(-3256 i. fistflnkt. .- m rHesvs . ' ‘31 LIBRAR Y Michigan State University vn I" "-‘L W- This is to certify that the thesis entitled THE MICHIGAMME INTRUSION, A CASE STUDY OF THE IMPORTANCE OF REMANENT MAGNETIZATION IN MAGNETIC INTERPRETATIONS , MARQUETTE COUNTY, MICHIGAN. presented by Wesley M. Phillips has been accepted towards fulfillment of the requirements for _M.S___deyee in _GEQLQGX___ Q Zifly I / Major professor I Date 8/2/79 0-7639 OVERDUE FINES: 25¢ per day per item RETURNING LIBRARY MATERIALS: \. :- . Place in book return to remove ‘\ ‘ 3"m*- ”1' charge from circulation records ‘ i . ._‘ I‘LL”. ‘.' . ‘ (If “3' t THE MICHIGAMME INTRUSION, A CASE STUDY OF THE IMPORTANCE OF REMANENT MAGNETIZATION IN MAGNETIC INTERPRETATIONS, MARQUETTE COUNTY, MICHIGAN By Wesley M. Phillips A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geology 1979 ABSTRACT THE MICHIGAMME INTRUSION, A CASE STUDY OF THE IMPORTANCE OF REMANENT MAGNETIZATION IN MAGNETIC INTERPRETATIONS, MARQUETTE COUNTY, MICHIGAN By Wesley M. Phillips A computerized magnetic modeling study of the Michigamme In- trusion is performed to demonstrate the importance of natural remanent magnetization (NRM) in magnetic interpretations, and to exhibit the ease with which NRM can be considered with the aid of a computer program. The structure of the intrusion is magnetically modeled by comparing the observed vertical magnetic anomaly of the intrusion to vertical magnetic anomalies generated by computer models of the in- trusion. Analysis of the magnetic properties of the body show the intrusion to possess a predominately large reverse-remanent magneti- zation component. Computer models show that the observed magnetic anomaly of the intrusion is easily modeled, given the geophysical and geologic parameters determined in the study, as a stock steeply dipping to the north. It is also shown that approximate models considering NRM can be made without a detailed field analysis of the body by using paleopole orientations as an approximation of the NRM orientation. ACKNOWLEDGMENTS My sincere thanks go: to Tom Vogel without whom this study would never have been completed. Thank you for your patience and understanding. to my committee, Dr. H. Bennett, Dr. F. W. Cambray, Dr. J. Wilband for their assistance. Special thanks to John for his help with the computer. to Dr. R. Vandervoo of the University of Michigan for the use of his paleomagnetic laboratory and equipment. Special thanks to Doyle Watts for his assistance with the equipment. to Paul Tipler and Bob Williamson of Oakland University for their cherished friendship and stimulation in the sciences. to Mark Schoomaker and Tim Stanton for their help with the field work. Also special thanks to Mark for his invaluable assistance with the computer programming. to the Chateau for providing a home from which things such as this can be done without one going off the deep end; and to my friends, one and all. to my family for their love and understanding. ii TABLE OF CONTENTS LIST OF TABLES O O O O O O O O O O O 0 LIST OF FIGURES O O O O O O O O O O 0 INTRODUCTION 0 O O O O O O O O O O O 0 Location and Topography . . . . . General Geology and Geophysics . Field and Laboratory Methods . . MAGNETIC PROPERTIES . . . . . . . . . Orientation of the Characteristic Remanent Magnetization . . . . Remanent Magnetization Intensity Susceptibility . . . . . . . . . Koenigsberger Ratio (Q-Ratio) . . Summary . . . . . . . . . . . . . MAGNETIC MODELING . . . . . . . . . . Theoretical Model Computer MOdel o o o o o o o o o Approximations . . . . . . . . . MICHIGAMME STOCK . . . . . . . . . . . Computer Models of the Michigamme Discussion of Results . . . . . . CONCLUSIONS 0 O O O O O O O O O O O O APPENDICES O O O O O O O O O O O O O O A. Whole Rock Analyses, and Trace and Rare-Earth Element Concentrations (PPM) B. Corrected Vertical Magnetic Intensity Data C. The Remanent Magnetization Orientation and Intensity NRM, Thermally Cleaned, and A.C. for Each Sample: CleaDEdooooooooooo iii Page vi CDUIN 14 14 26 26 28 28 31 31 34 34 38 39 48 49 51 52 54 65 D. E. Computer Model Listing . Surface II Commands . . BIBLIOGRAPHY O O O O O O O 0 iv LIST OF TABLES Table Page 1. Average Remanent Magnetization Orientation for each SampleSite........................ 22 2. Lower Keweenawan Paleomagnetic Poles . . . . . . . . . . . 25 3. Average Remanent Magnetization Intensity, Susceptibility and Q-Ratio for eaCh sample Site 0 o o o o o o o o o o o o 27 4. Geologic and Geophysical Parameter Values Used in computer MOdels I & II 0 O O O O O O O O O O O O O O O O O 40 LIST OF FIGURES Figure Page 10 Location and Topographic map 0 o c o o o o o c o o o o o o 3 2. Structural Geologic map of the Lake Michigamme area (Klasner, 1978) C O O C O O O I O O O O O O O O O O O O O O 6 3. Total intensity, Aeromagnetic map of the study area (Case and Gait, 1965) O C O C O O O O O O O O O O O O O O O 9 4. Vertical magnetic intensity contour map (General StUdy area) 0 O O O O O O I I O O O O O O O O O O 10 5. Vertical magnetic intensity contour map (Detailed map) 0 O O O O O O O O O I O O O O O O O O O O 0 ll 6. Magnetic survey grid . . . . . . . . . . . . . . . . . . . 12 7. Zijderfeld diagrams, sample sites (A, B, C, F) . . . . . . 16 8. Zijderfeld diagrams, sample sites (D, E, 1A, 2A, 3A) . . . 18 9. Thermal and A.C. Demagnetization curves . . . . . . . . . . 20 10. Remanent magnetization declination & inclination stereo plots: A) NRM, B) Thermal cleaned, C) A.C. CleaHEd o o o o o o o o o o c o o c o o o o o o o c 24 11. Total magnetization axis . . . . . . . . . . . . . . . . . 29 12. Computer model: A) Coordinate system, B) Parameters . . . 33 130 Prism mOdel for dipping CYlinderS o o o o o o o o o o o o o 35 14. Model I. For a cylinder dipping 70 degrees in the: A) North direction, B) East direction, C) South direCtion, and D) weSt dirECtion c o o o c o o o o o o o o 42 15. Model I. For a cylinder dipping in the N20°E direction: E) 70° dip, F) 50° dip, and G) 30° dip . . . . 43 16. Model II. For a cylinder dipping 70 degrees in the: A) North direction, B) East direction, C) South direction, and D) West direction . . . . . . . . . . . . . . 44 vi Figure 17. 