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ABSTRACT

CALCULATED STRUCTURAL RESPONSE USING

A “REDUCED” FINITE ELEMENT MODEL .J

BY

Mark Norman Pickelmann

The use of finite element models for engineering

design has grown rapidly in the past few years. These

models are useful tools for predicting the behavior of

systems long before the system is actually constructed.

The resulting models, however, are often quite large,

requiring hours of computer time to use.

This thesis demonstrates that a finite element

model can be reduced for the purpose of calculating

structural response. This reduction is done

systematically so that the model is transformed into a

set of first order ordinary differential equations.

These equations are solved and used to calculate

frequency responses.

This reduction offers considerable time and cost

savings over computing the response directly from the

finite element model.
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CHAPTER 1

INTRODUCTION

The use of finite element models for engineering

design has grown rapidly in the past few years. These

models are useful tools for predicting the behavior of

systems long before the system is actually constructed.

For complex structures, the finite element model

can become quite large, requiring a large computer for

the calculations. Even with the computing power of large

computers the finite element models require a great deal

of computing time. However, for the purpose of

calculating the frequency response of a structure in a

specified frequency range, the finite element model can

often be reduced so that the calculation can be done on a
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CHAPTER 1

minicomputer. This thesis is concerned with the process

of reducing a large model to a smaller one for the

purpose of such a frequency response calculation.

Chapter 2 explains the formulation of a large

finite element model, and its transformation into a modal

model. The modal representation has a coupled

differential equation and associated mode shape for each

degree of freedom in the original finite element model.

Chapter 3 presents the rational for the reduction of the

modal model. Chapter 4 introduces the forcing functions

so that frequency response can be calculated, and the

calculation of the response from the reduced model is

presented in Chapter 5. Chapter 6 presents some details

of a project where structural responses were calculated

by this method. A summary of the assumptions used in the

analysis are reviewed in chapter 7 along with some of the

advantages to this method.
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CHAPTER 2

STRUCTURAL MODEL

The goal of the analysis discussed here is to

develop an analytical model of a structure which predicts

the response of that structure to forces of a given

frequency range. The starting point of the analysis is a

finite element model of the structure, which yields

equations of the form.

[MJ{N} + [C3{i} + llw [DJ{i} + [K]{X} = {F} exp(i w t)

Equation 1
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CHAPTER 2

Since our main interest is the calculation of

frequency response, the forcing function has been assumed

to be harmonic. However it could be any forcing function

provided it can be expressed as a Fourier series.

In the structural model developed here dissipative

forces arise from two different sources, viscous damping

and structural damping. The damping forces which are

proportional to velocity are classified as viscous

damping. Viscous damping occurs when molecules of a

viscous fluid rub together, causing a resistive friction

force that is proportional to, and opposing, the velocity

of an object moving through the fluid.

Damping forces which are proportional to

Displacement are classified as structural damping.

Structural damping may be viewed as a sliding friction

mechanism between molecular layers in a material. The

friction force is proportional to the deformation or

displacement from some equilibrium point with an

orientation opposite the relative velocity. Imagine a

rod made up of a bundle of axial fibers. The siding
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STRUCTURAL MODEL

friction force between each fiber and its neighbor will

increase as the rod is bent and the fibers are pinched

together. This pinching phenomena occurs in most

materials as the various molecular layers slide past one

another [1] [2].

A complex structure such as an automobile includes

several sources of dissipation. The shock absorber,

whose design mission is to provide damping, is closely

approximated by a viscous model. But important

dissipation occurs in mounting elements such as coil

springs and rubber mounts as well. Tests indicate that

the dissipation of a spring is most closely approximated

by a structural damping model. Tests done on rubber

mounts indicate a combination of viscous and structural

dissipation is needed to adequately model the

dissipation.

For the problems of concern here, we will assume

the structure is lightly damped, resulting in small but

non zero dissipation forces. Since the total dissipation

is small, the natural frequencies and mode shapes of the

PAGE 5



CHAPTER 2

structure can be determined from the mass and stiffness

matrices. But the amplitude of the forced response of

the structure depends on the damping as well.

