6)

..D

for l—mlr( é ) . Since (3.6) just arose because [.afi—C a.)

a

is an isotopic tensor, U‘aué-C @ ) must also be an

——8

isotOpic tensor. Since X has odd parity, (3.17)

shows that qufir must have odd parity, so we take as

our solution the form

(3)- 5‘)‘Jnels ‘ <£<L61. ibc, LP (

(3.23)

1 0 ~ I o a

where U‘( 8‘ >15 a scalar to be determined. Substitution

of (3.23) into (3.19) gives no more information about

'1

U( a. ) , but substitution into (3.22) does.

Substituting (3.23) in (3.22) and simplifying the

results using (3.8) and (3.11), we get

6.1L. €6-ufl go..- €cuaJ éb'JXiU'j‘i-z U’[/+3;]}

‘f:2<E<~6¢ xiv: =' 530, qgnrifithuxg bqu‘b éiauéc.

(3.24)

Using the identity

“12

fl 6w “T‘Eaficéc‘pn‘tebu‘ga @;+Gm@¢. <34

(3.25)

2

to eliminate the term $4 @9 6. M J from

(3.24), we thereby obtain

{BJEQM £3..- eame <3Hxiu1;+2a~’[jj + 331~J1

A: 1

+€qg[201+ @ U‘- I] = O.

(3.26)

To satisfy (3.26) we must have
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‘2

u-a),+QU-;(bl-pal?
)‘U=O (3.27)

244-2522Lr—I=O. (MB)

The latter equation has the solutions

U‘= #W(01 1V7)?

(3. 29)

 

A long but straightforward calculation shows that

U‘ = (f 1V&1+ @‘ )‘l is also a solution of (3.27).

Substituting (3.29) back into (3.23), we have

a a “)

(3.30)

From this and (3.17) we see that once the pion field

7‘)is defined, i.e. iC Q is chosen, the nucleon trans-

formation is also determined.* ’

- 1

In particular, let's go back to the form of f( g )

we've chosen in (3.14). This gives for (J' the two

JC¢2)=;\JE1

The first of these yields a non—linear gauge transfor—

solutions

mation with unpleasant properties near where '1: =r0,

so we take the second solution. With this solution our

commutator [Xq ) “1’6. ] becomes

[X‘.i’]=~%(?x5)‘l’.
(3.31)

 

*It is interesting to note that the above discussion may

be generalized from the nucleon field ‘f to a general

field 4 by simply eplacing Tia/'1 by the matrix

representation of appropriate to § .

E
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With the commutators (3.16) and (3.31), it is easy

to construct the axial gauge transformation using (2.19).

Taking E6. ’ E C «fl-)6- where .8. is a unit vector

in isospin Space, the axial gauge transformation is

T(m)"’ TCM) " <.€/\ f [ 3(a)) xii] T’Cm)

 

12

B<m)‘9 ECM) - 63. {Al )_|--){1 ECm)' 30-4)]

’ 1%

" g): [ .6. EUR” 5(a). (3-32)

Now that we have the gauge transformations generating

vector and axial vector currents, we wish to construct

a Lagrangian invariant under these transformations, to

which we'll later add a symmetry breaking term. Because

the vector current is conserved, we know our Lagrangian

must be an isoscalar. But we must further limit our

Lagrangian to isoscalars which are invariant under the

axial gauge transformation. From (3.17) and (2.20)

we can show that any isoscalar function of the nucleon

field ‘1’ must also be invariant under the axial gauge

transformation. To show this, consider come isoscalar

function of the nucleon field AC ‘1’) . Because it

is an isoscalar . ___.

L T. AC 10] = 0.

But from (2.20) and (3.4)

2‘- 73.) A[T.,A<‘1’)1 (:3: ..o 1.4%:

and so

(2:).2 “Kc as . o.

€9‘f2_ (3.33)
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l

The commutator of AC ‘1’) and the generator X1 is,

using (3.4) and (3.17),

[XL AC?)]= vh(§)wp?.og~5.

:2

But using (3.33), this just becomes

['2,A<i’)]=0,

so A(q’ ) is invariant under axial gauge transformations

(
2

h

as asserted.

The form of the commutator (3.2) makes it impossible

to go through a parallel argument for isoscalar functions

of the pion field. However, it is possitle to construct

a function proportional to the derivative of the pion

field, for which isoscalars are also chiral invariant,

just as was the case for .i’ . Define this function to be

.1

[)-( §§QL=‘C§Lq5C7)§ ) 23¢ éblS.

(3.34)

The quantity Dar Q is called a covariant derivative.

We assure that isoscalar functions of the covariant

derivative are chiral invariants by choosing J «Jr such

A

that Dar @ transforms like KP , i.e.

[x°1 Di ‘5‘] 3 “c°Uab(¥)€6cJ Der <54 (3°35)

[Ta , D-( @c] = C. €ox40 Der @J (3.36)

where we've let (Tb-)ca ._....a, _. {E 61.0.

The first step in obtaining JMC Q ) is to sub-

stitute (3.34) into (3.36). We shall need the identity
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HQ... 9., men] = a. (Q... eon], (3.37)

To derive this, use the usual laws governing commutators

to obtain

(Q... 9.. 10.60) = 9.10. 364.0] + IQ.a 9.1m“)

and note that [Qanaq ] = 0 since Qq and 3.,

operate in different spaces. {Using (3.34), (3.36), and

(3.37), we obtain

fT.,D.@.1=[TZ,J¢;>.<Z>.1

= &e.6. c.’ saw ( 8e @J)+[T;,o?e(.](9e <53)

3 L. 6w 00.2. C a? @192). (3.38)

A little rearrangement of (3.38) gives

[12,004.]: c'eqMoUwO+ c‘ Sadr-flour,
(3.39)

By this time we recognize that (3.39) indicates Cpsab‘ is

an isotopic tensor. This suggests that it may be eXpanded

like 5-0.4- , i.e.

coacéhaaazce‘). e. e. dr(31),(3.40)
d ...—.2

where 4C 62) and WC @ )are scalar functions.

We determine C9 and (.J‘ much as we did i. and 3’ ,

that is we form differential equations from (3.35) and

1 '~*z

(3.36) and use them to deduce C.“ 3 ) and vU'C @ ).

If we do this we find, as we've come to eXpect, that (3.36)

“'i “*1

gives no further information about JC Q )and bxf( é ).

All restrictions on these functions are obtained by

substituting (3.34) into (3.35).
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Using (3. 2), (3. 34), (3.35), and (3.37), we get

[Xq,Ja]3-( @z‘afla 3 0:9 962.

'7 "LUalrEGu-I oVan. 3v®a
For this to be satisfied,

[Xa,ch.6(= icgoc9%_54; —- 5 U3“ €WoJOQ‘”(3.41)

Straightforward, but tedious, manipulations using (3.2),

(3.4), (3.11), and (3.40) give for the left hand side

of (3.41)

[quQoeh-diéh @%(2H'+131?0Q')

+3“ @banJ‘ t 2% a8;

+ gin <56- gh;<:2 ’-+

Equally straightforward, but even more tedious manipula-

tions using (3.10), (3.11), and (3.40) give for the

first term on the right of (3. 41)

L oQer 33,33245812 5321/.+8.25 (gag-r5?!)

+5MJ 34+ 6 536 (2.2?.24 may).

Finally, use (3.8), (3.23), and (3.40) to obtain for

the final term on the right hand Side Of (3.41)

‘t’ U‘Qngt-AOQ&6 =~c1f 80.6- 504 oQar

~3... QMJwJ. 33w). e. <23. e. M}.

V (3.44)

Substituting (3.42), (3.43), and (3.44) hack into (3.41)

and doing some rearranging we finally obtain
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I

362. §q(’2 ’+'2 513,0? + 74:0.

+3M5GCfl+2%’+éu+§W)

+§dQCCW+afl+gW—cbf)

+5.. @6@c(2i~r'+2$1w' «Pawnee;

+wa.’+2$2ur3'-W3 2 O.

(3.45)

For (3.45) to hold, (.9 and Ld' must satisfy the four

coupled differential equations

:2jkfl’sh:2 Egczicg' 4-C1c2 :<:> (3.46)

W+Qofl¢’+o&r+
$2M =0 (3.47)

A

furi- wdtézyar~obr=0 (3.48)

:Z.f~w-’~f 2! ii C’~UP;;+"ESC3AAI'+Dc£&?.' .

i +‘2w1.’+'2 Q‘W?’*W= . (3'49)

Incredibly enough, a closed solution exists to this

intractable looking set of equations. But since we're

- - . (3‘)only gOing to be interested in the form of f

chosen in (3.14), we will only obtain the solution for

a“ $2)and w‘C gz)where

f 1: —-('!-— )<2 QS“) ) f}::<dr : —-/>\

1/\

Direct substitution of these forms in (3.48) shows that

(3.50)

4“

W( 5 )3 O. (3.51)

Substitution of (3.50) in (3.46) yields the differential

equation

(1+ )3 $‘>&’+ >34=o
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which has as its solution

&C52)5f (I + /\1 52):“ (3,52)

Solutions (3.51) along with (3.50) satisfy our remaining

two equations, (3.47) and (3.49). For our covariant

derivative we have, using (3.34), (3.40), (3.51), and (3.52),

Def @ °f'(l +>\ é ) <91 @.

For convenience we choose the prOportionality constant

such that

Dvgzaaré‘l‘

SO

—.

D45

Much the same procedure is necessary to construct

([+- A!2 guy-t3, .55

H

(3.53)

the covariant derivative of the nucleon field’[)q-\{?

It must satisfy the equations

[7:1, D431]: ‘ ”gag?

(3.54)

‘

[ ?<<x ) [D-rkf’:]‘= L/BdE 7%}. [>q'1e . (3.55)

For the form of E)? kf’we take

[)=4\f,=: Ely \f’ 4— c: F“L;( ES) C ébcr 15c3)\35

...-A

where me C Q ) is a 2 x 2 matrix function to be determined.

(3.56)

Substituting (3.56) in (3.55) and simplifying the result

using (3.2), (3.4), (3.17), and (3.37),
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Excquksz' 1%!» 7‘30- (3., @c)\f+U.a1r:C:/rkavi))

965.; 2

d P1C.C£ fl 523) 1? P1; ;) :n:<:;)w éil)fii)+ Jab Z} + 313:0

Mfd(3w@)¥= 1,131,6- ’C’G- Dari}

'Lflixb'Lgb- éDarLi’ +~ ;:(Jfigqyy:ifp #4:; :)q’<5 Ki)

After some rearrangement this becomes

('U¢[1J,nc}=auw:9+md)d+am face

2 9%: Q 64 ago“

Let us take as a form of the solution to (3. 57)

MC5)= €aa€a’_t_y 523(5)

(3.8) and (3.58) along with the identities

‘Ecuéz é5ér 15: 1: (fl E§;‘ &§i)o. 3

I? );@]=C€afig’%’c

the left hand side of (3.57) becomes

‘ ’Z’I -
k U'oJrl: =1") Mr. ‘ Qafit 5g,- éfl 3:! If},

“2

Use of straightforward differentiation and the chain rule

gives for the terms on the right hand side of (3.57)

 

QU‘QJ, E: —Ea&¢9’§£ltf‘l€afidé6- 5g/Z9'VI

am. 1 1 2

am My: some "cu +€o£ééa®5/Q‘
3":2/ ”f (by 2 fl

+2€war5a 5&?_%0(fl’+ 5 w)

~Q€ajnflé565 ”2:22 £3,

+€étoqé“@6’2529? W
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Using these last four equations in (3.57), after some

simplification we arrive at

‘em5&@JU}+SMC/ ’J‘LI

+eauc5 56C2%+’2)’/ +3‘5’9'7)

*28W 565;cf’fl} 0-

(3.59)

Comparison with the identity (3.25) shows (3.59) is

satisfied only if

493‘‘(zr ‘7 ~42): -27.}‘135 1333:?(3.6-60).