18. Page MOdel II. For a cylinder dipping in the N20°E direction: E) 90° dip, F) 70° dip, C) 50° dip, and H) 30° dip O O I O O C I O O O O O O O I O O O O O O O O O 45 Model I & II Profiles. A) Model I Profiles: For a cylinder dipping in the N20°E direction 70°, 50°, and 30°. B) Model II Profiles: For a cylinder dipping in the N20°C direction 90°, 70°, 50°, and 30° . . . . . . . . . 46 vii INTRODUCTION The purpose of this study is to present a magnetic modeling study of the Michigamme Intrusion to show the importance of natural remanent magnetization (NRM) in magnetic interpretations; and to exhibit the ease with which NRM can be considered with the aid of a computer program. The structure of the Michigamme Intrusion will be magnetically modeled by comparing the observed vertical magnetic anomaly of the intrusion to vertical magnetic anomalies generated by computer models of the intru- sion. The Michigamme Intrusion was selected for this study because of its structure (Stock) and its observable reverse-remanent magnetization component. In the interpretation of magnetic anomalies the importance of NRM is gradually being accepted. Early theoretical investigators (Zietz and Brooks, 1951; Sutton and Mumme, 1957; Hood, 1963; Zietz and Andreasen, 1967) indicated that NRM is a significant factor that should be considered in aeromagnetic interpretations. Girdler and Peter (1960) and Torres (1976) showed that some magnetic anomalies cannot be explained by induced magnetization alone and that a large reverse remanent magnetization must be assumed to explain the anomaly under investigation. Other studies have confirmed the importance of NRM in magnetic modeling through interpretation techniques which included direct measurements of the intensity and orientation of the NRM component in the body being studied (Green, 1960; Watkins, 1961; Book, 1962; Hayes and Scharon, 1963; Dubois and Carey, 1964, Strangeway, 1965; Park, 1968). Most magnetic interpretations do not consider NRM, even though the influence of NRM on magnetic anomalies has been shown. It is the contention of the author that NRM is neglected in magnetic modeling for two simple, but presently unfounded, reasons: 1) The intensity and orientation of the NRM component are not easily available (Green, 1960; Watkins, 1961; Book, 1962; Hayes and Scharon, 1963; Dubois and Carey, 1964; Strangeway, 1965; Park, 1968) or as in some cases not physically obtainable (Girdler, 1960; Torres, 1976). 2) Until recently, computer automated interpretation techniques using induced magnetization (Henderson, 1960; Whitehill, 1973) have not been revised to consider NRM (Shanabrook, 1978). Location and Topography The study area is located (Figure 1) in the Upper Peninsula of Michigan approximately one mile west of Champion just off of highway 41. The survey area is contained within sections 25, 26, 35, and 36 of T48N, R30W of the Michigamme and Champion quadrangles, Marquette County. The intrusion lies on the east shore of Lake Michigamme within sections 35 and 36. The exposure is approximately 1000 feet in diameter and is outlined by a gently sloping, 100 feet topographic high. Outcrop exposures are distributed randomly across the topographic high, but are mostly found intact along the slopes. Figure 1. Location and Topographic Map. 2: :5 :2.» 3.2:: .3 an .- gain-3:: sand General Geology and Geophysics The Michigamme Intrusion is magnetically associated with a swarm of East- West trending dikes. Because the dikes cut structural features of Middle and Lower Precambrian age and are fresh in character, they are considered to be Keweenawan in age (Bodwell, 1972; WOod, 1972). They are classified lower Keweenawan because they are reversely polarized. It is proposed that they were emplaced 1.1 b.y. ago during a period of continental rifting (Chase and Gilmer, 1973). As shown in Figure 2, the Michigamme intrusion is circular and is located at the Western end of the Marquette Synclinorium where the tightly folded trough begins to open into a broad basin. It transects a series of deformed Middle Precambrian metasediments which belong to the Menominee and Baraga Groups of the Marquette Range Supergroup, (See Cannon and Gairs (1970) revised stratigraphic nomenclature). Gravity profiles indicate depths to basement ranging from a maximum of 2,438 m in the East trough near Humbolt to a maximum of 1,097 m West of Lake Michigamme in the West trough, with the depths becoming shallower toward each end of the trough (Klasner and Cannon, 1974). Deformation in the trough is attributed to the Penokean Orogony (Cannon, 1973), which ocurred 1.85 - 1.95 b.y. ago (VanSchmus, 1970). Klasner (1972) describes the body as petrographically fresh and zoned containing a mafic pyroxene-rich interior and a plagioclase-rich border phase. Petrographic and chemical analysis of three samples from separate sites within the interior of the body by Morris (1978), show the intrusion to be a diabase (See Appendix A). The Total Field, Aeromagnetic map of the general study area reveals a system of intense irregular shaped positive magnetic anomalies and a series of moderate East-West trending positive and negative magnetic Figure 2. Structural Geologic map of the Lake Michigamme Area (Klasner, 1978). ac. I . ......... \ + - Iirtsztssnla.\\ ............ LN I\\_\;\l Hi/l/ .\ M s\ :3” an; o— :2 3:3... 2.5 no: .35 (L a / l. n}, Six .9. ../:.7.../..,. m V Err/11114,. {fl , I, .32....3.u.°_.__._w._un..u=. ”3% 52...; 3:23“ :1... a... 2:... :3. ESE—o. .9 a3 vuu it; 11 2:...— so:~I;u 2:. Ci ichI-om uII 0 o... O. coca, .e muswam coon 602: I ocean null-o 00006 43311385.. r L h » é - oewu Goon coon can. camp 4300. 3800 m5? 4800 5800 0 700 24‘00 ‘ 3630 «9‘00 4 soLoo rm Figure 5. Vertical magnetic intensity contour map (Detailed map). 12 I r T W t I ..,. 1 I 1 r I. .9 O. . ’° It 9 ‘9, 9,... § ‘0‘... ¢+¢++9 o ’t“‘0+¢" O z 0 0 o O O 9 Q 9 9 9 O o d O 9 o 9 9 + ’ 8 o 4 ‘~ 9 [h o o o 9 o O 94) + O W O #6 9 1 o o o o ' ' ‘ I Y r , 0 9+» + .006 ++++¢¢+..,oo- me u do u u u :0 on II" 104 ./' / " //' h . / .. V tut 18 Figure 8. Zijderfeld Diagrams, Sample Sites (D, E, 1A, 2A, 3A). " In! It!) l9 \'~——-. /""""‘> '\/u L 3 2 3 4 ' a ' A 3 3 i ,fiv A l/ 1 "' ,____:_\.. j _g 1 L 1 g 3 um m i ,._ . . 3 D. 