In general, the matrices in Equation 1 are not

diagonal. Therefore the solution of one equation depends

on the solution of others and the system of equations is

said to be coupled. The size of the matrices depends on

the number of elements in the finite element model and

the number of degrees of freedom of each element. The

structure discussed as an example is modeled by 500

elements, each with six degrees of freedom, thus Equation

1 would include 3000 coupled equations. It is desirable

to simplify the model in such a way as to make the

response calculation more convenient.

The procedure which leads to a simplified model

begins with the equations of undamped free vibration.
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STRUCTURAL MODEL

[M] {I} + [K] (x; a {0} (2)

Hhere:

[M] and [K] are n x n matrices

Equation 2 is formulated from Equation 1 by neglecting

the damping matrices and setting the force vector to

zero. A solution for {X} may be found in the form

{X} B {A} exp(i w t) (3)

Using Equation 3 in Equation 2 results in

2
( -w [M] + [K] ) {A} exp(i w t) I {0} (4)

Rewriting Equation 4 defines the eigenvalue problem

[K] {A} = X [M] {A} (5)



CHAPTER 2

The solution of Equation 5 results in a set of n

eigenvalues xi. If these are distinct, as is the usual

case, there will be a corresponding unique set of n

eigenvectors {A}i. Since [M] and [K] are symmetric and

positive definite, both the eigenvalues and eigenvectors

are real. The eigenvectors are used to form two

transformation matrices [U] and [U]T where the

eigenvectors {A}i make up the columns of [U]. The

transformation matrix [U] is used to define a modal

coordinate Y

{X} 8 [U] (V) (6)

when the relationship from Equation 6 is substituted into

Equation 1, which is then premultipled by [UJI we get

[Mmlle + [CmJ{Y} + l/w [Dm]{Y} + [Km]{Y} a {Fm} (7)

This coordinate transformation uncouples the mass

and stiffness matrices, but in general does not uncouple



STRUCTURAL MODEL

the damping matrices [3]. Equation 7 is called the

"modal model“. The modal model is a set of n coupled

second order ordinary differential equations where n is

the dimension of Equation 1. Each coordinate Yi of the

modal model is associated with one natural frequency and

its corresponding mode shape or eigenvector.

The steps described above are usually done by the

finite element programs on large computers. The output

from the finite element program would be the

transformation matrix [U], the diagonal modal mass matrix

[Mm], the diagonal modal stiffness matrix [Km], and the

damping matrices [Cm] and [Dm].

The damping matrices can be thought of as a

coupling by which energy can flow from one mode to

another. The damping can then be thought of as an input

force. This can be seen by rewriting Equation 7 in the

form

[Mm] {Y} + [Km] {Y} . {Fm} - [Cm] {9} - 1/» [Dm] {9} (8)
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CHAPTER 2

The fact that the {Fm} are harmonic dictates that the

velocities {Y} are also harmonic at the same frequencies.

Thus, it is convenient to think of the right hand side

of Equation 8 expressed as {Fm}‘exp(iwt).

[Mm] {Y} + [Km] {Y} a {Foi‘oxpti w t) (9)

The solution to Equation 9 is shown in Figure 1.

Of course, in order to calculate a response the

damping must be included in the left hand side of

Equation 8. But the introduction of this small amount of

damping will limit the peak amplitude but will not

drastically alter the basic chatacter of the frequency

response as shown in Figure 2. Thus if the frequency of

the force is near a natural frequency, the response of

that mode will be large. By knowing the frequency range

over which the forcing function is active, the modes

which heavily participate in the response can be
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STRUCTURAL MODEL

identified. Those which do not participate are

eliminated by dropping the associated modal coordinate

from Equation 7 and the mode shape vector from the

transformation matrix [U].

The number of modes has been reduced by detemining

which modes fall significantly outside of the frequency

range of the forcing function. A rule which is often

used is to keep modes whose associated natural frequency

is less than twice the maximum frequency of the force

[4].