From the first part of (3.60),

“l

“ U'C/ + U’ 55> (3.61)

Using {'3 " ((‘A 6 z)/{)\ and U' 3 ‘A, (3.61)

gives

3:2/\‘<l +28 5‘)“

and the nucleon covariant derivative becomes, using

(3.56) and (3.58),

[)qfi? :.;)#ff>‘r 6.255(I-+.>3'§;1)f'?§’.§§>‘;;q‘ag ‘1’.

We now have three covariant quantities from which

we may construct our chiral symmetric Lagrangian, namely

(3.62)

Any isotopic scalar function of these quantities will

be a chiral invariant. But we are not free to choose just
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any isoscalar, because we want the Lagrangian to contain

the usual free field Lagrangian

1F,..=?<.a~ M>‘I’+j; 5 a

.. /<..5_:. £5 95 (3.63)

so our Lagrangian will take the form

1‘ : Lfree ‘1' II. (3°64)

In addition,¢1:-I should contain a term corresponding

to the usual ps(ps) or ps(pv) coupling.

We can arrive at a Lagrangian of form (3.64) by

writing (3.63) with the following substitutions to make

it chiral invariant:

But we immediately encounter difficulty with the pion

A

mass term since there is no covariant analogue of g

This is not too surprising since we showed in Section I

that chiral symmetry breaking was intimately connected

with the non-zero mass of the pion. Thus, no chiral

symmetric Lagrangian may be constructed for pions with

finite mass and we shall have to pretend, for the time

being, that./‘k = 0. Thus

.— -‘ A U" A

L‘frce ~= “1’0. 25 *MH’+%_&(@-3 9&5

M‘0

is the free field Lagrangian which belongs in (3.64).

Now we may proceed with the recipe outlined above and write



43

Lchxml symmafr.‘c2"‘1‘?)(il_.‘M

__/\2 TC! +}\ <3 >~ IT; @ x

i(l + /\ 32 ) 1 9q§ 3'

if.
if

m
a
y

However, we still haven't fulfilled our second require-

ment, which was that the Lagrangian contain the usual

pion-nucleon coupling terms

c'gYYs’t’ 6‘? or £33,?Y5? $7512

The pseudoscalar coupling involves the same problem

with the pion field which the pion mass term had. So

we're forced to use the pseudovector coupling. Adding

on this gradient coupling term, our chiral symmetric

Lagrangian becomes

LCkm-al Symmefr‘ocd7‘ Ygfa" M)j

~A‘Y(I+A 6 )“’C’ $2.55 @‘1’

+£(HA‘3‘Y7‘9-ré J’é

+ ‘PYs(l+—/\ @1)"?°3§Y

2%
(3.65)

To the chiral symmetric Lagrangian (3.65) we shall

now add a symmetry breaking term IS. B. so that our

final Lagrangian will have the form

I 3 Lakfrqi $~7mmefra.< ‘f‘ ”Z- 3.3.

We shall see that we recover our pion mass terms and fix

the heretofore undetermined constant .>\ by constructing
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this symmetry breaking term in such a way that PCAC

is satisfied.

From (1.14) we have for the PCAC condition

-—.‘I

a-v 9310‘): £1 at: #1 @Cm 3

9) av
In appendix B it is shown that this form is not unique

(1.14)

and in fact the general form of PCAC is

c—A _.

aqggaggfi/A‘z@[l+§am($l)ml

where fawn}, is a set of arbitrary constants. From

3.66)

(2.17) we see that the divergence of the axial current

is given by

«—a ..3

Q. [X ) ls.B.]=C>*-r 9°; .

Combining (3.66) and (3.67), we obtain

(I. X) 15.8.]‘11 %fl‘g[l+zam<51)ml

3' v

(3.67)

(3.68)

Equation (3.68) is the equation 15.3. must satisfy.

Because the set iQM3 is arbitrary, the solution of

(3.68) is not unique and many different models may be

used as solutions.

The simplest solution is just to restore the pion

mass term, that is, take

.1 - ‘1 ’5.3. = “/14 § (3.69)

’2.

From (3.16),

[K51]

SO

..s .a -a1 “*

(.‘[ X)‘ 1 @1] =AAiL/Y‘ (”Aw-é )@ (3.71)

H

(I. "( I +/\1 52) a (3.70)

M
I
}
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This satisfies (3.68) if we take

,}\'1= .

:2 €ga£b (3.72)

We shall call the model defined by (3.69) the minimal

coupling model, for want of a better name.

We can see from (3.70) and (3.71) that any model

we wish to use must be of the form

00

‘1 '1 1. ha

I - M 3‘ 2. (y (5‘ )... -" ....- m _ )

5.8. 2 + mu

where 56'an may be any set of numbers. In the minimal

coupling model we've taken 6v“ = 0 for all n. But another

alternative is to take‘arn = 0 for all n. This puts

PCAC in the simplest form, that of equation (1.14). To

Obtain 15. B, in this model we must solve

. -‘ .. I @-

«tx.1....1~-"-”—3$M -‘3’ v

Using (3.4), (3.11), and (3.16), equation (3.73) becomes

(3.73)

the differential equation

( l 1- A1 $1) 1:33. 1: ‘- Aifli

'2

which has the solution

' 1

L543." -/,3"N2£m(l +20 5 ).

But /\ = so the final form of the solution is

1% as): ,

1“" “373% 21)”£"[‘*(2% 3:) a I
‘ 21 (3.74)

This is the model proposed by Schwinger.

The final solution of (3.68) which we shall consider

will be Weinberg's which consists of making <21‘5-Bn an
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C N)

SU(2) ® SU(2) tensor. If t-ra -- -Y‘ designates a

traceless symmetric chiral SU(2) ® SU(2) tensor of rank

N, we let

_ (N)

LS.B, ‘ 1N = oo---o

In order to derive a form for dz; we must first make
”I

a short digression into the properties of SU(2) ® SU(2)

tensors. Let U4 be such a tensor of the fundamental

four dimensional representation where or runs over the

indices 1, 2, 3, 0. Equation (2.18) tells us that

EXQ) 114] = ~ (Maxwfi HQ

[Tq , Ex] 2 " < to.)'r(3 Ea (3.75)

where Ma and to. are the 4 x 4 representations of .Kq

and 1:. and therefore satisfy

[ta;tb]= (:6.th

[ tq)/7(b]= dew/7‘5.

[“q3/XG] 2 (:éaoé: t4.

A specific form of the 4 x 4 representation is

(fade; ‘2 -- C.‘ W

(taM-o‘.’ (flak/3“" (ta)... 2 o

(Man-o =‘(r7fia)oér= L'Sauo-

<r><a>6z 3 (Ma)oo “' O.

(’
1‘
)

(3.76)

From (3.76) we see that the first three components of U—r

form an isotopic triplet, and U9 is an isotopic singlet.

In the sigma model the triplet was identified with the
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qu—I

pion field @Cm)and the zeroth component with the

sigma field.

Let us temporarily restrict ourselves to

15.3. = l. = to . From (3.75) and (3.76)

EKG) to] = (fa

[,Xq, t&] = 7 c. ‘80.;- to. (3.77)

From (3.77),

[x.,[x.,1.]]=smt.=3t. -3.z
(3 78)

To generalize (3.78), note that a rank N tensor is

constructed from the product of N rank 1 tensors. Hence

Ex.” .53)..]=Nt.f..T‘itx.,t.)

=<'Nto a.

1: (:I\J ta(SJ).

(3.79)

where the last step uses the symmetric property of't-flin-Vfi

For the generalization of (3.78), using (3.77) and

(3.79) gives

[xb,[ X...Z~]]= 1X3, a Nd")... )

‘ (04) (hi)
- -— bd(:hJ-|) t,xb”3”¢3 +~ P4 ESQA,'t<,...o»

(3.80)

(N)

Since tqe ..v is traceless

(N) __ (N) \N)

t-r-ro---o ‘ tmo-o *‘tOOOm 0:0)

so setting at = b in (3.80),
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[XME x..1~]]=-N(N~nt‘“"
3mm”

mqowuo‘+ o-o

s) N(N-()+3N3t.‘..‘:',’ = N(l\l+2)LN

We derive from the double commutator

[Xa,[qulN]]=Nw(N+—2)¢LN (3.81)-

a differential equation for .J:_ N using (3.4), (3.11),

(3.14), and (3.15). This equation is ’

(1+ >3 6‘)‘ 3‘1L+i(|+x‘$‘)(3+/<@‘)ZN

+NCN+2)>\21N=O

(3.82)

William Sollfrey22 has shown that, in accord with the

condition that .2; N contain the usual pion mass term

7. "A 7-
../¢_4~ C? , (3.82) has the general solution

‘2

IN = 3w»“ ,, (l+>:§z)m}n[2(N+l)Cam">\5),

HNCNQDG 1(N1—l))\ if

For rank one and rank two tensors this reduces to

all: ‘43? (l + )3 3‘)" 51

1“?~ "
Jl‘2’='— ’%§2 C I +- /A\ i5 ) ‘1 Q5

where constant terms have been omitted since they have

 

no physical effect. Using Sollfrey's solution or solving

(3.82) by series as Weinberg actually did, we obtain

the useful solution

IN = “/giiéz +/_¢‘fN(N+2)+2]>\2(-3I)1

'2 (O (3.83)

+...
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Weinberg chose as his hypothesis that the symmetry

breaking term transforms as a rank one SU(2)(:) SU(2)

tensor, that is

I _ 2 “‘2 ‘l '41.

5.13. - -' l +( @ J ®

where, as usual, )\ 32.3. 05:; . This will be referred

to as Weinberg'sz3 model.

We see that the minimal coupling hypothesis that

7. A“.

15.3. = 5/62: ®

and Schwinger's hypothesis __A

29*.qugq.'= [:1 €¥43 //J:z ‘5

‘3 °IV

are dependent on the definition of . implicit in our

1

choice of 6- C 6 ) . Weinberg justifiably objects to

these hypotheses for that reason. His own hypothesis

as incorporated in (3.81) has no reference to the form

of [( é . However, in order to derive the differen-

tial equation form of (3.81) from which .1: N is actually

-*1

obtained, we do have to employ a Specific form of fc @ ),

so it appears that the dependence of Weinberg's model

on the definition of the pion field is merely camou-

flaged. It would seem that the only way to remedy the

ambiguity in the model is to compare the model's pre~

dictions with experiments.

To sum up the results of this section, our chiral

dynamics Lagrangian takes the form
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1= ‘Has m i ) warm—1m}

xififlvs‘fi-a}a 3- (if(33) “‘83?wk)?

3"
+ii|+(§%)13¥)€3fl} é)... ‘65 31-153

(3.85)

The term 15.3. breaks the chiral symmetry of the rest

of the Lagrangian, and the exact form of IS. B.depends

on specific assumptions about the model. Specific

models we'll consider are these:

1. Minimal Coupling Model

—-‘1

15.3. =-/f_§ @

2. Schwinger's Model

1.5.5. = ‘/%1(%)-1(%X)H2h[{+(2%)( 3)?)

' ~33+2w3>c3~m <3“)
3. Weinberg's Model

1... " ‘31 1+(3)‘(3a)‘$‘]"%‘

“3‘ 3<-?a>‘3(S'3‘)C<‘5““..)..