'T’ § flo‘ ’ la 8 fl. 3 i- 1 E 20 Figure 9. Thermal and A.C. Demagnetization Curves. 22 Table 1. Average Remanent Magnetization Orientation for Each Sample Site. Ave. NRM Ave. Remanent Mag. Ave. Remanent Mag. Sample Orientation Orientation Orientation Site (Not Cleaned) (Thermal Clean) (A.C. Cleaned) Dec. Inc. Dec. Inc. Dec. Inc. A* 135.8 -3l.0 151.1 -26.6 117.0 -30.3 B* 80.5 -40.0 81.2 -39.7 102.7 —42.0 C 64.1 -43.0 62.6 -37.5 66.9 -42.0 D 56.0 -52.0 72.8 -62.9 ---- ----- E 32.0 -57.0 74.4 -56.9 ---- ---- F* 149.0 -28.0 148.8 -24.0 178.8 -23.1 0* 72.6 -54.5 Random Random 1A 54.9 -42.0 52.2 -38.9 58.2 -47.6 2A 138.0 -69.0 130.8 -67.4 149.9 -66.9 3A 82.7 -62.0 98.9 -68.5 ---- ---- Average 82.5 -46.8 74.5 -51.4 77.9 -52.1 Characteristic Remanent Magnetization Orientation (Average of the thermally and A.C. cleaned sites) Declination = 76.2 Inclination = -51.8 * Eliminated from determining the Characteristic Orientation 23 self-reversal process of magnetostatic interaction. Vincenz and Yaskawa (1968) considered it more probable that a small antiparallel component of magnetization was formed by a self-reversal process during a reversed geomagnetic field in the Lower Keweenawan. It is believed by the author that a similar process, as described by Vincenz and Yaskawa (1968), has taken place at sample site (D&E). The orientation of the remanent magnetization for sample sites (D&E) were thus included in computing the average orientation of the characteristic remanent magnetization for the body; however the intensities were not included in computing the average remanent magnetization intensity of the body. A characteristic remanent magnetization orientation of Declination = 76.2 and Inclination = -51.8 was calculated from the thermal and a.c. cleaned data collected at sample sites (C, D&E, 1A, 2A, 3A). Although thermal and a.c. cleaning had various effects on the pole directions, at the individual sample level (Appendix C), cleaning only slightly enhanced the clustering of the average poles of each site (Figure 10). As shown in Table 1, the average thermal pole and average a.c. pole are similar, with both poles diviating little from the NRM pole. The final characteristic pole was determined by averaging the thermal pole and the a.c. pole. The paleopole position for this characteristic remanent magnetization direction was determined using the method described by McElhinney (1973). Comparison with paleopoles from other Lower Keweenawan Formations (Table 2), shows the pole to be slightly different. When plotted onto the apparent polar wandering track determined by Irving and McGlynn (1976) and age of 1.19 bybp is suggested; compared to an age of 1.13 bybp suggested for other lower Keweenawan Poles. This indicates that the east-west trending reversely 24 + Ltan m1 /uo /vo /wo l l 1 N r+u -1 uv u V W Hy(xa}'9z) = 1p [-2- 108(;:) + Llog(r+w) = Mtan m} / uo/ Vo/ W0 M r+u L r+v -1 uv U1 V1 W1 Hz(x,y,z) a Ip 'E'log(;:;) + Elog(;:;) - Ntan.;;] /uo /Vo /Wo 31 32 Where: Ip = intensity of magnetization of the prism. > (L,M,N) = direction consines Ip r = (u2 + v2 = w2) U0 = X0 ‘X U1: X1 ‘X V0=yo‘y V1=yl'y W0 = 20 - Z W1 = 21‘ Z > When: Ip is due to an induced polarization > I = the magnetic susceptibility of the prism e = the earth's magnetic field > When: Ip is due to an induced magnetization component and a remanent magnetization component. > > > Ip = k'Fe + JR Where: JR = remanent magnetization of the prism. JR = (Jy + Jy + Jz) = ( J cosI cosD + J cosI sinD + J sinI) J = intensity of natural remanent magnetization I = inclination of the remanent magnetization D = declination of the remanent magnetization The vertical magnetic field intensity of a vertical prism (Hz) used in this study: M r+u L r+v -1 uv u1 v1 w1 Hz(X.Y.Z) = Ip [’2‘ 1080;?) +§Log(';) - NTan (Ry-)1 /no /VO /We > Where: I = k' 33 A) 8:1(x1.'1. 1}) PARAMETERS PRISM LOCATION Coordinate Grid Size Cordinate of each Prism Columnsly) 20 Points “rum“ (kph) Rowslx) 20 Unit One 250 feet PRISM MAGNETIC PROPERTIES Induced Component Remanent Component latitude Declination longitude Inclination Susceptibility Intensity Figure 12. Computer model: A) Coordinate system, B) Parameters. 34 Computer Model The program Shaloci, see Appendix A of Shanabrook (1978), is used to calculate the vertical magnetic field generated by a series of vertical prism-shaped bodies, defined by the parameters shown in Figure 12. A separate input program for Shaloci was developed by the author to arrange a system of prisms to approximate a dipping cylinder, (See Appendix D). A series of 15 rows of stacked prisms, each row containing 9 prisms inscribed in a circle, are used to define a cylinder (Figure 12a, b). Given any dip and dip direction the rows of prisms are moved an appropriate amount to describe the desired dipping cylinder. Due to a 50 prism input limitation into Shaloci, the stacked prisms are divided into 3 vertical levels each containing 45 prisms. Each level is run through Shaloci separately and the outputs are combined. The vertical magnetic field output generated by each model is displayed at 400 positions on a 20x20 matrix over the model, Figure 13. The resultant magnetic intensities are then contoured by the program SURFACE II, (See Appendix E for the program commands). Approximations By being aware of approximations made in a computer model the error spread produced can be controlled. The reduction of error is a cost factor for the user, errors in a computer model can vertually be eliminated if enough computer memory and time are reserved for compiling the model. Approximations encountered in this study are listed below: 1) Approximation of a dipping cylinder using an assortment of vertical prisms. 35 Figure 13. Prism Model for Dipping Cylinders. 36 A) l n 1 1 n 1 a L 1 1 14 a l a V I U j I fl T r v fl iii. v .fi J x .. Map View 4.. up Ly _ Azimuth ‘ r=_1 / dr db = q- l 1 I l l n A L A 1 pl 1 j n 1 I I t f U U I r T T I I r v r I Y B) Profile Y T VB levelone Plunge 1000T- leveltno 1. 2000 jb %F— 3000'“ levelthree l L 4ooo~1~ l—_.