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ABSTRACT

A STATISTICAL THEORY OF POLYMER COMPOSITIONS

BASED ON ABSORBING MARKOV CHAINS

by George G. Lowry

Absorbing Marko' chain theory has been applied to the

problem of describing the composition of polymers with

the use of matrix formalism to simplify the mathematics

involved.

In each system studied, the states of the system

were defined in such a manner that a finished polymer

molecule correSponds to an absorbing state. Then each

of the other states is transient and is defined in such a

manner that the probability of transition from any state

to any other state is easily written in terms of physical

parameters. The result is a very compact formalism that

permits computation of several aSpects of polymer compo-

sition easily.

Linear addition and linear condensation polymer systems

have been analyzed to obtain the distribution, and its

moments, of the degree of polymerization. Addition polymer

systems involved termination by combination, disprOpor-

tionation, chain transfer, or any combination, and biradical

initiation as well. Condensation polymer systems involved
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those with a single monomer (with and without monofuntional

molecules present), and those with two monomers, as in

nylon 66.

Results obtained for linear addition copolymers

include, in addition to DP distributions, the mean compo-

sition of the cepolymer in terms of its component monomer

units for a real, finite DP distribution. Also the formu-

lation for obtaining the composition of the COpOlymer in

terms of various types of monomer sequences of fixed length

was given.

Possible extensions of the theory to new systems,

to refinements of systems already considered, and to the

attainment of new information about systems, are discussed.
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I. INTRODUCTION

As early as 1871, Hlasiwetz and Habermann advanced the

idea that proteins and carbohydrates are polymeric and that

they include a large variety of isomeric and polymeric

Species differing primarily in their degree of molecular

condensation, (1) as Opposed to a colloidal "state" of

matter with varying degrees of physical condensation.

However, it was not until the work of Staudinger in 1920 (2)

and subsequently that chemists became generally convinced

of the validity of this concept, not only for carbohydrates

and proteins but also for a host of other natural and

synthetic substances now known as polymers.

Staudinger pointed out the fact, long diSputed because

it was unpalatable to those steeped in the philOSOphy Of

determinism, that these macromolecules or polymers were not

all of the same size or shape but consisted of a large range

of molecular species for each mindividual" polymeric substance.

Once the scientific world began to accept this concept,

theoreticians began to attempt to answer the questions about

how such molecules came to be, and about how they could be

described mathematically, if they were not such definite

entities as chemists were accustomed to working with. In

1930 Kuhn published the first paper involving the application

of the methods of statistics to the field of polymer

1



science. (3) Since then, most of the useful theories about

polymers have involved statistics in one manner or another.

There are three distinct, but related, areas of

investigation that might be considered for a theory of

polymerization. They are:

l. the nature of individual mechanistic steps, their

rates, and their relation to structure of reactants,

products, and transition states;

2. overall rates of appearance and disappearance

of different types of Species as related to the rates of

the mechanistic steps;

3. the nature of the products formed as determined

by the kinetics and thermodynamics of the reactions involved.

It has been found through long experience that the

nature of the individual mechanistic steps for both conden-

sation polymers (h) and presumably also addition polymers (5)

does not differ materially from that of lower molecular

weight analogs. This area of investigation has been of

more interest to synthetic chemists than to theoretical

chemists, although in recent years several papers have been

published dealing with the molecular orbital theory of

polymerization. (6)

The overall rates of reaction have not been treated

for polymerization reactions by stochastic process theory

for two principal reasons. Although the equations describ-

ing polymerization reactions as a stochastic process can

be set down in much the same manner as for small molecule



systems, (7) they involve second order differential-differ—

ence equations which are difficult or impossible to solve in

closed form. Secondly, a more-or—less deterministic

approach coupled with statistical averaging formulas has

been very successful in describing the aSpects of polymer-

ization reactions that are of interest in practical problems,

(8) so that the effort necessary to handle the stochastic

treatment successfully has not appeared worthwhile.

However the makeup of the products formed by polymer-

ization reactions lends itself admirably to a stochastic

process theory, and it is this area that is considered in

this thesis.

In considering the Specific type of mathematical

model to be selected, we may consider some aSpects of

theories in general. A theory may be viewed as an abstrac-

tion of a physical system to a mathematical model which.may

then be manipulated to obtain relationships which can be

related back to the physical system. In this sense then, a

theory or mathematical model cannot be spoken of in terms

of correctness, but rather should be evaluated in terms of

its usefulness.

Evidently the value of a theory or model is a function

of the usefulness of the predictions obtainable therefrom,

and, to extend the pragmatic basis of value judgment, is

also a function of the simplicity and ease of application

of the theory. Therefore, as a generality, it may be

stated that the best theory for a particular situation is



that one which yields the desired relationships to the

degree of accuracy required with the least eXpenditure

of effort on the part of the investigator.

While some useful information about polymer composition

may be obtained from kinetic relationships (sometimes

combined with combinatoric formulas of statistics) by using

deterministic models, stochastic models have usually

proven more useful. The particular stochastic model

deve10ped here is especially easy to apply, and has the

added advantage of unifying several seemingly unrelated

subjects into one basic theory. The usefulness of the

theory is shown not only by the ease with which some

relationships have been obtained, but also by the fact that

some new relationships (difficult to obtain with earlier

formalisms) have been developed.

To illustrate the differences between a deterministic

and a stochastic model in this field of investigation,

the degree of polymerization of a linear addition polymer

will be obtained by each method.

In the deterministic approach, we may say that the

rate of polymerization is simply designated by -d[M]/dt = RP;

.iaflz’ the rate of disappearance of monomer, or the rate of

addition of monomer molecules to the growing chain, is a

constant. Also, the rate at which new chains are formed,

assumed equal to the rate at which chains are terminated

(cease to grow) is simply -d[P]/dt = Rt'

It is apparent that the rate of disappearance of



monomer with respect to the rate of appearance of terminated

polymer chains is numerically equal to the number of monomer

units per chain, termed "degree of polymerization" and

usually abbreviated DP. Thus,

In this deterministic approach, the two rates are real-

valued, essentially-continuous functions of time, and their

quotient, the DP, is also real—valued and continuous.

Further, once the values of Rp and R have been established,
t

the value of the DP has been determined absolutely.
 

In the stochastic model, we assume the "random variable"

(9) denoting DP is integer-valued, i;g;, a polymer chain

may not contain a fractional monomer unit. In this sense,

the stochastic model seems closer to physical reality, but

the deterministic model may be just as useful for some

purposes.

We assume that, once a polymer molecule is initiated

(starts to grow), one of three things may be true within

any small time increment At:

1. no reaction may occur;

2. one monomer molecule may be added, with

probability p;

3. the growing polymer molecule may be terminated,

with probability q.

We further choose Am small enough that the probability

of two of these occurrences during At is immeasurably small.



Further, since only the second and third events affect DP

(although the first would affect other quantities, such as

the overall rate of disappearance of monomer) we restrict

our analysis to the set of all intervals of length.4t

during which either of the last two events occurs, and

call each such interval a "step," so that p+q=l.

The values of p and q may be estimated from measurable

quantities by using the commonly applied relations between

"probabilities" and frequencies. (10) Thus, we say that the

probability of adding a monomer molecule is numerically

equal to the relative frequency (rate) of the monomer

addition reaction, and q has a similar relation to the

termination reaction. Thus we write p=1-q;Rp/[Rp+Rtl.

A little reflection on this system shows that the

probability of a finished polymer molecule having a DP of

n (LLQL, its formation requires n steps of types two and

three following initiation) is simply PDP(n) =:pnml
q for

n = l,2,3,... . Thus, from the stochastic model we do not

obtain a single absolute value of DP, but rather a proba-

bility distribution which assigns a probability to the

occurrence of polymer molecules of any positive integral-

valued DP. From this probability distribution we may

calculate an average DP (first absolute moment of the

distribution) which is essentially the same as the DP

obtained deterministically.

Thus, the first approach described the mean DP while

the second takes into consideration random fluctuations



about this mean, which can be described statistically in

terms of higher moments of the probability distribution.

For many purposes in polymer science the higher moments

are as important as the mean value. For example, the

degrees of polymerization measured by various experimental

methods are ratios of different moments of the distribution.

For such purposes then, the stochastic model is superior

to the deterministic model.

The stochastic approach illustrated above was used

very early in polymer theory, (11) but it soon met with

difficulties. If we are dealing with a mechanistically

more complicated polymerization system, the writing of a

probability distribution function in such an intuitive

manner becomes very difficult, if not impossible. Also, the

evaluation of the sums involved in determining higher moments

of distributions becomes extremely difficult, if not

impossible, for systems even slightly more complicated than

the present one. Scanlan overcame this problem to some

extent by the use of moment generating functions (sometimes

using Laplace transforms as limiting case treatments) to

obtain the moments of more complicated distributions. (12)

This approach did not give him the distribution functions

directly, even though they could be approximated from the

moments by use of Gram-Charlier series (13) or other

techniques.

Bamford and Tompa were able to calculate still more

complex systems by using Laplace transforms for moments and



Laguerre polynomials for the distributions. (1A) However,

the use of Laplace transforms involves the replacement of

a summation by an integral, which obviously is not valid

if the polymerization under consideration yields polymer

of low average DP. Also, they found that the transforms

were not available for some of the systems they studied and

were forced to resort to numerical calculations.

In the field of c0polymerizations, Wall was the first

to utilize a stochastic process approach to the problems

of DP distribution and composition of the c0polymer in

terms of the relative amounts of the different monomers

incorporated in the macromolecule. (15) However, his

treatment was rather limited in that it treated only a few

special cases that simplified the mathematics considerably.

Simha and Branson published a very extensive and

rather complete treatment of statistics of c0polymerization

(16) but many of the results were stated in such complex

formulations that they were difficult or impossible to apply

directly. Stockmayer then interpreted some of Simha and

Branson's results by utilizing the common ”tricks" of

replacing summations by integrals and factorials by Stirling's

approximation, together with mathematical insight and ‘

judgment. (1?) The results he obtained were valid for

c0polymers in the limit of infinite DP but were of limited

value, particularly for low average degree of polymerization,

for real systems.



A. Markov Chains

The simplest stochastic model to apply is the first

order Markov chain. (18) This model assumes that if a

system (molecule) is in a given state on a particular step,

the probability of its being in the same or in any other

state on the next step depends only on the two states

involved and is independent of the states occupied on any

previous step or of the number of previous steps. These

restrictions are not considered to introduce serious aber-

rations into the model and the mathematics involved is

simple compared to the extensive results obtained.

Price published a Markov chain treatment of cOpoly-

merization systems which utilized the simplifications

available with the formalisms of matrix theory. (19)

Unfortunately, his theory is valid only for the limit of

infinite DP, and had few new results, although the means

of obtaining the results was somewhat more elegant than

previous methods. Then Peller published a matrix treatment

of c0polymerization which is not restricted to infinite DP

limiting cases, (20) but he failed to utilize the full

simplification available with the matrix notation of

Markov chains, and his results are sufficiently complex

in appearance as to be difficult to follow.

In this thesis, a matrix notation of Markov chain

theory is utilized which, once develOped, is simple, com-

pact, and neat to use. In addition, one basic theory
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applies to obtaining DP distributions and moments for

addition polymers, condensation polymers, and copolymers,

as well as to obtaining composition of c0polymers for real,

finite DP distributions as well as for the limiting case

of infinite DP. The key to this consolidation and simplifi-

cation is in the use of absorbing Markov chain theory (21)

by careful definition of states and transition probabilities,

as will be demonstrated in the following pages.



II. FORMALISM OF ABSORBING MARKOV CHAIN THEORY

A. Notation

The theory expounded in this thesis is formally a

matrix treatment of a probabilistic model. The rudiments

of both matrix theory and probability theory are generally

known to scientists, so they will not be reviewed here.