4. Tensor Rank Two Model

-1.-1

1.... 49-31143? 3:) 3“] 3

—; ..3- 2 ‘1 _‘1L 1

3‘ ‘3 + <33) <31) (.3 W
S. Tensor Rank Three Model

15.3, 3 613‘:

:_/%‘@+_l_ fifl37)1(¢11)4--

[<3

‘3 .-



SECTION IV

‘PION PRODUCTION PROCESS

The process

Tr+N‘——)TT*TT+N (4.1)

has long been of interest to theorists. The first

papers which attempted to calculate theoretical cross

sections for it appeared in the mid-fifties. These

first calculations were based on the static model with

pseudovector coupling and yielded total cross sections

an order of magnitude too small.24 This model was later

modified by consideration of final state interactions25

26 The model in this formand pi-pi scattering effects.

was fairly successful, but was still unable to explain

final state mass distributions. Another approach was

the (3 exchange model.27 This model proved inadequate

below 1 BeV because it favored the wrong isospin channel

and forbade N* production. More recently, Olsson and

Yodh obtained a very good fit to total and differential

cross sections employing a phenomenological model with

seven free parameters.28

The process (4.1) is of interest in the study of

chiral dynamics because it may be used to discriminate

among the various Lagrangians discussed in the previous

section. To see why this is true, consider the general

51



52

form of the symmetry breaking term,

1 = __ ‘1 $1. 00 - m )QM( )2m( -" )m

5.3. A}? ié‘C J)‘ (2% a @ 71m

where $71,“; is a set of model dependent parameters.

In order to make an experimental determination of ‘y1fh ,

we need to look at processes involving vertices at which

2n pion lines intersect. In particular, if we want ‘W1. ,

we need a process with Feynman diagrams containing

*

the vertex of Figure 4.

Figure 4. Vertex dependent on.'71‘.

The obvious candidate for such a process would be simply

pi-pi scattering which at low energies would be domin—

ated by the diagram

.3? CH3.

3. ,7’

'9)“ 1;" ,,

It is easy to calculate low energy parameters for pi-pi

 

*Dashed lines are used for pions, solid lines for nucleons.
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scattering using the chiral dynamics,* but unfortu—

nately it is difficult to perform the experiments

necessary for comparison.

Another diagram containing the four pion vertex

in question may be formed by simply attaching a nucleon

line to Figure 4. The resultant diagram is

66; Cal—7

- ~-”>' "?‘~.‘ Caz

"A

0

Q

 > A 3~

P" m.

Figure 5. Diagram contributing to process (4.1)

which contributes to the pion production process (4.1).

As luck would have it, this diagram usually dominates

the process at low energies and is very sensitive to

the choice of h, , in this region.

The utility of chiral dynamics models in pion

production processes was first noted by Olsson and

Turner.29 Their calculation included, in addition to

the diagram of Figure 5, the contact term

3' 7.4)\ Q I

‘. ,? 7-

.) I, 1’ a.

\ v

Q ' I

) .~1’ ) fi .

p. m-

*See appendix E for a calculation of s-wave scattering

lengths.
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Other terms generated by the Lagrangian contained one

or more nucleon pole terms, and were therefore neglected

as being relatively small. Actual cross sections were

calculated by approximating all final state momenta to

be zero in the transition amplitude m so that the

cross section was essentially I 771‘ 2times phase Space.

This approximation circumvented a laborious integration

over final state phase space, as well as greatly simpli-

fying spin averaging m , but it restricted the calcu-

lation to total cross sections very near threshold which

made conclusions drawn from the calculation very

dependent on the accuracy of a handful of low energy

experimental data. Olsson and Turner concluded from

their calculation that, of the two, Weinberg's model

agreed with the data better than Schwinger's model.

The procedure employed by Olsson and Turner may

be objected to on two main grounds. First of all,

even at the lowest energies for which experimental cross

sections exist (incident pion lab energy T-fl‘ = 210 MeV

versus threshold energy of about 180 MeV), approximating

the final state momenta to be zero causes an error of

20% or so, and the discrepancy could only increase if

the method were applied to higher energies. Secondly,

it is not really clear that we should restrict our

attention to cross sections very near threshold. We

have built into our mouel isospin invariance. We know

that isospin symmetry is not quite good since proton
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and neutron masses differ by about 0.1% and there is

about 3% difference in the masses of the charged and neutral

pions. These small differences made no difference in

high energy calculations, but near threshold small

differences in final state masses may cause enormous

differences in the magnitude of the phase space integral

since the rest masses of the particles take up a large

fraction of the energy available. In fact, at threshold

the error becomes infinite! Even at -r}T = 210 MeV,

the choice of masses within the pion multiplet can cause

a difference of about 85% in the size of the phase space

integral. So the problem is, we claimed when we made

isospin a good quantum number that within isomultiplets

such as the pions or nucleons, all masses are equal for

all practical purposes. however, in the kinematic

region we are considering, phase space integrals, and

therefore cross sections, are strongly dependent on just

which of the masses we choose from the supposedly degenerate

isomultiplets. hence, the breaking of isospin symmetry

which we neglected when forming our models turns out to

have an important effect. Fortunately, the effect of

this symmetry breaking on phase space diminishes rapidly

with increasing energy. At ‘17" = 300 Mev, for example,

phase space only varies about 20% with different choices

of mass within isomultiplets, and this is within the

experimental errors in this energy region. But it is

clear that it is dangerous to make any judgments on the
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relative merits of different models without examining

a range of energies above threshold.

The work done for this thesis is an attempt to make

a more accurate determination of cross sections predicted

by chiral dynamics Lagrangians under consideration by

retaining the momentum dependence of the final state within

the amplitude and performing the necessary integrations

by Monte Carlo methods. Because we wished to do this

calculation for energies above threshold, it was no longer

possible to neglect diagrams with nucleon poles, so all

diagrams generated by the Lagrangians were retained

in forming the transition amplitude. It was hoped that

by comparing theoretical and experimental total cross

sections over a range of energies we could get an idea

which of the competing models was most satisfactory,

and incidentally find out at what energies the exact form

of the symmetry breaking assumptions are important.

Differential cross sections were also calculated in order

to gain further insight into the structure of the invariant

amplitudes obtained from the models.



SECTION V

FEYNMAN RULES FOR CHIRAL DYNAMICS

The chiral dynamics algorithm tells us to apply the

usual Wick-Dyson reduction methods to the chiral dynamics

Lagrangian and retain only tree diagrams of lowest order

in the coupling constant 3} . But in actual practice

it is best to use the Wick-Dyson reduction methods only

enough to be able to deduce the Feynman rules and then to

construct transition amplitudes directly from the diagrams?

The procedure is to draw all the tree diagrams for the

process of interest and associate with the nth graph

an amplitudem( m) which is the product of factors

associated with the various topological elements of the

graph. The final invariant amplitude m is just the

711<(h)' . .

sum of all these 5. The folloWing rules speCify

factors which are independent of the form of the inter"

action Lagrangian:

1. For each internal nucleon line (called a nucleon

prOpagator) of momentum [Q , there is a factor

if 1 ... i'( p: + NH

ld‘m*é£ P1_M1+£€*

where ‘1, is a 2 x 2 unit matrix in the space of the

 

*For a review of the reduction methods of quantum field

theory, see appendix B.

57
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1:' matrices, and G: is a small number which is allowed

to vanish after all integrations over internal momenta

are completed.*

2. For each internal pion line (pion propagator)

of momentum Cb, there is a factor

a. gal.-

CBF‘ ~/(4,2 + (a

where 83.1, is a Kronecker delta connecting isospin indices

at the vertices joined by the internal pion line and

is used as with the internal nucleon line.

3. Define two column matrices

7% =(c'a) > 7L3 ‘4?)-
These matrices operate in the space of the ’27’ matrices

and serve to keep track of nucleon isospin. The rule

is that for an external nucleon line of momentum f3 ,

spin A1 , and isospin z-component T3: Ml“, there is a

spinor and isospin factor as follows:

incoming nucleon: X W U~ ( P: 0. )

outgoing nucleon: XL J. C P) 4)

incoming anti-nucleon: 7S .. U! (f C P: ’1)

T _.

outgoing anti-nucleon: “our U'( P) 0)

Here, “CF; 11) andU‘CP , 0.) are particle and anti-

particle spinors, respectively, and QCI’J J O ) and

‘7‘ < P1 O. > are their conjugates.

4. Define three unit vectors in isospin space by

 

*Because there will be no such integrations in tree diagrams,

we can omit this é, altogether in chiral dynamics cal—

culations.
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These vectors keep track of the pion isospin. The rule

is that for an external pion line with T2 = t and isospin

index a. , there is a factor as follows:

A

incoming pion: C Qt)“

A A,‘

outgoing pion: C @-t )0. 3 C @t q

The following rules for vertices apply only to the

F)

Lagrangian (3.85). Let us adopt the notation that :2:

means to sum over all permutations of unrepeated indices

in whatever expression follows it, e.g.

Eil‘:é§au£r =: g’cJ? +- Elétg )

2 P6.“ (3); = ém($ )c. +€WC§)Q,

For a pion line of momentum % , define Q to be—C‘. if

the line enters a vertexfi'cbif the line leaves a vertex.

If a pion line is labelled by isospin index Cl , its

momentum is designated atlg. These capital indices

go in tandem with small indices when they stand to the

P

right of :2: , e.g.

f:

E Swag-B ‘-= AMT: 4%th

With this notation in mind, the factors for the three

kinds of vertices generated by chiral dynamics Lagrangians

are as follows: 1
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These somewhat forbidding general forms become much

simpler for special cases. For out purposes we shall

actuall only need four vertices, and they are

 

I Q . _ ‘.4 3 var-Tex. i% 2"qu <16,

.16: var-Tex (‘33): 3%) 2:. 5m (4rd”)

::62;‘3'; var-Tex. 2(%)3 (1)2

'5‘5...’ ..[Ew 2'ch503.3 +5M’Z‘Z-Ys a,“

361; ”C2. V54]

. I/C 0F! var-Tex 9&(.%) (1y);

..g‘.> ’:::"‘) “[SGJI'SCJ()1 fl:+ )
d \‘. I 7332‘ $.91

ecu +5“ 5614(71 fl: +313... 61.42.)

{-80.095/ (72, /u +3133: $91)}

The first of these is just the familiar vertex of ps(pv)

coupling. The latter three vertices are unique to the

chiral dynamics theory, and the last vertex contains

the model dependent parameter n. . The values of Th.

for the different models we'll consider are given in the

table below.
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MODEL Tl ‘

Minimal Coupling O

Schwinger Model 1/2

Weinberg Model (Tensor Rank 1) l

Tensor Rank 2 2

Tensor Rank 3 17/5

As an example of now to use the rules enumerated

above, let's evaluate the amplitude corresponding to

Figure 5. Figure 5 is redrawn in Figure 6 with each

nucleon line labeled by its four momentum, each pion

line labeled by its four momentum and isospin index,

and the factors given by the Feynman rules encircled

next to the appropriate partsof the graph.

_.-- _.——..—.——-——-—...n h
.m- -.....— _._.--..-_.

   

+§af36cfl (Vb/u.) +c‘.,h a“ 3.1)

+SOJ36-{CY‘h/IA +q..~1.z 63... 52)]

 

 

 

Figure 6. Diagram of Figure 5 with factors given by

Feynman rules for chiral dynamics encircled next to ap-

propriate topological parts.
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To form the invariant amplitude 77? for this diagram,

multiply the circled factors, reading along the nucleon

line to keep matrix multiplications in the right order.

The result is

W} -: ix; &(P£241)}{2'?i :Z‘iYslfl}iAX;u(p.}a;)3

xi fissiiwmfimmg can

"i ‘16 (2%)71 3i): [§¢$a£(n,/m‘+cl_,h

‘ct,-<7_,)+$M 55d C71,/u‘+<},k—<3.'cpl

+ 8...; 26. (m/A‘a-oharag 1013

Using various kinematic identities and Dirac algebra,

this may be simplified still further. For a specific

charge channel use the appropriate forms of 7‘6 , XL' ,

a A A

fig, ¢' , and $1 and the correct isotopic factors result

from a simple matrix multiplication.