__I i Feet V 37 2) The number of data points (Grid Size) that the magnetic intensity of the anomaly are calculated for over the body. 3) The grid size, type of search pattern, and weighting factor used when regriding the data for contouring. All of these approximations can be made more efficient by increasing the amount of data put into the model and by requiring more data to be calculated for the output. It is believed by the author that an appropriate balance between cost and efficiency has been achieved for this study. It is noted here that a certain amount of flexibility is reserved for the final interpretations of the models. MICHIGAMME STOCK The Michigamme intrusion was selected to show the importance of remanent magnetization in magnetic interpretations, and to exhibit how easily these interpretations can be performed with a computer, for the following reasons: 1) The intrusion was believed to possess a reverse-remanent magnetization component, which could be confirmed by analyzing samples exposed at the surface. 2) The geometric structure of a stock can easily be modeled by a computer. Analysis of the magnetic properties of the stock (Chapter 2) have shown that the remanent magnetization is completely dominant, as indicated by the unusually intense remanent magnetization and extremely weak susceptibility (Table 3). It has also been shown that the remanent magnetization is reversed (Table 2). Since the body is dominated by an unusually high remanent magnetization and the field is not parallel to the earth's present field, it is not possible to mistakenly model the anomaly using the susceptibility method. It is concluded that there is a unique anomaly for this structure that is totally dependent upon the intensity and orientation of the remanent magnetization. Sufficient evidence indicates that the body is a stock (Klasner, 1973) however it is not known in what direction the stock is dipping. Using the remanent magnetization intensity and orientation determined in Chapter 2, modeling of the stock was performed to decern which way the 38 39 body dips. To demonstrate how this modeling can be performed easily by a computer, the magnetic anomalies due to various dipping stock directions were determined by the computer method previously outlined (Chapter 3). To determine the most appropriate model of the intrusion the computer modeled anomalies were compared to the ground magnetic survey anomaly of the Michigamme Stock (Figure 5). TWO sets of models for the different dipping stocks were performed using the remanent magnetization orientation expected for a Lower Keweenawan Formation (Table 3) and the remanent magnetization orientation measured (Table 1). Because the measured remanent magnetization orientation varied from the orientation expected for a Lower Keweenawan Formation, both sets of models were performed to test the best possible fit for the observed ground magnetic survey anomaly for the Michigamme Stock (Figure 5). The geologic and geophysical parameters used for the models are outlined in Table 4. Computer Models of the Michigamme Stock Mbdels of vertical stocks with varying remanent magnetic intensities were first done to determine the best approximation for the remanent magnetization intensity of the Michigamme Stock. This was done by comparing the maximum and minimum amplitudes of the model anomalies to the amplitudes of the observed anomaly (Figure 5), until the best match was found. A remanent intensity of 150. x 10"5 emu/cm3, well within the range of intensities measured for the intrusion (Table 3), was found to be the best approximation for the remanent magnetization intensity of the Michigamme Stock. This intensity is used for the following models. 40 Table 4. Geologic and Geophysical Parameter Values Used in Computer Models I & II. Geology Geometry (Stock) Diameter 1000' Depth. to Bottom 4000' Dip (7) 67.0° Geophysics (Induced Magentization Component) Orientation (determined from Earth's magnetic Field) mtitUde 4605 Longitude 88.0 Intensity Susceptibility k = 8.4 x 10"5 emu/cm3 (Remanent Magnetization Component) Model I Orientation Inclination I = -65.0 Declination D = 100.0 Model II Orientation Inclination I = -51.8 Declination D = 76.2 Intensity (Jr) Magnitude Range 53.9 - 652.0 x 10-5 Ave. 322.8 x 10'5 emu/cm3 Best Fit Value. 150.0 x 10‘5 emu/cm3 Klasner Topo. Map This Study From Lower Keweenawan Paleopole. This Study This Study 41 Comparisons of the computer model anomalies to the observed anomaly of the Michigamme Stock (Figure 5) are based on the following criteria: 1) The spatial orientation of the maximum amplitude to the minimum amplitude. 2) Visual comparison of the maximum and minimum amplitudes of the anomalies. 3) Visual comparison of profile curves through the maximum and minimum amplitudes. The first set of models (Model I), using the remanent magnetization orientation expected for the Lower Keweenawan Formation, are shown in Figures 14 & 15. Model I A, B, C and D (Figure 14) respectively represent a stock dipping 70 degrees to the north, east, south, and west. Comparison of the spatial orientation of the maximum and minimum amplitude show Model IA, of a stock dipping to the north, to be the only model that spatially fits the observed anomaly for the Michigamme Stock (Figure 5). However comparison of the maximum and minimum amplitudes show the maximum amplitude to be less then needed for a good fit. Model I E, F, and G (Figure 15) respectively represent a stock dipping N20E, 70, 50, and 30 degrees. By decreasing the amount of dip toward the north a better match of the maximum amplitude is observed. Profile comparisons (Figure 18A) also show a better curve fit for a stock gently dipping to the north. The second set of Models (Model II), using the remanent magnetization measured in this study (Table 1), are shown in Figures 16 & 17. Model II A, B, C, and D (Figure 16) respectively represent a stock dipping 70 degrees to the north, east, south, and west. Comparison of the spatial orientation of the maximum and minimum amplitudes show Models II A, B, and D, of a stock dipping to the north, 42 IX Y II ¢//, r- ,7," ' r P ' . / a)" 1 a? r 1 L 1 4 f T 25 I o-—-< [ r ‘\ E DID ”79 r . 1 1 . 1 i i i i n .l" 2.4 A * ‘ J L P)" c‘T—fi———v r w 1 r '.v 1 1' i 4 r r ‘ " I ,5: °\; 4 b I 7 7 , I -4 ‘ J ‘ 4 F 1 p I 1;: ' 1 r f o ‘ only“ snipe iii 47 1 L A t Figure 14. Model I. For a cylinder dipping 70 degrees in the: A) North direction, B) East direction, C) South direction, and D) West direction. 