However, these fields have the common difficulty of

lacking uniformity in notation from one writer or inves-

tigator to another. In fact, it appears unlikely that any

two writers in either of these fields use exactly the same

notation for the same relationships or Operations.

In this section are set down the generalities of the

notation to be used throughout the text. Occasionally a

new specific notation will be defined elsewhere, but most

will be found together here in compact form.

1. Matrices and vectors

A matrix will be denoted by a bold face capital

Roman letter (I, A, etc.). A vector will be denoted by

a bold face lower case Roman letter (v, b, etc.). Whether

a vector is a 1 x n (row) vector or an n x 1 (column)

vector will be evident from context.

The elements of a matrix will be denoted by subscripted

lower case Roman letters corresponding to the particular

11
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matrix involved. Thus, the elements of a matrix H are mij’

where i is the row and i is the column in which mij occurs.

The principle exception to this correSpondence between

the letters denoting matrices and those denoting their

matrix elements is in the case of the identity matrix, I,

the square matrix whose elements are the Kronecker deltas,

Sij’ defined by the relationships

Sij = {l for i = j

o for i ,4 j.

The elements of a vector will be denoted by subscripted

lower case Roman letters correSponding to the particular

vectors involved. Thus, the elements of a vector v are vk

where k is the position in which the element vk occurs.

Since matrix elements possess double subscripts and vector

elements possess only single subscripts, no confusion should

arise on this account.

Alternatively, a matrix or vector will be written

sometimes as the set of its own elements. Thus, l1: {miJZ

and v = {vk}.

A null matrix, all of whose elements are zero, will

be denoted by 2.

Matrix Operations and relationships will be indicated

by the following notation. AB is the usual row-by-column

product of the two matrices (this applies to pairs of vectors

or vectors and matrices also, provided they have the

necessary dimensional relationships). .A.1 is the inverse

l
ofNA, i.e., AA- =.A- A = I. An is the n'th power of.A
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defined as.AAA...A (n times) and.ArAs =.A§Ar = Ar+s.

One Specific vector is particularly useful. Define

a = {3k}, where sk = l for all k, to be a column vector.

If s is an n x 1 vector and A is an m x n.matrix, then

A: = v, where v is an n x 1 column vector and the vk are

the row sums of the elements Of.A.

One additional specific matrix requiring definition

is A. This notation violates our rule of denoting matrices

by Roman letters, but this is done to conform to one of

the few widely accepted notations of:matrix theory. The

"characteristic equation" of a square matrix is defined as

ll -.RI| = 0, where [Al is the general symbol for the

determinant of any matrixml. Then if.L is n x n, Al,

A2,...,An are the n characteristic roots of the character-

istic equation and are usually called eigenvalues Of the

matrix.A. Then A has the block diagonal form

where each I is a square matrix correSponding to a given
1

eigenvalue, with dimension equal to the degeneracy of the

eigenvalue (;;2;, the multiplicity of the characteristic

root). Thus, the sum of the dimensions of the J1 equals

the dimension of.A. Specifically, fer each Ji’ every

diagonal element is A1 and every superdiagonal element

is either one or zero, with zeros elsewhere.
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This form of.A is known variously as the "Jordan

Canonical Form" (which term will be used here), the

"Weierstrass-Jordan Canonical Form" or the "Classical

Canonical Form" of the matrix.A. Note that for degeneracy

of one (112;: distinct root of the characteristic equation)

J1 = {A£} and if all roots have degeneracy of one,.A ={A151j}.

2. Probabilities

If X is a real-valued function defined over the points

of a sample space with a probability measure, then Xtia

called a random variable. If a sample Space contains a

finite or countably infinite number of sample points it

is said to be discrete, and a random variable defined over

such a sample space is termed a discrete random variable.

The symbol Pr{A} is read "probability that the event 1

occurs," so that Prix = h} is‘the "probability that the

random variable X assumes the value h."

The function Pxfh) = Pr{X =~h} for each real number h

is called the probability distribution function of the

random variable X. The function Fk(h) =-Pr{X:: h} for each

real number h is called the cumulative distribution function

of the random variable X. For a discrete, integral-valued

random variable X, Px(h) = Rx(h) - Rx(h-l).

The mathematical expectation, or mean value, of a

function f(X) of the random variable X.is (f(X)) =

=-Z:Px(h)f(h), where the summation is over all values Of

h for which PX(h) is defined, provided that the series



15

converges absolutely. In particular, the r'th absolute

moment of the random variable X is (Kr).

Finally we have the terminology of conditional prob-

ability. The "probability that the event A occurs, given

that the event B occurs with certainty" is written Pr{A|B}.

Then the "probability that events A and B both occur" is

Pr{A m3} = Pr{B}Pr{A|B}.

B. Introduction to Markov Chain Theory

As stated in the introduction, a mathematical model

is a first order Markov chain (to which we shall confine

our attention, and therefore will call simply "Markov

chain") if the probability of a system being in a given

stateon a particular step is dependent only on that state

and the state of the immediately preceding step. Fbr the

present the terms "system," "state," and "step" Shall

remain undefined.

In order to Obtain some of the basic relationships and

methods of Markov chain theory, it is convenient to restate

the prOperties of Markov chains in symbols. Let gin) mean

"the state of the system immediately after n steps," so

that Eén) means "the system is in state 1 after exactly

n steps." The symbolic definition of Markov chains states

that gm) = r[1_3_(n’1)], and gm) .4 f[n, _E_(n'2),...,§(0)].

From the basic properties Of conditional probability

we have Prifién) n Eff-#1)} = PP{E_§n)}Pr{§§.m‘l)

this statement is unambiguous, it is cumbersome, so the

Eff-11)} 0 While
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following simplified notation is introduced. Define

pén) -_- Prifiim} and p13. = Pr{§§n+l)|§£n)} . Note that

it would be redundant to write pi? , because p13 £ f(n).

Then by application of Bayes' Theorem of conditional

probability, we have simply

( l) ( )
pjm = Epin pij (2.1)

where the summation is over all the states available to

the system. (22)

From inspection, it is evident that the set of all

equations (2.1), Asia: for all j, is formally equivalent

to the multiplication of a row vector by a square matrix

to yield another row vector, thus,

p(n+1) = pm)? (2.2)

where p(x) =-{pixi} and.P = {p13}. In the remainder of

the thesis relations of the type of (2.1) will be stated

in the form of (2.2) so that the powerful simplifications

of’matrix theory will be directly applicable. The vectors

p(x) represent the probability of the system occupying,

after the x'th step, each of the various states available;

the sum of the elements Of“p(x) is therefore unity, and

all pf” :- o. The matrix P is commonly called a "transition

matrix" and its elements are the "transition probabilities"

of the-Markov chain. P has the properties:

I. it is a square matrix;

2. all elements are non-negative, real, with the

upper bound of unity;
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3. all row sums are unity.

The first property signifies that all states of the system

are mathematically available on every step, even though some

transition probabilities may be 0; the second is a require-

ment if pi"Jj are to be probabilities; the third states that

the system must exist in some allowed state at all times.

Any matrix possessing these prOpertieS is termed a "sto-

chastic matrix," or sometimes a "Markov matrix," whether

it is being used in Markov chain problems or not.

Particularly important probability vectors include

p(o), the initial distribution of states of the system,

and p(°°), the equilibrium distribution of states of the

system. The latter comes from one of the most important

theorems of Markov chain theory which says that, for an

aperiodic Markov chain, limit p(n) is an equilibrium vector

n“*°°' (co)
which, for convenience, we denote p .

We know that p(O)P = p(1), and hence p(2) = p(l)P =

= p(O)PP= paw)? ; by induction it is easily seen that

‘p(r)Ps = p(r+s). This is known as the Chapman-Kolmogorov

equation. Thean8 = P(S) is called an s-step transition

matrix and p(3) are s-step transition probabilities, since

PriE1(r)nE(r-r-s)} : Pr{E(r)}Pr[E(r+s)|E(r)}

-J

= pérqpij c

From these relations the entire matrix treatment of

Markov chains has evolved. (18)
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C. Linear Addition Polymerization

1. Systems

A "system" generally will be considered to be either

a polymer molecule or a potential polymer molecule. §;g;,

in addition polymerization, a single monomer activated by

an initiation reaction is capable of adding more monomer

molecules and becoming a polymer. A single activated monomer

molecule can hardly be called a polymer molecule before it

adds at least one more monomer molecule, but it still may

be a system by our definition because it is potentially a

polymer molecule. Other differences between systems and

polymer molecules will be brought out in the section on

definition of states.

With complete generality, each polymer molecule comes

from one and only one system.

"System" in this sense really is a mathematical rather

than a chemical concept, though the two are related.

However, it might be considered to be an 2233 chemical

(micro) system -- Open because both energy and matter

traverse the "boundary"between the system and the

surroundings.

2. Steps
 

In systems describing addition polymers, a "step"

correSponds to a simple reaction, i.e., it is a ”mechanistic

step." It may be the addition of a monomer molecule or of

a group of molecules to yield a larger growing molecule,
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or it may be a termination process of some type to yield

a finished polymer molecule lacking growth potential.

The important feature is that a step correSponds to

the system participating in gggg reaction rather than £2

reaction. Thus, "n steps have occurred" means that "the

system has reacted n times" rather than "n time intervals

have passed."

30 States
 

When labelling states symbolically, it is convenient

to number them serially beginning with state 1. Then pén)

is the probability the system is in the state k after

exactly n steps as well as being the k'th element in the

(n)
vector p . Similarly, pij is the transition probability

from state i to state j as well as being the element in

the i'th row and j'th column of the transition matrix.P.

In all addition systems treated here we shall define

state 1 as finished, or kinetically dead, polymer molecule.

Under no circumstances will a system in state 1 ever have

a composition other than it had when it first entered state

1. Thus plJ = 813. In Markov chain theory any state i for

which pij = Sij is called an absorbing state. A Markov

chain which includes one or more absorbing states is called

an absorbing Markov chain. (18, 21)

If pi?) > O for all i and some n in such a system,

(In)

ii
then p (1 fi 1) approaches zero as m increases without

bound. Such a state is called transient. (18) The relative
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residence "times" (numbers of steps) in each of the

transient states prior to absorption determine the compo-

sition of the polymer molecules. We can therefore obtain ‘

all the desired results by considering only the set of

transient states and their inter-relationships, even though

a complete description of each system also includes state 1.

That is, the properties of state 1 are actually obtained

from those of the other states by difference in this

stochastic matrix description.

a. Single chain termination, first approximation.--

The term "linear addition polymerization" refers to the

following process. The polymerization is initiated by the

formation of a reactive site on a low molecular weight

molecule. The reactive site may be a free radical, a

carbanion, a carbonium ion, or an analogous entity involving

an atom other than carbon. The initiating species may be

either a fragment of an initiator in the system or the

product of addition of such a fragment to a single monomer

molecule, or it may be a fragment produced by a unimolecular

or bimolecular (possibly even termolecular) decomposition

of monomer molecules.

Initiation is followed by prOpagation, in which

additional monomer molecules add (with rate Rp) singly to

the reactive site in an orderly fashion, the reactive Site

being shifted to the new end of the polymer backbone chain

with each addition.
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Finally the reactive site is deactivated, or terminated,

by some reaction (with rate Rt)’ normally bimolecular, never

to be restored to active polymerization.

This is addition polymerization, which is linear if no

other reaction occurs to cause formation of a branch point

in the backbone of the polymer molecule.

To translate this description into the language of

absorbing Markov chains, we say there are only two states

in the system. State 1 is, as always, finished polymer

molecule; state 2 is a molecule with a reactive site at

one end. [The definitions of states for this and other

linear addition homOpolymerization systems are summarized

together in TABLE I for reference.]