After the total‘??? is obtained for a given process

by summing the 771("‘)'s for all contributing diagrams,

cross sections are obtained by integrating over all un—

observed final state kinematic variables in the formula



 

 

Jo = ‘ (..L ) ...L. ) I777?
[55-33] 2“,... 20-292. ...

x (1935‘. Jakm 3,,(2TT) 5q(p.+p1~:h;)s

2a.). ( 2:1)3 2w,“ ('21?) ..

 

(5.1)

 

AJ _-- ...

where (4)“: \lk‘d- ”“1 , and U‘.‘ and U'iare velocities

of the incident particles. The incident particles have

four momenta f). and P1 and the n final state particles

have four momenta h, , ’12, k3, ...,l‘m. lmnts the

f

spin average of 77) )7}. The factor 5 is obtained

from S a T'l' _L

C ”1;!

where/VI; is the number of identical final state particles

 

of the ith type.* The factor 5 is only included in

calculations of total cross sections, not differential

cross sections. For fermions of mass r'r'n , the factors

--L which appear in (f.l) are replaced by C2? .

29.: E.

 

’By identical particles we mean particles and experimentalist

cannot distinguish. Thus aTT“ and a T!" are not identical

particles even though they are members of the same iso-

multiplet.



SECTION VI

MATRIX ELEMENTS FOR TT + N —5 1T + ”IT + N

Let us now restrict our discussion to the pion

production process

I

“(q-C) +N<PC) a Trl(fil)+fi1(?1)+ N(P{)(61)

The quantities in parenthesis are the four momenta of

the particles. Letting (.405) '5 “C F‘.) 0;) and

“(f)5 U- C ’0’. , A 5.) , the invariant amplitude

for (6.1) may be written in the form

777 = c2<i)(W1-Xq..+‘f¢‘_1 +Zd‘.z¢‘,,)‘(su(£2)).

(6.

Here W, X , Y , and Z are functions of the

kinematics. Other forms such as (1(f) fl—C V5 (A (C):

a(;)q,.-q_.¢p vs a“)! or mpc [Ag-[Ades ace)

which may appear in the course of applying the Feynman

rules to the diagrams may always be brought into the form

(6.2) by using the identities of Dirac algebra.*

Before evaluating cross sections, we must spin

average IWI1=MTW . If we write

’01-: (RC/J r' on“)

where of course P: ( W? X4: *Tfi-‘z +Zfizfi‘7Y5:

and define P: v0 I"? Yo

*See Drell and Bjorken, Relativistic Quantum Mechanics,

appendix A.

, the usual methods yield
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for (m l1 , the Spin average of 'Ml?

T75? i: :2} Z’m'm é We wear—“Mas?
Now the usefulness of reducing 771 to the form (6.2)

becomes clear, because expressions of the form

Trance ¢.¢.1--- ¢~m

become very difficult to evaluate for large n. If we

apply our spin averaging theorem to (6.2), we arrive at

I’an‘= Thai lleprg‘pé.)-M1]p 1

+ I Xlzf2CP€°&'XPI~9~I)‘W1CP‘Fi)"; ”.1

+ I Y ‘21. 2(p6fi1)(p’71)‘/¢:
(p6pfl‘M-L [‘1 1

. I 21‘ I ac...-axp,o,.)(o,.q.)-2,:(pgq.xp,?.\

Q 2M1CPc°fil) 91/3,.) ‘flQCPdplfl‘fl‘q
m I

+2MRnM/*X [Cpécfl ‘(pf$u)]

+‘2F1Ra W*Y[(p.qa\‘(r15.qnfl

+1Rs. V‘Zf ((2.: p5)C%.3.1) ‘C p.’qz7(pi cpl

+(p.°cb..)(pfic’1\‘ M1 (:r‘cp”)

+1312 X*Y[( .: 2N q.)"(r2¢.' (Cinch

+chog,)(gtqql "' Mféc}.c’_1)1

+2NR1. X*Z[2CPCQA\C%.Q1)‘M
‘I(fl/.93..)

"79.1 ((349431

+QHRuY*Z[ M‘(p..'q.,) + M1 (Pffi-|\

-2(Pf6}1)(°}'3‘1)]3

 

(6.3)
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At threshold, this rather involved expression takes

the simple form ‘1

I lime”... = ( E '5 ‘ fl) lw+ X/‘4+\r/“ *2/03l :

11"]

where of course W , X , Y , and Z are calculated

at threshold. It is easy to see that at threshold [7"7'1‘

is real and positive, as it must be.

Chiral dynamics Lagrangians generate five general

types of tree diagrams for the process (6.1). These

are shown in Figure 7.
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Figure 7. The five diagrams contributing to the

process (6.1)

For different labeling of the pion lines, these five

general types of diagrams yield altogether fourteen

different Feynman graphs. These graphs along with the

amplitudes they generate upon application of the

Feynman rules of the previous section are tabulated

on pp. 69-74. For specific charge channels, the isospin
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factors cause about half these diagrams to vanish

identically. Note that if we include only diagrams

(e1) through (e6), we obtain the results of pseudo—

vector coupling theory.
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SECTION VII

NUMERICAL CALCULATIONS

 

- . . I'M!“
The preVious section showed how to obtain

for processes of the form

fi(fi,£)+N(r2£) ‘9 IT. (“I”) + fi1tq23+ N (pf)

(6.1)
 

All we have to do now is substitute IMF in (5.1) and

integrate over the apprOpriate quantities. For the

process (6.1), we note that in center of mass

-‘ " - “A -‘ ° —‘. _ _'—‘.
= fi , U"; = %: , and '0‘ - 7,; and

so _. ' dfi = M ,where E’- E.'+<..).;

"J7“‘J3' EL Iagil

is total center of mass energy. Using this and the

 

appropriate normalization factors for initial and final

nucleons, (5.1) becomes

 

. dick. 7173 1:7?"
“SC-L--,w :3002‘916.)$ (db..+-°‘.1 +13%)

(7.1)

Equation (7.1) is what we must integrate. However, this

integration is no trivial matter, mainly because of the

number of variables to be integrated over. Even after the

75
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delta function is eliminated there still remain five

variables. Analytic forms might be possible if the

quantity in curly brackets took on a simple form.

But a glance at the amplitudes pp. 69-74 should be

adequate to crush any hopes that this might be the

case for chiral dynamics. 80 it seems clear that we

must resort to numerical methods. However, even the

usual numerical methods like Simpson's rule or Weddle's

rule fail us because of the number of variables to

integrate over. Ordinary quadratures become impractical

for more than two independent variables. So we'll have

to employ a method often used for numerical integration

over large numbers of variables, the Monte Carlo method.

The basic idea of Monte Carlo quadrature methods

is that instead of making a systematic sampling of the

integrand over a grid of the independent variables, a

random sample over the grid of independent variables is

taken and statistical criteria are used to decide when

the sample is large enough for the accuracy desired.

The difference between the two methods is rather like

the differenCe between an election and a Gallup poll.

The drawback of the Monte Carlo method is that it severely

limits accuracy, and must be used only on slowly varying

functions. Its great advantage is that bad as it is, it

doesn't get worse as the number of independent variables

increases.
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Let us define a covariant phase space for three

particles with masses /L&, , ‘/042 , and P1 and total

center of mass energy E , by

fisc'E:3.A&I)/°L1’ P1)

={{{ 09,: "£3?“ O‘gfI‘ME'wrwa‘E-p
83(§'*€‘+7;’)

.__ _. - _‘ .1

wherew.= 43+M‘1'w‘13V/j1-‘i'T/41’ and E}.— J Pia-M .

We can prove that

6(a) = ms) 34 Law”)...

where CUE.) is the average of the quantity

i _L. ..In: I’mr‘ ‘3 I

8(‘210f E Iii-(I

over phase space. It turns out that we can reduce

calculation of f3( ES/A.)/(A.1 , M ) to a

 
 

(7.3)

Simpson's rule quadrature, and thus we can obtain values

of the phase space integral with great accuracy. It is

in calculation of a( E) that the Monte Carlo approach

becomes necessary. The method used employs subroutines

of a computer program called FAKE which was developed for

use by high energy experimentalists. FAKE generates

random events uniformly distributed in covariant phase

space, i.e. if we consider n particles of masse54~?1, ,

m2, ..., mm in the center of mass with total mass

energy E , FAKE will generate random sets of vectors

-—I _—I

ll, , k2, ..., Tim for which

*See appendix D for a proof of (7.2) and a more thorough

discussion of several points mentioned in this section,

expecially the Monte Carlo technique.
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ZK;=O 2:.J7:?+m.-=E ~

To( evaluate a(E),we have FAKE generate a three

particle state i G}. , (31.1, Pl. 3 and a two particle

state fag) '3‘} . These states are generated

independently of one another and are oriented randomly

with respect to one another. The four—momenta]: l’

C}. , a: , and a" are now substituted into

(7.3). This process is repeated many times and the

resultant values for (7.3) averaged until statistical

criteria tell us that our average is sufficiently close

to the true average. This resultant average is desig-

nated 0t( E ) ,

A similar technique is used to obtain differential

cross sections. Let's orient a coordinate system with

its z-axis parallel to K where 7': is one of the vectors

a: , i7. , or F5."- . Let the polar and aximuthal angles

A

of fid be 9 and ¢ in this coordinate system. We can

 

prove that

<96(E) ._. C((E,86.) P(£3.44 ,M1,M\

09.0. “an. ‘7". (7.4)

wherea(: ,6: 60) is the average of (7.3) over

that part of phase space where 6? is constrained to be

*

equal to can . Program FAKE is used as above, but with

the random events restricted to that region of covariant

 

*See appendix D for proof.
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phase space where

jgf‘iaéc :: C471 €90 .

I 73H Eiffel

Doubtless, ways of applying the Monte Carlo method

to (7.1) exist besides application of (7.2) and (7.3).

But aside from practical considerations, formulae (7.2)

and (7.3) have the advantage of separating the calculation

of the phase space PS ( E 1 Ma >M1. , M) and the model

dependent factor C“ E ) or CH E ) 9) . As we've

discussed, the phase space factor is very sensitive to

the exact choices of fl. , M1 , and M , so in its

calculation we use eXperimental values of the three

masses involved. The factors 0((5) and C(( E ) 6)

are much less sensitive to the mass values used, and so,

in the spirit of the isospin symmetry built in our

Lagrangians, we use some average mass for the pion mass

l/Lg and nucleon mass rv1 . To be exact, we take

1‘A~:"4A-£‘+/‘4¢‘r/¢‘2 ’ 'v1 : [V16 i- P1LE

3 ’2.

though this choice is pretty arbitrary. We see that

 

we've taken the iSOSpin symmetry breaking into account

solely in the phase integral, but it is in this integral

where it's most important.

In obtaining the results of the next section Monte

Carlo errors were kept equal to or less than 4%. This

means that there is a 68% probability that they are within

8% of the right answer, and a 99.95% probability they are
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within 12% of the right answer. The Monte Carlo errors

are always smaller than the experimental errors fOr the

cross sections, and a great deal smaller than the

experimental errors below ‘TET = 300 MeV or so, a region

of special interest.



SECTION VIII

RESULTS

Theoretical calculations of total and differential

cross sections were carried out using the five different

chiral dynamics models listed on page 50. Cross sections

were calculated with an error of 4% or less. The results

were compared with the data compilation of Olsson and

Yodh.30 Experimental points and theoretical curves are

shown in Figures 8-15.

Data for total cross sections was available for

five different charge channels which are

n‘p —'—'9Tl'°TT‘p

TT" P ‘——-%> TT*TT‘n

IT‘p———5 TT°TT°h

TT*'r->—7"* TT*TT°P

11‘“ p-—-‘9 Trl‘rr*h.