43 90 mm a w: b D bbbbbbbbbb E) Model I. For a cylinder dipping in the NZOE direction: Figure 15. 70 dip, F) 50 dip, and G) 30 dip. 44 f T Y—Vfir ff fi fir 1 I' Y 1 V f 7V ‘T u l ‘f—fi—Tfi—fifiY v Y Yfi’Y‘T f Tj V V fl Y—T ff f I; . ,_f ft f ..... 0" . s—r II II +c . l i O , j 29 $9 50 JFY o " Os. ‘ 1*— 0. I ‘3 l A\ e I ‘ f 4A\ ‘ ‘3 if, ,fi 4 Wm 4““ . ‘h -( IN I '. 30¢) a: ’ ‘0 0 ‘ 22:“ w --...,.¢.~ "' “Le "<3 ~ 1 x V V‘- "\\r ‘0 V 4 001 1 I so ‘ so 05- se '25 25 j I I ‘ ’ a l "'1”?! . . A .i L L H Li ext ."3 I"! 1 L nail. ti ”if/N l | Figure 16. Model II. For a cylinder dipping 70 degrees in the: A) North direction, B) East direction, C) South direction, and D) west direction. 45 rfi' VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV PIE hIf r * r l» 4 P fag I l 4 s 4 1 F q ‘0 fl 4 x l < /\ a L U) ’ / f;;\\ 0°, Q] m 4 IE ‘(r‘ \. I 1 N i \ - "’ l . I ék ‘ £T“jb ? ‘ b 4 7 P O 0‘; f 4 _ .n' Cd" 7 9 \ § g I > ' < L J b 00‘ 9° . u 1 so/ ‘ 1 d 25 .1 i 52 ON I; 0 b d It}... 19L L \ AL A 0: %+ 4 L A + 1L J. g as '\\ II // \ J F 4 > 4 \fl ' .50 Q 1 ’ g? 3 1:7 ‘ > 1 . . 4 P 4 > 4 b 4 r 1 L 4 b i b :3 < r l r 4 L :3 1 > o/‘A { b 4 4 b 4 L . a.“ ‘ ‘ i 1 p 1 25 I + 35 i > t 4 b 4 0'? Ly“ LLLLLLLLLLLLLLLL o? “A A A A A A Li L A g A A A A A 4 Figure 17. Model II. For a cylinder dipping in the N208 direction: E) 90 dip, F) 70 dip, G) 50 dip, and H) 30 dip. 46 Figure 18. Model I & II Profiles. A) Model I Profiles: For a cylinder dipping in the ' N20°E direction 70°, 50°, and 30°. B) Model II Profiles: For a cylinder dipping in the N20°E direction 90°, 70°, 50° and 30°. 60C)fi[' ADO-e 2004~ 47 —200~~ -400«_ -600 —n— -800 ul— ‘IOOOHP 4200J- CIIIIS booT 400~~ 200—- \\ Observed \ .Io-ah \ IIII 1000 l MODEL" IEII -200dr -400JP -bOO-- I -800% -IOOO~- ~I200‘b CIIIIS Observed Inonah IIII 1000 1 lIII 48 east, and west, to all spatially match the observed anomaly for the Michigamme Stock (Figure 5). In this set of models a better comparison of maximum and minimum amplitudes is observed; with the closest match for a stock dipping to the north. Models II E, F, G, and H (Figure 17) respectively represent a stock dipping N20E, 90, 70, 50, and 30 degrees. The best match of maximum and minimum amplitudes is observed for the vertical stock. However, profile comparisons (Figure 183) show a better curve fit for a gently dipping stock. Discussion of Results The best set of models for the Michigamme intrusion are observed for those models using the remanent magnetization orientation measured in the study (Table 3). the spatial orientation of the maximum and minimum amplitudes and the match of the amplitude magnetudes indicate that Mbdel II E (Figure 17E), for a vertical stock, to be the best match to the observed anomaly for the Michigamme Intrusion (Figure 5). Variations observed in the profile shapes (Figure 18) are assumed to be due to an incorrect initial aproximation that the Michigamme Intrusion is a perfect cylindrical stock. Approximations encountered in the computer modeling require flexibility in the final interpretation, as discussed in Chapter 3. It is more appropriate to interpret the intrusion as being a stock that is vertical or steeply dipping in the northern direction. This is in agreement with the predictions of Klasner (1973), as seen in the cross section view shown in Figure 1. Even though the best models were achieved using the remanent magnetization orientation measured in the study, first hand approximations using the expected remanent magnetization orientation for the Lower Keweenawan would have sufficed to initially model the stock. CONCLUSION It has been shown in this study that remanent magnetization can be a significant factor in the total magnetization of a body, and that magnetic modeling of these bodies can be performed easily with a computer. In the case of the Michigamme Intrusion it was found that the remanent magnetization was completely dominant over the induced ‘magnetization, and that the remanent field was reversed compared to the In this particular case it is not possible to The earth' 8 present field. rnistakenly model the body using the susceptibility method alone. nuagnetic anomaly associated with the Michigamme Intrusion is completely title to a remanent magnetization, which was easily modeled using the computer method outlined in Chapter 2. It was also shown that a detailed study of the bodies magnetic properties is not completely necessary to model the body, if enough geologic and geophysical information is available for the study area. 111 time case of the Michigamme Intrusion, magnetic modeling could have been done to decern the structure of the body even if the body were buried, for the following reasons. 1) The spatial orientation of the maximum and minimum amplitudes for the magnetic anomaly deviate from the orientation expected at that latitude and logitude; thus indicating a remanent magnetization component. 2) TPhe magnitude of the minimum negative amplitude is larger then the maximum positive amplitude, indicating a large reverse-remanent magnetizat ion intensity. 49 50 3) The observed anomaly is magnetically associated with east-west trending reversely polarized dikes of Lower-Keweenawan age, for which paleopole information is available. 4) The susceptibilities for various rock types in the area are available. With the information above, magnetic modeling can be performed until the best combination of remanent magnetization and susceptibility is found. If the susceptibility is known, as in this case, modeling of the body was shown to be sufficient by adjusting the remanent magnetization intensity and using the remanent magnetization orientation expected for a Lower Keweenawan Formation. Although it may not be necessary to perform a detailed field study of the body in question, it is always desirable to obtain the maximum amount of hard data possible to create the best model for the given situation. APPENDICES 51 APPENDIX A Whole Rock Analyses, and Trace and Rare-Earth Element Concentrations (PPM) 52 53 .AmnV mango: .mvumvamum weaved sows momhama< 80 0am mum .ooaoomouoaHm hamlx an voafiauouma «UH 00.0 m.HN m0. mq.H mH.N 0m.0 0e m.m~ 00 we 0 n0 OHH 0 ONNH Amy «:24 00.0 m.