Since the number of modes which have meaningful

participation in the response may be a great deal smaller

than the number of degrees of freedom, the size of

Equation 7 and the transformation matrix [U] can often be

substantially reduced. In our previous example there

were 500 elements each with six degrees of freedom

resulting in 3000 equations. If, for example, only 100

of the 3000 natural frequencies are determined to

meaningfully participate in the response, we can reduce

the size of the matrices from 3000 x 3000 to 100 x 100

without significant loss in accuracy.
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CHAPTER 2

At this point the problem has been substantially

reduced. But the equations are still coupled in the

damping matrices and thus the response calculation is not

in a convenient form. needs further attention.
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CHAPTER 3

UNCOUPLING OF MODAL EQUATIONS

Chapter 2 showed that the n degree of freedom

finite element model could be cast in the form of the

modal model of Equation 7 and that the modal model could

be reduced by eliminating the modes whose participation

in the response was determined to be insignificant. The

reduced modal model is then a set of k coupled second

order differential equations. The fact that k<<n

facilitates the solution. However, since the equations

are still coupled in the damping matrices, they are not

in a convenient form for solution. In this chapter a

coordinate transformation will be introduced to uncouple

the modal equations.

In some cases the modal equations are uncoupled by

neglecting the off diagonal terms in the damping
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CHAPTER 3

matrices. This assumes that the off diagonal terms have

a small effect on the response of the system. To

uncouple the modal equations without having to make this

assumption, a more general approach will be taken. To do

this the reduced form of Equation 7 is written.

[MmJ(Y} + [Cm]{Y} + l/w [DmJ{Y} + [Km]{Y} 8 (Po) (10)

The matrices of Equation 10 are of dimension k. Before

this set 'of equations can be uncoupled the l/w which

multiplies the structural damping matrix must be

eliminated. This is done by assuming a solution for {Y}

of the formESJ

{Y} a {B} exp(i w t) (11)

Taking the first derivative with respect to time yields

{Y} = i w {B} exp(i w t) (12)
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UNCOUPLING OF MODAL EQUATIONS

substituting Equation 11 into Equation 12 yields

{9} - i w {Y} (13)

Following the procedure of [5], Equation 13 is then

substituted into Equation 10 which results in

[Mm]{Y} f [CeltYI + ( [Km] + i [DI] ){Y} ‘ {Fm} (14)

Next, consider the homogenous solution i.e.,

{Fm} - {0}. The following solution for {Y} is assumed

{Y} = {C} exp(i t) (15)
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CHAPTER 3

Taking the first and second derivatives with respect to

time of Equation 15 and substituting them into Equation

14 will result in

( izrnaz + x [Cm] + {[Km] + i [Dell ) {C} - {0} (16)

Equation 16 has a nontrivial solution only if the

determinant of the coefficient matrix is zero. This

results in an algebraic equation of order 2k in X (k

being the dimension of the matrices). This equation will

result in a set of 2k x solutions. with each eigenvalue

xi there is an associated eigenvector {C}i, and both are

complex. In the case where the system is modeled with

viscous damping only, the eigenvalues and eigenvectors

would appear as complex conjugates, but with structural

damping in the system the pairs are rotated so they are

no longer conjugates [7]. This means that the

eigenvalues and eigenvectors cannot be used to solve the

transient problem but the solution must be of the form of

Equation 15 £63. The forced vibration problem however

can be solved by uncoupling Equation 14.
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UNCOUPLING OF MODAL EQUATIONS

The eigenvectors can be used to form the k x 2k

rectangular modal matrix [V]. But since, this modal

matrix [VJ cannot be used as a transformation matrix of

the form

(V) 8 [V] {Z} (17)

to obtain a solution to the nonhomogeneous problem. The

reason is that there are 2k modes and consequently 2k

coordinates 21, and only k coordinates Yi' This

difficulty can be overcome by introducing a set of.

auxiliary variables and converting the set of k second

order ordinary differential equations into an equivalent

set of 2k first order ordinary differential equations

known as Hamilton's Canonical Equations (8]. The

auxiliary variables are the modal velocities {Y}. The

modal coordinate v and the modal velocities § define a

set of new variables P in the following way

-—PAGE 19



CHAPTER 3

P. a i i - i,k

(18)

Pi+k 3 Yi i I 1,k

P is then used into Equation 14 to formulate the

following:

\

{P} + {P} =

[03 [Mm] -[Mm] [OJ {0}

Mm] [Cm] [OJ ([KmlfiIDmJ) {Fm}

Equation 19

which can be written as

(up: {5} + [Kp] {P} a {Fp} (20)
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UNCOUPLING OF MODAL EQUATIONS

Setting {Fp} - {0} defines the homogeneous problem

which is similar to Equation 2 and can be solved in a

similar fashion. The result is a set of 2k complex

eigenvalues and a corresponding set of 2k eigenvectors.