Then initiation is represented by p(o) = (O l), for

if pic) were non—zero, it would imply a positive probability

of a system never becoming a potential polymer molecule

which is a contradiction. PrOpagation is represented by

the transition Eén)___4,§én+l) with probability p22.

Termination is represented by the transition Eén)——>§{n*1)

with probability p21. This system is defined completely by

'p(0) = (0 1)

and

P:

 

l o )

p21 p22

To obtain values for the elements of P, we again use

the numerical equivalence of relative frequencies to

probabilities so that p22 = 1 - p21 = Rp/[Rp+Rt]'
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b. Second approximation.-- The results Obtained from
 

the system described above are in agreement with those

obtained by previous workers using different approaches.

(11,12,1h) However, there is one shortcoming of such a

system which seems to have been overlooked previously.

This is the fact that we have mathematically given the

name "polymer" to material with DP =~l if it has suffered

initiation and termination reactions, even though it may

be chemically identical to monomer that has never undergone

such reactions.

This doesn't lead to significant error if (DP) is

high, but it can be a major source of error if (DP) is low,

say of the order of 1-10. Primarily, it seems basically

unsatisfactory to define one of two identical molecules as

polymer and the other as monomer simply because the one had

a different history than the other. Therefore it is

desirable to require that a molecule have DPE:2 before it

is counted as a polymer molecule.

In order to achieve this refinement, we simply define

state 2 as "active monomer species" and state 3 as "actively

polymerizing molecule of DP2:2." Then, to assure counting

only polymer molecules, we set p21 = 0 and'p23 = 1, and in

addition we have p22 = p32 = 0, p33 = l-p31 = Rp/[Rp+Rt]’

yielding

l 0 O

P=O Ol

1”31 0 p33



2A

An interesting feature of this description is the

increased generality available. If we wish to consider

molecules of DP = l as polymer, we may bypass state 2 by

letting p(0) = (0 O 1). If we wish to count only

molecules with DP2:2 as polymer, we let p(0) = (O l 0).

With the present formalism p(o) is applied after all

the extensive manipulations have been performed (on P),

so that results are obtained just about as easily for one

basis of counting as for the other.

c. Double-site initiation.-- It is possible in some
 

cases to have two reactive sites on a Single initiating

Species. Following initiation, the polymer molecule may

grow outward in two directions independently.

Although in such a system both ends of the active

Species are simultaneously engaged in prOpagation reactions,

it is convenient to assume mathematically that the reactions

.Occur in the following sequence:

1. initiation occurs;

2. the first end prOpagates;

3. the first end terminates;

A. the second end prOpagates;

5. the second end terminates.

For illustration, we may use a symbolic representation,

which may clarify some systems. Let

0 represent initiation,

--- represent the set of all prOpagation reactions

from a single initial reactive site, and
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/ represent termination of one reactive site.

Then the five stages described above may be represented

as follows:

o-——-> o--- -—-r o---/——) ---o---/——v /---o---/.

Now we may define the states of this system and set

up the transition matrix and initial probability vector.

State 1 is dead polymer molecule; state 2 is a.molecu1e

with an actively polymerizing reactive Site at the first

end; state 3 is a molecule with an actively polymerizing

reactive site at the second end, after the first end has

terminated. Then the system is fully defined by

pm) = (0 1 0) (2.3)

l O 0

p31 0 p33

In this system, we assume both active sites are

equally reactive so p22 = p33 = l-p23 = l-p31 = Rp/[Rp+Rt]’

Since p2:l = O and péo) = 0, we are assured that only I

molecules of DP:2 are counted.

One possible physical interpretation of the mathe-

matical system described by 19(0) and P is:

(0)
1.‘p corresponds to formation of the initiating

Species with two reactive sites (0);

2. p22 is the probability of adding monomer to the

first reactive Site (o---);

3. p23 is the probability of terminating the first

reactive site and, since it correSpondS to one step in the
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system which will eventually be counted in the DP distri-

bution, simultaneously adding one monomer unit to the

second reactive site (-O---/);

A. p33 is the probability of adding more monomer to

the second reactive site (---o---/);

5. p31 is the probability of terminating the second

reactive Site (/—--o---/).

Thus, the smallest sequence of reactions available

to a system with this description is initiation, termination

of the first reactive site without propagation, addition of

one monomer molecule to the second reactive site, and

termination of the second reactive site. For such a minimum

sequence DP = 2.

d. Single-Site initiation, double chain termination.--

In some systems, termination occurs in such a manner that

two growing polymer chains join together to form a single

finished polymer chain rather than two finished polymer

chains. Such a reaction is called, not surprisingly,

"termination by combination." As we have defined it, one

system consists of the two chains which ultimately become

one. This is another example of the non-identity of a

polymer molecule and a system. In this instance though,

the difference is that a growing polymer molecule is not

a system but a portion of a system.

To set up the vectordmatrix description of this

process, let us translate it into the type of description
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used in section 0. We can say mathematically that:

1. the first chain is initiated;

2. the first chain prOpagates;

3. the first chain terminates and is "held in

temporary storage condition;"

A. the second chain is initiated;

5. the second chain prOpagates; and

6. the second chain terminates and at the same

time joins onto the first chain. Symbolically, these

stages may be written as

O—ro-m- —-> o--—/——> o---/ o -—> o---/ ---o—> o---//---o.

A different, but mathematically equivalent representation

might be

o-——>o--—- ——> o---/-——> o---/o—-> o---/o--- —> o--—/o---/.

. These two equivalent schemes are described by equations

(2.3) and (2.h). State 1 is dead polymer molecule; state 2

is the first actively growing polymer molecule; state 3

is the second and final actively growing polymer molecule.

Then p22 is the probability of propagation of the first

active chain, p23 is the probability that the first active

chain is terminated and the second is initiated, p33 is the

probability of propagation of the second active chain, and

‘ p31 is the probability that the second active chain is

terminated and at the same time is connected to the first

chain to yield the finished molecule.

The minimum reaction sequence in this system yields

DP = 2, as is required physically.
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e. Single-site initiation, any termination.-- We have

encountered systems with two different types Of termination,

and it is now possible to demonstrate how both types of

system may be described by a single transition matrix simply

by varying the initial probability vector.

For compactness, let us define "single chain termi-

nation" as a termination reaction in which one actively

growing polymer chain becomes one finished polymer chain.

Denote the rate of this reaction Rtl' Then "double chain

termination" is a termination reaction in which two actively

growing polymer chains join together upon termination to

yield a single finished polymer chain, with rate Rt2‘ We

may still use Rt =~Rt1 + th as the Overall rate of termi-

nation.

In section d we showed that a system with double

chain termination was described by equations (2.3) and

(2.u). Observe that if equation (2.u) is used together

with.p(0) = (O O 1), we have a description of a system

with single chain termination. By this simple expedient

we are able to bypass state 2 so that our system (i404,

potential polymer molecule) never consists of more than

one actively polymerizing molecule.

However we are still counting molecules with DP = l

as polymer molecules. This may be avoided, or used as

seems fit, by writing a still more general transition

matrix:
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O O

(2.5)

p33 p311

Phi 9 Phi

where p33 =:puu = l-p3u = l_phl = Rp/[Rp+Rt]. Then we may

0

O O O l

O

0

use any of three different initial probability vectors

depending on the system of interest. Fbr double chain

termination, p(0) = (O O 1 O). For single chain

termination, counting all molecules of DP::1 as polymer,

p(0) = (O O 0 1). Fbr single chain termination, counting

only molecules of DPZZ as polymer, pm) = (O l O 0).

The utility of such a general transition matrix is

forcibly demonstrated by considering a more complex situ-

ation. In some polymerization reactions, single chain

termination and double chain termination both occur. Fbr

such reactions, let Fi a fraction of polymer molecules

arising from single chain termination = probability that

a system involves single chain termination. Then F? a

fraction of polymer molecules arising from double chain

termination = probability that a system involves double

chain termination. Then we may utilize equation (2.5)

with either of two different initial probability vectors.

If we wish to count all molecules with DP::1 as polymer,

PM) = (0 0 F2 F1) : (2.6)

if we wish to count only molecules with DP2:2 as polymer,

1 F2 0) . (2.7)
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To evaluate F1 and Fé we proceed as follows. Let f

be the fraction of active polymer chains that undergo

single chain termination so that l-f is the fraction that

undergo double chain termination. Specifically, f a Rtl/Rt'

Then if N is the total number of active polymer chains

in the reaction, the number Of finished polymer chains

arising from single chain termination is Nf = N1. The

number of finished polymer chains arising from double

chain termination is N(l-f)/2 = N2. Normalizing these

to obtain fractions, we have

Nl/(N1+N2) = F1 = 2r/‘(14-i‘)

NZ/(Nl-r-NZ) .-..- F2 = (I—f)/(l+-f).

In terms of reaction rates, these become

f. Binary copolymeriZation.-- All the systems discussed

above have involved only one monomer Species; even so,

evaluation of transition probabilities and initial prob-

abilities became slightly complicated.

A large portion of polymerization reactions of interest

to polymer chemists involve OOpolymerization of two or

more monomer species. (23) In such cases the complexities

in evaluation are greatly multiplied, but in principle, and

sometimes in practice, they are amenable to treatment by

the formalism being developed here.

In this section a simple binary OOpolymerization (two

monomer species only) with single chain termination will
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be described in vector-matrix notation. The evaluation

of the elements for this system will be treated in the

section on applications to Specific systems. Expansion

to more complicated cOpOlymerization systems (6. ., more

than two monomers, double chain termination, etc.) is

straightforward, though cumbersome, and will be considered

in the same section.

Fbr generality call the two monomer species in the

reaction A and B. State 1 is dead polymer molecule. State

2 is actively growing polymer molecule whose unit at the

reactive end is derived from monomer A; state 3 is a similar

species derived from monomer B.

Since either A or B may be involved in an initiation

reaction, .

’(0) = (0 p2 p3) . (2.9)

As a first approximation p2 and p3 are prOportional to the

molar concentrations of monomers.A and B in the reaction,

although in a few cases data are available to allow a

slightly better estimation Of p2 and p3, as will be

demonstrated.

States 2 and 3 may each react with either monomer, and

both states are capable of termination so that the transition

matrix is

. 1 O 0

r: 1921 p22 p23 (2.10)

1"31 p32 P33
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From this system we can obtain DP distribution and

moments, relative amounts of the two monomers incorporated

in the OOpOlymer, and relative amounts of the different

types of sequences (of any length desired) of the two

monomers incorporated in the copolymers. For the last of

these types of information it is necessary to utilize

augmented matrices and vectors, to be discussed later,

which increase the amount of computations but do not

introduce any new conceptual difficulties.

As a special type of cOpOlymerization, homOpolymer-

izations of mono-substituted ethylenes (vinyl compounds)

have two different stereoconfigurations possible for each

monomer unit in the chain and may be considered as cOpOly-

merizations of g— and l—enantiomers. (2h) The relative

amounts of various types of d,lgsequences can be analyzed

using the same formalism. Thus we have an approach to the

analysis of microstructures of the stereospecific polymers

that have become increasingly important in recent years.

D. Linear-Condensation Polymers

Condensation polymerization is quite different from

addition polymerization. While the latter is a chain

reaction process resulting in chain molecules, the former

is a series of individual reactions resulting in a chain

molecule.