Certain features are common to the predictions for all

these processes. In each case we have generally good

agreement between chiral dynamics predictions and

experimental data for energies below 300 MeV. Above this

region a discrepancy develops between theory and exper-

iment, but around 900 MeV the gap between the two again

81
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narrows. The disagreement above 300 MeV is probably due

to the effects of resonances which the models cannot

take into account. The agreement around 900 MeV must

be considered a coincidence which stems from the fact

that the theoretical model gives cross sections which

increase without bound, whereas the experimental cross

section begins to decrease around 1 BeV. Since the

theoretical cross sections are initially smaller, the

two curves are bound to intersect. But in the region

below 300 MeV, Chang has shown that resonances make only

small contributions to the total amplitude,31 so it is

in this energy region where we would expect the chiral

dynamics models to be successful. It is interesting to

note that though the chiral dynamics models we're dealing

with are essentially chiral symmetric versions of the

ps(pv) model, the ps(pv) model gives cross sections

which are vastly different from the chiral dynamics pre-

dictions and the experimental data. This discrepancy

is at its worst in the energy region where we expect the

greatest validity of the chiral dynamics approach.

In the case of the processes 7T- P -—§ "on. P

and W1. P ___§n-+ "0 P we see that all five chiral

dynamics models give good fits to the data, even above

the low energy region, whereas the ps(pv) model is much

too small. This gives support to the chiral dynamics

approach, but is of no help in discriminating among the

models. For the process "I P ---5 no ”O h no
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data exists below 374 MeV, so it would be futile to try

to draw any conclusions from it.

Two experimental cross sections exist for the

process IT" P -9 1T+ [1" h at moderately low energies

and these are tabulated in Table l. The experimental

cross section at 300 MeV is rather poorly determined.

None of the models are within the error bars, but the

tensor rank 3 model and--surprisingly--the ps(pv) model

come closest with the tensor rank 2 model somewhat farther

away. But the models of Weinberg and Schwinger and the

minimal coupling model disagree badly with the data.

The data at 357 MeV is somewhat above the region where

we expect goOd results from chiral dynamics, but the

data here seems to confirm the above conclusions about

the different models.

A great deal of total cross section data exists

for the process TI" p—HH IT" 71 , much of it at low

energies. Some of the better determined experimental

points are tabulated in Table 2, along with the corre-

Sponding theoretical predictions. None of the models

fits the cross sections at 210 MeV or 222 MeV, although

Weinberg's model and the tensor rank 2 model come close.

From 233 MeV to 290 MeV, however, the tensor rank 2

model fits the data quite well. Weinberg's model is

consistently too small in this region, and the tensor

rank 3 model is generally too large. The remaining

two chiral dynamics models, Schwinger's model and the
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minimal coupling model, are much too small throughout

this energy region, and the ps(pv) model is completely

negligible.

What little data there is for differential cross

sections exists in the form of histograms of the angular

distribution of the various final state particles.

These histograms are exhibited along with the theoretical

predictions in Figures 13 through 15. Unfortunately,

statistical fluctuations in the histograms sometimes

make it difficult to determine the angular dependency

clearly. The eXperimental ordinate which was number of

events has been converted to microbarns per ste~

radian for easy comparison of theoretical and exper-

imental numbers.

Differential cross sections have been measured

for TI‘P —-)Tl° n“ P at 450 MeV. This energy is rather

high, but the angular dependence of the theoretical

predictions is at least plausible. At 357 MeV there is

differential cross section data for IT’P ‘-’ WIIT" V1

The experimental data exhibits unmistakable angular

dependencies for this process which are not matched

very well by any of the chiral dynamics models, though

the ps(pv) model gives a fairly good fit. But 357 MeV

is still a bit above the region where we can expect.

chiral dynamics models to be valid, so we should refrain

from making any judgments on the basis of these results.
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Once again it appears we shall have to depend on

data for the process "'P -—>IT* “I n , for which

experimental differential cross sections have been mea-

sured at 290 MeV. The fact that the experimental total

cross section data leaps from 0.28 i 0.09 millibarns

at 288 MeV to 0.61 i 0.13 millibarns at 290 MeV, indi*

cates that the experimental situation is in some doubt,

so we would probably be well advised to concentrate

mainly on the angular dependence of the cross sections,

experimental and theoretical, rather than their actual

magnitudes. Comparing theory and experiment for

£3 /JIL11-+ , we see that just about any of the

chiral dynamics models exhibit the right angular depen-

dence. In the case of 46/411 11'“ , none of the

chiral dynamics models predict the large backward

scattering, but in general they exhibit the prOper

dependence for positive values of “I 911" . But it

is for the cross section €96 /J-n-n that the most

unmistakable angular dependence exists, and it is here

that chiral dynamics has its most clearcut failure.

While the experimental data shows strong forward peaking,

the chiral dynamics models predict backward peaking, or

at best, isotropy. The reason for this prediction is

clear upon examination of the Feynman diagram below

which makes the dominant contribution to the invariant

amplitude.
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Conservation of momentum at the vertex gives [—36+‘£ 3' F& .

For low energies the exchanged pion will carry off only

small momentum so that fic CY F?“ 8. By definition,

(m 9n 2 5:1 ' E“; f: 31:45.°E_‘§'

liallfifl liallfi‘d

But in center of mass, at...“ =‘fi; and (:6), 5n ’3! -- 1 1

hence this diagram will favor negative values of 601 8h
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SECTION IX

CONCLUSIONS

It is difficult to know what to say about the

various chiral dynamics models or the chiral dynamics

method in general on the basis of the pion production

predictions discussed in section VIII. Total cross

section data for different charge channels does not

unequivocally favor any of the models, and the diff-

erential cross section data seems to damn them all.

If anything is clear, though, it is that the

evidence Olsson and Turner found for Weinberg's model

is not convincing on closer examination. While they

were correct in asserting that Weinberg's model works

better than Schwinger's model in reproducing low

energy total cross sections for TI-P"%TI+TI‘ h I

 

more careful calculations show that Weinberg's model is

not much better than the tensor rank 2 model at the

lowest energies, and is inferior to it throughout a range

of higher energies. Because of this and because of the

relatively good agreement the tensor rank 2 model gives

‘-

for total cross sections of the process IT+P "5 77* IT “I

0

not to mention the processes IT‘- P-‘DIT*TT P and

TT‘P—D IT°TT" P where all the models give good results,

97
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the tensor rank two model appears to be the single model

giving the best all round description of total cross

sections.

But though the chiral dynamics models seem fairly

adequate to eXplain total cross sections, they are unable

to account for differential cross sections which are more

dependent on the detailed form of the invariant amplitude. E

This suggests that the models we've used can only be

applied safely near threshold, where the small final

state momenta make the exact structure of the invariant

 
amplitude unimportant. This is a severe limitation.

The obvious first step in attempting to make the

model more realistic above threshold would be the in-

clusion of resonances, especially the N* resonance which

is known to play an important part in the pion production

process. Another possibility would be the inclusion of

final state interactions. Only if these things suCceeded

in improving differential cross sections at low energies

would it be reasonable to extend the calculation to

higher energies.

Finally, we might hope for more low energy data to

help determine the validity of the conclusions drawn

above.
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APPENDIX A

GOLDBERGER TREIMAN RELATION

In investigations of the symmetry groups of the

strong interaction, the usual goal has been to find

unbroken symmetries. In fact, we have always had to

settle for symmetries which are only approximate.

But such broken symmetries may be just as useful as

unbroken symmetries if one understands why they are

broken. For chiral SU(2)® SU(2) , information about'

the symmetry breaking comes from the PCAC hypothesis.

To understand the raison d'etre of this hypothesis and
 

its limitations, it is necessary to understand how it

is used in derivation of the Goldberger-Treiman relation.

The PCAC hypothesis may be written

9°, 9-5408) ‘2 C/btq @Cm)

where (l. is a proportionality constant. The technique

(21.1)

used in deriving the Goldberger-Treiman relation is to

take the matrix element of (A.l) between nucleon states

to evaluatEI C: , and then between a one pion state and

a vacuum state to relate <:; to the pion decay amplitude.

First take the matrix element of the "plus" com~

ponent of (A.l) between a neutron and a proton state:
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<PCFF)I;‘Y§‘5‘I’ ' 6+ I ”CF... ) >

=<P(pp)l 3"(35‘3.... 9‘1’IIncpnp

‘<PCPP”C/"1 <3¢+ In (Pry)?

 

(A.2)

The matrix element of the left hand side becomes, taking

into account the form factors FA<fif) and FF (6,?)

 

 

<P(P'F)la“< 9;: +4. (51:)IHCFVI)>

IFS:

= {Ez‘PnIa(pI-PI[Y«\(5F;(Q)+q.qup(c,,111¢c(fln)

(1103 VT 1

 

= 2M[ Eco?) +3.1FlgCog‘I] acrppaw. 6.92...)

C1rr)3 VT

where ark? PFT- P: and we've used the identity

¢“(P)=MU.CP). Now take the limit as fi.—'5 O to

obtain

4go<PWm9é3 4.. 9;?) I n c,...>>

V3:

=2I‘1 ECO) CLCpPIC'Ysucf-IAI.

V2.

But FA(O)= g4: , so finally

(I) (1.)

qr:o<P(PPII3q(95¢: ~I-<- 954”th)>

=. 2MC9‘A/1V)“CPP) 9 YIS “(PT)-

CZTT)3 \l-i

 

 

(21.3)
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Now evaluate the matrix element of the pion field.

If we define

“9"...ch a (CI flu.) 313’ch

then

<p<pp)IC/X‘ 6.-Z5"In<p.I>

 

= SAi‘: <. PCP?” 3+' @317 ‘hCP-n)>

M‘-q.‘

= EA fiflKNNn-(i) (ICFPNIYSCLCFA)

M1”? (20?
‘2

where KNNF (q, )is the form factor of the pion-

nucleon vertex. Again take the limit of <7. “'60,

and obtain
d

#530 <p<pP)Ic/¢A‘ I3.- <13 Imp.»

3 H CfiKNnna» (TI-(r39) 9V5 “(POI

(22")3

Now KNNIT (0”1) is normalized such that KNNDCJIP l,

but we assume KNNI‘I‘ (O) 94’ KNNW (M13 and so

4:20 <PCr3-9II C/IA:1 (BIN a In (find)

2: EC? QCFPM Y5 (4(an

(Zn-)3

(A.4)
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Using (A.3) and (A.4) in (A.2),

:2 P4 IIC}/\I<jlvr) CZ-C}afa) C; V15 C4.< f3r~3

(Zn)? VE—

'-'- \/_i C? CCCFIP) C \G—ufl’qn)

(211)

from which we obtain

C=£1 ,

2 3‘5
and (A.l) becomes

or “‘
—_¢

;)_ sgngxkfl) : !:1 fl~‘/AJ;1 g5 ('7‘)‘

3.2—; (A.5)

Now take the matrix element of the "minus" com-

ponent of (A.5) between a one pion state and a vacuum

state.

<IQI§SoV é—ITTCG}.I>

= <I a°’(9,‘5”., ~¢9‘;‘.Z)Iw<cp7

.. V? i...
= 2% 2€M1<I@-' @IWCfiI) (A6)

the pion decay amplitude F}? (Gil) I»!

<1 9:- ITTCOI.)>=6'Mq‘q F11- (3:).

Vkizn”)3 1L<qur

Evaluating the left hand side of (A.6), then

< Ia"< 96.1.3 -.‘ géi’wmopv
U f V

Define

2L

2 «c °'<I( é” ~é921-3)Irr( )>CI 9 En... Cr

:- LEI/(A.2 F-TI (M13, (A.7)

‘r'l JC‘znPQw:
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ForMthe right hand side of (A. 6),

M3<I<§ {InCc},\>

1;? _I‘_’I__ a.