As before, the eigenvectors are used as the columns of

T

the transformation matrix [V] and as the rows of [V].

Equation 21 defines a new coordinate Z

{P} = [V] {Z} (21)

which is substituted into Equation 20 and the result is

premultiplied by [V]: leading to

[M2] {2} + [K2] {2} a {F2} (22)

This coordinate transformation uncouples both the

mass and stiffness matrices. Equation 22 is now a set of

2k uncoupled ordinary first order differential equations.
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CHAPTER 4

FORCING FUNCTION

In the preceeding chapters a finite element model

was reduced first to a coupled second order modal model

and then to a first order uncoupled modal model, which is

the left hand side of Equation 22. Before Equation 22

can be solved the right hand side of the equation must be

defined. Two ways of doing this will be discussed in

this chapter.

In order to calculate a response to a forcing

function first the function must be defined. In the

analysis here the forcing function will first be defined

for the structure and then undergo the same

transformations as the finite element model. The forces

which act on the structure can be either measured or

analytically determined forces.
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FORCING FUNCTION

Analytical functions can be any periodic forcing

function limited only by the frequency restrictions used

to reduce the equations. They could be obtained by

simulating components of the system and calculating the

forces which would be transmitted to the structure, or

the frequency range of interest may be spanned for the

purposes of computing frequency response. Once the

functions have been calculated or defined they are

transformed into the frequency domain.

Test data can be obtained by measuring the forces

which would be transmitted to the structure. This

testing can be carried out in two ways: 1) measuring the

forces on a prototype of the structure or 2) measuring

forces from components which transmit forces to the

structure being studied. If the second approach is

chosen care must be taken to assure that the boundary

conditions of the components are the same as in the total

system. Once the forces have been measured the Fast

Fourier Transform (FFT) can be taken to put the forces

into the frequency domain.

PAGE 23



CHAPTER 4

At this point the forces which act on the

structure are defined in the frequency domain. A check

must be made see that they fall within the original

specified frequency range. Forces having large

magnitudes and oscillation frequencies outside of the

specifed range would violate the original assumption

which was used to reduce the modal model. If the

assumption is not valid then the calculated response will

be inaccurate.

Each of the force time histories has been broken

up into discreet frequencies. At a given frequency w

there is an amplitude {D} and a phase angle I.

{F} I {D} e(i Q) (23)
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FORCING FUNCTION

Letting exp(i I) 8 Cos(Fee) + i Sin(Fee) we have

{F} I {R} + i {I} (24)

{R} i {D} Cos(§)

{I} I {D} Sin(C)

{F} is then premultiplied by the reduced w)T which

results in {Fm}. {Fm} is then used to create the {Fp}

vector which is premultipled by [VJT resulting in (F2).

Now that {F2} is defined Equation 22 can be solved.
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CHAPTER 5

RESPONSE CALCULATION

Thus far a finite element model has been reduced

to a set of uncoupled first order ordinary differential

equations. Chapter 4 defined the forcing function for

these equations. This chapter will discuss the solution

of the uncoupled equations.

Since the equations represented by Equation 22 are

uncoupled, each can be solved independently. If the

equations to be solved are written in the form

3 N f r N ll. . . . f. exp (i w t) (25)

J J J J J
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RESPONSE CALCULATION

Following the procedure given in [9], the solution can be

expressed as

2. = f. exp( i w t )l[ k. +i w m.) (26)

J J J J

With all of the 2k zj known, Equation 21 can be

used to find all 2k pj. The definition of P in Equation

18 is then used to find the k second order modal

coordinates yj. The reduced form of Equation 6 can then

be used to find the response at any point in the original

finite element model.