In condensation polymerization a monomer normally

consists of a small molecule containing two reactive
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groups, such as carboxylic acid, amino, alkanol, etc. In

the simplest case, every monomer molecule is identical and

each contains one of each of two groups capable of reacting

together to yield a new functional group in a larger

molecule plus a small simple molecule. E;g¢, if the monomer

is an amino acid, a single reaction of two monomer molecules

results in an amide molecule and a molecule of water:

H NRCOOH +—H NRCOOH-——+-H NRCONHRCOOH ¥1H20.
2 2 2

It has been shown that, unless R is only a very few

carbon atoms in length, the functional groups on the new

dimer molecule have essentially the same reactivity as

those on the monomer. (h) The tendency is for more dimer-

ization reactions to occur until the monomer concentration

is depleted and dimer concentration is increased to a

significant level. The obvious result is that monomer

concentration drOps precipitously during the early stages

of the reaction before polymer of any appreciable DP has

appeared.

This is a very complex reaction to describe statisti-

cally because a given polymer molecule arises from a very

large number of possible precursor species, but useful

results still can be obtained.

1. Systems

It is convenient to consider a "System" as a polymer

molecule after the reaction is completed, and not as a

potential polymer molecule.



3h

2. Stegg
 

Assume that the process described by the Markov

chain is a counting process rather than a reaction process.

Thus, we count the number of monomer units of which each

polymer molecule consists. A step may be considered to be

the movement from one monomer unit to the next, across the

condensed functional group (ester, amide, etc.).

10 States
 

Define state 2 as the presence of a monomer unit in

the chain on a given step and state 1 as the absence of a

monomer unit. Then the counting process is described as

follows. Initiation.(p(o)) correSponds to beginning a

count at a terminal monomer unit. Propagation (p22)

correSponds to finding the next functional group attached

to another monomer unit, and termination (p21) correSponds

to not finding the next functional group attached to

another monomer unit, gzgz, the count is terminated. When

the count is terminated, it Obviously cannot be re-initiated

for the same polymer molecule, so p12 = 0.

The mathematical description of the system is then

p(0) = (0 1)

- l o

P =

P21 P22

and it remains merely to evaluate p22 = l-p21 for Specific

08.865 o
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We shall consider four different cases, but all

correSpond to linear (straight chain) polymers. Branched

condensation polymers may be made simply by using some

kefunctional (k::3) monomer species in the original mixture,

but such cases will not be considered here.

a. Single monomer, two different functional groups.-- In
 

this case, every molecule in the initial monomer "mixture"

is identical and is of the type A-R-B where R is a chemi-

cally inert group (g;g;, alkylene, phenylene, etc.) and

A and B are different functional groups capable of

reacting as

A-R-B + Ar—R-B—9A-R-X-R-B + C .

If all the functional groups were to react (except,

perhaps, for one of each type) the result would be a single

polymer molecule with DP equal to the number of monomer

molecules present initially. However, the reaction usually
 

ceases before complete reaction has occurred, and it is

on this basis that we may analyze the system to obtain

finite DP distributions.

Each monomer molecule contains two reactive functional

groups, but each time a reaction occurs, two reactive

functional groups are destroyed. It is then reasonable

to define the degree Of conversion, «5 as the fraction of

reactive functional groups initially present that have

reacted. This, by our usual method of evaluation, leads

to the conclusion that the probability a particular reactive
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functional group has.reacted is simply a, so we have

P22 3 1'le = °"

Note that here, unlike addition polymerization systems,

we are content to allow monomer molecules to be counted as

polymer. For condensation polymers this appears reasonable

on two counts. First, a more or less philOSOphical reason,

is the fact that a monomer molecule does not undergo a

reaction and ultimately remain a monomer molecule (barring

reversible reactions, of course). Second, the concentration

of monomer practically vanishes in the early stages of a

condensation polymerization, unlike the situation with

addition polymerization, and it is desirable to have some

indication of the degree to which this has occurred. If

it is desired to count only molecules with DPE:2, this

extension of the system is treated in exactly the manner

it was for addition polymerization.

b. Equal amounts of two monomers.-- We may have a

reaction in which two monomers are present initially in

equal amounts, and in which one of the monomers contains

two identical reactive groups of one type and the other

monomer contains two identical reactive groups of a second

type capable of reacting with the first type. Fbr example,

we may have a dibasic acid such as adipic acid, and a

diamine such as hexamethylene diamine; the resulting

polymer is a polyamide, known commercially as nylon 66.



37

In this case the definition of degree of conversion

and of the transition probabilities are the same as in

section a.

0. Single monomer, two different functionalggroups,

in presence of monofunctional reactant.-- This case is

chemically the same as that in part a, except for the pres-

ence of some monofunctional molecule such as a monobasic

acid, a monohydric alcohol, a monoamine, etc. Whenever

a monofunctional molecule reacts we may say that the polymer

molecule is "capped" or incapable of further reaction at

that end.

Designate the difunctional monomer as ArR-B and the

monofunctional diluent as A-R'. Then every molecule of

§§1_DP will have a structure A--—B or A—--R'. It is

convenient always to begin counting with the unit terminated

by an A group, so that we automatically count every possible

molecule. Then the propagation probability p22 corresponds

to another unit following the one just counted. The

termination probability p21 is the probability that the

unit just counted has an unreacted B group or is derived

from A-R' so that it is incapable of further reaction.

let x be the fraction of B groups originally present

that have reacted. This is numerically equal to the

probability that a given B group has reacted. Then let

S be the mole fraction of.A-R-B present initially, so that

c is the probability Of propagation (of the count) atcx = l,
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.iaéa: where further reaction is impossible because of

complete reaction of B groups. [Labelling is arbitrarily

chosen in such a manner that the concentration Of A groups

always exceeds that of B groups.] From the definition of

conditional probability, we have p22 = l—p21 = dd, so that

pm) = (o 1) (2.11)

' (l o )

P =3 (201.2)

14¢ “91

d. Unequal amounts of two monomers.-- If the two

monomers are represented by A-R-A and B-R'-B, with A-R—A

chosen arbitrarily as that which is in excess initially,

the system is conveniently treated as a binary copolymer-

ization. State 2 represents the presence of an A unit on

a given step (count) and state 3 represents the presence

of a B unit on a given step (count).

Define x (degree of conversion) as the fraction of

B groups initially present that have reacted and r as the

mole ratio of B-R'-B to A—R-A present initially. Then it

is easily shown that

 

(O) 3. l-rx r(l-g)

p = O l+r(l—2a) l+r(1-2a3 (2‘13)

1 O 0

P = l-ar 0 dr (2.1M)

1-x a 0

If we let r=l, then we have another description of

case b, as expected.
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E. Matrix Relationships to Polymer Composition

The composition of a polymer is determined completely

by the order in which the system occupies the various

transient states prior to absorption in state 1. To study

this, we work only with the inter-relationships among the

transient states and/or with the absorption (termination)

probabilities.

For instance, if we wish to know the probability

distribution function for the degree of polymerization

of the system described by equations (2.3) and (2.h), we

need merely determine the probability that the system

resides in states two and three for a total of exactly

n steps, for each allowed value of n. It turns out that

this may be determined entirely by use Of a vector and a

matrix which describe only these two states. (21) In

general, if the dimension of the transition matrix P is a,

we need perform all Operations with a matrix of dimension

r-l only, which results in a material reduction of the

a:—

In our systems, if’P is an s x 3 matrix, I is a 1 x l

labor involved.

Partition P as follows:

1’ = (2015)

  

"identity matrix, 2 is a l x (3-1) null matrix, I is an

(3-1) x 1 matrix which we call the "absorption.matrix" and

Q is an (3-1) x (s-l) matrix which is the "prOpagation
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matrix" since it describes what happens to the system

during prOpagation.

Similarly the probability vector p accompanying P

is a l x 3 vector whose elements sum to unity. If we

truncate p to contain only its last (3-1) components, which

are the probabilities of occupancy of the transient states,

we label the truncated vector q and call it a "transient

state vector."

1. Prpperties of the progagation matrix

The n-step elements of the transition matrix P were

labelled pm). In like manner, we label the n-step elements

 

1:)

of the partitioned transition matrix

I(n) [2(a)
l,(n) a

ll(n) I Q(n)

 

and we desire simple evaluations of each of these symbols.

We showed previously thatIP(n) = Pn, and from the

rules for. block.multiplication (25) of matrices I(nn) = I

and am): Qn. Since 2 and I are not square matrices,

Zn andfil,n are undefined. However the application of the

rules for block multiplication of matrices yields 2(a):

Since P is stochastic, I 4% Q3: In from the definition

of stochastic matrices. Further, any power of a stochastic

matrix is stochastic also, so we obtain Bin) + Q(n)s = II

which gives us finally 301) = (I -Q(n))l. [A column. vector

composed entirely of ones is denoted I.] To: summarize,

we have
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1.01) =

i
d :
3

I(n)

I N
H

z(n) _

nan) =

D

“(11) = (Ian):

A few sums of power series of Q will be useful and

are given here. From the definition of transient states,

it is Obvious that limit qig) = 0 for all i,j. This

n—900 3

implies that limit Qn -.= 2. It can be shown (25) that for

n->°°

a matrix with these prOperties

°‘ k -l

"-'-' (I ) s

.2. ° '°

where Q0 = I, and we shall denote this sum the matrix I.

If we define x9, = H, 0: x51, x a scalar, it is

clear that

:0 xqu = :0 ii" = (purl . (2.16)

Finally, we have

n-l k

20. = (I-Qn).n

(I-qn) (I+Q+Q2+. . .)

I+Q+Q2+. . .

_qn_Qn+l_. . .

_____ I+Q+Q2+. . .Qn-ZQn-l

' n-l

= k

hasQ '

since (I-Qn)'
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2. Degree of polymerization

(n)
The absorption matrix R. has Special significance

for our systems. The element r5“) is the probability that
11

a system in the i'th state initially has experienced

absorption on or before the n'th step. Thus q"o)BAn) is

the probability that the system was absorbed on or before

the n'th step, i_.__e_:_, q(O)R(n) = Pr{DP:n} which is the

definition of the cumulative distribution function.

Therefore,

FDP(n) = q‘0)(I-QP)3 for n=l,2,3,... . (2.17)

Since DP is an integral-valued discrete random variable,

we have

PDP(n) = FbP(n) - FbP(n-l)

= q(0)(I-Qn)s-q(0)(I-Qn'1)s

= «1(0) (i-qn—I+Qn‘1)-

='q‘O)QPTl(I-st for n=l,2,3,... . (2&18)

For some purposes it is desirable to know the moment

generating function of the distribution, MX(t)’ which is

defined as the mathematical expectation of etx. [The.

dummy variable t has no physical significance.] It can be

shown that the r'th moment of a probability distribution

of the random variable DP is simply

(DPr> = [drMDP(t)/dtr]t;_0 .

Pbr the integral-valued discrete random variable DP

we have the moment generating function

tn P
MDP(t).-t f e ().

n=1 DPn
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Now, with equation (2.18) for PDP(n) we write

MDP(t)

00

:1 etn 1(O)Qn-l(I-Q).

n:

etq(0)[(I-Q) 1:200 etqu a . (2.19)

Since 0 3 et :1 for values of t:0, and the value of ultimate

interest here is t=0, the series in (2.19) converges, and

using the evaluation of equation (2.16) we obtain

Mme) -.-.- q(o)et(I-Q)(I~Qet)'1s .

For some purposes, it is desirable to know the cumulant

generating function of a distribution. This is defined

simply as

KDP(t) = lOge MbP(t)°

The r'th cumulant, fl} is obtained in a manner analogous to

that for the r'th moment, (26), i;2;,

a} = [drKDP(t)/dtr]t=0 .

The utility of cumulants comes from the fact that cumulants

are additive for joint distributions and moments are not.

Also, the first few derivatives of KDP(t) are frequently

more easily obtained than are the same derivatives of

MDP(t)’ Then the moments are obtained from the cumulants

by use of‘a simple set of relationships. (13)

Although expressions for MDP(t) and EDP(t) are included

for their interest and possible utility, there is a simpler

way Of obtaining the DP moments of our systems. Thus,

Kemeny and Snell have shown (21) that

DP =-q"0)ls

and DP2 2 q‘0)(2ne1)ls .
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We stmply extend their derivation in the following manner.