- 00. qm.m Hq.m «5.5 we 0.0m Nm me 0 mm HNH 0 mama A0000 NIMmN 0m.m 0.HN 0m. Hm.fi mm.~ 0N.m we 0.q~ mm me 0 mm 0~H 0 Nmmfi A0000 Human Nam mod :4 0% am 50 mo ma Huo 00 a: :0 cm . Ho fiz .oz madamm .Amev macaumuuaooaoo uaoaoam :uumMIoumm 0cm mommy 00.00 0H. «N. m0.~ qu.~ ~<.H 0m.m H0.m 00.0 eq.HH em.m 00.0H 00.00 Amv NazA mm.00H NH. mm. mm.~ mm.m Hm.H mm.m mm.0 0m.m ~n.0~ m0.~ Nq.mH Hm.Hm A0000 NiMmN Hm.mm 00. on. N0.N 00.N m0.~ mm.m HH.N 0m.m 00.~H 0m.~ mm.mH mm.~m A0000 fiixmw Hence on: moma mesa Hog owe ommz emu ow: owe momma momaa Noam .oz madamm momhama< xoom oHozz APPENDIX B Corrected Vertical Magnetic Intensity Data 54 55 0.0mm“ 0.00?0 0.000m won 00 0.hm0? 0.mmu0 0.0000 0H0 0m 0.0mNN 0.0000 0.000M «on on 0.0%h 0.mmom 0.0000 000 am 0.DNMN 0.0000 0.00m? mfim mm 0.0M? 0.mmhm 0.0000 moo N 0.00NH 0.00?0 0.00m? ?fiw hm 0.m0N 0.mmmm 0.0000 300 mm 0.000“ 0.00N0 0.00m? Mum 0m 0.0M” 0.mmmm 0.0000 000 N 0.0mn 0.0000 0.00m? Nfim mm 0.h? 0.mmHm 0.0000 moo mm 0.0m? 0.00mm 0.00m? «Hm ?m 0.0a! 0.mmO? 0.0000 ?00 ?N 0.00N 0.000m 0.00m? 0am mm 0.?0! 0.mmh? 0.0000 moo mm 0.0? 0.00?m 0.00m? 00m mm 0.0H 0.mmw? 0.0000 N00 mm 0.0”! 0.00Nm 0.00m? mom Hm 0.0mm: 0.0m?? 0.0000 «00 ”N 0.00“! 0.mm&? 0.00m? mom on 0.0mfii 0.mmm? 0.00?m 0am 0m 0.0m“! 0.00m? 0.00m? 00m 0? 0.00! 0.mmm? 0.00?m 000 0H 0.00mi 0.000? 0.00m? mom m? 0.0m: 0.600? 0.00?m 000 ma 0.00“! 0.00m? 0.00m? ?0m .N? 0.00 0.mmam 0.00?m mom he 0.0mm! 0.mmM? 0.00m? mom 0? 0.0mH 0.000m 0.00?m 000 0e 0.0ami 0.00m? 0.00m? Now m? 0.00% 0.mmmm 0.00?m mom m” 0.0mm: 0.000? 0.00m? How ?? 0.0K? 0.mmam 0.00?@ 70m 0s 0.000M 0.mmm0 0.0000 NH: M? 0.mmm 0.mm0m 0.00?m mom mfi 0.00m“ 0.mmm0 0.0000 Ha: N? 0.000m 0.mmq0 0.000m mom NH 0.0mm 0.mm00 0.0000 0H0 H? 0.mmufl 0.m0m0 0.00?m H00 Hg 0.0mm 0.mmmm 0.0000 000 0? 0.00am 0.00?0 0.000? 0H0 0H 0.0mm 0.mm0m 0.0000 000 am 0.mmmfl 0.mmfi0 0.00m? 000 & 0.00fi 0.mM?m 0.0000 Roz mm 0.0AA 0.mmem 0.000? 00¢ m 0.00 0.mmmm 0.0000 000 mm 0.0a? 0.mmhm 0.000? A00 A 0.0 0.000m 0.0000 mom 0m 0.0mm 0.0000 0.000? 00¢ 0 0.0?! 0.000? 0.0000 ?00 mm 0.0m 0.mmmm 0.000? m0¢ m 0.001 0.mm0? 0.0000 M00 ?m 0.mm: 0.00MB 0.000? ?0¢ ? 0.05! 0.0m?? 0.0000 N00 mm 0.0?! 0.000m 0.000? moc m 0.0?a! 0.0mm? 0.0000 ~00 NM 0.0mfi2 0.040? 0.000? N0¢ N 0.00fi? 0.mmm0 0.0000 fifio Hm 0.0Hm: 0.000? 0.000? H04 fl ~ » a «8 us... fl ~ » x at :3 § 23% mafia» 53335 0.3ng Hauauuoar 033.500 56 o.mom: o.ooom o.o co: omfl o.ofiH: o.mmm¢ o.oo¢m ego om o.womu o.oHH¢ o.o no: 0“” 0.00: o.mmmc o.ooom mfio mm o.mmmu o.oon¢ o.o no: mg” o.on: o.mmm¢ o.oomm cfio mm o.mfimu o.oflm¢ o.o Ho: mg“ o.¢m: o.mnm¢ o.mnmm mum mm 0.0mm: o.oon¢ o.o mco egg 0.0m: o.mmm¢ o.oomo mac cm o.fiom: o.oon¢ o.mmm ficm mg” o.mn: o.mmm¢ o.oo¢o ago mm o.fiom: o.oon¢ o.ofi¢ owe «Hg o.m¢: o.ofim¢ o.ooeo ofio vm o.flonu o.oon¢ o.oHe one nfifi o.o¢: o.oom¢ o.oome moo wm o.ofina o.oom¢ o.mmm mmo mg” o.m: o.oomc o.ooon moo mm o.oom: o.oon¢ o.mmoq nmo Hg” o.ms o.mnn¢ o.mmfin moo Hm o.oom: o.oon¢ o.ofimfi one egg o.mm o.mnm¢ o.oo¢n coo om 0.09m: o.oon¢ o.mm¢~ mmo oo o.mm o.mnn¢ o.ooom mom on o.onm- o.oon¢ o.ofiofi «no .mofi o.ee o.mnn¢ o.mmnn coo mm 0.0mm; o.oon¢ o.onH mmo mofi 0.0m o.mnn¢ o.ooom moo mm o.omu: o.oon¢ o.ofiom «no cog o.eoH o.mnn¢ o.mmfim mom on o.a¢m: o.mmoq o.ofimm “no mofi o.o¢H o.onm¢ o.mmem Hoe mm o.oqm: o.oon¢ o.o~¢m one qofi o.ofifis o.oom¢ o.oflom «flu «A o.amm: o.ofln¢ o.ooom awe no” o.o¢Hs o.omm¢ c.ofiom m”; mm 0.9mm; o.mmm¢ o.oomm mmo mofi 0.0mm: o.oomv o.oHem «flu m. o.mom- o.ofin¢ o.ofiom mam Hog o.omm; o.oo¢q o.ofiom mfiu fin o.mofis o.oon¢ o.oomm 0mm ooH o.ommz o.oom¢ o.ofiom mfiu on o.mom: o.oon¢ o.oH¢m mac 0. o.omm: o.ooo¢ o.oHom fifim ac o.mom: o.oon¢ o.ooom «mo ma o.ooms o.oom¢ o.ofiem ofiu we o.mnfi: o.oom¢ o.oflmm mmo ho 0.00“: o.mma¢ o.ofiom mom no o.mmH; o.oon¢ o.ooo¢ mmo ea 0.00”: o.oomm .o.ofien mom on o.mm~s o.oomq o.oom¢ Hum ma o.ofi; o.oo u nfiuzfi_ AW .33 5033 53:35 030an .23.“qu 0309.500 58 0.00! 0.00?0 0.00?0 ?04 0?0 0.000! 0.0000 0.0000 002 000 0.00 0.0000 0.00?0 004 000 0.000! 0.000? 0.0000 ?02 000 0.000 0.0000 0.00?0 004 000 0.000! 0.000? 0.0000 002 000 0.000 0.0000 0.00?0 004 000 0.000! 0.00?? 0.0000 002 000 0.000 0.0000 0.00?0 004 000 0.000! 0.000? 0.0000 002 000 0.000 0.00?0 0.00?0 004 000 0.0000 0.000 0.0000 0?1 000 0.??0 0.00?0 0.0000 004 ?00 0.0000 0.000 0.0000 0?1 ?00 0.00? 0.0000 0.0000 004 000 0.0000 0.00? 0.0000 0?1 000 0.0?0 0.0000 0.0000 004 000 0.0000 0.00? 0.0000 0?1 000 0.000 0.0000 0.0000 004 000 0.0000 0.000 0.0000 001 000 0.000 0.0000 0.0000 ?04 000 0.0000 0.000 0.0000 001 000 0.0000 0.00?0 0.0000 004 000 0.000 0.000 0.0000 001 000 0.0000 0.0000 0.00?0 004 000 0.000 0.000. 0.0000 001 000 0.00000 0.0000 0.00?0 004 000 0.000 0.000 0.0000 001 000 0.00000 0.0000 0.0000 001 000 0.000 0.0000 0.0000 ?01 000 0.0000 0.0000 0.0000 002 000 0.000 0.0000 0.0000 001 000 0.0000 0.0000 0.0000 001 ?00 0.00? 0.0000 0.0000 001 .?00 0.?0?0 0.0000 0.0000 001 000 0.000 0.0000 0.0000 001 000 0.0000 0.00?0 0.0000 001 000 0.?00 0.0000 0.0000 001 000 0.0000 0.0000 0.0000 002 000 0.0?0 0.0000 0.0000 001 000 0.000 0.0000 0.0000 001 000 0.000 0.0000 0.0000 001 000 0.000 0.0000 0.0000 ?02 000 0.000 0.0000 0.0000 001 000 0.000 0.0000 0.0000 00: 000 0.000 0.0000 0.0000 001 000 0.000 0.00?0 0.0000 002 000 0.00 0.0000 0.0000 001 000 0.000 0.0000 0.0000 001 000 0.?0 0.0000 0.0000 ?01 000 0.?00 0.0000 0.0000 002 000 0.?0 0.0000 0.0000 001 000 0.00 0.0000 0.0000 001 ?00 0.00 0.0000 0.0000 001 ?00 0.?0! 0.0000 0.0000 002 000 0.000 0.0000 0.0000 001 000 0.?00! 0.00?0 0.0000 001 000 0.00 0.00?0 0.0000 001 000 0.000! 0.0000 0.0M00 002 000 0.00! 0.0000 0.0000 001 000 ~ p u ‘ u...- * ~ a u “as... fl .33. 