These steps are repeated for each discreet

frequency in the forcing function. The result is a

complex amplitude for each frequency. The magnitude of

the response is found by taking the magnitude of the

complex number. The phase angle with respect to the

forcing function can be computed based on the real and

imaginary parts of the amplitude. A time response can be

computed from the frequency response by taking the

inverse Fourier Transform.
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The main goal of the analysis was to find a simple

and fast way to calcualte predicted structural response

using a large finite element model. This was done by

reducing the finite element model to a small set of

complex modes. The response was then calculated by

summing the modes. The next chapter will give some

highlights of a project in which this analysis was used.
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CHAPTER 6

OLDSMOBILE PROJECT

In the preceeding chapters it was shown that a

finite element model could be reduced to a set of

uncoupled first order ordinary differential equations.

These equations were then solved for the response to a

given forcing input. This chapter gives some of the

details of a project in which this analysis was used.

Currently the Albert H. Case Center for Computer

Aided Design at Michigan State University is involved in

a joint project with the Oldsmobile Division of General

Motors. One goal of this project is to limit the forces

transmitted from the engine to the passenger compartment
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of an automobile. As part of this project a method was

developed to quickly and inexpensively calculate the

response of an automobile to a given set of forces from

the engine.

The finite element model for this project was

created by General Motors Engineering Staff, using the

finite element program Nastran. The model consisted of

408 nodes, each of which was allowed six degrees of

freedom, yielding 2448 equations to be solved for

frequencies and mode shapes. The Nastran program solves

this second order eigenvalue problem and uses a post

processor to create the modal model. Of the 2448 modes

found, 60 fell within the frequency range of interest.

The diagonal [Mm] and [Km] matrices and the 60 x 60 tCmJ

and [Dm] matrices as well as the 2448 x 60 transformation

matrix [U] were sent to the Case Center.

The reduced modal matrices were then used to make

up the two first order [Mp] and IKp] matrices. Initially
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OLDSMOBILE PROJECT

the Case Center’s minicomputer, a thirty two bit Prime

750 with one megabyte of memory, was used to solve the

120 by 120 first order eigenvalue problem. It took the

computer four hours to compute the eigenvalues and

eigenvectors. The resulting eigenvectors were used as

the transformation matrix [V]. But the resulting [M2]

and [K2] matrices were not diagonal. Since the same

software had been sucessful in solving smaller problems,

the indication was that the trouble was in the size of

the problem.

The size of the problem can affect the accuracy of

the solution because computers use floating-point

arithmetic '5103- This means that after each operation in

floating-point arithmetic the result is rounded off to a

fixed number of digits. The resulting number is then an

approximation of the actual result. The larger the size

of the problem the greater the number of operations

required for the solution. This, along with the relative

size of the numbers in the problem, can cause error due

to round off, and have detrimental effects on the

accuracy of the solution.
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With single precision, the number of digits kept

after each operation on the Prime 750 is seven digits.

More digits were needed for accuracy in this problem.

The number of digits kept can be increased to fourteen by

in double precision. However the library subroutines we

used to solve the eigenvalue problem were not available

using double precision.

The round off problem was solved through the use

of a Control Data Corporation Cyber 170 series model 750,

at the Michigan State University Computer Center. Single

precision on the Cyber is fourteen digits and the same

library subroutines were available. The problem took

less than fifteen minutes to compute and the resulting

eigenvectors produced diagonal [M2] and [K2] matrices.

With the first order eigenvalue problem properly

solved, the diagonalized [M2] and [K2] matrices and the

transformation matrix [V] formed from the eigenvectors

were put up on the minicomputer where the response would

be computed.
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OLDSMOBILE PROJECT

Hith the equations uncoupled the next thing needed

was the force input to the model. In the Oldsmobile

project the forces that drive the finite element model

came from two sources. These were test data taken from

an engine and forces derived from a rigid body simulation

of the engine. The testing phase of the project is well

under way and producing results. The analytical phase is

still under development and as such no results have yet

been calculated using this type of data.

The tests fall into three categories: 1) engine

in a prototype vehicle, 2) engine on a rigid test stand,

and 3) engine in a test buck ( the test buck having the

front suspension and part of the structure of the

automobile). Data was taken in a prototype vehicle to

establish a base line for later tests on the test stand.