L t

e (DPn> = q(o)tn , (2.20)

so that

t ls . (2.21)1:

Then we obtain the recursion formula

-1

tn = t1 4» (11-1) :1) at): (2.22)

where (E) is the binomial coefficient defined as

(E) = n1/k1(nnk)l We thus have a simple means of obtaining

all integral moments of the DP distributions.

Polymer chemists normally use ratios of moments for

characterization. The four most common of these "averages"

are defined below: (27)

<DP>n (DP) (2.23)

(DP)w _ (DP2>/(DP> (2-2h)

<DP>Z = <DP3)/(DP2> (2.2s)

<DP">/<DP3) (2.26)

The value obtained from colligative prOperty measure-

number average DP

weight average DP

"2" average DP

n N

z+l average DP (DP>z+lll ll

ments (cryOSCOpic and ebullioscopic methods, osmometry, etc.)

is (DP)n. The value normally obtained from light scattering

experiments is (DP)W, although (DP)n is also obtainable

in theory (and sOmetimes in practice) if the DP distribution

is reasonably broad and if a complete Zimm plot is determined

accurately. From ultracentrifuge studies it is possible

to obtain all four of the above averages and, in theory,

higher averages. The average obtained from dilution

viscometry (not an absolute method yet) is usually called



AS

simply the viscosity average, (DP)v; for many systems

(DP)n< (DP)v< (DP)W, but it may be possible to have

(DP)v > (DP )W.

A parameter frequently used to indicate the breadth

of a molecular weight distribution is the ratio (MW)w/(MW)n

= (DP)w/(DP)n. when this ratio is unity the sample contains

all molecules of identical DP; the distribution of molecular

chain lengths broadens as the ratio increases.

It is instructive to investigate this ratio in statis-

ticalparameters more directly descriptive of the distri»

bution. Thus, from equations (2.23) and (2.2M) we have

<DP>w/<DP>n = <DP2)/(DP>2. Now if we define a "polydis-

persity index"

 

(DP)n ' *

(DPZ) - (13192
- . But the numerator of this

2.

we have A _. 2

(DP)

expression is the variance of the degree of polymerization.

Then A is simply the ratio of the standard deviation of

the DP distribution to the number average DP. The relation-

ship between A and the usual ratio is illustrated in

Figure 1 for A 5 l.

The convenience of a parameter such as A compared

with <DP>w/<Dp)n is evident when we consider synthetic

polymers having rather narrow DP distributions. Such

polymers usually arise either from fractionation of polymers

having initially broader distributions or from reactions
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Figure l. Breadth of DP distribution as represented by

the ratio of weight average DP to number

average DP
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which theoretically should yield polymers with a Poisson

distribution of DP. (28) In either case, the distribution

can be closely approximated by a normal (Gaussian) distri-

bution curve. Then for such polymers we may say that

approximately two-thirds of the molecules have DP within

the range (DP)n -_l-_ A(DP)n. Such an observation is not

easily achieved merely by considering the ratio (DP)w/(DP)n.

The degree of success in obtaining a polymer with a

Poisson distribution is also conveniently indicated by the

value of A. The variance of a Poisson distribution is

always the same as the first moment, (9) so that

A = (DP)-l/2, which is easily compared with the experi-

mentally determined value of A.

3;_ Composition of binary Copolymers
 

For a simple binary c0polymer, there are three differ-

ent types of information (other than DP distributions) that

may be of interest. The most common of these is the gross

composition, or the fraction of all monomer units in the

copolymer that are derived from each of the two monomers.

The second moSt common in recent years is the relative

concentrations of different types of monomer sequences in

the COpOlymer. If the two monomers involved are A and B,

then an analysis of monomer pairs would yield the relative

concentrations of AA, AB, BB, and BA pairs. Concentrations

of the eight binary triples, Sixteen binary quadruples, etc.

may be Obtained if desired also.
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Finally, it may be desirable to know the lengths and

fluctuations of lengths of homopolymer sequences within the

00polymer,liLgL, the lengths of sequences of all one type

of monomer unit.

All these types of composition information are obtained

more easily by a Markov chain approach than by a determin-

istic approach, even where the latter is applicable.

3. Gross compositionlginfinite DP limit.~w The usual

deterministic approach assumes that an active 00polymer

chain undergoes only the four prOpagation reactions of

adding each of the two monomers to each of the two types

of active ends, and that termination is insignificant

with reapect to propagation. (23)

This assumption can be applied to the absorbing Markov

chain approach simply by assuming that p21 = p31 = 0. Then

Q,becomes stochastic, denotedQ,S to indicate its Special

nature, and may be rewritten

(qs)ll 1"'(qs)11

S = (2027)

1'(qs)22 (qs)22

Since Q's is stochastic, Q2 reaches an equilibrium value,

and

use) __, q<o>q(ao)

In this case, it is easily shown that

J”) _ l"(‘15:)22 1"(qs)11

- 2-(qsyllm(qs)22 2-(53711-(q3722

  

(2.28)

which gives the gross c0polymer composition assuming
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infinite DP. When (qs)11 and (qS)22 are evaluated in

terms of kinetic parameters, the results are identical

to those obtained deterministically.

b. Gross composition, finite DP.~w In order to

determine the gross c0polymer composition without using

the restriction of infinite DP, we proceed as follows:

Let q‘h) represent the expected composition for a

molecule having DP exactly equal to h. Then if q is the

composition of copolymer having a real DP distribution,

= M (h)P (h)

q hélq DP,

The value of PDP(h) is obtained from equation (2.18), and

(O)

um: L—hZ: Q1;

This last sum is easily evaluated in the following manner.

Since Q8 is stochastic, we know that the limit Q(n)= Q5200).

n—eoo

Then decompose Q8 into Q50) +3 and Q2 = Q5200) + Em) .

As will be seen in the section on applications to

Specific systems, if we assume equal termination probabil-

ities for both active states 3(n) can be written in the form

f n

3‘“) = fin (2.29)

where A.is a constant with absolute value no greater than

unity. Then

hol h
Z: 3(1’1) = 1~A

n=0 (l-A)
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which leads to

h
- A

(1»A) h h

with the result that

h
(00) 1 °"’ 1 °" A (o)

q=q +———-Z—P(h)—Z——P(h)qu
S (lwA)2 h=l h DP h=l h DP

(2.30)

0. Analysis of monomer sequences of fixed length.--

Suppose we wish to know relative concentrations of AA, AB,

BA, and BB pairs in the binary cepolymer. Then we illustrate

the use of an augmented matrix here; in the same manner,

but with greatly increased amount of computation, we may

also obtain concentrations of triples, quadruples, etc.

The simple transition matrix for a binary 00polymer

system is given by equation (2.10). Now, to form the

augmented matrix we redefine the states as follows:

State 1 = dead polymer;

State 2 = active polymer with AA at end;

State 3 = active polymer with AB at end;

State A = active polymer with BA at end;

State 5 = active polymer with BB at end.

The new transition matrix is S x S. If the rate of

a propagation or termination reaction is independent of

the penultimate monomer unit at the active chain end, we

have p22 = pua’ p23 = Pu3’ Pan = Psu’ p35 = Pss’ p21 = pal

and p31 = p51. Also, it is obvious that a terminal active

AA.pair cannot be transformed into a terminal active pair
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of either type BA or type BB in a single step, so

p2h = p25 = 0. By entirely similar reasoning we have

p32 =vp33 = pun = phE =-p52 2 p53 = 0. Thus the transition

matrix for this system is

l O O O 0

p21 p22 p23 0 O

P = p31 0 0 p3u p35 (2.31)

p21 p22 p23 0 O

"331 0 0 pm p35

Also, if the initial vector of equation (2.9) is designated

as “(0), then for the present system we have

(0) .(o‘ (o) “(0) (0)

P = O 1*2’1E’22 u2 p23 “3 p31; 113 1’35 °

It is a simple matter to obtain the infinite DP limit

of sequence compositions for this case, as Price has

shown. (19) In principle, the composition may be obtained

for copolymers of finite DP distribution, but the compuw

tations become tedious for such cases. In such an analysis,

the value of DP to be used in equation (2.30) would be

the number of pairs in a polymer chain, 1:24, one less

than the actual DP of the polymer.

d. HomOpolymer sequences in copolymers.-w For this

analysis we define state 2 as a monomer of the type being

considered, say A, on the active chain end, and state 1 is

either dead polymer or the first unit in a sequence of

the other type. The matrix description is then

p(o) = (O 1) (2.32)
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1 o

P = (2.33)

p21 p22

with p22 representing addition of another A molecule to

an A end, and p21 representing either termination or addition

of a B monomer to an A end. The case for sequences of B

is identical except for the numerical values of p21 and p22.

The distribution and moments of the sequence lengths

are obtained from the matrix using equations (2.18) and

(2.20‘2022) .



III. APPLICATIONS TO SPECIFIC SYSTEMS

In applying the Markov chain formalism to specific

systems, the general solutions for different types of

systems will be obtained first. Then numerical solutions

will be given for arbitrary, but reasonable, values of

the various initial and transition probabilities. Finally

numerical solutions will be obtained for some actual physical

systems for which the required constants are available.

A. Linear Addition Homopolymers

It is simplest to solve only the general system de-

scribed in section II—C-3ae, which then can be easily

particularized to any type of linear addition homopolymer.

1. General solutions

The transition.matrix was given in equation (2.5). We

may assign to the prOpagation probability the value

9 = p33 = pun. Then the prOpagation matrix is

o o 1

Q: o 9 1—9

0 o e

which may be shown to be equal to the product of three

matrices (known as a similarity transformation) as given

at the top of the next page:

53
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1 ~1

Q.= 3A8‘1 = o 1 fég o e 1 o 1 1

o o Tée o o e o o 1-9

The determination of the matrix S which satisfies the above

relationships is a difficult task where degenerate eigen-

values exist. The problem is treated in a number of books

and reviews on the subject of matrix theory. (29)

Since Q9”: Sinsul, we have

0 0 on”1

QP'= 0 en non”l(1ae)

o 0 on

and

1 o 1/(1me)

n = (I-Q)'1 = o 1/(1=e) 1/(1-9)

O O 1/(1we)

From these results, the various quantities of interest

are:

lmenwl

FbP(n) = q)0) l-nen”1+(n~l)9n

1-en

gn-2(1_9)

PDP(n) = q(o) (n-l)@nm2(l~9)2

en"1(1=e)
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awe

(0)

(DP) = 1-e 2

l

h-39+92

(DPZ) n+2e

(1-9)2
ll

1
)
e
r

1+9

8-59+492-93

2

ll

e
c
o
r
o

<DP3> 8+1u9+2e

(19)3 2

l+h9+9

16+9+1192~593+9u

16+669+3692+293

A O

(DPu> =

. (1-9) 2 3

1+119+119 +9

For the general case, q(0) =»(F F

l

2 ==2f/(1+f). Using this vector we obtain:

- n(1i£%+2f 9n +(nwii§l_)9n for n=2,3,.

2 0), where

Fl =:1 - F

l
-
'

FbP(n) =

n-2

PDP(n) = jl'ilg [2f+(l~f)(nwl)(lw9)] for n=2,3,h,... .