., WM
Substituting (A.7) and (A.8) in (A.6), we get

”/3 FHA") 2 :1 A M“ -

fichnP 223., v 3;— JIznP 2a)..tr

which reduces to
 

 

F:fi'(/LC1) z: ‘Ycig Ogigi -

3' ‘7" (A.9)

Equation (A. 9) is the Goldberger-Treiman relation. The

key assumption in its derivation is that KNNW(0‘? )

is a slowly enough varying function that

KNNR(O)2 KNNWCM1)= l. The most important thing

for our purposes is that none of the matrix elements

would be altered if instead of (A. 5) we'd used

9 991(01): M 513/“#1 ¢CMI[I+ZQM( @060,“ ]

<7, 67v n13:

I

where the GunSIare arbitrary constants. This is true

...D —52 I»

because matrix elements of QC @ )3 m 3| , will

always vanish for the states used in the derivation.

Thus PCAC tells us what the divergence of the axial

vector current is to lowest order in the pion field, but

additional postulates must be made to determine higher

order terms.



APPENDIX B

WICK-DYSON REDUCTION TECHNIQUES

For actual calculations of scattering amplitudes,

the well-known Wick-Dyson technique is generally much

too cumbersome. It is useful, however, in approaching

an unfamiliar Lagrangian because it takes care of

symmetrizations, normalization factors, etc. quite

mechanically. Because of this and because its use is

necessary in obtaining the Feynman rules for a given

linteraction Lagrangian, the salient results of pertur-

bation theory are summarized here.

Our object is to obtain the matrix element of the

operator :5 between the initial and final states of

the system in question. To do this, we employ the

matrix expansion

82. -,...—-II
"PIWI(M.)-~%I(mm173

(8.1)

where P indicates a Dyson chronological product and «1(a)

is the interaction Hamiltonian density. The Dyson

chronological product is defined
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PfAOflDCgfij: g Acmrscg), II- mo>t70

BL?) AC“), I; N70 >0“.

The generalization of this definition for any number of

operators is obvious. It is clear from the formula

" 3%..

that if the interaction Lagrangian density contains

 

no derivatives, 4K 1' (at) may be replaced by -.Z 1: (a)

in (8.1). It is not clear that this replacement may

be made if 1]: (m) does contain derivatives, but

*

in fact it can. So we may write (B.l) as

an

fS-ztvnuo i%;:‘fzu.gucg‘*f7{. "'¢d?‘4(7Vnn

xPierm,)'°'lr(/Xn~)3.
(B.2)

If we are dealing with a theory involving fermion fields,

our formalism must use the Wick chronological product

instead of the Dyson chronological product. The Wick

product is defined by

TiAcm.)13<m.I-~‘s= GDFPfAMflIiCmJ-“S

where f: is the number of interchanges of pairs of

fermion fields necessary to change EA (0“) B («1.) . . .3

to chronological order. Since physical theories seem

to always require Hamiltonians bilinear in fermion

 

*See appendix C.
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Operators, the Wick chronological product of any

physical Hamiltonian will involve the interchange of

even numbers of fermions. So the Wick product in (B.2)

may be replaced by a 'T' product and the ES matrix

expansion takes the form

3:: £5...§¢9“0“... <9qu

n1=c» ,~1!

..Tflxcm.) . - - 1. (mm); (3.3)

The form (3.3) is useful because Of a theorem due to

Wick relating the Wick chronological product of a set

Of Operators and the normal product Of the set of oper-

ators is defined by

NiAB---L§=(-I)F§QR-~-W}

where Q R " ' \A/ are the operators AB ’ " L-

reordered so that all annihilation Operators stand to the

right of all creation Operators, and (3 is the number

of interchanges of fermion Operators. Let us further

define the contraction Of two Operators la» and E3 , by

AB = <1N<AB)I>,.

L__J

Wick's theorem may now be written

TiABCD~~WXYZ§

= NiABCD'”\A/X\\’Z! H “a , l

. Nith 0 \,/X‘{ 23. :...‘:...°r'}.:¥;?.:.

a u ofhe r double

+ Ni LBCLB ' ' ' WXY23+COH+rQC+I.On Terms

4.

(3.4)
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The contraction YCM) he (. L7) relates to a prOpagator

L——___—l

connecting the points 44‘ and if . The contraction

over boson fields is given by

¢(M)¢C'1)-CAFCm-¢7)= <9 R ,2 l _

"""'—""' ‘1 ‘2. 1. .

(2") k -/m +<.€

where a?! is the boson mass. The contraction over

fermion fields is given by

‘i’raCnO k1&0?) = -_“E.(C:1)Ya(m) =6 SFa-r C 0‘ “7)
t—; l

where for the matrix SP Catchy) , we have

SPCm-w?) Efflk fwm‘v’M

(211)" h1_/11+‘.€

Gel-{h £.&<mfl7) l

(211)” Ii -./‘I.-r (a

A being the fermion mass. Contractions over unlike

fields vanish. We may assume that the contraction Of

a derivative is the derivative of the contraction, e.g.

‘€(m)§_‘9¢1 )31§[‘€(M)QQ1)],* The various terms in

the Wick expansion 33y be placed in correspondence with

Feynman diagrams. In applying the expansion, terms with

equal time commutators are omitted, as well as terms

corresponding to unconnected diagrams.

All we lack at this point in order to have all the

equipment necessary to find < i. l % i C. > is the

second quantization of the particle fields we'll use.

 

*See appendix C.
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In our case this means the nucleon and pion fields. The

nucleon fields {’C’X) and i’CM) have the quantization

“fléé Ff: 7‘.” E? .

464,), a, ...) acp,m 7’"... .m, .,-w)(,(,., out]

(3.5)

--- 3

mssJé—sm

“[6-(F’AW)U.(F,O)2W TOMB/1"w)u‘(p,a)fl.fl]  
(3.6)

Notation for spinors, isospin factors, etc. was established

in section III. The creation and annihilation Operators

have the properties:

6'1.(P, A)w)creates a nucleon of four momentum fa ,

with spin Of z-componentSa 7" A , and

isospin of z-component—Fi '3 (41‘.

64(0) A, W) annihilates a fermion of momentum ’3 ,

with spin of z-componentS; = A , and

isospin Of z-component T}: “r.

(fl (F, 0., or) creates an anti-fermion of four momentum [’3 ,

with spin of z—component 52 = a , and

isospin Of z-component Ti ‘ (if.

CQCP) 4, W") annihilates an anti-fermion Of four momentum

f3. , with spin of 3*component 5‘ =0. ,

and isospin of z-component T2 2 Dr .

um-
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These Operators have the anti-commutators

.' .. , 3 .. _.,

i6<p,a,w‘), 6’1-(p’, 4',W)3‘§M'§w S (prp)

ioQ(P’a§w-),oef(p', o'Jw')3=§,gaf$wu/%3Cfi‘f3’)

all other anti-commutators vanishing. If we let Latin

letters designate isospin state and Greek letters spinor

components, the relevant propagator is

\fAKSCM) :17tprc‘7) z: c. 3M 31-23? (m *7).

 

...—Q

The pion field 0 (’7‘) has quantization

"" = A ‘3

9(0‘) (‘2‘:0" @tj’fifi:

{amp-c) 2%“. adopt) [W]

(8.7)

A

where the unit vectors ét are defined in section III.

The creation and annihilation Operators have the prop-

erties:

+ C ) . .
0. 0‘. {6 creates a pion Wlth four momentum C} and

isospin Of z-component 11313 t

0'. C Cr) 1:) annihilates a pion with four momentum CZ.

and isospin of z-component T3.“ C

These operators have the commutator

[q Capt) ) cfi (gat'flfiaI 83(5;-a;’)
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O u A

all other commutators vanishing. Let and .r1 be

unit vectors in isospin space. The contraction we'll

need is then

A A

9- 3<~dfi~ 3d,): a WP». AFC/7m?)

We are now equipped to find the matrix elements

 

of 5 for any nucleon—pion Lagrangian by means of a

mechanical and foolproof procedure. First insert the

interaction Lagrangian I:Cm)in the 3 matrix eXpansion

(3.3). Replace *(m),q;(.rx), andacm)by (B.5) I

through (3.7). Expand the Wick chronological product

by means Of Wick's theorem. Now sandwich the ES

Operator between a bra (fl and a ket I f. > repre-

senting final and initial states. For the process

TT‘(<:}.:)+ P(p;,aa) "5 TT*(q..3+TT“CcP-.,)+h<pha,.)

for example, (fl and I C. > are written

 

IC> = I n-(q.c..)) P<P5.1 11.37 '4' Qf(?..',“ ') 6+(F..)/1.,t)l>

(IJ ‘~‘ < W‘Cq.),U“Cq.z),h(rll.,/J.‘.H

:<la(q_,ll)aCfi.1,-l) 6CPI'J af’_i)

From this point on, just simplify the resultant expression

by use of the commutation relations of the creation and

annihilation Operators.

The matrix element St... 5 <fl S l C > is related

to the invariant amplitude 77Z by
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Sr: (2U)z_MEHCP.+P1~~Z’Z.,)m

 

 

[ I A ... |

2MP. 2dr): 2%). me

where we scatter from an initial state of two bosons

of four momenta f3. and {31,to a state Of n bosons of

four momenta k. , . - - , hm. For fermions Of mass

,1. , 5'23 is replaced by 4" . The method of

going from the amplitude to cross sections is discussed

in section VII.



APPENDIX c

DERIVATIVE COUPLINGS

Most modern books on field theory slight the tOpic

of derivative couplings, probably because they are not

renormalizable and do not fit easily in the usual ca-

nonical formalism. As an illustration of the inade-

 quacy Of the canonical formalism, let us Specialize ,

our considerations to a ps(pv) interaction Lagrangian

density

IICM) = # YCm) Y5 Yq9¢¢(m) YCrx).

1AA‘ (c.1)

Here IL is a unitless coupling constant. For simpli-

city, we've omitted the complications introduced by

iSOSpin. Now the canonical formalism tells us that the

interaction Hamiltonian density corresponding to the

above Lagrangian is Obtained from the formula

7k[;r 1' E§L§Ei£. ¢b ":Z:r

The result when this isEZpSI:ed to (C.l) is

KICm)‘: # ‘?(m)\/S V VQXm) \VCM)

/u.
(C.2)

Now the Lagrangian of (C.l) is Lorentz covariant, as it

must be, but the Hamiltonian Obtained from it and given

112
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by (C.2) is not covariant. If employed as it stands,

in Wick-Dyson reductions (C.2) will lead to formulae

for the invariant amplitude which are not, in fact,

invariant. The reason for this paradox lies in the

canonical formalism. The formalism is itself not com-

pletely covariant because it treats time and Space F

components of four vectors on different footings.

To remedy this difficulty, field theory must be

i

formulated in terms Of spacelike surfaces, as Dyson33

or Umezawa34 do. Such a procedure greatly complicates  
the formalism and will not be discussed here. But the

result Of applying this formalism to our ps(pv)

Lagrangian is to show the interaction Hamiltonian must

be written in the covariant form

7f 1(m ) = ~£ :PC’K)YSY#;?¢CO!) YCM)

‘I‘ J3: (t)1[ \PCn0Ys Vina; KVCM’)]1

(C.3)

where IVW-r is the normal to a family Of spacelike

surfaces.3s P.J. Matthews36 has shown that we can use this

Hamiltonian in perturbation theory omitting the term

dependent on My so that even for derivative couplings

we may take I)<( 1; ’- ‘ 1.! provided we also assume the

contraction of a derivative equals the derivative of a

contraction.

Matthews proved this for any process generated by

the Hamiltonian (C.3). For clarity, let's restrict our
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attention to fermion-fermion elastic scattering

F, ([2,...)1- F; (p...) “a FJHIH-Fw (Pb)

Our Hamiltonian generates three diagrams for this process

which are illustrated in Figure 16.

PC! I Pin (2.:- \ [2‘1

 
 

 

 

 

; ' r

I : I

I3€1l Fifi. fisz [3}:

F‘.‘ FI-z

Figure 16. Diagrams for elastic scattering of two

fermions in ps(pv) theory.