This also gave the opportunity to collect some vehicle

response data for correlation purposes. In each case an

engine was run and the time histories of the forces which

the engine transmitted were recorded on a FM tape
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recorder. This consisted of recording forces in the X, Y

and 2 directions of each of six mounts, yielding eighteen

forces. These forces are then postprocessed using a

Hewlett Packard (HP 5423A) Structural Analyzer. The

FFT’s of the the forces are then transferred to the

minicomputer and transformed so they can be used in

Equation 26.

The frequency response corresponding to each set

of forces can be calculated in approximantly three

minutes on the Prime 750 minicomputer.

The force data measured from the prototype vehicle

was "sad t0 calculate a response. This response could

then be compared to the response data taken from the same

vehicle. Figure 3 is the FFT of one of the eighteen

forces which came from the testing. In this case it is

the 2 direction of mount number one while the engine was

running at 750 RPM. This and the other seventeen forces
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OLDSMOBILE PROJECT

were then used as input to calculate a response. In

Figure 4, this response is compared to the measured

response of the vehicle.

Figure 4 indicates that the model did not exactly

predict the measured response. There are many possible

reasons for the response difference, the most important

one being that the results are limited by the original

finite element model. The measured data presented in

Figure 4 was measured from a prototype vehicle, while the

finite element model is of a production car which has

been structurally up-dated from the prototype stage.
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CHAPTER 7

CONCLUSIONS

In the preceeding chapters an analysis was

developed whereby a finite element model of a complex

structure could be reduced to a set of uncoupled ordinary

first order differential equations. These equations

could then be solved and the response of the structure

calculated. In the last chapter the analysis was put to

use and the results compared to the measured data.

The analysis is based on four assumptions, 1) the

finite element model is an accurate model of the

structure, 2) the damping forces which occur in the

structure are small, 3) the frequency of oscillation of

the forcing function are known to be in a given range, 4)
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modes whose natural frequencies are not near the range of

the forcing frequencies do not significantly affect the

response of the structure.

The goal of this analysis is to facilitate the

calculation of the response of a structure based on a

finite element model of the structure. The analysis met

this goal offering considerable cost savings over

computing the response directly from the finite element

model.
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WHENCLATURE
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[H]

{i}

cc:

ID]

{i}

[K]

{X}

{F}

{A}

[U]

[U]

[Mm]

{Y}

[Cm]

c?)

NOMENCLATURE

Matrix of inertia coefficients (mass matrix)

The acceleration vector

Matrix of viscous damping coefficients

Matrix of structural damping coefficients

The frequency of oscillation

The velocity vector

Matrix of stiffness coefficients

The displacement vector

The force vector

(-7

Time

The exponential function

w2 is the eigenvalue and the square of the

undamped natural frequency

The associated eigenvector

The transformation matrix of eigenvectors

The transpose of the [U] matrix

The diagonal modal mass matrix IUJTIM] [U]

The second order modal acceleration vector

The coupled modal viscous damping matrix

[UJTIC] run

The second order modal velocity vector
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[Dm] I The coupled modal structural damping matrix

[UJTED] run

[KmJ a The diagonal modal stiffness matrix [U]T[KJ [U]

(V) a The second order modal coordinate vector

{Fm} - The modal force vector [UJT{F} exp (i w t)

{B} I A solution vector

x 8 The first order eigenvalue

{C} a The first order eigenvector

[V] I The first order transformation matrix made

up of the first order eigenvectors

[V] 8 The transpose of the [V] matrix

{P} - The first order transformation coordinate

{P} 8 The first order transformation velocity

[Mp] - The first order mass matrix

[Kp] I The first order stiffness matrix

{Pp} = The first order force vector

[M2] = The diagonal first order modal mass matrix

rvnTran [V]

{I} = The first order modal velocity

[K2] 8 The diagonal first order modal stiffness matrix

[VJTEKpJ [V]

{Z} The first order modal coordinate
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{Fz}

{D}

{R}

{I}

I The

- The

- The

NOMENCLATURE

first order modal force vector [VJT{Fp}

phase angel with respect to time

amplitude of the force

real part of the force

imaginary part of the force
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