, 2+2r(1~e)

<DP>n - (1-9)Ti+f7

' 2»e r(2- e 92

(WK: = T—fi-ie1+1: I—g‘le

(DP) _g+7e+é2+f(4,-129+3e:-e§)

(1-9)[2+9+f(2-h9+92 )]

(DP) '_8+33e+1892+e3+r(8-329-79:693+9I)

2+1: (1-g)[u+7e+92+r(u--129+3e2-e3 )1

(DP)W (1+r)[2+e+r(2-ue+e2)]

(DP)n _ 2[1+r(1--e)]2

At the two limits;of f, this ratio becomes
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( ,

(DP)W _ LEG for f = O

(DP)n —

) 4.19:3; for. , __. 1
\ u-h9+9

The values one usually sees published for this ratio are

3/2 at f = O and 2 at f = l, which correSpond to the

limiting values at G = 1, i123, at infinite DP. To illus«

trate the effect of 9 and f on the value of the ratio,

a three-dimensional surface is shown in Figure 2.

As further illustrations of some of the relationships

found above, TABLE II gives representative values of (DP)n ,

TABLE III gives (DP)w/(DP)n, and TABLE IV gives the fraction

of polymer molecules having degree of polymerization within

1’10% of (DP)n. The last of these tables is easily computed

with the use of the expression for the cumulative distribution

function, and is another indication of the breadth of the

distributions involved. All three of these tables give the

values as functions of both 9 and of f.

2. Relationship of probabilities to kinetic constants

All the remarks here apply to free radical-initiated

vinyl polymerizations, but the extension to polymerizations

initiated by other agents is not difficult, merely lengthy

if all possibilities are to be considered in detail.

Two simplifying assumptions are used, although they

could be avoided in a more comprehensive treatment. First,

it is assumed that all radicals in a given system are

equally reactive. Second, it is assumed that the total
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f

Figure 2. Surface of ratio of weight average DP to number

average DP as a function of f and of 9 for linear

addition homopolymers
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TABLE II. Number average degree of polymerization for

linear addition homOpolymers

f

9 O .2 .u .6 .8 1

.5000 u u 3 3 3 3

.9000 20 17 15 13 12 11

.9900 200 167 lb 126 112 101

.9990 2,000 1,667 l,h29 1,251 1,112 1,001

.9999 20,000 16,670 lh,290 12,500 11,110 10,000

TABLE III. Ratio of weight average degree of polymerization

to number average degree of polymerization for

linear addition homopolymers

f

e 0 .2 .u .6 .8 1

.9000 1.85 1.58 1.07 1.73 1.75 1.78

.9900 1.50 1.6 1.80 1.90 1.95 1.97

.9990 1.50 l. 1.82 1.92 1.98 2.00

.9999 1.50 1.68 1.82 1.92 1.98 2.00

TABLE IV. Number fraction of polymer molecules having

degree of polymerization within i 10% of number

average degree of polymerization for linear

addition homOpolymers

f

e 0 .2 .u .6 .8 1

.5000 .1875 .2083 .2232 .23%% .2831 .2500

.9000 .1111 .123M .1322 .13 . 39 .1u80

.9900 .1086 .0983 .0910 .0855 .O 12 .0778

.9990 .1088 .0972 .0890 .0828 .0780 .07u1

.9999 .1117 .0990 .0899 .0830 .0777 .0735
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concentration of reactive species and the concentration of

each individual reactive species remain constant. This is

valid during the time required for the growth of any

individual polymer molecule except those initiated during

the first few seconds of the reaction.

a. Initiation reactions.-- For the purposes of this

treatment, the rate of appearance of reactive molecules may

be taken as simply R1. However, the magnitude of R1 may be

estimated if the nature of the initiating reaction(s) is

known, although in many cases the detailed nature of this

step is the least well understood aspect of the overall

mechanism. By way of illustration, three general types of

initiation reactions are considered:

1. One initiator molecule decomposes by some (uni-

molecular) reaction to form one active site which continues

to add monomer molecules until termination occurs. If [C]

is the initiator concentration and [R*] is the concentration

of active molecules,

R = ki[C] = d[R*]/dt.
i

2. One initiator molecule decomposes by some (uni-

molecular) reaction to form two active sites which con-

tinue to add monomer molecules until termination occurs.

Then

R = 2k1[C] e d[R*]/dt.
i

3. Two monomer molecules react (bimolecularly)

to form two active sites which continue to add monomer



60

molecules until termination occurs. In this case,

R1 = 2ki[M]2 = d[R*]/dt.

In addition, there are other less frequently encoun-

tered modes of initiation which have rate laws different

from those above. (8)

b. PrOpagation reactions.~- For the purposes of this

treatment the terms "propagation" and "termination" refer to

a single growing molecule rather than to the usual kinetic

chain. We shall assume that only one prOpagation reaction

occurs, with only one rate law, 111;,

R-zz- 4. M—rR-x—

Rp = adtMl/dt = kp[R*][M].

c. Termination reactions.~- Two general types of

molecular chain termination reactions are important, and

they may be designated by their kinetic terms -~ chain

termination and chain transfer. In both cases, a molecular

chain is terminated, so that for purposes of a description

of polymer composition the sum of the probabilities of both

types of reaction is the appropriate parameter. For rate

expressions, however, a kinetic chain ceases to exist after

a chain termination reaction, but after a chain transfer

reaction the kinetic chain continues even though the

original molecular chain is completed.

I. In chain termination by combination, two growing

polymer chains simply join together forming a single

molecular chain with length equal to the sum of the lengths
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of the two chains that joined:

Rxee + Eyes—va
+Y

.v. 2
R = ktc[R"] o

to

Thus the unpaired (radical) electrons on each of the growing

chains "pair up" to form a normal covalent bond. This is

the only termination reaction which fits our previous

description of "double chain termination" reaction; the

others are all "single chain termination" reactions.

2. In chain termination by diSprOportionation an

atom or group (usually hydrogen atom) transfers from one

growing polymer chain to the other. The result is two

polymer chains with the same lengths as before the reaction,

one being a saturated molecule and the other having a double

bond at the end:

6(- -;:. -——b o
RXCHZQH + RyCH2$H RXCH.CHZ + RyCH2CH2Z

Z Z

. 2

th = ktd[R“] °

3. In chain transfer to monomer, a monomer molecule

reacts with a growing active polymer chain resulting in

a non-ionic, non-radical polymer molecule and a small,

active radical that can undergo further polymerization.

Fbr example,

RxCH 0H8 + CH2:CHZ-———>RXCH:CHZ + CH3?H*

Z Z

2

R = k [R*][M].
trm trm

Thus, the term "chain transfer" comes quite naturally

from the fact that the kinetic chain is "transferred"



from one growing molecule to another, so that in a kinetic

sense the reaction is unaffected but in a molecular compo-

sition sense the reaction is terminated.

h. In chain transfer to "solvent" the mechanism

is identical to the preceding except that the transferring

entity is a "solvent" or any other foreign reagent rather

than monomer° For example,

R_CH90H% + RlH-——4»RMCHgCHMZ + R7*
X -- g A ,1 c.

Z

3 W I 7 if %Rtrs htrS-R HH_R J .

d. Evaluation of G generallyzun Since only prepagau

tion and termination are allowed explicitly in our model,

the prOpagation probability 9 may be taken sanly as the

rate of propagation divided by [the rate of prOpagation

plus the rate of molecular chain termination]. Thus,

9 = Rp/[Rp+Rt3+th*Rtrm+Rtrsi°

All the rate expressions contain [R*] in some form, which

is essentially an immeasurably small quantity, even with

electron paramagnetic resonance methods, in most free

radical-initiated polymerizations. The usual way to avoid

this problem is to invoke the steadywstate approximation

so that d[R*]/dt = ~d[R*]/dt.

This leads to

R. = (ktC-o-kthRae]2
1

because the steadymstate approximation assumes that the
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rate of initiation is the same as the rate of kinetic

chain termination. Therefore,

[3*]: 121/20:tc+ktd)'1/2.

6. Evaluation of f generally;-- We defined f as the
 

fraction of active polymer chains that undergo single chain

termination. Then

f—= [R +R +R
td+Rtrm+R+RtrsJ/[thtrm trs+ to]‘

f. Parameters for methyl methacrylate polymerization

at 60°C.-- From data of several different workers (30) we

write the following approximate rate constants and the rates,

assuming monomer concentration of nine moles per liter. The

value of k1 is in considerable doubt, but this example is

for illustration only, so the ki value is used.

k1 = 10‘15 l/m/sec. [R*] = 6.07xio“11 m/I.

k.p = 73h l/m/sec. Rp = Ll...01x10"'7 m/l/sec.

ktrm = L4..€>xlOmL‘L l/m/sec. Rtrm = 2.51x10”13 m/l/sec.

ktd = 3.714.1107 l/m/sec. th = 1.38x10-13 m/l/sec.

kto = 6.5x106 l/m/sec. Rtc = 2.u0xlO-1h m/l/sec.

ktrs = O

From these values we obtain

9 = .99999897

f = .9u2

Then

(DP)n = 9.9987x105

(DP)w = 1.9981x106
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6

6

(DP)Z .2.99u7x10

(DP)z+l 3.9899x10

<DP)w/<DP)n = 1.9983

Standard Deviation of DP = 9.9903x10S

B. Linear Condensation Polymers

Condensation polymers result from either of two systems:

single monomer with two different functional groups; or two

difunctional monomers capable of reacting together.

1. Single monomer

From equations (2.11) and (2.12), the initial transient

state vector and the propagation matrix are:

q(0) ___._ (1)

0.: QX¢) .

Then we also have

and Qn = (ding/n)

1': (T%Ea)'

From these results we obtain the various quantities

of interest as follows:

FbP(n) = 1-(«¢)n for n=l,2,3,... (3.1)

PDP(n) = «x¢)n'1(1-a¢) for n=l,2,3,... (3.2)

1
(DP) = W (3.3)

(DPZ) = 1*“ (3.u)

(1~«¢)
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(DP3) = 1+ux¢+flxd)2

 

 

 

(bot/)3

(DPLL)
._.__ 1+1lo<j

+11(o(¢
)2+(o(¢

)3

(l~m¢)E

Finall
y

we obtain

(DP )n = 1%}?!

<DP>W = if

2

(DP)Z = 1+hmé4(«
§)

1~<o¢>

(DP>Z+1
= l+llo<¢

+11(o£é
) 2+(O<g§)_

%

(1-a¢)[1+ua¢+(x¢)2]

(DP)w/(DP)n = 1+m¢

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

As an illustration, TABLE V gives (DP)n and the frac-

tion of molecules having DP within i 10% of (DP)n, both as

functions of (up). The value of (DP)w/<DP>n increases.

linearly with.(«¢), ranging from one to two.

TABLE V. Degrees of polymerization of condensation polymer

from single difunctional monomer

 

 

 

Number fraction of polymer molecules

“9‘ <1313):; having DP within 1; 10% of (DP)n

.5000 2 .2500

.9000 10 .0737

.9990 1,000 .0737

.9999 10,000 .073u 
 

2. Two monomers

From equations (2.13) and (2.1M) the initial transient

state vector and the prOpagation matrix are found to be
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(O) __ l—m rile-a)

q ‘ l+r(l-2«) 1+r(l-2«T

0 r«.

Q,=

« 0

The prOpagation matrix may be written as the product

1 r1/2 qu/Z 0 1 rl/2

Q'=‘§ r-1/2 _1 o _“r1/2 ( r-1/2 -1

From this we obtain

H

1+(~1)n 1agu12nr1/2

"“2“‘ 2
Qn = “urn/2

1-(-1)n -1/2 1+(ai n

"T—r __—Z_L'

and

1 l r0<

l = l-ru
“ 1

From these results we obtain the various quantities

of interest as follows:

FDP(n) = 1"““nrn/Z for 11:2,Ll,6,...

1..nr<n+1)/2(§;;;—§rr r... n=1,3,5,...

PDP(n) = “n—lr(n-l)/21 §i§tgag -«r1/2] for n=2,h,6,...

n-l (n-l)/2 2-o<-o(r _
0( 1" Ll-«r(1+r-2qr)] fOI’ n—l’3,s,000

 
The peculiar nature of these expressions arises from

the cyclic nature of the Markov chain under consideration.