Taking matrix elements of the 5 matrix

<0], I S l e.

__ < F ,;5Jaw—[4. (715‘)(?(,.)Y5,,4‘f(m))1]

1- (____"2C)ffoeqrx JQ?T[(-)£)‘T’CQVsY§_____¢Cm)+(m)

“(fi)q:(u’,)Ys\/aa¢b”$3W’Qflgflfllc.)



gum.) ., J. 1 __ .

=<k|ifli y&mN[2(fi) (Y(H)Ysr/,Il(m)1]

...J. 4
2 Hand u, sot-:3) 3%?

.Nki) ‘1’(.3st*1’(m)1’<.,)\rs.\rmt’(.,)]3 Ia>.

(C.4)

 

We know how to evaluate the normal products in this

expression, but it is not clear how to evaluate the

contraction. To evaluate it, we start from the definition

agmagcgudP 39cm) ages?) I).

3?? 3‘16 30$? év’ra)

 

 

(C.5)

Let's define a function €(3)by

2(3):.E' ‘°' 3°>°

-| {“W' f}O<O.

With this function we may write a Dyson chronological

product as

HAMBG,» = [ WU ACM) so?)

I - Ecru- ) BC )AC .
+[ 2 j] ‘7 0‘)

With this identity, (C.5) becomes

3Q5Cm) 3¢C41= ago») (2294)

'arlx-r «9:79 <‘(fi am. , Euro 3
 

+£C;‘fi)[ $1) 33:33:41]) I >
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Dam) 9mg) - a. _ <li¢cna (m 81>

Drier anc-y 9. amqatzo ‘7

+£(ovf3)91____<‘[¢(0\),¢Ct7nl>

 

 

‘:Z éDrThwégafis

(C.6) fa

It was possible to bring the derivatives out in front '

of the vacuum ket because the derivative doesn't operate :

in occupation number space. Using the identities of E

Drell and Bjorken,37 f

<1E¢Cm),¢(c7)]l7= L'ACm-c?)

( ' i¢<mh¢€vfil> = A.(m~'~7)

’and (C.6) becomes

92070 egg?) :1. SzAJCrn-g)

arc-r <9ma 2 34433;;

+é_€£§;4> 31‘4““L4).

' E)l7K-r59‘1rfil

 

 

(C.7)

Using the identity

2 A F (or-(f) = ~64, (ac-v.1)i-2Cm-‘1IACm-v)

where AFCm-v) = ¢Cf70 (2561’, to eliminate '

Aflflqflfrom (C.7) , we get
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<3¢<o<> 3204). a 3‘ AFCm—g)
 

 

 

 
  

30:? €17" advaflfi

- 3i ACm-L?) aqicrx-ui)

2 a/X-r 317:3

+'EEEEQZSE3):§‘3<J""§J.+ EDiicrn-g?) SL53J:0‘.£?{3 r5

'ZBnK-r 29 L113 2) b713. 23 nflor ‘

Now we must evaluate the expression in curly brackets.

 First find the derivative of €(m " t7.) . Because

{(nr ‘9’)only depends on the time component of ’7‘“? ,

9£<“‘$) = “'0 3£CM-<1) .

BM-r 7 ado '

 

Because of the definition of ECO! -'~?),

EL§UCnK-§1) :: C)

3M0 if Mo-‘évo.

But for any positive number Q ,

(,a'fa.

f c0“. DECovg.) =ch.)-E<~c.) =2

°-°' a ”(o '

hence

3 ZC/Krtgk) .___.. 2 nga- (.10)

30:0

and

Di (“‘1 = 2 (jar 3Cr>‘on‘-/)¢o)-

a M...

(C.8)

Using (C.8) and the fact that A(’))‘ ‘AC~’)), we get
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BECm-fi)QACm-q1223qOSCMO'na)34(4‘9)

3 0(9' 3 ‘16—, 3 “jar

.-.—- 2 ...}.ch ,x[ 3A(c4,-m1]

(2' L1 29 L743 (wa=u,o

(C.9)

 

But [.£)Z§LC£1(~:5)

3 («yrs ]”‘o=‘1°

and [ SACgf-mq z: -- $3CC;--va“\

3‘10 «o‘va

as may be shown using the explicit expression

A(})=~c'5 093k (L‘W) “£61241

C21T§3120Jng

=ojfb=l)1,3 5

 

So in general,

3:30.31.) 2 -3mos3ca‘7‘v‘i

3 (qr:

and combining (C.8) and (C.9) .

aiCM-?)3A(m-1$)=’2<7.yo €130 3*(fX‘v).

3 ’7“? a ‘73 (c.10)

Likewise

SiCM‘j19aCmy)—; Qaaro (“7.903% (“‘(7).
r

3 “if? 30w (c.11)

Finally, using (C.8),

4cm “1) 9" 2: (My) g .17@°A(m«1)3 $6,. “(3.1.

E§CKur£9£1w3 - 29 f7(%’
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But in general

£LC’1b3
£§§%’Sf

ox-cz)
:: “:S<37€

-c;) :ééééfifi)

and so

ACm- )313(““1): @oSC o'VKJQACer )

0’ BMqat/{n ‘7 L1 Son-(4

and our result is

A COO-(2),) 91 aCr'ij'J = ‘KZO’VOOIGO 34(or— 11’)

309(an (c.12)

Substituting (C.lO), (C.ll), and (C.lZ) in (C.7) and

simplifying, we arrive at

3950)!) QCDCEQ .3 c." azdem-jg)- (9)703903V0‘v).
 

 

adcr g a/X-rs 3

.__ ma *7!

Generalizing from the ”normal" spacelike surface implicit

in the identities used to derive (C.9), (C.lO), and (C.ll),

our final expression for the contraction in question is

9930.) age,» .... a 91AF(“"QJ _. gmma‘i‘Yawfi.

;)(§:¥ E>§1fi3 23v7<q';>b?fis

 

(C.l3)

Now, at long last, we can return to our expression for

the 3 matrix, (C.4). Substituting (C.l3) into (C.4),

we get

 



gust .7 = 415 «Jon. NH-(fifflm Y5rfl*(m1)‘]

.3}: jja‘imoe‘i‘r ( c. 9145‘.- («31 .. L'mqmvgqux-V)

art-(«3mm

. N[(fi)1?(mwgv.‘1’<my?(g)vs Ya *Cv’R i c >

 

= <1! H SSW 4“» fifiié’g‘s’

" ”1 (if %(’“)Y3Y«1)Cnc3?(t7) many] } 1 .- >.

We see that terms dependent on Mar have cancelled one

another. In terms of the diagrams of Figure 16, terms

in the prOpagators of the first two diagrams have just

cancelled the last diagram. We could have obtained

the same result by assuming

1.

squad sag): a [¢C’*3¢.C‘7n

3 (79f @473 ark-(9‘79 .
 

(C.l4)

WI <m>= “ 11(m\

(C.lS)

Neither (C.l4) nor (C.lS) is actually correct, but

as long as we are using perturbation theory we may pretend

they are. It is a case where two wrongs do make a right.

Though we've only dealt with ps(pv) coupling, we may

assume (C.l4) and (C.lS) to hold quite generally.



APPENDIX D

MONTE CARLO CALCULATIONS

Integration by means of Monte Carlo methods rests

on two theorems which are here stated without proof.38

THEOREM I. (The Strong Law of Large Numbers)

If (3 Cm, , -- - )mm)is a probability density

function on a region R such that p<f7<. a --',n¢~.) >/ O,
I

“

and {RPCM;,,’Km) CMp-MJQ/flfi: l, and 6~ is

the integral

7“::S’R}(’7‘.."')’x’“)9(mn”')0"“)oen“

”.9011.”

A

and 6. N is a random number defined by

A N

N '7: .1... Z l—Cm‘d‘, )mme')

N w

the set of numbers (My; 3 -~ ) ’Xmg) being the 5th

set of values chosen at random from R according to the

probability density P<mx , 3 Mm) , then

/\ ...-

lfm 2

N-eoo J'N 5‘ '

THEOREM II. (Central Limit Theorem)

—. 4 “

.For large N the probability that 6~$$fNé J.+ 3 ,

is independent of the exact nature of me, ,u-J Mm)

121
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and (DC/x, , )MM) , but depends only on N and

c~ .- 1

the variance (3,": 1 ‘ , in factm

I ?1

ProbabilityifiN< 1....3}:.5]?% 7:921

[2%+ terms of order

In other words, the probability that I IN- i‘é C5

is 68%, the probabilitythat I 2:“- il<1 6 is 95%, and

the probability that l ‘N" ZI<3 6 is 99. 95%.

The advantage of the algorithm indicated by Theorem I

is that it is independent of the dimensionality of the inte—

gral. The purpose of Theorem II is to show what size sample

need be used in applying Theorem I in order to obtain a

given required accuracy. In applying Theorem II, one

must be a bit cautious because for actual applications

involving finite samples, the predictions of Theorem II

are usually Optimistic and should only be considered

suggestive. In applying Theorem II we approximate <5

A

by V N where

VNsz—I.N(3'3“ 07:1)

and

A 1

il—Th2N[>;.(‘;H<;y 3 ”<"‘C)1

i 8|

N
A

é‘ NZ f(mlg.)"‘)mms.),

i at

Our method for evaluating an integral to within a

/\

relative error 3.. is to calculate éN for larger

and larger values of N until \' \A/N < i #N ,

and then 6. :: f" , and probably] ‘. "’ J. N (i & .

The integrals we must perform in evaluating cross
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sections contain Dirac delta functions in the argument,

so we need to find a way of evaluating integrals over

delta functions. Let's consider the very general case

where the integral is

(:1?LY}? [C(rn‘l)” ~,n‘nq3‘i}<'le )---)4fi(nn)

as T3; é;[:<}4{(.nx.). M”‘n~¥]‘£u
x (ibflnn

(13.1) » 5

 Here there are I. delta functions with arguments containg

integrand is broken up into the product of a general function

fCrx' ‘ ) m m ) and a positive definite function

3, (IX. , - - - ) (Wm) . Let's define a probability

density to be

OCmir‘W’fim) = £7 )CmH'” )lmm)

)Q 11F €51: i?l‘.(’7‘t) '“')‘fiK"")-l

(D.2)

where ‘\/' is a normalization constant such that

V: KR 7(0‘.)'“, mm)n5[7“(m"”"n‘m)1
“at

.< cJZnK‘ .- . cfilvsn.

(D-3)

Rewriting our integral C1? as

0?:SRfCrKH-nwxm3pCrx',...)n(m3V

x 094, oQ/Km

(D.4)
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we see that it is in a form where we may apply the

strong law of large numbers. Doing so gets us

DJ

w v. 3:...[75- ....chm...,... , mu]

(D.5)

where C m‘m,...)mmm\ is the rmth n--tuplet

chosen according to the probability density (D.2). What

this probability density tells us is to generate sets

of points (Mgr-m, - -- , Ohm...) which satisfy

?rg(n(.,~-,f7€m)=o3 h3l,"',l_.

and which are distributed according to the (usually

 

unnormalized) probability function 3 (m |) -~ - , (Km).

Now let's apply these results to the problem of finding

cross sections. First consider total cross sections.

To find a total cross section we must evaluate an inte~

gral of general fOrm

oCE) = 555 09—33? 293:1 21:35.

"/~(C}d .pc‘, 3.., CI-"Pi')8( E (.2 ~01. EH3(9]. war-1113;)

The function I'CQ’C.’PJ)fi-t)9»1 , P.J.) will be the

square of the transition amplitude times some kinematic

factors. The integral is in the form of (D.l), so we

apply (D. 4) and (D. 5) to obtain

QDCEE) -'iE?S<:E:)/¢1Q /¢A1q r1)

lam - .