0253 50335 0.3303 0uo0uuo> wouuouuoo 59 o.om: o.oomo o.o a”; oom o.oom o.omofi o.o«mfi mHz onm o.oon o.oooo o.o ofim mom o.onm o.omofi o.oomfi «Hz mom o.om: o.ofico o.o oom mom o.onw o.omofi o.ooofi «Hz mom o.ofifi: o.oomo o.o mom mom o.oofl o.omofi o.oom~ oflz mom o.oofi: o.o"oo o.o mom com o.oom o.omofi o.ooofi ooz com o.omm: o.oomm o.o oom mom o.omn o.omoH o.ofimfi moz new o.onmu o.ooom o.o mom com o.one o.omofi o.oofifi noz com o.ocm: o.oficm o.o com mom o.omm o.omofl o.ofiofi ooz mom o.on: o.oomm o.o mom mom o.ooq o.omofl o.ofim moz mom o.oom: o.ooom o.o mom “on o.onm o.omoH o.ofio «oz How o.omm: o.oomc o.o “om oom o.omm o.omofi o.ofie moz oom o.o o.oomq o.ofimm ofio mom o.ooo o.omofi o.ofim moz omm o.oofi: o.oomq o.mmom moo .mmm o.oom o.omofi o.o fioz mmm o.oma o.oooc o.oonm cfio mom o.omm: o.ofinm o.mm o”: «mm o.oo o.ooom o.mmmm moo emu o.oom: o.onom o.omm ooz omm o.omfi o.ooom, o.ofimm woo woo o.onm: o.omom o.ofic mo: mum o.omu o.oovm o.oomm fifio com o.omm: o.omon o.ofio no: qmm o.omfi o.ofimm o.omvm ofio mom o.omm: o.mnom .o.oom no: mmm o.onfi o.ooom o.mm¢m ooo mom o.omm: o.mmom o.ofiofi not own o.onfi o.ofiom o.omcm moo flow o.oom: o.ofiom o.mmmfi co: gnu o.omm o.ooom o.owvm moo omm o.oofig o.ofiom o.ofiofi no: omm o.ofim o.ofiom o.omcm ooo omm o.oqfiu o.oHom o.ofiofi mo: oqm o.oom o.oomm o.omom moo ohm o.oofi: o.ofiom o.ofinfi ”oz mom o.onm o.odom o.omom coo mum o.omfi o.ooo¢ o.mm¢m “m4 mom o.oom o.onH o.omom moo cum o.oo o.oomo o.mm¢m omo new o.ocm o.ofioq o.omcm moo mum o.o”: o.oo¢¢ o.omom ofiJ mom o.mnn o.ooofi o.oficu goo «no o.om: o.ooov o.mm¢m ma; oom o.oom o.omofi o.ofiom ofiz mam o.omfiu o.oomo o.mm¢m “H4 mom o.omm o.omoH o.oflmm mfiz mum o.omfi: o.ooom o.omcm oHJ mom o.onm o.omofi o.ooom «Hz finm o.nfifii o.oomm o.omom mag Hon N u x nwuz.d “aw ~ » x anus-d Aw .Muuu hu>uam huwmcuuaa ouuaawma Hoowuuu> vuuouuuoo 6O 0.0hw! 0.mmmn 0.000? How 00m 0.00mi 0.00mn 0.DNNH 0mm 0mm 0.hm0u 0.000 0.0000 nmm 0mm 0.0mm! 0.00NM 0.mNNH mus own 0.Hmfia 0.00m 0.0000 NNK mmm 0.0mm! 0.0m0m 0.WNNu mum mum 0.m0& 0.000“ 0.0000 «mm hmm 0.00m! 0.0m”? 0.0HNH Awe BNN 0.mah 0.mmfiq 0.0000 0N1 0mm 0.0mm! 0.00M? 0.DNNH 0no 0mm 0.fih¢ 0.mmnu 0.0000 mam mmm 0.00M! 0.0mm¢ 0.mNNfi mum mmm 0.00m 0.000fi 0.0000 mum «mm 0.00m: 0.0mh¢ 0.0aNH ¢HO cum 0.moH 0.00m“ 0.0000 mam mmn 0.0unl 0.000? 0.0HNfi Mac MNM 0.0m 0.000N 0.0000 0am Nmn 0.0mN! o.omqm 0.mNNH NHO NNM 0.m0 0.00NN 0.0000 mum awn 0.0mm! o.omnm 0.mNNn “H0 HNM 0.0g! 0.mmmm 0.0000 cam 0mm 0.0mm! 0.00mm 0.mNNH 0H3 0mm 0.~Nai 0.mmmN 0.mmow Mum m¢m o.omfil o.omhm o.ofimu $06 afim 0.NMH1 0.mmhm 0.mmom Nam .mcm 0.00s! 0.0mmm 0.0HNH moo mum O.¢Mfii O.mm0N Oommfim Hum A?” O.mm.§ 0.00H0 o.odnmu NOD AHM 0.Nmfil 0.mm~m 0.0000 0am 0¢n 0.0m! 0.00m0 o.ofimn 006 0am 0.mmH! o.oovn 0.0000 mom mVM 0.0 0.0mm0 0.0HNfi mom mam 0.q0m! 0.mmmm 0.0000 mom ¢¢n 0.0M! 0.0mh0 o.ofimfi V06 ¢fim 0.Nfimt 0.00am 0.0000 mom mcm 0.0m! 0.mma0 o.mmma M03 Mam 0.NuN! o.ooom 0.0000 00m qu 0.0m 0.mNHh 0.mNNu N06 Nam 0.¢~Ni 0.mm&m 0.0000 mom HVM 0.0mm” o.oomm 0.mNNH H00 Ham 0.mmml 0.mm0¢ 0.0000 #01 0¢m 0.000? o.oficm 0.mNNH ”Ni 0am 0.maNI 0.mm~¢ 0.0000 mom 0mm 0.00NM 0.0H¢h 0.mNOH 0mm 00M 0.5Mfl! 0.mmw¢ 0.0000 mom mmn o.omm o.ofich 0.mmm afim mom 0.5mfil 0.mmm¢ 0.0000 flog nmm 0.mmfiu o.oflck 0.mN0 man how 0.0M! 0.00MN o.ofimu 0mm 0mm 0.mmvm 0.0qch 0.mN¢ ham 00m 0.0m: 0.00mN o.ofiwfi mac mmm 0.00m? 0.0H¢h 0.mNN 0am mom 0.0m! 0.00NN 0.mNNu ?NO ¢mm o.oomm 0.0H¢h 0.0 mum ¢0m 0.00! 0.0mmm 0.mNNH MNG mmm o.mnmm o.oomn 0.0 vfim mom 0.0Nui 0.mmun o.ofiNu NNG Nmm 0.0m“ o.ofimm 0.0 Mum mom 0.00al 0.00mm 0.mNNH Hmc "mm o.omfi! 0.000h 0.0 Nam Hon ~ » — uwuz_d MR. ~ » x nVM=:d u? .33 amino 53:35 Sum—owns .33qu 0309.800 61 0.m00a 0.mmhn 0.mmmm my) 0N¢ 0.0m¢n 0.00¢ 0.00m¢ 0Hh 00m 0.00¢H 0.mm0u 0.mhmm ma) oa¢ 0.m¢¢n 0.000 0.00m¢ nah mmn 0.mouN 0.mmmu 0.00mm AH) mH¢ 0.¢hnfi 0.00m 0.000¢ ¢Hh mmm 0.0NNN 0.mm¢n 0.mnmm 0“) hfi¢ 0.¢m0« 0.000H 0.00m¢ muh hmn 0.05mn 0.00¢u 0.mNmm mu) 0n¢ 0.0mm 0.00NH 0.00m¢ Nah 0mm 0.0Nmn 0.mmNH 0.0Hmm ¢H> mu¢ 0.00m 0.00¢fi 0.00m¢ "HP mmm 0.0N0¢ 0.mmufi 0.mm¢m NH) ¢fi¢ 0.fi¢¢ 0.000H 0.000¢ 0gb ¢mm 0.0NN¢ 0.mmo~ 0.mh¢m NH) MH¢ 0.NNM 0.00mH 0.00m¢ 60h nmm 0.0Nm¢ 0.mmo 0.0m¢m Hub Nn¢ 0.m0N 0.mm&H 0.00m¢ 00h mmn 0.0Nm¢ 0.mmm 0.mn¢m 0a) aa¢ 0.0m 0.00NN 0.00m¢ 50k Hmn 0.m¢o¢ 0.mmh 0.mm¢m 00> 0a¢ 0.fiN 0.mwmm 0.00m¢ 00% 0mm 0.0mm¢ 0.mm0 0.00¢m m0: 00¢ 0.MN 0.000N 0.00m¢ mOh ahm 0.N00¢ 0.mmm 0.mmmm NO) .m0¢ 0.mHI 0.00mN 0.00m¢ ¢0H mum 0.mm0¢ 0.00m 0.mmmm 00> n0¢ 0.mhi 0.000m 0.00m¢ m0h hum 0.00¢n 0.mmm 0.mmnm m0) 00¢ 0.¢0fi! 0.00Nm 0.00m¢ N0h 0nm 0.0mmm 0.00m 0.mmmm ¢0> m0¢ 0.hmnl 0.00¢m 0.00m¢ “Oh mmm 0.0m¢n 0.mmu 0.mnmm m0) ¢0¢ 0.00s 0.mmmm 0.mNmH mfim ¢hm o.omMM 0.mm 0.mhmm N0) m0¢ o.omfi 0.mmmm 0.0HON ¢Hm mum o.om¢m 0.0 0.mmmm fiOD N0¢ 0.00 0.mmmm o.ofimm Mam NAM 0.0mm o.oomm 0.00N¢ mo: H0¢ 0.00! 0.mmmm 0.0H¢N Nam Hum 0.mN 0.mm0N 0.00N¢ m0: 00¢ o.oma 0.mmmm 0.0HON Hfim 0mm 0.m¢ o.oomm 0.00N¢ n03 00m 0.0¢ 0.mmmm o.oomm ofim 00m 0.0m o.oofim 0.00N¢ 00: man 0.0mm 0.mmmm 0.000m 00m m0m 0.NNI 0.mmmm 0.00N¢ no: how 0.0m 0.mmmn 0.00am mom h0m o.mol 0.mm¢m 0.00N¢ ¢03 00m 0.0M! 0.mmmm 0.00¢m how 00M 0.00! 0.000m 0.00N¢ no: man o.¢N! 0.mmmm 0.000m 00m m0m 0.mmul 0.00hm 0.00N¢ N0: ¢om 0.0¢l 0.mmmm 0.00am mom ¢0m o.h0ul 0.mmmm 0.00N¢ #03 man 0.0¢I 0.wmmm 0.000¢ ¢0m m0m o.omom 0.00H 0.00m¢ mHH Nam 0.00! 0.mmmm 0.00N¢ mom N0m o.onon 0.0%N 0.00m¢ Nah Hon 0.0mfil 0.mmmm 0.00¢¢ Now H0m ~ p u “R.uzfi_ 0“ ~ p u ufluz_d fl“ .33 .333 53335 030an .3332, vououuuoo 62 0.00al 0.000¢ 0.0000 00> 00¢ 0.00s! 0.00a¢ 0.00N0 0u3 00¢ 0.Nfi0l 0.000¢ 0.0000 ¢0> 00¢ 0.00mi 0.00H¢ 0.00¢0 0a: 0¢¢ 0.N0NI 0.000¢ 0.0000 00> 00¢ 0.0aNl 0.00n¢ 0.0000 ¢H3 0¢¢ 0.NOHl 0.000¢ 0.0000 N0» 00¢ 0.00ul 0.00«¢ 0.0000 0”: 0¢¢ 0.N0«I 0.000¢ 0.0000 n0> 00¢ 0.0«N: 0.00«¢ 030000 NH: 0¢¢ 0.00m! 0.0000 0.0«0¢ 0Hx 00¢ 0.00“! 0.00H¢ 0.00a0 «a3 0¢¢ 0.00s! 0.0000 0.00fi0 0Hx ¢0¢ 0.000! 0.00n¢ 0.00¢0 0H3 ¢¢¢ 0.00ul 0.0000 0.0000 0Hx 00¢ 0.00al 0.00u¢ 0.0000 003 0¢¢ 0.00al 0.0000 0.0000 ¢fix 00¢ 0.00fil 0.00H¢ 0.0000 003 0¢¢ 0.00”! 0.0000 0.0000 Max n0¢ 0.00“! 0.00u¢ 0.0000 003 H¢¢ 0.000! 0.0000 0.00fi0 flux 00¢ 0.00Hl 0.00N¢ 0.00H0 003 0¢¢ 0.0NNI 0.0000 0.0«00 HHX 00¢ o.omul 0.00a¢ 0.00¢0 003 00¢ 0.00fi! 0.0000 0.0000 0ax 00¢ 0.00! 0.00a¢ 0.0000 ¢03 00¢ 0.00”! 0.0000 0.0000 00x 00¢ 0.00! 0.00n¢ 0.0000 003 00¢ 0.00HI 0.0000 0.0000 00x 00¢ 0.0HH 0.00H¢ 0.0000 003 00¢ 0.00«1 0.0000 0.0000 00x 00¢ 0.00 0.00fi¢ 0.00am fi03 00¢ o.omfii 0.0000 0.0000 00x ¢0¢ 0200a! 0.00am 0.0000 003 ¢m¢ o.omfi! 0.0000 0.00¢0 00x 00¢ 0.00”! 0.0000 0.0000 mm: 00¢ 0.00Hi 0.0000 0.0000 ¢0x 00¢ 0.00Hi 0.000N 0.0000 HM) 00¢ o.omul 0.0000 0.0000 00x H0¢ o.omHi 0.0000 0.0000 00) Hn¢ 0.00: 0.0000 0.00am Nox 00¢ 0.0m 0.0000 0.0000 00) 00¢ 0.00! 0.0000 0.00N0 «0x 00¢ 0.00! 0.000N 0.0000 00) 00¢ 0.00! 0.000¢ 0.0000 ¢N3 00¢ 0.0m 0.0000 0.0000 00) 0N¢ 0.00HI 0.000¢ 0.00Nm 003 00¢. 