That is, for a given starting state the system moves through

the states in a definite order, returning to the starting

state after an even number of steps, as long as it remains

in the set of transient states. Likewise, in this chain

of period 2, the system is in the other state after an odd
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number of steps as long as it remains in the set of trans

sient states. This prOperty does not have a marked effect

on the DP distribution except at very low DP.

This is another illustration of the preferability of

a stochastic model over a deterministic model, as the latter

does not result in a periodic expression, even though Flory

recognized and pointed out the existence of this type of

situation. (31)

Further results are:

l+r

(DP) ==1+r~2rx

<DP2> ; (l+r«)2+r(l+«1?

(lar«2)(l+r-2r«)

<DP3> = l+r+l2rm+lOr
x2+1Orax2+12

r2x3+rgflu+r2
xu

 

 

 

(l-ra2)2(l+r-2r«)

(Dru) =

l+r+28rm+hir62+u7rax2+l36r2a3+h7rgxu+h1r3ag+28r2x5+rzx6+rhaé

' (1-ro<2)3(1+r-2m)

l+r

<DP>n = 1_+r_—-2ro<

' 11 2 2
<DP>w = +rx) +r(l+«)

(l-rdg)(1+r)

(DP) 2 l+r+12r“+19r“a+1OP
ZK2+12r2a§+rgxu+r3

my
z _

(l-rag)[(l+r«?)+r(1+«)2]

l+r+28ra§41raz+ujrzma+l36r2x3+h2r2my+u7r3xu+28r2x5+r3xé+ruxé

(l-rag)(l+r+12rx+l0r«2+10r2«2+12r2«}+r2ay+r3x")

<DP>w= (1+r)[l+r(l+o¢2~2r2a9+r2a?]-8ra%2

(PPE (l-ro<_2)(1+r)2n
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TABLE VI gives (DP)n, TABLE VII gives (DP)w/(DP)n;

and TABLE VIII gives the fraction of polymer molecules

having DP within 3,10% of (DP)n. All three tables are

given for a range of values of both x and r.

For the value r=l, we have the results for systems

with initial concentrations of both monomers the same.

These results are identical to those for condensation

polymers from one difunctional monomer in the absence of

monofunctional reactants (iafias for ¢=l in equations

(3.1)-(3.11)).

For the value «=1, we have the systems at complete

conversion with or without excess of one monomer. For this

limiting case we have

FbP(n) = {l-rn/2 for n:2,h,6,...

1—r(n+l)/2 for n=1,3,5,..

 

 

PDP(n) = r‘n“1)/2(1~r1/2) for n=2,Li,6,...

r(n-l)/2(l~r) for n=l,3,§,...

(DP)n .; ii};

' 2

(DP)w = 1:: 1+;

CDP)z % (l+r)(l+22r§r2)

‘ (l-r)[(1+r) +ur]

<DP)z+1 % 1+76r+230r2+76r3+ru

(1-r)(1+r)(1+22r+r2)

<DP>w ‘ (l+r)2+hr

ZEPSn = (1+r)2
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TABLE VI. Number average degree of polymerization for

linear condensation polymers from two monomers

r

a .9000 .9900 .9990 .9999 1

.5000 1.90 1.99 2 2 2

.9000 6.79 9.5 . 10 10 10

.9900 16.10 66. 95 99 100

.9990 18.66 166.1 167 952 1,000

.9999 18.97 195.1 1,667 6,667 10,000

1.0000 19.00 199.0 1.999 19.999 ------

TABLE VII. Ratio of weight average degree of polymerization

to number average degree of polymerization for

linear condensation polymers from two monomers

r

“ .9000 .9900 .9990 .9999 l

.5000 1.38 1.50 1.50 1.50 1.50

09000 1. 7 1090 1990 1090 1090

.9900 1.98 1.98 1.99 1.99 1.99

.9990 2.00 2.00 2.00 2.00 2100

.9999 2.00 2.00 2.00 2.00 2.00

1.0000 2.00 2.00 2.00 2.00 2.00

TABLE VIII. Number fraction of polymer molecules having

degree of polymerization within 1,10% of number

average degree of polymerization for linear

condensation polymers from two monomers

r

.5000 .5000 .2u66 .2500 .2500 .2500

.9000 .062h .0819 .0818 .0818 .1168

.9900 .0861 .0726 .07u1 .o7uu .0778

.9990 .0819 .0718 .0736 .0735 .0781

.9999 .0388 .0718 .0735 .073u .0735

1.0000 .0388 .070u .073u .0731 -----
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3. Evaluation of parameters

Unlike the case of addition polymerization, the

transition probabilities are not obtained from kinetic

parameters for condensation polymers.

The value of<x is determined entirely by the degree

of conversion obtained, which may be determined by how

soon the reaction is arrested or by the amount of side

reactions (presumably unknown) that prevent complete

conversion. In this sense, a is related to kinetic param-

eters but such aspects as rate of removal of the resultant

small molecules (water, ammonia, etc.) have an effect which

depends on the reactor geometry and other conditions too

complex to evaluate prOperly.

The values of d'and r are determined entirely by the

makeup of the initial reaction mixture. Attainment of

¢£1 is achieved "simply" by careful purification of the

single monomer involved, and values of ¢ less than unity

are best achieved by adding known amount of monofunctional

compounds to rigorously purified monomer.

It is generally very difficult or impossible to obtain

r=1 exactly. However, in some cases it can be done by use

of a stoichiometric salt which can be purified by recrystal-

lization or other standard methods. An example of this is

the formation of hexamethylenediammonium adipate ("nylon

salt") in the production of nylon 66.
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C. Linear Addition Copolymers

When dealing with linear addition COpOlymerizations,

the problem of evaluating transition probabilities is a

great deal more complex than it is for the correSponding

homOpolymerizations. However, with a few simplifying

assumptions the probabilities may be evaluated to a reason-

able degree of accuracy.

1. Limiting case of no termination reaction
 

The matrix treatment of the Markov chain approach to

this limiting case has been given adequately by F. P. Price,

(19) but some of the important features and results will

be given briefly here as a preview to the more general

treatment. In this case, the propagation matrix is sto-

chastic and is given by equation.(2.27)3 q: reaches an

equilibrium value of

cm 1 l"(qs)22 l—(q8)11a":
3 2"(q5711'(qs)22

 

1-(q8)22 1‘(qs)11

To evaluate the various (qs)ij we examine the various

possible prOpagation reactions and their rates (23), viz.,

 

Reaction Rate

wAez- + A—+ ~vA* R11 = k11[/WA-:'c][A]

wAez- 4. B—-> WB-zz- R12 = k12[/WA*][B]

~vB-x- + A—v-wA-x- R21 = k21[/WB*][A]

WB-x- + B—D-wBei- R22 = k22[WB*][B]

By utilizing the usual numerical equivalence of probability
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and frequency, we see that (qs)ll = Rll/(Rll+R12) and

(qs)22 = R22/(321*322)°

The concentrations of MA* and «~B* are seen to cancel

in these eXpressions, but we still are left with four

kinetic rate constants in addition to monomer concentrations.

These normally are incorporated into "monomer reactivity

ratios" defined as r1 = kll/kl2 and r2 = k22/k21.

As a result, we have only two unknown parameters to be

determined from the gross 00polymer composition, assuming

the validity of the limitation of no termination reaction.

In terms of monomer reactivity ratios and monomer concen-

trations, we have

r1[A]

(q ) = d ( ) =
S 11 rl[A]+[B] an <13 22

r2[B]

r2[B]+[A]

  

a. Gross composition, arbitrary parameters.-- To

illustrate the gross composition of binary addition c0poly-

mers predicted by this approach, two systems are illustrated

in TABLE IX. ‘These are the systems having reactivity

ratios of rl =-r2 = 0.1 and r1 = 0.1, r2 = 5.0.

b. Concentrations of sequences of length two.--

In this case, our stochastic prOpagation matrix is given

by equation (2.31). Then we find that

(“9 1

P = 2-p119p22 pllp21 p12P21 p12P21 p221312

where the various (qs)ij have been replaced by p13 for

the sake of compactness, since the matrix is stochastic
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This result, too, has been shown by Price. (19)

The concentrations of these various pair sequences for the

same two systems as above are given in TABLE X.

 

 

 

 

  
 

TABLE IX. Gross composition of linear binary addition

cOpOlymers for two hypothetical systems

[A] r1 1‘2 :3 0.]. r1 = 001’ 1‘2 :3 500

FAME] (n.5,)11 (9.)22 (01,)?" (.5311 ‘9.)22 (qs){°°’

0.; .ogfio .ggg7 .iu73 .Olig .9g83 'OE6E

O. .0 o 7 o 227 .02 09 2 00

0.% .062? .l30h °11812 .0625 882A .1115

0. .130h .0625 .5188 .130h .7692 .2097

0.8 .2857 .028A .5773 .2857 .5556 .3836

0.9 .h737 .0110 .6527 °A737 .3571 .5u98

TABLE X. Composition of sequence pairs in linear binary

addition c0polymers for two hypothetical systems,

limiting case of infinite DP

 

 

 

 

  
 

[A] r1 r2 = 001 1‘1 = 001’ 1‘2 = 500

7.1.1131 Pi”) péoohpéoo) Pt“) pf») Mag“) PIE”)

0.1 .0038 .3u35 .3092‘ .0002 .0213 .9572

0.2 .0103 .uiau .16h9 .0011 .ousu .9081

0.3 ‘ .0301 .h511 .0677 .0070 .10h5 .78h0

O. .0677 .h511 .0301 .027 .182h .6079

0.8 .16h9 .hl2h .0103 .109 .27h0 .3g25

0.9 .3092 .3u35 .0038 .2608 .289u . 08

c. Homopolymer sequence lengths within the c0polymer.--
 

The matrix description was given by equations (2.32) and

(2.33). For sequences of monomer A, p22 = r1[A]/(r1[A]+[B])

and for sequences of monomer B, p22 = r2[B]/(r2[B]+[A]).
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Sequence length analyses have not received much

attention from polymer chemists. However, Rice and Nagasawa

(32) have pointed out that the distribution of sequence

lengths is essential in the evaluation of the free energy

of a polyampholyte in a solution. Thus, it is reasonable

that any general theory of the statistical thermodynamics

of mixing of c0polymers with solvents will require such

information also.

If we let the random variable M refer to the length

of a sequence, then the prOperties most likely to be of

interest are found to be:

PM(n) = palpggl for n=l,2,3,...