K N—ooo N_LkZaTJ‘CCt-Lh,Pc.kicl—lh,7.lkipfkfl

where
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003

I?év(E: )I“|)/44HL)P1) =‘5;S‘;JcflrE; -Zi;£}J

..sas-m.) ”a. E/>33Cc“;,+a;-.+f5r3—flr

The sets (flan Ph)fi.gn5fi.mn )P-é‘lk) are chosen

from the probability distribution Q“1E5. such that

 

they satisfy

é%;c:1'F3<f‘=‘afs f'E;:1.+‘ri.F.‘= C)

Omit Eg- -.- w‘+w1+E‘. = E.-

In other words, we averagei. ((34, P“) Cl" )Cf1JP‘J')0ver

points randomly selected from covariant phase Space.

If we denote this average by a( E) , that is

Cl(E)== ,3meJ- 2. lv(ci.c.Rafl;h3fi.lh)a(.1k)PI-k)
NRII

then our theorem is

6(5) = P5(E3,a,,MMf1)aCE).

Now let's consider the problem of evaluating differen-

tial cross sections. Noting that

iffcmmxlmmz 'LCms)=f/.(m)3(m-mo)oQ/x,

we write our differential cross section integral as

22.: mm a: sa: as?
a”! (Cb-°':P430h1?1)PI-) §(¢-¢.)§(cm.6«an6’.)

x8(E"C\J‘." (..JI- El')83(€"+5;"+fif)'

Applying (D.2), (D.3), and (D.4) as before
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<é§€5(:E:)I _- c9 13; ( EZIB/L‘ 3/L¢1) ‘W) ‘

:2 n: mm .2 n. m...

,. Hi?» ZM:«an ha....1.n.p,r.)]

 

o n / . u o

The p01nts in phase space \ 9",“ {15h} a‘“)()l'1h3P/l’h)

now are picked at random from that region of phase space

where fl = [10, i.e. ¢ = $0 and 661-9 = 001. 9o

If we define aCE ~(‘.)by

C((Eyflo))-l.m :Lif(c1,;h,{zgn.)c}_m,c}zh,[lfn)

hflfiao[\|

our theorem becomes

dew.)

dfl

 

 

:CflyI?g<:Ed/AA )/L414P1)l (3((E:)JCLO)

11311, 4 IL “in"

In particular, set up a coordinate system with the z-axis

-—_I _.I

along the vector k where k is one of the vectors

—. .... -—A

Ol..,.a.1 , or '21.. Let 6 and 53 be the polar

and azimuthal angles of a?i.in this system. A little

reflection will show a(E, no) independent of (be

and so

C52605) 2 imEj/QUMmM) CL(E,qn(9°).

can. 51341.0 .911. 11.25:...

 

'Use of the program FAKE in generating random events for

use with these theorems is discussed in section V.

In evaluating cross sections by the method described

above, it is necessary to calculate the phase Space inte~

gral
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J3 , 3 1 3

fasvlwvnhflr a? 23'. 4%?

x$(E-w,-w1—Ei)$3(§?.+fifa+fé‘fl

dPsggiflo)/W1LM) .

an.

Actual integration over the delta functions gives

FSCESMI3/413M
) =f 023,3]. €9¢$2

-é-‘ [Sq-2(é:+/u:)ft+(flf‘/A:) ]

PI’ + P1

and its derivative

(D.6)

 

where 52: E24- M1+2EJFF+MI . From

(D.6). it is clear that

fg’IZSCEEbs/L‘n) /°‘1.,'vl) =r 1:5(:E:3 /°‘a)/b(1; P1) _

(Ln. ~ ' ‘in‘

So our formula for differential cross sections becomes

L6<E) = Q:(E)w‘-693FS(ES/‘uxuzyr1\.

onL 11311., “t 11"

 

So for both total and differential cross sections we only

need to find ES (E 3%. ,Ah.) m ). Going through the

rest of the integration of (D.6) gives

Eda-”...,MMM) .-.- arrlfopm 4,2

.[ 421‘] 5" - 2<M3+M:)E*+c,«7-w:)‘]

 

 

 

 

P1 + M 2 (D.7)

where Punch: =/[ E1~(A.+A‘*M) ][E1‘(M-*M1‘M)11.

1E:

The form (D.7) contains only one integration variable ,

and so is amenable to any of the many variants of Simpson's
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rule. Because the integrand is a slowly varying function,

PS( E3MI)/”~1 ) M) may be evaluated quite accurately

by numerical methods.

It is not easy to find trial integrands with which

to check the technique outlined above because even fairly.

simple functions are difficult to integrate over phase

space. Nevertheless, two trial functions were discovered

and tested. The first of these is the function

a .

/(qa.p:3°f..<}a,pfl=(java-1') 5 “1291‘;-

~ ”aphid

For this function

C((E) 3 3

{m19p,$(E-u. ‘00..- Efléflifl *figi'qz) g"; :45}
_1L

j5(E-~.-w.-E,)é’ffi+*B‘i-“P‘ 5-5-13?” 3 ’2:

 

(menu: can 991.4(007- 9m) a J_

T 3

{meflft'l OQCWGF")

So for this case, Q(E) = 1/3 independent of energy.

Results of a series of trials are shown in Table 3.

'2 1
If<we take )= .4 A‘- 3.001. 9 I

i CF"P"C""C12’P"IOPHO;I

we should still get a( E): 1/3. Trials for this

integrand are shown in Table 4. From the combined

results of Table 3 and Table 4, we see that the Monte

Carlo result is within the predicted error 80% of the time

versus the 68% we'd expect, within twice the predicted
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Table 3. Trial run of Monte Carlo program with

[-(%€)P£jfi-UG}1;
P[-)= “1169‘.

 

 

 

 

 

 

   

Tr: Calculated Predicted Actual

(MeV) a( E) error(%) error(%)

210 0.3311 : 2.8 -0.6

288 0.3311 1 2'8 ~0.6

377 0.3542 1 2.8 6.3

466 1 0.3293 1 3.0 -1.2

905 0.3358 4;;2’8 0.7  
 

 

Table 4. Trial run of Monte Carlo program with

i‘fiemcsaufimm) =m‘9w

 

 

 

 

 

 

 

Tr! Calculated Predicted Actual

(MeV) a C E) error (9:) error (25)

210 0.3324 1 3.4 -0.2

288 0.3196 1 2.7 -4.1

377 0.3424 w i 3.0 2.7

466 0.3409 t 3.2 2,3

905 0.3377 : 2.7 1.3     
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error 90% of the time versus the 95% we'd expect, and

within three times the predicted error 100% of the time

versus the 99.95% we'd eXpect. Moreover, the calculated

answer is greater than the exact answer half the time

and less than the exact answer half the time, as we'd

expect.

The other trial function was

f(q.£,P.'jfi-I>CI-13PI-) : a), w“ a -

#4th

If we define pCE) andCJs C E) by

(3(5) 2' j S (E-‘01‘U1‘E}.)33(€|+§3*Pp °

"¢of%fid clae}1.¢‘:73f >

(35(E)‘= MnMsfl $(E‘U.-w1-El_) 53(€‘+§-3+F§fi

(2"‘”h‘E56‘ ..ciae,..ar!5,.iafflaf

 

then for the function defined above,

C((EZ) .. (3(5)

95(5)

In Table 5 we tabulate the results of trial runs for this

 

integrand. For comparison,(5 ( E) and (~35 ( E- ) were

calculated by a Simpson's rule method to within 0.1%

or less. For this case the predicted error was smaller

than the actual error every time. On the other hand,

only one of the Monte Carlo answers was larger than the

correct answer, though we'd expect this to happen four or

five times. This might be because of some lystematic

error in calculation of F" E) and (35 < E ) or
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some slight preference in the choice of random events

by FAKE. At any rate, for such small errors the dis-

crepancy is not significant. The general level of ac-

curacy is particularly impressive for the smaller values

of -r}T . The overall accuracy of the Monte Carlo.

results, especially in the low energy region, comes from

the fact that there is not much phase space to sample

over at these energies, particularly near threshold.

This is a happy coincidence for the calculation of chiral

dynamics models since it is the region near threshold which

is of most interest.
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Table 5. Trial run of Monte Carlo program with

chpmiiorucm/AH': “‘01 EL 

 

 

 

 

 

 

 

 

 

 

      

/¢&./¢~1_Pq

T11- (J ( E) Calculated Predicted Actual

(MeV) _____ error(%) error(%)

(35(5) C(( E)

210 1.200 1.200 0.1 0.0

722 1.263 1.263 0.1 0.0

233 1.321 1.319 0.2 0.2

310 1.746 1.742 0.3 0.2

371 2.103 2.091 0.5 0.6

377 2.138 2.137 0.5 0.5

454 2.613 2.611 0.5 0.1

590 3.512 3.526 1.1 -0.4

800 5.033 5.003 1.1 0.6

905 5.847 5.837 0.7 0.2

 

 

 

 



APPENDIX E

PION SCATTERING LENGTHS

The most natural place to compare the different

versions of chiral dynamics is in their predictions of

low energy pi-pi scattering parameters, especially the

s-wave scattering lengths. Scattering length GK is ,

defined in terms of the scattering. amplitude f(6,¢)by

a. = 1"" f. ( 6, ¢)
qr-QC)

‘ 0 0

where G} is the momentum in center of mass of one of

the particles. .For identical particles, like pions,

the differential cross section is given by

3% .. lluem) + fur-9,915.11)!
1.

 

But in terms of the «invariant amplitude m , the differ-

ential cross section is
‘2

as = I W72!

Zn. Q‘czn)‘ no"

so the scattering length is related to ”l by

Clan _l;"‘ [<777' 11‘s”.

‘1‘", 3211700. (E.1)

 

the phase factor Of being arbitrary. In our case

it is chosen to match the convention of gflrsey and Chang.

Chiral dynamics Lagrangians give the diagram- of

Figure 17 for pi-pi scattering.
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q"

*3“. o, v
g:>f’f4

7‘14 ‘uf’f-D

Figure 17. Diagram for pi-pi scattering.

Frommthe Feynman rule

:441?‘ )2(*3) r“...

m 11*?

5.399 9: 9.1 [Th/c3 + (3461.: + 01.5 7.0)] .

+ 9.. 9; 9' 91ffluu- (a-Aq.B+C}-c¢}-0”

+9..“9:! 96v 9:: [Th/0:.- (Ophfio +$B$c”3

Go to the Cartesian representation of the vectors ‘,  A A A

$5, , Q‘, and $4 and take the threshold limit of (1‘,

3.3,2‘, and $0 to obtain

(BMWHSWSCJ (16-1),“

.wskCn.42),. + 3136.101am]

From (E.M1),

°~" fi'fiM(%v)()1-[5..4.8an. 2)

+22056: “L?” Sam 8M 01.91143.»

We wish to separate the various isotopic parts

of (3.2). Consider some sort of operator in isospin space,

Q , which operates on isotopic triplets. We may

expand Q in terms of projection Operators

=,,§_ITT-.><T T2!
13‘:r ' as

0: o.P° +Q.P'+Q.,P?

If we take a matrix element of Q between Cartesian

states IQ)<> and 1636‘), we get

«,4! Qla,c7 mars“ + BSwaavc slash.

It can be shown that
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(:34, T54ak‘r E3 +~CL

Q1: B‘C-

Q1 = B+C.

If we apply this result to the scattering length

0L , the scattering lengths for different isospin channels

w '52:?- ”HEW-3i?
6a.: O 1 1 H

“1 ‘(’%’,—},3)’“(€%) (Sn-‘1).

If good experimental numbers existed for Clo,

are

 

(E.3)

 
0t. , andq'a. , it would now be easy to determine 71, , 1

and thereby choose one of the chiral dynamics models

over the others. Unfortunately, pi-pi scattering exper—

iments are difficult to perform, and all the available

results can do is indicate that the expressions of

(E.3) are plausible.
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