0.00 0.00¢N 0.0000 0ND 00¢ 0.00: 0.00N¢ 0.0fi¢m NNB 00¢ 0.00H 0.0000 0.0000 00) 00¢ 0.0Nfi! 0.00H¢ 0.0000 #03 00¢ 0.000 0.00NN 0.0fi00 ¢ND 0N¢ o.ofiml 0.00a¢ 0.000¢ 0N3 ¢0¢ 0.0¢0 0.00am 0.0000 MN) ¢m¢ 0.00m! 0.00H¢ 0.00N¢ 0“: 00¢ .0.00¢ 0.0000 0.0000 mm: 00¢ 0.000! 0.00fi¢ 0.0H0¢ 0fi3 00¢ 0.000 0.000“ 0.0000 Hm) NN¢ 0.00NI 0.00H¢ 0.0H00 0fi3 fi0¢ 0.0mofi 0.000H 0.0H00 0N) fim¢ u u x tugs—d n“ ~ » u “flux—d ufia .0000 00550 0360005 0.30:qu ”00.3000; 000000.80 63 0.00: 0.0000 0.0000 0c: 0¢0 0.000: 0.000¢ 0.000¢ 00> 000 0.00: 0.0000 0.0000 0c) 000 0.000: 0.000¢ 0.000¢ ¢0> 000 0.000: 0.0000 0.0000 0c: 000 0.0001 0.000¢ 0.000¢ 00> 000 0.000: 0.0000 0.0000 cc: 000 0.000: 0.000¢ 0.00¢¢ 00> 000 0.000: o.00¢0 0.0000 0c) 000 0.000: 0.000¢ 0300¢¢ 00> 000 0.000: 0.0000 0.0000 00> 000 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.0000 0.00¢0 00> «00 0.000: 0.000¢ 0.000¢ 00> «00 0.0¢0| 0.0000 0.000¢ 000 000 o.occa 0.000¢ 0.000¢ 00> 000 0.000: 0.0000 0.000¢ 000 000 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.0000 0.000¢ 000 000 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.0000 0.000¢ 000 000 0.000! 0.000¢ 0.000¢ 00> 000 0.000: 0.000¢ 0.000¢ 00N 000 0.0001 0.000¢ 0.000¢ 00> 00¢ 0.000: 0.000¢ 0.000¢ 000 .000 0.000: 0.000¢ 0.000¢ 00> 00¢ 0.000: 0.000¢ 0.000¢ 000 000 0.000: 0.000¢ 0.000¢ 00> 00¢ 0.000: 0.000¢ 0.000¢ 000 000 0.0c0: 0.000¢ 0.000¢ 00> 00¢ 0.0000: 0.0000 0.000¢ «00 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.000¢ 00N «00 0.00 0.000¢ 0.0000 00> 00¢ 0.000: 0.0000 0.000¢ 000 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.000¢ 000 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.0000 0¢> 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.0000 0¢> 000 0.¢00: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.0000 00> 000 0.000: 0.000¢ 0.0000 ¢0> 00¢ 0.000: 0.000¢ 0.0000 00> 000 0.000: 0.000¢ 0.0000 00> 000 0.0001 0.000¢ 0.0000 00> 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.0000 00> 000 0.¢00: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.0000 o¢> 000 0.0001 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.000¢ 0.0000 00> 00¢ 0.000: 0.000¢ 0.000¢ 00> 000 0.000: 0.000¢ 0.0000 00> 00¢ u u x Jfimgfid a“ 0 u x 000.0. :1 .0000 00>h=0 000ma0u:0 00000005 0000uu0> 00000uuoo 64 0.000! 0.0000 o.oo¢¢ «00 000 o.m¢0l 0.0000 0.0000 000 000 0.000! 0.0000 0.00?? «00 000 0.000! 0.0000 0.0000 000 000 0.000! 0.0000 0.00?? «c0 000 0.000! 0.0000 0.0000 000 000 0.000! 0.000¢ 0.00?? «00 ¢mm o.¢omi 0.0000 0.000¢ mm0 000 0.000! 0.000¢ 0.00?? €00 000 o.¢m0i 0.0000 0.000¢ mN0 000 0.000: 0.000¢ 0.00?? €00 000 0.0001 0.0000 0.000¢ m00 000 0.000! 0.000¢ 0.00¢¢ «00 000 0.000! 0.000¢ 0.000¢ m00 000 o.¢mml 0.000¢ 0.00?? «00 000 0.000! 0.000¢ 0.000¢ m0o 000 o.¢¢01 0.000¢ o.oo¢¢ «mo 0¢w 0.0001 0.000¢ 0.000? 000 000 0.000! 0.00?? 0.00?? «00 m¢m 0.00m: 0.000¢ 0.000¢ mho ¢0m 0.00mi 0.000¢ 0.00?? «00 0¢m 0.000! 0.000¢ 0.000¢ m0o 000 0.000! 0.000¢ 0.00¢¢ «no 0¢m 0.00m! 0.000¢ 0.000¢ mmo 000 0.000! 0.000? o.oo¢¢ «co mcm 0.000! 0.000¢ 0.000¢ mco 000 0.000! 0.000¢ o.oo¢¢ «no ¢¢0 0.000! 0.00¢¢ 0.000¢ mmo 000 0.000! 0.000¢ 0.00?? cmo 000 0.000! 0.00?? 0.000¢ mmo 000 0.000i 0.000¢ 0.00?? «00 New 0.000! 0.000¢ 0.000¢ m0o 000 0.000? 0.0000 0.0000 0m) 0¢m n > u 0:... ‘. ~ » u ‘02... flu .muuv 0o>u=m 0u0mcoua0 00006003 0mo0uuo> wouuouuoo APPENDIX C The Remanent Magnetization Orientation and Intensity for Each Sample: NRM, Thermally Cleaned, and A.C. Cleaned. 65 66 m80\saw mIoH x m.nq zufiwcwucH vmcmmao wwmuw>< o.~e- “.mofi n.am- ~.Hw m.mm o.oq- m.ow mwmum>< -- -- -- o.~q H.qq- ~.~m N.aq w.~q- o.mw onm -- -- -- ~.He ~.qq- a.qo m.nq m.oq- q.q- Amvm -- -- -- m.oo m.~q- m.qn m.oo N.m- m.mo Aqvm -- -- -- «.mq ~.~q- o.m~ m.mm m.mm- o.m~ Amvm -- -- -- «.mn o.qm- m.Hm m.mm ~.oq- a.ao fi~vm e.Hm o.~e- n.~ofi -- -- -- o.qw n.~q- o.ou Aden mau\sam mIoH x .ucH .uma mao\=am mIoH x .ocH .uwa mao\:am mIoH x .ocH .oma maaamm muamcwucH muamcwucH muwmcwuaH Aemcmmau .o.< m.om- o.NHH o.om- H.HmH oo.~ o.Hm- w.mm~ mmmum>< -- -- -- -- ~.mfi- ~.am~ -- n.q- ~.qq~ on< -- -- -- hm.q m.eo m.oo~ em. m.-- «.mmfi Amv< -- -- -- ow.m m.m- m.mm~ an. N.~o- o.a- Aev< -- -- -u aq.c H.0N- o.omH no. o.n- H.5mfi Amv< mm.~fi o.ow- n.0nfi -- -- -- ow.“ n.n- H.an Amv< o~.o~ o.-- H.q¢H -- -- -- cm.~ N.w- m.e- A~v< mao\sam mIOH x .UGH .uwo mEU\:am mloH x .ocH .umn maU\sam mloH x .ocH .owQ quamm hufimcmuaH mufiwawuaH huawamucH Aumammfiu .o.< III III III an.q~ «.moI ~.nm mm.o~ w.nql o.mm Amvn -- -- -- Ha.HH ~.am- N.Ho mN.~H m.oq- w.wm Aden mEU\sam mIoH x .ucH .umo mao\sam mIoH N .ocH .uma mao\=aw mica x .oaH .umo mHQEMm mufimcmuaH mufimawuaH mufimawuaH Aemammfio .o.< o.~q| o.oo m.nmI o.~o «5.0 o.qu ~.qo mwmuw>< -- -- -- mm.q o.eq- n.qm o~.q H.mq- m.mm ono -- -- -- om.m ~.me- H.5m ec.m n.~m- H.~o Amvo -- -- -- mm.m H.am- «.mo oo.q H.5q- w.~c Aqvu -- -- -- qw.o~ ~.qm- ~.qo o~.HN o.mm- o.~o Amvo III III III mm.m H.o~I m.¢e ~¢.m m.wmI 0.50 Amvo No.fi o.~q- o.oo -- -- -- qw.~ n.0q- a.we Afivo mEU\sam mica x .05H .own mao\=Em mIoH x .oaH .uwQ mEU\DBw mIoH x .oaH .owa quamm muwwamucH mufiwcwucH mufiwamuaH Awmawmao .u.< H.m- m.wHH o.q- m.qu m.~w o.mm- o.qu mmmum>< -- -- -- m.~ q.-- m.ooH w. H c.9q- o.qu Have -- -- -- o.ow m.mq- N.emH «. em n.5q- o.me qum -- -- -- n.5m H.¢H- «.meH H .m: ~.¢H- ¢.HqH Amen -- -- -- n.0eH m.oH- «.mnH m. NNH “.0H- ~.mmH Hmvm m.ww H.m- w.wnH -- -- -- m.mm o.om- w.omH Hva Eo\sam Ca x .ucH .owa EU\:Em IoH x .oaH .umo ao\:am ION x .uaH .umo wfiaamm m m- m m m m hufimawucH mufimcmucH hufiwcwuaH HumcmmHu .o.< -- -- -- -- -- -- -- o.H- n.mo Hovm -- -- -- Hm.o~ H.Hm- m.~n oH.NH o.m¢- ~.om Hmvm -- -- -- o~.q~ m.we- a.H~ w~.mH w.oe- “.mH qum -- -- -- Hm.Hm m.mm- m.mm -.¢m ~.mq- o.ow Hmvm -- -- -- N.mH m.wm- m.Ho mH.NH ~.Hm- m.HH HNVm -- -- -- m.qH -- -- ma.HH H.m~n H.H Hva mEU\:Em mIoH x .ucH .own mau\saw mIoH x .ocH .qu mao\sam mIoH x .ocH .uoa mHaamm mufimcwuaH AufiwcwucH mufiwcmucH Avwcwmao .o.< o.Hq- ~.wm a.wm- N.~m o.~q- m.qm mmmum>< In- III III wm.q “.mmn m.on mm.q o.omI «.0n AeV< mm.m N.wo- m.m~m Hove Hm.H m.nn m.m~ Amvu we. m.mmI o.mm~ Aevu um.m «.mI 0.5m Amvu em. N.oI w.wn Amvo aoccmm aoeamm aoucmm aoecmm Hm.N m.Hm- ¢.HwH HHvu mEU\:Em MIOH x .ucH .omo mao\=aw mloH x .03H .umn mEU\=Em mIoH x .UGH .qu mHQSMm mufimcwucH mufimcmuaH mufimawuaH Awmamwfiu .u.< -- -- -- q.~e m.wn- o.oa H.0n m.oo- a.cw Anv< m.ce- m.meH «.50- w.omH o.mo- o.mmH mwmum>< -- -- -- -- -- -- 0H.q o.qm- m.ooH HQV