(M) = 1/P21

(M2) = (1+p22)/(p21)2

Var(M) = rag/(p21)2

Wall has also obtained these expressions for (M) and PM(n)

(15). The values of PM(n) and (M) for the same two systems

previously treated are given in TABLE XI.

d. Characterization of stereoregularity in vinyl

polymers.-- Miller and Nielsen, (33) and Price (19) have

pointed out that stereoregularity in vinyl polymers can be

analyzed by considering it as a 00polymerization of the

g— and l—stereoisomers of the same monomer unit in the

chain. (2h)

The quantities usually desired are the relative

concentrations of sequences of length three in the copolymer,
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TABLE XI. Homopolymer sequence length distributions

within linear binary addition cOpolymers for

two hypothetical systems

[A] A sequences B sequences

[A]+[B] PM(n) (M) PM(n) (M)

0.1 .0111x(.0110)n 1.011 .9000x(.h737)n 1.900

0.2 .0250x(.02hh)n 1.025 .u000x(.2857)n 1-h00

0.8 .0667x(.0625)n 1.067 .1500x(.l30h)n 1.150

0.6 .1500x(.130h)n 1.150 .0667x(.0625)n 1.067

0.8 .b,000x(.2857)n 1.u00 .0250x(.021m)n 1.025

0.9 .9000x(.h737)n 1.900 .0111x(.0110)n 1.011

r1 = 0.19 r2 = 5.0

0.1 .0111x(.0110)n 1.011 u5.00 x (.9783)n A6.00

0.2 .0250x(.02hh)n 1.025 20.00 x (.95211)n 21.00

0.u .0667x(.0625)n 1.067 7.50 x (.8823)n 8.50

0.6 .1500x(.130u)n 1.150 3.33 x (.7692)n h-33

0.8 .u000x(.2857)n 1.u00 1.25 x (.5556)n 2.25

0.9 .9000x(.u737)n 1.900 .56 x (.3571)n 1.56  
 

as these may be analyzed by nuclear magnetic resonance

Spectrosc0py. (3h) In this case, the stochastic prOpa-

gation matrix is 8 x 8, and the solutions are given and

discussed by Price. The details of the analysis will not

be repeated here, but, in essence, the problem simplifies

to the case of r1 = r2 and [A] = [B]. The result is that

[AAA] = [BBB], [ABA] = [BAB], and [ABB] = [BAA] = [AAB] =

2 [BEA].-
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2. Copolymers having finite DP distributions
 

The most difficult problems in analysis of real

copolymer systems are the evaluation of termination prob-

abilities and the complexity of the algebra involved in

a solution of a completely general system.

The first of these two problems will be treated in

more detail in part b. The latter problem can be handled

easily if we restrict our hypothetical system slightly,

and in principle it can be handled without restriction if

one considers the results worthwhile in View of the cumber-

some algebra involved.

a. Analysis of hypothetical case.~~ The restrictions
 

we shall use for the sake of tractability are:

1. assume the relative termination rate, and hence

the termination probability, is the same for systems in both

of the transient states; and

2. assume the values of the elements of the initial

transient state vector are preportional to the concentra-

tions of the two monomers.

Neither of these limiting assumptions introduces serious

error, particularly if the termination rate is very small

compared to the propagation rate, which will be true of

most systems of interest. Thus, if the termination rate is

very small, differences among the various termination rates

possible become even less important in terms of the overall

system. Also, if the termination rate is very small, the
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DP is large, and the influence of the initial vector be-

comes vanishingly small. We shall apply the formalism to

systems for which the assumptions are only moderately

good, but shall retain them for convenience.

Utilizing these assumptions, we may describe the

system in the following manner.

(0) 0 [A] [B]

[A]+[B] [A]+[B]

 

P

1 O O

'
U

H

1’9 p119 p129

1-9 p219 p229

Application of the usual formalism to these yields the

probability distribution function, which is independent

of the value of péo) and pgo):

PDP(n) = (1_9)9n-l for n=l,2,3,...

Since, by letting e = «a, this is the same probability

distribution function as that obtained for linear conden-

sation polymers from a single monomer, the moments and

average DP's are the same also. The extension of these

results to count only polymer with DP2:2 or to consider

double chain termination as well as single chain termi-

nation is a simple matter, even though the algebra becomes

increasingly complex.

To obtain the gross c0polymer composition we apply

equations (2.29) and (2.30). To this end, we obtain

1 P2171312(1322+P11"1)n P12"1’12(P22*'PII"1)n

QP.= _ n n

2 PII'P22 p21'P21(P22+PII'1) 912*P21(P22*P11'1)
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#0)
which may be rewritten Q(n) = Q + 3(n)’ where 3(n) is

given by equation (2.29) with

P “P
HI: ( 12 12)

‘P21 p21

From these relationships it is possible to obtain the

final desired results of the gross composition of a co-

polymer having finite DP distribution under the limiting

)ghwl
assumptions used. Since PDP(h) = (luG , equation

(2.30) becomes

q = qgm) + —il1§l§ ln.%:%§'q(o)ll (3.12)

9(l—A) ”

The results of application of equation (3.12) to the

two hypothetical polymers analyzed previously are given

in TABLE XII for three values of 0, of which 0 = 1 corre-

Sponds to the limiting case of infinite DP.

TABLE XII. Gross composition of linear binary addition

c0polymers for two hypothetical systems, given

as fraction of monomer A in the COpolymer

 

 

[A] . r, - = 0.1 r1 = 0.1, r2 = 5.0

 

[A]+[B] e=.5 e=.9 e=1 e=.5 9:.9 9:1
 

.1968 .2987 .3u73 .0758 .ogiu .0215

.2923 .3819 .u227 .1522 .0 52 .0u65

.u3u8 .u670 .u812 .3085 .1829 .1115

.5652 .5330 .5188 . 729 .3039 .2097

.7077 .6181 .5773 . 601 . 808 .3836

.8032 .7013 .6527 .7817 . 311 .5u98o
o
o
o
o
o
J

.
C

.
C

.
C

0
(
2
)
m
e

  
 

These results are shown also as 00polymer composition

surfaces in Figures 3 and h.
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l IIIIIII. I

Mole fraction _
’

monomer A

in c0polymer —

1

_ .9

.5

' PrOpagation

probability,

9    
 

O Mole fraction 1

monomer B

in monomer mixture

Figure 3e C0polymer composition as a function of 9 for

the hypothetical system: r1 = r2 = 0.1



Mole fraction

monomer A

in 00polymer
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‘.\  

"9 1
PrOpagation

probability, 
 

Mole fraction

monomer B

in monomer mixture

' O 9

1

Figure A. COpolymer composition as a function of 9 for

. the hypothetical system: r1 = 0.1, r2 = 5.0
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b. Analysis of "real" case.~w As an example of the

application of this theory to a real c0polymer case, one

of the most widely studied c0polymer systems is used.

Monomer A is methyl methacrylate and monomer B is styrene.

Then the 00polymer reactivity ratios at 60°C are approxi-

mately r1 = .hS, r2 = .50. (35)

COpolymerizations of this type usually are carried

out with the addition of free radical initiator, so that

the values of termination rate constants depend on the

catalyst used and the amount of it as well as the temper-

ature of polymerization. Alfrey, Behrer, and Mark have

pointed out in some detail the difficulty of estimating the

rates of all the possible termination reactions. (23) For

this analysis, then, we simply assume 0 = .999. Since this

would, for this c0polymer, correspond to a number average

molecular weight of the order of 105, which is of the same

order of magnitude as is the molecular weight of commercial

copolymers of this type.

We shall further assume that the cOpOlymerization is

~initiated by 2,2'-azobis(2-methylpropionitrile). It has

been found that the relative initiation efficiencies of

these two monomers with this initiator at 6000 are such

(36) that the initial transient state vector is

(O) - ou9[A] .51[B]

q _ .u9[A]+.51[B] .u9[A]+.51[B]

The gross composition of this 00polymer under these
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assumed values of parameters using equation (3.12) is

given in TABLE XIII for both 9 = .999 and 9 = 1.

TABLE XIII. Gross composition of methyl methacrylate»

styrene 00polymers with finite and infinite

DP distributions.

 

 

 

 

 

[A] Fraction of MMA in 00polymer

[A]+[B] =.999 e=1.0

0.1 .172553 .172885

0.2 .286213 .28662h

0.% .h%298h .h 3213

0. .5 9733 .5 9603

0.8 .729766 .g29 83

0.9 .8h0010 . 39 95

 

Upon comparing the values in the two columns of

TABLE XIII, we see that the usual assumption of infinite DP

in the computation of gross copolymer composition is good

to within the usual experimental error involved for this

system with its usual rather high DP distribution. However,

as can be seen from TABLE X11 and Figures 3 and h, such an

assumption would lead to considerable error if c0polymers

of very low DP distribution were studied.



IV. SUMMARY AND CONCLUSIONS

Absorbing Markov chain theory has been applied to

the problem of describing the composition of polymers

with the use of matrix formalism to simplify the mathe-

matics involved.

In each system studied, the "states" of the system

were carefully defined in such a manner that state 1 is

absorbing [1122: once a system enters state 1, it never

leaves) so that it correSponds to finished polymer molecule.

Then each of the other states is transient (1:3,, as the

number of steps taken by the system in the process under

consideration increases without bound, the probability of

occupancy of the transient states vanishes), and is defined

in such a manner that the probability of transition from

any state to any other state is easily written in terms

of physical parameters (rate constants, composition of

reaction mixtures, etc.). The result is a very compact

formalism that permits computation of several aSpects of

polymer composition easily.

Linear addition and linear condensation polymer

systems have been analyzed to obtain the distribution and

moments of the degree of polymerization and the first four

"average" degrees of polymerization measured by physical

methods, viz., number average, weight average, "2" average,
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and "2+1" average degree of polymerization. Included in

the addition polymer systems were those involving termi-

nation by combination, by diSproportionation, by chain

transfer, or by any combination of these, as well as a

system involving biradical initiation with termination by

disprOportionation or chain transfer or both. Included in

the condensation polymer systems were those involving a

single monomer of type A-RmB, with or without the presence

of a monofunctional molecule of type A-R', as well as those

involving two monomers of types A-R-A and B-R'-B, not nec-

essarily in equimolar amounts, such as are involved in the

synthesis of nylon 66, Dacron, and similar substances.

Linear addition 00polymers have been analyzed to

obtain the distribution and moments of degree of polymeri-

zation in exactly the manner used for homOpolymers, and to

obtain the distribution and moments of the lengths of

sequences of either monomer alone within the copolymer.

Also obtained for the first time is an expression yielding

the mean composition of the 00polymer in terms of its

component monomer units for a real, finite DP distribution

rather than merely for the limiting case of infinite

degree of polymerization. Also the mathematical formulation

for obtaining the composition of the c0polymer in terms of

various types of monomer sequences of fixed length was

outlined, but not solved explicitly.

Some of the problems, particularly the more complicated

ones involving c0polymers, were not solved algebraically
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in detail. They can be easily solved for numerical results

(ultimately desired anyway) for either hypothetical or

actual cases by use of computers, or even desk calculators.

This would not involve approximate methods, but would simply

utilize the ease of working with matrices composed of

numbers rather than algebraic symbols.

There are many directions in which this work could

be extended to obtain needed or desired results as well as

perhaps new insight into some systems which have previously

defied analysis. The first category of these extensions

involves the careful definitions of states of new systems.

Some systems in this category include inter-intramolecular

polymerization (122;, formation of small ring structures

concurrently with polymerization), termination of polymeri-

zation by formation of macro-ring structures, ring-chain

transition polymerization (223;: epoxide polymerization,

silicone polymerization, etc.), "living polymer" systems

(28), branched and cross-linked polymer formation, poly-

peptide and protein formation, reversible and equilibrium

polymerization systems.

The second category of extensions involves generali-

zation of the transition probabilities used with the present

formalism together with systems already defined as well as

the possible extensions given above. Thus, in addition

polymerization systems, the values of the transition

probabilities are functions of the degree of conversion

of the reaction (because of depletion of initiator and
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monomer, viscosity increase causing diffusion-controlled

mechanisms, etc.) and of temperature. In the present

analysis these are tacitly assumed constant but their

variability could be included in the numerical computation

of the results for real systems.

Finally, the formalism might be extended to give

additional information. For example, Stockmayer has

concluded (37) that fluctuations in c0polymer composition

(122;: relative amounts of monomers in c0polymer) must be

known in order to prOperly analyze light scattering results

for 00polymers. He has concluded (17) that in the limit

of infinite DP the 00polymer composition distribution is

an immeasurably narrow Gaussian distribution, but appar-

ently no estimate of the composition fluctuations has ever

been made for finite DP distributions. Kemeny and Snell

have indicated that such a problem is essentially intractable

because of the unavailability of the values of some infinite

sums in general terms. (21) However, it may be possible

to obtain reasonable estimates by use of a computer approx-

imation together with an extension of the present formalism.
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